
x
i
i
i

A
2
.
1
i
l
l
:
1
!

l
I
I
t
“
;

t
\

t
.
.
.
.
1
9
4
:

.
_.

.
1
.

£
3
1
3
6
.
.
.
S
i
r

L
u
fi
f
r
‘
l
fl
t
!

(
n
‘
5

\
I
I
.

I
..
\
l
’

I
.
3
.

.
3
1
)
.
"
.

5
.

.
q
.

.
5
.
.
.
;

-

1
.
5
3
.
5
.
3
.

”
3
.
1
.
2

I
.
.
.

.
{
(
-
1
}
:
l
e

i
n
“

.
a
t
:

i

(
i
l
l
-
.
2
?

3
%
”

”
.
0
1
.
.

.
3
.
.
.
.

1
h
.
.
.

2
|
.
”

.

x
.
.
.

{
c
y
z
l
c
h
fi
Z
m
e
H
V
m

‘
U
’
I
‘
i
n
‘

-
.

<

w..
.A
i
i
fi
fi
m
i
?

é
i
-
Q
‘
fi
-
i

*
r
d
i
v
.

L
n

.
.
i
.

.
\
s
.
.
.
:
3
.

r

W.
..

g
i
m
m
w
m
.
.
.

21
.x
“.
..

.
.

H
q

.
‘
1
:

E
m
a
“
.
.
-

.
r

1

.
.

2
‘
-

fi
t
t
‘

c
h
i
»
!

5
a
m

.
u
.
.
. 3
.
.
.
-
.
.

A

\
.

1

$
.
3
5

t
u
m
fl
fi
é
i

m
.

4

d
.

2

’
3
“
.

.
.
P
R
.

h
m
.
»

: .
5
.

LlBRARY
, _. .. ,

Mict--a--.‘. State

University

This is to certify that the

dissertation entitled

INDEXING OF MULTIDIMENSIONAL DISCRETE DATA

SPACES AND HYBRID EXTENSIONS

presented by

CHANGQING CHEN

has been accepted towards fulfillment

of the requirements for the

PhD. degree in Computer Science

2 rgwk

Major Professor’s Signature

gI/z 0/0 a

Date

MSU is an Affirmative Action/Equal Opportunity Employer

PLACE IN RETURN BOX to remove this checkout from your record.

To AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE DATE DUE DATE DUE

5/08 K;IProj/Acc&Pres/CIRCIDateDue Indd

INDEXING OF MULTIDIMENSIONAL

DISCRETE DATA SPACES AND HYBRID

EXTENSIONS

By

Changqing Chen

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Computer Science

2009

ABSTRACT

INDEXING OF MULTIDIMENSIONAL

DISCRETE DATA SPACES AND HYBRID

EXTENSIONS

By

Changqing Chen

In this thesis various indexing techniques are developed and evaluated to support

efficient queries in different vector data spaces.

Various indexing techniques have been introduced for the (ordered) Continuous Data

Space (CD3) and the Non-ordered Discrete Data Space (NDDS). All these techniques

rely on special properties of the CD8 or the NDDS to optimize data accesses and

storage in their corresponding structures.

Besides conventional exact match queries, the similarity queries and the box queries

are two types of fundamental operations widely supported by modern indexing tech-

niques. A box query is different from a similarity query in that the box query in

multidimensional spaces tries to look up indexed data which meet query conditions on

each and every dimension. The difference between similarity queries and box queries

suggests that indexing techniques which work well for similarity queries may not nec-

essarily support efficient box queries. In this thesis, we propose the BOND-tree, a new

indexing technique designed for supporting box queries in an NDDS. Both our theo-

retical analysis and experimental results demonstrate that the new heuristics proposed

for the BOND-tree improve the performance of box queries in an NDDS significantly.

The Hybrid Data Space (HDS) is a multidimensional data space which contains

both (ordered) continuous and non-ordered discrete dimensions. In this thesis a novel

indexing structure, the C-ND tree, has been developed to support efficient similarity

querias in HDSs. To do so, some geometric concepts in the HDS are introduced.

Novel node splitting heuristics which exploit characteristics of both CD3 and NDDS

are proposed. Our extensive experimental results show that the C-ND tree is quite

promising in supporting similarity queries in HDSs.

To support box queries in the HDS, we extended the original ND-tree to the HDS to

evaluate the effectiveness of the ND-tree heuristics on supporting box queries in an HDS.

A novel power value adjustment strategy is used to make the continuous and discrete

dimensions comparable and controllable in the HDS. An estimation model is developed

to predict the box query performance of the hybrid indexing. Our experimental results

Show that the original ND-tree heuristics are effective in supporting box queries in an

HDS, and could be further improved with our power adjustment strategies to address

the characteristics of the HDS.

To my parents, Zhenguo and Yuzhi

my wife, Hua and my sister Qinghua

iv

ACKNOWLEDGMENTS

I would like to acknowledge the guidance, support, and encouragement of many

people during my PhD study, without whom, I would not have been able to complete

this thesis.

First, I would like to thank my advisor Dr. Sakti Pramanik for giving me the oppor-

tunity of studying at Michigan State University, which has changed my life totally. Dr.

Pramanik gave me a great deal of help to improve my research work in the past few

years. Under his excellent guidance, I learned how to conduct research in the academic

area. My PhD study would not have been successful without the support and guidance

from him. And I am very glad to have completed my study in his research group.

I would like to take the opportunity to express my appreciation to Dr. Qiang Zhu for

his encouragement and direction throughout my PhD study. Dr. Zhu gave me valuable

suggestions on my research. I appreciate all that he has done for me in support of my

research work.

My sincere gratitude also goes to my committee members, Dr. James Cole, Dr.

Charles Owen, and Dr. Juyang Weng. They were very generous with their time, ideas

and assistance. Their advice and guidance have enriched my research work significantly.

Last but not the least, I would like to thank my parents and my wife for giving me

the freedom to pursue my own dreams. My thanks go to my whole family for their

years of important and indispensable support and encouragement of my PhD study.

For this, I owe them a lifetime of gratitude.

This research work was supported by the US National Science Foundation (under

grants # IIS-O414576 and # IIS—O414594), the Michigan State University and the Uni-

versity of Michigan.

vi

TABLE OF CONTENTS

LIST OF TABLES x

LIST OF FIGURES xi

1 Introduction 1

1.1 Data Spaces' 1

1.2 The Vector Space Model 3

1.3 Disk-based Dynamic Indexing Structures 5

1.4 Similarity Queries and Box Queries g 7

1.5 Overview of the Dissertation 9

2 Related Work 11

2.1 Indexing in the Metric Space 13

2.2 Indexing Techniques of the CDS 15

2.2.1 Data-partitioning Approaches in the CDS 15

2.2.2 Space-partitioning Approaches in the CDS 18

2.2.3 Hybrid Approaches in the CDS 20

2.3 Indexing Techniques of the NDDS 22

2.3.1 The Bitmap Indexing Method 22

2.3.2 The String Indexing Method 24

2.3.3 The ND-tree and the NSP-tree 26

2.4 Challenges in Indexing the HDS 30

3 Box Queries in the NDDS 33

3.1 Introduction 33

3.2 Basic Concepts 36

3.3 Optimization of Indexing Trees in the NDDS 37

3.3.1 Indexing Problem for Box Queries 38

3.3.2 Expected I/O for Box Queries 40

3.3.3 The Splitting Problem for Box Queries 43

3.3.4 Optimal Splitting Heuristics for Box Queries in the NDDS . . . 46

3.4 Construction of the BOND-tree 52

3.4.1 Insertion in the BOND-tree 53

3.4.2 Deletion in the BOND-tree 68

3.4.3 Box Query on the BOND-tree 69

vii

3.5 Compression to Improve Node Fanout 70

3.5.1 The Compressed BOND-tree Structure 73

3.5.2 Effect of Compression on Splitting Overflow Nodes 74

3.6 Experimental Results 77

3.6.1 Effect of Different Database Sizes 78

3.6.2 Effect of Different Number of Dimensions 78

3.6.3 Effect of Alphabet Size 79

3.6.4 Effect of Different Query Box Sizes 80

3.6.5 Performance on Real Data Set 81

3.6.6 Performance of the Compressed BOND-Tree 82

Range Queries in the HDS 86

4.1 Motivations and Challenges 86

4.2 Concepts and Notations for the HDS 90

4.3 The C—ND tree 92

4.3.1 The Tree Structure 92

4.3.2 Normalized Geometric Measures 95

4.3.3 Choose Leaf Node for Insertion 96

4.3.4 Splitting an Overflow Node of the C-ND Tree 97

4.3.5 Processing Range Query Using the C-ND Tree 107

4.4 Experimental Results 110

4.4.1 Experimental Setup 110

4.4.2 Performance of Heuristics Used to Split Overflow Nodes 111

4.4.3 Performance Comparisons With the 10% Linear Scan, ND-tree

and R*-tree 113

Box Queries in the HDS 120

5.1 Motivations and Challenges 120

5.2 Extended Hybrid Indexing 122

5.2.1 Hybrid Geometric Concepts and Normalization 122

5.2.2 Extending the ND-tree to the HDS 123

5.2.3 Enhanced Strategy for Prioritizing Discrete/Continuous Dimen-

sions 126

5.3 Experimental Results 130

5.3.1 Experimental Setup 130

5.3.2 Performance Comparisons 131

5.3.3 Performance Gain with Increasing Database Sizes 132

5.3.4 Performance for Various Additional Dimensions 133

5.3.5 Performance for Different Alphabet Sizes 135

5.3.6 Performance for Different Query Box Sizes 136

5.3.7 performance on Real Data 136

5.3.8 Effect of Enhanced Strategy with Power Value Adjustment . . 139

5.4 Performance Estimation Model 139

viii

6 Conclusion 148

APPENDICES 151

A Proof of Theorems For Box Queries in the NDDS 151

A.l Proof of Lemma A.0.1 152

A2 Proof of Lemma A.0.2 153

A3 Proof of Lemma A.0.3 158

B Algorithms for Performance Estimation Model 159

BIBLIOGRAPHY 164

LIST OF TABLES

3.1 Different values of indexed vectors on dimension 2'............. 47

3.2 Different overlap free partitions from a continuous dimension 2'...... 47

3.3 Different overlap free partitions from a discrete dimension i. 48

3.4 Different component sets of non-leaf entries on dimension 2'........ 56

3.5 Different component sets for non-leaf entries E1 ~ E12. 64

3.6 Grouping of non-leaf entries......................... 64

3.7 the item weights and values in the 0 — 1 knapsack problem........ 65

3.8 The candidate partition for an overflow node N found by solving the 0-1

knapsack problem. 66

3.9 Probability of having a full dimension after indexing X vectors. 71

3.10 Percentage of full dimension at non-leaf levels of the BOND-tree with

different alphabet sizes............................ 72

3.11 Percentage of full dimension at each level of the BOND-tree. 72

4.1 Effectiveness of heuristics used to generate candidate partitions. 112

4.2 Effectiveness of heuristics used to redistribute uncommon entries. . . . 112

5.1 Number of accumulated discrete and continuous splits at leaf level. . . 129

5.2 Number of accumulated discrete and continuous splits at non—leaf level. 129

3.1

3.2

3.3

3.4

3.5

3.6

3.7

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

LIST OF FIGURES

Effect of different database sizes in the basic BOND-tree. 79

Effect of number of dimensions in the basic BOND-tree.......... 80

Effect of different alphabet sizes in the basic BOND-tree. 81

Effect of different query box sizes in the basic BOND-tree......... 82

Performance of indexing genome sequence data 83

Performance of the compressed BOND-Tree with various dimensions. . . 84

Performance of the compressed BOND-Tree with various alphabet sizes. 85

An example of the C-ND tree in a 2-dimensional HDS with discrete

domain {A, G, T, C} and continuous domain [—10, 10]. 93

An example of generating candidate partitions in the C-ND tree. 99

A combination of discrete and continuous candidate partitions...... 102

An example of redistributing uncommon entries in a hybrid splitting

procedure. 106

Effect of database size in the C-ND tree. 114

Effect of dimension mix in the C-ND tree. 115

Effect of alphabet size in the C-ND tree. 116

Effect of query ranges in the C-ND tree. 117

xi

Performance comparison of indexing GSOD data. 119

Effect of various database sizes in the HDS. 133

Effect of additional dimensions in the HDS. 134

Effect of different alphabet sizes in the HDS................ 135

Effect of different query box sizes in the HDS. 137

Performance comparison of indexing GSOD data. 138

Performance for enhanced strategy with power value adjustment. 140

Verification of performance model for given trees and given HDSs. . . . 146

Verification of performance model for given HDSs............. 147

CHAPTER 1

Introduction

In this chapter we will review fundamental concepts related to our research. These

concepts include: different vector data spaces and their properties involved in indexing

techniques; the vector space model used to represent indexed data spaces; disk-based

dynamic indexing structures widely supported in modern DBMS (database manage-

ment system) and various query types popular in multidimensional space indexing.

1.1 Data Spaces

Much research work has been conducted on indexing in the CDS[89] area. A CDS

contains either finite or infinite number of elements which could be ordered based

on their values. For example, the real number space is a 1-dimensional CD8 and

an n—dimensional Euclidean space consists of an n—dimensional CDS. In the database

indexing area, attributes such as the height of people and wages of employees are

typically treated as continuous data. Indexing of the multi-dimensional CDS relies on

efficient organization of indexed data and the partitioning of spaces to limit search

space at the query time, This in turn involves utilization of certain geometric concepts

in the CDS[46, 42], such as rectangles, spheres, areas, etc.

On the other hand, the NDDS contains elements which could be compared as equal

but cannot be ordered. For example, the genome data space has a 4-letter domain

{’A’,’ G’,' T’ ,’ C"} The letter ’A’ in the genome domain is different from the letter ’G’

or ’T’. But since there is no ordering property in the domain, ’A’ is neither larger nor

smaller than the other three letters. The NDDS indexing is a relatively new topic in

database area. Recently the ND-tree[80, 79, 81] and the NSP-tree[81] are proposed

to supporting indexing in the NDDS. As in CD83 indexing methods, basic geometric

concepts such as area, overlap, span, etc. are defined and utilized in the indexing

structures to organize data points in the NDDS for efficient partitioning of the indexed

space.

A Hybrid Data Space (HDS) is a combination of CD8 and NDDS (i.e., an HDS has

one or more non-ordered discrete dimensions and one or more continuous dimensions).

HDS indexing is a new topic and no indexing technique has been reported in the

literature. In this thesis we will develop and evaluate indexing structures for the HDS.

Like the CD8 and NDDS indexing, our techniques exploit certain geometric concepts

to organize vectors indexed in the HDS. The geometric concepts in the hybrid space

are defined in chapter 4.

1.2 The Vector Space Model

The vector space model [86, 105] is wildly used in areas such as information filtering, in-

formation retrieval, and data mining to represent objects mathematically. It overcomes

the disadvantages of a simple data model - the Boolean model[45].

The Boolean model is based on boolean logic and set theories. Indexed features in

the Boolean model are set to either true or false. Queries are specified as boolean

expressions consisting of features connected by AND, OR, NOT operators. Because of

the binary notion, indexed objects either matches a query object or does not match it

(i.e., query results in the Boolean model cannot be ranked [68]). As a result, indexes

based on the Boolean model usually returns either too few or too many results when

answering user queries.

In the vector space model important properties of objects are represented using

feature vectors (data points). Features vectors in vector spaces usually have real number

domains (in contrast to the binary domain of the Boolean model) and could be linearly

combined. In the scenario of similarity queries, query objects are also transformed into

feature vectors.

An example application of the vector space model is to use vectors representing the

contents of documents. Each document is represented using a feature vector containing

the frequency of terms used in that document. The whole vector space consists of all the

vectors used to represent a large amount of documents. When a user looks for certain

documents, a query vector is created based on the user interests and the document

vector space is searched (probably with the help of certain indexing techniques to avoid

linear search of all documents). To support similarity queries in the vector space, the

distance (range) value between vectors could be calculated through certain distance

measures in the vector space (e.g., the Euclidean Distance[99]). And the closeness

between the document vector and query vector is evaluated based on their distance

values.

It is worth mentioning that not all spatial objects could be represented by vectors

naturally. For example, in the area of multimedia processing, contents of objects such

as video clips and images are stored in their original format and need non-trivial fea-

ture extracting methods for efficient representing, searching and retrieving of database

objects. Extraction of image features (e.g., color, texture, shape, shadow) is per-

formed as a preprocessing step to obtain image signatures (feature vectors): the color

feature could be generated from average gray scale or average RGB format, and the

texture feature could be obtained using dyadic wavelet transform [66], wavelet frame

transform[97], Gabor filters [54] and so forth. There has been much research work done

in the area of feature (content) extraction and dimensionality. reduction. Discussions

and comparisons of these techniques could be found in [87, 84, 4].

1.3 Disk-based Dynamic Indexing Structures

Theoretically the sequential scan[13] could be applied to support any kind of database

queries. Compared to other methods a sequential scan is easier to implement. And

it works effectively if the following two conditions are satisfied: (1)the data set size is

small; (2) the selectivity of the query is high. In other situations a sequential scan has

poor performance because it always looks up the whole data space to answer a query.

In this case more efficient indexing techniques are required to answer database queries

and many research works have been done in this area.

In modern database applications, the amount of data to be stored could be huge.

Many real world spatial databases contains records counted in millions or even more[28].

As the number of tuples to be indexed grows larger and larger, the indexing structure

itself will eventually become so big that it could only be stored on the secondary storage

media(e.g., the hard disk). In-memory indexing techniques could not be utilized in

this situation. With the improvement of computer hardware technologies to speed

up secondary storage access [76] and techniques introduced on the software side to

minimize the number of storage media access[98], we will focus on the study of disk-

based indexing techniques, which are more practical in supporting large scale data

sets .

A dynamic indexing method[5] could support random insert and delete operations

on indexed data efficiently. By dynamic we mean that insert and delete operations are

mixed with queries in the indexing structure. Unless the indexed data set never changes

(or changes rarely), a dynamic indexing method is more preferable than a static one

because the latter requires rebuilding the whole indexing structure from scratch every

time the data set is modified, and the reconstruction could be an expensive operation,

especially for large data sets.

In the past different disk-based dynamic indexing structures have been proposed to

support efficient database queries. The main idea behind these techniques is to organize

the indexed objects carefully so that at query time, only parts of the indexing structure

need to be visited. The rest of the index could be pruned away based on given query

conditions.

The performance of disk-based indexing structures is typically evaluated through the

number of disk accesses required to support database queries. This is because the cost

of disk access is significantly higher compared to memory access (usually by orders of

magnitude). Thus it is important to verify the performance of new disk-based indexing

structure against existing ones (and the sequential scan if appropriate) in terms of disk

I/Os needed to answer database queries.

In this thesis we will focus on the development of disk-based dynamic indexing struc-

tul‘es and evaluate their performances by comparing their query I/Os against those of

eMisting indexing techniques.

1.4 Similarity Queries and Box Queries

Exact queries (i.e., given a query vector q, determine if q is stored in the database

or not) are conventional query types supported by all database management systems.

But in certain circumstances exact queries cannot meet user requirements well. For

example, given a database storing a huge number of web pages from the internet,

when looking for a web page similar to a given web page (the query web page), with

exact queries all the user could do is to guess some query conditions and check if the

returned query result is satisfying. If not, the user needs to start another exact query

with different conditions. This process will continue until the user gets desired results

or gives up.

To solve this problem, more powerful query types has been supported by mod-

ern database indexing techniques. Similarity queries[90, 15, 92] and box/window

queries[3, 78] are two common operations widely supported by modern database index-

ing techniques. In practice these two queries frequently occur on database systems, and

have become important criteria for evaluating the efficiency of indexing techniques[94].

Similarity queries are used to search indexed data points which are ’similar’ to a

given query vector. They are important query types because they could be applied

to retrieve information that cannot be implemented using conventional exact match

qufiaries. For example, similarity queries could solve the web page looking up problem

we described earlier.

There are two different kinds of similarity queries, which are described as follows.

(1) Range query.

A range query retrieves indexed data points which are within a given range from a

query vector. When the range is 0, a range query becomes an exact match query.

Given a data set DS, a query vector q and a query range 1‘, the formal definition of a

range query on DS is defined as:

Range_Q(q,r) = {v E DS]dz'stance(v, q) S r} (1.1)

where distance(v,q) represents the distance between vector q and v.

(H) lit-Nearest Neighbor Query (K-NN query).

The k-Nearest Neighbor Query returns the top It indexed data points which are the

most ’close’ to the query vector. The smaller the range between two data points, the

Closer they are considered to be. Given a data set DS and a query vector q, a k-Nearest

Neighbor Query on DS could be formally expressed as:

KNN_Q(q,k) = {v1,v2,. . .Uk 6 DSIV’UJ' E {v1,v2, .. . ,vk},

V’U’ 9! {221,122, . . . ,vk},distance(q,v’) 2 distance(q,vj)} (1.2)

Here distance(q, vj) and distance(q, '0') are defined the same way as in (1.1).

Box queries are used to return indexed data points which are within a given query

window. It is fundamentally different from similarity queries because a box query re-

turns vectors which satisfy query conditions on every dimension while similarity queries

are interested in vectors within a given distance (from the query vector), which in turn

is calculated based on information from all dimensions. Given a data set DS and a

query rectangle QR, a box query on DS could be formally expressed as:

Box_Q(QR) = {v E 03]?) E QR} (1.3)

1.5 Overview of the Dissertation

The rest of the dissertation is organized as follows. In chapter 2, we review existing

research works on multidimensional CD83 and NDDSs indexing, and discussed chal-

lenges in supporting HDSs indexing. In chapter 3, we provide theoretical analysis of

box queries in the NDDS and introduce new algorithms to improve box queries perfor-

mance based on our analysis. A new indexing structure, the BOND-tree, is developed

to support efficient box queries in the NDDS. A compression idea is then introduced

for the BOND-tree to further improve its query performance. The C-ND tree indexing

structure, which is designed to support efficient range queries in the HDS, is intro-

9

duced in chapter 4. In this chapter, we extend the geometric concepts in the CDS to

the HDS. A normalization idea in the HDS is introduced to make discrete and contin-

uous measures comparable and controllable. And extensive experiments are conducted

to compare the C-ND tree performance with other indexing techniques. In chapter

5, we extend the original ND-tree heuristics to the HDS to evaluate the efficiency of

the ND—tree heuristics in the HDS for box queries. A novel power adjustment idea

is proposed in this chapter to adjust the contribution of the discrete and continuous

subspaces in the HDS. An accurate evaluation model is presented to estimate perfor-

mance of box queries in the HDS. Chapter 6 provides summarization of this thesis and

future research works. Detailed theoretical proof of optimized splitting heuristics in the

NDDS for box queries is provided in appendix A. And the algorithms used to estimate

box query I/Os in the HDS are given in appendix B of this thesis.

10

CHAPTER 2

Related Work

Numerous indexing structures have been proposed to support efficient access, insert

and delete of database objects. Some of them are only suitable for single-dimensional

indexing, such as the binary-tree[77], the B-tree[7], and the AVL—tree[41], etc. Discus-

sions of these indexing structures are not included in this thesis because they cannot

support queries on multidimensional indexing keys. For the reason provided in section

1.3, in—memory indexing techniques like the k-d tree[12] (multidimensional search tree),

quadtree[88] and grid flle[72] are also excluded from our discussion.

We start our discussion with related work on indexing techniques in the metric

space[25, 59, 111]. Since the vector space is a special case of the metric space, theoreti-

cally all metric space indexing methods could be applied to the vector space. However,

for the same reason (the metric space is a general case of the vector space), special prop-

erties of the vector space could not be utilized by the metric space indexing techniques

to optimize organization of indexed data objects.

11

After discussion of metric space indexing methods, we introduce existing indexing

techniques in multidimensional vector spaces, including the CD8 and the NDDS. These

techniques generally fall into one of the two categories: the data-partitioning approach

and the space-partitioning approach. Both approaches split an overflow node N into

two new nodes, N1 and N2, by dividing indexed vectors in N into two disjoint sets

for the new nodes. The data-partitioning approach splits a node N subject to the

minimum utilization requirement of the indexing structure. That is, both N1 and N2

are guaranteed to have a certain number of vectors after the split. Although data-

partitioning cannot guarantee overlap free partitions (which increases the chance of

searching multiple paths of the indexing structure during query time), the minimum

utilization criteria ensures reasonable storage utilization in the indexing structure. On

the other hand, the space-partitioning approach focuses on how to split the data space

represented by an overflow node N into subspaces. Distribution of indexing vectors de-

pends on how the indexed space is split. Once the space is partitioned, indexing vectors

are put into new nodes based on which subspace they belong to. Space-partitioning

methods always generate overlap free split at the cost of possible sacrifice on storage

utilization.

At the end of this chapter, we will discuss challenges and ideas to index the HDS,

based on our analysis of existing CD83 and NDDSs indexing techniques.

12

2.1 Indexing in the Metric Space

The metric space is a mathematical model consisting of a domain of objects S and a

distance function d between 2 objects (m and n) in S'. The distance function d in a

metric space has the following 4 properties.

Vat, y, z E S’

(1)d(:r, y) = 0 4:) a: = y Identity.

(2)d(:r, y) 2 0 and d(a:, x) = 0 Nonnegative.

(3)6193, y) = dfyi-T) Symmetry.

(4)d(a:, z) _<_ d(a:,y) + d(y, z) Triangle Inequality.

Unlike in the vector model, the only available information in the metric space is

the relative distance among objects. The distance information is utilized by indexing

techniques in the metric space to organize indexed objects and prune the search space

at query time (through the triangle inequality property).

Many indexing schemes have been developed to support similarity queries in the

metric space. Some typical ones are the vantage-point tree [109, 50], the generalized-

hyperplane tree (GHT) [96], the multi-vantage—point tree (MVPT) [18] and the balanced

monotonous bisector tree (MBT) [36]. All these techniques use one or more reference

points (vantage points) to partition the indexed data spaces into subspaces and create

hierarchical indexing structures based on the partition. Although these techniques

13

support similarity queries in the metric space effectively [29, 20], they use memory-

based structures which focus on reducing the number of distance calculations. The

reason is that, unlike in the vector space, distance evaluation in the metric space could

be an expensive operation.

A disk-based metric indexing structure which pays attention to reducing disk I/O is

the M-tree[30]. The internal node entry of a M-tree consists of a routing feature object,

a covering radius (to partition the space), a pointer to its child node and the distance

from its parent (except for the root) to the routing object. A leaf node entry contains

a feature object, the distance value from its parent to the feature object and an object

identifier. Unlike other metric trees, the M-tree is created in a bottom-up manner by

splitting fixed sized tree nodes. Each node covers a sphere-like region of the metric

space by recording a pivot object and a radius. New objects are inserted into the M-

tree by minimizing the covering radius and the distance to the pivot object. The split

operation in the M-tree is implemented through first selecting two pivot objects for the

two new nodes, then redistributing the rest of the objects using a greedy approach.

Queries on the M-tree are performed by using the covering radius and the distance

between routing objects. According to [53], more distance calculations are required in

the M-tree than in other metric space indexing techniques because bounding spheres

in the M-tree are likely to overlap with each other.

Since the metric space is a superset of the vector space, all metric indexing structures

14

could be applied to vector spaces. However, metric indexing methods do not neces-

sarily work well in vector spaces, because even when indexing the vector space, metric

indexing methods consider only relative distance between indexed objects, while vector

space indexing methods could take advantage of extra properties of the indexed space,

such as the occurrences and distributions of indexed values on every dimension [79].

2.2 Indexing Techniques of the CDS

The CDS indexing methods have been studied for a long time. Various techniques have

been proposed to support efficient indexing in the CDS. To avoid searching the whole

indexing structure, all these techniques organize the indexing structures in a way that

certain parts of the indexes could be pruned away at query time. This is achieved by

decomposing indexed data spaces recursively (similar to the idea in divide and conquer

methods[58]) using some geometric concepts like bounding rectangles[47, 9], bounding

spheres[102], and bounding polygons[56].

2.2.1 Data—partitioning Approaches in the CDS

As a typical data—partitioning indexing structure, the R-tree [47] was introduced by

Guttman in 1984. Data organization in the R—tree is similar to that of the B+~tree[33]:

indexed vectors reside in the leaf nodes of the tree; insertion and splitting heuristics are

implemented in a way that spatially adjacent data are likely to be stored in the same

15

node to reduce disk accesses at query time. The R-tree has the following properties:

(1) Every node has between m and M entries unless it is the root(m and M are

minimum and maximum number of entries allowed in a node). (2) The root node has

at least two entries. (3) Each leaf node entry in the R-tree has a (key, pointer) structure

representing the indexing key and the pointer to the actual tuple in the database; each

non-leaf entry node contains the minimum bounding rectangle (MBR) of its child node

as well as a pointer to that child node.(4) All leaf nodes are at the same level of the

tree.

Insert operation on the R—tree is a recursive process. It starts with the root node

and the next node in the insertion path is calculated by selecting the child node which

needs least area enlargement to accommodate the new data. In case of ties on area

enlargement, a child node with least area is picked.

An overflowing R—tree node could be split using 3 different algorithms: linear,

quadratic and exponential. All the three methods try to minimize the total areas of the

two new nodes’ MBRS. The exponential splitting approach examines all possible can-

didate splits to find the most desirable one. The quadratic approach first finds a pair

of seed entries which would waste the most space if they had resided in the same node

and separates them into two new nodes. Then it distributes the rest of the entries be-

tween the two new nodes using a greedy approach. The linear splitting approach picks

two seed entries based on their lower bounds and upper bounds in linear time and dis-

16

tribute the rest of the entries in the same way as the quadratic approach. Performance

of the R—tree is heavily affected by its splitting algorithms. Although Guttman found

only small difference among linear and quadratic splits, Beckmann reports a significant

performance difference between the linear and quadratic splitting algorithms[9]

Numerous variants of the R—tree have been developed to improve the performance

of the original R-tree. Among them the R*-tree[9] is regarded as a classical optimiza-

tion of the R—tree. The R*-tree gets better query performance by optimizing various

geometric criteria including area, overlap and margins (summation of a node’s MBR’s

edge lengths) at the tree construction time. And it forces reinsertion of indexed vectors

to reorganize tree structure and reduce overlap among sibling nodes.

Other examples of data-partitioning methods include the SS— tree[102], the X-tree[14],

the R+-tree[93], the SR-tree[57] and the TV-tree[52]. All of them try to address cer-

tain properties in CD83 indexing. For example, the SS-tree uses bounding spheres to

partition the indexed space. A bounding sphere is represented by the centroid point

of all indexed vectors and a minimum radius which is the maximum distance among

the centroid point and every vector indexed. The X-tree records node splitting history

(i.e., on which dimension a node has been split) and utilizes this information for later

splitting in order to achieve low overlap partitions. The R+-tree forces node splitting

to get an overlap free indexing structure. Note that overlap free partition is generally

a characteristic of space-partitioning methods. The main problem of this idea is that

17

it increases both time complexity and space complexity. Time complexity is increased

because splitting a node which is an obstacle for an overlap free indexing structure

might need to split its child node as well. The number of nodes needed to be split

could increase exponentially as the forced split are applied to the lower levels. On the

other hand, too many splitting operations in an indexing structure lead to deterioration

of space utilization.

2.2.2 Space-partitioning Approaches in the CDS

Typical space-partitioning methods of the CDS include the K-D-B tree[82], the LSD

tree[49] and the LSDh tree[48].

The K-D-B tree is a combination of the K-D tree[10](multidimensional binary search

tree) and the B-tree[8] (1-dimensional multiway search tree). As a memory-based

multidimensional binary tree, the K-D tree partitions the indexed space by splitting

each dimension in repeating sequences. Its node fanout is constant because each record

occupies a node of the K-D tree. The B-tree is a popular 1-dimensional balanced

indexing structure. Each node in the B-tree contains multiple child nodes, which is

a property suited for the disk-based indexing structure. The K-D-B tree extends the

B—tree by supporting multidimensional space indexing. And it extends the K-D tree by

allowing multiple entries being stored in one node. The K-D-B tree stores each node in

one disk block. It is a balanced structure consisting of region pages (non-leaf nodes) and

18

point pages(leaf nodes). Region page entries in the K-D-B tree record (region, page-id)

pairs where region represents the indexed data space which contains all the vectors

in the subtree with root node page_id. Point page entries contain (vector, vect0r_id)

pairs where vector is the indexed feature vector and vector_id points to the actual tuple

in the database. This is a typical structure for multidimensional disk-based indexing

methods. As a space-partitioning method, all sibling regions in the K—D-B tree are

disjoint, and the region in a non-leaf entry is the union of all regions in its child node’s

entries. The insert operation in the K-D-B tree is performed by searching the tree

and find the leaf node whose region contains the new vector. Splitting a node in the

K—D-B tree is conducted by splitting the node region on one particular dimension. The

splitting dimension is picked cyclically among all dimensions of the space or, in certain

cases such as the distribution of indexed data is known, with priorities for certain

dimensions. Splitting operation on a region page may lead to recursive splitting of its

child pages, which increases the computational complexity of constructing the K—D—B

tree. As in other space-partitioning methods, storage utilization in the K-D-B tree can

not be guaranteed.

The LSDh tree is derived from the LSD tree (the local split decision tree), which

again derives from the K-D tree (memory-based indexing). Like the LSD tree, initially

the whole LSDh tree structure is in the main memory. As more vectors are indexed by

the tree, the tree structure will eventually be too large to be kept in memory, in which

case the LSDh tree is split into two parts: the top part close to the root node remains in

19

the memory and the rest part is saved on the secondary storage media. Unlike the LSD

tree whose internal node records a splitting dimension and the splitting position on

that dimension, which would lead to large dead spaces, the LSDh tree combines ideas

of the LSD tree, the R-tree and the buddy tree[91]. It also introduces the idea of coded

actual data regions in order to overcome the potentially large dead spaces introduced

by space-partitioning methods and at the same time keep large node fanouts, which is

a typical advantage of the space-partitioning methods.

2.2.3 Hybrid Approaches in the CDS

As we have seen that both data-partitioning and space-partitioning approaches have

their advantages and disadvantages. And there are some data-partitioning methods

that take advantages of space-partitioning approaches and vice versa. For example,

the R*-tree (a data-partitioning approach) tries to minimize overlap between sibling

nodes during tree construction (although it cannot guarantee overlap free splits). And

the coded actual data regions idea in the LSDh tree (a space-partitioning approach) is

actually the minimum bounding rectangle idea from data-partitioning approaches.

In this section we introduce the hybrid-tree [22], an indexing methods which combines

concepts in both data—partitioning and space-partitioning approaches to achieve better

query performances. The hybrid-tree is more close to space-partitioning methods with

some relaxations on the strict ’overlap free’ requirement, which excludes it from the

20

category of pure space-partitioning. Note that although this indexing structure has

’hybrid’ in its name, it has nothing to do with the Hybrid Data Space. It is called so

because it tries to make use of ideas from both data-partitioning and space-partitioning

approaches. The hybrid-tree is used to index vectors in the CDS only.

To keep a low fanout in the node as in space-partitioning methods, the hybrid tree

always partitions the space into two subspaces at node splitting time based on in-

formation from one single dimension. This is different from the idea of considering

information from all dimensions in the data-partitioning methods. However, it relaxes

the overlap free partition requirement in space-partitioning methods to improve the

storage utilization. The hybrid-tree adopts the K-D tree structure and records one

more split position than the K-D tree in its non-leaf node. So each internal node in

a hybrid-tree contains two split positions lsp and rsp: lsp represent the upper bound

of the left side partition in the original K-D tree and rsp represent the lower bound of

the right side partition. If rsp<lsp, the partition is no longer overlap free. The coded

actual data regions idea in the LSDh tree, which is used to take advantage of both

data-partitioning and space-partitioning methods, is also adopted in the hybrid tree to

eliminate possible dead spaces in the hybrid tree structure. The split is performed on

an overflowing node in the hybrid tree by first choosing the split dimension which could

reduce expected number of disk accesses per query (EDA). Here EDA is actually cal-

culated as the overlapping possibility between the split nodes with a query rectangle,

assuming uniform data distribution. Once the split dimension is chosen, the hybrid

21

tree finds splitting positions as close to the median as possible, provided that they do

not violate utilization constraints.

As a conventional data space supported by all DBMSs for a long time, many indexing

techniques have been proposed for the CDS. More information on these CDS indexing

methods could be found in [110], [44] and [16].

2.3 Indexing Techniques of the NDDS

Indexing of the NDDS is a relatively new topic. In this section we introduce existing

indexing techniques proposed for the NDDS. The first technique to be introduced is

the bitmap indexing[74, 73], an indexing scheme widely supported by many commercial

DBMSs such as Oracle and DB2. Then we review typical string indexing methods

popular in areas such as data mining and information retrieval. Two new indexing

methods designed exclusively for the NDDS, namely the ND-tree and the NSP-tree,

are introduced at the end of this section.

2.3.1 The Bitmap Indexing Method

The bitmap indexing refers to a family of indexing techniques which use a bitmap to

represent indexed feature vector spaces. The original bitmap indexing uses a bitmap

array built for each distinct value of an indexed attribute. The array size equals to the

number of feature vectors to be indexed. The space requirement of bitmap indexing

22

is proportional to the size of data set, the number of attributes indexed as well as the

cardinality of each attribute. If we have n = 1,000, 000 feature vectors and the indexed

attribute/feature has v = 4 distinct values, the bitmap (for this single attribute) has

a bit size which is m x n = 4, 000,000. To index multiple attributes, each attribute

requires a separate bitmap structure.

The advantage of bitmap indexing methods is that they could support bit-wise op-

erations AND, OR and NOT quickly, especially when combined with support from the

hardware level. However, it is clear that storage utilization is a disadvantage of the

bitmap indexing. To overcome the high storage cost of original bitmap indexing, differ-

ent encoding[23, 24, 104] and compression[2, 106, 107] strategies have been proposed to

reduce the index size at the cost of more CPU time (to decode or uncompress the index

at query time). The second drawback of the bitmap indexing is that it can not support

indexing of frequently updated data sets. Insert and delete operations on the bitmap

indexing structure containing n records have time complexity of 0(n), compared to the

time complexity of log(n) for hierarchical indexing structures. This constrains bitmap

indexing to areas where data modification occurs only rarely and in batch mode, such

as data warehouse indexing[108, 55].

23

2.3.2 The String Indexing Method

String indexing methods are widely used in the information retrieval area for text

searching. There are two kinds of string indexing techniques: the Trie structure[32]

based methods and the B-tree structure based methods.

The Trie structures (digital search trees) are in—memory multi-way trees used to

support query of indexed strings. Each node in the 'Iiie structure except the root

node represents a letter from the alphabet. And each path from the root node to a

leaf node represents an indexed string. The ’I‘rie structure could be used for exact

matching or prefix matching (i.e., find all indexed strings prefixed by a given query

string) by simply following the path corresponding to the query string. A suflix tree

[101, 69] is a suffix Trie structure which saves all possible suffixes of indexed strings.

Unary nodes (nodes with only one child) are compressed to improve space utilization.

Suffix-trees could answer exact and suffix matching queries efficiently since each path

from root to leaf represents a suffix of indexed strings. The suffix array [67] is a

data structure built to store all the suffixes of indexed strings in their lexicographical

order. It carries the same information as a suffix tree but uses less storage. The

compact suffix array[65] further reduced the suffix array storage utilization at the cost

of increased computation time. Both the Trie structure and its derivatives are widely

used to solve string searching problem such as finding the longest substring, finding

repetitions of a string and comparing strings. The search procedure in a Trie structure

24

or its derivatives is fast: to search a vector consisting of 1: characters, the operation

will always terminate after no more than k comparisons. Insert and delete operations

involve a search on the indexing structure followed by appropriate operations, whose

time complexity is proportional to the search time[51]. However, Trie-related structures

are memory-based which prevents them from being allied to large scale data sets[1, 32].

The Prefix B-tree[6] and the String B-tree[40] are disk-based indexing methods de-

rived from the B—tree family[100, 75] (e.g., the B-tree, the B*-tree and the B+-tree).

Records in the Prefix B-tree are organized based on their lexicographical order - the

same way as in the B*-tree. To support indexing of strings, the Prefix B-tree uses

compressed prefix strings as separators in internal tree nodes. The String B-tree is a

combination of the B+-tree and the Patricia trie structure[71]. At the leaf level indexed

strings are maintained in contiguous disk blocks in a way similar to the B+ tree. In

an internal node of the String B-tree, a Patricia Trie structure is used to describe the

separators saved in that node. Both the Prefix B-tree and the String B-tree rely on the

lexicographical order of the indexed strings to maintain their data structure. However,

since there is no ordering property among elements in the NDDS, none of them could

be used as indexing structures in the NDDS.

25

2.3.3 The ND—tree and the NSP-tree

Recently two novel indexing methods are proposed exclusively for the NDDS: the ND-

tree and the NSP-tree. Both of them are dynamic multidimensional indexing structures

that support large scale data sets. As described in [80, 79, 81], these two methods have

significant advantages over other discrete space indexing techniques which have been

introduced in this chapter.

To index data objects in the NDDS, the authors of the ND-tree and the NSP—tree

extend certain geometric concepts such as span, area and overlap from the CDS to the

NDDS. Existing indexing strategies which have been proved to be effective in the CDS

are adopted in the two NDDS indexing structures with the support of NDDS geometric

concepts.

The ND-tree

The ND-tree is a balanced data-partitioning structure inspired by the R*-tree indexing

structure in the CDS, and exploits special characteristics of the NDDS.

Each node in the ND-tree occupies one disk block. The tree structure has following

properties: (1) A leaf node entry contains a (key, pointer) pair which represents a fea-

ture vector and a pointer used to locate the indexed tuple in a database. (2) A non-leaf

node entry contains a (DMBR, child_id) pair which represents the discrete minimum

26

bounding rectangle (an idea/structure corresponding to the minimum bounding rect-

angle in CDS indexing techniques) and the child node id. To efficiently store discrete

information in non-leaf nodes, DMBRs in the ND-tree are implemented using a bitmap

representation. (3) Each tree node has between m and M entries unless it is a root

node. Here m and M are minimum and maximum number of entries allowed in a node.

In case of a root node, m is set to 2.

Insert operation in the ND-tree involves two critical parts: finding a leaf node to

accommodate the new feature vector v and splitting tree nodes in case of overflow.

Finding a leaf node for insertion is conducted on the ND-tree recursively, starting from

the root node R. Each child node of R is evaluated and if v is contained by more than

one child nodes’ DMBRs, the child node with the minimum DMBR area is chosen. If

v is not contained by any child node’s DMBR, two heuristics are applied: (1) choose

the child node N with minimum overlap enlargement among all child nodes if put v in

N. (2) break ties on the first heuristic by choosing a child node N which has the least

area enlargement after accommodating v. After a child node N is chosen, the process

continues on the subtree represented by N until a leaf node L is. found. All the nodes

chosen (from R to L) form an insertion path for vector v. If L does not overflow after

indexing the new vector, the corresponding DMBRs in the insertion path are adjusted

as needed. If L overflows, candidate partitions to split L are generated and then one

of them is picked using four heuristics (HS-1 ~ HS-4) to be discussed shortly. Note

that splitting a node might cause its parent node to overflow, in which case the parent

27

node is also split using the four heuristics. This process could propagate toward the

root node. In case the root node is split into two new nodes, the height of the ND-tree

will increase by one.

Three different ways of generating candidate partitions are discussed in [79]: (1)

using the exhaustive approach. (2) using the bucket ordering technique. (3) using an

auxiliary tree. Among them (2) and (3) are implemented and evaluated in the ND-

tree structure. Both the bucket ordering approach and the auxiliary tree approach try

to optimize the time complexity of the computation and, at the same time, increase

the chance of getting small-overlap partitions to be evaluated by the following set of

heuristics. Detailed discussion of the two methods could be found in [79] and [80].

The ND—tree applies four heuristics to find the best partition for an overflow node

N, which are: (HS-1) minimum overlap: choose a candidate partition which has the

minimum overlap among DMBRs of the two new nodes. (HS-2) maximum span: choose

a candidate partition which tries to split along a dimension with the longest span (edge

length) in N’s DMBR. (HS-3) center split: the split position of the dimension is as close

to the median point as possible. (HS-4) minimum area: the summation of DMBRs of

the two new nodes is as small as possible. The four heuristics are applied in the order

they are presented here. Ties on heuristics are broken by the next heuristic. If there

remain ties after all four heuristics are applied, a random one is chosen.

As a disk-partitioning method, the ND-tree scales well on alphabet size, dimension

28

numbers and database sizes. It shows significant performance improvement when com-

pared with the sequential scan and the M-tree.

The NSP—tree

Although the ND-tree, as a data-partitioning approach, already exploits ideas from

typical space—partitioning methods (e.g., the minimum overlap heuristic when splitting

an overflow node). As the number of dimensions grows up, there might still be large

overlaps among sibling nodes due to the fact that it need to maintain minimum space

utilization as a data-partitioning approach. To address the problem, the NSP-tree is

proposed as a space-partitioning approach for the NDDS.

Unlike data in the CDS, there is no ordering property among elements in the NDDS.

Recall that in CDS space-partitioning approaches a split point is selected on a partic-

ular dimension to divide the space into two overlap free subspaces. This partitioning

technique is actually based on the ordering property of values in the CDS. On the other

halld, the non-ordered property in the NDDS prevents adopting the CDS partition tech-

nique directly. But the NDDS provides more freedom in partitioning its elements on

a dimension into two mutually exclusive sets, which could also guarantee an overlap

free partition of the indexed space. This characteristic of the NDDS is exploited in the

NSP~tree implementation.

TO eliminate the large dead spaces problem common to space-partitioning ap-

29

proaches, the NSP—tree indexed only the current space (i.e., the minimum bounding

space of the indexed vectors) instead of the whole (static) space. As more vectors are

inserted into the NSP-tree, theminimum bounding space is dynamically enlarged to

record the data space that is currently occupied by indexed vectors. The NSP—tree also

introduced the auxiliary bounding box into its structure to further address the dead

space problem in the space—partitioning techniques and enhance its query performance.

To balance the actual fanout of tree nodes (decreased by adding auxiliary bounding

boxes) and the pruning power (increased by auxiliary bounding boxes), the NSP-tree

allows several child nodes sharing an auxiliary bounding box or one child node has

multiple auxiliary bounding boxes.

The NSP tree is actually a space-partitioning method which utilizes some ideas of

data-partitioning approaches (at the cost of reduced tree node fanout). Its performance

is reported to be comparable to the ND-tree for uniformly distributed NDDS data and

improved for skewed data.

Detailed discussion of the NSP-tree implementation is omitted in this thesis. Inter-

eSted readers are referred to [81] for more information about the NSP-tree.

2-4 Challenges in Indexing the HDS

At a. first glance, the easiest approach to utilize existing CD83 and NDDSs indexing

rIletllods in the HDS is to transform data from the CDS subspace to the NDDS subspace

30

(or in the other direction). For example, the discretization method could transform

continuous data to discrete data. A number of discretization techniques have been

proposed to convert continuous data to discrete data [21, 43, 64]. Although these

techniques could be applied to HDSs indexing, the semantics of the original data are

changed during the transformation process. For example, we can categorize network

user as ’normal’ or ’malicious’ by the number of times they attempted to log on an

account during a certain time period; and create indexes on feature vectors including

the time of attempted log on property. If the discretization approach is applied, the

indexing structure contains only the categorization information (either ’normal’ or

’malicious’). The actual log on time of each user is lost. When we want to find out

users whose log on time exceed a certain threshold, the indexing structure could hardly

offer any help. A typical application domain of the discretization idea is the machine

learning area, where it is used to reduce learning time and improve predictive quality by

using feature selection algorithms that works effectively on discrete data[62]. In other

Words, although transforming data features allows us to index the HDS, in practice it

is not suitable in areas like database indexing where accuracy is important.

To index vectors in the HDS, the first challenge is to create an indexing structure

WhiCli effectively represents both continuous and non-ordered discrete information from

both data spaces. As we have discussed in chapter 1, the structure should support

large scale data sets (i.e., it should be disk-based), it should support indexing of data

In a. multidimensional space, and should be able to allow frequent insert and delete

31

operations mixed with database queries.

As we have seen in section 2.2 and section 2.3, indexing techniques in both CD85 and

NDDSs rely on special properties of the data spaces and utilization of certain geometric

concepts to optimize distribution of indexed data objects in the corresponding space.

Similarly, to organize indexed objects in the HDS efficiently, certain hybrid geometric

concepts are also required. In this thesis we extend basic geometric concepts from the

CDS to the HDS and build our indexing structure based on these hybrid geometric

concepts.

Another problem in indexing the HDS is how to treat the CDS and NDDS subspaces

fairly in an HDS indexing structure. Even with eflicient indexing structures and ge-

ometric concepts for the HDS, combination of attributes from different data spaces

remains a challenging problem. A novel normalization idea is proposed in this thesis

to make discrete and continuous values comparable and controllable in the HDS.

The advantages and disadvantages of the data-partitioning methods and space-

partitioning methods have been discussed in this chapter. And we have seen certain

techniques (e.g., the hybrid tree, the ND-tree and the NSP-tree) get better performance

by Combining advantages of both categories. When indexing the HDS, we prefer to take

a'dVEI-Iitages of ideas from both data-partitioning methods and space-partitioning meth—

Dds as well to achieve a better query performance.

32

CHAPTER 3

Box Queries in the NDDS

3 -1 Introduction

Many indexing schemes have been proposed for the CDS. Some well-known CDS in-

dexing structures are the K-D-B tree[82], the R—tree, the R*-tree, the X-tree and the

LSDh—tree. Indexing high-dimensional vectors in the NDDS is a relatively new prob-

lem- It is becoming important due to its applications in bioinformatics, e-commerce,

web mining, etc.

As we have discussed in section 1.1, vectors in the CDS contain real numbers which

Could be ordered along each dimension. This is an important characteristic utilized

by indexing techniques in the CDS. On the other hand, vectors in the NDDS have

n0n~ordered discrete (also known as categorical) values. For example, aligned bacterial

genome sequences are essentially high dimensional (more than 200 dimensions) vectors

in 8.11 NDDS with each dimension having the same alphabet (i.e. {a,g,t,c}). The

33

letters/characters in an NDDS alphabet could be considered as equal or not equal, but

could not be ordered. Because of the non-ordered nature of values in NDDSs, existing

indexing schemes for the CDS cannot be directly applied to the NDDS.

'I‘raditional string indexing techniques such as Tries and its derivatives (e.g., the

suffix tree and the ternary search tree[ll, 31]) could be applied to discrete data when

the vectors to be indexed could be treated as strings. However, as we have mentioned

in section 2.3.2, they are in-memory indexing structures which could not be utilized

to support large scale data sets. The prefix B—trees and String B-tree are disk-based

string indexing methods but they reply on the fact that indexed strings could be sorted

— a property that does not exists in the NDDS.

The vantage-point tree and its variants like the MVP tree[19], the geometric near-

neighbor access tree (GNAT) are indexing techniques designed for the metric space. As

a. subset of the metric space, the vector space could also be indexed by metric indexing

Structures. But the major drawback of these techniques is that they are static memory-

based structures which focus on reducing the number of distance computations. As a

dyllamic metric space indexing structure designed for large scale databases, the M-tree

is another approach which could be applied to NDDSs indexing. However, it could

only use the relevant distance between vectors when creating the indexing structure.

The special characteristics of the NDDS such as occurrences and distributions of data

points on each dimension are totally ignored by the M—tree (as well as other metric

34

space indexing methods), which could affect its retrieval performance when compared

to indexing techniques designed specifically for the vector space[79]. Our experiments

Show that when retrieving data for box queries the M-tree performance is much worse

than the ND—tree, a technique recently proposed to support efficient indexing of the

NDDS.

The ND—tree is created based on heuristics which are optimized for similarity queries

in the NDDS. It answers similarity queries using much less I/O than the sequential

scan and the M-tree, and scales well on alphabet size, database size as well as number

of dimensions[79]. However, indexing techniques work well for similarity queries do not

necessarily support box(window) queries efficiently. Query conditions for box queries

are specified for each dimension separately - any indexed vector which conflicts with

the query condition on any dimension is pruned away immediately from the result set.

On the other hand, range queries are interested in vectors similar to a query vector.

The concept of similarity (or dissimilarity) between vectors are calculated based on

information from all dimensions, i.e., it is based on information combined from all

dimensions. As a result, when organizing vectors in an indexing structure, heuristics

efli<2ient for range queries cannot guarantee good performance for box queries. In fact,

in this chapter we proposed two new heuristics for distributing indexed feature vectors

in the NDDS to support efficient box queries, which are opposite to existing ND-tree

heul‘istics. Although the two new heuristics are counter intuitive at the first glance,

both our theoretical analysis and experimental results demonstrate that they are very

35

effective in supporting box queries in the NDDS.

The rest of the chapter is organized as follows. Section 3.2 introduces the relevant

concepts and notations utilized to support indexing in the NDDS. Section 3.3 intro-

duced the new heuristics to support eflicient box queries in the NDDS. Section 3.4 and

3-5 presents the BOND-tree, including its tree structure, construction algorithms and

relevant operations. Section 3.6 reports our experimental results. The theoretical proof

for our proposed heuristics could be found in appendix A of this thesis.

3.2 Basic Concepts

In this section we introduce critical geometric concepts extended from the CDS to the

NDDS. Like many other indexing techniques in the CDS and the NDDS, the BOND-tree

uses these geometric concepts to optimize organization of indexed vectors during its

construction time. In order to control the contribution of each dimension in the geo-

metric concepts, a normalization idea is applied (i.e., the edge length of each dimension

is normalized by the domain size of the corresponding dimension). Detailed definition

alld explanation of these concepts could be found in [79].

A Non-ordered Discrete Data Space Qd is a multidimensional vector data space,

Where dis the total number of dimensions in 9d. Each dimension in 9d has an alphabet

‘42: C 1 S i S d) consisting a finite number characters.

36

A rectangle R in Dd is defined as R = 31 x 32 x 53 . .. x Sd, where S,- g A,. S,- is

called the i-th component set of R. The edge length of R along dimension i is defined

as [3;], which is the cardinality of set Si. If Vi E [1, d], [5;] = 1, R degrades to a vector

in 9d. The area of a rectangle R is defined as R = [121:1 |S,-|. The overlap of a set of

rectangles is defined as the Cartesian product of the intersections of all the rectangles’

component sets on each dimension.

Given a set of rectangles SR = {R1,R2,...,Rj}, if Vi E [1,d] and Vt 6 [1,3], the

i—th component set of a rectangle R contains the i-th component set of Rt, R is a

discrete bounding rectangle of SR. A discrete minimum bounding rectangle (DMBR) of

SR is such a discrete bounding rectangle that has the least area among all the discrete

bounding rectangles of SR. The span of a DMBR along dimension i is defined as the

edge length of R along dimension i.

3 -3 Optimization of Indexing Trees in the NDDS

We start by discussing indexing problem for box queries in section 3.3.1. In section

3-3-2 we present an approach to calculate estimated box query I/Os for hierarchical

indeadng structures. The calculation is based on overlapping probabilities of tree nodes

and the query windows (discrete rectangles) used for box queries. Since every node

in a tree is generated from splitting an existing node, the splitting algorithms used by

8.11 indexing tree will affect its query performance heavily. In section 3.3.3 we discuss

37

the splitting problem of indexing trees and show that box queries require specifically

designed heuristics when building a tree. New heuristics to support efficient box queries

in the NDDS are introduced in section 3.3.4.

3-3.1 Indexing Problem for Box Queries

A box query q on an indexing tree T is a query which is specified by listing the set

of values that each dimension is allowed to take. More formally, given an NDDS

9d: suppose q,- Q A,- (A, is the alphabet of 9d on dimension 2', 1 S i _<_ d) is the

set of values allowed by a box query q along dimension i, we use w — Him.- to

represent the query window of box query q. Any vector V = (211,222, . . .vd) inside w

(i .e., v,- E qi, Vi E [1, d]) is returned as the result of the box query q.

III a multiway hierarchical indexing structure, the data space indexed by a node N

iS combined from subspaces indexed by all its child nodes. If we define F(N, q) as a

b0Olean function which returns true when and only when the query window of a box

(111er q overlaps with the DMBR of N, a box query is typically evaluated as follows:

St- arting from the root node R (let N = R), the query window of q is compared with

the DMBRs of all the child nodes of N. Any child node N' for which F(N’ , q) = 1 is

reCtllrsively evaluated using the same procedure. However, if q does not overlap with a

Child node N” (i.e., F(N”, q) = 0), all the child nodes of N” can be pruned from the

Search path. Assuming each node occupies one disk block, the query I/O is the total

38

number of nodes accessed during the query process.

To support queries on large scale NDDS data sets, we prefer an indexing structure

which has the following properties.

(P-I) It is a disk-based indexing structure.

(P-2) It supports efficient insert and delete operations combined with query opera-

tions in multidimensional NDDSs.

(P-fi’) It organizes data consisting of a set of vectors in such a way that the expected

number of I/O for box queries on indexed data is minimized.

As we have explained in chapter 1, P-1 and P-2 are important for indexing large

SCale databases and supporting query operations on frequently modified data sets.

A box query on the indexing structure involves evaluating the indexed data space

of a node N: if no vectors in N could be in the result set, N and all its child nodes

are excluded from further evaluation. Since each node is stored in one disk block

(page), in order to answer box queries efficiently, we need an indexing structure which

Would reduce the number of nodes to be evaluated at query time. However, as we can

898 from the property P-3, the challenging part of the indexing problem is: although

the box query is unknown at the time vectors are indexed, the indexing structure

\3 required to organize data in a way that they could be retrieved quickly at query

39

time. In section 3.3.2 we show how this could be achieved by estimating overlapping

probabilities between tree nodes and box query windows.

3-3.2 Expected 1/0 for Box Queries

F‘rom the generic query execution procedure stated in the previous section, it is clear

that a node N needs to be accessed (and thus contributes to query I/O) if and only if

its DMBR overlaps with the query window w of a box query q. And if a node’s DMBR

does not overlap with W, none of its child nodes’ DMBRs overlaps with W. Hence we

have the following theorem:

Theorem 3.3.1. The number of I/O for evaluating a box query q with query window

w on an indexing tree T is given by,

IO(T, q) = Z 0(N, w) where,

N is in T

O(N w) __ 1 if query window w overlaps with DMBR of N

’ - 0 otherwise

Note that theorem 3.3.1 is applied to a given (fixed) box query q with query window

w - However, in practice, we are more interested in the average performance of an

indexing structure when answering a large set of random box queries. More specifically,

We need a way to evaluate an indexing structure T’s average performance on supporting

40

a random box query Q in an NDDS Qd. A random box query Q is defined as follows:

Q ={91, (12. ---. qnl VM 6 [1.71]. W E [1.61],

w, and w_,- have the same edge length on dimension k}

where w; is the query window of box query q,; (1 g 6 g n).

Here we use Q to represent a large set of fixed box queries whose query windows

have the same edge lengths on every dimension in Dd. For simplicity in the rest of this

thesis we call Q a random box query which has query box W (in contract to a fixed

box query q with query box w) in a given NDDS. We use w to represent a fixed query

window which specifies the exact letters occurred on each dimension of an NDDS. And

a query vvindow W is used only to specify the number of letters on every dimension for

a random box query Q.

Let Op(N, W) be the probability that the query window W overlaps with a node N.

Every time node N is accessed, the access operation will increase query I/O by one.

This giVes us theorem 3.3.2 to evaluate the average performance of the indexing tree T

for a. random box query Q-

Theorem 3.3.2. The average (expected) I/O of executing a random box query Q with

query window W on an indexing tree T can be calculated as,

IO(T, Q) = 2 0pm, W)

N is in T

Op(N, W) will be given in formula (3.2) at the end of this section.

41

Note that although theorems 3.3.1 and 3.3.2 are discussed within the context of the

NDDS, they could be applied to hierarchical indexing structures in other data spaces

(e.g- , the CDS and the HDS) as well. The only modification needed (to apply these

theorems to other data spaces) is the concrete calculation of overlapping, which is

data-spacespecific.

ConSider an indexing tree T built in a d-dimensional NDDS Qd = Al x A2 x A3 . . . x

Ad. Suppose a node N in T has DMBR R = r1 x r2 x r3...rd,(r,- g A,). Let

|r,-| = mi, (1 S i g d). For any random box query Q with query window W, if W has

q.- (q,- S {A,-I) characters along dimension i, the probability of R overlapping with W

along dimension i is:

7 " (1<z'gd) (3.1)

Here we use the notation C5 to denote the number of combinations of n objects

taken k: at a time. (From equation 3.1, the probability for a node N to overlap with a

query Window W on all dimensions is calculated as follows.

(NW) [1(1— —’§—qu"") (3.2)

E<luation (3.2) gives the overlapping probability between a node N’s DMBR and a

Query window W. Clearly, the overlapping probability is in inverse proportion to the

filtering power (pruning power) of N. Here we use filtering power to describe the chance

that. N is pruned away from the query path when executing a random box query Q.

42

We can substitute equation 3.2 in the expression of theorem 3.3.2 to get the estimated

1/0 for an indexing tree T given a random box query Q. The theoretical analysis in

subsequent sections uses this result to calculate estimated box query I/Os for NDDS

indexing structures.

3.3-3 The Splitting Problem for Box Queries

Box queries are fundamentally different from range queries. So an indexing structure

designed for range queries may not be suitable for box queries. In fact, our experiments

with some of the existing indexing structures such as M-Tree suggest that, when per-

forming box queries, indexing using these structures may sometimes yields more disk

I/Os than using the sequential search. Hence, indexing structures for box queries re-

quire a different set of heuristics than those typically used for similarity searches (range

queries or K-NN queries).

When using a tree structure for indexing data, the algorithms used for splitting

overflOWing nodes play an important role in determining the tree’s query performance.

This is because other than the first node (which is created by default) in the tree, every

Other node is created by splitting an existing node. To reduce query I/O for box queries

in the NDDS, we prefer a splitting algorithm for the indexing structure as following:

given an overflow node N, the splitting algorithm distributes entries 01,02, . . . ,Gn

from N into two new nodes N1 and N2 such that the resulting indexing structure will

43

have minimum expected box query I/O in the NDDS, where the expected I/O is given

by theorem 3.3.2.

Note that here we are interested in a splitting algorithm designed for random box

queries rather than any particular box query. This is because we cannot make any

assumption about the box queries which will later be performed on the indexing struc-

ture- And like other existing indexing techniques (e.g., the R-tree, the R*-tree, the

ND-tree, etc.), the splitting algorithm optimizes the indexing structure only based on

the information available at the splitting time. That is, we do not make assumption

about vectors which will be indexed later after the splitting.

One of the recently proposed indexing scheme for supporting similarity searches in

the NDDS is the ND-tree[79]. It adopts four heuristics when splitting an overflow node,

which are:

0 NS] - Minimum Overlap : Split the overflow node such that the DMBRs of the

two new nodes generated from splitting have minimum overlap.

' N82 - Maximum Span : Split the overflow node along the dimension which has

the maximum edge length (before splitting) in the node’s DMBR.

. N33 — Center Split : Split the overflow node such that the two new nodes have

equal spans (or spans as close as possible) along the splitting dimension in their

corresponding DMBRs.

44

0 N34 - Minimum Area : Split the overflow node such that resulting new nodes’

DMBRs have as smaller areas as possible.

When splitting an overflow node N in the ND-tree, along each dimension of the

indexed NDDS a number of candidate partitions are generated. All the candidate

partitions are evaluated using the above four heuristics in order to get the most suitable

partition. These heuristics are applied in the order they are presented. If there are ties

on one heuristic, the next heuristic is applied to break the ties. In case of ties after

applying all 4 heuristics, a random partition is used.

Our analysis of box queries in the NDDS suggest that although the minimum overlap

heuristic is important for supporting efficient box queries, the others may not be. The

following example will make it clear why.

Consider a dimension i with alphabet {a, b, c, . . . ,h} (note the characters in the

alphabet are non-ordered). Let N be a node with characters {a, b, c, d} along dimension

7: in its DMBR. Consider two candidate partitions of N: the first candidate partition

CPI Splits N to two new nodes N1 and N2 with {a} and {b, c, d} on the i-th dimension in

their Corresponding DMBRs, and the second candidate partition 0P2 splits N to nodes

Ni and N5 with {a, c} and {b, d} along dimension i in their respective DMBRs. Further

SuPDOse we are considering a random box query Q with 3 characters on this dimension

(l‘e- Q’s query window W has a edge length 3 along dimension i). From equation 3.1,

the probability of overlapping with the query window W on the i-th dimension is 0.375

45

for node N1 and 0.821 for N2. Similarly the probabilities of overlapping with W on the

i-th dimension are 0.643 and 0.643 for Ni and Né respectively. Since 0.375 + 0.821 =

1.196 < 0.643 + 0.643 = 1.286, when answering a random box query Q, CPI gives

better filtering power on dimension i than 0P2 (because N1 and N2 has less chance of

overlapping on dimension i with the query window than Ni and N5).

However, the ND-tree splitting algorithm would prefer the candidate partition 0P2

over CP1 which is clearly an improper choice for supporting box queries. This suggests

that there exist better ways of splitting a dimension in the NDDS. Similarly, we can also

come up with examples showing that splitting an overflow node on the dimension with

a shorter span (edge length) can result in better filtering power (i.e., less probability of

overlapping with the query window) than splitting the dimension with the maximum

span.

In section3.3.4 we will introduce heuristics used in the BOND-tree to support efficient

box queries in the NDDS based on our theoretical analysis.

3.3.4 Optimal Splitting Heuristics for Box Queries in the

NDDS

When distributing data objects in an overflow node into two new nodes, we prefer to

obtain overlap free partitions in order to minimize the chance of searching both paths

at CIllery time. However, unlike in the CDS, more overlap free partitions are likely to

46

be generated in the NDDS due to the fact that elements in the NDDS are non-ordered.

For example, consider the following 8 vectors with 4 different values on dimension i in

table 3.1:

Vector V1 V2 V3 V4 V5 V6 V7 V8

Value a1 a1 a2 02 a2 (13 a3 a4

Table 3.1. Different values of indexed vectors on dimension i.

If dimension i is a continuous dimension, overlap free partitions are generated by

picking a split position t on i: all vectors with values less than t on dimension i are

put in one node and the remaining vectors (with values larger than or equal to t on

dimension i) are put in the other node. Table 3.2 lists all the 3 overlap free can-

didate partitions we could obtain from splitting node N along a continuous dimension i

New nodes Node 1 Node 2

Vectors in new nodes V1, V2 V3, V4, V5, V5, V7, V8

Vectors in new nodes V1, V2, V3, V4, V5 V5, V7, V3

Vectors in new nodes V1, V2 , V3, V4, V5, V6, V7 V3

Table 3.2. Different overlap free partitions from a continuous dimension i.

Now suppose dimension i is a discrete dimension, in which case overlap free partitions

are generated by first grouping all 8 vectors based on their values on dimension i,

47

and then distributing these groups into two new nodes. Since there are 4 different

letters (i.e., a1, a2, a3, 014) on dimension i, we get 4 groups of vectors: < V1, V2 >,

< V3, V4, V5 >, < V6, V7 > and < V3 >. Vectors in the same group have the same letter

on dimension i. Based on the grouping, we have 7 different overlap free partitions as

shown in table 3.3:

New nodes Node 1 Node 2

Vectors in new nodes V1, V2 V3, V4, V5, Vs, V7, V3

Vectors in new nodes V3, V4, V5 V1, V2, Vfi, V7, V3

Vectors in new nodes V6, V7 V1, V2, V;2,, V4, V5, V3

Vectors in new nodes V3 V1 , V2, V3, V4, V5, V6, V7

Vectors in new nodes V1, V2 , V3, V4, V5 V6, V7, V3

Vectors in new nodes V1, V2, V6, V7 V3, V4, V5, V3

Vectors in new nodes V1, V2 , V3 V3, V4, V5, V6, V7
Table 3.3. Different overlap free partitions from a discrete dimension i.

From the above example we could see that more overlap free partitions could be

generated in the NDDS than in the CDS. Since we use only one among all overlap free

partitions to split a node, we need effective heuristics to select the candidate partition

W121ich could give us the best filtering power at query time. In this section we introduce

two new heuristics for evaluating overlap free candidate partitions of an overflow node

N in the NDDS.

Without loss of generality and only for the purpose of simplicity, we consider box

48

queries which are uniform. A box query Q is said to be uniform if edge lengths of

the query window are the same along all dimensions (i.e. if q,- is the cardinality of

the component set of query window W along dimension i, then q1 = Q2 = = qd).

The common edge length is said to be the boa: size of the uniform box query Q. The

theoretical analysis provided in this thesis could be extended to more complex situations

where box queries are not uniform.

Consider an d-dimensional NDDS 52d, we have the following theorem to find a split-

ting dimension for box queries:

Theorem 3.3.3. Given an overflowing node N whose DMBR has edge length EL,-

along dimension i and a uniform boa: query Q with query window W, the probability of

overlapping between W and the DMBRs of newly created nodes N1 and N2 is minimum

2f 1V is split along a dimension u which has the least edge length among all dimensions

having edge lengths larger than 1 in N ’s DMBR. In other words:

splitting dimension :2 {u|ELu > 1;Vi E [1,d],EL,- 2 EL“ or EL,- = 1}.

Theorem 3.3.3 suggests splitting an overflow node on a dimension which has a shorter

Span in the node’s DMBR. This is opposite to the heuristic (N82) used by the ND-tree

Splitting algorithm. Next we evaluate candidate partitions generated from the same

dimension when splitting an overflow node N.

Given a splitting dimension u and 2 candidate partitions 0P1 and 0P2 along u, 0P1

distributes the entries in N between two new nodes N1 and N2. Similarly 0P2 splits

N to two new nodes Ni and N5. Suppose the edge lengths on dimension u is a: in

N1’s DMBR and it is y = EL“ — a: in Ng’s DMBR. And suppose the edge lengths on

dimension u in the DMBRs of Ni and N5 are 23’ and y' = ELu — 1" correspondingly.

49

Here we assume a: < y and x’ < y’, otherwise we simply swap 9: and y (or :r' and y’).

The filtering power of the new nodes generated from CPI and 0P2 could be evaluated

using the following theorem:

Theorem 3.3.4. If a: < a", the probability of overlapping between the query window W

of a uniform boa: query Q and DMBRs of N1 and N2 is smaller than the probability of

overlapping between W and Ni and N5.

Again in theorem 3.3.4 we see that to support box queries in the NDDS, there could

be better ways to select candidate partitions compared to the heuristic (N53) used by

the ND-tree. Detailed proof of theorems 3.3.3 and 3.3.4 could be found in appendix A

of this thesis.

Note that a data-partitioning indexing tree has a minimum utilization criterion,

which enforces that a certain percentage of the disk block occupied by a tree node should

always be filled. When applying theorem 3.3.4, the minimum utilization criterion

need to be considered. This means that the most unbalanced candidate partition

which satisfies the minimum utilization criterion should be selected because it has the

least overlapping probability (among all candidate partitions generated from a splitting

dimension u which satisfy the minimum utilization criterion) based on theorem 3.3.4.

Given theorems 3.3.3 and 3.3.4, we propose the following heuristics for splitting an

0Verflow node. The heuristics are applied in the order they are specified (i.e. if there

are ties on one heuristic then the next heuristic is used to break the tie). It is possible

that even after applying all the heuristics there remain more than one candidate splits

50

In such cases a candidate split is chosen randomly from the tied ones.

R1: Minimum Overlap .

Of all the candidate partitions, heuristic R1 selects the one that results in minimum

overlap between the DMBRs of the newly created nodes. This heuristic is the same as

the one used by some of the existing works [79, 9].

B2: Minimum Span

Among all the candidate partitions generated from splitting dimensions which have

spans larger than 1 and tied on R1, heuristic R2 selects the partition generated from a

Splitting dimension which has the smallest span. This heuristic prefers to split shorter

dimensions because according to theorem 3.3.3, these dimensions are likely to generate

Candidate partitions which will later answer box queries in the NDDS using less disk

1/Os.

R3: Minimum Balance

C1"i\nen a splitting dimension u, heuristic R3 chooses the most unbalanced candidate

partition (i.e. the one that puts as few characters as possible in one node’s DMBR

and as many characters as possible in the other node’s DMBR on dimension u) among

all candidate partitions which satisfy the minimum utilization criterion and tied on R1

51

and R2. We make use of theorem 3.3.4 in this heuristic.

Heuristics R2 and R3 are quite counter-intuitive at the first glance (e.g. the binary

search has been proved to be an eflicient searching algorithm in the CDS, which implies

a balanced partition of the indexed data space). But these heuristics try to exploit

properties exclusive to box queries in the NDDS. It is the nature of the data space that

makes seemingly unintuitive splitting heuristics perform better than the ones used in

the CDS. Both our theoretical analysis provided in the appendix of this thesis and the

experimental results presented in section 3.6 support this fact.

3-4 Construction of the BOND-tree

In this section, we formally describe the data structure and important algorithms for

Constructing our proposed BOND-tree indexing technique.

A BOND-tree is an indexing structure which has the following properties:

(12 Each tree node occupies one disk block.

(2) All nodes must have a minimum amount of space filled by indexed entries unless

it is the root node. This property specifies the minimum space utilization requirement

in the tree nodes to ensure a reasonable storage utilization.

(3) The root node has at least 2 indexed entries.

52

(4) A leaf node entry structure has the form (V, P), where V is an indexed feature

vector and P is the pointer to the tuple in the database represented by V.

(5) A non-leaf node entry structure has the form (D, P), where D is the DMBR of the

entry’s corresponding child node and P is the pointer to that child node.

As we will see from the tree construction algorithms introduced in section 3.4.1, the

BOND-tree is built in a bottom-up manner. This ensures that the BOND-tree is a

balanced indexing structure.

The overall data structure of the BOND-tree is inspired by that of the ND-tree. And

it is further optimized by the compression idea utilized in the compressed BOND-tree

structure, which will be introduced in section 3.5.

3- 4.1 Insertion in the BOND-tree

Inserting a vector in the BOND-tree involves two steps. First, we find a suitable leaf

node L for the new vector. Then we put the vector into L and update L’s ancestor

11C>-Cles’ DMBRs as needed. The second step may cause splitting of the leaf node, which

might trigger cascaded splits all the way to the root node.

53

Selecting a Leaf Node

Given node N, the BOND-tree uses a select-node algorithm to pick an appropriate

child node of N which will accommodate a new vector V. If there is only one child

node whose DMBR containing V, that node will be chosen ,to insert V. In case V is

covered by more than one child nodes’ DMBRs, the node whose DMBR is the smallest

is selected. If V is covered by N’s DMBR but not covered by any of N’s child node’s

DMBR, we use heuristics proposed by the ND—tree[79] for selecting a child node. These

heuristics are briefly summarized as follows.

0 Minimum Overlap Enlargement : Select the child node which requires minimum

enlargement of overlap among all sibling nodes after accommodating the new

vector.

0 Minimum Area Enlargement : Choose the child node that requires the least

DMBR enlargement to accommodate the new vector.

0 Minimum Area : Select the child node which has the least area after the new

vector is put inside.

The heuristics are applied in the order they are presented. That is, a heuristic will

be used if and only if application of the previous heuristic(s) results in one or more ties.

54

To insert a new vector into the BOND-tree, we need to find a leaf node to accom-

modate the vector. This is achieved by invoking the select-node algorithm recursively,

starting from the root R of the tree, until a leaf node is selected.

The Splitting Algorithm

As discussed in section 3.3.4, a better way to split an overflowing node N into N1

and N2 is to get an overlap-free and unbalanced split along a dimension i, which

has the minimum span among all dimensions whose spans are larger than 1. Of the

heuristics proposed in section 3.3.4, R2 could be achieved by comparing the span of

each dimension in node N’s DMBR. However, implementation of R3 in the BOND-tree

is a more complex procedure, especially at non-leaf levels of the tree.

When splitting a leaf node, overlap free candidate partitions could be obtained by first

grouping node entries based on their values on a certain dimension and then distributing

t11<:)se groups to the new nodes. Suppose an overflow leaf node has 8 entries (V1 ~ V3),

tElwt>le 3.3 in section 3.3.4 gives an example of generating candidate partitions along a

dimension i for a leaf node. After we get all the overlap free partitions (subject to the

IIlillimum utilization requirement, which is one entry per node in our example), each

of them could be evaluated using heuristic R3 (we will provide a better solution using

a. greedy approach to apply R3 in leaf node splitting at the end of this section).

As we have mentioned, implementation of R3 on a non-leaf node is much more

55

complex because the component sets of non-leaf node entries could have more than

one letter on a dimension. Table 3.4 shows an example of different component sets

from 8 non-leaf node entries (E1, E2, . . . , E3) on a dimension i which has the alphabet

{a7 b) c) d? 67 fl g}'

Non-leaf entry E1 E2 E3 'E4 E5 E5 E7 E3

Component set {a,b} {b,c} {a,c} {a,b,c} {a,b,e} {e} {e,f,g} {f}

Table 3.4. Different component sets of non-leaf entries on dimension i.

When generating candidate partitions on dimension i, we could have a component

set which is a proper subset of other sets like {e} and {e, f, g} ; sets which are disjoint

or partly overlapped like {a, b}, {e} and {a, b, 6}; sets which overlap with each other

in a chain like {a, b}, {b, c} and {a, 0}; sets whose union is only part of the domain or

the whole domain such as {a, b, c}, {f} and {e, f, g}; or a single component set which

contains all the letters from the domain. As the number of distinct component sets

increases, the relationship among component sets could be even more complex.

From the above discussion we can see that heuristic R3 describes the most desirable

partition when splitting an overflow node but does not provide a way to achieve it. And

it is a challenging problem to get desired partition required by R3. One brute force

way to apply R3 is to compute all permutations of the entries in an overflow node, and

then put splitting points tentatively between adjacent entries in each permutation to

generate candidate partitions. But this clearly demands a heavy computation time.

56

Even for a small number of entries it would be impractical to evaluate all permutations

(e.g., for 10 entries, the number of candidate partitions would be more than one million).

To get the most desirable partition (according to R3) of indexed entries in an overflow

node, we mapped the problem of splitting a BOND-tree node using heuristic R3 to a

well-known problem, the 0—1 knapsack problem. This allows the BOND-tree splitting

algorithm to make use of existing solutions of the 0—1 knapsack problem to distribute

indexed node entries and get the desired partition based on heuristic R3.

Formally a stande 0-1 knapsack problem is defined as follows:

Problem Definition 3.4.1.

0-1 Knapsack Problem : Given a set of items 11,12, . . .,In each with value IV,-

and weight 1W,- (1 S i S n) respectively. The problem is to put a set of items into a

knapsack K such that,

(1) The total value of items in the set is maximum.

(2) The total weight Wtotal of items in the set satisfies the constraint Wtotal S C, where

C is referred as the capacity of the knapsack K.

To map the node splitting problem to the knapsack problem, we first analyze how

an overflow node N is split using heuristic R3 in the BOND-tree.

Let u be the dimension along which we will generate candidate partitions for a node

N. There may be several entries in N which share one or more common letters along

dimension u (i.e., the intersection of these entries’ component sets on dimension u is

not empty). In order to get overlap-free partitions, we first group all entries which

share common letters along dimension u. Each group is then treated as a single item

when splitting the node. Grouping entries this way avoids distributing entries with

57

the same character(s) along dimension u into two different nodes (in which case an

non-overlap—free partition is generated). After the grouping process, a group i has a

certain number of characters along dimension u which is treated as the value of the

corresponding group. Further, group i requires a certain amount of space (depending

on the space requirement of each entry in that group) which becomes the weight of

group i. We use G1, G2, .. ., 0,, to represent these groups. The values and weights

of each group are represented by GVl, 0V2, ..., CV” and GWl, 0W2, ..., GWn

correspondingly.

To split an overflow node according to heuristic R3, we want to distribute these entry

groups (GI, G2, . . . , Gn) between the two new nodes in the following way. One node

has as many values (number of characters along the splitting dimension) as possible

and the other node has as few values as possible. And the distribution must satisfy the

minimum utilization requirement on both nodes.

We use S'd to denote the disk block size occupied by each tree node. Suppose the

minimum node utilization criterion specifies that a certain size Smin of each node

(each disk block) must be filled. Based on our discussion, the BOND-tree node splitting

problem using heuristic R3 could be defined as follows.

Problem Definition 3.4.2.

Node Splitting Problem of the BOND-tree Using Heuristic R3: Given entry

groups Gl, G2, ..., Cu in an overflow node N, suppose the values (number of char-

acters) and weights (required storage space) of each group are 0%, 0V2, ..., CW;

and G'Wl, GWQ, .. ., GWn correspondingly. Further suppose the total weights of en-

try groups distributed to N1 and N2 are NW1 and NW2 respectively. The BOND-tree

splitting algorithm distributes the entry groups to two new nodes N1 and N2 such that,

(1) The total value of entry groups in node N1 is the maximum.

58

(2) Both NW1 and NW2 satisfy the minimum space utilization criterion of the tree

(i.e., NW1 2 Smin and NW2 2 8min)-

(3) Both NW1 and NW2 are less than the disk block size (i.e., NW1 3 Sd and

NW2 S 5d)-

Problem definition 3.4.2 has the minimum weight requirement and the maximum

weight requirement on the two newly generated nodes. On the other hand, problem

definition 3.4.1 only has the maximum weight constraint on a single knapsack. To map

the two problems, we further analyze the node splitting problem as follows.

We use Se to represent the size of each node entry. Recall that the minimum space

utilization criterion requires that a certain storage space Smin of each node must be

filled. We have Se 3 Smin S [Sci/Se] x Se/2, which means Smin should be larger than

the space required by a single node entry and smaller than half of the maximum space

that a node N could use to accommodate indexed entries. The maximum storage space

Smag; that could be utilized by a new node is calculated as:

Smam = (lSd/Sel + 1 " [Smin/Sel) X Se (33)

For example, consider a node N containing 4 entries and each entry using Se = 90

bytes, the total space occupied by these 4 entries is 90 x 4 = 360 bytes. Suppose the

disk block size Sd is 400 bytes, N will overflow if the 5-th entry is inserted into it.

Further suppose the minimum utilization criterion specifies that at least 100 bytes of

59

each node must be filled (Sm-n = 100). If N is split to two new nodes, each new node

must have at least [Swan/Sc] = 2 entries distributed to it. As a result, each of the

new nodes could have at most [Sci/Se] + 1 — [Smin/Se] = 3 entries after the splitting.

Thus a new node could use at most Smax = 3 x Se 2 270 bytes to store indexed entries

distributed to it.

Formula 3.3 gives the maximum amount of space which could be utilized in each

of the newly generated nodes to store indexed entries (so the remaining entries will

be put in the other node). From formula 3.3 we get two properties of the max space

Sm“ for a new node:

(P‘I) Smaa: S 5d-

Proof. From Smin > Se, we have:

Smart: 2 (lSd/Sel + 1 _ [Smin/Sel) X Se

< (lSd/Sel + 1 " [Se/Sell X Se

= (lSd/Sel) X Se

S 3d

(P-2) SW 3 (LSd/Sej + 1) x s... — 5mm.

60

Proof.

Smart 2 (lSd/Sel + 1 _ [Smut/Sell X Se

= (lSd/Sel + 1) X 36 - (lSmin/Sel) x Se

S (lSd/Sel + 1) >< Se - (Smin/Se) X Se

= (lSd/Sel + 1) >< Se - Smin

From P-2 we know that ([Sd/Sej +1) X Se - Smax Z Smin: which means by allowing

one new node to use no more than Sm“ size of space for storing node entries, the other

node is guaranteed to have at least Sm,” space filled by entries distributed to it.

Given the maximum space Smax defined in formula 3.3, we tackle the node splitting

problem defined in 3.4.2 in the following way. When a node N is split to nodes N1 and

N2, the splitting algorithm tries to distribute as many entries as possible to N1, but

the maximum space utilized in N1 is no less than Smax. Suppose the spaces occupied

by entries distributed to N1 and N2 are $1 and 32 correspondingly. Clearly SI is no

less than 32 (since the splitting algorithm tries to put more entries into N1). From

property P-I we know that 51 will not exceed the block size Sd. Since 51 2 32, we

have 5'2 _<_ Sd. And property P-2 guarantees that 52 is no smaller than Smin- Since

31 2 32, S] will be no less than Smin too.

Based on our analysis above, we provide an alternative definition of the node splitting

problem using heuristic R3, which is equivalent to the problem definition 3.4.2. Note

that in both definitions we distribute entry groups instead of entries in order to get

61

overlap free partitions. The redefined node splitting problem in 3.4.3 will later be

mapped to the 0—1 knapsack problem.

Problem Definition 3.4.3.

Redefined Node Splitting Problem of the BOND-tree Using Heuristic R3:

Given entry groups G1, G2, ..., Gn in an overflow node N, suppose the val-

ues (number of characters) and weights (required storage space) of each group are

GVl, GV2, ..., CV” and GW1, GWg, ..., GWn correspondingly. The BOND-tree

splitting algorithm distributes the entry groups to two new nodes N1 and N2 such that,

(1) The total value of entry groups in node N1 is the maximum.

(2) The total weight Wtotal of entry groups in node N1 satisfies the constraint Wtotal S

Smax, where Smut is calculated from formula 3. 3.

Note that in problem definition 3.4.3, we use the maximum space constraint Smax

on a single node N1 to guarantee the minimum weight requirement and the maximum

weight requirement specified in problem definition 3.4.2. And our discussion above

already shows that both the requirements on N1 and N2 defined in 3.4.2 will be satisfied

by enforcing the maximum space constraint 3mm on the node N1.

Now consider the 0—1 knapsack problem defined in 3.4.1 and the node splitting prob-

lem defined in 3.4.3. If we let m = n, I,- = Gi, IWi = GWi, IV; = GV, (1 S i <3 m);

and let G = ([Sd/Sej +1 —— [U/Sel) * Se where Sd is the disk block size, Se is the node

entry size, Sm,” is the minimum utilization requirement on tree nodes, the problem of

splitting an overflow node N (i.e., generate and find the most suitable candidate parti-

tion according to heuristic R3) is the same as solving the 0-1 knapsack problem. That

is, instead of enumerating all the possible partitions of an overflow node as discussed at

the beginning of this section, we can get the most suitable solution of the node splitting

problem by exploiting existing algorithms for the 0—1 knapsack problem.

62

As the node splitting problem is mapped to the 0-1 knapsack problem, a dynamic

programming solution [58, 83] can be used to solve it optimally and efficiently. After the

items (entry groups) to be put into the knapsack (node N1) is decided, the remaining

items (entry groups) are put into node N2.

Mapping the splitting problem defined in 3.4.3 not only provides an efficient way to

find the most suitable partition for an overflow node. It also allows the freedom of

using different ways to build the BOND-tree based on the particular requirement and

purpose of indexing.

For example, when both the query performance and the time needed to generate the

indexing structure are critical, parallel algorithms [63, 37] for the 0—1 knapsack problem

could be applied to build the BOND-tree efficiently and quickly. On the other hand,

when the BOND—tree is created as a temporary indexing structure, the query I/O is

usually not the only (or the most important) consideration: sometimes people want

to build indexing trees quickly and discard them after performing a limited number of

queries. In such cases, the BOND-tree could be generated using algorithms introduced

in [60] and [85], which provide approximate solutions with guaranteed closeness to the

optimal solution with much less time complexity and system resource requirements.

We illustrate the BOND-tree splitting algorithm using an example as shown below:

Let the entries in the overflowing non-leaf node be E1...E12. Further, suppose

63

DMBRs of these entries have component sets along a splitting dimension u as shown

in table 3.5.

Entry E1 E2 E3 E4 E5 E6

Component set {a} {b} {a, b, c} {d} {e} {8, f}

Entry E7 E8 E9 E10 E11 E12

Component set {f} {h, z'} {i} {j} {j} {k}

Table 3.5. Different component sets for non-leaf entries E1 ~ E12.

After the grouping process we obtain the following 6 groups as shown in table 3.6.

Group G1 G2 G3 G4 G5 G6

Entries {31,132,193} {E4} {E5,E6,E7} {EaEg} {1310,1911} {312}

Table 3.6. Grouping of non-leaf entries.

Each group G,- has a set of characters GS,- on the splitting dimension (by applying set

union operation on the component sets of all group members’ DMBRs on dimension u).

Here we use GVi to represent the number of characters in G3,. Also each group requires

certain space to store the entries in that group. Let the amount of space required for

64

each entry be one unit and the capacity of the node be 11 units. Further suppose the

minimum utilization criterion requires each new node must utilize at least 3 units. We

use GW; to represent the space required by Gi. Table 3.7 shows the item weights and

values of the 0-1 knapsack problem mapped from the node splitting problem.

Item Weight Value

G1 3 3

G2 1 1

G3 3 2

'04 2 2

G5 2 1

G6 1 1

Table 3.7. the item weights and values in the O — l knapsack problem.

According to R3, after splitting a node N into N1 and N2, we want one node to

have maximum number of characters on the splitting dimension in its DMBR, while

the other node to have minimum number of characters. And both new nodes must

satisfy the minimum utilization criterion in our example. If we solve the 0—1 knapsack

problem as mentioned above, it will give us the best candidate partition (according to

proposed heuristic R3) for splitting the node N as shown in table 3.8.

Note that in a leaf node the optimal solution to this splitting problem is even simpler

65

Entries in node N1 G1, G2, G4, G5, G6

 Entries in node N2 G3

Table 3.8. The candidate partition for an overflow node N found by solving the 0-1

knapsack problem.

since all the entries in the overflow leaf node have only a single letter on a splitting

dimension. In other words, values of all the items (entry groups) are the same (more

specifically, value is 1 for all items). Hence the problem could be solved using a greedy

algorithm (instead of dynamic programming). The greedy approach used in the BoND-

tree is sketched as follows.

To solve the 0-1 knapsack problem at the leaf level, we first sort all items based on

their weights. Then we put those sorted items into a knapsack K1 (new tree node N1)

one by one, starting from the items with smaller weights until no more item could be

put into K1. All the remaining items are put into the knapsack K2 (tree node N2).

This distribution approach will guarantee to obtain the best partition of entries in an

overflow leaf node as required by R3.

By mapping the node splitting problem to the 0-1 knapsack problem, our proposed

BOND—tree’s splitting algorithms are guaranteed to find an overlap free partition satisfy-

ing the minimum utilization criterion as long as there exists such a partition. However,

theoretically there may be cases (although they are very rare because of the nature of

the NDDS as we described in section 3.3.4) when it is simply impossible to get any

66

overlap free split without affecting node utilization. We use the ND-tree’s auxiliary

tree approach to safeguard this situation. First we generate a set of candidate parti-

tions S (all the candidate partitions in S are not overlap free) using the auxiliary tree.

Among all partitions in S the one which has the least overlap between the two new

nodes’ DMBRs is chosen. If there are ties, the candidate partition (among the tied

ones) which has the least area summation of the two new nodes’ DMBRs is chosen.

If there are ties again, a random one among the tied ones is chosen. Algorithm 3.4.1

briefly summarizes all the important steps involved in inserting a new entry in a node.

Algorithm 3.4.1. insert.entry(N, E)

Input: A node N and an entry E to be inserted in N.

Output: Modified tree structure that accommodates entry E.

Method:

1. if (N has space for E)

2. Insert E in the list of entries in N

3. Update DMBRs of N and all its parent nodes as needed.

4. else // We need to split N

5. Put all dimensions whose span is larger than 1 into list L

6. Sort L based on dimension span in ascending order

7. for every dimension i whose span is larger than 1 do

8. Group entries in N based on their component sets on dimension i

.9. Calculate each entry groups’ weight and value //mapped to

the 0/1 Knapsack Problem

10. if N is a leaf node

11. Solving the 0 — 1 knapsack problem using

the greedy approach

12. else

13. solving the 0 — 1 knapsack problem using

dynamic programming

14. end if

15. if the O — 1 knapsack problem is solved

16. return the solution

17. end if

18. if no solution is found //no overlap free partition exists

19. find a solution using the auxiliary tree approach

20. return the solution

21. end if

22. end if

67

3.4.2 Deletion in the BOND-tree

If removing a vector from a leaf node L does not cause any underflow (i.e., the minimum

utilization requirement on L is satisfied after deletion), the vector is directly removed

and DMBRs of L’s ancestor nodes are adjusted as needed. If an underflow occurs on

L, the procedure is described as follows.

Node L is removed from its parent node N and if N underflows again, N is removed

from its parent node. The procedure propagates toward the root node until no un-

derflow occurs. Then the sub—tree represented by the underflow node closest to the

root node is removed, its ancestor nodes’ DMBRs are adjusted as needed and all the

remaining vectors in the sub-tree are reinserted. In the worst case, if the root node has

only two children and one of them is removed, the remaining child node becomes the

new root of the tree (i.e., tree height decreases by one).

Deletion of a vector is a rare event in a database. However, for the sake of com-

pleteness, we present a relatively simple algorithm for deletion. The main idea in this

algorithm is that any deletion that violates minimum utilization criterion is followed

by a series of reinsertions. Algorithm 3.4.2 outlines the procedure for deletion.

Algorithm 3.4.2. delete_entry(R, E)

Input: Root of the tree R and an entry E to be deleted from the tree.

Output: Modified tree structure with E removed.

Method:

1. if E is absent in the tree

2. return// Nothing to do

3. else

4. Let L be the leaf holding E.

68

5. if removal of E does not violate the minimum utilization criterion.

6. Remove E and update DMBRs

7. Return.

8. else

.9. Remove L and if underfiow occurs in L ’s ancestor nodes, remove

these underflow nodes recursively until a node N' is found whose

removal does not violate the constraint.

10. if N’ is not the root node

11. Remove the subtree rooted at N’

12. Adjust DMBRs

I3. Reinsert other entries in the subtree.

14. else //N’ is the root node with only 2 children

15. remove the subtree in N' which contains L

16. the remaining children in N’ becomes new root of the tree

17. Adjust DMBRs

18. Reinsert vectors indexing in the subtree which is removed

19. end if

20. end if

21. end if

22. return.

3.4.3 Box Query on the BOND-tree

Algorithm for executing box queries on the BOND-tree is implemented as follows. 'Let

Q be the query box and N be a node in the tree (which is initialized to root R of the

tree). For each entry E in N, if the query window w overlaps with the DMBR of E

then that entry is searched, otherwise the subtree rooted at E is pruned. Algorithm

3.4.3 illustrates the basic steps in executing a box query with query window w on a

BOND-tree. Initially N is set to root node R of the tree.

Algorithm 3.4.3. box_query(N, w)

Input: Query box w and a node N.

Output: A set of vectors that are inside query box w.

Method:

1. A = ¢//A is the result set of box query

2.

3.

4.

if N is a leaf node

for each entry E in N

if E is inside w

69

5 A = A U {E}

6. end if

7. end for

8. else //(N is a directory node)

9. for each entry E in N

10. if the DMBR of E overlaps with w

11. A = A U box.query(E, w)

12. end if

13. end for

14. end if

15. return A

3.5 Compression to Improve Node Fanout

In the CDS, the MBR information on a continuous dimension is stored by recording

the lower bound value and upper bound value of that dimension. Since the number

of available values in a continuous domain is usually unlimited (or very large), in a

hierarchical indexing structure(e.g., the R*-tree) the MBR information on a continuous

dimension i is unlikely to cover the whole domain of i. However, in the NDDS the

number of letters in a discrete domain is limited (and usually quite small). This means

a discrete dimension in a DMBR will get full (i.e., all letters in the domain have

appeared on that dimension) much faster than a continuous dimension.

Consider a set S which contains letters from a non-ordered discrete domain D with

domain size |D| = A. The Markov transition matrix[70] describing the probability of

5’s size after adding one random letter from D to S is shown in (3.4).

70

1 2 3 4 A

1 (1/A (l—l/A) 0 o o)

2 0 2/A (1-2/A) 0 0

P: 3 0 0 3/A (1—3/A) o (3-4)

4 o 0 0 o o

A (0 0 0 0 1.0)

Now suppose we are creating an indexing structure for an NDDS with domain D for

dimension i. Further suppose the size of D is 10. Using the Markov transition matrix

in (3.4), we can calculate the probability of a node N having all the 10 letters in D on

dimension i after indexing X vectors, as shown in table 3.9.

X 20 40 60 80 100

Probability 21.47% 85.81% 98.21% 99.78% 99.97%

Table 3.9. Probability of having a full dimension after indexing X vectors.

As we can see from the table, after indexing 100 vectors, the probability that all the

10 letters in D have appeared in node N’s DMBR on dimension i is 99.97%. And it

will become even higher for smaller alphabet sizes (i.e., |D| < 10) or larger number of

vectors (X > 100). Note that the calculation applies to the BOND-tree as well as to

other hierarchical NDDS indexing techniques such as the ND-tree.

71

The splitting heuristics of the BOND-tree prefer an overlap free candidate partition

generated from a shorter dimension. This leads to more full dimensions in the DMBRs

of non-leaf nodes of the BOND-tree (especially at higher levels of the tree) compared

to the ND-tree. Table 3.10 shows the percentage of full dimensions at non-leaf levels

of the BOND-tree when indexing 5 million vectors from 16—dimensional NDDSs with

varying alphabet sizes.

Alphabet size 8 10 12 14

Percentage of full dimensions 75.30% 75.62% 75.62% 75.58%

Table 3.10. Percentage of full dimension at non-leaf levels of the BoND-tree with

different alphabet sizes.

Table 3.11 lists the percentage of full dimensions by level in a BOND-tree built for a

16—dimensional NDDS with alphabet size 10. The total number of vectors indexed is

5 million and the tree height is 6. Level 1 represents the leaf level and level 6 stands

for the root level of the tree.

Level of tree 6 5 4 3 2 1

Percentage of full

 dimensions 100.00% 93.75% 87.50% 81.25% 75.00% 44.35%

Table 3.11. Percentage of full dimension at each level of the BOND—tree.

From the above statistics we see that a large percentage of dimensions recorded in the

DMBRs of non-leaf nodes are full in the BOND—tree. To improve the space utilization

72

of the BoND—tree in non-leaf nodes, we could simply record a dimension to be full

instead of recording the occurrence of every letter from the alphabet. This compression

idea could be exploited to reduce the amount of space required to store the DMBR,

which will increase the fanout of the node. We call this modified indexing structure

with increased node fanout the compressed BOND-tree and use the basic BOND-tree to

represent a BOND-tree without using the compression idea. In the following section we

explain our compression scheme and its effect on the node splitting algorithm.

3.5.1 The Compressed BOND-tree Structure

The original BOND-tree records every dimension of a DMBR using a bitmap repre—

sentation. Let A be the alphabet size of all the dimensions (for simplicity we assume

same alphabet size for all the dimensions but the discussion can be easily modified for

varying alphabet sizes). As we need one bit per letter to store information about a

dimension, each dimension in a DMBR needs [A/8] bytes for storage. So for a DMBR

with d dimensions, we need d * [A/8] bytes in the basic BOND-tree.

In the compressed BoND-tree structure we explicitly store only the dimensions which

do not have all the characters. However, we need to record, in some way, the dimensions

which have all the characters. We do this by maintaining a bitmap of [d/8] bytes for

all dimensions in a d-dimensional NDDS. A value 1 of bit tells us that a particular

dimension has all the characters and is not explicitly recorded. Thus, the compressed

73

structure requires an overhead of [d/8] bytes. If dfull is the number of dimensions that

have all the characters, then the space required for the so called compressed DMBR is

[d/8] + (d— dfull) * [A/8] = d* [A/8] + ([d/8[— dfull * [A/8[). It has been observed

that in general, [d/8] < dfull * [A/8]. Hence, this compressed structure requires less

space per DMBR. As the memory requirement of a single DMBR is reduced, the fanout

of the node increases. This high fanout results in reduction in the height of the tree

and reduced I/O at the time of querying.

Note that the compression of DMBRs applies only to non-leaf nodes because leaf node

entries in the BOND-tree contain only indexed feature vectors. Thus the performance

gain of the compressed BOND-tree is achieved through a more effective representation

of DMBRs in the non-leaf nodes, especially nodes at higher levels of the tree.

3.5.2 Effect of Compression on Splitting Overflow Nodes

When the entries in an overflow node N of the compressed BOND-tree are distributed

to two nodes N1 and N2 during splitting, one important consideration is if it can be

assured that those entries could be put in the two new nodes. It is possible that some

DMBRs now have less number of full dimensions after the split and hence need more

space to store them. This may lead to candidate partitions in which two new nodes

N1 and N2 are insufficient (in terms of space required) to hold all the entries. In

other words, we are interested in the question weather it is possible all the candidate

74

partitions cause either N1 or N2 (or both) overflow. In this section we show that this

situation cannot arise from compressing DMBRs of the BOND-tree.

First thing to note is that such a problem may occur only at the non-leaf level of

the tree. When splitting a leaf node, the entries are simply redistributed without any

change in the space utilization. Hence, the two new nodes are always sufficient to

accommodate the entries in any candidate partition.

In a non-leaf node, the need for splitting comes only when one of its entries gets

replaced with two new entries (due to the split of a child node). Suppose a node N has

entries E1, E2, . . . , En. Also, suppose a child node represented by entry Ej(1 S j S n)

splits into two new nodes, which results in two new entries (E; and E3,) and causes N

to overflow. If B is the disk block size (and also the maximum size of a node assuming

that one node occupies one disk block of the system), then we have 222:1 sizeof(E,) S

B, where sizeof(E,) represents the amount of space required to store entry Ei. After

the child node represented by Ej is split, the disk block occupied by node N will be

insufficient to hold all the entries if Z?=1,i;éj sizeof(E,) + sizeof(E3) + sizeof(E;) >

B. Thus, the extra space required (denoted by ES) to store all the entries in N is

ES = sizeof(E5) + sizeof(E;’) — sizeof(E3) Note this calculation applies to the

BOND—tree with/without compressing DMBRs as well as the original ND-tree.

We first consider the original BOND-tree without compression, in which case

sizeof(E;-) = sizeof(E§-’) = sizeof(EJ-). This means that ES equals to the space

75

of storing one non-leaf node entry in the BOND-tree. And since a new disk block is

allocated due to the overflow of N, as long as B is larger than the size of one non-leaf

node entry, we could always find a way to distribute all the entries in N to the two

new nodes N1 and N2 without causing any of them to overflow.

Note that this requirement is trivially satisfied because if B is less than the space

required to store two non-leaf node entries, a non-leaf node could have at most one

child node and thus the whole indexing structure is meaningless. The analysis and

conclusion of the original BOND-tree also applies to the ND-tree because both trees use

the same data structure in their implementations.

Now consider the BOND-tree with compressed DMBRs. The largest ES comes from

the situation where all dimensions in the DMBR of Ej are compressed and no dimension

in E; and E}! is compressed. In this case we could put E1, E2, . . . , Ej_1, Ej+1, . . . , En

in node N1, and put E; and E3, in node N2. Clearly N1 will not overflow because since

E1 ~ En could be stored in one disk block, with one entry (Ej) removed, the rest of

entries require less storage space and thus are guaranteed to be able to fit in one disk

block. N2 will not overflow as long as B is larger than or equal to the space required to

store two uncompressed DMBRs, which is the same requirement to build a meaningful

ND-tree or BOND-tree without compression.

76

3.6 Experimental Results

The BOND-tree was implemented in C++. Tests were conducted on Intel Xeon quad-

core 5345 processors with 8 GB ECC DDR2 RAM running SuSE Enterprise Linux 10

in a high performance computing cluster system.

We have tested the proposed BOND-tree (with and without compression) performance

for various query box sizes, number of dimensions, alphabet sizes and database sizes.

Besides randomly generated synthetic data sets, we also used human genome data for

our experiments in section 3.6.5. In all the experiments, 200 random box queries were

executed and the average number of I/O was counted. Query I/O of the BOND-tree

was compared with that of the ND-tree and the 10% linear scan[22]. Block size of 1k

is used for all the experiments.

It should be noted that the ND-tree is fine-tuned for similarity searches. But so

far there has been no indexing techniques designed to support efficient box queries

in the NDDS. On the other hand, the ND-tree is reported to be a robust indexing

technique compared to other known indexing methods in the NDDS[79]. We have

also experimented with the M-tree as a candidate for comparison but in most of the

experiments, the M—tree performed worse than the 10% linear scan. Hence, in this

section, we present results comparison with the ND-tree and the 10% linear scan only.

In section 3.6.1 ~ 3.6.4 we report performance comparison among the basic BoND-

77

tree (i.e., the BOND-tree without using the compression idea), the ND-tree and the

10% linear scan. The comparison between the compressed BOND-tree (using the com-

pression idea) and the basic BOND-tree is provided in section 3.6.6.

3.6.1 Effect of Different Database Sizes

In this group of tests we evaluate the performance of the basic BOND-tree with different

database sizes. We varied the number of data points from 5 million to 10 million in

steps of 1 million. Average query I/O at each step is shown in figure 3.1. It can be

seen that, as the number of indexed data points increases, the query I/O increases for

all the techniques in our tests. However, the basic BOND-tree is a clear winner for all

database sizes. The average query I/O for the basic BOND-tree is several orders of

magnitude smaller than that of the ND-tree.

3.6.2 Effect of Different Number of Dimensions

This group of tests evaluates the performance of the proposed tree when indexing

data sets with different number of dimensions. In this set of experiments, number of

dimensions was varied from 8 to 20 in steps of 4. Other parameters (database size = 5

million, alphabet size = 10) were kept constant. With increasing number of dimensions

more space is required to store the DMBR information in the basic BOND-tree as well

as the ND-tree. This results in reduction of fanout of tree nodes and a subsequent

increase in the height of the tree. Thus the I/O for both trees (as well as linear scan)

78

Effect of Database Sizes

 100000

10000“ B——-{3-——--EJ—
-——-B——--—B—--

-+:I

men ND-Tree

o G""""O""""O """ '0 ----- G""""O

= 1000 ‘
.

E‘
+Basm

g 100 , V V V V V MA BOND-tree

N " " " " --El--10% Linear

10 ~

 1 1 I T f

5 M 6 M 7 M 8 M 9 M 10 M

Database Sizes

Figure 3.1. Effect of different database sizes in the basic BOND-tree.

increases. The absolute l/O of the basic BOND-tree is much less than both ND-tree

and 10% linear scan. Further, as figure 3.2 shows, the basic BOND-tree is much less

affected by the increased number of dimensions than the ND-tree.

3.6.3 Effect of Alphabet Size

In this test-set, the alphabet size was varied from 8 to 14 in steps of 2. Figure 3.3

shows performances of the basic BOND-tree, the ND-tree and the 10% linear scan for

various alphabet sizes. As the alphabet size increases, ability of the tree to find a

non-overlapping partition increases which results in decrease in the I/O.

79

Effect of Dimensions

10000 Hagan—4.3

l3- """"E o

.""O

1000- of": monND-Tree

2 O.........

E. 100 4 +Basic

3 >e X X 9A BOND-tree

a —-n-- 10% Linear

10 ~

1 , 1 f

8 12 16 20

Number of Dimensions

Figure 3.2. Effect of number of dimensions in the basic BOND—tree.

3.6.4 Effect of Different Query Box Sizes

This group of tests compares the performance of the new tree with that of the ND-tree

and the 10% linear scan for different box sizes. Number of dimensions and alphabet

size were fixed at 16 and 10 respectively. The database size was fixed at 5 million

records. When query box size increases, both the basic BOND—tree and the ND-tree

require more I/Os while the I/O for 10% linear remains constant. As we can see from

figure 3.4, the performance gain of the basic BOND-tree is significant for all box sizes

given. Further, at a moderate box size of 3, the ND-tree loses to the 10% linear scan.

Our proposed basic BOND-tree maintains its performance even at a box size of 5. Note

that at this point we are already querying large portion of the space which justifies

80

Effect of Alphabet Sizes

10000 El- ------B—————— Ef- ----- -U

G------------o

1ooo~ O 0 ---0--ND—Tree

Q

- _ —-)(-— Basic

5 100 k; X X fix BOND-tree

0 - {r- - 10% Linear

10 ~

1 r 1

8 10 12 14

Alphabet Sizes

Figure 3.3. Effect of different alphabet sizes in the basic BOND-tree.

the large amount of I/Os required for all the indexing schemes. At higher box sizes

however, 10% linear scan proves to be the best method. This is expected as the amount

of space corresponding to the result set is huge.

3.6.5 Performance on Real Data Set

To evaluate the effectiveness of the BOND—tree on indexing real data sets. We compared

performances of the BOND-tree, the ND-tree, and the 10% linear scan on indexing a

15-dimensional human genome sequence data set from the National Center for Biotech-

nologr Information. Experimental results are shown in figure 3.5. The total number

of genome vectors indexed is 5 million and the query box size is 2. From the figure we

81

Effect of Box Sizes

1000000

100000 1

---o-- ND-Tree

10000 1

2

z. - —-)(—Basic

3 1°00 BOND-tree

a 100 _ --El-- 10% Linear

10 «

1 n .

1 2 3 4 5

Box sizes

Figure 3.4. Effect of different query box sizes in the basic BOND-tree.

can see that just like the case of indexing synthetic data, the BOND-tree works much

better than other approaches on indexing real data.

3.6.6 Performance of the Compressed BOND-Tree

In all the previous experiments the compressed BOND-tree outperforms the basic

BOND-tree. However, the performance gain is not as large as that of the basic BoND—

tree over the ND-tree. In this section we report the test results on comparing the

compressed BOND-tree and the basic BOND-tree. Note that in this section the results

are plotted without using a logarithmic scale for the y-axis (number of query I/Os).

First we show the performance comparison for varying number of dimensions. The

82

Performance on Genome Data

8000

7000 l- / . -B

6000 - .B’ '

./ --O-- m-Tree

Q 5000 - - / °

3 4000 -- ’B ""‘9"“
o ' ° Dom-tree

3 ol

0 3000 -r g ..o-.——-6"""° -'fl--10%Lhear

o . ’fl

2000 'r $/’

1000 [-

0 X .L i E : : :

l 2 3 4 5

Database Sizes (Millions)

Figure 3.5. Performance of indexing genome sequence data

database size used for this group of tests is 5 million. Query box size and alphabet size

are set to 2 and 10 respectively. As we can see from figure 3.6, for all the test cases

the compressed version yields less I/O than the original BOND-tree and the average

performance improvement is 10.15%.

Figure 3.7 shows the performance gain of using the compressed idea when indexing

NDDSs with different alphabet sizes. The number of vectors indexed is fixed to 5

million and the query box size is 2. This group of tests demonstrates the effectiveness

of the compression idea when indexing NDDSs with different alphabet sizes. Although

both indexing methods yield less I/O as the alphabet size grows up, the compressed

BOND-tree performs better than the basic BOND-tree for all the alphabet sizes tested

83

Compressed BoND-tree with Various Dimensions

140

120 .

100 .

Q +Basic

3 8° ‘ BOND-tree

g 60 _ +Compressed

G BOND-tree

40 «

20 4

0

10 dimensions 16 dimensions 32 dimensions

Number of Dimensions

Figure 3.6. Performance of the compressed BOND—Tree with various dimensions.

in the experiments.

84

Compressed BOND-tree with Various Alphabet Sizes

90

80 —<

70 -

Q 60 1 —)(-Basic

E 50 - BOND-tree

g 40 . —o—Compiessed

O 30 - BOND-tree

20 r

10 -

0 r T .

8 10 12 14

Alphabet Sizes

Figure 3.7. Performance of the compressed BOND-Tree with various alphabet sizes.

85

CHAPTER 4

Range Queries in the HDS

4.1 Motivations and Challenges

In many contemporary application areas like machine learning, information retrieval,

and data mining, people often need to deal with hybrid data, where vectors can have

both discrete and continuous attributes. For example, the feature vectors used to

retrieve/analyze images from World Wide Web typically contain both continuous and

discrete features: the text describing them could be regarded as discrete valued features

while the statistics like pixel frequencies could be treated as continuous valued features.

Another application domain which may deal with hybrid vectors is intrusion detection.

One of the main objectives of an intrusion detection system is to classify a user as a

malicious or a normal user. Such a judgment should be based on information about the

users’ behavioral statistics, such as the physical location, the time-frame within which

specific commands are executed and the amount of time the user remains connected to a

server. Clearly, some of the information like the time for which user remains connected

86

is continuous, while other information like the physical location can be discrete. To

support efficient queries on vectors in an HDS, a multidimensional indexing scheme

is required. However, to the best of our knowledge, no indexing scheme that directly

indexes vectors in an HDS has been reported in the literature. Next we briefly review

existing indexing techniques for the CDS and the NDDS.

As we have introduced in section 2.2, most multidimensional indexing schemes pro-

posed in the literature are for the CDS, where values along each dimension are con-

tinuous (ordered). These techniques are either based on data-partitioning, such as the

R—tree, the R*-tree, the R+-tree, the SS-tree, the SR—tree and the X—tree, or based on

space-partitioning, such as the K—D—B-tree and the LSDh-tree. The data-partitioning

based techniques split an overflow node by dividing the set of its indexed vectors ac-

cording to the data distribution, while the space-partitioning based methods split an

overflow node by partitioning its corresponding data space. However, these indexing

techniques cannot be directly applied to the NDDS since they rely on the ordering

property of data values in each dimension. If these techniques are used for an HDS,

they can only index the continuous subspace of the HDS.

The vectors in a discrete space can be considered as fixed length strings when the

alphabets for all dimensions are the same. In this case, the string indexing methods,

such as Tries, Prefix B—tree and String B-tree, can be utilized. However, the Trie-

structure and its derivatives are memory-based techniques which do not have effective

87

storage utilization[34]. As a result they could not be used to index large scale data

sets. The Prefix B-tree and String B-tree are derived from the B-tree structure. They

are disk-based techniques which rely on the ordering property of letters. To deal with

more general cases and overcome the limitations of string indexing methods, two mul-

tidimensional indexing techniques specially designed for NDDSs, i.e., the ND-tree and

the NSP-tree, have been recently proposed. As discussed in section 2.3.3, the ND-tree

is based on data-partitioning while the NSP-tree is based on space-partitioning. Both

techniques exploit the unique characteristics of an NDDS. If they are used for an HDS,

they can only index the discrete subspace of the given HDS.

From our discussion above we can see that, indexing techniques designed for the

CDS and the NDDS exploit exclusive characteristics in the corresponding data space.

Thus they could not be used to support indexing operations in the HDS, which in-

volve features from both the ODS and the NDDS. One way to apply these techniques

in the HDS is to transform data from one space to the other. An example is the dis-

cretization method [39, 61], which is used to transform continuous attributes to discrete

ones through certain supervised (e.g., using the Chi-square—based criteria[95, 17] or the

entropy-based criteria[103, 38]) or unsupervised (based on dividing continuous data

to equal-width or equal-frequency intervals) methods. The discretization technique is

widely used in data mining and information retrieval areas to reduce number of values

to be processed, simplify rules of corresponding algorithms and improve accuracy of

results[35]. However, discretization is developed for certain problems and domain ar-

88

eas only. It is not applicable in other areas such as database indexing where accurate

retrieval of indexed data is required.

In this chapter, we present a new indexing technique, inspired by the R*-tree and the

ND—tree, to directly index vectors (without conversion/transformation) in an HDS. As

we have discussed in 2.4, the new indexing structure is a disk-based technique which

allows queries mixed with insert and delete operations on the data set. We first define

some essential geometric concepts such as rectangle, area, edge length, and overlap in

an HDS. Based on these concepts, a multidimensional hybrid tree, called the C—ND

tree, and its relevant algorithms are developed. A normalization idea is developed in

order to control the contribution of discrete features and continuous feature in the HDS

when building the C-ND tree. To deal with the unique characteristics of an HDS, a

novel node-splitting strategy called ’the hybrid split’, which combines two splits (one

on a non-ordered discrete dimension and the other on a continuous dimension) into one,

is proposed. We conducted extensive experiments to compare the query performance

of the C—ND tree with that of the ND-tree and the R*-tree. We also compared the

C-ND tree performance with the 10% linear scan for the given HDS. Our experimental

results demonstrate that the C—ND tree is generally more efficient than the other three

existing methods.

The rest of the chapter is organized as follows. Section 4.2 introduces the relevant

concepts and notations. Section 4.3 presents the C-ND tree, including its tree structure

89

and relevant algorithms. Section 4.4 reports our experimental results.

4.2 Concepts and Notations for the HDS

An HDS is a multidimensional vector data space which contains both (ordered) contin-

uous and non-ordered discrete dimensions. In the past, many indexing techniques were

developed for the CDS. An NDDS, as opposed to the CDS, is a data space in which all

elements/values along each dimension are discrete and have no natural ordering among

them. An example of non-ordered discrete data could be the colors like red, green and

blue. Every color is unique but there is no natural ordering among them.

To develop an indexing technique, like the R*-tree for the ODS and the ND-tree for

the NDDS, some essential geometric concepts such as rectangles and areas in the CDS

need to be extended to the HDS. The rest of this section will introduce and define such

extended geometric concepts to be used by indexing structures in the HDS.

Let d be the total number of dimensions and let D,-(1 S i S d) be the domain

for the i-th dimension in an HDS, which can be either continuous or non-ordered

discrete. For a continuous dimension, D,- is an interval/range of real numbers. Let

min(Di) and max(D,-) denote the smallest and the largest numbers in the range such

that D, = [min(D,-), max(D,-)]. We define domain size (or length) of a continuous

dimension as Length(D,-) = max(D,-) — min(D,). For a discrete dimension, its domain

D,- is a set of non-ordered discrete values/elements/letters. The domain size (or length)

90

of a discrete dimension is defined as the alphabet size of that dimension. Thus, for a

discrete dimension i, we have, Length(D,-) = |D,-|. A d—dimensional HDS lid is defined

as the Cartesian product of the d domains: Dd = D1 X D2 x x Dd. a = (a1, a2, ..., ad)

- is a vector in Sid if or,- € Di(1 S i S d). For simplicity, in the rest of this chapter, we

assume that all the discrete domains are identical and that all the continuous domains

are identical. Similar to [80], the discussion can be easily extended to an HDS with

domains of various sizes.

A hybrid (hyper-)rectangle R in lid is defined as the Cartesian product R = 51 x

32 x . . . x Sd, where S,- is called the component-set or range of R on the i-th dimension.

If the i-th dimension is discrete (i.e., D,- is a discrete domain) then S,- is a set of

discrete elements such that S,- Q D,. On the other hand, if the i-th dimension is

continuous (i.e., D,- is a continuous domain), S,- is a set [min(S,-), max(S,-)] such that

min(D,-) S min(S,') g max(S,-) _<_ max(D,-).

The area of a hybrid rectangle R = 51 x 32 x . . . x Sd, is defined as the product of

lengths of all the component sets. Mathematically, Area(R) = sz=1 Length(S,-). The

perimeter of R is defined as, Perimeter(R) = 2:1 Length(S,;). Given two hybrid

rectangles R = 51 x 52 x x Sd and R' = S] x 55 x x SQ, the overlap of R and

R’isAreaRflR’ =Area (SlflS’ ><(SzflS’)x...x S flS’)).
I 2 d (1

Given a set of hybrid rectangles {R1,R2, . . .,Rn} where, R1 = 51,1 x 31,2 x x

Sl,d’ R2 = 52,1 X 322 X . . . X S2,da . . . , Rn = Sm] X 5,1,2 X . . . X Sn,di the hybrid minimum

91

bounding rectangle (HMBR) of {R1, R2, . . . , Rn} is defined as the Cartesian product:

U?=1 Sm x Uf=1 5,3 x . . . x U311 Sid The component set of the HMBR on the i-th

dimension is 51,,- U 52,,- U . . . U SW” The edge length Length(HMBR, i) of the HMBR

on the i-th dimension is lSI,i U 82,,- U . . . U Sm) if the dimension is discrete, and it is

max{max(Sl’,-), max(Sg,,-), . . .max(S,,,,-)} — min{min(Sl,,-), min(Sz,i), . . . min(Sn,,-)} if

the dimension is continuous.

Example 4.2.1. Consider an HDS 522 with one discrete dimension with domain D1

and one continuous dimension with domain D2. Dl has letters {a, b, c, . . . , j}, D2 has

range [0,10]. Two data points (vectors) in (22 are P1 = (a, 2.5) and P2 = (e, 9.0). Two

rectangles in fig are R1 = {a,c} X [10,55] and R2 = {e, h} X [15,85]. The edge

lengths of R1 for the discrete and continuous dimensions are 2 and (5.5 - 1.0) = 4.5,

respectively. The area ole is 2445 = 9. The overlap ofR1 and R2 is 1*(5.5—1.5) = 4.

The area of the HMBR of R1 and R2 is 3 =1: (8.5 — 1.0) = 22.5.

4.3 The C-ND tree

In this section, we discuss the C-ND tree structure and the algorithms used to construct

it. We also present an algorithm that processes range queries using the C—ND tree. The

hybrid geometric concepts discussed in 4.2 are utilized by heuristics in this section to

organize vectors in the C-ND tree structure.

4.3.1 The Tree Structure

A leaf node of the C—ND tree has entries which keep the information on indexed vectors

(i.e., database keys) and their associated data in the underlying database. Hence each

leaf node entry stores the discrete and continuous components of an indexed vector

92

on all dimensions and keeps a pointer pointing to the actual data associated with the

vector in the database. Each entry of a non-leaf node stores its child node’s HMBR as

well as a pointer to that child node. The discrete subspace information and continuous

subspace information are recorded differently in non-leaf entries. Information for each

discrete dimension is represented using a bitmap representation while information for

each continuous dimension is stored by recording the lower and upper bounds of that

dimension.

Like the ND-tree and the R*-tree, a C—ND tree is a balanced tree which meets the

following requirements: (1) the root node has at least two children unless it is a leaf;

(2) every node has between m and M children unless it is a root, where 2 < m S M/2;

(3) all leaves appear at the same level. Figure 4.1 is an example of the C-ND tree,

which shows the actual tree structure and the HMBRs of the tree.

rootnode m{A,G,T}x[-10,10] {A.T.C}x[-1.9l

{A.G,T}x [-3,5] {T,C}x[0.8]

Ieafnode (A1) (6.2) (7.0) (7.2)

Figure 4.1. An example of the C-ND tree in a 2-dimensional HDS with discrete domain

{A, G, T, C} and continuous domain [—10, 10].

93

The C-ND tree is a dynamic indexing structure which allows insertion, deletion and

query operations mixed with each other. When inserting a new vector V into a C-ND

tree, a proper insertion path is created from root note R down to a leaf node L. Then

V is stored in L, which is the last node added to the insertion path. If L overflows, a

hybrid splitting procedure is invoked to split L into two new leaf nodes. The splitting

process might propagate to nodes at higher levels (if these nodes overflow) along the

insertion path until R is reached, in which caSe R is split into two new nodes and the

C-ND tree grows one more level higher.

The delete operation on the C—ND tree could be simply implemented as follows.

When a vector is removed from a leaf node L, its HMBR is recalculated based on rest

of vectors inside L, and its parent nodes’ HMBRs are updated if necessary. If the

removal operation causes an underflow on node L, L is removed from the tree and

all remaining vectors in L are reinserted. Note that removing node L may causes its

parent node L’ to underflow too, in which case L’ is also removed from the tree and all

the indexed vectors in L’ are reinserted. Removing L’ may again causes an underflow

on its parent node, thus the removal process might continue recursively upward until

no underflow occurs or the root node is reached. In the latter case the root node is

removed and the tree height is reduced by one.

In the rest of this section we will focus on insertion and query algorithms of the

C-ND tree.

94

4.3.2 Normalized Geometric Measures

To obtain an efficient C—ND tree, we adopt a number of heuristics which utilize the

geometric concepts such as hybrid rectangles and their areas introduced in Section 4.2.

One issue in applying these heuristics is to make sure both discrete and continuous

subspaces contribute their information fairly for the geometric concepts in the HDS

space. For example, consider an HMBR in a two dimensional HDS (one discrete di-

mension D and one continuous dimension C). Assume the edge length on dimension D

is 5 (i.e., the discrete component set contains 5 letters/elements), and the edge length

for dimension C is 100 (i.e., the continuous component set/interval has a length/size

of 100). Thus the perimeter value is calculated as 5 + 100 = 105, which is clearly

dominated by the absolute value of the continuous edge length and treats the discrete

dimension unfairly.

To solve this problem, we adopt normalized measures. Specifically, when we calculate

the edge length of an HMBR on a discrete dimension, we divide the number of elements

of the HMBR on that dimension by the size of the domain on that dimension; when we

calculate a continuous edge length of the HMBR, we divide the (total) length of the

interval(s) of the HMBR on this dimension by the length of the corresponding domain.

When using the normalized measures, edge lengths are the relative lengths with respect

to the domain size, which are between 0 and 1. This normalized edge length is then used

to calculate other relevant geometric measures such as areas and perimeters. Suppose

95

in the above example the domain of discrete dimension D contains 10 letters/elements,

and the domain of dimension C has range length 1000. The normalized edge length for

the discrete component set with 5 letters/elements is calculated as 5/10 = 0.5, and the

normalized edge length of the continuous component set/interval with a length/size of

100 is calculated as 100/1000 = 0.1. The normalized perimeter value is 0.5 + 0.1 = 0.6,

which reflects information from discrete and continuous subspaces fairly.

In the rest discussion of this chapter, we always use the normalized measures unless

stated otherwise.

4.3.3 Choose Leaf Node for Insertion

Given a new data point/vector P to be inserted into a C—ND tree, a leaf node L needs

to be found to accommodate P. Node L is found in a top down manner, i.e., starting

from the root node, descending in the tree until a leaf node is picked. All the nodes

picked during this procedure constitute the insertion path, and the leaf node L at the

end of the insertion path is the one for accommodating P. If a non-leaf node N on the

insertion path has one or more child nodes Whose HMBRs containing P, the child node

with the smallest HMBR area is chosen for the insertion. If P does not belong to any

of N’3 child nodes’ HMBRs, the following two heuristics are applied.

HC-l: Minimum Overlap Enlargement

As we know, a large overlap among nodes at the same level would increase the chance

96

to search multiple paths in the C-ND tree during query processing. To avoid the

large overlap, the child node that yields the least overlap enlargement after insertion

is selected to accommodate P. If there is a tie, the following heuristic is applied.

HC-2: Minimum Area Enlargement

The child node that yields the least area enlargement after insertion is chosen to ac-

commodate P. If there is a tie again, a child is randomly chosen from the tied ones.

4.3.4 Splitting an Overflow Node of the C-ND Tree

In this subsection, we discuss the steps and heuristics used to split an overflowing C—ND

tree node. Splitting a node is accomplished in three steps: (1) generating candidate

partitions from each subspace of the HDS, (2) finding the best combination of candidate

partitions, and (3) redistributing uncommon entries.

One straightforward way to generate candidate partitions is to permute all (M + 1)

entries, then for each permutation (of (M + 1)! ones) we put splitting points between

the entries to separate the entries into two groups. However, even for small values of

M it is computationally expensive to generate all possible splits. We propose a novel

concept called the “hybrid split” for generating candidate partitions. As the C—ND

tree indexes vectors involving both discrete and continuous component values, it is

important that the splitting procedure considers both the subspaces for the optimized

split. In the proposed splitting algorithm, we first generate discrete and continuous

97

candidate partitions for the M + 1 entries from discrete subspace and continuous sub-

space separately, as described below. Then we find the combination of discrete and

continuous candidate partitions which agrees the most on how to distribute entries in

their respective subspaces, this step is to be described in Section 4.3.4. As the last step

in hybrid split, common entries in both partitions are put into N1 and N2 directly and

uncommon entries are redistributed using heuristics to be discussed in Section 4.3.4.

Generating Candidate Partitions for Subspaces

As the first step for the hybrid split, we generate candidate partitions for the discrete

and continuous subspaces, respectively. In fact, each dimension in a subspace is con-

sidered when generating candidate partitions. If the current dimension is discrete, we

sort the entries in the splitting node using the auxiliary tree as described in [79]. If the

current dimension is continuous, the entries in the splitting node are first sorted by the

lower bound of the continuous component set/interval on that dimension and then by

the upper bound of the continuous component set/interval on that dimension (if there

are ties according to the first sort), resulting in a complete sorted entry list. Positions

where a split point can be placed are constrained by the minimum space utilization.

Consider the example shown in Figure 4.2. Suppose we have an overflowing node

with twelve entries and one sorted entry list of these entries is El, E2, E3, . . . , E12.

Let the minimum utilization constraint require at least four entries per node. We then

have five possible candidate partitions S1, 52, S3, S4 and S5. Each candidate partition

98

 11“
-
-

‘
I
‘

<E E[EFF-“iii EE>

EIEEE

Figure 4.2. An example of generating candidate partitions in the OND tree.

S,- (1 S i S 5) divides entries in two groups: the first group is < E1, ..., EH3 > and

the second is < EH4, ..., E12 >.

To efficiently choose a set of good partitions among all candidate ones for a given

overflow node, some heuristics are needed. From extensive experiments, we have found

that the following heuristics (named HS—l through HS—3) are effective in choosing good

candidate partitions for splitting an overflow node in the C-ND tree. Note that since

candidate partitions are generated from discrete subspace and continuous subspace sep—

arately, MBRs in HS—l ~ HS-3 should be treated as only the discrete part or continuous

part of the whole HMBR, depending on the subspace under consideration.

HS-l: Minimum Overlap

Among all the candidate partitions, the one yielding the least overlap is most preferred

for the subspace under consideration. If there is a tie, the following heuristic is applied.

HS—2: Maximum Span

Among all the candidate partitions that are tied for HS-l, the one with the maximum

span is chosen. Here the span means the length/size of the discrete component set on

99

”
T
a
m
a
r
!

a discrete dimension (or the continuous set/interval on a continuous dimension) of the

overflow node’s MBR before splitting. If there is still a tie, the following heuristic is

applied.

HS-3: Maximum Balance

Among all the candidate partitions that are tied for HS-l and HS-2, the one with the

maximum balance is picked. Here we measure the balance by the difference between the

lengths/sizes of the corresponding discrete component sets on the discrete dimension

(or the corresponding continuous sets/intervals on the continuous dimension) of the

two new nodes’ MBRs after splitting the overflow node using the candidate partition

under consideration. This heuristic tries to balance the lengths of the two new nodes’

MBRs on the splitting dimension. In other words, the smaller the difference, the more

balance the partition is.

When generating candidate partitions at a non—leaf level in the discrete subspace, we

noticed that it is very hard to group entries in a non-leaf node based on the discrete

component sets’ information due to the fact that each entry in a non-leaf node may have

multiple elements on a given discrete dimension, and those sets vary in cardinality and

members largely. The more distinct sets we have, the harder it would be to separate

them into two groups. This suggests picking a discrete dimension which has fewer

distinct discrete component sets. Thus at a non-leaf level when generating candidate

partitions from the discrete subspace, we choose the dimension on which the splitting

100

node’s entries have fewer distinct discrete component sets.

After applying HS-l ~ HS-3, there may still be ties. Hence, in general, we get

two sets of partitions CPd and CPC, representing candidate partitions generated from

discrete and continuous subspaces, respectively.

Choosing the Best Combination of Discrete and Continuous Partitions

The next step of the hybrid split is to find the best combination of candidate partitions

from CPd and CPC generated in Section 4.3.4. That is, suppose CPd has candidate

partitions D1, D2, . . . , D,- and CPC has candidate partitions C1, C2, ..., Cj, for all

combinations of {Dm, Cn}, where 1 S m S i, and 1 S n S j, the following heuristic

HS-4 is applied to pick the best combination.

Given a partition Dm, the whole entry set of the overflow node is separated into

subsets Dml and Dmg. Similarly, Cn is divided into two subsets Cnl and an. When

combining Dm and Cn, the whole entry set is divided into 4 subsetsszl fl Cnl,

Dml fl Cng, Dmg fl Cnl and Dmg fl Cng, as illustrated in Figure 4.3. Note that

these four subsets have common entries between partitions Dm and Cu. Since each

partition has to include its two subsets, we have the following two combined common

sets between Dm and Cn: (Dml flCn1)U(Dm2FiCn2), and (DmI flCng) U (DmgflCnl).

HS-4: Maximum Number of Common Entries

101

Dm1 sz Dimensionx

U

Partition Dm on discrete 5'

dimension x g

. . \ . 2.

Combination of ' \ ‘ g

Dm and Cn ‘<

cn1

cn2

Partition Cn on continuous

dimensiony

Figure 4.3. A combination of discrete and continuous candidate partitions.

Given a combination of candidate partitions Dm and Cu, let M11 be the number of

entries in Dml (1 CM and M12 be the number of entries in Dmg fl Cng. Similarly,

let M21 be the number of entries in Dmg fi 0111 and M22 be the number of entries

in Dml n Cng. Let M1 2 M11 + M12, M2 2 M21 + M22, the maximum number of

common entries Mm” from the combination of Dm and Cu is defined as:

Mm", = max{M1, M2}.

Among all combinations of candidate partitions, the one with maximum Mm,l is

picked as the best combination of candidate partitions. If there is a tie, a random one

is picked.

102

Note that during the hybrid split we are looking for a combination of splits which has

as many common entries as possible, and the lower bound of the number of common

entries is guaranteed by the following theorem:

Theorem 4.3.1. The number of common entries an is at least 50% of the total

number of entries to be distributed.

Proof. suppose a splitting overflow node contains P entries, let:

51 = (Dml F1 Cn1)U (Dm2 fl Cn2)r

S2 = (Dmi ‘1 Cn2) U Wm 0 Cal)-

Here 51 has M1 entries and 52 has M2 entries. Since 31 U 52 is the set of all entries

in this splitting node and 31 1'1 32 = (ll, we have M1 + M2 = P, (M1 2 0,M2 Z 0). If

M2(M1) is smaller than or equal to [P/2], M1(M2) must be larger than or equal to

[P/2]. E1

The characteristic proved above shows that the hybrid split will have a combination

of candidate partitions which agree on at least 50% of total entries’ distribution. This

ensures that our split algorithm could always take advantage of both the discrete and

continuous candidate partitions.

For the chosen combination of candidate partitions, we place the common entries

as suggested by Sl or SQ, depending on which one is larger. The following subsection

describes how to place uncommon entries.

Redistributing Uncommon Entries

Once a best combination of candidate partitions from CR1 and CPC is determined and

their common entries are placed, the next step of the hybrid split is to redistribute the

103

uncommon entries into the two common groups.

Given a combination of candidate partitions Dm and Cu, without loss of generality,

suppose the common groups picked are CG1 = Dml fl Cnl and CG2 = Dmg fl an; the

uncommon groups are UG1 = Dml fl Cng and UG2 = Dmg 0 CM. For all the entries

remained in UG1 or UG2 and not within HMBR of CG1 or CG2, they are put into

a common group CG1 or CG2 using the following heuristics. After all the entries are

distributed, the node splitting is determined.

Heuristics HS-5 and HS—6 are used to decide whether an uncommon entry Ez- (1 S

i S n) in UG1 and UG2 should go to CG1 or CG2. Let x represent the dimension

from which Dm is generated and let y be the dimension for C". In HS-5 and HS—6, the

geometry concept is restricted to the 2—dimensional space composed of x and y. Let

CC] = CG1 U {E} and CG" = CG2 U {E}, (1 S i S n). First we apply HS-5 to E4:

HS-5: Minimum Overlap of Common Groups

An entry Bi (1 < i < n) is put into CG1 or CG2 tentatively, then the common group

which yields a less overlap after accommodating E,- is chosen. Let:

or, = Area((HMBR of 002,) n (HMBR of (162)),

o; = Area((HMBR of 003) n (HMBR of 061)).

If 0'] < Oi, E is put into group CG1; if 0] > 0’, E,- is put into group CG2.

104

Heuristic HS—6 is applied if 0] equals 0%.

HS-6: Minimum Ratio of Perimeter Enlargement and Area Enlargement

Similar to HS—5, E,- (1 S i S n) is tentatively put into CG1 or CG2. Both the perimeter

and area are considered in this heuristic because we want to keep the area enlargement

as large as possible and at the same time keep the perimeter enlargement as small as

possible, which could improve the pruning power of the C-ND tree. The perimeter and

area are two important geometry measurements in optimizing tree performance. By

taking ratio of the two, we have both of them considered when redistributing uncommon

entries. Let:

A1 = Area(HMBR of CG1) ,

A2 = Area(HMBR of CG2) ,

P1 = Perimeter(HMBR of CG1) ,

P2 = Perimeter(HMBR of CG2) ,

and

A] = Area(HMBR of CG]) ,

g = Area(HMBR of 003) ,

Pf = Perimeter(HMBR of 001]) ,

P2’ = Perimeter(HMBR of CG’é) ,

where 1 S i S n.

Now let Tf = (Pf —P1)/(A'i —A1), T3 = (P,i — P2)/(A§ —A2). 1fo < 73,19,- is put

105

 I'
r
'
h
'
-
“
E

'
—

into group CGl; if T1i > Ti, E,- is put into group CGg. If T] and T5 equal, E,‘ is put

into the group with less number of entries.

Figure 4.4 shows an example of redistributing uncommon entries to common groups.

ImenSIon XD

D
i
m
e
n
s
i
o
n
y

o
’7”.

..,./

3
"
.

.
.

“
j

‘
.
"

S
4
6
/
1
1

Figure 4.4. An example of redistributing uncommon entries in a hybrid splitting pro-

cedure.

The performance of heuristics used in the hybrid split algorithm is reported in section

4.4.2.

106

4.3.5 Processing Range Query Using the C-ND 'Iree

In this chapter, we consider range queries, which are popular in many application

domains. Given a query vector q and a distance d, a range query retrieves all the

indexed vectors which are within d distance from q.

To perform a range query in an HDS, we need a distance measure for the similar-

ity between two vectors in the HDS (note that distance measure is not needed when

building the C—ND tree. It is only used for range queries in computing the range). The

distance measure in HDSs is still an open issue. There is not a well-known HDS dis-

tance measure available. In this chapter, we extended the Hamming distance measure

to the HDS. The extended Hamming distance measure (EHDM) is defined as follows.

Given two data points P 2 (p1, p2, ..., pn) and P’ = '1, p’2, ..., p1,) in a

d-dimensional HDS, we define:

EHDM(P, P’) = Zn: F(pi, pg), (4.1)

i=1

where function F(pi, p;) is defined as:

107

0 if i is a discrete dimension and

p,- equals p;

F(p ,) or i is a continuous dimension and

iipi =

] [Pi - P2] S t

 \ 1 otherwise

As can be seen from the equation above, when i—th dimension is continuous, thresh-

old t determines closeness of p, and p2. In all our experiments we set t = 0.001.

As we mentioned above, the construction of a C-ND tree does not rely on any distance

measure, and the proposed EHDM is only used for the purpose of testing range queries

using the indexing tree. There could be different distance measures for HDSs besides

EHDM, but the extended Hamming distance provides a reasonable distance measure

for an HDS, due to its simplicity and origin from the Hamming distance. Based on the

extended Hamming distance measure on two vectors, the distance between a hybrid

rectangle R and a query vector q can be defined as follows.

Given a d—dimensional HDS Dd, a hybrid rectangle R = 31 x 5'2 x x Sd in

ad and a query vector q = (q1,q2, . . . ,qn), the distance between R and q is calculated as:

di3t(R,(1) = Z f(5ii (Jr) (4-2)

i=1

where

108

r

0 if i is a discrete dimension and

(Ii 6 Si

or i is a continuous dimension and

(min(Si) - t) S q.- S (maX(Sr-) + t)

f(Siiq'l) = 1

 k 1 otherwise

Using the extended Hamming distance measure, based on equations (4.1) and (4.2) ,

a range query in an HDS could be defined as {leHDM(v, q) S r}, where v represents

a vector in the result set, q represents the query vector and r represents a search

distance(range). An exact query is a special case of a range query when r = 0.

The C—ND tree can be utilized to efficiently process range queries based on EHDM.

The query processing algorithm is implemented by invoking the following function on

the root node of the C-ND tree:

Algorithm 4.3.1. RangeQuery(N,q, r) // Processing range queries

Input: node N in a given C-ND tree, query vector q and distance r

Output: all data vectors indexed by the C-ND tree within distance r from q

Method:

1. let S = 0

2. if N is a. leaf then

3 for each vector v in N do

4 if EHDM(v, q) S r then

5. S = S U {u}

6 end if

7. end for

8. else

9. for each child node N' of node N do

10. ifdist(HMBR of N',q) S r then

11. S = S U RangeQuery(N’, q, r)

12. end if

13. end for

14. end if

15. return S

109

4.4 Experimental Results

Extensive experiments were conducted to evaluate performance of the C-ND tree in

comparison with some of the known indexing schemes. In this section we present our

experimental results.

4.4. 1 Experimental Setup

The experiment programs were implemented in C++. Tests were conducted on Sun

Fire v20z servers with 2x AMD Opteron 250 2.4GHz 64bit and 4 GB RAM running

Linux OS and Intel Xeon quad-core 5345 processors with 8 GB ECC DDR2 RAM

running SuSE Enterprise Linux 10 in a high performance computing cluster system.

Both synthetic and real data were used for our experiments. The synthetic data

sets were generated randomly, consisting of both continuous and discrete dimensions.

Given a domain D,-(1 S i S d), (1 being the number of dimensions, a random integer

between 0 and |D,-| — 1 is generated for each discrete dimension. For each continuous

dimension, its value is generated as a random decimal number between min(D,-) and

max(D,-) (refer to Section 4.2). The same method is used to generate the query vectors

for range queries. The query performance is measured by the number of I/Os (i.e.,

the number of tree nodes accessed) and is computed by averaging the I/Os over 200

queries.

110

a
-
'

i'

4.4.2 Performance of Heuristics Used to Split Overflow Nodes

To determine the effectiveness of heuristics on splitting an overflow node, we conducted

a group of experiments on 10 different C-ND trees built from 10 different data sets.

Each data set contains 1 million randomly generated vectors with 8 discrete dimensions

and 8 continuous dimensions, where discrete dimensions have an alphabet size of 10 and

continuous dimensions range from 0 to 1. The range query performance for each C—ND

tree is measured by the average I/Os of 200 different queries. We take the average

query performance for these 10 C-ND trees.

The first group of experiments was conducted for evaluating the effectiveness of

heuristics used to generate candidate partitions (HS-1, HS-2, and HS-3). We compared

the following versions of different combinations:

Version 1: using HS-l only.

Version 2: using HS—l and HS-2.

Version 3: using HS-l, HS-2 and HS-3.

The experiment results are reported in Table 4.1, where rq denotes the query range

used in the experiments.

The second group of experiments was conducted for evaluating effectiveness of heuris-

tics used to redistribute uncommon entries into common entry groups (HS-5 and HS-6).

We considered the following versions:

111

Version rq=1 rq=2 rq=3 rq=4

1 68.57 370.64 1380.08 3716.94

2 57.18 286.28 1015.75 2706.43

3 28.15 145.76 544.68 1551.17

Table 4.1. Effectiveness of heuristics used to generate candidate partitions.

Version 4: using HS-5 only.

Version 5: using both HS-5 and HS—6.

The results for the second group of experiments are shown in Table 4.2.

Version rq=1 rq=2 rq=3 rq=4

4 34.58 224.77 1019.48 3247.12

5 28.15 145.76 544.68 1551.17

Table 4.2. Effectiveness of heuristics used to redistribute uncommon entries.

From both groups of experiments we can see that when additional heuristics are

applied, the performance of the C-ND tree is positively affected, which suggests the

effectiveness of heuristics being used when building the C-ND tree.

112

f

4.4.3 Performance Comparisons With the 10% Linear Scan,

ND-tree and R*—tree

We have compared the performance of the C-ND tree with that of the 10% linear scan,

ND-tree and R*-tree. Note that linear scan of a disk sequentially reads all the pages

and, therefore, is faster than the random access of a disk page by a factor of about ten

[22]. To have a fair comparison, we consider only 10% of all the pages, which is termed

as “the 10% linear scan”. As mentioned in Section 4.1, the ND-tree and the R*-tree

were not designed for indexing hybrid data. They can index only the discrete subspace

or the continuous subspace of an HDS. We have adopted the ND-tree and R*-tree for

hybrid data by storing the whole vector only in leaf nodes because both discrete and

continuous dimensions are required for the range computation in the HDS.

Various parameters such as the database size, range size, alphabet size, and various

mixes of discrete/continuous dimensions were. considered in our experiments. We have

also conducted experiments on real climate data from the National Climatic Data

Center. From the results of both synthetic and real data we could see that in general

the C-ND tree outperforms the other three approaches.

Effect of Database Sizes on Performance of the C-ND Tree

We conducted experiments using data sets of sizes ranging from 10 million vectors to

19 million vectors, each with 8 discrete and 8 continuous dimensions. The alphabet

113

A
F

J

size for each of the discrete dimensions was 10. Figure 4.5 shows the number of I/Os

for each of the methods for range queries using range 2. As expected, with increasing

database sizes, the number of I/Os increases for each of the indexing schemes. However,

the C-ND tree outperforms all the other three methods. For database size of 19 million,

the C-ND tree is three times more efficient than its nearest contender ND-tree.

Effect of Database Size

Alphabet size 10, Range 2, 8+8

100000

a —- ' "' X

o _ __ . —— x- - -' ' "' X‘

a 10000 f X— - -0- -C-NDtree

g —D— ND-tree

IE! A A A ‘A —fi—R‘-tree

r ._. _. _ ._ —x- -10%Ii
g 10001 [3__._._a———--—B- El "’3'

o -------0 ------<3 -------0

100 r . .

10M 13M 16M 19M

Database See

Figure 4.5. Effect of database size in the C-ND tree.

Effect of Varying Mix of Discrete and Continuous Dimensions

In this set of experiments, we varied the mix of discrete and continuous dimensions

while keeping the total number of dimensions fixed at 16. The alphabet size and the

114

database size were set to 10 and 10 millions, respectively. 1

The results are shown in Figure 4.6. Ffom the figure, it is observed that the C-ND

tree outperforms the R*-tree and the 10% linear scan. When the number of discrete

dimensions is high, the ND-tree performance is close to the C-ND tree. When the

number of discrete dimensions is very low, the ND-tree is even worse than the 10%

linear scan for the data sets considered. An effective ND-tree cannot be created because

the number of duplicate discrete subvectors in the discrete subspace is very high for

the given data sets.

Effect of Dimension Mix

Database size 10M, Range 2, Alphabet size 10

100000

l3(

0 X-\
E 10000 \-\-*'_'*‘"‘*-_..x -<>--C-NDtree

g \ —D— ND-tree

1&3 M -A-R*-tree

\a - \ —)(- -10%Iinear
z 1000 1.1 \

x

o e e -----I? T.T.

100 . r . .

4+12 6+10 8+8 10+6 12+4

Dimension Mix (Discrete + Continuous)

Figure 4.6. Effect of dimension mix in the C-ND tree.

115

Effect of Alphabet Sizes

Figure 4.7 shows the performance of various indexing schemes with an increasing alpha-

bet size. Here again, the C-ND tree is a clear winner. As the alphabet size increases,

both the C-ND tree and the ND-tree have more pruning power. This is reflected in the

decreasing number of I/Os.

Effect ofAlphabet size

Database size 10M, Range 2, 8+8

100000

0
a 10000)(-----)<-----)(—-—--X _+_mfle

g —D— ND-tree

.2 . J / —A—R*-tree

3 1000 . E- “ '-‘ —x- -10%Iinear

0 -------0 -------<3 -------O

100 . a .

1o 12 14 16

Alphabet Size

Figure 4.7. Effect of alphabet size in the C-ND tree.

Effect of Different Range sizes for Queries

Figure 4.8 shows the performance effect of the query range. From the results we see

that, as the range size increases, the number of I/Os also increases for all the indexing

116

methods, which is as expected. However, we also see that the C-ND tree outperforms

the others for all the ranges shown.

Effect of Range

Database size 10M, Alphabet size 10, 8+8

100000

9 10000 1

0.. " 0' ' MD“9

3 _o_ um...
o 1000 .

IE: —-A-—R*-tree

: —)(- -10%linear

z

100 -

10 . . .

1 2 3 4

Range

Figure 4.8. Effect of query ranges in the C-ND tree.

Performance on Real Data

We have used Global Surface Summary of Day (GSOD) data of year 2007 from National

Climatic Data Center at http://www.ncdc.noaa.gov2007 to compare the performance

of the C-ND tree with the 10% linear scan, ND-tree and R*-tree. We chose 6 discrete

features (occurrence of fog, rain or drizzle, snow or ice pellets, hail, thunder, tornado or

funnel cloud) and 3 continuous features (maximum temperature, minimum temperature

117

and precipitation) from each data record. Records with missing features were removed

from the data set. Thus, each of the discrete dimension has an alphabet of size 2 and

the ranges of the three continuous dimensions are: maximum temperatures: —108.6 -—

+1287, minimum temperatures: —114.3 — +1058 and precipitation: 0 — 18.98. These

values are normalized based on the idea mentioned in section 4.3.2. We indexed up to

1 million data and the query range is set to 1. The performances of different techniques

are reported in Figure 4.9. Note the ND-Tree performance shown in this figure is partly

affected by the duplicate records from the discrete subspace, which is because of the

nature of the NDDS. As we can seen from the figure, the C—ND tree performs much

better than the 10% linear scan, the ND-tree and the R*-tree.

118

o
r

N
u
m
b
e
r
o
f
I
I
O

10000

1000‘

100 r

10*

Performance on Real Data

Database size 1M, 6+3

E} 3‘5

><-—-><—-'><‘”SW-XE<

.X‘X’
X

’0..O-<>_,®.-®"O'O"®"0

100k 200k 300k 400k 500k 600k 700k 800k 900k 1000K

El

Number of Vectors Indexed

- -<>- -C-NDtree

—B—ND-tree

-A—R"-tree

—X- -10%Iinear

Figure 4.9. Performance comparison of indexing GSOD data.

119

‘
v

i

CHAPTER 5

Box Queries in the HDS

5.1 Motivations and Challenges

In many contemporary database applications, indexing of hybrid data which contains

both continuous and discrete dimensions is required. For example, when indexing

weather data of different locations, the daily temperature, precipitation, humidity

should be treated as continuous information while other information such as the type of

precipitation is typically regarded as discrete. Different indexing techniques have been

proposed for either the CDS or the NDDS. Examples for CDSs indexing methods are

the R—tree, R*-tree, K—D-B—tree and LSDh—tree. NDDSs indexing techniques include

the ND-tree and the NSP-tree. Not surprisingly, all these indexing methods could not

be applied to the HDS directly because they rely on domain-specific characteristics

(e.g., the order of data in the CDS) of their own data spaces.

One way of applying the CDS/NDDS indexing techniques to the HDS is to transform

120

data from one space to the other. For example, discretization methods [21, 43, 64] could

be utilized to convert data from continuous space to discrete space. If we discretize the

weather data mentioned before, daily temperature could be converted to three discrete

values: cold, warm and hot. However, this approach clearly changes the semantics of

the original data.

The C-ND tree [26] is recently proposed to create indexes for the hybrid data space,

and is optimized to support range queries in the HDS. In this chapter, we evaluate the

effectiveness of the extended ND-tree structure and heuristics for box queries in the

HDS. The ND—tree structure and building algorithms/heuristics are extended to handle

both continuous and discrete information of the HDS. A novel strategy using power

adjustment values to balance the preference for continuous and discrete dimensions is

presented to handle the unique characteristics of the HDS. And an effective cost model

to predict the performance of HDSs indexing is introduced. Our experimental results

show that, the extended heuristics are effective in supporting box queries in the HDS,

and the cost estimates from the presented performance model are quite accurate. The

research work presented in this chapter is reported in [27].

The rest of the chapter is organized as follows. In Section 5.2 the ND-tree’ data

structures and heuristics are extended to the HDS, and an approach of using different

power (exponent) values to handle the unique characteristics of the HDS is presented.

Section 5.3 reports our experimental results, which demonstrate that hybrid space

121

1
"

j

indexing is quite promising in supporting efficient box queries in HDSs. Section 5.4

outlines a model to predict the performance of hybrid space indexing.

5.2 Extended Hybrid Indexing

5.2.1 Hybrid Geometric Concepts and Normalization

To efficiently build indexes for the HDS, some geometric concepts need to be extended

from the NDDS to the HDS. The hybrid geometric concepts used in this chapter are the

hybrid (hyper-)rectangle in the HDS, the edge length of a hybrid rectangle on a given

dimension, the area of a hybrid rectangle, the overlap between two hybrid rectangles

and the hybrid minimum bounding rectangle (HMBR) of a set of hybrid rectangles.

Detailed definition of these concepts could be found in [26] and is omitted here due to

page limit.

One challenge in applying hybrid geometric concepts is how to make the measures

for the discrete and continuous dimensions comparable. For example, how to compare

the size of 2 for a discrete component set (i.e., 2 letters/elements) of an HMBR with

the length of 500 for a continuous component interval in the same HMBR? To solve the

problem, we adopt normalized measures for hybrid geometric concepts introduced in

[26]. In the rest of this chapter, we always use normalized hybrid geometric measures

unless stated otherwise.

122

I
T

5.2.2 Extending the ND-tree to the HDS

Each non-leaf node entry in the hybrid indexing tree keeps an HMBR of a child node

and a pointer to that child node. Information for discrete dimensions in the HMBR

is stored using a bitmap representation and information for continuous dimensions is

stored by recording the corresponding lower and upper bounds of each dimension. Each

leaf node entry stores the discrete and continuous component of every dimension as well

as a pointer pointing to the actual data associated with the key in the database.

Two critical tasks, namely choosing a leaf node to insert a new vector and overflow

treatment are extended to the HDS, by using the corresponding geometric concepts

introduced in section 5.2.1. Next we briefly introduce implementations of these two

tasks.

A leaf node L is found to accommodate an indexed vectors V recursively in a top-

bottom matter: starting from the root node N, a child node N’ is selected using

certain heuristics. Then one of N’ ’3 child node is picked using these heuristics again.

This procedure continues until a leaf node is found. The heuristics used in finding the

best child node are as follows. If V is contained by one or more child node’s HMBR,

select the child node which has the smallest HMBR. If V is not within any child

node’s HMBR, choose the child node which causes least overlap enlargement among

sibling nodes’ HMBRs after accommodating L. In case of ties, select the child node

which needs least HMBR enlargement. If there are ties again, pick the one which has

123

smallest HMBR. The heuristics are applied in the order they are presented here. In

case there are still ties after applying all these heuristics, a candidate node is selected

among tied ones. When splitting an overflowing node, sorted entry lists are generated

for a continuous dimension C by sorting all entries’ lower bound values and then upper

bound values on C.

When splitting an overflow node, candidate partitions are generated along each di-

mension in the HDS. The auxiliary tree approach described in [79] is used to generate

candidate partitions for discrete dimensions. For each continuous dimension, candidate

partitions are generated by sorting all entries’ lower bound values and upper bound val-

ues on that dimension, then put split positions in the sorted entry list. Four heuristics

are utilized to find a candidate partition among all candidates: select the one with least

overlap among the two new nodes; pick the one which is generated along a dimension

having the longest span in the overflow nodes’ HMBR; find the partition whose two

new nodes’ HMBRs have the closest span on the splitting dimension; and choose a

partition which has the smallest HMBRs after splitting. The heuristics are applied in

the order presented, i.e., if there are ties on one heuristic, the next one is used to break

ties. A random candidate partition will be chosen among ties ones if all heuristics have

been utilized. Detailed discussion of the splitting algorithm could be found in [79]. The

difference is that the heuristics presented in this section is based on geometric concepts

in the HDS.

124

Given the extended insert operation in the HDS, the delete operation is implemented

as follows. If no underflow occurs after an entry is removed from a leaf node, only the

ancestor nodes’ HMBRs are adjusted. In case of an underflow, the whole node is

removed and all the remaining entries in that node are reinserted. If removing a node

causes an overflow in its parent node, the parent node is also removed and all vectors

indexed are reinserted. This removal operation propagate toward the root node until

no underflow occurs or the root node is reached. In the latter case the root node is

deleted and its remaining child node becomes the new root node for the tree. From our

discussion we can see that the idea of our delete operation is similar to most hierarchical

indexing structures, such as the R*-tree and the ND-tree.

A query box in the HDS is a hybrid rectangle containing a query range/set on each

dimension. For a continuous dimension, a query range is specified by its upper and lower

bounds. For a discrete dimension, a query set is specified by a subset of letters/elements

from its domain. A traditional depth-first search algorithm is implemented for the

hybrid indexing tree to evaluate its query performance. If a node’s HMBR does not

overlap with the query window (a rectangle in the HDS), the node (and all its child

nodes) is pruned away from the query path. Indexed vector which are within the query

window will be returned as the query result. If no vector could be found inside the

query window, an empty set is returned.

125

5.2.3 Enhanced Strategy for Prioritizing Discrete/Continuous

Dimensions

As mentioned in Section 5.2.1, to make a fare comparison between discrete and continu-

ous dimensions, we have employed normalized edge lengths when calculating geometric

measures for an HDS. This strategy allows each dimension to make suitable contribu-

tions relative to its domain size in the HDS.

We also notice that the (non-ordered) discrete and continuous dimensions usually

have different impacts on the performance of hybrid indexing due to their different

domain properties. For example, a discrete dimension is more flexible when splitting

its corresponding component set of an HMBR due to the non-ordering property, re-

sulting in a higher chance to obtain a better (smaller overlap) partition of the relevant

overflow node. Assume 31 = {a, g, t, c} is the component set of an HMBR on a discrete

dimension, the letters in 51 can be combined into two groups arbitrarily (subject to

the minimum space utilization constraint of the node) to form a split of the set, e.g.,

{g}/{a, t, c}, {a, t} / {g, c}, etc. On the other hand, for the component set on a continu-

ous dimension, say 32 = [0.2, 0.7], the way to distribute a value in Sg totally depends on

the splitting point. If the splitting point is 0.5 (i.e., having a split [0.2, 0.5]/(0.5, 0.7]),

the values less than or equal to 0.5 have to be in the first group, and the others belong

to t he second group, because of the ordering property of a continuous dimension. The

challenge is how to make use of this observation to balance the preference for discrete

126

and continuous dimensions in the HDS.

One might suggest adopting different weights for the (normalized) edge lengths of

an HMBR on the discrete and continuous dimensions, respectively. Unfortunately,

this approach can not work. Two important measures used in the tree construction

algorithms are the area of an HMBR (or overlap between HMBRs) and the span of

an HMBR on a particular dimension (i.e., the edge length of the HMBR on the given

dimension). Suppose we have HMBRs (or overlaps) R1 and R2 in a two-dimensional

HDS with the following relationship: Area(Rl) = L11 x L12 < Area(R2) = L21 x L22,

where Lij is the (normalized) edge length of R; on the j-th dimension (j = 1, 2). Assume

that the first dimension is discrete and the second one is continuous. If we assign a

weight wd to the discrete edge length and another weight we to the continuous edge

length when calculating the area, we will still have Area(Rl) = (wd x L11) x (wcx L12) <

Area(R2) = (wd x L21) x (we x L22) because the weight factors on both sides of the

inequality cancel each other. The same observation can be obtained for spans.

To overcome the above problem, we adopt another approach by assigning different

power (exponent) values pd and pc to the discrete and continuous edge lengths, respec~

tively, when calculating area values. With a normalization, we can assume pc = (1 -pd).

For R1 and R2 in the above example, ifL11 = 0.1, L12 = 0.3, L21 = 0.2, L22 = 0.2,pc =

0.1, Pd 2 0.9, we have Area(Rl) = L11"? x Lil’g = 0.10:1 x 0.30'9 z 0.27 > Area(R2) =

L23! x L5? = 0.20"1 x 0.20'9 z 0.20, while the original area values have the relationship

127

’
_
_
_
—
—
.

Area(Rl) = 0.1 x 0.3 = 0.3 < Area(R2) = 0.2 x 0.2 = 0.4. Hence, we can change

the area comparison result by using different power adjustment values. Since the edge

length is normalized to be between 0 and 1, the larger the power value is, the smaller

the adjusted length would be (unless the edge length is 1 or 0). For the heuristics

involving areas comparison during tree construction, we always prefer a smaller area.

Therefore, if we increase power pd (i.e., reduce pc) for discrete dimensions, we make

the discrete edge lengths contribute less to the area calculation while making the con-

tinuous edge lengths contribute more to the area calculation. In this sense, we make

the discrete dimensions more preferred. The way to make the continuous dimensions

more preferred is similar.

We can also assign power adjustment values qd and qc = (1 — qd) to the discrete

and continuous edge lengths, respectively, when calculating the span value for every

dimension. However, during tree construction time a dimension with a larger span is

more preferred. Therefore, if we want to make a discrete dimension more preferable, we

need to decrease power value qd for that dimension, which is different from the situation

of calculating areas values. The discussion for the span value on continuous dimensions

is similar. If we want to make discrete dimensions consistently more preferred during

the tree construction, we need to increase pd and, in the meantime, decrease qd.

To reduce the number of parameters for the algorithm, we simply let qd = (1 —— pd).

Hence, we only need to set a value for one parameter pd , other parameters (i.e.,

128

pc, qd, qc) are generated according to pd.

)
1

J

In table 5.1 and 5.2 we present the accumulated number of discrete splits and con-

tinuous splits at leaf level and non-leaf level of the indexing structure. The data is

collected after indexing 10 million vectors from an HDS with 4 discrete dimensions and

4 continuous dimensions.

pd at leaf level 0.1 0.3 0.5 0.7 0.9

Number of discrete splits 15 6558 36392 64924 81717

Number of continuous 71989 65520 51049 15198 1062

splits
Table 5.1. Number of accumulated discrete and continuous splits at leaf level.

pd at non-leaf level 0.1 0.3 0.5 0.7 0.9

Number of discrete splits 30 30 728 1045 1071

Number of continuous 1033 1039 612 249 242

splits
Table 5.2. Number of accumulated discrete and continuous splits at non-leaf level.

As we have expected discrete dimensions are more and more preferred as pd increases

at node splitting time, which is clearly reflected in both tables. The experimental

results in Section 5.3 show that this power adjustment strategy further improves the

performance of the hybrid indexing.

129

5.3 Experimental Results

To evaluate the efliciency of hybrid indexing, we conducted extensive experiments.

Typical experimental results are reported in this section.

5.3. 1 Experimental Setup

The experimental programs were implemented in C++. Tests were conducted on Sun

Fire v202 servers with 2x AMD Opteron 250 2.4GHz 64bit and 4 GB RAM running

Linux OS.

The synthetic data sets used for our experiments were randomly generated which

consist both continuous and discrete dimensions. For a discrete dimension if the alpha-

bet size is A, a discrete value was created by generating a random integer between 0

and A — 1. For a continuous dimension if the range is A, the possible values are dec-

imal numbers ranging between 0 and A. In section 5.3.7 we also provide performance

comparison among different techniques using real climate data.

For a test query, a box size X is used to define the volume of its query box. Given a

query box with box size X, each discrete dimension has X letters and each continuous

dimension has length X. The query performance is measured by the number of I/Os

(i.e., the number of index tree nodes accessed, assuming each node occupies one disk

block) and is computed by averaging the I/Os over 200 queries.

130

j
”

We have compared the performance of indexing the HDS using the hybrid indexing

with that of the 10% linear scan[22], ND-tree and R*-tree. As mentioned in Section

5.1, the ND—tree and the R*-tree were not originally designed for indexing hybrid data.

They can index only the discrete subspace or the continuous subspace of an HDS. One

approach to process a query in the HDS using a ND-tree is to locate the potential

vectors from the database based on the discrete part of the query and then search

through the hits (possibly a very large set) for further filtering based on the continuous

part of the query. In this case, to avoid requiring a large number of I/Os for searching

continuous data we keep both continuous and discrete data in the leaf nodes of the

ND-tree. For the same reason, we keep both continuous and discrete data in the leaf

nodes of the R*-tree.

5.3.2 Performance Comparisons

In the following subsections we compare performances of the hybrid indexing tree, the

ND-tree, the R*-tree and the 10% liner scan[22]. Various parameters such as database

sizes and alphabet sizes are considered in our experiments. A symbol 6 is used to

represent the additional dimensions utilized by the hybrid indexing approach. For

example, given an HDS with i continuous dimensions and j discrete dimensions, by

indexing the whole HDS we have 6(6 2 j) extra dimensions to use when compared

to the R*—tree approach, and 6(6 = i) extra dimensions to use when compared to the

ND-tree approach.

131

.A
‘

In our experiments we create the R*-tree for a 4-dimensional continuous subspace,

which is a typical dimension number for the R*—tree to avoid the dimensionality curse

problem. For the discrete subspace we use 8 dimensions because an effective ND-tree

could not be built if the number of dimensions is too low (there are too many duplicate

vectors in the subspace).

From the experiment results we see that the hybrid indexing outperforms the other

three approaches. In some of the cases, the performance gain is quite significant.

5.3.3 Performance Gain with Increasing Database Sizes

In this group of tests the performance of hybrid indexing is compared with that of

the ND—tree, the R*-tree and the 10% linear scan for various database sizes (i.e., the

number of vectors indexed). The number of additional dimensions 6 is set to 2. That is,

we use the hybrid indexing approach to index the 4 continuous dimensions used by the

R*-tree plus 2 additional discrete dimensions, and compare the query I/O with that of

the R*-tree. Similarly, we compare the performance of indexing 8 discrete dimensions

and 2 continuous dimensions against the ND-tree approach which indexes only the 8

discrete dimensions. The query I/O of hybrid indexing is also compared with that of

the 10% linear scan approach, which utilizes all the dimensions as the hybrid indexing

does. The alphabet size for each of the discrete dimensions is set to 10. Figure 5.1

shows that the hybrid indexing approach reduces box query l/Os and the performance

132

.
0
9
9
9

Q
N
C
D
C
D
—
I

0.5 1

I
I
O
r
a
t
i
o

.
6

.
0

.
0

N
(
a
)
h

P ..
.
s

k$+**++4>

‘13

- 'G-G-G.
A G'fl.fl

\

is
Q

‘|l§

-<>- vs. ND-tree

8 dsc, 6:2

- -D- - vs. R*-tree

4cnt6=2

—./_‘i- -vs.10%linear

8 dsc, 2 cnt

-9(—-vs. 10% linear

2 dsc, 4 cnt 0

1M 2M 4M 6M 8M 10M 12M 14M 16M

Database sizes

Figure 5.1. Effect of various database sizes in the HDS.

gain generally increases with growing database sizes.

5.3.4 Performance for Various Additional Dimensions

In the following experiments, we varies the number of additional dimensions (i.e., the

6 value) used by the hybrid indexing. The alphabet size and database size in these

experiments are set to 10 and 10 million respectively. Our experimental results are

reported in Figure 5.2. Again from these results we see that the hybrid indexing

outperforms all the other approaches. In some cases (e.g., compared with the R*-tree)

the performance improvement is significant.

133

I
I
O
r
a
t
i
o

 0.9

0.8 4

0.7 ~

0.6 ~

0.51

0.4 «

0.3]

0.2 —

0.1 .

’9’ " " * '0 —0- vs.ND-tree

’ 8dsc,6cnt

V - -D- -vs.R‘-tree

Bdsc,4cnt

-A- -vs.10%

linear

El 8 dsc, 6 cnt

—)(—vs. 10%

linear

6 dsc, 4 dsc]

Number of additional dimensions 6

Figure 5.2. Effect of additional dimensions in the HDS.

134

0.9 - / er _ .0 -<>- vs. ND-tree

0.8 - (>-
8dsc,5=2

\ -e’0.7 - - {l- -vs.R*-tree

.9 0.6 _
4cnt,6=2

ti
5 0.5 -

—A- -vs.10%linear

= 0.41

_ _ . 8dsc,2cnt
0.3 ‘ q . 9 ~13 , ~ -—)(—-'vs.10%linear

02— [3 . ‘ ~13 . - - -U

0.1 ~ _
2dsc,4cnt

0 i T l- - —

8 10 12 14 16

Alphabet sizes

Figure 5.3. Effect of different alphabet sizes in the HDS.

5.3.5 Performance for Different Alphabet Sizes

As we see from Figure 5.3, the hybrid indexing is much more efficient when compared

to the R*-tree and the 10% linear scan. It also does better than the ND-tree approach.

With increasing alphabet sizes the ND-tree performance gets closer to the hybrid index-

ing. However, in real world applications most NDDS domains are small. For example,

genome data has a domain size of 4 (i.e., {a, g, t, c}). The database size used for this

group of tests is 10 million.

135

5.3.6 Performance for Different Query Box Sizes

All of the above experiments show the performance comparisons for query box size 2.

This group of tests evaluates the effect of different query box sizes. Query results for

box size 1 ~ 3 are reported here because as box sizes become larger, the 10% linear

scan approach is more preferable. Not surprisingly, all indexing trees will eventually

lose to linear scan when the query selectivity is high. The results in Figure 5.4 show

that indexing the hybrid data space increases box query performance for all the box

sizes given. Database size 10 million and alphabet size 10 are used for this group of

tests.

5.3.7 performance on Real Data

We used GSOD data introduced in section 4.4.3 to compare the performance of the

extended ND-tree heuristics with the 10% linear scan, ND-tree and R*-tree. The

performances of different techniques are shown in Figure 5.5. The total number of

vectors indexed are 1 million and the query box size is set to 1. As seen from the

figure, indexing the HDS using our extended heuristics performs better than the 10%

linear scan, the ND-tree and the R*-tree. It is worth pointing out that since the ND-

tree could index only the discrete subspace, its performance is partly affected by the

duplicates of the discrete features.

136

I
I
O
r
a
t
i
o

9
.
0

(
”
‘
0
‘

F
3
N

0.6 J

p
p

9

o
u
r

.1
:-

0
1

l
L

9
.
0

A
N

0

l

-0- vs. ND-tree

8 dsc, (i=2

--D--vs.R*-tree

4cnt,6=2

—A' - vs. 10% \

linear

8 030, 2 cnt

-)é—vs. 10%

linear

2 rise, 4 cnt
Query box sizes

Figure 5.4. Effect of different query box sizes in the HDS.

137

f
r

l
.
"
u
m
—
—

v
~
—
#
4
—

I
I
O
r
a
t
i
o

02

0.18

0.16

0.14

0.12

0.1 -

0.08

0.06 1

0.04 .

0.02 ~

0

_4

E‘B—El-El

‘ 233-4..
’éfi‘g'fg‘A AHANA

..4

.4

 e—IejeI-e—Ie -(>- 9 -0- 6 -<>

-0- vs. ND-tree

6dsc, 5:3

—D— vs. R*-tree

3on1, 6=6

- -A- -vs.10%linear

Bdsc, 3cm

(8* 49* “3&1- e6". 49". 6631- «@1- $651- 9&‘1- N6361-

Database sizes

Figure 5.5. Performance comparison of indexing GSOD data.

138

1
’

5.3.8 Effect of Enhanced Strategy with Power Value Adjust-

ment

To examine the effectiveness of using exponent (power) values to adjust the edge lengths

of an HMBR, as discussed in Section 5.2.3, we conducted relevant experiments. The

query I/Os of using this enhanced strategy are shown in Figure 5.6. The x-axis indicates

different power values (pd) used for discrete dimensions. To eliminate the possible

effect that different number of discrete and continuous dimensions might have on the

enhanced strategy, we use an HDS with 4 discrete and 4 continuous dimensions. The

alphabet size is set to 10 and number of vectors indexed is 10 million. The results in

Figure 5.6 show that the new enhanced strategy could further improve the performance

of the hybrid indexing using extended ND-tree heuristics. The exponent value of 0.5

corresponds to the situation of not applying any power value adjustment because both

discrete and continuous dimensions have the same exponent value (0.5).

5.4 Performance Estimation Model

To predict the performance behavior of the hybrid indexing tree, we have developed

a performance estimation model. Our model is divided into two parts: the first part

for estimating the key parameters of the tree (e.g., the characteristics of HMBRs of

tree nodes) for a given HDS; and the second part for estimating the number of I/Os

for arbitrary query box sizes based on the key parameters. If the tree is given and we

139

1 0000

—9—boxsize1

A A A
—0- bOXSiZOZ

10001 "-A-...A,...A~ '-A--boxsize3

..A- . _A. v ‘A

D G-—G- --(;~

E 100“
‘G--e- ’0

G

10‘W

1
T

i

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Powervalues

Figure 5.6. Performance for enhanced strategy with power value adjustment.

140

want to predict the performance behavior of the tree, only the second part is needed.

The two parts of our model are sketched as follows.

Part I: Estimating key parameters of a tree

In this part of the performance model, we are given an HDS and the number of vectors

(to be indexed) in the HDS. Hence we have the following input parameters: the system

disk block size, the number of continuous and discrete dimensions, the domain/alphabet

size of the discrete domains, and the number of vectors to be indexed. We assume that

the components of the vectors are uniformly distributed in their respective dimensions.

Using the above information, we can first determine the maximum number of entries

Mn in a non-leaf node, and the maximum number of entries MI in a leaf node. From

the heuristics extended to the HDS, we notice that the numbers of splits different nodes

(at the same level of the tree) went through usually either equal to each other or differ

by 1. The tree growing process involves two time windows: during any time of the tree

growth, when a node at certain level splits, all the other nodes at the same level split

around the same time. We call this time period the splitting (time) window. After a

node is split, the new nodes start to accumulate incoming data for some time. We call

this period the accumulating (time) window. Since a new node created from a split is

about half-full and takes quite some time before it becomes full again, the accumulating

window is typically much larger than the splitting window. Thus we focus on capturing

the performance behavior for the accumulating window in our performance model.

141

At the beginning of an accumulating window the node space utilization is about 50%

because each overflow node has split into two half-full nodes. When the accumulating

window ends, the node space utilization is close to 100%. On average the utilization

would be 75%. However, we notice that, in real world situations, although most splits

occur in the splitting window, there are some splits happening during the accumu-

lating window. As a result, the number of nodes during the accumulating window is

slightly more than what is estimated under the assumption that all splits happen in the

splitting window. Hence the actual average node space utilization (around 70% from

our experiments) is also lower than expected. Therefore, our estimates for the average

numbers of entries in a non-leaf node and a leaf node during the accumulating window

are: En = 0.7 * M7, and E1 = 0.7 * M1, respectively.

The height h of the tree to index V number of vectors is estimated as:

h = [log(lV/Eiw [logEnll +1 (5.1)

The estimated number of nodes n,- at level i of the tree is estimated recursively as in

formula (5.2).

[ni—l/En] 1 S i S h (non — leaflevel)

n,‘ = (5.2)

[V/El] i = 0 (leaf level)

142

Using w,- to represent the number of rounds of splits that every node at level i has

gone through, it could be estimated as:

wi = 110920101 (53)

When indexing a new vector, it could cause at most one node to split at each level

of the tree. In other words, each time a vector is inserted, at most one node at level i

of the tree will split. This will cause some nodes at a certain level of the tree to split

one more time than the rest of the nodes at the same level. Using v,- to represent the

number of nodes which have gone through one more round of split at level i, it could

be estimated as:

’04 = (ni — 210i) X 2 (5.4)

After we know the height of a tree, the number of nodes at each level and the number

of splits each node has gone through, we can estimate the parameters (e.g., edge length)

for the HMBRs of nodes at each level. Details of the derivation are omitted here and

could be found in the appendix of this thesis.

Part II: Estimating query performance based on key parameters of a tree

The second part of our model estimates the number of I/Os needed for a hybrid

143

indexing tree (defined by the key parameters discussed in Part I) given arbitrary query

box sizes. The estimation has three steps:

(ES-1) Estimating the overlapping probability for one discrete/continuous dimension

For a discrete dimension d, assume that the domain size of the dimension is Dd, the

set size of a node N’s HMBR on dimension d is Ld, and the set size of a query box

on this dimension is Td- Clearly, Ld S Dd and Td S Dd. The probability of the query

box overlapping with N’s HMBR on dimension d is:

Td Td
1 — C d-Ld/CDd (5.5)

For a continuous dimension c, without loss of generality, assume that the domain

range/interval is [0,Cc], and the lower and upper bounds of a node N’s HMBR on

dimension c are LC and Uc, respectively. Further suppose the edge length of a query

box on this dimension is Tc. We have 0 S LC, UC S Cc and Tc S Cc. The probability

for the query box to overlap with N’s HMBR on dimension c is:

(b _ (ll/(Cc — Tc) (5-6)

where a = max{Lc — Tc, 0} and b = min{Uc, Cc - Tc}. This probability calculation

is based on the lower bound value p of the query box on dimension c. Clearly, p is

within range [0, Cc — Tc]. If the query box has an overlap with interval [L6, Uc] on

dimension c, p must be within [LC — TC, Uc]. a and b are used to handle boundary

conditions when (LC — Tc) < 0 and (Uc + Tc) > Cc.

144

(ES-2) Estimating the overlapping probability for one tree node

The probability of a tree node N overlapping with an arbitrary query box Q, is

the product of the overlapping probabilities of N and Q on all dimensions, which are

calculated by ES-I .

(ES-3)Estimating the I/O number for the tree

The number of I/Os for the tree to process a box query is estimated as the summation

of the overlapping probabilities between the query box and every tree node, which could

be calculated by ES—2.

We conducted experiments to verify the above performance model. Two sets of typ-

ical experimental results are shown in Figures 5.7 and 5.8. Each observed performance

data was measured using the average number of I/Os for 200 random queries. The

HDS used in the experiments has 4 continuous dimensions and 4 discrete dimensions

with an alphabet size of 10.

Figure 5.7 shows the comparison between our estimated and observed 1/O numbers

for queries with box sizes 1 ~ 3. The number of indexed vectors ranges from 1 million

to 10 million. Since the trees are given, the experimental results actually demonstrate

the accuracy of the second part of our performance model. The experimental results

show an average relative error of only 2.45% in such a case.

145

1000

Q 100

2‘
o
:1

G 10-

W

W

1M 4M 7M 10M

Nunber of vectors indexed

—-A-— actual ilo

box size 1

- -X- -estimated ilo

box size 1

—°—actual ilo

box size 2

- -I— -estimated ilo

box size 2

—lll—actual ilo

box size 3

- -o- -estlmated ilo

box size 3

Figure 5.7. Verification of performance model for given trees and given HDSs.

Figure 5.8 shows the comparison between our observed I/O numbers (from queries

on actual trees) and estimated l/O numbers (for the given HDS without building any

tree). In this case, the tree parameters for the given HDS also need to be estimated

using the first part of our model. From the figure, we can see that our performance

model still give quite good estimates although the accuracy degrades a little bit due

to the fact that more parameters need to be estimated. The average relative error is

5.76%.

146

Q
u
e
r
y

I
I
O

1000

100:

10:

 1M 4M 7M

Number of vectors indexed

10M

—A—actual ilo

box size 1

- -X- -estimatied ilo

box size 1

—e—actual ilo

box size 2

- -l- -estimated ilo

box size 2

+actual ilo

box size 3

- -<)- -estimated ilo box size 3

Figure 5.8. Verification of performance model for given HDSs.

147

CHAPTER 6

Conclusion

In this thesis we introduced a new indexing structure, the BOND-tree, to support effi-

cient box queries in the NDDS. Box queries and range queries are two widely used search

operations in the indexing area. However they require difierent indexing schemes be-

cause of the fundamental difference in the they search in an indexed NDDS. Box queries

apply stand alone query conditions to each indexed dimension and range queries check

the combined condition of all the indexed dimensions. Inspired by the ND-tree, which

is optimized for range queries in the NDDS, the BOND-tree exploits exclusive prop-

erties of the NDDS and adopts new heuristics designed to support box queries in the

NDDS. Insert, delete and query operations on the BOND-tree are defined to support

indexing of dynamically updated data sets in the NDDS. Based on the observation

that DMBRs in non-leaf nodes contain all letters in most of the dimensions, we de-

veloped the compression strategy to reduce space utilization of the BOND-tree. The

concept of compression may be of significance for some of the other NDDS indexing

148

' 03-71

structures as well. Both our experimental results and the theoretical proof given for the

improved splitting strategies in the NDDS demonstrate that the BOND-tree improves

box query performances in the NDDS significantly. The use of compression improves

query performance of the BOND-tree.

There are numerous modern applications requiring search operation on large scale

data sets in the hybrid data space which contains both continuous and discrete di-

mensions. To support efficient range query processing for the hybrid data, a robust

multidimensional indexing technique is required. In this thesis, we introduced a new

index technique, the C-ND tree, to support indexing of vectors in the HDS.

To develop the C-ND tree, we first introduced some essential geometric concepts

such as hybrid bounding (hyper-)rectangles in the HDS. These geometric concepts are

important for efficient organization of indexed vectors in the HDS. The C—ND tree

structure and the building algorithms are then presented based on heuristics that we

found to be effective in the HDS. A novel length normalization idea is employed to make

the measures on continuous and discrete dimensions comparable and controllable.

We conducted extensive experiments to evaluate the performance of the C-ND trees

in the HDS with various database sizes, mixes of continuous and discrete dimensions

and different alphabet sizes. Our experimental results demonstrate that the C—ND

tree is generally more efficient than using the linear scan approach or indexing the

corresponding continuous subspace using the R*-tree and the discrete subspace using

149

the ND-tree. As expected, when the number of continuous dimensions in an HDS

increases, the performance of the C-ND tree is closer to that of an R*-tree; when the

number of discrete dimensions increases, the performance of the C-ND tree becomes

closer to that of an ND-tree. The reason why the C-ND tree generally outperforms

the R*-tree and the ND-tree is that it can make use of the given query conditions on

additional dimensions that the latter two methods cannot utilize to prune unnecessary

search paths in the tree.

We have also extended the original ND-tree building heuristics to support box queries

in the HDS. To make the measures on continuous and discrete dimensions comparable

and controllable, two unique strategies, the edge length normalization and the power

value adjustments, are employed. A theoretical model is also developed to predict the

performance of the hybrid indexing in HDSs. Our experimental results demonstrate

that the ND-tree’s heuristics are still effective after being extended to the HDS. Using

these heuristics to index the HDS is more efficient than the traditional linear scan

method, the method to index the continuous subspace of the HDS using the R*-tree

and the method to index the discrete subspace using the ND-tree.

Our future work includes further study of characteristics in HDS, applicability of

ideas in the BOND-tree to the HDS, and development of more effective strategies to

build indexes in the HDS to support various query types.

150

APPENDICES

APPENDIX A

Proof of Theorems For Box Queries

in the NDDS

In this appendix, we give the proof of the theorems proposed in chapter 3. These

theorems are used in the BOND-tree splitting heuristics to support box queries in the

NDDS. For the sake of simplicity we assume our discussion is in an NDDS 9d with

an alphabet size A for all dimensions in Qd and the query box has edge length b on

all dimensions. The discussion could be extended to more general situations and is

omitted in this thesis.

The optimal splitting criteria (Theorem 3.3.3 and Theorem 3.3.4) defined and applied

in section 3.3.4 could be proved using the following 3 lemmas.

Lemma A.0.1. When splitting on a dimension with edge length x on the MBR, if the

two newly generated nodes has edge lengths 1 and x - 1, the two new nodes has better

filtering power than splitting the nodes to other edge lengths.

Lemma A.0.2. Splitting the node on a dimension with edge length x gives more filter-

ing power than splitting on dimension with edge length x + 1.

Lemma A.0.3. Splitting the node on a dimension with edge length x gives more filter-

151

ing power than splitting on the dimension with edge length x + n, where n is an integer

greater than or equal to 1.

A.1 Proof of Lemma A.0.1

When splitting a dimension with edge length x, one candidate partition generates two

new nodes which has edge lengths 1 and x — 1 on this dimension, the other candidate

partition yields two new nodes with edge lengths t and x — t on this dimension, where

1 < t < x — 1. Without loss of generality, we further assume that t S x — t. And we

want to show:

0” ob 0” ob

’4‘?" + ’2? 2 A?” + Ab“ (1 < t < x — 1) (A.1)

CA CA CA CA

4:)

Cgl—x+1 + 031-1 2 02b4—x+t + C’El-t (1 < t < x ‘ 1) (A2)

Leta=A—x+t,fi=A—x+1and6=x—1—t, formula (A.2) equals

03...; - 03+, 2 Cf. — c}; (43)

When b = 1, (A3) holds. Use mathematical induction, suppose (A.3) holds when

b = b’, next we want to prove it holds when b = b’ + 1.

152

We already knows:

bl

off—+5 032,90 —03' (4.4)

 When b—- b’ + 1, since C"+1=

+1m’

b, 0+6— 0’ b, ,B'f‘tf—b’ bra—b’ b, B—b’
__ _____> __ __

Cat-5 bl+1 fl+6 bl-i-I. _CabI-i-l fi+6bl+1 (A5)

4:)

b’ a+6— b’ 6 bla—b’
__ > __

00+, b’+1 Cg+5b’+1- C'b’+1 (A6)

SinceC+5>Cfl+6,left31deof (A6)

8’ a+6— b’ (S y or+6— b’ b’ 6 b’ a— b’ bra— b’

Ca+6 b’+1 GARTH-CW b’+1 ’ Mid/+1Ginsu-Carr“

So (A.6) holds and proof of Lemma A.0.1 is completed.

A.2 Proof of Lemma A.0.2

Consider two dimensions with edge lengths x and x + 1. From Lemma A.0.1 we

already knows the best way to split them is the 1—and-the—rest letters way.

153

When splitting the dimension with edge length x, the overlapping probability on this

dimension is calculated as:

b0 0b- _ Cb—x

(1__Ab-_l+1__’_4_($_1).)(1__fi_l_il_l)
b

CA 0.91 CA

. Similarly, the overlapping probability when splitting the dimension with edge length

x + 1 is:

b 0b 0b

(1 _ Ab-l + 1 _ A;$)(1 Ag!!!)

CA CA CA

We want to show:

Cb_ +ob_ cb_ _ cb_ +ob_ ob_
(2_ A I CbA $+l)(1_ AC: l)_<_(2_ A le A 11:)(1_ be) (A7)

A A A A

A — .T +1 A — a; _. b

' b _ b b _ b .

Substitute CA—x+1 __ A _ 93+ 1 _ bCA—x and CA_$_1 _ flCA-x into

(A.7), we get:

5 b A—CL‘+ 1 b b A —:L'-b b

(20A _ CA‘I _ A — x + 1 — bCA_$)(CA _ A —x CAPT) S

(20531 — 0511-1 — Gianni — 051..) (4.8)

<=>

b b b b

b

A _ 301131—33) S (2091 _ Cal—l _ CS—xXCfA — 0.2—x) (A9)

154

b b b b b b b

(20A_CA—l CA—x)A____xCA-a:_A_$+l_bCA—x(CA_CA—x)

b

‘A—x+1—bCA-b$A—CA-x50

4:»

b b b b b b b
(20A_CA—1_CA—x)A—_;‘A_x+1_b(CA—CA—x)

b b b
_ C <

A—a:+1—bA—:r A-x-O

4:»

b b b A-IE-l'l—b b b b b

(QCA-CA—I_CA—x) A—x SCA_CA—3+Z_xCA a:

Substltute CA_1 = (1 — A)CA into (A.12) we get:

A+b A—a:+1—b b A—x—b b

(—CA CA—2:) A_$ SCA_—Z__—;—CA—x

4:?

(A+b)(A—.’L‘+1—b) b b b

A(A—a:) CA_CAS xCA-z

¢=>

(A+b)(A—$+l—b)cb

A — (A - @053 s 091.2:

155

(A.10)

(A.11)

(A.12)

(A13)

(A.14)

(A.15)

_ _ 2

(A (”jib b)Cb s 03H (A.16)

(A—bx+b—b2) < 031—2:
A _ —Eg— (A.17)

when b = 1, (A.17) holds. Use mathematical induction, suppose (A.17) holds when

b = b’, we want to show it holds when b = b’ + 1.

2 b’
A— I I___ I 0

Let(bx+b b)=a, A_z=fi,weknowa§)6.

A 091’

When b = b’ + 1,1eft side of formula (A.17) becomes

A—b’x—x+b’+1—b’2 —2b’—1 _ A—b’x+b’—b’2 —:c-—2b’ _ :I:+2b’

A " A _ a A

and right side of formula (A.17) becomes

b’+1 b’ A - a: — b’

CA a: CA—a: (1’ +1 18(1 _ :1:)

Cbl+1 Cb, A — b, A — b,

A

b’ + 1

So we want to Show that

a: + 2b’ a:
__ < _ .a A _B(1 A—b’) (A 18)

156

Since a S 3, we only need to show:

x+2b’ a:

>

A —flA—b’

<=>

(A—b’)(x+2j:)_>fl

’ Arc "

4:)

m+2b’A—b’ > (A—x)(A—a:—1)...(A—:v—b’+_1_

:1: A “ A(A—1)...(A—b’+1)

<==>

x+2b’ > (A—x)(A—x-1).
..(A—a:—b’+1)

a: - (A—l)...(A
—b’)

Left side of (A22) has

I I

x+2b =1+2_b_21

H

8

On the right side of (A22), since :1: > 1,

(A—ar:)(A—:1:—1
)...(A—:1:—b"+#

1)_<1

(A—nu(A—w

Thus we know (A22) holds. Proof of Lemma A.0.2 is complete.

157

(Am)

(Am)

(Am)

(An)

A.3 Proof of Lemma A.0.3

Suppose the filtering power gained from splitting a node on a dimension with edge

length l is Pr(l). From Lemma A.0.2, we know:

Pr(:c)>Pr(x+1)>...>Pr(a:+n) (7121)

Thus we have Pr(a:) > Pr(a: + n) (n 2 1).

Proof of Lemma A.0.3 is complete.

By proving the correctness of Lemma A.0.1 ~ Lemma A.0.3, the optimal splitting

CIiteria proposed in section 3.3.4 are proved.

158

APPENDIX B

Algorithms for Performance

Estimation Model

Given the system disk block size, the number of continuous and discrete dimensions,

the domain for each dimension of the HDS and the number of vectors to be indexed, in

section 5.4 we have estimated the height h of the tree, the number of nodes 11,- at level

2' of the tree, the number of rounds 10,- that each node at level i has gone through and

the number of nodes 22, at level i which have had more than one round of split than

the rest of nodes at the same level. In appendix B we give the algorithms to estimate

the box query I/O given a query box B.

We first provide the algorithm Estimate_QueryIO. It uses formulas 5.1 ~ 5.4 to

eStilnate the height h of the indexing tree, the number of nodes n,- at each level 2’,

r(NJ-Ends of splits 10,- that every node at level 2' has gone through, and the number of

nodes which have had one more round of split at level 2'. These estimation are based

on the number of vectors indexed (V), the average numbers of entries in a non-leaf

159

node (En) and a leaf node (E). It calls algorithm Estimate_0verlappingPro to get

the summation of overlapping probabilities at each level of the tree and calculates the

estimated box query I/O for the whole indexing tree.

Algorithm B.0.1. Estimate_QueryIO(En, El, V,B) //estimate box query I/O of

an indexing tree.

Input: En is the average number of entries in a non-leaf node, E1 is the average

number of entries in a leaf node, V is number of indexed vectors, B is the query box

szze.

Output: the estimated box query I/O.

Method:

1. boxqueryJO=0

2. estimate tree height h based on En, El and V through formula 5.1

3. for ifrom 1 to h do

4. estimate number of nodes ii, at level i through formula 5.2

5. estimate round of splits w,- at level i through formula 5.3

6. estimate number of nodes v,- having one more round of splits at level i through

formula 5.4

7. boxqueryJO += Estimate-0verlappingPro(n,-, 11),, vi, B)

8. end for

9. return boxquergJO

Algorithm Estimate_0verlappingPro is used to estimate the number of box query

I/O for a certain level i of the tree. Based on number of nodes ni, number of rounds

of splits w, and number of nodes v,- which have gone through one more round of splits,

it first calls algorithm EstimateJ-IMBR to estimate HMBRs of nodes at level i of

the tree. Since at each level there are v,- nodes which have gone through one more

round of split than the rest of nodes, algorithm Estimate_HMBR is called twice to

estimate HMBRs for nodes which have different rounds of splits separately. Two lists

(LH and LN) are returned by algorithm Estimate_HMBR. LH records the HMBRs

estimated after a certain round of splits and LN records the number of nodes for each

160

corresponding HMBR in LH. These information are applied to formula 5.5 and formula

5.6 to get the overlapping probability between each node’s HMBR and the query box.

Algorithm B.0.2. Estimate_0verlappingPro(n,-, wi, vi, B) //estimate overlap-

ping probabilities for nodes at a certain level.

Input: n,- is the total number of nodes, w is the number of splits all nodes have gone

through, v,- is number of nodes which have had one more round of splits, B is the query

box size.

Output: the summation of overlapping probabilities between nodes’ HMBRs and the

query box.

Method:

1. initialize LH

2. initialize LN

3. let H = HMBR of the whole data space

4. result = 0

5. (LH, LN) = Estimate_HMBR(H, ni — vi, 11),)

6. for i from 1 to size of LH do

7. calculate overlapping probability p between LH[i] and B using formulas 5.5 and

5.6

8. result+=p x LN[z]

.9. end for

10.(LH, LN) = Estimate.HMBR(H, vi, w,- + 1)

11.for i from 1 to size of LH do

12. calculate overlapping probability p between LH[i] and B using formulas 5.5 and

5.6

13. result+=p x LN [z]

blend for

15.return result

Algorithm EstimateJ'IMBR is used to estimate all HMBRs occurred at level i of

the indexing tree after certain rounds of splits. Note that if there are m nodes at level

i, the data space is partitioned n,- — 1 times. Algorithm Estimate_HMBR starts from

an HMBR which covers the whole indexed data space S. It then estimates the number

of nodes and their corresponding HMBRs after a certain number of partitions of the

original data space. After algorithm Estimate_HMBR, the original HMBR which

covers the whole data space is partitioned R times (R is the round of splits that nodes

161

at this level have gone through), LH is returned as a list containing the HMBRs of

nodes at this level and LN is a list of numbers of nodes for each corresponding HMBR

in LH.

Algorithm B.0.3. EstimateJ-IMBR(S, N, R) //estimate HMBRs for nodes at a

certain level

Input: S is the originally indexed data space, N is the number of partitions (splits),

R is the rounds of splits occurred at a certain level of the tree.

Output: a list of HMBRs LH and the number of nodes LN for each corresponding

HMBR in LH .

Method:

1. add S to list LH

2. add N to list LN

3.forifrom1toRdo

4 sz = size of list LH

5 for I: from 1 to 32 do

6. l0ngestSpan=0

7 longestDim=1

8 for j from 2 to num.dim do//num-dim is the total number of dimensions

9 if LH[k] has a span on dimension j larger than longestSpan

10. longestSpan 2 LB[k] ’s span on dimension j

1 1. longestDim=j

12. end if

13. end for

14. if j is a discrete dimension

15. if LH[k] ’s span on dimension j is an even number

16. divide LH[k] ’s span on dimension 3' by 2

17. else

18. x = LH[k]

19. set LH[lc] ’s span on dimension j = |_ (LH [k] ’s span on dimension j)/2

l

20. x ’s span on dimension j = l (x ’s span on dimension j)/2l

21 . append x to LH

22. y=LN[k]

23. LN[k] = [LN[k]/2j

94- y = W21

25. append y to LN

26. end if

27. else //j is a continuous dimension

28. divide LH[k] ’s span on dimension j by 2

29. end if

30. end for

31. end for

32.return (LH, LN)

162

Algorithms B.0.1 ~ 303 provided in this section complete our theoretical model

proposed in section 5.4. Note these three algorithms are used to first estimate the

indexing tree structure and then estimate the box query I/0 based on the tree structure.

In case the indexing tree already exists, we do not need to estimate the tree structure

(i.e., the tree height h, rounds of splits 20,-, number of nodes n,- at level i of the tree

and number of nodes v,- which have had one more round of splits). Instead we could

found the HMBRs for each node in the tree and apply the HMBR information directly

in algorithm B.0.2.

163

BIBLIOGRAPHY

[1] M. Al—Suwaiyel and E Horowitz. Algorithms for trie compaction. ACM Trans.

Database Syst, 9(2):243—263, 1984.

[2] G. Antoshenkov. Byte-aligned bitmap compression. In DCC ’95: Proceedings of

the Conference on Data Compression, page 476, Washington, DC, USA, 1995.

IEEE Computer Society.

[3] Walid G. Aref and Hanan Samet. Efficient processing of window queries in the

pyramid data structure. In PODS ’90: Proceedings of the ninth ACM SIGACT-

SIGMOD-SICART symposium on Principles of database systems, pages 265—272,

New York, NY, USA, 1990. ACM.

[4] Y. Alp Aslandogan and Clement T. Yu. Techniques and systems for image and

video retrieval. IEEE Trans. on Knowl. and Data Eng, 11(1):56—63, 1999.

[5] Gopi K. Attaluri. An efficient expected cost algorithm for dynamic indexing

of spatial objects. In CASCON ’94: Proceedings of the 1994 conference of the

Centre for Advanced Studies on Collaborative research, page 2. IBM Press, 1994.

[6] R. Bayer and K Unterauer. Prefix B-trees. ACM Transactions on Database

Systems, pages 11—26, 1977.

[7] Rudolf Bayer and E. McCreight. Organization and maintenance of large ordered

indexes. pages 245-262, 2002.

[8] Rudolf Bayer and E. McCreight. Organization and maintenance of large ordered

indexes. pages 245—262, 2002.

[9] N. Beckmann, H.-P. Kriegel, R. Schneider, and B Seeger. The R*-tree: an effi-

cient and robust access method for points and rectangles. Proceedings of ACM

SICMOD, pages 322—331, 1990.

[10] Jon L. Bentley. Multidimensional binary search trees used for associative search-

ing. Commun. ACM, 18(9):509—517, September 1975.

[11] Jon L. Bentley and Robert Sedgewick. Fast algorithms for sorting and searching

strings. In SODA ’97: Proceedings of the eighth annual ACM-SIAM symposium

164

on Discrete algorithms, pages 360—369, Philadelphia, PA, USA, 1997. Society for

Industrial and Applied Mathematics.

[12] Jon Louis Bentley. Multidimensional binary search trees used for associative

searching. Commun. ACM, 18(9):509—517, 1975.

[13] Jon Louis Bentley and Jerome H. Friedman. Data structures for range searching.

ACM Comput. Surv., 11(4):397—409, 1979.

[14] S. Berchtold, D.A. Keim, and H.-P Kriegel. The X—tree: an index structure

for high-dimensional data. Proceedings of the 22nd International Conference on

VLDB, pages 28-39, 1996.

[15] Stefan Berchtold, Christian Bohm, Daniel A. Keim, and Hans-Peter Kriegel. A

cost model for nearest neighbor search in high-dimensional data space. In PODS

’97: Proceedings of the sixteenth ACM SICACT—SICMOD-SICART symposium

on Principles of database systems, pages 78—86, New York, NY, USA, 1997. ACM.

[16] Christian Bohm, Stefan Berchtold, and Daniel A. Keim. Searching in high-

dimensional spaces: Index structures for improving the performance of multi-

media databases. ACM Comput. Sara, 33(3):322—373, 2001.

[17] Marc Boulle. Khiops: A statistical discretization method of continuous attributes.

Mach. Learn, 55(1):53—69, 2004.

[18] Tolga Bozkaya and Meral Ozsoyoglu. Distance-based indexing for high-

dimensional metric spaces. In SICMOD ’97: Proceedings of the 1997 ACM

SICMOD international conference on Management of data, pages 357—368, New

York, NY, USA, 1997. ACM.

[19] Tolga Bozkaya and Meral Ozsoyoglu. Indexing large metric spaces for similarity

search queries. ACM Trans. Database Syst, 24(3):361—404, 1999.

[20] Sergey Brin. Near neighbor search in large metric spaces. In VLDB ’95: Pro-

ceedings of the 21th International Conference on Very Large Data Bases, pages

574—584, San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc.

[21] J Catlett. On changing continuous attributes into ordered discrete attributes.

Proceedings of the European Working Session on Machine Learning, pages 164—

178, 1991.

[22] K. Chakrabarti and S. Mehrotra. The hybrid tree: an index structure for high

dimensional feature spaces. Proceedings of the 15th International Conference on

Data Engineering, pages 440—447, 1999.

[23] Chee-Yong Chan and Yannis E. Ioannidis. Bitmap index design and evaluation. In

SICMOD ’98: Proceedings of the 1998 ACM SICMOD international conference

on Management of data, pages 355-366, New York, NY, USA, 1998. ACM.

165

[24] Chee-Yong Chan and Yannis E. Ioannidis. An efficient bitmap encoding scheme

for selection queries. SICMOD Rea, 28(2):215—226, 1999.

[25] Edgar Chavez, Gonzalo Navarro, Ricardo Baeza-Yates, and José Luis Marroqul’n.

Searching in metric spaces. ACM Comput. Sura, 33(3):273-321, 2001.

[26] Changqing Chen, Sakti Pramanik, Qiang Zhu, Watve Alok, and Gang Qian. The

c-nd tree: a multidimensional index for hybrid continuous and non-ordered dis-

crete data spaces. In EDBT ’09: Proceedings of the 12th International Conference

on Extending Database Technology, pages 462—471, New York, NY, USA, 2009.

ACM.

[27] Changqing Chen, Sakti Pramanik, Qiang Zhu, Watve Alok, and Gang Qian. A

study of indexing strategies for hybrid data spaces. The nineth international

conference on enterprise information systems (ICEIS 2009), 2009.

[28] Beng Chin, Ooi Ron, and Sacks davis Jiawei Han. Indexing in spatial databases.

2008.

[29] Tzi—cker Chiueh. Content-based image indexing. In VLDB ’94: Proceedings of

the 20th International Conference on Very Large Data Bases, pages 582—593, San

Francisco, CA, USA, 1994. Morgan Kaufmann Publishers Inc.

[30] Paolo Ciaccia, Marco Patella, and Pavel Zezula. M-tree: An efficient access

method for similarity search in metric spaces. In VLDB, pages 426—435, 1997.

[31] Julien Clrnent, Brigitte Valle, Thme Gnie Logiciel, and Projet Algo. Dynamical

sources in information theory: A general analysis of trie structures. Algorithmica,

29:307—369, 2001.

[32] Douglas Comer. Heuristics for trie index minimization. ACM Trans. Database

Syst, 4(3):383—395, 1979.

[33] Douglas Comer. Ubiquitous b—tree. ACM Comput. Surv., 11(2):121—137, 1979.

[34] Douglas Comer and Ravi Sethi. The complexity of trie index construction. J.

ACM, 24(3):428—440, 1977.

[35] James Dougherty, Ron Kohavi, and Mehran Sahami. Supervised and unsuper-

vised discretization of continuous features. In International Conference on Ma-

chine Learning, pages 194—202, 1995.

[36] F. Shi P. Widmayer F. Widmer E. Bugnion, T. Roos. Approximate multiple

string matching using spatial indexes. Number 1, pages 43—54, 1993.

[37] Moussa Elkihel Didier El Baz. Load balancing in a parallel dynamic programming

multi-method applied to the 0-1 knapsack problem. In PDP ’06: Proceedings

166

of the 14th Euromicro International Conference on Parallel, Distributed, and

Network-Based Processing, pages 127—132, Washington, DC, USA, 2006. IEEE

Computer Society.

[38] Fayyad and Irani. Multi-interval discretization of continuous-valued attributes

for classification learning. pages 1022—1027, 1993.

[39] Usama M. Fayyad and Keki B. Irani. On the handling of continuous-valued

attributes in decision tree generation. Mach. Learn, 8(1):87—102, 1992.

[40] P. Ferragina and R Grossi. The string B-tree: a new data structure for string

search in external memory and its applications. Journal of the ACM, pages 236—

280, 1998.

[41] Caxton C. Foster. A generalization of avl trees. Commun. ACM, 16(8):513—517,

1973.

[42] Andrew U. Frank. Spatial concepts, geometric data models, and geometric data

structures. Comput. Geosci., 18(4):409—417, 1992.

[43] A.A Freitas. A survey of evolutionary algorithms for data mining and knowledge

discovery. Advances in Evolutionary Computing: Theory and Applications, pages

819—845, 2003.

[44] Volker Gaede and Oliver Giinther. Multidimensional access methods. ACM

Comput. Sura, 30(2):170—231, 1998.

[45] Pedro Garcia and Maria Petrou. The use of boolean model for texture analysis

of grey images. In ICPR ’98: Proceedings of the 14th International Conference

on Pattern Recognition- Volume 1, page 811, Washington, DC, USA, 1998. IEEE

Computer Society.

[46] Ralf Hartmut Giiting. An introduction to spatial database systems. The VLDB

Journal, 3(4):357—399, 1994.

[47] A Guttman. R-trees: a dynamic index structure for spatial searching. Proceedings

of ACM SICMOD, pages 47—57, 1984.

[48] A Henrich. The LSDh-tree: an access structure for feature vectors. Proceedings

of the 14th International Conference on Data Engineering, pages 362-369, 1998.

[49] A. Henrich, H. W. Six, and P. Widmayer. The lsd tree: spatial access to mul-

tidimensional and non-point objects. In VLDB ’89: Proceedings of the 15th

international conference on Very large data bases, pages 45-53, San Francisco,

CA, USA, 1989. Morgan Kaufmann Publishers Inc.

[50] Gisli R. Hjaltason and Hanan Samet. Index-driven similarity search in metric

spaces (survey article). ACM Trans. Database Syst., 28(4):517—580, 2003.

167

[51] Ellis Horowitz, Sartaj Sahni, and Susan Anderson-Freed. Fundamentals of Data

Structures in C. W. H. Freeman & Co., New York, NY, USA, 1992.

[52] King ip Lin, H. V. Jagadish, and Christos Faloutsos. The tv-tree - an index

structure for high-dimensional data. VLDB Journal, 3:517—542, 1994.

[53] Masahiro Ishikawa, Hanxiong Chen, Kazutaka Furuse, Jeffrey Xu Yu, and Nobuo

Ohbo. Mb+tree: A dynamically updatable metric index for similarity searches.

In WAIM ’00: Proceedings of the First International Conference on Web-Age

Information Management, pages 356-373, London, UK, 2000. Springer-Verlag.

[54] Anil K. Jain and Farshid Farrokhnia. Unsupervised texture segmentation using

gabor filters. Pattern Recogn., 24(12):1167—1186, 1991.

[55] Marcus Jiirgens. Index structures for data warehouses. Springer-Verlag New

York, Inc., Secaucus, NJ, USA, 2002.

[56] Ibrahim Kamel and Christos Faloutsos. Hilbert r-tree: An improved r-tree using

fractals. In VLDB ’94: Proceedings of the 20th International Conference on

Very Large Data Bases, pages 500—509, San Francisco, CA, USA, 1994. Morgan

Kaufmann Publishers Inc.

[57] N. Katayama and Si Satoh. The SR—tree: an index structure for high-dimensional

nearest neighbor queries. Proceedings of ACM SICMOD, pages 369—380, 1997.

[58] Donald E. Knuth. The Art of Computer Programming, Volume III: Sorting and

Searching. Addison-Wesley, 1973.

[59] Oliver Kutz, Frank Wolter, Holger Sturm, Nobu-Yuki Suzuki, and Michael Za-

kharyaschev. Logics of metric spaces. ACM Trans. Comput. Logic, 4(2):260—294,

2003.

[60] Aizhen Liu, Jiazhen Wang, Guodong Han, Suzhen Wang, and Jiafu Wen. Im-

proved simulated annealing algorithm solving for 0/ 1 knapsack problem. In ISDA

’06: Proceedings of the Sixth International Conference on Intelligent Systems

Design and Applications, pages 1159—1164, Washington, DC, USA, 2006. IEEE

Computer Society.

[61] Huan Liu, Farhad Hussain, Chew L. Tan, and Manoranjan Dash. Discretization:

An enabling technique. Data Mining and Knowledge Discovery, 6(4):393—423,

October 2002.

[62] Huan Liu and Rudy Setiono. Feature selection via discretization. IEEE Trans.

on Knowl. and Data Eng, 9(4):642—645, 1997.

[63] W. Loots and T. H. C. Smith. A parallel algorithm for the 0—1 knapsack problem.

Int. J. Parallel Program, 21(5):349-362, 1992.

168

[64] SA. Macskassy, H. Hirsh, A. Banerjee, and A.A Dayanik. Converting numerical

classification into text classification. Artificial Intelligence, 143(1), pages 51—77,

2003.

[65] Veli Makinen. Compact suffix array: 3 space-efficient full-text index. Fundam.

Inf, 56(1,2):191—210, 2002.

[66] S. G. Mallat. A theory for multiresolution signal decomposition: The wavelet

representation. IEEE Trans. Pat. Anal. and Machine Intel, 11(7):674—693, 1989.

[67] Udi Manber and Gene Myers. Suffix arrays: a new method for on-line string

searches. In SODA ’90: Proceedings of the first annual ACM-SIAM symposium

on Discrete algorithms, pages 319—327, Philadelphia, PA, USA, 1990. Society for

Industrial and Applied Mathematics.

[68] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schtze. Introduction

to Information Retrieval. Cambridge University Press, New York, NY, USA,

2008.

[69] Edward M. McCreight. A space-economical suffix tree construction algorithm. J.

ACM, 23(2):262—272, 1976.

[70] S. Meyn and R. Tweedie. Markov chains and stochastic stability, 1993.

[71] Donald R. Morrison. Patricia—practical algorithm to retrieve information coded

in alphanumeric. J. ACM, 15(4):514—534, 1968.

[72] J. Nievergelt, H. Hinterberger, and K. C. Sevcik. The grid file: An adaptable,

symmetric multikey file structure. ACM Transactions on Database Systems, 9:38-

71,1984.

[73] Patrick O’Neil and Dallan Quass. Improved query performance with variant

indexes. In SICMOD ’97: Proceedings of the 1997 ACM SIGMOD international

conference on Management of data, pages 38—49, New York, NY, USA, 1997.

ACM.

[74] Patrick E. O’Neil. Model 204 architecture and performance. In Proceedings

of the 2nd International Workshop on High Performance Transaction Systems,

pages 40—59, London, UK, 1989. Springer-Verlag.

[75] Beng Chin Ooi and Kian—Lee Tan. B—trees: bearing fruits of all kinds. Aust.

Comput. Sci. Commun., 24(2):13—20, 2002.

[76] Yale N. Patt. The i/o subsystem/spl minus/a candidate for improvement. Com-

puter, 27(3):15—16, 1994.

[77] P. J. Plauger. A better red-black tree. C/C++ Users J., 17(7):10—19, 1999.

169

[78] Guido Proietti and Christos Faloutsos. Selectivity estimation of window queries

for line segment datasets. In CIKM ’98: Proceedings of the seventh interna-

tional conference on Information and knowledge management, pages 340—347,

New York, NY, USA, 1998. ACM.

[79] G. Qian, Q. Zhu, Q. Xue, and S Pramanik. The ND—tree: a dynamic indexing

technique for multidimensional non-ordered discrete data spaces. Proceedings of

the 29th International Conference on VLDB, pages 620—631, 2003.

[80] G. Qian, Q. Zhu, Q. Xue, and S Pramanik. Dynamic indexing for multidi-

mensional non-ordered discrete data spaces using a data-partitioning approach.

Proceedings of ACM Transactions on Database Systems, 31(2), pages 439—484,

2006.

[81] G. Qian, Q. Zhu, Q. Xue, and S Pramanik. A space-partitioning-based indexing

method for multidimensional non—ordered discrete data spaces. ACM Trans. on

Information Syst, 23(1), pages 79—110, 2006.

[82] J.T Robinson. The K-D-B—tree: a search structure for large multidimensional

dynamic indexes. Proceedings of ACM SIGMOD, pages 10 —18, 1981.

[83] Timothy J. Rolfe. An alternative dynamic programming solution for the 0/1

knapsack. SIGCSE Bull, 39(4):54—56, 2007.

[84] Yong Rui, Thomas S. Huang, and Shih fu Chang. Image retrieval: Current tech-

niques, promising directions and open issues. Journal of Visual Communication

and Image Representation, 10:39—62, 1999.

[85] Sartaj Sahni. Approximate algorithms for the 0/1 knapsack problem. J. ACM,

22(1):115-124, 1975.

[86] G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing.

Commun. ACM, 18(11):613—620, November 1975.

[87] Gerard Salton, A. Wong, and C. S. Yang. A vector space model for automatic

indexing. Technical report, Ithaca, NY, USA, 1974.

[88] Hanan Samet. The quadtree and related hierarchical data structures. ACM

Comput. Sara, 16(2):187-260, 1984.

[89] Dov M. Gabbay Samson Abramsky, S. Abramsky. Domain theory. 2004.

[90] Simone Santini and Rarnesh Jain. Similarity queries in image databases. In

CVPR ’96: Proceedings of the 1996 Conference on Computer Vision and Pattern

Recognition (CVPR ’96), page 646, Washington, DC, USA, 1996. IEEE Computer

Society.

170

[91] Bernhard Seeger and Hans-Peter Kriegel. The buddy—tree: An efficient and robust

access method for spatial data base systems. In VLDB ’90: Proceedings of the

16th International Conference on Very Large Data Bases, pages 590—601, San

Francisco, CA, USA, 1990. Morgan Kaufmann Publishers Inc.

[92] Thomas Seidl and Hans peter Kriegel. Adaptable similarity search in large image

databases. In State-of-the Art in Content-Based Image and Video Retrieval, pages

297-317. Kluwer Publishers, 2001.

[93] T. Sellis, N. Roussopoulos, and C Faloutsos. The R+~treez a dynamic index for

multi-dimensional objects. Proceedings of the 13th International Conference on

VLDB, pages 507—518, 1987.

[94] Michael Stonebraker, James Frew, Kenn Gardels, and Jeff Meredith. The sequoia

2000 storage benchmark. Technical report, Berkeley, CA, USA, 1992.

[95] F. E. H. Tay and L. Shen. A modified chi2 algorithm for discretization. IEEE

Trans. on Knowl. and Data Eng, 14(3):666—670, 2002.

[96] Jeffrey K. Uhlmann. Satisfying general proximity/similarity queries with metric

trees. Inf. Process. Lett., 40(4):175—179, 1991.

[97] M. Unser. Texture classification and segmentation using wavelet frames. IEEE

Transactions on Image Processing, 4(11):1549—1560, November 1995.

[98] Jeffrey Scott Vitter. External memory algorithms and data structures: Dealing

with massive data. ACM Computing Surveys, 33:2001, 2001.

[99] Liwei Wang, Yan Zhang, and Jufu Feng. On the euclidean distance of images.

IEEE Trans. Pattern Anal. Mach. Intell, 27(8):1334-1339, 2005.

[100] H. Wedekind and KL. Koffeman. On the selection of access paths in a data base

system. Data Base Management, pages 385—397, 1974.

[101] Peter Weiner. Linear pattern matching algorithms. In SWAT ’73: Proceedings

of the 14th Annual Symposium on Switching and Automata Theory (swat 1973),

pages 1—11, Washington, DC, USA, 1973. IEEE Computer Society.

[102] DA. White and R Jain. Similarity indexing with the SS-tree. Proceedings of the

12th International Conference on Data Engineering, pages 516—523, 1996.

[103] Andrew K. C. Wong and David K. Y. Chiu. Synthesizing statistical knowledge

from incomplete mixed-mode data. IEEE Trans. Pattern Anal. Mach. Intell,

9(6):796—805, 1987.

[104] Harry K. T. Wong, Hsiu-Fen Liu, Frank Olken, Doron Rotem, and Linda Wong.

Bit transposed files. In VLDB ’1985: Proceedings of the 11th international con-

ference on Very Large Data Bases, pages 448—457. VLDB Endowment, 1985.

171

[105]

[106]

[107]

[108]

[109]

[110]

[111]

S. K.M. Wong, W. Ziarko, V. V. Raghavan, and P. C.N. Wong. On modeling

of information retrieval concepts in vector spaces. ACM Trans. Database Syst,

12(2):299—321, 1987.

Kesheng Wu, Ekow Otoo, and Arie Shoshani. On the performance of bitmap

indices for high cardinality attributes. In VLDB ’04: Proceedings of the Thirtieth

international conference on Very large data bases, pages 24—35. VLDB Endow-

ment, 2004.

Kesheng Wu, Ekow J. Otoo, and Arie Shoshani. Compressing bitmap indexes for

faster search operations. In SSDBM ’02: Proceedings of the 14th International

Conference on Scientific and Statistical Database Management, pages 99—108,

Washington, DC, USA, 2002. IEEE Computer Society.

Ming-Chuan Wu and Alejandro P. Buchmann. Encoded bitmap indexing for data

warehouses. In ICDE ’98: Proceedings of the Fourteenth International Confer-

ence on Data Engineering, pages 220—230, Washington, DC, USA, 1998. IEEE

Computer Society.

Peter N. Yianilos. Data structures and algorithms for nearest neighbor search

in general metric spaces. In SODA ’93: Proceedings of the fourth annual ACM-

SIAM Symposium on Discrete algorithms, pages 311—321, Philadelphia, PA, USA,

1993. Society for Industrial and Applied Mathematics.

Cui Yu. High-Dimensional Indexing: Ti‘ansformational Approaches to High-

Dimensional Range and Similarity Searches. Springer-Verlag New York, Inc.,

Secaucus, NJ, USA, 2002.

Pavel Zezula, Giuseppe Amato, Vlastislav Dohnal, and Michal Batko. Similarity

Search: The Metric Space Approach (Advances in Database Systems) Springer,

November 2005.

172

[I][I[[l[l[ll[Ill]ll[I][Mill][[[llllljlllll
3 1293 03062 974

