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ABSTRACT

NON- AND SEMIPARAMETRIC MODELING OF

FINANCIAL AND MACRO-ECONOMIC TIME

SERIES

By

Rong Liu

Nonlinear time series analysis has gained much attention in recent years due primarily to

the fact linear time series models have encountered various limitations in real applications

and the development in nonparametric regression has established a solid foundation for

nonlinear time series analysis. For example, the effect of technology on the economic growth,

volatility of exchange returns, which follow nonlinear instead of simple linear prediction

formulas. Efl'ective tools for extracting information from such complex regression data have

to be nonparametric in nature.

A smooth kernel estimator is pr0posed for multivariate cumulative distribution function

in Chapter 2, extending the work on Yamato (1973) on univariate distribution function

estimation. Under assumptions of strict stationarity and geometrically strong mixing, we

establish that the proposed estimator follows the same pointwise asymptotically normal

distribution of the empirical cdf, while the new estimator is a smooth instead of a step func-

tion as the empirical cdf. We also show that under stronger assumptions the smooth kernel

estimator has asymptotically smaller mean integrated squared error than the empirical cdf,

and converges to the true cdf uniformly almost surely at a rate of (n’1/2 log n). Simulated

examples are provided to illustrate the theoretical properties. Using the smooth estimator,

survival curves are given for real data applications.



“Curse of dimensionality” is a significant obstacle in high dimensional time series anal-

ysis, see Fan and Yao (2003). Several high dimensional data analysis techniques have been

proposed to deal with this problem and Xia, Tong, Li and Zhu (2002) pointed out that there

are essentially two approaches: function approximation and dimension reduction. GARCH

model, Additive Coefficient Model (ACM) and Generalized Additive model (CAM) are good

examples to represent these two approaches.

In Chapter 3, a cubic spline regression procedure is proposed to estimate the unknowns

in the semiparametric GARCH model that is intuitively appealing due to its simplicity, and

as such, can be used by non experts. The theoretical properties of the procedure is the

same as the kernel procedure in Yang (2006), and simulated and real data examples show

that the numerical performance is also comparable to the kernel method. The new method

is computationally much more efficient and very useful for analyzing financial time series

data.

In Chapter 4, a spline-backfitted kernel estimator is proposed for estimating the unknown

component functions ma, based on a geometrically strong mixing sample following model

(1.3.1) under minimal smoothness assumptions. The idea is to employ one step backfitting

after the spline pilot estimators, and then follow up with kernel smoothing, which combines

the fast computing of polynomial spline smoothing and the good asymptotic property of

kernel smoothing. Thus, the spline-backfitted kernel estimator is both computationally

expedient for analyzing very high dimensional time series, and theoretically reliable to make

inference on the component functions with confidence.

In Chapter 5, a Spline-backfitted kernel (SBK) estimator is proposed for the Generalized

Additive Model time series data with oracle efficiency. It is both computationally expedient

and theoretically reliable, and simulation evidence strongly corroborates the asymptotic

theory.
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CHAPTER 1

Introduction

1.1 Nonlinear Time Series Prediction Model

Nonlinear time series analysis has gained much attention in recent years due primarily to the

fact linear time series models have encountered various limitations in real applications and

the development in nonparametric regression has established a solid foundation for nonlinear

time series analysis. For example, the effect of technology on the economic growth, volatility

of exchange returns, which follow nonlinear instead of simple linear prediction formulas.

Effective tools for extracting information from such complex regression data have to be

nonparametric in nature. I view this line of research as developing theory that is motivated

and influenced by applications.

A typical nonparametric problem in time series analysis is the classical decomposition of

a realization of a time series into a slowly changing function known as a “trend component” ,

or simply trend, a periodic function referred to as a “seasonal component”, and finally a

“random noise component”, which in terms of the regression theory should be called the

time series of residuals. In time series analysis smoothing problems occur of course in the

spectral domain when we want to estimate the spectral density, e.g. for model fitting. In

the time domain nonparametric prediction is one of the fields where smoothing methods are

intensively used.

Two very pOpular forms of nonparametric regression are kernel/local polynomial type

and spline type smoothing. In this work, the polynomial spline smoothing is extensively

studied for nonlinear time series. The greatest advantages of spline smoothing, as pointed



out in Huang and Yang (2004), Xue and Yang (2006 b) are its simplicity and fast compu-

tation. But spline smoothing also has disadvantages, such as no limiting distribution. So

the combination for kernel/local [polynomial and spline smoothing is studied in Chapters 4

and 5.

“Curse of dimensionality” is a significant obstacle in high dimensional time series anal-

ysis, see Fan and Yao (2003). Several high dimensional data analysis techniques have been

proposed to deal with this problem and Xia, Tong, Li and Zhu (2002) pointed out that there

are essentially two approaches: function approximation and dimension reduction. GARCH

model and Generalized Additive model (GAM) are good examples to represent these two

approaches.

1.2 Semiparametric GARCH Model

In the study of many financial time series such as foreign exchange returns, it has been a

known fact that the return itself can not be predicted. It is the forecasting of the returns’

volatility that is of special interests. Empirical evidences had led to the understanding that

for such series, the volatility often depends on infinitely many past returns with diminishing

weights. The GARCH(p, q) model of Bollerslev (1986), for example, allows the volatility

function to depend on all past observations, with geometrically decaying rate.

As a special case, the GARCH(1, 1) model describes a process {YtltZ-oo of the form

1’; =-.- ought E Z = {.., —2, ——1,0, 1,2, ...,} where the innovations {étltez are i.i.d random

variables satisfying E (g,) = 0, E (5%) = 1, and {0,2}::_00 denotes the conditional volatility

series a? = var (YtlYt_1,Yt_2, ...) i.e., for some 10,60,010 > 0,04) + 50 < 1,

0,2 = w + [302:1cré-11’taji E Z. (1.2.1)

Engle and Ng (1993) and Glosten, Jaganathan and Runkle (1993), Hentschel (1995), Duan

(1997), Hafner and Herwartz (2006), Hafner (2008) had examined various useful extensions

of model (1.2.1), mostly providing empirical evidence without establishing asymptotic re-

sults. For related theoretical works on GARCH model, see Peng and Yao (2003), Sun and

Stengos (2006) and Chan, Deng, Peng and Xia (2007).



In recent years, there has been a surge of interests in applying nonparametric smoothing

theory to volatility estimation, as in Yang, Hardle and Nielsen (1999), Dahl and Levine

(2006), Levine (2006), Brown and Levine (2007). In particular, Hafner (1998) had proposed

iterative algorithm for nonparametric GARCH model of the form

03:21.31? m,(Yt_j) ,teZ,0<a0<1

with unknown parameter do and unknown smooth news impact function m, without asymp—

totic theory. A truncated version of the above nonparametric model was studied in Yang

(2000), Yang (2002) with asymptotic results, yet it failed to capture the dependence of a?

on infinitely many past Yt_j. In Linton and Mammen (2005), the more general model

j=1 j=1

was discussed and kernel estimator was proposed.

As an alternative, Yang (2006) formulated a class of semiparametric GARCH model,

which includes the following as a special case

at=m Zaj‘lY,_j ,tEZ,0<ao<1 (1.2.2)

with unknown parameter do and unknown smooth link function m, and proposed kernel

estimation method for (10 and m, with satisfactory theoretical properties and numerical

accuracy in simulation and applications to real data sets. Like all the aforementioned works

based on kernel smoothing, the algorithm in Yang (2006) is extremely slow due to the

intensive computation of solving as many least squares problems as the sample size. The

average computing time for the local linear based algorithm in Yang (2006) is contained in

Table 3 for sample sizes 72 from 400 to 3200, and one can see that it grows at the rate of n2.

At n = 3200, which is a moderate sample size for financial time series, the estimation of

unknown parameter (10 takes 5 hours. The method of Yang (2006) is therefore not appealing

for practical use.

In Chapter 3, cubic spline regression procedure is proposed to estimate the unknowns

in the semiparametric GARCH model that is intuitively appealing due to its simplicity, and



as such, can be used by non experts. The theoretical properties of the procedure is the

same as the kernel procedure in Yang (2006), and simulated and real data examples show

that the numerical performance is also comparable to the kernel method. The new method

is computationally much more efficient and very useful for analyzing financial time series

data.

1.3 .Additive Coefficient Model (ACM)

Regression analysis has been widely used in econometrics studies, for instance, the esti-

mation of production/cost function. Typical parametric regression models presume that

their regression functions follow a predetermined form with finitely many unknown param-

eters. Nonparametric models, on the other hand, impose less stringent assumptions on the

regression functions, but pay for its flexibility the price of “curse of dimensionality”. Struc-

tured models offer a sensible compromise between parametric simplicity and nonparametric

flexibility, see, for example, Sperlich, Tjostheim and Yang (2002) for additive interaction

modelling for the production function of Wisconsin farms and Rodriguez-Poo, Sperlich and

Vieu (2003) for a general framework of separable models. Recently Xue and Yang (2006a,b)

have proposed additive coefficient model that allows a response variable Y to depend lin-

early on some regressors, with coefficients as smooth additive functions of other predictors,

called tuning variables. Specifically

d1 d2

E(YIX:T) E m(X,T) E Zml (X)Tli m1(X) : m0! + 2: mail (X0!) :1 S l S d1

(=1 0:1

( 1.3.1)

in which the predictor vector (X, T) consists of the tuning variables X = (X1, ..., Xd2)T 6

Rd? and linear predictors T 2: (T1,.. .,Td1)T E Rdl. The functional coeflicient model of

Chen and Tsay (1993b) corresponds to the case (12 = 1, the varying coefficient model of

Hastie and Tibshirani (1993) corresponds to the case d2 2 d1 and for each I = 1, ..., (11 there

is only one single significant mat with a = I. Also included as special cases of model ( 1.3.1)

are the additive model of Hastie and Tibshirani (1990), Chen and Tsay (1993a), and the

multivariate linear regression model, see Xue and Yang (2006a) for detailed discussion.



In Chapter 4, a spline—backfitted kernel estimator is proposed for estimating the unknown

component functions ma, based on a geometrically strong mixing sample following model

( 1.3.1) under minimal smoothness assumptions. The idea is to employ one step backfitting

after the spline pilot estimators, and then follow up with kernel smoothing, which combines

the fast computing of polynomial spline smoothing and the good asymptotic property of

kernel smoothing. Thus, the spline-backfitted kernel estimator is both computationally

expedient for analyzing very high dimensional time series, and theoretically reliable to make

inference on the component functions with confidence.

1.4 Generalized Additive Model(GAM)

One unavoidable issue in high dimensional time series smoothing is the “curse of dimen-

sionality” , which refers to the poor convergence rate of nonparametric estimation of general

multivariate functions. One solution is autoregression in the form of additive model intro~

duced by Hastie and Tibshirani (1990)

d

E (YIX) = 9—1 {m on} ,m (X) = c + 20:1 ma (x0), (1.4.1)

for the predictor vector X = (X1, ...,Xd)T , and one observes a length n realization of a

n

(d + 1)-dimensional strictly stationary process {Yi,X;-F) 1 = {Y,-,X,'1, ---:Xid}?=1 which
1:

1 as b’ and assumes that thefollows (1.4.1). Typically, one denotes the link function g"

conditional variance function is o2 (X) = var (YIX) = a ((15) b" {m (X)}, in which a ((1)) is a

nuisance parameter that quantifies overdispersion. One can also write the usual regression

form

Y.- = 9-1 {m (X.)} + a (x05.- = b’ {m (xm + a (x0e.- (1.4.2)

for some conditional white noise 5,- that satisfy E (5,-IX1) = 0, E (5,2IX,-) = 1. The regression

function m takes the form in (1.4.1), and satisfies the identifibility conditions that

Elma(Xa)}=—-0.1 3191,1992 (14.3)

ensuring the unique additive representations of m (x) = mg; + 23211710, (2:0,). As in most

works on nonparametric smoothing, estimation of the functions {ma (1:0)}321 is conducted



on compact sets. Without lose of generality, let the compact set be x = [0, 1]“.

In Chapter 5, we propose spline—backfitted kernel (SBK) estimator for the CAM time

series data with oracle efficiency. It is both computationally expedient and theoretically

reliable, thus usable for analyzing very high-dimensional time series and inference can be

made on component functions with confidence. Simulation evidence strongly corroborates

. with the asymptotic theory.

1.5 Polynomial Spline Smoothing

Let {Xi, Y5}?=1 be a strictly stationary process. Assume that Xi, 2' = 1, ..., n, are supported

on a compact interval [a, b]. Polynomial splines begin by choosing a set of knots (typically,

much smaller than the number of data points 12), and a set of basis functions spanning a

set of piecewise polynomials satisfying continuity and smoothness constraints.

To be specific, divide [a,b] into (N+ 1) subintervals Jj = [tj,tj+1), j = 0,...,N -

l, JN = [tN,b], where T := {tj};:1 is a sequence of equally-spaced points, called interior

knots, given as

t1_k=...=t_1=t0=a<t1 <... <tN<b=tN+1=m=tN+k1

in which tj = a+jh, j = 0,1,...,N+ 1, h = 1/ (N + 1) is the distance between neighboring

knots. Denote by

00“) [a, b] = {mlthe kth order derivative of m is continuous on [a,b]} (1.5.1)

and GOG—2) = C(k_2) [(1,1)] the space of all C(“‘2) [a, b] functions that are polynomials of

degree It - 1 on each interval. The j—th B-Spline of order k for the knot sequence T denoted

by Bj,k is recursively defined by the de Boor (2001), i.e.

(71 “tlej,k-1(U) _ (‘1 *tj+k)Bj+1,k-1(u)
,l—kgjgN, (1.5.2)

tj+k—1 — tj tj+k - tj+1

 

Bch (u) =

for k >11, with

} 0 otherwiseBj’l (U) : [{ILEJJ'

In Chapters 3, 4 and 5, spline smoothing is applied under different conditions.



CHAPTER 2

Kernel estimation of multivariate cumulative

distribution

2.1 Introduction

This chapter is based on Liu and Yang (2008). The estimation of probability density func—

tions (pdf’s) and cumulative distribution functions (cdf’s) occupy a central place in applied

data analysis in the social sciences. While many statisticians and econometricians are fa-

miliar with various smooth nonparametric estimators of pdf’s, the smooth estimation of

cdf’s has not been investigated as much, see Li and Racine (2007) sections 1.4 and 1.5. To

properly define the problem, let (X, = (Xi1,...,Xid)T}:_1 be a geometrically a-mixing and

strictly stationary sequence of d—dimensional variables, with a common probability density

function f E C(p'H) (Rd) and cumulative distribution function F E C(p‘fd‘l'll (Rd), in

which p is an odd integer. 'Itaditionally, F is estimated by the empirical cumulative distri-

bution function F (x) = n—1 ZI-‘zl I (X,- _<_ x}, whose theoretical properties have been well

known. One obvious drawback of F is that it is a step function even when the true cdf F

is smooth.

Yamato (1973) proposed a smooth estimator of F by integrating a kernel density esti-

mator of the density f. To be precise, define the following kernel estimator of F

F(X) = F12. (X) = /—:of(ll) dll = 71—1 Zfll [11(1, (X, -- u) du,Vx ERd (2.1.1)

where f (u) is the standard d—dimensional kernel density estimator (kde) of f (u) (see Bickcl



and Rosenblatt, 1973)

13(11): "—12:21 K11 (X1: ‘11):Kh (u) =Hd “I‘K (g) ,u = (uli'--1ud)T
a=1 ha

in which h = (h1,...,hd)T are positive numbers depending on the sample size 71, called

bandwidths.

Theoretical properties of F (x) as an estimator of the unknown true distribution func-

tion F (x) have been investigated by several authors for the case of d = 1 and under i.i.d

assumptions, see for example Yamato (1973), Reiss (1981), Falk (1983) and more recently

Cheng and Peng (2002). For feasible econometric applications of univariate kernel estima-

tion of cumulative distribution function, such as to the testing of stochastic dominance, see

Li and Racine (2007), page 23, and the references therein.

In this chapter, we examine under a strong mixing assumption and for arbitrary dimen-

sion d, the local property of F (x) in terms of pointwise asymptotic distribution and its

global property in terms of mean integrated squared error (MISE) and maximal deviation.

We have proved that the smooth estimator F (x) behaves asymptotically the same as the

empirical cdf F (x) at any point x, have obtained its asymptotic mean integrated squared

error (AMISE) and have established its uniform almost sure convergence rate.

The rest of the chapter is organized as the following. In Section 2.2, we give Theorems

2.2.1, 2.2.2 and 2.2.3, the main results on pointwise, mean integrated squared and uniform

asymptotics. In Section 2.3, we describe a data—driven rule to select the asymptotically

optimal bandwidths h, which makes the MISE of F asymptotically smaller than that of the

empirical cdf F according to Theorem 2.3.2, another compelling reason that F is preferable

over F other than smoothness. In Section 2.4, we present Monte Carlo evidence that cor—

roborates the theory and illustrates the use of F with two real data examples. The first real

data example illustrates the stochastic dependence of GDP growth rate on unemployment

growth rate in the US economy. Second example shows that gold and silver are substitute

goods and their prices are strongly associated. All technical proofs are in the Appendix.



2.2 Asymptotic Results

Throughout this chapter, we denote

hq‘nax : maX(h1, ...,,Ld)’ hprod = hl X ' ‘ ' X hd

and for any a: E R, K (2:) = ffoo K (u) du,, where K is a kernel function in Assumption (A4).

K(x) = H331 K(xa) for any vector x = (r1, . . . ,xd)T. Then K (x) E 0 unless x Z —1

and K(x) E 1 if x Z 1.where for any two vectors x = (2:1,...,:rd)T, y = (y1,...,yd)T,

x 2 y if and only if :ca 2 ya,‘v’a = 1, ...,d. It is easily verified that [31 K(w) dw = 1,

We also denote up“ (K) = f_11 K (u) up'Hdu, D (K) = 1 — f—l-l K2 (21)) dw. For any vector

x = ($1,...,:rd)T and Va = 1,...,d, we denote x_a = (2:1,...,xa_1,:ra+1,...,:rd)T and

with slight abuse of notation, write x = (ma,x_a)T.

We list below some basic assumptions.

(A1) The cumulative distribution function F E C(p+d+1) (Rd), in which 1) is an odd

integer, while all (p+d+1)-th partial derivatives of F belong to L1(Rd) and

< 0.3:83;, If (X)l _

(A2) There exist positive constants K0 and A0 such that a (k) 3 K0 exp (—)\0k) holds for

all k, where the k-th order strong mixing coeflicient of the strictly stationary process

{X3}:S___oo is defined as

a(k)= sup |P(BflC)—P(B)P(C)|,k21.

BEO’{Xs,SSt},CEU{X3,S_>_t'l-k}

(A3) A5 n ‘7 00: nhprod _’ 001 nl/2hprod/(lognl1/2 + nl/Zhfifiic "" 0-

(A4) The univariate kernel function K () is of (p + 1)-th order, supported on [~1,1], Lip-

schitz continuous.

Assumptions (A1) to (A4) are all typical conditions in time series smoothing literature,

see Bosq (1998) Chapter 2 for similar or even stronger assumptions. Elementary arguments

show that D (K) > 0 under Assumption (A4).

The following theorem concerns the asymptotic distribution of F given in (2.1.1) at any

xER“

 



THEOREM 2.2.1. Under Assumptions (AU-(A4), Vx ER“ as n ——> oo

,/nv-1(x) (F (x) — F (x)) —»d N (o, 1) ,

where

v (x) = Zfimvumz) = Mix. _<. x}1{x,,, s x} — F2 (x).

Theorem 2.2.1 shows that the smooth estimator F (x) has asymptotically the same dis-

tribution as the empirical cdf F (x). In particular, for iid process {X3} , s = —00, ...,00,

the asymptotic variance function V (x) reduces to the more familiar form of 7(0) =

F(x) {1 — F (x)}.

The global performance of F (x) as an estimator of F (x) can be measured in terms of

Mean Integrated Squared Error (MISE) and maximal deviation

MISE (F) MISE (F; h) = Ef {F (x) —- F (x)}2 dF (x), (2.2.1)

Dn (F) = Dn (F; b) = sup IF (x) — F (x)| . (2.2.2)

xeRd

The next two theorems give the asymptotic formula of MISE (F) and the almost sure rate

of 0,, (F).

THEOREM 2.2.2. Under Assumptions (AU-(A4), as n —> oo,

MISE (F; h) = AMISE (F, h) + o (1135,12 + n-lhmax)

in which the Asymptotic Mean Integrated Squared Error (AMISE) is

 

2
.' __ fV(x)dF(x) 11,,“ (K) .1 p“ p+l

AMISE (Eh) _ n + (10+ 1),, 20,[3:1 ha h, Bag,“ (F)

_ D (K) 23:1 haCa (F)
 

with

69+1F(x) 6p+1F(x) 6F (x)

6$a

  Bump“ (F) = dF (x) ,Ca (F) = dF (x) ,‘v’a, s = 1, ...,d.

THEOREM 2.2.3. Under Assumptions {AU-(A4), as n —+ 00, Dr, (F) = 0,1,3, (n'l/2 log n)

while for i.i.d. x1, ...,xmnn (F) = on... (rt-V2 (log n)1/2).
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The first term n—1 f V (x) dF (x) in the formula of AMISE (E; h) is the exact MISE

of the empirical cdf F. We are unaware of any published results on the MISE or the strong

uniform rate of convergence for smooth estimation of multivariate distribution function

based on strongly mixing data, as in Theorems 2.2.2 and 2.2.3. Since Assumptions (A1) to

(A4) are mild, we believe that these strong theoretical results hold for most multiple time

series data with continuous distributions.

In the next section we describe how Theorem 2.2.2 is used to compute a data-driven

bandwidth for implementing the smoothed estimator F.

2.3 Bandwidth Selection

To have insight into the minimization of AMISE (F; h) given in Theorem 2.2.2, define a

function Q : R1 x M+ (d)lx R1 for elementwise positive vectors v = (v1, ...,vat)T ,a =

(a1,...,ad)T E R1 = (0,+oo)d and M = (Mafi)d E M+ (d), the set of all positive
073:1

definite d x d matrices:

d d
Q (v, M,a) = :0 )621 'UavfiMafi _ 201:1 aqua/(12H) = VTMV _ aTvl/(p+1)

T

in which vl/(P+1) = (v%/(p+1),...,v(11/UH”) . In the following, we denote for any d-

dimensional vector a = (a1, ...,ad)T, the d x d diagonal matrix whose (aa)-th element

is ama = 1, ...,d as diag (a). The following theorem is easily proved similar to Yang and

Tschernig (1999).

THEOREM 2.3.1. (i) The gradient and Hessian matrices ofQ (v, M, a) with respect to v are

 

 

a - ' d _ 1 - 1/<p+1)—1
5Q (v, M, a) -— {diag (M00301:1 + M}

v p+ 1 drag (a) v ,

”‘63—‘52 (V M a) = diag (M )d + M+ p diag (a vl/(F+1)-2)d

avavT ’ 7 00 (1:1 (p + 1)2 a a 0:1

the Hessian matrix of Q(v,M,a) is positive definite, hence the function Q(v, M, a) is

strictly convex in v. (ii) For any a E R1, M E M+ (d), there exists a unique v E R1 which

minimizes Q (v, M, a) , denoted as v (M, a), which satisfies 3%Q (v, M, a) = O. In addition,

11

 



Q{v (M,a) ,M,a} < 0 for any a 6 R“ ,M E M+ ((1). (iii) Lastly, for any 0N1,ca > 0

Q (Cgp+1)/(2F+1)C;4(p+l)/(2p+1) ngp‘t'zl/(2F+1)61:41/ (2P+1)Q (v, M, a) ,
v, cMM,caa) =

v (cMM, caa) ____ Cgp+1)/(2F+1)C;/I(p+1)/(2F+1)v (M, a).

To make use of Theorem 2.3.1, we make an additional assumption on F,

. (1

(A5) The matrices Bp+1 (F) = {80,ng (Fllafid E M+ (d) and

c (F) = (ca (F)}é‘l=1 6 R1.

Theorem 2.2.2, Theorem 2.3.1 (ii) and Assumption (A5) ensure the existence of a unique

optimal bandwidth hopt that minimizes

 

2

AMISE (F; h) = f V (ledF (x) + Q (1117“, we,“ (F) ,n-ID (K) c (F))

Theorem 2.3.1 (iii) then implies that

2 K

prH(F) .1240 (K) c (F))

}-1/(2P+1)

hopi = 11.... (n,K,F)=v1/(P+1)(

WW1) (Bp+1(F),C(F)) .= n-l/(2p+1) “12’“ (K)

D (K) (p + 1)!2

Thus to obtain the optimal bandwidth hopt, one computes exactly the factors involving n

and K in the above expression, and estimate the following factor

0 = o (F) = (61, ....od)T = (61(F),....6d(F))T = ,1/(p+1) (Bp+1(F),C(F)) .

The next theorem follows from the negativity result in Theorem 2.3.1 (ii):

THEOREM 2.3.2. Under Assumptions (A1)-(A5), F has asymptotically smaller MISE than

the empirical cdf F. Specifically, MISE (F) = n—1 f V (x) dF (x) and as n -—> oo

MISE (F; hopt) = MISE (F) + 71-(21’+2)/(2P+1)C (K, F) + o (n-(2P+2)/(2P+1)) ,

 o(v(Bp+1(F),C(F)) ,Bp+1(F),C(F)) < 0.

D (K)2p#129+1 (K) —1/(2P+1)

(p+1)!2

C(K,F)={

12



Following Yang and Tschernig (1999), we define a plug-in asymptotic optimal bandwidth

fio — nu§+1(K) '1/(2P‘l‘1)

1’" C(K)(p+1)12

 
,1/(p+1) (131.“ (F) ,6: (F))

in which the plug-in estimator of the unknown parameter 0, 9 =

V”(9+1) (BpH (F), C (F)), is computed by Newton-Raphson method using the gradient

and Hessian formulae of Theorem 2.3.1 and where the plug-in estimators of the unknown

matrices Bp+1 (F) = {8034,44 (Fllfiflzl , C (F) are

. A d .. - d

Bpn (F) = {Ba/3...“ (F)}a,[,:1 ,0 (F) = {Ca (F)}O,=1 ,

- n n (p) d X1"!

jzl i=1 7:117'7éa ~00

n d X”

X {"71 Z Kl? (Xjfl — Xw) H K97 ($7 - Xe) 4937} 1

. n n X-

Ca (F) = n~1}:{n-1 2 K9,, (Xja - X,,,,) H / ’7 Kg, (x, — X,,) 113,} .

j=1 i=1 °°7=L7¢a -

The pilot bandwidth vector g = (91,...,gd)T is the simple rule-of-thumb bandwidth for

multivariate density estimation in Scott (1992).

In the next section, we present Monte Carlo evidence for Theorems 2.2.2 and 2.2.3, and

illustrate the use of the smooth estimator F (x) with real data examples. In all computing,

we use the quartic kernel K(u) = 15/16 x (1 — u2)21(|u| g 1) with p = 1 and plug—in

bandwidth fiopt described above. We have not experimented with other choices of K and

1) due to limit of space and as these choices are in general not as crucial as that of the

bandwidth, see Fan and Yao (2003).

13



2.4 Examples

2.4.1 A simulated example

In the section, we examine the asymptotic results of Theorems 2.2.2 and 2.2.3 via simulation.

The data are generated from the following vector autoregression (VAR) equation

Xt=aXt_1+e,-,e,-~N(0,2),2Stgn,2=[{1}’10],0$a,p<1

with stationary distribution X, = (Xt1,Xt2)T ~ N (O, (1 - az)_1 )3). Clearly, higher

values of a correspond to stronger dependence among the observations, and in particular,

if a. = 0, the data is i.i.d. The parameter p controls the orientation of the bivariate cdf F,

and in particular, if a = p = 0, then F is a bivariate standard normal distribution. In this

study, we have experimented with three cases: p = 0, a = O; p = 0.5, a = 0.2; p = 0.9,

a = 0.2 to cover various scenarios.

A total of 100 samples {Xt}?=1 of sizes n = 50, 100, 200, 500 are generated, and F is

computed using the optimal bandwidths fiopt described in section 2.3. Of interest are the

mean over the 100 replications of the global maximal deviation Dn (F) defined in (2.2.2),

denoted as [7,, (F), and the mean integrated squared error MISE (F;hopt) defined in

(2.2.1). Both measures are listed in Table 1. As one examines Table 1, both D" (F) and

MISE (13313013,) values decrease as sample size increases in all cases, corroborating with

Theorems 2.2.2 and 2.2.3. Also listed in Table 1 are the differences of the same measures

for the empirical cdf F against those of F, which are always positive regardless of the data

generating process (i.e., for different combinations of a, p) and measures of deviation (i.e.,

En or MISE). This corroborates with Theorem 2.3.2 that F has asymptotically smaller

MISE than F.

Based on the above observations, we believe our kernel estimator of multivariate cdf is a

convenient and reliable tool, which is also superior to the empirical cdf in terms of accuracy.
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2.4.2 GDP growth and unemployment

In this section, we discuss in detail the dependence of US GDP quarterly growth rate on

unemployment rate. There are three types of unemployment: frictional, structural, and

cyclical. Economists regard frictional and structural unemployment as essentially unavoid-

able in dynamic economy, so full employment is something less than 100% employment. The

full-employment rate of unemployment is also referred to as the natural rate of unemploy-

ment. It does not mean the economy will always operate at the natural rate. The economy

sometimes operates at an unemployment rate higher than the natural rate due to cyclical

unemployment. In contrast, the economy may on some occasions achieve an unemployment

rate below the natural rate. For example, during World War II, when the natural rate

was about 4% and actual rate below 2% during 1943-1945. It is caused by the pressure of

wartime production resulted in an almost unlimited demand for labor. The natural rate is

not forever fixed. It was about 4% in the 19608, and economists generally agreed that the

natural rate was about 6%. Today, the consensus is that the rate is about 5.5%.

GDP gap denotes the amount by which actual GDP falls short of the theoretical GDP

under the natural rate. Okun’s law, based on recent estimate, indicates that for every

1% which the actual unemployment rate exceeds the natural rate, a GDP gap of about

2% occurs. See Samuelson (1995), p.559 or McConnell and Brue (1999), p.214 for more

details. In other words, if unemployment rate falls, then GDP growth rate increases. But

unemployment rate can not keep falling because it moves around the natural rate. So it

is useful to find the relationship between the GDP growth rate and unemployment growth

rate.

Let th = the seasonally adjusted quarterly unemployment growth rate in quarter t,

th = the quarterly GDP growth rate in quarter t, all data taken from the l-st quarter of

1948 (t = 1) to the 2—nd quarter of 2006 (t = 234) . Since both data have been seasonally

adjusted, it is reasonable to treat Xt = (Xt1,Xt2)T ,t = l, ..., 234 as a strictly stationary

time series, which is shown in the time plots. ACF plots also indicate that the assumption

of a-mixing is satisfied. The plots are shown in Figures 1—4.

Given any interval I = [a, b], the survival function of th conditional on th E I is

15



defined as

F(b,:m) - F(a,$2)

F(b, +00) — F(a, +00)

 

51(32) = F(th > 1132!th E I) = 1 -- (2.4.1)

in which F is the joint distribution function of th and th.

The function 31(232) can be approximated by the following plug—in estimator

- :r = _ F(b,$2)—I:‘(a,a:2) I

81(2) 1 F(b,+oo)-13‘(a,+oo) (2.4.2)

 

in which F‘ is the kernel estimator of F defined in (2.1.1). According to Theorems 2.2.1 and

2.2.3, for any fixed 11:2, ISI($2) — 31052). = Op (71-1/2) while

sup$2€R ISI($2) — 81(x2)| = 00.3, (714/2 log n) ,

so the estimator 571052) is theoretically very reliable. We therefore draw probabilistic con-

clusions based on the smooth estimate 31(272) instead of the true SI(:1:2).

In Figure 5, the estimated conditional survival curve 31(552) is plotted for intervals

I = [—0.08,—0.04], I = [—0.02,0.02], I = [0.04, 0.08]. Clearly, when the unemployment

growth rate is between —0.08 and —0.04, the chance to have the GDP growth rate higher

than 1.5% is the greatest, which is about 0.2. This is in accordance with the Okun’s law that

the growth in GDP is the associated with the unemployment rate. So if policymakers want

to achieve high GDP growth rate, they may find better ways to lower the unemployment

rate. One can even estimate the probabilities of GDP growth rates given the policy of

unemployment, which is the interval I. If current unemployment rate is close to the natural

rate, then the I is an interval close to 0, such as [—0.02, 0.02]; if the current unemployment

rate is much higher than the natural rate, then the I is an negative interval, i.e., trying to

lower the unemployment rate.

On the other hand, the survival function of th conditional on th can be computed

similarly. If certain level of GDP growth rate is planned to be achieved, one can estimate

the conditional probabilities of different unemployment growth rates.
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2.5 Appendix

2.5.1 Preliminaries

In this appendix, we denote by C (or c) any positive constants, by U (or u) sequences of

random variables that are uniformly O (or 0) of certain order and by 00.5. almost surely 0,

etc.

LEMMA 2.5.1. [Berry-Esseen inequality, Sunklodas (1984), Theorem 1] Let {5,};1 be an

a-miring sequence with Eén = 0. Denote d6 := Ina-X1992 {E|§,-|2+5} ,0 < 6 S 1, Sn =

23:15., 0?. == E82. 2 can for some Co e (o,+oo). Ifa(n) s KoeXP(-)~0n), A0 > 0,

K0 > 0, then there exist c1 = c1(K0,6), c2 = c2 (K0,6), such that

 An = sup

2  

P {05:15}, < z} — (I) (z)! S 01::5{10g(0n/c$/2)/A}1+6 (2.5.1)

_n

for any A with A1 g A 3 A2, where

A1: c2{log(on/c(1)/2)}b/n,b > 2 (1 + 6) /6; A2 = 4 (2 + 6) 6‘1 log (o,,/c(1)/2) .

LEMMA 2.5.2. (Bernstein’s inequality, Bosq (1998), Theorem 1.4). Let {{t} be a zero mean

real valued process, Sn = 221:1 15,-. Suppose that there exists c > 0 such that fori = 1, ' - - ,n,

k 2 3,E|§,-|’c g #21:!ng < +oo,m,- = maxlsisN ||€,-||,.,r 2 2. Then for each n > 1,

integer q E [1,n/2], each s > 0 and k 2 3

2 l 1fl . — qgn . 'n 27+

P{lZi=1€'| >"5”} Salexp( 25m3+5cgn) +a2(k)a([q+1l)

where

251713 + Scen 5n

2 5m2k/(2k+1)

a1=2§+2(1+—i———) ,a2(lc)=11n (l+—-‘L—— .

2.5.2 Proofs of Theorems 2.2.1 and 2.2.2

LEMMA 2.5.3. Under Assumptions (A1),(A3) and (A4), as n —+ 00

, ~ _ “pH (K) d p+13p+1F(X) p+1

E{F(x)} — F<x>+ (p +1)! a=1 " 51.3“ + H (mm) '
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Proof. Using the integral form of Taylor expansion and denoting hv = (h1u1,...,hdud)T,

we write

f(u + was f(u)+ 211;.1:___,(Z hava——%a) no + Hal,

1 p+1
t? d 8

RIM-1 = R’P+1(uihv) = [0 {3" (20:1 havaazg) f(u+thv)} dt

Hence Assumption (A4), (A1) and (A3) sequentially imply that

E{F(x)} = E]; Kh(X,- -u)du=/_:odu/[;1,1]d f(u+hv)K(v)dv

._. f1; f(uldu+flea/PW [22%;2::111011087670)" f(U)MW] K(vmv

(x)+]:omdufl111d [[01 {Pl (Z:=1hava£:)p+l f(u+thv)}dt] K(v) dv

+1; (K) 61"“

(I_;)—_+1+1)I /-:o ZZ=1hhp+1 aup-l-l1f(u)du+u(hfi$}()

It 1(103p+1F(X)+
F(x)+):;—+——+1)! 2:2}1h———3+16$p——;——1 +.u(hfi+a,l() Cl

LEMMA 2.5.4. Under Assumptions (AU-(A4), as n —+ 00

E{/_:0Kh(X,,-—u)du/_:0Kh(xj—u)du}

={ F(x)—D(K)Zd=1hagg§+u(hmax) i=j,

EIIXiSX}I{XJ-Sx}+u(hmax) iyéj.

Proof. We begin with the case of i = j,

E{/:o Kh(X,')—udu}2 =/_°°00f(v)K(xh ")2 dv=/o:f(x— hw)K2(w) hpmddw

z: hprOd/j: {I (w 2 —1)— I (w 2 1)} f(x - hw)R2(w)dw +/100f(x — hw)hproddw

 

 

_—= hpmd/o: {1(w Z —l) —— I (w 2 1)} f(x -— hw)II’2(w)dw+F(x — h)

 
=2:_1hpr0d/loo dwa/l1 du)af(x— hW)K2(u/a) +F(x—)—Z::1 BFI(X:)ha+u(/imax)

. d 8F x

= F (x) — 2.21% [f )D (K) + u (hum).
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Similarly, for the case of i 75 j, one obtains

E{[;Kh(x,-—u)duf:oKh(xj—u)du}

‘ oo 00
~ X—‘V' "' x—V'z] / dVidefi,j(viivj)K( h 1)K( h J)

_(x) —00

(X) 00 .. ...

= [.1 /_1 fi,j(x - hwz', X - 11‘”le (W) K (W) hgroddwidwj

  

= hired {[310 “(We -1) - [(WiZ 1)}R(Wi)dwi+ Adei} X

{/_0:{1(ij ‘1)— 1 (W32 1)} If (Wj) de+/loodwj} fi,j(x -— hw,,x — hwj)

00
~ 00

= hjzarod/ 1 {I (we —1)— I (we 1)} K (WNW/1 defz',j(X — hwi’x ‘ hwi)_ .. ~ 00

Mama/4 {1(sz —1> — 1(sz 1)} K (we dw,[1 dwifid(x - hm -w

+EI{x,- gx—h}I{Xj _<_x—h}+u(hmax)

d 00 oo 1 ~

= 2 ha/ de/ deCI/ K (wia) dwiafiJ ($0: "' hwiaa xxx _ VLCU X - Vj)

a-l h hi-O —l

d 00 oo 1 __

+ 2: ha/ dvz-f de_a/ K (wja) dwjafi,j(x "’ Viv ma — hwjayxa ‘- Vj.a)

0:1 h hj.a -l

+EI{X,- S x}I{Xj S x} — 2::1ha6EI{X4 £52.1{Xj S x} +u(hmax)

d _ .

= EI{X.- 3x}1{x, Sx} _ ZhaaElm $632109 Sx}

a=1

 

+ihaaEI{X.- _<. x}1{x,- g x}

0:1 61a

2 El (X,- S x}I{X]~ S x} +u(hmax) .D

+ u (hmax)

Denote 5,, = 5,, (x) = n {13’ (x) —E17"(x)} = 22;] {in in which

an =5... (x) =/_:o m. (x.- —u>du—E{/_;Kh(x. —u)du}.

then clearly E5”, = 0. Denote by '7 (l) = cov (§,,n,§i+l’n) the autocovariance function,

then
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COROLLARY 2.5.1. Under Assumptions (AU-(A4), as n -—» oo

F(x)— F2(x)- D(K)Zd_ ha%%§+u(hm) i=j,
C0V(€i,n:€j,n)=§(i_j)={ EI{X;‘ <X}I{Xj <x}-— F2(X)a+u(hrnax) 1%]

Proof. According to Lemmas 2.5.3 and 2.5.4, cov (23,-,n, €11”)

E{/_:0Kh(x,—u)du/;Kh(x-—u) du}— (is/:0 Kh(X-—u)du)2]

{F(x)—D(K>Zd=1ha%§%l+u(hm) i=j _

EI{X1-SX}I{X,-Sx}+u(hm) iaj

2

[F(x)+flp+—1(1K——-—)!Z:=1hp+li$£:(1£2+
u(hg,+a,1{)] ,

the rest of the proof is trivial. El

 

II

Proofs of Theorems 2.2.1 and 2.2.2. According to Corollary 2.5.1

..(1): 7(0)— D(K)Zd—1haga€§§l+u(hmaxl 1:“ (252)
(l)+U(hmax) [#0 . i

in which '7 (l)——- 7 (l, x): EI {X1 S x} I{X1+l S x}— F2(x). Lemma 2.5.3 and Assump-

tion (A3) further imply that

K +1 x

31, = n {F(x)—-()—(Fx6:2)?” 2:2hhg+16pT811)++u (hm). (2.5.3)

Meanwhile, 0,2, = E52, = var (Sn) = nAn + an where An = lelsclogn (1 - |l| /n)§(l)

and Ba = chogn<|l|<n (1 — |l| /n):)7(l). Because h! (l)! is

|P({w = x1(a)) S x} 0 {w = X1+h M S Xl) - F({w 1 X1(w) S X})P({w 1X1+h(W) 5 XM

which is bounded by (1(1) 3 KOe-Aol. Then Egg“, mm 3 7(0) +

22,21 K0 exp (—Aol) < 00 and equation (2.5.2) imply that

An=Z|l|5610gnu’lll/n)7(ll+le|SClogn(1 -)Ulll/n (hmax)—+Z,:_007mm).

S 4H€1ml|oo I a (h) S 4K0 exp (—)\0l) gives
         

 

Next, lcov (€1,n,€(1+l),n)

anl = 211..ng (1 — Ill /n> a“ (m s 2mm“ (1 — Ill /n>41<01<oexp Hot)
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4Koe—A0clogn _ KOn—CAO

1 — e‘AO _ 1 -— e’AO

An + B" -—> 21°24” 7 (l) 2 c0, therefore lelsfl (l) > 0. Then by (2.5.1) in Lemma 2.5.1,

:6 {log(on/c(1)/2) //\}1+6.P{a;13n < z} —<I>(z)l S 6160

 For c 2 2/A0, anl S S Cln‘z. For 72 large enough, og/n =

 
       

Let 6 = 1, A = 4(2~+6)6"110g (on/cé/Z) = 12log(on/c(1)/2), d = 1, then An S

$05-12“‘2: —C—0 2 O(n")1/2), i.e., Sn/on "’d N(0, 1). Theorem 2.2.1 then follows be-

cause WWF(F(x —F (x)) "’d N (0, 1) by Slutsky’s theorem. Equations (2.5.2)

and (2.5.3) together with E5”, = 0 imply that

. 2 K 1 x 2

{EF(x)-—F(x)}2 = %{Z:=lhg+lflfi%—)} +u(h§g§2):

n—_1V(x) D(K)n—1c;lhaaF—T_(:)+ M(—1hmax)y

.. .. 2

E {F (x) —EF (x)}

.. . 2

hence Theorem 2.2.2 follows by computing f E {F (x) -EF (x)} +

.. 2

{EF (x) —F(x)} dF (x).

2.5.3 Proof of Theorem 2.2.3

LEMMA 2.5.5. Denote gm1,...,md = (a1,m1v”' ,adflnd) 6 Rd, 1 S ma S Ma and

A ___ |F( )—E{F( )}|,n IsfaagMa gml, ,md gml, ,md

W.)—F<gm1,-~h)l-

Ifmax (M1, - . - ,Md) S Cn, then An + B" = 0&3 (Tl—l/Z log n) while for i.i.d. X1, ...,Xn,

An + 3,. = 00.3, (124/2 (log 701/2).

Proof. Note that 13' (gm1:""md) —- E13” (917,11... find) = n—1 221:1(2-7, in which

g‘fnl,"° ,md

(in = Cin,m1,---,md = (Ln (91711,“ ’md) = / Kb (xi _ u) du

“-00

_E {‘/‘9’ml,...,md Kh (X1. _ u) du},
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then one has EC,” 2 0 while

m ,--«,m m ,'--,m 2

E(<?..)=E(/_g‘ “'Khm--u>du—E{/g1 th(xi—u)du}) :1,
—OO

and for k 2 2, E (Ichk) = E (lg-n1“ (3,), which is

I/gm1"" ’md K1, (x,- — u)du—-E{/gm1fu,md K1, (x,- — u) du}

.<_ 1k‘2E(<?n)-

E

 

k—2

(3.]

 

By Lemma 2.5.2 with k = 3, a2 (3) = 11n(1 + 5mg/7/en), mg 2 E(C22n) S 1,

5n = alOgn/fi)

PHZLI (ml > nan} S a1 exp (——-——-—E—%——) + a2 (3) or ([n/ (q + 1)])9.

25mg + Seen

Take such that [n/( + 1)] > 10 n > i_c_1_n_ ____‘15_121_____ > c a2 lo n and

a1=29+2 1+-—€%-—-—- =0(logn).

q 25mg + Scan

. 1 3

since m3 = mamas” Hang 3 {Bags} / s 1, then

a2(3)=11n 1+-i Slln 1+——§-—— Slln 1+ 5 =O(n),

5n 1 alogn
an—2 log n

 

a ([n/ (q + 1W7 s (K0 exp (-)~o [n/ (q +1)l))6/7 s cn—sxoco/v,

So for c0, c2 large enough

P “2:1 Ci"

n
1

P max n_1l - I > an"? 10 n <

{ISmaSMa
2,51 ("limb ,md g _

A“!1,...,Md n

—1

Z P{” 2 Cin,m1,m,md

1 i=1m1=1,...,md=

Hence Borel—Cantelli lemma implies that An = Oa,s_ (n‘1/2 log n). Meanwhile 8,, is

> nan} S O(log n) exp (~02a2 log n) + Cn1’6A060/7 S Cn—(d+2),

 

d
l

> an? logn} S Cll—(d+2) H Ma S Cn—z.

a=1  

bounded by

Kim|F(9m1:~»md)-E{F(gm1v-»md)}l
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WWH(gm-ml}-F(9mwmd>|
= An + U(n“1/2) = Oa,s_ (714/2 log n) .

If X1, . - - ,Xn are i.i.d., then An+Bn = 00.5, (nil/2 (log n)1/2) by using same steps above

with Bernstein’s inequality of i.i.d. case. El

LEMMA 2.5.6. VA C Rd, IA |K11 (v — u)| du SfRd lKh (v — u)| du S HKH‘Ifi.

Proof. Applying elementary arguments, fA lKh (v — u)| du S fRd ”(11 (v — u)| du is

bounded by

d _1 ”a " “0:

[Rd Ha=1ha K( ha )

LEMMA 2.5.7. Let —oo = and < < aa,Na = 00 be such that

 

d 1

du = 110:, [_1IKrwandwasuKIIii - U
  

max(N1,---,Nd) 3 On and P(a0,kSXaSaa,k+1) g 1/n,Vl g k g Na,V1 g

a g d. Then E (gin-and lKh (X—u)|du = u (n-1/2(1ogn)1/2) in which gn1,...,,, =
d

(a -- . a ) 6 Rd
1,111, 7 d’nd '

Proof.

0° /9n1+1,---,nd+1

12/91:,"- ”(11 (X — u)| du S [00 HQ, (v — u)| dudF (v)

,nd 9n1,--- ,nd

971. +1,---,n +l+(hlv"'1hd) 9n +1,m,n +1

=/ 1 d dF(v) 1 d IKh(v—u)|du

gnli'" ,nd—(h1,'” ’hd) 9111 2'" and

ya +1,---,n +1+(hlv"’ihd)
S C/ 1 d dF (v)

gub... ’nd—(hl’m vhd)

9n1+1,--- ,nd+1+(h1 ’hd)
accordin to Lemma 2.5.6.

g gnli'" ,nd—(h1,"' ’hd)

dF (v) equals

911 +l,~-,n +1+(hl""ihd) 9n +1,~--,n +1 9n +l,---,n +1

/ 1 d dF(v)—/ 1 ‘1 dF(v)+/ 1 d dF(v)

9111 9'" ,nd—(h1,"' ’hd) 9711 1'” and gn11"'1nd

9n +1,---,n +1+(’11r"ihd) 9n +1,---,n +1

=/ 1 0‘ dF(v)—/ 1 d dF(v)

gnla'" ,nd—(h13"' ’hd) gn1,---,nd

+P (gri1,-~,nd S X S 9121+1,---,nd+1)
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01,111 al,n1+1 a1,1i.1+1+hi

S + +

a h1 a 01,n1+11,111— 1,121

ad,n ad,n +1 ad,n +1+h1

- f d + j d + f d dF(v)

0 hi 6‘ ad,nd+1d7nd~ d,nd

_ /9n1+1,-",nd+1dF(v) + l/n

9"1"" and

a

Within the above sum, the 3d - 2‘1 terms with aa’na+l are 0 n‘1 , while each of the
aina

2d terms without ffzfigfl is bounded by hprod mag; | f (x)|. Applying Assumptions (A1)

x6

and (A3),

X

E/9n1,--- ,n

”(11 (X — u)| du S Chprod max If (x)|+C (3d — 2d) /n = u (n"1/2 (logn)1/2) .

d XERd

Cl

LEMMA 2.5.8. Under the same conditions of Lemma 2.5. 7, for Vx == (231, - -- ,Td) 6 Rd,

n"1 2:121 [Cm] = Ua.s. (7171/2 log n) in which

(in = (in (gn1,‘" ,nd) =/ {lKh (X, — u)| dU—E lKh (X — u)|} du.

9111,... ,nd

while for i.i.d. X1,...,Xn,n"1 Z?=1l€z’nl = Ua_s_ (n"1/2 (logn)1/2).

Proof. One can show by applying Lemma 2.5.2 as in the proof of Lemma 2.5.5. Cl

Proof of Theorem 2.2.3. Under the same conditions of Lemma 2.5.7. one has

A

max IF (gn1,...,,,d) — F (gnl,...,nd)l = 00.3, (n—l/zlogn)

lsnaSNa

by Lemma 2.5.5. For Vx = ($1, - - - ,Ed) 6 Rd, there exist integers n1, - - - ,nd such that

F(gn1,...,nd) S F(x) S F (gn1+1,...,nd+1). Hence lF(x) — 1:" (9"12"'i"d)l is bounded by

  

1 " x K x- d <1 n x K - d52%] M .-u) u —;Z.-=1/ l hog-u)| u
gn1,'”,nd

9711,..."

1 d

1 X

=_Z’f / {lKh(X,--—u)|du—E|Kh(X—u)|}du
n 1:1 9 ..

n1, "d

X

+/ E [Kb (x -— u)| du = 00.3, (71—1/210gn)

9"12'” M
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according to Lemmas 2.5.7 and 2.5.8. Then according to Lemma 2.5.5,

F(x) — F(x)I S I13”(x) — 1:" (gn1,...,nd)I + IF (9711,... ,nd) — F (gn1,...,nd)I

+ IF (9711,...md) —- F(x)I

= Uaug. (71—1/2 log n) + Uws, (n"1/2 logn) + U(1/n)

and if X1, - - . , Xn are i.i.d, one can replace logn in the above inequality by (log n)1/2. D
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CHAPTER 3

Spline estimation of a semiparametric

GARCH model

3.1 Introduction

It is widely recognized that global smoothing methods such as those by spline or wavelet are

computationally much more efficient than local kernel smoothing, see for example the com-

parison of computing time in Xue and Yang (2006b) and Wang and Yang (2007). Recent

development of regression spline smoothing in terms of local asymptotics (Huang (2003)),

of high dimensional and weakly dependent data (Huang and Yang (2004), Xue and Yang

(2006b) and Wang and Yang (2007)) has presented convincing incentives for applying spline

smoothing to solve challenging problems in time series analysis. We have applied cubic

spline smoothing to the semiparametric GARCH model (1.2.2), which resulted in a proce-

dure that is a much faster but shares the same theoretical and numerical properties of the

kernel smoothing procedure in Yang (2006). Table 3 shows the computing time compari-

son between the proposed cubic spline method versus the local linear method in estimating

parameter a0. Clearly, the cubic spline method is superior for large sample as its comput-

ing time is proportional to n-1 of the corresponding time of the local linear method. The

advantage of spline method had already been recognized by Engle and Ng (1993), which pro—

posed spline estimation for the news impact curve for extensions of model (1.2.1), without

developing justifications by asymptotic theory.

The chapter is organized as follows. In Section 3.2 we discuss the assumptions of the
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model (1.2.2), the spline estimation of the unknown parameter cm and asymptotic properties

including its oracle efficiency. In section 3.4 we describe the implementation of the estimator.

In sections 4 and 5 we apply the method to simulated and empirical examples. All technical

proofs are given in the Appendix.

3.2 Estimation Method

The statistical inference of the semiparametric GARCH model (1.2.2) consists of astimating

both parameter a0 and link function m. In this chapter we focus on estimating the param-

eter as once a0 is estimated with Vii-consistency, the estimation of function m is a routine

application of univariate smoothing.

The following assumptions on the data generating process are used

A1: The process {Yt}?:—oo is strictly stationary, and the innovations {Etltez have finite

r—th absolute moments E Iétlr = mr < oo, 0 < r S 6.

A2: The link function m(-) is positive everywhere on 12+ and has Lipschitz continuous

4—th derivative.

For convenience, define Xt = 2;; aé-‘lYtEJ-J E Z which simplifies model (1.2.2) to

Yt = ml/2 (Xt) Q, at2 = m (Xt) ,t E Z while the process {Xflfg satisfies the Markovian
—OO

equation Xt = aOXt_.1+m (Xt_1) {L1, t E Z. Since a0 is an unknown parameter in (0, 1), to

make numerical optimization feasible, we assume that 020 lies in the interior of A = [(11, a2],

where O < 01 < (12 < 1, are boundary values known a priori. In practice, one takes

sufficiently small a1 and sufficiently large 02 based on prior knowledge of the data. Define

next th as a series analogous to Xt but with any candidate value of a E A

00 00

'—1 2 ' 2
X0.) = 2a] YH = Za’m (XH) §,_j,t e z. (3.2.1)

i=1 i=1

We need the following assumptions on the processes {Xa,t}?_:_oo ,a E A.

A3: The processes {Xa,t}:_oo,a E A are jointly strictly stationary and geometrically

a-mixing, i.e., the o ~mixing coefficient oz(k) S cpk, for constants c > 0, 0 < p < 1,
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where

a(k) = sup ) |P(A)P(B) —— P(A fl B)I.

A60 (Xa,t ,tS0,a€A) ,BEo (Xa,t,t_>_k,aEA

From Assumption (A3) and the fact that the innovations {5322—00 are iid, the joint

distribution of (Ybét, Xa,t,a E A) is strictly stationary. For each a E A, define the trans-

formed variables for the th as,

F01 (Xa,t) + F02 (Xa,t)

Uai = F (Xat) = 2 , 1 S t S n (3.2.2)

in which F01 and Fa2 are cdfs of X01): and Xa2¢ respectively. In particular, we denote

Ut = U00; = F (XW) = F (Xt).

A4: The pdf associated with F is f (x) > 0, Va: 6 (0, +00) and Ua,t has a pdf (pa(.) which is

Lipschitz continuous and there exist constants C90, C90 such that infaEA,0SuS1 (pa (u) 2

Cw and “Pas/1,0931 9% (u) 5 cv-

For any aEA define the predictor of Yt2 based on Ua,t as ga(u) = E(Yt2|Ua,t = u),0 <

u < 1. In particular, denote g(Ut) = ga0(UaO,t) = E(Yt2IUao,t) = m(Xt). Define the risk

function of a as R(a) = E {Yt2 —- ga(Ua,t)}2. Apparently{1@},?i_oo have finite 4—th moment

due to assumption (A1) and (A2). So R(a) allows the usual bias-variance decomposition

R(a) = E {9(Ut) - 90(Ua,t)}2 + (m4 -1)E92(Ut) which, together with 9(Ut) "=— 9a0(Ua0,t),

imply that

R(a) = E {9(a) — was}2 + 3(00) 2 R<ao),Va e A.

We need the following assumption on the function R(a),

A5: The function R(a) has positive second derivative at cm, i.e., R”(ao) > 0 and R(a) is

locally convex at 0:0, i.e., for any 5 > 0, there exists 6 > 0 such that R(oz) — R(ao) < 6

implies Ia — 00] < 5.

Thus by minimizing the prediction error of Yt2 on Ua,t, one should be able to locate the

true parameter a consistently via polynomial spline smoothing. To introduce the space of

splines, we divide [0,1] into (N+1) subintervals Jj = [tj,tj+1), j = 0,...,N — 1, JN =
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ltN,1], where T
;= {tj}N

3:1 is a sequence of equally-spaced points, called interior knots,

givenas

t1_k=...=t_1=t0=0<t1<...<tN<1=tN+1=...=tN+k,

in which ti = jh, j = 0,1,...,N + 1,h = 1/ (N +1) is the distance between neighboring

knots. The j-th B-spline of order k for the knot sequence T denoted by 81316 is recursively

defined by [14] as

(u - t1) Bj,k-1 (U) __ (u — tj+k) Bj+1,k—1 (U)

tj+k-1 " ti tj+k - tj+1

  

Bj,k(u)= ,l—ijSN

for k > 1, with

I t' < u < t-
B- = I = J — 3+1

3’10“) {uer} { 0 otherwise

Define the spaces of linear, quadratic and cubic spline functions on [0, 1] as

N+1

P(k“2)=r(’“‘2)[o,11= 717(105 AZ AJBJ,k<u>,ue[o,11 .k=2,3.4.

J=1—k

Given a realization {Yt}?:l, define for VaEA the cubic spline estimator of ga(-)

1 n 2 2

at) = argmin —,; Z {12 — 7(Ua,t)}
2) n

761‘ t=n’+1

with n’ and n’’ = n — n’. We do not use the first 12’ data points for implementation reasons

in Section 3. Define next the empirical risk function

flak-7%,; Z {KB—man}?
t=n’+1

and let a be the minimizer of R(a), i.e.

51 == argmin 12(0). (3.2.3)

aEA

We assume the following on the number of interior knots

A6: The number of interior knots N satisfies: n”6 < N = Nn << n”5 (log n)—2/5.

The next theorem establishes the strong consistency of d.
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THEOREM 3.2.1. Under assumptions (AU-(A6), as n —> oo, 0 -—> 00, as.

Proof. According to Proposition 3.2.1, one has sup 12(0) -- 12(0) —+ 0,a.s. Thus there

06A

exists an integer no (to), such that R(00,w) —- R(00,w) < 6/2 when n > no (w). Notice

that 0 is the minimizer of R(00,w), so 12(0,w) - R(0o,w) < 6/2. There also exists

an integer n1(w), such that R(0,w) — R(0,w) < 6/2 when n > n1(w). Thus, when

n > maX(n0(W),n1 (717)),

ma, w) — R(00, w) = ma, w) — Rm, w) + Rm, w) —— R(ao, w) < 6.

According to Assumption (A5), R is locally convex at 00, so for any 5 > 0 and any 13,

if R(0,w) — R(00,w) < 6, then I0 -) 00] < s for n large enough, which has proved the

theorem. Cl

Denote the asymptotic variance of 0 by the following “sandwich” formula

2 (00) = 13"(010V1‘1’(010)R”(00)"1 (3-2-4)

with

2 " d 2
‘1’ (00) = £7,“ var (a7, 2 500$) = 4E I{90(U00,t) “ Yt2} EI0=0090(U0,t)I (3'2-5)

t=n’+1

2

and R”(00) = iriffla)

 0:00

2 d2 d 2
=25: {MUM —Yt }E‘—29..<Uao,t)+ {macaw} . (3.2.6)

 

The next theorem establishes 0’s fi-asymptotic normality.

THEOREM 3.2.2. Under assumptions (A 1)-(A6), as n —-> 00

a; (a — 00) —’d N (0, 2 (00)). (3.2.7)

_d_
d0R(a) andProof. Denote S (0) =

{0,15 = {90(U0,t) “ Ytz} 21%90(U0,t) " E [{90(U0,t) — YtZ} £0101de : (3-2-8)
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then because %R(00) = 0, one has

. 2 n _

5(00) — £7" 2 €00’t = 0 (n 1/2) ,a.s.. (3.29)

t=n’+1

according to (3.6.37). Mean Value Theorem then implies that for some t E [0, 1]

A A 2 A

50) -— s<ao> = £24m + (1 -— t) a0) (a - ac)

and 3(0) = 0 because 138(0) attains its minimum at 0. Thus, one has

A 2 A

—S(0to) = £33051 + (1 - t) 00) (51 - 00)

i.e.,

. d2 .

é — C10 2 —S(0o)/——2—R(t0 + (1 — t) 00).

d0

One has

d2 - . (12 II
Emu” + (1 — t) 0:0) -> $713010) = R (aloha-S-

by Theorem 3.2.1 and Proposition 3.2.1, where R”(00) is given in (3.2.6). According to

(3.2.9), one has @5100) "’d N {0, \II (00)} by the Central Limit Theorem for strongly

mixing processes (Theorem 1.7, [4]), where \11 (00) is given in (3.2.5). Then Theorem 3.2.2

is proved by formula (3.2.4) and Slutsky’s Theorem. El

The proofs of Theorems 3.2.1 and 3.2.2 given above have made use of complicated

arguments involving spline smoothing, summarized in the following proposition, whose proof

is given in the Appendix.

PROPOSITION 3.2.1. Under Assumptions (A 1)-(A6), as n —-> oo

dk ‘ -
sup W{R(0)—R(0)} —>0,a.s.,k=0,1,2.

06A

 

   00

According to Theorem 3.2.2, the true parameter vector 00 can be estimated by 0 at

\fn-rate. One can then use the estimate 0 in place of the unknown 00 for the estimation

of function m. We define next the “would-be oracle” estimator of 00 if the link function

g had been “oracally” known 5: = argminaeA 11(0), where the oracle empirical risk is

12(0) = (n”)"1 222:”,+1 {Yt2 — g(Ua,t)}2, so '0' serves as a benchmark of oracle optimality.

The next theorem states the asymptotic oracle efficiency of estimator 0.
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THEOREM 3.2.3. Under assumptions (A1)-(A6), as n —+ co, the estimator 0 is asymp-

totically omcally efficient, i.e., it is asymptotically as eflicient as 0. Specifically,

fit: —00) "*d N (0,2(00)) where the variance 2(00) is the same as in (3.2.4) and

(3.2.7).

The proof of Theorem 3.2.3 consists of routine arguments in parametric inference, thus

it is omitted.

3.3 Implementation

For a given realization {Y2}?=1, denote in the following two integers

n’ i [2 logn/ log (02—1)] + Ln” = n —— n’.

It is easily verified that

2
I I

sup 0" =03 <n

06 [(11:02]

which is the magnitude of error one would incur if the infinite series in (1.2.2) were truncated

at n’. In practice, one always has to replace the infinite series of X0“ in (3.2.1) by a finite

truncation 2:72:11 03‘1Yt2_j for t e Z, the difference between the two being

00 oo 00

2 “j~1ij 5 Z “JiIIYtZ—j = “3,2064%?an
j=1j=n’+l j=n’+l

I

_ ,n -2

which is bounded by 12-2 times of a stationary process with finite variance according

to Assumption (A1). Thus instead of computing the infinite sum Zfi1j0j41’fij, we

use the slowly growing truncation 2?; aj-1Yt2—j for implementing the algorithm due to

practicality. Also due to practicality, we use [3‘01 and [3‘02 the empirical cdfs of X0,”

and X02; in place of F01 and Fa2 respectively to compute the transformation function

F. Lastly, the number of interior knots N = Nn is computed according to the formula

N = min (10 Inz/11I + 1, n/4 —— 1) , which satisfies the Assumption (A6).

We compute the value of it over a equally spaced grid of points from 01 to 02, and

take the one with smallest 12 value as 0 according to (3.2.3). Functions 9 and m are then
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estimated using 0 as the true value of 00. In the next two sections, we present some

numerical evidence of how the proposed procedures work for both simulated and real time

series.

3.4 Simulation

To investigate the finite—sample precision of the proposed estimator, we applied the pro-

cedure to time series data generated according to (1.2.2) with 00 = 0.5,A = [01,02] =

[01,09], and function

m(I) = 0.1 (2:1: + 1) /(1 — 00). (3.4-1)

Notice that the data generating process actually follows the standard GARCH model, pos-

sessing all the known theoretical properties presented in Engle and Ng (1993) and Glosten,

Jaganathan and Runkle (1993).

For sample sizes 11 = 400, 800, 1600, 3200, a total of 100 realizations of length n + 400

are generated according to model (1.2.2), with functions m(z) as in (3.4.1). For each

realization, the last 17. observations are kept as our data for inference. Truncating the first

400 observations off the series ensures that the remaining series behaves like a stationary

one. Estimation of the parameter 00 is carried out according to the setups described in

section 3, using cubic spline.

Table 2 shows the average sum of squared error for n = 400,800, 1600,3200, that

the estimated 0 converges to the true function 00 as the sample size increases, corrobo-

rating the asymptotics in Theorem 3.2.2. In Figure 6, the probability density functions

of 0 are estimated by kernel smoothing based on the 100 replications and plotted for

n = 400,800, 1600,3200. Clearly the empirical distribution of 0 quickly collapses to 0,

as sample size increases, conforming to Theorem 3.2.2. Since the sample sizes we have

used are common for high frequency financial time series such as the two data sets in the

next section, the satisfactory numerical performance in Table 2 and Figure 6 provides the

assurance we need to apply the procedure to real data.

As discussed in the introduction, Table 3 shows the computing time comparison between
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the proposed cubic spline method versus the local linear method of Yang (2006) in estimating

parameter 00. Since for each candidate parameter value 0, the cubic Spline method needs

to solve one linear least squares problem in order to compute the empirical risk while the

local linear has to solve n, one for each data point, the ratio of their computing times is

inversely proportional to n. As a matter of fact, the computing times are of order n and

n2 raspectively for the cubic spline and the local linear methods. Since the theoretical

properties and numerical performance of the two are similar, the cubic spline method is the

one we would recommend for the estimation of parameter 00. Once the parameter 00 has

been efficiently estimated, the aetimation of functions 9 and m can be done via either kernel

type or spline type method, using the estimated parameter value 0 in place of 00. In the

next section, we estimate function g by the Nadaraya—Watson method.

3.5 Applications

In this section, we compare the goodness-of-fit of three models to the daily returns of

Deutsche Mark against US Dollar (DEM/USD), and Deutsche Mark against British Pound

(DEM/GBP) from January 2, 1980 to October 30, 1992. Both data sets consist of n = 3212

observations. The four modelling methods are: the semiparametric GARCH model ( 1.2.2)

with cubic spline estimation method; the semiparametric GARCH model (1.2.2) with kernel

estimation method (Yang (2006)); the GJR model of Glosten, Jaganathan and Runkle

(1993); the GARCH(1, 1) model of Bollerslev (1986). In analyzing the two data sets, a

process {X0,t}f:112 is generated for every parameter value 0. To have all such processes

as close to strict stationarity as possible, we use only the last half for inference. Hence all

estimation of parameters and function is done using {thfiillém and {Ytzlfilfsm- The

parameter estimate 0 is first obtained according to section 3. In the second step, we use

the estimate 0 in place of the unknown 00 for the Nadaraya-Watson estimation of function

g. The volatility forecasts are 6?" = 6,3, (U&,t) ,t = 1607, ...,3212, while the residuals are

ft = Yt/ét,t = 1607, ..., 3212. For the two parametric models, the forecasts and residuals

are computed similarly.
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In Tables 4 and 5, the goodness-of—fit is compared for all four modelling methods, in

terms of volatility prediction error and the log-likelihood, which are calculated respectively

as xii—its; (YE - 6%)2 /1606 and —(1/2) 233.2607 {YE/6? + 1n (6%)} /1606. The semi-

parametric GARCH model (1.2.2) with spline estimation method has best log-likelihood

and prediction error for both DEM/GBP and DEM/USD cases. In Tables 7 and 6, the fre-

quenciae of the ACF exceeding the significance limits are shown, and they are close enough

for the residual absolute powers and for independent normal random samples, and hence

one is reasonably sure that there is very little if any dependence left in the residuals.

Figures 7 and 8 represent graphically the fit to DEM/USD, where Figures 7 shows the

standardized residuals and Figures 8 shows the estimated functions 575,.

3.6 Appendix

3.6.1 Preliminaries

We have collected in this subsection some useful results on strongly-mixing processes and

B spline.

We denote by QT (g) the 4-th order quasi-interpolant of 9 corresponding to the knots

T, see equation (4.12), page 146 of [15]. According to Theorem 7.7.4, page 225 of [15], the

following lemma holds.

LEMMA 3.6.1. (de Boor 2001, p. 149). There exists a constant Coo > 0 such that for any

9 6 0(4) [0,1] and 0 S k S 2, "(QT (g) - 9)('°)II .<_ 000 "9(4)" H44“-
CX) oo

LEMMA 3.6.2. (B-spline Property). (i) Partition of Unity. (de boor 2001, page .96) The

sequence {B-,k}fi:_k+1 provides a positive and local partition of unity, i.e., each BM is

positive on (tj,tj+k), is zero off [tj,tj+k], Zjiwkfl 8J3), = 1.

(ii) Differentiation. (de boor 2001, page 116)

B- _ u 8- _ 1

iBjk(“)=(k-1) "k1” — ”1”“ 1“) .l—ksJ'sN.
d" ’ tj+k—1 -' tj tj+k “ tj+1

 

(iii) Good Condition. (De Vore and Lorentz 1993, Theorem 5.4.2, page 145) There is

a constant Dk > 0 such that for each spline S = XXL”);+1 chj,k of order k and each

 



0 < r S 00,

BI. IIc'II < Isu.< llc’ll 1: . < ..
Dk IIc'II S IISII, S Isl/r IIc',rII ,0 < r < 1.

For any functions g1, 92 6 L2 [0,1], define for V0 6 [01, 02] the theoretical inner product

and norm as

1

(91,92).. = [0 II (“)92 (u) «I. (u)du. IIgIIIE. = (91,91)..

LEMMA 3.6.3. There exist constants c > 0 such that for any A :=

(A_1,2, A03, ..., AN,2’ ..., ANA) E R3N+9.

_ 1

chl/rllA||.<IIZ?.22L.“ I,I.B-,s,I.II (3” 1kh) ”MAI... ISrSoo.

ch1/rlIAIII<IIZk_22—...“ I,-I.B,I.|| <(3kh)1/’IIAII.. 0<I~<1.

In particular, under Assumption (A4), 3 constants c, C E (0, +00) such that

1 2
4 Nch / IIAII2 .<. ”2.222,.-.“ "j’kB 3’“ 2

Proof. It follows from Lemma 3.6.2 (i) that, Zita—.2 Zé:_k+1 BM E 3 on [0,1]. So the

s Ch1/2IIAII2IVa 6 Ion. a2] .
  

,

right inequality follows immediate for r = 00. When 1 S r < 00, Hfilder’s inequality implies

that

l-l/r 4 N r W

Izk=2ZNj=—k+1’\3’kB k S3 (2k=22j=—k+1|’\jvkl BM)

Since all the knots are equally spaced, Lemma 3.6.2 (i) ensures that [30008,-k (u) du S

kh, the right inequality follows from [0 [2],:22j_—k+1)‘131,8]'k (u)I du S 3"1kh II/\I|r.

When r < 1, we haveIZk=2Ej£-k+1)‘rj,k3',kI

< 2k—_2 :Lj-—k+1 [A];kIB.IJC' Since f3; Bi}; (u) du Sty-+1c -— ti = kh and

the right inequality follows in this case as well. For the left inequalities, we derive from

 

 

du < “A“; fl: 3;?k(u)du < 31mm;
     

Lemma 3.6.2 (iii), for any 0 < r S 00

t- r

Ii,,,,|’ g C'fh“1/t]+1 d...

j
  

N

2,3,,“ ’\j.kBj.k (u)
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Since each u 6 [0,1] appears in at most It intervals (tj,tj+k), adding up these inequalities,

we obtain that

  

    

__1 4 tj+Ic N "

”A“: S C'1’! Z] Zj:_k+1)‘j,kBj,k(u) d“

k=1 ‘3'

_1 N "
g 3011 23.3de 1,3,3), r

The left inequality follows. 1:]

Given a realization {Yt}?___1, define for any functions 91,92 6 L2 [0,1] and any 0 E

[01, 02] the empirical inner product and norm as

n

(glIgzln,a = (Tm-1 Z 91 (Ua,t) 92 (Ua,t)I ”glll2,n,0 = (91.91)“.-

t=n’+1

LEMMA 3.6.4. Under Assumptions (A3), (A4) and (A6), as n -—> 00, with probability 1

—1/2
sup max <B-,k,B-/ > —<B-k,B-/ I> I=O{(nN) logn}.

06A k,k’=2,3,4 I J 7 7'“, "I0 3’ J ’k a

l—ijsNJ—k'Sj'SN

Proof. We only prove the case k = k’ = 4, all other cases are similar. Let

C0,j,j’,t = 314 WM) Bj’,4 (Umt) " E3334 (Umt) Bj’,4 (Umt)

with the second moment

2

E8 E {31.0.03}... v.0] — {EBII (U...) 3,, (U.,.>}a.j.j’,t =

2

where E In},4 (U...) 312.54 (Ua,I)I ~ er, [133,4 (Haj) 8,4,4 (Ua,t)] ~ N-2 uniformly

for all —3 S j, j' S N by Assumption (A4). Hence, EC2 . ~ N‘1 uniformly for all

0.1.1"It

"3 S if S N. The k—th moment is

k

k

I = E IBj,4 (Ua,t) le’4 (Ua,t) — EBj’4 (Ua1t) 3.1-[’4 (Ua,t)I

k k

E ICGJJ’J

|
/
\

k k

where EIB,-,4 (Haj) 3,5,, (Ua,I)I ~ N-l, IEBM ((1a))BjI,4 (U..,I)I ~ N-k uniformly

k

<

 

for all —3 S j, j’ S N. Thus, there exists a constant C > 0 such that E

 (misfit
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02k1klEC2.jj’ tfor all -3 S j, j' S N. So Cramér’s condition in Lemma 2.5.2 is satisfied,

one has for 6,, =t6logn/x/nN and fixed 0

I n

P {W [Zian—I—l Caijajlat

We divide interval [01,02] into n6 equally spaced intervals with disjoint endpoints 01 =

 

> 6,,} _<_ n_10. (3.6.1)

is bounded by

 
a1 < -~ < a-MII = C*2 and SUPaeA max-ssI‘II’SN IC0,j,j’,t

sup max IC - -I I+ max sup max IC - -I — C - —I . (3.6.2)

1<T<Mn —3<j,j’<N CM,J,J t —3<jjI<N1<r<Mn QE[a1',ar+1] Q1173 it a/I‘JIJ it

While (3.6.1) implies that

n)” —1

SUP )I IIaIs 3.6.3
1<r<Mn --3<m',j’<N(X215:n’+1(Cl/I‘G/I‘I.7'I.’llt

( )

by Borel-Cantelli Lemma. Employing Lipschitz continuity of the cubic B-spline, one has

with probability 1

. _1 n

max su max I n” . . _ . . I

”3Sjij’<N1<T<II)"{n OEIG‘TaaT'I'l] ( ) Z:t:n,“l”1 (Caijijlvt (M’J’Jl’t)

-0 (Mnlh’G) (3.6.4)

Therefore Assumption A4, (3.6.2), (3.6.3) and (3.6.4) lead to the result. El

Denote by I‘ = PM U F(I) U I‘m the space of all linear, quadratic and cubic spline

functions on [0, 1]. We establish the uniform rate at which the empirical inner product

approximates the theoretical inner product for all B-splinas BJ-Jc with k =2 2, 3, 4.

LEMMA 3.6.5. Under Assumptions (A3), (A4) and (A6), as n -+ 00, one has

 

(71.72)n,a- (7102)..
An = sup sup ==(nh)0{1/2 log n} , a.s.. (3.6.5)

06A 71,7251“ ||71I|2,a “'72ll2,0  

Proof. Denote 'ya = Eli—.2 Zj-L_k+1 7a,jkBj,kI a = l, 2, without loss of generality. Then

4 N 4 N

(71172ln,0 = Z Z Z: Z 7113.113720]“ <Bj’k’B-jiik,>n,a,

4 N 4 N

II7III2,0 : Z Z Z Z vl’j’kfyl‘jlk,<Bj’k’le’kl>0j

k=2j=-k+1 k’=2 j’=—k+l

N

at. = z 5; 2 2(,I.) .
OI

k=2j=—k+1k'—=2j’=—k+1
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Let '71: (71,—1,2> 71,0,2? "'271,N,2I "'I71,N,4)7 72: (72,—1,2a’72,012, "'772,N,2) "'2 72,N,4)‘

According to Lemma 3.6.3, one has for any a 6 [(11,012],

2 2 2 2 2 2
0h ||71||2 S ||71||2,a S Ch ||71||2 ,Ch ||72||2 .<_ ll72ll2,a S Ch ll’72ll2,

Chll71l|2 ll72ll2 S l171||2,a ll72ll2,a S Ch ll71l|2 ll72|l2~

Hence

  

  

  

 

’7 ’7 “ 7 ’7
An ___ 811p Sllp < 1’ 2>naa < 1’ 2>a — ll7lllooll72lloo

aeA 7167,726F l|71||2,a l|72||2,a 01h ||71l|2 ||72||2

1 n

x sup max — <B',k,B,I > -— <B-,k,B.I >

aEA k,k’=2,3,4 n g{ J J ’k’ n,a J J ’k’ a

1—kgj:N.1—k’sj’5N

< ooh"1 sup max 1 Zn <B B > (B B >
_ - . 3k) .’ — 1k) .’ 7

(16A k,k’=2,3,4 n 1:1 3 J ’k, n,a J J ’k’ a

1—ks:‘gN.1—k’sJ"sN

which, together with Lemma 3.6.4, imply (3.6.5). C]

For any fixed a, one has Y2 = ga+g-ga+E=ga+Ea+E, where ET ___

{9 (Ut) (5? “ 1) }:=n’+l ,Ea = {9 (Ut) — ga (Ua,t)}?=nr+1. Then one can break the cu-

bic spline estimation error as

ga(u) — ga(U) = 20.6) — yam) + Mu) + Wu)» (3“)

where

§a(u) = {32,4 (1‘)}Z‘3gjgN V5}! {(30, Bja4>n.a}:-v=—3’

230(2) = {BM (u)}€3sjsN VJ}. {(Ea, Bj,4>n,a }:-:_3’

- T _ N

N N

vma = {(3)-,4, le’4>n,a}j,jI=_3 ,Va = {(BM, Bj,,4)a}j,j,:_3. (3.6.7)

The next proposition is used in proving Proposition 3.2.1.

PROPOSITION 3.6.1. Under Assumptions (A 1)—(A4), (A6), as n —> oo

sup sup mo (21.) — ga (u)| = O {(nh)-l/210gn + h4} ,a.s., (3.6.8)

aEAuE[0,1]
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d . _ —1/2 —3/2 3
22333212.. a {go (a...) _ ga (60,0) .. o {n h logn + h },a.s., (3.6.9)

d2

21612 bd—a—i {9a (Ua,t) -— ga (Ua,t)} = O{n_1/2h-5/210gn + hz} ,a.s.. (3.6.10)

  

In order to prove the above proposition, we need several technical lemmas. The following

is a special case of Theorem 13.4.3 in [15].

LEMMA 3.6.6. If a bi-infinite matrix with bandwidth 1' has a bounded inverse A'1 on 12 and

K. = K(A) = ||A||2||A'1||2 is the condition number of A, then ”A'IHOO 3 2CD (1 — v)_1,

with co = 21—2' IIAIIZ, v = (It2 — 1)1/4r (It2 +1)-1/4r.

LEMMA 3.6.7. Under Assumptions (A3), (A4) and (A6), there exist constants O < CV < CV

such that

ch—1 Ilwna _<_ wTvaw sow-1 Ilwuié (3.6.11)

WW IIng s WTVn,aW saw-1 :1ng (3612)

with matrices Va and Vma defined in (3.6.7). In addition, there exists a constant C > 0

such that

sup ”VELH _<_ CN,a.s., sup “V31” _<_ C’N. (3.6.13)

aEA ’ 0° aEA 00

Proof. Let w be any i (N + 4)-vector and 7w (u) = Zfl;_3 wJBJ'A (u), then

Baw = {7“, (Ua’nI) ,...,7w (Ua,n_1)} and An in (3.6.5) entails that

"va13. (1 — An) s WTVn,aW s (mug. (1 + An). (3614)

By Theorem 5.4.2 of [15] and Assumption (A4), one has

C C

cw— nwng g WTVaw $0,9-— nwug (3.6.15)
N N

which, together with (3.6.14), yield

C C

ce—N— uwng (1 — An) 5 WTVn,aW soapy, :le130 + An).

Then one has (3.6.11) and (3.6.12) by (3.6.15), (3.6.14) and (3.6.5). Next, denote by

Amax (Vma) and Ami“ (Vma) the maximum and minimum eigenvalue of Vma, then

CVN-1 S “Vn,a”2 “V7231 2 :- Amax (Vn,a) , Ag)?“ (V1141) = “Valallzz SCVN_1)a'8'7
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thus K. = “Vnfl,”2 = Amax (Vma) /)‘min (Vma) = CV/cV < oo,a.s. One can also

Show that It 2 C > 1,a.s.. Combining the above and Lemma 3.6.6 with u =

(14,2 —- I)”16 (K2 + 1)—1/16, one gets “VT—thloo S 2v‘8N (1 ——v)"1 = CN,a.s., which is

part one of (3.613). Part two of (3.6.13) can be proved similarly. Cl

3-6.2 Proof of Proposition 3.6.1

LEMMA 3.6.8. Under Assumptions (A2)-(A4) and (A6), as n —+ 00

sup “(50, - 900(k)" S C “mm“ h4‘k,a.s.,0 S k S 2. (3.6.16)

aEA 0° 0°

Proof. According to Theorem A.1 of [36], there exists an absolute constant C > 0, such

that

SUPllga- galleoSCSup inf ||7— yell00 <C'“m(4)“00 h4Wa"

06A 7EI‘(2)

which proves for the case k = 0. Applying Lemma 3.6.1, one has for 0 S k S 2

sup “(QT (90,) — ga)(k)“ S C sup ”951)“ h4"k S C ”mm” h4—k, a.s.. (3.6.17)

aeA 0° aEA 0° 00

So sup "QT (90) — go,”00 S C “mm" h4 a.s., which entails that

06A 00

supA”(QT (—-ga) 9a)(k)”00 S C ”m(4)“001h4k ,.a s. ,0 S k S 2. (3.6.18)

Then the lemma is proved by combining (3.6.17) and (3.6.18). Cl

DeDOte Ba = {Bj4 (U0t)}nNt=n’+1j=—3 and

—1

Pa = B, (BzBa) BE (3.6.19)

as the projection matrix onto the cubic spline space spanned by Pa), and I30, :-

dBa/da, Pa : dPa/da.

LEMMA 3.6.9. Under Assumptions (A4), one has

n,N

Ba = [{Bj,3 (Ua,t) - Bj+1,3(Uor ,t) } f (Math“1::lJQj1Yt2..j] ,

t=n’+1,j=—3

(3.6.20)

. . T —1 T T -—1 . T

Pa = (I — Pa) Ba (Ba Ba) Ba + Bo, (130,130) Ba (I — Pa). (3.6.21)
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Proof. Property (ii) in Lemma 3.6.2 implies that

  

' d < ) "’N d ( ) d "’NBa: {-—B',4 U ,t } = {—B‘,4 U ,t -U ,t}

‘10 J a t=n’+1,j=—3 d“ J a d“ a t=n'+1,j=—3

N

B- U B- U - "’
= 3 .713( as") _ j+1,3( ait) f(Xa,t) h-‘l :00 jaj-‘IS/taj

tj+3 - t2 tj+4 - tj+1 3:1 t=n’+1,j=—3

 

.
n’N

= [{B',3 (U63) —Bj+1,3(Ua.t)}f(Xa¢)(‘42:1jaJ—1naji

Next, note that

d

da

t=n’+1,j=—3

Pa = Ea (BEE,,,)"1 BE + 80,— {(BEBa)—1} BE + Bo, (BEBa) "1 BE

and

3{(B£Ba)‘l} = —<B£Ba)’1..‘i—<B£Ba) (352)"

= — (BEBa) "1 (BEBO, + BEE...) (BE-CBC.) _

Hence 1')... is

Ea (BEE...) "1 BE - Ba (BEBQ) '1 BEBa (BEBa)-1 BE

~Ba (BEBQ)_1EEB0 (BEBa) "1 BE + Bo, (BEBQ) _1 BE

= (I — P.) Be (85136)"1BZ.‘ + B. (Bite...)—1 BZZ (I — P6).

LEMMA 3.6.10. Under Assumptions (A3), (A4) and (A6), as n —-> oo

sup “(nI')-1B£“ S Ch, sup

CX)  

(n")'—1B£”00 S C,a.s.

06A (16A

0 d T —1

sup ”Pall00 S C, sup ”Pa” S Ch, sup —— (BaBa) = O (N) ,a.s.

.1621 (EA 00 06A d0 66  

II

Proof. For any vector a ER" , one has

Il(n”)"BZ.‘a||oosuau.. max [(n”)“Z" B..4(Ua3)|30hnau...
-3_<.jSN t=n’+l

and using equation (3.6.20), H (n”)—1 35a" is bounded with probability 1 by

CX)

Tl 00

“an -32312‘31 (em—1 2: {(B,,3—B,-+1,3)(U..,.)}f(X6,3)Ir12jeJ-1Y,2_,

t=n’+1 i=1
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(3.6.22)

(3.6.23)

(3.6.24)

(3.6.25)

0.3.

 



S Cllalloo. Then one has (3.6.25) by (3.6.19), (3.6.13), (3.6.24), (3.6.23) and (3.6.22).

Equations (3.6.20) and (3.6.21) are needed for proving the rest of the inequalities. Cl

LEMMA 3.6.11. Under Assumptions (A2)—(A4) and (A6),

d’c -
sup “—1; {ya (Ua,t) - 901 (Uaat)}A da 3 C ”63(4)” h4_k,a.s., k = 1, 2. (3.6.26)
06

00

 

Proof. According to the definition of go, in (3.2.3), one has

(1
Edg,‘ [{QT (go) _ go} (Ua,t)] = aPa [{QT (96) - ya} (Umtil

= P6 [{QT (ye) - go} (Ua,t)l + Pail; [{QT (90) " 90} WW” *

it; [{QT(901) "‘ go} (Ua,t)] = [{QT (21:15.90) — £90} ([10130]

d °° -
+ [3,7 {QT (ye) -- go} (U..,.)] f (X...) h’1 2369-1133,,

.7:

which yield (3.6.26) for k = 1 by (3.6.17) and (3.6.25). The proof for k = 2 is similar. Cl

LEMMA 3.6.12. Under Assumptions (A2)-(A4) and (A6), as n -—> 00, one has with proba-

 

 

 

     

 

    

  

   

bilityl

:29. 33E m=0(l}i—Zl:3 337'?“ 500%), (3'6”)

:25: 3‘2 (53’) m=0(l£5i)23 53(335“) m=0(’$—g—;El (36-28)

:29. 337E m=0(i‘}i%)’:3 333“ 05003-2) (“-2")     

Proof. we prove only the first equation in (3.6.27) and the second equation of (3.6.28),

other equations can be proved similarly. One has

33:36—12” 3.6,66><6—21
N

n tzn’ '—J-w3‘

Denote Z): = g (Ut) (é? —- 1) = Zfln+ Z52" + Ztg", where Dn = n77 (1/3 < n < 2/5),

2.3" =g(U.) (632-1)1(l9(Ut) (a? — 1)| > 12...},

252" = g (U63) (5% — 1) I {|g(U.) (a? -— 1)| s 0.} — 2:3;
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2.2." = E [9(Ut) (é? — 1)1{|g(u.) (é? — 1)| _<_ D..}].

Note that the B-spline basis is bounded, so it is straightforward to verify that the mean

of the truncated part is uniformly bounded by D;2

333166—129...(U...)25.1... 0(1):?) = . (2‘2”)-

One has 22:11,“ P{|g (Un_1) (5?, —— 1)[ > Du} S :00 ,+1D;3 < 00 according to the
71:7!

assumption that E (g?) = mg < +00, and Borel—Cantelli Lemma implies that the tail part

l(n”)m1 Z:=n,+1 3334 (Ua,t) Zt,Dlnl = 0 (n—k) , for any h > 0.

For the truncated part, using Lemma 2.5.2 and discretization, one has

((n”)—1 Zn 3,7,4 (Ua,t) Zgnl = 0 (logn/M) .
t=nL+1

Therefore the first equation in (3.6.27) is established with probability 1. To prove the second

equation of (3.6.28), notice that

BEENMWZ" BMW{,.U,._..(U..)}]N ’

 

 

 

   

n t=ni+1 j=——3

d BEE... ,, -1 n d N

a“: nil = (n ) thnl+1 36 [8.7.34 (Uait) {9 (Ut) — ga (Ua’t) }] j=-3

While E [BM (Ua,t) {g (Ut) — ga (U04) }] = 0, —3 S j S N implies that

d .

E {.3 (B... (U...) {3 w.) - 3.. (U.,.)}]} = o. -3 s 3 s N, eeA,

which allows one to apply Lemma 2.5.2 to obtain that with probability one

TE
sup 1 Ba" 0 = O (logn/Vnh).

06A da n 00

Cl

LEMMA 3.6.13. Under Assumptions (A2)-(A4) and (A6), as n —+ 00

sup sup léa(u)| = 0 (log n/Vnh) ,a.s., (3.6.30)

aEAuEmJ]

sup sup [Ea(u)| = 0 (log n/x/nh) ,a.s.. (3.6.31)

aEAuEWJ]
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Proof. We only prove (3.6.30), the proof of (3.6.31) is similar. Denote a = (&_3, ..., 6N)T =

-l

(BEE...) BEE

_—_ V12)! {(n”)-1 BEE}, then éa(u) = Zfiz—3 éijA (u).

00

sup sup [éa(u)| S SUP llélloo = SUP “V722! (n—IBEE)”
aEAu€[0,l] aEA Ore/1

S CN sup ”(n")"1 BEE” a 3

(16A 0°

where the last inequality follows from Lemmas 3.6.7 and 3.6.12. Cl

LEMMA 3.6.14. Under Assumptions (A2)-(A4) and (A6), as n —r 00

  

d

sup max -—5‘a(Ua,t) =O(n—1/2N3/2logn),a.s., (3.6.32)

aEAn’+1StSn da

d

sup max —Ea(Ua,t) =O(n_1/2N3/210gn) ,a.s., (3.6.33)

aeAn’+1StSn (10

d2

sup max ———2-ea(U...t) ——-O (n—1/2N5/210gn) ,a.s., (3.6.34)

a6An’+1<t<n da

2

sup max d250(Uat) =0 (n‘1/2N5/2 log n) ,a.s.. (3.6.35)

aEA n’+1<t<n d0

Proof. We only prove (3.6.32) and (3.6.33), the proofs of (3.6.34) and (3.6.35) are similar.

7].

One has {3%EQ(Ua,t)}t=n,+l

  

= (1 - Pa) E... (BEE...) -1 BEE + B... (BEBa) "1 BE (I — Pa) E

   

-—1 —1 .

BEBQ) BEE + Ba (BEBQ) BE (1 — 13..) E.

n Tl 17.

According to (3.6.13), (3.6.24), (3.6.25) and (3.6.27), one has (3.6.32). To prove (3.6.33),

d ~ 17.

note that {355“(Ua't)}t=n’+l

= (1 — Pa) E... (BEB...)_10BEEC. + BE (BEE...) '1 E. (I — P...) E...

+B... (BEBa)_1BEEEdE

= (I - P...) E... (1351305101 BEE... — BE (BEE...)1E...P..E..

+BE (BEBa)lEaE... + Ba (EEBO) BEddEa

= T1 + T2
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where

T1 = {(1 — Pa) Ba — BE (BEBQ)_1 EaBE} (BEBa)—1 BEE...

—1 . -—1

{.-....3 (___an..) ___..B.} (L...) __B...
n 71. n

—1

B BEE... _d_ BEE...

a n do n '

By (3.6.13), (3.6.24), (3.6.25) (3.6.27) and (3.6.28), one has supaeA ||T1|[C,O =

O (n—1/2N3/2 log n) and supaeA ||T2||00

= 0 (n-1/2N3/210gn) ,a.s. which leads to (36.33). D

  

T2

Proof of Proposition 3.6.1. According to (3.6.6), one has (3.6.8) by (3.6.16), (3.6.30)

and (3.6.31). Similarly, one has-

d .. d ~ d _ d .

I); {9a (Ua,t) '— 9a (Ua,t)} = a; {90: (Ua,t) _ 90: (Ua.t)} + 3350(UGJ) + 35540.0.”-

Thus one has (3.6.9) by (3.6.16), (3.6.32) and (3.6.33). The proof of (3.6.10) is similar. El

3.6.3 Proof of Proposition 3.2.1

LEMMA 3.6.15. Under Assumptions (A1)~(A6), as n —+ 00, supaeAlE(a)—-R(a) =

o(1),a.s..

Proof.

n

f2(a)= 1 , Z {YE—3.3136}2
’n. — n

t=n'+l

 

1

n—M

 

Zn: {9(Ut) + 9(Ut) (Q2 _ 1) “ 90(Ua,t) + 901(Ua,t) - 901(Ua,t)}2

t=n’+1
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= n —1n’ 2 {ga(UO‘1t) _ §a(Ua,t)}2 + n _1 ”I Z {9(Ut) ‘“ 9a(Ua,t)}2

t=nI+l
t=n’+1

+713”. 2 {9(Ut) -* ga(Uo.,t)} {9(Ut) (g3 -— 1)}

t=n’+1

+7. .3 n! 2: {9(Ut) (E? — 1)}2

t=n’+1

n 3 n! 2 {9a(Ua,t) - §a(Ua,t)} {9(Ut) — 9a(Ua,t) + 9(Ut) (f? _ 1)} ,

t=n’+1

2

R(a) = E {Yt2 — ga(Ua,t)}

= E {9(Ut) + g(Ut) (é? '— 1) "' 90(Ua,t)}2

= E {3(a) — 3.6!...»2 + E {9(0.) (6? — 1) )2.

 

  

 

  

 

  

 

 

 

 

Hence

sup R(a) — R(a)| S 11 + 12 + 13 +14

06A

where

1 n . 2
I1 = sup , Z {90(Ua,t) — ga(Ua,t)} w

aEA n “ n ,
211 +1 .

2 "‘ - 2
I2 = 22% n __ n, t=§+1{ga(Ua,t) — 901(Ua,t)} {9(Ut) - 90(Ua,t) + 9(Ut) (gt “ 1)} 2

1 n 2 2

I3 = SUP _ , Z {9(Ut) " ga(Ua,t)} " E {9(Ut) " 90(Ua,t)} 1

“EA n n t=n’+1

I4 = sup 1 2 {9(3) (6 — 1)}2 -— (m4 — 1) E92(Ut)

QEA n _ n, t=n’+1

n

n _ n, E {9(Ut) - 90(Ua,t)} {9(Ut) (6? ‘ 1)} }'

t=n’+1   

According to Lemma 2.5.2, one has 13 + 14 = 0(1) ,a.s, and (3.6.8) entails that

2

11 = 0 {(n"1/2 logn) + (H4)2} ,a.s.. One also has

[2 S O (n‘1/2logn + H4):1€1357t :1l{g(Ut) — ga(Ua,t) + 9(Ut) (5? " 1)}l 1

=n +
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which is O (n-1/2 logn + H4) ,a.s.. The lemma is proved by combining 11,12, 13,14. C]

LEMMA 3.6.16. Under Assumptions (AU-(A6), as n ——+ 00, one has for k = 1, 2

(n-1/2h—1/2-k logn + h4—k) , a.s.. (3.6.36)

 

 

(E(a)— 3(a)) =0sup dk

016 do."

Proof. Note that

1 d .
5352(6) = —1,—,Z {6.61.6 -Y.)3390((U...)

”t=n'+1

1 d d
521—312(0) = En[{ga(Uayt) — YtZ} Ega(Ua,t)] ’

then

1 d - 1 "

232(E(a>—E(a>) =37 2 6.,.+Ja.1+Ja,2+Ja.3
t=n’+1

where 50¢ is defined in (3.2.8) and Ega. = 0 , and where

1 " - d ..

Jal = '77; Z {90(Ua,t)_ga(Ua,t)}'Ja(ga“9a)(Ua,t)y
1

==n’+1

Ja,2 = ’17,: {ga(Ua,)t _Yt2}: (9a‘ 9a) (Ua,t)

”t=n’+1

1

Ja,l = _,2 {90:(Ua,t)‘ 90:((U0,dt)}da—ga(U0,-t)

nflt=n’+1

By Lemma 2.5.2, sup [(n”)—1 Z?—n’+1€a1tl = 0 (n’1/2logn) a.s.. Meanwhile, (3.6.8)

aEA '-

and (3.6.9) imply that sup lJaJl = 0(n"1h"210g2n + h7) a.s.. Note that

aEA

1

Ja,2 = ‘77 Z{ga(Ua,t) — Yt2}— (9(1“ 90:) (U0,t)

1t——-n’+1

7,; (E. +E)T;,5:; {P.(E. +E)}-

One has

sup

0611

according to (3.6.16). Next

Jaw—2+1”(Ea+E)T—-—-{PO.(EQ+E)}|=0(h3) as

 

1 d

|-— (E. +E>TE{P.(E. +E>}|
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1 d BTB BT

{(,.a-p)W}

BgBa)-wBT

II

  

 

1 .

s W<E.+E)TBQ( 0',(E..+E)

  

1 7‘ BTBa - clBT

+ m(Ea-FE) Ba (fir)l d—anO[(Eoz'l‘E)

1 1~ d BTB BT
+;W@5+E)B%E{(%%£)}nawn+E)

  

  

Thus

figmeflg {P.(Ea +E>}|
 

sup

aEA

(Ea + E)T Ba
 

    

-1

BECBa

Tl.”

  
  

l

S 0(N x sup ——

) a€A{ n” 00

       
  

 

—1

1 BTB clBT

+0 (N) x sup 72,7 (Ea + E)T Ba (€173 d—dn-—°‘,(Ea + E)

06.4 00 oo

-1

1 d BTB BT

+0 (N) X sup a; (Ea + E)T Ba E; ( :11” a)“: —Ia[(Ea + E)

06A 00 00 oo        
  

 

= 0(N) x 0 (logn/M) x 0(N) x 0 (logn/W) '2 0(n—1N210g2n) a.s.

according to (3.6.27), (3.6.28), (3.6.29), (3.6.13) and (3.6.25). So sup|Ja,2|

06A

0 (Tb—1N2 log2 n + 113) ,a.s.. Similarly, one can write

Ja,3=—1-,;Z {gun/W) yaw...» d1,9411...)

t=n’+1

 
1 1~ BTBa ’ BT11

+W(E0+E) Ba( an )1 n—daga

and has

1 n 1 d

SUP 377 Z {9a(Ua,t)-ga(Ua,t)} EggMUmt) =0(h4) a-S-,

06A t=n’+1
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sup

aEA

logn } {logn}

== 0 x N x h =0 ...

{VnN x/nN as

Thus (3.6.36) is proved for k = 1. One can prove that for the term {out defined in (3.2.8),

72

1 T 33,13a “133; d

”77(Ea‘l'E) Ba *1). -——-ga

  

  

with probability 1

sup

aeA

$55 {R(a) — R(a)} — 5;, En: goat = o (71—1/2) . (3.6.37)

t=n’+1   

The proof of (3.6.36) for k = 2 follows from (3.6.8), (3.6.9) and (3.6.10), since

11.
1 d2 ‘ 1 ,. 2 d2 . d .. d ,.

EWRQI) = Ft 2,21 [{ga(Ua,t) _ Yt } ga—Q‘ga(Ua.t) + E90(Ua,t)jdgga(Uait)] ’

:17,

1 d2 d2 d d

5mm) = E [{gawat) — YE} 50—29411...) + 3390(Ua,t>3;ga<va,t>] .

[3

Proof of Proposition 3.2.1. It follows from Lemma 3.6.15 and Lemma 3.6.16. [3



CHAPTER 4

Spline-backfitted kernel smoothing of

additive coefficient model

4.1 Introduction

This chapter is based on Liu and Yang (2009). Model (1.3.1)’s versatility for econometric

applications is illustrated by the following example. Consider the forecasting of US GDP

annual growth rate, which is modelled as the Total Factor Productivity (TFP) growth rate

plus a linear function of capital growth rate and labor growth rate, according to the classic

Cobb-Douglas model (Cobb and Douglas, 1928). As pointed out in Li and Racine (2007),

p. 302, it is unrealistic to ignore the non neutral effect of R&D spending on the TFP

growth rate and on the complementary slopes of capital and labor growth rates. Thus

a smooth coefficient model should fit the production function better than the parametric

Cobb-Douglas model. Indeed, Figure 9 shows that a smooth coefficient model has much

smaller rolling forecast errors than the parametric Cobb-Douglas model, based on data from

1959 to 2002. In addition, Figure 10 shows that the TFP growth rate is a function of R&D

spending, not a constant.

Many methods exist for the estimation of functional/varying coefficient models, see

Cai, Fan and Yao (2000), Yang, Park, Xue and Hardle (2006) for kernel type estimators,

Huang, Wu and Zhou (2002), Huang and Shen (2004) for spline estimators. Thase published

works have partial success in addressing the inaccuracy of estimating multivariate nonpara-

metric functions, commonl known as the “curse of dimensionalit r”. picall , 0)timaly i y I
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convergence rates of the coefficient function estimators are established, locally for kernel

estimators, or globally for spline estimators.

,d2. . . . . . d

Our V18“! 18 that a satlsfactory procedure for estimating the functions {mag (ma)}l__1_1 0:1

and constants {mot}?__1_1 in model (1.3.1) should meet three broad criteria. Specifically, the

procedure should be (i) computationally expedient; (ii) theoretically reliable and (iii) in-

tuitively appealing. As model (1.3.1) is a natural extension of additive model, we extend

the “spline-backfitted kernel smoothing” of Wang and Yang (2007) to additive coefficient

model, combining the best features of both kernel and spline methods. Kernel procedures

for additive model, such as Yang, Hardle and Nielsen ( 1999), Sperlich, Tjostheim and Yang

(2002), Yang, Sperlich and Hardle (2003), Rodriguez-Poo, Sperlich and Vieu (2003), Hen-

gartner and Sperlich (2005) satisfy criterion (iii) and partly (ii) as they are asymptotically

normal at any given point, but not (i) since they are extremely computationally intensive

when either the dimension is high or sample size is large, as illustrated in the Monte—Carlo

results of Wang and Yang (2007). Spline approaches of Stone (1985), Huang (1998a,b),

Huang and Yang (2004) to additive model, on the other hand, do not satisfy criterion (ii)

as they lack limiting distribution, but are fast to compute, thus satisfying (i). In addition,

none of the published works had established “uniform convergence rate”, thus lacking in

regard to (ii). The spline-backfitted kernel (SBK) and spline-backfitted local linear (SBLL)

estimators we propose are essentially as fast and accurate as an univariate kernel and local

linear smoothing, thus completely satisfying all three criteria (i)-(iii). Other alternatives

for estimating model ( 1.3.1) that may satisfy criteria (i)—(iii) are possible extensions of the

smoothed backfitting of Mammen, Linton & Nielsen (1999) and Nielsen & Sperlich (2005),

and the two-stage estimator of Horowitz and Mammen (2004). It is important to note that

although Horowitz and Mammen (2004) had used B spline in simulation, their theoretical

proof was for what should be called “orthogonal series-backfitted local linear” estimator in

our parlance.

We now describe the oracle smoothing idea of Linton (1997) in the context of model

(1.3.1). If all the nonparametric functions of the last d2 —- 1 variables, {mal(:ra)};i__1:f§=2

d .

and all the constants {mmhil were known by “oracle”, one could define a new variable
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d' 2

Y,1 = 23:14 mu (X1) T; + a (X,T) 5 = Y — 22:1 {m01+ ma; (Xa)} T1 and estimate

a:

all functions {mu (31)}:21 by linear regression of X1 on T1,",le with kernel weights

computed from variable X1. These would—be estimators do not suffer from the “curse of

dimensionality” and are called “oracle smoothers” . We propose to pre—estimate the functions

{mat (30)}?ifi=2 and constants {mozhdil by linear spline and then use these estimates

as substitutes to obtain an approximation I21 to the variable Y,1, and construct “oracle”

estimators based on 17,1. The theoretical contribution of this chapter is proving that the

error caused by this “cheating” is negligible. Consequently, the SBK/SBLL estimators

are uniformly (over the data range) equivalent to univariate kernel/local linear “oracle

smoothers”, automatically inheriting all their oracle efficiency properties. Our proof relies

on the general principles of “reducing bias by undersmoothing” and “averaging out the

variance” , accomplished with the joint asymptotics of kernel and spline functions. Another

innovation in this chapter is the (hi-consistent oracle estimation of constants {motfilil

’d2 Xue &

. . (1

under conditions no more than second order smoothness of {mal($a)}1i1 0:1.

Yang (2006a) had provided (fit-consistent estimation of constants {"1002}; only under

higher order smoothness Assumptions, while Xue and Yang (2006b) had failed to obtain

{ii-consistency for estimating {m01}2i;1.

This chapter is organized as follows. In Section 4.2 we discuss the assumptions of the

model (1.3.1). In Section 4.3, we introduce the oracle smoothers and discuss its asymptotic

propertiae. In Section 4.4 we introduce the SBK and SBLL estimators, their L2 consistency

and asymptotic normal distribution. The ideas behind our proofs of the main theoretical

results are given by decomposing the estimator’s “cheating” error into a bias and a variance

part. In Section 4.5 we discuss the implementation of the estimators. In Section 4.6 we

apply the methods to simulated and empirical examples. All technical proofs are given in

the Appendix.
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4.2 Assumptions

Let {(Y,-, Xi, Ti)}?___1 be a sequence of strictly stationary observations, with identical distri—

bution as (Y, X, T) in model (1.3.1). Denote the unknown conditional mean and variance

functions as m (X, T) = E (YIX, T) ,02 (X, T) 2 var (YIX, T), then one has

Yi = m (Xi, Ti) + 0(X1,Tz') 5i (4.2-1)

for some conditional white noises {51);} that satisfy E(£,-|X1-, T2) = 0, E (ezZIXi, T,) = 1.

The variables (Xi, T5) can consist of either exogenous variables or lagged values of 1’}. For

the additive coefficient model, the regression function m takae the form in ( 1.3.1), and

satisfies the identification conditions that

E {mod (Xa)} = O, 1 SIS (11,1 S 0: S (12 (4.2.2)

d2

ensuring the unique additive representations of ml (x) = mg; + 2 ma; (Ia). As in most

a=1

works on nonparametric smoothing, estimation of the functions {mat (ma)};i__1_’l(f£=1 is con-

ducted on compact sets. Without lose of generality, let the compact set be X = [0,1]“2.

Following Stone (1985), p. 693, the space of a—centered square integrable functions on

[0,1] is

Hg = {g : E{g(Xa)} = 0,E{g2(Xa)} < +00} ,1 s a 3 d2.

Next define the model space M, a collection of functions on X x Rdl as

(11
d2

M = g(x, t) = 29; (x) t); g; (x) = 901+ 29010501) 3.9a! 6 H2 2

1:1 a=1

in which {90!};g1 are finite constants. The constraints that E {gal (Xa)} = 0, 1 S a S d2

ensure unique additive representation of m; as expressed in (4.2.2), but are not neces—

sary for the definition of space M. In what follows, denote by En the empirical expec-

tation, Engo = 221:1 <p(X.;,T,') /n. We introduce two inner products on M. For func—

tions 91,92 6 M, the theoretical and empirical inner products are defined respectively as

(91.92) = E {91 (X, T) 92 (X,T)}, (91,92).. = En {91 (X, T) 92 (X. T)}- The correSPond-

ing induced norms are llglllg = E91? (X, T), Ilglllgm = Eng? (X, T). The model space M
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is called theoretically (empirically) identifiable, if for any 9 E M, ||g||2 = 0 (llgllzm 2' 0)

implies that g = 0 as.

In this chapter, for any compact interval [a, b], we denote the space of p—th order smooth

function as C(p)[a, b] = {g]g(p) E C [a, b]}, and the class of Lipschitz continuous functions

for constant C > 0 as Lip([a,b] ,C) = {g] ]g (x) -—g(:z:')] S Cla: -:r:’] , Vx,:c' 6 [a,b]}.

We mean by “~” both sides having the same order as n —> 00. We denote by IdIXdl

the d1 x d1 identity matrix, and 0,11de the d1 x all zero matrix. For any vector x =

(51:1, 51:2, - - - , 2,12), we denote the supremum and Euclidean norms as Ix] = maxlSan2 Ira]

and leu = (22:. x2.) 1’2.

We need the following Assumptions on the data generating process.

(A1) The tuning variable X = (X1, . . . ,Xd2) has a continuous probability density function

f(x) that satisfies 0 < of S minxeX f(x) S maxxgx f(x) S Cf < 00 for some

constants cf and Cf and f(x) = 0,:c ¢ x = [0,1]“2.

(A2) There exist constants 0 < cQ S CQ < +00 and 0 < c5 S C5 < +00 and some 6 >

d

1/2, such that CQIdlxat1 S Q(X) = {4(X)},,]/=1 = E (TTT IX = X) S 001(11de

2+6

and 05 S E{(T1TI/) IX =x} S C"; for all x E X and l,l’ =1,...,d1.

(A3) The vector process {ct}f__‘_’___oo = {(Yt, Xt, Tt)}f:_oo is strictly stationary and geomet-

rically strongly mixing, that is, its a -mizing coefficient a(k) S 6,0“, for constants

c > 0, 0 < p < 1, where a(k) = SUpA€a(ct,tS0),BEa(ct,t2k) |P(A)P(B) —- P(A fl 8)]

(A4) The coefficient components, mat E C’1 [0,1], mg] 6 Lip ([0, 1] ,Coo) ,Vl S a S d2,1 S

15 d1 with m1, 6 C2{0,1],V1 g: 3 d1.

(A5) The conditional variance function 02 (x, t) is measurable and bounded. The errors

{5,}?=1 satisfy E(e,-|.7-',-) = 0, E(e,2|F,) = 1, E (Ieilz'l'nlfi) S CG, for some n E

(1/2, 1] and the sequence of o—fields F,- = a {(Xj,Tj) ,j S i;€j,j S i -— 1} for i =

1,...,n.

(A6) The marginal density f1 (:51) of X1 and the conditional second moment matrix func-

tion Q1 (2:1) defined in (4.2.3) both have continuous derivatives on [0,1].
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Assumptions (A1)—(A5) are common in the literature, see for instance, Huang & Yang

(2004), Huang & Shen (2004) and especially Xue & Yang (2006b). Assumption (A6) is

needed only for the asymptotic theory of oracle “kernel smoother”, but not for the oracle

“local linear smoother”. Assumption (A2) implies also that for all 173 6 [0,1] , 1 S oz S d2

andl,l'=1,...,d1

|
/
\

Qa ($0): {(10 (170)}11l’__=1 ET(TTlXa— 1'01) < CQIdlxdl (423)

E{(T1TII)2+ IXa = ma} _<_ 05.

Furthermore, Assumptions (A2) and (A5) imply that for some constant C > 0

CQIdl Xdl

l
/
\

06

max E|Tl]2+" < C1 max E |T1T1|2+6= C lmax E|T1|4+26S 0C5 < +00. (4.2.4)

lSlSdl lSSdl lSSdl

At one referee’s request, we provide here insight into the relationship allowed between the

vectors T and X under Assumption (A2). It is instructive to first understand what T and

X can not be in the context of identifiability for functions {mal(:1:a)}I=’__d1a_1. Suppose

that the vector X is centered so that EX = 0. Then model (1.3.1) is unidentifiable when

(T1,T2)= (X1,X2) since —3X2T1 +3X1T2— 0, E(—-3X2)= E (3X1) = 0 and the function

m (x,t) in (1.3.1) is expressed as

d1 d2 d2

2 mm + 2 mal (Ira) Q + mm + m21 ($2) + 2 mal ($0) t1

(=3 a=1 a=1,a;é2

0‘2

+ m02 + m12(3131) + Z "101(330) t2

a=2

d1 d2 d2

5 2 mm + 2 mal (95a) 11+ m01 + m21(1172) - 3152 + 2 mal (30:) t1

(=3 01:1 a=1,a7£2

d2

+ 77102 + m12(1131) + 35131 + Z ma1($a) t2,

0:2

so one can use "”51 (x2) = mm (:62) —-3:1:2 and mh (x1) = 17112 (11:1)+3:z:1 to replace mgl (11:2)

and mu (11:1) without changing the data generating process (1.3.1). In other words, the

functions mm (:52) and m12(:1:1) are unidentifiable. Xue and Yang (2006a), p.2523 gave a
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similar counterexample, and discussed why an unidentifiable model may perform better for

prediction.

More generally, it is revealing to note that Assumption (A2) not only rules out the above

anomaly, but it also does not allow the possibility that there exist two CD’S (1 S l S d1)

almost surely equal to two Borel functions of X. To see this, suppose that (T1,T2) =

{1,01 (X) , (p2 (X)} ,a.s for some Borel functions (p1 and (p2. Assumption (A2) impliae that

T2 T T

CQ12x2 S E{ ( T111112 711222 )

 

X = x} S qu2x2,\7’x E X

leading to

cQI2x2 S ( (P1 2:351:72“) (p1 $353)“) ) S. CQI2x2,a.s.,Vx E X

which can not be true as for any x E x, the 2 x 2 matrix in the above is singular, thus can

not be 2 eqlgxg. That Assumption (A2) guarantees the identifiability of model (1.3.1) has

been established in Lemma 1 of Xue and Yang (2006b). It is important to observe, however,

that Assumption (A2) does not exclude the case of one Th1 S l S d1 almost surely equal

to a Borel function of X.

4.3 Oracle Smoothers

We now introduCe what is known as the oracle smoother in Wang & Yang (2007) as a bench-

mark for evaluating the estimators. Denote for any vector x = (x1 , 2:2, - - - , xd2) the deleted

vector X_1 = (x2,~- 133112) and for the random vector X,- = (Xi1,X,-2,--- ’Xidz) the

deleted vector X,,_1 = (Xig, . -- aXidz): 1 S i S n. For any 1 S l S d1, write m4) (x_1) =

mg; + 222:2 ma] (ma). Denote the vector of pseudo-responses Y1 = (Y1,1,- -- ,Yn,1)T in

which

d1 ' d1

Yi,1 = Yi — 297101 + "1-1,: (Xi,-1)}Til = Zm11(X11)"-’}z+ U (Xi: Ti) 62'.

1:1 [=1

These would have been the “responses” had the unknown functions (111-1,; (x—1)}1<l<d1

been given. In that case, one could “estimate” all the coefficient functions in :01, the vector



T

function mL. (T1) = {mm (331) , - - - ,mldl (1:1)} by solving a kernel weighted least squares

problem

~ ~ —- T e

mK,1,- ($1) = {'mK,11($1),“' :mK,1d1($1)} = argmm L (A,m_1,-,$1)

#01013ng

in which 2

n d1

L (A,m_1,-,$1) = Z Yi,1 — ZAsz‘z Kh(Xi1_ $1)-

i=1 [:1

Alternatively, one could rewrite the above kernel oracle smoother in matrix form

~ T '1 T 1 T '1 1 T
mK,1,. ($1) = (CKW1CK) CKW1Y1 = ECKWICK ECKWIYI (4.3.1)

in which

' T

Ti = (Til: ' ° ' iz‘idl) 7 CK = {T11 "'iTn}Ti

W1=diag {Kh (X11 —- $1) ,~-,Kh(Xn1 - $1)},

Kh (u) = K (u/h) /h for a kernel function K and bandwidth h that satisfy

(A7) The function K is a symmetric probability density function supported on [—1, 1], and

K 6 Lip([—1,1],CK) for some CK > 0, while the bandwidth h = hlm > O,h ~

n’1/5.

Likewise, one can define the local linear oracle smoother of mL. (1121) as

.. 1 ‘1 1

mLL,1,- ($1) = (1.11 xd1,0d1xd1) (HCE‘LJWICLLJ) ECELJWIYL (4-3-2)

in which T

C _ T1 , ... , Tn

LL’I T1 (X11 -$1) , , Tn (Xn1-$1) '

In this chapter denote ug (K) = fuzK (u) du, “Kllg = [K(u)2 du, Q1 (:51) as in (4.2.3)

and define the following bias and variance coefficients

1

bLL,l,l’,1 ($1) = 5% (K) "1,1,1 ($1) f1 ($1) flu/,1 ($1),

bx,l,l',1($1): $112 (K) [2m'11(331)5% {f1($1)qw,1($1)} +mll’1($1)f1 ($1)f1u',1(331)] 1

231 ($1) = “Kllg f1 ($1) E {TTT02 (X, T) |X1 = $1},

{vl,,/,1<z1)}:j,___l = Q1 ($1)-1 21 (x1) Q1 ($1)-1. (4.3.3)
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THEOREM 4.3.1. Under Assumptions (A1) to (A5) and (A7), for any :61 E [h,1- h], as

n —> 00, the oracle local linear smoother mLLJI (x1) given in (4.3.2) satisfies

d
d1 1

,— .. all

"h mLL,1,- ($1) _ m1,- (331) - E :bLL,(,z’,1 (371) (‘2 "" N (01{v[,1',1($1)}”,=1) -

l=1 ’
l’=1

With Assumption (A 6) in addition, the oracle kernel smoothermm, (11:1) in (4.3.1) satisfies

d1 d1

r— .. d1
nh mK’1,. (:81) — 772.1,. ((121) - Z bK,l,l',1 (1111) h2 -+ N (0, {UM/,1 ($1)} ) .

l=1

l,l’=1

l’=1

THEOREM 4.3.2. Under Assumptions (A1) to (A5) and (A 7), as n ——> 00, the oracle local

linear smoother mud, (3:1) given in (4.3.2) satisfies

sup ImLL,1,. (:51) — m1,.(x1)] = 0,, (log n/Vnh).

x1€[h,l—h]

With Assumption (A 6) in addition, the oracle kernel smoothermm, (:01) in (4.3.1) satisfies

sup lmK,1,. (2:1) — m1,.(:1:1)] = 0;, (log n/V 71h) .

$1€[h,1—h]

Remark 1. The above theorems hold for mum (Ta) and mm, (330,) similarly constructed

as 7721,qu (2:1)and mK,1,.(x1), for any a = 2, ...,d2, i.e.,

_11

.. 1

mLL,a,- ($0) = (Idl X611 1 Odl Xdl) (ECEL,QWOCLL,O) ECELpWaYa:

1 1 ‘1 1
mK’a,. (Ilia) 3: (if—ICEWOCK) ECfiWaYa,

except that in Assumption (A4) one has to replace “mu 6 02 [0, 1] ,V1 S l S d1” with

“ma, 6 02 [0, 1] ,‘v’l S l S d1” and in Assumption (A6), f1(:1:1) and Q1(:1:1) have to be

replaced with fa (Ta) and Q0, (Ta).

The same oracle idea applies to the constants as well. Define the would-be “estimators”

of constants (mopflKdl as the following least squares solution

11 d1 2

~ ~ T .

m0 = ("100131ng = arg $111112 Yic - ZmOITil , (4-3-4)

i=1 1:1
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in which the oracle responses are

d1 d2 d1

Yic = Y2" - Z2 mod (Xia) Ta = ZmozTa + 0 (X133) Ei- (4-3-5)

1:10:21 (=1

The following result provides optimal convergence rate of who to ma, which are needed for

removing the effects of mg for estimating the functions {mu ($1)}7i1

PROPOSITION 4.3.1. Under Assumptions (A1)-(A5) and (A8), as n —-+ 00,

5“Pl_<_l_<_d1 Imoz - mozl = 0p ("71(2) -

Although the oracle smoothers Thug, (Ta), mm, (:50) possess the desirable theoretical

properties in Theorems 4.3.1 and 4.3.2, they are not useful statistics as they are computed

based on the knowledge of unavailable functions {mat (2:0)};2’16222 and constants {mot}?il.

They do, however, motivate the spline-backfitted estimators that we introduce in the next

section.

4.4 Spline-backfitted Kernel Estimators

In this section we describe how the unknown functions {mat (Ta)}]1=_1_’16f(21=2 and constants

{mOllliil can be pre-estimated by linear spline and how the estimates are used to construct

the “oracle estimators”. To this end, we first introduce the space of linear splines. Let

0 = 60 < £1 < < EN < {N+1 = 1 denote a sequence of equally spaced points, called

interior knots, on interval [0,1]. Denote by H = (N + 1).1 the width of each subinterval

[€J,€J+1] ,0 S J S N and denote the degenerate knots {-1 = 015N+2 = 1. We assume

that

(A8) The number of interior knots N = Nn ~ n1/4logn and hence H ~ 71"”4 (log n)‘1 .

For J = 0,. . . , N + 1, define the linear B spline basis as

(N+I)$—J+1 76J”13$S€J

bJ($)=(1-|$-€J|/H)+= J+1_—(N+1)$,€JS$S€J+1:

0 , otherwise
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the space of a-empirically centered linear spline functions on [0, 1] as

N+1

G913 = 9013901(17oz)E Z )‘JbJ (550:):En {90: (Xall = 0 ,1 S a S d2,

J=0

and the space of additive spline coefficient functions on X x Rdl as

al1 d2

G9: = 9 (x,t) = 291009; 91(X) = 901 + Z 9al(17a);90l E Riga: E 091,0: 1

1:1 (1:1

which is equipped with the empirical inner product (~, )2,”

The multivariate function m (x, t) is estimated by an additive spline coefficient function

d1 11

m (x,t) = Zmz (x) t: = argminZ {n — g (Xi'an?- (4.4.1)

[=1 96 n i=1

d2

Since in (x,t) 6 G9,, one can write a, (x) = m01+ )3 ml (230,); for m0, 6 R and ma, (ma) 6

(1:1

02,0. Simple algebra shows that the following oracle estimators of the constants mm are ex-

actly equal to mm, in which the oracle pseudo-responses 1),-c = “—23:14 2:11 ma, (Xia) Til

which mimick the oracle responses Yic in (4.3.5)

11 d1 2

mo =(fi101)irglgd1 = arg (A0 mix; )2 Y.- -— Exam-z . (4.4.2)

1,..., 0d1 i=1 z=1

PROPOSITION 4.4.1. Under Assumptions (A1) to (A5) and (A8), as n —+ 00,

3119151ng W01 ’ 7901' = 0p (73—1/2), hence SUPISlSd1 lmoz - mm] = 0,, (n’l/Z) follow-

ing Proposition 4.3.1.

Define next the oracle pseudo-responses 1),-1 = Y,- - 2:1 (mm + 2:12 ma, (Xia)) Ta

.. . .. T

and Y1 = (1’11, - ~ :Ynl) , with mo, and ma, defined in (4.4.2) and (4.4.1) respectively.

The spline-backfitted kernel (SBK) and spline—backfitted local linear (SBLL) estimators are

, —1 - 1 '1 1 .
mSBK,1,.($1) = (CEWICK) CTWIYI = (gcflwch) ECTWIYI, (4.4.3)

—1
. 1 1 .

mSBLL,1,- ($1) = (Idlxdlfldlxdl) (ECELJWICLLJ) ECEL,1W1Y1- (44-4)

The following theorem states that the asymptotic uniform magnitude of difference between

mSBK,1,. (x1) and 7711“,. (11:1) is of order op (n‘2/5), which is dominated by the asymptotic
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size of mK,1,.(T1) — m1,.(a:1). As a result, mSBK,1,. (T1) will have the same asymptotic

distribution as 7711“,. (T1). The same is true for 71133];qu ($1) and ThLLJr (x1).

THEOREM 4.4.1. Under Assumptions (A1) to (A5), (A7) and (A8), as n -—-> 00, the SBK

estimator mSBK’1,. (T1) in (4.4.3) and the SBLL estimator mSBLL,1,. (T1) in (4.4.4) satisfy

$186115,” IThSBK,1,- ($1) - 771K,1,- ($1)|+xlseu[0p,1] ImSBLL,1,- ($1) - 771LL,1,- ($1)] = 0p (71—2/5) -

Theorem 4.4.1 follows from (4.4.13) and Propositions 4.4.1, 4.4.2 and 4.4.3, and re-

mains true if the number of knots is of the more general form N ~ n1/4N' where

N’ ——+ 00, N'/n" ——> 0,Vr > 0 as n -—+ 00. The following corollary provides the asymptotic

distributions of mSBLLJI (T1) and 771K]. (2:1). The proof of this corollary is straightforward

from Theorems 4.3.1 and 4.4.1.

COROLLARY 4.4.1. Under Assumptions (A1) to (A5), (A7) and (A8), for any $1 6

[h,1 — h], as n —+ 00, the SBLL estimator mSBLL,1,. ($1) in (4.4.4) satisfies

d1 “1

Vnh mSBLL,1,~($1) -m1,-($1) — E :bLL,z,z',1(~"1) (‘2 _+ N (0'{UI.I’.1($1)}HI=1)

l=1 z’=1 ’

and with the additional Assumption (A6), the SBK estimator mSBK,1,. (3:1) in (4.4.3) sat-

isfies

d1 d1
d1

\/nh mK,1,.($1)-m1,-($1)— be,z,z’,1($ll “2 TN(0’{UU’J ($1)}zz'=1)

l==1 l’=1 ,

where bLL,l,l’,1 (.171), bK,l,l',l (3:1) and “1,151 (931) are defined as (4.3.3).

Remark 2. The above theorem and corollary hold for mSBKfi, (Ta) and mSBLL,a,. (Ta)

similarly constructed for any a = 2, ..., d, i. e.,

...1 1

Tl

A 1 ..

mSBK,a,- (Ta) = (I—lcfiwacK) CEWaYa, (4.4.5)

A d A A

where Yia = Yi “ 21:1 {"101 + E1ga’g(12,a’¢a mat (Xia)}-
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4.4. 1 Decomposition

In this section, we introduce the ideas of the proof of Theorem 4.4.1. Our main objective

is to study the difference between the smoothed backfitted estimator ThSBK,1z'($1) and

the smoothed “oracle” estimator filKJl’ (51:1). First, define the theoretical inner product

of bJ and 1 with respect to the a-th marginal density fa (1:0,) as ch, = (bJ (Xa) , 1) =

f bJ (Ta) fa (Ta) data and define the centered B spline basis bJ,0 (Ta) and theistandardized

B spline basis BJ0, (Ta) as

CJ, 5.1, ($ )

a bJ—l (Ia) :BJ,a ($0) = _Li
,1SJSN+L 446

CJ—1,a lle.a”2 ( )

 

bJ,a (Ia) = (U (330:) -

so that EB”,K (Xa) E 0, E830 (X0) E 1.

For any n-dimensional vector I‘ ={F1, ...,I‘n}T, we define the additive spline co-

efficient function constructed from the projection of I‘ on the inner product space

d .. d N 1 .. . .

(09;, (-,.)2,n) as (PnI‘) (x,t) 2 21:1 {701+ 21:12:12}; 7J,a’[BJ’a (Ia)}tl,, 1n whlch

. . T .. .

n d1 d2 N+1 2

2 Pi - 2 70,1 + Z Z 'l'J,a,lBJ,a (Xia) Ti , (4-4-7)

i=1 1:1 0:1 J=1

so one can rewrite the linear spline estimator in (4.4.1) as m (x, t) = (PnY) (x, t), where

we denote by Y = (IQ-figs" the response vector. The coeficients of the linear regressors

t1, 1 S l S d1 are denoted as the multivariate additive spline functions

d2 N+1

(Pair) (x) = $111+ 2 2 $14,181.. (ma) .1 = 1.011.

a=1 J=1

- (1

Note that (Pn,lI‘)(:ra) = 70,, + 202:1 ( h,a,lr)($a) where ( 30,11“) ($0.) =

29:11 'er’aJBJp, (220,), we define the empirically centered additive components

(Pma’ll‘) (ma), 0 = 1, ..., (lg

n

(Pmlr) (x0) = (P;,a,,r) (1:0) _ 71-1: (p;,a,,r) (X,,,). (4.4.8)

i=1

Using these notations, spline estimators of ml(x) and matte“) are mm =

(Ple) (x) ,ma, ($0) = (Pn,a,lY) ((120), while noiseless spline smoothers and variance
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spline components are

17119C) = (Pn,lm) (X) 1771011 ($a) = (Pn,a,lm) ($a).

gl( :(Pn,IE) (x) 501(HO) (P11,a,lE) (330) (4-4-9)

where in = {m (Xi, Ti)}¥1:,-Sn is the true function vector and E = {0 (X5, Ti) eilfsisn the

error vector. Due to the linearity of operators Pup and Pn,a,l: 1 S l S d1,1 S a S d2 and

Y = m+E due to (4.2.1), one has the following crucial decomposition for proving Theorem

4.4.1,

m, (x) = m, (x)+El (x) , ma, (Ta) = ma, (Ia)+§al (ma) ,1 SIS d1,1 S a S d2. (4.4.10)

We define additionally an auxiliary entity

e3, ($0,) = (P:,,C,,1E)($a).1 g l 3 (11,1 g a 3 d2. (4.4.11)

Definition (4.4.8) implies that 50,1 (Ta) is simply the empirical centering of {7:31 (2:0,), i.e.

n

801 (23(1):...— 5;! (Ia)—M: (4.412)

.21

According to (4.3.1) and (4.4.3),

1 1. 1 1

WSBK,1,-($1)-mk,1,.($1)=(Ecfiwcx) -CKW1 (Y1 Y1).

.. - . T

Y1 -Y1= (Y1,1.°" .Yn,1) "- (Y1,1.°~ .Yn,1)T

d1

= Z{m01 — mm + "1,1,1 (X44) - 711-1,: 09,1» Ta

[:1
lSiSn

d1

= CK (m0! ‘ 77100131911 + 2: ("1-1.2 (X231) - 771-1,: (X4,_1)} Ta

’21 lSiSn

where making use of the definition of mo) and the signal noise decomposition (4.4.10), the

difference mm, ($1) — mSBm, (T1) — mg, + m0, can be treated as the sum of two terms

d
Tl

1 ’1 1 1 .(Ecfiwch) ECEW 2 {mm (X111) - m-1,z (39-1)} 7“,,

(=1 i 1ll
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—1

= (iCEV‘HCK) {‘I’b (171) + ‘I’v ($1)}:l121 (4413)

where

d1 " d

- 1

‘1’b(I1)—" —CKW1 [Z {m-1,(1X4,_1) - m-1,z (Xi,_1)}Tu] = {‘I’by ($1)},,=1.

z— 1 -=1

2 (4.4.14)

(11 ' n d1 d2

‘I'v ($1)— -CKW1 26-1,2(X1,-1)T41 = {‘I’UJI ($1)} ,,_1 £11,: (XL-1) = Zéaz (Xia)

(4.4.15)

and

1 " d1

‘I’by ($1) = #1; Z Kh (X11 - 131) Ta!2 {m_1,z (X,,_1) - 7714,: (X,,_1) } Tu

i=1 1:1

‘I’v,t'(-'”1) = —;Kh(Xil $1)Tz’d215-1,(I(Xi,-1)Til

' 1:1

The term \Ilb (2:1) is induced by the bias term Tin” (X,,_1) -— m_1,l (X134), while ‘11,,(221)

relates to the noise terms g_l,l (Xi,-1)- Both of these have order op(n'2/5) by Propositions

4.4.2 and 4.4.3 below.

PROPOSITION 4.4.2. Under Assumptions (A1)-(A4), (A 7) and (A8), as n —-+ 00,

sup sup |\Ilb l’ (1:1)l = 0,, (n-1/2 + H2) = 019 (n’2/5) .

131'ng x1€[0,1] ’

PROPOSITION 4.4.3. Under Assumptions (A1) to (A5), (A 7) to (A8), as n —-> 00,

WW; ($1)| == Op (N (log n)2 /n + H2) = 0,, (n‘2/5) .

 
sup1 51'541 S“13:1:le[0,1]

According to (4.4.12) and (4.4.15), we can write ‘11,} [I (.131)— Wat),1(:l: ) — \II(11'10””)

where

(1) 11 d1

\Ilv,” ($1) = 4:219: (X21 -$1)Tz'1TzI n14:216.,“X431) (4-4-15)

{211:1

(2) " d1
11%,, (x1) = 71—122mm“—x1)1,mT,,5,,(x), (4.4.17)

i=11=1
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in which E:1J(X,-_-1)—§*1(Xia) and E’"l(Xia) is given in (4.4.11). If further one
0220

denotes

Wm“! (X13331) = Tz'zTuIKh (X41 - $1) BJ,a (Xia) , ($1) = Baum)! (X, $1)

(4.4.18)

#wJ,a,l,l’

then by (4.4.17), (4.7.9) and (4.4.11), 110,), (2:1) can be rewritten as

n 0’1 N+1 d2

1142,41) =n1:: Z ZaJMma”, (X,,:1:1) (4.4.19)

1': ll:1J=10:2

LEMMA 4.4.1. Under Assumptions (A1) to (A5), (A7) to (A8), as n —) oo, \IISI),(:1:1)

defined in (4.4.16) satisfies SUPISI’Sdl squle[0,l] lily}, (u)| = 0p (N (log n)2 /n) .

LEMMA 4.4.2. Under Assumptions (A1) to (A5), (A7) to (A8), , as n —-> oo, Q1182) (11:1)

11:22,), (1:1)l = 0,, (H2) .
 

defined in (4.4.17) satisfies suplgl’Sdl squle[0,1]

Proof of Proposition 4.4.2 is given in the Appendix, while Pr0position 4.4.3 follows from

Lemmas 4.4.1 and 4.4.2. Lemma 4.4.2 follows from Lemmas 4.7.13 and 4.7.14, both proved

in the Appendix, while the proof of Lemma 4.4.1 is given in the Appendix. Similar result

can be proved for mSBLL ll’ (:31) by extending :41)1’ (2:1) and ‘11,,1’ (1:1) to terms such as

‘71,219: (Xi 1 " “31) (193%2:1) Tm: {m_1,(1Xi,-1) 77741,: (XL-1)} Ta,

1 n

EZKh(Xi1"2('L—$l)(—:) Til’ée-lfii,-1) Til»

i=1

                                                  

4.5 Implementation

We implement our procedures with the following rule-of-thumb number of interior knots

N = Nn = min ([n1/4logn] + 1, [n/4d1d2 —1/d2] — 1)

which satisfies Assumption (A8), i.e.N = Nn ~ n1/4 log n, and ensures that the num-

ber of parameters in the linear least squares problem (4.4.7) is no more than n/4, i.e.,

d1 {1 + (12(Nn +1)} fl 71/4.
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By Corollary 4.4.1, the asymptotic distributions of the estimators ThSBLL,a,- (x0) de-

pend not only on the functions bLL l l’ a (ma) and U)!!! a (ma) but also crucially on the

choice of bandwidths ha. So we define the optimal bandwidth of ha, denoted by happta

as the minimizer of the total asymptotic mean integrated squared errors (AMISE) of

{fiza1(xa),l= 1, . . . ,dl}, which is defined as

d 2

1

AMISE{ma.}- /Z ZbLW, (mama +4450, (ma)/(nha) fa(xa)d:ra.

(=1

By letting dAMISE {771m} /dha = 0, one gets the optimal bandwidth happt as

 

d
1/5

"-1 f Zzil=12’1’1’,a(33a)far (ma)d—’Ea

ha,opt = (11 d1 2 ,

4f Z:z’.—.1 {21:1 bLL,l,l’,a ($11)} fa (500:)de

where 4f 221’:1 {21:1 bLL,l,l’,a ($04)} fa (37a) dSEa lS approx1mated by

2

d1

”-1 Z/‘Z (K) 2 :lemflzlXia) fa((Xia) (In/,0 (Xia)

ll___1 .—

To implement this, we propose the following simple estimation methods for terms

mgl (1:1), qll’,a (ma), “um/,0 (ma) and fa (sea). The resulting bandwidth is denoted as illppt-

o The derivative function mg, (Xia) is estimated as 22:2 k (k — 1) amhkxfa-Z +

6 25:13 51011,]: (Xil — :Z’k-3) where {ambkfitfi minimize the following least squares

n N+3 2

2 Y1- (1:1: Zaamlka+zaan(1k(Xia_ta,k—(3)3 Til

i=1 [210:1 k=0

where miniXfl = to < <tN+1= maxz-Xz-l.

o qll',a (3:0) is estimated as 22:0 €10),sz +2}???aa1k (.130, — ta,k-—3)3 by minimizing

" 3 N+3
3 2

Z TilTil" Zaadmck0+ Zaanlk(Xia‘taJc—3)

E' {TTT0'2 (X, T) lXa = ma} is estimated as 22:0 (1: l kxa +

3 . . . .

Sic—.1300“: (2:0, — ta,k—3) by mmimlzmg

N+371

ET T-1I{Y _ 771(Xi,Ti)} __Z “(1,( ,kXCI; + k2: aa,1,k( — tk—3)3

1'21
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0 Density function fa (2:0,) is estimated by % 23:1 Kha (Xia —— 11:0,) and fc'x (ma) by

— (nhgt)"1 221:1 K' (29%?) with the rule-of—the—thumb bandwidth ha.

4.6 Examples

4.6.1 Simulated example

The data are generated from the model

Y ={m01 + m11 (X1) + m21 (X2)} T1 + {moz + m12 (X1) + 77122 (X2)} T2 + 8,

with mm = 2, 77102 = 1 and mu (1:): sin(4:r-2)+2 exp {——2 (so—0.5)2} —1/m, mm (1:) =

2:, mm (2:) = sin(:r), and m22 (:13) = O. The vector X = (X1, X2)T is uniformly distributed

on [—7r, 7r]2 while T = (T1, T2)T has distribution conditional on X as bivariate normal with

mean (0, 0)T and covariance matrix diag (Xf/1r2 + 1, )(22/7r2 + 1). The error 5 is standard

normal independent of (X, T). The functions are estimated by SBLL method. For a = 1, 2,

let mfxmim 333,11“ denote the smallest and largest observations of the variable xa in the

2' -th replication. The functions {mal}c21’:1,l=1 are estimated on a grid of equally-spaced

points mag-,1" = 1, ...,nmgrid with $0,] = —0.907r,:ca,n = 0.907r, na,grid = 51, a = l, 2.
a,grid

"a,grid

r=1
Denoting the estimator of mod in the k-th replication as mSBLLflM and {max}

the grid points where the functions are evaluated, we define the (averaged) integrated

squared error (ISE and AISE) as

 

"grid

. - 2
ISE(mSBLL,al,k) n , Z {mSBLLnLkla’aml“maz($a,r)} :

a,gr1d 1:1

1 100

AISE(mSBLL,al) fl ZISE(7?ISBLL,a1,k)-

k=1

Table 8 reports the means and standard errors (in the parentheses) of {m0,},=1,2 and the

AlSEs of {magifil’lzl for all the two fits. Both fits are generally comparable, with the

SBLL fit better than the spline fit (p = 1). The standard errors of the constant estimators

and the AISES of the function estimators decrease as samples size increases, confirming

Corollary 4.4.1. Figure 11 gives the plot of one SBLL fit for sample size n = 500.
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4.6.2 Real data example

In this section we illustrate how the additive coefficient model is used to extend the Cobb—

Douglas model for annual US GDP growth. Denoted by Qt the US GDP at year t, Kt

the US capital at year t, Lt the US labor at year t, X; the growth rate of ratio of R&D

expenditure to GDP at year t, all data have been downloaded from the Bureau of Economic

Analysis (BEA) website for years, t = 1959, ..., 2002 (n = 44). The standard Cobb-Douglas

production function (Cobb & Douglas, 1928) is Qt = Athfll Ltl-fil where At is the Total

Factor Productivity (TFP) of year t, ,61 is a parameter determined by technology. Define

the following stationary time series variables

Yt = log Qt —10th—1,T1t=log Kt — log Kt—1,T2t =10th ~10th—1,

then the Cobb—Douglas equation implies the following simple regression model

Yt =(1OgAt —10gAt—1)+ fllTlt + (1 *- 181) T2t-

According to Solow (1957), the total factor productivity A; has an almost constant rate of

change, thus one might replace log At - log At_1 with an unknown constant and arrive at

the following model

Yt - th = flo + 51 (Tu - thl- (4-6-1)

The constant change rate of At in the period 1909-49 was mainly due to the relative low

impact of technology in that era.

As technology growth is one of the biggest sub—sections of TFP, it is reasonable to

examine the dependence of both [30 and BI on technology rather than treating them as fixed

constants. We use exogenous variables Xt (Growth rate of ratio of R&D expenditure to GDP

at year t) to represent technology level and model Yt — Tgt = m1 (Xt) + m2 (Xt) (Tu - Tgt)

where ml (Xt) = m01+ 2:2:1m01(Xt-a+1)a l = 1,2, Xt = (Xt,---,Xt_d2+1)- Using the

BIC of Xue 85 Yang (2006b) for additive coefficient model with (12 = 5, the following reduced

model is considered optimal

Yt - T2: = 01 + m41(Xt-3)+ {C2 + 77152 (Xt—4)} (Tit - T2t)- (415.2)
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The rolling forecast errors of GDP by SBLL fitting of model (4.6.2) and linear fitting of

(4.6.1) are show in Figure 9. The averaged squared prediction error (ASPE)

1 2002

. - . - 2
9 Z [Yt - T21: - C1 - mSBLL,41(Xt—3) — {C2 + mSBLL,52(Xt-4)}(T1t — T20] ’

t=1994

for model (4.6.2) is 0.001818, which is about 60% of the corresponding ASPE (0.003097) for

model (4.6.1). The in sample averaged squared estimation error (ASE) for model (4.6.2) is

5.2399 x 10-5, which is about 68% of the in sample ASE (7.6959 x 10‘5) for model (4.6.1).

In model (4.6.2), 61 + mSBLLAl (Xt_3) estimates the TFP growth rate, which is shown

as a function of Xt_3 in Figure 10. It is obvious that the effect of Xt_3 is positive when

Xt_3 _<_ 0.02, but negative when Xt_3 > 0.02. On average, the higher R&D investment -

spending causes faster GDP growing. However, overspending on R&D often leads to high

losses (Culpepper, 2004 and Tokic, 2003).

We have also computed the average contribution of R&D to GDP growth for 1964-2001,

which is about 40%. The GDP and estimated TFP growth rates is shown in Figure 12, it

is obvious that TFP growth is highly correlated to the GDP growth. For more details, see

Arnold (2005).

4.7 Appendix

4.7.1 Preliminaries

In the proofs that follow, we use U and u to denote sequences of random variables that are

uniformly O and o of certain order.

LEMMA 4.7.1. (Xue and Yang, 2006b, Lemma 14.2, Lemma A.5)

There exists a constant co > 0 such that for any sets of coefficients

{aoz,aJ,a,z,15J5N+1,1313d1,15a5d2},

(=1 a=l J=1 01:1 J=1

d1 d2 N+1 2 d2 N+1

Z 0'01 + Z Z aJ,a,lBJ,a)2ti 2 C0: 001+ 2 Z (Mal)
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and that as n —> 00, with probability approaching 1,

d1 d2 N+1 2 d2 N+1

Z (“01 + Z Z aJ,a,lBJ,a) t! _>_ CO :21:1(001 + Z :2aJaI)

    2,n

LEMMA 4.7.2. Under Assumptions (A1) and (A8), one has: (i) there exist constants

ef,C’f,co (f) and CO(f) depending on the marginal densities fa (Ira) ,1 S a S d2, such that

cfH S CJ,a S CfH andc0(f)H S ”1),/,0“: S Co(f)H. (ii) uniformlyfor J, J’ =1,...,N+1

1 J’ = J

E {BM (Xm) BM, (2%)} ~ —1/3 |J’ — J| = 1

1/6 |J’ — J| = 2

k Hl-k JI_ J < 2

EIBJ,a (Xia) BJ’,a (Xiall ~{ 0 if __ Jl ; 2 1k 2 1.

LEMMA 4.7.3. Under Assumption (A2), for VT defined in (4.7.15) and ST = Vi}

CQCVId1{d2(N+1)+1} S VTgCQCVId1{d2(N+1)+1}’

CQCSId1{d2(N+1)+1} S STSCQCsId1{d2(N+1)+1}-

Proof. By definition, VT = E [E (TTTI X) ® {B (X) B (X)T}]. According to Assump—

tion (A2) and Theorem 20, p. 192 of Zhang (1999),

VT S CQId1®E {B (X) B (X)T} S CQCVId1{d2(N+1)+1}'

One can prove similarly the result for ST. E]

Lemma 3.6.1 and Assumption (A3) ensure the existence of functions god 6 0(0) [0, 1]

such that l

“90,, - mallloo<_ Co0 “miduo0 H2, a—_1,. ..,d2,l = 1, ...,dl. (4.7.1)

4.7.2 Oracle smoothers

In this section, we prove Theorems 4.3.1 and 4.3.2 for mm, (.131). Corresponding proof

for mum. (:51) would require replacing Kh(X,-1 - 1:1) by K], (X21 — (1:1) (£15,111) in the

proof, which does not add a great deal of difficulty. According to (4.3.1),

_ 1 ‘1 1
mK,1,. (:51) —- 177.1,. (£131) = (ECEWICK) gngl {Y1 " CKml,- ($1)} 1
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Tl.

Y1- CKm1,- ($1): [:22 {m11(X mu ($1)}Tz'z +0(Xi,Tz‘)€i] ,

i=1

then i—Cfiwl (Y1 — CKm1,- ($1)) iS

d1 d1

[hiZKh (Xil— $1)T{1’ [Zlmll(xi1) — mll ($1)} Til + 0(xi1TilgiJ]

l—1 III—11

= {Bil ($1) + Vz’ ($10211;

where

1 " all

By ($1) = a Z Kh (X21 - Tut 297111091) — m11($1)}Tz'z=Z B,1' ($1)

i=1 1: 1

B;1' (1'1)— £2KMX2'1 — $1){m1z (X11) m11($1)}7}sz-1u (4-7-2)

V1! (x1)= £210. (X1 —— $1)sz (X.- T.) a. (4.7.3)

”i=1

Denoting D1 1’ (1:1)=-,1,-Z,-__1 Kh (X21 — x1) TilT-,l; the dispersion matrix is

I
ECIQWICK : (— ZKh(Xi1 - mllTilTiI’d) (D11' ($1))IJ’:1

d1

z: l,l’=1

LEMMA 4.7.4. Under Assumptions {A1} to (A4), (A6) to (A7), as n —* oo,

sup sup IBM (:51) — b.,.1KH’ (3:1)h2[=0p(h1/2logn/\/1_t)

1311'ng 3:16[h,1—h]

where for any 1:1 6 [h,1 — h],

, 3f ' ( l ”
b11151 (x1)=§uz<K) {2m11($1) ”$153” $1 +mu (x1111 (mu/,1 ($1)}. 

Proof. We write the bias term Bl 1’ (2:1) in (4.7.2) as

n

Ill/27171: (1,72 + EKh(X1— $1) {m11(X1) — mu (331)} Tsz’

i=1

Where Cm = Ci,n ($11Xz'1fl71172u) is

h—l/z [Kh (X11 - 331) {mil (X11) - m1: (2:1)}721'11-11
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“EKh (X1 — $1){m11 (X1) * m11($1)}TszI] -

The deterministic part of Bl ,1 (1:1) is

EKh (X1 - $1) {mu (X1) - 77111 ($1)} Tszr

 

= [[0,1] fifth/{7711100 —m11($1)} ',1;K (u 7,121) f(uitbtz'wtldtz'du

= A 1] [Qty {mu (x1 + hv) — mu (231)} K (’0) f ($1 + h’U, t1, til) dtldtlld’l}

=/[_1’1] [111mm {m’u (zl)hv+———————1———m’2(1) (hv)2 +11 (112)}

{f (3:1, t1, t1!) + 8f (ml’tb t”) [W + 110:} dtldtlrdv 

33:1

z 112/12 (K) {mil (3: )5f1 ($1)E(;ZIIIX1—— $1)+ m'1'1($1)f1 ($1)E(TlT,/|X1 :30}

+u (h3) .

According to Assumption (A4),

 

EKh (X1 - $1){m11(X1) - mu ($1)}T1Tzr

a :1: I :1: m” :L‘ :17
=h2u2(K) {m'11($1) f1( 1%: ,1( 1) + 12( 12)f( 1)qu/,1($1)}+U(h3)- (4.7.4)

 

 

To bound the stochastic part of Bl 1’ (2:1), define a sequence Bu 2 n“ with 0 < a < g,

oz(2 + 6) > 1,a(1 + 6) > 2/5, which requires 6 > 1/2 provided by Assumption (A2). We

make use of the following truncation and tail decomposition

TilDI’J

where T?"
211’ ,1

spondingly the truncated and tail parts of (was

TIT“; {lTuT(II > Du}, T.D“,2 = Tisz'z' {lT'isz'l’l _<_ Dn}. Define corre-

D

Cz’,n,:1 Ci ,1). (:51anT01”, 1) a €11,112 : Ci,n($11Xi,T,u’/12)-
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According to Assumption (A2),

6

Emmi/1m") _ 2: 1,, a" :2 ( . . )

/
\

  

2+6 2+5

1121 n=1 D51 ) n=l D"

oo 06 oo

__ k -—a 2+6

Ems—06:12 < ><oo.

By Borel-Cantelli Lemma, one has with probability 1,

”—1 :1 {7,3711 {mu (X11) - m1l($1)}Kh(Xi1" $1)} = 0

for large n. Therefore, one has

—1

n ZC:M1($121,TuDll1)

i:1

sup =U (12.4“) ,k = 1,2, 3.... (4.7.6)

$16[O,I]   

Next,

ECin = V1 [E{T,-w {m11(Xi1) - m11($1)}Kh(Xi1 - $1)}2

- {ETz-ul {mu (X11) - m11($1)}Kh(Xi1" $1)}2]

 = h-1 [0[.11 [1,21% {m11 (u) — m11(r1)}2 55K (“ 22:1)2 f (u,t,, 1:1,) dtldtlldu + U (113)

——h"1_/[LII/tftfl11W” [{m’11 ($1)hv}2 f(x1,t,,t,,) +U (1:3)] dtldtlldv+U (123)

= h“2 [[4112th461(0))? {m'11 (1:1)}2 f (zl,t,,t,,) (1w)2 dtldtl/dv + u (h?) + U (113)

={m'11($1)}21,1K]K()22dv/t12tz2'f($hthtl')dtld‘l’+“(h2)

= {m’u ($1)}2I/W] K (202 Uzdvfl (x1)E(T,-%CI;?,,IX1) + u (h?)

Then

. 2 . _

ECEnQ = ECEn“ECzZ,n,1 = {m11($1)} /[_11]K(v)2vzdvf1($1)E(7127}‘3IX1)+U(n 1) .

For k 2 3, E [C,nfll’“

k—2

E(sz,n,2)

 

S [ Sligllsz'zlixl {"77v11(Xz'1)--m11($1)}1'{h(Xi1 —$1).+U(h2)$16 ,
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k-2

"<|Ti1DzI1 I lslllglll{m11(Xil)* m11($1)}Kh(X11—$1))k_2E“(€1,712)
:1: E

_Dk—zcflhh_1E(C22,,=n2) CODk—2E(C22,,n2)

by Assumptions (A4) and (A7). So there exist a constant c1 = coDn such that

E (ICi,n,2|k) < ck2k!E(C§n2), k > 2. According to Lemma 2.5.2 (Bernstein’s inequality),

2k

2
gen 71 2E+1

P >n€ <a e — +a k a —

{ n}* 1xp( 25mg+5c1€n) 2() ([q+1])

 
ZCi,n,2

  

 

i=1

2 2k/(2k+1)

n 5n ' k
a1=2—+2 1+ 2 ,a2(k)=11n l+———-—

q 25m2 + 50157, 8n

6” log n

Let k=3,a2(3)= lln 1+ m3

P{
2

gen 11 7

>ne <a e — +a 3 a —n} ._ 13(me 25mg+5C15n) 2() ([q+1])

 

=E(C,-,,=n2) 0(1)€n=afi

 

71

Z Ci,n,2

i=1  

 

 

   

 

  

and take q such that [71%] 2 c2 log n, q 2 1:331 for some constants c2, 03.

(a log n)2 C3" a2 (108 ")2

(15122, = n > logna n

25m2 + 5023 25m2 + 5c 5 _ 108 n
2 n 2 1 " 25m2 + 50 a

2 l Vnh

> C3a2 log n C3a2 log n ~ a2 log n

_ 1_08" :25n12 + 50 nan‘2/5 10 n ’
257712 + 5 Da 2 C0 g

2 C0 nah—71h.

52-,
 a1=2§+2(1+ )=O(logn),

25mg + 5c1€n

6/7

a (3)=11n 1+ m3 ,withm — max “5 H (C60

2 an 3 1<'<<N z’n’2 3" 77"

 

D 6/7

a2(3)Slln 1+(—C§—1—n)— =o(n2),

an_?logn

n 6/7

a ([———:l) < K08 (I +1 S Cn-6AOC2/7,

q + 1 ‘—
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ZCi,n,2

72

P {n71

i=1  

> alog n/Jfi} _<_ 0(log 71) exp (—c5a2 log n) + Cn2“6)‘0¢2/7

2

= 71-65“ O(log n) + Cn2-6A002/7,

for c0, c2, a large enough. For all 1:1 6 [h, 1 — h], we discretize by equally spaced h = 131,0 <

131,1 <---<x1,Mn=1—h, Mn=n4,

1 Z Ci,n,2($1,j) >010gn/x/5}

i=1   

P max 11'"

OSjSMn

Mn 71

.<_ ZP{n'l Z Ci,n,2 ($1,j)

0:1 i=1

for a and c2 large enough. Borel-Cantelli lemma implies that

11

71—1 21 Cm (9314')
1:

whole interval [h, 1 — h], one has

 

> alogn/fi} S Cn—BMn 3 C1172

 

maxlgngn = 0p (alogn/fi) a.s.. Taking supremum over the

  

   

n

_1-1

311p n Ci,n,2 S :1: Ci,,n2

I1€[h,l—h] ; 0<J<Mnn

__1 -1/2 —1 -2
n ogjrsnm—l sup 2 C,n2.1-2:10n2 3 On logn + CM" h .

  $1€{$1,j’$1,j+11 i=1

by Lipschitz continuity of kernel K. This last equation, plus (4.7.4), (4.7.5) and (4.7.6)

complete the proof of lemma. Cl

LEMMA 4.7.5. Under Assumptions (A1) to (A3), (A6) to (A7), as n —-» 00,

32f (3131) 911/4 (531)

8x2;

 sup sup

1

Du' ($1) _ f($1)qw,1($1)+ 5,3112 (K)

ISIJISdl $1€[h,1—h]  

= 019 (11‘1/2 log n) .

Proof. For any 11:1 6 [h,1 — h]

D,,/(z1)=—;ZK1(X.-1— 2:1)TuT-

ni=1

:: ——1:: {TilTMK},21— $1) - ETlTllKh(X1_ $1)} + ETlTl’Ifiz (X1 _ $1)‘

The deterministic part is

1 ._

ETITI’Kh (X1 —:II1) =/[ 1/tltl’7TK (EL-TIE) f(u,tl,tl/)dl.1dt1/du

0,1
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_—_ ‘/[ l/tltHK (’U) f (5131 + h’U,t1,tl/) dtldtl’dv

-1,1

=-/{ 1 11/tltuK(v) {f(9311t11t1’) + aflxhtbtldh" +27162f(x1,tbtll)
“"02

  

 

 

  

62:1 6:2:2

+11 (112)} dtzdtl/dv

1 2 62f ($1,tl,tll) 3

= [titl’f ($1,tl, tl’) dt + 32112 (K) h [titl’ 627% dtldtzl + u (h )

1 52f1($1)E TzTIlX1 = $1

= f(T1)E(71T1/|X1 = 2:1) + -—112(K)h2 ( 2’ ) + u (1.3).
2 62:1

Applying similar techniques as in Lemma 4.7.4, one can bound the stochastic part as

-71;Z{711T1IK11(X11 ~ T1) — ETITz’Kh (X1 - $1)}= 012(71—1/210gn) -

$1€S[h,p1—h]n

El

Define next

5mg =51,n,1I($11X1'1Tz') = 7‘ch (X11 Ti) EiKh (X11 - $1)- (4-7-7)

Then the noise term V2, (1:1) in (4.7.3) equals to

—ZK1.(X-T1—a:1).1-(1mx1.T)e=;,1-Z§.,,n1.

LEMMA 4.7.6. Under Assumptions (AI) to (A3), (A5) and (A7), as n —> oo,

SUP lEéz-NIQNII - h—lfl (371) E (T1IT1II02(X1T)|X1 = $1) “Kllgl = 0 (h),

$16[h,1—h]

sup [1213," — h‘1f1(T1)E(T102 (x T) 1X1— x1) ||K||2|0=
$1E[h,l-h]

Proof. According to (4.7.7),

Eé.,n,1e.,n,2 = ET1T202 (X. T) K12. (X1 —— x1)

— “,2 th "171512 tdtd
_‘ [011612 1161112001,)? h f(uv) Ll

2

1 u—x
2 1 1

— tta u,t —K 11 ,u ,t du du dt
/d1/[0,lld212 ( )h2 ( h )f(1-1)1_1
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= h—1 _ t1t202 ($1 + hu1,u_1, t) K(U1)2 f (11:1 + hv1, u_1,t)dv1du_1dt

R41 [0 1]d2 1 [—1,1]

1 1 1 11Rd1 [0,11d2-1 [4,1112

2 2 2

2 <90 (171111-110 30 (931111-110 2 2
{a (x1,u_1,t)+ 6:61 1111+ 23111 (1111) +1101)  

  

2 3f (931111-110 32f ($1111-11t) 2 2
K (111) {f (11:1, u_1,t) + 31:1 hul + 263% (hul) + u (h )}

dv1du_1dt

__ -l 2
__ h ./[—1 1] K (1)1)2 dv1 Rdl [0’11d2_1 t1t20 (11:1, u_1, t) f (331, u_1,t) du_1dt + U (h)

= TM (11) E (T1Tzo2 (x, T) IX1 = 2:1) IIKII§ + U01).

Similarly, one has for any l’, l”

E1,W,,,,g,,,,1— h11(11)E(1,11,”. (x T) |X1-— $1) IIKIIE + Um)

E13,,— h-ln (1,141,102,111 T) |X1—— x1) ”1112+ I101) .13

LEMMA 4.7.7. Under Assumptions (A I) to (A3), (A5) and (A 7), as n -—> 00, there exists a

constant C such that

1

S Ch—Ygafi -— 1')??? fort 75 j

 

sup sup Icov (ginlhéjnl’I)

15,13d111e1h1—11] ’ ’ ’ ’

+
Proof. According to Davydov’s Inequality [Bosq 1998, p. 21. equation (1.10)], for %+ %

;1-' = 1, cov (62,11,111, 3311,11) is bounded by

C2 {201 (.7 — 1)}1/1)TIITil’0(XiaTi)EiKh(Xil- 771),)“ IITleIU (XjaTj) 5:th (Xj l — $1)IIT

Let q = r = 2 + 17, p = 1 + 2/17, where 17 takes value in the Assumption (A5), then one has

_1+fl g

cov(£inl’1£jnl”) S Ch +770 (j — 2') +77 for some constant C. C]

T

Proof of Theorem 4.3.1. For any A = (A1, ..., A111) 6 Rdl,

d1 d1 11 71. d1

T d1 _ __ 1
A {V1I("1‘1)}1I=1 "- )2 Az'VzI (931) - 2: )‘z'; 251,11,1'=%Zl 1}; )‘1I51'11,1,

1:1 1:1 1: 1-1.1
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d (1

Define £1,” = 213:1 A141,”; and Sn = Sn (2:1) = 221:1 51,11 = nAT {V11 ($1)}l’1=1’ then one

has ES" = 0. Let

d1 d1

'7 (k) = ’7 (k, 131) = COV (€1,nv€i+k,n) :2 COV (Z Allé’ifllJ” Z Alléii-kfllll)

z’:1 1’:1

11;...)211:1)
1:1 {:1 1713'

I

:
3
]
.

=nvar(€,-,n)+n Z ( lkl)7(k)=nvar(£,1’n)+nAn.

ISIkISn-l

In the above, var (gm) : var(Z;1,1=1 Al'giflll’) : 1141\sz where

(11
d1

E = h {cov (€1,n,l” {mu/I) }l' l”=1 = hE {€i,n,l’€i,n,lfl}l, (”=1

= 1 ($1) IIKHE E {TTTa2 (x. T) 1X1 = 111}

by Lemma 4.7.6. While according to Lemma 4.7.7, one has

2 $3 13’.-
I7 (k)| S d1 13,3521 ICOV (€2,n,l”€1+k,n,l”)I S Ch 0 (k) ’7 .

Hence

lAnl = Z 106)

ISIIISn—l

s 2 (1i?) h—%$%{Koexp(—Aok)}7%7

ISIIISn-l  

-2210

S Koh +” Z eXp{—I\0k77/(2+77)},

ISIIISn—l

_ 1+1

so there exists a constant Cl such that An < Clh 2317. So An/ var (gm) —1 0 as n -> 00.

Then 03, ~ 11 var (51,”) 2 can when n is large, so according to (2.5.1) in Lemma 2.5.1, there

exist constants c1 and c2 such that for some 0 < 17 g 1

d" {log(on/c(1)/2) /)‘}1+17
. TI

C0011

 
P{0;ISn < z} —<I>(z)I g cl

 

An = sup

2

for any A with )11 _<_ A S )2, where

A1 = 02 {10g(011/c111/2)}b/n1b > 2 (1 + 77) /I1; 12 = 4 (2 + I2)I7'110g(0n/c111/2) -
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For the 17 in Assumption (A5), set A = 4 (2 + 77) 11"1 log (an/céfl) , then by (4.2.4) one has

lgi_<_n lgign

z’=1 z'=1

d1 d1

d4] = max {El 2 Al’éz’mJ’liz-HI} = max {El 2 )‘I’Tz'l’a (Xi, Ti) EiKh (Xil — 1:1) |2+77}

d1

S (30501; {El 2 Kh (X1 ‘ 171) PM} = 0 {h_(1+n)}’
l’=1

i.e., An = 0 {h-(1+n)/gg} = 0 {n(1+n/2)/5-n/2} = 0(n1/5—277/5) —+ 0 when 1/2 < 17 _<_

1. So Sn/an —+ N(0,1), then «72,th {V1, ($137,; ——) N (0,AT2A). By Cramér—Wold

device, one has \fli {VII ($1)}:i,1=1 —-» N (0, 23). Then according to Slutsky’s theorem, one

has

d1 d1

VnhE(TTT|X1 = 931) {771K,1,- ($1) — m1,z' ($1) — 251,1! ($1) ’12} —’ N(0,2)

(=1 ”:1

. .. d d1
i.e., Vnh {mK,1,. (x1) — mu, (3:1) _ 21:1 bu, ($1) h2}l’=1 —>

N (0, Q1 (:z:1)_l 20,1 ($1)—1), where Q1 (2:1) is defined in (4.2.3). Cl

Proof of Theorem 4.3.2. Let Dn = n“ with a < g, o(2 + n) > 1,a(1+ 1)) > 2/5,

which requires 17 > 1/2. Rewrite Z,- = Til/5,- = Z51" + Z52" + Z3" where 23" =

z, {|Z,| > Dn} ,ngn = Z,- {12,1 g on} — zflngn = E2, {|Z,-| g Du}. Define

€i,n,l’,j = Kh(Xi1’ $1) 0 (X231?) Z-D" j =1,2,3-
2,1' ’

According to Assumption (A5) and (4.2.4), one has

 

oo CUEIZi|2+n = C i E {ITIIIZME (|5|2+fl |X,T)}

21002.: 2 D") Zl
/
\

 

2+1) 0 2+1]

1121 n=1 D71 n=1 D"

oo oo

1 ..

s Cachlrz},|2+’7§ : 2+" = CachIMME :17. 042+") < 00.

1121 n 1221

By Borel—Cantelli Lemma, one has with probability 1, n'12?=1€ 1 = O for large n.
i,n,l’

= U (“n-k) for any I: > 0. Using As—

 

Therefore, one has squle[0,1] ln‘l 23:152. n (I 1

sumption (A5) and (4.2.4)

EIZi|2+nD

2,,3"| = I-EZz- {I24 > 01.}! s 01+"
Tl

 

8O



_ E {E |T,/|2+’7 E (|5|2+'7 1x,'r)} /D,1,+" = o (n-Z/S).

Hence

"—1 2g,” =n-1ZKh(X-1 — $1)0(X1,T,-) 21g"

1:” = 12,-1 Zn Kh(X,-1 — 1:1) 0 (72—2/5) = 0,, (72—2/5) .

i=n

Meanwhile

D 2
D 2

D 2

(2:32") = EZE{|Z,-| S Dn} ‘ (2:33") = E212 - EZ,-2{|Z,-| > 0"} — (Z1351)

2 2+
D 2 — —s E {731E (e,- IXe-Je) }—EZ,. '7 {lZil > Du} /Dr‘z/_(Zi,3n) = EfiirtUp (Dun + n 4/5)’

E
D" 26,2m112=E{Kh(Xi1 - $1) 0 (Xi/Ti) 2:32 }

-—- h’1f(rv1)E (T302 (X,T) 1X1 = x1) IIKH§ {1 + u (1)}

k k—2 2

= E ( €i,n,t’,2l lée,n,z’,2l )

2

E5 '2 <002’“205;2/hk2E|§,,,,,,,2 I

  
E léi,n,l’,2

lk_2

 
S sup léi,n,l’,2 Ei,n,,21’

$16[O,l]

according to Assumption (A3) and the truncation of Zipz‘", then there exist a constant
k )

C1 = CaDn/h 81101] that E ( €i,n,l’,2l ) S Cllc-zklE(€?n (I 2), k 2 2.

Similar to the proof of Lemma 4.7.4, by using Lemma 2.5.2 (Bernstein’s inequality), we

 

 

 

6/7

m logn

letk=3,a 3=11n 1+ 3 ,m2=E2 =0 h‘1,5 =a—-—
2” ( En ) 2 (5mm) ( l n W7};

6
n

2
gen 17. 7

>115 <a e + 3 a —P{§€i,n,2 n} 1 Xp(— 25m2+561€n) (12() ([q+l])

  

 

c

take q such that [53:] 2 c2 log n, q 2 10371l for some constants 02, 63.

 

 
  

 

(a log n)2 C3" a2 (108 ”)2

q€121 ___ nh > log na nh

2 2 -— 1
25m2 + 5c5n 25m2 + Sclen 25m2 + 501a 0g:

Vn

C3a2 log n __ C302 log n

2
  

1 “ 2 _1/2 12 ~ azlogn,

25mg}; + 5CoDn/ha 0g "h 25m2h + 5ac0nan h" / log n

vnh

 

81



 
0 =2: +2 =Olo n,

16/(71+25m2+5015n) ( g )

("33
C6Dn 2

3 <11 1 = ,

a2() n{ +an-1/2h1/210g77.} 0(n)

6 7 n 6"(IQ—1]) / S (K06*0[q+1]) Son—6A002/7,

       a2 (3) -
 
'6€i,71,l’,2||3 S CfiDn,

,with "7.3—— max

1_<_i<N

 

q+1

therefore for large n

n

P{n- 25mm
i=1

which implies that

  

> alog n/Jfi} S 0(log n) exp (—c5a2 log n) + Cn2"6)‘OC2/7

2

= 72765“ O(log n) + Cn2-6A002/7

sup = 0,; {(nh)—1/2logn} .

xle[0,1]

n

-—1

n 2 €2’,n,l’,2

i=1  

1?.

-1

n .21 the
z:

 

= 0,, {('nh)-1/2 log n} i.e.,

 

Then sulee[0,1]

sup IV}: (21:1) I—— Op {(nh)1plogn} (4.7.8)

$16[0,1]

for the term V}; ($1) in (4.7.3). According to Lemma 4.7.5,

d
d1 1

772K,1,. (171) —' 7711,. (1171) = (1CTWIC)-1 Z BIJI ($1) + WI (151)

[=1 "=1

d1
d1

—1

_—= {{ETlTl/Kh (X1 — $1)}Zi’zl + Op (1171/2 log 11)} {231,11 ($1) + VII ($1)}

1:1
[’21

d1 d1

= [{ETlleKh (X1 -— $1”321]{2: BL1,(($1) + V1; (2:1)} + 0p (n—1/2 log n),

=1 [I21

[{ETITz’Kh (XI—$1)}z}121]_1 = [f($l)Q($12X_1)+u(h2)]—1

= f‘1(:v1)Q‘1(x1,X_1) + u 022)"1 .
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Meanwhile, according to Lemma 4.7.4 and (4.7.8),

d1

EB”; (:01) + V); (11:1) = Up(h1/210gn/\/fl + hz) + Up {(nhrl/zlogn}.

(=1

According to Assumptions (A1) and (A2), f‘1 (3:1) 3 cfl, 0611,11 _<_ Q'1(:1:1,X-1) S,

calIdl, so SUleeUzJ—h] |mK,1,.(x1) - m1) (x1)| = Op{(nh)"1/2logn}. El

4.7.3 Estimation of constants

To closely examine terms If) (x) and 50,1 (2:0,), we denote the following vector of coefficients

T

a = {(1011 01,1,1, "-1 aN+l,d2,lv 0'02: 01,1,2, ”'7 aN+1,d2,21 "-i a0d1) a1,l,d11 "-1aN+l,d2,d1}

(4.7.9)

such that the noise term 5:) (x) in (4.4.9) is expressed as

0‘2 N+1

(Pn,zE) (x) -—= a (x) = 401+ 2 Z 4,0,3), (ma). (4.7.10)

a=1 J=1

-1

Equation (4.7.10) implies that a = (DTD) DTE , where .

D = {D (X1,T1) , ...,D (Xn,Tn)}T = {T1®B (X1) , ...,Tn®B (Xn)}T, (4.7.11)

B (x) = {1,31,1 (4:1) ,...,BN+1,,,2 (xd2)}T,t = {t1,...,td1}T. (4.7.12)

Note that 5 given in (4.7.9) can be rewritten as

a = GDTD) -1 GDTE) = (VT+V.})_1 (i—DTE) , (4.7.13)

where by (4.7.11)

DTD = 2 [(BT?) ® {B (xi) B <x.->T}] ,DTE =Z [{T.-®B <x.->} a (my) 54],
i=1 i=1

(4.7.14)

and Vi} is the difference between empirical and theoretical inner product matrices, i.e.

vT = E [(TTT) <3) {B (X) B (X)T}] = E [Q (X) B {B (X) B (X)T}] , (4.7.15)

Vi} = ii: [(T,T§’") 49 {B (X,) B (X,)T}] -—E [Q (X) <8) {B (X) B (X)T}].

i=1
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T

NOW define a = {0:01, a1’1,1)-") aN,d2,11 0'02) 01,1,27 "'7 aN,d2,2) ""l O’Odl? a1,1,d17 "" aN,d2,d1}

by replacing (VT+V'}~)_1 with V2111 = ST in the above formula, that is

s = v.1} (n—IDTE) = sT (n-lDTE) . (4.7.16)

LEMMA 4.7.8. Under Assumptions (A1) to (A3), (A5) and (A8), as n —2 00

“on = 0,, (n‘1/2N1/2 log n) , (4.7.17)

“5 -— an = 0,, (n‘1N3/210g2 n) , (4.7.18)

”an = 0,, (n’l/2N1/2 log n) . (4.7.19)

—1

Proof. By definition, 5TDTD5 = éTDTD (DTD) DTE -_— éDTE. Using (4.7.13), one

has

"135qu = n—laTDTDa =n*15TDTE g “a” “n-IDTB“. (4.7.20)

According to Lemma 4.7.1,

2

~ 2

= “Dall2,n '

2,n 

60 ”15“2 = Co: (031+ Z 030)) S Z (001+ Z aJ,a,lBJ,a t1

, z J,a,l l J,a,l

(4.7.21)

So "an is bounded by cal “n’lDTE”. Bernstein’s inequality and truncation entail that

2

”n'lDTE“ = O,,{(logn)2 N/n}, so (4.7.17) follows from (4.7.20) and (4.7.21). Ac-

cording to (4.7.13) and (4.7.16), one has VT 3 = (VT+V.}) 5, which implies that

v3.5 -_- VT (5 — 5).

OP (71-1/211"1 log n) ”all. By (4.7.17) one has ”VT (5 - 5)” _<_ 0p{(10gn)2n‘1N3/2}

One obtains from (4.7.29) and (4.7.30) “VT (5 — a)” = ““115“ 3

Thus according to Lemma 4.7.3, one has us - on = Op (n’1N3/2 log2 n), which is (4.7.18).

Then (4.7.19) follows (4.7.17) and (4.7.18). C]

LEMMA 4.7.9. Under Assumptions (A1) to (A3), (A5) and (A8), , as n -—+ 00

n d1 d2

sup —1— 2:61;"; 2 50,7), = 0,, (71-1/2) . (4.7.22)
71

131,34 i=1 (=1 0:1
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Proof. According to (4.4.9) and (4.7.10), one has

d1d1 d2 N+1n

i2n112:6017}1= iznll;z Z aJwalBJa(Xia)Til

i=1 l=1a=1=la==1J1

1:20a—J,oz,l”ET{,I’BJa(Xia) Til=I(’+II(’

J,a,l

where

III=ZaJafEI ZTu/BJp(Xia)Til:

J,,al "i=1

- . 1 "
111’ = Z (“J,aa _ aJ,a,l) 1“,; ZTil’BJpz (X101) Til-

J,a,l i=1

Let 11’ = 111,1 + I",2 where

11”] x Z a'J,oz,l {gt-1:217"{,I’BJa (Xz'a)T ~ET‘IIBJ,O (X0) 'Tl}

J,a,l

III” I < ”all V (N +1)d1d2 sup

= Op (n-lNlog2 n) ,

III2=ZaJWalETleJa(-Xza)nl= (En/31.54%)?»,vr;1(n‘1DTE).

J,,al

T _ T .

Let v), = (ETIIBJfi (Xa) T1)J,a,lVT1 = (”$01) . According to (4.7.14)

"$271{,I’BJa (Xia)T —ET'I’BJ,O (X01) Tl

  

n

Il’,2 = "—1 Z Z vJ,a,lBJ,a (Xia) Til” (X11 Ti) 52'-

i=1 J,a,l

Since 5,- is martingale difference according to Assumption (A5)

var (1&2) "" n22"?“ Z ”J,,alBJ,a(Xia)T2'10 (Xi Tilgz'

=1 J,,al

2

n

< ”-2Z CUE Z UJ,a,lBJ,a (Xia) Til

'“' J,a,l

where

2

Z ”JnJBJn (Xia) Ta = Z Z '“JMUJME {Btu (Xe) TIBJ'oI (X0!) Tz’}
Jial J.a.l J’,o/ ,l’



= VINTVIT," = {Emma (Xa) mica vglvTvgl {1271.3J,,, (Xa) 78.1,...)

= {En/8.1,. (Xe) mi.) V111 {EB/8.1,.(Xe)71}),a)

3 CV “{ETyBJe (Xe)71}J,a,.ll: = 0 (1)

because clearly IETyBJ’a (Xa)T)| = U(H1/2). So var (1,52) = 0(n-1), and therefore

111,2 = 0,, (n’l/Z). So

'94 S III',1|+|II',2
 

= 0,, (71—1/2) . (4.7.23)

Next, by applying Bernstein’s inequality with truncation technique,

51113312 Twl’BJa (Xia) Til— ETI’BJXI (X01) Tl: 0p”(_1/2 log 12.) ~

Ja,ln  

    Thus supLOJ ".1 11BJO (Xia,) Till is bounded by

 

 

 

3111),,ETzl'BJa(Xia)T —ETIIBJ,a(X)Tl + |E%B.,=.(X.)11|0(H1/2).
0:

Then

.. - 1 "

[”14 S “a“ all \/(N +1)d1d2sup gZEt’BJoMioflh

i=1  
 

= 017(n'1N3/210g2 n) \/(N + 1)d1d20p(H1/2)=0p(n1N3/210g2.n) (4.7.24)

Now (4.7.22) follows from (4.7.23) and (4.7.24). The lemma is proved. Cl

LEMMA 4.7.10. Under Assumptions (A1) to (A5), and (A8), , as n —> 00

n ‘11 d2
2

n"1 2 ZZ {111... (X...) — m... (Xenia-1] = 0.014) (4725)
i=1 l=1a=1

Proof. According to (4.7.1), there exists 9a! 6 0(0) [0, 1] such that “gal — mallloo =

0(H2) = 0(n'1/2) .According to Theorem 1.7 of Bosq (1998) p. 36,

n‘1/223=1(T5— ET?) => N (0,02) where 02 Z23°___OOCOV(T02,1.)) < 00 by ap-

plying Davydov’s Inequality [Bosq 1998, p. 21, equation (1.10)], then 71."1 3:173 =

ET,2 + 0,,(n-1/2) = 0,, (1). so

2
n d1 d2 2 n 1

”*1 Z Z2 {Thai (Xia) _ "101(Xia)}Til:| Sn_1 Z1[dzd2 ”mal_ ma'ool“

i=1 1 1 l- 1 a:= (1:1 1
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71 d1 d2 2 n

< ”—1 Z [ZZ ”9011‘ mallloo Til] = O ("—1) (”—1 2T5) = 0P ("-1) '0

i=1i=1 (=1 (:21

Proof of Propositions 4.3.1 and 4.4.1. According to (4.3.4), 7710 —- m0 =

(CECE-ICE (Y. —- moT)

_ d1

= (%C§CK) 1%CE0 (X..,T,-)e,. We know %C§CK= (.1: :3,_172173.)1H

according to Theorem 1.7 .of Bosq (1998) p. 36, one has 71'”2 23:1 {Tde-l/ — ETlTlr} =>

- Then

N (0,02) where 02 = 2:92—00 Cov (T01T0l;,T,-)Tu/) < 00. Therefore

%C§CK=(ET)TI}I)Z},=1 + 0,, (71-1/2). Similarly, %c§o(X,-,T,)e,=op (1.4/2),

implying 311131513111 |m01— mozl = 0,; (71—1/2), which has completed the proof of

Proposition 4.3.1.

Next, According to (4.3.4) and (4.4.2),

7710 - 7710 = (01010401 (Ye - Ye)

d1 d2 "

=K(CTCK)—ICT [Z 2 {mal(Xia) '_ mal (Xian Til]

a-l a=1 i=1

d1 d2 "

= (CECK)-1CE [Z2 {mod (Xia) — mal (Xia) + mod (Xia) — mal (Xia)} Til]

=n<10£cK)-110TK[(§:§Zeazn):
l—10.]. =1

0‘1 d2 "

+ [{ZZ {Thad (Xia) _ mod (Xiallnl}] ] -

One has

d1 d2

£2175” ZZ (mad (Xia) _mal (Xia)) Til

”1':1 [=1 0:1

1 n 1/2 l 11 d1 d2 2 1/2

3 (71- ZTZ) ;Z Z2 (ma! (Xia)_ mal(Xia» Til

i=1 il’ i=1 1:1 0:1

5 0p (1) Op (Ml/2) = 0,, (71—1/2) . (4.7.26)

by Lemma 4.7.10. Then the Proposition 4.4.1 follows (4.7.22) and (4.7.26). Cl
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4.7.4 Estimation of function components

Define

n

”—1 Z BJ,a (Xia)

i=1

1

 

 

An,1 = SUP |<11 BJ,a>2 n “ (lvBJ,a>2| = Sllp

J,a ’ J,a

 

An,2 = sup <BJ,07-"il? BJ’ ail-31’) — <BJ,QT"U) BJ’ 0712'”) , 1

J,J’,a,t,l’ ’ 2’" ’ 2

An,3 = sup '<BJ,O,T;[, BJI’aITuI>2 — (3.1371), BJI,QIT;1I>2' . (4.7.27)

J,J’,a7éo/,l,l’ i"

LEMMA 4.7.11. Under Assumptions (A1) to (A3), and (A8), , as n —-> 00

An; = Op (n"1/2 log n) , (4.7.28)

An; = 01, (n_1/2H"1/2 log n) , (4.7.29)

An,3 = Op (n"1/2 log n) . (4.7.30)

Proof. The proof of (4.7.28) follows from Bernstein’s inequality immediately, thus is omit-

ted. Here we only prove (4.7.29) and (4.7.30). We will discuss case by case with various

1, l’, a, 07’, J and J', via Bernstein’s inequality. For brevity, we set

52' — €7,n,J,J',o,o/,z,z' = 51,1 + 5232 = €4,1,n,J,J’,o,o',z,z' + 5.,2,n,J,J',o,ol,z,z'

= BJ.a (Xia) BJ',o/ (Xia’) TilTu' ‘ EBJ,a (Xia) BJ’,a’ (X. )Tz'lTu’

D
where 5.,- = B... (X...) B)... (X...) 1);}, — EB... (X...) 3.7,... (X...) #71,,

j = 1,2 by the same truncation (4.7.5) in Lemma 4.7.4.

Then 1471.2 = SUPJ,J',o,z,z'"‘1IZ?=1§.,n,J,J',o,o,t,z'l and An,3 =

supJ,J’.a#a’.l.l’ n—l 23:1 6i,n’J’JI,a’al’l,lll. One has with probability 1,

sup [Egg 1| = U(n-1) , (4.7.31)

J,J’,a,a’,l,l’

n

sup n43: £31 2 U (n—k) ,k > 0. (4.7.32)

Jleiaiailil’ i=1   

We will consider 0: = 07’ = 1 in the Case 1.1 to Case 1.4.

Case 1.1 when (J —- J’ I > 2. The definition of BJ’l in (4.4.6) will guarantee that

BJ,1(Xi1)BJI,1(Xi1) = 0 if IJ - J'l > 2.
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Case 1.2 when J = J'. According to Lemma 4.7.2,

EBJa (Xia)TilT'1’__ E {BJa (Xia) E (Tle11’IXia) }z 0 (1)

E{B?...(X.-..)T..T.21} =E{Bi..(X.-..)E(T.%T5,IX...)} ~H-1.

2

So E52 = IE {330 (X,a)7},7;,.}2 — {EBia (Xian-171.} I ~ H-l. According to

(4. 7. 31), one has E532 = Efz— E631 ~ H’l. Lemma 4.7.2 provides a constant Cg > 0

such that

2 Dn k

E I57,2Ik —"E IBJ,a (Xi-QT?"1,1112 EBJ.a (X50) Till’,2I

-2

< sup IBJa (X10) '1'? E622

Jmall’

S 0?“21124034575132 _<_ (CgDn/H)k_ZE€?,2~

—EBJa (Xia)TD"
ill’,2 i,2!l’ I

Using the same technique in Lemma 4.7.4 by applying Lemma 2.5.2 and Borel -Cantelli

Lemma, when J = J’,a = a’ = 1, one has

n—12€i,=2

i=1

sup 0(n‘1/2H’1/2logn)

Jmall’   

and then we can get (4.7.29) combining with (4.7.32).

Case 1.3 when IJ —— J' I = 1. Without loss of generality we assume that J’ = J + 1.

EBJ,a(Xia)BJ+1,a (Xia)TilT1_1’— E {BJ,a (Xia) BJ+1,a (Xia) E (TilT11’IXia)} = 0 (1)

E {BJ.. (X...) BJ+1.. (X...)T.-.Tn} ——E {IBJ.. (Xia)BJ+1,a(X(Xia)I2 E (712.1",§IIX...)}

N H’1, i.e., E53 ~ H"1. Similar to Case 1.2, (4.7.29) follows by using Bernstein’s inequal-

ity.

Case 1.4 when IJ —— J’ I = 2, all the above discussion in case 1.3 applies with replacing

J’=J+1with J’=J+2.

Case 2 when a = 07' > 1, all the above discussion applies without modifications.

Case 3 when a 7S 0’. Without loss of generality, suppose a = 1, a’ = 2. First, we still

need to calculate the order of second moment E522, which is E53 — E13,. The boundedness

of the density function f (:51, x2) implies that

s “will;1 HbJJHQ’ f/ leJ (scab... (...) f(xinnwxldz.
 

EBJ,1 (X41) 3,152 (X42)
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S ”bJJllz—l “"12”;1 >< <7sz 3 CB,1H,

for some constant 03,1 > 0, where the last step is derived by Lemma 4.7.2. According to

Assumption (A1) and Lemma 4.7.2,

2 _

E{BJ,1(X11)BJI,2(X12)} =|le,1“22|le,2“223,/[b1(1‘1'1) bJ/2($12)f($1,$2)d$1d332

.>. of {1111152 [11,. mom} {11,2152 [1131.2 (m) m}

1 _.

= 613 {2 + 2631/0341 — CJ,1/CJ—1.1}{||"J.1||2 2 H} x

1 _
3 {2 + 2c],2/cJ,_12 c-—J/,2/cJ/_1,2}{Ile,2||22H} 2 03,2.

2 2 2

E5.- = E {81,1 (X11) BM (11,2) T117211} -- {E811 (X10191,2 (Xian-121,}

= E {3,211 (X11) 331,2 (X12) E (EiE3/IX11,X.-2)}

2

—[E{BJ,1(X11)BJ’2 (Xi2) E(T1'1T11’1X1'11X1'2)}] -

According to Assumption (A2), there exist constants 06’ such that Cg _<_ E512. Similarly, we

can get 0; > 0 such that E6? _<_ C’, i.e., E522 ~ 1, then E522 ~ 1 by (4.7.31). Second, the

k-th moment of [512' is given by

k D kE [€12] = E IBJ’I (X11)BJ1,2(X12)T517,2 — E {BJ,1 (X11) 3.1/,2 (X12) “[11:22”

and there is a constant Cg such that E l5£,2lk is bounded by

D

J,J ,u ’

S Cf‘sz‘kD£”2E€?,2 S (CgDn/H)k-zEfig-

Similar to the proof of (4.7.29), the proof of (4.7.30) is completed. Cl

LEMMA 4.7.12. Under Assumptions (A1) to (A3), (A5), and (A7) to (A8), , as n —> oo

 

 

= 0 (111/2) , (4.7.33)sup sup sup sup

2:16[0,1]1_<_JSN+1250_<.d21s1,1I£d1 ,0, ,

sup sup sup sup (4.7.34)

zle{0,1]1:£J$N+123chd2 131,1’gd1n  
:1 {wJHa11' (X23351) #wJa 11’ (331)}

7011

1:1 
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= Op (logn/M) , (4.7.35)

where wJflJJr (X1,:z:1) and “WJ (231) defined in (4.4.18), hence
,a,1,1’

n-1 :wJflJJ/ (X1, 2:1) = Op(H1/2) . (4.7.36)

i=1

sup sup sup sup

x16[0,1]1_<_JSN+1 2_<.an2 151,1’Sd1   

Proof. According to the definitions of w r X33231 and 1:1 in 4.4.18 ,
J,a,1,1 #wJ

,a,1,l’

 

 
11w ’0’”, (1'1) 3 Ele,a,1,1’(X11$1)|

J

- 1 —

= lle,a||2 1 / 1.1/14‘“ ,, $1) 1.1.1..) 

 

f (111, 110, 151,111) dU1d’uadtldtll

g ”bJfl“;1 {/ Itlt1/K(U1)bJ (”u)| f (1131 + hvhumtbty) d’U1d’uadtldtll

CJ,a

cJ-—1,a

+ 
/|t1t1’K (U1) bJ_.1 (ua)| f (331 + hvbua, t11t1’) dv1duadt1dtlr} .

The boundedness of the joint density f and the Lipschitz continuity of the kernel K will

imply that there exist constant c2 such that

/ Itzter (1)1le (“all f ($1 + hv1,ua.tz,ty) dvlduadtldtfl S CQCKCzH,

[ltltl’K (U1) bJ_1 (“011 f (£131 + hv1,ua,t1, tll) dvld’uadtldtll _<_ CQCKQH,

and therefore E lefiJJ/ (X13221)! = O (HI/2). Meanwhile

,.

E le,a,1,1’(xivxl)| = E 171171-115: (X11 — $1) 31.0: (X,a)|’"

_ 1 --

= lle,a||2"/l(t,tl,)" firm (ul h 3:1) 3,0010!)

7'

(ml/VIC (v1) {2 ( Z; ) CJLOCJja 3(ua)b3—_‘i‘ (110)}-—— "bang-"h” [/
a=0

f ($1 + h'U1, ua, t1, t1!) dv1duadt1dtll] .

 

f (U1, Ila, t1, tl’) dUldUadtldtll

 

  

The boundedness of the joint density f and the Lipschitz continuity of the kernel K will

imply that there exist constant 02 such that

f I (m)? K. («1) b3 (11.11233; (1.)
 

f (11:1 + hv1,ua,t1,tl/) dvlduadtldtl! S CKC2H,
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which implies that E wJa”, (X15131) ~11l”THI7/2, hence E013 an”, (X13231) N h1.

Define wJ,a,1,1’ (X13231) = CUJJQJJIJ (X1, 11:1) + wJ,a,l,l’,2 (X4, 231) where

1) .

wJ,a,1,1’,j (X1131) = Kh(X1'1 _ 371) BJ,a (Xia) Tull/2J1] = 1, 2

by the same truncation (4.7.5) in Lemma 4.7.4. One has with probability 1,

2

E{wJ,a,1,l”1(x1',
$1)} = U ("_1)

and squ1E[0,ll [72-1 211:1 wJ,a,1,1”1()(1,$1)| = U (n‘k) for k > 0_ Define

  
811131161011

”3,011,1' (X11171) = wJ,a,1,1’ (X1131) " EwJ,a,1,1’(X1'1$1) .

(”2,011’,j (X21 $1) = wJHal 11.71,' (X11231) — EwJ,a,l,ll,j (X13 $1) '

ThenE{w;,,,,,(x.- 21)} ———w:;E{H. (x..z1)} E(w},a,,,,,1(X.-.T1))2 ~ ml.

and

 

k

0,1,1',2 (Xz,$1)| is bounded by

  ’0

,, ,2 (X12112
      

k...

sup IfI (X1321) — Ew r (X,- $1)l E (12*
1<JgN+1 J,a,1,1,2 J,a,1,1,2 ,

2

J,1112(X1 171)| °

               

k 2 r 2

Thud there exists a constant c = ch112kHl / such that E lw“ (Xi,:1:1)| _<_ c’fr!

J,”11’

EwwJa,1,1’ (X1, $1)2. That means the sequence of random variables {wJ,a,l,,21’ (X1, $1)}:=1

satisfies the Cramér’3 condition, hence by the Bernstein’s inequality and similar proof'1n

the case 3 of Lemma 4.7.11, one has (4.7.34). _ C]

In the following, we define a noise term analogous to the formula for \Ilffl), (1:1) in (4.4.19)

by replacing a in (4.7.9) with a in (4.7.16)

n 0'1 N+1 d2

\Il(2 )J,($1) =72.1:: Z ZaJwaleall’ (X1,:L‘1). (4.7.37)

1:11:1 J:101:2

LEMMA 4.7.13. Under Assumptions (A1) to (A3), (A5) and (A8), , as n —+ 00,

2

SUp1s1’Sdl Spr1€[0,l] I‘IIEJ} (£121) \i/(Z)I($1)l__ OP((‘H2)

Proof. According to (4.4.17) and (4.7.37), one has

(2) d1 N+1 d2 11

‘11vll(1) W<$I)IU,1I— Z Z 2(aJflal—aJ,O,)1);11-Zw.1,1(X11$1)Til '
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According to (4.7.36) and (4.7.18), Cauchy-Schwartz inequality implies that

2

(2) . (2) (log n) 1/2
SUP sup ‘1’ ($1)—‘1' (221) s N+10 -———— o H

1gz’gdlxe[0,1] ”1” ““1" I 1" 1,1,(3/2 p( )

(log n)20,, ( ”Hm ) .

Therefore the lemma follows. C]

 

LEMMA 4.7.14. Under Assumptions (A1) to (A3), (A5) and (A8), , as n —> 00

71 d1 N+1 d2

7%12}: Z ZaJaszmamxz-m)sup sup lily}, (2:1)l—— sup sup

i=1 (=1 J=1 a=2
lgl’gdl xle[0,1] 1<l’<d1 $1€[0, 1]

  

 

Proof. Note that by definition (4.7.37)

(2) d1 N+1 d2

Ia) <wl>l< z: 2 2a ,,,,(z1)
1:1J2la=2

d1 N+1 d2 11

Z Z 2 514,047“1 2 {wJfiM (xi: 331) '- #wJa 11' ($1)} = R1 (1171) + R2 (1:1)-

l=1 J=1 a=2 i=1
1 H

(4.7.38)

. . . N+1 1/2
By Cauchy—Schwartz 1nequa11ty, R2 (2:1) 18 bounded by (2:1:21.]:1 Z:(1-2 aJaI) x

1)”-

: 0p(logn/\/1Th) ,

nIZ{meaul (X44171)"#wm,”,($1)}

1:1  
(fig
1:1 J==l a=2 $16M]  

Observe that “an = 0,, (log n\/N/n) as given in (4.7.19) and

sup

$16[0,1]  

nIZ{wJall’(X11$1)/‘wm,,,,(171)}

1:1 

which is given in (4.7.34), so the order of sulee[0,l] R2 (151) by Assumptions (A7), (A8) is

 
O n O 2

0,, (logm/N/n) \/(N + 1) 41 (d2 — no, (if???) = 0,, (W) (47.39)

_ op ((logn)3 NH) . (4.7.40)
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Using again the discretization idea, we divide the interval [0, 1] into Mn ~ 11 equally spaced

intervals with endpoints 0 = 221,0 < 2:1,1 < < $1,Mn = 1. Then 3“px16[0,1]R1 (11:1)

41 N+1 42

<

"151.134" 2.2%(”0‘me“HA1310+ lgglnxiélzisgmrkl

d1 N+1 d2 011 N+1 dz

ZZZaJHav‘IH-‘w0,11, M1)“ZZZGHJJOWW“ll/(1k)

l==1Jla=2 l==1Jla=2

=T1+T2.

Noting that dJflJ is

d1 N+1 dz
1

Z Z Z SJ+(a—1)(N+1)+(l-1)d2(N+1)
,J,+(a’_1)(N+1)+(l”_1)d2(N

+1)n— X

z”=1 J’=1 a’=1

17.

ZBJ’,a' (X1701)Til"a(Xi1Ti)5iw

121

according to (47-16), Where SJ+(a--—-1)(N+1)+(l1)d2(N+1),J’+(o/—1)(N+1)+(l”—1)d2(N+1) is

the corresponding element in ST: VT'1.We define W n equals
a,,,lcr’l

n N+1N+1

-1

13314,, n X Z Z 5J+(a—1)(N+1)+(z—1)42(N+1),J'+(d-I)(N+1)+(I”—1)d2(N+1>

3,150,! (Xm) Til/I0 (Xi: Ti) 541%)“I,,, (17m)!

then it is clear that T1 _<_ Edi120:2 EW—l 222-1Wala’l’h To show that each term

W l 01’,” has order Op (71—2/5) we truncate the T1115, by the same way in the proof of
0”

Theorem 4.3.2,

1 2

D = 90 —<() <—. 4.7.41
11. n (2 + 7) 0 5) ( )

where 17 is the same as in Assumption (A5). Let Z,-== T[”52 2in + Zz-Dz" +Zi"3 , where

2,3" = z,- {|z,-| > Dn} zf’gn-_. z, {W s D,,}— zflmzfln—_ EZ {)2 l < Dn}

For fixed J,a,l,l',

1),, = Z 44,0”,(2:1).)B,r,a,(x.a)a(x.,r.)2,%"

15.1,ng

SJ+(a—1)(N+l)+(l—1)d2(N+1),J’+(a’—1)(N+1)+(l"-1)d2(N+1)’
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and denote WD , as the truncated centered version of W0 1 a: l”? i.e.,
a,,a,l’l’

 

 

 

D
— 4.7.42

Wa,l,a’,l”—1SkSMnn1: Ui,k ( )

In the following, we will prove that IWala;lu— W51,0”,, = Op (H).

It18 clear that IWa l a; l” — Wat 0,1,,l 3 A1 + A, where

n N+1N+1 D

A1: ”’1 Z Z 2:1qu , (171,112) BJ’ or (Xia)0(xini) Z,- 1”
1<k<Mn i=1 J:1 J’: 01,,” ’ 1

SJ+(a-1)(N+1)+(l—1)d2(N+1),J’+(a’—1)(N+1)+(l”-1)d2(N+1)I ’

n N+1 N+1 D

A2:1_<_k<Mn "I: Z :1 “WJa,,u' ($11k) BJCOI’ Mia)” (X,,T,~) 2133”
i:1 J=1J’=

SJ+(a—1)(N+1)+(l—-1)d2(N+1),J’+(a'-1)(N+1)+(1I
I_1)d2(N+1)I .

T

Let pwaJJ’ (1171,1c) = {#w1,a,l,l’ (xl’k) , . . . ’MwNpJJ’ ($1,k)} , then A2 3 C'chx

N+1 N+1 n D 2 1/2

2 -1

131227;!“ '12:; p”l,a,l,l’ ($1,k) J; {n ; BJI,aI (Xia) Till/0' (Xi, Ti) Zi13n} ,

according to Lemma 4.7.3. By the proof of Theorem 4.3.2, th-D3"l = O (D;(14.17)) and

2 Op (log n/\/7_i)supn

  

nlgBJ1#/(X,O)Tlua(x, T)

by Bernstein’s inequality given in Lemma 2.5. 2. Therefore A2 < CD"(1+n)x

2 1/2
N+1 N+1 n

2 -1

igTE’hn J23 ““1,a,z,z' (“71"“) Z {n 23.1%! (Xia)0(x1';Ti)}

J=1 i=1

1 2 .

= 0,, {1);(1+’7) (NHN 10g2 n/n) / } = 0,,(N1/2n-9/1010gn)

where the last step follows from the choice of Du in (4.7.41). One has with probability 1,

n N+1N+1

“1:: 2111.10,”, (,Mk)BJ’a’(aa) (Xi TinJ‘X

i=1J=lJ’—1

SJ+(a—1)(N+1)+(l——1)d2(N+1),J’+(a’—1)(N+1)+(l”—1)d2(N+1) z
0
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for large n. Therefore, one has 'Wa l,a’,l” — WDI a/ ,,,! _<_ A1 + A2 2 Op (11"2/5). Next
a

we want to show that nga’l” = 0,, (11‘2/5), with nga’J” defined in (4.7.42). Since

T Dn N+1

Ui,k = ”wazl’ (331$) ST,alo/l” {BJ’,a’ (X2100 (X’i’Ti) Zn}? }J’=1

. . T

so the variance of UM 1s “ma 1 l’ (mug) ST,(110(qu

1 ,

var {B I [(X- )0(X- '1')an N S (a: )T
J,a 10‘ 1’ 1 2,2 J1 1 T,ala’l”p'wa,l,ll 11k '

According to Assumption (A5), 02 (x, t) is measurable and bounded, so it is easy to see

that

N+ 1

Cgvala’l” 3 var ({BJ’,a’ (Xi )}J,=1 0 (X0) S Cgvalo/l'“

Thus, one has

T

var (Ui,k) N “£00,111! (11$) ST,ala’l”VT,ala’l”ST,alo/l”“wa’l’ll ($11k) szD

D T 1/2

where VZ,D = var (Z1971) Let rs: (131$) = {pwa l l’ (231*) ”wall, (371,k)}

cacvcacg {4311)}? v” 3 var (1],-,,,) 5 cacvcacg {1. (2%)}2 v23.

When 1' _>_ 3, the r—th absolute moment E lUiJclr is

E 2 “Wm,” (INC) BJ’,a’ (Xia) ‘7 (Xi’ Ti)

1_<_J,J’ SN+1

Z52"l'lmi)} SJ+(a-1)(N+1)+(l-1)d2(N+1),J’+(a’-1)(N+1)+(l”-1)d2(N+1)l E(

r-—2

S 0303 (*6 ($1,k)}r 0(H1"’/2)D£‘2Vz,o S {con (31,1) DnH*1/2} rlE |U,-,,,|2,

which means the sequence {Ugh }Ll satisfies the Cramér’s condition with Cramér’s constant

equal to c... = c0n($1,k) DnH'1/2, applying Bernstein’s inequality for r = 3

1 n (1.03: n 6/7
P n" U- > <0. ex - +a 3 a ,

Z 2”“ —p" — 1 p 25m§+5c...pn 2” ([q+1D

  

  

  

[=1

where

2 5m6/7

=pn'3/5H'1/210gn, a1=23+2 1+ p" ,a2(3)=11n 1+ 3 ,
p" r 2 r

q 207712 + carp" p"
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2 3 _ 1/3

m§~{'€(-T1,k)} v21), m3 .<.{c{~:(x1,k>} H l/ZDnVZfl} .

Then by taking q such that [q—Z—I] 2 c0 log n, q 2 cm/ logn for some constants co, c1, one

has a1 = 0(n/q) = 0 (log n), a2 (3) = 0 (n2). Assumption (A2) yields that

6/7 6/7

a<1a1>{<[.:.1>}
andasn-eoo,onehas

 

  
 

qu, > 01,0212'1/5H"1 logzn ,0277."1/5H"1 logn

/
~ ~ 10 n.

25m§+5mpn 25mg+5DnH—1/2m—3/5H—1/210
gn Dun—2/5n'1/5H—1 P 8

Thus, for 11. large enough,

1 n

P {5 Z UiJc
i=1

Taking c0, p large enough, one has for large n, P { l% 221:1 UN:

00 OO Mn 1 n

2P (lwgw 2 ,,H) = 2: >: P ( in”.
n=l i=1n=1k=l

Thus, Borel-Cantelli Lemma entails that W001 C1,1,, 2 Op (114/5). Therefore, one has

W ,,,a/Jn = 01, (124/5) since lWa,l,0/,l” — WD ,,,” = 0,, (114/5). Hence
a aLa

  

> pH} S clognexp {—c2plogn} + Chg—(”060” S n—3.

> pn'2/5} S 1173. Hence

 

 

 

00

2 pH) 5 Z Mun—3 < oo.

n=1 

 

011 d2 d1 6’2

T1 _<_ ZZ Z Z Wa,l,al,zfl = 019 (TL—W5) . (4.7.43)

1:1 (2:2 (”:1 01:1

Employing Lipschitz continuity of kernel K, the term T2 equals 1313-3471 SUp$1€l$1,k—1:$1,k]

d1 N+1 d2 d1 N+1 d2

2 Z Z dJ,a,l#wJ,aJ,l, ($1) - Z Z Z C“Ummug“, (331$)

(=1 J21 a=2 (=1 J-.—_-1 0:2

is bounded by “a“ x

N+1

Ina-X SUP 2 E [{Kh (X1 - $1) - Kh (X1 - $1,k)}2{7117}zIBJ,a(Xa)}2] -

195M" mlelxl,k—1’$1,kl J=1

Therefore, according to Assumption (A8), Lemma 4.7.2 (ii), and (4.7.19),

1 N+1

2 2

“Mg .121 E31,, (Xa)T117’,” (4.7.44)

= 0 (log nv Nn‘1h74Mg2) = 010(71‘1/2) .

 T2 3 CQop (71—1/2N1/210gn)
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Combining (4.7.43) and (4.7.44), one has sup R1 (2151) = 0p (71-2/5). The desired result

$16[0,1]

follows from (4.7.38) and (4.7.40). Cl

Proof of Proposition 4.4.2. (4.7.1) implies that

IEn9_1,l (xi,-1)| S IEn9_1,z (X4,_1) - Enm-1,z (Xi,-1)| + IEnm-1,z (Xi,_1) I(4-7-45)

S Coo (d2 -— 1) sup ”mhllloo H2 + Op (114/2).

ZSanQ

By definition (4.4.14), SUPx1e[O,1] I‘llb 1’ (271)] 3 R1 + R2 + R3 where

Ri = 811p —ZKh(X11-$1)Z{mui,_1) 9-1,1(X1,-1)}7117}zr
x1€[0,1]n

1

R2 = SUP - Kh(X'1-I1)

x16[0,1] n; 1 
1

Z{g_1,z (X1,_1)—Eng_1,z (X1,_1)—rh_1,1(i,-1)}Tleu,

1 n '1

sup — Z Kh (X11 — 331) Z En9_1,l (xi,_1) Till-1111'R3

313011] n i=1 (:1

For R1, using (4.7.1), one has

dll 11

R1 3 000(d2—1) supd2||m;,||oo H2Z—IZIT11T1’I

2<C"l=1"1z'=1

= 0,, (H2) {gas-my] + 0p(n1/2)}= 0,, (H2) (4.7.46)

To bound R2, denote the empirically centered spline basis as B301 (Xia) = BJ0 (Xia) —

EnBJa(X1‘a) 1<J<N+1 1<a<d2. Thenonecanwriteforsome(a:xl’aJal)
?

J,a,l

d2 N+1

ml (x) — mm2gal (X))+Z Engal (Xl——- 001 + Z Z aJ,a,zB3,a ($0).

a=1J=1

Thus

d1 d2 N+1

R2 = SUP n12191091 -$1)ZZ Z aJflalBJa(Xia)Tle

$1€10111 i: 1 l=1c1=2J= 1
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d2 N+1

<leZ 2: law: SUP
 

n

7171 Z Kh (X11 — 1171) 74171-1333 (X20)

 1_10,—2 J_1 ISJSN+1,ISISd1,2gagd2 i=1

d1 d2 N+1

~11:

= ZZ 2 [ml x
(=1 0:2 J=l

 

n

sup n‘1 2 K1. (X11 — x1) 71-sz {B11 (X...) — 5,3,, (fit-..)}
1<J<N+1, i=1

1<l<d1,2<a<d2

Equation (4.7.33)in Lemma 4.7.12 states that

sup sup

x1610,” ingN+1,1gz,z'gd1,2gagd2

1?.

71—1 2: K11 (X11 — $1) Tisz'l’BJpz (Xia)

i=1   

while equation (4.7.28) of Lemma 4.7.11 states that SllplsjsN+1,|EnBJ’a (Xia)l =

0,, (logn/@ and standard kernel argument shows that

  

 

Tl

sup sup 72—1 ZKh (X11 “ $1)T11Tiz’ = 019(1) '

316(0,” 1311’ng i=1

Therefore, one has

d1 d2 N+1
1/2 1 2 logn

(N+11d.<4-1>222(a2a1) {0p(H/>+Ov(fi)}
I:la:2 J:1

d1 d2 d2

= 0p 2 m1 (X) "101-29a: (X)+ ZEflgal (X) )

2(=1 (1:1

= 0,, (n'1/2+H2). (4.7.47)

The last step follows from

d2

ml (X) *7 "101-Z 9az((X) + Z Engaz (X)

a: l a=1 2

d2

S “Th1 (X) — m1 (X)||2 + W (X) ”mm29az(X + Z Engaz (X)

2 “=1 2

d2

5 300,, Z ”mglum H2 + 0,, (71-1/2).

(:21
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Thus 122 = 0,, (77-1/2 + H2). Similarly,

it

1

= sup n—2: Kh (X21 - 111):le Eng1,(1 1)TilTil’

$1610, 1] _1

 

i:Kh(X.1— 51:1)T-1Tfl/

 

 

6’1

SR{:|En9_1,z(xi,)-1)I} SUP

(___1 $1€[0,1]n

fith (X41 — $1) TilTW—zl

i=1

—Op (71—1/2 + H2).

(4.7.48)

  $1€[0,1]n

d1

3 {Z lEn9-1,l (x.,_1)|} SUP
[=1

by (4.7.45). Combining (4.7.46), (4.7.47) and (4.7.48), one establishes Proposition 4.4.2. Cl

Proof of Lemma 4.4.1. Based on formula (4.4.11), 71.“1 221131,) (Xi,-1) is

n ‘12 N+1 d2 N+1 n

5; z 2 41.4... (x...) = z z a... {n-l :33... ms}.
i=1 0:2 J=1 a=2 J=1 i=1

Lemma 4.7.8 implias that

/
\

d2 N+1 d2 N+1 ”2

Z Z 5J,a,l _. {(N+1)(d2 - 1) ' Z 2 53,01}

0:? J=l 01:2 J=1

_<_ {(N + 1) (d2 — 1) .5T5}1/2 = 0p(Nn-1/21ogn) .

Now it is clear from (4.7.27) and (4.7.28) that sup1_<_JSNH |n'1 221:1 BJ.a (Xia)| S

An,1 = 0;, (71-1/2 log n), hence

  

d2 N+1 1 n N(log ”)2

5:3.“x.,-1)< z z a... sup 23.424.) = 0,, (——).
i (1:2 J=1 (11, £21

(4.7.49)

While standard kernel theory implies that supxlem,” ln‘l 2&1 2:21 Kh (Xfl — $1)'1})T;)/'

= 0,, (1) .Thus the lemma follows immediately from (4.7.49) and (4.4.16). CI
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CHAPTER 5

Spline-backfitted kernel smoothing of

generalized additive model

5.1 Introduction

Following Stone (1985), p. 693, the space of a—centered square integrable functions on [0, 1]

is

M = {g : E{g(Xa)} = 0,15;{g2 (X00) < +00},1 g a _<_ d.

in which 9 are finite constants. The constraints that E{ga (Xa)} = 0, 1 S a S d

ensure unique additive representation of ma as expressed in (1.4.3), but are not neces-

sary for the definition of space M. In what follows, denote by En the empirical ex-

pectation, Encp = 23:1 cp (X.,-) /n. We introduce two inner products on M. For func-

tions 91,92 6 M, the theoretical and empirical inner products are defined respectively as

(91.92) = E {91 (X) 92 (X)}, (91,92).. = En {91 (X) 92 (X)}- The corresponding induced

norms are ||91||g = E9? (X), ”mug,” = Eng? (X). The model space M is called theoretically

(empirically) identifiable, if for any 9 E M, ||g||2 = 0 (llgllzfi = 0) implies that g = 0 as.

In this chapter, for any compact interval [a, b], we denote the space of p—th order smooth

function as C(p)[a, b] = {glgo’l E C [a,bl}, and the class of Lipschitz continuous functions

for constant C > 0 as Lip ([a,b] ,C) = {9] |g(:z:) -— g (3')] _<_ Clx — :r’l , Vx,:c’ E [a,b]}. We

mean by “N” both sides having the same order as n —-> 00. We denote by Idxd the d x d iden-

tity matrix, and ded the d x d zero matrix. For any vector x = (x1, :52, - - - ,xd), we denote

1/2

the supremum and Euclidean norms as |x| = maxlSan Ixal and ”x“ = (2211:1233) .
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We need the following Assumptions on the data generating process.

(A1)

(A2)

(A3)

(A4)

(A5)

5.2

The additive component functions ma (230,) 6 0(2) [0,1], or = 1, ..., d.

The inverse link function b' satisfies the following: b' E 02 (9) where 9 is a compact

interval such that m ([0,1]d) is in the interior of G and C), > maxeee b” (0) 2

mingee b” (6) > c), for some constants Cb > C), > 0. There exists a compact interval

A such that m1 ([0, 1]) C A and that A + m_1([0,1]d—1) C 9 where m-1(x_1) =

c+ 23:21:10, (pa) with x_1 = (1:2, ...,:L‘d).

The conditional variance function 02 (x) is measurable and bounded. The errors

{8i}?=1 satisfy E(eilfl) = 0, E (eglfi) = 1, E (IQ-PH] IE) 3 CT, for some

1) E (1/2, 1] and the sequence of a-fields

F, =0{(Xj),j gram Si—1}fori= 1,...,.n

The density function f (x) of (X1, ...,Xd) is continuous and

0<cf_<_ inf f(x)g sup f(x)§Cf<oo.

XE[Dill x€]0,l]d

The marginal densities fa (ma) of X0 have continuous derivatives on [0, 1] as well as

the uniform upper bound Cf and lower bound of.

There exist positive constants K0 and A0 such that a (n) S KOe—AO" holds for all n,

n

with the a-mixing coefficients for {Zi = (X1250) 1 defined as

1

a(k)= sup |P(BflC)—P(B)P(C)|,k21.

BEa{Zs,s_<_t},C€a{Z3,sZt+k}

Oracle Smoothers

We need following Assumption for kernel function.

(A6) The kernel function K 6 Lip ([—1, 1] , CK) for some positive constant CK > O, and is

bounded, nonnegative, symmetric, and supported on [—1,1]. The bandwidth h of the

kernel K is assumed to be of order n’1/5, i.e., c),n"1/5 S h g Chn’1/5 for some

positive constants 0),, Ch.
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If the last d — 1 components {ma (ma)}g=2 were known by “oracle”, then the only

unknown component m1(:c1) could be estimated by the following procedure. Define for

each $1 6 [h,1 - h] an local quasi-likelihood function l (a) = l (a, 2:1) as

_ n

n 1 2,21 [Yr {0 + m_1(X4_1)} " b {a + ”1.1 (Xi-1)}lKh(Xi1 - 1‘1) (5-2-1)

and define the oracle smoother of m1 (2:1) as

in!“ (231) = argmaxl(a) . (5.2.2)

aEA

THEOREM 5.2.1. Under Assumptions (A1)-(A6), as n —i 00

sup [mm (x1) — m1 (7:1)] = 003, (log n/Vnh) = 071.3. (n—2/5 log n) .

$1€]h,l-h]

THEOREM 5.2.2. Under Assumptions (A1)-(A6), for any 2:1 6 [h, 1 — h], as n ——> 00, the

oracle kernel smoother mm (1:1) given in (5.2.2) satisfies

W{mm (a) — m (an) — bias. (xi) (9/01 (2:1)}:1

—» N (0.01 ($1)-1.3mm, ($1)-1)

where

D1051) = fl (1‘1) E lb” {7” (X)} lX1 = 951] (5-2-3)

and

vi (2:1) = f1 <41>E{a2 (X) m = x1} IIKII§,

#2(K){m’1'($1)f($1)l3 [b"{m(X)} |X1 = 151]

mi (e1)f(e1) 53-1—4: [b” {m (X)} m -= x1]

— {mi (41)}2 f (22.) E [b”’ {m (X)} m = 2:1] }. (524)

ll

bi831 ($1)

The same oracle idea applies to the constant as well. Define the the quasi-likelihood

function

~ _ n

1c (a) = n 1 21:1 le' {a + m-c (Xill — b {a 'l‘ m-c (Xilllv

where m_c (X) 2 23:1 ma (X0) and then the infeasible estimator is 5 = argmaxOLEA lc (a) .

Clearly, l; (E) = 0.
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THEOREM 5.2.3. Under Assumptions (A1)-(A5), as n —> oo,

6 —>a_s, c and IE - c] = Op(n—1/2) .

Although the oracle smoother mm (131) possess the desirable theoretical properties in

Theorems 5.2.2 and 5.2.1, it not useful statistics as it is computed based on the knowledge

of unavailable functions {ma (2:0)}322 and constants c. They do, however, motivate the

spline-backfitted estimators that we introduce in the next section.

5.3 Spline-backfitted Kernel Estimators

We need following Assumption for kernel function.

(A7) The number of interior knots N ~ 77.”4 log n, i.e., an1/4logn S N S CNn1/4logn

for some positive constants cN,CN, and the interval width H = (N + 1)"1 .

In what follows, we denote IIKllg = fK (u)2 du,u2 (K) = f K (u) uzdu.

For J = 0, . . . , N + 1, define the linear B spline basis as

(N+1)$—J+1,€J_1_<_$S€J

bJ($)=(1“|$-EJ|/H)+= J+1-(N+1)$ , EJS$S€J+1:

0 , otherwise

the space of a-empirically centered linear spline functions on [0, 1] as

N+1

J=0
0?; = {90 3 907(13a) E AJbJ (17a) ,En {ga (Xa)} = 0},1S 01 S d,

which is equipped with the empirical inner product (-, )2“. Define L (g) =

i; 2&1 le’g (Xi) — b {g (Xi)}] ,g 6 G9,. The multivariate function m (x) is estimated by an

additive spline function

rh (x) = argmaxf. (g). (5.3.1)

9609.

Next define the quasi-likelihood function

.. 1 n ,. ,. r'

1(a) = a 27:1 le' {0 + "1-1 (39-1)} — b {a + "1-1 (Xi-1)llKh(Xi1 — $1) (0.3-2)

TllSBKJ (2:1) = argmaxl(a). (5.3.3)

aEA
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THEOREM 5.3.1. Under Assumptions (A1)—(A7),

SUP IThSBK,1(331) - fiIK,1(1171)| = 0a.s. (”'2/5) -

$1€]0,1]

Theorem 5.3.1 follows (5.6.11), Lemmas 5.6.11 and 5.6.12. The following theorems are

straightforward from Theorems 5.2.2, 5.2.1 and 5.3.1.

THEOREM 5.3.2. Under Assumptions (A1)—(A 7), as n —> oo

sup ]mSBK,1 (3:1) — m1 (3:1)] = 0&3, (logn/M) = 0.1.3, (n-2/5 log n) .

$1€[h,l—h]

THEOREM 5.3.3. Under Assumptions (A1)-(A7), for any :51 E [h,1 -—h], as n --> oo,

mSBKJ (2:1) given in (5. 3.3) satisfies

.. . 2 d1

«n1. {msm (m1) — m1 (4.) - blasl (24) 12 ml (41)},,=,

—> N (0.0. ($1)-‘1 vi (2:1) 01 ($1)—1)

where biasl ($1) and D1 (3:1) are defined as (5.2.4) and (5.2.3).

Then define lo (a) = n—1 2;, [Y1- {a + rh_c(X1-)} - b {a + The (Xi)}l: where like (X) =

22:1 ma (X0). Define next the spline-backfitted estimator (’5 = argmaxaeA lo (a).

THEOREM 5.3.4. Under Assumptions (A1)-(A5) and (A7), as n —> oo,

|e - E] = 0,,(n‘1/2), hence (a -— c] = 0p(n'1/2) .

5.4 Implementation

We implement our procedures with the following rule-of-thumb number of interior knots

N = Nn = min ([n1/4logn] + 1,)

which satisfies Assumption (A8), i.e.N = Nn ~ nl/4 log n, and ensures that the number of

parameters in the linear least squares problem.

According to Theorem 5.3.3, the asymptotic distributions of the estimators TllSBsz (11:0)

depend not only on the functions biasa (220,) /Da (pa) and Da($a)—1’Ug ($Q)Da (550)—1,
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but also crucially on the choice of bandwidths ha. So we define the Optimal bandwidth of

ha, denoted by happt, as the minimizer of the asymptotic mean integrated squared errors

(AMISE) of {ma(:ra),l = 1, . . . ,d}, which is defined as

AMISE{r‘na}
= /]{biasa(xa

)hg/Da(xa)}
2

+0., (mar-1 v3, (ma) Da (marl / (7.7%)] fa (2:0,) am...

By letting dAMISE {n.1,} /dha = 0, one gets the optimal bandwidth happt as

 ao.={1104(4).)122?. (mamas...)-faunas}(5

p 4] {blasa (330) /Da (mall2 fa (170:) diva ,

which is approximated by

 

'3 . = "—1 2:; De We)“ v.2. (X...) D... (marl ”5
0,01) 4 211:1 {biasa (X20) /Da (Xia)}2 1

where

Do: (513a) = fa (5130:) E lb” {m (X)} lXa = $0]

and

v: (as) = fa (ma) E {a2 (X) IXa = ma} (1X13,

bias... (4..) = )4 (X) (m" (as) f (ma) E [b” {m (X)} (Xa—— ma]

+m2. (4..) f (as) 55:? [b” {m (X)} (X... = 42...]

— {mt (4:4)}2 f (x...) E [b’” (m (X)} (Xa = $0.1} .

To implement this, we propose following estimation methods for the terms

mg, (Iva), mg (2:0,), fa (1130,), E {02 (X) lXa = 1:0,}, E [b” {m (X)} IXa = ma],

E [b’” {m (X)} lXa = 2:0,] and 533E [b” {m (X)} IXO, = sea]. The resulting bandwidth is

denoted as happt.

o The derivative functions m2, (Xia) and mg, (Xia) are estimated as

N 3 2

Zi=1kaalkxm +32}:+4aa,,lk(Xi1"ta,k-3) and
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A k—2 N . . N 3

22:2 k (k ‘ 1) aa,l,kXia 'l' 6 216:]? aa,l,k (Xil - ta,k—3) Where {aa,l,k}k=0

maximize the following

3 N+3 3

2;, {Y1 (211:0 aa,1,kX3. + 21.—4 aa,l,k (Xia_ flak—3) )

3 N+3 3

—b 2 00,1,kaa + Z 010,”: (Xia _ tank—3)

k=0 k=4

where min,- Xz-a = tap < --- < ta,N+1 = max; Xia

o E [b" {m (X)} [X0 = 3:0,] is estimated as

3 .. N 3 . 3 . . . .

Zk=0 11$],ka + 23;, a0,”c (Ira — ta,k—3) by minimizmg

n
2

Zi=1 [b], {Th (xi)} —{Z:.____0 0'01,ka + ZN:3 aa,l,k (X0 '" tk—3)3}] 2

8 E [b” {m (X)} IXa = pa] and E [b'” {m (X)} lXa = ma] are estimated
55;

N 3 3 .

by Zk_1kaaH-lk:c§,1 + 32k:+40a,,lk($a—ta,k3)2 and Zk=0“3,l,k$a +

Ell/:13a0,1k (ma — tak-3)3 by minimizing

2
n - 3 N+3

2:31 [hm {1110(1)} " {21:20 aa,1,kX§+ 211:4 amtk (X0 — t1c-3)3}] -

o E {02 (X) lXa = $0,} is estimated by

3 A N 3 . 3 . . . .

Zk=0 a§,l,kza + 2k; aa,l,k ($0 _ ta,k—3) by mlnlmlzmg

2
n N+3

Z l'—b'{m(Xz)}-Zaa,1kX3+Zaa,,-11(Xa tk—3)3

i=1 =0 k—4

0 Density function fa(:1:a) is estimated by g; 23:1 Kha (Xia — :50) with the rule-of-the-

thumb bandwidth ha.

5.5 Examples

5.5.1 Simulation 1

The data are generated from the model

 



with m1 = sin (7w), m2 = <I>(3:1:) and mg (:17) = m4 (:13) == m5 (2:) = 11:, where <I> is the

standard normal distribution function. The data are generated from the following vector

autoregression (VAR) equation for 0 S a, r < 1,

(1 r r-

Xt=aXt_1+e,-,e,-~N(O,Z),2$t§n,2= T ‘ ,

_r r 1‘  

with stationary distribution Xt = (Xt1,...,Xtd)T ~ N (0, (1 - a2).1 )3). Clearly, Higher

values of a correspond to stronger dependence among the observations, and in particular,

if a = 0, the data is i.i.d. The parameter r controls the correlation of the bivariate th

and th. In this study, we have experimented with two cases: 1' = 0, a = 0; r = 0.5,

a = 0.5 to cover various scenarios. For a = 1, ...,d, let damn], .732.an denote the smallest

and largest observations of the variable .730, in the i -th replication. The functions {ma}g=1

are estimated on sample values.

Denoting the estimator of m) in the k-th replication as mSBK,a,k and Xta are the points

where the functions are evaluated, we define the (mean) integrated squared error (ISE and

MISE) as

. 1 n . 2
ISE(mSBK,a,k) = " _ {mSBK,a,k(Xta,k)—ma(Xta,k)} 1

n t—l

1 100 .

“1755 11:1 ISE(mSBK,a,k)-MISE(fiISBK,a) =

Then to see that the SBK estimator is as efficient as the ”oracle smoother” mm, (330,), we

define the empirical relative efliciency of mSBKfl (2:0,) with respect to fizxfi (11:0) as

221:] {file (Ilia) "' ma(Xta)}2 1/2 .

Z?=1 {mSBK,a(Xta) "’ ma(Xta)}2

Tables 9 and 10 show the MISEs of Efl's of mama and ml“, for a = 1, 2. It is obvious

 EFF :-
C!

that the SBK estimator has as good as performance of oracle estimator, (and it corroborates

with Theorem 5.3.1.
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5.5.2 Simulation 2

Using the same model in Simulation 1 but with high dimension d = 10, where ma (map) =

sin (111:), a = 1, ..., 10 and data are generated the” same way. We have run 100 replications

for sample size n = 500, 1000, 1500, 2000. The MISEs of Effs of mSBKJ and rhKJ are

shown in Table 11. As expected, increases in sample size reduce MISE for both estimators

and across all combinations of r and a values.

To see the convergence, Figure 13 plots the kernel density estimation of the 100 empirical

efficiencies for a = 1 and sample sizes n = 500, 1000, 1500, 2000 for r = 0, a = 0. The

vertical line at efficiency = 1 is the standard line for the comparison of ThSBKJ and mm.

One can clearly see that the center of the density plots is going toward the standard line 1.0

with narrower spread when sample size n is increasing, which is confirmative to the result

of Theorem 5.3.1. The basic graphic pattern of Figure 16 with r = 0.5, a = 0.5 is similar to

that for the i.i.d case, though with slower convergence rate and relatively poorer efficiency.

To have some impression of the actual function estimates, for r = 0, a = 0 and r = 0.5,

a = 0.5 with sample size n = 500, 1000, 1500, 2000, we have plotted the SBK estimators

and their 95% pointwise confidence intervals (three dotted lines), oracle estimators (dashed

lines) for the true functions m1 (solid lines) in Figures 17—24. The visual impression of

the SBK estimators is rather satisfactory and their performance improves with increasing

sample size.

Lastly, we provide the computing time of Example 2 from 100 replications on an ordinary

PC with Intel Pentium IV 1.86 GHz processor and 1.0 GB RAM. The average time run

by XploRe to generate one sample of size n and compute the SBK estimator is reported in

Table 12.

5.6 Appendix

5.6. 1 Preliminaries

In the proofs that follow, we use U and u to denote sequences of random variables that are

uniformly 0 and o of certain order.
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LEMMA 5.6.1. ([70], Lemma A2) Tthere exist constants co > 0 such that for ”any

__ T 1 d N 1

A — (AO’AJ.a)1ngN+1,1gagd E R + ( + )1

2 2

C0 A8 + 2 A3“! S Ag + Z AJ’QBJ,Q (5.6.1)

J,a Jia 2   

 

LEMMA 5.6.2. ([70], Lemma A.4)Under Assumptions (A2), (A4) and (A6), the uniform

supremum of the rescaled difference between (g1, 92);", and (g, g2)2 is

 

.

—
-
M
—

-
.
.
.

..
I

(91,92)2 n — (91:92» 10 n

A" = ”‘50) I 11911121192112 I ’ (___n1/2g11172) ' (5'62)
911926631 [0,1]

5.6.2 Oracle smoothers

LEMMA 5.6.3. Under Assumptions (A1)-(A6),

sup 1" (m1 (2:1)) -- bias. (on) 112] = 0.... (logn/m)
$1€[h,1—h]

where biasl (x1) is defined as (5.2.4).

Proof. According to (5.2.1), l’ (m1 (x1)) equals

11.

1/n 2,11 [Y1 — b’ {m1 ($1) + 771.1 (X1-1)}] K1. (X11 — 131) (5-5-3)

= 1/n 2;, lb, {m(X1)} — b'{m1($1)+ "1-1 (39-1)} + 0 (Xi) 51] K11 (X11 — 931)

Let {1,12 = {in ($1) = €1,n,1 + €1,n,2 is

lb, {771 (Xi)} - b'{m1($1)+ "1-1 09.1)) + 0 (Xi) 81'] Kb (X11 - $1) (5-6-4)

’53 [W {77109)} — b'{m1($1)+ m-1(X1-1)} + 0 (X1) 61] Kh (X11 - 1131)]

where

€1,n,1 = 6171,1081) = 0 (X1) 51K}: (X11 - $1)-

€1,n,2 = €2,712 ($1) = lb, {7710(1)} - b'{rn1(x1)+ m_1(Xz'_1)}] Kh (Xil — 1‘1)

—E [[b’ {m(X1-1} " b'{7711($1)+ ma (X1_1)}l K1. (X11 - 171)] .
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Then according to (5.6.3), one can rewrite 1‘" (m1 (1:1)) as

1/"Z:1€rn+E[b' {7710(1)} b{m1($1) +7”1 (Xi-1)}] 102(le —-’L"1)-

While

E [b’ {m (39)} — b’ {m1 ($1) + m_1(Xr-1)}] Kh (X11 '- $1)

= [[0 11d [b’ {m (u)} -— b’ {m1 (1:1) + m-1(u-1)}] %K (U1h 2:1)f (u)du

 

: [[0 11d 1b"{m($1r“-1)}{m
1(“1)’ m1($1)}

+';‘b”’ {m ($1, 11-1)} {m1 (“1) ‘ m1($1)}2 + 1102)]

1 ul —:L‘1 2

EK( h )f(u1,u_1)du1du-1+u (h )

 

.-
”

, (full)2 I!

— [[0,1]d—1/[-1,1][b {m(r1,u_1)} {hv1m1(~’c1)+ 2 m1 ($1)+“(h2)}

+%b”’ {m (x1, u_1)} {hvlm'r ($1) + (’WI)2 m” (”51) + “ (h2) }2l

K (111) {f (1:1, u_1) + hvfligf—l) + U (112)} dvldu_1+u (112)

 

= h2/ UiK ('01)dv1 m’l’($1)f1(xl) 5” {m ($1,11-1)}f(u|$1)dU_1
{..],1] 2 1

[mud-

+m’1=/[01(x1)]d_1 b”{m(:1:1,u_1)}—6—f—(%li)du_1}+u(h2).

Mo (K) {m” (x1))1 (an) E [b" {m (X)} |X1-— 1‘1]

mi (an) 53—1— [f (E1) E [b” {m (X)} 1X1 = M]

— {ma ($1)}2 f (an) E [b’” {m (X)} m = 2:11} +u (h?) -

Let Dn = n0 with a < g, a(2+n) > 1 ,a(1+17) > 2/5, which requires 17 > 1/2. Rewrite

e- = 63" +512" +521??? where 52D?“—— ez{|e,-| > Du}, ED2" —-e,{|ez| < Dn} —€2D§‘, :5in =

EEi {lgil S Dn}- Define for .7: 112731 €i,n,1,j—‘ €i,n,1,j ($1)i3

[b' {m (191)} - b'{m1($1) + m-1(Xz‘-1)}+ 0‘ (X05371 Kn (X11 - $1)-
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According to Assumption (A5), one has

00 00 GEE ’7

Z..- P(ler-I>Dn <2“, —-———'——"———
of,”

< 0005:: :0,0:52 n“°‘(2+") < 00.

By Borel-Cantelli Lemma, one has with probability 1, 11’1 23:1 final = 0 for large n.

Therefore, one has squle[0,1] 'n—l 2?:1 €i,n,1,1l = U (n—k) for any It > 0. Using As-

sumption (A5),

E e- 2+" _

Tl.

 

Hence

71—1 2;, Er,n,1,3 = ”—1 2;, Kh (X21 - $1) 0 (Xi) 553”

= 71-1 2;, Kh (X11 — $1) 0 (71—2/5) = 0a.s. (114/5) -

Meanwhile

E53,“; = E [0 (Xi) 51K}; (X11 -' ac1)]2

= h’lfr (11:1)E {02 (X) m = x1} "Eng {1 + u (1)}.

E lfi,n,l,2|k = E (léi,n,1,2lk—2 lgi,n,1,2|2)

k—Z 2 .... _ .. 2

S SUP I€r,n,1,2| E|€1,n,1,2l S 002k 2171’: Z/hk 2E léi,n,1,2| ,

$16[0,1]

then there exist a constant c1 = COD"/h such that

E (|€i,n,1,2|k) < ck2k!E(§?z,,n12), k > 2. By using Lemma 2.5. 2, we let k-= 3, a2 (3) =

6/7

 

 

 

logn

lln 1+ ,m2 =E Oli“1,e =a ,
n 2 (512,=n,1,2) 0( ) n \/n_h

n q52 n 9

P - > n5 < ex — n + 3 a ([—]){ Efrmdg n} .. (11 p ( 25mg +5615”) a2( ) (1+1

 

 

 

c 71

take q such that [fl] 2 c2 log n, q 2 l 3 for some constants c2, C3.

 

   

 

0g n

(a log 71)2 C3" a2 (log ”)2

qeg, = q nh > log n nh

2 2 . ‘ ‘
257712 + 5057; 25m2 + Sale" 25mg + 5Clalog n

V nh
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C3a2 log n __ C3a2 log n
  

 

 

 

 

> _ ~ a2logn

_ logn 25m2h + 5a n0 *1/2h'1/21 ’
257122h+5 D ha—-—h 2 C0 n ogn

2 C0 17/ m

2

a1=22+2 1+ 28” =O(logn),

q 257712 + 5C1€n

mes/7

= 11 1 3 th = - < D
“2 (3) n + 511 W1 “m3 12132;, ”€1,11,1,2“3 —. 66 n:

CGDn 2
a 3Slln 1+ =o(n),

2( ) { an‘l/zh‘l/2 logn}

6 7n 6/7 _A0[_____n J /

a ([—]) S Koe q + 1 g Cn”6)‘OC2/7,

q + 1

therefore for large n

P {n-1 '2; {,,,ng > alog nfi/nh}

S 0(108 71) eXp (—C5a2 log n) + Cn2‘6*002/7

2

= n-c5a 0(logn) + Cn2"6)‘062/7

for c2, C5, a large enough. For all $1 6 [h, 1 — h], we discrete by equally spaced h = 331,0 <

231,1<---<:L‘1’Mn=1—h,Mn=n4,

P{ max n’l IZ:=1 £1371,” (zl’j)l > alog n/Jvth}

OSjSMn

32:34:11”Pn{“1'2; fii,n12(z1j)l>alogn/\/——}<Cn8MnSCn"2

for a and c2 large enough. Borel-Cantelli lemma implies that

nlzi_1 €i,,,(n12$1,j)|=oa..s (alogn/fl)

1<j_<_Mn

Taking supremum over the whole interval [h, 1 —- h], one has

-1 —1 "

sup In _€r,,,n12(E1)l<maX_ln ._ 51.11.12 ($1,j)l+

_1 Zn: )_2

n 111% SUP 1-1 61.,n,1,2( 621(M3112

OSJSM"_1$161171,jv31,j+1l   

g (In—V2 logn + 0114,;11r2.
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by Lipschitz continuity of kernel K. So one has

n _

SUP 'n—1 E :i—l €i,n,1,2| = 00.3. {(nh) 1/2logn}.

$1€[0,1] _

Then putting §,,n,1,1,£i,n,1,2,{,,n,1,3 together, one has SUp11€[0,1]|n_12?_—_1 ngl =

00.3. {(nh)_l/2108n}-

Because E[[b'{m(xz')}—b'{m1($1)+m-1(x¢'-1)}]Kh(Xz'1-$1)] = U(h2), SO

Egan,2 is

“1‘331

h-2 [[01], [b’ {m (u)} — b’ {m1 ($1) + m_1<u_1>}]2 K (———,,———)2 f (u) du+U (m)

_ -1 ’ m 2: v — ' m x m 2_ h [[0,1]d—1/[-1,11[b{ (1+h1.u-1>} b{ 1(1)+ _1(u-1)}]

K (v1)2 f (:51 + hv1,u_1) dvldu_1+U (h4)

= f/[mm—1»{hvlmuww
K (m)2 {f (2:1, u_1) + U(h)}dv1du_1+U (h4) = U (h).

Note that supa,1 Ib’ {m (X,)} — b’ {m1 (3:1) + m4 (Xi_1)}| S Cbh when

Kh(X,-1 — :01) 31$ 0. Similar to the proof for 6137121 one has

I: _.

E IEi,n,2| S (2012),: 2 1353,12;

and then sulee[h,1-h]

 

n

"71 Z §i,n,2 = 00.5. {(nhlfll/2 log n}

i=1

Putting {,,n,1,€i’n,2 together, the lemma is proved. Cl

 

LEMMA 5.6.4. Under Assumptions (A2), (A4)-(A6),

sup f” (m1 (2:1)) + D1 (1:1)l = Oa’s. (log n/Vnh) ,

$16[h,1—h]

where D1 (2:1) is defined as (5.2.3).

Proof. According to (5.6.3), one has 1*” (m1 (151)) is

—1/an:, [b” {m (an) +m_1(x.-_1)}] Kh (X11 — a) (5.6.5)
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Let Cm = [1?" {m1 ($1) + 771.1 (Xulll Kh (X11 ~ 271), then

ECm = E [[b” {m1 ($1) + 711-1091)” Kh (X11 - $1)]

“1‘11II 1
= [[0,1le b {m1(:z:1)+ m~1 (u_1)} hK (T) f (u) d“

=/ d / b”{m1(131)+m_1(ll_1)}K(’U1)f($l +hv1,U-1)dvidu_1

[0,112 l-Lll

z /[0,lld2/[-1:1lb {m1($1)+m_1(11_1)}K('Ul)

{f (1:1, 1L1) +hvlw + U (’12) } d’Uldu_1

= [[0,1]‘12 [~1,1]b” {m1 ($1) + 711.1 (11-1)}K(v1)f($1,u_1)dv1du_1 + U (’12)

= fl (an) E [b" {m (X)} m = x1] + U (h?) .

E92,; = E [[b"{m1($1) + m_1 (Xi-1)}] Kh (X21 - 331)]:2

II 1 - x

= [[0,1]d2 [b {m1 (”1) + m-1(u-1)}]2 725W (ELI—fl) f (u) d“

= h‘1 [[0 1142/[41] [1?” {m1 ($1) +m-1 (11.1)}]2K2 (v1)f($1 + h“01,11_1)d’01du.1

— _1 ” m 1’ m u 2 2 'U

_ h [[0,1]d2 /[—1,1][b { 1( 1)+ -l( '1)” K ( l)

{f ($1,114) + hvigigfi‘ifl + U (112)} dvldu_1

- 2

= h 111 (:21) “King E [[b” {m (X)}] m = x1] + U (h?) .

Similar to the proof of Lemma 5.6.3, the result follows the Lemma 2.5.2. E]

LEMMA 5.6.5. Under Assumptions (A1) to (A3), (A5) and (A 7), as n ——> 00, there exists a

constant C such that

1+

SUP ICOV (€i,na€j,n)l S Ch—figaO’ — 02% fOTi 753'

$16[h,1—-h]
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Proof. According to Davydov’s Inequality, for %+ % + %- = 1, cov (Em, {.,-,,,) is bounded by

. . 1

02 {20 (J - 7J} /p ”Ema + 5i,n,2“q “€j,n,1 + €j,n,2“r

s c2 {2a o- flu”? (lléi,n,1llq+ Mann.) (lléj.n,1ll..+lléjmllr)

Let q = r = 2 + 1),}? = 1 + 2/77, where 17 takes value in the Assumption (A5), then

_ 1 —§fl
one has ”gimflllq ___ U(h 2+77) and ”gumlllq = U (h +17). cov (lehfjmJn) S

—%fl

Ch +71a (j — i) +’7 for some constant C. C]

PROOF OF THEOREM 5.2.1. Existing a 1721 (1:1) between 1711“ (1:1) and ml (:31) such

that

17(17sz ($1)) - 1" (m1 ($1)) = ("(7711($1)) {771191 ($1) — m1 ($1)}

Note that E (771191 (2:1)) = 0, then

_ 17 (m1 ($1))
- , 5.6.6

1” (1721 ($1)) ( )

film ($1) - 7711 ($1) =

Lemma 5.6.4 implies that c S squ16[h,1—h] |_[” (77,1 ($1))l g C as. for some constants

0 < c < G. Then the theorem follows Lemma 5.6.3 and (5.6.6).

PROOF OF THEOREM 5.2.2. Let Sn = Sn(:1:1) = L1 5,3", where 5,," is defined as

(56.4), then one has ES” = O and 1" (m1 (2:1)) = Sn/n + b(:1:1)h2 + u (11.2).

’7 (k) = '7 (19,171) = 00" (6m, €i+k,n)

0?. = ESE. = var (Sn) = var (22:16...) = 2;, var (5....) + 2;]. cov (£.-,..,§,-,n)

= nvar (5m) + n 2 (1— I?) 7 (k) = nvar (5m) + nAn,

ISIkISn-l

where

var (an) = h-1f1($1)E{02(X)IX1 = 21} IIKIIE + U (h4) .

While according to Lemma 5.6.5, one has

_1+

”(Ell = ICOV (€z‘,n,€i+k,n)l S Ch $201 (107%?) .
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Hence

_1+

lAnl = lzlslllsn—17(k)l S ZISlllSn—l (1- lnfl) h 2:3 {K0 exp (—/\0k)}2%

1+

Koh-fi lelllSn_IeXP{-Aokn/(2+n)},l
/
\

__ 1+

so there exists a constant C1 such that An _<_ 01h 237%. So An/ var (Ei’n) —-> O as n —-1 oo.

. Then 0?, ~ nvar (gm) 2 can when n is large, so according to (2.5.1) in Lemma 2.5.1,

there exist constants c1 and c2 such that for some 0 < 17 S 1

P {07:15}, < z} — <I> (z)| 3 c1 6:2,, {log (an/6(1)”) /)‘}1+fl
 

 

An = sup

2

for any A with A1 3 A S A2, where

1 2 b _ 1 2

A1 = 02 {log (an/co/ )} /n,b > 2 (1 + n)/n;)\2 = 4(2 + 77)?) 110g (an/co/ )-

For the 17 in Assumption (A5), set )1 = 4(2 +17)17—l log (an/c5”), then by Assumption

(A6) (in is

max {El [b’ {m (X01 — b’ {m1 (2:1) + m1 (19-1)} + cog->61] K1 (X11 - x1) I'm}lgign

= 1133331310111 + a (Ma-12+" 1K1. (Xu — $1) 12+")

S 005012 {ElKh (X1 - $1) |2+"} = 0 (h—(1+")}1

i.e., An = o{h-<1+")/a2} = o {n(1+’7/2)/5"7/2} = 0 (111/5‘2"“) —> 0 when 1/2 < n s

1. So Sn/an —+ N(O,1), then

n{z*'<m1(x1)) — bias (:1) h2}/ nh-lvf (x1) —» N (o, 1),

where 21:12 (x1) defined as (5.2.4). Meanwhile, according to Theorem 5.2.1, one has as n —-> oo,

supqem-“ If" (ml (11)) — 1"(m1 (21ml —1 0 because

SUprc1E[h,1—h] lml (2:1) — 7711 ($1)] —+ 0. Then according to Slutsky’s theorem, one has

Vnh {{filKJ (£131) — m1($1)}Dl(z1) — biasl (1:1) 112} —+ N (0,2)? (231)) .

Where D1 (1:1) is defined in (5.6.7). Then the theorem is proved.
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PROOF OF THEOREM 5.2.3. According 'to Mean Value Theorem, there exists a

6 between c and a such that (E— c) f” (E) = t7 (E) — I" (c) = —i" (c), where —I” (E) =

n"1 "__lb” {c + m_C (X,- )} > Ch > 0 according to Assumption (A2) and where mc (X):

221,21 ma (X0) and then the infeasible estimator is 5 = argmaxaeA [C (a) . Clearly, l2. (5) =

Using Bernstein’s Inequality, one has

—’a.s. 0

  
i’(c)I=In‘12;,-’b{c+mc(X.-)}]}]=I In‘12,_,o(X.-) 5.-

which implies IE-cI = Ua_s,[1/(n_1/2). So

12‘1 221—1 b” {c+ m_c (X,)} and it convergents to Eb” {m (X)} almost sure. Then ac-

 

1"(5) —I” (c)I ——>a.3, 0, in which i” (c) =

cording to central limit theorem,

«an — c) a. N(0 [EEb”{m(X>}]Ea2 (X0).

5.6.3 Spline backfitted kernel estimators

In this section, we give the proof of Theorem 5.3.1. First, define the theoretical inner

product of bJ and 1 with respect to the a—th marginal density fa (2:0,) as cJ,,, (bJ (X0),1)

= f bJ (1:0,) fa (ma) data and define the centered B spline basis bJ,,, (2:0,) and the standardized

B spline basis BJ,, ($0,) as

 

CJ

bJ,a($a) = bJ (301)“ c : bJ—l (513a):
_ ,a

b a:

BJ’O (ma) = Jill—32,1 S J S N+ 1, (5.6.7)

II J,aII2

so that EBJ’a (X0) 5 0, E830 (Xa) .=—_' 1. For V9 6 6'2, one can write g = ATB (X,) for a

T

vector A = (A0, AJ,Q),_<_,,SN+l,1Sagd e Rl+d(N+1) and

B (X) = {113m ($1)1---1BN+l,d(-Td)}Tv (53-6-8)

Then with a slight abuse of notation, we denote

1‘;(g)=,11(>.)=n-1 "__,IY,-A(B(x,-)—b{>.TB(x,) }I and then

L:,,,—12:IYB(X),—b’{ATB(X)}B(X,)I. (5.6.9)
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The multivariate function m (x) is estimated by an additive spline function

711. (x) = mg + 2:;ma (xa)—=ATb (x), (5.6.10)

A = (A0, AJQ)Tlsasd —-argmaxL (A).

1£JSN+1

According to (5.3.2), existing a rhK,1 (11:1) between ThSBKJ ($1) and 771K,1 (1:1) such that

l" (ThSBKJ (1:1)) — i’ (771K; (2:1)) = 5"(771K,1($1)) {mSBK,1($1) '- ThKJ (331)}:

Then according to I" (75133,“ (5131)) = 0, one has

17071191 (931))

1” (771K; (31))

Let 771 be an additive spline function such that “m —- mIIC>0 _<_ COOH2 in the Lemma 3.6.1

 

ThSBKJ ($1) - 771m ($1) = - (5-5-11)

and A such that

m (x) = ATB (x). (5.6.12)

In what follows, we denote the dimension of vector A as Nd = (N + 1) d + 1.

PROOF OF THEOREM 5.3.4. Existing 6' between 6 and 6 such that (3 — E =

41(5) fig (5’) ,where —f"(E’) = n“1 23,-21b” {E’ +rh_c (X,)} > cb > 0 according to As-

sumption (A6), then

I“; (a) = 2‘; (a) — z; (a) = 72-12;, [b’ {6+ m... (Xm — (116+m (X)}]

= 1/n 2;, b” {a +m (X.)} (m... (X.) — n- (X.)}

+0 [1/n 2;, (m. (X.) — mag->12]

= I + 0&3, (NdH4 + Ndn-1 logn) ,

by Lemma 5.6.9, where I = 11 + 12,

11 = 1/n 2;, b” {a + m. (X61 (m. (Xi) - n-..- (X)},

12 = 1/n 2;, b” {a + m. (X)} {m (11,.) — n. (X.)}.

According to (3.6.1), 11 = 0,13, (H2), while

2 ,,_1 2;, b” {a + m, (x,)} x

{ZI<J<N+1,1<a<d (S‘Ja uh") 3"" (X10)}
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LEMMA 5.6.6. Under Assumptions (A1)—(A5) and (A7),

  

     

 

61: (A) = 00.5 H2 +n—1/210gn

————.. ( )
61:9?) - = 06.3 (NN1/2H2 + Iva/2”—1/210g,,)

A=A

Proof. .

___—31,53) _ = $2; [Ii-B (X1) — b’ {STE (X)} B (X.)]

= 1,,2;, [b’ {m (X.)} — b’ {n (X)} + 0 (X061) B (11,-)

The first element of the above vector is— "=1 [[5, {m (X,)}— b’ {m (X,)}] + a (X,)€,-I,

which18 00,3, (H2 + 11‘”2 log 17.) according to Lemmas 3.6.1 and 2.5.2. The other elements

can be written as

iZLI I§i,J,a,n + E [[h, {771096)} — b, {m (Xia)}] 3,1,0, (Xia)] + a (X,) 5,311,, (Xia)] .

where €,,J,a,n equals

[(3, {m (Xia)} — (7’ {fit (Xia)}I BJ,a (Xia) " E [Ibl {m (Xia)} _ b, {777. (Xia)}] BJ,a (Xia)] -

One has

E [[b’ {m (an — b’ {n (X...)}] 3,, (X151 = 0 (115/2) ,

E [[b' {m (X...)} — b' {n (21.-an]2 33,. (EU-..)] = 0 (H4) .

According to Lemma 2.5.2, one has I% 211:1 Ei,J’a,nI = 0,1,3, (1'1'3/2n“1/2 log n) and

% IZ::10(Xi)5iBJ,a (Xia)I = Oa.s. (71—1/2 log n) .

Then lemma is proved. Cl

Denote

v = EB (X)B(X)T,s .—_ v-l,

= n"1 2B (x,)13 (X.)T,sn = vgl.

i=1

v, = Eb” {m (X)} B (X) B (X)T ,—-sb_ Vb-l, (5.6.13)

27124::112”{m(,-,~,-T,X)}B(X)B(X)Snb=V;,I).
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LEMMA 5.6.7. Under Assumption (A2),

CVINd S VTLSCVINdaCSINd S SflS-CSINd 0.8., (5.6.14)

W,bINd S Vn,b-<—CV,bINd:CS,bINd S Sn,bSCS,bINd a.s.. (5.6.15)

Proof. Take a real vector A E RNd, one has

T
1 ONd‘l2

”.1366”; ,(r I 0er (B,,,B,.,), ) A = ATVA,

where V = EB (X) B (X)T. According to (5.6.1), there exist constants 0 < cv < 00 such

that

2

2 2

2..., (Ao+z.,.n.)
  

2

IIATB (X)II2 = A121+ “EM AJ,aBJ,01(Xa)

thus one concludes that

ATVA 2 CV (A?) + 2J0 A30) = CVATA,

which implies that cVINd S V. On the other hand, according to Lemma 4.7.2 and

Cr—inequality

2

2 s on (11+ 2,13,.) ,

for a constant CV < CV < 00, which implies that V S CvINd. Then CSINd S

IIATB (x,)

  

2

.2 = A3 + IIZJ’O, ’\J,aBJ,a (Xa)

 

 

S = V’ISC'SINd follows by changing A by V‘1/2A. Then (5.6.14) follows immediately

from Lemma 5. 6.2 and (5.6.15) follows Assumption (A 6). (:1

Define

a = a;2;, [b’ {m (X)} - b’ (n (X)}] B (X1) , (5.6.16)

«31>, = —sb-11-,- 2:21 [a (X,)e,-I B (X,), (5.6.17)

and

r = 5. — S. — «r, — <11, (5.6.18)
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LEMMA 5.6.8. Under Assumptions (A1)-(A5) and (A7),

IA - AI = 0,1,3, (H2 + 11’”2 log 71), (5.6.19)

IIA — A“ = Oa,3_ (Ni/2H2 + NCI/Zn-l/2 log n) .

nan = 0.... (H2N3/2n-1/2log2 n) 11>.” = 0.... (NJ/2m”? log n) .

IIQrII = 0&5, (1)/(iffy2 + NdH-l/zn—l log n) .

Proof. Mean Value Theorem implies that there exist an Nd x Nd diagonal matrix t whose

diagonal elements are in [0, 1], such that for A* = tA+ (INd — t) A

 

   

 

  

 

at (A) 611(1) 6211(1) ()1 3.)
___—__. —. —— 2 T — ,

6" A=A BA A=A (”6" A=A*

. -—1 A

. _ 62L (A) a A)
A—Az— . ———

According to (5.6.9),

621200 1 11 II T T
— = — b A B - B - B x-8me ”21 { (X.)} (X.) (.)

So

obn—12f=,B(X.)B(X.-)T : n-12;, Ib” {ATE (X.)} B (11,.) B (XuTI

’ s Gin-12;,B(X.>B(X.->T

because B (X,) B (X,-)T Z 0 and Assumption (A7). Lemma 5.6.7 imply that

2 A n

o < cbchN, s gig—($2 = ,,1—2,___, [1” {XTB(X.)}B (X63 (X.)T]

S CbCVINd < oo a.s..

Then (5.6.19) follows Lemma 5.6.6. Next,

aim)

8A

_ a?t(x)

x BABAT (H)
A=A

2

= -51; :b’” {A*TB (X,)} {(A — A)TB (19)} 130(1)-

  A:
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X_X:_($£Q) '1 3120.)

BAaAT .\=x 8A
  A=A

 

 

  

 

 

.. -1

(2:21)? .-.) BZLBWFVTBBB}{(X-SYNMVB‘X”
while

021:0.) ’1 aim

— (3‘3)? .\=:\) 71‘— A=X

= _sb3; 2;, [Y,B (xi) — b’ {3TB (X0) B (X0)

= ‘I’b + 1’1)

and

,. —1

r = (2:23;? H) 51; 2:15" {x*TB(x.-)} {(x — :x)TB (xi)}2B (x1)-

Note that
2

”21n— ;,b'"{:\*TB(x.-)} {(x— x)TB(x.-)} Bowl
 

_<. 0,1,; 2;, {(x — x):"B(x.-)}2 "Bacon s Era—27.21;“; - X)TB(x.-)}2

S 55172 (X - :‘lT {$Z:=IB<’9)B<’Q)T} (’V‘ X)

___‘L
2H1/2

= 0.1.3. (NdH7/2 + NdH—l/271—1 log2 n) .

S “5”“2 =0” (1V0t11"‘+1Vc1"‘1 10g“) X m

So ||<I>,.|| = 0.1.3. (NdH7/2 + NdH-l/Qn-l log n) . Next,

2

“an,"2 = 81,3,- 2;, [b' {m (xm — b’ {m <x.-)}] B (x.)
  

 

 

2

S C'C'szgH‘i $22121 B (X,) = 0a,s_ (H4Ndn—l log2 n) .

    

2 2

HM! ”Sb; 2;, [0 (x.) a.) B (x.)
  

2

l
/
\

00% £2; [cam-18m)

= 0&3, (Ndn—l log2 n)
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LEMMA 5.6.9. Under Assumptions (A 1)-(A5) and (A 7),

llm-mllz = 0a.s.(NN1/2H2+N1/2n’1/2logn),

. _ N12

IIm—mllgn = 0.....N(/ H2+Nd/2n1filogn),

Nlfl
um - mllZn = 003 (Nd H2 + N1/2n_1/2 log n). (5.6.20)

Proof. According to Lemma 5.6.7,

=(x_:\)Tv(:\_:\)

3 CV ”A — 5.“2 == Oa,s_ (NdH4 + Ndn"l log2 n) .

Hm — mug = ”(X— S)TB(    

Nlfl
Then ”fn -— mu” 2 0,1,3 (Nd H2 + Né/zn“1/2 log n) by Lemma 5.6.2. Next,

IITh - m“2,n < Ilfiz - 777]H2 ,1: + ||m -mH2n

= 0a..(NI/2H2 + N:/2:"1/2 log n) .

[I

In the following denote

N 1,d

w($1):{wJ,a($1) J:1,a=2:WJ,)=a($l 71—121.:_1 IBJ,(Xaia)lKh (Xil “$1)

LEMMA 5.6.10. Under Assumptions (A1) to (A3), (A5), and (A7) to (A8}, , as n —+ 00

sup [w (:51)| = Oa_s_ (HI/2) . (5.6.21)

$1€[0,1]

Proof. First, one computes

Ewia (1:1) = f/Kh(u1 — 2:1) IBJ,a(ua)|f(u1,ua)du1dua

f/K(U1)|b’uJa(u2)lf(hv1+$1.ua)dvldua

“bJallz

(lle.all2)—1 {//K(UI)IJ+1,2 (U2)f(hvl + $1,U2)dv1dU2

1/2

+ (M) f/K(UI)IJ’2 (112)f(hv1 + $1,112) d’Uld‘UQ} .

CJ,2

126

 

 



<HbJ:II;{f/ IK(v1 wean;f(z1+hvl,ua)dv1dua

”Pf/meow1(ua)|f($1+hv1.ua)dvldua}

 

J—~1,a

The boundedness of the joint density f and the Lipschitz continuity of the kernel K will

imply that there exist constant 02 such that

f/ IK(v1)bJ(ua)|f(x1+hv1,ua)dv1dua s CKC2H,

// IK(v1)bJ_1(uaIIf(:r1 + hv1,ua>dv1dua s CKC2H-

and therefore

sup |Ew ($1)] = o (HI/2) (5.6.22)

$1€[O,I]

by Lemma 4.7.2. Similarly, E'w1,0, (2:1 )r ~ hl—rH1_r/2, hence Ewyfl (3:1)2 ~ h‘l. Accord-

ing to Lemma 2.5.2 and similar proof of Lemma A5 in [68], one has

sup sup sup lea(:1:1)— EwJa (1:1)I-— 003 (logn/Vnh.)

116(0, 1] 1<J<N+1 2<a<d

Combining with (5.6.22), the lemma is proved. CI

LEMMA 5.6.11. Under Assumptions (A1)-{A7},

SUP If, (ThKJ ($1))l "’ 0a.s. (71—2/5) -

316(h,1—h]

Proof. Note [7 (rhKJ (2:1)) = 0, one has

‘7 (film ($1)) = i, (film (371)) “ ‘7 (filK,1 ($1))

= 1/n 2;, [b'{filK,1($1)+ "1-1 (39-1)} " ’9’ {film (351) + 711-1091)”

Kh (X11 - $1)

= 1/n 2;, b” {mm (a) + m1 09-1)} {ms (x11) —m (x101 x

Kh (X11 - 171) + 0(1/71 2;, {771-1 (X11) — 711-1 (39-1)}2] = I + Oa.s. (H3)

where I = [1+ [2,

11=1/NZ;,b"{filK,1($1)+7n-1(X1'-1)}{m_1(Xi_1)- "1-1(Xi_1)}Kh(Xz'1 ~$1)
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12:1/nzj=1 1’” {mK,-1($1)+m1(X1-1)}{m-1(Xz‘-1)-m-1(Xi_1)}Kh(X21--$1)

According to (3.6.1), 11 = Oa_s, (H2), while

_ n ,-

12 = n12i_1b"{mK1($1)+m-1(Xi-1)} X

{(5‘0 - A0)+ ZISJSN+1,2_<-asd (Snip — Ma) BJ,a 0%)} Kh (X11 - $1)

= 12,1) + 12,1) + [2,1'

where

12,1; = 7771:,1b”{m1<1($1)+m-1(X¢1)}

{(Pbo+ Z1<.Ig./v+1,2_<_a_<_d q’b,J,aBJ,a 0%)} Kh (X11 - 2:1),

12,1; = n—lzyzlbqfilm ($1)+m-1(X2'-1)}X

{(1)150 + ZISJSN+1,ZSan ¢v,J,aBJ,a(Xia)} Kh(Xi1 _ $1) 1

.- n ..

12,r = n 1 21:1 b"{mK,1 ($1) + m_1(Xz'-1)} X

{(1)130 + ZISJSN-i-lflsoKd (pr,J,aBJ,a (Xia)} Kh(Xi1 "‘ 371)

where (PM), (PM), (PM), Qb’J,a, <I>b’J.a1 (Db,J,,, are the corresponding elements in the vectors (Pb,

‘1)” and (Pr defined as (5.6.16), (5.6.17) and (5.6.18).

_ n.

|12,b| 5 CW 1 21:1 {l‘Pbpl + ZISJSN+1,2SanIq’b,J,aI IBJ,a (Xia)|} Kh (X11 - :61)

1/2 2
2 2 —1 n . _

5 0” “@510 + ZIS.ISN+1,2-<_a:Sd©bfi’v"}] x [{n 21:1 K" (X‘1 331)}

_1 n
2 1/2

+ ZnggN+1,2$agd{n 21.21 IBJ,a (Xia)| Kh (X11 - $1)} ]

:1 Cb x 0,3, (Ni/2H5”) x [0,... (1) + (N +1) x (d — 1) x 0a.s. (HII

= 0.1.3. (Ni/211W?) .

according to (5.6.19) and (5.6.21), similarly

|12,,| = 0,3, (NdH7/2 + NdH“1/2n—1 log n) .
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6ZI

{(lmX)[D‘lfglv‘lf‘o‘fsPSIDSI‘IJr'NSII’SIZ+07.3}

1.1PSDSZ‘HNSISI1:;u
(3:)_g3(x)ougI

plI)![aDtluntlsPS/DSI‘[+NSII'SI011,1‘1:23

{(X)’lg]l5'3+5'3(zx)o”31

PSDSZ‘I+NS[’SIZ_

(II-IX)z’>1("X)”TH{(10w},,ch

-—‘+——11__‘+——c
P>D>ZIN>[‘>JI:(701‘(1(1))XP>D>ZIN>[‘>I{(Ix__IX)11)](0)0ng{00w}”CIH}=

..1’D“z‘1+‘”I..

(‘9=--IX)”}IPX)”F9{(X)w},,qg"1‘“q>p>>N”)3:“?

t{(0'2X)n‘l-HDTSpSDSI‘I+NSfSIZ+0108}

’3(-‘x)0“Z;(In:—IX)"X{(x)w},,qg=

(Ia:—Ix)‘1}!{00111}”qgo‘aq)=I‘a‘Zl

919%

(u2:80101/6-upN)TOO+z‘a‘zl+I‘m-I.=

(“BOIQ/Z-u)'MOxz/iJNx(11801Z/I—uz/inN)“10+

([1:—IX)”)1(0X)70TH{(X)11.1,}”qgv‘lmq)P>7038I+NSFSIZ+

(Irv—IX)l{>1r{(x)w},,930‘“<I>=

D‘1:?11PSDSZ‘I‘l‘NSI‘SI

(II—”XIVMDIX)FH{(-'X)lu},,q"31-11”“<13

+(1:1:_”X)”)1{(130111}”q12:3I_u0‘a(b=

(II—”X)”)1

1..pSDSz‘HNSrSI1I=.11

{(D-ZX)D[HDP“<I>Z+0a<1>}{(-'X)W},,q“KI-.11=“31

919111111

°(u301“Pug/€31)'9'90x(118019/331)“9‘00+“‘31=“‘31



where $03,510,, SJa J, a; are the corresponding element in the matrix Sb defined

in (5.6.13) has the form shown in the proof of Theorem 5.3.4 and Whisk! ($1) =

Eb” {m (X)} BJfl (X0) Kh (X1 — 11:1) , which has the order 00,3, (HI/2). Denote 0,; =

1 2

n9°(—-—n<90<-), 651" --- sane-wan}, f3 = Esme-130...}, £2" =
2 + 5

€iI{|sz-| 3 Dn} — 655‘. Then flu? = A1 + A2 + A3 where

l n D

M: = ZISJ$N+1,2San#b’k’J’a ($1) ($1) a :0 (X05231?

i=1

{5110 + ZISJ’SN+1,ISo/Sd SJ.a.J’.a’BJ’.a’ (Xia’)} 1k = 1' 2’ 3'

Then one has with probability 1, A1 = 0 for large 11. Next,

.2+n

= I—Ee.-I{Ie.l > 0n}: 3 PM— = 0091”“) ,5p”
1 ,3 D’ll'l'fl

  

2

A3 S 05b [Zng§N+l,2_<_agdubvkv/1°‘($1)

_1 n 1),. 2 1/2

Z1_<_J’SN+1,ISo/Sd{n 21:1 BJCa’ (Xia’”(Km-1'13 } l

- 1+71) 2< ( Z

— CD" [ 1_<_J_<_N+1,2Sa$dub1kv'lva ($1)

_1 n 2 1/2

ZISJ’3N+1,1_<_a’Sd {n 2i=1 BJ'fl’ 0900009)} ]

__ 1 2 _ 1 2

Dn(1+n)0a,s, {(NHNloan/n) / } = Dn(1+")0a,s, {(Nlog2n/n) / }

= 0a.3_ (”_2/5) .

Lastly, A2 = 0,1,3, (11‘3/5H_1/2 log n) = 0,1,3, (71-2/5) according to Bernstein’s Inequality.

Then fgmg = oa,s, (rt—W5) according to the orders of A1,A2 and A3. With similar proof,

we can show ’13,,“ = 00,3, (71'2/5).

Lastly, denote A2 = 71‘1 2?:1 {1, where

D

52' = ZnggN+L2gasdflb>kiJia($1)0(Xi)5ia2n

{SJ:Q + ZISJISNWLLISQISd SJ,O,J’,CY’BJ’,O, (Xza’)} '
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Then Efii = O, and

D
N+1,d

var (51') = MachJ var { 0 (X2) 8i; Dn } Salub’c
BJljd (Xza’) a (X1)Ei1k J’:1)a,=1

s 000§Cvu£k_1u£k_c = 0 (1).

Then A2 = 00,3, (n"1/2 log n) = 0a,s_ (n‘2/5) according to Bernstein’s Inequality. Then

T2,”; = 0,1,3, (n‘Q/S) according to the orders of A1, A2 and A3. With similar proof, we can

show T2,,“ = 0,1,3, (n’Z/f’). Then the lemma is proved. Cl

LEMMA 5.6.12. Under Assumptions (A1)v(A7), Va, 0 S supx1€[h,1_h] |_[Il(a)[ S C as

for some constants 0 < c < C.

Proof. According to (5.3.2), one has

A n A

l"((1) = *1/71 21:1 lb" {0 + m-1(Xz'_1)}] Kh (X11 *- $1)-

Cb S b"{0+7h_1(xi-1)} S Cb and Spr1e[h,1—Iz]|1/nZiL-1 Kh (X11 - $1) - f(xlll =

Oa,3, {(nh)"l/2 log n} imply the lemma. Cl
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Table 1. Simulated example 2.4.1

 

 

 

 

      

71. Du (F) D“ (F) — 0., (F) MISE (F) MISE (F) — MISE (F)

50 0.101 0.055 0.157 0.021

p = 0, 100 0.073 0.035 0.072 0.010

a = 0. 200 0.051 0.022 0.033 0.004

500 0.034 0.012 0.014 0.001

50 0.107 0.051 0.201 0.032

p = 0.5, 100 0.075 0.034 0.088 0.015

a. = 0.2. 200 0.052 0.022 0.041 0.004

500 0.037 0.011 0.019 0.002

50 0.106 0.035 0.202 0.035

p = 0.9, 100 0.073 0.024 0.086 0.014

a = 0.2. 200 0.050 0.015 0.040 0.006

500 0.036 0.003 0.020 0.002
 

 

 
Note: on and MISE of F and F.

Table 2. Simulated example 3.4.1

Estimation n = 400 n = 800 n = 1600 n = 3200

67 0.036325 0.023289 0.013743 0.008098

Note: The mean of squared errors for 100 replications.

 

 

 

 

Table 3. Simulated example 3.4.1

 

 

 

 

 

n 400 800 1600 3200

Spline estimation 4 11 31 92

Local linear estimation 102 630 3200 18000

Time ratio 1 : 25 1 : 57 1 : 103 1 : 196
 

Note: Computing time (in seconds) of cubic spline estimation and local linear estimation

of parameter 010 for one replication with n = 400, 800, 1600, 3200. PC with Intel Pentium

IV 1.86 GHz processor and 1.0 GB RAM.
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Table 4. Fitting DEM/GBP returns

 

Fitted Model Log—Likelihood Volatility Prediction Error
 

GARCH(1,1)

GJR

Semi. GARCH(Kernel)

Semi. GARCH(Spline)

0.5231

0.5233

0.5306

0.5786

0.1045

0.1039

0.0994

0.0987
 

Table 5. Fitting DEM/USD returns

 

Fitted Model Log-Likelihood Volatility Prediction Error
 

GARCH(1,1)

GJR

Semi. GARCH(Kernel)

Semi. GARCH(Spline)

-0.1567

-0.1566

-0.1508

-0.1485

0.6667

0.6661

0.6529

0.6476
 

Table 6. Residual check for fitting DEM/GBP returns

 

 

ACF up to lag létl ,Zt (£42,th Iétld,Z§ létI4,Z§

100 0.07, 0.09 0.02, 0.06 0.02, 0.05 0.01, 0.05

200 0.045, 0.065 0.01, 0.04 0.01, 0035 0005,0035

300 0.04, 0.06 0.007, 0.037 0.007, 0.033 0.003, 0.047
 

Table 7. Residual check for fitting DEM/USD returns

 

 

ACF up to lag létll, Zt2 létr , Z? létr , Z?

100 0.04, 0.09 004,006 006,0.05 0.05, 0.05

200 0025,0065 0.025, 0.04 004,0.035 004,0035

300 0.0167, 0.06 0.0167, 0.037 0.03, 0.033 0033,0047
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Table 8. Simulated example 4.6.1

 

 

SBLL fit

71 = 200

n = 500

Spline fit p = 1

m01 = 2

1.9813(0.1636)

1.9964(0.0980)

"102 = 1

0.9909(0.0539)

0.9989(0.0343)

mll

0.0255

0.0096

"‘21

0.0276

0.0089

m12

0.0113

0.0041

"’22

0.0097

0.0030

 

n=200

n=500

1.9813(0.l636)

1.9964(0.0980)

0.9909(00539)

0.9989(0.0343)

0.0561

0.0185

0.0125

0.0063

0.0089

0.0063

0.0085

0.0065

Note: the means and standard errors (in parentheses) of 771.01, 77102 and the AISEs of

mSBLLle mSBLLJZv mSBLL,211 171.3131,ng by two methods: SBLL and polynomial Spline.

Table 9. Simulated example 5.5.1

 

 

 

      
 

 

 

 

d = 5 n MISE (mSBKJ) MISE (filSBKJ) EFF (fizSBKJ) std {EFF (ThSBK,l)}

p = 0,
a _ 0 500 0.054 0.060 1.112 0.274

r = 0.5,

500 0.101 0.094 1.023 0.279

a = 0.5.

Note: The MISES and EFFS of mSBKJ: mSBKJ-

Table 10. Simulated example 5.5.1

d = 5 n MISE (67.33“) MISE (mSBm) EFF (mSBm) std {EFF (mSBK,2)}

r = 0, .

a. _ 0 500 0.017 0.027 1.503 0.896

r = 0.5,

500 0.036 0.417 0.997 0.400

a = 0.5.      
 

Note: The MISEs and EFFs of 711.331”, filSBKg-
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Table 11. Simulated example 5.5.2

 

 

 

 

 

      

d —-— 10 n MISE (177.3ng) MISE (171191) W (mSBKJ) std {EFF (ThSBKJ) }

500 0.0965 0.0701 0.9868 0.3813

7' = 0, 1000 0.0491 0.0453 1.0228 0.2324

a = 0. 1500 0.0298 0.0331 1.1021 0.3123

2000 0.0246 0.0280 1.1014 0.2161

500 0.0992 0.0735 0.9515 0.3154

r = 0, 1000 0.0453 0.0440 1.0489 0.2741

a = 0.5. 1500 0.0285 0.0327 1.0957 0.2306

2000 0.0259 0.0282 1.0801 0. 1823

500 0.2318 0.1373 0.8732 0.3122

7‘ = 0.5, 1000 0.1343 0.0885 0.9186 0.4027

0 = 0. 1500 0.0756 0.0605 0.9294 0.2493

2000 ' 0.0567 0.0474 0.9811 0.2877

500 0.2757 0.1386 0.8509 0.3356

7‘ = 0.5, 1000 0.1389 0.0899 0.8950 0.2731

a = 0.5. 1500 0.0776 0.0601 0.9686 0.2715

2000 0.0593 0.0485 0.9885 0.3050
 

Note: The MISES and EFFS 0f mSBKJ: ThKJ.

Table 12. Simulated example 5.5.2

 

 

 

    

n 500 1000 1500 2000

r = 0, a = 0. 5.6 22 49 86

r = 0.5, a = 0.5. 7.2 27 57 102  
 

Note: Computing time of filSBK, 1.
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Figure l. ACF plot of GDP quarterly growth rate.

136

 



2.5

1.5

0.5

 

 
 
 

 
  

 
     

 

 
 

137

Figure 2. Timeplot of GDP quarterly growth rate.
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Figure 3. ACF plot of unemployment quarterly growth rate.
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Figure 4. Timeplot of unemployment quarterly growth rate.
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Conditional Survival Curve
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Figure 5. Survival curves of GDP growth rate conditional on unemployment growth rate.

Note: th E [-0.08, —0.04], thin solid; Kg 6 [-0.02, 0.02], thick solid; Kg 6 [0.04, 0.08],

dotted.
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Empirical densities ofparameter estimates
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X   
Figure 6. Plot of densities of 61.

Note: 71. = 400 - dashed line, 71. = 800 - dotted line, 71 = 1600 - thin solid line,n = 3200 -

thick solid line
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Residual Series Plot
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Figure 7. Residuals of DEM/USD daily returns
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Figure 8. Estimated function m for the semiparametric GARCH model.

143

 



 

GDP forecast errors
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Figure 9. Errors of GDP forecasts.

Note: model (4.6.2)—solid line; model (4.6.1)—dotted line.
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Figure 10. Estimation of function c1 + mSBLL,41 (331-3).
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Function estimation
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Figure 11. A typical estimator of mu based on n = 500 observations.

Note: true function mll—solid line; fizSBLLJl—dotted line.

146



 

 

 

  
  

   

GDP and estimated TFP growth rates
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Figure 12. GDP growth rate—dotted line; estimated TFP growth rate—solid line. .
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Efficiency ofthe l-st estimator, r=0, a=0
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Figure 13. Plot of empirical distribution of relative efficiency: 7' = 0, a = 0.

thick solid line.

Note: 11. = 500 - dashed line, 71 = 1000 - dotted line, 71 = 1500 - thin solid line,n = 2000 -
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Efficiency ofthe l-st estimator, 1:0, a=0.5
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Figure 14. Plot of empirical distribution of relative efficiency: r = O, a = 0.5.

Note: 71 = 500 - dashed line, 11 = 1000 — dotted line, 71 = 1500 - thin solid line,n = 2000 -

thick solid line.
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Efficiency of the l-st estimator, r=0.5, a=0
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Figure 15. Plot of empirical distribution of relative efficiency: 1' = 0.5, a = 0.

Note: 71 = 500 - dashed line, 11 = 1000 — dotted line, 71 = 1500 - thin solid line,n = 2000 —

thick solid line.
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Efficiency of the l-st estimator, r=0.5, a=0.5

0 015 1 1'5
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Figure 16. Plot of empirical distribution of relative efficiency: r = 0.5, a = 0.5.

Note: 71 = 500 - dashed line, 11 = 1000 - dotted line, 71. = 1500 - thin solid line,n = 2000 -

thick solid line.
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Confidence Level = 0.95, n = 500

 

   
   
 

Figure 17. Plot of function estimation for r = 0, a = 0: n = 500.

Note: m1(x1) - solid line, ThK,1($1) - dashed line, confidence bands and mSBK,1($1) -

three dotted lines.
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Confidence Level = 0.95 , n = 1000

 

 

  
   
 

Figure 18. Plot of function estimation for r = 0, a = 0: n = 1000.

Note: m1 (11:1) - solid line, 771K,1(a:1) - dashed line, confidence bands and rhSBK,1(a:1) -

three dotted lines.
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Confidence Level = 0.95, n = 1500
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Figure 19. Plot of function estimation for r = 0, a = 0: n = 1500.

Note: m1 (11:1) — solid line, fizK,1($1) - dashed line, confidence bands and filSBK,1(-Tl) -

three dotted lines.
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Confidence Level = 0.95, n = 2000
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Figure 20. Plot of function estimation for r = 0, a = 0: n = 2000.

Note: m1(:r1) - solid line, 771K,1($1) - dashed line, confidence bands and ThSBK,1(-’31) -

three dotted lines.
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Confidence Level = 0.95, n = 500

 

       
Figure 21. Plot of function estimation for r = 0.5, a = 0.5: n = 500.

Note: m1(:1:1) - solid line, fizK,1(:c1) - dashed line, confidence bands and 1333mm) -

three dotted lines.
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Confidence Level = 0.95, n = 1000
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Figure 22. Plot of function estimation for r = 0.5, a = 0.5: n = 1000.

Note: m1(2:1) - solid line, 171K,1(:c1) - dashed line, confidence bands and filSBK,1($1) -

three dotted lines.
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Confidence Level = 0.95, n = 1500

 

   
   
 

Figure 23. Plot of function estimation for r = 0.5, a = 0.5: n = 1500.

Note: m1(:1:1) - solid line, 771K,1(a:1) - dashed line, confidence bands and mSBKJm) -

three dotted lines.
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Confidence Level = 0.95, n = 2000

1 l 

       
Figure 24. Plot of function estimation for r = 0.5, a. = 0.5: n = 2000.

Note: m1(:c1) - solid line, 771K,1(1:1) — dashed line, confidence bands and 771$BK,1(931) —

three dotted lines.
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