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Abstract

REPLICATING NATURAL TREE STAND PATTERNS IN A NORTHERN

MICHIGAN ROCK OUTCROP LANDSCAPE: A FRACTAL BASED METHOD AND

APPLICATION FOR REFORESTING A RECLAIMED MICHIGAN SURFACE

MINE

BY

Wade J Lehmann

Landscape planners and designers are interested in

replicating natural landscape patterns to reclaim degraded

landscapes to match existing conditions. One approach that

shows promise is the use of fractal geometry to create

natural landscape patterns. While the measurement of the

actual fractal dimension of an object is difficult, the

box-counting method (developed at Agrocampus Ouest, Angers,

France) approximates the fractal dimension of an object.

This process is illustrated by measuring and replicating a

stand of trees in the Upper Peninsula of Michigan and

applying the method for a planting plan on a Northern

Michigan surface mine. The estimated fractal dimension of

each tree is; 0.329 for TSuga canadensis carriers, 0.674

for Thuja occidentalis L., 0.607 for Acer rubrum L, 0.345

for Acer saccharum Marshall, 0.442 for Pinus strobus L.,

and 0.359 for Picea glauca (MOench) VOss.
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INTRODUCTION

Surface mine reclamation is an important subject which

involves land planning, ecology, landscape design, and site

engineering. Reclaiming surface mines is the process of

successfully converting a material resource exhausted

environment into one that can accomplish a new land use

(Burley, 2001). Mine reclamation has become an area of

interest in the past half decade possibly because of

increased environmental awareness. The Surface Mining

Control and Reclamation Act of 1977 mandated that all

abandoned surface mines be reclaimed. The western United

States alone houses over 500,000 abandoned and active

mines, spanning millions of acres (Berger, 2008). The

amount of surface mines in the United States and the

harmful effect of abandoned mines require attention from

landscape planners and designers.

Surface mine reclamation can utilize many different

end results. According to Burley (2001), a successful

reclamation process includes; recognizing the traditional

land use of the pre mining environment, and attempting to



return the post mining landscape to this condition or

another acceptable land use. Typical post mining land uses

include but are not limited to; agriculture, housing

development, parks and recreation, pasture, wildlife

habitat, and forested land. According to Berger (2008),

“mine sites enable designers to speculate over a landscape

that is not bound by, nor indebted to, historical filters,

aesthetic tradition, or strict contextualitym reclamation

can act as a laboratory for experimentation.”

The process of reforesting reclaimed landscapes is

typically achieved by mass plantings of the most

commercially viable trees for a particular site. This study

investigates a new fractal based procedure for replicating

natural patterns found in the landscape.

Landscape planners, designers, and environmental

specialists are concerned in evaluating the spatial

composition of landscape features such as composition of

vegetation, forms of water bodies, and shape of terrain to

unify disturbed landscapes with natural ones. However,

natural looking assemblies were difficult to mathematically

duplicate. Typical techniques used to replicate natural

systems include the gestalt methods and ecological field

methods (Fleurant, et al., 2009). The gestalt method was



heuristic in nature where one would creatively merge and

combine patterns together, until a desired condition was

achieved. The ecological field laboratory method used

scientific measures such as frequency, density, and size to

construct patterns. A new approach has evolved which

utilizes fractals to calculate spatial patterns in the

landscape (Fleurant et al., 2009). A fractal designates an

irregular or fragmented shape that can be divided into

parts, each of which is approximately a smaller copy of the

entire shape (Foroutan-pour et al., 1999).

1.1 ORIGIN OF FRACTALS

Fractals were originally noticed at the end of the 19th

century. However, the term “fractal” was coined later, the

Peano curves appear to be the first example of fractal

objects, first explained by Guiseppe Peano. The Peano

curves could fill a void through a series of iterations

utilizing only a few simple rules (Mandelbrot, 1982).

Fractals have been explored more thoroughly in the

latter half of the 20”‘century most notably by the French

mathematician Benoit Mandelbrot. Mandelbrot, while

researching “econometry” (mathematics applied to the



economy), found that there were no difference in the slopes

of curves predicting short-term and long-term market

prices. He compiled an extensive description of the curves

and created the term fractal (from the Latin word fractus,

meaning broken) to describe the objects where irregularity

separates them from typical Euclidian geometry curves. Upon

the discovery of fractals, their use and application has

broadened. Mandelbrot (1982) expresses the applications for

fractals as follows, “Nature exhibits a high level of

complexity in which typical Euclidian geometry classifies

as formless, these irregular and fragmented patterns around

us can be found using fractal geometry”. This is an

explanation of why fractals are used today in such sciences

as biology, ecology, and geology.

1.2 FURTHER DESCRIPTIONS ILLUSTRATING FRACTALS

To demonstrate the concept of fractals, picture the

rugged and rocky French coastline of Brittany. What is the

real length of the coastline? To determine the length one

could examine two forms of resolution.

1”.An aerial image from 10,000 meters high and calculating

the visible length of the coast.



:2.Another aerial image from 500 meters high and measuring

the details of the coast one meter at a time.

When measuring the length, one will determine that the

coastline is longer in the second case, and also more

accurate. If one were to examine the coastline at an even

finer resolution, the overall length would increase again.

The more defined the system of measurement, the greater the

length of the coastline will increase. The complexity of

the Brittany coastline (unable to be described with

Euclidian geometry) makes it a fractal object (Mandelbrot,

1982). As expressed by Mandelbrot previously, fractals are

everywhere in nature.

Fleurant et al.(2009) give a practical definition of

the concept of fractals as a “geometrical shape resulting

from infinite regular fragmentation of a given form”. It is

also proper to describe a fractal as a recurrence of the

same form on each part of the curve. If one looked closely

at any one part of a curve, it would resemble the entire

curve itself (Fleurant et al., 2009). Cantor's Dust

illustrates this property. Cantor’s Dust is an image which

results from Cantor's set, “a collection into a whole, of

definite, well distinguished objects of our perception or

thought." (Kamke, 1950) Cantor’s dust has the geometric



property where as the construction iteration process

increases towards infinity, the total length L increases

towards infinity. Imagine a straight line, then the same

line with the middle l/3rd removed. This process is

continued to infinity and eventually the divisions become

so small they are unobservable by the human eye (Figure

1.1). (Barnsley, 1988) The rings of Saturn are a real world

example of this phenomenon. Saturn’s ring was originally

thought to be one solid entity, upon closer examination

with higher powered telescopes it became clear that the

ring was actually comprised of many small rings.

 

 
 

Figure 1.1. Cantor’s Dust fractal object

 



1.3 GEOMETRIC PROPERTIES OF FRACTALS

Geometric properties of fractals are utilized in a

number of different sciences and numerous models. For

example, in geology fractals can be used for identifying

fractures in rocks, which threaten their structural

integrity (Velde et al., 1990). In economics, fractals are

used to predict complex random fluctuations in the stock

market (Mandelbrot, 1982). In computer sciences, fractals

are used to retrieve patterns in image processing (Liangbin

et al., 2005). In medicine, fractals can predict a

patient’s susceptibility to osteoporosis based on their

bone mineral density structure (Harrar and Hamami, 2007).

In chemistry, they are used to design new materials. The

fractal nature of these materials allows them extraordinary

properties, such as high thermal cooling power (Fleurant et

al., 2009).

It is important to understand there are two different

categories of fractals; theoretical fractals, and real

fractals. Theoretical fractals, such as the Peano curve and

Cantor’s dust mentioned prior, exhibit self similarity and

the dimensions can be mathematically calculated to infinite

(Mandelbrot, 1982). Real fractals, such as objects found in

nature, are not self similar, and do not continue to

7



infinite. To determine the dimensions of real fractals, one

must employ an estimation process such as the box-counting

method (Foroutan-Pour et al., 1999).

1.4 FRACTAL DIMENSIONS

In Euclidian geometry, the point has a dimension of 0.

Line and curves have a dimension of 1. Areas have a

dimension of 2, such as a triangle or circle. Volumes have

a dimension of 4, such as a cylinder or sphere. Fractal

objects also have dimensions (Mandelbrot, 1982).

Fractal dimensions have values which cannot be

expressed by a simple point or line. Objects such as those

found in nature cannot be explained by Euclidian geometry,

but can be expressed using fractals. Barnsley (1993)

affirms this idea by stating,

“Fractal dimensions can be attached to clouds, trees,

coastlines, feathers, networks of neurons in the body,

dust in the air at an instant in time, the clothes you

are wearing, the distribution of frequencies of light

reflected by a flower, the colors emitted by the sun,

and the wrinkled surface of the sea during a storm.”



Fractal dimensions attempt to quantify a subjective feeling

which we have about how densely the fractal object fills

the space in which it lies. They also provide a means for

comparing the complexity of different fractals (Fleurant et

al., 2009).

To demonstrate fractal dimensions, reconsider the

Brittany coastline. If one were to calculate a 1 m length

of a relatively straight line with a 20 cm ruler, the ruler

will be used 5 times, 10 times for a 10 cm ruler, or 20

times with a 5 cm ruler. If one were to measure the same

distance along the coastline, the total length will be

underestimated due to the irregular pattern of the coast.

The smaller the ruler used to measure the coast the more

accurate the estimated length. To evaluate this phenomenon

mathematically, one can declare that the result is more

accurate when using a smaller ruler that fits the curvature

of the line. If one can divide the length of the ruler of

an infinite small size by “n”, one has to use this ruler

“n” times more. This property can define the topological

dimension of the curve (Figure 1.2):



log(n)

Dtopological =m=

Figure 1.2 Equation for the fractal dimension of a line

Replicating this process again using a surface, one can use

a square where the length of the side is L. To measure its

area, one can use a smaller square where the length of one

side is L/2, then one will need 4 squares, 16 squares using

L/4, and so on. If the length of the side of the measuring

square is divided by “n”, the number of such squares used

is multiplied by “n” (Figure 1.3):

log(n2) log (n)

Dtopological =m= m=

Figure 1.3 Equation for the fractal dimension of an area

Similar results can be obtained for volumes and the

topological dimension of a Euclidian geometric object with

a fractal dimension of 3 (Fleurant et al., 2009).

In the moderately simple case of self-similar fractal

objects (meaning they appear the same no matter which

zooming factor is used), resulting in a constant iterative

factor “k”, the fractal dimension is (Figure 1.4):

10



log (n)

D =-————-'
fractal log (k)

Figure 1.4 Equation for the fractal dimension of self-

similar objects

Where:

n = the number of subsets counted during the scaling

process using a factor l/k (self-similarity factor).

k = number of iterations

Cantor’s Dust illustrates how to calculate the fractal

dimension of self-similar fractal objects. Consider a

single line with a length of L. If one were to remove the

middle 1/3rd of that line they would be left with two lines

where L equals 1/3. One can continue to remove the middle

l/3rd of every line formed by the previous division (the

dust presents an infinite number of “lines” with each

iteration). This process can be carried on indefinitely.

Then, using the same reasoningone can calculate the

fractal geometry of Cantor’s Dust (Figure 1.5):

1092

Dfractal = 59—3 = 0.6309

Figure 1.5 Equation for the fractal dimension of Cantor’s

Dust

11



Therefore, one can conclude that the fractal dimension

of this strange curve is not 1 as any of the classic linear

geometrical curves. Cantor’s Dust has a topological

dimension equal to 0 (it’s a broken line), but has a

fractal dimension of greater than 0, which is not an

integer but a real number.

The previous equations (figures; 1.2, 1.3, 1.4, and

1.5) are utilized to calculate the dimension of theoretical

fractals. These equations cannot be used to determine the

dimension of real fractals due to random elements present

in the natural setting (Foroutan-Pour et al., 1999).

Instead one must employ a more appropriate method to

estimate the fractal dimension. One such method that is

commonly utilized is the box-counting method (Foroutan—Pour

et al., 1999).

1.5 INVERSE BOX-COUNTING METHOD: A TOOL FOR REPLICATING

LANDSCAPES

The fractal dimension is not easy to calculate but can

be estimated using several methods. The box-counting method

is one of the simpler and most popular methods to utilize.

The box-counting method was developed by Duchesne et al.

12



(2002) and computed by Durandet (2003) in the Landscape

Department of the National Institute of Horticulture and

Landscape Angers, France, now the Unite de

RecherchePaysage; AgroCampusOuest. The natural object is

covered with a grid of size r and one counts the number of

boxes, N(r) that contain some part of the object. The value

of “r" is progressively reduced and N(r) is similarly re-

measured. As “r” tends to be very small values (0 in a

log (N(r))
1 becomes the fractal

108 (',:)

theoretical way) one finds that

dimension of the object (Fleurant et al., 2009).

The box-counting method is a simple tool to calculate

the complexity of a landscape using the value of its

fractal dimension. The greater an objects fractal dimension

(2 is the maximum value in a plane), the less complex the

arrangement of the planting pattern (in terms of scale,

structure, alignment, etc.)(Fleurant et al., 2009). By

utilizing this method, one is able to control the

randomness of plantings or other landscape features with

certain parameters: the fractal dimension (D), the average

minimum distance between two trees (€Mfi) and the average

maximum size of the boxes (6mm).

13



1.6 PLANNING AND DESIGN APPLICATIONS

There is a belief that fractals may have the ability

to re-create complex landscape patterns that are hard to

replicate with Euclidian geometry because the landscape is

full of fractals: rivers, trees, landscape networks in

general (Barnsley, 1993). Fractals are extremely detailed,

complex geometric shapes and a measure of their complexity

is the fractal dimension (Mandelbrot 1982). Accordingly, a

number of professionals have examined fractals in landscape

planning and design including studies by Diaz-Delgado et

al., (2005); DiBari (2007); Griffith et al., (2000); Li

(2000); Milne (1991); Palmer (1988); and Thomas et al.,

(2007). However, the use of fractals seems to be looking

for a more practical application. For example, in

landscapes it has always been relatively simple to describe

an existing pattern, but hard to replicate that pattern.

Presented in this paper is an approach to replicate

landscape patterns and a practical approach towards the use

of fractals.

Application of the inverse box-counting method to a

reclaimed surface mine has the potential to accurately

14



depict the natural vegetation patterns for a Northern

Michigan rock outcrop.

15



METHODOLOGY

This study examines the application of fractals in the

planting pattern of trees in the Upper Peninsula of

Michigan in Dickinson County. The area selected for the

study, located in Dickinson County (Figure 2.1), was

selected on a rocky and dry xeric northern forest (Figure

2.2), an environment similar to waste rock piles on a

surface mine where the fractal planting plan might be

appropriate (Curtis, 1959). Trees equaling 3 inches dbh

(diameter at breast height) or greater were recorded by a

remote gps (global positioning system) unit.

16



 

  

Dickinson

      

Study site \

F

   

 
0 Iron Mountain

  

Figure 2.1. Location of the study area in Michigan

 
Figure 2.2. Forest stand at the study site (notice the

rocky terrain and exposed bedrock)
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To further express the relationship between the study

site and the application site a pre-settlement image of the

study area (figure 2.3) has been created from an

interpretation of the 1816—1856 general land office surveys

by Albert and Comer (2008).

 

    
 

++++++

++++++.

+++++++++

+ + + + + + + + + -

Sugar Maple-Hemlock Forest 1- +

+++

  

  

 

  

 

 

Figure 2.3. Pre-settlement vegetation map (study area is

outlined by the rectangle in the upper right of image)

The map of pre-settlement vegetation suggests that the

study area was originally a Sugar Maple-Hemlock forest.

This forest type was the most predominant upland system in

the Upper Peninsula, and also consisted of large numbers of

White Pine. Soils associated with this cover type can be

18



steep and rocky, including exposures of basalt and granite

bedrock (Albert & Comer, 2008).

Another examination of the study area revealed a more

detailed analysis of the soil conditions. According to the

Soil Survey of Dickinson County, Michigan (United States

Department of Agriculture, Soil Conservation Service) the

study area consists of a Pemene-rock outcrop complex

(Linsemier, 1989). This complex consists of 35—65% Pemene

soil and 15-20% rock outcrop on slopes of 18—35%. Trees to

be planted on this complex include (but are not limited

to); White Pine, White Spruce, and Sugar Maple (Linsemier,

1989).

The location of trees can be placed on a map derived

from remote sensing field survey. This set of points

(location of trees) can be viewed as a complex and fractal

object in nature.

Points were gathered as X, Y data (latitude and

longitude) by a remote global positioning system (gps)

unit. Points were collected on an entire rock outcrop, and

mapped (globally) using ArcGIS software. The map of points

was then projected into UTM's (universal transverse

Mercator) for the application of trial grids to a two-

dimensional surface. The resulting map was then exported to

19



an Autocadd (computer aided drafting) program for creation

of the trial grids.

Selection criteria for the size of the trial grids

were determined by the size of the rock outcrop. The entire

outcrop measured approximately 60 meters by 80 meters. Thus

a trial grid of 50 meters was selected to encompass the

entire site with a series of trials occurring at random

placements within the study site. A total of five different

trials were completed for each species of tree on the rock

outcrop, resulting in 30 (50 by 50 meter) trials (see

Appendix). Each trial was then subject to the box-counting

method.

The box-counting process starts with the pairs of

values r and the number of boxes N(r), the starting value

of r is 50 meters, and the starting value of N(r) is one.

Then r is divided in half and the value of r becomes 25

meters, while N(r) can range from 1 to 4, depending on the

number of boxes which contain trees. The pairs of numbers

for the regression analysis includes the first pair where

at least one box becomes empty, and continues with

successive pairs at smaller sizes until every box contains

either one or no trees (Fleurant et al., 2009). In total

there were five 50 meter by 50 meter boxes for every

20



species of tree recorded in the study area with a count of

greater than one.

21



RESULTS

The tree species tallied on site include; Eastern

Hemlock (Tsuga canadensis carriers), Northern White Cedar

(Thuja occidentalis L.), Red Maple (Acer rubrum L.), Sugar

Maple (Acer saccharum Marshall), White Pine (Pinus strobus

L.), and White Spruce (Picea glauca (MCench) VOss).

Out of the 30 trials, 113 dependent and independent

variables for the regression analysis were derived (Table

3.1). The regression analysis revealed an adjusted r—square

of 0.444, with a significant p-value of O. The slope of the

line expressed in the regression equation is 0.578. This

suggests that the fractal dimension is between a point and

a line in typology (Figure 3.1).

Ln(N(r)) = 0.578Ln G) + 3.107

Figure 3.1. Fractal dimension equation for all species

Where: N(r): number of boxes with trees

r = length of one side of the box

22



Of the 30 trials, 6 species were identified as having their

own fractal dimension (see Table 3.2 for statistical

information). Each species of tree has the same number of

trials (5) but they have differing pairs of numbers.

23



Table 3.1. Dependent and independent variables for

regression analysis

 

 

Species Plot Ln(1/r) Ln(N(r))

Eastern Hemlock 1 -3.219 0.693

-2.526 1.386

‘ -1.833 1.609

-1.139 1.792

Eastern Hemlock 2 -3.219 1.099

-2.526 1.386

-1.833 1.386

-1.139 1.792

Eastern Hemlock 3 -3.219 0.693

-2.526 0.693

-1.833 1.099

Eastern Hemlock 4 -3.219 0.693

-2.526 1.099

-1.833 1.099

-1.139 1.386

—0.447 1.609

Eastern Hemlock 5 -3.219 1.099

Northern White Cedar 1 -3.219 1.099

-2.526 2.079

-1.833 2.639

-1.139 2.833

Northern White Cedar 2 -2.526 2.079

-1.833 2.565

-1.139 2.708

Northern White Cedar 3 -2.526 2.197

-1.833 2.398

-1.139 2.773

Northern White Cedar 4 -3.219 1.099

-2.526 1.792

-1.833 2.303

-1.139 2.565

Northern White Cedar 5 -2.526 1.946

-1.833 2.303

-1.139 2.639

Red Maple 1 -2.526 2.197

-1.833 2.773

-1.139 3.091

—0.447 3.296
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TABLE 3 . l CONT .
 

Red Maple 2

Red Maple 3

Red Maple 4

Red Maple 5

Sugar Maple 1

Sugar Maple 2

Sugar Maple 3

Sugar Maple 4

Sugar Maple 5

White Pine 1

White Pine 2
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-2.526

-1.833

-1.139

-0.447

-2.526

-1.833

-1.139

-2.526

-1.833

-1.139

-0.447

-3.219

-2.526

-1.833

-1.139

-0.447

3.219

-2.526

-1.833

-1.139

-0.447

-3.219

~2.526

-1.833

-1.139

-3.219

-3.219

-2.526

-1.833

-1.139

-3.219

~2.526

-1.833

-1.139

-2.526

-1.833

-1.139

0.447

-2.526

-1.833

-1.139

-0.447

2.485

2.890

3.258

3.367

2.079

2.565

2.944

2.398

2.944

3.219

3.367

1.099

1.792

2.565

2.773

2.944

1.099

1.609

1.792

1.792

1.946

1.099

1.386

1.792

1.946

1.099

1.099

1.386

1.386

1.792

0.693

1.099

1.099

1.609

2.197

2.485

2.565

2.639

2.303

2.708

3.091

3.135



TABLE 3 . 1 CONT .
 

White Pine 3

White Pine 4

White Pine 5

White Spruce 1

White Spruce 2

White Spruce 3

White Spruce 4

White Spruce 5
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-2.526

-1.833

-1.139

-0.447

-2.526

-1.833

-1.139

-0.447

-3.219

-2.526

-1.833

-1.139

-3.219

-2.526

-1.833

-1.139

-0.447

-3.219

-2.526

—1.833

-1.139

-3.219

-2.526

-1.833

-1.139

-0.447

-2.526

-1.833

-1.139

-3.219

-2.526

-1.833

-1.139

2.485

3.135

3.135

3.219

2.485

2.833

2.890

2.944

1.099

2.079

2.485

2.565

1.099

1.946

2.303

2.303

2.398

1.099

1.609

1.792

1.946

1.099

1.099

1.099

1.386

1.609

1.946

2.079

2.303

0.693

1.792

1.792

1.946



 

Species

Mean

Standard

Deviation 

 

E_|0_t§

E__ ch RM s_ v_vE ms

1 6 17 27 7 14 11

2 6 15 29 7 23 7

3 3 16 19 3 25 5

4 5 13 29 6 19 1o

5 3 14 19 5 13 7

4.6 15 24.6 56 18.8 8

1.52 1.53 5.18 167 5.31 2.45  
 

Table 3.2. Mean and standard deviations for each species

trial. EH-Eastern Hemlock, NWC—Northern White Cedar, RM—Red

Maple, SM-Sugar Maple, WP-White Pine, WS-White Spruce

1” Eastern Hemlock consists of 17 pairs of numbers. The

regression analysis revealed an adjusted r-square of

0.580, with a significant p-value of 0, and a

significant t-value of 4.807. The slope of the line

expressed in the regression equation is 0.329,

suggesting that the fractal dimension is between a

point and a line in typology (Figure 3.2).

Figure 3.2.

Ln(N(r)) = 0.329Ln G) + 1.936

Fractal dimension equation for Eastern

hemlock
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:2.N0rthern White Cedar consists of 17 pairs of numbers.

The regression analysis revealed an adjusted r—square

of 0.845, with a significant p-value of 0, and a

significant t—value of 9.382. The slope of the line

expressed in the regression equation is 0.674,

suggesting that the fractal dimension is between a

point and a line in typology (Figure 3.3).

Ln(N(r)) = 0.674Ln G) + 3.582

Figure 3.3. Fractal dimension equation for Northern

white cedar

3.Red.Maple consists of 20 pairs of numbers. The

regression analysis revealed an adjusted r-square of

0.768, with a significant p-value of 0, and a

significant t-value of 7.994. The slope of the line

expressed in the regression equation is 0.607,

suggesting that the fractal dimension is between a

point and a line in typology (Figure 3.4).

Ln(N(r)) = 0.607Ln (i) + 3.689

Figure 3.4. Fractal dimension equation for Red maple
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4“ Sugar Maple consists of 18 pairs of numbers. The

regression analysis revealed an adjusted r-square of

0.681, with a significant p-value of 0, and a

significant t-value of 6.106. The slope of the line

expressed in the regression equation is 0.345,

suggesting that the fractal dimension is between a

point and a line in typology (Figure 3.5).

Ln(N(r)) = 0.345Ln (é) + 2.168

Figure 3.5. Fractal dimension equation for Sugar maple

£5.White Pine consists of 20 pairs of numbers. The

regression analysis revealed an adjusted r-square of

0.554, with a significant p—value of 0, and a

significant t-value of 4.962. The slope of the line

expressed in the regression equation is 0.442,

suggesting that the fractal dimension is between a

point and a line in typology (Figure 3.6).

Ln(N(r)) = 0.442Ln G) + 3.342

Figure 3.6. Fractal dimension equation for White pine
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<5.White Spruce consists of 21 pairs of numbers. The

regression analysis revealed an adjusted r—square of

0.387, with a significant p—value of 0.002, and a

significant t-value of 3.689. The slope of the line

expressed in the regression equation is 0.359,

suggesting that the fractal dimension is between a

point and a line in typology (Figure 3.7).

Ln(N(r)) = 0.359Ln (é) + 2.387

Figure 3.7. Fractal dimension equation for White

spruce
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APPLICATION AND DISCUSSION

To apply the inverse box-counting method to the

:ceclaimed landscape one would follow these procedures:

1” Divide the landscape to be planted in 50 meter grids.

2L Divide each 50 meter grid into grids with sides equal

to 1.563 meters (the size of the smallest boxes).

23.Use a random number generator to fill the grid with

numbers from 1-1024 for each tree species. Fill any

box which contains a number that is less than or equal

to the mean number of trees (from table 3.2) for each

trial. Next, count each box that contains a tree and

make sure the total falls within one standard

deviation (from table 3.2). The resulting grid

represents that particular species planting plan.

Repeat this process for each species of tree recorded,

and then combine the grids of all species onto one

grid of the same size for the overall planting plan

(Figure 4.1). The number of trees per grid can be

increased proportionally if the mortality rate of the

trees is known.
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EITInis approach is illustrated with figures 4.1, 4.2, 4.3,

4; -4, 4.5, 4.6, and 4.7. This process generated seven

idiifferent fractal patterns, one for each of the tree

sspecies examined and one for all species combined (figure

49.1).
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Eastern Hemlock

Northern White Cedar

Red Maple

S
S
?

Sugar Maple

White Pine

White SpruceQ
Q
I
‘
Q
G

Figure 4.1. Fractal based planting plan for all species
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EASTERN HEMLOCK

The process generated 6 boxes for planting trees

(figure 4.2). 6 boxes are within one standard deviation

(11.52) of the average of 4.6, so the 6 boxes were deemed

aacceptable.

 
IJFigure 4.2. Fractal based planting plan for Eastern Hemlock
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NORTHERN WHITE CEDAR

The process generated 14 boxes for planting trees

(figure 4.3). 14 boxes are within one standard deviation

(11.58) of the average of 15, so the 14 boxes were deemed

aacceptable.

 
Figure 4.3. Fractal based planting plan for Northern White

Cedar
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RED MAPLE

The process generated 23 boxes for planting trees

(f igure 4.4) . 23 boxes are within one standard deviation

(1:5 .18) of the average 24.6, so the 23 boxes were deemed

ac: c eptable .

 
Figure 4.4. Fractal based planting plan for Red Maple
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SUGAR MAPLE

The process generated 4 boxes for planting trees

(figure 4.5). 4 boxes are within one standard deviation

(:1 .67) of the average 5.6, so the 4 boxes were deemed

acc eptable .

 
Figure 4.5. Fractal based planting plan for Sugar Maple
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WHITE PINE

The process generated 15 boxes for planting trees

(figure 4.6). 15 boxes are within one standard deviation

(15.31) of the average 18.8, so the boxes were deemed

acceptable.

 
Figure 4.6. Fractal based planting plan for White Pine
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WHITE SPRUCE

The process generated 6 boxes for planting trees

(figure 4.7). 6 boxes are within one standard deviation

($2.45) of the average 8, so the boxes were deemed

acceptable.

 
Figure 4.7. Fractal based planting plan for White Spruce

In the Upper Peninsula of Michigan, a typical mine

site contains waste rock, with environmental conditions

similar to xeric forest sites in the region (figure 4.8).

The planting method can be completed with seedlings being

39



planted by hand or machine, as long as the tree is planted

in the correct designated box.

 

Figure 4.8. Example of a waste rock pile in Michigan’s

Upper Peninsula

The composition of trees in the study are similar to

those specified by Curtis, dominant trees however vary from

typical northern xeric forest. This is not a rare condition

as stated by Curtis (1959)

“Vegetationm is a chaotic mixture of communities, each

composed of a random assortment of species, each

independently adapted to a particular set of external

environmental factors. Rather there is a certain

40



pattern to the vegetation, with more or less similar

groups of species re—occurring from place to place."

This explanation from Curtis can also be attributed to

cover change over time. According to Albert and Comer, the

existing tree species composition is different from the

pre—settlement vegetation according to an interpretation of

the 1816—1856 general land office surveys (2008).

Results of the data collection process reveal a

consistent vegetation type by those described by Curtis

(1959), Linsemier (1989), and Albert & Comer (2008). There

were a number trees not indentified by these sources,

however changes to composition and introduction of new

species by humans can attribute these changes. It is also

important to remember that each area has its own unique set

of environmental conditions which can affect the

composition of vegetation within a given cover type

(Curtis, 1959). One constant that holds true throughout

these investigations is soil conditions, rocky and steep

terrain with exposed bedrock. It can be concluded that most

tree species identified by these investigations will be

appropriate for reforestation of surface mine reclamation

projects within the Upper Peninsula of Michigan.
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Statistical analysis of the fractal dimensions of each

species, and the combined analysis reveal that all species

have similar patterns. The total fractal dimension of all

species revealed a slope of 0.587. The fractal dimension of

each species ranged from 0.329 to 0.674, revealing that

each species has the same Euclidian dimension of 0, but

their own distinctive fractal dimension. The intercept

value of all species was 3.107. The intercept value of each

species ranged from 1.936 to 3.582, revealing that each

species indeed has their own pattern and the overall

species composition falls within the parameters of these

patterns. The investigation of the fractal dimension of

each species reveals numbers which are similar to that of

Cantor's Dust. This result suggests that these fractal

patterns may be expressed at different scales (100 meter by

100 meter, 1 mile by 1 mile, etc.). Further research is

needed to determine if it is possible to apply these

findings to areas larger than 50 meters by 50 meters.

A limitation of this study is the scale of application

as specified above. This investigation used 50 by 50 meter

square grids, most reclamation projects are larger than

this. To be able to apply these findings at a larger scale

is an area of further investigation one may choose to
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explore. The box—counting method expresses this scale based

limitation in the upper and lower limits of the regression

line. As the regression line continues past the boundaries

of the box-counting method, the line is skewed. The upper

limit of the regression line flattens, while the lower

limit of the regression line is abnormally steep. To scale

the results of this study without the proper mathematical

function would yield an unreliable result. Another

limitation of the box—counting method also relates to

scale, specifically the maximum size of the grid. The

fractal dimension estimate is highly correlated to the size

of the largest box (Kenkel & Walker, 1996). Site

limitations which caused this experiment to utilize 50

meter grids may have ultimately affected the fractal

dimension estimated. The estimated fractal dimension of all

species was relatively low when compared to the previous

investigations of Fleurant et al. (2009) and does not meet

the standards for a set of unaligned points in a two

dimensional plane. According to Kenkel & Walker (1996) the

fractal dimension of a two dimensional point pattern should

beZlSZ.

Another limitation of this study is the site of

application. This study focused solely on the vegetation of
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a Northern Michigan rock outcrop. To apply these findings

anywhere but a Northern Michigan surface mine, one would

have to conduct their own survey of a natural area they

wished to replicate. This investigation determined the

fractal pattern of trees, while this is not a limitation,

further research is needed to determine if this process can

be used for other landscape features such as; topography,

or water networks.

In conclusion, it is determined that the box-counting

method can be used to estimate the fractal dimension of an

individual species of tree within a vegetation stand. The

inverse box-counting method can then be applied to re-

create the fractal patterns found in the landscape.

Successfully replicating natural tree stands is important

to many disciplines outside of mine reclamation. This

method can be applied for many projects including;

reforestation after forest fire (or other natural

disaster), restoration, or any project which attempts to

blend in with the surrounding vegetative community. Why

then choose reclamation to utilize this method? Returning

to a quote from Berger (2008), “reclamation can act as a

laboratory for experimentation.”
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APPENDIX

Images of each trial of existing tree species

 
Figure A.1. Eastern Hemlock trial 1

 
Figure A.2. Eastern Hemlock trial 2
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Figure A.3. Eastern Hemlock trial 3

 

Figure A.4. Eastern Hemlock trial 4

 

 

    
Figure A.5. Eastern Hemlock trial 5
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Figure A.6. Northern White Cedar trial 1

 
Figure A.7. Northern White Cedar trial 2

 
Figure A.8. Northern White Cedar trial 3
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Figure A.9. Northern White Cedar trial 4

 

Figure A.10. Northern White Cedar trial 5

 

Figure A.11. Red Maple trial 1
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Figure A.12. Red Maple trial 2

 

Figure A.13. Red Maple trial 3

 

Figure A.14. Red Maple trial 4
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Figure A.15. Red Maple trial 5

 

Figure A.16. Sugar Maple trial 1

 

Figure A.17. Sugar Maple trial 2
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Figure A.18. Sugar Maple trial 3

 
Figure A.19. Sugar Maple trial 4

 
Figure A.20. Sugar Maple trial 5

51

 



 

Figure A.21. White Pine trial 1

 

Figure A.22. White Pine trial 2

 

Figure A.23. White Pine trial 3
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Figure A.24. White Pine trial 4

 

Figure A.25. White Pine trial 5

 

Figure A.26. White Spruce trial 1
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Figure A.27. White Spruce trial 2

 
Figure A.28. White Spruce trial 3

 
Figure A.29. White Spruce trial 4
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Figure A.30. White Spruce trial 5
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