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ABSTRACT

LINEAR AND NONLINEAR ESTIMATION WITH SPATIAL DATA

By

Cuicui Lu

In some economic situations, observations are cross-sectionally correlated. One example

of cross-sectional correlation is spatial correlation, which means the correlation comes from

the spatial closeness of different individuals. Spillover effect, externalities, network issues

and so on are common causes for spatial correlation. For example, a supply shock in one

region will result in production shocks in the regions nearby. This type of correlation reflects

the correlations among individuals’ unobservables.

In Chapter 1, I study a linear regression model with a spatially correlated error term.

Most current literature in econometrics assumes cluster sampling (independence between

different clusters) in the population; however, this could be easily violated. I study the

case in which spatial correlation exists between each pair of observations without assuming

independent clusters. Generalized least squares (GLS) can be applied to the cross-sectional

dimension but it is hard to account for all pairwise correlations for a large sample of spatial

data. It is because the calculation of the huge error covariance matrix generally needs

large computer memory. Instead I use a pseudo generalized least squares (PGLS) approach,

which means it is a GLS procedure but uses a ”tapered” error covariance matrix. Data

could be divided into groups according to natural geographic areas, only correlations within

groups are accounted for while ignoring the correlations between groups. Since correlations

within groups account for most of the correlations among observations, the resulting PGLS

estimator will not lose much efficiency compared to GLS. The PGLS estimator is consistent,



asymptotically normal, and computationally easier than GLS. A spatial heteroskedasticity

and autocorrelation consistent (HAC) covariance estimator for PGLS which is robust to

both heteroskedasticity and spatial correlation is provided. Monte Carlo simulations show

that PGLS becomes more efficient than ordinary least squares (OLS) as spatial correlation

increases.

Chapter 2 studies nonlinear estimation with spatial data.Generalized estimating equa-

tions (GEE) is applied to cross section data with spatial correlations in nonlinear models. I

use a partial quasi-maximum likelihood estimator (PQMLE) in the first step and use GEE

approach in the second step. Given some regularity conditions and assumptions, the asymp-

totic distribution of the two-step estimator is derived in the framework of M-estimation. I

use a Probit model for binary data with a latent spatially error and a Poisson model for

count data with a multiplicative spatial error to demonstrate the GEE procedures. As the

spatial correlations in the underlying error term increase, those in the dependent variable

also increase. Monte Carlo simulations show efficiency comparison of the PQMLE and GEE.

The results show that correctly modeling the structure of the working correlation matrix

is important in nonlinear models, which is quite different from the linear model. In addi-

tion, as spatial correlation increases, more efficiency estimation can be obtained by the GEE

approach.

Chapter 3 studies conditions for the Numerical Equality of the OLS, GLS and Amemiya-

Cragg Estimators. Conditions under which the ordinary least squares (OLS) and generalized

least squares (GLS) estimators are equal are well known. This chapter extends these results

in two ways. First, it give conditions under which GLS based on one assumed error variance

matrix equals GLS based on a different assumed variance matrix. Second, it give conditions

under which GLS equals the GMM estimator of Amemiya (1983) and Cragg (1983).
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Chapter 1

Pseudo Generalized Least Squares

Regression Estimation with Spatial

Data

1.1 Introduction

In some economic situations, observations are cross-sectionally correlated. One instance of

cross-sectional correlation is spatial correlation, which means the correlations come from

the spatial closeness of different individuals. Spillover effect, externalities, network issues,

and so on are common causes for spatial correlation. For example, a supply shock in one

region will result in production shocks in the regions nearby. This type of correlation reflects

the correlations among individuals’ unobservables. Similar to time series correlation which

depends on the ”distance” in time1, spatial correlation depends on the ”distance” in space.

In economic study, spatial data are commonly observed in the two-dimensional Euclidean

space R2. Each observation resides in the specific location on Earth’s surface. We would

expect the larger the distance is between two individuals, the smaller their correlation. A

legitimate distance measure is the physical distance. In economics, a distance measure has

1The time passed between two time points.
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a wider meaning. Conley (1999) uses a metric of ”Economic Distance” to measure cross-

sectional dependence. For example, transportation cost and whether two countries are in a

free trade area are economic distances. Thus spatial correlation based on spatial distance is

more complicated than time series dependence.

Researchers emphasize the importance of correct distance measurement. Measurement

errors are often considered in the estimation, for example, Conley (1999) and Kelejian and

Prucha (2007). Here we do not discuss the measurement errors problem and assume that we

have correctly measured distances. Clustered data have a very similar structure to spatial

data. The difference is that data in one cluster are correlated through a common cluster

effect, and they do not depend on distances. Due to the complicated correlation relationship

among observations, for spatial data, accounting for all pairwise correlations in the estimation

is very difficult when the sample size is large. If the sample size is 100, there are 4950 pairwise

correlations to account for. Although one can still do the estimation, ignoring the pairwise

correlations and getting consistent estimators, one can improve estimation efficiency by using

more information. Spatial data are commonly collected from different geographic areas such

as unemployment rates in different states, foreign investment amounts in different cities in a

developing country, and trade volume between different US states and Canadian provinces.

Thus there is usually a natural division of groups for the data. Since observations far away

have small or no correlations, we can account for the correlations only within the same

groups. By doing so, we actually account for most of the total correlations. Therefore, in

this paper, I propose a pseudo generalized least squares estimator (PGLS). It can account for

most correlations and is more efficient than the usual OLS estimator, while the computation

burden is reduced by dividing data into groups and only using the information within groups.

In spatial statistics, ”increasing domain” and ”fixed domain” asymptotics are popularly
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used (Cressie 1993). Under increasing domain asymptotics, the sampling space increases

without bound, while the minimum distance between locations is bounded below by a positive

constant. Under fixed domain asymptotics, the sampling space is fixed and bounded, and

sampling locations become increasingly dense within this region. Zhang (2004) shows that

some parameters cannot be consistently estimated by maximum likelihood estimation (MLE)

under the fixed domain asymptiotics. Considering the properties of economic data, which

can be obtained by sampling in a large Euclidean space, we will focus on increasing domain

asymptotics in this paper. That is, given that the number in each group is fixed, when the

sampling space gets larger, the number of the groups increases as the sample size increases.

In this chapter, Section 1.2 presents a linear regression model with possible spatial corre-

lation in the error term. Section 1.3 presents the OLS, GLS and PGLS estimation methods.

Section 1.4 discusses how to estimate the spatial correlation parameter and provides consis-

tent covariance estimators. Section 1.5 explores quasi-MLE method for estimating a linear

regression model. In Section 1.6, Monte Carlo simulation results show the advantages of the

PGLS estimation procedure. Section 1.7 provides the conclusions.

1.2 A Linear Regression Model

Let S be the space the population resides. si , i = 1, 2, ... represents a location in S. Let dij be

the distance between location si ∈ S and location sj ∈ S. The space can be one dimensional

(like time series), two-dimensional (a Euclidean space) or multidimensional. Let (xi, yi)

denote the data point sampled at location si. Let ui denote the underlying unobservable at
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si. Consider a linear regression model:

yi = xiβ + ui, i = 1, 2, ..., N, (1.1)

where xi is 1 × K regressors with the first element xi1 = 1, and β ≡ (β1, β2, ..., βK)′ is a

K × 1 unknown vector of parameters. In a matrix form, the above equation reads

y = Xβ + u, (1.2)

where y = (y1, y2, ..., yN )′, X is an N × K matrix, with the ith row equal to xi, and

u = (u1, u2, ..., uN )′ .

Generally we do not know the specific form of spatial correlation. In this paper, we focus

on spatial correlations in the error term. The error term exhibits spatial correlation in the

sense that

Var (u|X,D) = Ω (D, λ) , (1.3)

where D =
{
dij , i, j = 1, 2, ..., N

}
which contains all pairwise distances between observations.

λ is a vector of variance covariance parameters. That is, the spatial correlations between

different observations are commonly assumed to depend on the pairwise distances and some

other fixed parameters. Note that under random sampling, Ω would be a scalar matrix

with all off-diagonal elements equal to zero. For simplicity in what follows, I often drop the

conditioning on the explanatory variables and location indicators.

4



1.2.1 Spatial Error Model

Spatial error model is one of the common models based on underlying random fields. There

are different cases of spatial error model. Instead of writing the specific error covariance

matrix as a function of distance matrix D, we can use a spatial weight matrix W which is

defined as a function of D. Let wij be the ijth element of W. Let ε = (ε1, ε2, ..., εi, ..., εN )′

be a vector of spatial white noise with mean zero and constant variance.

The spatial autoregressive (SAR) error model is most widely used in spatial econometrics

(Anselin, 1988; Anselin et al., 2004). Its error term is modeled as simultaneous autoregressive

random field,

ui = ρ
N∑
j=1

wijuj + εi, (1.4)

In a matrix form, the above equation reads,

u = ρWu + ε, (1.5)

Ω (λ) = σ2 (I − ρW)−1 (I − ρW′)−1
. (1.6)

In the spatial moving average (SMA) error model, the error term is modeled as moving

average random fields,

ui = λ

N∑
j=1

wijεj . (1.7)

Equivalently,

u = ρWε, (1.8)

Ω (λ) = ρ2σ2WW′. (1.9)
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And in the spatial autoregressive moving average (SARMA) error model,

ui = ρ

N∑
j=1

w
(1)
ij uj + λ

N∑
j=1

w
(2)
ij εj , (1.10)

which can be written in matrix notation as

u = ρW(1)u+γW(2)ε, (1.11)

Ω (λ) = ρ2σ2
(
I − ρW(1)

)−1 (
I − ρW(1)′

)−1
W(2)W(2)′. (1.12)

As an alternative to starting with specific models of spatial correlation, we can directly

specify the variances and covariances for the error term. For example, the variance can be a

constant, and the covariance can be a function c (·) of the variance, a distance between two

locations, and an unknown parameter which is to be estimated. In the matrix form,

Ω (λ)ii = σ2
i ,

Ω (λ)ij = σ2
i c
(
dij,ρ

)
.

1.2.2 Positive-Definiteness of Spatial Covariance Matrix

The error covariance matrix Ω must be positive-definite. For each function c (·) specified, one

need to check whether Ω is positive-definite. Suppose h ∈ R which is used as the distance

temporarily in order to distinguish from the derivative sign. According to Christakos (1984),

Ω is positive-definite as long as function c (·) satisfy the following conditions:

i. At h = 0, dc (h) /dh < 0.

ii. limh→∞c (h) = 0.
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iii. d2c (h) /dh2 ≥ 0.

Derivates at h = 0 are one-sided, taken from right.

1.3 Estimation

1.3.1 Ordinary Least Squares and Generalized Least Squares

First, consider two estimators. Conditioning on the explanatory variables and location indi-

cators, the OLS estimator is

β̂OLS = (X′X)−1X′y, (1.13)

and the GLS estimator is

β̂GLS =
(
X′Ω−1X

)−1
(X′Ω−1y). (1.14)

Suppose Ω depends on fixed pairwise distances and a parameter vector λ. Then we can

write Ω as a function of λ, Ω (λ). Once we find an estimator for λ, say λ̂, we can obtain the

estimated covariance matrix Ω̂ ≡ Ω
(
λ̂
)
. The feasible GLS estimator (FGLS) is

β̂FGLS = (X′Ω̂−1X)−1(X′Ω̂−1y). (1.15)

The following regularity conditions are assumed for deriving the asymptotics.

Assumption 1. The pairwise distance dij < ∞ between two locations si and sj are

lower bounded by d0 > 0, i = 1, 2, ...;

Assumption 2. {(xi, ui)} is a mixing sequence on the sampling space, with mixing

7



coefficient α of size −r/2 (r − 1) , r ≥ 2 or φ of size −r/ (r − 2) , r > 2;

Assumption 3.

(a) E
(
x′iui

)
= 0,i = 1, 2, ...;

(b) E
∣∣x′iui∣∣r < ∆ <∞ for all i;

Assumption 4.

(a) A1
N ≡ E

(
1
N

∑N
i=1 x′ixi

)
is uniformly positive definite and has full rank K;

(b) plim
(
A1
N

)
= A1 as N →∞;

Assumption 5.

(a) B1
N ≡ Var

(
1√
N

∑N
i=1 x′iui

)
=E
(

1
NX′ΩNX

)
is uniformly positive definite, where

ΩN is a positive-definite symmetric covariance matrix;

(b) plimB1
N = B1 as N →∞;

Assumption 6.

(a) E (u|X) = 0. This is the so-called strict exogeneity assumption. It says every ui

is not correlated with any function of X. This condition implies Assumption 3.(a) and

E
(

1
NX′Ω−1

N u
)

= 0;

Assumption 7.

(a) B2
N ≡ Var

(
1√
N

X′Ω−1
N u

)
= E

(
1
NX′Ω−1

N uu′Ω−1
N X

)
=E

(
1
NX′Ω−1

N X
)

;

(b) B2
N is uniformly positive definite and has full rank K;

(c) plim
(
B2
N

)
= B2 as N →∞;

Proposition 1 Under Assumption 1, 2, 3, 4, and 5, the OLS estimator β̂OLS is con-

sistent and
√
N
(
β̂OLS − β

)
→d N

(
0,A−1

1 B1A−1
1

)
. See proof in Chapter 4.

Proposition 2 Under Assumption 1, 2, 5, 6, and 7, the FGLS estimator β̂FGLS is

consistent and
√
N
(
β̂FGLS − β

)
→d N

(
0,B−1

2

)
. See proof in Chapter 4.
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OLS is easier than GLS but it is a less efficient estimator. GLS is efficient but could be

computationally hard if the sample size is very large since it involves computing the inverse

of a large covariance matrix. The following section demonstrates another way to get an

efficient estimator.

1.3.2 Pseudo Generalized Least Squares

A lot of spatial data are collected with geographical location information such as firms in a

county and schools in a school district. We can consider the firms in a county or schools in a

school district as a group when we deal with empirical data. Spatial correlation can generally

exist among any of the individuals, whether they are in the same group. The correlations

in a group are much easier to deal with than those not in the same group and they should

represent most of the correlations among individuals in the sample. PGLS is only based on

within-group correlations. The estimation is still weighted by the error covariance matrix

but it is a tapered matrix in the sense that the correlations are set as zero if individuals

are not in the same group no matter if their true values are zero. The asymptotics depend

on the mechanism that the size of each group is fixed while the groups increases as the

total number of observations increases. If we have a large sample data set, it is hard to

account for all pairwise correlations. The reason is that there is insufficient information to

estimate the N × N covariance matrix directly from the data. Even asymptotics are not

helpful since the number of covariances increases with N2, whereas the sample size only

grows with N (Anselin 1999). But with fixed group size, it is possible to account for the

pairwise correlations within the group. Therefore, it is more realistic that we only use the

information within a group while ignoring the cross-group correlations. Since within-group

correlations will take into account most correlations of the observations in that group, it is

9



possible to get an estimator that is quite close to the FGLS estimator, which is the psuedo

genralized least squares (PGLS) estimator.

For panel data, a group is a cross section, and within a group observations are possibly

serial correlated. Panel data assumes random sampling in the cross-sectional dimension;

however, in this paper, we discuss a situation in which there is only one pure cross section.

We estimate the parameters as if there are no groupwise correlations although there are

correlations between observations in different groups. This is not the most efficient estimator,

but by using this procedure, we can obtain a consistent and almost efficient estimator.

For notational convenience, we write the the linear regression model for a group in the

population as

yg = Xgβ + ug, (1.16)

where g denotes the gth group, g = 1, 2, .... The number of observations in group g is Lg.

yg and ug are Lg × 1 vectors. Xg is Lg ×K. Now we can state the assumptions using the

group notation.

Assumption P1.

(a) The number of observations Lg in each group is fixed. Lg/G is a small number. For

simplicity assume that there are the same number of observations in each group. Thus the

group size is fixed as L = N/G.

(b) The number of groups and the sample size both increase as the sampling domain

increases.

Assumption P2. Let dgh < ∞ denote the pairwise distance between two groups g

and h. dgh is lower bounded by d∗ > 0, i = 1, 2, ..., N. dgh ∈ D∗, where D∗ is the space

10



containing all pairwise group distances2.

Assumption P3(Assumption 2). {(xi, ui)} is a mixing sequence on the sampling

space, with mixing coefficient α of size −r/2 (r − 1) , r ≥ 2 or φ of size −r/ (r − 2) , r > 2;

Assumption P4. Let Λg be the L×L within-group covariance matrix for group g. Let

ΛN be the N×N matrix that only contains within-group variances and covariances. In other

words, Λg is the gth diagonal matrix of ΛN . Let ΩN be the true covariance matrix of the

sample. Notice that ΛN is part of ΩN . Define a N ×N tapering matrix Γ. If observation i

and j are in the same group, the ijth entry of Γ,Γ(i, j) is equal to one. If observation i and

j are in different groups, Γ(i, j) is equal to zero. Thus ΛN = ΩN · Γ element by element.

Assumption P5.

(a) E
(
ug|Xg

)
= 0. This implies that for any positive definite L× L dimensional matrix

Λg, E
(
X′gΛ

−1
g ug

)
= 0 and plim 1

G

∑G
g=1 X′gΛ

−1
g ug = 0. Note that when the number of

groups is equal to one, Assumption P5 becomes E (u|X) = 0, which is the strict exogeneity

assumption for GLS.

(b) E
∣∣X′gΛ−1

g ug
∣∣r exists for all g.

Assumption P6.

(a) SG ≡ Var
(

1√
G

∑G
g=1 X′gΛ

−1
g ug

)
=E
(

1
G

∑G
g=1

∑G
h=1 X′gΛ−1

g u
g
u′hΛ

−1
h X

h

)
= E

(
1
G

∑G
g=1

∑G
h=1 X′gΛ−1

g Ω
gh

Λ−1
h X

h

)
, where Ωgh is the ghth block of matrix ΩN ;

(b) plimSG = S as G→∞;

Assumption P7.

(a) Qg ≡ X′gΛ
−1
g Xg is uniformly positive definite and has full rank K;

2One way to define groupwise distance is to use the smallest distance between two obser-
vations belonging to two different groups. Another way is to use the average distance of all
pairwise distances of observations belonging to different groups. What we use for a group
distance could depend on the empirical needs. The importance of the way researchers define
the groupwise distance is unknown. We will leave this problem for future discussion.
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(b) p limG→∞
1
G

∑G
g=1 Qg = Q, and rank (Q) = K. This condition implies that

plim 1
G

∑G
g=1 X′gΛ

−1
g Xg exists and has full rank.

The PGLS estimator is

β̂PGLS =

 G∑
g=1

X′gΛ
−1
g Xg

−1 G∑
g=1

X′gΛ
−1
g yg

 . (1.17)

If we can obtain a consistent estimator for the spatial correlation parameter λ, we can get a

feasible PGLS estimator. Let Λ̂g = Λg

(
λ̂
)
. Note that λ should be the same as it is in GLS

if the assumptions are true.

β̂FPGLS =

 G∑
g=1

X′gΛ̂
−1
g Xg

−1 G∑
g=1

X′gΛ̂
−1
g yg

 . (1.18)

Proposition 3 Under Assumption P1-P7, β̂FPGLS is consistent and has an asymptotic

normal distribution,
√
G
(
β̂FPGLS − β

)
d→ N

(
0,Q−1SQ−1

)
. See proof in Chapter 4.

The variance covariance estimator under Assumption P6 for FPGLS can be given as

AV̂ar
(
β̂FPGLS

)
=

 G∑
g=1

X′gΛ̂
−1
g Xg

−1

(1.19)

 G∑
g=1

G∑
h=1

X′gΛ̂
−1
g Ωgh

(
λ̂
)

Λ̂−1
g Xh


 G∑
g=1

X′gΛ̂
−1
g Xg

−1

.

The above expression in a concise form reads:

AV̂ar
(
β̂FPGLS

)
=
(
X′Λ̂−1X

)−1 (
X′Λ̂−1Ω̂Λ̂

−1
X
)(

X′Λ̂−1X
)−1

. (1.20)
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Usually the specific form of the true covariance matrix Ω is not known. Thus equation

(1.19) can not be obtained.

1.3.3 Discussion of the Strict Exogeneity Condition

PGLS depends on Assumption P5. (a) E
(
ug|Xg

)
= 0. This assumption means the error

term is not correlated with any of the explanatory variables within the group, but can be

correlated with explanatory variables that are not in the group. This assumption is less likely

to hold if we divide observations into arbitrary groups. Thus the strict exogeneity condition

E (u|X) = 0, which holds for errors and explanatory variables are more reasonable. There

are cases in which the strict exogeneity condition is violated. For example, one case is the

spatial lag model in which the strict exogeneity assumption is necessarily false. The spatial

lag model can be written as

Y = AY + BX + u, (1.21)

where u and explanatory variables must correlated with each other. In this case, even OLS is

not consistent. This model can be solved in the reduced form by quasi-maximum likelihood

estimation. For example, Lee (2004). Another case is when the explanatory variable has

spatial correlation. If a shock to one region is correlated with explanatory variables in other

regions, the strict exogeneity can fail.
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1.4 Consistent Variance-Covariance Estimators

1.4.1 Spatial HAC Estimator

Failure to account for spatial dependence may result in inconsistent standard errors using

standard techniques. Thus getting robust standard errors to spatial dependence is very

important for hypothesis testing and statistical inference. In time series literature, Newey

and West (1994) use a Bartlett kernel to consistently estimate the covariance matrix for

a time series process. This is called the heterskedasticity and autocorrelation consistent

(HAC) variance covariance estimator. Driscoll and Kraay (1998) provide a nonparametric

covariance matrix estimation technique which yields standard error estimates that are robust

to very general forms of spatial and temporal dependence as the time dimension becomes

large. Conley (1999) uses a Bartlett window to estimate the variance matrix robust to cross-

sectional correlation, so a rectangular window of correlations are used in this estimation.

Kelejian and Prucha (2007) suggest a spatial HAC estimation. In this section, I suggest

HAC variance-covariance estimators for PGLS, and provide a proof that the HAC estimator

for PGLS is consistent.

Define a kernel function k
(
dij
)

which depends on pairwise distance dij . Let d∗ be a

cutoff point such that if dij < d∗, Cov
(
ui, uj

)
will be estimated and used. Otherwise,

treat Cov
(
ui, uj

)
equal to zero. k

(
dij
)

decreases as dij increases. Researchers can use

different kernel functions. In this paper, I use a Bartlett kernel, but I do not constrain the

correlations within a rectangular window as in Conley (1999). Instead we could call the

kernel function a bartlett circle. That is, as the center of one circle with its radius equal to

d∗, one observation’s covariance with all observations within this circle will be estimated.
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The Bartlett circle kernel weighting function is

k
(
dij
)

=


1− dij/d∗ dij ≤ d∗

0 dij > d∗

. (1.22)

A consistent variance covariance estimator for OLS that is robust to heteroskedasticity

and spatial correlation is

Âvar
(
β̂OLS

)
rob

=

 N∑
i=1

x′ixi

−1 N∑
i=1

N∑
j=1

k
(
dij
)
v̂iv̂j

 N∑
i=1

x′ixi

−1

, (1.23)

where v̂i = xiûi and ûi is OLS residual.

A consistent variance covariance estimator for PGLS that is robust to misspecification of

variance-covariance structure is

Âvar
(
β̂FGLS

)
rob

=
[
X′Ω̂−1X

]−1
K (D) · v̌v̌′

[
X′Ω̂−1X

]−1
, (1.24)

where Ω̂ ≡ Ω
(
λ̂
)
, v̌ = X′Ω

(
λ̂
)−1

ǔ and ǔ = y −Xβ̂FGLS . K (D) is an N × N kernel

matrix. Here we use K (D) · v̌v̌′ denotes the product of K (D) and v̌v̌′ element by element.

The ijth element of K (D) is k
(
dij
)
, which is the same as given above. v̌v̌′ is a matrix of

products of pairwise residuals. Because of possible misspecification of the variance covariance

structure Ω, the spatial correlation may not be fully accounted for, or be treated incorrectly.

Therefore there might still be spatial correlation left and we use the FGLS residuals to get

a robust estimator.

In the PGLS estimation, correlations among observations within the same groups are
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used and in different groups are not. Thus intuitively we would want the HAC estimator to

only account for the correlations across different groups. Therefore the kernel weights should

only be put on the correlations among observations across different groups.

Let ṽg= X′gΛg

(
λ̂
)−1

ũ and ũ = y −Xβ̂FPGLS . Define kernel function for PFGLS:

p
(
dgh
)

=


1− dgh/d∗∗ dgh ≤ d∗∗

0 dgh > d∗∗

(1.25)

where dgh is the distance between group g and h. Let P
(
dgh
)

be the G×G matrix with the

ghth element Pgh = p
(
dgh
)

for g, h = 1, 2, ..., G. Let O be a square matrix with each element

equal to one. The dimension of O is equal to N/G, which is the number of individuals within

each group. Then the full N ×N kernel matrix is P ⊗O.

The HAC estimator that is robust to groupwise spatial correlation and misspecification

is

Âvar
(
β̂FPGLS

)
rob

=

 G∑
g=1

(
X′gΛ̂

−1
g Xg

)−1  G∑
g=1

G∑
h=1

p
(
dgh
)
ṽgṽ

′
h

 (1.26)

 G∑
g=1

(
X′gΛ̂

−1
g Xg

)−1

.

Following the proof of Theorem 2 in Kelejian and Prucha (2007), we can complete the proof

for consistency of the PGLS estimator. Kelejian and Prucha (2007) provide a proof for the

consistency of the spatial HAC estimator for the linear regression model while their scenario

is based on ordinary least squares estimator, which is a special case of PGLS when the group

size is equal to one. Thus, the HAC estimator for PGLS is an extension to the one in Kelejian

and Prucha (2007).
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Proposition 4 G · Âvar
(
β̂FPGLS

)
rob
−Q−1SQ−1 p→ 0. See proof in Chapter 4.

1.4.2 Estimation of the Spatial Correlation Parameter

A consistent estimator for ρ can be obtained by a minimum distance estimator,

ρ̂ = arg min
N∑
i=1

N∑
j 6=i

[ûiûj − Ωij(dij , ρ)]2.

A common structure of Ωij in spatial statistics is the exponential form,

Ωij = σ2 exp

(
−
dij
ρ

)
.

An estimator for σ2 is

σ̂2 = N−1
N∑
i=1

û2
i .

1.5 Alternative Estimation Approach: Quasi-Maximum

Likelihood Estimator

The quasi-maximum likelihood estimator (QMLE) using the estimated covariance matrix

derived from OLS residuals is the same as PGLS. Supposing the same assumptions hold

as before, E
(
ug|Xg

)
= yg −Xgβ. Var

(
ug|Xg

)
= σ2Λg (ρ) . We can write the quasi log
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likelihood function for group g using a multivariate normal distribution as

lg

(
β, ρ, σ2

)
= log fg

(
yg|Xg; β, λ

)
(1.27)

= −L
2

log (2π)− L

2
log σ2 − 1

2
log
∣∣Λg (ρ)

∣∣
− 1

2σ2

(
yg −Xgβ

)′
Λ−1
g (ρ)

(
yg −Xgβ

)
.

The QMLE estimators β̂QMLE , ρ̂QMLE and σ̂2
QMLE jointly solve

max
θ∈Θ

LG

(
β, ρ, σ2

)
=

G∑
g=1

lg (β, λ) = −G× L
2

log (2π)− G× L
2

log σ2 (1.28)

−1

2

G∑
g=1

log
∣∣Λg (ρ)

∣∣− 1

2σ2

G∑
g=1

(
yg −Xgβ

)′
Λ−1
g (ρ)

(
yg −Xgβ

)
.

Since the first term of log likelihood is a constant, we can eliminate it in the maximization

problem. The log likelihood becomes

LG

(
β, ρ, σ2

)
= −G× L

2
log σ2 − 1

2

G∑
g=1

log
∣∣Λg (ρ)

∣∣ (1.29)

− 1

2σ2

G∑
g=1

(
yg −Xgβ

)′
Λ−1
g (ρ)

(
yg −Xgβ

)
. (1.30)

For a given ρ, by maximizing the log likelihood function we can get

β̂QMLE =

 G∑
g=1

X′gΛg (ρ)−1 Xg

−1  G∑
g=1

X′gΛg (ρ)−1 yg

 (1.31)
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and

σ̂2
QMLE =

1

N

G∑
g=1

(
yg−Xgβ̂QMLE

)′
Λ−1
g (ρ)

(
yg−Xgβ̂QMLE

)
. (1.32)

By plugging β̂QMLE and σ̂2
QMLE into the log likelihood we can get a concentrated likelihood.

By maximizing the concentrated log likelihood L (ρ), we get ρ̂QMLE and further β̂QMLE

and σ̂2
QMLE .

L (ρ) = −1

2
log

 1

N

G∑
g=1

(
yg−Xgβ̂QMLE

)′
Λ−1
g (ρ)

(
yg−Xgβ̂QMLE

) (1.33)

−1

2

G∑
g=1

log
∣∣Λg (ρ)

∣∣− 1

2

=
1

2
[log (N)− 1]− 1

2
log

 G∑
g=1

(
yg −Xgβ̂QMLE

)′
Λ−1
g (ρ)

(
yg −Xgβ̂QMLE

)
−1

2

G∑
g=1

log
∣∣Λg (ρ)

∣∣

Note that if we plug ρ̂ in β̂QMLE we get β̂FPGLS .

We can also get a HAC estimator for β̂QMLE . The Hessian for each group g is Hg = Hg11 Hg12

Hg21 Hg22

 . Let ag = −E
(
Hg|Xg,Dg

)
, then

ag =

 X′gΛ
−1
g (λ) Xg 0

0 1
2∇λΛg (λ)′

[
Λ−1
g (λ)⊗ Λ−1

g (λ)
]
∇λΛg (λ)


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H ≡ 1

G

G∑
g=1

Hg

A ≡ E [−H] = − 1

G

G∑
g=1

E
(
Hg|Xg,Dg

)
=

1

G

G∑
g=1

ag

Â ≡ 1

G

G∑
g=1

ag

(
β̂, λ̂

)

=
1

G

G∑
g=1

[
X′gΛ

−1
g

(
λ̂
)

Xg 0

0 1
2∇λΛg

(
λ̂
)′ [

Λ−1
g

(
λ̂
)
⊗Λ−1

g

(
λ̂
)]
∇λΛg

(
λ̂
) ]

Note that there is no β̂ in Â.

BG ≡ Var

 1√
G

G∑
g=1

sg

 =
1

G

G∑
g=1

H∑
g=1

E
(
sgs
′
h

)
,

and let ŝg = sg

(
β̂, λ̂

)
,

B̂HAC =

 1

G

G∑
g=1

H∑
g=1

K [dist (g, h)] ŝg ŝ
′
h

 .

Thus the HAC estimator for asymptotic variance of θ̂ is 1
GÂ−1B̂HACÂ−1.

Proposition 5 Under certain conditions, β̂QMLE is consistent and has an asymptotic nor-

mal distribution. See proof in Chapter 4.
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1.6 A Monte Carlo Simulation Study

In this section, we provide Monte Carlo simulation results which shows that the PGLS esti-

mator performs reasonably well for finite samples. In the simulation, we study the properties

of the PGLS estimator compared to the OLS and GLS estimators. We also provide robust

standard errors for OLS and PGLS.

1.6.1 Data Generating Process

The total number of observations is N which takes 400 and 1600 separately. The data are

generated on a
√
N ×

√
N lattice. The locations for the data are represented by coordi-

nates
{

(r, s) : r, s = 1, 2, ...,
√
N
}
. The distance dij between location i and j is Euclidean

distance. Suppose A(ai, aj) and B(bi, bj) are the two points on the lattice, then their Eu-

clidean distance is
√

(ai − bi)2 + (aj − bj)2. Besides the Euclidean distance, other distance

measures may also be considered. Commonly seen distance measures include a time se-

ries distance (as a special case of Euclidean distance) which means the locations are on a

straight line, Manhattan distance |ai − bi| +
∣∣aj − bj∣∣, and maximum coordinate-wise dis-

tance max
(
|ai − bi| ,

∣∣aj − bj∣∣) . For simplicity, only Euclidean distance is used in this paper.

We consider three cases of data-generating processes for different correlation structures.

1.6.1.1 Case I

In the first case, the exponential form of spatial correlation is used. We generate data as

follows:

(1) yi = α + xiβ + ui, α = 1, β = 1.

(2) Specify the covariance matrix Ω for the error term:
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Ωij = σ2 exp

(
−
dij
ρ

)
, σ2 = 1, ρ = 0.1, 0.5, 1, 2, 5. In this case, the corresponding pair-

wise correlations for the error term when the pairwise distance is one are: 0.00, 0.14, 0.37,

0.61, 0.82.

(3) Generate the error term: u = Ω1/2ε, where ε is a vector of i.i.d. standard normal

random numbers. ui is the ith element in the vector u. Ω1/2 is obtained by Cholesky

decomposition.

(4) xi is a spatially correlated variable. The vector x = Ω1/2ξ, where ξ is a vector of

i.i.d. standard normal random numbers and Ω is the same as in (2) and (3) but with ρ = 1

without loss of generality (w.l.o.g.).

The simulation results can be found in Table 1.1, 1.2, and 1.3. In this estimation

process, the spatial correlation parameter is estimated by a minimum distance estimator

ρ̂ = min
∑

[ûiûj − σ2 exp(−
dij
ρ )]2 for i 6= j.

1.6.1.2 Case II

In the second case, the spatial correlation is a function of the inverse of distance. The data

generating process is as follows:

(1) yi = α + xiβ + ui, α = 1, β = 1.

(2) Specify the covariance matrix Ω for the error term:

Ωij = σ2 ρ
dij
, σ2 = 1, ρ = 0, 0.2, 0.4, 0.6. In this case, the corresponding pairwise cor-

relation for the error term when the pairwise distance is one is equal to ρ.

(3) Generate the error term: u = Ω1/2ε, where ε is a vector of i.i.d. standard normal

random numbers. ui is the ith element in the vector u. Ω1/2 is obtained by Cholesky

decomposition.

(4) xi is a spatially correlated variable. The vector x = Ω1/2ξ, where ξ is a vector of i.i.d.
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standard normal random numbers and Ω is the same as in (2) and (3) but ρ = 1 w.l.o.g..

The simulation results can be found in Table 1.4 and 1.5, 1.6. In this estimation process,

the spatial correlation parameter is estimated as the average of ûiûj/σ̂
2 for pairwise distance

dij = 1, which means, ρ is estimated only using the pairs of observations whose distances

are one.

1.6.1.3 Case III

For completeness, another data generating process which uses a spatial weight matrix that

is popular in spatial econometrics is as follows:

(1) yi = α + xiβ + ui, α = 1, β = 1.

(2) There are N/L independent districts, where L is the number of observations within

a district. Specify the spatial weight matrix W for the error term: wij = 1/ (L− 1) if i 6= j

and i and j are in the same district. wij = 0 if i = j or i and j are in different districts.

In this case, the corresponding pairwise correlation for the error term within the district is

equal to ρ/ (L− 1).

(3) Generate the error term: u = ρWu + ε, σ2 = 1, ρ = 0, 0.2, 0.4, 0.6 , where ε is a

vector of i.i.d. standard normal random numbers. ui is the ith element in the vector u.

(4) xi is a standard normal variable N (0, 1).

The simulation results can be found in Table 1.7 and 1.8. In this estimation process, the

spatial correlation parameter is estimated in the following way:

ρ̂ =
[
(Wû)′ (Wû)

]−1
(Wû)′ û. (1.34)
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1.6.1.4 Robust Standard Errors

The simulations also provide robust standard errors for the OLS and PGLS estimators since

these estimators ignore spatial correlations to some extent. We do not discuss the optimal

kernal variance estimators and we only provide feasible variance estimators for the estimation

of robust standard errors. For the OLS estimator, we use the formula in equation (1.23).

The cutoff point d∗ is set as 3√N . When N = 400, d∗ = 7.368. Thus, for observation i, its

covariances with any observation that is within 7.4 distance units are accounted for, similar

to the case when N = 1600. For the PGLS estimators, we use the formula in equation (1.26).

The kernel function in the simulation is specified as in equation (1.25). First, the groupwise

distance dgh is specified as the distance between centers of the location. Let the cutoff point

d∗∗ be 3√N . If dgh ≤ d∗∗, the covariances of the observations in group g and h will be used.

To keep it simple, we put the same weight 1 − dgh/d∗∗ on each of those covariances. Like

the lags in time series, how to choose the cutoff point needs consideration of economics of

the problems.

1.6.2 Monte Carlo Simulation Results

For Case I, Table 1.1 shows that as ρ increases, the standard deviation of the OLS estimator

increases, which means OLS becomes less efficient as spatial correlation increases in the

sample. PGLS performance becomes better when compared to OLS as ρ increases. Using

a group size equal to four, which is very small, we can gain back most of the efficiency.

As we increase the group size, the feasible PGLS gains more efficiency. When we use a

group size equal to 16, the PGLS estimator is almost as efficient as the GLS estimator.

Table 1.2 provides robust standard errors for OLS, PGLS with group size 4 and 16. The
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spatial correlation parameter is calculated using a minimum distance estimator. Simulations

show that this estimator is biased when the spatial correlation is high. However, even if

the spatial correlation parameter is not consistently estimated, the feasible PGLS estimator

can still gain efficiency back. This is because the estimated covariance (even though not

consistent) captures some structure of the true covariance.

Case II and Case I have very similar results regarding PGLS behavior. But the estimation

of spatial correlation in Case II is less biased and more efficient than in Case I.

In Case III, independent groups are generated, thus GLS is PGLS in this case. The

estimation of spatial correlation as in equation 1.34 is an OLS estimator using the residuals.

As in Table 1.7, the estimator for ρ is biased upwards, though the GLS estimator still behaves

well.
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Table 1.1: Case I: Mean Parameters and Standard Deviation

N=400, T=2000, β = 1

ρ β̂ols s.d.(β̂ols) β̂gls s.d.(β̂gls) β̂4
pgls s.d.(β̂4

pgls) β̂16
pgls s.d.(β̂16

pgls)

0.1 1.000 0.050 1.000 0.050 1.000 0.050 1.000 0.050
0.5 1.000 0.056 1.000 0.054 1.000 0.055 1.000 0.054
1 1.000 0.068 0.999 0.051 1.000 0.057 1.000 0.053
2 1.002 0.081 1.000 0.040 1.001 0.051 1.000 0.044
5 1.002 0.088 1.000 0.028 1.001 0.041 1.002 0.033

N=1600, T=2000, β = 1

ρ β̂ols s.d.(β̂ols) β̂gls s.d.(β̂gls) β̂4
pgls s.d.(β̂4

pgls) β̂16
pgls s.d.(β̂16

pgls)

0.1 0.999 0.025 0.999 0.025 0.999 0.025 0.999 0.025
0.5 0.999 0.028 0.999 0.027 0.999 0.027 0.999 0.027
1 0.999 0.034 0.999 0.025 0.999 0.028 0.999 0.026
2 1.000 0.043 0.999 0.020 0.999 0.025 0.999 0.022
5 0.999 0.049 0.999 0.013 0.999 0.018 0.999 0.015

s.d.() means standard deviation in the simulation.

β̂4
pgls and β̂16

pgls are the PGLS estimators using group size equal to 4 and 16 separately.

Table 1.2: Case I: Robust Standard Errors

N=400, T=2000

ρ s.e.∗(β̂ols) r.s.e.(β̂ols) r.s.e.(β̂4
pgls) r.s.e.(β̂16

pgls)

0.1 0.038 0.047 0.047 0.047
0.5 0.038 0.050 0.049 0.050
1 0.037 0.058 0.051 0.051
2 0.035 0.066 0.052 0.048
5 0.030 0.068 0.048 0.041

N=1600, T=2000

ρ s.e.∗(β̂ols) r.s.e.(β̂ols) r.s.e.(β̂4
pgls) r.s.e.(β̂16

pgls)

0.1 0.017 0.024 0.024 0.024
0.5 0.017 0.026 0.025 0.025
1 0.017 0.032 0.027 0.027
2 0.017 0.038 0.027 0.026
5 0.015 0.042 0.026 0.023

s.e.∗(β̂ols) is the average usual OLS standard error.
r.s.e.() is the average spatial correlation robust standard error.
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Table 1.3: Case I: Estimated Error Variance Parameters

N=400, T=2000, σ2 = 1

ρ ρ̂ s.d.(ρ̂) σ̂2 s.d.
(
σ̂2
)

0.1 0.134 0.125 0.995 0.072
0.5 0.480 0.079 0.992 0.074
1 0.919 0.166 0.980 0.095
2 1.554 0.357 0.943 0.150
5 2.297 0.563 0.825 0.248

N=1600, T=2000, σ2 = 1

ρ ρ̂ s.d.(ρ̂) σ̂2 s.d.
(
σ̂2
)

0.1 0.121 0.102 0.999 0.035
0.5 0.495 0.040 0.998 0.037
1 0.979 0.097 0.995 0.048
2 1.855 0.310 0.984 0.084
5 3.511 0.824 0.930 0.175

ρ̂ is the average of estimates for ρ.

σ̂2 is the average of estimates for σ2.

Table 1.4: Case II: Mean Parameters and Standard Deviation

N=400, T=2000, β = 1

ρ β̂ols s.d.(β̂ols) β̂gls s.d.(β̂gls) β̂4
pgls s.d.(β̂4

pgls) β̂16
pgls s.d.(β̂16

pgls)

0 1.000 0.051 1.002 0.051 1.000 0.051 1.000 0.053
0.2 1.000 0.057 0.999 0.051 1.000 0.053 1.000 0.052
0.4 1.000 0.062 0.999 0.044 1.000 0.050 1.000 0.047
0.6 1.001 0.068 1.000 0.038 1.000 0.042 1.000 0.035

N=1600, T=2000, β = 1

ρ β̂ols s.d.(β̂ols) β̂gls s.d.(β̂gls) β̂4
pgls s.d.(β̂4

pgls) β̂16
pgls s.d.(β̂16

pgls)

0 0.999 0.025 0.999 0.087 0.999 0.025 0.999 0.025
0.2 0.999 0.029 0.999 0.025 0.999 0.027 0.999 0.026
0.4 0.999 0.033 0.999 0.022 0.999 0.025 0.999 0.023
0.6 0.999 0.037 1.002 0.018 1.000 0.021 1.000 0.017

s.d.() means standard deviation in the simulation.

β̂4
pgls and β̂16

pgls are the PGLS estimators using group size equal to 4 and 16 separately.
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Table 1.5: Case II: Robust Standard Errors

N=400, T=2000

ρ s.e.∗(β̂ols) r.s.e.(β̂ols) r.s.e.(β̂4
pgls) r.s.e.(β̂16

pgls)

0 0.037 0.047 0.067 0.095
0.2 0.036 0.050 0.068 0.093
0.4 0.035 0.053 0.067 0.086
0.6 0.034 0.056 0.062 0.069

N=1600, T=2000

ρ s.e.∗(β̂ols) r.s.e.(β̂ols) r.s.e.(β̂4
pgls) r.s.e.(β̂16

pgls)

0 0.017 0.024 0.037 0.050
0.2 0.017 0.027 0.038 0.051
0.4 0.017 0.030 0.037 0.047
0.6 0.016 0.032 0.035 0.038

s.e.∗(β̂ols) is the average usual OLS standard error.
r.s.e.() is the average spatial correlation robust standard error.

Table 1.6: Case II: Estimated Error Variance Parameters

N=400, T=2000, σ2 = 1

ρ ρ̂ s.d.(ρ̂) σ̂2 s.d.
(
σ̂2
)

0 -0.003 0.036 0.995 0.072
0.2 0.171 0.048 0.968 0.078
0.4 0.352 0.055 0.943 0.098
0.6 0.541 0.051 0.919 0.127

N=1600, T=2000, σ2 = 1

ρ ρ̂ s.d.(ρ̂) σ̂2 s.d.
(
σ̂2
)

0 -0.001 0.018 0.999 0.035
0.2 0.186 0.027 0.985 0.041
0.4 0.377 0.032 0.972 0.057
0.6 0.573 0.029 0.959 0.077

ρ̂ is the average of estimates for ρ.

σ̂2 is the average of estimates for σ2.
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Table 1.7: Case III: Mean Parameters and Standard Deviation

Case III N=400, T=2000, β = 1

ρ β̂ols s.d.(β̂ols) β̂gls s.d.(β̂gls)

0 1.000 0.051 0.999 0.051
0.2 0.999 0.053 1.001 0.052
0.4 1.000 0.057 1.000 0.050
0.6 1.001 0.072 1.000 0.048

N=1600, T=2000, β = 1

ρ β̂ols s.d.(β̂ols) β̂gls s.d.(β̂gls)
0 1.000 0.026 1.000 0.026

0.2 1.001 0.026 1.001 0.026
0.4 1.000 0.029 1.001 0.025
0.6 1.001 0.036 1.002 0.024

s.d.() means standard deviation in the simulation.

β̂ols and β̂fgls are the average of OLS and FGLS
estimators.

Table 1.8: Case III: Estimated Error Variance Parameters

N=400, T=2000, σ2 = 1

ρ ρ̂ s.d.(ρ̂) σ̂2 s.d.
(
σ̂2
)

0 −0.018 0.128 0.992 0.070
0.2 0.353 0.092 0.982 0.071
0.4 0.648 0.055 0.948 0.072
0.6 0.852 0.024 0.896 0.071

N=1600, T=2000, σ2 = 1

ρ ρ̂ s.d.(ρ̂) σ̂2 s.d.
(
σ̂2
)

0 -0.004 0.062 0.998 0.036
0.2 0.365 0.044 0.998 0.036
0.4 0.656 0.026 0.995 0.036
0.6 0.856 0.015 0.985 0.036

ρ̂ is the average of estimates for ρ.

σ̂2 is the average of estimates for σ2.
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1.7 Conclusions

In a linear regression model with spatial data, we can use a weighted least squares to improve

efficiency, even if the weight might be misspecified. As long as the misspecified structure

can capture some properties of the true variance structure of the spatial data, efficiency can

be improved, which is the idea of ”pseudo GLS”.
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Chapter 2

Estimation of Nonlinear Models in a

Quasi-Maximum Likelihood

Framework with Spatial Data

2.1 Introduction

In a lot of empirical economic and social studies, there are discrete data examples which

exhibit spatial correlations due to the geographical locations of individuals or agents of

interest. For instance, the number of patents a firm received shows correlation with that

received by other firms near by. This may be due to a technology spillover effect or a

common policy aiming at encouraging new technology in this place. Another example is

the neighborhood effect. There is a causal effect between the individual decision whether

to own stocks and the average stock market participation of the individual’s community

(Brown, Smith, & Weisbenner 2008). The first example is a count data example and the

second one is a binary response example. Both examples deals with discrete data. Nonlinear

models are suitable for the study on discrete variables. Unfortunately there are not much

literature on the estimation of nonlinear models with discrete spatial data. Because of the

spatial correlation, the discrete variables are not independent. Both the nonlinearity and
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the correlation make the estimation difficult.

Maximum likelihood estimation (MLE) is a widely used method in estimating nonlinear

models. In order to use MLE, one needs to specify the joint distributions of spatial random

variables. This includes correctly specifying the marginal and the conditional distributions.

However, given a spatial data set, the dependence structure is generally unknown. If the

joint distribution of the variables is misspecified, MLE is generally not consistent. Another

estimation method is quasi-maximum likelihood estimation (QMLE). Using a density that

belongs to a linear exponential family (LEF), QMLE is consistent if we correctly specify

the conditional mean with other features of the density misspecified. In a panel data case,

pooled (partial) QMLE which ignores serial correlations is consistent under some regularity

conditions (Wooldridge 2010).

In their 2009 working paper, Wang, Iglesias and Wooldridge use a bivariate Probit partial

MLE to improve the estimation efficiency with a spatial Probit model. Using their approach

we would need to correctly specify the marginal distribution of the binary response variable

conditional on the covariates and distance measures1. Since the bivariate marginal distri-

bution of a spatial multivariate normal distribution is bivariate normal, one can derive the

bivariate normal distribution under some distributional assumptions. There are two prob-

lems with this paper by Wang, Iglesias and Wooldridge (2012). First the computation is

already hard for a bivariate distribution. The multivariate marginal distribution of a higher

dimension is more computationally demanding; second it also requires the correct specifi-

1A sample of spatial data is collected with a set of geographical locations. Spatial de-
pendence is usually characterized by distances between observations. A distance measure is
how one defines the distances between observations. Physical distance or economic distance
could be two options. Information about agents physical locations is commonly imprecise,
eg. only zip code is known. Conley and Molinari (2007) deals with the inference problem
when there exist distance errors. In this chapter I assume there are no measurement errors
in pairwise distances.
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cation of the marginal bivariate normal distribution to obtain consistency. In fact, we can

have less restrictive distributional assumptions than those required in bivariate partial MLE.

Suppose we only specify the mean and the working variances and covariances2. Using QMLE

in the LEF, we can get consistent estimators. Even if the the variances and covariances are

not correctly specified, we can still consistently estimate the mean parameters as well as the

average partial effects, which are more interesting.

In the literature, the QMLE and GEE approach is used in panel data models to get

more efficient estimators (Gourierous, Monfort, & Trongnon 1984). In this paper, I will

demonstrate how to use the QMLE and GEE approach in a spatial data setting to get a

consistent and more efficient estimator. Generalized least squares (GLS) can be used to

improve the estimation efficiency in a linear regression model even if the variance covariance

structure is misspecified. Similarly, generalized estimating equations (GEE) or weighted

multivariate nonlinear least squares (WMNLS) are used in nonlinear panel data models and

system of equations to obtain more efficient conditional mean parameters. Generally we

expect that GEE can give more efficient estimators compared to PMLE, which uses only the

marginal density to get the consistent estimators.

To use the QMLE in the spatial data setting, I first give a series of assumptions, based

on which M-estimators are consistent for the spatial processes. To derive the asymptotics

for the M-estimators we have to use a uniform law of large numbers (ULLN) and a central

limit theorem (CLT). These limit theorems are the fundamental building blocks for the

asymptotic theory of nonlinear spatial M-estimators, e.g. maximum likelihood estimators

(MLE) and generalized method of moments estimators (GMM) (Jenish and Prucha, 2009).

2The true variance covariance matrix is generally unknown. By specifying a working
variance covariance matrix, one can capture some of the correlation structure between ob-
servations.
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Conley (1999) makes an important contribution towards developing an asymptotic theory of

GMM estimators for spatial processes. He utilizes Bolthausen’s (1982) CLT for stationary

random fields. Jenish and Prucha (2009) provide a ULLN and a CLT for spatial data

including nonstationary spatial processes. Using theorems in Jenish and Prucha (2009), one

can analyze more interesting economic phenomena. For example, real estate prices usually

shoot up as one moves from the periphery to the center of a big city. While I will not discuss

trending processes in this paper, Cressie (1993) provides numerous examples of trending

spatial processes.

In Section 2, the M-estimator framework under the spatial data context is established. A

series of assumptions are given based on Jenish and Prucha (2009) under which M-estimators

are consistent and have an asymptotic normal distribution. In Section 3, I propose a two-

step GEE estimator in a QMLE framework. In Section 4, the asymptotic distributions for

QMLE and GEE for spatial data are derived. In Section 5, consistent variance covariance

estimators are provided for the nonlinear estimators for spatial data. In Section 6, we look

in detail at a Probit model with spatial correlation in the error term of the latent variable

and a count data model with a multiplicative spatial error term. Section 7 contains Monte

Carlo simulation results which compare efficiency of different estimation methods for the

two nonlinear models explored in the previous section. Section 8 concludes. Section 10 is the

appendix.

2.2 M-estimation

In this section, I will examine the M-estimation framework of nonlinear models with spatial

data. Unlike linear models, a very important feature of nonlinear models is that estimators
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cannot be obtained in a closed form, which requires new tools for asymptotic analysis:

we need uniform law of large numbers (ULLN) and a central limit theorem (CLT). The

GEE procedure is a two-step M-estimation method within the QMLE framework. The M-

estimator with spatial data is proved to be consistent and asymptotically normal under

certain assumptions.

2.2.1 M-estimation

Assume that spatial processes reside on a regular lattice3 D in a Euclidean space, Rd, d ≥ 1.4

Let s denote a location in D. Suppose we have a sample of N observations. Let DN

⊆ D contains the location information for this sample. Let si denote the location of the

observation i, i = 1, 2, ..., N. Let dij be the pairwise distance between location si and location

sj . That is, dij is the pairwise distance between observation i and observation j. I first give

some regularity conditions for the spatial processes I am studying and then I give a general

framework for M-estimators with spatial data.

Following Jenish and Prucha (2009) Definition 1, I adopt the follwing definitions of

mixing conditions for underlying random field. For U ⊆ DN and V ⊆ DN , define σ-

algebras σ (U) = σ (xi; i ∈ U) and σ (V ) = σ (xi; i ∈ V ). |U | and |V | denote the cardinality

of U and V . The two commonly used mixing conditions are α-mixing and φ-mixing which are

introduced separately by Rosenblatt and Ibragimov. The α-mixing and φ-mixing conditions

are:

αN (U, V ) = sup (|P (u∩v)− P (u)P (v)| , u ∈ U, v ∈ V ) ,

3A lattice is a collection of spatial sites (locations) supplemented with neighborhood
information (Cressie 1993, p. 383).

4A two-dimensional Euclidean space is called the Cartesian plane. Spatial processes can
also reside in a higher dimension of space, Rn, n > 2.
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and φN (U, V ) = sup (|P (u|v)− P (u)| , u ∈ U, v ∈ V, P (u) > 0) .

Define a metric ρ (i, j) = max1≤l≤d |il| , where il denotes the l-th component of i. The

mixing conditions for the underlying random fields are defined as follows:

αk,l,N (r) = sup (αN (U, V ) , |U | ≤ k, |V | ≤ l, ρ (U, V ) ≥ r),

φk,l,N (r) = sup (φN (U, V ) , |U | ≤ k, |V | ≤ l, ρ (U, V ) ≥ r) , with k, l, r, N natural num-

bers. Further let ᾱk,l,N (r) = sup
N
αk,l,N (r) and φ̄k,l,N (r) = sup

N
φk,l,N (r) .

Let {wN} = {(xi, yi)} , i = 1, 2, ..., N . (xi, yi) is the observation obtained at location si.

xi is a row vector of independent variables and yi is a scalar dependent variable. θ ∈ Θ is

a P × 1 parameter vector, and θ0 is the true parameter value. Let θ be a general notation

for the parameter vector. An objective function QN depends on a sample of realizations of

variables wN , location information DN , parameter θ and the sample size N. An M-estimator

of θ0 is given by minimizing the objective function QN as follows,

θ̂N = arg min
θ∈Θ

QN (wN ,DN ; θ) . (2.1)

In particular, I will address the case when QN (wN ,DN ; θ) can be expressed as a sample

average. An example of this type of M-estimator is partial (pooled) maximum likelihood

(PMLE) estimator. The objective function can be written as

QN (wN ,DN ; θ) =
1

N

N∑
i=1

qi (wi,DN ; θ) , (2.2)

where qi (wi,DN ; θ) is some real valued function defined on Θ. wi is the observed data

obtained at location si. DN contains the location information of wi and other observations.

For simplicity reason, let qi (θ) ≡ qi (wi,DN ; θ) and QN (θ) ≡ QN (wN ,DN ; θ). I will drop

w and D unless they are needed for clarity.
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Suppose that in a parametric model, conditional mean is correctly specified. Let

E(yi|xi,DN ) = mi (xi,DN ; θ0) be a correctly specified mean function along with a LEF

density fi (yi|xi; θ). For example, in a nonlinear regression model, the objective function for

the nonlinear weighted least squares (NWLS) estimator is 1
N

∑N
i=1

{
[yi −mi (xi; θ)]

2 /vi

}
,

where vi is the variance of the error term (usually based on the LEF density), while for the

partial maximum likelihood estimation the objective function is 1
N

∑N
i=1 log fi (yi|xi,DN ; θ),

with E(yi|xi,DN ) = mi (xi,DN ; θ0) .

For the M-estimator to be consistent, we need a uniform law of large numbers (ULLN).

To derive the ULLN, we need the following assumptions.

Assumption 1: The pairwise distances dij are finite and lower bounded by some ε > 0.

I employ increasing domain asymptotics. That is, the sample size grows as the sampling

region expands.

Assumption 2: xi, yi are uniformly bounded variables.

Assumption 3: Θ is a compact subset on Rp.

Assumption 4 (Pointwise Convergence): For each θ ∈ Θ, QN (θ)−Q̄N (θ) = op (1) ,

where Q̄N (θ) = E (QN (θ)) = 1
N

∑N
i=1 E (qi (θ)) , and limN→∞Q̄N (θ) = Q̈.

Assumption 5: QN (θ) is stochastically equicontinuous. Let (Θ,v) be a metric space.

Let B
(
θ′, δ

)
be the open ball

{
θ ∈ Θ :v

(
θ, θ′

)
< δ
}
. QN (θ) is stochastically equicontinuous

in the sense that, for every ε > 0,

lim supN→∞ P

 sup
θ,θ′∈Θ,v(θ,θ′)

∣∣QN (θ)−QN
(
θ′
)∣∣ > ε

→ 0 as δ → 0 .

Assumption 6: Q̄N (θ) is also stochastically equicontinuous on Θ. The definition is

similar to the statement above for QN (θ) to be stachostically equicontinuous.
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Assumption 7: Q̈ attains unique global minimization at θ0 ∈ Θ.

Assumption 8: No perfect multicollinearity in xi. For exponential and logistic regression

functions, the objective function is a function of a linear function of independent variables.

Multicollinearity should be ruled out in order to identify the model.

Assumption 4 provides a pointwise law of large numbers. Assumption 7 and 8

provide the identification conditions that make sure the model has unique solution to the

minimization problem.

Proposition 6 Under Assumptions 1-8, the M-estimator in 2.2 is consistent, that is,

θ̂N →a.s. θ0 as N →∞. See proof in Chapter 4.

Following the above proposition, we can apply the ULLN to different nonlinear estimators.

The above M-estimator can be expressed utilizing groups of observations (group notation).

That is, we can divide the observations into groups according to geographical properties or

other economic or social relationships. Then we can write the objective function as

QG (wG,DG; θ) =
1

G

G∑
i=1

qg
(
wg,DG; θ

)
. (2.3)

Let qg (θ) ≡ qg
(
wg,DG; θ

)
, which is a real valued function of the gth group of observations,

g = 1, 2, ..., G. wg contains the observations of the gth group. DG represents the lattice

with group information other than just locations. QG denotes the objective function which

indicate that the total number of groups is G, although the total number of observations is

still N. Note that when the group size is equal to one, the group notation is the same as

the individual notation. I will use the group notation in the rest of this paper.The above

Assumptions 1-8 for the group notation are basically the same as the individual notation
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(equation (1) and equation (2)) except that the subscript i changes into g. Let L be the

number of observations in each group, then the total number of groups G = N/L.

θ̂G = arg min
θ∈Θ

QG (wG,DG; θ) (2.4)

Proposition 7 Follow Proposition 1, the groupwise M-estimator in 2.3 is consistent, that

is, θ̂G →a.s. θ0 as G→∞. See proof in Chapter 4.

2.2.2 Two-step Estimation

In some situations, we have a preliminary estimator. For example, from a partial QMLE

estimator, we can get a preliminary consistent estimator. After that we can get an esti-

mated working covariance matrix as weight to get a more efficient estimator. A two-step

M-estimator θ̂G of θ0 solves the problem

θ̂G = arg min
θ∈Θ

QG (wG,DG; θ, γ̂) , (2.5)

QG (wG,DG; θ, γ̂) =
1

G

G∑
g=1

qg
(
wg,DG; θ, γ̂

)
,

where γ̂ is a preliminary estimator based on the sample
{
wg : g = 1, 2, ..., G

}
which exhibits

spatial correlations. p lim γ̂ = γ∗, where γ∗ is some element in the parameter space Γ. I will

discuss a specific example of the two-step M-estimator in the next section, the PMLE and

GEE method.

Assumption 9: Q̄G (θ, γ∗) attains unique global minimization at θ0 ∈ Θ, where

Q̄G (θ, γ∗) = 1
G

∑G
g=1 E

[
qg
(
wg,DG; θ, γ∗

)]
; That is Q̄G (θ0, γ

∗) < Q̄G (θ, γ∗) , for all θ ∈

Θ, θ 6= θ0.
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Assumption 9 provides necessary identification condition for the two-step M-estimator. If

qg (wi, θ0; γ) is stachastically equicontinuous over Θ× Γ, then a ULLN applies. Along with

identification, this result can be shown to imply consistency of θ̂G for θ0. The consistency

argument is the same as Proposition 1.

2.3 Two-step Estimator: QMLE and GEE

Due to the complexity of the joint distribution of spatial random processes, econometricians

have developed a variety of ways to reduce the computational burden. One way is to specify

the partial conditional distribution, and maximize the summand of log likelihoods for each

observation. The parameters can be consistently estimated if the partial log likelihood

function satisfies the assumptions for consistency of M-estimation. A consistent variance

estimator should be provided for valid inference5. Moreover, one can divide data into different

groups, and specify the marginal distribution for each group to get a more efficient estimator

(Wang, Iglesias, & Wooldridge 2012). However, this approach requires correctly specified

marginal distributions, and when we increase the group size, the joint distribution for each

group of variables becomes more and more difficult to compute. In this section, I propose

a two-step estimator in a QMLE framework. The first step is a pooled QMLE procedure

and the second step is a GEE procedure. Only the correct conditional mean and a density

function in the LEF need to be specified.

The partial (pooled) QMLE method requires correctly specified conditional mean func-

tions, E(yi|xi) = mi (xi; θ0) , i = 1, 2, ..., N, along with a LEF density fi (yi|xi; θ). Then

5Ignoring dependence in the estimation of parameters will result in wrong inferences if
the variances are calculated in the way that independence is assumed. Dependence should
be accounted for to the extent of how much one ignores it in the estimation.
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one proceeds with minimizing the sum of log individual likelihoods ignoring any spatial

dependence. Note that, the true log likelihood cannot be written by the sum of the indi-

vidual likelihoods. PQMLE is an approximation of the true MLE. However, under certain

conditions, PQMLE delivers consistent estimators with computation ease.

The the partial quasi-log likelihood is

LN (θ) =
1

N

N∑
i=1

log fi (yi|xi,DN ; θ) . (2.6)

The partial QMLE is found by solving the score function,

SN
(
θ̌
)

=
N∑
i=1

si
(
θ̌
)

= 0. (2.7)

One characterization of QMLE in LEF is that the individual score function has the

following form:

si (θ) = ∇mi (xi,DN ; θ)′ [yi −mi (xi,DN ; θ)] /v (mi (xi,DN ; θ)) , (2.8)

where ∇mi (xi,DN ; θ) is the 1× P gradient of the mean function and v (mi (xi,DN ; θ)) is

the variance function associated with the chosen LEF density. For Bernoulli,

v (mi (xi,DN ; θ)) = mi (xi,DN ; θ) (1−mi (xi,DN ; θ)) ,

and for Poisson distribution,

v (mi (xi,DN ; θ)) = mi (xi,DN ; θ) .
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E(si (θ) |xi,DN ) = 0 if E(yi|xi,DN ) = mi (xi,DN ; θ0), which implies Fisher consistency.

The above gives a consistent estimator by Proposition 1. However, this estimator

is not likely to be the most efficient estimator among the estimators that are based on

the same distributional assumptions, because it ignores the spatial correlations between

observations. If we can use some or all pairwise correlation information, we can possibly

improve the estimation efficiency. A common way to make use of the pairwise information

is to divide observations into groups, and use spatial correlations within groups while ignore

correlations between groups. In empirical studies, there exist some natural groups of data,

e.g., the technology spillover effects within a certain state. Suppose we know the groupwise

distribution but not the full distribution of the whole data, we can get a consistent estimator

by using only groupwise information.

Let g be the number of groups, g = 1, 2, ..., G. The group size is the number of observations

divided by the number of groups, and it can vary from 1, 2, ..., to N. There are two extreme

cases of the group size. The first case is when the group size is 1, the resulting estimator is the

usual partial QMLE estimator, which means we ignore all of the pairwise correlations. The

second case is when the group size is N , which means we are using all pairwise information.

If the group size is not equal to one or N , the estimation is actually a partial QMLE. By

”partial”, I mean that I do not use full information, only the information within groups.

Suppose we divide data into G groups and assume that there are the same number of

observations in each group. Let L = N/G, which is fixed. The group numbers and the sample

size both increase as the sampling domain increases. That is, we get more observations by

increasing the space where we obtain a sample. For group g, Xg is an L × K matrix and

yg is an L × 1 vector, where g denotes the gth group, g = 1, 2, ..., G. Let X denote the

N × P covariate matrix. We can write the assumptions in terms of group notation. Those
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assumptions are basically same, the difference is the notation. Thus I will not readdress the

assumptions again.

Assumption 10: Conditional mean is correctly specified for each group. E
(
yg|Xg

)
=

mg
(
Xg,DG; θ

)
≡mg, g = 1, 2, ..., G. I will use mg for short and mg (·) to emphasize certain

parameters. When G = N, we get E(yi|xi) = mi (xi,DN ; θ0) .

The QMLE estimator is given by setting the score function equal to 0.

G∑
g=1

sg

(
θ̂
)

= 0, (2.9)

where sg (θ) is the score function for each group. And the group score sg (θ) has the following

form,

sg (θ) = ∇m′gW
−1
g

(
yg −mg

)
. (2.10)

where ∇mg is the L× P gradient of the group mean function and Wg is the LEF variance

covariance matrix for group g. Notice that Wg is not a diagonal matrix that only contain

the variances of each individual, but also contains the covariances of pairwise individuals. It

is because of this property that we can improve efficiency by doing a so called generalized

estimating equations (GEE) approach. The GEE approach was first extended to correlated

data by Zeger and Liang (1986). In the spatial data context, I propose that the generalized

estimating equations (GEE) for the mean parameters, which is given by

G∑
g=1

∇m′gW
−1
g

(
yg −mg

)
= 0. (2.11)

In order to use GEE, we need to get a consistent estimator for Wg which depends on the

pairwise distances and a spatial dependence parameter. Suppose Ŵg is a consistent estima-
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tor for Wg. GEE is a ”pseudo” weighted multivariate nonlinear least squares (MWNLS),

because GEE only use the groupwise information. The GEE estimator is given by:

θ̂GEE = arg min
θ

G∑
g=1

(
yg −mg

)′
Ŵ−1

g

(
yg −mg

)
. (2.12)

As a special case, pooled QMLE is the same as the nonlinear weighted least squares

estimator (NWLS):

θ̃NWLS = arg min
θ

N∑
i=1

[yi −mi (xi,DN ; θ)]2 /v (mi (xi,DN ; θ)) . (2.13)

The following demonstrates how to find a consistent estimator for Wg. We can write

Wg = Vg(Xg; θ)
1/2Rg (ρ,DG) Vg(Xg; θ)

1/2.

The diagonal elements of Wg correspond to the variances of dependent variables drawn from

a density in LEF. The off-diagonal elements are the covariances that depend on the spatial

parameter and distances.

Vg(Xg,DG; θ) =



v1 · · · 0

0 v2
...

...
. . . 0

0 ... 0 vL


, (2.14)

where the lth element on the diagonal is vl = Var(ygl|Xgl) in group g, ygl is the lth element

in the vector yg and Xgl is the lth row in Xg.

Let RN (ρ,DN ) be the N×N correlation matrix for the whole sample, and let Rg (ρ,DG)
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be the L×L correlation matrix for the group g. A common assumption of the ijth element

of RN (ρ,DN ) is that

Rij = 1− γ
(
dij , ρ

)
, γ
(
dij , h

)
=


0 if dij = 0,

c+ b
[
1− exp

(
−dij/ρ

)]
otherwise,

(2.15)

where the vector of spatial parameters h = (c, b, ρ) , c ≥ 0, b ≥ 0, ρ ≥ 0, and c+ b ≤ 2.6

Set b = c = 1 without loss of generality. Then

Rij =


1 if dij = 0,

exp
(
−dij/ρ

)
otherwise.

(2.16)

Another example would be

Rij =


1 if dij = 0,

ρ/dij otherwise.

(2.17)

Although the above specification does not represent all the possiblilities, it at least provides a

way of how to parameterize the spatial correlation, and provides the basis for testing spatial

correlation.

Let θ̌ be the partial QMLE estimator. ûi = yi − mi
(
xi; θ̌

)
, for i = 1, 2, ..., N , is the

QMLE residual. v̌i = v
(
mi
(
xi,DN ; θ̌

))
is the fitted variance of individual i associated with

the chosen LEF density. Let r̂i = ǔi/v̌i be the standardized residual. Let r̂ = (r̂1, r̂2, ..., r̂N )′ .

Then r̂r̂′ is the sample correlation matrix. We can use a method in Prentice (1988) to find

a consistent estimator for ρ. Let e be a vector containing N(N − 1)/2 different elements of

6See Cressie (1993) p.61 for more examples.
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the lower (or upper) triangle of r̂r̂′, excluding the diagonal. Let z be the vector containing

the elements in R corresponding to the same entries of elements in r̂r̂′. We can get the

parameter estimator ρ̂ by solving:

ρ̂ = arg min(e− z)′Ξ−1(e− z), (2.18)

where Ξ is the working correlation matrix for e, the sample correlation vector. Ξ is a

diagonal matrix with
(
ξ21, ξ31, ..., ξn1, ξ32, ξ42, ..., ξN2, ..., ξN,N−1

)
as the elements on the

diagonal, which are the corresponding variances of element in e . If the variance covari-

ance matrix W is correctly specified, a model-based consistent variance estimator of θ̂ is(∑G
g=1∇m̂′gŴ

−1
g ∇m̂g

)−1
, where ∇m̂g = ∇m̂g

(
Xg; θ̂GEE

)
. As an alternative, the vari-

ance estimator of θ̂ that is robust to misspecification of the variance covariance matrix is

 G∑
g=1

∇m̂′gŴ
−1
g ∇m̂g

−1 G∑
g=1

G∑
h=1

∇m̂′gŴ
−1
g k (g, h) ûgû

′
hŴ

−1
h ∇m̂h


 G∑
g=1

∇m̂′gŴ
−1
g ∇m̂g

−1

, (2.19)

where k (g, h) is the kernel function depending on the distance between group g and h.

The GEE approach is summarized as follows:

First, find the partial QMLE estimator for the mean parameters and obtain the residuals

from PQMLE.

Second, use the first step estimator to get a fitted variance covariance matrix according

to the LEF density, and obtain the spatial correlation parameter using the standardized

residuals from the first step. After obtaining a working matrix, undertake a multivariate

weighted least squares procedure. This gives the GEE estimator.
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Finally, we can get a consistent variance estimator for the mean parameter that is robust

to heteroskedasticity and spatial correlation. Further, we can obtain the average partial

effect (APE).

2.4 Asymptotic Distribution for PQMLE and GEE

A central limit theorem is needed to develop the asymptotic distributions for M-estimators.

Bolthausen (1982) provides central limit theorem (CLT) for strictly stationary processes.

However, in economic applications there are a lot of nonstationary spatial processes in the

sense that they are heterogenous; that is, the joint distribution of dependent variables varies

with locations. There are also spatial processes which may have asymptotically unbounded

moments. However, in this paper, I will only discuss uniformly bounded random variables.

From the above equation, we can take derivatives with respect to the parameter, and get

the scores for each group. Let sg (θ) denote the P × 1 vector of score for qg (θ) . The group

score sg (θ) and Hessian Hg (θ) have the following forms,

sg (θ) = ∇m′g (θ) W−1
g

[
yg −mg (θ)

]
, (2.20)

E
(
sg (θ) |xg,DG

)
= 0.

By the assumption of correctly specified conditional mean, the above condition implies Fisher

consistency for QMLE for linear exponential family.
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While

Hg (θ) = ∂sg (θ) /∂θ′ (2.21)

= −∇θm′gW−1
g ∇mg + ∂∇2

θm
′
gW
−1
g

(
yg −mg

)
,

where ∇θmg ≡ ∂mg/∂θ is the L × P gradient of the group mean function, ∂∇2
θmg ≡

∂2mg/∂θ∂θ
′

is the L×P jacobian of the group mean function and Wg is the LEF variance

covariance matrix for group g. Taking the expected value of the score function over the

distributions of w gives

E
[
Hg (θ0)

]
= E

{
E
[
Hg (θ0) |wg,DG

]}
(2.22)

= E
{
−∇m′gW

−1
g ∇mg + E

[
∂∇2

θm
′
gW
−1
g

(
yg −mg

)
|wg,DG

]}
= E

{(
−∇m′gW

−1
g ∇mg

)
+ ∂∇2

θm
′
gW
−1
g

[
E
(
yg|wg,DG

)
−mg

]}
= E

(
−∇m′gW

−1
g ∇mg

)
+ ∂∇2

θm
′
gW
−1
g

[
mg −mg

]
= E

(
−∇m′gW

−1
g ∇mg

)

Notice that Wg is not a diagonal matrix that only contain the variances of each individual,

but also contains the covariances of pairwise individuals. It is because of this property that we

can improve efficiency by doing a so called generalized estimating equations (GEE) approach.

The GEE approach was first extended to correlated data by Zeger and Liang (1986). In the

spatial data context, I propose that the generalized estimating equations (GEE) for the mean

parameters are given by

1

G

G∑
g=1

sg

(
θ̂
)

= 0, (2.23)
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1

G

G∑
g=1

∇m′g
(
θ̂
)

W−1
g

[
yg −mg

(
θ̂
)]

= 0. (2.24)

Because each score is a function of spatial processes, they are correlated with each other.

The score function for the total sample is SG

(
θ̂
)

= 1
G

∑G
g=1 sg

(
θ̂
)

= 0. The score function

can be expanded about θ0 in a mean-value expansion:

SG

(
θ̂
)

=
1

G

G∑
g=1

sg (θ0) +
1

G

G∑
g=1

Hg

(
θ̈
)(

θ̂ − θ0

)
. (2.25)

where θ̈ ∈ Θ is between θ̂ and θ0. Hg

(
θ̈
)

is the P × P Hessian of the objective function

qg (θ) .

√
G
(
θ̂ − θ0

)
=

− 1

G

G∑
g=1

Hg

(
θ̈
)−1

1√
G

G∑
g=1

sg (θ0) . (2.26)

Assumption 11 (Uniform L2+δ integrability): The elements in the scores are uni-

formly bounded and have a limit expectation equal to zero. That is,

lim
k→∞

sup
g

E
[∣∣sgl∣∣2+δ

1
(
sgl > k

)]
= 0, (2.27)

where 1 (·) is the indicator function and sg is the group score matrix, which is P ×L. sgl is

an element in the score matrix, and k is a constant.

Assumption 12: The second moment of the score function is positive and uniformly

bounded.

0 < lim
G→∞

1

G
Var

 G∑
g=1

sg (θ0)

 <∞. (2.28)

Proposition 8 Under Assumptions 1-12,
√
G
(
θ̌ − θ0

)
⇒ N

(
0,A−1

0 B0A−1
0

)
, where

A0 = limG→∞
{
− 1
G

∑G
g=1 E

[
Hg (θ0)

]}
, and B0 = limG→∞Var

[
1√
G

∑G
g=1 sg (θ0)

]
. See

proof in Chapter 4.
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E
[
Hg (θ0)

]
has already been given in Equation (22). Var

[
1√
G

∑G
g=1 sg (θ0)

]
is given as

follows,

Var

 1√
G

G∑
g=1

sg (θ0)

 = Var

 1√
G

G∑
g=1

∇m′g (θ0) W−1
g

[
yg −mg (θ0)

] (2.29)

= Var

 1√
G

G∑
g=1

∇m′g (θ0) W−1
g ug


=

1

G

G∑
g=1

E
[
∇m′g (θ0) W−1

g ugu
′
gW
−1
g ∇mg (θ0)

]

+
1

G

G∑
g=1

G∑
g 6=h

E
[
∇m′g (θ0) W−1

g uguhW
−1
h ∇mh (θ0)

]
.

If we have a first step estimator, say γ̂, p lim γ̂ = γ∗. By linear expansion, the score should

be written as

SG

(
θ̂
)

=
1

G

G∑
g=1

sg (θ0, γ̂) + op (1) (2.30)

=
1

G

G∑
g=1

sg (θ0, γ
∗) + F0 (γ̂ − γ∗) + op (1) ,

where

sg (θ0, γ̂) = ∇m′g (θ) Ŵ−1
g

[
yg −mg (θ)

]
= 0.

where Ŵ−1
g is a function of γ̂, F0 is a P × J matrix. J is the dimension of γ. F0 =

limg→∞ 1
G

∑G
g=1 E

[
∇γsg

(
wg, θ0; γ∗

)]
. We can see ∇m′g (θ) and mg (θ) do not rely on γ.

When we take derivatives with respect to γ, it only matters with W−1
g . ∇γsg

(
wg, θ0; γ∗

)
is a linear combination of elements of

[
yg −mg (θ)

]
. Since E[

(
yg −mg

)
| w,D ]= 0,

50



E[∇γsg
(
wg, θ0; γ∗

)
|w,D] = 0. By law of iterated expectations, E

[
∇γsg

(
wg, θ0; γ∗

)]
= 0.

Thus F0 = 0. Then we can write the score function as

SG

(
θ̂
)

=
1

G

G∑
g=1

sg (θ0, γ
∗) + op (1) , (2.31)

and

SG

(
θ̂
)

=
1

G

G∑
g=1

sg (θ0, γ
∗) +

1

G

G∑
g=1

Hg

(
θ̈, γ
∗)(

θ̂ − θ0

)
(2.32)

where θ̈ ∈ Θ is between θ̂ and θ0. Hg

(
θ̈
)

is the P × P Hessian of the objective function

qg (θ) .

√
G
(
θ̂ − θ0

)
=

− 1

G

G∑
g=1

Hg

(
θ̈, γ
∗)−1

1√
G

G∑
g=1

sg (θ0, γ
∗) . (2.33)

Thus the first step estimation will not affect the asymptotic distribution of the second step.

γ∗ is a fixed number in the second step score function.

Proposition 9 Under Assumptions 1-12,
√
G
(
θ̂ − θ0

)
⇒ N

(
0,A−1

0 B0A−1
0

)
, where

A0 = limG→∞
{
− 1
G

∑G
g=1 E

[
Hg (θ0, γ

∗)
]}

, and B0 = limG→∞Var
[

1√
G

∑G
g=1 sg (θ0, γ

∗)
]
.

See proof in Chapter 4.

2.5 Variance-Covariance Matrix Estimator

2.5.1 Parametric Variance-Covariance Estimator

Assumption 13: Var
(
ug
)

= Var
(
ug|xg,DG

)
= Wg;
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Cov
(
ug,uh

)
= Cov

(
ug,uh|xg,xh,DG

)
= Cgh.

Var

 1√
G

G∑
g=1

sg (θ0)

 =
1

G

G∑
g=1

E
[
∇m′g (θ0) W−1

g ∇mg (θ0)
]

(2.34)

+
1

G

G∑
g=1

G∑
g 6=h

E
[
∇m′g (θ0) W−1

g CghW
−1
h ∇mh (θ0)

]
.

Under Assumption 13, the asymptotic variance estimator for θ̂G can be estimated by

Âvar1

(
θ̂
)

=
1

G
Â−1B̂1Â−1 (2.35)

=

 G∑
g=1

∇m̂′gŴ
−1
g ∇m̂g

−1 G∑
g=1

∇m̂′gŴ
−1
g ĈghŴ

−1
h ∇m̂′h


 G∑
g=1

∇m̂′gŴ
−1
g ∇m̂g

−1

,

where

Â =
1

G

G∑
g=1

∇m̂′gŴ
−1
g ∇m̂g,

and

B̂1 =
1

G

G∑
g=1

G∑
h=1

∇m̂′gŴ
−1
g ĈghŴ

−1
h ∇m̂′h.

2.5.2 Nonparametric Variance-Covariance Estimator

Assumption 13 is not always obtained. And most of times it can not be easily known.

Since Avar
√
G
(
θ̂G − θ0

)
= A−1

0 B0A−1
0 , we can consistently estimate Avar

√
G
(
θ̂G − θ0

)
by Â−1B̂2Â−1. The asymptotic standard errors are obtained from the matrix Âvar2

(
θ̂G

)
=
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Â−1B̂2Â−1/G. A robust nonparametric variance covariance estimator is given as

Âvar2

(
θ̂
)

=
1

G
Â−1B̂2Â−1 (2.36)

=

 G∑
g=1

∇m̂′gŴ
−1
g ∇m̂g

−1 G∑
g=1

G∑
h=1

k(dgh)∇m̂′gŴ
−1
g ûgû

′
hŴ

−1
h ∇m̂′h


(
∇m̂′gŴ

−1
g ∇m̂g

)
,

where

Â =
1

G

G∑
g=1

∇m̂′gŴ
−1
g ∇m̂g,

and

B̂2 =
1

G

G∑
g=1

G∑
h=1

k(dgh)∇m̂′gŴ
−1
g ûgû

′
hŴ

−1
h ∇m̂′h.

Proposition 10 Under Assumptions 1-13, Âvar2

(
θ̂G

)
robust

→ 1
GA−1

0 B0A−1
0 . See

proof in Chapter 4.

Although we do not need to make adjustment to the two-step QMLE estimator in this

paper, it is worth to mention that in lot of cases F0 6= 0, and we need to make adjustment

to the asymptotic variances.

√
G
(
θ̂ − θ0

)
= A0

1√
G

G∑
g=1

[
−gg (θ0; γ∗)

]
+ op (1) ,

where

gg (θ0; γ∗) ≡ sg (θ0, γ
∗) + F0rg (γ∗) .

Let

D0 ≡ lim
G→∞

1

G
E

 G∑
g=1

gg (θ0; γ∗)
G∑
h=1

gh (θ0; γ∗)′

 ,
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the asyptotic distribution of θ̂ can be written as

√
G
(
θ̂ − θ0

)
⇒d N

(
0,A−1

0 D0A−1
0

)
.

A robust estimator after adjustment is given as

Âvar3

(
θ̂
)

=
1

G
Â−1D̂Â

−1
(2.37)

=

 G∑
g=1

∇m̂′gŴ
−1
g ∇m̂g

−1

 G∑
g=1

G∑
h=1

k(dgh)
(
ŝg ŝ
′
h + ŝg r̂

′
hF̂
′ + F̂r̂g ŝ

′
h + F̂r̂g r̂

′
hF̂
′
)

 G∑
g=1

∇m̂′gŴ
−1
g ∇m̂g

−1

,

where

Â =
1

G

G∑
g=1

∇m̂′gŴ
−1
g ∇m̂g,

and

D̂=
1

G

G∑
g=1

G∑
h=1

k(dgh)
(
ŝg ŝ
′
h + ŝg r̂

′
hF̂
′ + F̂r̂g ŝ

′
h + F̂r̂g r̂

′
hF̂
′
)
. (2.38)

2.6 Two Examples: Spatial Probit Model and Poisson

Regression Model

The setup of nonlinear models with spatial data could be tricky. We need to incorporate

the spatial correlated term in an appropriate way. In this section, I will use two nonlinear
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models to demonstrate how we can incorporate the spatial correlated term and use a GEE

procedure. This could vary with different models. The first example is a Probit model, and

the second one is a count data model.

2.6.1 Example 1. A Probit Model with Spatial Correlation in the

Latent Error

The Probit model is one of the popular binary response models. The dependent variable

has conditional Bernoulli distribution. The dependent variable y takes on the values zero

and one, which indicates whether or not a certain event has occurred. For example, y = 1

if a firm adopts a new technology, and y = 0 otherwise. The value ot the latent variable y∗

determines the outcome of y.

Assume the Probit model is

yi = 1 [y∗i ≥ 0] , (2.39)

y∗i = xiβ + ei, (2.40)

The latent error e has a standard multivariate normal distribution, but the covariances

depend on pairwise distances DN , which is different from the usual multivariate normal

distribution.7

corr
(
ei, ej

)
= f

(
dij,ρ

)
, (2.41)

where f (·)is a function increases in ρ and decreases in dij .

We do not observe y∗i ; we only observe yi. Let Φ (·) be the standard normal cumula-

tive density function (CDF), and φ be the standard normal probability density function

7A multivariate normal distribution usually specifies the mean vector and correlation
matrix. The correlations do not depend on the pairwise distance between two variables.
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(PDF). Assume that the mean function mi (xi; β) ≡ E (yi|xi,DN ) = Φ (xiβ) is correctly

specified. Because of the nonlinearity of yi and non-observability of the latent variable y∗i ,

Cov
(
yi, yj |xi,xj ,DN

)
is hard to discover without more information on the multivariate dis-

tribution. In order to proceed with GEE, we need to specify a working matrix, which is

possibly misspecified.

The partial QMLE delivers a consistent first-step estimator for the mean parameters as

in Proposition 1. Using the Bernoulli density function, the log likelihood function for each

observation is:

li (β) =yi log Φ (xiβ) + (1− yi) log [1− Φ (xiβ)] . (2.42)

The partial QMLE solves:

β̌ = arg max
θ∈Θ

LN (β) (2.43)

LN (β) =
N∑
i=1

li (β) =
N∑
i=1

yi log Φ (xiβ) +
N∑
i=1

(1− yi) log [1− Φ (xiβ)] .

The score of the likelihood function for each individual is

si ≡
φ (xiβ) x′i [yi − Φ (xiβ)]

Φ (xiβ) [1− Φ (xiβ)]
. (2.44)

The expected Hessian8 for each observation is

E (Hi|xi,DN ) = −
φ2 (xiβ) x′ixi

Φ (xiβ) {1− Φ (xiβ)}
. (2.45)

8Unexpected Hessian can be derived. Because the score has the special form that contains
yi − Φ (xiβ), by taking the expectations conditional on xi and DN , we can get a cleaner
expression.
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Let AN be the sum of negative expected Hessians AN=
∑N
i=1

φ2(xiβ)x′ixi
Φ(xiβ){1−Φ(xiβ)} , and A0 =

E (Hi) on the distribution of x. Let ǔi = yi − Φ
(
xiβ̌
)
, i = 1, 2, ..., N be the residuals. At

this stage, a robust variance and covariance estimator for β̌ can be computed as follows:

V̂ar
(
β̌
)

=

 N∑
i=1

φ2
(
xiβ̌
)
x′ixi

Φ
(
xiβ̌
) {

1− Φ
(
xiβ̌
)}
−1

(2.46)

 N∑
i=1

N∑
j 6=i

k
(
dij
) φ (xiβ̌)φ (xj β̌)x′iǔiǔjxj

Φ (xiβ) [1− Φ (xiβ)]


 N∑
i=1

φ2
(
xiβ̌
)

x′ixi
Φ
(
xiβ̌
) {

1− Φ
(
xiβ̌
)}
−1

,

where k
(
dij
)

is the kernel weight function that depend on pairwise distances. This par-

tial QMLE and its robust variance covariance estimator provides a legitimate way of the

estimation of the spatial Probit model.

The next is to find out how how the two-step estimator GEE works. The second step is

to construct the weighting matrix using the first-step estimators and residuals. As the data

can be divided into groups, the working matrix can be the weight for a specific group. If the

group size equals two, the working matrix is a two by two matrix. We can write the working

variance covariance matrix as Ŵg = V̂g
1/2R̂g (ρ̂,DG) V̂

1/2
g . An estimator for the working
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variance matrix for each group is

V̂g =



v̌1 0 0 · · · · · · 0

0 v̌2 0 0

0 0
. . . . . .

...

...
. . . v̌l

. . .
...

...
. . . . . . 0

0 0 · · · · · · 0 v̌L



, (2.47)

where

v̌l = Φ
(
xlβ̌
) [

1− Φ
(
xlβ̌
)]
, l = 1, ..., L. (2.48)

Next we will find an estimator for the working correlation matrix for yi−Φ (xiβ). Suppose

the structure of the true correlation matrix R is Rij = Cij
(
dij , λ

)
,where Cij

(
dij , λ

)
is a

function that increases in λ and decreases in dij . Note that λ is the spatial correlation

parameter for the dependent variables, while ρ is for the latent error. This two parameters

are generally different. Let r̂i = ǔi/
√
v̌i , for i = 1, 2, ..., N, be the standardized residuals.

Ĉij equals the sample correlation of ǔi/
√
v̌i and ǔj/

√
v̌j . Let R̂ ≡ R

(
DG, λ̂

)
and R̂g

stand for the correlation matrix Rg

(
Dg, λ̂

)
for the gth group. The function Cij

(
dij , λ

)
is unknown, but we can choose a correlation function to approximate it and use it in the

estimation. For example, say C
(
dij , ρ

)
= λ

dij
or exp

(
−dijλ

)
. By only using the correlations

within groups, an estimator of λ is λ̂ = arg min
∑G
g=1

∑L
i=1

∑L
j 6=i
[
r̂ir̂j − Cij

(
dij , ρ

)]2
for

i < j.
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The second step GEE estimator for β is

β̂ = arg min
β

G∑
g=1

(
yg − Φ

(
xgβ

))′
Ŵ−1

g

(
yg − Φ

(
xgβ

))
. (2.49)

If one believes the working correlation matrix is correctly specified, the non-robust vari-

ance estimator for β̂ is

V̂ar1

(
β̂
)

=

 G∑
g=1

D̂′gŴ
−1
g D̂g

−1

(2.50)

where D̂g= ∂Φ
(
xgβ̂

)
/∂β̂ =φ

(
xgβ̂

)
x′g. β̂ is consistent even for misspecified spatial cor-

relation structure. The robust variance estimator to misspecification of spatial correlation

is:

V̂arR

(
β̂
)

=

 G∑
g=1

D̂′gŴ
−1
g D̂g

−1

(2.51)

 G∑
g=1

G∑
h=1

k(dgh)D̂′gŴ
−1
g ûgû

′
hŴ

−1
h D̂h


 G∑
g=1

D̂′gŴ
−1
g D̂g

−1

where k(dgh) is a kernel function which depends on the distances between groups.

Alternative approach is to specify the specific distributions of the multivariate normal

distribution of the latent error, and then find the estimator for the spatial correlation pa-

rameter for the latent error within a MLE framework. For example, see Wang, Iglesias and

Wooldridge (2012).
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2.6.2 Example 2. A Poisson Model with a Multiplicative Spatial

Error

A count variable is a variable that takes on nonnegative integer values. Many variables that

we would like to explain in terms of covariates come as counts, such as the number of times

someone is arrested during a given year, and the number of patents applied for by a firm

during a year. Count data examples with upper bound include the number of children in a

family who are high school graduates, in which the upper bound is number of children in the

family (Wooldridge 2010). A count data is usually characterized by a density in LEF and a

population mean. Now let’s use a specific example to demonstrate a count data model with

a spatial error term. The conditional Poisson density is specified as

f (y|x,D) = exp [−µ]µy/y!, (2.52)

where y! = 1 ·2 · ... · (y − 1) ·y and 0! = 1. µ is the conditional mean of y. For a given sample,

specify the conditional mean as the exponential form:

E (yi|xi,DN ) = exp (xiβ) . (2.53)

Assume that the conditional mean function is correctly specified and model the spatial

correlation in the conditional mean function:

E (yi|xi, vi,DN ) = vi exp (xiβ0) , (2.54)
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where vi is the multiplicative spatial error term. Let v equal
(
v1,v2, ..., vN

)′
. The count data

model can be written in a conditional mean form:

yi = vi exp (xiβ0) + δi, (2.55)

and

E (δi|xi, vi,DN ) = 0.

A count data model with a multiplicative spatial error can be characterized by the following

assumptions:

(1) {(xi, vi, δi)} is a mixing sequence on the sampling space, with mixing coefficient α or

φ.

(2) E (yi|xi, vi,DN ) = vi exp (xiβ0)

(3) yi, yj are independent conditional on xi,xj , vi, vj ,DN i 6= j

(4) vi is independent of xi, E(vi) = 1, Var (vi) = τ2, and Cov
(
vi, vj

)
= τ2 ·c

(
dij
)
, where

c
(
dij
)

is the spatial correlation depending on the distance between observation i and j.

Note that, we only specify the conditional mean, instead of the distribution. Even if

the data do not follow the Poisson distribution, the quasi-MLE approach will give you a

consistent estimator if you use the Poisson density function. Moreover, y even need not to

be a count number. Under the above assumptions we can integrate out vi by using the law
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of iterated expectations.

E (yi|xi,DN ) = E (E (yi|xi, vi,DN ) |xi,DN ) (2.56)

= E (vi exp (xiβ0) |xi,DN )

= exp (xiβ0) E (vi|xi,DN )

= exp (xiβ0) E (vi)

= exp (xiβ0)

And we can calculate the variances and covariances of y conditional on x:

Var (yi|xi,DN ) = E [Var ((yi|xi, vi,DN ) |xi,DN )] (2.57)

+Var [E ((yi|xi, vi,DN ) |xi,DN )]

= E [vi exp (xiβ0) |xi,DN ] + Var [vi exp (xiβ0) |xi,DN ]

= exp (xiβ0) E (vi|xi,DN ) + exp (2xiβ0) Var (vi|xi,DN )

= exp (xiβ0) + exp (2xiβ0) · τ2
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Cov
(
yi, yj |xi,xj ,DN

)
= E

[
Cov

((
yi, yj |xi,xj , vi, vj ,DN

)
|xi,xj ,DN

)]
(2.58)

+Cov{
[
E (yi|xi, vi,DN ) , E

(
yj |xi, vi,DN

)]
|xi,xj ,DN}

= 0 + Cov
(
vi exp (xiβ0) , vj exp

(
xjβ0

)
|xi,xj ,DN

)
= exp (xiβ0) exp

(
xjβ0

)
Cov

[
vi, vj |xi,xj ,DN

]
= exp (xiβ0) exp

(
xjβ0

)
Cov

(
vi, vj

)
= exp (xiβ0) exp

(
xjβ0

)
· τ2 · c

(
dij
)

The model can also be expressed as

E (yi|xi, ei,DN ) = exp (xiβ + ei) (2.59)

= exp (ei) exp (xiβ0)

We can see that vi = exp (ei). We can model the spatial correlation between ei and ej , for

i, j = 1, 2, ..., N . Let vector e denote
(
e1,e2, ..., eN

)′
. In this paper, only positive correlations

are considered for convenience. Negative correlations9 are possible and one can extend

this method to it. For convenience, I assume e follows a multivariate normal distribution,

N (µ,Ω). Also I use this in the simulaion later. Then v will follow a multivariate lognormal

distribution. One could use other multivariate distributions for e, and v will follow the

corresponding multivariate distribution. Or one could use a multivariate distribution for vi

directly as long as the first two moments assumptions for vi are satisfied.

9Bloom, schankerman and Reenen’s working paper (2012) in NBER identifies negative
product market rivalry effect.
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Although y follow a multivariate Poisson distribution, the above equation shows that β0

can be consistently estimated by the partial Poisson maximum likelihood estimation. The

density function for yi is

fi (yi|xi,DN ) = exp [− exp (xiβ)] [exp (xiβ)]yi /yi!, (2.60)

where yi! = 1 · 2 · ... · (yi − 1) · yi and 0! = 1.

The log likelihood for each observation is

li (β) = − exp (xiβ) + yixiβ − log (yi!) , (2.61)

and the score is

si (β) ≡ ∂Li (β)

∂β
= x′i [yi − exp (xiβ)] = x′iui, (2.62)

and the Hessian is

Hi (β) = − exp (xiβ) x′ixi. (2.63)

Let Ai ≡ −E (Hi (β) |xi,DN ) = exp (xiβ) x′ixi, and A0 ≡ E [Ai] over the distribution

of x and the spatial space D. Let B0 ≡ E
(
si (β0) si (β0)′

)
= E

(
u2
ix
′
ixi
)
.

The partial QMLE gives a consistent estimator for the mean parameters, which solves:

β̌ = arg max
θ∈Θ

L (β) =
N∑
i=1

li (β) =
N∑
i=1

yixiβ −
N∑
i=1

exp (xiβ)−
N∑
i=1

log (yi!) . (2.64)
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A robust partial QMLE variance covariance estimator is

 N∑
i=1

exp
(
xiβ̌
)
x′ixi

−1
N∑
i=1

N∑
j=1

k
(
dij
)
x′iûiûjxj

 N∑
i=1

exp
(
xiβ̌
)
x′ixi

−1

, (2.65)

where k (i, j) is a kernel function depending on the distance between observations i and j.

The partial QMLE does not make any use of the pairwise correlations. If we can use

them, we may improve efficiency. The GEE approach is:

β̂ = arg min
β

G∑
g=1

[
yg− exp

(
Xgβ

)]′
Ŵ−1

g

[
yg− exp

(
Xgβ

)]
. (2.66)

where Ŵg is an estimated weighting matrix. Again, like the Probit model, Ŵg= V̂
1/2
g R̂gV̂

1/2
g

, where V̂ is a diagonal matrix with the estimated variances on the diagonal, and R̂ is the

estimated working correlation matrix. The most efficient weighting matrix is the true co-

variance matrix of y − exp (Xβ).

There are two pivotal parameters that we do not know in the estimation, τ2 and ρ. We

could use the partial Poisson QMLE residuals to estimate the parameters. Let β̌ be the

partial Poisson regression estimator. Let ǔ2
i =

[
yi − exp

(
xiβ̌
)]2

be the squared residual. τ2

can be estimated in the following way: τ̂2 equals the coefficient by regressing ǔ2
i − exp

(
xiβ̌
)

on exp
(
2xiβ̌

)
. The situation to estimate ρ is a little bit complicated. First, we do not know

how σij depends on ρ and dij . If we use the wrong structure, we probably will get a wrong

estimator for ρ. Suppose the correlation structure is c
(
dij
)

= ρ
dij
, then an estimator for ρ is:

ρ̂ = coefficient by regressing
ǔiǔj

exp(xiβ̌) exp
(
xj β̌

) on τ̂2

dij
. However, this estimator sometimes

suffers from the negative products of the Poisson regression residuals, and the estimated

parameter ρ̂ is biased downward. Ŵg is obtained by plugging τ̂2 and ρ̂ back in the variance
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covariance matrix. By minimizing the above equation, we can get the GEE estimator.

If Assumption 13 holds, a non-robust variance estimator for GEE is

V̂ar
(
β̂
)

=

 G∑
g=1

D̂′gŴ
−1
g D̂g

−1

, (2.67)

where D̂g = ∂ exp
(
Xgβ

)
/∂β = exp

(
Xgβ̂

)
X′g.

β̂ is still consistent even for a misspecified spatial correlation structure when Assump-

tion 13 does not hold. The robust variance estimator to misspecification of spatial correla-

tion is:

V̂ar
(
β̂
)

=

 G∑
g=1

D̂′gŴ
−1
g D̂g

−1

(2.68)

 G∑
g=1

G∑
h=1

k(dgh)D̂′gŴ
−1
g ûgû

′
hŴ

−1
h D̂h


 G∑
g=1

D̂′gŴ
−1
g D̂g

−1

where k(dgh) is a kernel function depending on the distances between groups. The distance

could be the smallest distance between two observations belonging to different groups.

2.7 Monte Carlo Simulations

In this section, I want to do the Monte Carlo simulation to investigate the efficiency gain of

the GEE approach compared to the pooled QMLE. The simulation mechanism is described

as follows:

(1) Each individual resides on a intersection of the square lattice. Thus the pairwise
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distance can be calculated using the coordinates of each observation.

(2) According to pairwise distances, generate the pairwise correlations. In the simulation,

there are two cases of pairwise correlations. One is that each observation is correlated with

all other observations; the other is that only observations in the same group are correlated

with each other. That is, assuming groupwise independence. The group are demonstrated

in the graph in the next subsection.

(3) After generated correlated data, the first step is to find the pooled QMLE estimator.

The second step is divide observations into groups and only use within group information

to estimate the correlation parameters. In the case of groupwise dependence, although each

pair of the data are correlated, we do not use pairwise correlations between observations in

different groups. In the case of groupwise dependence, this method sounds natural. After

estimation of the spatial correlation parameters, estimate the mean parameters again using

the GEE procedure.

2.7.1 Sampling Space

Graph 1 demonstrates the case when the sample size is 400. Thus, I create a 20 × 20

square lattice. Each observation resides on the intersections of the lattice. The locations

for the data are {(r, s) : r, s = 1, 2, ...20}. The distance dij between location i and j is

Euclidean distance. Suppose A(ai, aj) and B(bi, bj) are the two points on the lattice; their

distance dij is
√

(ai − bi)2 + (aj − bj)2. Then the spatial correlation is based on a given

parameter ρ and dij . The assumed correlation for the spatial correlated error term is ρ/dij

for i, j = 1, 2, ..., N . For the Probit model this correlation is between the latent error, and

for the count data model this correlation is between the multiplicative error. The data are

divided into groups of 4, 16. And you can use more observations in one group, say, 25 and
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100. But this increase the computation burden and 25 and 100 are too big for the sample

size 400. In Graph 1, the left upper corner of the lattice demonstrates the case that the

group size is four; the left lower corner of the lattice demonstrates the case that the group

size is 16; and the right lower part of the lattice demonstrates the case that the group size is

100. The idea of this two-step method is to use a small number of pairwise correlations and

conveniently get more efficient estimators. Thus, I use 4 or 16 as the number of observations

in each group. Notice, for convenience, I make the pairwise distances in different groups the

same.

2.7.2 Spatial Probit Data

For the Probit model, we can not easily find the variances and covariances for the dependent

variables conditional on the covariates. The corrlated latent errors result in correlated binary

response varibles. However, the correlations in latent error usually do not reflect the exact

correlations in the binary dependent variables. The correlations are much smaller in the

binary response variable because of the nonlinear tranformation. In the following simulation,

let the sample size be 400 and replication be 500. Consider the following data generating

process:

1. xi = [1, xi1], xi1 ∼ N (1, 1) ; β = [−1, 1]′.

2. y∗i = xiβ + ei, e ∼ MVN(0,Ω), Var (ei) = 1, Cov
(
ei, ej

)
= ρ

dij
; ρ =

0, 0.1, 0.2, 0.3, 0.4.

3. yi = 1 if y∗i ≥ 0, yi = 0 if y∗i < 0.

4. Use Cov
(
yi, yj |xi,xj ,DN

)
= λ

dij
as the correlation between the dependent variables.

This form is arbitrary. Based on the information, this is not likely to be true and λ is

unknown.
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The simulation results are in Table 1-2. λ̂ is the estimator for λ. λ̂ is calculated by the

minimum distance estimator

min
λ

G∑
g=1

sumL
i=1

L∑
j 6=i

 ǔiǔj√
Φ
(
xiβ̌
) [

1− Φ
(
xiβ̌
)]√

Φ
(
xj β̌

) [
1− Φ

(
xj β̌

)] − λ

dij

 ,
for i, j in the same group g, and L is the number of individuals in a group. Because λ is

unknown, we can not calculate the bias of λ̂ . β̌ is the first-step partial QMLE estimator for

β. β̂1 is the two-step weighted nonlinear least squred estimator (WNLS) that only uses the

variances as weight in the second step. β̂4 is the two-step GEE estimator that uses a 4× 4

variance covariance matrix as weight for each group. β̂16 is the two-step GEE estimator that

uses a 16× 16 variance covariance matrix as weight for each group. Note that when L = 4,

β̂16 is calculated by using λ̂ which is calculated using group size equal 4. Similarly for β̂4

when L = 16. The following two tables show two cases of the simulation: (1) N=400, L=4.

(2) N=400, L=16.
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Table 2.1: Binary Data N=400, L=4

N=400, L=4, T=500, β = 1

ρ λ̂ β̌ β̂1 β̂4 β̂16

0 estimate 0.0032 1.0162 1.0162 1.0155 1.0169
s.d 0.0419 0.1111 0.1011 0.1144 0.1118

0.1 estimate 0.0281 1.0139 1.0139 1.0145 1.1053
s.d 0.0501 0.1166 0.1166 0.1165 0.1172

0.2 estimate 0.0616 1.0241 1.0241 1.0243 1.0261
s.d 0.0575 0.1103 0.1103 0.1111 0.1136

0.3 estimate 0.0903 1.0242 1.0233 1.0253 1.0251
s.d 0.0558 0.1138 0.1147 0.1142 0.1157

0.4 estimate 0.1281 1.0444 1.0434 1.0484 1.0515
s.d 0.0745 0.1128 0.1148 0.1185 0.1162

Table 2.2: Binary Data N=400, L=16

N=400, L=16, T=500, β = 1

ρ λ̂ β̌ β̂1 β̂4 β̂16

0 estimate −0.0033 1.0042 1.0043 1.0037 1.0050
s.d 0.0267 0.1082 0.1081 0.1103 0.1081

0.1 estimate 0.0238 1.0165 1.0165 1.0164 1.0166
s.d 0.0338 0.1174 0.1174 0.1170 0.1171

0.2 estimate 0.0504 1.0295 1.0280 1.0300 1.0303
s.d 0.0407 0.1118 0.1154 0.1120 0.1125

0.3 estimate 0.0822 1.0336 1.0336 1.0346 1.0366
s.d 0.0539 0.1121 0.1121 0.1135 0.1135

0.4 estimate 0.1100 1.0483 1.0483 1.0494 1.0516
s.d 0.0601 0.1277 0.1277 0.1283 0.1298
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From the above results, λ̂ is much smaller than ρ, which implies that a high spatial

correlation in the latent error term may only cause a tiny correlation in the binary response

variables. The PQMLE β̌ delivers almost the same efficiency as the other three two-step

estimators. Since the correlations between the binary dependent variables are low, a two-

step estimator may not be necessary. One can use other data generating process to generate

highly correlated binary dependent variables to examine the two-step method.

2.7.3 Spatial Count Data

In the count data case, the variances and covariances of the count dependent variable can

be written in closed forms. The spatial correlation in the underlying spatial error term is

then transformed to spatial correlation in the response variable term. That is, by knowing

the correlations in the spatial error term, we know the correlations in the count dependent

variable. This avoids the situation that we can not compare the estimated spatial correlation

parameter and the true parameter.

Remember the assumption of conditional mean function for the count data is

E (yi|xi, vi, DN ) = exp (xiβ + ei) = vi exp (xiβ0) . Consider the following case of spatial

count data generating process:

1. ei, i = 1, 2, ..., N follows a multivariate normal distribution with E(ei) = −1
2 and

Var (ei) = σ2 = 1; Cov
(
ei, ej

)
= ρ

dij
, and ρ = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6. Therefore, vi follows

a multivariate lognormal distribution with E(vi) = 1, Var (vi) = e − 1 and Cov
(
vi, vj

)
=

exp

(
ρ
dij

)
− 1.

2. xi = [1, xi1], xi1 ∼ Uniform (0, 1)

3. β = [1,−1]′

4. mi = exp (xiβ+ei)
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5. yi ∼ Poisson (mi)

The parameter ρ represents the correlation in the underlying error term. The true cor-

relations for yi and yj conditional on xi,xj , dij is

Corr
(
yi, yj |xi,xj , dij

)
(2.69)

=
exp (xiβ0) exp

(
xjβ0

) [
exp

(
ρ/dij

)
− 1
]√

exp (xiβ0) + exp (2xiβ0) · τ2
√

exp
(
xjβ0

)
+ exp

(
2xjβ0

)
· τ2

.

We can calculate the sample correlations in the simulated count data based on the above

expression. For each replication t, let ui = yi − exp (xiβ0) , and the sample correlation of y

for each t is:

ĉorrt
(
yi, yj |xi,xj , dij

)
=

1

Nd∗

N∑
i

N∑
j>i

uiuj√
exp (xiβ0) + exp (2xiβ0) · τ2

√
exp

(
xjβ0

)
+ exp

(
2xjβ0

)
· τ2

,

where Nd∗ is the number of distinct pairs of observations whose distance is equal to a certain

distance dij = d∗, and Var (y) is the sample variance of count variable at time t. Table 2.3

shows the sample correlations in y over the replications. The correlations are calculated

separately for pairs of y′is that are 1, 2, 5 apart from each other. As pairwise distances

increase, the correlations decrease. There is almost no correlation between two observations

when distance is 5. Moreover, the spatial parameter ρ can be as high as 0.6, and the sample

correlation of y can be as high as more than 0.3.
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Table 2.3: Correlations in Simulated Count Data

T=2000 N=400 N=1600
dij 1 2 5 1 2 5
Nij 760 720 1688 3170 3040 8028
ρ ρy,d=1 ρy,d=2 ρy,d=5 ρy,d=1 ρy,d=2 ρy,d=5
0 -0.001 -0.001 −0.000 0.000 0.000 -0.000

0.1 0.043 0.022 0.009 0.043 0.021 0.008
0.2 0.089 0.043 0.017 0.089 0.043 0.015
0.3 0.139 0.068 0.026 0.139 0.064 0.023
0.4 0.194 0.091 0.036 0.194 0.088 0.032
0.5 0.250 0.115 0.046 0.253 0.112 0.040
0.6 0.312 0.139 0.056 0.315 0.136 0.048

As long as we can find consistent estimators for τ2 and ρ, we can do the second step

estimation. As in 2.57 and 2.58, the conditional variances and covariances of count dependent

variable can be written in a closed form according to which the spatial parameters can be

estimated. Using the information above, τ2 can be estimated by τ̂2 as the coefficient by

regressing ǔ2
i − exp

(
xiβ̌
)

on exp
(
2xiβ̌

)
. Obviously τ̂2 does not depend on distances. For

simplicity ρ is estimated by 1
N0

∑N
i=1

∑N
j 6=i log[

ǔiǔj

exp(xiβ̌) exp
(
xj β̌

) + 1] for those pairs whose

pairwise distance is one, where N0 is the number of pairs whose distance is one.

Table 2.4 shows the simulation results of the case in which: N=1600, L=4 and L=16.

Replication is 2000. β̌ is the one-step QMLE estimator; β̂1, β̂4 and β̂16 are three two-step

estimators which uses different variance and covariance matrices of the count variable . β̂1

only uses the estimated variances as weights; β̂4 uses the covariance matrix with group size

equal to four, and β̂16 uses the covariance matrix with group size equal to sixteen. We

can see that all the three two-step estimators β̂1, β̂4 and β̂16 are more efficient than the

one-step estimator β̌. The two GEE estimators β̂4 and β̂16 has more improvement when ρ

grows larger. When sample size increases, efficiency gains. ρ̂ and τ̂2 are both slightly biased

downwards.
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Table 2.4: Count Data N=1600, L=4 and 16

N=1600 σ2 = 1, β = −1 L=4 L=16

ρ ρ̂ σ̂2 β̌ β̂1 β̂4 β̂16

0 estimate −0.002 0.984 -1.000 -0.998 -0.998 -0.998
bias −0.002 0.016 0.000 0.002 0.002 0.002
s.d. (0.043) (0.156) (0.139) (0.135) (0.135) (0.135)

0.1 estimate 0.095 0.980 -1.000 -0.998 -0.998 -0.998
bias −0.005 −0.020 0.000 0.002 0.002 0.002
s.d. (0.048) (0.158) (0.137) (0.134) (0.134) (0.134)

0.2 estimate 0.191 0.970 −1.001 -0.998 -0.998 -0.999
bias -0.008 -0.030 -0.001 0.002 0.002 0.001
s.d. (0.055) (0.160) (0.131) (0.128) (0.126) (0.126)

0.3 estimate 0.287 0.969 -0.998 -0.996 -0.995 -0.997
bias −0.013 -0.031 0.002 0.004 0.005 0.003
s.d. 0.063 (0.161) (0.138) (0.135) (0.132) (0.131)

0.4 estimate 0.384 0.967 −1.000 -0.998 -0.998 -0.999
bias −0.016 -0.033 0.000 0.002 0.002 0.001
s.d. (0.070) (0.172) (0.136) (0.134) (0.128) (0.126)

0.5 estimate 0.480 0.974 -0.998 -0.997 -0.996 -0.998
bias −0.020 −0.026 0.002 0.003 0.004 0.002
s.d. (0.076) (0.196) (0.134) (0.130) (0.120) (0.118)
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2.8 Conclusions

The spatial correlation in nonlinear models makes it more difficult to get efficient estima-

tors. For a Probit model, because of the nonlinearity, it is hard to find the real form of

spatial correlations between two dependent variables. Thus the estimated variance covari-

ance matrix is likely to be misspecified. In the spatial count data model case, since we

can actually write down the variances and covariances of the dependent variables based on

certain assumptions, we can use a multivariate nonlinear weighted least squares (MNWLS)

to improve the efficiency. Accounting for spatial correlation will improve efficiency in the

count data example. The further study will focus on how to get a better estimator for the

spatial correlation parameter, how to get a good approximation of the correlation structure

and how to incorporate spatial correlation in other nonlinear models, such as multi-catogary

binary choice, fractional response, two-part model and so on.
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Chapter 3

Conditions for the Numerical

Equality of the OLS, GLS and

Amemiya-Cragg Estimators

3.1 Introduction

Conditions under which the ordinary least squares (OLS) and generalized least squares (GLS)

estimators are equal are well known. This paper extends these results in two ways. First, we

give conditions under which GLS based on one assumed error variance matrix equals GLS

based on a different assumed variance matrix. Second, we give conditions under which GLS

equals the GMM estimator of Amemiya (1983) and Cragg (1983).

3.2 Equivalence of OLS and GLS

Consider the linear regression model

y = Xβ + ε (3.1)
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where y is T × 1 and X is T ×K. Let Σ be a T ×T , positive definite, assumed or estimated

variance matrix of ε. We consider the ordinary least squares (OLS) estimator β̂ and the

generalized least squares (GLS) estimator β̃ defined as follows:

β̂ = (X ′X)−1X ′y, β̃ = (X ′Σ−1X)−1X ′Σ−1y. (3.2)

The question is under what conditions on X and Σ it is the case that β̂ = β̃. Since these will

be conditions for numerical equality of the estimators, they will not depend on assumptions

about ε, and in particular they will not depend on whether Σ does or does not actually equal

the variance matrix of ε. We assume only that Σ, X ′X and X ′Σ−1X are positive definite.

This is an old and classic problem. The basic equivalence results were first given by

Zyskind (1962, 1967), Rao (1967) and Kruskal (1968). These results were summarized in

textbook fashion by Amemiya (1985). Since then the number of equivalent conditions for

equality of the two estimators has grown. The survey by Puntanen and Styan (1989) lists

20 such conditions. See also Baltagi (1989) and McAleer (1992) for more discussion and

applications of these results.

A related but different questions is under what conditions on Σ we have OLS = GLS for

all X. McElroy (1967) showed that, if X contains an intercept, a necessary and sufficient

condition is that
∑

have the “equicorrelated” form (all diagonal elements equal, and all

off-diagonal elements equal). Balestra (1970) extended this result to the case that a subset

of the regressors must have a certain form and then OLS = GLS for all possible values of

the remaining regressors. We do not seek to extend these results in this paper.

Because of the numerous different equivalent sets of conditions for the equality of OLS

and GLS, we will focus on the conditions given in Theorem 6.1.1 of Amemiya (1985, p. 182).
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The following Theorem is a minor extension of that result.

THEOREM 1. Suppose that Σ, X ′X and X ′Σ−1X are positive definite. Then the

following statements are equivalent.

(A) (X ′X)−1X ′ΣX(X ′X)−1 =
(
X ′Σ−1X

)−1

(B) ΣX = XB for some nonsingular B

(C) (X ′X)−1X ′ =
(
X ′Σ−1X

)−1
X ′Σ−1

(D) X = HA for some nonsingular A, where the columns of H are K eigenvectors of

Σ

(E) Z′ΣX = 0 for any Z such that Z′X = 0

(F) Σ = XΓX′ + QΘQ′ + c2I for some Γ, some Θ, some c, and some Q such that

Q′X = 0

(F’) Σ = XΨX′+RΦR′ for some Ψ, some Φ, and some R such that R′X = 0

Conditions (A)-(F) are, apart from a few changes in notation, as given by Amemiya,

p. 182.. Condition (F’) is new. Amemiya shows the equivalence of (A)-(E) and refers to

Rao (though not to the correct paper by Rao) for a proof of the equivalence of (F). It is

trivial that (F) implies (E) but the proof in Rao (1967, p. 364) that (E) implies (F) is not

transparent (or even complete; it just says that “it is easy to verify . . . ”). In Chapter 4 we

show that (F’) is equivalent to (F) and provide a straightforward proof that (D) implies (F’).
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3.3 Equivalence of Two Different GLS Estimators

We now consider two different GLS estimators:

β̃ = (X ′Σ−1X)−1X ′Σ−1y, β̈ = (X ′Ω−1X)−1X ′Ω−1y. (3.3)

We will provide conditions (on X,Σ and Ω) such that these two estimators are equal. (Ob-

viously the results of the previous section are a special case corresponding to Ω = I.) The

context that we have in mind is that Σ is the correct variance matrix of ε and Ω is an incor-

rect or approximate variance matrix. In this case β̈ could be considered to be a pseudo-GLS

estimate. However, our conditions are just conditions for equality of the two estimators and

so which (if either) is based on the correct variance matrix of ε is irrelevant. Note also that

any of the conditions given below must still hold if we reverse the roles of Σ and Ω, which is

why there are two versions of results (A), (B), etc.

The phrase “pseudo-GLS” has been used in the literature with a different meaning,

namely, GLS using the original error variance matrix but after some of the regressors have

been partialled out. See, e.g., Fiebig, Bartels and Krämer (1996) or Gross and Puntanen

(2000). This section does not apply to that topic, because we assume that both Σ and Ω

are nonsingular. Matthew (1983) gives conditions for the two different GLS estimators to

be equal for all X in a certain class. This is the same sort of question that was addressed

for equality of OLS and GLS by McElroy (1967) and Balestra (1970). Our Theorem below

is different because it applies for a given X.

THEOREM 2. Suppose that Σ,Ω, X′X,X ′Σ−1X and X ′Ω−1X are positive definite.

Then the following statements are equivalent.

(A1)
(
X ′Σ−1X

)−1
X ′Σ−1ΩΣ−1X

(
X ′Σ−1X

)−1
=
(
X ′Ω−1X

)−1
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(A2)
(
X ′Ω−1X

)−1
X ′Ω−1ΣΩ−1X

(
X ′Ω−1X

)−1
=
(
X ′Σ−1X

)−1

(B1) ΩΣ−1X = XB for some nonsingular B

(B2) ΣΩ−1X = XB for some nonsingular B

(C)
(
X ′Σ−1X

)−1
X ′Σ−1 =

(
X ′Ω−1X

)−1
X ′Ω−1

(D1) Σ−1/2X = HA for some nonsingular A, where the columns of H are K eigen-

vectors of

Σ−1/2ΩΣ−1/2

(D2) Ω−1/2X = HA for some nonsingular A, where the columns of H are K eigen-

vectors of

Ω−1/2ΣΩ−1/2

(E1) Z′ΩΣ−1X = 0 for any Z such that Z′X = 0

(E2) Z′ΣΩ−1X = 0 for any Z such that Z′X = 0

(F1) Ω = XΓX′ + ΣQΘQ′Σ + c2Σ for some Γ, some Θ, some c, and some Q such

that

Q′X = 0

(F2) Σ = XΓX′ + ΩQΘQ′Ω + c2Ω for some Γ, some Θ, some c, and some Q such

that

Q′X = 0

(F1’) Ω = XΨX′+ ΣRΦR′Σ for some Ψ, some Φ, and some R such that R′X = 0

(F2’) Σ = XΨX′+ ΩRΦR′Ω for some Ψ, some Φ, and some R such that R′X = 0

The proof of these results is given in Chapter 4. Our proof is essentially an exercise in

translation of Amemiya’s conditions. An alternative that we do not pursue would be to use

the results of Gourieroux and Monfort (1980).

The results in Theorem 2 have some applications that are similar to existing applications
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of Theorem 1 in the literature.

Example 1. Random coefficients. Consider the random coefficient model

y = Xβ∗ + u, β∗ = β + v so y = Xβ + ε where ε = u+Xv. (3.4)

Suppose that u and v are uncorrelated and V (v) = Γ. If V (u) = σ2I , then V (ε) ≡ Σ =

XΓX′ + σ2I. Therefore condition (F) of Theorem 1 applies and GLS = OLS, as has been

pointed out by Rao (1967), Amemiya(1985) and Baltagi(1989), among others. However,

now suppose that V (u) = Ω. Then Σ = XΓX′+ Ω. Therefore condition (F2) of Theorem 2

holds, and GLS based on Σ equals GLS based on Ω, which so far as we know is a previously

unknown result.

Example 2. SUR with the same regressors in every equation. Consider a set of G

seemingly unrelated regression equations, with T observations per equation and a common

regressor matrix X of dimension T ×K. Using standard notation, write the stacked system

of equations as

y∗ = X∗β∗ + ε∗ (3.5)

where y∗ is GT × 1, X∗ = (IG ⊗X) is GT ×KG, etc. Suppose that V (ε∗) = Σ⊗ IT ≡ Σ∗.

It is well known that GLS using Σ∗ is the same as OLS, and Baltagi (1989) proves this

using condition (B) of Theorem 1: Σ∗X∗ =X∗B where B = Σ ⊗ IK . Now suppose that

Ω∗=Ω⊗ IT is another possible variance matrix. Then GLS based on Σ∗ is the same as GLS

based on Ω∗. This is probably obvious, since both must equal OLS, but it can also be proved

using Theorem 2. Define Ψ = ΩΣ−1 and Ψ∗ = Ψ⊗ IT = Ω∗Σ−1
∗ . Then
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Ω∗Σ−1
∗ X∗ = Ψ∗X∗ = Ψ⊗X = X∗B (3.6)

where B = Ψ⊗ IK . So condition (B1) of Theorem 2 holds and the two GLS estimators are

the same.

3.4 Equivalence of GLS and the Amemiya-Cragg Esti-

mator

We now consider the two estimators:

β̃ = (X ′Σ−1X)−1X ′Σ−1y and β̌ = [X ′H(H′ΣH)−1H′X]−1X′H(H′ΣH)−1H′y. (3.7)

The first of these is the GLS estimator while the second is the estimator of Amemiya (1983)

and Cragg (1983). We will provide conditions (on X,H and Σ) such that these two estimators

are equal. If Σ is the correct error variance matrix, then the GLS estimator is efficient relative

to the Amemiya-Cragg estimator, and the Amemiya-Cragg estimator is efficient relative to

OLS if X is contained in H. However, again, our results are just algrebraic results for the

numerical equivalence of the two estimators.

THEOREM 3. Suppose that Σ, X ′Σ−1X and H′ΣH are positive definite and that

H′X has full column rank. Then the following statements are equivalent.

(A) X′H(H′ΣH)−1H′X = X′Σ−1X

(B) Σ−1X = HB for some B [or, X = ΣHB for some B]

(C) [X′H(H′ΣH)−1H′X]−1X′H(H′ΣH)−1H′ = (X ′Σ−1X)−1X ′Σ−1
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(D) X = SA where the columns of S are the eigenvectors that correspond to the

non-zero

eigenvalues of ΣH(H′ΣH)−1H′

(E) Z′Σ−1X = 0 for any Z such that Z′H = 0 [or, Z′X = 0 for any Z such that

Z′ΣH = 0]

(F’) Σ = XΓX′ + QΘQ′ for some nonsingular Γ, some Θ, some Q and some B (of

dimension L×K, where H is T × L) such that X′HB is nonsingular and Q′HB = 0

The proofs of these results are given in Chapter 4.
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Chapter 4

Proofs of Propositions and Theorems

4.1 Proofs of Propositions in Chapter 1

This sections provides proofs of propositions in Chapter 1.

Proof of Proposition 1

(1) Consistency.

β̂OLS = (X′X)−1X′Y

= β + (N−1
N∑
i=1

x
′
ixi)
−1(N−1

N∑
i=1

x
′
iui)

= β + [p lim(N−1
N∑
i=1

x
′
ixi)
−1 + op (1)][p lim(N−1

N∑
i=1

x
′
iui) + op (1)].

Under Assumption 2, since {(xi, ui)} is a mixing sequence, x′iui and x
′
ixi are also mixing.

By law of large numbers for mixing sequences (Arbia 2006, page 70), we have the following

two equations.

N−1
N∑
i=1

x
′
iui

p→ E

N−1
N∑
i=1

x
′
iui

 ,

N−1
N∑
i=1

x
′
ixi

p→ E

N−1
N∑
i=1

x
′
ixi

 .
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Under Assumption 3 and 4,

E

N−1
N∑
i=1

x
′
iui

 = N−1
N∑
i=1

E
(
x
′
iui

)
= 0,

E

N−1
N∑
i=1

x
′
ixi

 → A1.

And

p lim

N−1
N∑
i=1

x
′
ixi

−1

= A−1
1 .

Thus

β̂OLS
p→ β + A−1

1 · 0 = β.

(2) Asymptotic Normality.

√
N
(
β̂OLS − β

)
=

N−1
N∑
i=1

x
′
ixi

−1 1√
N

N∑
i=1

x
′
iui

 .

Under Assumption 3,

E

 1

N

N∑
i=1

x
′
iui

 =
1

N

N∑
i=1

E
(
x
′
iui

)
= 0.

Under Assumption 5,

Var

 1√
N

N∑
i=1

x
′
iui

 = BN
p→ B.

Let ZN ≡
1
N
∑N
i=1 x

′
iui−E

(
1
N
∑N
i=1 x

′
iui

)
√

Var
(

1
N
∑N
i=1 x

′
iui

) . Since x
′
iui is mixing, by the central limit

theorem of Wooldridge and White (1988) for mixing sequences, ZN
d→ N (0, 1). Thus
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1√
N

∑N
i=1 x

′
iui

d→ N (0,B) . Therefore,

√
N
(
β̂OLS − β

)
→d N

(
0,A−1

1 BA−1
1

)
.

Proof of Proposition 2

(1) Consistency.

Ω̂N ≡ ΩN

(
λ̂
)

is a consistent estimator in the sense that λ̂
p→ λ. Thus N−1X′Ω̂−1

N X
p→

N−1X′Ω−1
N X, and N−1X′Ω̂−1

N u
p→ N−1X′Ω−1

N u.

β̂FGLS = (X′Ω̂−1
N X)−1

(
X′Ω̂−1

N Y
)

= β +
(
N−1X′Ω̂−1

N X
)−1 (

N−1X′Ω̂−1
N u

)
p→ β +

(
N−1X′Ω−1

N X
)−1 (

N−1X′Ω−1
N u

)
= β +

[
p lim

(
N−1X′Ω−1

N X
)−1

+ op (1)

] [
p lim

(
N−1X′Ω−1

N u
)

+ op (1)
]
.

For any symmetric positive definite matrix ΩN ,

N−1X′Ω−1
N X

p→ E
(
N−1X′Ω−1

N X
)

p→ B,

p lim
(
N−1X′Ω−1

N X
)−1

= B−1.

Under Assumption 6,

N−1X′Ω−1
N u

p→ E
(
N−1X′Ω−1

N u
)

= 0.
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Thus

β̂FGLS = β +
[
B−1 + op (1)

]
· op (1)

p→ β.

(2) Asymptotic Normality.

√
N
(
β̂FGLS − β

)
=

(
N−1X′Ω̂−1

N X
)−1

(
1√
N

X′Ω̂−1
N u

)
=

(
N−1X′Ω−1

N X
)−1

(
1√
N

X′Ω−1
N u

)
+ op (1) .

Under Assumption 6, E
(
N−1X′Ω−1

N u
)

= 0.

Under Assumption 7,

Var

(
1√
N

X′Ω−1
N u

)
= E

(
1

N
X′Ω−1

N X

)
p→ B2.

Let PN ≡
N−1X′Ω−1

N u−E
(
N−1X′Ω−1

N u
)

√
Var
(
N−1X′Ω−1

N u
) =

N−1X′Ω−1
N u−E

(
N−1X′Ω−1

N u
)

√
N−1Var

(
1√
N

X′Ω−1
N u

) , by the central

limit theorem of Wooldridge and White (1988) for mixing sequences, PN
d→ N (0, 1). Thus,

1√
N

X′Ω−1
N u→N (0,B2) .

√
N
(
β̂FGLS − β

)
→N

(
0,B−1

2 B2B−1
2

)
= N

(
0,B−1

2

)
.

Proof of Proposition 3

In order to prove β̂FPGLS is consistent and asymptotically normal, we need to prove

that first β̂PGLS is consistent and asymptotically normal, and that β̂FPGLS and β̂PGLS are

asymptotically equivalent.
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(1) Consistency.

β̂PGLS =

 1

G

G∑
g=1

X′gΛ
−1
g Xg

−1 1

G

G∑
g=1

X′gΛ
−1
g yg


= β+

 1

G

G∑
g=1

X′gΛ
−1
g Xg

−1 1

G

G∑
g=1

X′gΛ
−1
g ug


Under Assumption P3-P5, since {(xi, ui)} is a mixing sequence, X′gΛ

−1
g Xg and X′gΛ

−1
g ug

are also two mixing sequences. By law of large numbers for mixing sequences (Theorem 3.57

in White), we have the following two equations.

1

G

G∑
g=1

X′gΛ
−1
g Xg

p→ E

 1

G

G∑
g=1

(
X′gΛ

−1
g Xg

) = Qg
p→ Q

1

G

G∑
g=1

X′gΛ
−1
g ug

p→ E
(
X′gΛ

−1
g ug

)
= 0.

Thus

β̂PGLS = β+

 1

G

G∑
g=1

X′gΛ
−1
g Xg

−1 1

G

G∑
g=1

X′gΛ
−1
g ug


= β+

[
Q−1 + op (1)

]
· op (1)

→ β

(2) Asymptotic Normality.

√
G
(
β̂PGLS − β

)
=

 1

G

G∑
g=1

X′gΛ
−1
g Xg

−1 1√
G

G∑
g=1

X′gΛ
−1
g ug

 ,
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By central limit theorem for mixing sequences (Wooldridge and White 1988),

1√
G

G∑
g=1

X′gΛ
−1
g ug →d N (0,S) ,

 1

G

G∑
g=1

X′gΛ
−1
g Xg

−1

= Q−1+op (1) .

Thus

√
G
(
β̂PGLS − β

)
d→ N

(
0,Q−1SQ−1

)
.

(3) β̂FPGLS and β̂PGLS are asymptotically equivalent.

Let Λ̂ ≡ Λ
(
λ̂
)
. Write down the formulas for the two estimators as follows.

β̂FPGLS =

 G∑
g=1

X′gΛ̂
−1
g Xg

−1 G∑
g=1

X′gΛ̂
−1
g yg

 ,

β̂PGLS =

 G∑
g=1

X′gΛ
−1
g Xg

−1 G∑
g=1

X′gΛ
−1
g yg

 .

In order to prove the asymptotic equivalence of β̂FPGLS and β̂PGLS , we need to prove the

following two conditions hold. The procedure follows Schmidt (1971).

 1

G

G∑
g=1

XgΛ̂
−1
g Xg

−1

−

 1

G

G∑
g=1

X′gΛ
−1
g Xg

 p→ op (1) ,

 1√
G

G∑
g=1

X′gΛ̂
−1
g ug

−
 1√

G

G∑
g=1

X′gΛ
−1
g ug

 p→ op (1) .

Lemma 1 1
G

∑G
g=1 X′gΛ̂

−1
g Xg − 1

G

∑G
g=1 X′gΛ

−1
g Xg = op (1)

Proof:
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We have consistent estimator λ̂ → λ, p lim
(
λ̂
)

= λ. Λ̂−1
g is a continuous function of λ̂,

thus Λ̂−1
g

p→ Λ−1
g .

X′gΛ̂
−1
g Xg

p→ X′gΛ
−1
g Xg

X′gΛ̂
−1
g Xg−Qg

p→ X′gΛ
−1
g Xg−Qg

1

G

G∑
g=1

X′gΛ̂
−1
g Xg −

1

G

G∑
g=1

Qg
p→ 1

G

G∑
g=1

X′gΛ
−1
g Xg −

1

G

G∑
g=1

Qg

 1

G

G∑
g=1

X′gΛ̂
−1
g Xg −

1

G

G∑
g=1

Qg

−
 1

G

G∑
g=1

X′gΛ
−1
g Xg −

1

G

G∑
g=1

Qg

 = op (1)

 1

G

G∑
g=1

X′gΛ̂
−1
g Xg −

1

G

G∑
g=1

Qg

− op (1) = op (1)

 1

G

G∑
g=1

X′gΛ̂
−1
g Xg −

1

G

G∑
g=1

Qg

 = op (1)

Thus the first equation holds.

Lemma 2 1√
G

∑G
g=1 X′gΛ̂

−1
g ug − 1√

G

∑G
g=1 E

(
X′gΛ

−1
g ug

)
= op (1) .

Similar to the argument in Lemma 1, we can get

1

G

G∑
g=1

X′gΛ̂
−1
g ug −

1

G

G∑
g=1

E
(
X′gΛ

−1
g ug

)
= op (1) ,

1

G

G∑
g=1

X′gΛ̂
−1
g ug − 0 = op (1) ,

1

G

G∑
g=1

X′gΛ̂
−1
g ug → p0,
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ŜG = V̂ar

 1√
G

G∑
g=1

X′gΛ̂
−1
g ug


=

1

G

G∑
g=1

G∑
h=1

E
(
X′gΛ̂

−1
g ugu

′
hΛ̂
−1
h Xh

)

E
(
X′gΛ̂

−1
g ugu

′
hΛ̂
−1
h Xh

)
= E

{
X′g
[
Λ−1
g + op (1)

]
ugu

′
h

[
Λ−1
h + op (1)

]
Xh

}
= E

(
X′gΛ

−1
g ugu

′
hΛ
−1
h Xh

)
+ E

(
X′g·op (1) ·ugu′hΛ

−1
h Xh

)
+E

{
X′gΛ

−1
g ugu

′
h · op (1) ·Xh

}
+E

{
X′g · op (1) · ugu′h · op (1) ·Xh

}

lim
G→∞

ŜG = lim
G→∞

1

G

G∑
g=1

G∑
h=1

E
(
X′gΛ̂

−1
g ugu

′
hΛ̂
−1
h Xh

)

= lim
G→∞

1

G

G∑
g=1

G∑
h=1

E
(
X′gΛ

−1
g ugu

′
hΛ
−1
h Xh

)
+ 0

= lim
G→∞

SG = S

In addition, by the central limit theorem for mixing sequence in Wooldridge and White

(1988), we get the asymptotic distribution for 1√
G

∑G
g=1 X′gΛ̂

−1
g ug,

1√
G

G∑
g=1

X′gΛ̂
−1
g ug →d N (0,S) ,

which is the same as 1√
G

∑G
g=1 X′gΛ

−1
g ug. Thus the second equation holds:

1√
G

G∑
g=1

X′gΛ̂
−1
g ug −

1√
G

G∑
g=1

X′gΛ
−1
g ug = op (1) .
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Finally we can write:

√
G
(
β̂FPGLS − β

)
=

 1

G

G∑
g=1

X′gΛ̂
−1
g Xg

−1 1√
G

G∑
g=1

X′gΛ̂
−1
g ug


=


 1

G

G∑
g=1

X′gΛ
−1
g Xg

−1

+ op(1)


 1√

G

G∑
g=1

X′gΛ
−1
g ug

+ op(1)


=

 1

G

G∑
g=1

X′gΛ
−1
g Xg

−1 1√
G

G∑
g=1

X′gΛ
−1
g ug

+ op(1)

=
√
G
(
β̂PGLS − β

)
+ op(1)

√
G
(
β̂FPGLS − β̂PGLS

)
= op(1)

Therefore, β̂FPGLS and β̂PGLS are asymptotically equivalent.

Proof of Proposition 4

As stated in Section 4, the HAC estimator that is robust to groupwise spatial correlation

and misspecification as in equation (1.26) is

Âvar
(
β̂FPGLS

)
rob

=
[∑G

g=1

(
X′gΛ̂

−1
g Xg

)]−1

[∑G
g=1

∑G
h=1 p

(
dgh
)
X′gΛ̂

−1
g ũgũ

′
hΛ̂
−1
h Xh

] [∑G
g=1

(
X′gΛ̂

−1
g Xg

)]−1
.

Define

Ŝ ≡ 1
G

∑G
g=1

∑G
h=1 p

(
dgh
)
X′gΛ̂

−1
g ũgũ

′
hΛ̂
−1
g Xh
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= 1
G

∑G
g=1 X′gΛ̂

−1
g ũgũ

′
gΛ̂
−1
g Xg + 1

G

∑G
g=1

∑G
h6=g p

(
dgh
)
X′gΛ̂

−1
g ũgũ

′
hΛ̂
−1
h Xh

Define the following expressions:

Sp =
1

G

G∑
g=1

G∑
h=1

p
(
dgh
)
X′gΛ

−1
g ugu

′
hΛ
−1
h Xh (4.1)

S
p
0 = E

 1

G

G∑
g=1

G∑
h=1

p
(
dgh
)
X′gΛ

−1
g ugu

′
hΛ
−1
h Xh

 (4.2)

S0 = E

 1

G

G∑
g=1

G∑
h=1

X′gΛ
−1
g ugu

′
hΛ
−1
h Xh

 (4.3)

∣∣∣Ŝ− S
∣∣∣ ≤ ∣∣∣Ŝ− S

p
∣∣∣+
∣∣Sp − S

p
0

∣∣+
∣∣Sp0 − S0

∣∣+ |S0 − S| (4.4)

In order to prove Proposition 4, we need to prove each of the above four terms on the

right-hand side to be op (1) . Since p lim
(
λ̂
)

= λ, Λ̂g → Λg, as G → ∞. By Assumption

P6(b), |S0 − S| = op (1) . Rewrite the other three terms as follows:

∣∣∣Ŝ− S
p
∣∣∣ =

1

G

G∑
g=1

G∑
h=1

p
(
dgh
)
X′gΛg (λ)−1

(
ũgũ

′
h − ugu

′
h

)
Λh(λ)−1 Xh + op (1) . (4.5)

∣∣Sp − S
p
0

∣∣ =
1

G

G∑
g=1

G∑
h=1

p
(
dgh
)

(4.6)

·
{

X′gΛg (λ)−1 ugu
′
hΛh(λ)−1 Xh − E

[
X′gΛg (λ)−1 ugu

′
hΛh(λ)−1 Xh

]}

∣∣Sp0 − S0

∣∣ = E

 1

G

G∑
g=1

G∑
h=1

[
1− p

(
dgh
)]

X′gΛg (λ)−1 ugu
′
hΛh(λ)−1 Xh

 . (4.7)
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First, prove the first term is op (1) .

ũgũ
′
h = ugu

′
h − ug

(
β̂FPGLS − β

)′
X′h −Xg

(
β̂FPGLS − β

)
u
′
h (4.8)

+Xg

(
β̂FPGLS − β

)(
β̂FPGLS − β

)′
X′h.

It suffices to show that the averages of the last three terms converge in probability to zero.

The average of the vec of the first term can be written as 1
G

∑G
g=1

∑G
h=1

(
Xh ⊗ ug

)
vec
(
β̂FPGLS − β

)
, which is op (1) because p lim β̂FPGLS − β = 0 and 1

G

∑G
g=1

∑G
h=1(

Xh ⊗ ug
)
→p 0. The third term is the transposition of the second. The average of the

last term can be written as 1
G

∑G
g=1

∑G
h=1

(
Xh ⊗Xg

)
vec[(β̂FPGLS − β)(β̂FPGLS − β)′].

vec[(β̂FPGLS−β)(β̂FPGLS−β)′] = op (1). Assuming Xh and Xg have finite second moment,

each element of 1
GΣGg=1ΣGh=1(Xh⊗Xg) is Op (1) . Since Op (1) · op (1) = op (1), the last term

is op (1). Thus ũgũ
′
h − ugu

′
h = op (1) . Further assuming each element in Λh is finite, each

element in the first term is op (1) .

The rest terms can be proved to be op (1) by similar arguments.

Proof of Proposition 5

A sufficient condition is LG is stochastically equicontinuous according to Newey (1991).

LG =
G∑
g=1

lg (β, λ)

=
G∑
g=1

lg (β0, λ0) +
G∑
g=1

sg

(
β̈, λ̈

)(β − β0

λ− λ0

)
,
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where β̈ is between β0 and β, and λ̈ is between λ0 and λ.

sup ‖LG (θ)− LG (θ0)‖

= sup

∥∥∥∥∥∥
G∑
g=1

lg (β0, λ0) +
G∑
g=1

sg

(
β̈, λ̈

)(β − β0

λ− λ0

)
−

G∑
g=1

lg (β0, λ0)

∥∥∥∥∥∥
= sup

∥∥∥∥∥∥
G∑
g=1

sg

(
β̈, λ̈

)(β − β0

λ− λ0

)∥∥∥∥∥∥
= sup

∥∥∥∥∥∥
G∑
g=1

sg

(
β̈, λ̈

)∥∥∥∥∥∥
∥∥∥∥(β − β0

λ− λ0

)∥∥∥∥
< ∞.

Thus LG (θ) is stochastically equicontinuous. The PQMLE estimator is consistent.

The (k + p)× 1 score of the log likelihood of group g is simply

sg (β, λ) ≡
(∇βlg (β, λ)′

∇λlg (β, λ)′

)
,

where

∂L (β;λ)

∂β
= ∇βlg (β, λ)′ = X′gΛ

−1
g (λ)

(
yg −Xgβ

)
,

and

∂L (β;λ)

∂λ
= ∇λlg (β, λ)′

= −1

2
∇λΛg (λ)′ vec

[
Λ−1
g (λ)

]
+

1

2
∇λΛg (λ)′ vec

{
Λ−1
g (λ)

[
ugu

′
g − Λg (λ)

]
Λ−1
g (λ)

}
=

1

2
∇λΛg (λ)′

[
Λ−1
g (λ)⊗ Λ−1

g (λ)
]

vec
[
ugu

′
g − Λg (λ)

]
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Set
G∑
g=1

sg (β, λ) = 0.

β̂PQMLE =

 G∑
g=1

X′gΛ
−1
g

(
λ̂
)

Xg

−1
G∑
g=1

X′gΛ
−1
g

(
λ̂
)

yg,

λ̂PQMLE may or may not have a closed functional form.

The groupwise QMLE is normally distributed asymptotically.

√
G
(
θ̂ − θ0

)
⇒d N

(
0,A−1BA−1

)

SG

(
θ̂
)

=
G∑
g=1

sg

(
θ̂
)

= 0

=
G∑
g=1

sg (θ0) +
G∑
g=1

Hg

(
θ̈
)(

θ̂ − θ0

)

(
θ̂ − θ0

)
=

− G∑
g=1

Hg

(
θ̈
)−1

G∑
g=1

sg (θ0)

√
G
(
θ̂ − θ0

)
=

− 1

G

G∑
g=1

Hg

(
θ̈
)−1

1√
G

G∑
g=1

sg (θ0)

By ergodic theorem for mixing fields,

− 1

G

G∑
g=1

Hg

(
θ̈
)

p→ A

A = E
[
Hg (θ0)

]
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By central limit theorem in Jenish and Prucha (2007),

1√
G

G∑
g=1

sg (θ0)
d⇒ N (0,B)

B = lim
G→∞

1

G
Var

 G∑
g=1

sg (θ0)

 .
Thus we have

√
G
(
θ̂ − θ0

)
d⇒ N

(
0,A−1BA−1

)
.

4.2 Proofs of Propositions in Chapter 2

This section provides proofs of propositions in Chapter 2.

Proof of Proposition 6

The proof follows Theorem 2 in Jenish and Prucha (2009). A sufficient condition for

consistency estimators is that the objective function satisfies the uniform law of large num-

bers (ULLN). To prove the ULLN, we need a pointwise law of large numbers (LLN). From

Assumption 4, we have a pointwise LLN, and we get QN (θ) − Q̄N (θ) →a.s. 0, where

Q̄N (θ) = E (QN (θ)) .Since QN (θ) is the sample average of qi, it is also stochastically

equicontinuous. Then we have supθ

∣∣∣QN (θ)− Q̈ (θ)
∣∣∣ →a.s. 0 as N → ∞, which is the

uniform law of large numbers.

Proof of Proposition 7

Proof of Proposition 7 is similar to the proof of Proposition 6. Instead of writing the objective

function in the sum of individuals, we write it as the sum of groups. The pointwise LLN
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can be written as QG (θ)− Q̄G (θ)→a.s. 0, where Q̄G (θ) = E (QG (θ)) . In addition with the

stochatically equicontinuity condition, supθ

∣∣∣QG (θ)− Q̈ (θ)
∣∣∣ →a.s. 0 as G→∞.

Proof of Proposition 8

SG
(
θ̌
)

=
G∑
g=1

sg
(
θ̌
)

= 0

=
G∑
g=1

sg (θ0) +
G∑
g=1

Hg

(
θ̈
)(

θ̂ − θ0

)

(
θ̌ − θ0

)
=

− G∑
g=1

Hg

(
θ̈
)−1

G∑
g=1

sg (θ0)

√
G
(
θ̌ − θ0

)
=

− 1

G

G∑
g=1

Hg

(
θ̈
)−1

1√
G

G∑
g=1

sg (θ0)

By uniform law of large numbers for mixing fields,

− 1

G

G∑
g=1

Hg

(
θ̈
)
→ pA0

A0 = E
[
Hg (θ0)

]

By Central Limit Theorem in Jenish and Prucha (2009),

1√
G

G∑
g=1

sg (θ0) ⇒ dN (0,B0)

B0 = lim
G→∞

1

G
Var

 G∑
g=1

sg (θ0)


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Thus we have

√
G
(
θ̌ − θ0

)
⇒d N

(
0,A−1

0 B0A−1
0

)
.

Proof of Proposition 9

√
G
(
θ̂G−θ0

)
=

− 1

G

G∑
g=1

Hg

(
θ̈; γ̂
)−1

G∑
g=1

sg (θ0; γ̂) ,

√
G
(
θ̂G−θ0

)
= A0

− 1√
G

G∑
g=1

sg (θ0; γ̂)

+ op (1) ,

where A0 = limG→∞
{
− 1
G

∑G
g=1 E

[
Hg (θ0, γ

∗)
]}

by law of large numbers for mixing se-

quences.

1√
G

G∑
g=1

sg (θ0; γ̂) =
1√
G

G∑
i=1

sg (θ0; γ∗) + F0

√
G (γ̂ − γ∗) + op (1) ,

where F0 is a P × J matrix, F0 = limi→∞
{

1
G

∑G
g=1 E

[
∇γsg (wi, θ0; γ∗)

]}
.

Assume
√
G (γ̂ − γ∗) can be written in the following form:

√
G (γ̂ − γ∗) =

1√
G

G∑
g=1

rg (γ∗) + op (1) ,

where rg (γ∗) is a J × 1 vector with E
[
rg (γ∗)

]
= 0 . Then

√
G
(
θ̂ − θ0

)
= A0

1√
G

G∑
g=1

[
−eg (θ0; γ∗)

]
+ op (1)

eg (θ0; γ∗) ≡ sg (θ0; γ∗) + F0rg (γ∗)

D0 ≡ lim
G→∞

1

G
E

 G∑
g=1

eg (θ0; γ∗)
G∑
h=1

eh (θ0; γ∗)′


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Avar
√
G
(
θ̂ − θ0

)
= A−1

0 D0A−1
0

In the case of QMLE, we can see ∇m′g (θ) and mg (θ) do not rely on γ. When we take deriva-

tives with respect to γ, it only matters with W−1
g . ∇γsg

(
wg, θ0; γ∗

)
is a linear combination

of elements of
[
yg −mg (θ)

]
. Since the E

[(
yg −mg

)
|w,D

]
= 0, E

[
∇γsg

(
wg, θ0; γ∗

)
|w,D

]
= 0. By law of iterated expectations, E

[
∇γsg

(
wg, θ0; γ∗

)]
= 0. Thus F0 = 0.

Avar
√
G
(
θ̂ − θ0

)
= A−1

0 B0A−1
0

and B0 = limG→∞Var
[

1√
G

∑G
g=1 sg (θ0, γ

∗)
]

Proof of Proposition 10

Let ∇m̂g = ∇mg

(
θ̂
)
, ∇m̂′g = ∇m′g

(
θ̂
)
. The proof consists two parts:

(1) Â→ A0; (2)B̂2 → B0.

Part (1) prove that Â→ A0.

Â = 1
G

∑G
g=1∇m̂′gŴ

−1
g ∇m̂g → limG→∞

1
G

∑G
g=1 E

(
∇m′gW

−1
g ∇mg

)
= A0

Part (2) prove that B̂2 → B0.

B̂2=
1

G

G∑
g=1

G∑
h=1

k(dgh)∇m̂′gŴ
−1
g ûgû

′
hŴ

−1
h ∇m̂h,

and

B0 = lim
G→∞

1

G

G∑
g=1

E
[
∇m′gW

−1
g ugu

′
gW
−1
g ∇mg

]

+ lim
G→∞

1

G

G∑
g=1

G∑
g 6=h

E
[
∇m′gW

−1
g uguhW

−1
h ∇mh

]
.
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Define

Zg = ∇mgW
−1
g ug

Ẑg = ∇m̂′gŴ
−1
g ûg

For a given G,

B̂2 =
1

G

G∑
g=1

∇m̂′gŴ
−1
g ûgû

′
gŴ
−1
g ∇m̂g +

1

G

G∑
g=1

G∑
g 6=h

k(dgh)∇m̂hŴ
−1
g ûgû

′
hŴ

−1
h ∇m̂h

=
1

G

G∑
g=1

Ẑ
′
gẐg +

1

G

G∑
g=1

G∑
g 6=h

k(dgh)Ẑ
′
gẐh,

B0 =
1

G

G∑
g=1

E
[
∇m′gW

−1
g ugu

′
gW
−1
g ∇mg

]
+

1

G

G∑
g=1

G∑
g 6=h

E
[
∇m′gW

−1
g ugu

′
hW

−1
h ∇mh

]

=
1

G

G∑
g=1

E
[
Z
′
gZg

]
+

1

G

G∑
g=1

G∑
g 6=h

E
[
Z
′
gZh

]
.

Define

Bk
0 =

1

G

G∑
g=1

E
[
∇m′gW

−1
g ugu

′
gW
−1
g ∇mg

]

+
1

G

G∑
g=1

G∑
g 6=h

k(dgh)E
[
∇m′gW

−1
g ugu

′
hW

−1
h ∇mh

]

=
1

G

G∑
g=1

E
(
Z
′
gZg

)
+

1

G

G∑
g=1

G∑
g 6=h

k(dgh)E
(
Z
′
gZh

)
,
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Bk =
1

G

G∑
g=1

[
∇m′gW

−1
g ugu

′
gW
−1
g ∇mg

]
+

1

G

G∑
g=1

G∑
g 6=h

k(dgh)
[
∇m′gW

−1
g ugu

′
hW

−1
h ∇mh

]

=
1

G

G∑
g=1

Z
′
gZg +

1

G

G∑
g=1

G∑
g 6=h

k(dgh)Z
′
gZh.

Next,

∣∣∣B̂2−B0

∣∣∣ =
∣∣∣B̂2−Bk + Bk −Bk

0 + Bk
0 −B0

∣∣∣
≤

∣∣∣B̂2−Bk
∣∣∣+
∣∣∣Bk −Bk

0

∣∣∣+
∣∣∣Bk

0 −B0

∣∣∣
=

∣∣∣∣∣∣B̂2−

 1

G

G∑
g=1

Z
′
gZg +

1

G

G∑
g=1

G∑
g 6=h

k(dgh)Z
′
gZh

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1

G

G∑
g=1

[
Z
′
gZg − E

(
Z
′
gZg

)]
+

1

G

G∑
g=1

G∑
g 6=h

k(dgh)
[
Z
′
gZh − E

(
Z
′
gZh

)]∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1

G

G∑
g=1

E
(
Z
′
gZg

)
+

1

G

G∑
g=1

G∑
g 6=h

k(dgh)E
(
Z
′
gZh

)
−B0

∣∣∣∣∣∣
=

∣∣∣∣∣∣B̂2−

 1

G

G∑
g=1

Z
′
gZg +

1

G

G∑
g=1

G∑
g 6=h

k(dgh)Z
′
gZh

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1

G

G∑
g=1

[
Z
′
gZg − E

(
Z
′
gZg

)]
+

1

G

G∑
g=1

G∑
g 6=h

k(dgh)
[
Z
′
gZh − E

(
Z
′
gZh

)]∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1

G

G∑
g=1

G∑
g 6=h

k(dgh)E
(
Z
′
gZh

)
− 1

G

G∑
g=1

G∑
g 6=h

E
[
Z
′
gZh

]∣∣∣∣∣∣
≤

∣∣∣∣∣∣B̂2−

 1

G

G∑
g=1

Z
′
gZg +

1

G

G∑
g=1

G∑
g 6=h

k(dgh)Z
′
gZh

∣∣∣∣∣∣ (4.9)

+

∣∣∣∣∣∣ 1

G

G∑
g=1

[
Z
′
gZg − E

(
Z
′
gZg

)]
+

1

G

G∑
g=1

G∑
g 6=h

k(dgh)
[
Z
′
gZh − E

(
Z
′
gZh

)]∣∣∣∣∣∣
+

1

G

G∑
g=1

G∑
g 6=h

∣∣k(dgh)− 1
∣∣ ∣∣∣E(Z ′gZh)∣∣∣
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Next, prove each of the right hand side term goes to zero. Define pgh = Z
′
gZh−E

(
Z
′
gZh

)
.

Use this device to make the mean value expansion go to zero and this will complete the proof.

4.3 Proofs of Theorems in Chapter 3

This section provides proofs of theorems in Chapter 3.

Proof of Theorem 1

Amemiya (1985, pp. 182-183) showed the equivalence of conditions (A), (B), (C),

(D) and (E). It is trivial that (F) implies (E) and that (F’) implies (F). We still need to

establish that one of (A), (B), (C), (D) or (E) implies (F’).

Proof that (D) implies (F’): Condition (D) says thatX = F1A for some nonsingu-

lar A, where the eigenvectors of Σ are F = [F1, F2] and the eigenvalues are Λ =

 Λ1 0

0 Λ2

,

a diagonal matrix. We can choose F such that F ′F = I and therefore F1′F2 = 0. Then the

spectral representation of Σ says

Σ = FΛF ′ = F1Λ1F1′+ F2Λ2F2′.

Since F1 = XA−1,

Σ = X(A−1Λ1A′−1)X′+ F2Λ2F2′.

Finally, X′F2 = A′F1′F2 = 0. So (F’) holds.

Because the result is somewhat counterintuitive, we also give a proof that (F) implies

(F’).

Proof that (F) implies (F’): Suppose that (F) holds so Σ = XΓX′+QΘQ′+c2I with

Q′X = 0. Now define PX = I −X(X′X)−1X′ and MX = I − PX . Since Q is in the null

space of X, Q = MXB for some B. Also, there exists a matrix A, of dimension T × (T −K),
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such that

MX = AA′, A′A = IT−K and A′X = 0. (See, e.g., Theil (1971, pp. 203-209).) So we

can write

Σ = XΓX′+QΘQ′+ c2(PX +MX)

= X[Γ + c2(X′X)−1]X′+MXBΘB′MX + c2MX

= X[Γ + c2(X′X)−1]X′+ A[c2I + A′BΦB′A]A′

Since A′X = 0, condition (F’) holds.

Proof of Theorem 2

The model is y = Xβ + ε, and β̃ = (X ′Σ−1X)−1X ′Σ−1y is GLS assuming that the

variance matrix of ε is Σ. Now define X∗ = Ω−1/2X, y∗ = Ω−1/2y and Σ∗ = Ω−1/2ΣΩ−1/2

(so Σ−1
∗ = Ω1/2Σ−1Ω1/2). Then β̈ = (X ′Ω−1X)−1X ′Ω−1y is OLS of y∗ on X∗, and

β̃ = (X ′∗Σ
−1
∗ X∗)−1X ′∗Σ

−1
∗ y∗ is GLS of y∗ on X∗ using the error variance matrix Σ∗. So

Amemiya’s results apply if we simply replace his X by X∗, and Σ by Σ∗.

(A) (X ′∗X∗)
−1X ′∗Σ∗X∗(X

′
∗X∗)

−1 = (X ′∗Σ
−1
∗ X∗)−1(

X ′Ω−1/2Ω−1/2X
)−1

X ′Ω−1/2 · Ω−1/2ΣΩ−1/2 · Ω−1/2X
(
X ′Ω−1/2Ω−1/2X

)−1

=
(
X ′Ω−1/2 · Ω1/2Σ−1Ω1/2 · Ω−1/2X

)−1

(
X ′Ω−1X

)−1
X ′Ω−1ΣΩ−1X

(
X ′Ω−1X

)−1
=
(
X ′Σ−1X

)−1

which is condition (A2) of Theorem 2.

(B) Σ∗X∗ = X∗B for some nonsingular B

Ω−1/2ΣΩ−1/2 · Ω−1/2X = Ω−1/2XB for some nonsingular B

ΣΩ−1/2X = XB for some nonsingular B

which is condition (B2) of theorem 2.

(C) (X ′∗X∗)
−1X ′∗ = (X ′∗Σ

−1
∗ X∗)−1X ′∗Σ

−1
∗
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(
X ′Ω−1X

)−1
X ′Ω−1/2 = X ′Ω−1/2 · Ω1/2Σ−1Ω1/2 · Ω−1/2X(

X ′Ω−1X
)−1

X ′Ω−1 =
(
X ′Σ−1X

)−1
X ′Σ−1

which is condition (C) of Theorem 2.

(D) X∗ = HA for some nonsingular A, where the columns of H are Keigenvectors of Σ∗.

Ω−1/2X = HA for some nonsingular A, where the columns of H are Keigenvectors of

Ω−1/2ΣΩ−1/2.

which is condition (D2) of Theorem 2.

(E) X ′∗Σ∗ Z = 0 for any Z such that Z′X∗ = 0.

X ′Ω−1/2 · Ω−1/2ΣΩ−1/2 · Z = 0 for any Z such that Z′Ω−1/2X = 0.

X ′Ω−1ΣΩ−1/2 · Z = 0 for any Z such that Z′Ω−1/2X = 0.

Now define Z∗ = Ω−1/2Z. Then this condition becomes X ′Ω−1ΣZ∗ for any Z∗ such that

Z ′∗X = 0, which is condition (E1) of Theorem 2.

(F) Σ∗ = X∗ΓX ′∗ +QΘQ′+ c2I with Q′X∗ = 0.

Ω−1/2ΣΩ−1/2 = Ω−1/2XΓX ′Ω−1/2 +QΘQ′+ c2I with Q′Ω−1/2X = 0.

Σ = XΓX′+ Ω1/2QΘQ′Ω1/2 + c2Ω with Q′Ω−1/2X = 0.

Now let Q∗ = Ω−1/2Q. Then we obtain

Σ = XΓX′+ ΩQ∗ΘQ∗′Ω + c2Ω with Q∗′X = 0

which is condition (F2) of Theorem 2.

(F’) The proof is essentially the same as for condition (F).

Proof of Theorem 3

Proof that (A) and (C) are equivalent: Define

∆ =
[
X ′H

(
H ′ΣH

)−1
H ′X

]−1
X ′H

(
H ′ΣH

)−1
H ′ − (X ′Σ−1X)−1X ′Σ−1
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then
[
X ′H

(
H ′ΣH

)−1
H ′X

]−1
− (X ′Σ−1X)−1 = ∆Σ∆′. So ∆ = 0 (Which is condition

(C)) is equivalent to
[
X ′H

(
H ′ΣH

)−1
H ′X

]−1
= (X ′Σ−1X)−1, which is condition (A).

Proof that (A) and (B) are equivalent:

X ′Σ−1X −X ′H
(
H ′ΣH

)−1
H ′X = X ′Σ−1/2[I − P

[Σ1/2H]
]Σ−1/2X

and this equals zero if and only if Σ−1/2X is in the column space of Σ1/2H, that is ,

Σ−1/2X = Σ1/2 HB for some B, or Σ−1X = HB or X = ΣHB, which is condition (B).

Proof that (B) and (E) are equivalent: The proof that (B) implies (E) is trivial. To

show that (E) implies (B), suppose that Z′H = 0. Then Z = MHS where MH = I − PH =

I −H(H′H)−1H′. Then (E) says that Z′Σ−1X = 0, or S′MHΣ−1X = 0. This is true for

any S, so it must be true that MHΣ−1X = 0, that is Σ−1X is in the column space of H, or

Σ−1X = HB for some B. This is condition (B).

Proof that (B) and (D) are equivalent: Note that

ΣH
(
H ′ΣH

)−1
H ′ · ΣH = ΣH • I

That is, the column of ΣH are eigenvectors of ΣH
(
H ′ΣH

)−1
H ′, and the eigenvalues

equal one. So, if (B) holds, X = ΣHB and X is a linear combination of these eigenvectors,

so (D) holds. Conversely, if (D) holds, then X = (ΣH)A and (B) holds.

Proof that (F’) implies (B): Suppose (F’) holds, so that

Σ = XΓX′+QΘQ′

and Q satisfies Q′HB = 0 for some B such that X′HB is nonsingular. Then, for that B,

ΣHB = XΓX′HB +QΘQ′HB = XΓX′HB

and so

X = ΣH[B(X′HB)−1Γ−1]

So condition (B) holds.
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Proof that (B) implies (F’): Suppose (B) holds so that X = ΣHB. Let Γ =

(B′H′ΣHB)−1,

where the inverse must exist because X has rank K so HB must have rank K. Then

Σ = XΓX′+ C

where

C = Σ− ΣHB(B′H′ΣHB)−1B′H′Σ

= Σ1/2[I − P
[Σ1/2HB]

)]Σ1/2

= QQ′

where Q = Σ1/2[I − P
[Σ1/2HB]

].

Then Q′HB = [I − P
[Σ1/2HB]

]Σ1/2HB = 0. So (F’) holds.
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