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ABSTRACT

NON- AND SEMIPARAMETRIC MODELING OF
FINANCIAL AND MACRO-ECONOMIC TIME
SERIES

By

Rong Liu

Nonlinear time series analysis has gained much attention in recent years due primarily to
the fact linear time series models have encountered various limitations in real applications
and the development in nonparametric regression has established a solid foundation for
nonlinear time series analysis. For example, the effect of technology on the economic growth,
volatility of exchange returns, which follow nonlinear instead of simple linear prediction
formulas. Effective tools for extracting information from such complex regression data have
to be nonparametric in nature.

A smooth kernel estimator is proposed for multivariate cumulative distribution function
in Chapter 2, extending the work on Yamato (1973) on univariate distribution function
estimation. Under assumptions of strict stationarity and geometrically strong mixing, we
establish that the proposed estimator follows the same pointwise asymptotically normal
distribution of the empirical cdf, while the new estimator is a smooth instead of a step func-
tion as the empirical cdf. We also show that under stronger assumptions the smooth kernel
estimator has asymptotically smaller mean integrated squared error than the empirical cdf,
and converges to the true cdf uniformly almost surely at a rate of (n‘l/ Z]og n). Simulated
examples are provided to illustrate the theoretical properties. Using the smooth estimator,

survival curves are given for real data applications.



“Curse of dimensionality” is a significant obstacle in high dimensional time series anal-
ysis, see Fan and Yao (2003). Several high dimensional data analysis techniques have been
proposed to deal with this problem and Xia, Tong, Li and Zhu (2002) pointed out that there
are essentially two approaches: function approximation and dimension reduction. GARCH
model, Additive Coefficient Model (ACM) and Generalized Additive model (GAM) are good
examples to represent these two approaches.

In Chapter 3, a cubic spline regression procedure is proposed to estimate the unknowns
in the semiparametric GARCH model that is intuitively appealing due to its simplicity, and
as such, can be used by non experts. The theoretical properties of the procedure is the
same as the kernel procedure in Yang (2006), and simulated and real data examples show
that the numerical performance is also comparable to the kernel method. The new method
is computationally much more efficient and very useful for analyzing financial time series
data.

In Chapter 4, a spline-backfitted kernel estimator is proposed for estimating the unknown
component functions m,; based on a geometrically strong mixing sample following model
(1.3.1) under minimal smoothness assumptions. The idea is to employ one step backfitting
after the spline pilot estimators, and then follow up with kernel smoothing, which combines
the fast computing of polynomial spline smoothing and the good asymptotic property of
kernel smoothing. Thus, the spline-backfitted kernel estimator is both computationally
expedient for analyzing very high dimensional time series, and theoretically reliable to make
inference on the component functions with confidence.

In Chapter 5, a spline-backfitted kernel (SBK) estimator is proposed for the Generalized
Additive Model time series data with oracle efficiency. It is both computationally expedient
and theoretically reliable, and simulation evidence strongly corroborates the asymptotic

theory.



ACKNOWLEDGMENTS

I would like to thank many people who have helped me on the path towards this disser-
tation. First and foremost, I would like to express my gratitude to my advisor, Professor
Lijian Yang. I could never have reached the heights or explored the depths without his
generous help, unbreakable support and patient guidance.

I also wish to express my gratitude to my dissertation committee, Professor Dennis
Gilliland, Professor Lyudmila Sakhanenko, Professor Emma Iglesias, Professor Yiming Xiao,
Professor Richard Baillie for sparing their precious time to serve on my committee and giving
valuable comments and suggestions.

I am grateful to the entire faculty and staff in the Department of Statistics and Proba-
bility who have taught me and assisted me during my study at MSU. And special thanks
are given to Professor James Stapleton, Professor Connie Page and Professor Raoul LePage
for their numerous help, constant support and encouragement.

Thanks to the graduate school and the Department of Statistics who provided me with
the Dissertation Completion Fellowship (2009), Summer Support Fellowship (2008) and
Stapleton Fellowship for working on this dissertation. This dissertation is also supported in
part by NSF awards DMS 0405330 and 0706518.

Last but not least, I would like to thank four of my academic sisters: Dr. Jing Wang, '

Dr. Li Wang, Qiongxia Song and Shujie Ma for their generous help.

v



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . ittt e e e e e e e e et e e e e e e vii
LISTOF FIGURES . . . . . . . . i it it ittt ettt eeee e viii
1 Introduction . ... . . . . .. ... @ it e e et 1
1.1 Nonlinear Time Series Prediction Model . . . . .. ... ... ........ 1
1.2 Semiparametric GARCH Model . . . . . . ... ... ... .......... 2

1.3 Additive Coefficient Model (ACM) . . . . ... ... ... ... ...... 4
1.4 Generalized Additive Model(GAM) . . . . . . . .. ... ... ... . ... 5
1.5 Polynomial Spline Smoothing . . . . ... ... ... ... ... 6

2 Kernel estimation of multivariate cumulative distribution .. ... .. 7
2.1 Introduction . . . . . . . . . . . ... 7

2.2 AsymptoticResults . . ... ... ... .. e e e e e e e 9
2.3 Bandwidth Selection . . .. .. ... ... ... .. ... ... 11
24 Examples . . . .. . . ... e e e 14
241 Asimulatedexample . . .. ... .. ... ... ... ... ... ... 14

2.42 GDP growth and unemployment . . . . . . ... ... ... ... ... 15

25 Appendix . . . . . ... e e 17
25.1 Preliminaries . . ... ... .. .. ... ... e 17

2.5.2 Proofs of Theorems 2.2.1and 2.2.2 . ... ... .. ... ....... 17

253 Proofof Theorem2.23 ... ... .. ... .. .. ... ...... 21

3 Spline estimation of a semiparametric GARCH model ... .. .. .. 26
3.1 Introduction . . . . . . .. . . . . . ... e 26
3.2 Estimation Method . . . . . .. . ... ... Lo 27
3.3 Implementation . . . . . .. ... .. .. ... ... e 32
34 Simulation . . . . . . ... 33
3.5 Applications . . . . . ... L e 34
36 Appendix . . . . ... e 35
3.6.1 Preliminaries . ... . ... .. .. ... ... ... ... .. ..., 35

3.6.2 Proof of Proposition3.6.1 . . .. ... ... ... ........... 41

3.6.3 Proof of Proposition 3.2.1 . . .. ... ... ... ... ... .... 46

4 Spline-backfitted kernel smoothing of additive coefficient model . ... 51
4.1 Introduction . . . . . . . . . . . .. ... 51
4.2 Assumptions . . . . . ... L. e 54



4.3
4.4

4.5
4.6

4.7

Oracle Smoothers . . . . . . . . . . e 57

Spline-backfitted Kernel Estimators . . . . . . ... .. .. ... ...... 60
44.1 Decomposition . . . . .. ... L e 63
Implementation . . . . . ... ... oL L 66
Examples . . . . . . . . .. 68
46.1 Simulatedexample . . . ... ... ... ... ... ... ... 68
46.2 Realdataexample . ... .. ... ... ... ... o, 69
Appendix . . . . ... 70
4.7.1 Preliminaries . .. .. .. . ... ... ... e 70
472 Oraclesmoothers . . . . ... ... ... ... ... ... ... 71
4.73 Estimationofconstants . . .. ... ... .. ... ... ... ... 83
4.7.4 Estimation of function components . . . . ... ... ... ... .. 88

5 Spline-backfitted kernel smoothing of generalized additive model ... 101

5.1 Introduction . . . . . . . . . .. . 101
52 OracleSmoothers . . . . . . .. . ... .. ... 102
5.3 Spline-backfitted Kernel Estimators . . . . . .. ... .. ... ....... 104
54 Implementation . . . . . .. ... .. L Lo 105
55 Examples . . ... . ... e 107
55.1 Simulation 1 . ... ... ... ... ... ... e 107
55.2 Simulation2 . ... ... .. 109
5.6 Appendix . . . . . . ... e e e 109
5.6.1 Preliminaries . ... ... .. ... ... ... ... . 109
56.2 Oraclesmoothers . . . . ... ... ... ... ... ... .. ... 110
5.6.3 Spline backfitted kernel estimators . . . . . ... ... .. 118
BIBLIOGRAPHY . . . . . i i i ittt ittt ettt e e s e e nee s 160

vi



© 00 N O W N

o )
N = O

LIST OF TABLES

Simulated example 2.4.1 . . . . ... ... 132
Simulated example 3.4.1 . . . . . .. .. ... ... ... 132
Simulated example 3.4.1 . . . ... ... ... ... ... ... ... 132
Fitting DEM/GBPreturns . . . . . . ... ... ... ... ... ..., 133
Fitting DEM/USD returns . . . . . ... ... .. .. ... ... ...... 133
Residual check for fitting DEM/GBP returns . . . . . . ... ... ...... 133
Residual check for fitting DEM/USD returns . . . . . .. ... ........ 133
Simulated example 4.6.1 . . . . . . ... ... ... 0 ... 134
Simulated example 5.5.1 . . . . . ... 134
Simulated example 5.5.1 . . . . . . ... 134
Simulated example 5.5.2 . . . . . ... L L o 135
Simulated example 5.5.2 . . . . . ... ... L 135

vii



© 00 N O, s W N =

[ T A B G I o I S S o S o S S S G S S S S Sy vy
W N - O © 00N odx W N = O

LIST OF FIGURES

ACF plot of GDP quarterly growthrate. . . . . . ... .. .. ........ 136
Timeplot of GDP quarterly growthrate. . .. ... ... ... .. .. .... 137
ACF plot of unemployment quarterly growthrate. . . . . .. ... ... ... 138
Timeplot of unemployment quarterly growthrate. . . . . . .. .. ... ... 139

Survival curves of GDP growth rate conditional on unemployment growth rate.140

Plot of densitiesof &. . . . . . .. .. ... . L L L o L 141
Residuals of DEM/USD daily returns . . . . . ... ... ... ........ 142
Estimated function m for the semiparametric GARCH model. . . . ... .. 143
Errors of GDP forecasts. . . . .. .. .. ... ... ... ... 144
Estimation of function ¢; + mgppr 41 (z¢-3)- - - - - - - . . . .. ... 145
A typical estimator of mj; based on n = 500 observations. . . ... ... .. 146
GDP growth rate—dotted line; estimated TFP growth rate-solid line. . . . . 147
Plot of empirical distribution of relative efficiency: r =0,a=0. . ... . .. 148
Plot of empirical distribution of relative efficiency: r =0,a=0.5. ... ... 149
Plot of empirical distribution of relative efficiency: r =0.5,a=0. ... ... 150
Plot of empirical distribution of relative efficiency: r =0.5,a =0.5. ... .. 151
Plot of function estimation for r =0,a=0: n=500. . ... ......... 152
Plot of function estimation for r =0,a=0: n=1000.. . . . ... ... ... 153
Plot of function estimation forr =0,a=0: n=1500.. . . . ... ... ... 154
Plot of function estimation forr =0,a=0: n=2000.. . . . ... ... ... 155
Plot of function estimation for r =0.5,a =0.5: n=500. ... ... ... .. 156
Plot of function estimation for r =0.5,a =05 n=1000.. . . ... ... .. 157
Plot of function estimation forr =0.5,a =05: n=1500.. . . ... ... .. 158

viii



24  Plot of function estimation for r = 0.5,a = 0.5: n = 2000



CHAPTER 1

Introduction

1.1 Nonlinear Time Series Prediction Model

Nonlinear time series analysis has gained much attention in recent years due primarily to the
fact linear time series models have encountered various limitations in real applications and
the development in nonparametric regression has established a solid foundation for nonlinear
time series analysis. For example, the effect of technology on the economic growth, volatility
of exchange returns, which follow nonlinear instead of simple linear prediction formulas.
Effective tools for extracting information from such complex regression data have to be
nonparametric in nature. I view this line of research as developing theory that is motivated
and influenced by applications.

A typical nonparametric problem in time series analysis is the classical decomposition of
a realization of a time series into a slowly changing function known as a “trend component”,
or simply trend, a periodic function referred to as a “seasonal component”, and finally a
“random noise component”, which in terms of the regression theory should be called the
time series of residuals. In time series analysis smoothing problems occur of course in the
spectral domain when we want to estimate the spectral density, e.g. for model fitting. In
the time domain nonparametric prediction is one of the fields where smoothing methods are
intensively used.

Two very popular forms of nonparametric regression are kernel/local polynomial type
and spline type smoothing. In this work, the polynomial spline smoothing is extensively

studied for nonlinear time series. The greatest advantages of spline smoothing, as pointed



out in Huang and Yang (2004), Xue and Yang (2006 b) are its simplicity and fast compu-
tation. But spline smoothing also has disadvantages, such as no limiting distribution. So
the combination for kernel/local ‘polynomia.l and spline smoothing is studied in Chapters 4
and 5.

“Curse of dimensionality” is a significant obstacle in high dimensional time series anal-
ysis, see Fan and Yao (2003). Several high dimensional data analysis techniques have been
proéosed to deal with this problem and Xia, Tong, Li and Zhu (2002) pointed out that there
are essentially two approaches: function approximation and dimension reduction. GARCH
model and Generalized Additive model (GAM) are good examples to represent these two

approaches.

1.2 Semiparametric GARCH Model

In the study of many financial time series such as foreign exchange returns, it has been a
known fact that the return itself can not be predicted. It is the forecasting of the returns’
volatility that is of special interests. Empirical evidences had led to the understanding that
for such series, the volatility often depends on infinitely many past returns with diminishing
weights. The GARCH(p, ¢) model of Bollerslev (1986), for example, allows the volatility
function to depend on all past observations, with geometrically decaying rate.

As a special case, the GARCH(1, 1) model describes a process {Y;};=_., of the form
YVt =0t € Z={.,-2,-1,0,1,2,..., } where the innovations {{;},cz are i.i.d random
variables satisfying E (¢;) = 0, E (¢2) = 1, and {a%}:_ o denotes the conditional volatility

series a? = var (Yz|Y;-1, Yi—2, ...) i.e., for some w, By, aq > 0,9 + By < 1,

a?=w+ﬁ0z:::1 o) IR te. (1.2.1)

Engle and Ng (1993) and Glosten, Jaganathan and Runkle (1993), Hentschel (1995), Duan
(1997), Hafner and Herwartz (2006), Hafner (2008) had examined various useful extensions
of model (1.2.1), mostly providing empirical evidence without establishing asymptotic re-
sults. For related theoretical works on GARCH model, see Peng and Yao (2003), Sun and
Stengos (2006) and Chan, Deng, Peng and Xia (2007).



In recent years, there has been a surge of interests in applying nonparametric smoothing
theory to volatility estimation, as in Yang, Hardle and Nielsen (1999), Dahl and Levine
(2006), Levine (2006), Brown and Levine (2007). In particular, Hafner (1998) had proposed
iterative algorithm for nonparametric GARCH model of the form

Z “m (Vi) t €2,0<ag <1

with unknown parameter a9 and unknown smooth news impact function m, without asymp-
totic theory. A truncated version of the above nonparametric model was studied in Yang
(2000), Yang (2002) with asymptotic results, yet it failed to capture the dependence of a?

on infinitely many past Y;_;. In Linton and Mammen (2005), the more general model

of =w+ Y _vj(ag)m (Yij) .t € Z,9j(a0) 2 0, ¥j(ag) < 00
j=1 j=1

was discussed and kernel estimator was proposed.

As an alternative, Yang (2006) formulated a class of semiparametric GARCH model,

which includes the following as a special case
m .
S o2 b tez,0<ap<1 (1.2.2)

with unknown parameter ag and unknown smooth link function m, and proposed kernel
estimation method for ag and m, with satisfactory theoretical properties and numerical
accuracy in simulation and applications to real data sets. Like all the aforementioned works
based on kernel smoothing, the .algorithm in Yang (2006) is extremely slow due to the
intensive computation of solving as many least squares problems as the sample size. The
average computing time for the local linear based algorithm in Yang (2006) is contained in
Table 3 for sample sizes n from 400 to 3200, and one can see that it grows at the rate of nZ.
At n = 3200, which is a moderate sample size for financial time series, the estimation of
unknown parameter aq takes 5 hours. The method of Yang (2006) is therefore not appealing
for practical use.

In Chapter 3, cubic spline regression procedure is proposed to estimate the unknowns

in the semiparametric GARCH model that is intuitively appealing due to its simplicity, and



as such, can be used by non experts. The theoretical properties of the procedure is the
same as the kernel procedure in Yang (2006), and simulated and real data examples show
that the numerical performance is also comparable to the kernel method. The new method
is computationally much more efficient and very useful for analyzing financial time series

data.

1.3 Additive Coefficient Model (ACM)

Regression analysis has been widely used in econometrics studies, for instance, the esti-
mation of production/cost function. Typical parametric regression models presume that
their regression functions follow a pre-determined form with finitely many unknown param-
eters. Nonparametric models, on the other hand, impose less stringent assumptions on the
regression functions, but pay for its flexibility the price of “curse of dimensionality”. Struc-
tured models offer a sensible compromise between parametric simplicity and nonparametric
flexibility, see, for example, Sperlich, Tjgstheim and Yang (2002) for additive interaction
modelling for the production function of Wisconsin farms and Rodriguez-Péo, Sperlich and
Vieu (2003) for a general framework of separable models. Recently Xue and Yang (2006a,b)
have proposed additive coefficient model that allows a response variable Y to depend lin-
early on some regressors, with coefficients as smooth additive functions of other predictors,

called tuning variables. Specifically

dy dy
EYIX,T)=mX,T) =) mX)T, mX)=my+ Y mg(Xa),1<1<d
=1 a=1

(1.3.1)
in which the predictor vector (X, T) consists of the tuning variables X = (X 1 ...,Xdz)T €
R% and linear predictors T = (Tl, .. ,le)T € R%1. The functional coefficient model of
Chen and Tsay (1993b) corresponds to the case do = 1, the varying coefficient model of
Hastie and Tibshirani (1993) corresponds to the case dp = d; and for each ! =1, ..., d; there
is only one single significant m,; with & = [. Also included as special cases of model (1.3.1)
are the additive model of Hastie and Tibshirani (1990), Chen and Tsay (1993a), and the

multivariate linear regression model, see Xue and Yang (2006a) for detailed discussion.



In Chapter 4, a spline-backfitted kernel estimator is proposed for estimating the unknown
component functions m,; based on a geometrically strong mixing sample following model
(1.3.1) under minimal smoothness assumptions. The idea is to employ one step backfitting
after the spline pilot estimators, and then follow up with kernel smoothing, which combines
the fast computing of polynomial spline smoothing and the good asymptotic property of
kernel smoothing. Thus, the spline-backfitted kernel estimator is both computationally
expedient for analyzing very high dimensional time series, and theoretically reliable to make

inference on the component functions with confidence.

1.4 Generalized Additive Model(GAM)

One unavoidable issue in high dimensional time series smoothing is the “curse of dimen-
sionality”, which refers to the poor convergence rate of nonparametric estimation of general
multivariate functions. One solution is autoregression in the form of additive model intro-

duced by Hastie and Tibshirani (1990)
B(YX) =g {m (X)) ,m (X) = c+ Y ma (Xa), (141)

for the predictor vector X = (X}, ...,Xd)T, and one observes a length n realization of a
n

(d + 1)-dimensional strictly stationary process {Y,-,X'T}. L= {Yi, Xi1y .- Xig}ieq which
1=

1 a5 & and assumes that the

follows (1.4.1). Typically, one denotes the link function g~
conditional variance function is 02 (X) = var (Y|X) = a(¢) b {m (X)}, in which a(¢) is a
nuisance parameter that quantifies overdispersion. One can also write the usual regression

form

Y =g {m (X))} + 0 (X) e = b {m (X))} + 0 (Xi) & (142)
for some conditional white noise ¢; that satisfy E (g;|X;) = 0, E (¢2|X;) = 1. The regression
function m takes the form in (1.4.1), and satisfies the identifibility conditions that

E{ma(Xa)}=0,1 <l<d),1<a<dy (1.4.3)

ensuring the unique additive representations of m (x) = mg + Egzl Mo (Zq). As in most

works on nonparametric smoothing, estimation of the functions {ma (:ca)}g= 1 is conducted



on compact sets. Without lose of generality, let the compact set be x = [0, l]d.

In Chapter 5, we propose spline-backfitted kernel (SBK) estimator for the GAM time
series data with oracle efficiency. It is both computationally expedient and theoretically
reliable, thus usable for analyzing very high-dimensional time series and inference can be
made on component functions with confidence. Simulation evidence strongly corroborates

~ with the asymptotic theory.

1.5 Polynomial Spline Smoothing

Let {X;,Y;}IL; be a strictly stationary process. Assume that X;, i = 1,...,n, are supported
on a compact interval [a,b]. Polynomial splines begin by choosing a set of knots (typically,
much smaller than the number of data points n), and a set of basis functions spanning a
set of piecewise polynomials satisfying contipuity and smoothness constraints.

To be specific, divide [a,b] into (N + 1) subintervals J; = [tj,tj41), j = 0,..,N —
1,Jy = [tn,b], where T := {tj };Vzl is a sequence of equally-spaced points, called interior

knots, given as
tik=...=t1=tp=a<t)<..<ty<b=tyy1=...=tNtk

in which t; = a+jh, j =0,1,..,N+1,h =1/ (N +1) is the distance between neighboring

knots. Denote by
Cc®) [, b] = {m|the kth order derivative of m is continuous on [a,b]} (1.5.1)

and G¢=2) = G(k=2) [q, b] the space of all C(¥=2) [, b] functions that are polynomials of
degree k — 1 on each interval. The j-th B-spline of order k for the knot sequence T denoted
by By is recursively defined by the de Boor (2001), i.e.

(v —t;) Bjk—1 () _ (u = tj4k) Bjs15-1 (v)

,1-k<j<N, (1.5.2)
tivk—1 "t tivk — tj+1

Bjk(u)=

for k£ > 1, with

}={1 tj§u<tj+1 .

Bj 2 (u) = I{ueJ 0 otherwise

J
In Chapters 3, 4 and 5, spline smoothing is applied under different conditions.



CHAPTER 2

Kernel estimation of multivariate cumulative

distribution

2.1 Introduction

This chapter is based on Liu and Yang (2008). The estimation of probability density func-
tions (pdf’s) and cumulative distribution functions (cdf’s) occupy a central place in applied
data analysis in the social sciences. While many statisticians and econometricians are fa-
miliar with various smooth nonparametric estimators of pdf’s, the smooth estimation of
cdf’s has not been investigated as much, see Li and Racine (2007) sections 1.4 and 1.5. To
properly define the problem, let {X1 = (Xi1) ey X,-d)T}:l_l be a geometrically a-mixing and
strictly stationary sequence of d-dimensional variables, with a common probability density
function f € clp+l) (Rd) and cumulative distribution function F € C(P+d+1) (Rd), in
which p is an odd integer. Traditionally, F is estimated by the empirical cumulative distri-
bution function F (x) = n~1 3°% | I {X; < x}, whose theoretical properties have been well
known. One obvious drawback of F is that it is a step function even when the true cdf F
is smooth.

Yamato (1973) proposed a smooth estimator of F' by integrating a kernel density esti-

mator of the density f. To be precise, define the following kernel estimator of F
. . X P X p
F(x)=F,(x)= / f(u)du=n~ Zi—l/ Ky (X; —u)du,Vx €R (2.1.1)
—o0 =1J_o

where f (u) is the standard d-dimensional kernel density estimator (kde) of f (u) (see Bickel



and Rosenblatt, 1973)

F) =n Y K (G- K ) = [T ek (52) v = (o

a=1 hy

in which h = (hy, ...,hd)T are positive numbers depending on the sample size n, called
bandwidths.

Theoretical properties of F (x) as an estimator of the unknown true distribution func-
tion F (x) have been investigated by several authors for the case of d = 1 and under i.i.d
assumptions, see for example Yamato (1973), Reiss (1981), Falk (1983) and more recently
Cheng and Peng (2002). For feasible econometric applications of univariate kernel estima-
tion of cumulative distribution function, such as to the testing of stochastic dominance, see
Li and Racine (2007), page 23, and the references therein.

In this chapter, we examine under a strong mixing assumption and for arbitrary dimen-
sion d, the local property of F (x) in terms of pointwise asymptotic distribution and its
global property in terms of mean integrated squared error (MISE) and maximal deviation.
We have proved that the smooth estimator F (x) behaves asymptotically the same as the
empirical cdf F (x) at any point x, have obtained its asymptotic mean integrated squared
error (AMISE) and have established its uniform almost sure convergence rate.

The rest of the chapter is organized as the following. In Section 2.2, we give Theorems
2.2.1,2.2.2 and 2.2.3, the main results on pointwise, mean integrated squared and uniform
asymptotics. In Section 2.3, we describe a data-driven rule to select the asymptotically
optimal bandwidths h, which makes the MISE of F* asymptotically smaller than that of the
empirical cdf ' according to Theorem 2.3.2, another compelling reason that Fis preferable
over F other than smoothness. In Section 2.4, we present Monte Carlo evidence that cor-
roborates the theory and illustrates the use of F* with two real data examples. The first real
data example illustrates the stochastic dependence of GDP growth rate on unemployment
growth rate in the US economy. Second example shows that gold and silver are substitute

goods and their prices are strongly associated. All technical proofs are in the Appendix.



2.2 Asymptotic Results

Throughout this chapter, we denote

hmax = max (h]_,...,hd), hprod =h; x---X hd

andforany z € R, K (z) = JZ ., K (u) du,, where K is a kernel function in Assumption (A4).
K (x) = 1‘[5§=1 K (za) for any vector x = (z1,...,24)7. Then K (x) = 0 unless x > —1
and K (x) = 1 if x > 1.where for any two vectors x = (z1,...,24) , y = (w1, va)T,
x>y if and only if zo > yqo,Va = 1,...,d. It is easily verified that f_ll R(w) dw = 1,
We also denote g1 (K) = fil K (u)uPtldu, D (K) =1 - f_ll K? (w) dw. For any vector
X = (xl,...,:z:d)T and Va = 1,...,d, we denote x_o = (2:1,...,ra_l,xa+1,...,zd)T and
with slight abuse of notation, write x = (z:a,x_a)T.

We list below some basic assumptions.

(A1) The cumulative distribution function F € Clp+d+1) (Rd), in which p is an odd
integer, while all (p+d+ 1)-th partial derivatives of F belong to Ly (Rd) and

<C.
’2;3; [f ()] <

(A2) There ezist positive constants Ko and g such that a (k) < Kgexp (—Mok) holds for
all k, where the k-th order strong mizing coefficient of the strictly stationary process
{X$}S2 _, is defined as

§=—00

a(k) = sup |[P(BNC)—-P(B)P(C)|,k>1.
Beo{Xs,s<t},Ceo{Xs,s>t+k}

(A3) As n — 00, nhyroq — 00, nl/zhpmd/ (log n)l/2 +nl/20BEL 0.

(A4) The univariate kernel function K (-) is of (p + 1)-th order, supported on [—1,1], Lip-

schitz continuous.

Assumptions (Al) to (A4) are all typical conditions in time series smoothing literature,
see Bosq (1998) Chapter 2 for similar or even stronger assumptions. Elementary arguments
show that D (K) > 0 under Assumption (A4).

The following theorem concerns the asymptotic distribution of F' given in (2.1.1) at any

x €RC.




THEOREM 2.2.1. Under Assumptions (A1)-(A4), Vx €R% asn — oo

JnV-1(x) (F (x) — F(x)) —4N(0,1),

where
V)= 70),7(0) = EI{X; S x} {Xipy < x} - F2(x).

Theorem 2.2.1 shows that the smooth estimator F° (x) has asymptotically the same dis-
tribution as the empirical cdf F(x). In particular, for iid process {Xs},s = —o0,...,00,
the asymptotic variance function V (x) reduces to the more familiar form of v (0) =
F(x){1-F(x)}.

The global performance of F' (x) as an estimator of F'(x) can be measured in terms of

Mean Integrated Squared Error (MISE) and maximal deviation

MISE (F) MISE (F; h) -E / {ﬁ(x) - F(x)}zdF (), (2.2.1)

Dy, (F') = Dy (13'; h) = sup lﬁ' (x)-F (x)l . (2.2.2)
xeRd
The next two theorems give the asymptotic formula of MISE (I:" ) and the almost sure rate
of Dy, (I:")
THEOREM 2.2.2. Under Assumptions (A1)-(A4), as n — oo,
MISE (F;h) = AMISE (£;h) + 0 (R4 + ™ hmax

in which the Asymptotic Mean Integrated Squared Error (AMISE) is

2
JV (x)dF (x) ”p+1 p+1, p+l
AMISE (F h) - + e § :a ot M BB Bag i (F)

D (K) 41 haCa (F)
n

with
Pt F(x) aPH1F(x)

OF (x)
Ozq

Bappr1 (F) = dF (x),Co (F) = | Z=2LdF (x),Ya, B = 1,...,d.

THEOREM 2.2.3. Under Assumptions (A1)-(A4), asn — oo, Dn( ) Oas. ( -1/2 logn)
while for i.i.d. Xy,...,Xp,Dp (F) = 0g.s. (n“1/2 (logn)l/z) .

10



The first term n=! [V (x) dF (x) in the formula of AMISE (F h) is the exact MISE
of the empirical cdf . We are unaware of any published results on the MISE or the strong
uniform rate of convergence for smooth estimation of multivariate distribution function
based on strongly mixing data, as in Theorems 2.2.2 and 2.2.3. Since Assumptions (Al) to
(A4) are mild, we believe that these strong theoretical results hold for most multiple time
series data with continuous distributions.

In the next section we describe how Theorem 2.2.2 is used to compute a data-driven

bandwidth for implementing the smoothed estimator F'.

2.3 Bandwidth Selection

To have insight into the minimization of AMISE (F“ ; h) given in Theorem 2.2.2, define a
function Q : R‘j_ X My (d) x R‘i for elementwise positive vectors v = ('ul,...,vd)T,a =

(a1,-a9)T € RE = (0,+00)% and M = (Maﬂ)d € My (d), the set of all positive

a,f=1
definite d x d matrices:

d d
Q(V, M, a) = Za p=1 ’Ua'UﬂMaﬁ - Za=1 aavclr/(p+l) = VTMV — aTVI/(p+1)

in which v1/(p+1) = (v;/(PH)’_ ,U;/(PH))T.

In the following, we denote for any d-

dimensional vector a = (a1, ...,ag)7, the d x d diagonal matrix whose (ca)-th element
is aq,@ = 1,...,d as diag (a). The following theorem is easily proved similar to Yang and

Tschernig (1999).

THEOREM 2.3.1. (i) The gradient and Hessian matrices of Q (v,M, a) with respect to v are

1

) diag (a) vi/pt)-1

%Q (v,M,a) = {diag (Maa)®_; + M} v—

52 ' P 1/(p+1)-2\¢
WQ (v,M,a) = diag (Maa)gzl + M+ . 1)2 diag (aava/(p+ ) )a=1

the Hessian matriz of Q (v,M,a) is positive definite, hence the function Q(v,M,a) is

strictly convez in v. (i) For anya € Ri, M € M, (d), there ezists a unique v € R‘i which
minimizes Q (v,M, a) , denoted as v (M, a), which satisfies Z%Q (v,M,a) = 0. In addition,

11
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Q{v(M,a),M,a} <0 for anya € R%,M € My (d). (ii) Lastly, for any cpg,ca > 0

Q (C(ap+1)/(2p+I)CK/I(p+1)/(2p+l) _ Cg2p+2)/(2§+1)c;/11/(2p+1)Q (v, M, a),

v,cMM,caa)

v(emM,caa) = cFFD/CHHD /@, (v o).

To make use of Theorem 2.3.1, we make an additional assumption on F,

(A5) The matrices Bpy1 (F) = {Bagps1 (F)}s 5_) € My (d) and
C(F) = {Ca (F)}4, € RY.

Theorem 2.2.2, Theorem 2.3.1 (ii) and Assumption (A5) ensure the existence of a unique

optimal bandwidth hgpt that minimizes

amise (im) = LY Q4P g (wl ot ) (P) 1D (0 (F))

Theorem 2.3.1 (iii) then implies that

ﬂp+1( )
PER) kel

}—1/(2P+1)

hopt = hopt (n, K, F) = 1/0’“)( 1(F),n‘lD(K)C(F))

2 (K
_ n—l/(2p+l){ Hp11 (K) v/ (B4 (F),C(F)).

D(K)(p+1)12
Thus to obtain the optimal bandwidth hopt, one computes exactly the factors involving n

and K in the above expression, and estimate the following factor
0=0(F)=(61,..00)7 = (01 (F),....04(F))T =v/®*D) (B, (F),C(F)).
The next theorem follows from the negativity result in Theorem 2.3.1 (ii):

THEOREM 2.3.2. Under Assumptions (A1)-(A5), F' has asymptotically smaller MISE than
the empirical cdf F. Specifically, MISE (F) =n"1 [V (x)dF (x) and asn — o0

MISE (F; hopt) = MISE (F) + n~CGr2/@40C (K, F) 4 0 (n~(2/2p41))

D (K)? 2, (K)
(p+1)12

c<K,p>={

12

—1/(2p+1)
} Q (v (Bp+1(F),C(F)),Bp41 (F),C(F)) <.



Following Yang and Tschernig (1999), we define a plug-in asymptotic optimal bandwidth

- g1 (K) /ey 1/(p+1) (1 A
hopt = {W} v (Bp—H(F)vC(F))

in which the plug-in estimator of the wunknown parameter 6, 0 =
v1/(p+1) (Bp+1 (F),C (F)), is computed by Newton-Raphson method using the gradient
and Hessian formulae of Theorem 2.3.1 and where the plug-in estimators of the unknown

matrices Bpy1 (F) = {Bag pt1 (F)}i,ﬂ=1 ,C(F) are

Byt (1) = {Bapprr (M}, C0) = {Ca®)}._,

Sy~ ) - 3
Bagp+1(F) = IZ{" IZKQ)(XJG‘ ia) H _/ Kgy (v = Xiy) dr’r}

T=l7#a

-l (®) (x c Xiy
ZK - Xip) H Kgy (29— Xiy) dzy ¢,

y=19#B" "%

Co (F) =n-12{n_lnga (Xja_Xia) / ” Kgy (zy — Xiy) d:c7}

Jj=1 i=1 r=l#a
The pilot bandwidth vector g = (gl,...,gd)T is the simple rule-of-thumb bandwidth for
multivariate density estimation in Scott (1992).

In the next section, we present Monte Carlo evidence for Theorems 2.2.2 and 2.2.3, and
illustrate the use of the smooth estimator F' (x) with real data examples. In all computing,
we use the quartic kernel K (u) = 15/16 x (1 — u2)21(|u| <1) with p = 1 and plug-in
bandwidth ﬁopt described above. We have not experimented with other choices of K and
p due to limit of space and as these choices are in general not as crucial as that of the

bandwidth, see Fan and Yao (2003).

13



2.4 Examples

2.4.1 A simulated example

In the section, we examine the asymptotic results of Theorems 2.2.2 and 2.2.3 via simulation.

The data are generated from the following vector autoregression (VAR) equation

Xt =aX;_1+€5,6,~N(0,2),2<t<n,T= [; f],oga,p<1

with stationary distribution X; = (X;1, X2)T ~ N (O, 1- qz)_l 2). Clearly, higher
values of a correspond to stronger dependence among the observations, and in particular,
if a = 0, the data is i.i.d. The parameter p controls the orientation of the bivariate cdf F,
and in particular, if a = p = 0, then F is a bivariate standard normal distribution. In this
study, we have experimented with three cases: p = 0,a =0; p = 0.5, a = 0.2; p = 0.9,
a = 0.2 to cover various scenarios.

A total of 100 samples {X¢};-; of sizes n = 50,100,200, 500 are generated, and Fis
computed using the optimal bandwidths ﬁopt described in section 2.3. Of interest are the
mean over the 100 replications of the global maximal deviation Dy, (15‘ ) defined in (2.2.2),
denoted as D (I:" ), and the mean integrated squared error MISE (F ; ﬁopt) defined in
(2.2.1). Both measures are listed in Table 1. As one examines Table 1, both Dy, (F ) and
MISE (I:" ; Bopt) values decrease as sample size increases in all cases, corroborating with
Theorems 2.2.2 and 2.2.3. Also listed in Table 1 are the differences of the same measures
for the empirical cdf F against those of F', which are always positive regardless of the data
generating process (i.e., for different combinations of a, p) and measures of deviation (i.e.,
Dy, or MISE). This corroborates with Theorem 2.3.2 that F" has asymptotically smaller
MISE than F.

Based on the above observations, we believe our kernel estimator of multivariate cdf is a

convenient and reliable tool, which is also superior to the empirical cdf in terms of accuracy.

14



2.4.2 GDP growth and unemployment

In this section, we discuss in detail the dependence of US GDP quarterly growth rate on
unemployment rate. There are three types of unemployment: frictional, structural, and
cyclical. Economists regard frictional and structural unemployment as essentially unavoid-
able in dynamic economy, so full employment is something less than 100% employment. The
full-employment rate of unemployment is also referred to as the natural rate of unemploy-
ment. It does not mean the economy will always operate at the natural rate. The economy
sometimes operates at an unemployment rate higher than the natural rate due to cyclical
unemployment. In contrast, the economy may on some occasions achieve an unemployment
rate below the natural rate. For example, during World War II, when the natural rate
was about 4% and actual rate below 2% during 1943-1945. It is caused by the pressure of
wartime production resulted in an almost unlimited demand for labor. The natural rate is
not forever fixed. It was about 4% in the 1960s, and economists generally agreed that the
natural rate was about 6%. Today, the consensus is that the rate is about 5.5%.

GDP gap denotes the amount by which actual GDP falls short of the theoretical GDP
under the natural rate. Okun’s law, based on recent estimate, indicates that for every
1% which the actual unemployment rate exceeds the natural rate, a GDP gap of about
2% occurs. See Samuelson (1995), p.559 or McConnell and Brue (1999), p.214 for more
details. In other words, if unemployment rate falls, then GDP growth rate increases. But
unemployment rate can not keep falling because it moves around the natural rate. So it
is useful to find the relationship between the GDP growth rate and unemployment growth
rate.

Let X;; = the seasonally adjusted quarterly unemployment growth rate in quarter ¢,
X2 = the quarterly GDP growth rate in quarter ¢, all data taken from the 1-st quarter of
1948 (¢ = 1) to the 2-nd quarter of 2006 (¢ = 234) . Since both data have been seasonally
adjusted, it is reasonable to treat X; = (th,th)T ,t =1,...,234 as a strictly stationary
time series, which is shown in the time plots. ACF plots also indicate that the assumption
of a-mixing is satisfied. The plots are shown in Figures 1—-4.

Given any interval I = [a,b], the survival function of X9 conditional on X;; € I is

15



defined as
F(b,z3) — F(a,z9)

S = P(X Xp€el)=1- 2.4.1
1(z2) = P(Xe2 > 22| X1 € 1) F (b, +00) — Fla 109) (241)
in which F is the joint distribution function of X;; and X;o.
The function Sy(z2) can be approximated by the following plug-in estimator
. F —F

F(b,+00) — F(a, +00)
in which F is the kernel estimator of F defined in (2.1.1). According to Theorems 2.2.1 and
2.2.3, for any fixed zg, '51(:02) - SI(zz)l =0p (n‘l/z) while

SUPzoeR IS[(Iz) - S](z‘g)| = Og.s. (n"l/2 log n) ,

so the estimator § 1(z2) is theoretically very reliable. We therefore draw probabilistic con-
clusions based on the smooth estimate Sy(z2) instead of the true Sp(zs).

In Figure 5, the estimated conditional survival curve S 1(z2) is plotted for intervals
I = [-0.08,-0.04], I = [-0.02,0.02], I = [0.04,0.08]. Clearly, when the unemployment
growth rate is between —0.08 and —0.04, the chance to have the GDP growth rate higher
than 1.5% is the greatest, which is about 0.2. This is in accordance with the Okun’s law that
the growth in GDP is the associated with the unemployment rate. So if policymakers want
to achieve high GDP growth rate, they may find better ways to lower the unemployment
rate. One can even estimate the probabilities of GDP growth rates given the policy of
unemployment, which is the interval I. If current unemployment rate is close to the natural
rate, then the I is an interval close to 0, such as [—0.02, 0.02); if the current unemployment
rate is much higher than the natural rate, then the I is an negative interval, i.e., trying to
lower the unemployment rate.

On the other hand, the survival function of X conditional on X3 can be computed
similarly. If certain level of GDP growth rate is planned to be achieved, one can estimate

the conditional probabilities of different unemployment growth rates.
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2.5 Appendix

2.5.1 Preliminaries

In this appendix, we denote by C (or ¢) any positive constants, by U (or u) sequences of
random variables that are uniformly O (or o) of certain order and by O, s. almost surely O,

etc.

LEMMA 2.5.1. [Berry-Esseen inequality, Sunklodas (1984), Theorem 1] Let {{;}i—; be an
a-miring sequence with E{,, = 0. Denote ds := maxj<i<n {E|£i|2+6} ,0<6<1, S5, =
SR &, 0% = ES2 > con for some ¢y € (0,400). If a(n) < Kgexp(—Xon), o > 0,
Ko > 0, then there exist ¢; = ¢ (Ko, 9), cg = ¢ (Kg,9), such that

Ap = sup

z

P{a;]Sn < z} -9 (z)l < clfsg{log (an/cé/z) //\}Hé (2.5.1)
n
for any X with A\ < X\ < Ag, where
Al=c2 {log (an/c(l)ﬂ) }b /nb>2(1468) /85 =4(2+6) 5 Llog (an/c(l)/z) .

LEMMA 2.5.2. (Bernstein’s inequality, Bosq (1998), Theorem 1.4). Let {£;} be a zero mean
real valued process, Sn = Y 11 &;. Suppose that there ezists ¢ > 0 such that fori=1,--- ,n,
k>3,F |§,~|k < c""zk!Efz2 < +00,my = maxj<i<n il , 7 = 2. Then for each n > 1,

integer g € [1,n/2], eache >0 and k > 3

2 3
P 6] > nen} <arem (—25m§6+"5cs,,> ta ke ([E%])m

9 5mZk/(2k+1)
a1=22+2 1+%—— ya (k) = 11n 1+—& ).
q 25mj + Scen En

2.5.2 Proofs of Theorems 2.2.1 and 2.2.2

where

LEMMA 2.5.3. Under Assumptions (A1),(A3) and (A4), as n — oo

- f 7 _ l‘p+l(K) p+16p+1F'(x) ptl
E{F ()} =F(x)+ T Za R +u (W)
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Proof. Using the integral form of Taylor expansion and denoting hv = (hyvy, ..., hdvd)T,

we write

fari) = @+ X0 3 (S0 havazl) @)+ By,

1 p+1
Rpiy = Bpa(mbv) = [ {; (5 havee ) f(u+thV)}dt

Hence Assumption (A4), (A1) and (A3) sequentially imply that

E{F’(x)} - E/_’;Kh (Xi—u)du=/_;du/[_l,1]d f(u+hv)K (v)dv

/ f(u) du+/ du/[ 11]d[ ( d havaaia)rf(u)+Rp+l] K(v)adv
= F(x) +/ du‘/[- L [/(; {p' (ZZ=1 havabg;)ﬁl f(u+thv)}dt} K (v)dv

- F)+ ltptlr(lf;)/ Za— p+16 p+1(u)du+u(hﬁf;,l()

+1 X
- Feolll) s ppn F) ;*(1) +u (). 0

LEMMA 2.5.4. Under Assumptions (A1)-(A4), asn — oo

E{/;);Kh(x,i—u)du/j;h’h(xj—u)du}

_[ FOO- D) T haZ ) 4w (hmax) i =,
EI{X; <x}I{X; <x}+u(hmax) i#].

Proof. We begin with the case of 7 = j,

{ / Ky (X; —udu} / fv)K(x ") dv = / F(x = hw) K2 (w) hproqdw

= hpmd'/;1 {I(w>-1)-I(w2>1)}f(x- hw)I_{Q(w)dw +/; f(x = hw)hjroqdw

= hpmd/_olo {I(w>-1)—I(w>1)}f(x — hw)K?*(w)dw+F (x — h)

00 1
=Zizlhpmd/1 dw_a/Idu)af(x—hw) (wa) +F (x)— Z oF (x)ha+u(hmax)

= F(x) - Zizl h"agz(:) D (K) + u (hinax) -

18



Similarly, for the case of 7 # 7, one obtains

E{/:;Kh(X{—u)du/_);Kh(Xj-—u)du}
//dv1 f”vz,VJ)K(x;vi)f((x;v’j>

- /_1 ./_1 fij(x = hw;, x — hw)K (w) K (w ) B o qdwidw;

= K4 {[_0: {I(w;> —1) — I (w;> 1)} K (w;) dw;+ /;oodwi} x
{0z -0 =12 D} R (v st [y} o= i = oy

= h?)rod/ {I (W,> 1) I(W;Z 1)} I? (W,) dW,/loodezJ(x - hWi,X - hW])

+hp,0d/ {I(w;>-1) = I (w;> 1)}K(w]) dw_,,/ dw; fi j(x — hw;,x — hw;)

+EI{X; <x—h}I{X; <x—h} +u(hmax)

d 00 00 1
Z ha/ dvj/ dv,-_a/ K (wiq) dwia fi j(Ta — Mbig, X_.a = Vi_q, X = V)

+ }: ha/ dv,/ dv] a/ (wja) dwja fi j(X = Vi, Ta — hwjq, X.a = Vj_a)
OEI{X; < x}I{X; <x}

+ET {x1 < X} I {XJ < X} - Za=1 ha oz +u (hmax)
= EI{X; <x}I{X; <x} - Zham{x‘ <;;}I{X j < x}
a=1 ‘ a
d _ ‘
+3° b 2ELX: ng} G5

= EI{X; < x}I{Xj < x} + u (hmax) .0
Denote Sp = Sp (x) =n {F (x) —Eﬁ‘(x)} =Y =1 &in in which

in =600 = [ Kn(Xi-wdu-E {/_m K (X; - u) du} ,

then clearly E¢;, = 0. Denote by 7 (I) = cov (gi‘n,gmyu) the autocovariance function,

then
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COROLLARY 2.5.1. Under Assumptions (A1)-(A4), asn — oo

F(x) - F2(x) - D(K)zd_lha""‘"("uu(hm) i=j,

cov(fi,mﬁj,n)=7(i—j)={ BI{X; <x}I{X; <x} - F2(x)+u(hmax) it

Proof. According to Lemmas 2.5.3 and 2.5.4, cov (§; 5,&; )

[E{/_’;Kh(xi__u)du/:;}(h(xj—u)du}— (E/_);Kh(xi—u)du)Z]

_ [ FO-DE) T haZ t u(hma) =5 _
EI{X; <x}I{X; <x}+u(hmax) i#7

tpi1 (K) —d PR 2
[F(x)+-&%—ﬁ!— Za:l hg+l'-'5g+(1§)' +u (hxrg-a)l():l )

the rest of the proof is trivial. O

Proofs of Theorems 2.2.1 and 2.2.2. According to Corollary 2.5.1

7(1) — { ’7(0) - D(K) Edzl ha%ﬁ +u(hma.x) l=0, (2.5_2)
v (1) + u (hmax) 1#0,

in which v (1) = v (I,x) = EI {Xj < x} I {X;4; < x} — F?(x). Lemma 2.5.3 and Assump-

tion (A3) further imply that

S —n { B () —F(x ﬂ(,;: (11)(' ) Za— po+l "’p_ziﬁl’i) u (h{’,f;,l()} . (2.5.3)

Meanwhile, 02 = ES2 = var(Sy,) = nAp + nB, where A, = stdogn Q= /5@
and B = 3 1og n<tj<n (1 — |1l /)7 (1). Because |y (I)] is

|P({w: X1 (w) < x} N{w: Xypp () < x}) = P({w: X (0) < xP)P({w: Xyyp (w) < x})

which is bounded by a(l) < Kge 0L  Then 2 Iv() < ~(0) +
2372 Koexp (—Agl) < oo and equation (2.5.2) imply that

Ap = stuogn (=1 /n)v(l)+2m§dogn (1 =] /n) U (hmax) — Zz_m7 ) > <.

<4||&q| a (h) < 4Kgexp (—Aol) gives

Next, lcov (E},nwf(H—l),n)

1Bl =3 gneitian = H/MBEOIS D0 (=1 /1) 4KoKo exp (=Ml)

20
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4K06—A0clogn 3 Kon—c/\g
—e N 1—e ™0
An+ Bn — 3127 (1) > ¢, therefore i< ¥ (1) > 0. Then by (2.5.1) in Lemma 2.5.1,

For ¢ > 2/Xg, |Bn| < < Cin~2. For n large enough, o2/n =

{a;lsn < z} - (z)l < cl—cz)%z{log (an/c(l)/2) /,\}1+6.

Let § = 1, A = 4(2+9) 6 Llog (Un/c(l)/z) = 12log (Un/c(l)/2), d = 1, then A, <
5}512" s = 0] (n'1/2), i.e., Snfon —4 N(0,1). Theorem 2.2.1 then follows be-
cause v/ny/V—1(x) (I:" (x)—-F (x)) —4 N (0,1) by Slutsky’s theorem. Equations (2.5.2)
and (2.5.3) together with E¢; , = 0 imply that

. 2 (K 1 2
(BP0 -Feo}’ = f(‘—g—*f%!—z){zjzlhg+la”+_;gx_)} bu (h222),

E{ﬁ(x) _EF (x)}2 = n W (x) = D(K)n~} ZhaaF (%) 4 (n-lhm),
R .2
hence  Theorem 2.2.2 follows by computing [FE {F (x)—EF (x)} +
{EF‘ (x) —F(x)}2 dF (x).

2.5.3 Proof of Theorem 2.2.3

LEMMA 2.5.5. Denote gmy - mg = (al,ml, .- ,ad’md) € R4, 1 <mgy < My and

An = 1<ma<M IF (gml’ ’"‘d) E {F (g'"l’"' ’"'d)}| ’

B, = IF( )-F( )|
n lsglagMa gmy, ,my gmy,myg

If max (My,--- ,My) < Cn, then Ap+ By, = Oq s (n'l/2 log n) while for i.i.d. Xy,...,Xn,
An + Bn = Oa_s, (n—1/2 (Iog n)l/2) .

Pl'OOf. NOte that F (gml,... 'md) - EF (gmlv'" |1nd) = n_l Z‘?:l Czn in Which

gmy,--,my
Cin = Cin,ml,«-,md =Cin (gml,-u V"‘d) = / Ky (X; —u)du

—00

-E {/gml’m’md K (X; —u) du} ,

—0Q
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then one has E(;, = 0 while
2 gmy - my gmy,- my 2
Bt - ([ i (X - vy du-p{ [ Kn(Xi-udu}) <1,
—00 —00

and for k> 2, E (|c,-n|’°) -E (|g,-,1|’°-2 cfn), which is

E [( / T e (X — w) du—E { /_ g:l ™ g (X — ) du}

<12g(2

k-2
c?n]

in)-

By Lemma 2.5.2 with k =3, a3 (3) = 11 (1+5mj"/en), m§ = B(¢Z,) < 1,
en =alogn/\/n,

{2 <m|>nen}<a1exp( o n)+a2<3>a([n/<q+1)]>9-

can qe n

, then > cpalogn and
logn 25m2 + 5cen

Take ¢ such that [n/ (¢ + 1)] > ¢glogn,q >

a=22+2(1+ e = O(logn)
175 25mZ + been &
. 3 \11/3
Since m3 = max<i<n [|¢ills < {E(C5,)} ' < 1, then

a2(3)=11n(1+i)Slln{1+—15———~}§11n{1+ > }=O(n),
En -3 alogn
an” 2logn

a([n/ (@+1))%7 < (Koexp (=X [n/ (¢ + D)7 < Cn=8ho0/7.

So for cg, co large enough

n - -
P {lzi=1 Cin| > nsn} < O(log n) exp (—c2a2 log n) + Cnl=6%000/7 < cp—(d+2),
P SIS -3 <
IS"I}?%(MQ" IZi=l Cm,1n1,...,md| > an ogn » <

Mi,...My n
3 P{n‘l > Cingmyyem 4

my=1,..,.m =1 1=1

d
1
>an” 2 logn} < Cn~(d+2) H M, < cn~2.

a=1

Hence Borel-Cantelli lemma implies that A, = Ogs. (n”l/ 2 logn). Meanwhile B, is
bounded by

I F( )—E{ﬁ‘( )}I
1377313‘%{1\/[0 | gmy,-my gmy,-,my
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+ ISJ{L&;MG IE {ﬁ’ (gml,.‘. ,md)} -F (gml,... 7md)‘

=An+U (n"l/z) = Oqg.s. (n"l/2 log n) .

If X3,--- , Xy arei.i.d., then Ay + Bp = Og.s. (n“l/2 (log n)l/z) by using same steps above

with Bernstein’s inequality of i.i.d. case. 0
LEMMA 2.5.6. VA C R%, [, |Ky (v — u)|du < [oq|Ky (v — u)|du < || K]|%; .

Proof. Applying elementary arguments, [, |Kp(v—u)ldu<f Rd |Kp (v —u)|du is
bounded by

d -1 Vg — Ua
/Rd H":lha K( ha )

LEMMA 25.7. Let —00 = a1 < -+ < agN, = o0 be such that

d 1
du = Ha:l/_1 IK (wa)| dwa< K], - O

max (Ny,---,Ng) < Cn and P(aa,kSXaSaa,kH) < 1/n,V1 < k < Ng, V1 <
a < d. Then Efg’:‘lv"""d |Kp (X —u)|du = u (n—1/2 (logn)1/2) in which gn,,... n; =

(al’"l’ e ’ad’nd) € R4.

Proof.
|Kp (v — u)| dudF (v)

X
J/
gnl,...

/yn1+1,--~ ng+1+(R1hg)

X [Iny+1, ng+l
WMX—wMu§/ /"l "

Nd —00 gnl”“’"d

Iy 41, ng+l

dF (v)

|Kn (v — )| du
gny,-- 1nd—(h1’". ‘hd) gny,- Uy

In1+1, ;ng+1+(h1 hg)
gc/“ "d dF (v)
g

nlv"' 1nd—(h’l’." 'hd)

, In1 41, g1 (R shg)
according to Lemma 2.5.6. fg 1 ng,: (h ) ’
nl,... ’nd— Ty

Ing+1, ng+1+ (1 hg) Iny+1, ng+1 Ing+1,- ng+1
/ ! d dF(v)—/ ! d dF(v)+/ ! 4R (v)
gny,- 1"d—(hl"" ’hd) gny,ny gny, - ng

dF (v) equals

Iny+1,- n +1+(h1”"vhd) Inq+1,- ny+1
=/ ! d dF(v)—/ ! 4R (v)
gny,ng— (R, hg) gnyng

+P (gnl,u-,nd S X S g721+1,--' ,nd+1)
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a1,m 41,n1+1 al,n1+1+h1
< + +
a1n;~h1 Ja a1,nq+1

1,m

aq, A n,+1 adn +11h1
: / "oy / mdT / "d dF (v)
a hq a a

dng™ dng dng+1
- /gnlﬂ’m mat dF (v) + 1/n.
g

nl’". ,nd
Within the above sum, the 3¢ — 2¢ terms with f:g;?:“ are O (n'l), while each of the
24 terms without f:g”,?gﬂ is bounded by hroq mai.zxd |f (x)|. Applying Assumptions (A1)
b (S
and (A3),

y ,
E/ |Kp (X — u)|du < Chproqg max |f (x)|+C (3d - Zd) /n=u (n"l/2 (logn)l/z) .
gny,-nyg x€Rd

a

LEMMA 2.5.8. Under the same conditions of Lemma 2.5.7, for Vx = (z1,--- ,z4) € Rd,
n_l E?:l lcm' = Ua.s. (71_1/2 log Tl) in which

Gin=Gin (9ngomg) = [ (1K (X = w)|du=E Ky (X~ )]} du

gny, ng
while for i.i.d. Xi, ..., Xn,n 1" |Cinl = Uas. (n'l/2 (logn)1/2).

Proof. One can show by applying Lemma 2.5.2 as in the proof of Lemma 2.5.5. O

Proof of Theorem 2.2.3. Under the same conditions of Lemma 2.5.7. one has

— -1/2
8 () = ) = O o)
by Lemma 2.5.5. For Vx = (z1,--- ,z4) € R%, there exist integers ny, - - , g such that
F(gny,-mg) SF(x) < F (gn1+1,...,"d+1). Hence lﬁ’(x) - F (g"lf“v"d)l is bounded by

X
Iy f Ky (X; — u) du
n &=l fo

1 n X
iy / |Kn (Xi — )| du
n 1= gnl,...,n

d
1 n X
==> . {|Kn (X; — u)|du—E | Kp (X — u)|} du
n T Ygng g
X
+/ E|Ky (X — u)|du = Ogs. (n“l/z log n)
gy, ,ny
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according to Lemmas 2.5.7 and 2.5.8. Then according to Lemma 2.5.5,
Fx)-F (x)l < |F (x) - F (gnl,... ,,,d)| + lﬁ’ (gnl’... ,nd) _F (g.,,l,... ,,,d)|

+ IF (9"1"" v"d) - F(x)I
=Ug.s. (n.—l/2 log n) +Us.s. (n"l/2 logn) +U(1/n)

and if Xj,---, Xy, are i.i.d, one can replace logn in the above inequality by (log n)l/ 2 D
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CHAPTER 3

Spline estimation of a semiparametric

GARCH model

3.1 Introduction

It is widely recognized that global smoothing methods such as those by spline or wavelet are
computationally much more efficient than local kernel smoothing, see for example the com-
parison of computing time in Xue and Yang (2006b) and Wang and Yang (2007). Recent
development of regression spline smoothing in terms of local asymptotics (Huang (2003)),
of high dimensional and weakly dependent data (Huang and Yang (2004), Xue and Yang
(2006b) and Wang and Yang (2007)) has presented convincing incentives for applying spline
smoothing to solve challenging problems in time series analysis. We have applied cubic
spline smoothing to the semiparametric GARCH model (1.2.2), which resulted in a proce-
dure that is a much faster but shares the same theoretical and numerical properties of the
kernel smoothing procedure in Yang (2006). Table 3 shows the computing time compari-
son between the proposed cubic spline method versus the local linear method in estimating
parameter ag. Clearly, the cubic spline method is superior for large sample as its comput-
ing time is proportional to n~! of the corresponding time of the local linear method. The
advantage of spline method had already been recognized by Engle and Ng (1993), which pro-
posed spline estimation for the news impact curve for extensions of model (1.2.1), without
developing justifications by asymptotic theory.

The chapter is organized as follows. In Section 3.2 we discuss the assumptions of the
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model (1.2.2), the spline estimation of the unknown parameter ag and asymptotic properties
including its oracle efficiency. In section 3.4 we describe the implementation of the estimator.
In sections 4 and 5 we apply the method to simulated and empirical examples. All technical

proofs are given in the Appendix.

3.2 Estimation Method

The statistical inference of the semiparametric GARCH model (1.2.2) consists of estimating
both parameter ag and link function m. In this chapter we focus on estimating the param-
eter as once oy is estimated with /n-consistency, the estimation of function m is a routine
application of univariate smoothing.

The following assumptions on the data generating process are used

Al: The process {Y;}§2_  is strictly stationary, and the innovations {{;};cz have finite

—00

r-th absolute moments E |£;|” = m; < 00,0 <7 < 6.

A2: The link function m(-) is positive everywhere on R4 and has Lipschitz continuous

4-th derivative.

For convenience, define X; = Z‘J’?__l a{)_l)’f_ j,t € Z which simplifies model (1.2.2) to

Y; = m1/2(X;) &, 0% = m(X;),t € Z while the process {X;}$2_, satisfies the Markovian

—00
equation X; = agXi—1+m (X¢—1) 53_1, t € Z. Since ag is an unknown parameter in (0, 1), to
make numerical optimization feasible, we assume that ag lies in the interior of A = [a), ag],
where 0 < a; < a9 < 1, are boundary values known a priori. In practice, one takes
sufficiently small a; and sufficiently large a based on prior knowledge of the data. Define
next X, ¢ as a series analogous to X; but with any candidate value of @ € A
o 0] o0
Xop =Y o2, = olm(X,_;) & j,t€ Z. (3.2.1)
j=1 j=1

We need the following assumptions on the processes { Xa,t}z a €A

_.m7

A3: The processes {Xa,t}f: a € A are jointly strictly stationary and geometrically

_m)

a-mixing, i.e., the o -mixing coefficient a(k) < cpF, for constants ¢ > 0,0 < p < 1,
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where

a(k) = SuPAea(Xa,t,tSO,aeA),Bea(Xa’t,t?_k,aeA) |P(A)P(B) — P(AN B)|.

From Assumption (A3) and the fact that the innovations {{;};o_ ., are iid, the joint
distribution of (¥3,£4, Xq t, a € A) is strictly stationary. For each a € A, define the trans-

formed variables for the X, ; as,

Fal (Xa,t) + F02 (Xa,t)
2

Uat = F (Xat) = ,1<t<n (3.2.2)

in which Fo; and Fo, are cdfs of Xq, ¢ and Xo, ¢t respectively. In particular, we denote

Ui = Uagt = F (Xagt) = F (X1).

A4: The pdf associated with F'is f (z) > 0,Vz € (0,+00) and Uqy ¢ has a pdf ¢, (-) which is
Lipschitz continuous and there exist constants c,, Cy, such that infe 4 0<y<1 9o (v) >

Cp and SUPaeA,0<u<l Pa (u) < CSP'

For any a€A define the predictor of Yt2 based on Uyt as go(u) = E(Yfan,t =u),0 <
u < 1. In particular, denote g(Ut) = gag(Uaq,t) = E(Ytleao,t) = m(X;). Define the risk
function of @ as R(a) = E {Y?? — ga(Ua7t)}2. Apparently{Y; }$2_ ., have finite 4-th moment
due to assumption (Al) and (A2). So R(a) allows the usual bias-variance decomposition
R(e) = E{g(Ut) - 9a(Ua,t)}’ +(m4q — 1) Eg*(Us) which, together with g(Uz) = gag (Uag,1),
imply that
R(a) = E {g(Ur) — 9a(Uay)}* + R(a0) > R(ag),Ya € A,

We need the following assumption on the function R(a),
A5: The function R(a) has positive second derivative at ag, i.e., R”(ag) > 0 and R(a) is

locally convex at ay, i.e., for any € > 0, there exists § > 0 such that R(a) — R(ag) <

implies | — ag| < €.

Thus by minimizing the prediction error of Ytz on Uy ¢, one should be able to locate the
true parameter o consistently via polynomial spline smoothing. To introduce the space of

splines, we divide [0,1] into (N + 1) subintervals J; = [tj,tj.,.l), j=0,.,N-1 Jy =
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[tn, 1), where T := {tj }ﬁ—-l is a sequence of equally-spaced points, called interior knots,

given as
Lhg=..=t1=t1=0<ti < .. <ty <1=tny41=..=tNy4k

in which ¢; = jh, 5 =0,1,...,N +1,h = 1/ (N +1) is the distance between neighboring
knots. The j-th B-spline of order k for the knot sequence T' denoted by Bj . is recursively
defined by [14] as

(u—1t;) Bik—1(w)  (v—tjtk) Bjy1k-1(w)

1-k<j<N
tivk—1 — tj tivk — i1

B;k (u) =

for k > 1, with
1 t <u < t:,..,_l

=1
Bjp (w) = { eJ; } { otherwise
Define the spaces of linear, quadratic and cubic spline functions on [0,1] as

N+1
r=2 = ;-2 1) = {y:q@w = > ABrpw),ue01]p, k=234
J=1-k

Given a realization {Y;}}-;, define for Va€A the cubic spline estimator of ga(-)
dal)) = argmm Z {¥2 - 1Ua t>}
yer@ ™ t—n’+1
with n/ and n” = n —n/. We do not use the first n’ data points for implementation reasons

in Section 3. Define next the empirical risk function

Rla) = {Yt —ga(Uat)}
——n’+l

and let & be the minimizer of R(a), i.e.
= argmin R(a). (3.2.3)
acA
We assume the following on the number of interior knots
A6: The number of interior knots N satisfies: nl/6 < N = N, < n!/5 (log n)—2/ .

The next theorem establishes the strong consistency of &.
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THEOREM 3.2.1. Under assumptions (A1)-(A6), as n — o0, & — g, a.s..

Proof. According to Proposition 3.2.1, one has sup |R(a) — R(a)| — 0,a.s. Thus there
exists an integer ng (w), such that R(ag,w) — R(aaeol;‘w) < §/2 when n > ng(w). Notice
that & is the minimizer of R(ag,w), so R(&,w) — R(ag,w) < /2. There also exists
an integer nj (w), such that R(&,w) — R(&,w) < §/2 when n > nj (w). Thus, when

n > max(ng (@), n1 (@),
R(&,w) — R(ag, w) = R(&, w) — R(&, @) + R(&, w) — R(ag, w) < 4.

According to Assumption (A5), R is locally convex at ag, so for any € > 0 and any w,
if R(&,w) — R(ag,w) < 6, then |& — ag| < € for n large enough, which has proved the
theorem. O

Denote the asymptotic variance of & by the following “sandwich” formula
% (ag) = R"(a) "'¥ (ag) R"(ag) ™! (32.4)

with

1 2 & d 2
‘I’ (ao) = m var (F Z gao,t) = 4E [{ga(Uaoyt) - },t2} Ela:aoga(Ua,t)] (3.2.5)
t=n'+1

d2
and R"(ag) = a;gR(a) amag
91 d? d 2
=28 | {0alUng) ~ Y2} gp80(Uaq) + { o0l ] |- (326)

The next theorem establishes @’s /n-asymptotic normality.

THEOREM 3.2.2. Under assumptions (A1)-(A6), as n — oo
V(& — ag) =4 N (0, (ag)). (327)

Proof. Denote $(a) = Ed&fi'(a) and

€at = {30Uat) - Y2} 12000a) - B [{0a(Ua) - 12} soaalUad] . (28)
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then because %R(ao) =0, one has

S(ag) - Z g t| = o( _1/2) ,Q.5.. (3.2.9)

t—n +1
according to (3.6.37). Mean Value Theorem then implies that for some ¢ € [0, 1]

~ ~ 2 ~
§(8) - 8(a0) = 35 R(té + (1 - t) a0) (& ~ o)

and S(&) = 0 because R(a) attains its minimum at &. Thus, one has

. d2 . R
—S(a) = mR(ta + (1 —t)ag) (& — ag)
ie.,

. 5 a .
&G—oag= —S(ao)/aﬁ-R(ta + (1 —t) ag).

One has

d? L d? _ R

) (ta+(1—-t)ag) — 2R(ao) = R"(ag),a-s.
by Theorem 3.2.1 and Proposition 3.2.1, where R”(aq) is given in (3.2.6). According to
(3.2.9), one has vn”5(ag) —4 N {0, ¥ (ag)} by the Central Limit Theorem for strongly
mixing processes (Theorem 1.7, [4]), where ¥ (ag) is given in (3.2.5). Then Theorem 3.2.2
is proved by formula (3.2.4) and Slutsky’s Theorem. a

The proofs of Theorems 3.2.1 and 3.2.2 given above have made use of complicated

arguments involving spline smoothing, summarized in the following proposition, whose proof

is given in the Appendix.
PROPOSITION 3.2.1. Under Assumptz‘ons (A1)-(A6), asn — oo

{R(a) R(a)} —0,a.5.,k=0,1,2.

sup

According to Theorem 3.2.2, the true parameter vector ag can be estimated by & at
v/n-rate. One can then use the estimate & in place of the unknown ag for the estimation
of function m. We define next the “would-be oracle” estimator of ag if the link function
g had been “oracally” known a = argmin,¢4 fl(a) where the oracle empirical risk is
R(a) = (n" )—1 1 {Y? - 9(Uq t)} s0 & serves as a benchmark of oracle optimality.

The next theorem states the asymptotic oracle efficiency of estimator é.
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THEOREM 3.2.3. Under assumptions (A1)-(A6), as n — oo, the estimator & is asymp-
totically orucally efficient, i.e., it is asymptotically as efficient as a. Specifically,
vn(a—-ag) —4 N(0,Z(ag)) where the variance T (ag) is the same as in (3.2.4) and
(3.2.7).

The proof of Theorem 3.2.3 consists of routine arguments in parametric inference, thus

it is omitted.

3.3 Implementation

For a given realization {Y;};—, denote in the following two integers
n = [2 logn/log (02_1)] +1,n" =n-1n'.

It is easily verified that

' /
sup a" =af <n~?

a€lay,ag]

which is the magnitude of error one would incur if the infinite series in (1.2.2) were truncated
at n’. In practice, one always has to replace the infinite series of X4 ¢ in (3.2.1) by a finite
truncation Z?I:l o _lYtz_ j for t € Z, the difference between the two being
o0 o0 [o¢]
> TN < N o = e,
j=1

j=n'+1 j=n'+1

!
=aj X

-2
agt—n/ <n ‘X

ag,t—n'
which is bounded by n~2 times of a stationary process with finite variance according
to Assumption (Al). Thus instead of computing the infinite sum Z?il jal '"lYtZ_ jr we
use the slowly growing truncation Z_';':l od —1Yt2_ 5 for implementing the algorithm due to
practicality. Also due to practicality, we use I:"'al and [:‘0,2 the empirical cdfs of Xq, ¢
and Xq, ¢ in place of Fo; and Fo, respectively to compute the transformation function
F. Lastly, the number of interior knots N = Ny is computed according to the formula
N =min (10 [n2/ 11] +1,n/4— 1) , which satisfies the Assumption (A6).

We compute the value of R over a equally spaced grid of points from aj to a3, and

take the one with smallest R value as & according to (3.2.3). Functions g and m are then
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estimated using & as the true value of ap. In the next two sections, we present some
numerical evidence of how the proposed procedures work for both simulated and real time

series.

3.4 Simulation

To investigate the finite-sample precision of the proposed estimator, we applied the pro-
cedure to time series data generated according to (1.2.2) with ag = 0.5,4 = [y, 9] =
[0.1,0.9], and function

m(z) =0.1(2z + 1) /(1 — ag). (3.4.1)

Notice that the data generating process actually follows the standard GARCH model, pos-
sessing all the known theoretical properties presented in Engle and Ng (1993) and Glosten,
Jaganathan and Runkle (1993).

For sample sizes n = 400, 800, 1600, 3200, a total of 100 realizations of length n + 400
are generated according to model (1.2.2), with functions m(z) as in (3.4.1). For each
realization, the last n observations are kept as our data for inference. Truncating the first
400 observations off the series ensures that the remaining series behaves like a stationary
one. Estimation of the parameter ag is carried out according to the setups described in
section 3, using cubic spline.

Table 2 shows the average sum of squared error for n = 400,800, 1600, 3200, that
the estimated & converges to the true function ag as the sample size increases, corrobo-
rating the asymptotics in Theorem 3.2.2. In Figure 6, the probability density functions
of & are estimated by kernel smoothing based on the 100 replications and plotted for
n = 400,800, 1600, 3200. Clearly the empirical distribution of & quickly collapses to 0,
as sample size increases, conforming to Theorem 3.2.2. Since the sample sizes we have
used are common for high frequency financial time series such as the two data sets in the
next section, the satisfactory numerical performance in Table 2 and Figure 6 provides the
assurance we need to apply the procedure to real data.

As discussed in the introduction, Table 3 shows the computing time comparison between
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the proposed cubic spline method versus the local linear method of Yang (2006) in estimating
parameter ag. Since for each candidate parameter value a, the cubic spline method needs
to solve one linear least squares problem in order to compute the empirical risk while the
local linear has to solve n, one for each data point, the ratio of their computing times is
inversely proportional to n. As a matter of fact, the computing times are of order n and
n2 respectively for the cubic spline and the local linear methods. Since the theoretical
properties and numerical performance of the two are similar, the cubic spline method is the
one we would recommend for the estimation of parameter ag. Once the parameter ag has
been efficiently estimated, the estimation of functions g and m can be done via either kernel
type or spline type method, using the estimated parameter value & in place of ag. In the

next section, we estimate function g by the Nadaraya-Watson method.

3.5 Applications

In this section, we compare the goodness-of-fit of three models to the daily returns of
Deutsche Mark against US Dollar (DEM/USD), and Deutsche Mark against British Pound
(DEM/GBP) from January 2, 1980 to October 30, 1992. Both data sets consist of n = 3212
observations. The four modelling methods are: the semiparametric GARCH model (1.2.2)
with cubic spline estimation method; the semiparametric GARCH model (1.2.2) with kernel
estimation method (Yang (2006)); the GJR model of Glosten, Jaganathan and Runkle
(1993); the GARCH(1,1) model of Bollerslev (1986). In analyzing the two data sets, a
process {Xa,t}fill2 is generated for every parameter value a. To have all such processes
as close to strict stationarity as possible, we use only the last half for inference. Hence all
estimation of parameters and function is done using {Xa,t}?illém and {Yt2 32112607 The
parameter estimate & is first obtained according to section 3. In the second step, we use
the estimate & in place of the unknown g for the Nadaraya-Watson estimation of function
g- The volatility forecasts are &3 = 04 (U@’t) ,t = 1607, ...,3212, while the residuals are

Et = Y;/6¢,t = 1607, ...,3212. For the two parametric models, the forecasts and residuals

are computed similarly.



In Tables 4 and 5, the goodness-of-fit is compared for all four modelling methods, in
terms of volatility prediction error and the log-likelihood, which are calculated respectively
as Y3230 (7~ 62)? /1606 and —(1/2) i3 {¥2/6% +1n(6)} /1606. The semi-
parametric GARCH model (1.2.2) with spline estimation method has best log-likelihood
and prediction error for both DEM/GBP and DEM/USD cases. In Tables 7 and 6, the fre-
quencies of the ACF exceeding the significance limits are shown, and they are close enough
for the residual absolute powers and for independent normal random samples, and hence
one is reasonably sure that there is very little if any dependence left in the residuals.

Figures 7 and 8 represent graphically the fit to DEM/USD, where Figures 7 shows the

standardized residuals and Figures 8 shows the estimated functions gg.

3.6 Appendix

3.6.1 Preliminaries

We have collected in this subsection some useful results on strongly-mixing processes and
B spline.

We denote by Q7 (g) the 4-th order quasi-interpolant of g corresponding to the knots
T, see equation (4.12), page 146 of [15]. According to Theorem 7.7.4, page 225 of [15], the

following lemma holds.

LEMMA 3.6.1. (de Boor 2001, p.149). There erists a constant Coo > 0 such that for any
geC®(0,1] and0<k <2 [(@r(9) - 9)®| < Coolo®| a4+,
o0 o0

LEMMA 3.6.2. (B-spline Property). (i) Partition of Unity. (de boor 2001, page 96) The
sequence {Bj,k };.\,:_k +1 provides a positive and local partition of unity, i.e., each Bjy is
positive on (tjt k), is zero off [tj, tiyk], Z?’.—.-k-;-l Bjr =1

(i1) Differentiation. (dé boor 2001, page 116)

Bjk-1(u)  Bjy1k-1(u)
j+k=1 =t titvk —tj41

%Bj,k(")=(k—1){t }yl_kstN'

(1ii) Good Condition. (DeVore and Lorentz 1993, Theorem 5.4.2, page 145) There is

a constant Dy > 0 such that for each spline S = E;-V:_k +1¢jBjk of order k and each
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0<r<oo,

Di|ill, < 1Sl < |l€')l, 1 < 7 < oo,
DIl < ISl < K/ [[],.0 <7 < 1.

For any functions g;, g2 € L9 [0, 1], define for Va € [a1, ag] the theoretical inner product

and norm as

1
(91, 92) = /0 01 (4) 92 () 9o () du, 191113 o = (01, 91)a-

LEMMA 3.6.3. There exist constants ¢ > 0 such that for any A :=

(A—1,2) A0,2) e A1\[,2’ ey A]\/,4) € R3N+9'

1A, < [Shos T kir MiaBie], < 7 kR) I, 1< <00
ch/T Al < ”Zk—z SN ki1 AB; k[| < GER)YT AL, o0<r<l.

In particular, under Assumption (A4), 3 constants c,C € (0,+00) such that

4 N
ch! /2 ||A|l, < “Zk=2 ij_kﬂ AjkBjk )

Proof. It follows from Lemma 3.6.2 (i) that, E}Lz Z_?,:-k +1Bjk =3 on [0,1]. So the

< ChM2 Ay, Va € [a, az] .

b

right inequality follows immediate for 7 = co. When 1 < r < oo, Holder’s inequality implies

that

4 N _ 4 N 1/r
Izk=2 Ej=—1c+1 XjkBjk| <3 i (Zk=2 Zj=—k+1 ikl Bi,k) :

Since all the knots are equally spaced, Lemma 3.6.2 (i) ensures that Bk (u)du <
kh, the right inequality follows from fo le=2 Ej:-—k+l AjkBjk (u)| du < 3"1kh AT
When r < 1, we have|2i=2 Z;V:-kﬂ Aj,kBj,klr

< T2 T ka1 Mkl Bl Since [°0 BT (u)du <ty — t; = kh and

/0 |Zk=2 Z,-=_k+1 AjkBj (u)

the right inequality follows in this case as well. For the left inequalities, we derive from

{0 )
du <IN [ B ) du <SRRI,
—00

Lemma 3.6.2 (iii), for any 0 < r < 00

Pl < Cpr™ /’“ >

k41 Jk k(u)
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Since each u € [0,1] appears in at most k intervals (tj,tj+k), adding up these inequalities,

we obtain that

Lo~ [l+k [N r
Al < Gty / D i ka1 Nk Bik ()| du
k=1"%
-1 N T
< 3Ch “ij_kﬂ’\j,kB',k r
The left inequality follows. O

Given a realization {Y;};—;, define for any functions g;,92 € L2[0,1] and any a €

[a1, a2] the empirical inner product and norm as

n

91,9200 =" Y 01 (Uag) 92 (Uag) s 9113 00 = (91,910 -
t=n/+1

LEMMA 3.6.4. Under Assumptions (A3), (A4) and (A6), as n — oo, with probability 1

sup max B.,B. > B, ,B/ | nN 1/2logn
acA kK =234 l< 3K ZT R < 3k k’> ( 2 }
1-k<j<N,1-k'<j'<N

Proof. We only prove the case k = k’ = 4, all other cases are similar. Let

Cajiitt = Bia Wayt) Bjr g (Uait) = EBja (Uayt) Byt 4 (Uayt)
with the second moment

2
EC?J:,j,j’,t =F [3‘72',4 (Ua,t) BJ?’A (Ua,t)] - {EB]'A (Ua,t) le'4 (Ua,g)}

2
where E B2, (Uat) B, , (Uat)] ~ N7, {EBju (Uag) By (Uag)} ~ N2 uniformly

forall -3 <5’ <N by Assumption (A4). Hence, Ecajj’ ~ N~ uniformly for all

R4
-3 < 34,5/ < N. The k—th moment is
k k
E Icadd’,tl = E ]BM (Uat) By 4 (Uat) — EBja (Uag) Byt 4 (Ua,t)|

k k
ok-1 {E lBj’4 (Ua,t) Bj/,4 (Ua't)l + IEB]'A (Ua,t) Bj/,4 (Ua’t)l }

IA

k k
where E IBj’4 (Ua,t) Bjr,4 (Ua’t)l ~ N-1, IEBJ'A (Ua,t) Bj’,4 (Ua’t)l ~ N~k uniformly
k
| <

for all =3 < 7,5/ < N. Thus, there exists a constant C > 0 such that E lcajj't
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C2’°“1k!E(ijj, , for all =3 < 5, j' < N. So Cramér’s condition in Lemma 2.5.2 is satisfied,

one has for §, = dlogn/vnN and fixed

1 n
P {.1'7 |2t=n,+1 Cavjljlyt

We divide interval [ay,ag] into n6 equally spaced intervals with disjoint endpoints a; =

> 6,,} <n710 (3.6.1)

a] < ---<app, = a2 and supyeyg max_gc; i< lca,j,j',t is bounded by

sup max IC -y ‘+ max sup max |C s, —Co gl (3.6.2)
1<r<Mp, —3<5i <N 1O _3< i< N 1<r<Mp a€far,apyq] ) @000 omddt
While (3.6.1) implies that
m-—1 n
sup max (n") '_;_ tenl +1 Ca/,-,j,j’,tl’a's‘ (3.6.3)

1<r<Mp -3<j,j'<N

by Borel-Cantelli Lemma. Employing Lipschitz continuity of the cubic B-spline, one has

with probability 1

m-1n
max su max n L g, - iy
_35_77]’SN ISTSBWn C!G[ar,ar+1] |( ) Zt=n’+1 (Ca,],J’,t Car,.771"t) I
=0 (M,:lh-ﬁ) . (3.6.4)
Therefore Assumption A4, (3.6.2), (3.6.3) and (3.6.4) lead to the result. O

Denote by I' = r® ur® ur® the space of all linear, quadratic and cubic spline
functions on [0,1]. We establish the uniform rate at which the empirical inner product

approximates the theoretical inner product for all B-splines B; ; with k = 2,3,4.

LEMMA 3.6.5. Under Assumptions (A3), (A4) and (A6), as n — oo, one has

(17200 — (11,72)a
Ap = sup sup

=0 nh)"l/2 logny,a.s.. (3.6.5)
a€cA 71, 72€l ”’71"2,0 "72“2,(1 {( }

Proof. Denote vy, = Z}t:z Z;'v:-k +17a,jkBj k> a = 1,2, without loss of generality. Then

4 N 4

N
(71»72>n,a = Z Z Z Z 1.5k72,5'K <Bj’k’le’k,>n,a’

k=2 j=—k+1 K/ =2 j'=—k+1

4 N 4 N
Imlda = > > 2 X 711jvk71,j’k'<Bj'k’Bj',k’>a’

4 N 4 N
2
vellz,e = Z Z 72,5,k72,5'k! <BJ"’°’Bj'k’> :
k=2 j= e

2j=—k+1k/=2j'=—k+1
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Let 7= (71,_1,2,’71,0,2,---,’71,N,2,~--,71,N,4), Yo= (’72,—1,2,72,0,2,~--7’Y2,N,2w---,'72,N,4)-

According to Lemma 3.6.3, one has for any a € [a1,ag],

2 2 2 2 2 2
chllvilz < Inllz,e € Chlmillz,chlivallz < llv2llz o < Chlilvall2,

chlimllz lv2llz < Irllaq v2lla,e < CRIvallz Ivallz -
Hence

(71 ’72)n,a - {"m '72)0:
Irill2,0 lI72ll2,0

11l oo 721l 00
~ cithllville vzl

A, = sup sup
a€Av1€7,79€T

1 & <
X sup max = B, B > —<B',k,B.r >
acA kK =234 Iﬂg{ A I PR

1-k<j<N1-K'<j/<N

1 n
< coh~ ! sup max =3 <B-k,B., > —<B-k,B., >
a€A kK'=2,3,4 néi=1 |\ PRTTHR ] o
1-k<j<N,1-K'<j'<N

which, together with Lemma 3.6.4, imply (3.6.5). O

For any fixed a, one has Y2 = g4 + g — ga + E=g, + Eq + E, where ET =
{9(Up) (Eg -1) }?=n'+l JEa = {g(Ut) = 9a (Uayt) }?=n’+1' Then one can break the cu-

bic spline estimation error as

fa(u) = ga(u) = Ja(w) - ga(w) +Ea(u) + Ea(u), (3.6:6)
where
da(w) = {Bja @} 5oy Vak {(8a Bjy4>n,a};v=_3 ’
Ea(v) = {Bja (W)} 3oy Van {(Ea, Bja)pa }:;_3 ’

Ealu) = {B',4 (“)}T3_<_j5N VTT,L {(E’ Bj,4>n,a}N

j==3
Vna = {<Bjy4, Bj"4>n,a} yVa = {(Bj,4, Bj',4>a}-:;/____3 . (3.6.7)

The next proposition is used in proving Proposition 3.2.1.

N

jrj,=-3

PROPOSITION 3.6.1. Under Assumptions (A1)-(A4), (A6), asn — oo

sup sup |ga (u) — ga ()] =0 {(nh)—l/2 logn + h4} ,@.5., (3.6.8)
acAue(0,]]
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sup max =0 {n"lﬂh”g/2 logn + h3} ,a.s., (3.6.9)

aeAn’+l<t<n

da2 {9a (Uat) — 9a (Uat)}| =0

In order to prove the above proposition, we need several technical lemmas. The following

da {ga (Ua t) 9o (Ua,t)}

sup

{0205 10gn+h2} as. (36.10)

is a special case of Theorem 13.4.3 in [15].

LEMMA 3.6.6. If a bi-infinite matriz with bandwidth r has a bounded inverse A1 on ly and
k=k(A)=|Al, "A’IH2 is the condition number of A, then ”A'IHoo < 2 (1-v)7},
with cg = v=2" [[A]ly, v = (k2 = 1)/ (2 + 1) 7",
LEMMA 3.6.7. Under Assumptions (A3), (A4) and (A6), there exist constants 0 < cy < Cy
such that
ey N7V wl3 < wT'Vaw <CyN7! ||w|} (3.6.11)
cvN7Hw|3 < WV aw <Oy N7 w3 (3.6.12)

with matrices Vo and Vy, o defined in (8.6.7). In addition, there exists a constant C > 0

such that
sup ||v,;},|| < CN,a.s., sup ||v;1“ < CN. (3.6.13)
acA " lloo a€A R

Proof. Let w be any (N +4)-vector and g (u) = Z;Y_ 3wyB;4(u), then

Bow = {’yw ( ! ) o Tw ( an— 1)} and Ap, in (3.6.5) entails that
Irwlla (1= An) < W Viaw <|vwlf o (1 + An). (36.14)
By Theorem 5.4.2 of [15] and Assumption (A4), one has
C C
coe W2 < wIVow <Cp< [lwli3 (3.6.15)
N N
which, together with (3.6.14), yield
C C
cp IWl3 (1= An) < WT' Vi aw <Cp W3 (14 An).

Then one has (3.6.11) and (3.6.12) by (3.6.15), (3.6.14) and (3.6.5). Next, denote by

Amax (Vn,a) and Apin (Vn,a) the maximum and minimum eigenvalue of V;, 4, then
N < [Vl [Va |, = s (Vo) iz (Vina) = [Vih], <O
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thus £ = ||[Vael, = Amax (Vre) /Amin (Vna) = Cy/ey < o0,a.s. One can also
show that k > C > 1,as. Combining the above and Lemma 3.6.6 with v =
(K,2 - 1)1/16 (2 + 1)—1/16, one gets ”V,‘{},“oo < 2078N (1-v)"! = CN,a.s., which is
padrxt one of (3.6.13). Part two of (3.6.13) can be proved similarly. O

3.6.2 Proof of Proposition 3.6.1

L EMMA 3.6.8. Under Assumptions (A2)-(A4) and (A6), as n — oo
sup ”(ga - ga)(k)“ <C llm(4)|| Rk as,0<k<2 (3.6.16)
a€cA 0o 0

Proof. According to Theorem A.1 of [36], there exists an absolute constant C > 0, such
that

sup e — galloo <Csup inf |7 - galleo <C"m(4)“ hik g
Aqer()

which proves for the case k = 0. Applying Lemma 3.6.1, one has for 0 < k <2

sup "(QT (9a) — ga)(k)“ < Csup ”9&”” -k <c llm(4)'| ri* as.  (36.17)
acA o0 acA 00 00

So sup ||Qr (9a) — Jallos < C “m(4)|| h?* as., which entails that
acA oo

sup "(QT (9a) — §a)(k)“ <C “m(4) “ K as,0<k<2 (3.6.18)
acA 0 00
Then the lemma is proved by combining (3.6.17) and (3.6.18). O
Denote Bq = {Bj 4 (Uayt) }t—n'+1 =3 and
-1
Po = Ba (BZBQ) BZ (3.6.19)

As the projection matrix onto the cubic spline space spanned by I‘(2), and Ba =

LEMMA 3.6.9. Under Assumptions (A4), one has

n,N
Bo = [{Bj,s (Uat) = Bj+1,3 (Uat) } f (Xait) b Z N 7 ] ,
t=n'+1,j=-3
(3.6.20)
: s (pTR )\ 'RT T Y\ ' aT
Pq = (I - Pa)Bo (BaBQ) BT + B, (BaBa) BT (1-P,). (3.6.21)
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Proof. Property (ii) in Lemma 3.6.2 implies that

B {dB (U )}n'N {dB (Uag) =0 }mN
=1 2 Bit (Uay = 4 et '
a da J @ t=n/+1yj=—3 d 74 @ & =ﬂ’+17j=_3
n,N
- [3{31,3 (Uay) _ Bj+13 (Ua")} (Xag) 137 Jaj"l}’tz—j}
ti+3 =t tira—tin t=n’+1j=-3

. n,N
= |82 (0 = Bju1a (e} £ (e 7 307, i 12, |

Next, note that

t=n'+1,j=-3

Py = By (BZBQ)—I BT + Baia {(BZ;BG)_I} BL + Ba (BZBQ) T

and

1 (B38e) "} = —(lma)” 7 (sTme) (BEma)

- —(BTBd) " (BIBa+BIB.) (BIE)

Hence f’a is
Be (BaTBa) BT _B, (BZBO) ~'BTR, (B;",'Ba)_l BY
—Ba (BZBQ) BT, (BZBQ) BT 1B, (135130,)_1 BY

= (I-Py)Bg (B?,"Ba) BT 4B, (BZ,'BQ) BT 1-Py,).

LEMMA 3.6.10. Under Assumptions (A3), (A4) and (A6), as n — oo

sup [| (") ' BE|| < O, sup | (") ' BI]| < Cras.
acA 00 acA 00

sup [IPalloe < C, 823 “Pa“ < Ch, sga
a [¢ ]

o0

Proof. For any vector a GR" , one has

2{(sma) )| =om.es

. (36.22)

(3.6.23)

(3.6.24)

(3.6.25)

” (nn)—l Bg‘a“oo < llally, max |(n”)_l Z"_ ,.. Bja (Ua’t)l < Ch|a|y,a-s.

-3<j<N t=n'+1

and using equation (3.6.20), “ (n” )—1 Bg;a” is bounded with probability 1 by
o0

oo
lalo _guax  |(n"h) ™ > {(Bis - Byons) e} (a3 502,

t=n/+1 Jj=1
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< C|lalloo- Then one has (3.6.25) by (3.6.19), (3.6.13), (3.6.24), (3.6.23) and (3.6.22).
Equations (3.6.20) and (3.6.21) are needed for proving the rest of the inequalities. 0

LEMMA 3.6.11. Under Assumptions (A2)-(A4) and (A6),

dk

sup |—¢ {ga (Ua t) Ja (Ua t)

AP < C”m “ Wk s,k =1,2. (3.6.26)
ac

Proof. According to the definition of gq in (3.2.3), one has
‘% [{QT (9a) — ga} (Ua,t)] = %Pa [{QT (9a) — ga} (Ua,t)]
= l.)a [{QT (ga) - ga} (Ua,t)] + Pa [{QT ga ga} (Ua,t)] )

d

ia [{Q7 (9a) — 9a} (Uay)] = [{QT ( ga) - Ega} (Ua,t)]

d
+ [dTl. {Q1 (9a) — 9o} (Uat ] Xat IZ]QJ IYt__],
which yield (3.6.26) for £k =1 by (3.6.17) and (3.6.25). The proof for k =2 is similar. O

LEMMA 3.6.12. Under Assumptions (A2)-(A4) and (A6), as n — oo, one has with proba-

bility 1
sp| 7| =0(vn) s [P <o(FER). e
oo i ()], =0 (555) em e (55| -0 (G88)- - oo
el o () m| o] o () om

Proof. we prove only the first equation in (3.6.27) and the second equation of (3.6.28),

other equations can be proved similarly. One has

25 s @

Denote Z; = g (Uy) ({? -1) = Zﬁ"-’r ZtD" Zﬂ", where Dy, =n"(1/3 < n < 2/5),

2 =gy (¢ -1) 1{|s ) (8 - 1)| > Du},
205 = 9 (Uay) (€2 - 1) I{'Q(Ut) (E? - l)l < Do} -2,

’

43



273 =E[gwo (& -1) 1{|ow (€ -1)| < Da}].
Note that the B-spline basis is bounded, so it is straightforward to verify that the mean
of the truncated part is uniformly bounded by Dy, 2
m-—1 n ] Dn| _ -2\ _ -2/3
w2 |() ™ 32, B V) 23] = 0(B5%) = o (v77F).
One has 3°%° .1 P{|g(Un-1) (62 -1)| > Dn} < ol +1 D;3 < oo according to the

assumption that E (¢8) = mg < +00, and Borel-Cantelli Lemma implies that the tail part

l(n”)"l Z:lznl+1 Bj4 (Uay) Zﬂ"l =0 (n'k) , for any k > 0.

For the truncated part, using Lemma 2.5.2 and discretization, one has

| S Bia (Vag) 28| = O (logn/V/Nn).

t=n'+1
Therefore the first equation in (3.6.27) is established with probability 1. To prove the second

equation of (3.6.28), notice that

Bg?a = [("”)—1 S B (Uat) {0(Us) — ga (Ua,t)}]N :

n! t=n'+1 j=-3
d [BIE, S p— d N
While E [Bj,4 (Ua,t) {g (Ut) — 9a (Ua,g) }] =0,-3 < j < N implies that
d :
B{ o 184 (Ua) {9 (U0 - 9o Uag)}] | = 0,3 <5 < N,
which allows one to apply Lemma 2.5.2 to obtain that with probability one
d (BTE,
;1611/)1 7 ( o ) N =0 (Iogn/\/f?ﬁ).
O
LEMMA 3.6.13. Under Assumptions (A2)-(A4) and (A6), as n — oo
sup sup |éq(u)| =0 (log n/\/rﬁ) ,a.S., (3.6.30)
a€Aue(0,1]
sup sup |Eq(u)] =0 (log n/\/;/:) ,@.S.. (3.6.31)
acAuel0,]]
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Proof. We only prove (3.6.30), the proof of (3.6.31) is similar. Denote & = (4_3, ..., ax) =
T Y\ !RpT

(BZBa) BIE

= V,',"}, {(n,”)"1 BZE}, then &q(u) = Z;-V:_3 a;jBj4 (u).

sup sup [éa(w)| < sup lall = sup || Vo (n"'BLE) |
a€A acA

acAuel0,1] o0

< CNcS:lelI/)l ” (n”)—1 BZ;E”OO a.s

where the last inequality follows from Lemmas 3.6.7 and 3.6.12. O

LEMMA 3.6.14. Under Assumptions (A2)-(A4) and (A6), as n — oo

d
sup max |—Ea(Uat) =O(n"1/2N3/2logn),a.s., (3.6.32)
acAn'+1<t<n | da
sup max Ea(Uat) ( _1/2N3/2logn) ,a.s., (3.6.33)
aeAn'+1<t<n

2
sup max dQSQ(Uat) ( “1/2N5/2logn),a.s., (3.6.34)
acAn/+1<t<n |da

2
sup max d ——3€a(Uayt)| = ( _1/2N5/210gn),a.s.. (3.6.35)
acAn/+1<t<n da?

Proof. We only prove (3.6.32) and (3.6.33), the proofs of (3.6.34) and (3.6.35) are similar.

d n
One has {35€a(Ua,t)}t=nl+1

= (I-Pg)Ba (B;-’;Ba) " BTE + Bq (BZBG) T BL(I-PoE

-1 -1.
—(I-P)B BIB,\ BIE . B BIB,\ BI(I-P,)E
o/ e n n @ n n ’

According to (3.6.13), (3.6.24), (3.6.25) and (3.6.27), one has (3.6.32). To prove (3.6.33),

d < n
note that {Eea(Ua‘t)}tzn’+l

= (I-Pa)Ba (BTB,,,)_1 BTE, + BT (BZB(,)_I By (I-Pg)Eq
+Bg (BTBQ) B~ 4y

= (I-Pq)Ba (B?;Ba) BTE, - BT (BTBa) "~ BaPoFa
+B] (BIBa) ' BoEq + Ba (BIBa) ‘BT dd Eo

= T\ +T
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where

. -1. -1
1 = {@-Po)B, - BE (BB.) " B.BL} (BZB.) " BLE,
-1 -1
_ {(1 _P)B, BT (BZBQ) BGBZ} (BZBQ) BIEa
n n n n
-1
n da n

By (3.6.13), (3.6.24), (3.6.25) (3.6.27) and (3.6.28), one has supacg||Tillee =
o (71"1/2N3/2 log n) and supge |12l oo

=0 (11"1/2N3/2 log n) ,a.s. which leads to (3.6.33). O
Proof of Proposition 3.6.1. According to (3.6.6), one has (3.6.8) by (3.6.16), (3.6.30)
and (3.6.31). Similarly, one has

d .. d ,_ d . d .
E‘& {ga (Ua,t) — Ja (Ua,t)} = a {ga (Ua,t) — 9a (Ua,t)} + a‘aea(Ua,t) + E&Ea(Ua,t)-

Thus one has (3.6.9) by (3.6.16), (3.6.32) and (3.6.33). The proof of (3.6.10) is similar. O

3.6.3 Proof of Proposition 3.2.1

LEMMA 3.6.15. Under Assumptions (A1)-(A6), as n — oo, supaeAlf?,(a)—R(a) =
o(1),a.s..

Proof.

R 1 L 2
Re=iy 3 {¥2 - saUan)}
=n

1
n—n

zn: {g(Ut) +g(Ut) (6? - 1) - ga(Ua,t) + ga(Ua,t) - .(‘ja(Uar,t)}2

t=n'+1
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n

~on - 5 2 {9aUas) ~dalUan)}” + - - = Y. {9(U) - 9a(Vap)}”
t=n'+1 t=n'+1
223 {000 — galUan)} {00 (& 1)}
t=n/+1
> {owo (& -1))
t=n'+1
2 3 {9alUad) - Ga(Uan)} {5(U0) ~ 9aUas) +9(U0) (2~ 1) },
t=n'+1

2
R(a) = E {Yt2 - ga(Ua,t)}
= E{g(Ut) + g(Uy) (5? - 1) - ga(Ua,t)}2

= F {g(Ut) - ga(Ua,t)}2 +E {g(Ut) (£t2 - 1) }2'

Hence
sup |R(a) — R(a)] <h+hL+I3+14
acA
where
L = a(Uat) — Ja Ua 2 ’
1= 50 | — t=§i—l {9(Ua,t) = Ga(Uas)}
_ 2 < _a _ 2
Iy = sup | t=§i~1 {9a(Uayt) = Ga(Uat)} {Q(Ut) 9a(Ua,t) +9(Ut) (Ec - 1)} :
_ 1 - 2 2
I3 = SUp | t:%ﬂ {9(Ut) - 9a(Uat)}” — E{9(Ut) ~ 9aUayst)}"|,
_ 1 - 2 o \2%_ . 2
Iy = sup { — t=§l {ots) (& -1)} = (my— 1) EP(UY)
—— 3 {9(U) - galUan)} {o(Un) (- 1)} }
t=n/+1

According to Lemma 2.5.2, one has I3 + Iy = 0(1),a.s, and (3.6.8) entails that
2
L= O{(n_1/2 logn) + (H4)2} ,a.s.. One also has

I <O (n"?logn + H4) sup % i |{9(Ut) ~ ga(Uay) + 9(Ue) (&7 - 1) }l :
t=n’'+1
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which is O (n—1/2 logn + H4) ,a.S.. The lemma is proved by combining I,I2,I3,I4. O

LEMMA 3.6.16. Under Assumptions (A1)-(A6), as n — oo, one has for k =1,2
k

LA TR _ ~1/2p-1/2-k 4-k
21612 dak (R(a) R(CY)) =0 (n h logn+h ) ,Q.S.. (3.6.36)

Proof. Note that

1d | R o d .

5&‘&13(04) = o Z {ga(Ua,t)—Yt }g&ga(Ua,t)’

t=n/+1

1d d

-Z-HER(Q) = FE [{ga(Ua,t) - },tz} Eaga(Ua,t)] ’
then

1d

. 1 <
s (R@ - R(@) =55 D €ap+Ja1+Jaz+Jag
t=n/+1
where £, ; is defined in (3.2.8) and E€,; =0, and where

Ja1 = 5177 Z {ga(Ua,t) - ga(Ua,t)} % (Ga — ga) (Ua,t),

b

t=n'+1
1 d
Jap = =7 > {9aUat) = Y2} = (Ga - 9a) Way),
t=n/+1
1 d
Jag = — > {8a(Uap) ~ 9a(Uat)} 5= 9a(Uay)-
t=n'+1

By Lemma 2.5.2, sug |(1'L”)—1 Z?=n'+1 §a,t| =0 (n'l/ 2 logn) a.s.. Meanwhile, (3.6.8)
a€
and (3.6.9) imply that sup IJQ’II =0 (n‘lh‘2 log2n + h7) a.s.. Note that
a€cA

1 < d ..
Ja,2 = 177 Z, {ga(Ua,t) - Yt2} a_a‘ (ga - ga) (Ua,t)
t=n'+1

1 d
Y (Ea + E)T da {Po (Eq +E)}.

One has

sup
a€cA

according to (3.6.16). Next

1 d
Jo2 + 5 (Ba + E)T o~ {Pq (Ea + E)}‘ =0 (k) as.

l%,, (Eq +E)T a% {Po (Ea + E)}l

48



(Ea+E)T d {Ba (]—3%&‘-) Bg > (Ba +E)}

BZBQ) BT
"

1 .

1 T BIB d BT
+ W(Ea'FE) Ba( (:l”a> o — (Eq +E)

1 ro d ) (BIB BT
+F(Ea+E) B"‘EE{( frlwa) } — (Eq +E)|.

Thus

1 rd
sup | (B + BT o (Pa (B + B))|

BT

(Ea + E)T Bq —2 (Eq +E)

8
| —

-1
BIB,
,nll
-1
n
o0 n oo 00

{5 )| el

=0(N)xO (logn/\/;i;) xO(N)xO (logn/\/ﬁlv) =0 (n_1N210g2n) a.s.

< O(N) x sup —1,—,
acA | IIT

(o ¢]
o0

d BT
I a(Ea‘*'E)

1
+O(N) x sgg {”F (Ea+E)TBa
Q

1 BT
7 (Ba + E)T B, —i (Ea +E)

+O (N) x sup {l
a€cA

o0

according to (3.6.27), (3.6.28), (3.6.29), (3.6.13) and (3.6.25). So sup |Jaz2|
acA

(0] (n"lN 2log?n + h3) ,a.s.. Similarly, one can write

Y {50 (Uat) - 90Uas)} (Vo)
t=n/+1

1 7. (BIB.) 'BT d
+ (Ba + E)T Bo | =22 | =g,

and has

d
sup Z {3a(Uat) — ga(Uay)} (Ega(Ua,t) =0 (h4) a.s.,

t=n'+1
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logn } { logn }
= 0 XNxhpy=0 a.s
{ vnaN vnN
Thus (3.6.36) is proved for k¥ = 1. One can prove that for the term £, ; defined in (3.2.8),

with probability 1

sup
acA

=0 ( “1/2) (3.6.37)

L (ha) - R@)} -5 3 b

t=n'+1

The proof of (3.6.36) for k = 2 follows from (3.6.8), (3.6.9) and (3.6.10), since

1d% . 1 « ) o) d? . d . d.
5aaf@ = " ZIH [{ga(Ua,t) Y }Wgawa,t)+E&ga(ua,t>%ga(ua,t)],
=n

1 d? d? d d
FaaR(@) = B [{saUar) - ¥} s30alan) + 3500(Va) jo00 (V)|
]
Proof of Proposition 3.2.1. It follows from Lemma 3.6.15 and Lemma 3.6.16. (]



CHAPTER 4

Spline-backfitted kernel smoothing of

additive coeflficient model

4.1 Introduction

This chapter is based on Liu and Yang (2009). Model (1.3.1)’s versatility for econometric
applications is illustrated by the following example. Consider the forecasting of US GDP
annual growth rate, which is modelled as the Total Factor Productivity (TFP) growth rate
plus a linear function of capital growth rate and labor growth rate, according to the classic
Cobb-Douglas model (Cobb and Douglas, 1928). As pointed out in Li and Racine (2007),
p. 302, it is unrealistic to ignore the non neutral effect of R&D spending on the TFP
growth rate and on the complementary slopes of capital and labor growth rates. Thus
a smooth coefficient model should fit the production function better than the parametric
Cobb-Douglas model. Indeed, Figure 9 shows that a smooth coefficient model has much
smaller rolling forecast errors than the parametric Cobb-Douglas model, based on data from
1959 to 2002. In addition, Figure 10 shows that the TFP growth rate is a function of R&D
spending, not a constant.

Many methods exist for the estimation of functional/varying coefficient models, see
Cai, Fan and Yao (2000), Yang, Park, Xue and Hardle (2006) for kernel type estimators,
Huang, Wu and Zhou (2002), Huang and Shen (2004) for spline estimators. These published
works have partial success in addressing the inaccuracy of estimating multivariate nonpara-

metric functions, commonly known as the “curse of dimensionality”. Typically, optimal
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convergence rates of the coefficient function estimators are established, locally for kernel
estimators, or globally for spline estimators.

Our view is that a satisfactory procedure for estimating the functions {my; (za)}g’l‘fgz 1
and constants {mOI};iil in model (1.3.1) should meet three broad criteria. Specifically, the
procedure should be (i) computationally expedient; (ii) theoretically reliable and (iii) in-
tuitively appealing. As model (1.3.1) is a natural extension of additive model, we extend
the “spline-backfitted kernel smoothing” of Wang and Yang (2007) to additive coefficient
model, combining the best features of both kernel and spline methods. Kernel procedures
for additive model, such as Yang, Hardle and Nielsen (1999), Sperlich, Tjgstheim and Yang
(2002), Yang, Sperlich and Hardle (2003), Rodriguez-Péo, Sperlich and Vieu (2003), Hen-
gartner and Sperlich (2005) satisfy criterion (iii) and partly (ii) as they are asymptotically
normal at any given point, but not (i) since they are extremely computationally intensive
when either the dimension is high or sample size is large, as illustrated in the Monte-Carlo
results of Wang and Yang (2007). Spline approaches of Stone (1985), Huang (1998a,b),
Huang and Yang (2004) to additive model, on the other hand, do not satisfy criterion (ii)
as they lack limiting distribution, but are fast to compute, thus satisfying (i). In addition,
none of the published works had established “uniform convergence rate”, thus lacking in
regard to (ii). The spline-backfitted kernel (SBK) and spline-backfitted local linear (SBLL)
estimators we propose are essentially as fast and accurate as an univariate kernel and local
linear smoothing, thus completely satisfying all three criteria (i)-(iii). Other alternatives
for estimating model (1.3.1) that may satisfy criteria (i)-(iii) are possible extensions of the
smoothed backfitting of Mammen, Linton & Nielsen (1999) and Nielsen & Sperlich (2005),
and the two-stage estimator of Horowitz and Mamrﬂen (2004). It is important to note that
although Horowitz and Mammen (2004) had used B spline in simulation, their theoretical
proof was for what should be called “orthogonal series-backfitted local linear” estimator in
our parlance.

We now describe the oracle smoothing idea of Linton (1997) in the context of model
(1.3.1). If all the nonparametric functions of the last dy — 1 variables, {my (xa)};i__l_’llfgzz

and all the constants {mOl}f_}:l were known by “oracle”, one could define a new variable
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dy
Y= Egl my(X) N1+ (X, T)e=Y - Zgl {mOI + 22 My (Xa)} T; and estimate
a=

all functions {my, (xl)};i_i_l by linear regression of Y); on Ti,..,Tg, with kernel weights
computed from variable X;. These would-be estimators do not suffer from the “curse of
dimensionality” and are called “oracle smoothers”. We propose to pre-estimate the functions
{mau (:ca)};iifi___z and constants {moz}gl by linear spline and then use these estimates
as substitutes to obtain an approximation ffl to the variable Y3, and construct “oracle”
estimators based on f’,l. The theoretical contribution of this chapter is proving that the
error caused by this “cheating” is negligible. Consequently, the SBK/SBLL estimators
are uniformly (over the data range) equivalent to univariate kernel/local linear “oracle
smoothers”, automatically inheriting all their oracle efficiency properties. Our proof relies
on the general principles of “reducing bias by undersmoothing” and “averaging out the
variance”, accomplished with the joint asymptotics of kernel and spline functions. Another
innovation in this chapter is the y/n-consistent oracle estimation of constants {mOI};iil
under conditions no more than second order smoothness of {m (:va)};gfid. Xue &
Yang (2006a) had provided y/n-consistent estimation of constants {mOI}gl only under
higher order smoothness Assumptions, while Xue and Yang (2006b) had failed to obtain
v/n-consistency for estimating {mOI};i;l-

This chapter is organized as follows. In Section 4.2 we discuss the assumptions of the
model (1.3.1). In Section 4.3, we introduce the oracle smoothers and discuss its asymptotic
properties. In Section 4.4 we introduce the SBK and SBLL estimators, their Ly consistency
and asymptotic normal distribution. The ideas behind our proofs of the main theoretical
results are given by decomposing the estimator’s “cheating” error into a bias and a variance
part. In Section 4.5 we diécuss the implementation of the estimators. In Section 4.6 we
apply the methods to simulated and empirical examples. All technical proofs are given in

the Appendix.
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4.2 Assumptions

Let {(Y;, X;, T;)};; be a sequence of strictly stationary observations, with identical distri-
bution as (Y, X, T) in model (1.3.1). Denote the unknown conditional mean and variance

functions as m (X, T) = E (Y|X,T), 0% (X, T) = var (Y|X, T), then one has
Y, =m(X;, T;) + 0 (X;, T e (4.2.1)

for some conditional white noises {¢;};; that satisfy F (¢;|X;,T;) =0, E (s§|x1-, T;) =1
The variables (X;, T;) can consist of either exogenous variables or lagged values of ¥;. For
the additive coefficient model, the regression function m takes the form in (1.3.1), and

satisfies the identification conditions that
E{my (Xa)} =0,1<1<d;,1 << dy (4.2.2)

do
ensuring the unique additive representations of m; (x) = mg; + > my; (za). As in most
a=1

works on nonparametric smoothing, estimation of the functions {m (:ca)}gfﬁ___l is con-
ducted on compact sets. Without lose of generality, let the compact set be x = [0, 1]d2.
Following Stone (1985), p. 693, the space of a-centered square integrable functions on
[0,1] is
HO = {g :E{g(Xa)} = 0,E{g2(Xa)} < +oo} J1<a<d.

Next define the model space M, a collection of functions on x x R%1 as

=1 a=1

4 dy
M= {g(x,t) =Y a(®Xt; a9 =gu+ Y 9ol (Ta)igat € Hg} :

in which {got}i_l_l are finite constants. The constraints that £ {gy (Xa)} =0,1 < a < dp
ensure unique additive representation of m; as expressed in (4.2.2), but are not neces-
sary for the definition of space M. In what follows, denote by E, the empirical expec-
tation, Enp = Y g9 (X;,T;) /n. We introduce two inner products on M. For func-
tions g1, g2 € M, the theoretical and empirical inner products are defined respectively as
(91,92) = E{91(X,T)92(X,T)}, (91,92)n = En{91(X,T)g2(X,T)}. The correspond-
ing induced norms are ||g; (|§ = Eg% (X,T), ”91”%,71 = Eng% (X, T). The model space M
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is called theoretically (empirically) identifiable, if for any g € M, |lgll; = 0 (llgll,, = 0)
implies that ¢ =0 a.s.

In this chapter, for any compact interval [a, b], we denote the space of p-th order smooth
function as C() [a,b] = { gl g(P) eC [a,b]}, and the ciass of Lipschitz continuous functions
for constant C > 0 as Lip([a,8],C) = {gl|g9(z) — g (z')| < C|z - /|, Vz,2’ € [a,b]}.
We mean by “~” both sides having the same order as n — o0o. We denote by Idl><d1
the dj x dj identity matrix, and Odl xd; the d; x dj zero matrix. For any vector x =
(a:l, To, -, :cd2) , we denote the supremum and Euclidean norms as [x| = max; <a<d, |%al
and |1x| = (522, 22) .

We need the following Assumptions on the data generating process.

(A1) The tuning variable X = (X,,..., Xd2) has a continuous probability density function
f(x) that satisfies 0 < ¢y < minxey f(x) < maxxey f(x) < Cf < oo for some
constants c¢ and Cy¢ and f(x) =0,z ¢ x = [0, 1)%.

(A2) There exist constants 0 < cQ < Cq < 400 and 0 < ¢5 < C5 < 400 and some § >

d
1/2, such that cqlyxay < Q(X) = {a ()} h_, = E (TTT IX = x) < Cqly;xd

246 /
andc‘;gE{(TlTl/) |X=x}505 forallxexand I,I' =1,...,d.

(A3) The vector process {St}io oo = {(Y2, Xt, Tt) }oo_ o is strictly stationary and geomet-
rically strongly mizing, that is, its a -mizing coefficient a(k) < cpF, for constants

c>0,0<p<1, where a(k) = SUP Ao (cy,t<0),BEa (s t2k) |P(A)P(B) — P(AN B)|.

(A4) The coefficient components, my; € C1[0,1], m;d € Lip([0,1],C0),V1 < a < dp,1 <
| < dy with my; € C2[0,1],V1 <1 < d;.

(A5) The conditional variance function o2 (x,t) is measurable and bounded. The errors
{ei}, satisfy E(g;|F;) = 0, E(eglf,-) =1, E(lei|2+” |.7-',) < Cy for some n €
(1/2,1] and the sequence of o-fields F; = a{(Xj,Tj) J <465, <1 1} for i =

1,...,n.

(A6) The marginal density f1 (z1) of X1 and the conditional second moment matriz func-

tion Qq (z1) defined in (4.2.3) both have continuous derivatives on [0,1].
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Assumptions (A1)-(A5) are common in the literature, see for instance, Huang & Yang
(2004), Huang & Shen (2004) and especially Xue & Yang (2006b). Assumption (A6) is
needed only for the asymptotic theory of oracle “kernel smoother”, but not for the oracle
“local linear smoother”. Assumption (A2) implies also that for all zo € [0,1],1 < o < da

and I, =1,...,d;

d
cQlayxd; £ Qa(za) = {da (za)} [’},=1 = E(TTT|Xo = 24) < CQly; xd; (4:2:3)

E{(’I}Tl;)2+6 1 Xo = :z:a} <c;.

Furthermore, Assumptions (A2) and (A5) imply that for some constant C > 0

IA

)

max E|Tj|**" < C max E|TiT}|**% =C max E|T)|**? <CCjs < +00. (4.2.4)
1<i<dy 1<i<dy 1<i<d;

At one referee’s request, we provide here insight into the relationship allowed between the
vectors T and X under Assumption (A2). It is instructive to first understand what T and
X can not be in the context of identifiability for functions {m, (za)};iifiﬂ. Suppose
that the vector X is centered so that EX = 0. Then model (1.3.1) is unidentifiable when
(T1,T2) = (X1, X2) since —3X9T1 +3X1T> =0, E(—3X3) = E(3X1) = 0 and the function

m(x,t) in (1.3.1) is expressed as

dy dy da
Y Smo+ Y mai(za) pti+ {mor+mar (@) + > mar(za) gty
=3 a=1 a=1,a#2

a=2

d2
+ {m02 +my2 (1) + Y Mal (fca)} t2

di dy )
= ) dmy+ Y my (za) tz+{m01+m21($2)—3zz+ > mai(ze) pta

1=3 a=1 a=1,a#2
dp

+{ mop + miz (z1) + 321+ Y mai (za) ¢ t2,
a=2

so one can use my; (z2) = Mg (z2) —3z2 and mj, (z1) = mi2 (x1)+3z1 to replace my; (z2)
and my9 (z1) without changing the data generating process (1.3.1). In other words, the

functions mg; (z2) and mjo (z]) are unidentifiable. Xue and Yang (2006a), p.2523 gave a
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similar counterexample, and discussed why an unidentifiable model may perform better for
prediction.

More generally, it is revealing to note that Assumption (A2) not only rules out the above
anomaly, but it also does not allow the possibility that there exist two Tj’s (1 < I < d;)
almost surely equal to two Borel functions of X. To see this, suppose that (T},T3) =

{¥1(X),p2(X)},a.s for some Borel functions ¢; and . Assumption (A2) implies that

T2 1T
cqlaxa < E{ ( T11T2 f;‘222 )

X= x} < CQlax2,Vx € x

leading to

cQlax2 < ( o (ﬁfp}?(x) o1 pr%)gs(x) ) < Cqlaxa, a.s., Vx € x
which can not be true as for any x € x, the 2 x 2 matrix in the above is singular, thus can
not be > cqlax2. That Assumption (A2) guarantees the identifiability of model (1.3.1) has
been established in Lemma 1 of Xue and Yang (2006b). It is important to observe, however,
that Assumption (A2) does not exclude the case of one 7},1 < ! < d; almost surely equal

to a Borel function of X.

4.3 Oracle Smoothers

We now introduce what is known as the oracle smoother in Wang & Yang (2007) as a bench-
mark for evaluating the estimators. Denote for any vector x = (zl, T, , xd2) the deleted
vector x_; = (1:2, ,xdz) and for the random vector X; = (X,-l,Xig,--- ,X,-d2) the
deleted vector X; | = (Xiz, e ,X,-d2), 1<i<n. Forany 1<1<dy, writem,(x1)=

mg; + 222;2 Mgy (Ta). Denote the vector of pseudo-responses Y = (Yl,ly e ,anl)T in

which
d dq
Yin=Y =) {mo+myy(Xia)} Tu= my (X)) Ty + 0 (X, Ti) i
=1 =1

These would have been the “responses” had the unknown functions {m_l,l (x_l)}1 <l<d

been given. In that case, one could “estimate” all the coefficient functions in z1, the vector



T
function m; . (z1) = {mu (z1),--- »M1d, (:z:l)} by solving a kernel weighted least squares

problem
~ - - T .
mg,1,. (T1) = {mx,u (z1),-- -y K 14y (Il)} = argmin L (A\,m,., 1)
A=(C<i<a
in which 0
n di
L(Ama.,z)=> | Yii—Y NTa| Kn(Xa—m).
i=1 I=1

Alternatively, one could rewrite the above kernel oracle smoother in matrix form
- T ey 1T 1 g
g1 (z1) = (ClecK) CkwiY: = (-CkwiCk) —CEkwiyp  (43.)

| in which
T; = (Tila"‘ vTidl)T1CK ={T1,..., Tn}7,
Wi=diag {Kp (X11 — 71) , -, Kp (Xn1 — 71)},
K} (u) = K (u/h) /h for a kernel function K and bandwidth h that satisfy
(A7) The function K is a symmetric probability density function supported on [—1,1], and

K € Lip([-1,1],Ck) for some Cg > 0, while the bandwidth h = hyn > 0,h ~
-1/5
n .

Likewise, one can define the local linear oracle smoother of m; . (z1) as

-1
- 1 1
mLL, (1) = (Idlxdl,Odlxdl) (;C{LJWlCLL,l) ;C{L,1W1Y1, (432)
in which T
C _ Tl y  eee Tn
LL. Ti(Xu-z1) , - » Tn(Xn1—-z1) | ~

In this chapter denote uy (K) = [4?K (u)du, IK|3 = fK(u)2 du, Qi (1) as in (4.2.3)

and define the following bias and variance coefficients
1
bLL,z,ﬂ,l (z1) = '2‘#2 (K)mlﬁ (z1) A1 (171)4111,1 (z1),

b 1) = g () |2y o) e { (o) g (@)} + oy (22) (o) @)].
Z1(e1) = 1K1 1 () B{TTT0? (X, T) X1 = 21},

{va (”“'1)};1,;/:1 = Q1 (z1) 7 5y (21) Q1 (z) 7 (4.3.3)
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THEOREM 4.3.1. Under Assumptions (A1) to (A5) and (A7), for any z1 € [h,1—h], as

n — 00, the oracle local linear smoother myy, 1 .(z1) given in (4.3.2) satisfies

d
dq 1
— | - d
nh mLLyl’. (x]_) - ml,. (2]1) - ZbLL,l,ll,l (1:1) h2 - N (0, {Ul,l',l (Il)}l l,—-l) .
=1 ll=1 » T
With Assumption (A6) in addition, the oracle kernel smoother my 1. (z1) in (4.3.1) satisfies
d

4
. d
Vnh |mg 1. (z1) —my,. (z1) - { E bK,l,ll,l (.’L‘l)} Rl - N (0, {vl,l',l (11:1)}1 l’—l) .
=1 T

=1

THEOREM 4.3.2. Under Assumptions (A1) to (A5) and (A7), as n — oo, the oracle local
linear smoother myy, 1. (1) given in (4.8.2) satisfies

xles[;:’;;_h] |LL 1, (1) —mi,. (z1)| = Op (log n/x/ﬁ) )
With Assumption (A6) in addition, the oracle kernel smoother iy 1 . (1) in (4.3.1) satisfies

zles[}:,l;—h] |k 1, (1) = m1,. (z1)] = Op (log n/\/r—tﬁ) .
Remark 1. The above theorems hold for myy, o . (Za) and MK q, (Ta) similarly constructed
asmpy, 1. (z1)and mg 1,. (71), for any @ =2,...,d, i.e,

_11

- 1
MLL,a, (ma) = (Idl xdy» Odl xdl) (;C{L,QWQCLL,Q) ;C%,‘L,awaYaa

N 1 -1

mK’a’. (:L'a) = (ECEWQCK) ;CEWQYQ,
except that in Assumption (A4) one has to replace “my € C2[0,1],V1 < I < dy” with
‘mgg € C2[0,1],V1 < I < d1” and in Assumption (A6), fi(z1) and Q1 (z1) have to be

replaced with fo (za) and Qu (za).

The same oracle idea applies to the constants as well. Define the would-be “estimators”

of constants (mOI){Slsdl as the following least squares solution

2
n dy
- - \T )
o = (Mo1)1<1<q, = 218 Min D R Y- ZmozTiz} ; (4.3.4)
i=1 1=1
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in which the oracle responses are

dy dy d;

Yie=Yi= )Y ma(Xia) Ta =) moTy+o(Xi,Ty)e;. (4.3.5)

=1 a=1 . =1
The following result provides optimal convergence rate of mg to mg, which are needed for

removing the effects of mq for estimating the functions {my; (:cl)}fi 1

PROPOSITION 4.3.1. Under Assumptions (A1)-(A5) and (A8), as n — oo,

sup1<i<d, Imor — motl = Op ("_1/2) :

Although the oracle smoothers M, o . (Za), MK,a,- (Ta) Possess the desirable theoretical
properties in Theorems 4.3.1 and 4.3.2, they are not useful statistics as they are computed
based on the knowledge of unavailable functions {m; (:zzf,,)};ii’ld’iz2 and consta_nts {mOI};ii]-
They do, however, motivate the spline-backfitted estimators that we introduce in the next

section.

4.4 Spline-backfitted Kernel Estimators

In this section we describe how the unknown functions {my; (za)}gfi:z and constants
{mol}ﬁ | can be pre-estimated by linear spline and how the estimates are used to construct
the “oracle estimators”. To this end, we first introduce the space of linear splines. Let
0=¢§p <& <--- <&y <&ny+1 = 1 denote a sequence of equally spaced points, called
interior knots, on interval [0,1]. Denote by H = (N +1)~! the width of each subinterval
[{J,EJ.,.I] ,0 < J < N and denote the degenerate knots {_; = 0,{y42 = 1. We assume

that
(A8) The number of interior knots N = Ny ~ nl/4 logn and hence H ~ n~1/4 (log n)"1 .

For J =0,...,N + 1, define the linear B spline basis as

(N+D)z—-J+1 , {5 1<z
by(@)=QQ-|z—-&|/H)py=§ J+1-(N+1)z , {5<xc<&y4
0 , otherwise

60



the space of a-empirically centered linear spline functions on [0, 1] as

N+1
G?l,a = {ga : ga (Ta) = Z Ajbj(za), En{ga (Xa)} = 0} 1< a<d,

J=0

and the space of additive spline coefficient functions on x x R%1 as
=1 a=1

dy dy
Gh = {g(x, )= gty a®) =gu+ Y 9u(Ta);go € R, gas € G?z,a} ,

which is equipped with the empirical inner product (-, ')2,n-

The multivariate function m (x, t) is estimated by an additive spline coefficient function

dl n
m(x,t) = Y iy (x)#; = argmin Y _{Y; — g(X;, T;)}2. (44.1)
=1 9€Cpn 1=1
d2
Since 12 (x, t) € GO, one can write 77y (X) = g+ 3 1y (Ta); for g € R and 1hy (Ta) €
a=1

Gg,a. Simple algebra shows that the following oracle estimators of the constants mg,; are ex-
actly equal to 77, in which the oracle pseudo-responses Y;, = Y,-—Z;iil ng:l Mot (Xia) T
which mimick the oracle responses Y;. in (4.3.5)
n d 2
o = (Thoz)nggdl =arg min ) { Yie— Y daTu § - (44.2)
(Ro1r-rady ) i=1 =1

PROPOSITION 4.4.1. Under Assumptions (A1) to (A5) and (A8), as n — oo,
sup<i<d; ot — moi| = Op (n"l/ 2), hence sup1<i<d, Ior —moil = Op (n"l/ 2) Jollow-
ing Proposition 4.5.1.

Define next the oracle pseudo-responses ¥;; = Y; — E;iil (rhoz + Ei2___2 Mgl (X,-a)) Ty
and Yi = ()711, T ,?nl)T, with 7y and 1y defined in (4.4.2) and (4.4.1) respectively.
The spline-backfitted kernel (SBK) and spline-backfitted local linear (SBLL) estimators are

) -1 . 1 11 -

mspK 1, (T1) = (cﬁwlcx) cTw, ¥, = (;CEWICK) ;CTW1Y1, (4.4.3)
. 1 7 11 7 .
MSBLL,1, (T1) = (Idlxdl,odlxdl) SCLLaWiCLi ) ~CrpaWiYr  (444)

The following theorem states that the asymptotic uniform magnitude of difference between

mgBK,1,- (1) and M 1. (x1) is of order op (n"2/ 5) , which is dominated by the asymptotic
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size of M 1. (z1) — my,. (z1). As a result, mgpk 1. (z1) will have the same asymptotic

distribution as my ; . (z1). The same is true for mgpyy, 1, (1) and mry, 1. (z1)-

THEOREM 4.4.1. Under Assumptions (A1) to (A5), (A7) and (A8), as n — oo, the SBK
estimator gk 1,. (1) in (4.4.3) and the SBLL estimator gL 1,. (Z1) in (4-4.4) satisfy
xlsell[(l:)),l] |sBK 1, (x1) — Mg 1, (Il)|+zls€u[8,1] |msBLL 1 (1) = ALL 1, (71)] = 0p (n"2/5) )

Theorem 4.4.1 follows from (4.4.13) and Propositions 4.4.1, 4.4.2 and 4.4.3, and re-
mains true if the number of knots is of the more general form N ~ nl/AN’ where
N’ = 0o, N'/n" — 0,Vr > 0 as n — oo. The following corollary provides the asymptotic
distributions of rgpr, 1.. (1) and 7 1. (1). The proof of this corollary is straightforward

from Theorems 4.3.1 and 4.4.1.

COROLLARY 4.4.1. Under Assumptions (A1) to (A5), (A7) and (A8), for any z; €

[h,1 = h], as n — oo, the SBLL estimator mgpLL1,. (Z1) in (4.4.4) satisfies

dy d

. d
Vnh |thgpLL 1, (z1) — m1. (z1) — {EbLL,z,y,l (z1) K| - N (0, {'Uz,z',l (21)}“,_1)
=1 ll=1 T

and with the additional Assumption (A6), the SBK estimator mgpk,1,. (T1) in (4.4.3) sat-
isfies

d dy d
vnh ﬁlK,l,. (171) —m,. (2:1) - ZbK,l,l',l (:L‘l) h2 — N (O, {'Uul’l (221)}ul=1)

=1 l,=l

where by p 1 (21), bk 11 1 (x1) and vy | (1) are defined as (4.3.3).

Remark 2. The above theorem and corollary hold for TgpK q,. (Ta) and MmgpLL.qa,. (Ta)

similarly constructed for any a =2, ...,d, i.e.,

-1 1
n

. 1 -
™MSBK,a, (Ta) = (;C;T<WaCK) CEw,Y,, (4.4.5)

S d . -
where Yiq =Y; — Z[=I1 {mOl + 213015(12,a/¢a ot (Xi )}
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4.4.1 Decomposition

In this section, we introduce the ideas of the proof of Theorem 4.4.1. Our main objective
is to study the difference between the smoothed backfitted estimator MmspK 11/ (z1) and
the smoothed “oracle” estimator iy 1y (z1). First, define the theoretical inner product
of by and 1 with respect to the a-th marginal density fo (7o) as cjo = (by(Xa),1) =
J by (za) fa (Ta) dzq and define the centered B spline basis b o (zo) and the standardized
B spline basis B, (za) as

bjal(z
~—by_1(2a) Bja(Ta) = _J,a_(_a)

,1<J<SN+1, 4.4.6
CJ-l,a ”bJ,a”z ( :

bJ,a (za) = by (za) —

so that EBjq4 (Xa) =0, EB} | (Xo) =1.
For any n-dimensional vector T’ ={F1,...,Fn}T, we define the additive spline co-

efficient function constructed from the projection of I' on the inner product space

(Ggu( )2n) as (PaT) (x,t) Zz 1{701+§:a_12 L 47a1Bia fﬂa)}tzn in which

2
n d dy N+1
DoATi=2 300+ D0 D 1aiBra(Xia) p Ta| (4.4.7)

so one can rewrite the linear spline estimator in (4.4.1) as M (x,t) = (PrY)(x,t), where
we denote by Y = (Yi)ISiSn the response vector. The coefficients of the linear regressors
t;,1 <1 < d; are denoted as the multivariate additive spline functions

dy N+1

(PriT) (x) =04+ Y Y VJaiBra(za) l=1,..,d1

a=1J=1

A d
Note that (PnT)(za) = 401 + L2, (P;;a, )(za) where (P;;’a,,r) (o) =
Z‘I}r:ll Y¥JaiBJa(Ta), we define the empirically centered additive components
(Pp,auT) (za), a=1,...,d2

(PnaiL) () = (P o) (za Z (P1iT) (Xia). (4.4.38)

Using these notations, spline estimators of my(x) and my (z4) are my(x) =

(Pr 1Y) (x), M4 (za) = (PpayY) (za), while noiseless spline smoothers and variance
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spline components are
my (x) = (Ppm) (), Mg (Ta) = (Praim) (za),

€l (Pn lE) (X) Eal :I:a) (Pn a IE) Ia) (4-4-9)

where m = {m (X;, Ti)}TSiSn is the true function vector and E = {o (X;, T;) e,-}{gsﬂ the
error vector. Due to the linearity of operators Pp o and Py, 41,1 <1 <dj,1 < a < dj and
Y = m+E due to (4.2.1), one has the following crucial decomposition for proving Theorem

441,
iy (x) = 1y (x) +&; (), Mq (Ta) = Mat (Ta) +Ex (Ta) 1 <1< dy,1 < a < dy. (4.4.10)

We define additionally an auxiliary entity
£h(za) = (PhoE) (fa) 1S 1< d, 1< a < dy (4.4.11)

Definition (4.4.8) implies that £, (z4) is simply the empirical centering of £}, (za), i.e.

Eot (Ta) = i & (4.4.12)

According to (4.3.1) and (4.4.3),

-1
. . 1 1
mgBK, 1, (T1) — mk 1, (21) = (;C£WCK> —CKW1 (Yl Yl),

. . T
Yi-Y;= (Y1,1,~- ,Yn,l) -(Ma,--- aYn,l)T

dq
Z {mor — o +m_y g (Xi 1) =y (X))} T
1=1 1<i<n
dq
= Ck (mo = 1hor) 1 <i<ay + | D {miag (i 1) —7iag (X 1)} Ta
=1 1<i<n

where making use of the definition of 1, and the signal noise decomposition (4.4.10), the

difference my 1. (71) — Mgk 1,. (1) — g, + my,. can be treated as the sum of two terms

d n
1 -1, 1 .
(gcﬁwlcx) ~CRW (> {m1g (Xia) =g (Xia) } T

=1 i=1

Il
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-1
= (%Cﬁwlcx) {Ty (z1) + Ty (.’131)}1, 1 (44.13)

where

d; n
1 . d
Wy (1) = ;Cﬁwl [Z {m.(Xi1) —may (Xi,_l)}Til] = {‘I’b,y (1'1)} 1'1=1 ,

=1

=t (4414)
dy n 4
‘I’v(xl)——Cxwl > & (Xi1) Ty ={ vt (21 } (X z,-1)—E€at(Xm)
=1 i= a=2
' (4.4.15)
and
1< a
Yy (@) = =D Kn(Xa—z1) Ty {mag (Xi1) =g (Xi1)} T
i=1 =1

d
1 .
Vyp(z1) = — > Kn(Xar—21) Ty Y &10(Xi,1) Tar
i=1 1=1

The term ¥y (z1) is induced by the bias term 7 15 (X; 1) — m 31 (X;,_1), while ¥y (1)
relates to the noise terms € ; (Xi,_l)- Both of these have order op(n_2/ 5) by Propositions
4.4.2 and 4.4.3 below.

PROPOSITION 4.4.2. Under Assumptions (A1)-(A4), (A7) and (A8), as n — oo,
sup  sup I‘I’b,l’ (zl)| =0p (n"1/2 + H2) = 0p (n"2/5) .
1</ <d; 71 €[0,1]
PROPOSITION 4.4.3. Under Assumptions (A1) to (A5), (A7) to (A8), as n — oo,
LY (1:1)| =0p (N (logn)? /n + H2) =0p (n_2/5) .

SUP; <i'<d; S"Pz €[0,1]

According to (4.4.12) and (4.4.15), we can write ¥, (z1) = \111()21), (z1) — ‘I’f,lz)' (z1),

where
( n &
\I”U l)' (171) = _IZZK’I i1 — xl)TLlTl’ n- ZE 1,1 X,L 1 (4.4.16)
=1 =1
@) n &
\I}v,l/ (:Cl) = —1 Z Z Kh 3 e TIIE_]_ 1 (X ) (4417)
t=1 =1
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in which E‘fl,,( i1) = ol (Xia) and &%, (Xiq) is given in (4.4.11). If further one

a2a

denotes

Wy ot (Xi,71) = Ty Kp (Xi1 — 21) B o (Xia) , (1) = Bwj o pr (X, 71)

(4.4.18)

H “Jall!

then by (4.4.17), (4.7.9) and (4.4.11), \Il(z), (z1) can be rewritten as

d] N41 dg

n
‘I/ :1:1) =n~1 ZZ Z Z &J,a’lw‘],a,l’l/ (X;,11) - (4.4.19)

i=11=1 J=1 a=2
LEMMA 4.4.1. Under Assumptions (A1) to (A5), (A7) to (A8), as n — oo, \Ilt(:l), (1)
defined in (4.4.16) satisfies SUP1 <)<, SUPz;€0,1] |‘Il'f)11)’ (z1)| =0p (N (logn)? /n) .
LEMMA 4.4.2. Under Assumptions (A1) to (A5), (A7) to (A8), , as n — oo, \Il,(,z) (z1)
\pf)'*’l), (zl)l =0, (H?).

defined in (4.4.17) satisfies SUP; <1/ <d; SUPz; €[0,1]

Proof of Proposition 4.4.2 is given in the Appendix, while Proposition 4.4.3 follows from
Lemmas 4.4.1 and 4.4.2. Lemma 4.4.2 follows from Lemmas 4.7.13 and 4.7.14, both proved
in the Appendix, while the proof of Lemma 4.4.1 is given in the Appendix. Similar result

can be proved for fgpy 1y (1) by extending \Ilb y (z1) and L (z1) to terms such as

%ZK”' 1—:1:1)( ) tllZ{mII 1 ()(i,-l)}ﬂl’
1=1

1
;ZKh(X 1‘1)( W ),yZ«fu(Xm T,

i=1

which do not add much difficulty as |—zlh:£l| < 1 whenever K}, (Xi; — 1) # 0.

4.5 Implementation

We implement our procedures with the following rule-of-thumb number of interior knots
N = N = min ([n1/4 logn] + 1, [n/4d1dp — 1/dg] — 1)

which satisfies Assumption (A8), i.e.N = N, ~ n!/%logn, and ensures that the num-
ber of parameters in the linear least squares problem (4.4.7) is no more than n/4, i.e.,

dy {1+ dp (Np + 1)} < n/4.
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By Corollary 4.4.1, the asymptotic distributions of the estimators mgpLL, q, (Ta) de-
pend not only on the functions bLL,l,l’,a (za) and Y o (za) but also crucially on the
choice of bandwidths hq. So we define the optimal bandwidth of hq, denoted by hq opt,
as the minimizer of the total asymptotic mean integrated squared errors (AMISE) of
{ma(za),l =1,...,d1}, which is defined as

dy 2
AMISE {rhq.} = /Z {ZbLL L a (zq) h2 } + vy o (Ta) [ (Rha) | fa (za) dza-
U=1 =1
By letting d AMISE {ﬁza,.} /dhq = 0, one gets the optimal bandwidth hq gpt as
‘ 1/5

n”! f z:i’l=1 Ui o (Ta) fa (za) dza
2
4 E}i‘:l {E;i—il bLL,l,l’,a (ma)} fa (Ta) dza

d d 2 : :
where 4 [ El’1=1 {Zlil bLLLt (:z:a)} fa (za) dzqo is approximated by
2

dj
“‘Zuz (K)Y Zm Xia) fa (Xia) Gt o (Xia)

=1 | l=1

ha,opt =

To implement this, we propose the following simple estimation methods for terms
m;’d (1), U o (za), Y o (za) and fo (za)- The resulting bandwidth is denoted as ill,opt-
e The derivative function m/; (X;,) is estimated as 22=2 k(k—1)aq X fa_‘? +

6 Ellcv:f Qo ] k (Xil —tq k—3) where { o, k};::? minimize the following least squares

2
n N+3
E Y, - ZZ Zaalkxm'*'zaalk(xza"tak 3) }Til

=1 l=1a=1 k=0
where min; X;; =t9 <--- <ty41 = ma.x,-X,-l.

* Qo (zq) is estimated as Ei:o &a,l,kzg +Zﬁ_j;3 ol k (

n N+3 5 2
Z {Zaalkxza+zaalk Xia — to k- 3) } )

i=1 k=0

ta,k—3)3 by minimizing

E{TTToZ(x,T) |Xa=1'a} s estimated & TRoodf p%e  +

Zﬁ_—-_*f o1k (Ta — ta,k—3)3 by minimizing

N+3

n
3 | TuTy Vi - (X, Ti)} - ZaauX + Z a1k (Xa — ty_3)3

i=1
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e Density function fq (zo) is estimated by ;1—1 Y1 Khy (Xia — Ta) and fg (za) by
—(nr2)T TR K (ﬁc};—"’) with the rule-of-the-thumb bandwidth hq.

4.6 Examples

4.6.1 Simulated example

The data are generated from the model
Y = {mo1 + m11 (X1) + m21 (X2)} T1 + {moz2 + maz (X1) + ma2 (X2)} T2 +¢,

with mg; = 2, mga = 1 and my; (z)= sin(4z—2)+2exp {-—2 (1:—0.5)2} —~1/V2m, mgy (z) =
z, mg (z) = sin(z), and mgs () = 0. The vector X = (X}, X3)T is uniformly distributed
on [—m,m)2 while T = (T}, T)” has distribution conditional on X as bivariate normal with
mean (0, O)T and covariance matrix diag (X 12 /m2 41, X22 /72 + 1). The error ¢ is standard
normal independent of (X, T'). The functions are estimated by SBLL method. For a =1, 2,
let zfx,min' :cf,,max denote the smallest and largest observations of the variable z4 in the
i -th replication. The functions {mal}?x’il,l=l are estimated on a grid of equally-spaced
points Tq r, T = L, ..sng grid with z51 = —O.QOW,za,na,gﬁd = 0.90m, ng grig = 51, a = 1,2.
Denoting the estimator of my; in the k-th replication as mggL, o1 x and {za'r}:g’lgr id
the grid points where the functions are evaluated, we define the (averaged) integrated
squared error (ISE and AISE) as
| Mgrid
3" {sBLLatk(Tar) — Mai(zar)},

r=1

ISE(SBLLatk) = "
a,gri

l100

AISE(sBLLal) = 155 > " ISE(fgpLL,alk)-
k=1
Table 8 reports the means and standard errors (in the parentheses) of {rhg};—; 2 and the
AISEs of {ﬁzal}i’il 1= for all the two fits. Both fits are generally comparable, with the
SBLL fit better than the spline fit (p = 1). The standard errors of the constant estimators

and the AISEs of the function estimators decrease as samples size increases, confirming

Corollary 4.4.1. Figure 11 gives the plot of one SBLL fit for sample size n = 500.
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4.6.2 Real data example

In this section we illustrate how the additive coefficient model is used to extend the Cobb-
Douglas model for annual US GDP growth. Denoted by Q; the US GDP at year t, K;
the US capital at year ¢, L; the US labor at year t, X; the grqwth rate of ratio of R&D
expenditure to GDP at year ¢, all data have been downloaded from the Bureau of Economic
Analysis (BEA) website for years, t = 1959, ..., 2002 (n = 44). The standard Cobb-Douglas
production function (Cobb & Douglas, 1928) is Q¢ = Ath 1 Lt1 —h1 where A; is the Total
Factor Productivity (TFP) of year t, §; is a parameter determined by technology. Define

the following stationary time series variables
Y: =log Q¢ —log Q¢—1, 11t = log Kt — log Ky_1,Toy = log Ly — log Ly,
then the Cobb-Douglas equation implies the following simple regression model
Y; = (log At —log A¢—1) + 51Tt + (1 = By) Tae.-

According to Solow (1957), the total factor productivity A; has an almost constant rate of
change, thus one might replace log A¢ — log A;_1 with an unknown constant and arrive at

the following model

Yi — T = By + B1 (Tt — Tae) - (4.6.1)

The constant change rate of A; in the period 1909-49 was mainly due to the relative low
impact of technology in that era.

As technology growth is one of the biggest sub-sections of TFP, it is reasonable to
examine the dependence of both 3 and 3; on technology rather than treating them as fixed
constants. We use exogenous variables Xt (Growth rate of ratio of R&D expenditure to GDP
at year t) to represent technology level and model Y; — Ty, = my (X¢) + mo (X¢) (T1e — To¢)
where m; (X;) = mg; + 222:1 Mot (Xt—as1), | = 1,2, Xy = (Xt, ---:Xt—d2+1)' Using the
BIC of Xue & Yang (2006b) for additive coefficient model with dg = 5, the following reduced

model is considered optimal

Yi — Toy = c1 + mygy (Xi-3) + {co + ms2 (Xp-4)} (T1e — Tt) - (4.6.2)
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The rolling forecast errors of GDP by SBLL fitting of model (4.6.2) and linear fitting of
(4.6.1) are show in Figure 9. The averaged squared prediction error (ASPE)

1 2002

. A 2
9 Z [Y; — To — é1 — gBLL 41 (X¢—3) — {2 + spLL 52 (Xt—4) } (T1e — Tot)]”,
t=1994

for model (4.6.2) is 0.001818, which is about 60% of the corresponding ASPE (0.003097) for
model (4.6.1). The in sample averaged squared estimation error (ASE) for model (4.6.2) is
5.2399 x 10~%, which is about 68% of the in sample ASE (7.6959 x 10°) for model (4.6.1).

In model (4.6.2), é; + mgpr, 41 (X¢—3) estimates the TFP growth rate, which is shown
as a function of X;_3 in Figure 10. It is obvious that the effect of X;_3 is positive when
Xi—3 < 0.02, but negative when X;_3 > 0.02. On average, the higher R&D investment -
spending causes faster GDP growing. However, overspending on R&D often leads to high
losses (Culpepper, 2004 and Tokic, 2003).

We have also computed the average contribution of R&D to GDP growth for 1964-2001,
which is about 40%. The GDP and estimated TFP growth rates is shown in Figure 12, it
is obvious that TFP growth is highly correlated to the GDP growth. For more details, see
Arnold (2005).

4.7 Appendix

4.7.1 Preliminaries

In the proofs that follow, we use U and u to denote sequences of random variables that are

uniformly O and o of certain order.

LEMMA 4.71. (Xue and Yang, 20060, Lemma A.2 Lemma A.5)
There ezists a constant cg > 0 such that for any sets of coefficients
{ao,6701,1 ST <N +1,1<1<d;,1<a<dg},

2

=1 a=1 J=1 a=1 J=1

d2 N+1
2 COZ (aoz"' Z Z a’Jal)

dj dy N+1
Z (aoz + z Z aJ,a,lBJ,a) ty
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and that as n — oo, with probability approaching 1,

d dy N41 2 dy N+1
Z (am + Z Z aJ,a,lBJ,a) 7] 2 Z (aoz + Z Z ajal)
=1 a=1 J=1 on a=1 J=1

LEMMA 4.7.2. Under Assumptions (A1) and (A8), one has: (i) there ezist constants
cf,Cy,co(f) and Co(f) depending on the marginal densities fo (2a),1 < a < dy, such that

cftH<cjo <CrH andcy(f)H < ||bjqo 2 < Co(f)H. (ii) uniformly for J,J' =1, ..., N+1
f Ja =~ f Jiall2
1 J=1J
E{Bja(Xia) By (Xia)} ~ & ~1/3 |/ =J]| =1
1/6 |J—J|=2

k| H7F |7 -J]<2
ElBJ,a (Xia) BJ’,a (Xia)l ~ { 0 {J’_ J{ ; 9 k> 1.

LEMMA 4.7.3. Under Assumption (A2), for Vo defined in (4.7.15) and St = V.}.l
cQev iy {dy(N+1)+1} S VTSCQCOVIg) (dy(N+1)+1}»

cQCsla {dy(N+1)+1} < STSCQCS Iy, (do(N+1)+1}-
Proof. By definition, Vp = FE [E (TTTI X) ® { B(X)B (X)T}]. According to Assump-
tion (A2) and Theorem 20, p. 192 of Zhang (1999),

Vi < Cqly ®F {B (X)B (X)T} < CQOV 14y (dy(N41)1)-

One can prove similarly the result for Sp. O
Lemma 3.6.1 and Assumption (A3) ensure the existence of functions go; € G0 [0, 1]
such that ‘
l9at = Matlloo £ Coo “m;l”oon,a =1,..,dg,l=1,..d;. (4.7.1)

4.7.2 Oracle smoothers

In this section, we prove Theorems 4.3.1 and 4.3.2 for m ;.(z1). Corresponding proof

for my,1,. (z1) would require replacing K}, (X;1 — z1) by Kp, (X1 — 1) (-{1-]7:—{1) in the
proof, which does not add a great deal of difficulty. According to (4.3.1),

. 1 !
g 1, (z1) — ma,. (1) = (;Cﬁwlcx) ~CEkW1{Y1~ Cgmi, (z1)},
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dy n
Y1 - Cxmy,. (1) = [Z {mu (Xi1) — my (z1)} Ty + 0 (X4, Ti) 51] :
1=1

i=1

then %CﬁWl (Yl - Cgmy.. (:l:l)) is

n dq dj
[}1; > Kh (Xin — 1) Ty [Z {mu (Xi1) — my (21)} Ty + 0 (X4, Ty) 61”
i=1

=1
d
— {By (1) + Vp )},

where

dy dj

1 n

By (z1) = = E Kp (X1 —21) Ty Y {may (Xa1) —my (z1)} Ty = Y By (z1),
n b

i=1 1=1 1=1
l n
By (z1) =~ > K (X — z1) {my (Xa1) — my (21)} TuTyp, (4.7.2)
i=1
n
1
Wy (z1) =~ > Ky (Xiy — 71) Typo (X5, T) &5 (4.7.3)
i=1

Denoting D, y (71) = % Y1 Kp (Xi1 — z1) Ty Ty, the dispersion matrix is

1 o dp

~CxWi1Ck = <; ;Kh (X1 — xl)TuTul) §6 (Dur (xl))u,=1-
L'=1

LEMMA 4.7.4. Under Assumptions (A1) to (A4), (A6) to (A7), as n — oo,

sup sup IB“/ (z1) = by 1 (z1) h2l =0p (h1/2 log n/\/ﬁ)
1<, <dq z1€[h,1-hR]

where for any z1 € [h,1 — A,

/ of ! ) "
bK,l,l',l (171) = ‘;‘»UQ (K) {2mu (1'1) : (Ilgzlll A (xl + my, (Il) fl (.’I:l) q“/,l (.’El)} .

Proof. We write the bias term B, ;s (z1) in (4.7.2) as

n
W20 S "¢ + EKR (X1 — 1) {myy (X1) — my (21)} iy

=1
where (; , = (; ($1,XilyTilTiz') is

h™Y2 (K, (Xi1 — 21) {mag (Xa1) = mag (1)} Ta Ty
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—EKp, (X1 ~ 21) {my (X1) — my (21)} 1Ty -

The deterministic part of By y (z1) is
EKy (X1 — z1) {my (X1) = my (z1)} T Ty

= /[0,1] /tztz' {mu (v) —my (z1)} %K ("

B /[ 1) /tlt" {my (z1 + hv) — my; (21)} K (v) f (21 + hv, 8, ty) dtydtydv

/[ 1,1] /tlt"K () {mu (z1) v + —5— ” 1 (1) (hv)? +u (hz) }

é) it
{f (1:1, t, tl’) + L(-%I;L—-l-,—)-hv +u (h)} dt;dtydv
1

Il) f (u, tlatll) dtidtydu

W (K) {m,u o 2@ E (;";:lfmxl =21 , @ AE) gy, xl)}

+u (h3) .

According to Assumption (A4),

EK}p (X1 — 71) {my (X1) — my (z1)} i Ty

— K2y (K) {m’u (z1) of1 (z1;;1,11:,1 (z1) N m, (£12) f(zl)qu’,l (11)} tu (h3) (474)

To bound the stochastic part of B,y (z1), define a sequence Dp = n® with 0 < & < %,
a(2+48) > 1,a(1 + 8) > 2/5, which requires § > 1/2 provided by Assumption (A2). We

make use of the following truncation and tail decomposition

T‘ill’ = TilTil’ + T ”I (475)

ll’

where TP

il 1
spondingly the truncated and tail parts of (; ,, as

Ty {thlTl’l > Dn} T2 ll’ = TyTy {|TilTi1/l < Dn}. Define corre-

D
Cznl Czn (II,X T ll/ ) , Ci,’ll,? = Ci,n (ILX“’T'L”‘,} )
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According to Assumption (A2),

245
0 © B|L Ty & [E (1Tl 1%:)
Y P(|TyTy|>Dy) < Y —i— =
n=1 o n=1 D$12+5) n=1 D721+6
— Cjs ko )
= Z—Q-i-é "—‘Cé Zn“o‘(2+ ) < 00.
n=] —n n=1

By Borel-Cantelli Lemma, one has with probability 1,
n
n! Z {ngn {mu (Xi1) — my (z1)} Kp (Xi1 — xl)} =0

for large n. Therefore, one has

n
nl ZCi,n,l (1'11Xi,T5{/l,1)

i=1

sup

-U (n—k) k=1,2,3... (4.7.6)
IIEIO,I]

Next,

E¢}, = h™! [E {Tar {m11 (Xa1) = max (22)} K (Xi — 71)}

—{ETyp {m11 (Xa1) — ma1 (1)} Kp (Xi1 - $1)}2]

=h™ /[0 ) /t,t {ma1 (w) — myy (21)) gliK (" —hr1)2f (u, g, ty) dtydtydu + U (h3)
=k~ /l 1 II/t =K ) [{miy @) ho}? £ (@1, t0,6) + U ()] dudtydo + U (1)
= h~2 /[-1,11 / K (v)? {mly (1)} f (21,4, ty) (ho)? dtydtydv +w (h?) + U (K°)
= {m; (z1)}? o K (v)2v?dv / 1242 f (21,4, ty) diydty +u (h2)
= {m}; (z1)}> /[~1,11 K (v)2v2dvfy (z1) E (’_l;%Tf,,lxl) +u (hz)

Then
ECg = BBty = {mly (e1) /[—1,11 K (v)2%dvfy (1) B (TPTJ1X0 ) +u (7).

For k Z 3, E ICi,‘n,2|k

k-2
E2,9)

S[ Su[gl] IT“, {m11 (Xa1) — mai (1)} Kj, (Xil"zl)‘+U(h2)
1€V,
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<[2r | sup ({mar (Xan) = max (z0)} K (X - 202 B 2)

z1€[0,1]

< Dk2eohh ™ E((2,, ) = coDE2E(¢2,, 5)

by Assumptions (A4) and (A7). So there exist a constant ¢; = cgDn such that
E (|Ci’n’2|k) < c’f'2k!E(C?’ny2), k > 2. According to Lemma 2.5.2 (Bernstein’s inequality),

2k
2
gen n 2k+1
P >nep p < ————— ] +az(k _
{ n}‘alem( 25m%+5c16n) a2 ( )a([q+1])

n
Z Cin,2

i=1
0 ‘ £y 2K/ (2K+1)
a=2242(14 —"2 — ) aq(k)=1ln |14+ - ].
q 25m35 + 5cien En
5m§/7 2 2 logn
Let k=3,a2(3) =1ln |1+ o™= E((in2)=0(1),en= a—\/——T_L-
P{[Stume] ey < ) mwa([2])
; ne ae _— a al |—
p ,n,2 n ¢ S a) exp 25m§+5c15n 2 q+1
and take ¢ such that [q—ir} >cologn,q > 13‘:; for some constants cg, c3.
(alogn)? an 2 (logn)® -
qe;", _ g n > logn n
25m% + 5cen 25m3 +5c1en  ge 2 logn
omé + Scra——=
2 ! vnh
2 2
> c3a” logn ogn = 55 ;3‘1 128712/51 ~aZlogn,
25m§ +5¢coDna — m5 + oaconn ogn
n €2
a1 =2-+2 {1+ —5"——] =O(logn),
q 25m2 + d5c1en
6/7
aa(3)=1ln |1+ ™3 , with m3 = max ”51‘ 2“ < ¢gDnp,
€n 1< PHmAl3 =

6/7
az(3) < 11n 1+LC—6%‘)— =0(n2),

an 2logn
6/7
o 1 (M)
a ([—-—————]) < | Kgpe q+1 < Cn=%<2/7,
qg+1 -
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Z Ci,n,2

P {n—l 3
1=1

> alog "/\/ﬁ} < O(logn)exp (—c5a2 log n) + Cn2-6X0c2/7
2
= n 58 O(log TL) + Cn2—6/\062/7,

for cg, c2,a large enough. For all z; € [k, 1 — h], we discretize by equally spaced h = 71 9 <

n
D Ginz (1)
=1

> alog n/\/ﬁ}

P max n-
0<j<Mn

Mn n

<) P {"—1 Y Cin2 (21)
0=1 i=1

for a and ¢y large enough. Borel-Cantelli lemma implies that
n

n~1 El Cim (71,5)
1=

whole interval [h,1 — h], one has

> alog n/\/ﬁ} <Cn8M, <Cn2

max) <;j<Mp, = Op(alogn/y/n) a.s.. Taking supremum over the

n
-1 -1
sup n E : Ci,n,2 < Ct n,2
IlE[h l—h] i= 1 0<J<Mn Z
-1 Z } : ~1/2 ~1p-2
n 0312%1 1 sup C; n2 C‘L n,2 S Cn log n+ CMn h™=.

z1€[z1,5,21,5+1
by Lipschitz continuity of kernel K. This last equation, plus (4.7.4), (4.7.5) and (4.7.6)

1=1

complete the proof of lemma. O

LEMMA 4.7.5. Under Assumptions (A1) to (A3), (A6) to (A7), as n — oo,

62f (z1) Q1 (z1)
8:1:%

sup sup

1
Dy (z1) = f (z1) qr 1 (21) + 5z (K)
1<L,l'<d; z1€[h,1-h]

=0Op (n_1/2 logn) .
Proof. For any z; € [h,1 —h]

Dyy(z1) =~ ZKh(Xu 1) Ty Ty
t 1

=—Z{Td wKn (Xi1 — 21) — ETTy Ky (X1 — 71)} + ETTy K, (X1 — 1)

The determmlstlc part is

1 -
ETiTyKp (X1 — 71) ='/[‘ ]/tltlr;l-K (E—hﬂ) f (u, tlvtl') dtydtydu
0,1
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= /[ ]/tzter () f (:tl + hv, tl,tl,) dtydtdv
-1,1

Fij Lt 52 At
/ /tttz'K(v){ (z1,t1,ty) + f(zal ll l,) 2_1—f—(22—21’—ﬂ(hv)2
1

+u (h?) } dtdtydv

1 82f (z1,t1,t
= /tltllf (z1,t, tl’) dt + - (K) K2 /tltl/—Mdtldtl/ +u (h3)
2 Oy

- f(zl)E(TlTl’lxl — 2:1) + %l‘2 (K) h262f1 (zl)E(Tsz"Xl =$1) +u (h3) )

33:%
Applying similar techniques as in Lemma 4.7.4, one can bound the stochastic part as
sup Z{TtlT[’Kh (Xi1 —z1) — ETiTp Kp (X3 —-:1:1)} ( -1/2 logn) .
IIG(hl R T
O
Define next
fi,n’ﬂ nl (1, X;,T;) = 1’0 (X3, T;) €iKp, (X1 — 71) - (4.7.7)

Then the noise term Vy (1) in (4.7.3) equals to

‘"ZKh X1 —z1)T, il'9 (X;,Ty)e thnz
LEMMA 4.7.6. Under Assumptions (A1) to (A3), (A5) and (A7), as n — oo,

sup | B,y — b1 (@1) B (TyTyro® (X, D) 1X0 = 1) IKI3| = O (h),
z1€lh,1-h]

sup |E€2, , —h7 1 (21) B (Tho? (X, T) X1 = 1) IKJ3| = O
IIG[h,l—h]

Proof. According to (4.7.7),

E€; n1ing = ET1T20% (X, T) K} (X1 — 21)

2 IK up — 21\ 2 dtd
= [Oudz Rdl t1t20' (u,t)}—ﬁ —-’T—- f(ll,t) tdu

2

1 xl)
tita0” (u,t) ;5 K w1, 0.1, t) dudu ydt
./Rdl‘/[01]d212 )h ( h f(u1,u1,t) durdu

7



-_-h—l/ / / t1to0? (z1 + hvy,u y, t) K (v1)? + oy, u 1, 6) dogdu qdt
R4 Jpo, 11921 J[-1,1] 1t20” (z1 + hvy,u g, t) K (v1)” f (21 1ug,t)dvidu

oS L
ré Jpo.yd2—1 Jng L

2 2 2
{0,2 (.’Bl,ll_l,t)-f-aa (zl’u'l’t)hv1+a 4 (xhu_lyt) (hvl)2+u(h2)}

oz 26z%

2 of (z1,u1,t) 8%f (z1,u1,t) 2 2
K (v1) {f(xhll_l,t) + —(%1‘—’“11 + —W (hv1)® +u (h )}

dvidu_jdt

=h_1/ K’Uzd‘U/ f tt0'217,u ,t z,u ,tdu dt+Uh
[~1,1] (1) dvy rd1 Jod2-1 2 (z1,u,t) f (21,01, t) du gy (h)

= 17V 1 (21) E (T T30® (X, T) [ X1 = 21) IK 1§ + U (B).

Similarly, one has for any I/, 1"

B¢, i = W1 (21) B (TyTyno® (X,T) 1 X1 = 71) K13 + U (h),

BE, v =h " 1(0) B (Tho? (X,T) X0y = 21) KI5 + U (8) O

ind!

LEMMA 4.7.7. Under Assumptions (A1) to (A3), (A5) and (A7), as n — oo, there ezists a

constant C such that

_%ﬂz oyl
sup sup ’cov (finl”gjnl”)l <Ch “tia(j—1i)**t" foris#j
ISl’Sdl :L'lG[h,l-h] m m

Proof. According to Davydov’s Inequality [Bosq 1998, p. 21. equation (1.10)], for %—i- % +

1

r

=1, cov (Ei,n,l'l ’£j,n,l'2 ) is bounded by

Co{2a (j — i) }/P || Typo (Xi, Ts) €K (Xa1 — =), ”Tﬂua (X;,T;) eiKp (Xj1 — 71) ”T

Let g=r=2+1n,p= 1+ 2/n, where 1 takes value in the Assumption (A5), then one has
1+
cov (finzhfjn 1//) <Ch QTZO (- z')xr*'L'? for some constant C. O

T
Proof of Theorem 4.3.1. For any A ={ Ay, ..., Mg € RY1,
1

A

n d]

dl dl n
d 1 1
TV @Yy = 2o MV @) = 20 > iy =230 Mbintr

I'=1 =1 i=1 i=17=1
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d d
Define &; = 30,1 | Ap€; oy and Sp = Sn (1) = iy €in = nAT {Vy (21)},1, then one
has ESn = 0. Let

d d
v (k) = v (k, 1) = cov (fi,mfi+k,n) = cov (Z ’\llgi,n,l” Z ’\l’£i+k,n,l’)

=1 =1

02 = ES2 = var (Sy) = var (Z Ei,n) =D _var (&) + D _cov (Ein€jn)

i=1 i=1 i#]

= nvar (Ei,n) +n Z (1 - l—kl) v (k) = nvar (fi,n) + nAn.

1<]k|<n-1

3

In the above, var (fi,n) = var (Z;i/1=1 Me&in l’) = h~IATEX where
d d
Y =h {COV (fi,n,l”fi,n,l”) }l’,l”=1 =hE {gi,n,l’fi,n,l” V=1
= f@)IKI3E{TT * (X, T) X, = 21}
by Lemma 4.7.6. While according to Lemma 4.7.7, one has

1+
(B < & max |oov (€, Eippnpr)| < Ch T (K) 74T

1<l/<dy
Hence
k _1+
= | 5wl X (1- )4 (kpew (-aok)
1<)l <n—1 1<|l|<n-1
1+
< Koh T > exp{-Xokn/(2+n)},
1<|l|<n—1

_ 141
so there exists a constant C; such that Ay, < Cih 2“_*_’% So Ap/ var (§,~,n) — 0 asn — oo.
Then 0,2, ~ n var (fi,n) > con when n is large, so according to (2.5.1) in Lemma 2.5.1, there

exist constants c¢; and ¢y such that for some 0 <7 <1

dn {log (an/c(l)ﬂ) /)\}H_'7

7
€09n

An = sup P{U;IS,, < z} - @(z)] <ec
A
for any A with \; < XA < A9, where

M = ea {log (on/clf®) Y /b > 214 m) /i da = 4(2 4 )~ tog (om/elf?)
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For the 7 in Assumption (A5), set A = 4(2+ )5~ Llog (an/cé/z), then by (4.2.4) one has

d; dy
dp = max {El > '\zlﬁi,n,z'|2+”} = max {EI > A To (Xi, Ti) Ky (Xip — 71) |2+"}

1<i<n 1<i<n
V=1 =1

dj

=1
ie. An=0 {h—(1+n)/gg} -0 {n(1+ﬂ/2)/5—77/2} -0 (n1/5—271/5) —0when1/2<7n<
1. S0 Sp/on — N (0,1), then vaRAT {Vy (z)}yL, — N (o, ATEA). By Cramér-Wold
device, one has \/n {Vl’ (:1:1)}:1,1=1 — N (0,%). Then according to Slutsky’s theorem, one

has

dy di
vVnhE (TTT]XI = 1:1) {’ﬁlely. (1) — my (z1) = Zbul (z1) h2} — N(0,X)

=1 ll=1
. - dq 2 di
ie., vnh {mx,l,- (1) —my p (21) — 22, by (z1) b }l’=1 —
N (O, Q (:vl)_1 Qi (:1:1)—1), where Q; (z1) is defined in (4.2.3). O

Proof of Theorem 4.3.2. Let D, = n® with a < %, a(2+1n) > La(l+1n) > 2/5,
which requires n > 1/2. Rewrite Z; = Tye; = ZiDI" + Zi%" + ZiD3" where Z'-Dl” =

Zi{|Zi| > Da}, Z3 = Z;{|Zi| < Dn} — Z,3", 22} = EZ;{|Z| < Dn}. Define

1"

Eimt; = Kn(Xa —21) 0 (X;, Ty) 270, j=1,2,3.

According to Assumption (A5) and (4.2.4), one has

0 M _ i E {|TI,|2+7IE (|6|2+r] IX,T)}

S P(z|>Dn) < Y

2+n g 2+n
n=1 n=1 Dﬂ n=1 Dﬂ
24nen 1 241 —
< CoGE Ty Y- 5y = CaGsE [Ty 37 n ™+ < oo,
n=1*~n n=1

By Borel-Cantelli Lemma, one has with probability 1, n~1 Yoima §; 1=0 for large n.

ml
Therefore, one has sup,, ¢[g 1] In‘l S fi,n,l’,l, =U (n"k) for any k > 0. Using As-
sumption (AS5) and (4.2.4)

E|Z;)*tn
pin

Zil,):{ll = |’-EZi {lZiI > Dn}l <
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= E{EB|T,[**" B (e 1X,T) } /D3*" = 0 (n=%/%) .

Hence
n"Y Eing = n71Y Ky (X —x1)0 (X, T)) Zf,?;"
= i=n
= n1 Z Ky (Xi1—71)0 (n_2/5) =0p (n_z/s) .
i=n
Meanwhile

(25)" = B2z < Day - (28) = E22 - EZ2 121 > D} - (2)’

< B{T3E (3X:, T:) }-EZ}*"{12,| > Da} /DY -(Zgn)2 = BT%,4+0, (D77 4n715),

E¢?

inll2

= E{Ky (Xa ~21)0 (%o, T) 25}

= b7 (@) B (T30 (X, T) 1X1 = 21) IK I3 {1+ (1)}
k-2 2

fi,n,z/,zl =FE ( fi,n,ﬂ,zi lgi,n,l’,2| )

2
I < Cp2%—2Dk-2 k- 2E|5mz'2|

E

E|¢

k-2
l znﬂ

= sup l€1n12
316[01

according to Assumption (A3) and the truncation of zD 1. then there exist a constant
N 1,2
¢1 = CoDp/h such that E ( gi,n,,,,zl ) <AERIEE ,,). k>2

Similar to the proof of Lemma 4.7.4, by using Lemma 2.5.2 (Bernstein’s inequality), we

6/7
5
let k =3,a2(3) =11n (1 + "6'3 ) ,m3=E&2,,)=0(h1),en=0

n
n
P{

2:§Lm2

i=1

logn

Vnh

6
2
(1[4 n 7
> ne < ajex —_—— ] 4+ a 3)a _—
"}‘ ! p( 25m§+5clen> 2(3) ([qHD

c3n
take g such that [ﬁ_—r] > cologn,q > I_L for some constants co, c3.

ogn
(alogn)? c3n 2 (logn)?
QE% 97 h > log nt  nh
25m2 + 5ce 25m + 5cien logn
2 n 279U 95m2 4 Seja—=
2 ! vnh
2 2
> c3a‘logn n __ C3aa loir/z2 - 2 log n,
25m2h + SCoDn/ha Qomzh + Sacyn®n '/ <h logn

Vv nh
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a=2+2(1+ € = O(logn)
! q 25m% + 5cien en

Sm(:,i/7 )
ar () =11n | 1+ 22— | with mg = max &, pof|, < coDn,

cgDn 2
<11 =
a(3) <1 n{l+an“1/2h‘1/2logn} o(n ),

n

o/7 6/7
a <[LD < (Koe"‘O[q + 1]) < Cn—6%c2/7,

g+1

therefore for large n

n
P{n—l Zgi,n,l’g

i=1
which implies that

= n_c5a20(log n) + Cn®~6%0c2/7

=0p {(nh)’l/2 logn} .

n
-1
n Z §i,n,l’,2

=1

sup
z1€[0,1]

n

Then sup,, ¢[o,1) n~1 Zl &intt| =0p {(nh)_l/2 logn} ie.,
1=

sup |V1/ (xl)l = 0Op {(nh)"l/2 logn}
z1€[0,1]

for the term Vj/ (z1) in (4.7.3). According to Lemma 4.7.5,

d
) 1 -1 1
mg 1, (1) —my. (1) = (;CTwlc) {Z BU’ (z1) + Vyr (z1)
=1

-1

4
= {{ET[Tl/Kh (X1 - 11:1)};1},=1 +Op ('n.-l/2 log n)} {EBUI (z1) +Vy (:1:1)}
=1

dy

)

di

=1

>alog "/\/ﬁ} < O(logn)exp (—-c5a2 log n) + Cn2~620c2/7

(4.7.8)

dj

=1

dy
d -1 -
= [{EnT,,K,, (xl—xl)}[’},zl] {§ By (z1) + Vy (zl)} +0p (n 1/210gn),
=1

I'=1

[(EnTer - a0} = [0 QX+ ()]

= QT @ X tu (k)7
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Meanwhile, according to Lemma 4.7.4 and (4.7.8),

dq

> By (z1) + Yy (21) = Up (h1/2 logn/v/n + h2) + Uy {(nh)~1/2 10gn} _
=1

According to Assumptions (A1) and (A2), f~!(z;) < cl'l, Calldl < Qz,X) <

calldl, S0 SUPy, e(h,1-h] |ﬁ1K,1,. (z1) —my; (:1:1)| =0p {(nh)'l/2 logn}. ]

4.7.3 Estimation of constants

To closely examine terms &; (x) and &, (zo), we denote the following vector of coefficients

T
a= {a'Ol) a1,1,15--» aN+1,d2,l) ap2,41,1,2, '"1aN+1,d2,2) seey a0d11 al,l,dls aeey aN+l,d2,d1}

(4.7.9)
such that the noise term £; (x) in (4.4.9) is expressed as
d2 N+1

(PnyE) (x) =& (x) =dq+ Y Y e Bja(a)- (4.7.10)
a=1J=1

-1
Equation (4.7.10) implies that a = (DTD) DTE , where .
D = {D(X1,T}),....D(Xn, Tn)}T = {T1®B (X1), .., Tn®B (Xn)}¥,  (47.11)
T T
B (x) = {1,31,1 (1) )y BN+1,d2 (de)} t= {tl, ey tdl} . (4.7.12)
Note that a given in (4.7.9) can be rewritten as
1 T -1 1 T -1 1 T
a= (—D D) (—D E) = (Vp+V7Y) (—D E) : (4.7.13)
n n n
where by (4.7.11)
n n
D™D =) [(T:17) © {B (X)) B(X)T}] ,DTE =) ({T:®B (Xi)} o (X;, Ti)ed],
i=1 i=1

(4.7.14)

and V7 is the difference between empirical and theoretical inner product matrices, i.e.
Vp=E [(TTT) ® {B (X)B (X)T}] - E [Q (X)® {B (X)B (X)T}] . (47.15)
Vi = % Xn: [(T,-T,T) ® {B (X;)B (xi)T}] —E [Q (X)® {B (X)B (X)T}] .

i=1

83



T
Now define a = {a()l, a1,1,1: - (I.N,d2,1, a02,a1,1,25 -+ aN,d2,2, cesy aOdl , a1111d1 yesey aN,dz,dl }

by replacing (VT-I-V,"i.)’—1 with Vi.l = S in the above formula, that is
a=vg! (n—lnTE) =Sy (n‘1DTE) . (4.7.16)

LEMMA 4.7.8. Under Assumptions (A1) to (A8), (A5) and (A8), asn — oo

Ia]l = 0, (n_1/2N1/2 log n) , (4.7.17)
la—al =0, (n-1N3/2 log? n) , (4.7.18)
la] = 0, (n-1/2N1/2 log n) . (4.7.19)

-1
Proof. By definition, 37 DTDa = a7 DTD (DTD) DTE = aDE. Using (4.7.13), one
has

IDa|3,, = n~'aTDTDa —n~1aTDTE < |j3 “n"lDTE“ . (4.7.20)

According to Lemma 4.7.1,

=12 2 2
collall® =co Z (001 + Z aJ’aJ) <
o

Ja,l

2
<112
= ||Dallz,, -

2,n

Z (aoz + Z aJ,a,lBJ,a) 7

{ Ja,l

(4.7.21)

So ||a|| is bounded by ¢y 1 “n"lDTE”. Bernstein’s inequality and truncation entail that

“n“lDTE“2 = Op{(logn)2 N/n}, so (4.7.17) follows from (4.7.20) and (4.7.21). Ac-

cording to (4.7.13) and (4.7.16), one has Vp & = (Vp+V%) &, which implies that
Via=Vy(a—3).

One obtains from (4.7.29) and (4.7.30) |Vp(a-a)] = ||Via|| <

Op (n-1/2H-1 logn) la]l. By (4.7.17) one has ||V (a—3)|| < Op {(log n)? n-1N3/2}.

Thus according to Lemma 4.7.3, one has ||a — 4| = Op (n'lN:’/2 log? n), which is (4.7.18).

Then (4.7.19) follows (4.7.17) and (4.7.18). O

LEMMA 4.7.9. Under Assumptions (A1) to (A3), (A5) and (A8), , as n — oo

1 n dy dy
= T D EaTu

n

sup = 0p (n7112). (4.7.22)

1<l!<d




Proof. According to (4.4.9) and (4.7.10), one has

dp dy N41

n dy dy
E zf}:ZeazTu Z WS Y daiBra(Xia) Ty
z 1 l=1a=

= 11 l=1a=1J=1

_Z JGZ_ZTI’BJQ(Xza) Ty=1Ip+ 1y
Jya,l i=1

where

Il’_ZaJal Z [’BJa Tzl)

Jya,l =1

Iy =" (@70 = 8a1) = Z 2 Bra (Xia) Ty
Jia,l

Let Ill = Il/,l + Il,,2 where

Iy = Zam{ Z 2Bra (Xia) T En/BJa(Xam}

Ja,l

|f.1] < N8l VN F 1) a1 sup

1a7

=0p (n-lNlog n) ,

ZT,/BJQ Xia) Ty — ETyBj o (Xo) Ti

Ipy= 4501 ETyByq (Xia) Ty = (ET,,BJQ(xa)n)Ja,v— (n—IDTE).
Ja,l

T - T .
Let vy = (ETyBj4 (XO‘)TI)J,a,l VT1 = (vjq)" - According to (4.7.14)

n
I[’,z =n"! Z z 'UJ,a,lBJ,a (Xia) Tyo (X5, Ty) €.
i=1Ja,l

Since ¢; is martingale difference according to Assumption (A5)

n
var (11/,2) = "—? > var { > vjaiBra (Xia) Tao (Xi, Ts) €i}

i=1 Joal

2
n
n"%) C,E { > viaiBira (Xia) Tu}
i=1

Ja,l

where

2
E { Y v)aiBia (Xia)Til} =Y D vaiaE {BJ,a (Xa)TiB yt o1 (X o) Ty}

Joa,l Jal J' o 1



= vyVovh = {ETyBj4 (Xa) T,}ia,l VEVIVE {BTyBe (Xa)Ti} 5 o,
= {ETyBja (Xa)T1}] o) VT {ETyBra (Xa) Ti} 54
< Oy |(BTyBua (Xa) T} 0 2 = 0 ()
because clearly |ETy B (Xa) Ti| = U (HY/?). So var (Iy5) = O (n™), and therefore
Iy =0p (n71/2). So
gl < |t | + 1| = 0O (n7177). (4.7.23)

Next, by applying Bernstein’s inequality with truncation technique,

1 _
sup |3 Ty By (Xia) Ta = BTy Bya (Xa) Ti| = Op (1™ logn)
8 =1
Thus supJ,a,l T.yBj o (Xia) ’ll is bounded by
sup | Z wBia (Xia) Ta = ETyBja (X)) Ti| + | ETyBja (Xa) Ti| = O (H'2).
a
Then

ZT,,IBJQ (Xia) Ty

[11y] < 114 - 5| V(N + 1) drdasup
z 1
=0, ( ~1N3/20g2 n) V(N +1)d1d;0, (HW) ( ~1N3/2 g2 n) (4.7.24)

Now (4.7.22) follows from (4.7.23) and (4.7.24). The lemma is proved. O

LEMMA 4.7.10. Under Assumptions (A1) to (A5), and (A8), , asn — oo

n [dy dy 2
n~! Z Z Z {Mat (Xia) — mai (Xia)} Tzl] =0p (n—l) (4.7.25)
i=1 |i=1a=1

Proof. According to (4.7.1), there exists g,y € G(9[0,1] such that |lgy — Mol =
O(Hz) = O(n'l/z) .According to Theorem 1.7 of Bosq (1998) p. 36,
n" Y250 (T2 - ET?) = N (0,0%) where 02 = 3°%°_ Cov (T3, T2) < oo by ap-
plying Davydov’s Inequality [Bosq 1998, p. 21, equation (1.10)], then n~! 1 Tﬁ =
ET? +0p (n—1/2) =0,(1). So

n dy dy 2 n dy dg 2
nTIY YD (e (Xia) — M (Xia)} Ty | < —12 D> s = madlloo Tt
i=1 |i=1a=1 I=1a=1
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n”! }: > et~ matlloo Ta| =0 (n7") (n" ZT,%) =0p (") D
=1 a=1 i=1

Proof of Propositions 4.3.1 and 4.4.1. According to (4.34), mg — my =
(CKCk)'Ck (Ye — moT)

= (dcZck)Licko (X;, Ti)e;. We know 1CTCk= ( Y TyT, ,,)”, Then
according to Theorem 1.7 of Bosq (1998) p. 36, one has n~ /23" | {TyT,y — ETTy} =
N (0, 02) where 0?2 = oo Cov (TOITothle ) < oo Therefore
lCTCK (ET[TII)”, + Op (n‘1/2). Similarly, %CEG (X, T;) €,=0p (n‘1/2),
implying supj<i<d; ot —moll = Op (n"l/ 2), which has completed the proof of
Proposition 4.3.1.

Next, According to (4.3.4) and (4.4.2),

g — 1 = (CKCxk)~1Ck (?c ~ Yc)

dy dy n
= (C Ck)~ 1CT [Z Z {Mat (Xia) — mau ( 10)}1111]

a=1la= i=1

dy dy "
= (CkCx)™'ck [Z > {1 (Xia) — 1t (Xia) + Mot (Xia) — Mot (Xia)} Til]

=1 a=1 i=1

dy dy n
= (= Zcke )‘ [(Zzeamz)

=la=1 i=1

dy dy "
+ [{E Z {Mar (Xia) — M (Xia)}Til}] ] .

=1 a=1

=1

One has

1 dy do

m YT | DD (Mgt (Xia) — Mt (Xia)) T

i=1 l=1a=1
1 n 1/2 1 n d; do 2y 1/2
< (; ZTz) =~ 1> Z (et (Xia) — Mot (Xia) i
i=1 il i=1 |I=1la=

by Lemma 4.7.10. Then the Proposition 4.4.1 follows (4.7.22) and (4.7.26). O
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4.7.4 Estimation of function components

Define
Ang = SUP|<1 BJa)gn (1 BJa)zi'—suP IZBJa(Xza)
=1
i = o [Ty, oty ).
A = B, T, B T. —(BjoTLi, By JT; . (4.7.27
™3 J,J’,(sxl;rjx’,l,ll|< Jatih Bglof 'l’>2,n < Jalib Bt o 1">2l (4.721)

LEMMA 4.7.11. Under Assumptions (A1) to (A3), and (A8), , as n — oo

Apgp = Op (n_1/2 log n) , (4.7.28)
Ang2 = Op (n_l/ 2H~1/2)0g n) , (4.7.29)
Anz = Op (n'l/ Z)og n) . (4.7.30)

Proof. The proof of (4.7.28) follows from Bernstein’s inequality immediately, thus is omit-
ted. Here we only prove (4.7.29) and (4.7.30). We will discuss case by case with various

LU a,o,J and J/, via Bernstein’s inequality. For brevity, we set

§i = &ingdad il =81 t82 =810 10 a1 T €200 a0l L
= Bja(Xia) By o (X;o0) TuTyy — EB o (Xia) Byt o (Xior) TuTyy

where &; = Bjo(Xia) By g (X)) Th ar; — EBia(Xia) By y (Xid)‘[‘g{,‘,j,
j = 1,2 by the same truncation (4.75) in Lemma 4.7.4.
Then An2 = supygoqpnT IZ?:l §i,n,J,J',a,a,z,z'| and A,z =

SUPJ Jt ot 11! n~l S §i,n,J,J’,a,a’,l,l’I' One has with probability 1,

sup |B¢? 1‘ =u(n), (4.7.31)
JJ o LI
n
sup n—l_z &1|=U (n_k) ,k>0. (4.7.32)
JJ a,all i1

We will consider @ = @’ = 1 in the Case 1.1 to Case 1.4.
Case 1.1 when |J — J’| > 2. The definition of B 7.1 in (4.4.6) will guarantee that
Bj1(Xi1) BJr,l (Xi1) =0if IJ - J’l > 2.
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Case 1.2 when J = J'. According to Lemma 4.7.2,
EB.zl,a (Xia) [/ =E {BJQ (Xza) E (Tzl 1’|Xza } o (1)
B{B} 4 (Xia) TilTul} = B{B}, (Xia) E (T3TY1Xia) } ~ H7.

2 2
So E€2 = [E (B30 Xia) TuTy} — { BB 4 (Xia) TuTy } ] ~ H™L. According to
(4.7.31), one has E{?Q = E{? - Eﬁzl ~ H~1. Lemma 4.7.2 provides a constant Ce>0

such that

E Ifz 2| =k IBJa (Xza)T i’ 2 EB?,,Q( za)T ll’

< sup |BJa (Xia) TH2, = B3, (Xio) TH7
Ja, Ll

< cg—2H2-kD,’§-2E§ﬁ2 < (CeDn/H)*2E¢2,.

2
i’ 2 E &2

Using the same technique in Lemma 4.7.4 by applying Lemma 2.5.2 and Borel -Cantelli

Lemma, when J = J/,a = o’ =1, one has

n- Zsz

i=1

sup ( n~1/2g-1/2 logn)

Ja,ll

and then we can get (4.7.29) combining with (4.7.32).

Case 1.3 when IJ - J’l = 1. Without loss of generality we assume that J' = J 4 1.
EBJa (Xza) BJ+1 a (Xza) TT, = E {BJa (Xza) BJ+1 a (Xza) E (T ( il I'IXia)} =0 (1)

B {Bya(Xia) Brs1,a(Xia) TaTy}’ = E{|B1a(Xia) Brs1,a (Xia)|” E (T3TH1Xia) }
~H™1 je., Ef? ~ H~1. Similar to Case 1.2, (4.7.29) follows by using Bernstein’s inequal-
ity.

Case 1.4 when |J -J | = 2, all the above discussion in case 1.3 applies with replacing
J'=J+1withJ =J+2.

Case 2 when a = o’ > 1, all the above discussion applies without modifications.

Case 3 when a # o/. Without loss of generality, suppose a = 1,/ = 2. First, we still
need to calculate the order of second moment F¢ ?’2, which is E&f —E¢ 12,1‘ The boundedness

of the density function f (z1, z9) implies that

EBJ,I (Xil) BJ’,z (X12

< lbsally oszlly //|bJ1($1 ) b1 o (z2)| f (21, 22) dz1dzy
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< |lbaally" losally* x CrH? < Cp 1 H,

for some constant Cpg ; > 0, where the last step is derived by Lemma 4.7.2. According to

Assumption (A1) and Lemma 4.7.2,

2
E{BJ,l(Xz‘l)BJ/,z(Xiz)} = [1baally* lIbs2lly //b 1 (1) b 5 (z:2) f (21, 22) dz1dz2

> o {leaals? [ 0 o} {oalls® [ 6 )
1 -
= Cf" {2 + QC?I,I/C?’—I,]. - CJ,I/CJ_]_’]_} {“bJJIHZ 2 H} X
1 -
3 {2 + 2CJ/ Z/CJ, 1,2 CJI'2/CJI_1,2} {“bJ,2”2 2H} 2 CB’2.
2 2
Ee} = E{Byy (Xa) By y (X)) TaTyp} — { BBy (Xa1) By 5 (Xi2) TuTy }
= B{B31 (X)) B}, (Xi2) E (T{T51 X1, Xi2) }
2
- [E{BJ,I (Xi1) Byr o (Xig) E (7}17}1/|X11,X12)}] -
According to Assumption (A2), there exist constants c¢, such that c¢ < E€2. Similarly, we
3 € i

can get C. > 0 such that E¢2 < CL, ie., E€2 ~ 1, then E¢2, ~ 1 by (4.7.31). Second, the
13 1 1 1,2

k-th moment of l{i’gl is given by
k k
Bléial* = E|Bya (Xaa) By o (Xia) Th2, — E{ Bua (Xaa) By (Xia) Topt, }|
and there is a constant C¢ such that E IEi,ZIk is bounded by

D
JSJ?I;IIIBJJ (Xi1) Byr o (Xa2) Tyt o = EBya (Xa1) Byr o (Xi2) ,,/2| B¢,
< CF 2H*™*DE’E€}, < (C¢Da/H)*2E€l;.

Similar to the proof of (4.7.29), the proof of (4.7.30) is completed. a
LEMMA 4.7.12. Under Assumptions (A1) to (A8), (A5), and (A7) to (A8), , asn — oo

0 (Hl/ 2) , (4.7.33)

sup sup sup sup

Mo (z1)| =
z1€[0,1] 1ISJSN+12<a<dy 1<l,1'<dy Ja,Ll

sup sup sup sup (4.7.34)

£1€[0,1] 1<JSN+12<a<dy 1$l,l'5d1

- Z {“’Ja X ®1) — o) g (171)}

i=1
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=0p (log n/ﬂ) , (4.7.35)

where w o ) (X4,71) and Y (z1) defined in (4.4.18), hence

sup sup sup sup

=0, (/7). (a730)
z1€[0,1] ISJSN+12<a<dy 1<,/ <d;

n
n~1 Z Wralll (X4, 71)

=1

Proof. According to the definitions of w Ja,ll! (X;,z1) and P

» (z1) in (4.4.18),

(1)

Mo g ot <E l‘”J,a,z,zf (X, x1)|

— 1 -
= [baally? [ |ty K (222 ) by (ua)
3 h

f (ul,ua, i, tl’) duyduqdtidty

< ”bJ,a";1 {/ ltltl’K (v1) by (ua)l f (.’l:l + hvl,ua,tl,tl/) dvlduadtldt[/

CJa
CJ-1,a

.l,._

/ ltltl’K (v1)by-1 (ua)l f (.’El + hvl,ua,tl,tl/) dvlduadtldtl/} .

The boundedness of the joint density f and the Lipschitz continuity of the kernel K will

imply that there exist constant cg such that

/ltltl’K (v1) by (ua)l f(z1+ hvl,ua,tl,t[/) dviduqdtidty < CQCiceoH,

/Itltl’K (v1) by—1 (ua)l f (1:1 + hvl,ua,tbtﬂ) dviduqdtidty < CQCxkcoH,

and therefore F l“’J,a,l,l’ (Xiv'”l)l =0 (H1/2). Meanwhile

.
Elw gy (Xis2)| = E|TaTyKn (Xaa - 21) Ba (Xia)|"

= lesally” [ |(tte) g7 (B2 85 )
(tity)" K™ (v1) {Z ( 2 ) o 71,607 (ua) 0779 (ua)}

= el | f
a=0

f (z1 + hvy, ua, b, ty) dviduadtdty] .

f (ul, Uq, i, tll) dujduqdtdty

The boundedness of the joint density f and the Lipschitz continuity of the kernel K will

imply that there exist constant cg such that

/ ' (tlt[/)r K" (Ul) b? (“a) b;—_al (ua)

f (1‘1 + hvlaumtl;tz/) dvlduadtldtl/ < CkcoH,
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,
which implies that E |w;  ,r(X; 71)] ~ R1=TH1=7/2 hence Ewia”, (Xi,z1) ~ AL

Define w; ) v (X4,21) = w41 (Xiy21) +wy oy o (X4, 71) where
Ja”’ (Xs, xl)-Kh(le_Il)BJa(Xm) / ,J =12
by the same truncation (4.7.5) in Lemma 4.7.4. One has with probability 1,

2
E {wJ,a,l,l',l (x1, .’L‘l)} l =U (n_l)
and SUPz;€(0,1] ln—l > “ia Ll 1 (Xd,xl)l =U (n_k) for k > 0. Define

SUPz, €[0,1)

Wy oy XKinz1) =wjo 0 (Xi,z1) — Bwy o g0 (X, 71),
Wyt Xis®) =wgo i Xiz1) = Bwggyp i (Xiy21) -

Then B {0y Ken)} = B{w}, Koz} ~ B{ws ) Koz} ~ a7,
and

k
9 (X,-,z1)| is bounded by

12 iz

sup IUJ 1o (X4,71) — Ew 1o (X; zl)l
1<J<N41 | Jobd’23 5 Jalll 2 s

<

2
Ja ‘”12(X1 z'l)l .

k/2 T 2
Thud there exists a constant ¢, = cDph2~¥H1=¥/2 guch that E lw}a L (XK .’Bl)l <!

2 11® n
E w.*l,a,l,l' (X;,z1)| . That means the sequence of random variables {w},o‘,l,l,’2 (X, zl)}l=1
satisfies the Cramér’s condition, hence by the Bernstein’s inequality and similar proof in
the case 3 of Lemma 4.7.11, one has (4.7.34). O
In the following, we define a noise term analogous to the formula for \111(}21), (z1) in (4.4.19)

by replacing a in (4.7.9) with a in (4.7.16)

n dp N+1 do

(2) ) (z1) = IZZ Z Z 8,019 1 o 1t (X;,z1).- (4.7.37)

i=11=1 J=1 a=2
LEMMA 4.7.13. Under Assumptions (A1) to (A3), (A5) and (A8), , as n — oo,

2 (2
SUP; <1/ <d; SUPz;€[0,1] I‘I’,(,l), (z1) - \1’5’,), (xl)l = 0p (H?).

Proof. According to (4.4.17) and (4.7.37), one has

@ (@) a1 N &2
ACYER SACH E1 DD B DI M EL I Zwa, (X5 21) T -
=1 J=1 a=2
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According to (4.7.36) and (4.7.18), Cauchy-Schwartz inequality implies that

2
sup  sup (2) L (T1) — (2) (J:l)l < VN +10, ((logn) ) Op (H1/2)

1<l'<d; z€(0,1] nH3/2
2
0, (logn) -
nH3/2

Therefore the lemma follows. a

LEMMA 4.7.14. Under Assumptions (A1) to (A3), (A5) and (A8), , asn — oo

- (@) . n d] N+1 do
sup  sup I\I' , ($1)| = sup sup |n” a7aIW ot (XirT1)
1<l/<d; z1€[0,1] vl 1<l'<d; z1€[0,1] ;Z} ng QZ__.Z @ ek,
-2
Proof. Note that by definition (4.7.37)
@ d1 N+1 dp
I‘I’ l YYD ol “,( z1)| +
=1 J=1 a=2
d] N+1 do n
Yo > aganty {wj’a’,’l, (X0 21) = b, (xl)} = Ry (z1) + Rz (z1)-
=1 J=1 a=2 i=1 T
(4.7.38)

. . . N+1 1/2
By Cauchy-Schwartz inequality, Ra (1) is bounded by (Z 1) Z 2 J o l) X

il o

1 J=1 a=2 \Z1€[0,]]
-1
n ; {wJ,a,l,l' (Xi, :1?1) - 'qu,a,l,l’ (Il)}l = Op (logn/\/;ﬁ) ’

n

n~1 Z {wj'a‘[’[’ (X, 71) - p“’Ja L (171)}

1=1

Observe that ||a]| = Op (logn\/N/n) as given in (4.7.19) and

sup
z1€[0,1]

which is given in (4.7.34), so the order of SUP, ¢(0,1] Ry (z1) by Assumptions (A7), (A8) is

ogn 2
Op (logn\/N/n) VN +1)d; (da — 1)O, (1\/%) =0, (I—V—gi’}:l) (4.7.39)

=0, ((1ogn)3 /\/ﬁ) . (4.7.40)
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Using again the discretization idea, we divide the interval [0, 1] into My ~ n equally spaced

intervals with endpoints 0 = 739 < 711 < ... <71 p, = 1. Then squle[O,I]Rl (z1)

d] N+1 do
< max DN N agaum, ., (z1E)|+ max sup
1sksMn 177 721 a=2 St 1sk<Mnz)€lzy g_1.51 k)
d] N+1 dg d] N+1 dp
DD IDILINTNINCIED 35 35 DLINTIRINCN
=1 J=1 a=2 =1 J=1a=2
=T +Ts.
Noting that a4 is
d] N+1 dg
-1
Z Z Z SJ+(a—1)(N+1)+(l—1)d2(N+1),J’+(a’—l)(N+1)+(l”—-l)d2(N+l)n X
"=1J'=1d'=1

n
> Bt o (Xia) Tyno (X3, Ti) &,

i=1
according to (4.7.16), where 55, (4 _1)(N 1)+ (1-1)dg(N-+1),0"+ (/1) (N+1)+ (1" ~1)dg(N+1) 8
the corresponding element in S = V.I.l. We define W alol 1" equals

n N+1N+1
-1
1<’}€“<"}‘Wn n E Z Z SJ+(a——1)(N+1)+(l—1)d2(N+1),J'+(a’—-1)(N+1)+(l”—1)d2(N+1)
== i=1 J=1 j/=1

By o (Xia) Tyno (X4, Ti) €ipy, T (z1k)

then it is clear that T} < Z Ea_z l”—1 Z of=1 Wa,iot - To show that each term

W, o I has order Op (n"2/ 5) we truncate the Tjne; by the same way in the proof of

a’)

Theorem 4.3.2,
=n% ._l_ g 4.7.41
Dp=n (2+n<00<5). (4.7.41)
where 7 is the same as in Assumption (A5). Let Z; = T;e; = Z Z1 3 where
ZP = Z:{|Z)) > Da}, 200 = Z;{|1Zi] < Dn} - 2 ,zﬁn = EZ;{|Z;] < Dy}
For fixed J, a, 1, ',
D
Ui,k = Z ﬁ‘wJ L ( lk) BJ’ / (Xza) (an )Zi,2n
1<JJ <N

S+ (a=1)(N+1)+(I=1)dg(N+1),J/+ (o ~1)(N+1)+(1"~1)dg(N+1)
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and denote ng,,l,, as the truncated centered version of Wa,l,a',l”’ ie.,

n
D — -1 )
Wa,l,o/,l” = 1<ri}231§4n n ;Uz,k . (4.7.42)
<k< =
. . D =
In the following, we will prove that |Wa,l,a’,l” - Wa,l, 2| = Op (H).
It is clear that |Wa Lo I — WaDl | S A; + A, where
n N+1N+1 D
Ay = | Jpax n1Y NN T (z1,k) Byt o (Xia) 0 (X3, T5) Z; 1
i=1 J=1 J/=1
SJ+(a—1)(N+1)+(l—1)d2(N+1),J'+(a’—1)(N+l)+(l”-1)d2(N+1)l )
n N+1N+1 D
Ap= max In7 30> D by (BLK) By (Xia) o (Xi, Ti) 2,3
i=1 J=1 ji—1

SJ+(a—1)(N+1)+(l—1)d2(N+1),J’+(a’—-1)(N+1)+(l”—1)d2(N+1)l :

T
Let l"’wa L (zl,k) = {,J'wl alll (xl,k) 7T 1#u)Na Ly (xl,k)} , then A < CQCSX

N+1 N+1 n b 2y 1/2
-1
e JZ%, L @1) Z{n Y By (Xia):';wo(x,-,tr,->zi,3"} ,

J=1 =1

according to Lemma 4.7.3. By the proof of Theorem 4.3.2, IZ D"I = (Dn 1+’7)) and

Z BJI a’ ia)TiluU (X;,T;)| =0p (logn/\/r_l)

sup

by Bernstein’s inequality given in Lemma 2.5.2. Therefore Ay < CD, (1+n)

N+1 N+1 n 2)1/2
2 -1 . . T.
lsTg’iln Z u“’l,a,l,l’ (zl,k) Z {n ZBJ’,Q’ (Xza)a(tht)}

J=1 =1
/2 .
= Op {D (14+m) (NHN log n/n) } =0p (Nl/zn"g/10 logn)

where the last step follows from the choice of Dy, in (4.7.41). One has with probability 1,

n N+1N+1
nTT D D by (51k) By (Xia) 0 (Xa, Ta) Z40

i=1 J=1 J/—]

S 1+ (a=1)(N+1)+ (1= 1)dp(N+1),J/+(o/ = 1) (N+1)+ (1" ~1)dg(N+1) = O
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for large n. Therefore, one has IWa,l,a’,l” - WaDl o l"l <AL +A2 =0p (n—2/5). Next

we want to show that WaD,l,a’,l” =0p (n'z/ 5), with WaD,l,a’,l” defined in (4.7.42). Since

- N+1
Uik = HFuw, o (z1,) St alal1" {BJ’,a’ (Xia) 0 (Xy, T) Zi,[)?n}f=1

. . T
so the variance of Uj ¢ is Ho (z1k) S atalt ¥

"

N
D. T
var ({BJ,,Q, (Xia) o (X, T Z[ } 1) St atatmugy y (#14)" -

According to Assumption (A5), o2 (x,t) is measurable and bounded, so it is easy to see

that
N+1
AV it < Var ({B 7 of (Xia)} 7O (Xi)) < GV

Thus, one has

T
var (Ui) ~ to )y (Z16)" S1,010/0V 1,016t ST 0l Hoy  y (F1,6) V2,0
D T 1/2
where V7 p = var (Zi,z"). Let & (21 ) = {pwa”, (xl,k) Pu, (Il,k)}
cacycact {x (z1k) }2 Vzp < var (U ) < CaCyvCaCZ{x (z1£) }2 Vz.D-
When r > 3, the r-th absolute moment E IUi,kr is

E > Mg o1 (z1,%) Byt o (Xia) 0 (X3, Ty)
17,0 <N+1

r Dﬂ, r
SJ+(a-l)(N+1)+(l-1)d2(N+1),J'+(a’—l)(N+1)+(l”—1)d2(N+1)I E (IZi,2 I Ixini)}
r—2
< CaCh{r(z14)} O (Hl_r/2) D2V p < {Co’f (z1,k) DnH_l/z} rlE IUi,kl21

which means the sequence {U,-’,C }:;1 satisfies the Cramér’s condition with Cramér’s constant

equal to ¢y = gk (xl,k) DnH™Y 2 applying Bernstein’s inequality for r = 3

-1 . 93 n o7
Piin ZUi,k 2 pn ¢ Sarexp _551n§-i—_—5c*pn +a2(3)a([q+l]) )

=1
where

2 e 6/7
_ . —=3/5—1/2 _on Pn _ omg
=pn H logn, a1 =2—-42|{14+ —5———], a2(3)=11ln | 1+ ,
o q 25m% + 9Cxpp ) Pn
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2 3 - 1/3
m3 ~ {r (216) Y’ Vz,0, m3 < {e{x (z1)}’ H/2DuVzp} -
Then by taking ¢q such that [q—_’;r] > cglogn, ¢ > cyn/logn for some constants cg, ¢y, one
has aj = O(n/q) = O (logn), az (3) = o (n?). Assumption (A2) yields that

6/7 6/7
o([75]) " = {moee (2 [Z5])} s owoon

and as n — o0, one has

qp?l S c1p2n'1/5H"1 log2n 40211_1/5H'1 logn

> ~ ~ plogn.
25m3 + 5capy ~ 25m3 + 5D H-2pn—35H2logn  Dan—2/on—1/5g-1 " F"%®

Thus, for n large enough,
1 n

p { ~ > Uik

=1

Taking cg, p large enough, one has for large n, P {I'l‘ Yo Ui k
00 D oo Mnp 1 00 3
ZY—:IP(IWOIJ,O/J” ZPH)=ZIZP(“T’" ZpH) SZMnn < o0
n= n=1k= n=1

Thus, Borel-Cantelli Lemma entails that Wfl oL = Op (n"2/ 5). Therefore, one has

Wi =0p (n‘2/5) since lWa,l,a/,l” - W£l,a’,l” =0p (n‘2/5). Hence

a!’ )

> pH} < clognexp{—coplogn} + Cn2-6%0%0/7 < =3

> pn’2/5} < n~3. Hence

ik

dy dg di dy

NS Y DD Wapwwr =0p (n7%°). (4.7.43)

I=1a=2/"=] o/=1

Employing Lipschitz continuity of kernel K, the term T3 equals 15‘?2’154 ) SUPz, e[z Le—171 k)

dy N+1 dg d] N+1 dg
ZZZ JQUIWJ ”/ ZzzaJall-‘wJ ”,( lk)
I=1J=1a=2 =1 J=1 a=2

is bounded by ||a]| x

N+1

2 (o 2
lsrll"lglnzle[zi:pl,zl | Jz_: E [{Kh (X1 —21) = Kp (X1 = 218) }* {TuTip Bra (Xa)} ]

Therefore, according to Assumption (A8), Lemma 4.7.2 (ii), and (4.7.19),

N+1
hiM2 Z EBJQ(Xa) uT (4.7.44)

=0 (logn\/ Nn‘lh_‘an_?) =o0p (n 1/2) :

Ty, < Cqu(n-l/QNl/zlogn)
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Combining (4.7.43) and (4.7.44), one has sup Rj(z1) = Op (n‘2/ 5). The desired result
1:16[0,1]
follows from (4.7.38) and (4.7.40). O

Proof of Proposition 4.4.2. (4.7.1) implies that

|Eng 1y (Xi1)| < |Engag (Xia) — Eamyy (Xi )|+ |Enmg g (X4,1)](4.7.45)

< Cwo(d2—-1) 2;:;)@ [yl B2 + Oy (n—l/z) '

By definition (4.4.14), SUPz, e[0,1] I\Ilb 1% (:cl)l < R; + Ry + R3 where

d
1S 1
Ry = swp |- Kp(Xi—z1)) {miy(Xi1)—911 (Xi1)} TuTy
.1:16[0,1] ni=1 =
1 n
Ry = sup =) Kp(Xj—11)
z1€[0,1] ”2 !

]

1
D {94 (Xi, 1) — Eng 1y (Xi,1) — 1y (Xi, 1)} TuTyy
1=1

d
1 1
R3 = sup -—ZKh (Xil_zl)zEflg-l,l (Xs,.1) TaTyr

z1€l01]|™ 5 =1
For Rj, using (4.7.1), one has
dl n
Ry £ Coo(dz—1) sup. ||ma,|| sz > | TuTy
2za =1 i=1

= O (H2) {l};lEmﬂ;l,] + op( 1/2)} o (H2) (4.7.46)

To bound Ry, denote the empirically centered spline basis as B} | (Xja) = Bjq (Xia) —

EnBjo(Xia),1<J < N+1,1< a<dy. Then one can write for some (&;’l,&‘*,’a,l)

’

Ja,l
dy N+1
my (x) —mgr — Zgaz (x) +ZEngaz (X) =5y + Y, D &5 iBla(Ta).
a=1 a=1 a=1J=1
Thus
di dy N41
-1
Ry = sup |n ZKh(le—Il ZZZGJO[BJO ia) T Ty

z1€[0,1] i=1 =1a=2 J=1
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dp da N+1 n
<3y Ia}a, sup nbS " Ky, (X — 1) TuTy BS o (Xia)
- & WP Ja \

l=1 a=2 J___l 15JSN+1,ISISdl,2SQSd2 i=1

dy dy N+1
=30 2 [&aa] x
I=1a=2 J=1

n
sup nUN " Ky (Xi1 — 1) TyTyr { Bya (Xia) — EnByga (Xia)}
1<J<N+1, o
1<i<dy,2<a<dy

Equation (4.7.33) in Lemma 4.7.12 states that

0p (H'2),

n~1 ZKh (Xi1 — 21) TyTy B (Xia)| =
i=1

sup sup
£1€[0,1] 1<J<N+1,1<1,1'<dy,2<a<d,

while equation (4.7.28) of Lemma 4.7.11 states that supj<j<nt1, |EnBja (Xia)| =

Op (logn/+/n) and standard kernel argument shows that

n
n~1 ZKh (Xi1 — x1) TyTy| = Op(1).

=1

sup sup
r1€[0,1] 1<, <dy

Therefore, one has

1 d2 N+1 1/2 logn
s forenan 328w} o () o ()

l=1a=2 J=1

d ) dy
= Op [ ) || (x) —mor — Zgal (x) + Z Enga (x)
= Op (712 + H?). (4.7.47)
The last step follows from
dy
mhy (x) — mo; — Zgaz (%) + Y Engat (x)
a=1 a=1 2
dy
< iy (%) = my (x)|lg + ||y (x) = mor — Z 9ot X)|| + D Engat (%)
2 le=1 2
dg
< 3Cx Z ”m:ﬂ“mhﬂ + Op (n"l/z) .
a=1
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Thus Ry = Op (n"l/2 + Hz). Similarly,

n

1
R3 = sup E Kp (X5 — 1) E Eng_ 11 1,-1) Tz‘lTiz'
20,1 |™ =1

Z Kh (le

d
S{ZlEng_Lz (Xi,.1) } sup

=1 1‘16[0 1]

ZK}, (X1 — 1) TyTy| = Op (n"1/2+H2) .

(4.7.48)

=1 16[ ’ ]

d
< {Z |Eng1 (Xi,1)] } sup

by (4.7.45). Combining (4.7.46), (4.7.47) and (4.7.48), one establishes Proposition 4.4.2. O
Proof of Lemma 4.4.1. Based on formula (4.4.11), n™1 "7 & 1(Xi1) is

n_ d2 N+l dg N+1 n
nIY NN GgaiBre (Xia) = 3 D dgay {ﬂ_l > Byga (Xia)}-
i=10=2 J=1 a=2 J=1 i=1

Lemma 4.7.8 implies that

dg N+1 dy N+1 1/2
Yo dgag| < SINH(d2-1)- ) D a5,
a=2 J=1 a=2 J=1

IN

{(N +1)(dp—1) -5Ta}1/2 =0, (Nn-1/2 logn) .

Now it is clear from (4.7.27) and (4.7.28) that sup;<j<n+1 |n_1 Y1 Ba(Xia)| <
An1=0p (n"l/ 2]og n), hence

1 dy N+1 . | N (log )2
=D (Xia) <D0 D Ayl sup |n > By (Xia)| =O0p (—;— :
=1 a=2 J=1 al i=1

(4.7.49)
While standard kernel theory implies that sup, 1€l0.1] In‘l Y Zgl Ky (Xi1 — 1) T,ﬂ';l/l
= Op (1) .Thus the lemma follows immediately from (4.7.49) and (4.4.16). O
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CHAPTER 5

Spline-backfitted kernel smoothing of

generalized additive model

5.1 Introduction

Following Stone (1985), p. 693, the space of a-centered square integrable functions on [0,1]
is
M= {g E{g(Xa)} = 0,3{92 (xa)} < +oo},1 <a<d

in which g are finite constants. The constraints that F {go(Xa)} = 0,1 < a < d
ensure unique additive representation of my, as expressed in (1.4.3), but are not neces-
sary for the definition of space M. In what follows, denote by E, the empirical ex-
pectation, Enp = Y ;¢ (X;)/n. We introduce two inner products on M. For func-
tions g1,92 € M, the theoretical and empirical inner products are defined respectively as
(91,92) = E {91 (X)92(X)}, (91,92) = En{91(X)g2(X)}. The corresponding induced
norms are Hgﬂl% = Eg% (X), llg1 ||%,ﬂ = Eng% (X). The model space M is called theoretically
(empirically) identifiable, if for any g € M, (Igll2 = 0 (llgll2, = 0) implies that g =0 a.s.

In this chapter, for any compact interval [a, b], we denote the space of p-th order smooth
function as CP)[a, ] = { glg?) € C|a, b]}, and the class of Lipschitz continuous functions
for constant C > 0 as Lip ([a,8],C) = {g|]g(z) — ¢ ()| <Clz- /|, Vz,2’ € [a,b]}. We

mean by “~” both sides having the same order as n — co. We denote by I, 4 the d xd iden-

tity matrix, and 04,4 the d x d zero matrix. For any vector x = (z1,z2,--- ,z4), we denote
1/2
the supremum and Euclidean norms as |x| = max;<4<d|%al and [|x|| = (Zgzl :cg) .
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We need the following Assumptions on the data generating process.

(A1)

(A2)

(A3)

(A4)

(AS)

5.2

The additive component functions mq (zq) € c® 0,1, a=1,..,d.

The inverse link function b satisfies the following: b € C? (©) where © is a compact
interval such that m ([0, l]d) is in the interior of © and Cj > maxgcgt” () >
mingeg b’ (8) > ¢, for some constants Cp > c, > 0. There exists a compact interval

A such that my ([0,1]) C A and that A+ m ([O, 1]d—1) C © where m1(x) =

c+ Y8y ma (o) with x 1 = (T2, ..., Tq)-

The conditional variance function o2 (x) is measurable and bounded. The errors
{ei}tin, satisfy E(g|F;) = 0, E (ef|.7i) =1 F (|5,-|2+'7 If',) < Cy for some
n € (1/2,1] and the sequence of o-fields
F,-=cr{(Xj),j <%€4,] Si—l} fori=1,...,n.
The density function f(x) of (Xi,..., X4) s continuous and

0<csg< inf f(x)< sup f(x)<Cy<oo

x€[0,1] x€[0,1]4

The marginal densities fo (o) of Xa have continuous derivatives on [0, 1] as well as

the uniform upper bound Cjy and lower bound cy.

There ezist positive constants Ky and Ag such that a(n) < Koe~ 20" holds for all n,

n
with the a-mizing coefficients for {Z,- = (X?,e,’)}‘ ) defined as
1

a (k) = sup IP(BNC) - P(B)P(C)|,k> 1.
Beo{Zs,s<t},C€o{Zs,s>t+k}

Oracle Smoothers

We need following Assumption for kernel function.

(A6)

The kernel function K € Lip ([-1,1],Ck) for some positive constant Cg > 0, and is
bounded, nonnegative, symmetric, and supported on [—1,1]. The bandwidth h of the
kernel K is assumed to be of order n=1/5, ie., chn"l/5 <h< Chn‘l/5 for some

positive constants cp, Cj,.
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If the last d — 1 components {mqy (xa)}g=2 were known by “oracle”, then the only
unknown component m (z1) could be estimated by the following procedure. Define for

each z; € [h,1 — h] an local quasi-likelihood function I (a) = I (a,z;) as

_ n
n~tYy o Wi{a+ma(Xin)} - b{a+ma (X)) Kp (Xa — 1) (5.2.1)
and define the oracle smoother of m (1) as

mi,1(z1) = argmax! (a) . (5.2.2)
acA
THEOREM 5.2.1. Under Assumptions (A1)-(A6), as n — oo
sup IﬁlK,l (z1) - m (Zl)l = Oa.s. (]Og n/v nh) = Og.s. (n-2/5 log n) .
z1€[h,1-h]
THEOREM 5.2.2. Under Assumptions (A1)-(A6), for any z1 € [h,1—h], as n — oo, the

oracle kernel smoother my 1 (1) given in (5.2.2) satisfies

Vi (g1 (1) =y (1) = biasy (21) K2/D1 (z1) Yy
— N (0, D; (z1) ™ vf (z1) Dy (-”01)"1)
where
Dy (z1) = fi(z1) E [t {m (X)} | X1 = z1] (5.2.3)
and

B@) = fi@)E{e? (X)X =21} IKI3,
bias; (z1) = #2(K){m'1'($1)f($1)E[b"{m(x)}IX1=11]
4 (21) f (21) 5B [8" {m (0} Xy = 1]

~{m @ @) EP mX)} X1 ==]}.  (524)

The same oracle idea applies to the constant as well. Define the the quasi-likelihood

function
- _ n
le(@=n"t)  Vif{a+me(X)}—blat+me (X},
where m . (X) = Zg=1 ma (Xa) and then the infeasible estimator is & = argmax,e 4 I (@) -

Clearly, I (¢) = 0.
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THEOREM 5.2.3. Under Assumptions (A1)-(A5), as n — oo,

€ —as.cand|C—c|=0p (n_l/z) .

Although the oracle smoother my 1 (z1) possess the desirable theoretical properties in
Theorems 5.2.2 and 5.2.1, it not useful statistics as it is computed based on the knowledge
of unavailable functions {mq (za)}g=2 and constants c. They do, however, motivate the

spline-backfitted estimators that we introduce in the next section.

5.3 Spline-backfitted Kernel Estimators

We need following Assumption for kernel function.

(A7) The number of interior knots N ~ nM4logn, ie., an1/4 logn < N < CNn1/4 logn

for some positive constants c,Cp, and the interval width H = (N + 1)'"1 .

In what follows, we denote [|K||3 = [ K (u)? du, g (K) = [ K (v) u?du.
For J =0,...,N + 1, define the linear B spline basis as

N+D)z—-J+1 , §51<z<¢y
byj(x)=QQ-|z-&l/H)p = J+1-(N+1)z , {5<z<&y41 »
0 , otherwise

the space of a-empirically centered linear spline functions on [0, 1] as
N+1
G?), = {ga : 9a (Ta) = J=0 Ajby (za), En{ga (Xa)} = 0} 1<a<d,

which is equipped with the empirical inner product (,-)g,- Define L(g) =
% S [Yig (X;) —b{g(X;)}], g € G2. The multivariate function m (x) is estimated by an

additive spline function

m (x) = argmax L (g) . (5.3.1)
e
Next define the quasi-likelihood function
- 1 ) . .
l(a) =~ > Yida+ma (X)) =b{a+rm (Xi )} K (X —21) (5.32)
msBK,1 (T1) = argmax (a) . (5.3.3)
acA
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THEOREM 5.3.1. Under Assumptions (A1)-(A7),

SUp ImSBK,l (z1) — Mk, (xl)l = Og.s. (n_2/5) .
z1€[0,1]

Theorem 5.3.1 follows (5.6.11), Lemmas 5.6.11 and 5.6.12. The following theorems are
straightforward from Theorems 5.2.2, 5.2.1 and 5.3.1.

THEOREM 5.3.2. Under Assumptions (A1)-(A7), asn — oo

sup ImSBK,l (z1) —my (zl)I = Oa.s. (log n/‘/n—h) = Og.s. (n-2/5 lOg'n) .
:L'IEIh,l-—h]

THEOREM 5.3.3. Under Assumptions (A1)-(A7), for any z1 € [h,1—h], as n — oo,

mgBK,1 (1) given in (5.3.3) satisfies
o . 2 dj
vnh {mSBK,l (z1) — my (1) — biasy (z1) h°/Dy (751)}1,=1
- N (0, Dy (z1) ™' vf (z1) Dy (Il)_l)
where bias) (z1) and Dj (1) are defined as (5.2.4) and (5.2.3).

Then define Ic (a) = n "1 0, [Y; {a + 1 (X;)} — b{a + e (X;)}], where ¢ (X) =

Zf,:l 1q (Xa). Define next the spline-backfitted estimator ¢ = argmax,¢ 4 Ic (a).

THEOREM 5.3.4. Under Assumptions (A1)-(A5) and (A7), as n — oo,

|¢—¢l =0p (n—l/z) , hence |¢ —c| = Op (n"l/Z) .

5.4 Implementation

We implement our procedures with the following rule-of-thumb number of interior knots
N = Np = min ([n1/4 logn] + 1,)

which satisfies Assumption (A8), i.e.N = Ny ~ n}/4logn, and ensures that the number of
parameters in the linear least squares problem.
According to Theorem 5.3.3, the asymptotic distributions of the estimators gk ¢ (Za)

depend not only on the functions biasq (Za) /Da (za) and Dq (:vo,)_1 vg (za) Da (xa)—l,
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but also crucially on the choice of bandwidths hy. So we define the optimal bandwidth of
hq, denoted by hq opt, as the minimizer of the asymptotic mean integrated squared errors

(AMISE) of {fa(ze),! =1,...,d}, which is defined as

AMISE {rha} = / [{biasa(za)h?J,/Do:(xa)}2

+Dq (z6) "L 02 (za) Do (za) !/ (nha)] fo (2a) dZa.

By letting d AMISE {ﬁza,.} /dha = 0, one gets the optimal bandwidth hq opt as

aont = {"—1 J Do (xa)—l v2 (za) Da (ilfoz)-l fa (za) dza }1/5
P 4 [ {biasa (Ta) /Da (za)}? fa (Ta) dTa '

which is approximated by

B n~1 3% 1 Do (Xia) "' v2 (Xia) Da (Xia) " Ve
ot 437 {bissa (Xia) /Da (Xia)}? !

where

Do (za) = fa (za) E [b” {m(X)} [Xa = za]

and

% (za) = fa(@a) E{o® (X)|Xa=za} I3,

biasa (za) = p2 (K){mg (za) f (za) E [t {m (X)} |Xa = za]
+t (30) £ (20) o B [ (m (X0} IXa = 20)
— {mly ()}  (2a) E [" {m (X)} | Xa = 2a] } -
To implement this, we propose following estimation methods for the terms
m,a (ita), mg (:Ba), fa (xa): E {0'2 (X) |XC! = xa}: E [b” {m (X)} |Xa = :Ua] ’

E [b" {m(X)}|Xq = o) and Bg_a E[bt" {m(X)}|Xa = za]. The resulting bandwidth is

denoted as i"a,opt-

e The derivative functions m} (X;,) and ml(X;,) are estimated as

. k-1 N+3 » 2
3 kg e X5+ 3 a0 (Xi1 — tak—3)° and
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a - " o N+3
Yook (k=1 aaixXi? + 6502 dauk (Xi1 —tak-3) where {@aik}r

maximize the following

n 3 N+3 3
Doy {Yi (Zk=0aa,lk iy Gabk (Xia = tak-3) )
3 N+3 ,
=210 Gk XE + Z ok (Xia — ta k—3)

where min; X;q = ta0 < -+ < g N41 = max; Xjq

e E [t {m(X)}|Xa = zq is estimated as

3 - N+3 - 3 e
> k=0 aﬁ,l,kzﬁ + Ek:_j; Qo lk (za — ta,k—-3) by minimizing

Z:;l [b" {m(Xi)} - {Zk 0 %l KXk + ZN+3 otk (Xa = tk_3)3}] 2,
d

5;—E[b” {m(X)}|Xa=12o] and E[t"{m(X)}|Xo=1za) are estimated
a

3 ~k k— N+3 ~ 2 3 .
by Tkoikagrra | + 3Ky Gask (Fa —tak-3)” and Ypo8f; ;T +

3 c e ..
Z,C’_"f’ 8o,k (Ta — tak—3)" by minimizing

n "o 3 k N+3 3 2
Z,‘=1 b {m (Xi)} - Zk:o aa,l,an + Zk=4 Ao l.k (Xa - tk—3) -

o E {02 (X) [ Xa = zq} is estimated by

3 - N+3 - 3 C e
zk=0 a’;’l,kxa + Zk:‘-t Aol k (:z:a - ta,k-—3) by minimizing

n N+3 2
S - ¥ {m (X {Zaazkx + ) ag ik (Xa — ti- 3)3} :

i=1 k=0 k=4

e Density function fy (z4) is estimated by ;ll— > i=1 Kn, (Xiq — Ta) with the rule-of-the-
thumb bandwidth Ag,.
5.5 Examples

5.5.1 Simulation 1

The data are generated from the model

T

v =g {50 mi 06) )07 0= 1
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with m; = sin(7z), mg = ®(3z) and m3(z) = my(z) = mg5(z) = z, where @ is the
standard normal distribution function. The data are generated from the following vector

autoregression (VAR) equation for 0 < a,r < 1,

1 » - r
Xt=aXt_1+ei,ei~N(0,2),25t§n,E= T : ,

P &

r -~ 1 1

with stationary distribution X¢ = (X1, ..., Xpg)T ~ N (O, (1- az)_1 E). Clearly, Higher
values of a correspond to stronger dependence among the observations, and in particular,
if a = 0, the data is i.i.d. The parameter r controls the correlation of the bivariate X
and X;9. In this study, we have experimented with two cases: r = 0, a = 0; r = 0.5,
a = 0.5 to cover various scenarios. For @ =1,...,d, let a::'x,min, :rf,,m denote the smallest
and largest observations of the variable z in the i -th replication. The functions {ma}g=l
are estimated on sample values.

Denoting the estimator of m; in the k-th replication as rgpk , k and Xiq are the points
where the functions are evaluated, we define the (mean) integrated squared error (ISE and

MISE) as

. 1 n . 2
ISE(gBK,ak) = =), , {MsBKak(Xtak) — Ma(Xtak)}”
n t=1
1

100 .
100 2—k=1 ISE(SBK a.k)-

MISE(rsBK ) =

Then to see that the SBK estimator is as efficient as the "oracle smoother” 1k o (o), We

define the empirical relative efficiency of rigpk ¢ (Ta) With respect to ik o (Ta) as

E?:l {ﬁlK,a (Ta) — max(xta)}2 1/2.
Yy {sBK a(Xta) — Mma(Xta)}

Tables 9 and 10 show the MISEs of Effs of mgpk o and fmk ¢ for a = 1,2. It is obvious

EFF =
a

that the SBK estimator has as good as performance of oracle estimator, and it corroborates

with Theorem 5.3.1.
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5.5.2 Simulation 2

Using the same model in Simulation 1 but with high dimension d = 10, where mq (7o) =
sin (nz), a = 1,...,10 and data are generated the same way. We have run 100 replications
for sample size n = 500, 1000, 1500, 2000. The MISEs of Effs of mgpk 1 and mk ) are
shown in Table 11. As expected, increases in sample size reduce MISE for both estimators
and across all combinations of r and a values.

To see the convergence, Figure 13 plots the kernel density estimation of the 100 empirical
efficiencies for & = 1 and sample sizes n = 500, 1000, 1500, 2000 for r = 0, a = 0. The
vertical line at efficiency = 1 is the standard line for the comparison of rggk ; and mk 1.
One can clearly see that the center of the density plots is going toward the standard line 1.0
with narrower spread when sample size n is increasing, which is confirmative to the result
of Theorem 5.3.1. The basic graphic pattern of Figure 16 with r = 0.5, a = 0.5 is similar to
that for the i.i.d case, though with slower convergence rate and relatively poorer efficiency.

To have some impression of the actual function estimates, for r = 0, a = 0 and r = 0.5,
a = 0.5 with sample size n = 500, 1000, 1500, 2000, we have plotted the SBK estimators
and their 95% pointwise confidence intervals (three dotted lines), oracle estimators (dashed
lines) for the true functions m; (solid lines) in Figures 17—24. The visual impression of
the SBK estimators is rather satisfactory and their performance improves with increasing
sample size.

Lastly, we provide the computing time of Example 2 from 100 replications on an ordinary
PC with Intel Pentium IV 1.86 GHz processor and 1.0 GB RAM. The average time run
by XploRe to generate one sample of size n and compute the SBK estimator is reported in

Table 12.

5.6 Appendix

5.6.1 Preliminaries

In the proofs that follow, we use U and u to denote sequences of random variables that are

uniformly O and o of certain order.
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LEMMA 5.6.1. ([70/, Lemma A.2) Tthere ezist constants cg > 0 such that for any

= T 1+d(N+1
) 2
R )\g + Z ’\3.01 <Pt Z AJaBia (5.6.1)
J,a J1a 2

LEMMA 5.6.2. ([70/, Lemma A.4)Under Assumptions (A2), (A4) and (A6), the uniform

supremum of the rescaled difference between (g1, 92)7 5, and (g1, 92)7 is

o

(91,92)2,n — {91, 92)2 logn
Az I Totllz ozl .. (o) (562)
91,92€Gn " [0,1]
5.6.2 Oracle smoothers
LEMMA 5.6.3. Under Assumptions (AI)-(A()'),
sup (I (mq (z1)) — biasy (z1) h2| = Og.s. (log n/v nh)
z1€[h,1-h]
where bias) (z1) is defined as (5.2.4).
Proof. According to (5.2.1), I (my (1)) equals
n
1ny i [¥i =¥ {mi(z1) + ma (Xi0)}] Kn (Xig - 71) (5.6.3)

=1/nY " [V {m (X))} =¥ {m1 (21) + ma (Xi1)} + 0 (Xs) 5] Kn (Xir — 1)
Let §in =&in(71) =&in1+&in2is
[t/ {m (Xi)} = b {m1 (z1) + m 1 (Xi1)} + 0 (Xi) &3] Kp (Xi1 — 21) (5.6.4)

—E [[t {m (Xi)} — ' {m1 (z1) + m1 (Xi1)} + 0 (Xi) &) Kp (X1 — 71)]
where

Ein1 =E&in1 (1) =0(X;)eiKp (Xi1 — 21) -

§ing = Ein2(z1)= [V {m(Xy)} -t {my(z1) +m1 (Xi1)}] Kh (Xi1 — 1)
—E [t/ {m (X))} = V' {m) (z1) + m_1 (Xi1)}] K (Xi1 — 21)] -
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Then according to (5.6.3), one can rewrite [* (m; (z1)) as

1/n ZLI Ein+E [0/ {m (X))} =6 {my (z1) +m_1 (Xi1)}] Kp (Xi1 — 71) -
While
E [t {m (X;)} =¥ {m (z1) + m_1 (Xi1)}] Kn (Xi1 — z1)

= /{0 1 [o/ {m (w)} = & {my (z1) + m (u1)}] %K <u1 ;zl) £ (w)du

= /[0 1 [b” {m(z1,u1)} {m1 (u1) — my (1)}

+%b”' {m (z1,u1)} {m1 (u1) = mq (z1)}% +u (h2)]

1 uy —n 2
EK< - )f(ul,u_l)duldu_1+u (h )

1 / (hv )2 "
= ,/[(),1]d'1 /[;1,1] [b {m (z1,u;)} {hvlml (z1) + 21 my (z1) +u (h2)}
+%b’” {m(z1,u1)} {hvlm'l (z1) + (hv1)?m! (z1) +u (h2) }2]

K (v1) {f (z1,u) + hvl%’lu—'l) +U (h2) } dvidu_14u (hz)

= K2 /{;Lll 'U%K (v1)dyg {ml (13132f1 (z1) o1 b {m (z1,u.1)} f (ulz1) du_y

+m] (z1) A) o b {m (z1,u1)} §f—(-;;—’1“-—1)du_1} +u (h2) :
= h2pz (K) {m] (z1) f (z1) E [b" {m (X)} | X1 = z4]
b (21) 5o [ (22) B [ {m (0} X1 = 1]
~ {ml @)} [ @) BB {m (0} 1% = 1] } +u (h?).
Let Dy = n® witha < %, a(2+1n) > 1,a(l+1n) > 2/5, which requires n > 1/2. Rewrite
€ = 651" + 652"' + eg{‘ where eﬂ" = ¢; {|e;| > Dn} ,6521" = ¢; {|le;] < Dn} - ePn eDn _

i3:63 =
Ee; {|e;| < Dp}. Define for j = 1,2, 3, §in1,j = &inl,j (z1) is

[t/ {m (X0)} = ¥/ {ma (1) + my (X 2)} + 0 (Xo) el7 | Ky (Xaa = 1)
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According to Assumption (A5), one has

00 . 00 CGE'IE,'|2+17
Do PUd2 D) <3 ) =i —

oo 1 200 —a(2+
< CUCJ E n=1 1—)'2717 = CUCJ n=1n a(2+n) < 0Q.
n

By Borel-Cantelli Lemma, one has with probability 1, n™! S &in1 = 0 for large n.
Therefore, one has sup; ¢, In 1y &inia] = U (n‘k) for any k > 0. Using As-

sumption (A5),

E|ei|*tm B
Ef,):? = |-E¢i{|eil > Dn}| < —IlﬁlTn -0 (n 2/5) _
n

Hence

Ry bimas = n T D Kn(Xa o) (X))
= w1y Kn(Xa —21)0 (n75) = 0. (n725).
Meanwhile
E&Z, 12 =Elo(X;)eiKp (Xip — 1))
= b7 (21) B {0 (X) X1 = 2 } IKI3 {1+ u (1)}
E |§i,n,1,2|’c =E (|€i,n,1,2|k_2 |€i,n,1,2|2)

< sup Ifi,n,l,2|k_2 E |€i,n,1,2!2 < Cy2*2Dk-2/pk-2E |€i,n,1,2|2,
J?]_G[O,l

then there exist a constant ¢; = CyDy/h such that

E (Ifi,n,1,2|k) < c’f—2k!E’(§?,n’1’2), k > 2. By using Lemma 2.5.2, we let k = 3,a2(3) =

5mg/7 9 2 -1 logn
1In{l1+ , m2 = E(Ei,n,lﬂ) =0 (h ), En=2a

€n \/nh’
Z qe> n g
P E - >nepp <ajexp| —————— | +a 30([—])
{ pa Ez,n,l,Q n} >a P( 25171% +561€n) 2 ( ) 7+1

take ¢ such that [Z;%I] > cologn,qg > l(c):;:z for some constants co, c3.
) (alog n)2 c3n 2 (log ”)2
gen _ q nh S logn nh

logn

vnh

25m% + Scen - 25m% + 5ci1en

251n% + Sc1a
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2 2
cza“logn c3a®logn
2 & = 3 g ~ a?logn,

vV

logn, 25m2h + 5 ap—1/2p-1/2)
25m2h + 5¢9Dy, /ha—2=h my aconn ogn
2 0Dn/ Vnh

€

a1 =2—-+2| 14+ ———— ] = O(logn),
' ( 25m%+5c15n) (log )

5m6/7
ap(3) =11n |14 —3 , with m3 = max Hfi,n,l,2”3 < ¢gDnp,

En 1<i<N
¢6Dn _ 2
az (3) < 11n {1 + an‘1/2h—1/2logn} - o(n ) )
6/7
6/7 | ——
a([LD < (Koe M[q“ ) < Cn~6%02/7,
qg+1

therefore for large n
—_ n
P {n 1 Izi=1 fi,n,1,2| > alogn/V nh}
< O(logn)exp (—C5a2 log n) 4+ Cn2~6%02/7
2
= n~ %% O(logn) + Cn2~6Xc2/7

for cg, cs5,a large enough. For all z; € [h,1 — h], we discrete by equally spaced h = 1 9 <

1'1,1<"'<.’L'1,Mn=1—h, Mn=n4,

P{0<]<Mnn lZ, 1fzn12 Il;)'>alogn/\/_}

< Zgi"l P {"—1 IZ:;I §in,1,2 ($1,j)| > alogn/\/ﬁ_ﬁ} <Cn M, <Ccn?

for a and ¢y large enough. Borel-Cantelli lemma implies that

lzl 1 Eznl2 T1,5 |—Oas (‘1105”/\/_)

1<]<Mn

Taking supremum over the whole interval [h,1 — k], one has

sup | 121 . Cin12(x )l max | -1 Z::l €inl2 (xl,j) +

z1€lh,1-h] 0<j<Mn

n!  max sup

0<j<Mpn-1 $1€[11,J ’xl,j+1]

Z:l 1 flﬂ,l,Q z1) Z £1n12

<CnV2logn + CM; W2,
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by Lipschitz continuity of kernel K. So one has

11861115,1] I"_1 Z?:l 'S"’"’l’2| = Oas. {("h)-w log"} ‘

Then putting ;. 11,8 n1,2:8in,1,3 together, one has SUPz, €[0,1] In—l Z?:l 5i,n,1| =
Oa.s. {(nh)-l/2 105"'}-
Because E [[b/ {m(X;)} — b’ {my (z1) +m (Xi1)}] Ky (Xi1 —x1)] = U (h?), so

Eg,%mz is

A2 /[0 1y [/ {m (w)} = ¥ {mq (z1) + m 3 (u1)}]* K (%)2 F (w) dutU (h“)

_ / / 2
= h 1/[0,”(1_1 /[_1’1] [ {m (z1 + hvy,u 1)} — b {my (z1) + m 1 (u1)}]

K (v1)? f (z1 + hvy,uy) duydu 1 +U (h“)

- pl /[o,ud-l /[_1’1] [b”{m (z1,u_1)} {hvlm'l (1) +U (h2)}]2
K ()2 {f (z1,01) + U (h)} dvrdu 1 +U (h*) = U (h).

Note that sup, | {m (X;)} = b/ {m1 (z1) + m 1 (X;.1)}| < Cph when

Kp (Xij1 — z1) # 0. Similar to the proof for ; , 5, one has
k -
E [ina|” < (202 BE o

and then sup;. e[p 1-p)

n
n~1 Y & no| =Ous. {(nh)"l/2 log n}
=1
Putting £; ,, 1,&; 2 together, the lemma is proved. 0

LEMMA 5.6.4. Under Assumptions (A2), (A4)-(A6),
sup |7 (m1 (21)) + D1 (&1)| = Ous. (logn/ V),
z1€[h,1-R]
where D1 (1) is defined as (5.2.3).
Proof. According to (5.6.3), one has I* (m; (1)) is

—1/ny [V {ma (31) +m (Xi)}] K (Xa - 21) (5.6.5)
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Let (jp = [b” {m1 (z1) + m1 (Xi1) }] Kp (X1 — z1), then
EC;n = E [[t" {m1 (z1) + m_1 (Xi1)}] Kp (Xi1 — 21)]

- [Oll]d2b”{m1(x1)+m1 u1)} K( )f(u)

= /[0,1]d2 /[_1,1] b {my (z1) + m1 (u1)} K (v1) f (z1 + hvy,u 1) dvydu g

B /[0,1]"2 /[—1,1] b {my (z1) +m.y (1)} K (v1)
{f(xly u;j)+ hvla—f(g—:lc’lliﬁ +U (h2) } dvydu

) /[o,udz [ ) e )} K ) ) dndas 4.0 (42)

=fi@)EM' {mX)}|X1=21]+U (h2) :
E¢, =E [t {m1(z1) +m (X'_l)}] Ky (X3 — -"«'1)]2

= /[0,1]d2 [b" {m1 (z1) + m1 (u_l)}] 2 K2 ( ) f (u)du

_p—1 1 2 .9
=" ./[0,1]d2 ,/[‘._1 1) [bl {m1 (z1) +m (u-l)}] K* (v1) f (z1 + hvy,uy) dvidu

- " .
1-/[0,1]d2 ‘/[—l,l] [b {ml (z1) +m (u_l)}] K2 (Ul)

{f (z1,u1) + hv1mgi-’l—lﬂl +U (hz)} dvidu

- 2
=171 @) IKIG B [0 {m (0] X1 = 1] + U (8?).
Similar to the proof of Lemma 5.6.3, the result follows the Lemma 2.5.2. O

LEMMA 5.6.5. Under Assumptions (A1) to (A3), (A5) and (A7), as n — oo, there ezists a

constant C such that

1+
sup |cov (fi’n,éj,n)l < Ch 21;7101 (F—=1) 21)7 fori#j
z1€[h,1-h
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Proof. According to Davydov’s Inequality, for % + % + % =1, cov (E,-’n, 13 j,n) is bounded by
Ca {2a (5 —4)}H/P €in1 + €i,n,2||q ¢jn1 +E€jn2ll,

< Cp {20 (G = VP (|lgimall, + lein2l,) (I7mall, + I€inzll,)

Let ¢ =17 = 2+ n,p = 1+ 2/n, where n takes value in the Assumption (AS5), then
_1 _1+
one has [[§;1]l, = U(h 2+—n) and [[éipall, = U (h 2:3) cov (€ prrjmir) <

_éﬂ
Ch “4tna(j —1)4*n for some constant C. a

PrOOF OF THEOREM 5.2.1. Existing a m; (z1) between k1 (z1) and m; (z1) such

that
! (1 (21)) = T (my (z1)) = " (7 (21)) {rg1 (1) — mq (1)}
Note that I (g 1 (z1)) = 0, then

T (my (31))

_ , 5.6.6
" (my (z1)) (565)

mk 1 (z1) —my (z1) =

Lemma 5.6.4 implies that ¢ < sup,, ¢(,1-p) |—i" (7 (zl))l < C a.s. for some constants
0 < ¢ < C. Then the theorem follows Lemma 5.6.3 and (5.6.6).
PROOF OF THEOREM 5.2.2. Let Sy = Sp(z1) = Y iv1 &ipn, Where & ,, is defined as

(5.6.4), then one has ESy, = 0 and I’ (m; (1)) = Sp/n +b(z1) h% + u (h2).
v (k) =7 (k) 171) = cov (é‘i,n) §i+k,n)

U?z = ES?: = var (Sp) = var (Z:__l §i,n) = Z?____l var (§i,n) + Z:;] cov (fi,nvgj,n)
= nvar (€i,n) +n Z (1 - I—]ﬂ) v (k) = nvar (fi,n) + nApy,
1<[k|<n—1 "

where
var (§;0) = h™ f1 (z1) E {02 (X)X = :61} IK|2 +U (h4) .

While according to Lemma 5.6.5, one has

1
()] = |eov (€6 Exskn)| < Ch™ T a (£)7FT
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Hence

14
Al = |5 e 0] € ey (1~ ) 7 (e (2o

_;%]1 )
Koh™ P81 3 1 ey &P {=20kn/ 2+ 1)},

IN

14
so there exists a constant Cy such that Ap < C1h 7# So Ap/ var (fi,n) — 0 as n — oo.
. Then o2 ~ nvar (& ,) > con when n is large, so according to (2.5.1) in Lemma 2.5.1,

there exist constants c¢j and cg such that for some 0 < <1

P {a,—,ls,, < z} 3 (z)l <o {log (crn/c(l)/z) /)‘}IJ"7

oo

n = Sup
z
for any A with A\; < A < A9, where
1/2\\® - 1/2
M = ez {log (on/cg/?) } /m,b > 2(1+1) /20 = 4(2+ m)n  10g (on/c”)

For the 7 in Assumption (A5), set A\ = 4(2+17)n " llog (an/ctl)/ 2), then by Assumption
(A6) dy is

max {EI [t {m (X))} = b {m1 (z1) + m1 (Xi1)} + 0 (X4) ] Kp (Xip — 1) |2+"}

1<i<n
= max {B(Coh+0 (Xl Ky (Xia - 1) 7]
< CCsCy {E|Kh (X1 —21) 12+n} o {h-(m)} ,

ie, Ap=0 {h‘(1+")/a;’,} =0 {n(l+"/2)/5"’/2} =0 (n1/5_2’7/5) —0whenl/2<n<
1. So S, /o — N (0,1), then

n{1¥ (m1 (21)) — bias (21) B2} /y/nh=102 (z1) - N (0,1),

where v% (z1) defined as (5.2.4). Meanwhile, according to Theorem 5.2.1, one has as n — oo,

SUPz) € [h,1-h) IZ” (my (21)) = 1" (M (fﬂ))l — 0 because

SUPz, e[h,1-h) |m1 (z1) — m1 (z1)] = 0. Then according to Slutsky’s theorem, one has
Vnh {{ﬁzK,l (z1) —=my (z1)} D1 (z1) — bias; (z1) 112} — N (0, v% (:1:1)) .
where D (z,) is defined in (5.6.7). Then the theorem is proved.
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PROOF OF THEOREM 5.2.3. According to Mean Value Theorem, there exists a

¢ between ¢ and & such that (E—c)(¢) = IL.(&) = I (c) = —I.(c), where —{" (c) =

n"1Y" L b {e+m.(X;)} > ¢y > 0 according to Assumption (A2) and where m_ (X) =
Ea:l mq (Xe) and then the infeasible estimator is & = argmax,c 4 Ic (@) . Clearly, I, (¢) =

Using Bernstein’s Inequality, one has

—a.s. 0,

L) = |[n 7t Yo =t e+ me X)) = [n 7t D00 o (K

which implies |¢ — c| = Ugs. (n_l/z). So l~g (-1 (c)l —a.s. 0, in which I (c) =
n~13P ¥ {c+m(X;)} and it convergents to Eb” {m (X)} almost sure. Then ac-

cording to central limit theorem,
VA (E=¢) =g N (0, [Bb" {m (X)}] 2 Eo? (X)) .

5.6.3 Spline backfitted kernel estimators

In this section, we give the proof of Theorem 5.3.1. First, define the theoretical inner
product of b; and 1 with respect to the a-th marginal density fa (za) as cjq = (by (Xa),1)
= [ by (za) fa (Ta) dzq and define the centered B spline basis bj 4 (o) and the standardized

B spline basis B, (za) as

cJ,
bja (za) = by(za) - P ;1 bj-1(za),
-1,
b
Bjo(a) = bral@a) | 5oy, (5.6.7)
”bJ,anz

so that EBj 4 (Xa) =0, EB‘ZIQ (Xa) = 1. For Vg € G2, one can write g = ATB (X;) for a

T
vector A = (/\o, /\J,Q)ISJSNH’ISOSUI € R1Hd(N+1) apq

B(x) = {1,B11 (1), By414(za)} ", (5.6.8)

Then with a slight abuse of notation, we denote

L(g)=L() =n"1T7, [YA B (X b{ATB ()g)}] and then

o

‘9__= Iy 1[YB b’{)\TB(Xi)}B(Xi)]. (5.6.9)
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The multivariate function m (x) is estimated by an additive spline function

N N d ~T
m(x) = Mo+, _ a(za)=A b(x), (5.6.10)
< < < \T .
A = ()\0, /\J,a) 1<a<d = argmaxL(A).
1<SJSN+1 A

According to (5.3.2), existing a m 1 (z1) between gk 1 (z1) and k1 (71) such that

I' (mspk 1 (x1)) — ¥ (k1 (1)) =" (k1 (1)) {msBK 1 (#1) — k1 (71)}

Then according to {’ (ThSBK,l (z1)) = 0, one has

' (1 1 (21))
I (g1 (z1))
Let 7 be an additive spline function such that | — m||,, < CooH? in the Lemma 3.6.1
and X such that

msBK,1 (%1) — mk,1 (T1) = — (5.6.11)

m(x) = ATB (x). (5.6.12)
In what follows, we denote the dimension of vector A as Ny = (N +1)d + 1.
PROOF OF THEOREM 5.3.4. Existing & between ¢ and & such that é — ¢ =
~I. (@) /12 (Z) ,where —i (¢) = n 10, 0" {& + . (Xs)} > ¢, > 0 according to As-
sumption (A6), then

@ =0@-0@=n"13" [V {E+mec(X)} - {e+mc(X))]

= 1/n Z:zl V' {&+mc (X))} {me (X5) — M (X:)}
+0 [l/n Z?:l {mc(X;) —1he (X1)}2]
= I+ Ogs. (NdH4 + Ndn"1 log n) ,

by Lemma 5.6.9, where I = I1 + I,
n - —
B=1/n Y ¥ e me (X)) {me (X)) — e (X)),
n - — -
L=1/n Y ¥ (et me (X0} {me (X)) — e (X0))
According to (3.6.1), I} = Og.s. (Hz), while
- n -
o= Y e (K0}

{ZISJSN—H,lSan (S‘J’“ - ’—\J’O‘) Bya (Xia)}
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=lp+1Iay+ I

where

— n -

1 N

oy =0 Y ¥ e COH S, v 1 coca PoaBia (Kia)
1 .

Iy =n7! Zi:l Ve +me (X))} {21<J<N+1 1<e<d ®rJaBia (Xia)} '

—_ n
IIZ,bl < Cpn lzi=1 {ZISJSN'H,ISasd Iq)b,J,al lBJ,a (Xia)l}
9 1/2
=G {215J5N+1,1505d (Db,J,a} X

-1 n 2 1/2
[1 + ZISJSN+1,2§a5d {" > i1 |Bia (Xia)l} ]

= Cyx Ous. (N/*H¥?) x [Oas. (1) + (N +1) x (d = 1) x Oas. ()
= Ogs. (N;/2H5/2)

according to (5.6.19) and (5.6.21), similarly
|I2,T| = Oas. (NdH7/2 + NdH—l/ZTFI logn) .

One has I, = 72,1, + Og.s. (n"1/2) X Oga.s. (N;/Zn_l/2 log n) x O (N), where

12 U= n—l Z b” {ZI<J<N+1 1<a<d q’v,J,aBJ,a (Xia)}

= Y e s tcocs Budan ™ S ¥ (X0} Bra (Xia)
= ZISJSN+1,1§a5d 45,0 B {m (X)} By (Xa)
+0a.s. (N,}/zn'l/2 log n) X N‘}/Z X Og.s. (n-2/5 log n)
= I3y + Og.s. (Ndn_g/lo log? n)
where

iz'“=21<J5N+1,15asdq’v,Ja EV' {m(X)} Bja (Xa)
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_ 7
- ZISJSN+1,150_<_dEb {m(X)} Bja (Xa)

1 n
E z; 4 (X‘l) €i {SJ,G + ZISJ’SN-i'-l,lSCXISd SJ,C!,J,,C!/BJ,,C!’ (Xza/) }
1=

1 n
= EZ;U(Xi)ei ZISJSN+1,15an“b:J,a (z1)
=

{SJ,O + ZISJ’5N+1,150’_<_d SJ,Q,J’,QIBJ',Q’ (Xz )}

where 50,0, S7.a» S o ! of 8r€ the corresponding element in the matrix Sy, defined in (5.6.13)

has the form
S0,0 51,1 e SJa e SN+1,d
S0 S0 0 Siide t S11,N+1d
Sja  Sja11 Syad o Sja,N+1,d
| SN+1d SN+1d11 0 Sniid o SN+1,d,N+14d |

and pp jo = EV'{m(X)} B4 (Xa), which has the order U(Hl/z). Denote I, =

1
= Yorq &, where

& = o(Xi)e Zl<J<N+1,1<a<d pb,J,a (Z1)

{SJ,G + ZISJ’SN-{'-I,ISO/Sd SJ,a,J’,O/BJI,a/ (Xza’) }

var (Ipy) = n—2 Z?zl var (§;) + n~2 zi;éj cov (£,¢;)
while
var (6) = 1y (Sp.c var {0 (Xi) B (Xi)} S| opto.c
< CoCECvHE i, =0(1),

N+1,d N+1,d . .
where ul . = (1 70) et pf = [EY {m(X)},1,J0] J=1,m=1 20d Sp ¢ is a matrix

with rows 2 to 14 (N + 1) x d of Sp. Then var (§;) < Cngp{ub =U(1),cov (E,-,fj) =0
for i # j according to Assumption (A30), then var (I5,) = (n71). So I, = Op (n‘l/ 2).

Then it follows Theorem 5.2.3.
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LEMMA 5.6.6. Under Assumptions (A1)-(A5) and (A7),

x| -
A=A
OL(A) = Ous (N1/2H2 + N} 1/2logn) .
x| - -
A=A
Proof.
AL (\) 1l . ' ' (<T . '
x|~ [MBE) -V {XTB 0} BX)

- % S [ {m (X} =¥ {m (X0} + 0 (Xi) &) B (X))
The fies clement of the above vector is 4 2y (¥ {m (X9} = (7 (X)) +2 (Xi)ei],

n

which is Og.s. (H2 +n12]og n) according to Lemmas 3.6.1 and 2.5.2. The other elements
can be written as
%le [€igam + E [V {m (Xia)} = {M(Xia)}] By (Xia)] + 0 (Xi) €iBja (Xia)] -
where £; J o 5 equals
[t {m (Xia)} = ' {m (Xia)}] Bia (Xie) = E [/ {m (Xia)} = ¥ {m (Xia)}] Bja (Xia)] -
One has

E[[¥ {m (Xia)} =¥ {/(Xia)}] Ba (Xia)] = O (H?2),

B[ {m (Xia)} - ¥ { (Xia)})? B3,q (Xia)] = O (HY).
According to Lemma 2.5.2, one has l% Y& J,a,n! = Oas. (H3/2n"1/2 log n) and

LS o (K0 eiBra (Xia)| = Ous. (n/210gn)

Then lemma is proved. O

Denote
V=EB(X)B(X)T,s=Vv1,
Vn = n! ZB (X:)B (xi)T ,Sp = '
1=1
Vy, = BV {m (X)} B(X)B(X)T,s, = V; 1, (5.6.13)

=t Y V(M (X)}B(X) B (Xi)T,Spp = Vih.
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LEMMA 5.6.7. Under Assumption (A2),
CVINd < V7l—<—CvINd7cSINd < SnSCSINd as., (5.6.14)

CV,bINd < Vn,bSCV,bINd:CS,bINd < Sn,bSCS,bINd a.s.. (5.6.15)
Proof. Take a real vector A € RNd , one has
T
1 0% -1

ON,-1 <BJ,a’ BJ’,a'>2 ) A= XV

ol -

where V = EB (X) B (X)7. According to (5.6.1), there ezist constants 0 < cy < 0o such

that

2
2 2
2 2ev ('\0 + ZJ,cvz '\J’O‘) !

2
T 2
B0, =2+ “§ o MaBia (Xa)
thus one concludes that
ATva > cy (A% + E Ja A%,a) = CV,\TA,

which implies that cyIy 4 < V. On the other hand, according to Lemma 4.7.2 and

Cr—inequality

2
<Ov (843, %),

for a constant cy < Cy < oo, which implies that V < CVINd- Then CSINd <

”ATB (XJ')”z = ’\% + “ZJ,Q AJ,OIBJ,Q (Xa)

S =V-l<CgIy A follows by changing A by V=Y2X. Then (5.6.14) follows immediately

from Lemma 5.6.2 and (5.6.15) follows Assumption (A6). O
Define
By =S4z Yo B {m (X0} - ¥ {m(X0)}] B(X,), (5.6.16)
@, =-8,2 Y1 lo(Xo)el B(X), (56.17)
and
O,=A-A-D, -, (5.6.18)
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LEMMA 5.6.8. Under Assumptions (A1)-(A5) and (A7),

|X - :\] = Ous. (H2 +nY2)0g n) , (5.6.19)
”;\ - :\“ = QOg.s. (N;/2H2 + N;/zn—l/2 logn) )
126l = Oas. (H2N;*n /2 10g?n) , | @ull = Oas. (N;*n 2 10gn),
|®rll = Oa.s. (NdH7/2 + NgH 1V 2p 1 10g n) .

Proof. Mean Value Theorem implies that there exist an Ny x Ny diagonal matrix t whose

diagonal elements are in [0, 1], such that for A =ti+ (IN i t) Y

dL () AL (N) %L (\) (5\ :\)
“ON T TN = axaxl )
A =i oA A=x OXOAT |, s+
a -1 .
< < 2L (N) AL ()
A-X=- ; —
OrONT A=2* OA A=X
According to (5.6.9),
L) 1E

- == " I\T ) . AT
T = 5 2 {3"B(X)} B(X)B(X))

So

an YL BX)BX)T < 2137 [ {ATB (X)) B (X)) B (X,)7]
' < ontYy BX)BX)T
because B (X;) B (X;)T > 0 and Assumption (A7). Lemma 5.6.7 imply that

_ 3L\
AT
< CbCVINd < 00 a.s..

1 n
0 < geviy, < ==y [ {A B} BX)B X
Then (5.6.19) follows Lemma 5.6.6. Next,

8P (N
5 0T

AL (\)

oA

A=
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s s_ (L] )T
AAs (a,\a,\T A=X) X |5
62i(A) - 1 n o 3T ~ T 2
(aAaAT M) SV (3B (3 -%) B oo} Box),
while
(2] T aEw
axaT |, 5 X |\ _x
= sy Yoo, B k) - {KTB (X0} B ()
= P+ Py
and
(L) D T 7 .
’_(aAaxF ,\=x> 2 i ¥ {2 B(Xi)}{(A—A) B(&-)} B (X).
Note that

“51; S (3B} {(3-2)"s <x,-)}2B<X1-)“

(T ST BN g

26 0 (15 pemo) (33

< Fciﬂ ”i - 5\“2 = Og.s. (NdH4 +Npn! log? n) X T2
= Ous. (NdH7/ 2 4 NyH Y231 10g2 n) :

So ||®r|| = Oa.s. (NdH7/2 + NyH Y2p1)0g n) . Next,

n 2
0l = 57 S0, 1 fm 06) = (m ()] B )|

2
< CC2CiH* “% Z:;l B(X,)|| =0us (H4Ndn'1 log2 n) .

CC% \

1

n 2
2l = 807 o0 o (K=l B X))

IA

Y eeoalB |

1=1

= Og.s. (Ndn_l log2 n)
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LEMMA 5.6.9. Under Assumptions (A1)-(A5) and (A7),

I —mlly = Oas( 1/2112+N1/2 —1/2logn)

A _ 2 2 —
e —lly = Oas. (Ni?H? + NY*n"1210gn),

’

Il = milg.p, = Oa.s. ( NY?H? + NY* =12 1og n) (5.6.20)

Proof. According to Lemma 5.6.7,
2

2=(:\-:\)Tv(x_:\)

<Cy ”,\ - :\“2 = Oas. (NdH4 + Nyn~!log? n) .

I mif = (- 5) B x)

Then || — m|lg , = Oa.s. ( 1/?'Hz-i—Nl/2 "1/2logn) by Lemma 5.6.2. Next,
I —mly, < lm—mllyy +llm—mly,

= QOg.s. ( 1/2H2 + N, / -1/2 logn) + Oq.s. (H2)

= Oas. (N(}/zh’2 + Né/znq/2 logn) .

In the following denote

N+1d
w(z1) = {‘*’J,a (z1) J=1,a:21WJa(331 121 ll Ja Xia |Kh (Xi1 — 7).

LEMMA 5.6.10. Under Assumptions (A1) to (A3), (A5), and (A7) to (A8), , asn — oo

sup |w(z1)| = Oq.s. (Hl/z) . (5.6.21)
z1€[0,1]

Proof. First, one computes
Ewjq (71) //Kh up — 11 lBJa Uq lf(u1 Uq) duydug

_ //K( IJO’(Z)If(hv1+1:1,ua)dv1dua

“bJa”2

(lIbJ,allz)' { / / K (v1) Ir41,2 (u2) f (hoy + 71,u2) durduy
+ (CJH’Z)l/z//K(vl)IJ,z (u2) f (hvy + 1, u2) dvldu2}-

€J2
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< esell;t { / / |K (v1) by (ua)| f (21 + hv1, ua) dvidua
S //IK(Ul)b_]_l (ua)| f (z1 + hvy, ua) dvldua} ]

CJ-1,a

The boundedness of the joint density f and the Lipschitz continuity of the kernel K will

imply that there exist constant ¢y such that

/ / 1K (1) by (ua)l f (1 + ko1, ua) dvidua < CxcaH,

[ 15 @81 )l £ 01 + b wa) dvrde < Ceat
and therefore

sup |Ew (z1)| = O (HI/Z) (5.6.22)
z1€[0,1]

by Lemma 4.7.2. Similarly, Ew o (z1)" ~ h1=TH=7/2 hence Ewjq (z1)? ~ R, Accord-

ing to Lemma 2.5.2 and similar proof of Lemma A.5 in [68], one has

sup sup sup |wyq (z1) — Ewjq (xl)l = Og.s. (log n/\/nh) .
z1€[0,1] 1SJ<N+12<a<d
Combining with (5.6.22), the lemma is proved. O

LEMMA 5.6.11. Under Assumptions (A1)-(A7),

P @) s (7).

Proof. Note I (g 1 (z1)) = 0, one has
I (mg1 (z1)) =T (g1 (21)) = T (g1 (21))
= 1/n E;;l (b {rmk 1 (z1) + m1 (Xia)} = {mk,1 (1) + 1 (Xia)}]
Ky (Xi1 — 1)

=1/ny"0 ¥ {ig (o) +ma (Xin)} {m (Xia) — i (Xia)} x
Kn(Xiy =) +0[1/n Y7 {m1 (Xi1) = 11 (Xin)}?] = 1+ Ous. (HY)
where I = I1 + I,

Iy =1/n Z?:I b {1k 1 (21) +my (Xi )} {ma (Xia) = mg (Xia)} Ka (X — 21),
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Iz=1/n 2;1 b {mk,1 (z1) + m (Xia) } {ma (Xia) — ma (Xia)} K (X — 21).

According to (3.6.1), I} = Oq.s. (H?), while

- n -
I = o7ty 6 {1 () +ma (X)) x
(;\0 - ;\0) + ZISJSN+1,2SQS¢1 (:\J,a - ’_\J,a) Bja (Xia)} Kp (Xi1 — 21)
= IZ,b + I2,v + IZ,r

where

Ly = 7'y {mg (@1) +ma (X)) x

{‘Pb,o + ZISJSNH,?SQQ @, 7,0BJa (Xia)} Kp (Xi1 — 1),

Ly = n! Z:l:l V' {1 (z1) + m (X 1)} X

{q)v,o + 21$J$N+1,2San q)v,J,aBJ,a (Xia)} Kp (Xil - 1:1) ’

- n -
Iy = n7 Y ¥ (i (1) +ma (X)) x
{‘I’r,o + 21§J<N+1,2§a5d @, jaBja (Xia)} Kp (Xi1 — 1)

where ®;,, @3 0, P50, Pb,J.a» Pb,J,a» Pb,J,0 aT€ the corresponding elements in the vectors &,

®, and P, defined as (5.6.16), (5.6.17) and (5.6.18).

- n
[I2p] < Cin™' Y { |00+ D Jens12cacd Pl 1Bia (Xia)|} Kp (Xi1 — 1)

2 2 1/2 -1 n 2
<G [{%,O + 21§J5N+1,2_<_a5d ‘I)b,J,a}] X [{n Zi=l Kn (Xi1 — xl)}
- n 211/2
+ leJ§N+1,2gagd {" : Z,—=1 | BJa (Xia)| Kn (Xi1 — xl)} ]

= Cyx Oas. (N2 H?) x [Oas. (1) + (N +1) x (d = 1) X Oas. (H)

1/2
= Oa.s. (Nd/ H5/2) -
according to (5.6.19) and (5.6.21), similarly

|12,r| = Ogq.s. (NdH7/2 + NdH—l/ZTl_l log n) .
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Iy = 72,1; + Ogq.s. (n"2/5 log n) X Oq.s. (N;/zn'l/2 log n) .
where

- n
12’1) = N 1 Zt=1 b” {m (Xl)} {QU,O + ZISJSN+1y2San ®U,J,QBJ,(I (XIC()}

Kp (X;1 —z1)

= Gyt Y ¥ {m (X))} Ky (Xi —21) +

_ n

= @y oEb" {m(X)} K (X1 — z1)

+ ZISJSN+1,QSan (bv,J,aEb” {m (X)} BJ,a (Xa) Kp (Xl - -'51)

+0q.s. (N;/zn‘l/2 log n) X N;/z X Og.s. (n"2/5 logn)

= T2,v,l + B,‘U,2 + Og.s. (Ndn—g/lo log2 n)
Where

hy1 = @u0Bb" {m(X)} Kp (X1 - 21)
1 n
= Bt {mX)}Kp (X1 -z1) =) . o (Xi)es
{S0,0 + ZISJSN+1,ISQS¢1 SJ,QBJ,Q (Xza)} ’

B2 =37 ni1scacs PodaB {m (X)) By (Xa) Kn (X1 - 21)

17 T
= {BV" {m(X)} B (Xa) Kn (X1 - 21)} 1<J<N+1,2<a<d % (‘I’v,J,a)1ngN+1,2sagd

= D 1cseN+12<aca BV {m (X)} Bua (Xa) Kh (X1 = 71)

1 n
‘1: Zi___la (x’L) & {SJ,a + ZISJ’SN'FI,ISQ/Sd SJ,a,J’,a’BJ’,a’ (Xza’)}

1 n A
T Zi=1 o (Xq)ei ZISJSN+1,2Sa§d Kok, Ja (z1)

{SJya + ZISJ’$N+1,ISQ’Sd SJ,a,J’,alBJ’,a/ (X'L )}
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where 500,574, S Ja,J of 8T€ the corresponding element in the matrix Sp defined
in (5.6.13) has the form shown in the proof of Theorem 5.3.4 and ppk jq(z1) =
EV' {m (X)} Bjq (Xa) Kp (X1 — 1) , which has the order Og.s. (H1/2). Denote Dy, =
nf0 (L <fy< g), eﬂ" = gl {le;| > Dn}, ezDgl = Ee;I {|g| < Dp}, 51D2" =

247 5
eil {lei| < Dn} — €3 Then Iy 2 = Ay + Ay + Ag where

1 D
A = Zl<J<N+1,2<a<d Mok (@1) (71) >0 (Xi) e
o T i=1

{SJ,a + ZISJ’SN+1,1$a’Sd Syad ol By of (Xia’)} yk=1,2,3.

Then one has with probability 1, A; = 0 for large n. Next,

E|ei|*t" _q
ff,)s"l = |-EeiI{|ei| > Dn}| < % -0 (Dn‘ +n)) ’
n

2
As < G, [215J5N+1,2505d”brk%a(”“'1)

—1 Dn 2 1/2
leJ’SNH,lSa/sd {" Zi:lBJ’,a’ (Xi) 0 (Xi) e 3 } ]

—(1+n) 2
< CDn Zl_<JSN+l,25agd Mk, e (71)

- n 2 1/2
Z1.<.J’SN+1,1sa’gd {n ' Zi=1 BJ’,a’ (Xio/) g (Xz')} ]

- 1/2 _ 1/2
p; Mg, o {(NHN log? n/n) / } = p;Mo, {(Nlog2 n/n) / }
= Oa.s. (n_2/5) .
Lastly, A9 = Og s. (n‘3/ SH-1/2 log n) = 0g.s. (n‘z/ 5) according to Bernstein’s Inequality.
Then E’v,z = 0g.s. (n‘z/ 5) according to the orders of A1, A2 and A3. With similar proof,

we can show E,v,l = Og.s. (n"z/ 5).

Lastly, denote Ay =n~1 Soh &, where

D
£i = ZISJSN+1,2SQS(I p’b,k,J,Cr (Il) ag (X‘l) Ei,zn

{SJ,O: + ZISJ’SN-\‘-I,ISO/Sd SJ,a,J’,a’BJ',a' (Xia’)} :
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Then E¢; =0, and

D N+14d
var (&) = pf Spvar { 7 X)eik Dn } Sp.1Hb.c
BJ',a/ (Xia’) o (Xy) €ik J'=1,a'=1

< CaC§CvuZ:k_1ug:k_c =0(1).

Then Ag = Ogs. (n‘l/ 2 log n) = Oqg.s. (n'z/ 5) according to Bernstein’s Inequality. Then
72,0,2 = 0g.s. (n"z/ 5) according to the orders of A1, A2 and A3. With similar proof, we can

show E’U’I = 0g.s. (n‘2/ 5). Then the lemma is proved. O

LEMMA 5.6.12. Under Assumptions (A1)-(A7), Va, ¢ < SUPz, ¢[h,1—H] l_[ﬂ (a)[ < C as.

for some constants 0 < ¢ < C.

Proof. According to (5.3.2), one has
~ n .
M(@)=~1/nY_ . _ [¥"{a+1rh1(Xi1)}] Kp(Xa —21).

e < V{a+my1(Xi1)} < Cp and supy p1-p)11/n 2im Kn (Xin — 71) — f (@1)] =
Ogu.s. { (nh)—l/ 2 log n} imply the lemma. 0O
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Table 1. Simulated example 2.4.1

n | Dn (F) Dn (F) - D, (F) MISE (F) MISE (F) — MISE (F)

50 | 0.101 0.055 0.157 0.021

p=0, | 100 | 0.073 0.035 0.072 0.010
a=0. | 200 | 0.051 0.022 0.033 0.004
500 | 0.034 0.012 0.014 0.001

50 | 0.107 0.051 0.201 0.032

p=05 | 100 | 0075 0.034 0.088 0.015
a=02 | 200 | 0.052 0.022 0.041 0.004
500 | 0.037 0.011 0.019 0.002

50 | 0.106 0.035 0.202 0.035

p=09, | 100 | 0.073 0.024 0.086 0.014
=02 | 200 | 0.050 0.015 0.040 0.006
500 | 0.036 0.008 0.020 0.002

Note: Dy, and MISE of F and F.

Table 2. Simulated example 3.4.1

Estimation n=400 n =800 n=1600 n = 3200
a 0.036325 0.023289 0.013743 0.008098

Note: The mean of squared errors for 100 replications.

Table 3. Simulated example 3.4.1

n 400 800 1600 3200
Spline estimation 4 11 31 92
Local linear estimation 102 630 3200 18000
Time ratio 1:25 1:57 1:103 1:196

Note: Computing time (in seconds) of cubic spline estimation and local linear estimation
of parameter o for one replication with n = 400, 800, 1600, 3200. PC with Intel Pentium
IV 1.86 GHz processor and 1.0 GB RAM.
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Table 4. Fitting DEM/GBP returns

Fitted Model

Log-Likelihood Volatility Prediction Error

GARCH(1,1) 0.5231 0.1045
GJR 0.5233 0.1039
Semi. GARCH(Kernel) 0.5306 0.0994
Semi. GARCH(Spline) 0.5786 0.0987

Table 5. Fitting DEM/USD returns

Fitted Model

Log-Likelihood Volatility Prediction Error

GARCH(1,1)

GJR

Semi. GARCH(Kernel)
Semi. GARCH(Spline)

-0.1567
-0.1566
-0.1508
-0.1485

0.6667
0.6661
0.6529
0.6476

Table 6. Residual check for fitting DEM/GBP returns

ACF up to lag Iét‘ A Iétlz , th |£tld , Z? |Et|4 , Zf
100 0.07, 0.09 0.02, 0.06 0.02, 0.05 0.01, 0.05
200 0.045, 0.065 0.01,0.04 0.01,0.035 0.005, 0.035
300 0.04, 0.06 0.007, 0.037 0.007, 0.033 0.003, 0.047

Table 7. Residual check for fitting DEM/USD returns

acrwwke |62 ol .22 [ .2 i .2
100 0.04, 0.09 0.04, 0.06 0.06, 0.05 0.05, 0.05
200 0.025, 0.065 0.025, 0.04 0.04, 0.035 0.04, 0.035
300 0.0167, 0.06 0.0167, 0.037 0.03, 0.033 0.033, 0.047
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Table 8. Simulated example 4.6.1

SBLL fit

moy = 2

my2 =1

mi1

ma1

m12

ma22

n = 200

1.9813(0.1636)

0.9909(0.0539)

0.0255

0.0276

0.0113

0.0097

n = 500

1.9964(0.0980)

0.9989(0.0343)

0.0096

0.0089

0.0041

0.0030

Spline fit p =1

n = 200

1.9813(0.1636)

0.9909(0.0539)

0.0561

0.0125

0.0089

0.0085

n = 500

1.9964(0.0980)

0.9989(0.0343)

0.0185

0.0063

0.0063

0.0065

Note: the means and standard errors (in parentheses) of 7q1, 192 and the AISEs of

MSBLL,11» MSBLL,12 MSBLL,21» MSBLL,22 by two methods: SBLL and polynomial spline.

Table 9. Simulated example 5.5.1

d=5 n | MISE (mSBK,l) MISE ("hSBK,l) EFF (mSBK,l) std {EFF ("hSBK,l)}

p=0,

=0 500 0.054 0.060 1.112 0.274
r=05 |50 0.101 0.094 1.023 0.279
a=0.5.

Note: The MISEs and EFF's of gk 1, MsBK,1-
Table 10. Simulated example 5.5.1

d=5 n | MISE (mSBK,2) MISE (7hSBK,2) EFF (ﬁlSBK,2) std {EFF (mSBKﬂ)}

r =0, A

=0 500 0.017 0.027 1.503 0.896
r = 0.5,

500 0.036 0.417 0.997 0.400

a=0.5.

Note: The MISEs and EFF's of figgk 2, MsBk 2-
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Table 11. Simulated example 5.5.2

d=10 n MISE (mSBK,l) MISE (‘fhK,l) EFF (mSBK,l) std {EFF (ﬁlSBK,l)}
500 0.0965 0.0701 0.9868 0.3813
r=0, 1000 0.0491 0.0453 1.0228 0.2324
a=0. 1500 0.0298 0.0331 1.1021 0.3123
2000 0.0246 0.0280 1.1014 0.2161
500 0.0992 0.0735 0.9515 0.3154
r =0, 1000 0.0453 0.0440 1.0489 0.2741
a =0.5. 1500 0.0285 0.0327 1.0957 0.2306
2000 0.0259 0.0282 1.0801 0.1823
500 0.2318 0.1373 0.8732 0.3122
r = 0.5, 1000 0.1343 0.0885 0.9186 0.4027
a=0 1500 0.0756 0.0605 0.9294 0.2493
2000 - 0.0567 0.0474 0.9811 0.2877
500 0.2757 0.1386 0.8509 0.3356
r =0.5, 1000 0.1389 0.0899 0.8950 0.2731
a=0.5. | 1500 0.0776 0.0601 0.9686 0.2715
2000 0.0593 0.0485 0.9885 0.3050

Note: The MISEs and EFFs of mgpk 1, i, 1-

Table 12. Simulated example 5.5.2

n 500 | 1000 | 1500 | 2000
r=0,a=0. 56 | 22 49 86
r=05,a=05.| 72| 27 57 | 102

Note: Computing time of gk 1.
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Figure 1. ACF plot of GDP quarterly growth rate.
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Figure 2. Timeplot of GDP quarterly growth rate.
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Figure 3. ACF plot of unemployment quarterly growth rate.
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Figure 4. Timeplot of unemployment quarterly growth rate.
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Conditional Survival Curve

Survival Probability
0,5

GDP Quarterly Growth Rate

Figure 5. Survival curves of GDP growth rate conditional on unemployment growth rate.
Note: X1 € [-0.08, —0.04], thin solid; X;; € [-0.02,0.02], thick solid; X1 € [0.04,0.08],

dotted.
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Empirical densities of parameter estimates

Figure 6. Plot of densities of .
Note: n = 400 - dashed line, n = 800 - dotted line, n = 1600 - thin solid line,n = 3200 -

thick solid line
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Figure 7. Residuals of DEM/USD daily returns
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Estimated m(x)
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Figure 8. Estimated function m for the semiparametric GARCH model.
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GDP forecast errors
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Figure 9. Errors of GDP forecasts.
Note: model (4.6.2)-solid line; model (4.6.1)—dotted line.
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TFP growth rate*E-3

TFP growth rate estimation
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Figure 10. Estimation of function ¢; + mspLL 41 (Z¢-3)-
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Function estimat
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Figure 11. A typical estimator of m;; based on n = 500 observations.

Note: true function m;j;-solid line; rggyy, 13—dotted line.
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GDP and estimated TFP growth rates
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Figure 12. GDP growth rate-dotted line; estimated TFP growth rate-solid line. .
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Figure 13. Plot of empirical distribution of relative efficiency: r =0,a = 0.
Note: n = 500 - dashed line, n = 1000 - dotted line, n = 1500 - thin solid line,n = 2000 -
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Efficiency of the 1-st estimator, =0, a=0.5
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Figure 14. Plot of empirical distribution of relative efficiency: r = 0,a = 0.5.
Note: n = 500 - dashed line, n = 1000 - dotted line, n = 1500 - thin solid line,n = 2000 -

thick solid line.
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Efficiency of the 1-st estimator, r=0.5, a=0
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Figure 15. Plot of irical distribution of relative effici r=0.5,a=0.
Note: n = 500 - dashed line, n = 1000 - dotted line, n = 1500 - thin solid line,n = 2000 -

thick solid line.
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Efficiency of the 1-st estimator, r=0.5, a=0.5
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Figure 16. Plot of empirical distribution of relative efficiency: r = 0.5,a = 0.5.
Note: n = 500 - dashed line, n = 1000 - dotted line, n = 1500 - thin solid line,n = 2000 -

thick solid line.
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Confidence Level = 0.95, n =500

o~

1,5

Figure 17. Plot of function estimation for r = 0,a = 0: n = 500.
Note: mj(z;) - solid line, 1k 1(z1) - dashed line, confidence bands and gk 1(1) -

three dotted lines.
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Confidence Level = 0.95, n = 1000
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Figure 18. Plot of function estimation for r = 0,a = 0: n = 1000.
Note: mj(z) - solid line, fk 1(1) - dashed line, confidence bands and 7igpk 1(71) -

three dotted lines.
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Confidence Level = 0.95, n = 1500

1 1

Figure 19. Plot of function estimation for r = 0,a = 0: n = 1500.
Note: mj(z1) - solid line, g 1(z1) - dashed line, confidence bands and riigpk 1(z1) -

three dotted lines.
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Confidence Level = 0.95, n = 2000

o~

Figure 20. Plot of function estimation for r = 0,a = 0: n = 2000.
Note: mj(z1) - solid line, 12k 1(z1) - dashed line, confidence bands and rigpk 1(z1) -

three dotted lines.
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Confidence Level = 0.95, n = 500

N

Figure 21. Plot of function estimation for r = 0.5,a = 0.5: n = 500.
Note: my(z) - solid line, fiug 1(x1) - dashed line, confidence bands and rigpy 1(z1) -

three dotted lines.
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Confidence Level = 0.95, n = 1000
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Figure 22. Plot of function estimation for r = 0.5,a = 0.5: n = 1000.
Note: mj(z) - solid line, 77y 1(z1) - dashed line, confidence bands and 7igpk 1(z1) -

three dotted lines.
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Confidence Level = 0.95, n = 1500
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Figure 23. Plot of function estimation for r = 0.5,a = 0.5: n = 1500.
Note: mj(z1) - solid line, My (1) - dashed line, confidence bands and rirgpk 1(z1) -

three dotted lines.
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Confidence Level = 0.95, n =2000

Figure 24. Plot of function estimation for r = 0.5,a = 0.5: n = 2000.
Note: my(z1) - solid line, 7ig 1(z1) - dashed line, confidence bands and rigpk,1(21) -

three dotted lines.
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