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ABSTRACT

EFFECTS OF VIRTUAL MANIPULATIVES WITH OPEN-ENDED VERSUS

STRUCTURED QUESTIONS ON STUDENTS’ KNOWLEDGE OF SLOPE

By

Mustafa Fatih Demir

Virtual Manipulatives (VMs) are computer-based, dynamic, visual representations

of mathematics concepts, which have become widely used in mathematics instruction in

recent years. Despite their wide use, there is little empirical research about the use of

VMs in mathematics learning and teaching. To fill this gap, this study examined the

effects ofusing VMs with two different instructional approaches on students’ learning of

slope. Approximately 50 students who were taking a remedial mathematics course at

Michigan State University completed all sessions of the study. They were randomly

assigned into two groups: OVM and SVM groups. After completing a pretest assessing

their initial knowledge of slope, participants were randomly assigned into two groups to

complete four 30- to 45-minute intervention sessions. Students in the OVM group

worked with VMs to respond to open-ended exploratory questions; students in the SVM

group used the same VMs to respond to structured mathematics questions. Then, students

completed a posttest consisting of the same set of questions as the pretest. OVM students

showed considerably higher pre- to posttest gain scores than SVM students on items

requiring conceptual knowledge, whereas SVM students obtained notably higher gains on

items requiring procedural and a combination of conceptual and procedural knowledge.

These results suggest that VMs can be used with various instructional approaches to

improve different types of students’ mathematics knowledge.
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CHAPTER 1

INTRODUCTION

In the last two decades, computer and the Internet technology have shown

breathtaking advances, and people have already experienced the effects of these

technologies in various areas of their life. Education is one of the areas where the impact

oftechnology can be clearly observed. Because various applications of computer

technology have already been widely used in many areas of everyday life (e.g.,

communication, business, medicine), it is impossible to neglect the developments of

computer technology in the area of education. Today, students are more often using

computer technology and the Internet to improve their learning of school subjects than

students in the past. School mathematics is one of the areas that today’s students use

computer technology to enhance their learning.

Many researchers and leading mathematics education organizations (e.g., NCTM,

2000; Steen et al., 2006; Wenglinsky, 1998) have argued that using technology can

advance students’ mathematics learning. For example, Wenglinsky (1998) examined the

impact of using simulation and higher-order drinking technologies on students’

performance in mathematics. He analyzed a US. national sample of 6,227 fourth and

7,146 eighth-grade students’ mathematics scores on the National Assessment of

Educational Progress (NAEP) and found that students who worked with the technologies

improved their mathematics achievement. The National Council of Teachers of

Mathematics (NCTM) is one of the professional mathematics education organizations in

the United States. NCTM’s Principles and Standardsfor School Mathematics (2000)

declared that use oftechnology is one of the six major principles of a high-quality



mathematics instruction. The technology principle states that “Technology is essential in

teaching and learning mathematics; it influences the mathematics that is taught and

enhances students’ learning.” (NCTM, 2000, p. 11). With the aid of technology, students

effectively focus on decision making, reflection, and problems solving; thus students can

develop deep understanding of mathematics concepts by using computer technology

(NCTM, 2000). Many types of computer technologies have been used to support learning

and teaching of mathematics. For example, there are a variety of educational mathematics

software such as Geometer’s Sketchpad (Jackiw, 2001), Cognitive Tutor Algebra

Sofiware (Koedinger et al., 1997), SimCalc Mathworlds (Roschelle & Kaput, 1996);

computer simulations such as Java applets; and Virtual Manipulatives (VMs). Among

these technologies, VMs are a recent player in the mathematics education scene.

Recent advances in computer and Internet technology have made it possible for

students to manipulate objects on the computer screen as easily as they can manipulate

physical manipulatives. These VMs are dynamic visual representations of physical

manipulatives, have additional features, and provide various opportunities to improve

learning and teaching. VMs provide interactive learning environments where students can

engage with various cognitive activities (e.g., generalizing, planning, testing) to learn

mathematical ideas. Since VMs present interactive learning activities, they go beyond the

other media that only present or deliver information. Therefore, Clark’s (1983) famous

controversial claim that media only delivers the information without influencing learning

does not hold for using VMs in mathematics instruction. However, Clark’s suggestion

about exploring the impact of different instructional methods used with media on learning

rather than only studying the impact of one specific media on learning is crucial. With



such knowledge, mathematics teachers can better choose the most appropriate

instructional methods to use with VMs after looking at the results of the research studies

exploring the effects of different instructional approaches used with VMs on students’

mathematics learning. However, there is a need for research that will study the impact of

various instructional approaches with VMs on students’ learning of mathematics

concepts. Therefore, this study examined the effects ofVMs used with two different

instructional approaches on students’ knowledge of slope, an important mathematical

concept that is often problematic for students.

With the help of current computer technology, a wide variety ofVMs have

become available and practical for both students and teachers. This availability increased

the need for research studies analyzing the affordances and constraints of VMs in

learning and teaching mathematics. However, few studies have examined the impact of

using VMs on students’ understanding of mathematical concepts. Many researchers (e.g.,

Reimer & Moyer, 2005; Steen et al., 2006; Sub & Moyer, 2007) have pointed out the lack

of research on using VMs in mathematics learning.

This study aimed to fill the gap in research literature and inform current practices

with VMs in mathematics instruction by exploring the impact ofVMs used with two

different instructional approaches on students’ learning of slope. Slope is one of the

concepts that students often have difficulties in their courses. Because slope is a widely-

used concept in various areas of school mathematics, students’ knowledge of slope

influences their learning of other mathematics subjects (Thompson, 1994). Thus, several

researchers examined students’ difficulties in learning slope and suggested various ways

for developing instructional activities to improve students’ learning.



CHAPTER 2

REVIEW OF THE LITERATURE

In this chapter, first, the relations between media and learning will be discussed

through presenting a brief summary of different views about media and its effects on

learning. Second, theoretical assumptions of various learning perspectives will be

examined to identify possible effects of using VMs on students’ mathematics learning.

Then individual research studies analyzing the effects of using VMs on learning and

teaching mathematics will be presented. Finally, research about students’ learning of

slope will be reviewed.

Media and Learning

Many researchers (e.g., Kaput, 1992; Kulik et al., 1983) have examined the

impact of various types of media on students’ learning of particular subject areas. Studies

analyzed the relationships between media and learning unveiled conflicting views among

researchers about the effects of media on learning. Researchers have been discussing the

effects of media on learning for a long time. Clark (1983) stimulated the discussion about

media and its effects on learning by asserting that choice of media has no influence on

learning. After reviewing media comparison studies that scrutinized the effects of media

on learning, Clark concluded that media do not influence learning under any condition.

He claimed that finding larger positive effect sizes for one media than another can be

attributed to differences in instructional method, novelty of the media, and editorial bias.

Clark (1983) viewed media based instructional materials as “mere vehicles that

deliver instruction but do not influence student achievement any more than the truck that

delivers our groceries causes changes in our nutrition” (p. 445). He suggested that



researchers should avoid conducting additional studies that explore the relationship

between media and learning. In response to Clark claims about media and learning,

Kozrna (1994) emphasized that as technologies develop and their use is systematically

examined, the effects of media on learning will eventually be identified and utilized.

As Clark (1983) reviewed the media comparison studies that were conducted

prior to 1983, his view of media is quite limited in the light of various types of current

media. Clark considered media as presentations of information, or the tools that deliver

information. Many types of current media, however, do more than presenting and

delivering information. Since computer and the Internet technologies developed

dramatically in the last two decades, there are various technologies that have been used in

instruction, and have advanced capabilities (e.g., interactivity) and obviously they do

more than only presenting and delivering information. One of these technologies that

have been recently used in educational settings is VMs.

VMs and Learning

VMs can be considered as visual representations of dynamic objects that support

students’ understanding of mathematics concepts. They are a different type of computer

technology that has potential to meet the shortcomings of physical manipulatives in

learning and teaching (Dorward, 2002; Sarama et a1. 1996). VMs provide interactive

learning environments where students can engage with various cognitive activities (e.g.,

generalizing, planning, testing) to understand mathematics concepts. Because VMs

enable students to interact with mathematics concepts, they differ from the media that

simply present or deliver information. Therefore, Clark’s claim about the media and

learning is not valid for using virtual manipulatives in learning and teaching of



mathematics. However, his suggestion about exploring the effects of different

instructional methods within various media on learning rather than only studying the

impact of one specific media on learning is important. Thus, research studies need to

examine the effects of various instructional methods with VMs on students’ learning.

Theoretical Assumptions

According to assumptions of various learning perspectives, VMs have potential to

support learning and teaching mathematics in the following ways.

Constructivist perspective on learning. VMs provide interactive learning

environments where students can instantly observe the effects of their actions, monitor

their own learning, and form and test hypotheses in order to construct or modify their

knowledge of mathematical concepts. The constructivist perspective (Anderson et al.,

2000; Brown et al., 1989; Greeno et al., 1996) on learning assumes that learners construct

their own knowledge by interacting with their physical and social environment.

Therefore, students’ interactions (e. g., receiving immediate and specific feedback) with

VMs may enable them to understand mathematical concepts.

Researchers (Clements & McMillen, 1996; Kaput, 1995; Reimer & Moyer 2005;

Sub et al., 2005; Sub & Moyer, 2007) have emphasized that VMs can support students’

understanding of mathematical concepts by providing interactive learning environments.

For example, Kaput (1995) used the term cybernetic manipulatives to refer the

manipulatives presented on the computers. He emphasized that cybernetic manipulatives

can enable students to make connections between their actions in different notation

systems. While using physical materials, students exhaust all their cognitive resources to

perform actions in one or the other notation systems, and therefore they cannot track



relations between their actions. However, cybernetic manipulatives can provide

immediate feedback to students’ actions, and this enables students to identify

relationships between their actions in different notation systems.

Exemplifications. Another perspective on learning that might be used to support

the contributions ofVMs on students’ understanding of mathematical ideas is Nesher’s

(1989) Learning System (LS) model. Nesher developed a LS model based on two

components: a knowledge component and an exemplification component. Knowledge

component refers to the unit of knowledge to be instructed, based on expert knowledge.

The exemplification component includes an illustrative domain that corresponds to the

knowledge component and is purposely chosen to serve as an exemplification. In this LS

model, learners make connections between the objects, relations, and operations in

exemplification and knowledge components to understand abstract concepts.

VMs may help students exemplify mathematical concepts by providing concrete

representations of formal mathematical concepts. The exemplification components

include illustrations that are familiar to learners’ experiences, thus learners can match the

objects, operations, and relations in exemplification components with those in knowledge

components in order to understand abstract concepts. VMs can be thought as an example

ofNesher’s LS model. For example, some VMs use balance scales to support students’

learning of solving linear equations. While working with these VMs, learners can use

balance scale as an exemplification component to comprehend mathematical properties of

solving linear equations.

Multiple representations. The multiple representations view of learning can also

be employed to support the educational benefits of using VMs in learning and teaching



mathematics. The multiple representations perspective of learning assumes that people

can improve their understanding of mathematical ideas through working with multiple

representations of the same concepts. Researchers (Goldenberg, 1995; Heid & Edwards,

2001; Kaput, 1998) have also pointed out that using multiple representations (e.g.,

graphical, symbolic) and making connections among these representations is one ofthe

important factors in modeling and understanding mathematical concepts.

Students can move from less abstract representations of mathematics concepts to

more abstract ones while working with VMs. This enables them to begin with familiar

concepts then continue with less familiar ones in their learning processes. Kaput (1995)

suggested that computer software should enable students to extend their knowledge

moving from familiar, concrete contexts to less familiar, abstract contexts. He pointed

out that students can make this movement by using the links (provided by the computer

software) between more familiar representations and less familiar ones. Kaput maintained

that in software-based learning environments students should engage with a set of

representations, beginning at the concrete level and romping upward in abstractness to

more abstract representations. VMs can help students initially work with less abstract

representations of mathematics concepts and then engage with more abstract ones.

As VMs provide various representations of mathematical concepts, first, they may

present representations which are concrete to students, and then gradually increase the

level of abstractness of representations in order to support students’ mathematics

learning. For example, some virtual manipulatives offer various forms (e.g., verbal,

tabular, graphical, and algebraic) forms of linear functions. These VMs can be designed

in a way that enables students to work with less abstract representations in the beginning



and then work with more abstract forms of linear functions. For example, while working

with VMs, students can initially engage with verbal forms of linear functions then they

can study tabular and graphical representations.

Dual coding theory. One of the perspectives that can be used to support the

effectiveness of using VMs on learning and teaching is Dual Coding theory. The theory

assumes that individuals can enhance their understanding of concepts when they receive

both verbal and visual forms of the same information (Clark & Paivio, 1991). VMs may

improve students’ learning of mathematical concepts by providing visual and verbal

forms of the same concepts in a coordinated way. They can present verbal information

(either as narrative or written format) while students manipulate objects on the computer

screen. Thus, students may recognize and focus on mathematical ideas and concepts

behind their actions with VMs by having verbal information coordinated with their

manipulations.

Having verbal forms of information coordinated with individuals’ actions on VMs

also supports teachers’ use ofVMs in their courses. For example, Crawford and Brown

(2003) designed a survey to identify teachers’ evaluations ofVMs and their views about

integration ofVMs into classroom settings. In the study, after reviewing a number of

VMs on the web, many classroom teachers emphasized that because the VMs (that they

examined) provided neither clear instructions about their use nor feedback while students

working with the VMs, they rated these manipulatives as unsatisfactory for their

instructional practices. Therefore, as dual coding theory suggested, it is important to

provide verbal information coordinated with students’ actions while they work with VMs

in order to improve their learning.



Researchers (e.g., Suh & Moyer, 2007) have already used some of these learning

perspectives (multiple representations, constructivism) to explore the effects ofVMs on

students’ understanding of mathematical concepts. However, dual coding theory and

exemplifications approaches to learning have not been used in the research on VMs in

mathematics education. It is important to use these learning perspectives or their various

combinations (e.g., dual coding theory and multiple representations) to increase the

quality of research studies that examine the impact ofVMs on mathematics learning.

VMs and Learning Mathematics

In this section, individual research studies exploring the effects of using VMs on

learning and teaching mathematics will be presented. Although there are few studies on

VMs and mathematics learning, this review aims to present research evidence regarding

the affordances and constraints ofVMs on mathematics learning and teaching.

One of the few studies examining the features ofVMs that support students’

learning of mathematics concepts was conducted by Suh et al. (2005), who designed a

qualitative study that included interviews with students, observation notes, and

videotapes of classroom sessions to identify the characteristics of the VMs that supported

students’ learning of equivalence and fraction addition. Forty-six fifih-grade students

were identified as low-, average-, and high-level achievers based on standardized test

results used at their school. These three groups of students independently worked with

VMs after the same elementary teacher introduced a unit on fractions and presented

mathematical tasks. The researchers found that a virtual fraction applet enabled students

to make conjectures, connections between symbolic and iconic forms of fractions, and

discover various properties of fractions. Furthermore, the study indicated that playing a

10



fraction track game supported students’ communications of mathematical ideas and their

ability to apply previously learned ideas into a different mathematical context. The

findings of the study implied that as students learn mathematics concepts, they may have

benefits of some aspects ofVMs tutorials such as having combined visual and symbolic

information in a linked format, and being able to test their hypotheses in a secure

environment.

Steen et al. (2006) examined the impact of using VMs on students’ academic

achievement, attitudes, and interactions during a geometry unit. In the study, 31 Grade 1

students in an urban elementary school were randomly assigned to the treatment or

control group for a geometry unit. Students were given a pretest that included two tests,

one is Grade 1 and the other is Grade 2 level (provided by the publishers of the

textbooks) to assess each student’s prior knowledge of geometry concepts such as

patterns, symmetry, and shape identification. Students in the control group used their

regular textbooks, and worked with physical manipulatives for practice. Treatment group

students interacted with VMs, but used the same textbooks. The corresponding forms of

Grade 1 and Grade 2 tests were given as a posttest to both groups. All students completed

the pre- and posttest on the paper-pencil format.

Steen et al. (2006) found that the use of VMs as an instructional tool was helpful

for the treatment group. The researchers conducted a t-test to analyze the changes in both

control and treatment group students’ scores over the pre-and posttest. On the Grade 2

test, students in the treatment group had a mean change of 7.25 (SD = 4.74) and control

group students had a mean change of 3.33 (SD = 3.20). Steen et al. reported that the t-test

indicated a significant difference between groups on the Grade 2 test (p < 0.05).

11



Similarly, t-test showed a significant difference between control and treatment groups on

the Grade 1 test (p < 0.05). In addition to the pretest and posttest data, the researchers

examined the treatment teacher’s daily journal to identify the teacher’s observations

about students’ attitudes and interactions while working with VMs. The analysis of

teacher’s daily journal indicated that VMs enabled students to make changes on their

learning, do more number of practices than they do in traditional classroom settings, and

. have benefits of the same high quality lessons and activities.

Reimer and Moyer (2005) also examined the effects of using VMs on students’

mathematics learning. They analyzed the impact of using VMs on 19 third-grade

students’ conceptual and procedural knowledge of fractions in a classroom setting. These

students worked with several VMs in a computer laboratory during a two-week unit on

fiactions. Reimer and Moyer designed pre- and posttest to identify students’ conceptual

and procedural knowledge of fractions at the beginning and end of the study. They also

conducted interviews to identify the changes in students’ knowledge of fractions, and

used student attitudes survey. The analysis of the pre-and posttest data indicated that

students considerably improved their conceptual knowledge of fractions. Specifically,

researchers found that students displayed higher performance on the posttest (M = 11.0,

SD = 3.61) than they did on the pretest (M = 9.58, SD = 4.53). Furthermore, the analysis

of student interviews and attitude surveys also revealed that VMs improved students’

learning of fractions by providing immediate and specific feedback. Reimer and Meyer

found that VMs helped students enhance their mathematics learning. However, since the

researchers used neither control nor comparison group in their study, it is difficult to

identify various effects of using VMs on students’ conceptual knowledge of fractions.

12



Suh and Moyer (2007) studied students’ learning while working with physical

manipulatives and VMs in order to identify the features of these manipulatives that

enhanced students’ learning. In the study, 36 third-grade students worked with physical

and virtual balance scales in their regular mathematics course sessions. They were

assigned into two groups; one group worked with the Virtual Balance Scale applet from

the National Library of Virtual Manipulatives (NLVM) to solve linear equations. The

other group worked with a physical manipulative called Hands-On Equations®

(Borenson, 1997) to respond questions. Suh and Moyer used observational field notes and

interviews to identify the effects of using physical manipulatives and VMs on students’

solving linear equations. They found that the virtual balance applet improved students’

mathematical thinking by providing explicit links of symbolic and visual models, step-

by-step support in algorithmic processes, immediate feedback and self-checking system.

However, the physical balance manipulative provided opportunities for invented

strategies, mental mathematics, and tactile features to support students’ learning. The

study also indicated that although physical manipulatives and VMs have distinctive

aspects to support students’ learning, and both were helpful in improving students’

knowledge and algebraic reasoning.

Studies of VMs in mathematics learning and teaching have reported that VMs

supported students’ learning by providing immediate feedback, multiple representations

of mathematics concepts and interactive learning environment. However, these studies

examined the effects of VMs while students studying mathematical ideas according to

traditional instructional methods (e. g., using standard textbook). They had no attention to

the impact ofVMs with different instructional approaches on students’ learning of

13



mathematical concepts. Therefore, there is a need for research that will examine the

effects of using VMs with different instructional approaches on students’ mathematics

learning.

Learning about Slope

Many researchers have emphasized the importance of the students’ understanding

of slope concept in mathematics learning (e.g., Leinhardt et al., 1990; Thompson, 1994;

Lobato et al., 2003). Slope can be thought of as a powerful concept that can help students

make connections between a line and its algebraic equation (Leinhardt et al., 1990).

Students’ knowledge of slope can affect their understanding of advanced mathematics

concepts (Thompson, 1994). After analyzing college seniors’ and graduate students’

understanding of the fundamental theorem of calculus, Thompson found that students’

impoverished knowledge about slope and rate of change caused difficulties in their

learning of the theorem. Students’ familiarity with point-slope formula for a line may

enable them to improve their comprehension of the fundamental theorem of calculus

(Macula, 1995). Furthermore, Macula mathematically showed how the point-slope

formula of a line leads to the fundamental theorem of calculus.

Although several researchers have mentioned the importance of deep

understanding of slope concept for students’ mathematics learning, few studies have

specifically focused on students’ understanding of slope concept. Rather, researchers

have often examined the concept of slope as a part of students’ understanding of linear

firnctions. As Lobato and Siebert (2002) pointed out, since most researchers and reform

documents have focused on the ability to make connections among multiple

representations of [linear] functions, students’ knowledge of particular concepts such as

14



slope has not been adequately examined to develop a type of instruction to support

students’ learning of slope. Few researchers have examined particular aspects of students’

knowledge of slope. For example, Lobato et al. (2003) underlined two major parts of

conceptual understanding of slope in their study. These are considering slope as a rate of

the change in one quantity as related to the change in another quantity, and viewing slope

as forming ratios for measures of particular attributes such as constant speed or the

steepness of a ramp.

Research exploring students’ knowledge of slope has focused on various aspects

of slope knowledge, such as identifying the value of slope and interpreting its meaning

from various representations (e.g., algebraic, geometric, physical, functional), making

connections among these representations of slope (Leinhardt et al., 1990; Knuth, 2000),

and considering slope as a measure to identify steepness or rate of change in functional

situations where two quantities co-vary (Stump, 2001; Lobato et al., 2003). For example,

Stump (2001) examined high school students’ understanding of slope as a measure in two

different contexts: physical contexts where slope can be used to measure the steepness,

and functional contexts in which slope can be considered as a measure of rate of change.

In another study, Stump (1997) identified six different representations of slope concept

(geometric, algebraic, physical, trigonometric, functional, and ratio) and studied

secondary mathematics teachers’ knowledge of slope by analyzing the types of

representations that teachers mostly used in their responses to the survey questions about

slope.

Research has also revealed students’ various difficulties in learning slope. The

most common difficulties include (a) slope versus height confusion (McDermott et al.,
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1987), (b) making connections from an algebraic formula of slope to its graphical

(Leinhardt et al., 1990, Knuth 2000) and functional (Lobato et al. 2003) representation,

(0) identifying the distinction between the slope of a line and the slope of a function while

finding SIOpe value on a non-homogenous coordinate system that has different scales on

each axis (Zaslavsky et al., 2002; Rasslan & Vinner, 1995), and (d) interpreting slope as a

measure of rate of change (Stump, 2001). In addition to these common difficulties,

researchers have also underscored students’ other difficulties in learning slope such as

considering m in y = b + mx as a difference rather than a ratio (Lobato et al., 2003);

identifying the relations between the concept of slope and the angle that a line forms with

the x-axis (Rasslan & Vinner, 1995, Stump 1997).

Slope-height confusion is one problem commonly reported for students having

difficulties in identifying slope values while working on graphs. In their review of studies

on the learning and teaching of functions and graphs, Leinhardt et al. (1990) underlined

slope-height confusion as one of the three major categories of students’ difficulties

regarding analysis of graphs. McDermott et al. (1987) reported the slope-height

confusion of students who were trying to compare the velocity of two moving objects by

analyzing their position versus time graph. In that study, researchers presented students

(who were enrolled at introductory physics course at college) position versus time graphs

oftwo moving objects, and then asked them to compare the velocity of two objects at a

particular time. Most students provided incorrect answers to the question, and their

responses implied that instead of looking at the difference between slopes of two lines on

the position versus time graph of two moving objects, students focused on the heights of

the lines in order to compare the velocity of the objects at a particular time.

16



Another area where students often struggle while studying the slope concept is

making connections between the algebraic formula of slope and its graphical and

functional representations. When students are asked to find the slope of a line, they often

Y2 ”yr
 

apply the algebraic formula of m = and do the computation (Crawford & Scott,

x2 l

2000). Finding the numeric value of slepe from the formula, however, does not show that

students have mentally constructed slope as the ratio of the change in one variable to the

change in the other related variable, or slope as the ratio of the length of perpendicular

line segment (y2 —y1) to the length of horizontal line segment (x2 —x1) on the Cartesian

plane (Lobato et al., 2003, Schoenfeld et al., 1993). For example, Schoenfeld et al.

examined one student’s understanding of linear functions in a computer setting where the

student was playing a game and working with a tutor. They found that the student’s initial

knowledge of slope included no connection between slope formula and its graphical

representation on the Cartesian plane. In his study with high-school students who were

enrolled in first-year algebra through calculus, Knuth (2000) found that the majority of

the students were successful in finding slope values by using algebraic formula, but their

responses to the questions about slope showed no connection between graphical and

algebraic representations of slope.

Research focused on identifying slope of a line on a non-homogenous coordinate

system (e.g., Rasslan & Vinner, 1995; Zaslavsky et al., 2002) indicated that students

often experience difficulties in finding slope value. Zaslavsky et al. asked their subjects

with various levels of experiences in learning and teaching mathematics (from high-

school students to mathematics educators and mathematicians) to find the slope of a
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function whose graph was presented in two different coordinate systems: homogenous

versus non-homogenous systems. Both students and inservice mathematics teachers

experienced confusion while trying to find the slope of a linear function on a non-

homogenous system, and they could not identify the distinction between the rate of

change of the firnction and the slope of its line. In particular, most participants in the

study could not recognize that the rate of the change of a function (or the slope of a

function) is the slope of the line representing the function in a homogenous system;

however, there is no relation between the rate of change (or slope) of the function and the

slope of its line on a non-homogenous system.

Leinhardt et al. (1990), Crawford and Scott (2000), and Stump (2001) emphasized

that students often have difficulties in considering slope as a measure for the rate of

change where two quantities covary. Only 3 out of 22 high school students in Stump’s

(2001) study used the slope of a line to identify the rate of change in functional contexts

where two quantities changed relatively. Similarly, after examining preservice and

inservice secondary mathematics teachers’ mathematical understanding of slope in

various representations, Stump (1997) found that most teachers did not consider slope as

a rate of change while analyzing the changes in two quantities. As Crawford and Scott

(2000) pointed out, reform based projects and documents (e.g., NCTM, 2000) placed

considerable emphasis on studying variability and change, thus it has become essential

for students understanding slope as a rate of change.

After identifying students’ difficulties in understanding slope concept, researchers

have recommended various instructional strategies to help students overcome their

struggles and improve their learning of slope concept. Their most common suggestions
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for teaching slope can be summarized in the following way. First, introduce slope

concept as a rate of change by using real life examples, such as distance versus time

relation for traveling cars in order to help students develop some understanding of slope

(Crawford & Scott, 2000; Leinhardt et a1, 1990). Second, revisit students’ knowledge of

Cartesian coordinate system and help students refresh and improve their knowledge about

the Cartesian system in order to enable them to understand slope as a ratio by making

connections between the algebraic formula of slope and its graphical representation

(Leinhardt et a1, 1990; Schoenfeld et al., 1993; Stump, 2001). Finally, help students

realize the distinction between the slope of a linear function and the slope of a line by

allowing them to work on both homogenous and non-homogenous coordinate systems

while studying slope concept (Rasslan & Vinner, 1995; Zaslavsky et al., 2002).
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Research Focus

VMs have the potential to meet the shortcomings of physical manipulatives in

learning and teaching (Dorward, 2002; Sarama et al. 1996) by providing multiple linked

representations (e.g., algebraic, graphic, and tabular) of linear functions to help students

identify slope value in various forms of linear functions. Furthermore, VMs may enable

students to recognize the relations between making changes on the slope value in one

representation of linear functions and the effects of these changes on the other forms of

linear functions. With some VMs, for example, once students make changes on the slope

value in a particular algebraic form of a linear function, they can instantly observe the

effects of their changes on the graph of the linear function.

An analysis of several VMs on the web revealed that various instructional

approaches can be used with VMs to improve students’ learning of mathematics. Among

these approaches, two instructional approaches were chosen for this study because both

ofthem were commonly used in mathematics teaching and they also underlined different

aspects of mathematics learning. In one of these two instructional approaches, one group

of participants (OVM) used VMs to answer open-ended exploratory questions asking

them to observe the activities on the VMs, make reflection on their interactions with the

VMs, and identify the relations among various mathematical ideas based on their

observations. In the other instructional approach, the other group of participants (SVM)

worked with the same set ofVMs that OVM group used to answer structured

mathematics questions requiring them to mostly focus on numeric expressions,

quantitative relations, calculations and mathematical procedures.
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This study examined the effects of using VMs with these two different

instructional approaches on students’ knowledge of slope. In the following sections, the

knowledge of slope that served as a focus for the study will be described and the research

questions that guided the inquiry will be presented.

Students’ Knowledge ofSlope

Review of research literature about students’ learning of slope indicated that there

are major areas of slope knowledge that need particular attention to improve students’

understanding of slope. This study focused on the following aspects of students’

knowledge of slope.

Knowledge of making connections between slope concept and real life settings:

0 Considering slope as a rate of change while exploring graphs that compare

two quantities from real life contexts (e.g., distance-time vs. velocity-time

graphs), and being able to identify slope values from these graphs.

0 Forming a graph from real life data, then finding slope value on the graph, and

identifying its contextual meaning (e.g., slope as the rate of increase in the

perimeter of circle).

0 Identifying slope as the steepness of physical objects (e.g., ramps) while

solving problems given in real life settings.

Knowledge of making connections between algebraic and graphical forms of

linear functions, and identifying slope value on different coordinate systems:

0 Forming lines that have the same or different slope values on the Cartesian

coordinate system and identifying how making changes on an algebraic form

of a linear function affect its graph on the Cartesian plane, and vice versa.
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0 Identifying the relations between different numeric values of slope and the

steepness of a line.

Knowledge of identifying slope value from tabular and various algebraic forms

(e.g., slope-intercept form) of linear functions:

0 Finding the slope of a linear function from its tabular representation, and

identifying slope value from various algebraic representations of linear

functions (e.g., slope intercept form).

0 Forming an algebraic equation by using the slope value and a pair of the

points that the equation satisfies.

The study also examined students’ knowledge of slope through three types of

questions: The questions mainly concerning use of conceptual knowledge ofslope

constitute the first type of questions. The second type of the questions mostly requires use

ofprocedural knowledge ofslope. The other type of questions primarily entails use of

combination ofconceptual andprocedural knowledge ofslope. Hiebert and Lefevre’s

(1986) definitions of procedural and conceptual knowledge were extended to describe

conceptual, procedural, and combination of conceptual and procedural knowledge of

slope. Hiebert and Lefevre define conceptual knowledge as the knowledge that has rich

relationships, and consider procedural knowledge as rules or procedures to solve

mathematics problems. Based on these definitions of conceptual and procedural

knowledge in mathematics, conceptual, procedural, and combination of conceptual and

procedural knowledge of slope can be described in the following way:

0 Conceptual knowledge of slope includes identifying mathematical relations

among various representations (e. g., algebraic, graphic) of slope concept,
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defining slope concept based on its different representations, and interpreting

the meaning of slope values in real life settings.

0 Procedural knowledge of slope consists of finding slope values in algebraic,

tabular, and graphic representations of linear functions by using different

formulas or procedures.

0 Combined conceptual and procedural knowledge of slope contains various

amounts of procedural and conceptual knowledge of slope. For example,

finding the value of slope in a graphical representation, and identifying the

relationships between algebraic and graphical representations of slope.

Research Questions

The purpose of this study is to examine the effects of using VMs with two

different instructional approaches on students’ knowledge of slope through the following

overall question:

What are the effects of VMs used with open-ended exploratory questions versus

structured mathematics questions on students’ knowledge of slope?

This overall question gives rise to two more specific research questions:

1. What are the effects of using VMs with open-ended exploratory questions

versus structured mathematics questions on the pre- to posttest gains?

2. What are the effects of using VMs with open-ended exploratory questions

versus structured mathematics questions on the pre- to posttest gains on

the procedural, conceptual, and combined conceptual and procedural

questions?

23



CHAPTER 3

METHOD

College students taking a remedial mathematics course completed a pretest that

assesses their knowledge of slope, randomly assigned into two groups, individually

worked with a set ofVMs to answer open-ended exploratory versus structured

mathematics questions on their laptops throughout four 30-to-45 minute intervention

sessions, and then completed a posttest having the same set of questions with the pretest.

Participants

Sixty-five students taking Intermediate Algebra (MTH 1825) at Michigan State

University in the Fall 2008 Semester participated in the study, with 48 of the students

completing all of the experimental tasks to be included in the analysis (See Table 1).

MTH 1825 is a three-credit remedial mathematics course. According to the university’s

regulations, students who score 7 or below on the Mathematics Placement Service (MPS)

exam, or have a subscore below 12 on the Elementary Algebra section of the ACT exam

(a national college admission examination) are required to take MTH 1825. The course

covers basic mathematics topics such as properties of real numbers, factoring, roots,

radicals, first and second degree equations, and linear inequalities.
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Table 1

Number ofStudents Participated to the Sessions

 

 

 

 

 

 

 

 

Sessions Number of

Participants

OVM SVM

Session 1 32 33

Session 2 24 25

Session 3 24 25

Session 4 24 24

Session 5 24 24

Session 6 24 24     
Students volunteered to participate in the study through their MTH 1825

instructors’ announcement about the study, flyers around their classrooms, and a recruiter

who was hired by the researcher. Students’ participation to the study was encouraged in

two ways. First, the researcher offered each student $40 to participate in all six sessions

of the study. Students received $5 for their participation to each session of the study, and

they received $10 as bonus in addition to $30 after participating in all six sessions.

Second, the researcher informed students that through their participation in the study,

they could learn mathematics concepts pertaining to the future topics of their current

MTH 1825 course. The details about the recruitment of students can be found in

Appendix A.

Setting

The study was conducted in the rooms that have wireless connection. All

participants responded to sets of questions by using the VMs and typing their answers on

the computer.
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Materials

Each participant in the study completed a background questionnaire, pretest,

posttest, and used the VMs to answer the questions on the computer.

Background questionnaire. The background questionnaire (see Appendix B)

consisted of open-ended questions that aim to identify students’ experiences in learning

mathematics, and using computer and the lntemet technology in (or outside of) their

courses.

Pretest andposttest. All participants answered to the questions about slope on a

pretest and posttest (see Appendix C). Both tests have the same set of questions,

presented in different order. The pre- and posttest measured students’ knowledge of slope

by including questions in three major areas (see Table 2):

0 Making connections between slope concept and real life experiences.

0 Identifying relations between algebraic and graphical forms of linear functions,

and finding slope of the functions on different coordinate systems.

0 Finding slope value from tabular and various algebraic forms (e.g., slope-intercept

form) of linear functions.
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Table 2

Categories ofSlope Knowledge and Related Pretest (Posttest) and Session Questions

 

 

 

 

  forming an algebraic equation by using the

slope value and a pair of the points that the

equation satisfies   

Categories of Examples Related Related

Slope Pretest Intervention

Knowledge (Posttest) Sessions

Questions

Connections considering slope as a rate of change while Pre (Post) Session 1

between slope exploring graphs that compare two Question 5 (7),

concept and quantities from real life contexts and 8 (5), and 9 (3)

real life identifying slope values from these graphs

experiences

building a graph from a real life data, then

finding slope value on the graph, and

identify its contextual meaning

identifying slope as the steepness of

physical objects (e.g., ramps) while solving

problems given in real life settings

Identifying constructing lines that have the same or Pre (Post) Session 2

relations different slope values Question 1(1), and 3

between 4 (6), 7 (9), and

algebraic and how making changes on an algebraic form 10 (10)

graphical of linear function affects its graph

forms of linear identifying the relations between the

functions numeric value of slope and the steepness of

a line

‘ finding slope of a function when its graphs

is drawn on a Cartesian plane or a non-

homogenous coordinate system

Finding slape finding the slope of a linear function from Pre (Post) Session 3

value from its tabular representation Question 2 (4), and 4

tabular and 3 (2), 10 (10)

various identifying slope value from various

algebraic algebraic representations of linear

forms of linear functions (e.g., slope-intercept form)

functions
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As shown in Table 3, pre- and posttest also consisted of three types of questions

assessing students’ conceptual, procedural, and combined conceptual and procedural

knowledge of slope.

Table 3

Categories ofQuestions throughout the Pre-and Posttest

 

 

 

 

 

 

 

 

 

 

Pretest Posttest Type of knowledge needed to answer the question

Q1 Q1 Conceptual

Q2 Q4 Procedural

Q3 Q2 Procedural

Q4 Q6 Combined conceptual and procedural

Q5 Q7 Combined conceptual and procedural

Q7 Q9 Procedural

Q8 Q5 Conceptual

Q9 Q3 Conceptual

Q10 Q10 Combined conceptual and procedural     
Sources of VMs. In the study, students used the VMs from the National Library of

Virtual Manipulatives (NLVM) (http://nlvm.usu.edu), SeeingMath

(http://seeingmath.concord.org), and National Council of Teachers of Mathematics

(NCTM) Illuminations (http://illuminations.nctm.org) web sites. All of the VMs were

incorporated into a standard computer interface, which presented each VM along with

exploratory open—ended or structured mathematics questions.
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Procedures

Each student participated in six sessions, one session to complete the background

questionnaire and pretest, four sessions for the intervention, and one session to complete

the posttest (see Table 4). In the first session, participants completed the background

questionnaire and the pretest on the paper-pencil format, with 45 minutes to complete the

pretest. Then, students were randomly assigned into two groups: VMs with open-ended

exploratory questions (OVM) group and VMs with structured mathematics questions

(SVM) group.

Throughout the intervention sessions, OVM students used VMs to answer open-

ended exploratory questions asking them to observe the activities on the VMs, think

about their interactions with VMs, and identify the relations among different

mathematical ideas based on their observations. While working with VMs, OVM

students used their own initial values based on their choices to answer open-ended

exploratory questions that rarely required using numeric expressions, algebraic relations,

calculations, and mathematical procedures. In contrast to OVM group, SVM students

worked with VMs to answer the structured mathematics questions that mostly entailed

using formal mathematics language such as numeric values, expressions, calculations and

mathematical procedures during the intervention sessions. Structured mathematics

questions mostly have one correct answer and required students completing particular

steps or executing specific formulas. Moreover, these questions posed particular initial

values that SVM students had to use while working with VMs. Therefore, SVM students

had considerably less freedom than OVM group in their activities with VMs to answer

the intervention questions.
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Students participated in four 30-to-45 minute intervention sessions, they

completed first two sessions with 10-15 minutes break between the sessions in one day,

and at least one day at most one week later they completed the other two sessions with

10-15 minutes break between the sessions. In the intervention sessions, students worked

with VMs individually in a computer laboratory, with OVM students working on open-

ended exploratory questions, and SVM students working on structured mathematics

questions.

Students in the SVM group were presented with structured mathematics questions

on the right side of the computer screen, next to the VM. After working with VMs to

answer the intervention session questions, SVM students typed their answers on the

spaces provided on the computer. Students in the OVM group worked with the same

VMs, but used them to answer open-ended exploratory questions. They, too, typed their

responses on the computer. Throughout the intervention sessions, students’ written

answers were automatically saved by the computer.
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Table 4

Design ofthe Studyfor the VMs Used with Exploratory versus Structured Mathematics

 

 

 

 

 

 

 
 

Questions

Sessions VMs with VMs with Order of

Exploratory Q. Structured Q. Sessions

Pretest OVM SVM Session 1

8 Distance vs. Time Activity OVM SVM Session 2

:3; E Geoboard Activity OVM SVM Session 3

E g Graphs Activity OVM SVM Session 4

.5. Linear Trans. Activity OVM SVM Session 5

Posttest OVM SVM Session 6      
 

Intervention Session 1 (Session 2 - Distance vs. Time Activity). This session aimed

to help students understand the meaning of slope in a real-life setting by providing a VM

that provides the simulation of two runners’ actions along a track and presents position-

time graphs of these two runners. Students in the OVM group worked with the VM (see

Figure l), guided by open-ended exploratory questions (see Appendix D) about the rate

of change and its relation to slope. Students in the SVM group used the same VM (see

Figure 2) to answer structured mathematics questions (see Appendix D) focusing on the

relations between slope and rate of change.
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Intervention Session 2 (Session 3 - Geoboard Activity). In this session, students

were expected to improve their ability to identify the slope of a linear function when they

had two different points that satisfy the function. Students used the VM (see Figure 3)

that enabled them to draw lines between different points on a Geoboard to respond the

open-ended exploratory or structured mathematics questions (see Appendix D).

Figure 3. A screenshot ofthe VM that students used in Intervention Session 2.
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Intervention Session 3 (Session 4 - Graphs Activity). This session aimed to help

students develop their ability to find slope value from algebraic and graphical

representations of linear functions and identify various meanings of slope value through

these representations. Students worked with the VM (see Figure 4) that provides both

algebraic and graphical representations of linear functions to respond open-ended

exploratory or structured mathematics questions (see Appendix D).

Figure 4. A screenshot ofthe VM that students used in Intervention Session 3.
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Intervention Session 4 (Session 5 - Linear Transformer Activity). In this session,

students were expected to improve their ability to make connections between slope-

intercept and point-slope forms of linear functions by using slope concept and its

graphical representation. In the session, students used the VM (see Figure 5) that

provides graphical representations correspondent with slope-intercept and point-slope

forms of linear functions to answer open-ended exploratory or structured questions (see

Appendix D).

Figure 5. A screenshot ofthe VM that students used in Intervention Session 4.
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Posttest Session. After completing the four intervention sessions, students

received the posttest (see Appendix C) which has the same set of questions with the

pretest in a different order, and had 45 minutes to complete the test.

Pre- and Posttest Scoring

Responses on the pre- and posttest were scored using the rubric presented in

Table 4. The researcher developed this rubric using the approach taken in his work with

colleagues on MSU’S Teachers for a New Era (TNE) project.

Table 5

General Rubricfor Pre— and Posttest Scoring

 

Score Criteria

 

4 Responses that present complete correct mathematical explanations with correct

answers.
 

3 Responses that lack clarity in their explanations and/or include minor calculation

errors.
 

2 Responses that show a chain of mathematical reasoning but include major

conceptual errors or incomplete solutions.
 

1 Responses that involve at least one correct and relevant mathematical statement.

 

0 Responses consisting only of mathematically incorrect, irrelevant, or blank

statements.     
Based on this general rubn'c, the researcher developed specific rubrics for each

question on the pre-and posttest (See Table 6 for a particular rubric).
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Table 6

Rubric Used Scoring Students ’ Answers on the Pre (Post) Question 8 (5)

 

Score Criteria

 

4 Responses that show the steepness of current ramp with correct mathematical

explanations, and include complete correct explanations about how to change the

dimensions of the ramp to obtain a new ramp that has the same steepness with the

current ramp.

 

Responses that provide correct mathematical explanations to find the steepness of

current ramp, and to determine the new dimensions of a new ramp with the same

steepness, but include some calculation errors and therefore provide incorrect

results for the steepness of the ramp, and the dimensions of the new ramp

or

Responses that correctly show the dimensions for a new ramp which has the same

steepness by using proportions but include incomplete or unclear explanations

about how he found the dimensions of new ramp.

 

Responses that correctly show the dimensions of a new ramp (that has the same

steepness with current ramp), but did not provide any explanation about how he

found the dimensions of the new ramp

01‘

Responses that show a chain of reasoning (that focuses on the relation between

height and length of the ramp) in their explanations about the dimensions ofa new

ramp but involve incomplete explanations and/or provide incorrect values about

the dimensions ofthe new ramp.

 

Responses that include at least one correct and relevant mathematical statement.

   Responses that present mathematically incorrect, irrelevant, or blank statements.

 

To determine the Interrater reliability of the scoring, a second rater who is a

mathematics education doctoral student scored the pre-and posttest responses of 10

randomly selected participants. The Interrater reliability is defined as the Pearson

correlation between two scores from two different raters. The Pearson correlation

between two raters’ scores was calculated to identify the Interater reliability of scoring.

As seen from Table 7, there is a high level of agreement between two scorers.
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Table 7

Interrater Reliability ofScoringfor Overall and Subsections ofthe Pre-and Posttest

 

 

 

 

 

 

   

Sections Interrater Reliability

Pretest Posttest

Overall 0.93 0.95

Conceptual 0.92 0.95

Procedural 0.94 0.96

Combined Con. and Proc. 0.94 0.95

 

The scoring process revealed problems with one item: Pretest Question 6 (Posttest

Question 8). The purpose of this item was to evaluate students’ understanding of slope on

a non-homogenous system whose axes had different scales. Because ofunclear wording

of the item, students’ performance could not be validly assessed on that item. Therefore,

the item was dropped from the data analysis.
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CHAPTER 4

RESULTS

Research Question 1 concentrated on students’ overall performance throughout

the pre- and posttest. Therefore, all students’ gain scores were found in the following

way. First, students’ overall scores on the pretest and posttest were calculated by

summing their scores on the nine questions in the pretest and posttest. Then, students’

overall gain scores were computed by subtracting their overall pretest scores from their

overall posttest scores. Table 8 presents overall mean pretest, posttest, and gain scores for

both OVM and SVM groups.

Table 8

Meansfor OVMand SVM Groups ' Overall and Gain Scores

 

 

 

 

 

       

Groups Pretest Posttest Gain

M SD M SD M SD

OVM 7.78 4.16 11.48 5.96 3.70 3.59

SVM 8.74 4.46 13.23 5.27 4.49 3.68

Overall 8.26 4.29 12.36 5.63 4.1 3.62

 

OVM and SVM group students had similar overall mean scores on the pretest and

posttest, and revealing no large differences in their gain scores (see Figure 6).
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Figure 6. Comparison of0VMand SVMgroups ’ overall gain scores.
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An independent t-test was conducted to test whether there is significant difference

between OVM and SVM students’ overall gains. The data met the following assumptions

of the independent t-test. First, both OVM and SVM group’s overall gain scores have a

roughly normal distribution. Second, the distribution of scores in each group was

homogenous (in other words, both groups had similar variance). Third, the observations

in two groups were independent since students were randomly assigned into the groups.

Finally, t-tests are appropriate for continuous scale data. Although ordinal scale (fiom 0

t0 4) was used to assess students’ knowledge in each question, their scores for nine
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questions on the pretest and posttest were summed. That means each student can have

scores from 0-36 on the pretest and posttest. Therefore, it can be assumed that a

continuous scale was used to measure students’ performance. This is also a common

approach while deciding whether the measurement scale for dependent variable is

continuous or not in educational research.

The t-test showed no significant difference between OVM and SVM groups’

overall gain scores [t (46) = 0.744 and p > 0.05].

Procedural and Conceptual Gains

Research Question 2 primarily concerned with students’ performance on the

questions that require using different types of slope knowledge: conceptual, procedural,

and a combination of conceptual and procedural knowledge. To answer this question,

OVM and SVM students’ mean scores and mean gain scores for three subsets of items on

the pre-and posttest were calculated. These three subsets of items draw on students’

conceptual, procedural, and combined conceptual and procedural knowledge of slope,

respectively (see Table 3).

Procedural items. As shown in Table 9, SVM students attained considerably

higher gain scores than OVM group in the subset of procedural knowledge questions.

Table 9

Meansfor OVMand SVM Groups ' Overall and Gain Scores on the Subset ofProcedural

Knowledge Questions

 

 

 

 

 

       

Groups Pretest Posttest Gain

M SD M SD M SD

OVM 2.84 2.26 3.73 2.96 0.89 2.04

SVM 3.3 2.43 5.51 3.04 2.21 2.72

Overall 3.07 2.33 4.62 3.1 1.55 2.47
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As seen from Figure 7, there is a substantial difference between OVM and SVM

students’ scores on the subset ofprocedural knowledge questions.

Figure 7. Comparison ofOVMand SVMgroups ' gain scores on procedural knowledge

questions.
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Conceptual items. Although students in OVM group showed lower performance

than SVM students on the procedural knowledge questions, they had higher gain scores

than SVM students for conceptual knowledge questions. As seen in Table 10, OVM

students’ mean gain scores is 1.56 and the mean of SVM students’ gain scores is 0.69.

Table 10

Meansfor OVMand SVM Groups’ Overall and Gain Scores on the

Subset 0fConceptual Knowledge Questions

 

 

 

Groups Pretest Posttest Gain

M SD M SD M SD

OVM 2.38 1.83 3.94 2.41 1.56 2.04

 

SVM 3.04 1.81 3.73 1.69 0.69 2.72

Overall 2.70 1.83 3.83 2.06 1.13 1.54

 

        
 

Figure 8 also shows that OVM students obtained considerably higher gain scores

than SVM group on the conceptual knowledge questions.
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Figure 8. Comparison of0VM and SVMgroups ' gain scores on conceptual

knowledge questions.
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Combined conceptual andprocedural items. SVM group students also obtained

higher gain scores than OVM students on the subset of questions that combined

conceptual and procedural knowledge of slope. As presented in Table 11, SVM students’

mean gain score is 1.6 and the mean ofOVM students’ gain scores is 0.66.
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Table 1 1

Meansfor OVMand SVM Groups’ Overall and Gain Scores on the Subset

of Combined Conceptual and Procedural Knowledge Questions

 

 

 

 

 

  

Groups Pretest Posttest Gain

Mean SD Mean SD Mean SD

OVM 2.66 1.55 3.32 1.81 0.66 1.09

SVM 2.62 1.52 4.22 1.73 1.6 1.6

Overall 2.64 1.52 3.77 1.81 1.13 1.43     
 

As seen from Figure 9, SVM students had considerably higher gain scores than

OVM group on the combined conceptual and procedural knowledge questions.
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Figure 9. Comparison ofOVMand SVMgroups ’ gain scores on the combined

conceptual andprocedural knowledge questions.
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In addition to these descriptive statistics, a Multivariate Analysis of Variance

(MANOVA) test was conducted for OVM and SVM students’ gain scores on conceptual,

procedural, and combined conceptual and procedural knowledge of slope questions.

OVM and SVM students’ gain scores in three types of questions satisfied the

followmg assumptions of the MANOVA test: normal distribution of students’ gain scores

in each type of knowledge, equality of variance between groups in three types of

kno‘Wledge, independence of observations between OVM and SVM groups in the study.
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Moreover, there are two main reasons for using the MANOVA test to determine the

significance among three outcomes (students’ gain scores in three types of knowledge).

First, there is a significant correlation between OVM and SVM students’ gain scores on

procedural, conceptual and combined conceptual and procedural knowledge questions.

This means that there is some relation (or overlap) between students’ gain scores.

Therefore, using a MANOVA test is more appropriate than an ANOVA test that requires

all outcome variables have no relation with each other. Second, an independent t-test

indicated that there is no significant difference between OVM and SVM students’ pretest

scores on conceptual [t (46) = 1.272, p > 0.05], procedural [t (46) = 0.670, p > 0.05], and

combined conceptual and procedural [t (46) = - 0.093, p > 0.05] types of questions.

Because OVM and SVM students’ pretest scores on the three types of questions were not

statistically significant, there is no need to control their pretest scores in the MANOVA

test. Thus, using the MANOVA test is more appropriate than the MANCOVA test to

analyze students’ gain scores.

A MANOVA test indicated that there were significant differences between OVM

and SVM students’ gain scores in three types of questions. The results of the MANOVA

test can be summarized in the following way. First, SVM students had significantly

higher gains than OVM students in the subset of procedural questions [F (1 , 46) = 4.409,

p < 0.05, partial n2 = 0.087]. Second, SVM group had significantly higher gains than

OVM students in the questions that require using combined conceptual and procedural

knowledge of slope [F ( 1, 46) = 5.688, p < 0.05, partial n2 = 0.110]. Finally, OVM

students attained significantly higher gains than SVM students in the conceptual

questions [F(1, 46) = 13.562, p < 0.05, partial n2 = 0.228].
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Item by Item Analysis

To identify the learning activities in the intervention sessions that helped students

obtain the most gains on the pre-posttest items, OVM and SVM students’ mean gain

scores on each test item were examined. This analysis also shed light on how OVM and

SVM students’ activities with VMs in the intervention sessions enabled them to show

considerable differences between their gain scores on three types of questions throughout

the pre- and posttest.

Mean gain scores were computed for the OVM and SVM groups on each pre-

posttest item. The OVM group attained largest mean gain score on conceptual question 3,

and the SVM group had the highest mean gain score on procedural question 2. In

addition, these two questions are the items on which both OVM and SVM group showed

the largest differences between their mean gain scores. As seen in Table 12, the

difference between OVM and SVM groups’ mean gain scores are 0.94 and 0.72 on

conceptual question 3 and procedural question 2 respectively.
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Table 12

Mean Gain Scores Item by Item

 

Question Pretest (Posttest) Groups

Type Q. No.  

OVM SVM

Con. Q. 1 Pre Q. 1 (Post Q. l) 0.79 0.42

Con Q. 2 Pre Q. 8 (Post Q. 5) 0.5 0.21

 

 

 

Con Q. 3 Pre Q. 9 (Post Q. 3) 0.90 -0.04

Proc. Q. 1 Pre Q. 2 (Post Q. 4) 0.13 0.88

Proc. Q. 2 Pre Q. 3 (Post Q. 2) 0.34 1.06

Proc. Q. 3 Pre Q. 7 (Post Q. 9) 0.40 0.38

Com. Q. 1 Pre Q. 4 (Post Q. 6) 0.19 0.31

 

 

 

 

 

Com. Q. 2 Pre Q. 5 Post Q. 7) 0.13 0.71

 

Com. Q. 3 Pre Q. 10 (Post Q. 10) 0.34 0.58      
 

Conceptual question 3 (see Figure 10) that OVM group obtained the highest mean

gain score aimed to measure students’ conceptual knowledge of slope by asking them to

compare the speed of two cars based on their distance vs. time graphs.

Procedural question 2 (see Figure 11) that SVM group had the largest mean gain

score entailed students finding the slope values of linear functions presented in different

algebraic forms in order to assess their procedural knowledge of slope.
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Figure 10. Conceptual question 3.
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When t = 2 hours, is the speed of car A greater than, less than, or equal to the

speed of car B? Please explain your answer with reasons.

Do car A and car B ever have the same speed? If so, at what times? Please

explain your answer with reasons.
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Figure l 1. Procedural question 2.

 

Please find the slope of each of the following equations and provide your explanations.

a) f(x) = —1— - 4x

2

b) f(x) =2x+ 1 —-2x

1 1

f =- -—+— +10) (x) x 4 3x

(1) y+0.25=%(x-2)-2(x-2)

e) 3y—2= % (x-l)  
 

These two items with large differences in mean gain scores may help explain how

students’ learning activities on the intervention sessions enabled them to have higher

gains on different types of slope knowledge. Because students showed the largest

increase in their gain scores on these two items, analysis ofhow they responded to the

questions in the intervention sessions that were most related to these items may provide

considerable evidence about the effects of students’ different learning activities on their

gain scores. Throughout all the intervention sessions, OVM and SVM students engaged

with activities pertaining to pre-and posttest items. Intervention Session 1 and 4 included

questions that were particularly related to conceptual questions 3 and procedural question

2 respectively.

Students’ responses on these two intervention sessions were examined. The

analysis indicated that students’ answers can be categorized in two ways. One way of
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categorization is assigning students’ responses into different groups based on the type of

expressions they included. Throughout the intervention session 1 and 4, students’

responses mostly included one of the following four types of expressions.

Responses including only statements (Stat.). This type of response contains only

statements that present no explanations or descriptions of activities with VMs. For

example:

“As the position increase so does the time.”

“The equation is y = 0.5x + 3.9.”

“The runner's speed is dependent on the time he or she is allotted.”

Responses with the descriptions ofactivities on the VMs (Desc. ofacts. on VMs).

On this type of responses, students described the events that occurred on the VMs while

interacting with them. For examplezi

“y=3.0+2.0 and point slope i get y-l 1.0=3.0(x-3.0) i just plugged in numbers until

i got what you were asking for.”

“The girl started ahead of the boy. She really does go fast until boy catched

[caught] up! They were both very close at the end and the girl won by an inch.”

“1 found slope intercept form. I used the points (-2, 3) and plotted it on the graph

then moved the line until 0.5 became my x.”

Responses consisting ofexplanations with reasons (Exp.). This type of responses

involves at least one explanation with reasons. These responses often display cause-effect

relations or provide evidences to support their conclusions. For example:
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“The boy will have a different distance vs. time because he now has a different

feet [foot] per second and the graph will be different because they are at different

positions.”

“Slope-intercept form is extremely easier to deal with because it has a simple

graphing demonstration compared to the point-slope form it is more difficult

because it has a distributing involved. The similarities are when there changes in

the slope and y-intercept.”

“The more steps per second, the faster the person will finish the race. This is so,

because the more steps an individual does, their rate becomes faster.”

Responses with explanations and descriptions ofactivities (Exp. & Desc.). Some

of the explanation responses also included descriptions of learning activities with VMs.

Responses in this category often provide descriptions of events occurring on VMs as

evidence to support their conclusions. For example:

“The boy completed the race before because his step size was at 5 the girl at 3.

The boy and girl both started at the same spot but the boy still finished within 15

seconds and the girl in a little over 20 seconds.”

“The speed is slower, but because the step size is larger it helps them to win the

race. Example- the girls step size was 3 and she finished 60 (time) before the guy

whose step size was 1.”

“When 1 observe the graph of the linear equation I can see that the changes 1

create affect the line in both the slope-intercept and the point-slope. When I

change the slope in the slope-intercept form it rises [raises] the line on the y—axis

and can also lower on the y-axis. Looking at the point-slope form I can see that
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the change I make in the equation moves the line down the y-axis because I am

increasing the number. All the changes I make reflect on the x and y-axes

dramatically.”

The percentages for these four types of responses in intervention Session 1 and

Session 4 were presented on Table 13.

Table 13

Categories ofStudents ’ Responses in Session 1 and 4 (by %)

 

 

 

 

 

Sessions Group Exp. Desc. Exp. & Stat.

with VMs Desc.

Session 1 OVM 69 39 24 16

SVM 43 48 20 30

Session 4 OVM 63 20 6 24

SVM 39 12 0 56        
 

Throughout Sessions 1 and 4, OVM students more often provided explanations in

their responses than SVM group. As shown in Table 13, 69% and 63% ofOVM students

explained their answers on Session 1 and 4 respectively. In contrast to OVM students,

only 43% and 39% of SVM students made explanations on these two sessions. Similarly,

SVM students’ answers more often included statements than OVM group over the two

sessions. As presented in the table, 30% and 56% of SVM students provided statements

in their responses on Session 1 and 4 respectively, however only 16% and 24% ofOVM

students included statements in their answers on the two sessions respectively.

Both OVM and SVM students also differed in the percentage of their responses

between Session 1 and 4. For example, more number of SVM students provided

descriptions of their activities with VMs than OVM students in Session 1. However, this

difference occurred in the opposite way in Session 4. As seen in Table 13, in Session 1,
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48% ofSVM students included descriptions of their activities with VMs whereas 39% of

OVM students provided descriptions in their responses. However, in Session 4, only 12%

of SVM students contained descriptions in contrast to 20% ofOVM students. In addition

to these differences, both groups also showed similar changes in their responses between

Session 1 and 4. For example, both OVM and SVM groups had less percentage of

responses including descriptions of activities with VMs on Session 4 than they did on

Session 1. As shown in Table 13, the percentage ofOVM and SVM students whose

responses involved descriptions of activities with VMs decreased from 39% to 20% and

from 48% to 12% throughout the Session 1 and 4 respectively.

The other way of categorizing students’ responses is based on whether their

responses include quantitative or qualitative relations. On the intervention session 1 and

4, students’ answers often contained one of the following three types of expressions.

Responses with numeric relations or algebraic expressions (Num). This type of

responses contained numeric relations among quantities or algebraic equations. For

example:

“The girl step size was half the size of the boy and the boy reached the end of the

race in slightly more then [than] half of the time it took the girl to finish the race. The

boy's graph was steeper.”

“The girls speed is 2 steps per second. The boys speed is 3 steps per second. So,

the boy covered more distance.”

“y = 0.5x =3 and y-3 = 0.5(x-3) would be the two equations for the line.”

Responses including calculations (Cale). These responses included various types

of calculations. For example:
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“75-20 = 55- boy's, 20+20 = 40- girl's”

“x = 40-0/20 = 20 20 = x (the girl), x = 100-10/20 = 4.5”

“Boy: 30/20 = 1.5, Girl: 70/20 = 3.5”

Responses involving qualitative relations (Qual.). This type of response included

qualitative relations among variables such as relations between graphs and runners’

speeds or point-slope forms of linear equations. For example:

“When both the boy and girl have the same starting position, the person with the

larger step size is faster and has a steeper graph.”

“The girl and boy both started at 10. The boy had step of 5 and the girl had 3. The

boy wins this race. He is faster than her because he takes larger steps and covers more

ground. The larger the steps the steeper the line.”

“When 1 change the slope in point-slope form, it changes the steepness of the line

about a point. The line tilts about a fixed point. If I keep increasing it, it slowly turns

about the point till it is nearly a vertical straight line, crosses the Y-axis, and slopes

negatively.”

As in the first way of categorization, these three types of responses emerged from

students’ answers in Intervention Session 1 and 4. The percentages for the three types of

responses on these two sessions are presented in Table 14.

Table 14

Percentage ofStudents ’ Responses by Category in Session 1 and 4 (by %)

 

 

 

 

 
 

    

Sessions Group Num. Calc. Qual.

OVM 9 0 36

5mm“ 1 SVM 23 1| 8

OVM 22 l 39

58‘3”" 4 SVM 43 l 0
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More number of OVM students than SVM group used qualitative relations in their

responses throughout the session 1 and 4. As shown in Table 13, 36% and 39% ofOVM

students provided qualitative relations in their answers in Session 1 and 4 respectively

while 8% of and no SVM students included qualitative relations in their responses in

Session 1 and 4 respectively.

While making these two ways of categorization, it has not been taken the

correctness of students’ responses on the intervention sessions into consideration. In other

words, including mathematically correct or incorrect explanations and statements had no

effect on the categorization of students’ answers. There are two main reasons for why

students’ responses were not examined in terms of their mathematical correctness. One

reason is that since some questions entailed students making observations and reflecting

their ideas about what they did with VMs, students’ answers to this type of open-ended

questions cannot be evaluated as mathematically correct or incorrect. The other reason is

that sometimes students chose the equations or numeric values themselves under certain

conditions and worked with their own input to answer the questions, and in some cases

students did not explicitly present their initial values in their responses, thus it is difficult

to identify these students’ responses as mathematically correct or incorrect.
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CHAPTER 5

DISCUSSION

This study examined the effects of using VMs with two different instructional

approaches on students’ knowledge of slope. Analysis of students’ responses on the pre-

and posttest showed that both OVM and SVM groups increased their overall knowledge

of slope from the pre- to posttest with similar amounts of improvement in their overall

knowledge of slope. This suggests that VMs with two different instructions enabled both

groups to improve their knowledge of slope.

Although students in both groups showed similar amount of improvement in their

overall knowledge of slope, SVM students differed from OVM students in their gains on

the subsets of items tapping three types of slope knowledge; conceptual, procedural, and

combined conceptual and procedural knowledge of slope. In particular, the OVM group

had higher gains on the conceptual items; SVM students showed higher gains on the

procedural and combined conceptual and procedural items. It is important to identify the

reasons why the groups differed in the amount of improvement in three types of slope

knowledge.

Analysis of students’ pre-and posttest data indicated that the OVM group students

had significantly higher improvement than the SVM group in their conceptual knowledge

of slope. OVM students’ activities with open-ended exploratory questions on the

intervention sessions might have contributed to this higher improvement in the

conceptual knowledge of slope. Throughout the intervention sessions, OVM students

worked on the questions similar to the conceptual knowledge questions on the pre-and

posttest — questions that emphasized providing explanations with reasons and
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identifying relations among different mathematical ideas. In the intervention sessions, the

OVM group answered open-ended exploratory questions that enabled them to think about

their observations related to their interactions with VMs, identify relations between their

observations and mathematical ideas, and explain their responses with reasons. These

activities might have helped OVM students obtain higher gain scores than SVM students

in the conceptual knowledge questions that require reflection, providing responses with

reasons, and making connections among various representations of slope concept.

In contrast to the OVM group, SVM students worked with the questions that

mostly required using mathematics procedures and numeric values throughout the

intervention sessions. These questions rarely entailed students making reflections on their

observations or identifying relations between their observations and ideas.

As OVM students worked on the questions requiring explanations and making

connections among various mathematical ideas during the intervention sessions, they

included more explanations and qualitative relations in their responses than SVM group

in these sessions. For example, in Session 1, 69% ofOVM students included explanations

in their responses while 43% of SVM group explained their answers with reasons.

Furthermore, 36% ofOVM students presented qualitative relations in their responses

whereas only 8% of SVM students included these relations in Session 1. Because more

OVM than SVM students included explanations with reasons and qualitative relations in

their responses over the intervention sessions, OVM students might have had more

potential than SVM students to increase their scores on the conceptual questions.

In contrast to OVM students’ greater performance on the conceptual knowledge

questions, SVM students improved more than the OVM group on the procedural
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questions. Throughout the intervention sessions, SVM students worked on structured

mathematics questions that led them to engage with more mathematical language, such as

mathematical symbols, formulas, and procedures than the other group. These structured

mathematics questions often presented particular numbers as input, and required students

to find specific numeric values (e. g., what’s the speed of the boy and girl runner in the

first 30-second?). Like the procedural questions on the pre- and posttest, structured

mathematics questions required using mathematics symbols, numbers, formulas and

procedures. Also, the analysis of SVM students’ responses in the intervention sessions

indicated that, as expected, they included more numeric expressions and relations,

calculations, and mathematical procedures than OVM students. For example, in Session

1, 23% and 11% of SVM students included numeric expressions, relations and

calculations in their responses, respectively, whereas only 9 % ofOVM students used

numeric expressions and none ofthem included calculations in their responses. Because

SVM students included more numeric expressions and relations, calculations, and

mathematical procedures in their responses than the OVM group throughout the

intervention sessions, they became more familiar with procedural questions than the other

group. Therefore, SVM students’ activities with structured mathematics questions during

the intervention sessions might have helped them attain higher gain scores than the OVM

group on the procedural questions.

In addition to their improvement on the procedural questions, SVM students also

obtained higher gain scores on the combined conceptual and procedural items than the

OVM group. However, this does not mean that instruction for the SVM group is also

effective for improving students’ conceptual knowledge of slope, given that SVM
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students had low gain scores on the conceptual items over the pre-and posttest. There

might be several reasons for why SVM students did significantly better than the other

group students in the questions that require using combined conceptual and procedural

knowledge of slope. These questions might have focused on students’ procedural

knowledge of slope more than their conceptual knowledge. If these combined-type

questions emphasized students’ procedural knowledge of slope more than their

conceptual knowledge of slope, SVM students might have obtained higher gain scores

than the OVM group by using their procedural knowledge.

Another reason might be that combined conceptual and procedural questions

required using first procedural knowledge, and then applying conceptual knowledge of

slope. If students possessed the required procedural knowledge, they could move on the

next step that required using their conceptual knowledge of slope. IfOVM students had

had insufficient procedural knowledge to solve combined-type questions, they might

have been unable to use their conceptual knowledge successfully in these questions.

Therefore, OVM students might have obtained lower gain scores than the other group in

these questions.

Students’ responses on the intervention sessions also provided some insights

about the reasons of why SVM students had higher gain scores than OVM students on

combined conceptual and procedural items. In session 1, many SVM students included

both explanations and descriptions of their activities with VMs, and their percentage

(20%) was close to the percentage of OVM students (24%) who provided both

explanations and descriptions in their responses. SVM students often used their

descriptions of activities with VMs as examples to explain their answers. This implies

62



that since SVM students had already become familiar with explaining their answers with

reasons throughout the intervention sessions, they might have increased their scores on

the combined conceptual and procedural items over the posttest.

This study also examined students’ responses throughout the intervention sessions

to identify how students’ learning activities with VMs enabled them to show considerable

differences in their gain scores on the conceptual, procedural, and combined conceptual

and procedural questions over the pre-and posttest. During the intervention sessions,

OVM students’ responses involved more explanations with reasons and descriptions of

qualitative relations among variables than the SVM group. It is possible that OVM

students’ engagement with explanations and relations between variables helped them

acquire higher scores than SVM group in the conceptual items that require providing

explanations with reasons and making connections among various representations of

mathematical ideas.

In contrast to the OVM group, SVM students’ responses over the intervention

sessions involved more numeric relations, expressions, and calculations. Because the

SVM group mostly focused on mathematical relations, expressions, and procedures while

working with VMs, they might have become more experienced than the OVM group in

solving the procedural questions that mostly require using formal mathematics language

(i.e., algebraic expressions and procedures). This experience with numeric expressions

and mathematical procedures across the intervention sessions may explain, in part, the

SVM group’s increased scores on the procedural and combined conceptual and

procedural items on the posttest.
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Analysis of students’ responses on the intervention sessions also indicated that

intervention questions helped identify how students interact with the VMs. OVM and

SVM students used the VMs for different purposes to respond the questions. OVM

students often used VMs to explain their answers by describing the events on the VMs as

examples for their claims. In contrast, SVM students mostly interacted with VMs to find

particular algebraic equations, graphs or numeric values. Thus, questions in the

intervention sessions directly influenced how students interacted with the VMs.

Throughout the intervention sessions, both groups provided the descriptions of

their activities with the VMs in their responses. The amount ofVM activity description,

however, varied across sessions. For example, in Session 1, 39% ofOVM and 48% of

SVM students described their activities with VMs in their answers while in session 4,

only 20% of OVM and 12% of SVM students talked about their activities with VMs.

Although students were explicitly asde to use VMs to answer the questions at the

beginning of each intervention session, in some sessions they rarely referred to their

activities with VMs. However, it should be noted that if the students do not mention the

events on the VMs or their activities with VMs in their responses, this does not mean that

they did not use the VMs. It is possible that students might have used VMs to answer the

questions even though they did not refer to their activities with VMs in their responses.

However, intervention questions in Session 1 are more effective than the questions in

Session 4 in encouraging students to use VMs in their answers. Because students could

respond the questions in Session 4 without using VMs, they might have answered these

questions with little or no interaction with VMs. Therefore, instructional tasks should be

designed in a way that encourages and supports students’ learning activities with VMs.
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Once instructional activities effectively support students’ interactions with VMs, students

may realize that they need to use VMs to provide successful responses to given

instructional questions. Only stating that students in a learning setting should use VMs to

answer the questions might not be enough to initiate and foster students’ effective

interactions with the VMs.

Throughout the four intervention sessions, two different instructional approaches

have been used with the same set of VMs. In one approach, the SVM group worked on

structured mathematics questions. While studying these questions, SVM students were

exposed to more mathematics symbols, expressions, and procedures than the other group.

In this type of questions, SVM students often needed to begin with given numeric values

and apply some mathematical procedures or formulas to answer the questions. In the

other instructional approach, OVM students mostly focused on exploratory learning

activities (e.g., interpreting the activities on the VMs, making connections among their

observations, and supporting their answers with reasons). These two instructional

approaches were chosen for the study for two main reasons. First, these approaches at

some level reflect traditional versus reform-based approaches to mathematics instruction.

Second, these two approaches can also be considered to be an extension of discussion

about whether conceptual or procedural type of knowledge has the most importance in

students’ mathematics learning among mathematics education researchers.

Because the two instructional approaches used in this study have deep roots in

both practical and theoretical areas of mathematics education, this study attempted to

show how using the same technology with these two approaches affected students’

mathematics learning. The two different approaches helped students improve different
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types of mathematics knowledge. They had also influences on students’ interactions with

VMs. This shows how technologies with different instructional approaches affect both

our knowledge and our learning activities with them. This also confirms the claim that

technologies do not only influence our knowledge but also our learning activities with

them (Pea, 1987).

Clark (1983) recommended that researchers should explore the effects of different

instructional methods within various media on learning instead of studying the impact of

one specific media on learning. This study followed Clark’s suggestion by exploring the

effects of a single medium—a set of VMs—with two different instructions on students’

knowledge of slope.

Strengths and Limitations

In the study, students’ written responses were automatically recorded by the

computer throughout the intervention sessions. Students never wasted time by writing

their answers on the paper while working with VMs. In other words, students worked

with VMs without having any distraction, i.e. using paper and pencil. All students

completed their activities on the computer during the intervention sessions. This might

have helped students deeply focus on their learning activities, and had more opportunities

to improve their knowledge of slope by using VMs.

Forty-eight students completed all session of the study. The number of students

taking MTH 1825 in Fall 2008 semester was about 800. Having 48 participants out of

nearly 800 students in the study considerably increased the chance to identify the

differences between OVM and SVM students’ knowledge of slope.
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The students who participated in the study were taking a remedial mathematics

course. Because the effects of VMs on students’ learning of slope were particularly

examined, all participants completed the study before working on the slope concept in

their remedial courses. Therefore, students’ learning regarding slope concept from their

remedial courses did have no influence on their knowledge about slope while they were

participating to the study. However, it is always possible that students could learn about

lepe in their other mathematics or related courses. In these courses, instructors might

have slightly mentioned about the slope concept to help students learn other relevant

mathematics concepts or ideas. This study was designed to help students complete all

sessions before they began learn slope concept in their remedial mathematics courses in

order to reduce the effects of students’ learning about slope outside of the study.

Like every study, this study had several limitations that need to be taken into

consideration when interpreting its results and contributions. First, although each

participant used additional time to become familiar with the features of VMs, some

participants might still have not become comfortable in using the VMs, and therefore

they might have not used the VMs effectively to answer the intervention questions.

Furthermore, some participants might have misunderstood some tools of the VMs. This

might have led them to incorrectly (or inadequately) use some tools of the VMs while

responding to the questions. Therefore, they might have had some incorrect or incomplete

knowledge about the SIOpe concept.

Another limitation of the study is that students interacted with VMs for a small

amount of time. Students worked with VMs for only four 30-45 minute sessions during

the two weeks. They had no access to use VMs outside of the study sessions. Therefore,
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students might not have had adequate time to show considerable changes in their slope

knowledge.

A third limitation of the study was the selection of the participants. Students were

encouraged to participate in the study with the recommendation of their instructors and a

small amount of money offered by the researcher. Students who accepted the offer

participated in the study. Therefore, the participants of the study were not randomly

selected from the actual population of MTH 1825 students. The lack ofrandom selection

of students limits the generalization of this study’s findings to a larger population of

students.

The other limitation of the study was regarding the data collection. During the

intervention sessions, some participants provided short responses. They wrote one or two

sentences, they did not elaborate their answers even though the researcher prompted them

and encourage them to present their answers with details. Also, when some participants

were using the VMs, the lntemet was suddenly disconnected. This occurred when

students completed their activity and were saving their answers. Because they lost the

work, they had to return the activity and complete it again.

Conclusions

This study reported the effects of using VMs with two different instructional

approaches on students’ knowledge of slope. These two different instructions were (a)

providing open-ended exploratory questions that need to be answered by using a set of

VMs, and (b) asking students to solve structured mathematics questions while working

with the VMs. The results of the study indicated that each type of instruction helped

students improve different types of slope knowledge. In particular, the instruction that
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focused on mathematical procedures and numerical values resulted in greater

improvement on tasks requiring procedural and combined conceptual and procedural

knowledge of slope. However the instruction that emphasized exploratory learning

activities such as observing, analyzing, and interpreting helped students develop their

conceptual knowledge of slope.

These findings suggest that teachers can alternatively use VMs with different

instructions to help their students improve different types of mathematics knowledge. For

example, when students have difficulties in using mathematical procedures, teachers can

use VMs with procedural based instructional activities. Teachers can also integrate VMs

into their instructional activities that focus on exploratory learning activities to help

students improve their conceptual knowledge. As Stein et al. (2000) pointed out, different

instructional tasks can be used to improve students’ learning of various types of

mathematics knowledge. Therefore, VMs with different instructional approaches can help

students increase their mathematics knowledge.

This study also revealed that instructional activities should support students’

effective interactions with VMs to facilitate their learning of mathematics concepts. As

pointed out earlier, only asking students to use the VM to answer a set of questions might

not be enough to initiate and foster productive interactions with VMs in their learning.

While engaging with instructional activities, students should use VMs to answer the

questions. Therefore, teachers need to revise and redesign their instructional activities in

a way that enables their students to effectively interact with VMs while learning

mathematics concepts.
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In the research literature, few studies focused on the impact ofVMs on

mathematics learning and teaching. This study examined the effects of using VMs with

two different instructional approaches on students’ learning of a particular mathematics

concept to fill this gap in the literature. Based on the findings of this research study,

future research can deeply examine the use ofVMs with a variety of instructional

approaches to improve students’ learning of different mathematics concepts.
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Appendix A

Information about Recruitment of Students

The researcher arranged meetings with the instructors ofMTH 1825 in the first week of

the semester and provided information about the educational benefits of the study for the

students.

The instructors of MTH 1825 were given a paper that provides brief information about

the study to make announcement for the study in their courses. The researcher also gave

sign-up papers to the instructors.

Instructors made the announcement for the study in their courses and distributed sign-up

papers among their students. Studens who were interested in participate to the study

wrote their contact information (name, phone number, e-mail address) and available

times to participate the study on these sign-up papers. At the end ofthe course session,

each instructor collected these sign-up papers and gave them to the researcher. Then the

researcher contacted with the students in the sign-up papers via e-mail or phone and

arranged a meeting time and place with students.

The researcher hired a college student as a recruiter and informed the recruited about the

design of the study. The researcher and recruiter put flyers of the study on announcement

boards in classroom halls and dormitories. Flyers included brief information about the

study; the rules of the participation, the amount ofmoney students would receive at the

end of their participation, and contact information for the researcher (e-mail address and

phone number).
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The researcher also prepared small cards that include short information about the study.

The recruiter distributed these cards among the students in classroom halls and

dormitories. The recruiter also put an announcement for the study on a web site which is

popular among college students in the campus.

Students who had the information about the study from flyers, small cards, or web

contacted with the researcher via e-mail or phone. Then the researcher arranged a

meeting time and place with students. In each meeting, the researcher met at least 2 at

most 5 students. The researcher reserved rooms having wireless connection as meeting

places for the study.

In the first meeting with students, the researcher thanked for their interest to the study and

provided detailed information about the study and responded students’ questions. Then

each student was given a consent form and provided time to read the form. Students who

accepted participate to the study signed the consent form and gave it to the researcher.

Having assigned the consent form, students completed the pretest in the first session of

the study, and scheduled a time with the researcher for the next session of the study.
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Appendix B

Background Questionnaire

Gender: M F

Age:

1. How many hours per week do you study mathematics on average?

2. How many math courses did you take in the last year of your high school? Please

write the name of courses.

3. How many math courses have you taken so far at college? Please write the name of

COLII’SCS.

4. Which specific topics in algebra are most difficult for you? Why are these topics

difficult to understand for you?
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5. Have you ever been used any technology (e.g. mathematics software, math

simulations, applets, virtual (computer) manipulatives,. . .etc.) in your math courses or

outside the school?

a. If you have used any technology, please write the name of the type of

technology.

b. If you used technology in your courses, please write your grade level and the

name of course(s) that you used technology.

0. Please write 2-3 sentences about your experiences with each type of

technology that you used in your courses or outside the school.

6. Do you believe that using educational mathematics software, applets, simulations, or

virtual (computer) manipulatives (in school or outside the school) is helpful for

students’ learning algebra? Why? Please explain your answer with 2-3 sentences.
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Appendix C

Pretest (Posttest)

Please show all your work clearly!

Note: Use a pen for all your work. If you make a mistake, you can lightly cross out your

work. You have 45 minutes to complete this test.

Pretest Question 1(Posttest Question 1)

a) Please write a definition of slope with your own words.

b) If you choose any three points on the coordinate plane, can you find a straight line

that passes all these three points? Please explain your answer with reasons.

0) What do you think about the conditions that make three points on the same straight

line? Please explain your answer with reasons.

Pretest Question 2 (Posttest Question 4)

 

x -4 -2 4

 

f(x) 3 2 -1

      

a) Please find the slope of the f(x), and explain your answer with reasons.

b) Please write an equation for f(x), and explain your answer.
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Pretest Question 3 (Posttest Question 2)

Please find the slope of each of the following equations and provide your explanations.

f) f(x)= %-4x

g) f(x)=2x+1—2x

1 1

h f =- -—+— +1) (x) x 4 3x

1) y+0.25= %(x-2)-2(x-2)

j) 3y—2=§(x-1)

 

Pretest Question 4 (Posttest Question 6)

Note: This question was adapted from Moschkovich (1996) study.

If you change f(x) = x to the f(x) = %- 5x, what can you tell about the changes in the

graphs of f(x)?

a)

b)

Does the graph ofnew f(x) steeper than the graph of previous f(x)? Why? Please

explain your answer.

Is it always true that when the numeric value of slope is bigger, the graph of the line

always becomes steeper? Please explain your answer with reasons.

Is there any relation between the slope value and the steepness of the line? Please

explain your answer with reasons.
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Pretest Question 5 (Posttest Question 7)

Note: This question was adapted from Stump (1997) study.

Suppose that you are measuring the diameters and the circumferences of several

aluminum disks. If you plot a graph of your data with diameter on the x-axis (in inch),

and circumference on the y-axis (in inch), what can you say about the graph you

obtained? Can you find the slope of your graph? Describe the meaning of the slope in the

context of the problem. Please explain your answer, and show all your work.

(Note: The Circumference of a circle whose diameter is R is equal to Ru, and assume that

it = 3.14)
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Pretest Question 6 (Posttest Question 8)

Note: This question was adapted from Zaslavsky et al. (2002) study.
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a) What is the slope of the function f(x)? How did you find it? Please explain

your answer.

b) Please write an equation for the line on the graph above.
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Pretest Question 7 (Posttest Question 9)

a) Please draw three straight lines whose slopes are -2, 0, 1 respectively on the

following Cartesian plane.

 

 x

>

.
.

.
.

4
.

.
.

.

.
.

.
.

.
.

.
.

.
.

.
_

.
.

.
.

.
.

.
.

.
.

.
.

n
'
'
'
'

-
.
.
.
.
.

c
.
.
.
.
.
r
'
-
-
l
r
'
"
'
-
-
"
-
-
L
-
-
'
-
L
a
l
n
l
-
l
l
l
h

.
.

.
.

3
.

.
.

.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

n
"
"
"

—
.
.
.
.
.

c
.
.
.
.
.
—
'
-
-
'

‘
-
-
-
-
.
.
.
.
.
—
-
-
-
-
L
'
-
"
L

.
.

.
.

L
2

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

r
'
-
"
-
"
"
"

.
.
.
.
.
.

-
"
"
"
I
-
-
'
-
-
'
-
-
'
L
-
'
-
I
L
-
"
I
F

.
.

.
.

.
I
.

.
.

.
.

.
.

.
.

.
.

.
.

y
.

.
.

.
.

.
.

.

.
.

.
.

.
.

.
.

.

b
.

p
p

_
p

p
p

.
V

A
.

q
q

—
a

—
1

_
‘

.
3
.

2
.

I
.
.
.

1
.
1
.

2
.

3
.

4
.

.
.

.
.

.
.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
I
I
I
I
I

.
r
r
r
r
r

.t
t
t
t
t

.
e
e
e
e
e
e

.
I
e
.
I
I
.
.
.
I
I
I
I
I

.
I
I
I
I
I

.
t
u
t
t
i
.

.
.

.
.

.
.

.
.

.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

_
.

L
.

.
.

.

.
l
l
l
l
l

.
I
I
I
I
I

.
t
t
t
t
t
.
I
t
e
l

l
l
l
l
i
.
e
I
e
I
J
t
i
i
e
J
e
l
t
t
J

.
.

.
.

0
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

_
.

.
.

.
.

.
i
i
i
i
i

.
i
i
i
i
i

.
l
l
l
l
l

.
l
l
l
l
l
T
l
i
i
i
.
i
I
I
I
J
i
i
e
i
J
r
i
l
t
J

.
.

.
.

Q
.
.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
I
i
l
r
L
i
i
I
t
L
e
e
I
i
L
I
I
I
I
I
I
I
I
I
L
I
I
I
I
L
I
t
i
I
L
i
i
I
i
b

I.

79



2

1

b) Please draw two different straight lines that have the same slope which is -—

on the following Cartesian plane.
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Pretest Question 8 (Posttest Question 5)

Note: This question was adapted from Lobato & Siebert (2002) study.

Suppose that a customer needs a wheelchair ramp that reaches to his doorstep, which is 4

if high (point to ground and door). This particular ramp will not reach since it is only 3 ft

high. How can you change the dimensions so that you have a new ramp that is the same

steepness as this ramp but it reaches the door? Please show your work with details.

6ft

 

10ft 
 

15ft
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Pretest Question 9 (Posttest Question 3)

Note: This question was adapted from Stump (1997) study.

The graph below shows distance versus time relation for car A and car B.

 
 

d ‘l

A

B

13

L5.

8

8 so
Q

l l l l l l J l l m

0 r I l r r r l I r r t

1 2 3 4 5 6 7 8 9

Time (hour)

c) When t = 2 hours, is the speed of car A greater than, less than, or equal to the

speed of car B? Please explain your answer with reasons.

d) Do car A and car B ever have the same speed? If so, at what times? Please

explain your answer with reasons.
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Pretest Question 10 (Posttest Question 10)

Which ofthe following statements are true? Please circle your choice and give your

explanation with reasons.

‘ We can always consider slope of a linear function as a measure for the rate of change in

the function.

True / False

Explanation: .............................................

The x-intercept of the graph of a linear function is always dependent on the slope of the

linear function.

(Note: The x-intercept of a graph is the point at which the graph crosses the x-axis.)

True / False

Explanation: .............................................

If the slope of a linear function is positive, then the y-intercept of the graph of the linear

function must be positive.

(Note: The y-intercept of a graph is the point at which the graph crosses the y-axis.)

True / False

Explanation: .............................................

If the y-intercept of a linear function is negative, then the slope of the linear function

must be negative.

(Note: The y-intercept of a graph is the point at which the graph crosses the y-axis.)

True / False

Explanation: .............................................
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If two lines are intersecting each other on the Cartesian plane, one line always has

positive slope and the other line always has negative slope.

True / False

Explanation: .............................................

If the graph of a line gets steeper, the absolute value of its slope becomes bigger.

True / False

Explanation: .............................................

 

If we choose any two points on a straight line, we always find the same slope value.

True / False

Explanation: .............................................

The slope of a linear function does not always indicate a ratio of changes on y-values

over changes on x-values.

True / False

Explanation: .............................................
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Appendix D

Intervention Session Questions

Exploratory Questionsfor Distance vs. Time Activity (0VM Group)

Please use the VM on the lefi to answer the following questions.

Question 1

Note: This question was adapted from http://standards.nctm.org/.

Set different values for a position and step size for the boy and girl to start a new race

and run the simulation.

a) Please describe your observation about the race (e.g. who is faster, who completed

the race before,. . .etc.) and the related position vs. time graph (e.g. whose graph is

steeper, whether both graphs start to same position,. . .etc.)

b) Now, make changes on your settings (e.g., change the value of the size of the step

size for the boy, and change the girl’s starting position).How will the change you

made influence the race and the related position vs. time graph? Please explain your

answer with details.

Question 2

a) Set different values for the step size for the boy and girl runner (with the same

starting position) each time and run the simulation. Based on your observations on

the race and the related position vs. time graph, please describe the relation between

the step size of a runner and the speed of the runner. For example, if a runner is

using a larger step size, how does this affect his/her speed in the race?

b) How do the different step sizes affect the position vs. time graphs of runners? Please

explain the relation between the step size and the position vs. time graphs of runners.
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Question 3

The following graph shows position vs. time graphs of the boy and girl runner. The blue

line shows girl’s graph, and red line shows boy’s graph.

 

Based on your observations on this graph, please answer the following questions.

a) What can you tell about the step size ofthe boy and girl runner? Does the girl have

bigger step size than the boy, or do they have the same step size? Please explain your

answer.

b) What can you tell about the speed of the boy and girl runner? Do they have the same

speed or different throughout the race? Please explain your answer.

c) As you see in the graph, two lines intersect. What can you tell about the speed ofthe

both runners when their position vs. time graph crosses each other? Do they have the

same speed? Please explain your answer.
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Structured Mathematics Questionsfor Distance vs. Time Activity (SVM Group)

Please use the VM on the left to solve the following questions.

Question 1

Note: This question was adapted from http://standards.nctm.org/.

Please set the starting position and step size for both runners on the VM in the

following way.

Boy

Starting position: 10 Step size: 3

Girl

Starting position: 40 Step size: 2

a) Then, run the simulation. Now, write a story that describes the trip. For example,

"The girl is going reallyfast. She catches up to andpasses the boy, who is going

slow. " or "The girl started way behind the boy, who was already halfway to the tree

by the time she got going. She went reallyfast and caught up to him more and more.

Finally, at 75 she passed him and kept going reallyfast and got to the treefirst. "

b) Based on your descriptions of the trip in your story at a), does the speed of the boy

equal to the girl all the time in the race? Please explain your answer with reasons.

c) What’s the speed of the boy and girl runner in the first 20 seconds of race?

Please show your work.
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Question 2

Set starting position 10 for the boy and girl runner, and make step size 1 for the boy

runner, and 3 for the girl runner.

8)

b)

CD

What’s the speed of the boy and girl runner in the first 20 seconds of the race? Please

show your work.

What’s the speed of the boy and girl runner throughout the race? Please show your

work.

Does each of the runners have the constant speed throughout the race? Please

explain your answer.

What is the relationship between the step size of a runner and the speed of the

runner? Please explain your answer.
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Question 3

The following graph shows position vs. time graphs of the boy and girl runner. The blue line

shows girl’s graph, and red line shows boy’s graph.

 

Based on your observations on this graph, please answer the following questions.

a) Does the girl have higher speed than the boy in the first 30 seconds ofthe race?

What’s the speed ofthe boy and girl runner in the first 30 seconds? Please show

your work.

b) As you see in the graph, the graphs oftwo runners intersect each other. Do both

runners have the same speed at 30th second? Please explain your answer.

c) What is the speed ofthe boy and girl runner over the race? Does each ofthem

have constant speed throughout the race? Please explain your answers.

d) What is the relationship between the speed of a runner and the position vs. time

graph of the runner? Please explain your answer.
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Exploratory Questionsfor Geoboard Activity (0VM Group)

Please use the VM on the left to answer the following questions.

Question 1

Choose any two points on the Geoboard in the following way: Point 1 can be any point

above the x-axis, and Point 2 can be any point below the x-axis. When you connect these

two points, what can you tell about their slope? Can you find the value of the line’s

slope? How? Please use the VM, and explain your answer.

Question 2

Draw two lines with the same slope on the Geoboard. What are the differences and

similarities between these two lines? Please use the VM to explain your answers.

Question 3

Please construct two different right triangles on the Geoboard. Then, answer the

following questions by using the VM.

a) What do you notice about the lengths of the sides of right triangles? Please explain

your answer.

b) Can you find slope of the hypotenuse (please see note below) in each ofthese two

right triangles? Please explain your answer.

hypotenuse

 _1

Note: Hypotenuse is the longest side on a right triangle.

0) Describe the relationship between the slope of hypotenuse and the lengths of other

two sides in a right triangle. Please explain your answer.
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Structured Mathematics Questionsfor GeoboardActivity (SVM Group)

Please use the VM to answer the following questions.

Question 1

By using the VM, please draw a line that connects the following two points (1, -l) and

(-l, 3).

a) Does this line have a slope? Is the slope of the line positive or negative? Why? Please

explain your answer.

b) Can you find the slope value of the line that connects (1,-l) and (-l, 3)? How can you

find it? Please explain your answer.

c) Is it possible that you can find a different line that connects (l , -1) and (-1, 3)? Please

explain your answer.

Question 2

Can you find two different lines that have a slope of - 1/2? After you draw these two lines

on the Geoboard, what are the differences and similarities between these two lines?

Please explain your answer.
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Question 3

Please construct a right triangle by connecting (-1, 3), (-l, -3), and (2, -3) on the

Geoboard. Then answer the following questions by using the VM.

a) What is the slope ofthe hypotenuse (please see the note below) in the triangle that

you just constructed? Please explain your answer.

hypotenuse

 71
Note: Hypotenuse is the longest side on a right triangle.

b) What is the relationship between the slope of hypotenuse and the lengths of other two

sides in your right triangle? Please explain your answer.

c) Please construct a right triangle to find the slope of a line that connects (0, 3) and (-4,

-3). Is the slope positive or negative? What’s the slope of the line? Please explain

your answer.
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Exploratory Questionsfor Graphs Activity (0VM Group)

Please explore the graphs of various linear equations by using the VM on the left side of

the computer screen. Click and drag the sliders under the graph to change the slope and

y-intercept of the line shown.

Please use the VM on the left to answer to the following questions.

Question I

What do you observe on the graph when you change the value of slope in the

equation? Please use the VM to answer the question, and explain your answer.

Question 2

How does the graph of a linear function change when its slope value takes positive versus

negative values? Please use the VM to answer the question, and explain your answer.

Question 3

How does changing the values of y-intercept affect the graph of a linear function? Please

use the VM to answer the question, and explain your answer.

Question 4

Are there any relations between the values of y-intercept and slope on the linear

equations? Please use the VM to answer the question, and explain your answer.
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Structured Mathematics Questionsfor Graphs Activity (SVM Group)

On the VM, please adjust the green and brown sliders to graph the equations to answer

the following questions.

Question 1

a) Please first draw the graph of y = 1.0x + 1.0 and then draw the graph ofy = 2.0x +

1.0 by using the VM. What did you observe when you move from the graph ofy

=1.0x + 1.0 to the graph ofy = 2.0x + 1.0? Please explain your answer.

b) Please first draw the graph ofy = 2.0x + 1.0 and then draw the graph ofy = -2.0x +

1.0 by using the VM. What changes happened when you move from the graph ofy =

2.0x + 1.0 to the graph of y = —2.0x + 1.0? Please explain your answer.

c) What is the relationship between slope value of linear functions and their graphs?

Please explain your answer.

Question 2

a) Please first draw the graph of y = 2.0x + 1.0 and then draw the graph ofy = 2.0x +

3.0 by using the VM. What did you observe when you move from the graph ofy =

2.0x + 1.0 to the graph of y = 2.0x + 3.0? Please explain your answer.

b) Please first draw the graph of y = 2.0x + 3.0 and then draw the graph ofy = 2.0x -1.0

by using the VM. What changes happened when you move from the graph ofy = 2.0x

+ 3.0 to the graph ofy = 2.0x - 1.0? Please explain your answer.

c) What is the relationship between y-intercept value of linear functions and their

graphs? Please explain your answer with reasons (Note: The y-intercept of a graph is

the point at which the graph crosses the y-axis).
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Question 3

Please draw the graph ofy = - 1.0x + 2.0 by using the VM.

3) Can you find another linear equation that has the same graph as the graph ofy = -

1.0x + 2.0? Please explain your answer.

b) Is the graph ofy = 2x same as the graph of y -6 = 2(x-3)? Please explain your

answer.

c) Is it always true that we can find two different forms of linear equations that have the

same graph? Please explain your answer.
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Exploratory Questionsfor Linear Transformation Activity (0VM Group)

The VM on the left side provides point-slope and slope-intercept forms of linear

equations. You can make changes on the values of slope, x-intercept, and y-intercept by

changing the numeric values on the boxes with the aid of arrows.

Please use the VM on the left to answer the questions below.

Question 1

What do you observe on the graph of a linear equation when you make changes on the

slope values in the point-slope form of the linear equation? Please explain your answer

with details.

Question 2

a) What are the differences and similarities between slope-intercept and point-slope

forms of linear equations? Please explain your answer.

b) Does the value of slope or y-intercept change from moving slope-intercept form to

point-slope form of a linear equation? Please explain your answer.

Question 3

a) Choose a line (such as, a line that passes from (0, 2), and whose slope is 3). Then,

please find two different algebraic forms (slope-intercept and point-slope) for the

line that you chose. Pease explain your answer.

b) Which form (slope-intercept or point-slope) of linear fimctions that you formed first

to find the algebraic forms of the line in your answer at a)? Please explain your

answer.
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Structured Mathematics Questionsfor Linear Transformation Activity (SVM Group)

The VM on the left side provides point-slope and slope-intercept forms of linear

equations. You can make changes on the values of slope, x-intercept, and y-intercept by

changing the numeric values on the boxes with the aid of arrows.

Please use the VM on the left to answer the following questions.

Question 1

a) By using the VM, please find the equation of a line that passes through (-2, 3) and

has a slope of 0.5?

b) Please find the slope-intercept form and point-slope form of the equation that you

found at a).

c) In your answer at a), which form of the equations (slope-intercept or point-slope)

that you found first? How did you find your first equation? Please explain your

answer.

Question 2

Please compare these two algebraic forms (that you found in Question 1) with each

other. What changes or does not change while moving from slope-intercept formula to

point-slope formula of a linear equation? What are the differences between these two

algebraic forms? Please explain your answer.
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Question 3

a) Please find two different linear equations for the line that passes through (-1, 3) and

whose slope is -2. Show all your work.

b) Please find two different linear equations for the line that passes through (-1, 0) and

(l, 2). Show all your work.

c) Which form (slope-intercept or point-slope) of liner ftmctions that you used first to

find the algebraic form of the lines in your answer at a) and b)? Please explain your

answer.
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