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ABSTRACT
GLOBAL PRECISION ANALYSIS OF SU(2) ® SU(2) @ U(1) MODELS
By

Kai Ruven Schmitz

G(221) models extend the electroweak gauge group of the Standard Model by an
additional SU(2) which results in the presence of three new heavy gauge bosons Z’
and W% with masses at the TeV scale. In this thesis a global fit analysis of the most
prominent G(221) models -— the left-right (LR), leptophobic (LP), hadrophobic (HP)
and fermiophobic (FP) models as well as the ununified (UU) and non-universal (NU)
models — is presented. Utilizing a modified version of the Fortran plotting package
GAPP the G(221) models are fitted to a set of 37 electrowcak observables including a
multitude of Z pole observables, the mass and the width of the W= boson, the mass
of the top quark and various low-energy observables. The experimental precision with
which the electroweak observables have been measured allows to put strong bounds
on the parameters of the G(221) models and to constrain the masscs of the Z’ and
the W'%. As a confirmation of the power of the Standard Model the scale of the new
physics in the G(221) models is generally found to be very high. For each G(221)
model under study the most important observables that drive the minimization of
x? can be identified. Among the most relevant observables are the hadronic cross

section in e et

annihilation and the weak vector charge of cesium-133. To illustrate
which values of the G(221) parameters are consistent with the experimental data
plots of the parameter space are presented that indicate the viable regions at 95%
CL. Likewise plots of the Z’ and W’ masses demonstrate which masses of the new
heavy gauge bosons are already ruled out by the data and which are still possible. In
a closing remark the constraints from the ZW W~ vertex on the G(221) parameters

are considered. As it turns out the bounds on the ZW W™ coupling do not affect

the results of the global fit analysis.
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Chapter 1

Introduction

1.1 Motivation of This Study

What holds the world together in its inmost folds? The Standard Model (SM) of
particle physics is the best answer physics can give to that question at present. Being
considered as the most successful theory in the history of physics, the SM is able to
describe and predict the behavior of elementary particles under the influence of the
electromagnetic, the weak and the strong force with unique precision, all the way to

the scale of the nucleon (1071 m).

However, it is clear that the SM is not an ultimate theory. It neglects gravity in
the description of the subatomic world and therefore does not encompass all forces
of nature. In that respect it does not meet the expectations towards a theory of
everything from the outsct. Furthermore it requires the masses and the mixing of the
fermions and the mass of the Higgs boson as external input parameters instead of
providing an unified explanation of how these quantities originate from more funda-
mental parameters. It lacks the answers to many fundamental questions, such as the
nature of dark matter and dark energy or the origin of the baryon asymmetry in the

universe. On a more technical level it faces difficultics such as fine-tuning [1] or the
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violation of unitarity [2] at high energy scales in the absence of a light Higgs scalar.

In view of all these deficiencies it is one of the main tasks of modern high-energy
physics to investigate theories bevond the SM. Theoretical work has to be done on
two fronts: On the one hand it is necessary to construct new physics (NP) models
and to examine in which directions the SM could be extended. On the other hand the
phenomenology of new physics models has to be studied to be able to correctly inter-
pret the data of experiments that aim at measuring effects of new physics. Presently,
this second task is as important as never before. The particle physics community is
about to enter a new era — in the near future the Large Hadron Collider (LHC) at
CERN will collect precise data on the TeV scale and it is widely expected that it
will provide evidence for physics bevond the SM. Now, at the eve of the LHC, it is
therefore of special importance to study the phenomenology of new physics models.
It is the goal of this thesis to contribute to that effort.

We will examine the compatibility of a certain class of models, the so-called G(221)
models, with the most recent precision data on a number of electroweak observables.
In a global fit analysis we will investigate the constraints on the parameters of these
models in order to find out in which regions in parameter space the respective G(221)

models are consistent with the data.

1.2 The SM and Its Extension by a Second SU(2)

Before we concentrate our attention to the physics beyond the SM we bricfly summa-
rize the main characteristics of the SM that will be relevant for our analysis.

The SM is a gauge theory. Its ansatz for the gauge group of the electroweak
sector is the SU(2)r ® U(1)y in which the SU(2), entails weak interactions of left-
handed fermion currents and the U(1)y acts on fermions that carry hypercharge

Y. The fermion content of the SM is accommodated in three generations of leptons
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and quarks. Mathematically, they are incorporated in the SM as representations of
the electroweak gauge group: Left-handed fermion states form doublets under the
SU(2) [, right-handed fermions are represented by SU(2) [ -singlets. The hypercharge
Y is constructed such that it adds with the third component Tg of the weak isospin

to give the electric charge, Q = TE +Y.

If the electroweak gauge symmetry were unbroken in nature the SM would feature
four massless vector bosons acting as mediators of the electrowcak force. However, we
know from the experiment and the fact that the only long-range interactions in nature
are those of electromagnetism and gravity that three electroweak gauge bosons are
massive. An elegant explanation for that observation is provided by the Higgs mech-
anism that interprets the masses of the gauge bosons as a consequence of syminetry
breaking triggered by a scalar particle, the Higgs field. The SM assumes the simplest
case and represents the Higgs boson by a SU(2)-doublet. In the Higgs mechanism
the Higgs boson spontaneously acquires a non-vanishing vacuum expectation value
(VEV) which breaks the gauge symmetry of the Lagrangian and results in the oc-
currence of boson mass terms. In the course of spontaneous symmetry breaking the
fundamental gauge bosons mix with each other to form the mass eigenstates that we
see in the experiment: The neutral, massive Z boson, the charged and massive W+
boson as well its anti-particle, the W™ boson, and the neutral and massless photon

A

Many models beyond the SM presume the existence of further gauge bosons that
account for new forms of particle interactions at high energy scales. The introduction
of new gauge bosons in the theory corresponds to the extentions of the electroweak
gauge group by another symmetry group. An additional U(1) results, for instance,
in the appearance of a second massive uncharged boson, the Z’. Extensions of the
SM with a SU(2) ® U(1); ® U(1)2 gauge group in the electroweak sector — or with

a G(211) gauge structure as we may say equivalently - have been studied in large
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detail [3]. One of the next natural steps after adding a U(1) is the extension of the
SM gauge group by a second SU(2). In these G(221) models the electroweak gauge

group is given as the:

G(221): SU(2)1®SU2),@U(1)x

in which, depending on the specific G(221) model, the two SU(2)s can either accom-
modate left- or right-handed fermion doublets and the U(1) x introduces a new form
of hypercharge X. The inclusion of a second SU(2) results in the presence of three
new gauge bosons, the Z’, the W/t and the W/~. As these hypothetical gauge bosons
have escaped detection so far, they are assumed to be very massive. In this thesis we
will study the constraints on a class of G(221) models. One of our key questions will
be which masses for the new heavy gauge bosons are still allowed and consistent with

the data.

The explicit G(221) models that we will consider in this work are: The left-
right model (LR) [4, 5, 6], the leptophobic model (LP), the hadrophobic model (HP)
and the fermiophobic model (FP) [7, 8, 9], as well as the ununified model (UU)
(10, 11] and the non-universal model (NU) [12]. The LP, HP and UU models are
incomplete which manifests itself in the anomalous non-conservation of chiral fermion
currents. For purposes of completeness, we will, however, include them into our
analysis nonetheless. Especially the LP and the HP models are worth being discussed
as they represent, in a scnse, intermediate steps in the transition from the LR to the

FP model.

In fitting models with a G(221) gauge structure to the electrowcak data we follow
up the work of many earlier theoretical and phenomenological analyses. In the lit-
erature a number of studies can be found that perform global fits to various G(221)

models in the same spirit as our work. To be aware of the footing this thesis stands
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on we may give a brief overview of these studies now: Polak and Zralek investigated
the symmetric version of the LR model in which the new charged vector bosons, the
W't and the W/~ couple with the same strength to the fermions as the charged SM
bosons, the W+ and the W ™. In Refs. [13] and [14] they obtained constraints on
the LR parameters from the Z pole observables and fromn the low-energy data respec-
tively. The non-symmetric case was considered by Chay et al. [15]. They put bounds
on the Z’ mass and the two mixing angles by combining the precision electroweak
data from LEP-I and the experimental data on low-energy neutral-current processes.
The tree-level and one-loop calculations in the FP model were carried out by Donini
et al. [16]. They showed that precision clectroweak data and flavour physics provide
stringent constraints on the FP parameter space. Chivukula et al. [17] used the data

from precision electroweak measurements to put strong bounds on the UU model.

However, no study encompassing all G(221) models at once has been presented so
far. The goal of this thesis will be to close that gap. While the studies in the liter-
ature differ in terms of their focus and techniges, we will present one comprehensive
consistent analysis for all G(221) models. In particular, we will pursue an effective
Lagrangian approach that will equip us with very universal and flexible expressions
for the different fundamental quantities in the G(221) models. Proceeding in this way
allows us to address the various G(221) models on an equal footing and ensures that

the respective results are contrastable.

We ask ourselves: Which bounds do the experimental data place on G(221) mod-
els? We will give an answer to that question in three steps: In the second chapter we
will investigate the intrinsic propertics of the G(221) models under study. This part
of our work mainly aims at providing us with the analytic expressions for the gauge
boson masses and the fermion currents. In the third chapter we will use the results of
our calculations to derive the new physics corrections to the clectroweak observables

to which we fit our models. Subsequently, we will give a short introduction to the

5



Fortran plotting package GAPP [18] that we utilize in a modified form to perform our
numerical analysis. The fourth chapter is devoted to the presentation and discussion

of our results.



Chapter 2

New Physics Models

To be able to fit the G(221) models to electroweak precision data we need to know how
these models are constructed and what their respective properties are. In this chapter
we will try to develop an understanding of the models under study by addressing two
key points: The masses and the mixing of the gauge bosons and the gauge interactions

of the fermions.

The gauge bosons acquire their masses while the fundamental G(221) gauge group
is broken down to the U(1)ey. This breaking is successively accomplished by two
Higgs fields ® and H that spontaneously acquire non-zero VEVs at different energy
scales. Our strategy to extract the gauge boson mass matrices from the Higgs con-
tributions % and £y to the fundamental Lagrangian £ is the following: First,
we discuss which representations for the Higgs fields comply with the mechanisms
by which the fundamental G(221) gauge group can be broken. Once we know the
charges of ® and H under the G(221) symmetry groups we can write down % and
Zy explicitly. We then have to clarify what is meant by the model parameters ap-
pearing in these two Lagrangians. When we have fully understood the structure of £
and £y we can finally concentrate our attention to the breaking of the fundamental

symmetries and the generation of the boson masses.
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The second contribution to & that we are interested in is the interaction of the
fermion with the gauge boson sector. As, from the perspective of new physics, the
electroweak observables appear as low-ecnergy data this is best done in an effective
field theory approach. Successively, we will integrate out the massive gauge bosons
until we end up with the effective Lagrangian below the electroweak scale and hence
the effective four-fermion interactions.

However, before we begin with any calculation we may categorize the G(221)
models under study. This will give structure to the analysis that we are going to

perform and thereby simplify later considerations significantly.

2.1 Classification

The G(221) models under study are the LR, LP, HP, FP, UU, and NU model. Three
criteria will help us to classify these models: The choice of the breaking pattern,
the representation of the Higgs field ® and the charge assignments of the fermions.
Fig. 2.1 on the following page gives an overview of the hicrarchy among all the classes
into which our G(221) models can be grouped. The following discussion basically

serves as a comment on that diagram.

2.1.1 Symmetry Breaking Pattern

The gauge group of all G(221) modecls in the electroweak sector is the SU(2); ®
SU(2)2 ® U(1)x. If this symunctry were unbroken it would lead to the prescence of
seven massless gauge bosons in nature. However, experiments tell us that there is
ounly one massless force carrier belonging to the electroweak interaction, the photon.
As already discussed in the introduction all other bosons must acquire masses through
the effect of spontaneous symmetry breaking.

G(221) models go beyond the SM by extending its gauge group, the SU(2); ®

8



P
s
)
th
o] ~ !
[a]
2 a 2
5 ®
=3 s
32 :
25
%
S S
548 = s
g S &
o] ~ e
X o &
= ey =
S & .
8, a3
A [
2 :
0
§ B .
1 :
-4 a %
1111 —© ; :
3 B m 0
g & 8 & = &
i q
I &
8 8 &8 © =

Figure 2.1: Classification of the G(221) models under study — the ten G(221) models
considered in this work fall into three distinct classes that differ from each other in
terms of the mechanism by which the fundamental G(221) gauge group is broken and
the choice for the Higgs representation ® at the first breaking stage. Two breaking
patterns are available; the Higgs field ® can cither be represented by a doublet or
triplet. Referring to these three classes of G(221) models we will speak of the (BP-
I,D), (BP-1,T) and (BP-II,D) models.
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U(1l)y, by an additional SU(2). However, the SM has proven to be a very successful
theory at low energies. At a first stage the breaking mechanism of G(221) models
therefore has to reproduce the symmetry group of the SM. From there on, the break-
ing proceeds, of course, as in the SM: At a second breaking stage the SM breaking
SU2)L @ U(l)y — U(1)em is mimicked. It is thus clear that the general G(221)

breaking pattern must have the following form:

SU@2) & SU@2),@U1)x — SUQeUl)y -5 Ul)en

We have already introduced the two Higgs field ® and H that are responsible for
the two symmetry breakings in the introduction to this chapter. Now we define ®
to be the Higgs field that is responsible for the first breaking and H to be the field
responsible for the second breaking. We expect ® to acquire a VEV at the TeV scale
furnishing the new gauge bosons W'¥ and Z’ with very heavy masses. H plays the
same role as the familiar Higgs doublet in the SM. It gets a VEV of roughly 250 GeV
resulting in masses of the W¥ and the Z boson as seen in experiment. Note, that
the expected hierarchy of the two VEVs is, in principle, a model assumption.

There are two ways to break the SU(2); ® SU(2)2 ® U(1) x down to the U(1)em
splitting the set of all G(221) models naturally into two groups. In the following dis-
cussion we will refer to both mechanisms as the first and the second breaking pattern,
breaking pattern one and two or just BP-I and BP-II when an abbreviation is needed.
The choice of one of either breaking patterns has a substantial phenomenological im-
pact and in fact, it is the most important criterion for the classification of the G(221)

models. We now present both patterns in detail:

First breaking pattern: The first breaking mechanism identifies the first SU(2)
as the left-handed SU(2); that we know from the SM and the second SU(2)

10



as its right-handed counterpart. We would like the first symmetry breaking to
provide us with the SM gauge group and as the SU(2), is already present right
from the beginning — in form of the SU(2); — we only have one choice for
what to do at the first breaking stage: The SU(2)9 and the U(1) x have to be

broken to the SM hypercharge group U(1)y:

SU@2), — SU@) SU@»eU1)x -5 UQ)y

Then everything is sct up correctly for the sccond breaking stage at which H can
break the SU(2);, ® U(1)y to the U(1)em. Fig. 2.2 on page 28 illustrates this
first breaking mechanismn in a schematic diagramn. From the above mentioned
models the first four, i.e. the LR, the LP, the HP and the FP model, belong to

the first breaking pattern.

Second breaking pattern: The second breaking pattern arrives at the SU(2) of
the SM by breaking the direct product of the two SU(2)s to the diagonal sub-
group. As for the remaining group, now the U(1)x, there is again only one

choice left. It has to be identified with the U(1)y right from the beginning:

SU@L @ SU@2)y 2 SU@)L ; Uy — UQy

At the second breaking stage we again encounter SU(2), ®@U(1)y H oy (Dem-
Fig. 2.3 on page 29 visualizes this breaking mechanism. The two G(221) models
in which the symmetry breaking proceeds according to pattern two are the UU

and the NU model.
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2.1.2 Higgs Representation at the First Breaking Stage

There are no uniquely defined representations for @ that have to be employed when
either breaking the SU(2)2 and the U(1) x to the U(1)y or the SU(2); ® SU(2) to
the SU(2) . In fact, we are free to decide between different multiplets for either kind
of breaking pattern. In this work we will consider the simplest scenarios and restrict
ourselves to: SU(2)g-doublet (D) and SU(2)s-triplet (T) respresentations in the case
of breaking pattern one and a bi-doublet (D) representation for breaking pattern
two. A bi-triplet would be possible as well for the second breaking mechanisin. But
as the only expected difference to the bi-doublet case would be a rescaling of some
parameters we will neglect that possibility. As opposed to ® the representations of
H are fixed. The condition that the second synunetry breaking has to resemble the
SM breaking mechanism respectively leaves only one choice for H in cither breaking
pattern.

In total we will thus deal with ten different models: four models (LR-D, LP-D,
HP-D, FP-D) in which the gauge symmetries are broken according to pattern one
and @ is represented by a SU(2)o-doublet, four models (LR-T, LP-T, HP-T, FP-T)
with the same breaking mechanism but utilizing a SU(2)9-triplet representation of ®
instead and two models (UU-D, NU-D) that follow breaking pattern two and use a
bi-doublet for ®.

Since we are only interested in classifying the G(221) models these comments on
the Higgs representations should suffice for the moment. In subsection 2.2.1, when

we begin to derive the boson masses, we will go into the details.

2.1.3 Assignment of the Fermion Charges

Separating the G(221) models by breaking pattern and Higgs representation at the
first breaking stage leads to three subsets of models: (BP-1,D), (BP-1,T) and (BDP-
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U(l)x

Model SU(2); SU(2)s Quarks: Leptons:
o () (¢1) GE).(m) | v | -
w (ZIL,) ’ (2) (Zlg) 1/6 Ysum
i (Zf) ’ (Zi) (Zﬁ) Yom —1/2
P (Zf) ’ (Iejf) Yom | Ysm
o (Zi) (:2) YoM Ysm
N (Zi) 3t ond (:ﬁ) 15t gnd (32) grd’ (:ﬁ) grd Yom Youm

Table 2.1: Charges of the fermions under the G(221) gauge group — the displayed
iso-doublets are eigenstates of the weak interaction. Unless otherwise specified, they
represent all three generations. Ygyzg stands for the usual values of the electroweak
hypercharge in the SM: Ysy (vz) = Yan (er) = —3, Yo (er) = —1, Yan (ug) =

Ysm (dr) = &, Yom (ug) = % and Ysyp (dg) = —3.
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IL,D) in shorthand. Within each of these three groups the respective models differ
from each other in terms of the fermion charges.

Historically, the LR model represents the original G(221) model. It assumes that
the right-handed fermions transform as doublets under the SU(2)9, just as the left-
handed fermions transform as doublets under the SU(2);, viz., the weak SU(2) of
the SM. In the LR model all right-handed fermions, thus, interact with the new
heavy charged W' bosons. If we let the W' gauge bosons talk to quarks or leptons
exclusively we arrive at the LP and HP models. If we only invoke the presence of a
second SU(2) in the electroweak gauge group, but assume that the W% gauge bosons
do not interact with any SM fermion, we get the FP model. All four models belong
to the first breaking pattern.

Regarding the second breaking pattern we can cither separate the SM fermion
representations by flavor or by gencration which provides us with the UU and the
(family) NU model respectively. The UU model assigns the quark doublets to the
first, the lepton doublets to the sccond SU(2); the NU model singles out the third
fermion generation reserving the SU(2)y exclusively for it. In that respect the NU
model is the only G(221) model under study in which the charge assignements do not

apply cross-generationally — the only model that breaks family symmetry.

Tab. 2.1 gives an overview of the fermion charges under the fundamental G(221)
gauge groups for all considered models. In order to save space we only include the
fermions of the first generation in Tab. 2.1. Unless otherwise specified, these are,
however, understood to collectively represent all three fermion generations. Moreover,
as indicated in Tab. 2.1 some of our G(221) models not only extend the particle
content of the SM by additional gauge bosons but also by new right-handed neutrinos.

Our set of new physics models comprises all phenomenologically different G(221)
models. Further G(221) models that we do not include into our analysis could be

constructed from the models of the second breaking pattern by exchanging the fermion
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representations between the two SU(2)s. As such a permutation would, however, only
correspond to a redefinition of some model parametcrs we will not consider thesc

models in our study.

2.2 Masses of the Gauge Bosons

The gauge bosons get their masses and mix with each other in the course of spon-
taneous symmetry breaking that is triggered by the two Higgs fields & and H. To
calculate the masses of the physical gauge bosons we first have to discuss the contri-

butions ¥ and £ from ¢ and H to the total Lagrangian .&.

2.2.1 Higgs Representations

In all G(221) models the Lagrangians % and £y have the following form:

g~ T [(D,2) (DM9)] 1 iy ~ T (D) (DHH)]

The coefficients of £y and £y get fixed by the choice of the Higgs representa-
tions and the trace symbol only has an effect when the corresponding product of the
covariant derivatives is non-scalar — which is the case if a Higgs field is represented
by a triplet or a bi-doublet. Constructing the Lagrangians for the two Higgs fields we
have to use the covariant derivative D), rather than the ordinary partial derivative
Oy, in order to ensure local gauge invariance.

The goal of our analysis in this subsection is to explicitly write down the covariant
derivatives Dy ® and Dy H in terms of the gauge bosons and the gauge couplings.
These derivatives depend on the charges of the respective Higgs fields under the
G(221) gauge groups. Tab. 2.2 on the next page lists the Higgs representations our

models are constructed with. The second column of Tab. 2.2 gives the quantum



1%t stage Repr. Multiplet and VEV

BP-1(D) | @~ (1,2.}) b= (‘;’;,L) @)= (ﬁn)

BPI(T) | &~ (1,31) | &=} (\/%;0 */?‘gf) L@y =1 (UOT g)
BP-II || &~ (2,32,0) o= ((‘;’22 Zg)  @=2 <g 2)

27 stage Repr. Multiplet and VEV

BP-I (D) | H ~ (2,2,0) H= (fg '}‘;{;) ; (H) =% (Cg S(;)

BP-I (T) | H ~ (2,2,0) H = (I’g f}‘l};:) ;) =& (COQ s(;)
BPIL | H~ (1.24) H= (’}‘;) L= (2)

Table 2.2: Representations of the Higgs fields ® and H for the three classes of con-
sidered models — at the first stage of breaking pattern one ® can either be chosen to
be a doublet or a triplet under the SU(2)9. In the second breaking pattern ® is rep-
resented by a bi-doublet. The second breaking stage miimics the symietry breaking

of the SM; the respective representations of H are therefore fixed.
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numbers of ® and H for all three considered classes of G(221) models in the following

format:

Higgs ficld ~ (T7, Tn, X)

Here T7 and T5 denote the main quantum numbers of the SU(2); and SU(2)
isospins and X is the charge under the U(1) x. The actual multiplets that represent ¢
and H as well as their VEVs are listed in the third column of Tab. 2.2. We generically
denote the non-zero VEVs at the first and second breaking stages by @ and v resp. In
the case of breaking pattern one we put a small subscript on  to distinguish betwecn
the doublet (D) and the triplet (T) representations for ®. Since the same Higgs H
is used in both (BP-I,D) and (BP-1,T) models such a discrimination is, however, not
necessary at the second stage. By contrast to pattern two the first breaking pattern
introduces a further degree of freedom through the VEVs of the Higgs fields. In the

first breaking pattern (H) actually features two different VEVs, & and &’:

We obtain the expression given in Tab. 2.2 when we relate the VEV ¢ and the

angle B to & and & as follows:

K=71-C3 ; K =1
3 '

(o]
v}
Tt

The tilde (7) over the angle 3 and the VEVs &, &’ and @ indicates that these param-
eters are intrinsic model parameters. We will elucidate the details in Subsec. 2.2.2.
5 and s 3 are, of course, abbreviations for cos (f)’) and sin (/3) In the following we

will abbreviate the trigonometric functions of any arbitrary angle a in this manner:
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Sa =sin(a) ; ca =cos(a) ;  te =tan(a)

Two criteria apply to the selection of those multiplet components that acquire
non-zero VEVs: On the one hand we require the Lagrangian to remain invariant
under U(1)em transformations while the fundamental gauge symmetrics are broken;
that is, we have to assign the VEVs to the respective Higgs fields such that the clectric
charge @ is a good quantum number in the end. On the other hand, as complex or
purely imaginary VEVs would lead to, e.g., unphysical mass terms, the Higgs VEVs

must be real.

In order to fulfill the first condition we define the clectric charge @ to be the sum

of T3, T3 and X:

Q=T}+T3 + X (2.1)

with T13 and T: 23 being the third components of the isospin vectors fl and ’fg
and assign the non-zero VEVs to multiplet components for which this sum takes
the value zero. The Higgs VEVs then do not carry electric charge and the U(1)em
remains unbroken. In Tab. 2.2 the electric charges of the Higgs fields are indicated

by superscripts.

It is not surprising that the relation in Eq. (2.1) represents the proper definition
of @. In models that employ the first breaking pattern Tf’ is equivalent to Tg and Ti?
and X add up to Y. If breaking pattern two is used X and Y are the same quantun
number and the sum of T? and T23 e;lua,ls TB Eq. (2.1) thus does nothing else than

mimicking the familiar SM identity:

Q=T{+Y =T + (T + x) = (T} +T5) + X
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Furnishing only the real parts of the respective multiplet components with non-
zero VEVs always introduces factors of % when going from a Higgs field to its VEV.
To give an example: The A0 that belongs to the H field of the second breaking pattern

is given as:

Ko = % (W +i-h0)  where KK €R

where % plays the role of a normalization factor. (H) is supposed to be real and so
only hg gets a VEV and h? vanishes in the vacuum:
u

O_L&Z’. =
(1) = 2 (@+i-0) = -

With all these general remarks being nade, the charges of the Higgs fields ® and
H given in Tab. 2.2 now allow us to explicitly write down the covariant derivatives
Dy® and D, H. Tab. 2.3 on the following page presents the Lagrangians £ and
Zy in terms of gauge couplings and vector bosons for all three considered classes of
G(221) models. The overall prefactors take care of the proper normalization of %
and Zy. They ensure that in both Lagrangians, if expandend in the components of

their Higgs multiplets, all terms have a prefactor of 1:

Lo =3 (Dust)) (D"6)) 5 Lu=Y (Duhi)' (DFhy)

i 1
The gauge couplings of the SU(2);, the SU(2)2 and the U(1)x that enter into
Y and &Ly are denoted by g1, go and gx resp. We will concentrate our attention to
them in the next subsection. The gauge bosons belonging to the three fundamental

syminetry groups are given as:

SU2);: WL W2 W3 SU(@Q)y: Wi, W2 W3 ; U(l)x: By
1 1 2 2 2
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1%t stage

Lagrangian

BP-I (D)

BP-I (T)

BP-I1

(D,®)" (D ®)
(0u®T +igo@Tg - W +igx @t By ) x
x (81 — igyTE® - Wi — igx & - BY)

2-Te[ (Du2) (DHe) ]
2-Tr[(0u@" + igy [ @1, T§] - WE, +igx®! - Bx )%
x (1D — i [Tgxb] W _igx@- BY)]

Tt (D,2)" (D49) |
Tr[(0,®T + g1 @TTE - we, - igoTo®T - Wg )%
x (01D — ig TP - WEH 4 igo®T - W)

20d stage Lagrangian
} 1. Ty tpu
BP-I LT[ (DuH) (D4
5 Tr[(OuHT +ig  HITE - Wi | —igoTSHT - W) ) x
x (OMH — i1 TCH - WEH 1 igy HTE - WEH)]
BP-II (D,H) (D*H)

(OuH" +igp HTS - WS, +igx 3 H' - Bx)
x(OMH — igoT{H - Wi* — igx }H - BY)

Table 2.3: Lagrangians of the Higgs fields ® and H - - depending on their charges
under the G(221) gauge group the Higgs fields ® and H are accounted for by different
contributions to the total Lagrangian. Once the Higgs fields acquire their VEVs the
gauge symmetry of these Lagrangians gets broken and six linear combinations of the

seven fundamental gauge bosons become massive.
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Since the Lagrangians %p and £y arc invariant under the full G(221) gauge
group, these seven gauge bosons are still massless. The terms in which they appear
in g and Zy represent the gauge interactions of the Higgs fields ® and H — mass
and mass mixing terms do not appear until we break the G(221) symmetry. In our
language of Higgs Lagrangians the mechanism of spontancous symmetry breaking
(SSB) is accounted for by the substitution of the Higgs ficlds ® and H with their
VEVs (®) and (H):

SSB: Ly — ﬁ@) ; Ly — .?(H) (2.2)

We will examine the effects of these substitutions in Subsec. 2.2.3. Now we focus

on the gauge couplings.

2.2.2 Gauge Couplings and Mixing Angles

The treatment of the parameters that are involved in our analysis requires special
care: In the next chapter it will be our goal to calculate the new physics corrections
of our G(221) models to the electroweak observables and to add these corrections to
the GAPP code. GAPP, however, is designed to fit the SM to the electroweak data
and therefore employs the usual parameters of the SM. The old physics parameters
in our G(221) models differ from these SM parameters, as they receive contributions
from new physics, and so we will have to develop a dictionary of relations that will
help us translate our parameters to those of the SM, that is to those used by GAPP.

In [19] Burgess et al. present a detailed study of constraints on new physics
derived in a model-independent effective Lagrangian approach. They give a detailed
discussion of the relation between new physics and SM parameters and in this work
we will basically follow their procedure. Burgess et al. distinguish between three

different ideas: Model parameters, standard parameters and reference observables.
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In the following we will make usc of all three concepts which is why we now want to

shortly comment on each of them:

Model parameters are the parameters by which the fundamental Lagrangian of our
G(221) model is parametrized as well as all other quantities that are derived
from them. This definition also applies to the reparametrized Lagrangian in
which the VEVs of the Higgs fields are used rather than the fields themselves.
Burgess equips these parameters with a tilde; in our previous discussion we
already adopted this notation when we introduced the Higgs VEVs @ and v,
the angle 3 and the couplings of the three fundamental gauge groups §;, Jo
and gx. The rest of this subsection will deal with the important secondary

quantities that can be constructed from these couplings.

Standard parameters are parameters whose analytical relations to the experimen-
tal input take exactly the same form as in the SM. In other words: They
represent the actual parameters of the SM transfered to and incorporated into
our G(221) models. In order to distinguish them from our model parameters
we will furnish them with the index SM. It is the standard parameters that are
used by GAPP and as mentioned above one of our goals that we have to accom-
plish before we can start fitting will be to translate our model parameters that
have equivalents in the SM to these standard parameters. In fact, the relevant
standard parameters will be the fine structure constant, agyg, the VEV of the
electroweak symmetry breaking, ng, and the electroweak mixing angle SgSM'

We will come back to the standard parameters in Subsec. 3.1.2.

Reference observables are observables that have been measured with high preci-
sion and that can therefore be employed to deduce the numerical values of the
standard parameters. GAPP uses the fine structure constant a and Fermi's

constant G g as reference input. Optionally, the mass Mz of the Z boson can
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be fixed. We note that a is identical to agyy — the two notations for the fine
structure constant just either emphasize its role as an observable or as a model
parameter. Once we have expressed our new physics corrections in terms of the
standard parameters the reference observables will serve as the ultimate link

between our theoretical analysis and the experimental data.

The breaking of a more fundammental initial gauge group to a smaller subgroup
has two effects: First, the new gauge group will be associated with its own gauge
couplings that are related to the couplings of the fundamental gauge group. The
actual form of the breaking pattern has to tell us how these relations exactly look
like. And second, the mechanism of symmetry breaking will lead to the mixing of
the gauge bosons belonging to the fundamental symmetry group. It will therefore be
convenient to change the basis of the gauge bosons after the symmetry breaking by
performing a rotation about a certain angle.

Both the coupling constants of the new gauge groups as well as the mixing angles of
the gauge bosons can be constructed from the gauge couplings of the initial symmetry
group, in our case g1, g2 and gx. In the following we show how this is respectively

done at the first and the second breaking stage of our G(221) models.

First breaking stage The first breaking of pattern one, SU(2)2 @ U(1)x —
U(1)y, mimics the SM breaking SU(2); ® U(1)y — U(1)em. Hence, we define the
mixing angle ¢ between the bosons of the the SU(2)9 and the U(1) x similarly to the
electroweak mixing angle fgyy — the tangent of ¢ is given as the ratio of the U(1)
coupling, gx, to the SU(2) coupling, go. As for breaking pattern two we can either
set the tangent of ¢ to §o/g; or the inverse of that. Breaking the two SU(2)s to the
diagonal subgroup, SU(2),, we have to trcat both groups on an equal footing and
it must therefore not matter which choice we make. We decide for the first option

which leads us to:
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9X . BP-L ¢

BP-I: t; = =
o7 g

5 (2.3)

Qll‘Qn
— |83

After the first breaking stage we arrive at the SU(2)p ® U(1)x of the SM for
either kind of breaking pattern. Analogously to the standard couplings gy, s\ and
gy sM we denote the gauge couplings of this first subgroup of the fundamental G(221)
gauge group by gy and gy. As the first breaking pattern directly identifies the first
SU(2) with the SU(2)f, the corresponding coupling, §;, has to be equivalent to gr.

In breaking pattern two gy follows from the mixing of both fundamental SU(2)s:

1

| =

BP-I. gr=q1 ; BP-II: = — + (2.4)

wml =

2
1

e
U}

2
L

o

If we combine Eqs. (2.3) and (2.4) we can rewrite g1 and g9 in terms of the weak

isospin coupling constant gy and the first stage mixing angle ¢:

~ gL ~ g ~ ~ ~
BPI: g =% ; §5=2L & gL = 8391 = €392 (2.5)

©
O

Similar arguments apply to the definition of gy. In breaking pattern two the
U(1) x is not touched during the first symmetry breaking. gx therefore is equivalent

to gy . The first breaking pattern mixes the SU(2)9 and the U(1) x at the first stage:

1 1 1 . . .
BP-I. =5+ ; BP-II: gy =gx (2.6)
9y 93 9x

The combination of Egs. (2.3) and (2.6) provides us with relations similar to those

in Eq. (2.5), now for the first instead of for the second breaking pattern:

BP-I.  gp=°L ; gx= ® gy =sgip=cyix  (27)
o]



Second breaking stage The sccond breaking stage resembles the electroweak syin-
metry breaking of the SM. For both breaking patterns the analogue of the Weinberg
angle fgy in our G(221) wodels, 8, the electric charge é and the fine structure con-

stant & are defined as:

+ ! ! &
—_— . a —
2 bl

v 4

Il
S
i
"

D
R =
S
=Y

Compare also with Eq. (3.6). Just as in the SM, we then have the following rela-
tions between the gauge couplings and the electric charge as well as the electroweak

mixing angle:

& € = Sz0L = C39y (2.8)

According to the definitions of g7 and gy in Egs. (2.4) and (2.6) the electric charge

takes the following form in either breaking pattern:

R N 6 S U Y (R N RS
g\ %) \i ») %

GAPP only knows indirectly about coupling constants. Instead of the SM gauge
couplings g7, sm and gy sy the fine structure constant agy and the electroweak
mixing angle fg) are implemented in the code. When we have come to calculate
the corrections to the precision observables we will also discard all gauge couplings
trading them for a, 6 and é. The corresponding relations between §;, §o and § x on
the one side and &, § and ¢ on the other side follow from Egs. (2.5), (2.7) and (2.8).
We present the results in Tab. 2.4 that summarizes all of the important relations

discussed in this section.
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Table 2.4: Fundamental gauge couplings and mixing angles — overview of the rela-
tions between g1, go and gx on the one side and the parameters &, 6 and ¢ as well
as the couplings constants gy, and gy and mixing angles # and 6 on the other side.

2.2.3 Mass Matrices and Mixing of the Gauge Bosons

As we now have understood all quantities that enter the two Higgs Lagrangians %
and £y we can return to Eq. (2.2) and finally perform the symmetry breaking. The
first stage of symmetry breaking generates masses for the two heavy gauge bosons

W'E and 2’

Ligy = M2 Z) 2 4 ME W W

The hats (*) over the boson symbols indicate that these gauge bosons are not yet
mass eigenstates and thus not physical boson states. During the second symmetry
breaking two bosons W* and Z will acquire masses and — that is the point —
mix with the W'* and the Z’. In order to find the physical gauge bosons it will
be neéessary to diagonalize the mass matrices in the neutral (Z', Z ) and charged
(W%, W) gauge boson sector. Z', Z, W'+ and W will then be represented by
some linear combinations of the hatted gauge bosons. The tilde over M 2, and ﬁI%V’
reflects the fact that these masses are only internal model parameters which do not
represent masses of physical states. The masses of the physical gauge bosons will be
constructed from these tilde masscs.

At the second stage of syminetry breaking H gets its VEV furnishing two further
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gauge bosons, W* and Z, with masses:

1~5 o 5 1/~ — s — A oA
— _A o= 2 172 1 5, 172 I
Loy + Ly = FMZZZ"+ (MZ, + AMZ,) 2,2 + 8)2 5, 2,2"4(2.9)
72 VA1 A2 72 Y Wl
+ MEWEW o (M2, + AN, ) Wit
-"‘f2 2413 I—, Tr— ‘/vl+, !
b M2, (W H L W)
The next goal on our way to the masses of the physical gauge bosons is to de-

termine the mass parameters in Eq. (2.9) and to discuss how the hatted bosons are
constructed in terms of the fundamental gauge bosons W11’2, W12’2, W13, o and By. We
will collect our results for the mass parameters in Tab. 2.5 on page 33.
In a first trivial step we transform the fundamental bosons that belong to the two
SU(2)s such that they become cigenstates of the electric charge operator:
Wi, = % (wha-iwls) ; wi,= %

If we take the bosons Wli2, 14"?2 and By to be the fundamental basis of the

(Wl{2 + iWﬁQ)

G(221) gauge bosons the effect of the twofold symmetry breaking triggered by & and

H can be summarized as follows:

SU(2) ® SU(2)9 ® U(l)x Photon EW bosons NP bosons
wiE WS, Wi, w3 By — A wt z w7
massless  massless  massless massless massive massive

Figs. 2.2 and 2.3 show diagrammatically the steps that lead from the initial funda-
mental gauge bosons to the physical states for both breaking patterns. We will now
successively examine both stages of symmetry breaking and the diagonalization of the
mass matrices. The following discussion can essentially be regarded as a comment on

Figs. 2.2 and 2.3.

27



>
PSS '
S g
]® 2
o —
® —
0 =
® ~ D
N )
a. | 0
>
~
—{
) —
b’_|-> T
x I ~ -~
M —> N ——> N
Q
®
Y
~ —> B8 m =S (N
~ * ©
)
N
ny o
n 0 "y &
>R — —
o)
X
H +H +H
N N ~
>R P 0
=
N
"
o &
0 Ha +H +
> 2R

i
o
-t
[+5}
B
)
Ay
=T0]
R
E
Bt
Mm
3
[+3]
-c -~
N
g
.50
N

A

heavy

WI:t

light

+H

=

First stage  Second stage Mass eigenvalues

28

Figure 2.2: Mixing of the gauge bosons due to spontaneous symmetry breaking ac-
cording the first breaking pattern — the text colors indicate whether the respective
bosons have already acquired masses (red symbols) or whether they are still massless
(green symbols). For all pairs of bosons that mix at a certain stage of symmetry
breaking the respective mixing coefficients are given on either side of the correspond-
ing arrows. Trigonometric functions written on the left-hand / right-hand side of an
arrow belong to the left / right boson at the preceding stage of symmetry breaking.
Sce Tab. 2.2 for the definition of the VEVs @ and ¢ and the angle 3.
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Figure 2.3: Mixing of the gauge bosons duc to spontaneous symmetry breaking ac-
cording to the second breaking pattern -— the text colors indicate whether the re-
spective bosons have already acquired masses (red symbols) or whether they are still
massless (green symbols). For all pairs of bosons that mix at a certain stage of
symmetry breaking the respective mixing coefficients are given on either side of the
corresponding arrows. Trigonometric functions written on the left-hand / right-hand
side of an arrow belong to the left / right boson at the preceding stage of symmetry
breaking. See Tab. 2.2 for the definition of the VEVs 4 and ¢ and the angle 3.
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First Breaking Pattern At the first breaking stage the charged SU(2)y bosons
Wf acquire masses whereas their SU(2); equivalents Wli remain massless. These
two sets of charged gauge bosons do not mix and so the transition from Wf': and W;:
to W* and W'* is nothing else than a renaming. In the neutral gauge boson sector
7' emerges as a certain lincar combination of Wg’ and By. The orthogonal linear
combination to Z’ represents the neutral vector boson By of the hypercharge group
U(l)y. We diagonalize the neutral mass matrix by rotating the (VV%, Byx) boson

basis about the angle ¢.

It + 7 3
W't 0 1) \wj By s; ¢ ) \Bx

The coefficients of the boson products ZLZ HE and W[f' W'~ in the Lagrangian
-Z)(<I>) provide us with the masses H%, and :’\;fdfv,. As can be seen from Tab. 2.5 these
masses depend on the choice for the representation of ®. In fact, it is this difference in
the numerical prefactors of the masses ]Vf;, and M 3%/’ that accounts for the different

phenomenology of the (BP-I,D) and the (BP-1,T) models.

Since the Lagrangian % does not involve the bosons of the SU(2); the neutral
Wl3 stays unaffected during the first symmetry breaking. Once the SU(2)q ® U(1) x
symmetry is broken to the U(1)y we identify the W f as the neutral boson of the
weak isospin group, W g The bosons that remain massless after the first breaking

stage therefore directly correspond to the fundamental gauge bosons of the SM.

At the second stage of symmetry breaking we cncounter the usual SM breaking
mechanism: The Wg and the By combine resulting in the massive Z boson and the
massless photon, A. We construct Z and A by rotating the (Wg, By') basis about

the angle 6:
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The charged bosons W belonging to the SU(2) [ acquire masses as well. We
obtain M; and MI?V as prefactors of Z#Z“ and W; W~ in the Lagrangian .?( H)-
Moreover, the presence of the new physics bosons Z'" and W'¥ results in mass mixing
terms 6H§ 1 and 6H3VW" Finally, the second symmetry breaking leads to shifts
AM%, and AMI%V’ in the massecs 1,\\43, and ﬁl?v’ that are proportional to the VEV
v of the low-energy Higgs field H. The results for all these mass parameters are
presented in Tab. 2.5. We notice that the angle 3 that we introduced in Subsec. 2.2.1
as the mixing between the two VEVs & and &’ appears in Tab. 2.5 exclusively in the

W-W' mass mixing parameter 5M€V From now on we will, hence, regard 8 not

‘,ir/'
only as the &-&’ but also, if not mainly, as the W W mixing angle.

Second Breaking Pattern Breaking pattern two involves, of course, the same
gauge bosons as the first breaking pattern but constructs the bosons after the first
breaking stage in a different way. As opposed to breaking pattern one Wli and
Wzi do not represent mass eigenstates once ® has acquired its VEV. W* and W'+
are now introduced as linear combinations of Wli and W2i after the charged mass
matrices has been diagonalized by a rotation about the angle ¢. The massive Z’ docs
not receive contributions from By in the second breaking pattern but is constructed
from W? and W23 The neutral boson of the weak isospin, Wz, follows as the linear

combination of Wiq and W23 that is orthogonal to Z’:

wit A e — w

™~
|

V)
S

3
W

o
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By is identical to By; the second stage breaking proceeds as in breaking pattern
one. We determine the mass parameters in Eq. (2.9) in the same way as for the first
pattern and collect them in Tab. 2.5. As an interesting consequence of the particular
structure of the second breaking pattern we notice that the Z’ and the W'E are
degenerate in terms of their masses and that they receive the same mass corrections

in the course of the sccond symmetry breaking: see also Eq. (2.9):

—~ o~ S7 —
(g% + f]%) ﬂ2 = AI%, ; AA[2 = —eggq,z = AAIEV’

~9
AIZ*/ = Z/ - 4

o | =

This behavior is expected since the second breaking pattern breaks the SU(2); ®
SU(2)2 to the diagonal subgroup not distinguishing between charged and uncharged
V't

gauge bosons. The mass generation for the Z/ and the 1 proceeds in exactly the

same way.

2.2.4 Physical Boson States and Masses

We now know all parameters in the mass Lagrangian of the gauge bosons after the
second breaking stage, .S!jg?d)\“ = .,?(q,) + .2”( H) for all three classes of G(221) modecls.
The considerations that will lead us from zﬁﬂb to the masses of the physical bosons
apply generally and so we now return to our BP-independent analysis: .Z;ﬁ?l\g can be
written in its most compact form when we introduce .///{; a1 and %'W’ as notations

for the mass matrices of the neutral and charged gauge bosons:

~ ~

(2) _l 5 5 ./,-/\,‘A Z + 17+ i1+ ZA " W:t
mass = o YAA A Py W W A it -

with //72 21 and ‘//Z/VW’ being of the form:
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(BP-1,D)

M MY M M
10 +9)v* | 133 +3%) b 1917° 193D

L2, ANE, OME, ., AM?,
it | P | -Pawe | 13
(BP-L,T)
1(d+a7) v | (@ + %) it 192 39507

SMZ,, AM, oA AME,
~Bunix?| P | -Past | g
(BP-ILD)

72 7, 2, 7,
10 +9p) v | 1(5F+35) 1917 1(9f +33) v
oM, AMY, M, AME,
~Lhma? | T0B2 | -WE - R 1@ -3

Table 2.5: Entries of the fundamental boson mass matrices — the first symetry
breaking generates masses M%, and Mfi/, for the Z’ and the W'E. In the course of

the second symmetry breaking the Z and the W+ bosons acquire masses Mé and

MI%V Additionally, the Z’ and W’* masscs get respectively shifted by AH%, and
172 ST sTT2

AMW, and mass mixing terms 6MZZ’ and 6MWW’ occur; cf Eq. (2.9).
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A2 A2 A2 A2
_ M? SN, . M2, SM2

L . S ww/’
B Py B v N v A = SM2 . N2 4+ AN
gz Mzt AMG wir My T Mg,

The masses of the physical gauge bosons are given as the eigenvalues of 4 oA
and #3111, the physical bosons themselves as the corresponding eigenvectors. Since

we expect 7;, and M’ gi/" to be very large,

72 s N2 AT
ME, > MZ,AM

72 . 172
Z,, (51\122, ) ME

I", >> :‘7‘%‘,3 AHQ‘,I, dﬁz

114 ww'’ "

it is appropriate not to calculate the exact eigenvectors and eigenvalues of .#; 5,
and "”WVV” but to restrict oursclves to a series expansion in powers of M§,2 and
.M‘E/z, resp. We diagonalize the mass matrices by performing rotations about the
angles @ 5 and w50

SM2 SMZ
22t vy v R (s vy v
ZI 7 ‘,Vl %%

Up to linear order in HZT? or },\7‘;2, the physical bosons Z, Z/, W+ and W'* are

then given as:

= 7 Y s - A ":A, Y s 7
Zu=Zu—iypZl o Zh= 2+ oymla (2.10)
’iz A:t_v’vA N e /'I-tz !t IS g
W= Wi — o WiE - WE = WiE Lo W (2.11)

The eigenvalues corresponding to these eigenvectors, that is, the physical masses

M2, M%,, *MI%V and Mi24f” take the following values:
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SAT4 SMA .

2 a2 27" . a2 ap2 z2!
My =G = 25 s MG = MG+ (2.12)
iz 7
SATA . SME
2 _ 72 _ WW! o a2 372 wi’ .
1\/]‘/‘,' — AA[”. :]\\[/,2 ) 4‘[‘1‘;[ - 4‘[‘1/., + ;\-72‘ (21&)
b ”.—[ u!l

These general relations represent important results in their own right. However,
we are also interested in more explicit expressions that tell us how the masses of the
six massive gauge bosons depend on the Higgs VEVs, the mixing angles etc. for each
of the considered classes of G(221) modecls. We obtain such expressions in three steps:
First, we insert our results for the mass parameters as given in Tab. 2.5 into the above
relations. The expressions for M%, M%,, A'Ia,f and M, 2,, we get this way still involve
the gauge couplings of the various symmetry groups. In order to prepare the global
fit analysis with GAPP we subscquently rewrite the coupling constants according to
Tab. 2.4 in terms of the finc structure constant & and the gauge boson mixing angles.

In a third step we introduce the paramecter # as the ratio of the squared VEVs 42

and 92,
a2 i, 52
(BP-ID):z2=—=% ; (BP-ILT):z= = i (BP-II,D): z = 5 (2.14)
v v )

and expand the physical boson masses in . As for M% and Ma, we consider

8

terms up to first order in % In case of the heavy gauge bosons we will only keep

terms proportional to Z. The parameter T allows us to quantify the relation between
the scale of the new physics and the electroweak scale. It will play a crucial role
in our later analysis: As we will see the corrections to the SM obscrvables in our

G(221) models will scale with }lr and depending on which ¥ range in parameter space
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M3/(c52M§) M2, /(cQ?"’Mg) M /MG M2, /MG

- _ 14 25-2; 12 | 42472
(BP-1,D) 1 7% 105¢ z 1 53 t03¢ z
- 1.4 2.2~ _ 1.2 2.2~
(BP-1,T) 1 1% 4tésg3 x 1 95555 2t@3q.5 T
(BP-IL,D) 1- %S; sq?)zfi? 1- %sé 3-2%2&3

Table 2.6: Masses of the physical gauge bosons in terms of the model parameters z,
o, 0 etc. My = (e20%)/ (433) has the same form as the SM mass of the W+ boson,

but is defined in terms of G(221) model parameters.

is allowed by the experimental data it becomes more likely or less likely that a certain

G(221) model can be probed in collider experiments. For that reason the expansion

in % extracts the leading new physics contributions to the boson masses and sorts

1

out higher order terms that we are not interested in. In that respect expanding in £

has the same effect as the expansions in 7\7;,2 or 1’\7‘;/2, that we performed above.

The results for M%, M%,, MI%V and MI?V’ that we obtain after having gone through
all three steps are presented in Tab. 2.6. In this table we introduce the mass M that

allows us to write down the boson masses in a nice and compact form. M is defined,

2:0 <9
e v Tav
é 7

such that it resembles the SM expression for the mass of the W boson. However,
the definition of My employs model and not standard parameters and so My only

corresponds to the SM W mass in the limit Z — oo.
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2.3 Gauge Interactions of the Fermions

The fermions that are incorporated into our G(221) models couple to the vector
bosons through gauge interactions. In the third chapter, when we will have come to
calculate the corrections to the electrowcak precision data, these interactions will rep-
resent the heart of our analysis —— the theoretical description of the various precision
observables to which we will fit the G(221) models either requires the fundamental
fermion currents or the effective currents that arise in the low-energy theory. In this
section we will thus first discuss the direct interactions between fermions and gauge
bosons and then present how one arrives at the effective theory by successively inte-
grating out the heavy gauge bosons. The latter part will first lead us to an effective
SM-like Lagrangian at the electroweak scale. After removing the electroweak gauge
bosons from the theory we will end up with the effective four-fermion interaction
below the electroweak scale. The three Lagrangians that we will obtain in this way
will represent very powerful and flexible tools that will allow us to perform many

calculations for all G(221) models at once.

2.3.1 Fundamental Fermion-Boson Interactions

Our G(221) models accommodate the fermions f in iso-multiplets ¥ each of which is

represented by a corresponding term %, in the total Lagrangian

Ly = Wy Dy

Two things are necessary to ensure that £, is invariant under local gauge trans-
formations: First, we have to employ the covariant derivative Dy, instead of the
partial derivative d,,3%. Second, the term —z/?M,/,z/) reflecting the fermions’ masses is
not included into £, but generated through spontaneous symmetry breaking in the

Yukawa sector.
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BP  SU(2); Doublet SU(2)2 Doublet Charged under the U(1) x

I | Grdu P TEWE o | 3odRv*TIWE ¥m | Gx 9 (XLPL + XRFR) Bx u¥

I | G TEWE e | Gdu v TEWE oL | Gy dr* (YLPL + YR PR) Byt

Table 2.7: Building blocks of the fermion Lagrangian %, that account for the gauge
interactions of the fermion multiplet ¢ with the vector bosons — %, is composed as
a sum of these blocks according to the chosen breaking pattern and the charges of ¥
under the G(221) gauge group.

Just as we expanded the covariant derivatives of the Higgs fields, D, ® and D, H,
in terms of the gauge couplings and bosons in the previous section we will now expand
Dy3. Generally, Dy can be split into a kinetic part represented by 0, and terms
leading to the gauge interactions. To give an example: In the LR-D and LR-T model
the covariant derivative of a lepton multiplet ¢y and the corresponding Lagrangian

read as follows:

2y

Dyt = Oy — gL T{WE  PLivey, — ig2T5 W”QI’,uPRd’f,R
— igx (XLPL + XgPRr) Bx u e
-7 ; ~ 7 r ' ~ 7 b b
wp = WerkOuve + Gre Ly TIWT W PLve L + G2ve RV ToWo , PRYER

+ gx¥er* (XLPL + XpPR) Bx ¥

The gauge interactions differ from fermion to fermion, though, in dependence of
the respective charges under the G(221) symunetry groups. In particular the fermion
interactions with the SU(2)2 gauge bosons WZ‘Z’ ,, have different chiral structure for
both breaking patterns. In Tab. 2.7 we list the pieces that can enter the gauge
interaction part of the Lagrangian %, |

The expressions given in Tab. 2.7 stand for the fermion interactions with the weak
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eigenstates VVll,2, Wﬁ 2 W'l?’,Q and By. We are, however, interested in the fermion
currents that couple to the physical gauge bosons. It will be these couplings that will
go into the calculation of the corrections to the electrowcak observables. In a first
step towards this goal we calculate the fermion couplings to the gauge bosons that
we obtain after the second stage of symmetry breaking, Z, Z/, W*, W'+ and A. We
take the contribution %, to the total Lagrangian % that accounts for all fermion

gauge interactions,

Lt = Z (-?y'; - 'il/_')’)'“aﬂl_f)) ,
v

transform from the fundamental gauge basis to the basis of the boson charge
eigenstates and perform subsequently the rotations that we discussed in Subsec. 2.2.3.
The result of this calculation is .?3(2) the fermion-boson interaction Lagrangian after

nt.’

the second breaking stage. We may write .Zgi) as:

(2) 5> 10, it = 1
L = ZyJOF W LW TR (2.16)

7! O W e W ol
+ Z, K"+ W, TKTF+ W, K

+ Ay Lo+

with JO, J*, KO K* and L° denoting the fermion currents coupling to the
respective gauge bosons. J9, J* and L? correspond to the usual SM currents, K 0
and K* represent new fermion currents that emerge due to the new physics in our

G(221) models. For the contribution of a particular fermion f to JO and L? we find:
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g(a,u, 2" (o, v, 2")

LR || —§s39xPL+ (36592 — §559%)PR | 3559x PL + (3¢592 + §559%) PR
LP —§559x L + (3392 — §559x) PR 5s59x PL
HP —s59x (§PL+ 3 PR) 3559x PL + (3e592 + 5 59x) PR
FP —s59x (6P + §PR) 3s59x L
Uu %Cg,fll P —%Sd;§2PL
NU ) %CéﬁlpL %Cq;glPL
(lst’ 9n )
NU —%SéggpL ’%3$g2PL
(3)
g(d.d, 2" g(e.e, 2"
LR | —§s59xPL — (3¢592 + §539%)PR | 5s59xFL — (36592 — §559%) PR
LP —%;SééxPL - (%%@2 + %sqgéx)PR Sg,gX(%PL + PR)
HP —ségx(éPL — 3PR) 5530x PL — (%Cq;sb - %Sg,@X)PR
FP ~s39x (§PL — 3FR) s3dx (3P, + PR)
uU ~Jesa1PL 5s592PL
NU —%C&g}lPL ‘%Ca,glPL
(ISt, 2nd)
NU %Séf}gPL %SégQPL
(3)

Table 2.8: Fermion couplings to the heavy Z’ boson in the current K%* — in the
first breaking pattern KO# contains both left- and right-handed parts; in the second
breaking pattern it is purely left-handed. Cf. E¢s. (2.16) and (2.21).
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g(d.u, W), g(a,d, W) ge.v,W'"), §(7,e. W)
LR %@21912 ﬁEDPR
LP \/LngPR 0
HP 0 —IﬁQQPR
FP 0 0
Uu %CéélPL '%%’,@PL
NU (1%, 2™) %Cé,?]IPL "}—2-0&571&
NU (3') 5392FL 73559211

Table 2.9: Fermion couplings to the hecavy W'+ boson in the current K*# — in the
first breaking pattern K*# is purely right-handed. It therefore introduces charged
fermion interactions with a V+A structure standing in contrast to the charged V-A
interactions of the SM. As the contributions from K**# are always suppressed by %
they can, however, be neglected in many cases. In the second breaking pattern K +.0

is purely left-handed. Cf. Egs. (2.16), (2.22) and (2.23).
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I = e (10 - jQun) At (<) A s 2
L% = eQe(f) - M (2.18)

The currents J* belonging to a specific generation of quarks (u, d) or leptons (v, e)

take the following form:

JiHt = % ~dpyHPruy, J1+’“ = % e Py, (2.19)
- _ 9L - - _ 9L -
JoH = 7 apnfPdy 5 IR = NoR Ly Prer (2.20)

The currents coupling to the light gauge bosons and the photon thus have exactly
the same structure as the SM fermion currents. Both sets of currents only differ
in the definition of the parameters they employ. In order to be able to present the
new physics currents in a compact form we introduce the functions §(f, f, Z') and

g( f.f W’i) that allow us to write K0 and K% as:

K*=f#g(f. £.2')f (2.21)
K;’“ = dy*§(d, u. WH')u ; Kl+"u' = ev"g(e, v, I‘V”’)u (2.22)
Kot =uytg(a.d W”‘)d ; K[—’“ = y"g(0,e, W' )e (2.23)

In Tab. 2.8 on page 40 we sumunarize the results that we get for the fermion
couplings to the new heavy Z’ boson. Tab. 2.9 on the previous page lists the couplings

to the new heavy W% boson.

The derivation of the fermion currents that couple to the gauge bosons Z, Z/,

42



WE, W* and A completes our discussion of those contributions to the fundamental

Lagrangian .Z that we are interested in. After the second stage of symmetry breaking

all information relevant to the further analysis is contained in the sum of .‘ZE{?&% and
(2)

.Zgzt) which we may denote by &, :

L0 = B+ 2L
= 32,00 4 o (T3, + ARTY,) 2,8 + 6003 5, 2, 2%
+ MZ W (Effi,, + A}T/f%,,) WEW/—H
b ORT2 o, (Wi v )
+ Zy O W IR W g
+ ZLKOF WK WK

+ A, LOH

Since the fermion coupling to the photon will play no role in the further discussion

we omit it from now on.

2.3.2 Effective Lagrangian at the Electroweak Scale

At energies below the masscs M, and My, the new heavy gauge bosons Z " and W'E

are too heavy to be produced. In experiments probing observables at the electroweak
scale the Z’ and the W'* are solely noticcable through their virtual interactions. As
a consequence, the theoretical description of low-energy processes only accounts for

them in form of their propagators, Sgl,’(qz) and Sﬁff,(q2):

1
¢ - M2,

1

S8 (g%) ~ SR
(%) £ 2,

2
7! ; Sﬁfrll(q ) ~

As the momentum transfer in these processes, g, is much smaller than M, and
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(1% step) Fundamental theory Effective EW theory
Integrate out Z’, W'*: .2’}5;?13 f — Low.

(27 step) Effective EW theory Four-fermion intcractions
Integrate out Z, W+: ZLow. — Zus

Table 2.10: Relations between the Lagrangians .Sffg 4. Zew. and &y f— the elec-
troweak theory described by Z.w. can be derived from the fundamental Lagrangian

Zf(uzxz 4. by integrating out the heavy gauge bosons Z’ and W’ % The subsequent re-

moval of Z and W= from Ly, provides us with the effective four-fermion Lagrangian
% Iz

My, it is justified and fittingly to expand the propagators Sg‘,’(qz) and Sa/'f, (¢?) in
inverse powers of the large masses M;, and Mgv ,- Doing so will lead us to an effective

theory at the energy scale of electroweak interactions.

However, we can alrcady take care of the expansions in M 2,2 and MI/—V2’ in the
classical Euler-Lagrange equations of motions for Z’ and W'£. In this equivalent
approach we do not have to worry about the treatment of Z’ and W'# as full-fledged

boson fields comparable to Z, W+ and A just to render most of our work dispensable

ny
w’

for the large masses of the Z’ and the W'* right from the beginning by expanding

in the end when expanding the propagators Sg’,’(q2) and S (¢). We better account

the solutions of the equations of motion. If we insert the expressions we get this way
for Z' and W'¥ into the Lagrangian Zfsizd we will obtain the effective theory at the
electroweak scale as well. The Lagrangian of the effective electroweak theory, Zew.,

will then only contain fermion currents, the Z and the W¥.

Similar arguments apply to processes that take place at even lower cnergies. If

the momentum transfer in a low-energy experiment is smaller than the masses of
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the Z and the W* we can also integrate out these bosons. This will lead us to the
effective four-fermion interaction Lagrangian Zy¢. Our program for this and the next
subsection can thus be summarized as shown in Tab. 2.10.

We begin with integrating out the Z’ and the W*. In a first step we have to
transform 4. from the basis of the hatted gauge bosons, Z,Z'.W* and W'¥, to
the basis of the physical bosons, Z, 2/, W* and W'*. Egs. (2.10) and (2.11) tell us
how to do that. Subsequently, we formulate the equations of motions for the Z’ and

the W'*:

(2) (2) (2) (2)
a'gfund. _ 0 a"?}und. _ a’S’pfund. =0

7 fu/nd. =0 ; Oa 1t 4
o} (8‘12/1) (92“ 0 (BO,WH ) 3Wu

Oa
Since Fypg. does not contain any derivatives of gauge bosons these two equations
reduce to the condition that the derivatives of Zyq. with respect to Z’ and W'+

vanish. Up to first order in MZ—’Q and ]/\7‘;2, we find:

0.4 K}
L M 5 M bt
(2) +
6'S’pfund. _ ¥ Kl" L
—Te =0 = W, = =—+ O\ = 1
a W[_l, j\[‘ir ! MW/

Plugging these expressions into %4, vields the effective Lagrangian at the elec-

troweak scale:

_ Ly 2 vk
Lew. = FMzZuZ" + MW WK

0 7 . T T K
+ Zudod F WHISH + W It + L KR (2.24)

Zew. exhibits three structurally different parts: Ordinary mass terms for the light

physical bosons Z and W, effective fermion currents JS{# and J(f;--” that couple to
) p
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the Z and the W* and an effective four-fermion interaction .?e{f,f{ that emerges due
to the self-interaction of the new physics currents K and K*. The masses M% and
M‘%V and the currents Jg;,‘f and J(ﬁ.if‘ are related to the parameters of the fundamental

Lagrangian %, (2) as follows:

fund.

s 12
2 _ 2 _ OM 1 / 2 6MWW’
M% = M2 - — M%, = M
VA ]\[2 W M2
W/
SM2 SM2
Jookt = JOH — %Z KM e g W ek (2:25)

]\[ A/Ivvl

As expected, the results for M% and M&V in Zw. agree with the expressions
in Egs. (2.12) and (2.13). We find that the low-energy effects of the new heavy
gauge bosons Z' and W'* are reflected in shifts in the masses and currents that are
proportional to the inverse of the heavy masses M M2 , and M 2 . The Lagrangian .%IV{VK

takes care of the exchange of virtual Z’ and W’ bosons in four-fermion interactions:

LEE = RK)KO ——K+K M (2.26)
2M2 M2,

2.3.3 Effective Four-Fermion Interactions

Processes at energies below the electroweak scale only involve the Z and the W+ as
virtual off-shell particles. Obscrvables are best described in an effective four-fermion
interaction framework in which the Z and the W* are integrated out. To arrive at
the corresponding Lagrangian, £y s, we repeat the steps of the previous subsection.

First, we formulate the equations of motions for the Z and the W=:

a‘%w 0L ew. 0Low. 0Low.

3 0w _
WICSAR 9 (0aWE) Wi

=0
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which are again equivalent to the condition that the derivatives of the Lagrangian
Zew. with respect to the Z and the W= vanish. Up to linear order in the inverse of

the heavy masses we then get:

172 Y2
A J‘(‘]lel _ 1 . J() _ (WUZZ’ KO _ OAIZZ’ JO + 6 1
AT ME T a2\ a2, M) Mz Mt g
VA z! z! VA
+ M2 . M4 .
wFo_Jeww L e M K| _ My HEaiel L
mo A{Q. HQ KU vg u H2 "M4 M H
%% W 77 W W W’

Inserting these results into Z.w. provides us with the effective four-fermion inter-

action Lagrangian:

sa72 Ard
1 20012 SM3 .
By = oy JL’JO’“——;QZLIJL’KO’“+WZJV%J2JO’“
Yz 7 2"z
M2 SMA
=L g D W (g gty o W g
Mm% | F Mz, g M2 M2 *H
w w/ w'w
1 1
- — KOO = grKTH (2.27)
0 , Ju
2MZ, e

Neglecting terms that are of second or higher order in MZT? or KI;/Q, this result for
the four-fermion Lagrangian % ¢ may equivalently be written in terms of the effective

currents Jg‘;,‘f and Jélév’“ and the KK interactions:

1 1 1 0. 1 —
g4f +0 4 +0 74 == 72 J((‘,]w.,uJ(‘,W/'.L - T«?‘J(;tv.“u'](‘we + -Z*I\{NK

The discussion of ¢ completes our analysis of the fundamental propertics and
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fcatures of the G(221) models under consideration. In the last two sections we derived
and examined the three Lagrangians .?}Eﬁzd, Zow. and &y 7 each of which describes
the old and new physics that emerge in the G(221) models at a different energy scale.
We now have the masses of the physical gauge bosons and the gauge interactions of
the fermions at our disposal and are ready to proceed with the preparation our global

fit analysis.

48



Chapter 3

Global Fit Analysis with GAPP

Given the precision that has been rcached in mecasuring the electroweak observables
it is a matter of fact that the SM accounts for most of the physics that governs the
clectroweak interaction and that new physics effects can play the role of corrections
to the predictions of the SM. In this chapter we will calculate these corrections to the
SM in our G(221) models and examine which regions in the new physics parameter

space are still allowed for by the experimental precision data.

Our strategy to obtain constraints on the new physics contributions in the G(221)
models is the following: First, we will carefully define the parameters in terms of which
the corrections to the SM expressions are going to be parametrized. In this discussion
we will link the model to the standard parameters and show how the connection to
the reference observables is eventually realized. Once we have established a working
base of input and fit parameters we will be able to turn towards the calculation of the
new physics corrections. After an overview of the observables that will be included
into the fits we will revisit the effective Lagrangians %ew. and £4f and derive the
set of those operators in terms of which the electroweak observables are defined. This
crucial step will enable us to write down the corrections to any obscrvable that we

are interested in.
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After all analytical work is done we will turn towards the numerical part of our
global fit analysis and alter the code of the plotting package GAPP. In soine examples
we will present the structure of the GAPP files and illustrate the general procedure
by which we implement our results. This modification of the GAPP code will finally
allow us to test our G(221) models by comparing their predictions to the electroweak
data. For each model we will scan over a grid in parameter space and identify the
regions permitted by the data. In this context we will have to explain how the grid
must be set up and to develop the algorithm that will provide us with the contours

in parameter space.

3.1 Parametrization

The goal of our fit analysis is to examine the bounds on new physics effects. For
that reason we now have to review the fundamental model parameters of our G(221)
models and clearly separate new from old physics parameters. We will fix those
combinations of the fundamental model parameters that have equivalents in the SM
by means of experimental data. Parameter combinations that do not correspond to

parameters of the SM will serve as free parameters during the numerical fits.

3.1.1 Fundamental Model Parameters

The gauge sector of the SM has ngpt = 3 model parameters: the coupling constants
grsm and gy sp of the two gauge groups SU(2)r and U(1l)y and the VEV wvgy
of electroweak symmetry breaking. Our G(221) models either feature 72(BP-I) =
6 or 7(BP-II) = 5 model parameters depending on the mechanism by which the
fundamental gauge group is broken. For both breaking patterns the extension of the
SM gauge group by a second SU(2) results in an additional coupling constant. In

breaking pattern onc the VEV of the Higgs field ® exhibits two degrees of freedom,

~
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in breaking pattern two it exhibits one. According to our discussion in the second
chapter the fundamental parameters of all three considered classes of G(221) models

are given as:

(BP_LD): {91792?9"(’&1)‘/ Bwﬁ}
(BP-LT):  {§1.,§2, x4t B 7}

(BP-ILD):  {g1.d2, 9x. & 0}

Compare especially with Tab. 2.2 on page 16, Fig. 2.2 on page 28 and Fig. 2.3 on
page 29. Three combinations of the G(221) model parameters have analogs in the SM
and must thus be fixed by the reference observables. Fitting the models belonging to
the first breaking pattern we are hence left with three free parameters. In the case of

the second breaking pattern we will deal with two fit parameters.

One possibility to distinguish new from old physics parameters would be to con-
sult the relations between the three gauge couplings g1, g2 and gx and the two SM
couplings g7, gp and gy sM and to fix combinations of these three couplings accord-
ingly. However, gauge couplings represent rather less intuitive parameters since they
are only indirectly related to physical quantities and GAPP does not use them. In-
stead of g7 sM and gy gM it employs the Weinberg angle gy and the fine structure
constant agpg. We follow the example of GAPP and trade the couplings g1, g2 and gx
for our model fine structure constant & and the mixing angles é and 6. The relations
that tell us how this has to be done in principal are listed in Tab. 2.4. Subsequently,
we exchange the angle 6 for the sine squared, sg. It is this parameter rather than 6
itself that will frequently appear in our calculations.

Moreover, we expect the ratio squared of the two scales of symmetry breaking,

u and v, to be the best measure for the effect of new physics on the electroweak
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observables. This dimensionless parameter that we introduced as & in Eq. (2.14) sets
the mass scale of the new heavy gauge bosons (see Tab. 2.6) which is the key criterion
for the impact of new physics. In a second step we thus trade @ for  such that we

end up with:

Among these model paramcters we recognize three parameters that we already

2
é

input. The remaining two or three parameters will take the role of the fit parame-

know from the SM: &, © and s%. We will fix these parameters by the experimental

2
7

parameters agpy, vsy and 8381\1 which we carry over from the SM:

ters. We remove &, ¥ and s% from our calculations by relating them to the standard -

2 2
eé 1 9 TagMUé )
a=agMm = -SM . Gp=—5— A'IZ = — 2bM (3.1)
am V203 sg.. C
“SM M fsm

We obtain numerical values for agyg, vgy and s%SM making use of the precise
measurements of the fine structure constant «, Fermi’s constant Gp and the pole
mass Mz of the Z boson. In conclusion, the way we organize the model parameters

can be summarized as depicted in Fig. 3.1:

The new physics effects in our G(221) models all scale with the masscs of the new
heavy gauge bosons and if we were to take them to infinity our model parameters
should be identical to the parameters of the SM. Deviations in &, v and 33 from agpg,
vgy and sgSM thus are expected to appear at first order in % In other words: We

already know that the relations we are looking for must be of the following form:
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Figure 3.1: Overview of the model, standard and fit parameters -- - model parameters
that do not have an equivalent in the SM (new physics parameters) will be used as fit
parameters in our global fit analysis. Parameters with analogs in the SM (old physics
parameters) have to be related to the standard parameters and subsequently fixed by
the reference observables.



72

U = vsM [1 +-C; + 0 (%2—)] (3.3)
1

2 _ 2 1

85 = Shgyp [1+ -Cs+ 0 ;‘52)] (3.4)

Once we have expressed the coefficients Cg, Cp and Cy in terms of SM and fit

parameters these relations in combination with Eq. (3.1) will enable us to fix the

2

values of &, v and s 5 In the following subsection we derive Cg, C and Cy one after

another.

3.1.2 Relations to the Standard Parameters

Fine structure constant a: The first casc turns out to be trivial. The electric
charge e is defined as the coupling constant of the fermionic gauge interactions with

the photon A.

L(}’MAu =e- Qe(f)f_’Yqu,u (3.5)

A comparison of this definition with our result for Lf}’“ in Eq. (2.18) lets us
conclude that there is no difference at all between all the introduced versions of the

fine structure constant:
E=e=egq = a=a=agy = C;3=0 (3.6)

VEYV of the Electroweak Symmetry Breaking v: We derive the coefficient Cy
by relating the two VEVs ¥ and vgyp to Fermi's constant Gp. As G is determined

from experiment its numerical value is fixed. It is the same in any model and can

|4
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thus serve as a link between v and vgpg. The definition of vgyp in terms of G g is given
in Eq. (3.1). To obtain the corresponding relation between ¢ and G g we first have to
understand the origin of Eq. (3.1): G is model independently defined as prefactor

in the analytical expression for the lifetime 7,, of the muon x, compare with [20]:

where:

F(z) = 1-8z+82% — 2z - 122°Inx

156815 518 o 895 67 4 53 o
_ _ 2202 DY e — —71“In2
9 E1ad 8177 36C(3)+ 7+ —7“ln

720 6
2 1
a_l (mu) = a—l - 3—111 (@) + é;

As we are only interested in the leading order shift in vgys the higher order correc-
tions to 7, 1 are of no interest for us. For the moment it is sufficient to only consider
the tree-level expression for the muon lifetime; 7, 1 (G’%mﬁ) /(19273). The explicit
computation of 7, in the SM is based on the effective theory below the electroweak
scale which is governed by the Lagrangian Z5) 47. As for the decay of the muon,
we are only interested in the contribution Zb(ll\ll 4 10 LM 4 that takes care of the

interaction of charged currents:

ch _ 1 + —u
'S’ﬂSI\-’IAf A2 JSM,,uJSM
TW,SM
The muon ™ decays into an electron €™, a muon neutrino v, and an clectron

anti-neutrino Ze: pu~ — e~ + vy + Ve. The corresponding fermion currents are
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consequently given as:

V2 V2

Inserting these currents into .?bcll\ll af and going through the algebra yields the SM

o
Jont

expression for the muon lifetime:

=

4 .
-1 gL,SM m),

SM T 4 19273

This result allows us to identify Gg. Employing the relation M VQV, SM = 21{ g%,SM ng
we recover Eq. (3.1):

g 1
Gp= V2 9Lsm

2
8 M sy  V2dy

We observe that G g is determined by the prefactors of the fermion couplings to the
charged bosons W+ and W™ in the effective four-fermion Lagrangian. This insight
scts up our strategy to relate v to Gp: We will take that part of £ that accounts
for charged interactions, .i”f}‘, compute the effective couplings to the charged gauge
bosons and relate the results to 7, l'and GF as in the SM. .2”;}‘ has been calculated

in Subsec. 2.3.3:

72 Ard
_ 1 6M , SM4
g(h. - — J+J—,/J VVW/ JTK +J KM 4 — ww/’ JtJj ok
4 M2 K M2, ( ) M2 A2, M
- ~1 KrK—H
M2 H
WI

Depending on their chiral structure the new physics currents K+t# and K #
might or might not enter the calculation of 7, 1 in our G(221) models. The reason lies

in the fact that it is the square of G that enters the expression for the muon lifetime.

r
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Repeating the SM calculation we have to square the fermion couplings to the charged
gauge bosons. The contributions from the currents K1t# and K# are, however,
suppressed by the mass J’V\I’;, of the new heavy W'£ gauge boson. If K+HH and K H
are right-handed — being the case for the models of the first breaking pattern — the
JK and K K operators do not interfere with the left-handed JJ operators in the limit
of massless fermions. The non-zero terms involving the currents K1# and K —# that
we are left with are all of order A ‘;/ f and hence negligible. By contrast, in the models
belonging to the second breaking pattern the new physics currents are left-handed
resulting in non-vanishing interference terms. In the following we discuss both cases

separately.

We derived the currents J7# and J7# in Subsec. 2.3.1 and found that they have
the same structure as their SN analogs; sce Eqs. (2.19) and (2.20). To calculate Gp
for the first breaking pattern we therefore only have to replace gr, g by g, and take

Vﬂ:

into account that the shift in the W= mass introduces a second JJ operator in the

effective Lagrangian:

=2 M4 .
ﬁ IL |, MIWW’

8 M2 M2 M2
M2 MZ, M2,

BP-I.  Gp=

Making use of the expressions for §;, and the W mass parameters in terms of the
fundamental model paramecters that we collected in the last chapter we can rewrite

this result as follows:

2 2
_ 1 %23\ 1 553
(BP-ID): G = oI == (BP-IL,T): Gp = Mot I+ o

The dependence on the representation of the Higgs ficld @ is induced by the mass

Mfi” that takes different values for different & representations. Keeping terms up to
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first order in % the comparison with the SM result finally vields:

2 2

s - s2 -

C D=1 4+ 2 : IT): D= van 28
(BP-ID): v =wvgp\g |1 5% ; (BP-ILT): ©=wg\ |1+ 0

2 -~

20

by a doublet the value C; = lsg 3 if the triplet representation is chosen for ®. In the
#

In other words: The coefficient Cj takes the value Cy = 452 if ® is represented

models of the second breaking pattern the currents K # and K—# may be written

as:

V2
1

where gg corresponds to the entries in Tab. 2.9 with the factor 7 and the

projection operators taken out. Now all operators in .Sfijl} contribute to Gp and we
obtain:
~2 M4 . M2 . -2
ppar ce = V2 9 [y M ) V2 0y V2 R
P TR e a2 a2 | -8 a2 KT R
%% w'w ww w!
=2 M2 MA M2 . - )
_ V2 g 1+ My, [ OMyiryp _QWWW' 9K | 9K
8 a2 172 A7d 72 g ~2
My, Mg\ My, My, 9L 9L

In the UU-D and the NU-D model all corrections due to new physics cancel each
other and Fermi's constant G reduces to the same expression as in the SM:
1

V2¢

[}

2
0
angle 33‘ by equating the SM expression for the mass of the Z boson A7 in Eq. (3.1)

Electroweak Mixing Angle s We obtain the shift in the electrowcak mixing
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with our G(221) results that are listed in Tab. 2.6. With Ay being defined as in

Eq. (2.15) we can write for M%:

4 4
M2 cs 5772 c:
(BP-ID): A% = "X [1-2| =" (1-2
c% X S2C% T

] 06
4 4
ME ‘% map® ‘s
BP-IT): M2 = 20 (1--2]| = 1-_¢
( oMz 2 iz | ~ 52 a7
4 4
M2 55 52 S5
(BPILD): M} = =0 (1-2| =25 (12
Cé z Sgcg X

The results of our previous discussion of @ and 7 allow us to remove all model

1

parameters from M% expect for the mixing angle . Up to linear order in 3 we obtain:

2 r
o a2 _ TaSMUSM a2 )
(BP-LD): My = 5 M 1 - (- s
g
2 -
Coag2 _ TosMugm |, 11y 1 o
(BP-1,T): Mz = 2.2 1 z (4c¢~) 2325
¢ *
2 -
D) A2 - FesMusM [, 14
(BPILD): MG = —5M 1 i‘sé]
g6 ‘-
The comparison with Eq. (3.1) then yiclds:
. [ 1
cog202 =2 2 — (= &2
(BP-LD): - s5¢5 = Sfn oy _1 ¥ (ca& 32/3)] G0
22 2 92 [, 1(l4 1,
(BP-LT): 5565 = S5O _1 i (4Co 2323)] (3:8)
[ 1
D) 22—« 2 |11
(BP-ILD):  sgcg = Sgy oo _1 js¢] (3.9)




i 12 | _ (ct - s2,
(BP-I.D) || 0 3553 f(Osn1) (C¢, Sw)
: 1.2 | _ (Lt - 1s2,
(BP-LT) || 0 1593 f(Bsm) (z% 2325>
(BP-ILD) | 0 | © —f (Osnp) - 55

Table 3.1: Results for the coefficients Ca, C and Cj that parametrize the shifts

in the model parameters &, 9 and 6 resp. at first order in 310.- — compare also with

Eqgs. (3.2), (3.3) and (3.4). f (6spg) is given as f (6gpp) = chM/ (chM - sgSM)'

Replacing cg by 1 — sg we can solve these three equations for sgz

2
1 Coq
3 2 _ 2 1 SM 4 2
(BP-ID): s =sjo |1- = 50— (e - 535)
i bsmM  “Osm
| 1 63 1 1
. 2 _ 2 - .__ "M (4 _ 2.2
(BP-1,T) 85 = Shoyp 1 P B ( 5~ 55 )
bsM  “fsm

These findings for the electroweak mixing angle complete our analysis of the model
parameters. Tab. 3.1 summarizes our results for the coefficients Cg,, Cy and Cé that we
found in this subsection. Together with Eqgs. (3.2), (3.3) and (3.4) and the definition

of the SM parameters in Eq. (3.1) this table enables us to fix the values of &, ¥ and

2
7

to parameterize the operators that we nced for the calculation of the new physics

s5. We are now prepared to return to the effective Lagrangians Z.g and £ and

corrections in terms of the fit parameters z, é and B First of all we will, however,

discuss the considered electroweak observables in more detail.
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3.2 Electroweak Observables

The corrections to the SM expressions for the electroweak observables constitute the
foundation of our global fit analysis. Before we turn to the explicit algebra we,
however, first have to introduce and define all the observables that we are going to
consider. After we have developed an understanding of all the quantities that will

enter our fits we will proceed with the actual calculations.

3.2.1 Overview of the Included Observables

The electroweak precision obscrvables to which we will fit the G(221) models fall into
two classes: Observables defined in terms of operators that appear in the effective
Lagrangian Zw. at the electroweak scale and observables that are related to operators
in the four-fermion Lagrangian £ below the electroweak scale. Both classes can
be further subdivided into certain sets of observables. We now briefly characterize
these groups mentioning in cach case which and how many observables they contain
and how much experimental data is available respectively. In total we will fit 37

observables; 46 experimental values are at our disposal.
Observables derived from Yew.:

e Z pole data: Partial decay widths I'z ( f f_) of the Z boson, fermion left-right
asymmetries App(f) and various other observables that can be constructed
from these quantities. 21 obscrvables, 25 experimental values (LEP and SLAC

data).

e W* pole data: Mass My and total width 'y of the W+ boson. Two observ-

ables, four experimental values (LEP and TeVatron data).

e Mass my of the top quark t: One observable, one experimental value (total

TeVatron average).
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Observables derived from Z;:

e Ncutrino-nucleon scattering: Left- and right-handed neutral current quark cou-
plings g’ﬁv and gj,’%N and ratios of neutral-to-charged current cross sections R,

and Rp. Five observables, eight experimental values.

o Neutrino-electron scattering: Vector and axial neutral current electron cou-

plings g;° and ¢g'°. Two observables, two experimental values.

e Parity-violating processes: Weak charges of cesium, thallium and the electron,
Qw (13305), Qw (205Tl) and Qu(e). Two linear combinations C; and Cy of
the quark vector couplings Cq, and Cj4. Five observables, five experimental

values.

o Lifetime 7 of the T lepton: One observable, one experimental value (world

average).

This selection of observables differs slightly from the set of observables that is
used by the default 2009 version of the GAPP code [21]. Originally, GAPP does not
consider the width 'y of the W boson but additionally includes the value of the
anomalous magnetic magnetic of the muon %( gu —2), the measurement of the unitary
of the first row in the CKM-matrix and data related to the b — sy decay. %(gu -2)
and the b — sy amplitude only receive new physics corrections at the loop-level.
Since we are only interested in tree-level effects induced by new physics we do not
include the corresponding observables into our analysis. In this study we consider the
new physics tree-level corrections, if Z is large, to be of the same order of magnitude
as SM loop effects — new physics loop terms are therefore negligible. Furthermore,
we take out the experimental constraints on the CKM unitarity as we do not consider

new physics in the flavor sector in this analysis.
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In the following we will allude to all these groups of observables scparately. We
will introduce the respective quantities in terms of which the individual observables
are defined and set up everything such that we arc prepared to calculate the new

physics corrections in Subsec. 3.2.2.

High-energy observables derived from Zey.

Z pole data: At tree-level the partial width I'z ( f f) of the decay of a Z boson

into a fermion pair f f is given as:

o (50) =P (o]« o)) (310)

By writing the paramcters appearing in this expression without tilde or SM index
we indicate that this relation holds independently of the model employed. When we
have come to calculate the new physics corrections in Subsec. 3.2.2 we will evaluate
this general expression for I' 7 ( f f) and all the other definitions presented here in the
SM as well as in our G(221) models. gg( f) and gi (f) denote the vector and the
axial couplings of the fermion f to the Z boson. They are related to the left- and

right-handed couplings gf (f) and g Z(f) as follows

o =1 (FN+aF) A =5 (sFD - ()

and parametrize the coupling of the Z boson to the neutral fermion current J})’”

Jp a2t = S—g%;f' (ngf(f)w +g/Z;(f)7m;r,) fz* (3.11)
= o Fu (DR + RDPR) 12

ne(f) in Eq. (3.10) stands for the color multiplicity of the fermion f. The charged
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leptons £ as well as the corresponding neutrinos v, are represented by color singlets,

the quarks ¢ come in trce colors — red, green, blue:

ne(f)=1 5 ne(ry) =1 ; ne(q)=3

Mgz is the experimental value for the mass of the Z boson. If we swn over the
partial widths I' 7 ( f ﬂ of all fermion pairs to which the Z can decay, that is, all pairs
expect for the top pair tf, we obtain the total width ' of the Z peak. Summing only

over quarks g in the final state provides us with the hadronic decay width I' 7 (had.):

Tz=)Y Tz(ff) : Tz(had)=) Tz (qq
f#t g#t

The individual partial widths I’z ( f f—) for decays into fermion pairs f f, the total
width I'z and the hadronic width 'z (had.) are the ingredients for a wealth of sec-
ondary observables. For instance, the total hadronic cross section oy},4. representing
a fundamental QCD quantity that is accessible experimentally can be expressed in

terms of I' 7 (e€), 'z and "7 (had.):

127

=— 5 Tz(e"et) 'z (had.)
2 2 A

Thad.

The partial widths for decays into charged leptons I z (667) and decays into quarks
I' 7 (¢q) are used to define the hadron-to-lepton ratios R(¢) and the hadronic branching

ratios R(q) respectively:

_ Iz (bad.) '
R(f) = W ; fefepu T}
R(q) = RPACC) ;g€ {u.dcs. b}

~ Tz (had)
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As for the light quarks, u, d and s, experimental data is available for the ratio of

R(s) to the total branching into light quarks:

R(s)

R(s) R(v) + R(d) + R(s)

It

Coming back to the left- and right-handed fermion couplings gg (f) and gIZz( f)
to the Z boson we can write the polarization or left-right asymmetry Apg(f) of a

fermion f as follows:

ALr(f) = 77 ]2 (3.12)

The combination of the quark branching ratios R(q) and the left-right asymmetrics

A Rr(q) yields the hadronic left-right asymmetry Qpg:

Qrr= Y, R(9)Arr(g9)— > R(9)ALR(q)

q=d,s,b g=u,c

A second class of asymmetries, the forward-backward asymnetries Appg( f), emerges
from the convolution of the Ajp(f) asymmetries with the polarization asymmetry

Ar gr(e) of the electron. The hadronic charge asymmetry Qg p is defined accordingly:

Aps(f) = SALROALR() § Qrp = ALR()QLR

Having introduced these last two quantitics we have covered all relevant definitions
pertaining the Z pole data. We will include the following 21 observables into our

global fit analysis:



'z » Owa -~ R , Rk . RE) , R

R(c) . R(b) . Aprgrle) . Apr(w) . Apg(r) , Argr(s)

Arp(c) . App(b) , Apple) ., App() . App(r) , Arp(s) ,
App(c) , Arp(b) ., QFB

W+ pole data Due to their opposite charges the two charged electroweak bosons,
W* and W, couple to different fermion pairs. Respectively, the following decays

are allowed:

W — ety 5 W > ud; (3.13)
W™ = 7 5 W - ad; (3.14)

with i = 1,2 and 7 = 1,2, 3 representing generation indices. Since the top quark
t is too heavy to be produced in W* decay i = 3 is excluded. The respective decay
widths of the W and the W™ are, of course, identical. In order to avoid writing
down every expression twice we will consider the properties of the W+ only in the

following discussion. All results derived for the W will apply to the W™ as well.

In analogy to Eq. (3.10) the tree-level expression for the partial width of a W+

decaying into a lepton-neutrino pair £1 v, reads as:

The left- and right-handed couplings g}f"( f) and gg( f) of the fermions to the

W+ are defined similarly as the corresponding couplings to the Z boson:
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JE Wk = \/_[7,1( (P + g (()PR) v W A

T = i, (o (OB + g (0P ) wiv

V2

In the SM the W* does not couple to right-handed fermion currents. The only
reason why we include g ( f) into our discussion is that it might play a role in our
G(221) models later on. However, we learnt from our calculation of the muon lifetime
in Subsec. 3.1.2 that right-handed contributions are always suppressed by the mass
IT'I/W ., in the G(221) models. As it is [g (f )]2 that enters the partial decay width
I'w (€+I/g) these contributions will be negligible. Calculating the W* decay width

explicitly up to order & <A7‘;2,> we will thercfore always use the following relation:

ne (£)

Dy (€4o) = "= - My [ (E)]2 (3.15)

The partial width for the decay into a quark pair 'y (uidj) is slightly more com-
plicated than 'y (¢*14). To take into account the mixing of the strong eigenstates of
the down-type quarks in the case of weak interactions we have to include the entries

of the CKM-matrix V into Ty (u;d;):

. 2
T (i) = [Vi2- "< agy (ol ()]

Owing to the unitarity of V' these coefficients become irrelevant once we only

consider the combined widths 'y (u;):

, 2
Z |Vz’j|2 =1 = Tw(y) ZFH Uj d nc(” ) - My [g,‘} (u,-)] (3.16)
j
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The arguments ¢ and u; of g}f’f( f) in Egs. (3.15) and (3.16) are not intended to
indicate a dependence of g‘L’V( f) on the quantum numbers of the lepton ¢ or the up-
tvpe quark u; but are supposed to reflect the fact that gEV( f) may vary between
fermions belonging to different SU(2)s in our G(221) models.

If we finally sum up all leptonic and hadronic decay widths we obtain the total

width Ty of the W boson:

'y = Z 'w (€+I/f) + Z Cw (u;)
¢ 1

This is one of the two W* pole observables to which we will fit our G(221) models;

the other being the mass My of the W boson:

Tw . My

Mass of the top quark: Besides the mass of the W boson we will also include

the pole mass m; of the top quark into our fits.

mg

In the G(221) models that we consider my, however, does not receive corrections
due to new physics. To see why that is we must have a closer look at the origin
of mg within the theory: In the SM as well as in our G(221) models the masses
of the fermions are generated in the Yukawa sector through spontaneous symmetry
breaking. The fermions couple to the Higgs bosons — once the Higgs fields acquire
their VEVs the Yukawa interactions turn into fermionic mass terms. The generated
masses are then given in terms of the Higgs VEVs and the initial Yukawa couplings |

G¢. In the case of our G(221) models we may write for my:

m¢ = Ge - f(Z.T) (3.17)
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where the functional form of f (7, ©) depends on the details of the respective model.
Eq. (3.17) shows us that the value of m¢ can always be set to any desired value just by
choosing the Yukawa coupling G¢ accordingly. In fact, Gy is an additional fundamental
parameter of our G(221) models. Due to its trivial relation to m; the problem of
constraining Gt can, however, be completely scparated from the remaining analysis.
In this work we will choose Gy such that the G (221) prediction of my¢ corresponds to

the SM value:

my = mt’SM

Note that it is the on-shell mass m; of the top quark that we will use as an
observable. Fitting the G(221) models to the data in Subsec. 3.3 we will, by contrast,
employ the MS mass m; as a free fit parameter. In appendix B we briefly outline the

relation between these two definitions of the top quark mass.

Low-energy observables derived from

Neutrino-Nucleon Scattering Deep inelastic scattering (DIS) experiments allow
to probe the coupling of neutrinos v to nucleons inside an atomic nucleus N. For
measuring the electroweak mixing angle, it is advantageous to choose an isoscalar
target. As neutrinos are capable of exchanging both Z and W * bosons with the up
and the down quarks that constitute the nuclcons neutral (NC) as well as charged
(CC) current interactions occur in v-DIS experiments. In the case of, for instance,
incident muon neutrinos v, and muon anti-neutrinos 7, the following rcactions take

place:
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NC: vuN = X 5 N — X

CC: vylN — u= X ; pyN — utXx

where X denotes an arbitrary hadronic final state. These weak interaction pro-
cesses are governed by the effective four-fermion Lagrangian Zy¢ below the elec-
troweak scale. If we assume that only the usual left-handed SM neutrinos play a role
in v-DIS experiments the contribution .2”41\}0’VN to £y s that accounts for the neutral

current neutrino interactions with the up and the down quarks is given by:

G
$4I\}C’”N = —721177;1, (1=2)v Y &*ler (@ (1 —75) +er () (1+75)lq
q=u,d

As the chiral fermion structures that we encounter in this Lagrangian will appear
over and over again in the analysis that is still to come we now introduce the follow-

ing notation for left- and right-handed as well as vector and axial fermionic spinor

products:

A=) o= (Af)L + A" +7) fa= (Af)k
h*fa= (ff)y 5 Aitwsfe= (fife)ky

With these abbreviations we can write fﬂc’VN in a more compact form:
NCwN _ GFp - _ ,
Ly = —W(W) Ly 2 [e0(@) (d9) + €r(9) (q0)F] (3.18)

q=u,d
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CC,vN

The Lagrangian 2 f which is the counterpart of NCvN

Af being responsi-
ble for charged current interactions has the following structure in the case of muon

neutrino experiments:

25N = = (), (0 + (o), (0] + 257
with .Sfl\%g’ 41}N accounting for effects beyond the SM. The actual physics of neutrino-
hadron scattering is contained in the coefficients e, (¢) and eg (q) of the effective
four-fermion operators in the neutral current Lagrangian. In Subsec. 3.2.2 we will
calculate the shifts of all »-DIS observables just be determining the new physics cor-
rections to €7, (q) and £g (¢g). At tree level the left- and right-handed neutral current
quark couplings gzN and g’éN can be cxpressed in terms of the coefficients £, (¢) and
eg (q) as follows:

N = (W) +e2(d) ; g% =eh(w) +e5(d)

Accordingly, the differences between the respective coeflicients can be used to

define the quantities (5ZN and (%Nz

5ZN = 6% (u) — 5% d) J’éN = .5%2 (u) — e%z (d)

Combining JIV;N and 6}’2N with the left- and right-handed couplings gZN and g'j{N

allows us to construct the observable x*/V:

N =g (g;N)2 + O (g8 )2 +cf- (65“')2 +Ch- (o8 )2 (3.19)

kN can be understood as a measure for the effective vrgq coupling in v-DIS

processes [22]. It has been measured experimentally by the CCFR collaboration at
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Fermilab; cf. Ref. [23]. In Eq. (3.19) C7, C%, C’i and C% represent weight factors
that depend on the specific experimental setup; according to GAPP C% and C'% are
of order £ (1), C§ and C of order £ (1072).

However, the actual observables of intcrest in the context of v-DIS experiments
are the ratios Ry and Rp of the neutral-to-charged current cross sections which we

CC in the case of

denote by 0 and oC N in the case of neutrinos and by oN oN C and b
anti-neutrinos. By construction many theoretical uncertainties cancel in Ry, and Rj.
For that reason it is these quantities that many v-DIS experiments are intcrested in.

In the lowest-order approximation we may write:

NC
g, 2 oL 2 1 2 )
R,,z— = (gL ) +(g‘}’2N) r ; Rp= ”Ié = (gL ) +—(gl;2N> (3.20)
o= T
I/JV
r = /o denotes the ratio of the charged current cross sections agf\;‘ and
CC

and can be measured directly. K, and Rj complete the set of neutrino-nuclcon

scattering observables that we will use in our fit analysis.

2 2
(gZN) ) (gEN) ) K/VN ) RU ) RI?

The expressions for R, and Ry in Eq. (3.20) involve the ratio r that we do not

have a handle on. However, this does not represent a problem. In practice, R, and

Ry are usually written as linear combinations of €, (¢) and g (g):

The advantage of this notation is that it clearly scparates experimental from

theoretical influences on Ry, and Ry. While the cocfficients 4, 6, ap, r(q) and ar, g(q)
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are fixed by the conditions under which the experiment is carried out the theoretical
details are entirely incorporated into €, (q) and €g (q). Higher-order corrections to
Ry, and Ry only apply to £ (q) and € (q): the coefficients are always the same. The
valuesof 8, 9, ar, g(g) and a L, r(q) for the various v-DIS experiments are implemented

in the GAPP code. Our task will be to derive £, (¢) and €g (¢) in our G(221) models.

Neutrino-Electron Scattering Not ouly the scattering of neutrinos off nucleons
but also off electrons can be probed in low-cnergy measurements. The most pre-
cise data on neutrino-electron scattering comes from the CHARM II [24] experiment
at CERN that utilized muon necutrinos and anti-neutrinos. In the theoretical de-
scription of the CHARM II measurements we only need to consider the Lagrangian

Zf}c’ue that takes care of neutral current interactions. .S,’E,C’"e is identical to the

. NC,vN . . .
Lagrangian £, f " that accounts for neutral current neutrino-hadron interactions,

see Eq. (3.18), except for the fact that it involves electrons instead of quarks:

LN = =L o0), e (€ (e0)] + 2R ) (el (3:21)

In the case of scattering of electron neutrinos ve off electrons also the charged

interaction Lagrangian .2”4(}0’”6 has to be included.

cc, GF [/, c 3 ’
2y - V2 [(el/e)L?ﬂ(ee)l[t + ('/“-’e)L,u(ee)li] +ANp g

11l

However, the physically relevant information is again entirely contained in the
coefficients e, (¢) and eg (e) of the four-fermion operators of the neutral current
Lagrangian. Just as in the hadronic case these two coefficients arc used to define
the effective four-fermion couplings. Instead of employing left- and right-handed
couplings one usually formulates the neutrino-electron interaction in tenns of vector

and axial couplings gi’fe and 9516:
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gv =crle)+erle) 5 g =cr(e)—er(e)
NC,ve . . .
.?4 f can then equivalently be written as:

NC,v GF(; e 2
2y "= _—_\/%('/V)L,u [97° (2e)y + 94" (¢€)'4]

The observables that are typically measured in the experiment are the total cross

sections ayec and cryec or their ratio a})LC / all-ic. In the limit of large incident neutrino

energies, E,, > me, the cross sections are given as:

G2m.E, 2 1 2
oo = —E 2 (g + g)° + % (9 — 9%)
2w 3
G2 TneEl/ ’ 2 1 2
e = [(g’ve —94)" + 5 (o + %) ]

If the scattering of electron neutrinos ve is studied the contribution from the
charged current interactions must be considered as well. Effectively, the corresponding
cross sections o, and ope are obtained by substituting g{’/f 4+ 1for g{’,f 4 in a})LC and
oNC. We do not have to care about these details as the experimental results are
usually boiled down to the fundamental couplings g¥ and ¢'°. In our fit analysis
with GAPP these two couplings will be the only observables related to neutrino-

electron scattering:

rve

9v

.95

Parity Violating Processes: The interaction of charged leptons with other charged
fermions is dominated by the Coulomb force. For the most part it is described by the
QED Lagrangian £qgp = L(}’” Ay, see Eq. (3.5), in which the fermion current L(}’“

has a vector structure. Taking the product of L(}’“ with the vector field A# results
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in a scalar Lagrangian £ gpp. QED processes are therefore invariant under parity
inversion. However, the electroweak force as we know it from the SM has a V-A
structure resulting in maximal parity violation. New physics effects may introduce
V+A interactions softening the extent of parity violation. But as they will always be
suppressed at low energies parity violation is an intrinsic property of the electroweak

force below the scale of new physics.

Since the detection of parity violation in the mid 1950’s [25] many experiments
were devoted to the investigation of parity-violating interactions in electroweak pro-
cesses. The related observables that we will consider in our analysis originate from
three different measurements: The observation of atomic parity violation (APV), the
study of left-right asymmetries in Mgller scattering [26] and the analysis of deep in-
elastic electron scattering on nuclear targets. APV and electron-hadron scattering
experiments probe parity-violating interactions between electrons and the quarks in
atomic nuclei. In the case of APV it is the atomic electrons that interact with the
nucleons in the core. e-DIS experiments feature free electrons beams. The Mgller
scattering experiments examine electron-electron instead of electron-hadron interac-

tions.

To account for the parity violation in these experiments one introduces the weak
vector charge Q. In the description of APV experiments the electroweak physics is
accommodated in the weak charge Qu/ (A Z) of the isotope under study where Z and
A denote atomic charge and mass number respectively. In this work we will consider
the weak charges of cesium-133 and thallium-205. Moller scattering experiments allow

to extract the weak charge of the eclectron Qywy (e).

To understand what is meant by Quw (AZ) we first have to define the weak vector
charge Qw (q) at the quark level. In a first step we introduce the Lagrangian .2”41\}(:’6(1
that incorporates the parity-violating contributions to the effective quark-electron

interactions below the electroweak scale:



e G _ _ } _
20 = =75 L [Culee) a0+ Outealy @] 22

The coefficients Cy f and Cyy in this Lagrangian play a similar role as €7, (¢) and

CuvN

eg(qg) in .?Ef 77 or gyf and ¢%¢ in .?gfc’”e. We will focus on them when it comes

to calculating the new physics corrections in Subsec. 3.2.2. Since .?i\}c’eq mixes
vectorial with axial fermion products, that is, parity-odd with parity-even terms,
it transforms as a pseudoscalar under parity transformations — hence the parity
violation in the quark-electron interactions. The general idea behind Qu (g) is to

mimic the parametrization of the QED vector current Lg’” in terms of the electric

charge Qe(q). If we define Q- (q) as:

Qwlg) =2- C’lq

we can rewrite the SM tree-level expression for the electroweak neutral current

Jg H as follows:

_ € Z _ _
JgM,q,”Z” = ‘QA,SNI(Q)’ : [QW,SM(Q) (QQ)VM + (QQ)A u] VAs
5050 Osm ’

The comparison of this form of the neutral current with the one given in Eq. (3.11)

allows us to relate QysM(g) to the vector and axial couplings g‘Z, gM(g) and gi sMm(9):

Qwsm(q) = —

By convention Qw sp(g) is normalized such that the prefactor of the axial part
in Jo’é‘M has an absolute value of 1. The sign of the axial component is given by the

sign of gﬁ,SM(q). As we now know how the weak charges of the up and the down
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quark are defined we can write down the weak charges of composite particles. The

weak charges of the nucleons, the proton p and the ncutron n, are given as:

Qw(p) =2Qw (u) + Qw(d) ; Qu(n) = Quw(u)+2Qy (d)

Equipped with these basic charges we are able to calculate the weak charge

Qw (AZ) of an atomic nucleus consisting of Z protons and N = A — Z neutrons:

Qw ("2) =Z-Qw(p) + N - Quw(n) =2-((Z + A) - Cry + (24— 2) - Cyg

To take care of parity-violating interactions in electron-clectron scattering pro-

. . NC,ee
cesses we introduce the pseudoscalar Lagrangian & i

NC, Gr _ _
.9,’4f = /5 -Cle (ee)A’#(ee)‘(/ (3.23)

In analogy to Qu (q) the weak charge of the electron is essentially given by the

coupling constant Cj,:

Quw(e) =2-Cie

Finally, it is possible to extract certain linear combinations of the coupling coef-
ficients C1, and Cqq4 from polarized electron-hadron scattering data. In our global
fit analysis we will use the values for the linear combinations C; and Co that were

determined experimentally by Young ct al. [27]:

C1=9-Ciy+4-Cig 7 Co=—-4-C14+9-Cyy

In summary, the included observables related to parity-violating processes present
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themselves as follows:

Qw (1Cs) . Quw (3T , Qwl(e) , €1 , C

Lifetime of the tau lepton: Lastly, we can extract the lifetime 7 of the tau 7

from the effective four-fermion Lagrangian Z.

Tr

The derivation of 7, in the effective theory below the electrowcak scale follows
exactly the same steps as the computation of the lifetime 7, of the muon; cf. our
discussion of 7, Fermi's constant G’ and the electroweak VEV ¢ in Subsec. 3.1.2.
There is, however, one detail that we have to pay attention to in repeating the cal-
culation of 7,: The 7 lepton might couple differently to the currents K +:# than the
fermions to which it decays. In the UU-D model this caveat applies to the hadronic
decay modes of the 7; in the NU-D model — as the 7 belonging to the third fermion
generation only decays to first and second generation fermions —- the final state cou-
plings always differ from the initial state couplings. Deriving 7, we did not have to
worry about this subtleness since we were only dealing with purely leptonic decays
within the first two fermion generations, p= — e~ + vy + Fe.

Although these differences are of theorctical interest as they illustrate the different
features of the respective models they are of no practical importance to our analysis.
Just as in Subsec. 3.1.2 it turns out that the fermion couplings to the new physics
currents K+* do not contribute to the tau lifetime 7, once we discard all terms that

are of order € (i_Q). In the lowest-order approximation we thus find for 7,

mﬁ

19273

=Gt -

Given the heavy mass of the 7 we also include the leading-order correction to the

tree-level result into our expression for 7,:
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m5 m2 1/5
—1 2 T P T
=G4 .7 |14+3 3.24
T Figonm3 |+ (Mﬁ,,) (3.24)

3.2.2 New Physics Corrections

The aim of this work is to examine the leading-order effects of new physics in the
G(221) models. Calculating the new physics corrections to the SM predictions we
will therefore only work at tree-level. For a given electrowcak observable O that we
want to include into our fit analysis the GAPP code already knows the SM tree-
level expression Ogﬁv“f The task that is left to us is to calculate the corresponding

expression Olt\{f,e in our G(221) models. Consequently, the dominating effects of new

physics, AOY®€_ are reflected in the deviation of O from OLree:
) NP SM

AOtree — OIt\Iri;O _ ogrﬁ (3.25)

In this and the next subsection we will calculate AQ™® for all fundamental observ-
ables, that is, all observables that cannot be constructed from other basic observables.
The computation of the secondary observables will then be taken care of by GAPP.
We will organize our discussion in the same way as our overview of the included ob-
servables in Subsec. 3.2.1. First, we will revisit the Lagrangian %.w.. Subsequently,

we will concentrate our attention to the low-encrgy data.

Corrections to the high-energy observables

Z pole data: All Z pole observables can be formulated either in terms of the partial
decay widths I'z (f f) or the polarization asymmetries Ay g(f). It therefore suffices
to only calculate the corrections to these two quantities. All other Z pole observables
will then be covered automatically. We obtain AT'z(f) and AA;g(f) by comparing

the SM expressions 'z g (f f) and Af Rr,SM(f) with their equivalents in the G(221)
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models. According to Eqs. (3.10) and (3.12) we may write:

FZ,SM(ff_) = nC;(}f) ) A[Z;) ([gg,SM(f)] 2 + [gi’SM(f)]Q)

8951\21 COSI}'I ,
z [z
Arrsm(f) = [gL SM(f)] gRSM(f)] (3.26)
[ng'\I(f)} + gRSM(f)]
vz (1) = 25 (o] + [Fo))
6 )
z -7
ALr(f) = [L(f)]Q [gR(f)] (3.27)

62N + 35N

The fermionic couplings to the Z boson play a key role for both observables. In a

first step towards AI'z(f) and AALR(f) we therefore focus on these couplings. The

SM gives the following expressions for gf.SM( f), g}% spm(f) g‘% gp(f) and gi sa(f):

oZ () = T2(S) = 5, Qe() i ghom(f) = =5 Qelf)  (3:28)
of () = 5TH) — s Qe+ alhsul(P) = —2TH() (329)

In our G(221) models two effects lead to deviations from the SM couplings. First
of all, gf (f), gIZZ( f), g‘%( f) and g}% (f) depend on the model parameters rather than
on the SM parameters. We gave a detailed discussion of the shifts in the respective
parameters in Sec. 3.1. Anyway, if this were the only difference the G(221) couplings
would still have the same form as the SM expressions; compare with the result for
the electroweak neutral current J}"“ in Eq. (2.17). The sccond effect that we have
to consider is the mixing of the Z boson with the new heavy Z' in the electroweak

theory. At the electroweak scale the Z couples effectively to the fermion current J(Q,;ﬁ ,
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sce Eq. (2.25), that also involves the new physics current KO#. The shifts in the
model parameters as well as the explicit form of K 04 are model-dependent which
is why we cannot state universal results for the fermion couplings to the Z boson
that apply likewise to all G(221) models. What the couplings in the different models,
however, do have in common is that they all reduce to the SM expressions in the limit

I — 00:

G () = gf () + 09 () + GB(F) = dsmlf) + 89k (f) (3.30)
-7
A

G2(f) = g sm(f) +8g8(f) 1 G40 = g5 sm(f) +895(f) (3.31)

The deviations 6gf (f), 59122( ), 695( f) and 5gi( f) can be expanded in inverse
powers of £ with the lowest-order terms being proportional to % As hitherto we will
only keep these contributions and neglect higher orders. Tab. 3.2 summarizes our
results for 5gf(f), 6g}Z2(f); in Tab. 3.3 we present our results for 6g‘2,:(f) and 6g§(f).
To get an impression of the values behind the left- and right handed couplings gf (f)
and g}% (f) for the different fermions f in the different G(221) models we numerically
evaluate the expressions that we derived in this subsection; see Tabs. D.1 to D.11 in
the appendix. The experimental input values that were employed to generate these

tables are given in Subsec A.1.

The deviations § gf (f) and 59}22( f) in the left- and right-handed couplings enable
us to calculate the corrections AAp p(f) to the polarization asymmetries. § g‘%( f) and
Jgi (f) allow us to write down the shifts A'z(f) in the partial decay widths. With

the aid of Egs. (3.7), (3.8) and (3.9) we obtain the following results for AT'z( f):
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209% (f)

(BP-LD) £ Osa) (e = s23) Qe(f) + 522 [T3(£) - Qel£)]
(BP-LT) £ Bsn0) (eb = $23) Qe(h) + §362 [T3(£) = Qel)
(BP-ILD) £ (Bsn1) - s3Qe(f) + 52 [2TH(S) - s2T5(1)]

2098 (f)
(BP-LD) || f (Bsa) (e} - s23) Qe(f) +s2e2 [T3() - Qe()] + AT ()
(BP-LT) | £ (Bsn) (fed = §52;) Qe(h) + 4522 [T(F) - Qe(£)] + §4 T ()
(BP-I1D) £ (Bsw) - s3Qe(f)

Table 3.2: Shifts ¢ gf (f)and é gIZ%( f) in the left- and right-handed couplings gf (f) and
g}Z%( [) of the fermions to the Z boson — compare also with Tabs. D.1 to D.11 in Sub-

, o _ 2 .2 2
sec. D.1.1. The function f (6gpn) is given as f (6sp) = SesMCeSI\fI/ (C‘%SM Sf)SM)'
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209 (f)

(BP-LD) £ Bsa) (4 = s23) Qe(f)

+552¢2 [T + T3() = 2Qe(f)] + 35T (f)
(BP-LT) 7 (Bsn) (et = $523) Qe(f)

+552¢2 [T + T3(f) = 2Qe(1)] + 5T (f)

(BP-ILD) | f (Bsn1) - s3Qe(f) + 357 [c'j;T P(f) = S2T5(f )

393 (f)
(BP-1,D) 35562 [T3() = TL(N] + 3¢5T3(f)
(BP-LT) k532 [T3(F) = TL(N] + geSTE(S)
(BP-I1,D) ~3s2 [chf( £) = s2T f)]

Table 3.3: Shifts 6gV( f) and (5g (f) in the vector and axial couplings gi; Z(f) and
g A( f) of the fermions to the Z boson. The function f (fgp) is given as f (fsm) =

3/ (G~ )
6’SM GSM/ bsMm “Osm
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ne(f) ) Mza

(BP-LD): AT(f) s {2g5,sm<f>6g5<f)+2g§,SM(f)6g§(f)

Il

S S
1 2
t oz ([gv s\l(f)] [gi,sm(f)] ) (03 - 933)} (3.32)
(BPLT): ATy(f) = ). Mza {2g5,sm(f>5g5(f)+2g£,sM<f)6gﬁ<f)

S
O3\ OsM

3
+ % ([gv bl\l(f)] [gi,SZ\I(f)]2> Gcz - %sgﬂ) } (3.33)
(

Ne M .
(BP-ILD): ATz(f) = .Jf)' 5 Z; {295,51\.1(f)595(f) + 295 sm(f)dg5(f)
001 B
2
+ ;‘ ([Qv 51\1(f)] [Qi,sm(f)] )“‘;} (3.34)

In Egs. (3.32), (3.33) and (3.34) we present the corrections AL z(f) to the partial
decay widths in a compact form. To obtain the actual expressions that we will imple-
ment in the GAPP code we still need to replace the couplings g‘%,SM( f) and gi,SM( f)
and the deviations 6g‘%( f) and (595( f) by the terms that are given in Eq. (3.29) and
Tab. 3.3 respectively. As these expressions will turn out to be rather cumbersome and
as they will not yield further insight into the physics behind the corrections AL z( f)
we do not present them here. This argument applies to all new physics corrections
that we are going to discuss in this and the next subsection. In each case we will
only show as many steps of the respective calculations as necessary to illustrate our
procedure. However, notice that we will still employ the corrections Al'z(f) as an
example for the modification of the GAPP code in Subsec 3.3.2.

Making use of Egs. (3.26), (3.27), (3.30), (3.31) we obtain the following expression

for the corrections AALg(f) to the left-right asymmetries:

gzzz,shi(f)égg(f) - gf,sa[(f)églz,(f)
2 2\ 2
([gf,sn(f)] + [QIZQ’SI\[(J()] )
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Our results for AT'z(f) and AApgp(f) is everything we need to implement the
shifts in the Z pole obscrvables in the GAPP code. We can now proceed with the

width 'y and the mass My of the W boson.

W+ pole data: According to Egs. (3.15) and (3.16) we nced the mass My of the
W* first before we can calculate its width. In the SM the trec-level expression for

My is given as:

Vmovgp

M WSM = C(.)SM -M 7 = so
SM

To obtain AMyy we simply have to consult our results for MI%V listed in Tab. 2.6,

express Mg in terms of the standard and fit parameters, take the square root and

substract My;gn. These steps result in:

1 "
. - - .___'SM (4 _ 2
(BP-ID): AMy/Mysy = 52 50 (c ; sw)
bsm  “bsMm
BP-IT): AMy /M _ ! CgSM la 1o
(BP-LT): w/Mwsm = 2% 2 —s2 16 ~ 9523
bsMm “OsMm
2
1 %0sm 4
(BP-ILD):  AMy/Mysy = 5= 5—ig—s}

2 2
C — S
fsm TOsm

In the SM the left-handed coupling ggSM( f) of a fermion f to the W¥ boson is
just given by the gauge coupling gy, sp of the left-handed SU(2)r. The SM partial

decay widths 'y gp(f) can thercfore be written as:

2
9L sM

Cwsm(f) = ne(f) - T

Mw sm
In the G(221) models that belong to the first breaking pattern the right-handed
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#39)" (f)/9r.sm

1 : 4 _ 2

(BP-1,D) 5.f (Osnn) (C<D 323)
1 14 _ 1.2

(BP-1T) 3f (Bsnr) (zcd; ~2 323)

(BP-ILD) | §f (Bsn) 54 + 252 [2T1(f) - s2Ta(f)]

Table 3.4: Shifts 69}}/'( f) in the left-handed coupling g}f’( f) of the fermions to the
7t : ) is siven as ) = 2 2 )
W= boson. The function f (fgpg) is given as f (6gpn) chM/ (COSM SGSM)

couplings gg( f) are suppressed by % which is why we do not have to consider them
in the W* width. The left-handed couplings unchangeably correspond to the SU(2),
gauge coupling gr,. As for the sccond breaking pattern the fermion coupling is purely
Jeft-handed and the mixing between the W and the W'F introduces a shift in g}?"( f).

Our result for the charged fermion current J(f{,f‘ in Eq. (2.25) leads us to:

BP-I. gy (f) =4y

BP-I. ¢V (f) =3dr (1 +

8| N

2 [an) - &)

In a last step we take into account the deviation of g, from its SM analog g, sn
due to the shift in the electroweak mixing angle. Doing so we obtain the corrections

591‘7( f) to the left-handed fermion couplings gg’( f), see Tab. 3.4.

9 (f) = af sn(f) + 6gp (f) = grsm + 89y (f)

With the results for 6g};V( f) at hand we can write down the shifts AT'y-(f) in the
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partial W+ widths Ty (f):

;871'_ (QQL’SMégL (f) Mw:sm + gL,SMAA’{W)

Alw (f) =

Corrections to the Low-Energy Observables

Neutrino Scattering and Parity Violation All of our observables that are ex-
tracted from either v-DIS, Mgller scattering, e-DIS, or APV experiments can be
traced back to the couplings in the effective four-fermion Lagrangian #j¢. In the case
of neutrino-hadron scattering the left- and right handed quark couplings €, (¢) and
eg (g) are the quantities of interest, see Eq. (3.18), to calculate the vector and axial
electron couplings gy* and ¢%° in neutrino-electron scattering we need the coefficients
er, (e) and €p (e), see Eq. (3.21), and to obtain the weak charges of atomic nuclei,
Qw (AZ), and the electron, Qu (e), we have to know the couplings C14 and Cje, see
Egs. (3.22) and (3.23). Because of these similarities we can address the corrections
to most of the low-energy observables in one go. Only the calculation of the shift
in the 7 lifetime has to be taken care of separately; we will discuss A7; in the next

subsection.

Before we turn to the new physics corrections we still have to hand in the SM
expressions for the effective four-fermion couplings that are involved in our analysis.
One finds for the couplings e sMm(f) and eg sp(f) of a charged fermion f — an up

or down quark or an electron in our casc - to the neutrino:

epsm(f) =20F suWafsn(F)  crsm(f) =20F snWafsm(f)  f € {u.d,e}

The couplings gf.SM( f) and gIZ?‘SM( f) are given explicitly in Eq. (3.28). With TZ(V) =
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% and Q¢(v) = 0 we obtain:
ersm(f) = gf su(F) = TE()) =55, Q) 3 ergmlf) = gF sn(f) = —s5e, QS

The corresponding couplings Ciggm and Cpe gy in clectron-quark and electron-

electron interactions are very similar to these results. We find:

Z Z
CipsMm = 89A,Sl\[(€)gv,sr\1(f) ; fefude}
In accordance with Eq. (3.29) and using T3 = —%; we rewrite C gy as:

Ciysm =Ti(f) — 28331\,1Qe(f )

In the next step we calculate the corrections to these expressions. Most of the
work has already been done. We derived the effective four-fermion Lagrangian £ in
Subsec. 2.3.3. The fermion currents and the boson masses that constitute £ were
the subject of the discussion throughout the entire second chapter. Now we reap
the fruits of our labor. Instead of only calculating those couplings in terms of which
our observables are defined we perform a general analysis and compute all effective
four-fermion couplings. First, we write the ncutral and charged current components

of Z as follows:

G _ —
#NC = -7§ fz; >_Cix (i fag) (Aih); (fafo)§
1:J2 &)

G - _
S —71;;; Zcffc (fri fa5) (Fif2); , (Fsfa)§
1,J3 W

The fermion sums run over up and down quarks, neutrinos and electrons, f €

{u,d.v,e} and i and j denote the chirality of the respective fermions, i,j € {L, R}.
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The fermion pairs (f, fo) and (f3, f4) in .Z’ 4 Tepresent iso-doublets under cither of

the two SU(2)s in our models.

Similarly, we can rewrite the cffective four-fermion interactions i’;{iK in the La-
grangian at the electroweak scale Zw.: We scparate .%{{,K into neutral and charged

current contributions, compare with Eq. (2.26),
KK _ oNC ccC
Z‘w. = "ZV\ + z‘.w.

and define the coupling coefficients CXS (£ 4, f2.;) and c&S (fia f3,;) such that

ZNC and £EC turn into:

Lo = Cf SN CRS (frin fof) (1), (RR)  ii=LR
f1.fa 1

Lo = - Z > ca (fui f35) (f2); J(Bfd)f s ij=LR

f 1.f3 J

The couplings in ZNC and Z5C do not directly appear in the definitions of our
low-energy observables, but contribute indirectly to them as they are integrated in
the low-energy couplings C};}C ( f14 fo, j) and Cffc ( f1s f3)j). Besides that they are
also important in their own right as they represent major consequences of the new
physics in the G(221) models at the electroweak scale. We therefore do not restrict
our analysis to the four-fermion interactions in Zj¢, but also examine the couplings
in .i@lva

We obtain Coys, (f16, f2,4)s Cews. (F1ir f3.5)s Cay (fLis fo,5) and C5F (fur f3,5)
from the Lagrangians ey, and Zjy in Eqs. (2.24) and (2.27) by inserting our results
for the effective fermion currents and boson masses and trading the model parameters

that we are not going to fit for the standard parameters. Inserting the experimen-

tal values for the reference obscrvables provides us with numerical results which we
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present in the appendix - see Tabs. D.13 to D.22 for C’gLC ( f1,is fz’j), Tabs. D.23 to
D.26 for CSS (f1,4, f3;), Tabs. D.27 to D.36 for Cg}c (fri: f2;) and Tabs. D.37 to
D.45 for CEfC (fris faj)-

Finally, we remark that the modification of the GAPP code requires the analytical
expressions for the four-fermion couplings. As the explicit results are rather lengthy

we, however, do not present themn here.

Lifetime of the Tau Calculating the corrections to the 7 lifetime turns out to be
trivial: The only quantity in our expression for 7 that receives a shift is the mass
My of the W+ boson; compare with Eq. (3.24). We can immediately write down

the leading-order shift A7 1 as:

. 1/5
) 2
2 A)
Al =G ("‘773.3 # .<__.< IW)
1927 M v 5 Mwsm

Notice that the corrections to 77 only emerge from the subleading term in Eq. (3.24).
AT L is consequently suppressed by the ratio of the mass of the 7 to the SM mass
of the W* boson which is why we expect the shift in the 7 lifetime to play only a

minor role in our global fit analysis.

3.3 Numerical Analysis

With the calculation of the corrections to our 37 observables we have completed the
analytical part of our study. Now we are ready to determine the bounds on our
new physics parameters numerically with GAPP. In this section we will give a short
introduction to GAPP, say how the code has to modified in order to accommodate
the G(221) model and discuss how we actually run it. For the moment we focus on
the technical details of our fit analysis - the results that we obtain are presented in

the next chapter.
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3.3.1 Introduction to GAPP

GAPP, short for Global Analysis of Particle Properties, is a Fortran package developed
by J. Erler that allows to perform precision tests of the SM and to determine its
fundamental paramecters. For this work J. Erler kindly provided us with the most
recent GAPP version which is up-to-date as of 2009. GAPP is written in such a
way that extensions of the SM can be casily accommodated in the code: The default
version of GAPP alrecady comes with the option to examine various models beyond
the SM that feature a Z’ as a new heavy gauge boson; in this work we utilize GAPP
to test our G(221) models.

At its core GAPP calculates the deviation of the theoretical predictions for the

various precision observables from the experimental data in terms of chi-square, x2:

X? = Z Pz2 = Z LQ (@;‘(D _ Ozt,he().)z

; ~ O
1 1 i

Here @;’XP' stands for the central value, o; for the total uncertainty of the experi-
mental result; (9;"‘\(1)' = @;‘Xl" + 0;. o; subsues the experimental errors as well as the
theoretical uncertainties that affect the interpretation of the experimental data. The
individual contributions to x? from the different observables, also called the pulls, are
denoted with P;.

Confronting a given theorctical model with experimental data x2 is a measure for
the agreement between theory and experiment — the larger the value of x2 the less
likely is it that the physics underlying the experiment is described by the considered
model. In other words: If x2 takes a too large value one can conclude that the testes
model is ruled out by the experiment. On the other hand, if one assumes that a given
theory represents the correct description of the experiment, x2 can be employed to
determine or constrain the values of the parameters in the examined model. In this

case x2 is regarded as a function of the model parameters; those parameter values for
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which x? takes a minimum value are considered to be the best estimate for the true
values.

The calculation and minimization of x2 is the actual purpose of GAPP. In order
to find the smallest possible x2 value it employs the minimization program MINUIT
[28] that is included in the CERN program library. MINIUT can either be initialized
by external data or it can directly be driven by Fortran subroutine calls. The current
version of GAPP runs MINUIT in the data-driven mode. This means for us that the
fit parameters have to be defined in an external data file. In this file, called smfit.dat
in the default GAPP version, each parameter is assigned a number, a name, a starting
value and a starting step size. Additionally, one is able to set bounds on the ranges
in which the respective fit parameters are allowed to vary during the minimization.
In the same file MINIUT is given all the commands that specify which actions it is
supposed to perform. In our analysis we will either use GAPP to calculate x2 for
a given set of parameter values or to find the minimum value of x2. Accordingly,
we will either just give a simple return command to MINUIT or feed it with the

commands minimize, improve and seek.

MINUIT always requires a Fortran subroutine that calculates the value of the
function of interest. In the case of GAPP this subroutine is called fcn and located in
the file chi2.f. Before x2 is calculated fcn defines certain constants, initializes the
quantum numbers of the fermions and sets flags that trigger the inclusion of various
higher-order corrections. Subsequently, it calls the Fortran function chi2 that is
'contained in the same file and that takes care of the calculation of x2. chi2 stores
the experimental values and errors, calls the different subroutines that compute the
theoretical predictions, calculates the pulls and finally determines xz. Once chi2 has
returned the x?2 value to fcn any final computations are processed. Depending on
how the flags were set by the user the likelihood £ ~ exp (— X2/ 2) corresponding to

the calculated x? value might be determined or the results of the computation might
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File Subroutines Observables
Z pole data lep100.f zOpole Tz (ff). ALr(f)
W pole data | sin2th.f | sin2thetaw My,
wwidth.f wwprod Cu (f)
vN scattering dis.f nuh er(q), er(q)
ve scattering nue. f nue W, 9%
PV processes pnc. f apv Ciq
T moller Qw ()
7 lifetime taulife.f | taulifetime T;l

Table 3.5: Overview of the modified GAPP files - the subroutines in these files
compute the SM quantities for which we have calculated the G(221) corrections in
Subsec 3.2.2. Once we have implemented the new physics shifts into these files the val-
ues for the electroweak observables calculated by GAPP will automatically represent
the predictions of our G(221) modecls.

be written to an output file.

In Subsec. 3.2.2 we calculated the new physics corrections to a variety of fun-
damental quantities with which all of our observables can be constructed. These
quantities are calculated by GAPP in seven different Fortran files; see Tab. 3.5. Set-

ting up the GAPP code such that we can fit our G(221) models we will have to modify

these files. The calculation of the observables will then be taken care of by GAPP.

3.3.2 Modification of the Code

In order to implement our G(221) models into the GAPP code three modifications
are basically necessary: The new physics fit parameters have to be defined in the

input file that drives the fit, the additional quantum numbers of the fermions have
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to be provided to the function fen and the corrections to the observables have to
be added to the SM cxpressions in the respective Fortran files. In the following we
will comment on each of these modifications. As the inclusion of the new quantum

numbers represents the simplest step we allude to it first.

Additional Quantum Numbers

In the models belonging to the first breaking pattern we have to introduce two new
quantum numbers: The third component Tg( f) of the SU(2)y isospin To(f) and the
charge X (f) under the U(1) x gauge group. As X(f) may be depend on the chirality
of the fermion f it effectively represents two quantuin numbers: X (f) and Xg(f),
the charges of the left- and right-handed versions of f. The models of the second
breaking pattern do without the introduction of new quantum numbers: Ti‘( f) and
Tg( f) correspoud to the weak isospin quantum number TZ( f); X(f) is identical to
the weak hypercharge Y(f).

We take care of the different charge assigmments by creating for each model a
Fortran file (sm.f, 1r-d.f, hp-d.f, ..., nu-d.f) in which we specify the numerical
values of the new quantum numbers T23( f), Xp(f) and Xg(f). In the SM, the UU-D
and the NU-D model these quantum numbers are sct. to zero for all fermions. Within

the function fcn we import these files using the Fortran command include.

Fit Parameters

In Subsec. 2.3.1 we came to the conclusion that the new physics corrections to the
electroweak obscrvables are best parametrized in terms of Z, (13 and, in the case of
breaking pattern one, 3. As this is certainly true, we will, however, not give these
tharee parameters as direct input to MINUIT. In analyzes like ours one usually chooses
fit parameters that are defined on the whole real axis. Additionally, we consider it

natural to define the fit parameter such that they reflect the structure of the fitted
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analytical expressions as well as possible. Instead of z, ¢ and 3 we thercfore let

GAPP scan over Inz, t(% and sg 5

The advantage of Inx and tf-_) over T and ¢ is that both functions range over the
whole real axis. sg 3 takes, of course, only values between 0 and 1. Essentially in
2

every expression that depends on 3 it, however, appears in the form S35 Every other

choice would therefore be unnatural.

Moreover, tZ-) represents a convenient compromise between two functions, ci and
333, that are particularly important in the two breaking patterns that we are consid-
efing. Due to the different definition of the mixing angle ¢ in both breaking patterns
it is either c% or 333 that appears all over in the analytical expressions describing
the respective G(221) models; see for example the % contributions to the Z mass in
Tab. 2.5 that are either proportional to c% or 333. It is this difference in the expressions
for Mz that leads to the different shifts iil 33 ih the first and second breaking pattern;
compare with the calculation in Subsec. 3.1.2. In the end, all these distinctions can

be traced back to the fundamental relation of the SU(2)9 coupling §g to the mixing

angle ¢:

BP-I: ——QQ—r)—:cé . BP-IL —fi——=s$
B+ V7 + 3

5 fit parameters we include them in the GAPP

input file. To prevent GAPP from scanning unphysical parameter values or values

Having decided for In z, t% and sg

that we are not interested in we set bound on the ranges over which our parameters

are allowed to vary:



BP-I. InZ € [0.00,10.00] ; 3 €(001,100.00 ; 3356[0.00,1.00] (3.35)

BP-II: InZ € [0.00.10.00] ; tge[0.0:3,30.001 (3.36)

If Inz becomes very large the new physics in our G(221) models decouples from
the energy scale of the SM and thereby from the physics that is essential to the
electroweak observables. At large values of InZ we will therefore not be able to
discriminate between our G(221) models which is why we set an upper bound of
In Zmax = 10 on Inz. The bounds on tj-) originate from the intrinsic structure of our
G(221) models and the condition that perturbativity must not be violated: Depending
on the breaking pattern ¢ M is ecither defined in terms of gx and g2 or §; and go, see
Eq. (2.3). In both cases the gauge couplings cannot take arbitrary values as they
are related to the electroweak couplings g7 and gy, compare with Eqgs. (2.4) and
(2.6), which are constrained by the experiment. Using the experimental data listed in
Appendix A.1 we find that g7 gn and gf,SNv[ take approximately the following values
in the SM:

€ e )
ILSM = —— = 0.626 ; gy sm= —~ 0.346
M oM

These numbers represent lower bounds on g1, g9 and gx, go respectively:

BP-I:  gx,d2 > gy sm ; BP-II:  g1.92 > 9L sM

Our G(221) models are perturbative quantum field theories in which the typical
expansion parameters are given as a; = f]% /4m, ag = gg /Am and ax = gg( /An. To
ensure the validity of perturbation theory all three parameters must be smaller than

1. This places an upper constraints on g1, g9 and gyx.
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g1-92.9x < Vdr

Combining both arguments and putting the numerical values into Egs. (2.3), (2.4)
and (2.6) we are able to roughly estimate the bounds on ti";; see Eqs. (3.35) and (3.36).
We expect that for high  values changes in t% will be irrelevant to the calculation
of the observables. Setting limits on the allowed range of té therefore does not only
take care of the mentioned theoretical constraints but also avoids the risk of GAPP
getting lost during the minimization of x2 while it scans over always higher t% values.

Fitting the G(221) models to the electroweak observables we will also allow the
MS mass of the top quark my, see appendix B, and the mass of the SM Higgs boson
My to float. In doing so we will see how much of an effect the new physics in our
G(221) model has on these crucial SM parameters. Especially we are interested in
the question whether the considered extensions to the SM are consistent with larger
masses of the Higgs or whether they constrain Mg to similar values as the SM. In

order to find the minimum value of x2 in the respective models we will thus let GAPP

vary five parameters.

= 2 2
Inz | tcB A

3 me ]WH

When it comes to scanuing the parameter space of the new physics parameters

we will fix my and Mg at their respective best fit values.

New Physics Corrections

In Subsec. 3.2.2 we calculated the new physics corrections AOY¢ to the electroweak
observables O at trec-level. After providing GAPP with the new quantum numbers of
the fermions and the definition of the fit parameters we now are ready to implement
the results of our calculations into the GAPP code. The crucial question in this

context is where to put our expressions for AOY. In the case of some observables
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the GAPP code is structured in the best possible way from our perspective: First
GAPP computes the tree-level expression OSM’ higher-order corrections OSM =
Oéi\lfw + Ogi\l?()p ... are calculated subsequently and successively added to the tree-

level result.

tree 1-loo 2- l()())
Osa1 = OGN +Ogpy 7+ Ogp

When then just have to add AO™ to Ogﬁ{l“ in order to get the theoretical pre-

diction Onp of our new physics models.

Oxp ~ (O] +A0™) + OGP + OH™ + ... (3.37)

However, in other cascs the pure tree-level SM expressions are not accessible in the
code. GAPP might start the calculation of Ogp using quantities that already contain
higher-order terms right from the beginning. Ogpp would then be initialized by some
approximation that is constructed from tree-level as well as loop terms O(tree HO)

Moreover, GAPP might also include higher-order contributions multiplicatively in-

stead of just adding them to Ogyy:

tree 1-loo t
Osm = Ogyf - (1 +Ogy p/Os’§F) (1+..)

In any case, no matter how GAPP calculates Ogpg, we stick to the procedure
illustrated in Eq. (3.37). As early as possible after their initialization we modify the
individual SM quantities in the GAPP code. Doing so will introduce mixing terms
in the calculation of some observables that we actually do not want to include into
our analysis. For instance we will get products of our new physics corrections AQee
with SM loop terms. However, all terms that we introduce unintentionally are small

and can be neglected:
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tree 1-loop __ tree  ~2-loop
AO ° OSI\I ~ AO * OSI\I ~N L. 0

According to the general conunents made in this subsection we now implement
our results for AOY in the respective Fortran files, see Tab. 3.5. The shifts in
the electroweak obscrvables differ from model to model. We take care of that by
introducing a switch variable modtype in the Fortran code that allows to respectively
include only those new physics corrections that correspond to the model that is being
fitted. Implementing the corrections in that way gives a modular structure to our
modification. Once the code is sct up for one specific class of G(221) models it is
easy to add the corrections for all other models. The extension of GAPP by further
models that are similar to our G(221) models should be accomplishable without much

effort.

3.3.3 Fitting and Scanning the Models

Finally, GAPP is configured in such a way that we can run it and examine the
compatibility of our G(221) models with the electroweak precision data. Two tasks
are on our agenda: First, we will let GAPP minimize x2 for each model. These model
fits will tell us which values for the new physics parameters and which masses for the
top quark and the Higgs boson are most preferred by the data. Subsequently, we will
scan the parameter space of the new physics parameters in the respective models.
Based on these model scans will be able to identify the parameter values that are still

consistent with the data.

Minimization of x?: For cach model we determine the smallest possible value

2 2

7 S 29
¢ 28
my and M. This first step is trivial as it just requires a simple call to MINUIT. The

X?nin. of x2. In order to find Xr2nin. we let GAPP vary five parameters: Inz, ¢
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n=1 n=2 n=3

Ax2(95%. n) | 3.84146 | 5.99146 | 7.81473

Table 3.6: Maximum allowed deviations Ax? from X1211in. at 95% CL for one, two
or three free model parameters — at these values of x2 the cumulative distribution
function F (x2,n) of the x? distribution with n degrees of freedom takes the value

F(x%n) = 0.95.

results of this first munerical analysis are presented in Subsec. 4.1.1. See especially

Tabs. 4.1 and 4.2 and Figs. 4.1 and 4.2.

Constraints on the new physics parameters: In our sccond analysis we fix my
and My at their respective best fit values and focus exclusively on the bounds on the
new physics parameters. The criterion by which we decide whether a certain set of
values for In Z, t%, 5; 5 is viable and consistent with the data is the deviation Ax2 in
x? from the respective minimum value x?mn.. If x? is larger than X?ef. = x?nin_ +Ax?

for some parameter values we conclude that these values are ruled out by the data;

all parameter values that yield a x2 smaller than xﬁlm. + Ax? are still feasible.

x2 < x?nm + sz = Paramecter values are allowed.

X2 > X1211in. + Ax? = Parameter values are ruled out.

The choice of Ax2 = Ax? (CL, n) depends on the desired confidence level CL and
the number n of free model parameters. In this work we would like to describe the
properties of the parameter space at a 95% CL. The models belonging to the first
breaking pattern feature three, the models of the second breaking pattern two new

physics parameters. In Subsec. 4.1.2 we will examine the My dependence of x2. In
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that context we will neced Ax? corresponding to one free paramecter. We calculate
Ax? (95%, 1), Ax2 (95%,2) and Ax? (95%, 3) employing the cumulative distribution
function F (x2, n.) of the x2 distribution with n degrees of freedom and present the
results in Tab. 3.6.

The points of interest in the parameter space are those where x2 falls below the
threshold of X12nin. + Ax?2 or where it becomes larger than xfnm. + Ax2. Together
these points form the boundaries for the allowed regions in parameter space which
represent the goal of our analysis. To find these points we let GAPP scan over a grid
in parameter space and calculate y2 at each point. If x? is larger (smaller) than X?ef.
at a given grid point and smaller (larger) than X?ef. at the following grid point we
lineally interpolate between the involved parameter values to find the values on the

boundary between the allowed and forbidden regions.
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Chapter 4

Results

Our global fit analysis provides us with a wealth of information about the G(221)
models under study. After we have given a detailed discussion of our numerical
approach in the last chapter we now discuss our results and draw conclusions about
the underlying physics.

First we will present the values of the fit parameters that minimize x2 in the
individual models. These best fit values will give us an idea of the scale of the new
physics in the G(221) modcls and they will tell us which masses Mg of the Higgs
boson are respectively most preferred by the data. As we will sce My tends to
take smaller values than in the SM for the models of the first breaking pattern and
roughly the same value as in the SM for models of the second breaking pattern. To
get bounds on M for all ten G(221) models as well as for the SM we will plot x2
as a function of Mp. Doing so will allows us to read off those My values for which
Ax? is smaller than Ax2(95%, 1). To get a better understanding of the x2 plots we
will also examine the pulls P; of the electrowcak observables for My either fixed at
a very small or a very large value. The corresponding pull distributions will help us

identify the observables that constrain Mpr.

In the second step we will turn to our paramecter scans and present the bounds
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on the new physics parameters. Subsequently, we will translate the boundaries in
parameter space to bounds on the masses of the new heavy gauge bosons. These
results will show us which gauge boson masses are still consistent with the data and
whether one could hope to detect the Z’ and / or the W/% at the LHC. Again we will
examine the pull distributions to identify those observables which drive the parameter
plots. In a last section we will calculate the explicit munerical expressions for these
important observables in the respective models and try to reconstruct the plots of the

bounds in parameter space.

4.1 Fits to the Electroweak Data

4.1.1 Best Fit Values

In Subsec. 3.3.3 we described how we minimized x? for the ten G(221) models under

consideration as well as for the SM by varying the values of InZ, 2, s

2
¢ 72

3 My and
m¢. The results of that analysis are now presented in Tab. 4.1.

Inspecting Tab. 4.1 we make several interesting observations: First of all, we notice
that the values of X12uin. for the G(221) models are of the same order as for the SM.
This finding tells us on the one hand that none of the G(221) modles is ruled out
by the data — all models yield reasonable x;?mn_ values that are comparable to the
one of the SM. On the other hand we also see that our results in Tab. 4.1 prove
once more how excellently the experimental data is described by the SM. Our G(221)
models can barely improve the SM value of xfnin'; only in four models, the LP-D,
LP-T, FP-D and the FP-T model, we obtain a slightly smaller value. The other four
models that belong to the first breaking pattern yield approximately the same value
as the SM; the UU-D and NU-D values of X12nin. are slightly higher. As we will see

later it is not just by chance that the models of breaking pattern one split into two

groups. The analysis of the pulls of the clectroweak observables in Subsec. 4.2.2 will
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reveal that the fits of the LP and the FP model and the fits of the LR and the HP
are respectively driven by the same sets of observables.

Given the best fit values for # it is, however, obvious why the minimum x2 values
are so close to each other. The scale of the new physics in the G(221) models is
throughout very high. In all models Z is pushed to very large values resulting in
a substantial suppression of the new physics corrections. It is a testament to the
power of the SM that the experimental data apparently favors small up to negligible
contributions from new physics. In none of the considered models the best fit value
for z is smaller than 160. In the case of the NU-D model we even reach the bound that
we set on InZ — we demanded that InZ must not take values larger than Inz = 10.
With & = 22026 in the NU-D model we exactly reach that limit. This explains why
we put a long dash (- ) into the corresponding entry in Tab. 4.1. As the NU-D

2

model apparantly favors neglible new physics corrections the best fit value for ¢ 3 is

mecaningless as well.

In summary, we conclude: The smaller the deviation from the SM the better
in agreement with the experiment are the predictions of the G(221) models. This
insight will help us in the further interpretation of our results. Especially, when we
have come to discuss the bounds on the new physics parameters in Sec. 4.2 we will
take the SM as the best description of the experimental data — the fact that some
regions in parameter space are ruled out by the data can then be explained with the
new physics corrections being too large in these regions.

Moreover, we find that the best fit value for & in any (BP-I,T) model is always
smaller than in the corresponding (BP-I,D) model. This relation is expected since

choosing a triplet instead of a doublet representation for H in any model of the first

4 2
éand 323

physics corrections: see, e.g., Tab. 3.1. In (BP-I,T) modecls the c4(5 contributions are

breaking pattern leads to suppressing prefactors of the ¢ terms in the new

always four times smaller than in the (BP-I,D) models. The sg 3 terms receive a
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Vo 26y el (e
SM | 41.95 | - - o 162.8 93.24
LR-D || 42.46 | 2028 | 99.99 | 0.9998 162.8 72.33 l,
LP-D || 41.60 | 1055 | 100.0 | 0.5499 162.7 68.94 ;
HP-D | 42.24 | 641.9 | 100.0 | 0.3348 162.7 70.88 )
FP-D || 41.09 | 812.9 | 64.05 | 0.4312 162.7 67.50
LR-T || 42.44 | 997.1 | 99.95 | 0.9992 162.8 72.17
LP-T || 41.60 | 263.8 | 100.0 | 0.2750 162.7 68.94
HP-T || 42.24 | 160.5 | 100.0 | 0.1674 162.7 70.88
FP-T | 41.09 | 203.1 | 64.72 | 0.2153 162.7 67.48
UU-D | 43.16 | 318.6 | 0.03016 — 162.8 94.60
NU-D || 43.34 | -—~ e — 162.8 93.48

Table 4.1: Best fit values of z, %’ sg 3 My and my for all ten G(221) models as well

as for the SM — the bounds that were set on Inz, t%, s2 . are given in Egs. (3.35)

23
and (3.36). In the case of the NU-D model & reaches the maximum allowed value;

the corresponding best fit t% value is thus meaningless.
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prefactor of % This effect will also be evident in the plots of the bounds on the new
physics paraineters: In Subscce.  will see that the boundaries that separate allowed
from forbidden regions in parameter space are always shifted to lower & values if H
is chosen to be a triplet.

In most models t‘é rcaches either the lower or the upper bound that we set. on that
parameter. In the models of the first breaking pattern a high t?; value seems to be
preferred; in the models belonging to the second breaking pattern t% tends to take
smaller values. Both observations lead us to the same conclusion: The experimental
data can be best explained if the coupling go of the second SU(2)9 in the G(221) gauge
group is taken to be small — which is just another way of saving how successful the

ansatz of the SU(2); & U(1)y gauge group in the SM is.

4.1.2 Higgs Mass Dependence

Another insight that we gain from Tab. 4.1 is that the G(221) models prefer a Higgs
mass My in the same range as the SM. The best fit values for My in the models
of the first breaking pattern are smaller than the SM value by roughly 20 GeV. Our
results for the second breaking pattern are almost identical to the SM value. Again
we notice that the models belonging to breaking pattern one fall into two groups:
The Higgs mass values of the LR and the HP models on the one hand and the results
for the LP and the FI> models on the other hand are respectively comparable to cach
other.

To get a better impression of how x? depends on the mass of the Higgs boson we
calculate x?2 for values of My between 30 and 300 GeV in all G(221) models and in
the SM. Doing so we fix all other fit paramcters at their best fit values such that the
Higgs mass remains as the only free parameter. The results of that step are shown in
Fig. 4.1. Since the Higgs mass always appears logarithmically in loop contributions

to the electroweak observables, a quadratic dependence on In (M) is expected if we
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Figure 4.1: x2 in dependence of the Higgs mass My for all ten G(221) models and
the SM — the x2 curves of the (BP-I,D) models differ so little form the curves of the
corresponding (BP-1,T) models that they are mostly covered by them. See Tab. 4.2
for the allowed ranges of the Higgs mass that we deduce from this plot.
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expand x2 around its minimum value. For small deviations from x?mn. the plots in
Fig. 4.1 certainly confirin this expectation.

Fig. 4.1 cannot only tell us the x2 value for a given Higgs mass but also help us to
answer the reverse question: Which masses Mg correspond to a certain value of X2?
According to our considerations in Subsec. 3.3.3 all values of M that correspond to
a x2 smaller than X?ef. = X12uin. + Ax2 (95%, 1) are consistent with the experimental
data at 95% CL. We determine these allowed ranges of the Higgs mass for all G(221)

models as well as for the SM and present the results in Tab. 4.2.

We find that in none of the considered models My can be smaller than 38 GeV or
much larger than 150 GeV. To find out which observables constrain the Higgs mass we
perform two further fits with Mg being fixed at My = 25GeV and Mgy = 250 GeV
2 s2. and m; to minimize

¢ 28
x2. Proceeding in this way removes the dependence of the pulls on the new physics

respectively. During both finds we let GAPP vary Inzx, t4, sg
parameters and the top mass -— we isolate the contributions from the Higgs mass. The
pull distributions after our fits point onto three observables that significantly deviate
from the measured values: For My = 25GeV the forward-backward asymmetry of
the bottom quark Appg(b) (observable Ne 17) contributes with a large pull to x2. If
My is set to Mg = 250 GeV, the theoretical predictions for the left-right asymmetry
of the electron A p(e) (observable Ne 21) and the W mass My (observable Ne 29)

are far off the experimental results.

The physically relevant obscrvation is that the measurement of the W mass
constrains the allowed range for the Higgs mass. Such a correlation is expected as
M gz enters the expression for My at the loop-level, in the SM as well as in our G(221)
models. In Fig. 4.1 we observe that the allowed My ranges of the BP-I models are
shifted towards lower My values compared to the curves belonging to the SM and
the BP-II models. In other words: The BP-I models prefer smaller Higgs masses than

the SM or the BP-II models; compare with Tab. 4.2. A closer look at the new physics
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Model MEY (x2;) [GeV] My (x2,,) [GeV] M (32;) (GeV]

SM 55.37 93.24 148.12
LR-D 41.91 72.33 117.76
LP-D 39.62 68.94 112.91
HP-D 40.94 70.88 ~ 115.64
FP-D 38.62 67.50 110.85
LR-T 41.80 7217 117.47
LP-T 39.62 68.94 112.91
HP-T 40.94 70.88 115.64
FP-T 38.63 67.48 110.89
UU-D 56.17 94.60 150.30
NU-D 55.50 93.48 148.51

Table 4.2: Bounds on the Higgs mass Mg —- ]\I}L‘}w and M;[p are those masses of the
Higgs boson for which x2 takes the value X12'ef. = x?nm + Ax? (95%,1). Therefore
M}?W represents a lower and M}l{p an upper bound on the Higgs masses that are

consistent with the data. Note that the values of My for which the x2? curves in
Fig. 4.1 reach their respective minima are identical to the best fit values given in
Tab. 4.1.
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corrections AMyy to the W mass reveals why that is: In Tab. 4.5 in Subsec. 4.2.2 we
plugging the best fit values for cg

present numerical expressions for the shift AMyy

2 respectively into our results for AMyy we notice that the ¢-dependent

d s?. or s2
and s ; 3
contributions are almost negligible: Consequently, AMyy is practically zero in the

UU-D and NU-D models. In the models of the first breaking pattern the shift does
term. The best fit Mg values in the

not vanish; it is clearly dominated by the sg 3
+

BP-I models therefore differ from the SM value in order to compensate the non-zero
new physics contributions AMyy to Myy. On the other hand, due to the negligible

new physics shift in the BP-II models, the best fit values for the Higgs mass in these

models are basically the same as in the SM.

The large pulls for Apg(b) and A g(e) are less meaningfull in the context of the
M gy dependence of x2: In the best fits of all of our models Apg(b) is the observable
with the largest contribution to x2 anyway, see Tab. A.1. The pull of observable
Ne 21, 4 Lr(e), is prone to been blown up by the exceptionally small experimental
error.

In a last step we address the question of how x? behaves if we do not vary My
but the top mass m¢. For all models under study we calculate x2 for a set of fixed
772¢ values and show the result in Fig. 4.2. As the best fit values for m; in Tab. 4.1
fAre already almost the same for all models we expect 7 to be constrained to a very
narrow range. Fig. 4.2 exactly confirms this expectation: If we demand that Ax? is

SInaller than Ax?(95%, 1) the top mass 7y cannot be smaller than ~ 160 GeV and

large, than ~ 165 GeV in any model.

1.2 Allowed Regions in Parameter Space

Fje
1&s. C1toCYinthe appendix show the main results of our study: The bounds on

t}
B physics parameters for all G(221) models and — for all models of the first
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Figure 4.2: X2 in dependence of the top mass my for all ten G(221) models and the
SM — the x2 curves of the (BP-I,D) models differ so little form the curves of the
corresponding (BP-1,T) models that they are mostly covered by them.
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breaking pattern — the bounds on the masses M s and My, of the new heavy gauge
bosons. We obtain the plots of the gauge boson masses by taking the parameter values
on the contours in parameter space and plugging them into the expressions for M
and My that we derived in Subsec. 2.2.4, see Tab. 2.6. In that respect the mass plots
are nothing else than direct translations of the parameter bounds into constraints on
the masses of the Z’ and the W%, In the UU-D and the NU-D model the masses of
the Z’ and the W'E boson are degenerate which is why we do not include mass plots
for these models. They would just show straight lines in the M,—My;, plane. We
find that the minimum masses of the Z’ and the W’* that would still be consistent
with the data are respectively given as 2.49 GeV and 3.66 GeV in these two models.

In the following subsection we will discuss the general properties of the parameter
and mass plots. Subsequently, we will identify the observables that drive the plots

and try to quantitatively understand how the plots come to their specific shapes.

4.2.1 General Features

As discussed in Subsec. 3.3.2 ¢ cither enters the new physics corrections to the elec-

troweak observables in form of the ¢ 5 or the s e For that reason we decide to plot

the bounds on the parameters in the z—c 5 Or -8 3 plane respectively. The parame-

ter space of the models belonging to breaking pattern one in which sg 3 introduces a

further degree of freedom is actually three-dimensional. In fact, the boundaries be-
tween the allowed and the forbidden parameter values are given by two-dimensional
surfaces in these models. However, we stick to a two-dimensional representation and

color-code the values of s2 . on the parameter contours.

28

If we fix sg 3 at different values we obtain different parameter bounds in the T-c 5

plane. In other words: Looking at different slices of the two-dimensional boundary
surface along the sg 3 axis changes the bounds on  and ¢ 5 The allowed regions shown

in Figs. C.1 to C.8 represent the maximum allowed regions that we obtain combining
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the projections of all slices in respectively one plot. Proceeding in this way represents

a conservative approach: We exclude as few parameter values as possible. Only when

2 ~
23

ruled out by the data.

no value for s2. leads to a x2 < x?(‘f_ we say that a given set of T and ¢ 3 values is

For each model we include two different parameter contours into our plots: One
contour that has been calculated with My and m; being fixed at the best fit values
MINIP and Thi\lp of the respective model and one contour calculated with Mg and mq
being set to the values M?IM = 93.24 GeV and 771§M = 162.8 GeV that we obtained
fitting the SM. With the Higgs and the top mass given by MEP and ﬁzi\I P the contours
are more relaxed — My and m; are harmonized with the specific properties of the

G(221) models and larger regions in parameter space can be opened up.

In all plots we indicate the bounds that we set on the parameter t2 for our nu-

¢
merical analysis, see Eqs. (3.35) and (3.36), by dotted lines. In the parameter plots

showing the z-c 3 Or the x-s 3 plane these bounds simply result in straight horizontal

lines that cut off regions where ¢ 50085

els of the first breaking pattern, these boundaries in the Z—c 3 plane are independent

takes too high or low values. As for the mod-

of the value of 33 5 If we translate these parameter bounds into the M ;/—My;r plane

we can, in principle, choose between different s2, values. Depending on our choice

28

we would get slightly different constraints on the gauge boson masses. As it turns out

the effects of the sg 5 contributions to M 7! and My, are, however, very small. They

are suppressed by i71/2 and calculating the bounds on M, and My, that follow
from the constraints on ¢ 5 We can just neglect them. The dotted lines that are shown

in the mass plots correspond to a sg 3 value of 33 5= 0.

The fact that sg 3 becomes larger when we follow the parameter contours to higher

values of ¢ 3 can be explained with the different signs of the c% and sg 3 terms in the
shifts of the electroweak obscrvables, compare with Tab. 3.1. As discussed in our anal-

ysis of the best fit values, see Subsec. 4.1.1, the experimental data apparently requires
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the contributions from new physics to be small. In order to keep the corrections low

sg 3 has to increase when we reach higher values of ¢ 5

Furthermore, we observe that the parameter plots of the (BP-I1,T) models are all
shifted to lower & values with respect to the corresponding (BP-I,D) models. This
can again be attributed to the changes in the prefactors of the ¢ and s2 . terms that

¢ 26

occur when the doublet representation of @ is replaced by a triplet representation.

The prefactors of ¢ and s2 . also explain why sg

¢ 28

upper ¢z regions if @ is a triplet: Multiplying c‘é by ;11 and sg 5 by % effectively enhances

the effect of the sg 3 terms by a factor of 2. To keep the new physics contributions

small we now have to choose smaller values for sg X
An obvious feature of the parameter plots for the first breaking pattern is that

3 tends to take smaller values in the

they again fall into the same two groups: The plots for the LR-D, LR-T, HP-D and
HP-T models and the plots for the LP-D, LP-T, FP-D and FP-T models respectively
resemble each other. Furthermore, the models of breaking pattern two seem to join
either of these groups: The UU-D parameter contours have the same shape as those of
the LR and HP models. Our results for the NU-D model look similar to what we get
for the LP and FP models. These similarities can be explained with the respective
observables that yicld the largest to contributions to x2 in the individual models.
In the next subsection we will identify those observables and try to quantitatively

reconstruct our parameter plots.

4.2.2 Observables Driving the Plots

For each G(221) model under study we sct the new physics parameters to some
cxemplary values in the forbidden regions in parameter space and plot the resulting
pull distributions, see Figs. C.10 to C.14. These plots directly point onto those
observables due to which the respective regions are ruled out. We, however, note that

the pull distributions shown in the appendix represent rather auxiliary material than
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actual results of our analysis. They just allow us to identify the important observables
— once we know which observables we have to look at our further discussion will be

based on the explicit expressions for those observables.

In the first place, the pull distributions confirm that models with similar contours
in parameter space are driven by the same observables: In the LR and HP models

* annihilation

as well as in the UU-D model the hadronic cross section gy,4. in e”e
(observable Ne 3) clearly has the largest pull. Further large contributions come from
the forward-backward asymnetry of the bottom quark Appg(b) (observable Ne 17)
and the W* mass My, (observable No 29).

As expected also the LP and FP models are driven by the same observables. At
low values of s the weak vector charge Qu (133Cs) of cesium-133 (observable Ne 61)
apparently plays an important role. We present the corresponding pull distribution
for the FP models in Fig. C.13. For the same value of ¢ 3 the pulls of the LP models
would basically look the same. If ¢ 3 is sct to higher values Qu (133Cs) looses its
influence and the left-handed neutrino-nucleon coupling (gzN )2 (observable Ne 48)
becomes the driving force behind the plots. We show an example pull distribution
for the LP model in Fig. C.11. Again, at the same ¢ value the result for the FP
model would be similar. For even larger values of ¢ 5 we would see that also in the LP
and FP models the pulls of Appg(h) and mass My can go up. In the NU-D model

(gl[/,N) 2 1s the most important observable.

To understand the origin of the pulls we compute the relative new physics cor-
tections to gy,,, App(b), M, (QZN)2 and Qu (133Cs) in all G(221) models and
Insert the values of the experimental reference observables o, G F and Mz, see Sub-
SC€C A.1. The results of our calculation are shown in Tabs. 4.3 to 4.7. We now list
the most, important conclusions that we draw from these results. First, we focus on
the Models of breaking pattern one. The upshot of our argumentation is pictorially

MAarized in the sketches shown in Fig. 4.3.

115



iAUlmd./Uha(l.,SM

LR-D | —-1.13- c; -0.142- cj; +0.0432 - 52,
LP-D | 0.346 - c;’) —-0.142 - cj; +0.0432 - 52,
HP-D | —1.38- ci —~0.142- cé +0.0432 - 52
FP-D | 0.0985 - cé —0.142- c;‘; +0.0432 - sg
UU-D —(.889 - st-) —0.0132- sj}s

NU-D 0.583 -2 — 0.0132 - 4
o o)

Table 4.3: Numerical evaluation of Aop,d./0pad. sa — the expressions for the (BP-
I,T) models follow from the (BP-1.D) results by multiplying cé and cjs by ;1{ and sgé

;1
by 5.

i'AAFB(b)_/AFBQM(b)

LR-D || —=30.0- cz +67.6-¢ =206 - sg

é 3
LP-D | —46.1-¢2 +67.6-¢% —20.6- 52
o @ 23
DIl —300.2 176,04 _ C62.
HP-D | —30.9 ei +67.6 c 206 - 53 3
FP-D || —47.0- 2 +67.6-¢1 —20.6 - 52
o o 23
UU-D 0.161 - 2 + 6.29 - s1
(7] (0]
NU-D 14252 +6.29 - st
10} o

Table 4.4: Numerical evaluation of AAFRB(b)/Arpsa(b) -— the expressions for the
(BP‘I»T) models follow from the (BP-1,D) results by multiplying C% and 6(43 by zli and
2 1

3V 3.
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TAMy- /My s\

_ “19.04 _ g.¢2_
(BP-1I.D) || 0.719 cs 0.719 553

) e 0360 2.
(BP-I,T) 1| 0.180 < 0.360 - 52 3
UU-D 0.219 - sj;

NU- 219 - st
D 0.219 - 54

Table 4.5: Numerical evaluation of AMyy /My sm

. N 2 , 2
2 (9)"/ (o)

(BP-LD) || 0.0875 4 1.91 ci +0.839-c¢t —284. sg 3

o

(BP-I,T) || 0.0219 +0.478 - 2 +0.210 - ¢? — 1.42- 52,
o) @ 23

UU-D 0.839 - sj.)

NU-D 2.58 — 0.583 - sg) +0.839 - 33

. - - . AY 2 V 2
Table 4.6: Numerical evaluation of A (g’l’; ) / (gf‘SM)
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TAQw (M3Cs) /Qursn (133Cy)

LR-D —0.855 - cé —0.145 - sg 3

LP-D || 3.35 -1.95- c% —0.855 - c; —0.145 - sg 3
HP-D —0.855 - c;% —0.145 - sg 3

FP-D | 2.95 — 1.95 - c; —0.855 - c‘é —~0.145 - 333
UU-D —0.855 - s:},)

NU-D 0.406 + 0.594 - 33) —0.855 - 34&

Table 4.7: Numerical evaluation of AQw (13303) /Qw.sMm (133CS) —— the expressions
for the (BP-I,T) models follow from the (BP-1,D) results by multiplying cg and c‘;;

1 2 1y L
by 7 and 52,6’ by 5.

N 2
e The corrections to Appg(b), My, and (gEA’ ) all prefer smaller values of ¢ 3

If ¢; chosen too large the new physics shifts increase and the respective pulls

¢
2
are blown up. A (gzN ) and AMyy are especially sensitive to high c 3 values:
2
In A (gEN ) the cé and the cz-) terms have the same sign so that they cannot

cancel each other; A My only involves a c;l3 contribution. Agpg(b) has the largest
effect on the parameter bounds in the LR and HP models as for these models

the coefficient of cg) has a smaller absolute value which leads to bad cancellation.

® The rcason for the large impact of Qy (13Cs) on the LP and FP bounds lics
in the fact that the corrections AQy (133Cs) involve an absolute term in these
models. Only for large ¢ 3 values the negative 633 and c% terms can compete with
that absolute contribution. The consequences are that the low-c 3 region is ruled
out in the LP and FP models and that the parameter contours start at higher

Z values than in the LR and HP models. At higher c 3 values, once Qs (133Cs)
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Figure 4.3: Sketches illustrating the influences of some key observables on the param-
eter bounds for the models of the first breaking pattern — the parameter contours
in the (BP-I,T) models are shifted to lower Z values compared to the corresponding
(BP—I,D) models. Omitting the tick labels on the Z axis we ensure that the sketches
apply to (BP-1,D) and (BP-I,T) models alike. The UU-D parameter contour is driven

2
by %had. as well. In the NU-D model (gZN ) is the most important observable.

119



2
Ohad. Arpp(b) (gZ‘V) Qu (133Cs)  Set of other obs.

LR, HP | @ @)
LP, FP ) ®

UU ® @
NU ® @)

Table 4.8: Overview of the observables driving the parameter plots — the most and
second most important observables are respectively marked with the symbols ® and
@. In the UU and NU models only one observable significantly contributes to x2.

does not represent a strong constrait any more, the parameter contours are

2
dominated by the observables Apg(b), My and (gZN ) :

e The s2 . and ¢ contributions always have opposite sign. As discussed earlicr this

28 ¢

leads to the increase of sg 3 when ¢ 3 becomes larger. The parameter plots of the

FP and LP models suggest that — depending on the exact interplay between

g 4 and c 5 the sg 3 terms are be able to overcome the cé contributions
i +

such that the parameter boundaries are pulled back towards lower Z values.

S

Note, however, that the expressions given in Tabs. 4.3 to 4.7 cannot explain
the branching between the LP and FP contours. To account for that effect we

certainly would have to extend our discussion to other observables as well.

® In the case of the LR and HP models the sg 3 terins do not have a chance:
The c% and c% contributions to Aoy, have the same sign and the sg 5 term
Is suppressed by a small prefactor. The pull of 0,4 therefore represents a

hindrance for the LR and HP models that is impregnable for large ¢ 5

After these comments on the models of the first breaking pattern it is easy to
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understand the shape of the parameter contours in the sccond breaking pattern: In
the UU-D model all corrections that we present in Tab. 4.3 to 4.7 favor small s b
values. Especially the fact that the 32& and si; terms in Aoy, have the same sign
lcads to the exclusion of the high-s & region. For that rcason the UU-D plot looks
similar to the plots of the LR and HP models. The contour of the NU-D model is
mainly influenced by the correction to (gZN)2. Since A (gI‘:N )2 is small if s 3 takes
some intermediate value we observe a bump in the NU-D contour towards lower
values for s p values around ~ 0.65.

In conclusion, we summarize our observations as follows: The shapes of the con-
tours for LR, HP and UU modecls are driven by oy,,4.. For the LR and HP models,
Appg(b) also plays an important role. In the LP and FP models, at low ¢ 3 values,
Qw (133C s) is the most important observable. At higher ¢ 3 the coupling (gZN )2 is
responsible for the shape of the parameter contours. (To some degree, Appg(b) has
the same effect on the LP and FP contours as on the LR and HP contours, though
subdominant compared to the other observables. The same applies to (gZN )2 for
the LR and HP models.) The NU contour is mainly driven by the pull of (gzN )2.

Tab. 4.8 on the previous page presents these results in a tabular form.

4.3 Concluding Remarks

4.3.1 Constraints From Triple Gauge Boson Couplings

The aim of our analysis is to confront the G(221) models with all important precision
data that is available for clectroweak observables. In this last section we may thus
include the precise LEP 2 measurement of the ZW W ™ triple gauge boson coupling
into our discussion. The YW W™ boson coupling has been measured at LEP 2 as

well. We, however, do not consider this coupling here: Due to QED gauge invariance
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the YW T W™ coupling is the same in the G(221) models as in the SM. It does not shift
which is why it cannot help us to constrain the new physics parameters. In addition to

that, it has been measured with less precision than the ZW W™ coupling, anyway.

Employing the Hagiwara parametrization [29] we can write the ZW W™ vertex

factor gzww as a function of the parameter ng:

Z
9ZWW = 9ZWw (g 1 )

which takes the value unity in the SNI. The experimental value for glZ extracted from

the LEP 2 data reads as [30]:
glz = 1.001 £0.027 £ 0.013

where the uncertaintics are the lo statistical and systematic uncertainties, respec-
tively. The total experimental uncertainty Ang in gIZ follows from adding these two

uncertainties in quadrature:

g2 =1.001+Ag7 ; AgZ =0.030 (4.1)

This result is obtained from the analysis of e"et — WTW ™ events. One deduces
the scattering amplitude Aexp. from the experimental data and determines glZ in a

single-parameter fit in which all other couplings are kept fixed to their SM values:
Acxp. = Ay + g2 AG + AL (4.2)
Xp. = ASM T 91ASM SM :

The three amplitudes 'Ag‘M' AbZM and Agy denote the respective contributions
from the s.channel v exchange, s-channel Z exchange and t-channel v exchange in the

~et . .
€ €¢" — W*W~ transition. We can now use the result for gIZ in Eq. (4.1) to further
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constrain our new physics parameters. In the G(221) models the total amplitude

Aexp. is given as:

A('xp. = A;IP + A}%p + ‘AKIP (4.3)

where the G(221) amplitudes can respectively be written as the sum of the corre-

sponding SM amplitude and a new physics correction that is proportional to %

0A%(6.8) 5 a€{y,Zv}

8| =

ARp = Agy + AA" 1 ALY =

In order to find the regions in parameter space that are excluded due to the
ZW*W ™ constraints we have to calculate the three amplitudes contributing to Aexp.
in both the G(221) models and in the SM. This is best be done employing the helicity
amplitude method [31]. In Ref. [29] Hagiwara et al. present general expressions
for the relevant amplitudes for all possible combinations of e* and W¥ helicities
which allow us to quickly compute the G(221) and SM helicity amplitudes — we only
have to either plug our G(221) results for the various couplings and masses or the
corresponding SM expressions into the expressions given by Hagiwara et al.

For the explicit helicity amplitudes we refer to Ref. [29]. Here, we only note the
key features of the dependencies on the scattering angle @ (not to be confused with
the Weinberg angle). For a given configuration of incoming and outgoing helicities,
all three amplitudes A7, AZ and AY are proportional to the Wigner d-functions. For

the s-channel amplitudes, we have:
AT A% o dRT3N0).

As for the t-channel v exchange, we have an additional 6 dependence from the

V-propagator:

C Ao, AN
v _ :
A x (B 1+/32-23 ('(_)89) day " 0),
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where B and C depend on the helicity configuration, but are independent of 6. To
finally constrain our new physics parameters, we peform a partial-wave analysis. For

any of the three involved amplitudes we project out the dﬁj’,’A’\(O) component:

5 1
Al = / 1 d(cos6) A® - dﬁ;‘“/ﬂ(@) ;o a€f{y,Z,v}

By equating the two expressions for Aexp. in Egs. (4.2) and (4.3) and projecting
out the dﬁS’A’\(O) component we finally obtain the constraint on the new physics

parameters — #, ¢ and 3 can only take values for which the following relation holds:
A AZ . qv A 2\ iZ . . v
'ANP + ‘ANP + Ai\IP = ASM + (1001 + Agj ) ASM + ‘ASM

According to this condition we calculate the bounds on z, (13 and B for all possible
helicity configurations. Once we have done that, we combine our results and determine

the maximum regions in parameter space that are ruled out due to the experimental

value of A gIZ .

Our calculations show that the experimental data on the ZWTW ™ vertex gener-
ally does not put stronger bounds on the new physics parameters than the electroweak
precision observables. To illustrate which regions in parameter space are typically ex-
cluded by the data on the ZW W~ coupling we show our results for the (BP-I,D)
models in Fig. 4.4. As the only fermion quantumn numbers that we have to take into
account are those of the electron we are able to respectively combine our results for

the LR-D and HP-D and the LP-D and FP-D models in common plots. For both

2 values

pairs of (BP-1,D) models we present the parameter bounds for the extreme s 23

2 _ 2
°f325. = 0 and 325= 1.

In the case of the LR-D and HP-D models the ZW+W~ constraints do not affect

the resultg of our global fit analysis at all: For low c values sg 3 is small on the LR-D
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Figure 4.4: Bounds on the (BP-I,D) models from the ZW W~ vertex — the shaded
regions are excluded, the blank regions consistent with the measurement of the
ZW*W™ coupling.




and HP-D parameter contours —- in which case the ZW W™ data is only able to
rule out points in parameter space with £ < 20. In the LP-D model our boundary
between allowed and forbidden parameter values is located at  values larger than
250. The ZWTW = constraints do not reach up to that high z values. Only in the
FP-D the ZW W~ contour comes at least close to the one that we found earlier in
our global fit analysis. If T is chosen small and 323 set to 1 the contours meet each
other at ¢ 3 = 1. However, as the FP-D curve has a much smaller slope than the

ZWTW ™ contour the ZWTW ™ data does not exclude parameter values that were
not already ruled out by our global fit analysis.

In conclusion, we can say that at present the constraints from the ZWTW ™ vertex
cannot compete with the bounds sct by the electroweak precision data. Our global
fit analysis therefore represent the complete answer to the question that we posed in
the introduction: Which bounds do the experimental data place on G(221) models?
All information on the bounds is contained in the plots of the parameter space and

the masses of the new heavy gauge bosons that we show in the appendix.

4.3.2 Future Prospects

The Q-weak [32] collaboration at Jefferson Lab intends to determine the weak charge
of the proton, Qu (p), by measuring the parity violating asymmetry in elastic e™p
scattering at Q2 = 0.03GeV2. Meanwhile the e2¢PV collaboration [33], also at
Jefferson Lab, proposes a Moller scattering experiment at Q2 = 0.0056 GeV? that
would allow to infer the weak charge of the electron, Qy (e), with ultra-high precision.
The experimental results that are anticipated by both collaborations are already

implemented into the GAPP code:

Qw (p) = 0.0715£0.0029 ; Qu(e) = —0.046900 £ 0.001079
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Given the accurancy that both experiments are aiming at we feel tempted to
investigate how much of an effect it would be if we added these two precise values to
our global fit analysis. In a last step we thus repeat our scans of the G(221) parameter
space with Qy (p) and the ¢2ePV value for Qu (e) included as additional constraints.
While the bounds on the LR, HP, UU-D and NU-D models are only slightly affected
the results for the LP and FP models change drastically. As an example we present
the ¢ § parameter contour for the LP-D model in Fig. 4.5. At low values of ¢ 3 the
boundary between allowed and forbidden values is pushed to much larger Z values.
To find out which observable is responsible for that shift we again pick a point in
the excluded region and examine the distribution of the pulls. It turns out that the
anticipated value for the weak charge of the clectron causes the dramatic change of
the LP and FP contours. The effect of Qy-(e) on the LP and FP models is thus
comparable to the one of Q- (13Cs) with the only difference being that the region
exluded by Qw (e) extends to much higher & values, compare also with Fig. 4.3. Asa
consequence of these further constraints from Qyy (p) and the e2ePV value for Qy (e)
the allowed region in the M ;- Ay plane shrinks as well, see Fig. 4.5. The minimum
allowed mass for the W& increases, for instance, from = 0.6 TeV to ~ 1.2 TeV.

This last analysis therefore shows us that our study can only be understood as a
snapshot that tries to capture the current constraints on the G(221) models. Future
experiments such as the measurcments of weak charges at low energies might be
able to yield significant corrections to the picture that we have drawn in this thesis.
However, this prospect shall not discourage us. It is exactly the interplay between
increasingly more precise experiments and phenomenological studies like ours that

harbors the chance of detecting new physics beyond the SM.
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Appendix A

Experimental Input

We give the experimental results for the reference observables a, G g and Mz that are
used by the GAPP code and determine the numerical values of the standard param-
eters 833M and vg)g. Subsequently, we list the experimental values of all electroweak
observables to which we fit our G(221) models. The experimental data implemented
in the 2009 version of GAPP [21] agrees for the most part with the values given in
the 2008 PDG book; compare with [20].

A.1 Reference Observables o, Gr and M

The most recent version of the GAPP code uses the following numbers:

o =1/137.03599911 ; Gp =1.16637-107°GeV™2 ; My = 91.1876 GeV

The value for a represents the low-energy limit of the fine structure constant. Go-
ing to higher and higher energies in the experiment scale-dependent loop corrections
will cause a to run, that is, to become progressively larger. We have to consider

the running of the fine structure constant when we deduce the numerical value of
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2

the involved o does not take the value 1/137.036. Instead it is given as the running
coupling a(u) evaluated at the Z mass scale. The explicit value of a (Myz) depends
on the employed renormalization scheme. GAPP is based on the modified minimal
substraction (MS) scheme. The MS value & (M) for a (M7z) is calculated by GAPP

and turns out to be & (Mz) = 1/127.918. Eq. in Subsce. then actually reads as:

2
2 . g
Mz=a(Mz) - b;—l—

S C
051 Osnat

We solve this equation for .S(%g’\l and obtain:

[

2 0233652 ¢ 2 = 0.76
Spgyy = 0233652 5 ¢, = 0.766348

The value for Fermi's constant G g results in a electroweak VEV of:

ven = 246.221 GeV

A.2 Electroweak Observables

We present the measured values for the electroweak obscervables in two tables: Tab. A.1
on the following page lists the experimental results for the Z and W= pole data as
well as the top mass; Tab. A.2 on page 132 presents the experimental data that is
available for the low-energy obscrvables. Both tables also give the numbers by which

the GAPP code refers to the individual obscrvables, our best fit results for the SM

and the corresponding pulls.
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Ne Obs. Exp. SM Pull
(2) | Tz [GeV] 2.4952 +£0.0023 | 2.4956 | -0.163
(3) | ohad. (b 41.541 + 0.037 41.480 | 1.658
(4) R (e) 20.804 £+ 0.050 20.740 | 1.278
(9) R (i) 20.785 £ 0.033 20.740 | 1.355
(6) R(T) 20.764 £+ 0.045 20.786 | -0.478
(14) |  R(s) 0.371+0.022 | 0359 | 0.535
(16) R (c) 0.1721 £0.0300 | 0.1722 | -0.048
(15) R(b) 0.21629 £+ 0.00066 | 0.21580 | 0.741
(11) | Azp(e) | 0.1498+0.0049 |0.14737 | 0.495
(21) 0.15138 £ 0.00216 | -- " 1.855
(22) 0.1544 £ 0.0060 | —" — | 1.171
(25) 0.162+0043 |-~ | 0.340
23) | Apg(0) 0.14240015 | — > — |-0.358
(10) | Azp(r) | 0.1439+00043 | — " — | -0.808
(24) 0.136 £ 0.015 — 7 —1-0.758
26) | Arg(s) 0.895+0.091 | 0936 |-0.447
(20) | Argr(o) 0.670 £+ 0.027 0.668 | 0.078
(19) | ALg(®) 0.923+0.020 | 0935 |-0.588
(7) Arpp (e) 0.0145 +0.0025 | 0.0163 | -0.716
©®) | Apg(n) || 0.0169+00013 | —» | 0.470
©) | Apg(r) || 0.0188+00017 | — " - | 1477
(13) | Appg(s) 0.0980 + 0.0110 | 0.1034 | -0.493
(18) | Appg(c) 0.0707 £ 0.0035 | 0.0738 | -0.892
(17) | App(b) 0.0992 + 0.0016 | 0.1033 | -2.573
(12) QFB 0.0403 £ 0.0026 0.0423 | -0.781
(28) | T'w [GeV] 2.196 £+ 0.083 2.092 | 1.257
(30) 2057 £0.062 | —" — |-0.559
(27) | My [GeV] 80.376 + 0.033 80.378 | -0.051
(29) 80.432 £+ 0.039 — " — | 1.393
42) | my¢ [Gev] || 17240+ 134 | 172.45 | -0.035

Table A.1: Experimental values for the Z and W pole observables and the top mass
that we employed for our numerical analysis — sce the PDG book [20] for references.
The SM values and the corresponding pulls represent our best fit results.
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e Obs Exp. SM Pull
@n | 7 [fs) 290.93+0.48 | 289.08 | 0.771
(48) (g'IjN )2 0.3010 + 0.0015 | 0.3039 | -1.944
(49) (gﬁ!")2 0.0308 +0.0011 | 0.0300 | 0.720
(50) kN 0.5820 + 0.0041 | 0.5830 | -0.252
(51) Ry, 0.3021 + 0.0041 | 0.3091 | -1.705
(52) 0.3096 +0.0043 | — " — | 0.119
(53) Ry 0.403+0.016 | 0.386 | 1.058
(54) 0.384+0.018 |-—" — | -0.115
(55) 0.365+0.016 | 0.381 |-1.031
(56) g —0.040 £ 0.015 | -0.040 |-0.016
(57) 9% —0.507 £ 0.014 | -0.506 |-0.044
(58) |  Qwl(e) | —0.0403 £ 0.0053 | -0.0472 | 1.309
(61) | Qw (133Cs) | —-73.16+£0.35 | -73.15 | -0.032
(62) | Qw (?%TI) | —116.40+3.64 |-116.75 | 0.096
(63) C1 —0.0285 + 0.0043 | -0.0335 | 1.170
(64) Co 0.342+0.063 | 0.3885 | -0.739

Table A.2: Experimental values for the low-energy observables that we employed for
our numerical analysis — see the PDG book [20] for references. The numbers N¢ in
the first column refer to the numeration of the observables in the GAPP code, the
SM values and the corresponding pulls represent our best fit results.
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Appendix B

MS-Bar Mass of the Top Quark

To renormalize a perturbative quantum field theory one introduces counter terins that
absorb the infinities arising bevond the tree-level. These counter terms are, however,
not unambiguously defined. Different renormalization schemes are available each of
which fixes the counter terms in a different way and each of which, hence, entails
different definitions of important quantitics such as masses and coupling strengths.
Common schemes include the on-shell scheme in which the particle masses are set
to their physical values on the mass shell and the modified minimal subtraction (MS)
scheme which absorbs infinite as well as large logarithmic terms in the renormalization
constants. In this study we require the mass of the top quark in both schemes: The
on-shell mass my is one of our 37 observables; sce Subsec. 3.2.1. The MS mass m;
is one of our five fit parameters; see Subsec. 3.3.2. In this appendix we will briefly

outline the relation between these two definitions of the top quark mass.

All loop insertions into the top quark propagator contribute, in principle, to the
mass renormalization of the top quark. In this discussion we will restrict ourselves to
a couple of example loop cffects: We consider diagrams involving a gluon G, a Higgs
boson H, a longitudinal Z boson Z; and a longitudinal W+ boson W 2’ respectively.

The contributions from transverse clectroweak gauge bosons are sub-leading which
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Figure B.1: The four cousidered example diagrams that contribute to the mass renor-
malization of the top quark — the Goldstone bosons ¢ and ¢ substitute the longi-
tudinal electroweak gauge bosons Zp and W’E’ .

is why we neglect them here. By virtue of the Goldstone-boson equivalence theorem
(ET) [34, 35. 36] it is possible to replace the longitudinal gauge bosons Z and WE
by their corresponding unphysical Higgs bosons ¢° and ¢+. The ET only requires
that m¢ > My, Mz which certainly is the case. Fig. B.1 presents the four diagrams
under study.

bare
t

In the on-shell renormalization scheme the bare top mass m is related to the

pole mass m; as follows:

5 6QCD 5 Yuk.
m}mr(" = my (1 + —mi) = my (1 pt e )

mg mg m¢

where 6%‘;1“ subsumes all contributions from the Yukawa couplings of the top quark
to the Higgs bosons H, #Y and ¢1, that is, the contributions from diagrams Ne 2 to
N 4 in Fig. B.1. The dots represent the contributions from all diagrams that we do
not discuss in this appendix. Evaluating diagram N¢ 1 we obtain an expression for

53513/ my:

QCD .
5mt 3ag m2 4

— = Cpl-A+In[--Lt]-2 B.1
me a7 F ( +in (;[2 3 (B-1)
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Here, as stands for the strong coupling constant. At the top mass scale it has a
value of as(m¢) = 0.11 [20]. Cf is a color factor that takes the value Cp = % in
QCD. A = 4T2V — ~vg + In(47) denotes the regulator that appears in dimensional

regularization. vg = 0.577... is the Euler-Mascheroni constant. The mass parameter

i is a measure for the encrgy scale.

Ref. [37] provides us with an expression for 5"Y;t‘k’ /my:

m? M? M3
34 -3 (%) +1-4l (~~§£) +2J (__12{_ +ir| (B.2)

5},{;1(' B g% 7”t2
my 1672 8;\{%—

where

I(§):/ldl‘ln[r2+(l—r)£—ic] ; J(§):/Oldrxlll[x2+(l—x)§—ie]

0

In the on-shell scheme the entire shift d,p, in the top quark mass is absorbed in
the corresponding counter term. The MS scheme includes, by contrast, the finite real
parts of 0m, in the definition of the mass m¢. Only the infinite and logarithmic pieces
are cancelled by the renormalization constant. According to Egs. (B.1) and (B.2) the

difference between my and m; thus amounts to:

3ag 4\ g m? M% M%
= =cp-(-= 1-41 | =2 ) +27 &
T g OF ( 3>+16n28M§, m? i m3 "

To obtain numerical results for Af,z,(tjD and A%‘;k' we employ the following data: The

experimental value for the pole mass, my = 172.40 GeV, the strong coupling at the
top mass scale, ag(m¢) = 0.11, the SM value g ga = 0.63 for gp,, the weighted mean

of the two measurements of the W+ mass, My = 80.40GeV, and the SM best-fit
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value for the Higgs mass, My = 93.24 GeV. We find:

AmeD = —805GeV 5 AV =0.93GeV
The comparison of the SM prediction for the pole mass, my = 172.5 GeV, with
the SM best-fit value for the MS mass, my = 162.8 GeV, shows that the contribution

from the neglected diagrams must add up to roughly ~ —2.6 GeV.
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Appendix C

Bounds on the G(221) Models

In this appendix we present plots for each G(221) model that indicate which regions
in parameter space are consistent with the clectroweak data and to which masses M
and My of the new heavy gauge bosons these viable parameter values correspond.
Subsequently, we show pull distributions for cach model that were calculated for
exemplary points in the forbidden parameter regions. These pull distributions point

onto the observables that are responsible for the respective parameter bounds.

C.1 Parameter and Mass Plots

For the models of the first breaking pattern the parameter plots present the .i:——céS
plane; for the UU-D and the NU-D models the - s b plane is shown. The boundary
between allowed and forbidden parameter values is determined twice for cach model:
With My and m; being fixed at the SM best fit values in the one case and with My
and my being re-fitted in the new physics models in the second case. In the plots for

2

the models of breaking pattern one the information on 533 is color-coded. For each

3 the sg 3 value corresponding to the lowest & is chosen. The dotted lines indicate
L
the bounds on t% that we discussed in Subsec. 3.3.2.
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Figure C.1: Bounds on the new physics parameters and the masses of the new heavy
gauge bosons in the LR-D model.
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Figure C.2: Bounds on the new physics parameters and the masses of the new heavy
gauge bosons in the LP-D model.
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Figure C.3: Bounds on the new physics parameters and the masses of the new heavy
gauge bosons in the HP-D model.
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Figure C.4: Bounds on the new physics parameters and the masses of the new heavy
gauge bosons in the FP-D model.
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Figure C.5: Bounds on the new physics parameters and the masses of the new heavy
gauge bosons in the LR-T model.
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Figure C.6: Bounds on the new physics parameters and the masses of the new heavy
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C.2 Pull Distributions

For each model the pull distribution at a specific point in the excluded part of the
parameter space is shown. The goal in choosing the values of the parameters was to
find parameter configurations in which the respective features of the pull distributions
are clearly visible. The colors of the bars in Fig. C.10 to C.14 indicate the signs of the

pulls: Blue bars stands for positive pulls: negative pulls correspond to orange bars.
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Appendix D

Coupling Coeflicients

D.1 Couplings in .%Z,,,.

D.1.1 Fermion Couplings to the Z Boson
Left-Handed Couplings gf (f)

The left-handed coupling 55 (f) of a fermion f to the Z boson at the electroweak scale
can be written as the sum of the SM coupling ngJ.SM( f) and various model-dependent

new physics corrections that are proportional to %

1

~7 A 1 2 i 1
gz (f) = QL,Sl\,I(f) + 7 N1 + 5823 - No +

1
252 Na+ =54
=55 A3+£S¢> Ny (D.1)

Tabs. D.1 to D.3 list the numerical values of the coefficients Ny, No, N3 and Ny

in Eq. (D.1) for all fermions f and for all considered G(221) models.

Right-Handed Couplings j%(f)

The right-handed coupling g"]}Z?( f) of a fermion f to the Z boson at the eclectroweak

scale can be written as the sum of the SM coupling g]% gp(f) and various model-
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foofsu 0 %5 35 355 Ean
w |l 0.344 | 0.224 | -0.224 | -0.615 | 0.391 | (D.2)
d || -0.422 | -0.112 | 0.112 | 0.0574 | 0.0546 | (D.3)
v || 0.500 0 0 0.500 | -0.500 || (D.4)
e || -0.266 | -0.336 | 0.336 | 1.17 | -0.836 || (D.5)

Table D.1: Left-handed couplings gf (f) of the fermions to the Z boson in the LR-
D, LP-D, HP-D and FP-D model. Sce text and Eq. (D.1) on the previous page for

details.

f gg,sm i i 33 '}ES% %9; Eqn.
w || 0.344 | 0.0560 | -0.112 | -0.154 | 0.0977 || (D.6)
d | -0.422 | -0.0280 | 0.0560 | 0.0144 | 0.0137 || (D.7)
v || 0.500 0 0 0.125 | -0.125 || (D.8)
e || -0.266 | -0.0840 [ 0.168 | 0.293 | -0.209 || (D.9)

Table D.2: Left-handed couplings gf (f) of the fermions to the Z boson in the LR-
T, LP-T, HP-T and FP-T model. See text and Eq. (D.1) on the previous page for

details.

f 9fsm 155 (UUD) 1s% (NU-D) %sé Eqn.
u ] 0.344 0.500 0.500  [-0.276 [ (D.10)
d|-0422| -0.500 -0.500 | 0.388 | (D.11)
v | 0.500 0 0.500 | -0.500 || (D.12)
e | -0.266 0 -0.500 | 0.164 | (D.13)

Table D.3: Left-handed couplings gf (f) of the fermions to the Z boson in the UU-
D and NU-D model. The SM values and the coffecients of the %s% term are the

same in both models. The results for the NU-D model apply to the first two fermion
generations. See text and Eq. (D.1) on the previous page for details.



fogksu i 1503 %Si : st Ean.

u || -0.156 | 0.724 | -0.224 | -1.61 | 0.8391 || (D.15)
d | 0.0779 | -0.612 | 0.112 | 1.06 |-0.445 || (D.16)
vi 0 Jo0300]| 0o |-050]| o | (D.17)
e| 0234 [-0.836| 0.336 | 2.17 | -1.34 || (D.18)

Table D.4: Right-handed couplings gg(f) of the fermions to the Z boson in the LR-D
model. See text and Eq. (D.14) on the current page for details.

fogksw 1 Esdy 3t it Ea

w [ 0.156 | 0.721 | -0.224 | -1.61 | 0.891 | (D.19)
d | 0.0779 | -0.612 | 0.112 | 1.06 | -0.445 || (D.20)
v 0 0 0 0 0 (D.21)
e | 0.234 |-0.336 | 0.336 | 1.67 | -1.34 | (D.22)

Table D.5: Right-handed couplings gg( f) of the fermions to the Z boson in the LP-D
model. See text and Eq. (D.14) on the current page for details.

dependent new physics corrections that are proportional to %

i

(f) = gk sa(f) +

- N1+

8| =

(D.14)

Tabs. D.4 to D.12 list the numerical values of the cocflicients N, No, N3 and Ny

in Eq. (D.14) for all fermions f and for all considered G(221) models.




[ 9ksu i i 53,; %53’, 3155:; Eqn

u || -0.156 | 0.224 | -0.224 | -1.11 | 0.891 || (D.23)
d || 0.0779 | -0.112 | 0.112 | 0.557 | -0.445 || (D.24)
v 0] 0.500 0 -0.500 0 (D.25)
e | 0234 |-0.836 | 0.336 | 2.17 | -1.34 || (D.26)

Table D.6: Right-handed couplings (}}Z?( f) of the fermions to the Z boson in the HP-D
model. See text and Eq. (D.14) on the previous page for details.

f gﬁ,’sl\l % %533 %s; %s; Eqn

u || -0.156 | 0.224 | -0.224 | -1.11 | 0.891 | (D.27)
d | 0.0779 | -0.112 | 0.112 | 0.557 | -0.445 || (D.28)
v 0 0 0 0 0 (D.29)
e | 0.234 |-0.336 | 0.336 | 1.67 | -1.34 || (D.30)

Table D.7: Right-handed couplings gg( f) of the fermions to the Z boson in the FP-D
model. See text and Eq. (D.14) on the previous page for details.

f g}Z?’SM % %sg 3 %si %sé Eqn.

u || -0.156 | 0.181 | -0.112 | -0.404 | 0.223 || (D.31)
d || 0.0779 | -0.153 | 0.0560 | 0.264 | -0.111 || (D.32)
v 0 0.125 0 -0.125 0 (D.33)
e | 0.234 |-0.209 | 0.168 | 0.543 | -0.334 || (D.34)

Table D.8: Right-handed couplings §]Z_-L,( f) of the fermions to the Z boson in the LR-T
model. See text and Eq. (D.14) on the previous page for details.

[ ogksm i 355 %5 355 Ba

u || -0.156 | 0.181 | -0.112 | -0.404 | 0.223 | (D.35)
d (| 0.0779 | -0.153 | 0.0560 | 0.264 | -0.111 || (D.36)
vl o 0 0 0 0 | (D.37)
e | 0.234 | -0.0840 | 0.168 | 0.418 | -0.334 | (D.38)

Table D.9: Right-handed couplings Q}Z-{( f) of the fermions to the Z boson in the LP-T
model. See text and Eq. (D.14) on the previous page for details.



gf?,sm % %3;3 a‘lr‘“i
-0.156 | 0.0560 | -0.112 | -0.279 | 0.223 | (D.39)
0.0779 | -0.0280 | 0.0560 | 0.139 | -0.111 || (D.40)

0 0.125 0 [-0125| 0 | (D41)
0.234 | -0.209 | 0.168 | 0.543 | -0.334 | (D.42)

o T AR -

Table D.10: Right-handed couplings g}%( f) of the fermions to the Z boson in the
HP-T model. See text and Eq. (D.14) on page 155 for details.

s b i 1 L Ea
u || -0.156 | 0.0560 | -0.112 | -0.279 | 0.223 | (D.43)
d || 0.0779 | -0.0280 | 0.0560 | 0.139 | -0.111 || (D.44)
vil 0 0 0 0 0 | (D.45)
el 0.234 | -0.0840 | 0.168 | 0.418 | -0.334 || (D.46)

Table D.11: Right-handed couplings 57122( f) of the fermions to the Z boson in the
FP-T model. See text and Eq. (D.14) on page 155 for details.

f 9gsm 51232; Eqn

u || -0.156 | 0.224 | (D.47)
d | 0.0779 | -0.112 | (D.48)
v 0 0 (D.49)
e | 0.234 |-0.336 | (D.50)

Table D.12: Right-handed couplings gg( f) of the fermions to the Z boson in the UU-
D and NU-D model. The results for the NU-D model apply to the first two fermion
generations. See text and Eq. (D.14) on page 155 for details.

157



D.1.2 Couplings of the New Physics Currents
Couplings of the Neutral Fermion Currents

The coupling coefficients C;\{L,C ( [l fo, j) of the ncutral current four-fermion interac-
tions in the effective Lagrangian at the electrowcak scale are defined such that the

Lagrangian #NC = 1 MI2K 0K 04 takes the following form:
ew. 2M 5 B g

Gp
V2

NC _
ipew. ===

NC 3 7 i
Z ZCew. (f1,4 f2.5) (flfl)i,“(f2f2);1 ;6,.J=L,R
f1.fe 4
They can be written as the suin of various model-dependent new physics correc-
tions that are proportional to %
NC
Cew. (f1,4: f2,5) =

1
- N1 + - No + %Sé - N3 (D.51)

=] =

Absolute terms that arc independent of  do not appear in CEWQ ( fi: f2,j) since
the four-fermion interactions in %y, represent a pure effect of the new physics in the
G(221) models. Tabs. D.13 to D.22 list the numerical values of the coefficients Ny, No
and N3 in Eq. (D.51) for all possible fermion pairs ( f1i fg,j) and for all considered
G(221) models.
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Couplings of the Charged Fermion Currents

The coupling cocfficients C| gf; ( f14- f3, j) of the charged cwrrent four-fermion inter-
actions in the effective Lagrangian at the electroweak scale are defined such that the

Lagrangian .%%C = - ‘_;2,]( If K7# takes the following form:

G = = . ..
L= \/g Z chf (f1,i f3.5) (f1f2),:,l,(f3f4)f ;.J=L,R
fluf3 11.7

They can be written as the sum of various model-dependent new physics correc-

K|~

tions that are proportional to

1
- N1 + 55 - N3 (D.412)

8] ==

CSe (frifa4) =

Absolute terins that are independent of £ do not appear in ng? ( s f3,j) since
the four-fermion interactions in %%y represent a pure effect of the new physics in
the G(221) models. Tabs. D.23 to D.26 list the numerical values of the coefficients
Ni, Nz and N3 in Eq. (D.412) for all possible fermion pairs (f ;, f3,j) and for all
considered G(221) models. The couplings in the models of the first breaking pattern
have a very simple form which allows us to combine our results for the (BP-I,D) and

the (BP-I,T) models in one table each.
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(flfl)L,R (fzfz)L,R i %Si 5 Eqn
(4u) (au), 0 0 [0.0556 |[ (D.52)
(wu) (au) g 0 |-0.167 | 0.222 || (D.53)
(au) ) (dd) 0 0 |0.0556 || (D.54)
(au) (dd) g 0 | 0.167 | -0.111 || (D.55)
(wu) (ov) 0 0 |-0.167 | (D.56)
(wu) () p 0 |-0167| O (D.57)
(uu) ée); 0 0 |-0.167 || (D.58)
(au); (ee) g 0 | 0.167 | -0.333 || (D.59)
(ﬂug R (au)p |l 0500 | -1.33 | 0.889 | (D.60)
(7u) (dd) 0 |[-0.167| 0.222 | (D.61)
(uu) g (dd)p || -0.500 | 1.00 | -0.444 || (D.62)
(uu) g (o) 0 | 0.500 | -0.667 || (D.63)
(au) (ov)p | 0.500 | -0.667 | 0 (D.64)
(wu) (ee) 0 | 0.500 | -0.667 || (D.65)
(4u) g (ee)p | -0.500 | 1.67 | -1.33 | (D.66)
(dd) (dd) 0 0 |0.0556 || (D.67)
(dd) (dd) g 0 | 0.167 | -0.111 | (D.68)

id) (o) 0 0 |-0.167 || (D.69)
dd) () g 0 |-0167| O (D.70)
(dd) (ee) 0 0 |-0.167 || (D.71)
(dd) (ee) p 0 |0.167 | -0.333 || (D.72)
(dd) g (dd)p || 0.500 | -0.667 | 0.222 || (D.73)
(dd) g (v) 0 |-0.500 | 0.333 | (D.74)
(dd) g (ww)p || -0.500| 0.333 | 0 (D.75)
(dd) p (ee) 0 |-0.500| 0.333 | (D.76)
(dd) g (ee)p | 0.500 | -1.33 | 0.667 || (D.77)
(DU)L (I7V)L 0 0 0.500 || (D.78)
() () g 0 |0500 | 0 | (D.79)
() (ee) 0 0 | 0.500 || (D.80)
(v); (ee) p 0 |-0.500| 1.00 | (D.81)
(7v) g (ov)p | 0500 | 0 0 | (D.82)
() g (ee) 0 [0500| 0 | (D.83)
() g (ée)p | -0-500 | 1.00 0 | (D.84)
(ee) (ee) 0 0 | 0.500 || (D.85)
(ée)L (ée)R 0 -0.500 | 1.00 | (D.86)
(ee) p (ée)p || 0.500 | -2.00 | 2.00 | (D.87)

Table D.13: Couplings C’gf ( fi,is fg,j) of the ncutral fermion currents at the elcc-
troweak scale in the LR-D model. See text and Eq. (D.51) on page 158 for details.
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(WA)pr (RR2)pr 3 %si 51'323 Eqn.
(au) (au) 0 0 |0.0556 || (D.88)
(uu; L (au) g 0 |-0.167 | 0.222 || (D.89)
(uu) (dd), 0 0 |0.0556 || (D.90)
(au) (dd) p 0 | 0167 |-0.111 | (D.91)
(m% L (ov) 0 0 |-0.167 | (D.92)
(@u L (—I/)R 0 0 0 (D.93)
(au), (ee), 0 0 |-0.167 | (D.94)
() (€e) g 0 0 |-0.333 || (D.95)
E—u) R (du)p || 0.500 | -1.33 | 0.889 | (D.96)
i) p (&d; L 0 |[-0.167| 0.222 | (D.97)
(uu) (dd)p || -0.500 | 1.00 | -0.444 || (D.98)
(uu) g (o) 0 | 0.500 | -0.667 | (D.99)
E"u; R (ov) g 0 0 0 | (D.100)
) g (ee) 0 0.500 | -0.667 || (D.101)
(au) g (ee) p 0 1.00 | -1.33 | (D.102)
(dd), (dd) 0 0 |0.0556 || (D.103)
(dd) (dd) p 0 | 0.167 | -0.111 || (D.104)
(dd) () 0 0 |-0.167 | (D.105)
(dd) () g 0 0 0 || (D.106)
(dd) (ee), 0 0 |-0.167 | (D.107)
(dd), (ee) g 0 0 |-0.333 || (D.108)
(dd) g (dd)p | 0.500 | -0.667 | 0.222 || (D.109)
(dd) p () 0 |-0.500 | 0.333 || (D.110)
(dd) p (v) g 0 0 0 (D.111)
(dd) p (ee) 0 |-0.500| 0.333 | (D.112)
(dd) (ee) p 0 |-1.00 | 0.667 || (D.113)
(-u; I (ov) 0 0 | 0.500 | (D.114)
(ov); (ov) g 0 0 0 (D.115)
(ov) (ee) 0 0 | 0.500 || (D.116)
(v); (ee) p 0 0 1.00 | (D.117)
E“UgR (DV)R 0 0 0 (D.118)
) p (ee) 0 0 0 | (D.119)
() p (ee) p 0 0 0 (D.120)
(ee) (ee) 0 0 | 0.500 || (D.121)
(ee) (€e) g 0 0 1.00 | (D.122)
(ee) p (€e) p 0 0 2.00 | (D.123)

Table D.14: Couplings ng ( f1,4s fz,j) of the neutral fermion currents at the elec-
troweak scale in the LP-D model. See text and Eq. (D.51) on page 158 for details.
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(flfl)L,R (f2f2)L’R 315 %Sé LS% Eqn.
(au), (au) 0 0 ]0.0556 ] (D.124)
(au)p | (au)p 0 0 | 022 | (D.125)
(au) (dd) 0 0 |0.0556 || (D.126)
(au) (dd) p 0 0 |-0.111 || (D.127)
(au), | (o) 0 0 | -0.167 | (D.128)
(@), | (w)g 0 |-0167| 0 | (D.129)
(aw)y | (ee)p 0 0 |-0.167 | (D.130)
(au) (ee) p 0 | 0.167 | -0.333 || (D.131)

i) (au) 5 0 0 | 0889 | (D.132)
é'ﬂ) r | (dd) 0 0 | 0222 | (D.133)
(au) (dd) p 0 0 |-0.444 | (D.134)
(aw)p | (o) 0 0 |-0.667 | (D.135)
(aw)p | (w)g 0 |-0667| 0 | (D.136)
(‘ug R (ee) 0 0 |-0.667 | (D.137)
(au) g (ee) g 0 | 0667 | -1.33 || (D.138)
(dd) (dd) 0 0 |0.0556 | (D.139)
(dd) (dd) g 0 0 |-0.111 || (D.140)

id) | (ov) 0 0 |-0.167 || (D.141)
E id) . (7v) g 0 |-0167| o0 | (D.142)
(dd) (ee);, 0 0 |-0.167 | (D.143)
(dd) (ee) g 0 | 0.167 | -0.333 || (D.144)
(dd)p | (dd)p 0 0 | 0222 | (D.145)
(dd) p (ov) 0 0 | 0.333 || (D.146)
(dd) (7v) g 0 |0333| o0 | (D.147)
(dd) (ge) 0 0 | 0333 | (D.148)
(dd) (ee) g 0 |-0.333| 0.667 | (D.149)
(ov) (ov), 0 0 | 0.500 || (D.150)
(”Vg . | ()R 0 |0500| 0 | (D.151)
(7v) (ee) 0 0 | 0500 || (D.152)
(o) (¢e) 0 |-0500| 1.00 | (D.153)
g‘vg R (7v)p || 0500 | © 0 || (D.154)

V) g (ee) 0 |0500 | 0 | (D.155)
() g (ée)p || -0.500 | 1.00 0 || (D.156)
(ee) (ee)p, 0 0 | 0500 | (D.157)
(ee), (ee) 0 |-0.500| 1.00 | (D.158)
(ée) p (¢)p | 0500 | -2.00 | 2.00 | (D.159)

Table D.15: Couplings CY ( f1,i, fa,j) of the neutral fermion currents at the elec-
troweak scale in the HP-D model. See text and Eq. (D.51) on page 158 for details.
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(W)pr (RR)Le i 355 353 Em
(au) (uu), 0T 0 [0.0556 | (D.160)
(au), (aw)p ||0O| 0 | 0.222 | (D.161)
(au), (dd), 0| 0 |0.0556 | (D.162)
(u), (dd)p | 0| 0 [-0.111 || (D.163)
(uw) () | O 0 [-0.167 || (D.164)
(uw), (7v)p O] O 0 (D.165)
() (ee), IO | 0 |-0.167 || (D.166)
(@), (ee)p [0 0 |-0.333 | (D.167)
(au) p (au)p |10 0 | 0.889 | (D.168)
(au) (dd), 0| o | 0222 | (D.169)
(@) p (dd)p O] 0 |-0.444 | (D.170)
() (7v), [ O] 0 |-0.667 | (D.171)
(au) (7)p O] 0O 0 | (D172)
(au) (ee), [[0] 0 |-0.667 | (D.173)
(au) (ee)p 0] 0 | -1.33 | (D.174)
(dd) (dd), [ 0| 0 |0.0556 | (D.175)
(dd) (dd)p | O] 0 [-0.111 | (D.176)
(dd) (7v), | O] 0 [-0167 | (D.177)
(dd) (v)p (O] O 0 | (D.178)
(dd) (ee);, | 0] 0 [-0167 | (D.179)
(dd), (ee)p 0| 0 |-0.333 | (D.180)
(dd) (dd)p [ O| 0 | 0222 || (D.181)
(dd) (7v)p | 0| 0 | 0333 | (D.182)
(dd) () O] O 0 | (D.183)
(dd) (ee), |lO| 0 | 0333 || (D.184)
(dd) (ee)p 0| 0 | 0.667 || (D.185)
(), (7v), 0| 0 | 0500 |(D.186)
()L, (m)g O] 0 0 | (D.187)
() (ee), 0| 0 | 0500 | (D.188)
(), (ee)p 0] 0 | 100 | (D.189)
() g (7w)g O] 0 0 | (D.190)
(7v) 5 (ee), 0] 0 0 || (D.191)
(7v) 5 (ee)p O] 0 0 | (D.192)
(ee), (ee), || 0] 0 | 0500 | (D.193)
(ee) . (ee)p [[0] 0 | 100 | (D.194)
(ee) g (ee)p [|0] 0 | 200 | (D.195)

Table D.16: Couplings 05,,,‘? (f1,i- fg’j) of the neutral fermion currents at the elec-
troweak scale in the FP-D model. See text and Eq. (D.51) on page 158 for details.
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(hh)e (RR)c & 355 s Em
(au); | (aw), 0 0 ]0.0139 | (D.196)
(au), | (au)p 0 |-0.0417 | 0.0556 | (D.197)
(au), | (dd), 0 0 0.0139 | (D.198)
(au) é')R 0 | 0.0417 | -0.0278 || (D.199)
(au); | (ov), 0 0 |-0.0417 || (D.200)
(au); | (v)p 0 |-00417| O (D.201)
(wu); | (ee); 0 0 |-0.0417 | (D.202)
(@u); | (ee)p 0 | 0.0417 | -0.0833 || (D.203)
(-ug r | (@) [ 0125 | -0.333 | 0.222 | (D.204)
(tu)p | (dd), 0 |[-0.0417 | 0.0556 | (D.205)
(u)p | (dd)g | -0.125| 0.250 | -0.111 || (D.206)
(au)p | (ov) 0 | 0125 | -0.167 | (D.207)
é'u; g | (@) || 0.125 | -0.167 0 (D.208)
iu)p | (ee), 0 0.125 | -0.167 | (D.209)
(au)p | (€e)p |[-0.125| 0.417 | -0.333 || (D.210)
(dd); | (dd) 0 0 | 00139 || (D.211)
dd); | (dd)p 0 | 0.0417 | -0.0278 | (D.212)
d); | (), 0 0 |-0.0417 | (D.213)
id), | (ov)p 0 |-0.0417| 0 (D.214)
g id), | (ee), 0 0 |-0.0417 || (D.215)
id), | (ée)p 0 | 0.0417 | -0.0833 || (D.216)
( 'dg R é id)p || 0.125 | -0.167 | 0.0556 || (D.217)
(dd)g | (7v), 0 |-0.125 | 0.0833 | (D.218)
(dd)p | (ov)p | -0.125 | 0.0833 0 (D.219)
( ‘d; r | (e); 0 | -0.125 | 0.0833 | (D.220)
(dd)p | (ee)g || 0125 | -0.333 | 0.167 | (D.221)
w% L | () 0 0 0.125 || (D.222)
) | (v)g 0 0.125 0 (D.223)
), | (ee), 0 0 0.125 | (D.224)
(v) | (ee)p 0 | -0.125 | 0.250 | (D.225)
g-u; g | (g 0125 0 0 (D.226)
w)p | (ee) 0 0.125 0 (D.227)
(7)g | (ee)p | -0.125| 0.250 0 (D.228)
(ee); | (ee), 0 0 0.125 | (D.229)
(ee); | (ee)p 0 | -0.125 | 0.250 || (D.230)
(ee)p | (ee)p | 0.125 | -0.500 | 0.500 | (D.231)

Table D.17: Couplings CNS (f14. fo, ;) of the neutral fermion currents at the elec-
troweak scale in the LR-T model. See text and Eq. (D.51) on page 158 for details.
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(1h)e (Rf)e 3 %8; %3:; Eqn
(wu), | (aw), 0 0 ]0.0139 [ (D.232)
(au); | (au)p 0 |-0.0417 | 0.0556 | (D.233)
(au)p | (dd) 0 0 | 0.0139 || (D.234)
(au); | (dd)p 0 | 0.0417 | -0.0278 | (D.235)
(au), | () 0 0 |-0.0417 || (D.236)
(au), | ()p 0 0 0 (D.237)
(wu); | (ee), 0 0 |-0.0417 | (D.238)
(au), | (ee)p 0 0 |-0.0833 | (D.239)
ﬁug r | (@)p | 0125 | -0.333 | 0.222 || (D.240)

au)p | (dd), 0 |-0.0417 | 0.0556 | (D.241)
(tu)p | (dd)g | -0.125| 0.250 | -0.111 | (D.242)
(ﬂug r | (), 0 | 0.125 | -0.167 | (D.243)
(wu)p | (Pv)g 0 0 0 (D.244)
(u)p | (ee)g 0 0.125 | -0.167 | (D.245)
(wu)p | (ee)p 0 0.250 | -0.333 | (D.246)
(dd); | (dd) 0 0 | 0.0139 | (D.247)
(dd); | (dd)p 0 | 0.0417 | -0.0278 || (D.248)
(dd); | (wv), 0 0 |-0.0417 || (D.249)
(dd); | (ov)g 0 0 0 (D.250)
(dd); | (ee) 0 0 |-0.0417 || (D.251)
(dd); | (ee)p 0 0 |-0.0833 || (D.252)
é‘d g | (dd)p | 0.125 | -0.167 | 0.0556 || (D.253)

id)p | (w); 0 | -0.125 | 0.0833 || (D.254)
(dd)p | (w)g || O 0 0 | (D.255)
(dd)p | (ee), 0 | -0.125 | 0.0833 | (D.256)
(dd)p | (ee)p 0 | -0.250 | 0.167 || (D.257)
(“u% I (Du; I 0 0 0.125 | (D.258)
(o), | (v)g 0 0 0 (D.259)
é'u) . | (ee) 0 0 0.125 | (D.260)
w); | (€e)p 0 0 0.250 | (D.261)
g‘u;R () g 0 0 0 (D.262)
w)p | (ee) 0 0 0 | (D.263)
(w)g | (ee)p 0 0 0 | (D.264)
(ee); | (ee), 0 0 0.125 | (D.265)
(ee); | (ee)p 0 0 0.250 || (D.266)
(ee)p | (ee)p 0 0 0.500 | (D.267)

Table D.18: Couplings Cywq ( i f2,j.) of the neutral fermion currents at the elec-
troweak scale in the LP-T model. See text and Eq. (D.51) on page 158 for details.



(flfl)c (f2f2)c % %S; 535 Eqn.
(@), [ (@), [ O 0 | 00139 | (D.268)
(au), | (au)p | O 0 | 0.0556 || (D.269)
(@u), | (dd); | © 0 | 00139 || (D.270)
(au), | (dd)p | © 0 |-0.0278 | (D.271)
(au) 517”) L 0 0 -0.0417 || (D.272)
(@u); | (v)p 0 |-00417| © (D.273)
(au); | (ee) 0 0 |-0.0417 || (D.274)
(au); | (ee)p 0 | 0.0417 |-0.0833 || (D.275)
(tu)p | (au)p 0 0 0.222 || (D.276)
(au)p | (dd), | © 0 | 00556 | (D.277)
(au)gp | (dd)g | O 0 | -0.111 || (D.278)
(@w)p | (v)p | O 0 | -0.167 || (D.279)
(a)p | (W) | 0 | 0167 | 0 | (D.280)
(‘ugn (ee), | © 0 | -0.167 || (D.281)
(uu)p | (ee)p 0 0.167 | -0.333 | (D.282)
(dd); | (dd)p | © 0 | 00139 || (D.283)
(dd), | (dd)p | O 0 |-0.0278 | (D.284)
(dd), | (), | O 0 |-0.0417 || (D.285)
( _dgL () | 0 |-00417] 0 | (D.286)
(dd), | (ee)p | © 0 |-0.0417 || (D.287)
(dd), | (ee)m | © | 00417 |-0.0833 | (D.288)
(dd)p | (dd)p || © 0 | 0.0556 || (D.289)
( "dg r | (), 0 0 | 0.0833 | (D.290)
(dd)p | (7v)p 0 |00833| 0 | (D291)
(dd)p | (&) 0 0 | 0.0833 || (D.292)
(dd)p | (ee)p 0 |-0.0833| 0.167 || (D.293)
%Dug .| (), 0 0 0.125 || (D.294)
), | (v)g 0 0.125 0 (D.295)
(v); | (ee) 0 0 0.125 | (D.296)
(v)p | (ee)p 0 -0.125 | 0.250 || (D.297)
(mw)g | (ov)g | 0125 0 0 (D.298)
("ngz (@), | o |o0125 | 0 | (D299)
(7v)p | (ee)p | -0.125| 0.250 0 (D.300)
(ee), | (ee); 0 0 0.125 | (D.301)
(ee); | (e€)p 0 | -0.125 | 0250 | (D.302)
(ee)p | (ee)p | 0.125 | -0.500 | 0.500 | (D.303)

Table D.19: Couplings ng ( f1,is f2,j) of the neutral fermion currents at the elec-
troweak scale in the HP-T model. See text and Eq. (D.51) on page 158 for details.
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(Ah)e (Rh)e % %sﬁ %S:-) Eqn.
(au), [ (w), [O] 0 [0.0139 | (D.304)
(au)p | (au)p [ 0| 0 |0.0556 | (D.305)
(au), | (dd), 0] 0 | 00139 | (D.306)
(aw)y | (dd)p [ 0] 0 |-0.0278 || (D.307)
(au), | (wv), [ O] 0 [-0.0417 || (D.308)
(w)y | (7w)g O] O 0 (D.309)
(au), | (ee), | 0| 0 [-0.0417 || (D.310)
(aw), | (ee)p |[O] O |-0.0833 | (D.311)
(wu)p | (au)p O] 0 | 0222 | (D.312)
(au)p | (dd), [ 0| 0 |00556 | (D.313)
(au)p | (dd)p || 0| 0 | -0.111 | (D.314)
(au)p | (7v), ||O| 0 | -0.167 || (D.315)
(au)p | (7)g ||O] O 0 (D.316)
(au)p | (ee)y [0 0 |-0167 || (D.317)
(au)p | (ee)p [ 0| 0 | -0.333 | (D.318)
(dd), | (dd), ||0| 0 | 00139 | (D.319)
(dd); | (dd)p | 0| 0 |-0.0278 | (D.320)
(dd), | (wv)p || O| 0 |-0.0417 || (D.321)
(dd); | (7v)p [ O] O 0 (D.322)
(dd);, | (ee)p || 0| 0 |-0.0417 || (D.323)
(dd), | (ee)p || O| 0 |-0.0833 | (D.324)
(dd)p | (dd)p [ 0| O | 0.0556 | (D.325)
(dd)g | (7v), [ 0| 0 | 0.0833 | (D.326)
(dd)g | (7v)g | O] 0O 0 (D.327)
(dd)p | (ee), [ 0| 0 | 00833 | (D.328)
(dd)p | (ee)p [ O] 0 | 0.167 | (D.329)
(7v)p | (#v)p | O] 0 | 0125 | (D.330)
(7v)p | (w)g [ O] O 0 (D.331)
(7v)p | (ee)p 0] 0 | 0125 | (D.332)
(), | (ee)p [ O] 0 | 0.250 | (D.333)
(m)g | (m)g [0 O 0 (D.334)
(7)g | (ee)p [ 0] O 0 (D.335)
(7)g | (e)gp [0 O 0 (D.336)
(ee); | (ee)p [0 0 | 0.125 | (D.337)
(ee), | (ee)g [ O| 0 | 0.250 | (D.338)
(ee)p | (ee)p [0 ] 0 | 0.500 | (D.339)

Table D.20: Couplings Cg,vu? ( fris fgy]') of the neutral fermion currents at the elec-
troweak scale in the FP-T model. See text and Eq. (D.51) on page 158 for details.
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Table D.21: Couplings Cyw(? (A i fz’j) of the neutral fermion currents at the elec-

troweak scale in the UU-D model. See text and Eq. (D.51) on page 158 for details.
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(flfl)L,R ( 2f2)L,R % %S% %S:; Eqn.
(uu) (@u), | 3 | -1 3 | (D.376)
(), (u)p || 0| 0 | O | (D.377)
(au), (dd), |-4| 1 | -4 (D.378)
(au) (dd) g 0| 0| 0 | (D379
(au), (v), | & | -1 5 | (D.380)
(au) (7v) g 0| 0 | 0 | (D.381)
(au) (ee) —% 1 ——% (D.382)
(), (ee) p 0| 0 | 0 | (D383)
(au) g (au)p | O | O | O | (D.384)
(au) (dd) 0| 0 | 0 | (D.385)
(au) (dd)p Il O | 0 | O | (D.386)
(au) (v)[ 0| 0| 0 |(D387)
(au) g () g 0| 0 | 0 | (D.388)
(@) g (ee), 0| 0| 0 |(D.389)
(au) g (€e) g 0| 0| 0 | (D.390)
(dd), (dd), | & |-1| & |l (D.391)
(dd), (dd) g 0| 0 | 0 [(D392)
(dd) (ov), | -3] 1 | -3 | (D.393)
(dd) (v)g Il 0| 0 | 0 | (D.394)
(dd) (ee); S 1-1] % | (D.395)
(dd) (€e) g 0| 0 | 0 |(D.39)
(dd) (dd)p | O | O | 0 | (D.397)
(dd) p (ov) 0| 0 | 0 | (D.398)
(dd) (7v) g 0| 0 | 0 | (D.399)
(dd) (ee) 0| 0 | 0 | (D.400)
(dd) (ee)p | 0 | 0 | O | (D.401)
() | (w)y | 3| -1] 3 | (D02
(), () g 0| 0 | 0 | (D.403)
(ov), (ge), | —-3| 1 | -3 | (D.404)
(7v), (ee) & 0| 0 | 0 | (D.405)
(v) g (v) g 0| 0 | 0 | (D.406)
(7v) g (ee) 0| 0| 0 [ (D407)
(7v) g (ee) g 0| 0| 0 | (D.408)
(ee), (ee), 31 -1] % | (D.409)
(ee) (ee) g 0| 0 | 0 |(D410)
(ee) p (ee) p 0| 0| 0 ||(D411)

Table D.22: Couplings Cyw(? ( fi4 fo, j) of the neutral fermion currents (first two gen-
erations) at the electroweak scale in the NU-D model. See text and Eq. (D.51) on
page 158 for details.
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(fif2)c (fsfs)e i (LR-D) 3 (LP-D) ; (HP-D) 1 (FP-D) Ean.
(ad); | (du), 0 0 0 0 (D.413)
(ud);, | (du)p 0 0 0 0 (D.414)
(ad); | (ev), 0 0 0 0 (D.415)
(ud) (éu; R 0 0 0 0 (D.416)
(aud)p | (du)p 1 1 0 0 (D.417)
(ad)p | (ev)g 0 0 0 0 (D.418)
(ad)p | (ev)p 1 0 0 0 (D.419)
(ve)p | (ev) 0 0 0 0 (D.420)
(Deg L | (ev)g 0 0 0 0 (D.421)
(ve)p | (ev)p 1 0 1 0 (D.422)

Table D.23: Couplings Cg’f.; ( [, fg,j) of the charged fermion currents at the elec-

troweak scale in the LR-D, LP-D, HP-D and FP-D model. See text and Eq. (D.412)
on page 159 for details.

D.2 Couplings in %

D.2.1 Couplings of the Neutral Fermion Currents

The effective Lagrangian .%’ Af * that takes care of the neutral current four-fermion

interactions below the electroweak scale is given as:

20M?% SM?3
L =— |00k —L2 RO 2200w 1,, KK+
2M2 MZ, M%,MZ 2M?,

The coupling cocfficients C}l\lfc ( fi,is fg’j) are defined such that .i” Af takes the

following form:

#e=- 75 2 20 (i day) ()i, (Rh)f  id=LR

fl,f2 7”]

We can write CffC ( fris fo, ]-) as the sum of the SM coupling C‘I;If(,:SI\-I ( f1,4 fo, ]-) and
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(fife)e (fsfs)¢ % (LR-T) 1 (LP-T) i (HP-T) % (FP-T) Eqn.

(ad); | (du), 0 0 0 0 (D.423)
(ud); | (du)p 0 0 0 0 (D.424)
(ad); | (ev), 0 0 0 0 (D.425)
(ad), | (ev)g 0 0 0 0 (D.426)
(ad)p | (du)p 3 3 0 0 (D.427)
(ud)p | (ev), 0 0 0 0 (D.428)
(ad)p | (ev)p : 0 0 0 (D.429)
(ve); | (ev), 0 0 0 0 (D.430)
(ve); | (ev)g 0 0 0 0 (D.431)
(ve)p | (&v)p 3 0 : 0 (D.432)

Table D.24: Couplings CSS ( f1 4, f3,j) of the charged fermion currents at the elec-
troweak scale in the LR-T. LP-T, HP-T and FP-T model. See text and Eq. (D.412)
on page 159 for details.

(hf2)e (Fsfd)c & 355 355 Ean
(ad), | (du), 1] -2 ] 1 J(D.433)
Ead) L | (dug 0] 0 | 0 | (D434)
ad); | (ev), ||0]| -1 | 1 || (D.435)
(ad); | (ev)gp |IO| O | O | (D.436)
(@d)p | (du)p (O] O | O | (D.437)
Eﬁd; g | (&), 0] 0 | 0 | (D438)
ad)p | (ev)p 1O O | O | (D.439)
(ve)y | (ev)p [ O] O | 1 | (D.440)
(ve); | (ev)g [ O] 0 | 0 | (D.441)
(ve)p | (ev)p | 0] 0 | 0 | (D.442)

Table D.25: Couplings ng ( f1.4 f3,j) of the charged fermion currents at the elec-
troweak scale in the UU-D model. See text and Eq. (D.412) on page 159 for details.
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(hf2)e (Bsfde & 3% 3s; Ea
(ad), | (du), TI] -2 ] 1 [ (D.443)
(ad), | (du)p [[O| O | O | (D.444)
(ud); | (ev)p [[1| -2 | 1 | (D.445)
(ud), | (ev)p O] O | O | (D.446)
(ud)p | (du)p (O] O | O | (D.447)
(ud)p | (ev), 0| O | O | (D.448)
(ud)p | (ev)p | O] O | O | (D.449)
(ve), | (ev)p [I1| -2 | 1 | (D.450)
(ve)y | (ev)g IIO| O | O | (D.451)
(ve)p | (ev)p |O] O | 0 | (D.452)

Table D.26: Couplings CSS (f14, f3,;) of the charged fermion currents (first two
generations) at the electroweak scale in the NU-D model. See text and Eq. (D.412)
on page 159 for details.

various modecl-dependent new physics corrections that are proportional to %

C'gcc (fri foj) = CFf(,:SM (Fri- f25)

1 1
+ j']V1+
T

1
1q
7528

Ny + =s L. Ny (D.453)
T o)

2 v L
o Vst 3

Tabs. D.27 to D.36 list the numerical values of the coefficients Ny, No, N3 and N4
in Eq. (D.453) for all possible fermion pairs (f1 ;. f2,j) and for all considered G(221)

models.
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D.2.2 Couplings of the Charged Fermion Currents

The effective Lagrangian % f " that takes care of the charged current four-fermion

interactions below the clectroweak scale is given as:

572 sM4
.‘Zf}c=—~} s uw’(]+K N K+u)+~“W'JjJ H
A[‘%V A[al A[2 M2
- KjK™H
M”,

The coupling coefficients C’EF ( f14: f;;,j) are defined such that .9,’ of takes the

following form:

G
ZF = \/"ifz; S CSF (frif3g) (Mifa); ,(Bafe)y éi=L.R
1.3 &J

We can write CEfC (f1,i- f3.7) as the sum of the SM coupling CclchSM (f1,i- f3,7) and

various model-dependent new physics corrections that are proportional to %

CffC (frif35) = C‘ffsM (f1,0- f3.5)

1

+ F Ny + % - Ny (D.814)

Tabs. D.37 to D.45 list the nuincrical values of the cocflicients Ny, No, N3 and Ny
in Eq. (D.814) for all possible fermion pairs (f) ;, f3 ;) and for all considered G(221)

models.
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(if)e (f)e Cifsm % %sgﬁ %32 3153;1 Eqn.
(au), | (@u), | 0237 ] 0.546 | -0.546 | -1.32 | 0.831 [ (D.454)
(tu), | (au)p | -0.107 | 0.321 | 0.0228 | -0.872 | 0.607 || (D.455)
(au)p | (dd), || -0.291 | -0.557 | 0.557 | 1.14 | -0.527 || (D.456)
("u; . | (dd)g || 0.0536 | -0.333 | -0.0114 | 0.692 | -0.303 || (D.457)
(aw), | (pv)p | 0.344 | 0.568 | -0.568 |-0.959 | 0.224 || (D.458)
(wu); | (v)p 0 0.344 0 |-0511| O (D.459)
(uu); | (ee)p | -0.183 | -0.534 | 0.534 | 1.50 | -1.13 | (D.460)
(au), | (ee)p | 0.161 |-0.310 | -0.0342 | 1.05 | -0.910 || (D.461)
(au; r | (@u)p || 0.0485 | 0.0974 | 0.0911 | -0.424 | 0.382 | (D.462)
(wu)p | (dd)p | 0.132 | -0.445 | 0.0228 | 0.916 | -0.415 || (D.463)
(@u)p | (dd)p | -0.0243 | -0.221 | -0.0455 | 0.468 | -0.191 | (D.464)
(au)p | (#v), | -0.156 | 0.568 | -0.0683 |-0.959 | 0.224 || (D.465)
(wu)p | (v)p 0 0.344 0 |-0511| 0 | (D.466)
(uu)p | (ee)p | 0.0830 | -0.198 | -0.0683 | 0.829 | -0.798 | (D.467)
(wu)p | (€e)p | -0.0728 | 0.0261 | -0.137 | 0.381 | -0.574 | (D.468)
(dd); | (dd); || 0356 | 0.546 | -0.546 |-0.810 | 0.320 | (D.469)
(dd); | (dd)p || -0.0658 | 0.434 |-0.0114 | -0.586 | 0.208 || (D.470)
(dd); | (ov)p || -0.422 | -0.534 | 0.534 | 0.480 | -0.112 || (D.471)
(dd); | (7v)g 0 |-0422| 0 [0255| 0 | (D.472)
(dd); | (ee); || 0.225 | 0.568 | -0.568 | -1.47 | 0.735 | (D.473)
(dd); | (ee)g || -0.197 | 0.456 |-0.0342 | -1.25 | 0.623 | (D.474)
E’) R é’d)R 0.0121 | 0.321 | 0.0228 | -0.362 | 0.0956 || (D.475)
id)p | (pv); | 0.0779 | -0.534 | 0.0342 | 0.480 | -0.112 || (D.476)
(dd)p | (7v)g 0 |-0422| 0 |0255| 0 | (D477)
(dd)p | (ee); | -0.0415 | 0.232 | 0.0342 |-0.798 | 0.399 | (D.478)
é_d) r | (ee)p | 0.0364 | 0.120 | 0.0683 | -0.574 | 0.287 | (D.479)
-ug L (171/; L || 0.500 | 0.500 | -0.500 | 0 0 | (D.480)
w); | (w)g 0 0.500 0 0 0 | (D.481)
() | (ee)p | -0.266 |-0.602 | 0.602 | 1.44 | -0.336 || (D.482)
() | (€e)p | 0234 |-0.602 | 0.102 | 1.44 |-0.336 || (D.483)
(-ug r | (W)p 0 0.500 0 0 0 | (D.484)
(w)p | (ee); 0 |-0266] 0 |0766| 0 | (D.485)
(7v)g | (ee)g 0 |-0266| O 0.766 | 0 | (D.486)
(ee); | (ee)p | 0.142 | 0.500 | -0.500 | -1.53 | 1.53 | (D.487)
(ee); | (ee)p | -0.124 | 0.164 | 0.102 |-0.860 | 1.20 | (D.488)
(ee)p | (ee)p || 0.109 | -0.172 | 0.205 |-0.188 | 0.860 | (D.489)

Table D.27: Couplings CE}C (f1,i» f2,j) of the neutral fermion currents below the
electroweak scale in the LR-D model. See text and Eq. (D.453) on page 172 for

details.
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1

(fh)e (Rf2)e Cifsm 3 553 %s; %33 Eqn.
(au); [ (@), [ 0237 [ 0.546 | -0.546 | -1.32 [ 0.831 [ (D.490)
(wu); | (@uw)p || -0.107 | 0.321 | 0.0228 | -0.872 | 0.607 || (D.491)
(wu); | (dd), || -0.291 | -0.557 | 0.557 | 1.14 | -0.527 || (D.492)
(uu) E'd) g || 0-0536 | -0.333 | -0.0114 | 0.692 | -0.303 | (D.493)
(wu); | (pv)p || 0.344 | 0.568 | -0.568 | -0.959 | 0.224 | (D.494)
(wu); | (v)p 0 0 0 0 0 | (D.495)
(wu), | (ee)p || -0.183 | -0.534 | 0.534 | 1.50 | -1.13 || (D.496)

uu); | (ée)p | 0.161 |0.0342 | -0.0342 | 0.542 | -0.910 || (D.497)
gﬁu) g | (@u)p || 0.0485 | 0.0974 | 0.0911 | -0.424 | 0.382 | (D.498)
au)p | (dd), | 0132 |-0.445 | 0.0228 | 0.916 | -0.415 | (D.499)
(wu)p | (dd)g | -0.0243 | -0.221 | -0.0455 | 0.468 | -0.191 || (D.500)
(au)p | (ov), || -0.156 | 0.568 |-0.0683 | -0.959 | 0.224 || (D.501)
éﬁu; r | (W)g 0 0 0 0 0 | (D.502)
uu)p | (ee); | 0.0830 | -0.198 | -0.0683 | 0.829 | -0.798 | (D.503)
(uu)p | (ee)p | -0.0728 | 0.370 | -0.137 | -0.130 | -0.574 || (D.504)
(dd);, | (dd); || 0.356 | 0.546 | -0.546 | -0.810 | 0.320 | (D.505)
(dd); | (dd)p | -0.0658 | 0.434 | -0.0114 | -0.586 | 0.208 | (D.506)
(Jdg L | () || -0.422 | -0.534 | 0.534 | 0.480 | -0.112 | (D.507)
(dd); | (wv)p 0 0 0 0 0 | (D.508)
(dd); | (ee); | 0.225 | 0.568 | -0.568 | -1.47 | 0.735 | (D.509)
(dd);, | (ee)p | -0.197 | 0.0342 | -0.0342 | -0.990 | 0.623 | (D.510)
(dd)p | (dd)p |l 0.0121 | 0.321 | 0.0228 | -0.362 | 0.0956 || (D.511)
(dd)p | (ov)p || 0.0779 | -0.534 | 0.0342 | 0.480 | -0.112 || (D.512)
(dd)p | (v)p 0 0 0 0 0 | (D.513)
(dd)p | (ee)p |l -0.0415 | 0.232 | 0.0342 | -0.798 | 0.399 | (D.514)
(dd)p | (ee)p | 0.0364 | -0.302 | 0.0683 | -0.318 | 0.287 | (D.515)
(ov); | (o), || 0.500 | 0.500 | -0.500 0 0 | (D.516)
(v); | (w)p 0 0 0 0 0 | (D517)
(ov); | (ee); || -0.266 | -0.602 | 0.602 | 1.44 | -0.336 | (D.518)
(ov)p | (ee)gp || 0234 |-0.102 | 0102 | 1.44 |-0.336 | (D.519)
() | (v)g 0 0 0 0 0 (D.520)
(w)p | (ee) 0 0 0 0 0 | (D.521)
(v)g | (ee)p 0 0 0 0 0 | (D.522)
(ee); | (ee), || 0.142 | 0.500 | -0.500 | -1.53 | 1.53 | (D.523)
(ee); ee)p | -0.124 | -0.102 | 0.102 |-0.0941| 1.20 | (D.524)
(ee)p | (ee)p || 0.109 | -0.205 | 0205 | 1.34 | 0.860 | (D.525)

Table D.28: Couplings C}E,C (f1,i> f2,5) of the neutral fermion currents below the

electroweak scale in the LP-D model. Sce text and Eq. (D.453) on page 172 for
details.
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(e (RR)c Ci¥fem 3 k%) &% 35t Ean
(aw), | (au), | 0237 | 0.546 [ -0.546 [ -1.32 [ 0.831 [ (D.526)
(au), | (au)p | -0.107 |-0.0228 | 0.0228 | -0.362 | 0.607 | (D.527)
(au), | (dd), | -0291 | -0.557 | 0.557 | 114 |-0.527 || (D.528)
(au), | (dd)p | 0.0536 | 0.0114 | -0.0114 | 0.181 | -0.303 | (D.529)
(au), | (ov)p || 0344 | 0.568 | -0.568 | -0.959 | 0.224 | (D.530)
(au), | (v)p 0 0.344 0 -0.511 0 (D.531)
(au), | (ee), | -0.183 | -0.534 | 0.534 | 150 | -1.13 | (D.532)
(au), | (ee)p | 0.161 | -0.310 | -0.0342| 1.05 |-0.910 | (D.533)
(au)p | (au)p | 0.0485 | -0.0911 | 0.0911 | 0.598 | 0.382 | (D.534)
(au)p | (dd), | 0132 |-0.0228| 0.0228 | 0.660 |-0.415 || (D.535)
(au)p | (dd)g | -0.0243 | 0.0455 | -0.0455 | -0.299 | -0.191 | (D.536)
(au)p | (wv)p | -0.156 | 0.0683 | -0.0683 | -0.959 | 0.224 || (D.537)
(au)p | (w)p 0 0.156 0 0511 | 0 | (D.538)
(au)p | (ee), | 0.0830 | 0.0683 | -0.0683 | 0.0627 | -0.798 || (D.539)
(au)p | (ee)p | -0.0728 | 0.292 | -0.137 | -0.385 | -0.574 || (D.540)
(dd); | (dd), | 0356 | 0.546 | -0.546 | -0.810 | 0.320 | (D.541)
(dd), | (dd)p | -0.0658 | 0.0114 | -0.0114 | -0.330 | 0.208 | (D.542)
(dd); | (wv)p | -0.422 | -0.534 | 0534 | 0480 |-0.112 || (D.543)
(dd), | (v)p 0 -0.422 0 0.255 0 (D.544)
(dd), | (ee), | 0225 | 0.568 | -0.568 | -1.47 | 0.735 | (D.545)
(dd), | (ee)p | -0.197 | 0.456 |-0.0342 | -1.25 | 0.623 | (D.546)
(dd)p | (dd)p | 0.0121 |-0.0228 | 0.0228 | 0.149 | 0.0956 | (D.547)
(dd)p | (7v); || 0.0779 | -0.0342 | 0.0342 | 0.480 | -0.112 || (D.548)
(dd)p | (7)p 0 0.0779 0 0.255 0 | (D.549)
(dd)p | (ee), | -0.0415|-0.0342 | 0.0342 | -0.0314 | 0.399 | (D.550)
(dd)p | (ee)p | 00364 | -0.146 | 0.0683 | 0.193 | 0.287 | (D.551)
(7v)p | (#v)p || 0.500 | 0.500 | -0.500 0 0 | (D.552)
(), | (w)g 0 0.500 0 0 0 | (D.553)
(mv)p | (ee)y | -0266 | -0.602 | 0.602 | 144 |-0.336 | (D.554)
(), | (ee)p | 0234 | -0.602 | 0.102 | 144 |-0.336 | (D.555)
(7)g | ()R 0 0.500 0 0 0 | (D.556)
(7)p | (ee)p 0 -0.266 0 0.766 0 (D.557)
() | (ee)p 0 -0.266 0 0.766 0 (D.558)
(ee), | (ee), | 0.142 | 0.500 | -0.500 | -1.53 | 1.53 | (D.559)
(ee), | (ee)p || -0.124 | 0.164 | 0.102 | -0.860 | 1.20 | (D.560)
(ee)p | (ee)g | 0.109 | -0.172 | 0.205 | -0.188 | 0.860 | (D.561)

Table D.29: Couplings CE}C ( fris fgyj) of the neutral fermion currents below

the

electroweak scale in the HP-D model. See text and Eq. (D.453) on page 172 for

details.
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(flfl)c (f2f2)C CE}(,:SM % %Sgﬁ %s{% %s% Eqn.
(@u), | (au), || 0237 | 0.546 | -0.546 | -1.32 | 0.831 [ (D.562)
(wu); | (@u)p || -0.107 |-0.0228 | 0.0228 | -0.362 | 0.607 | (D.563)
(au), | (dd), || -0.291 | -0.557 | 0.557 | 1.14 |-0.527 | (D.564)
(uu); | (dd)g || 0.0536 | 0.0114 | -0.0114 | 0.181 | -0.303 | (D.565)
(au), | (ov)p || 0.344 | 0.568 | -0.568 | -0.959 | 0.224 | (D.566)
(au); | (v)p 0 0 0 0 0 | (D.567)
(au), | (ee); | -0.183 | -0.534 | 0.534 | 1.50 | -1.13 | (D.568)
(au); | (€e)p || 0.161 | 0.0342 |-0.0342 | 0.542 | -0.910 | (D.569)
(‘u; r | (@u)g | 0.0485 | -0.0911 | 0.0911 | 0.598 | 0.382 | (D.570)
(wu)p | (dd); || 0.132 |-0.0228 | 0.0228 | 0.660 | -0.415 | (D.571)
(au)p | (dd)p | -0.0243 | 0.0455 | -0.0455 | -0.299 | -0.191 || (D.572)
(@u)p | (#v)p || -0.156 | 0.0683 | -0.0683 | -0.959 | 0.224 | (D.573)
('u; r | (V)g 0 0 0 0 0 | (D.574)
(uu)p | (ee)p | 0.0830 | 0.0683 | -0.0683 | 0.0627 | -0.798 || (D.575)
(uu)p | (ée)p | -0.0728 | 0.137 | -0.137 | -0.896 | -0.574 || (D.576)
(dd); | (dd); | 0.356 | 0.546 | -0.546 | -0.810 | 0.320 || (D.577)
(dd); | (dd)p | -0.0658 | 0.0114 |-0.0114 | -0.330 | 0.208 || (D.578)
(dd); | (wv); | -0.422 | -0.534 | 0.534 | 0.480 | -0.112 || (D.579)
(dd), | (w)g 0 0 0 0 0 | (D.580)
(dd); | (ee); | 0.225 | 0.568 | -0.568 | -1.47 | 0.735 || (D.581)
(dd); | (ée)p | -0.197 | 0.0342 | -0.0342 | -0.990 | 0.623 || (D.582)
( ‘d% r | (dd)p | 0.0121 |-0.0228 | 0.0228 | 0.149 | 0.0956 || (D.583)
(dd)p | (v)p || 0.0779 |-0.0342 | 0.0342 | 0.480 | -0.112 | (D.584)
(dd)p | (v)p 0 0 0 0 0 | (D.585)
(dd)p | (ee); |l -0.0415 | -0.0342 | 0.0342 | -0.0314 | 0.399 | (D.586)
(dd)p | (ee)p |l 0.0364 |-0.0683 | 0.0683 | 0.448 | 0.287 | (D.587)
éﬂl/) . | (w)p || 0500 | 0.500 | -0.500 0 0 | (D.588)
), | (w)p 0 0 0 0 0 (D.589)
(ov); | (ee)p || -0.266 | -0.602 | 0.602 | 1.44 |-0.336 | (D.590)
(ov); | (ee)p || 0.234 | -0.102 | 0.102 | 1.44 |-0.336 || (D.591)
()p | (ov)g 0 0 0 0 0 | (D.592)
(w)p | (ee)g 0 0 0 0 0 || (D.593)
(w)p | (ee)p 0 0 0 0 0 | (D.594)
(ee); | (ee)p || 0.142 | 0.500 | -0.500 | -1.53 | 1.53 | (D.595)
(ee); | (ee)p || -0.124 | -0.102 | 0.102 |-0.0941 | 1.20 | (D.596)
(ee)p | (ee)p | 0.109 | -0.205 | 0.205 | 1.34 | 0.860 | (D.597)

Table D.30: Couplings C}ffc ( fiis fz,j) of the neutral fermion currents below the

electroweak scale in the FP-D model. See text and Eq. (D.453) on page 172 for
details.
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(ih)e (Bf)e Cifsn 3 %323 %53’, %S; Eqn.

(uw), [ (aw), | 0237 [ 0136 [ -0.273 [ -0.330 | 0.208 [ (D.598)
(au), | (au)g || -0.107 | 0.0804 | 0.0114 | -0.218 | 0.152 | (D.599)
(au), | (dd), | -0.201 | -0.139 | 0278 | 0.285 | -0.132 | (D.600)
(au), | (dd)p | 0.0536 | -0.0832 | -0.00569 | 0.173 |-0.0758 || (D.601)
(au), | (#v), | 0344 | 0.142 | -0.284 | -0.240 | 0.0560 | (D.602)
(au), | (w)g 0 0.0861 0 -0.128 0 (D.603)
(au), | (ee)p | -0.183 | -0.134 | 0.267 | 0.375 | -0.283 | (D.604)
(uu), | (ee)p | 0161 |-0.0775 | -0.0171 | 0.263 | -0.227 | (D.605)
(au)p | (au)p || 0.0485 | 0.0243 | 0.0455 | -0.106 | 0.0956 | (D.606)
(au)p | (dd); | 0132 | -0.111 | 0.0114 | 0229 | -0.104 | (D.607)
(au)p | (dd)g | -0.0243 | -0.0552 | -0.0228 | 0.117 |-0.0478 | (D.608)
(au)p | (v), | -0.156 | 0.142 | -0.0342 | -0.240 | 0.0560 | (D.609)
(au)p | (7v)g 0 0.0861 0 -0.128 0 (D.610)
(au)p | (ee), || 0.0830 | -0.0495 | -0.0342 | 0.207 | -0.199 | (D.611)
(au)p | (ee)p | -0.0728 | 0.00652 | -0.0683 | 0.0952 | -0.143 | (D.612)
(dd), | (dd), | 0356 | 0136 | -0.273 | -0.202 | 0.0799 | (D.613)
(dd), | (dd)p | -0.0658 | 0.108 |-0.00569 | -0.146 | 0.0519 | (D.614)
(dd), | (wv), | -0.422 | 0134 | 0267 | 0.120 |-0.0280 | (D.615)
(dd), | (mw)p 0 -0.106 0 0.0639 0 (D.616)
(dd), | (ee), | 0225 | 0142 | -0.284 | -0.367 | 0.184 | (D.617)
(dd); | (ee)p | -0.197 | 0.114 | -0.0171 | -0.311 | 0.156 | (D.618)
(dd)p | (dd)p | 00121 | 0.0804 | 0.0114 |-0.0904 | 0.0239 | (D.619)
(dd)p | (v)p || 00779 | -0.134 | 0.0171 | 0.120 |-0.0280 || (D.620)
(dd)p | (7v)p 0 -0.106 0 0.0639 0 (D.621)
(dd)p | (ee), | -0.0415| 0.0580 | 0.0171 | -0.199 | 0.0997 | (D.622)
(dd)p | (ee)p || 0.0364 | 0.0300 | 0.0342 | -0.143 | 0.0717 | (D.623)
(wv)p | (#v), | 0500 | 0125 | -0.250 0 0 (D.624)
() | (w)g 0 0.125 0 0 0 (D.625)
(mv)p | (ee)y | -0266 | -0.151 | 0301 | 0.360 |-0.0840 | (D.626)
(), | (ee)p || 0.234 | -0.151 | 0.0512 | 0.360 |-0.0840 | (D.627)
(7)g | ()R 0 0.125 0 0 0 (D.628)
(v)p | (ee)y 0 -0.0666 0 0.192 0 (D.629)
(7v)p | (ee)p 0 -0.0666 0 0.192 0 (D.630)
(ee), | (ee)p | 0.142 | 0125 | -0250 | -0.383 | 0.383 | (D.631)
(ee), | (ee)p | -0.124 | 0.0410 | 0.0512 | -0215 | 0.299 | (D.632)
(ee)p | (ce)p || 0109 |-0.0431 | 0.102 |-0.0470 | 0.215 | (D.633)

Table D.31: Couplings Cffc (fr0 fo, j) of the neutral fermion currents below the
electroweak scale in the LR-T model. See text and Eq. (D.453) on page 172 for
details.
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1

(e (RR)c Cifsn 3 t5; 3% })  Em
(au), | (au), | 0237 | 0136 [ -0273 | 0330 [ 0.208 | (D.634)
(au), | (au)p | -0.107 | 0.0804 | 0.0114 | -0.218 | 0.152 | (D.635)
(au), | (dd), | -0201 | -0.139 | 0.278 | 0.285 | -0.132 | (D.636)
(au); | (dd)p | 0.0536 | -0.0832 | -0.00569 | 0.173 | -0.0758 | (D.637)
(au)p | (vv)p | 0344 | 0142 | -0.284 | -0.240 | 0.0560 | (D.638)
(au)p | (w)g 0 0 0 0 0 (D.639)
(uu), | (ee), || -0.183 | -0.134 | 0.267 | 0.375 | -0.283 | (D.640)
(au)p | (ee)p | 0161 |0.00854 | -0.0171 | 0.136 | -0.227 | (D.641)
(au)p | (uu)p | 0.0485 | 0.0243 | 0.0455 | -0.106 | 0.0956 | (D.642)
(au)p | (dd), | 0132 | -0.111 | 0.0114 | 0229 | -0.104 | (D.643)
(au)p | (dd)p | -0.0243 | -0.0552 | -0.0228 | 0.117 |-0.0478 | (D.644)
(wu)p | (), | -0.156 | 0.142 | -0.0342 | -0.240 | 0.0560 | (D.645)
(au)p | ()p 0 0 0 0 0 (D.646)
(au)p | (ee)p | 0.0830 | -0.0495 | -0.0342 | 0207 | -0.199 | (D.647)
(au)p | (ee)p || -0.0728 | 0.0926 | -0.0683 | -0.0325 | -0.143 || (D.648)
(dd), | (dd), || 0356 | 0136 | -0.273 | -0.202 | 0.0799 | (D.649)
(dd), | (dd)p | -0.0658 | 0.108 |-0.00569 | -0.146 | 0.0519 | (D.650)
(dd), | (wv), || -0422 | -0134 | 0267 | 0.120 |-0.0280 | (D.651)
(dd), | (wv)p 0 0 0 0 0 (D.652)
(dd)p | (fe)y || 0225 | 0.142 | -0.284 | -0.367 | 0.184 | (D.653)
(dd), | (ee)p || -0.197 | 0.00854 | -0.0171 | -0.248 | 0.156 | (D.654)
(dd)p | (dd)p || 0.0121 | 0.0804 | 0.0114 |-0.0904 | 0.0239 | (D.655)
(dd)p | (7v)p || 0.0779 | -0.134 | 0.0171 | 0.120 |-0.0280 || (D.656)
(dd)p | (7v)p 0 0 0 0 0 | (D.657)
(dd)p | (ee), | -0.0415 | 0.0580 | 0.0171 | -0.199 | 0.0997 | (D.658)
(dd)p | (ee)p | 0.0364 | -0.0755 | 0.0342 |-0.0795 | 0.0717 | (D.659)
(), | (wv)p | 0500 | 0125 | -0.250 0 0 (D.660)
(Dl/)L (7) g 0 0 0 0 0 (D.661)
(), | (ee), | -0.266 | -0.151 | 0.301 | 0.360 |-0.0840 | (D.662)
(7v), | (ee)p | 0.234 |-0.0256 | 0.0512 | 0.360 |-0.0840 || (D.663)
(7)g | ()R 0 0 0 0 0 (D.664)
() | (ee)p 0 0 0 0 0 (D.665)
(7v)g | (ee)g 0 0 0 0 0 (D.666)
(ee), | (ee), | 0.142 | 0125 | -0250 | -0.383 | 0.383 | (D.667)
(ee), | (ee)p | -0.124 | -0.0256 | 0.0512 |-0.0235 | 0.299 | (D.668)
(ee)p | (ee)p || 0109 | -0.0512 | 0.102 | 0336 | 0.215 | (D.669)

Table D.32: Couplings Cyfc ( f1is f2,]) of the neutral fermion currents below the
electroweak scale in the LP-T model. See text and Eq. (D.453) on page 172 for

details.
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(Af)e (ff2)e Cifsm o %sgﬁ %s% %sj; Eqn.
(uw), [ (uw), [ 0237 | 0136 | -0.273 | -0.330 | 0.208 [ (D.670)
(wu); | (au)p || -0.107 |-0.00569 | 0.0114 | -0.0904 | 0.152 | (D.671)
(uu); | (dd), || -0.291 | -0.139 | 0278 | 0.285 | -0.132 | (D.672)
?ﬁu) L ng) R | 0.0536 | 0.00285 | -0.00569 | 0.0452 | -0.0758 || (D.673)
au); | (ov)p || 0344 | 0.142 | -0.284 | -0.240 | 0.0560 | (D.674)
(au), | (v)p 0 0.0861 0 -0.128 0 | (D.675)
(au), | (€e); | -0.183 | -0.134 | 0.267 | 0375 | -0.283 | (D.676)
(uwu);, | (ée)p || 0.161 | -0.0775 | -0.0171 | 0.263 | -0.227 || (D.677)
(wu)p | (au)p || 0.0485 | -0.0228 | 0.0455 | 0.149 | 0.0956 | (D.678)
(wu)p | (dd); | 0.132 |-0.00569 | 0.0114 | 0.165 | -0.104 | (D.679)
(au)p | (dd)p | -0.0243 | 0.0114 | -0.0228 | -0.0747 | -0.0478 || (D.680)
(wu)p | (ov)p | -0.156 | 0.0171 | -0.0342 | -0.240 | 0.0560 | (D.681)
(‘u; g | ()R 0 -0.0389 0 -0.128 0 (D.682)
(au)p | (ee), | 0.0830 | 0.0171 | -0.0342 | 0.0157 | -0.199 | (D.683)
(uu)p | (ée)p | -0.0728 | 0.0731 | -0.0683 | -0.0964 | -0.143 || (D.684)
(dd); | (dd); | 0.356 | 0.136 | -0.273 | -0.202 | 0.0799 || (D.685)
(dd); | (dd)g | -0.0658 | 0.00285 | -0.00569 | -0.0825 | 0.0519 | (D.686)
(Jdg . | (ov), || -0.422 | -0.134 | 0.267 | 0.120 |-0.0280 | (D.687)
(dd); | (v)g 0 -0.106 0 0.0639 0 (D.688)
(dd); | (ee); | 0225 | 0.142 | -0.284 | -0.367 | 0.184 | (D.689)
(dd); | (ee)p || -0.197 | 0.114 | -0.0171 | -0.311 | 0.156 | (D.690)
(dd) p g id)p || 0.0121 | -0.00569 | 0.0114 | 0.0373 | 0.0239 || (D.691)
(dd)p | (wv)p || 0.0779 | -0.00854 | 0.0171 | 0.120 |-0.0280 || (D.692)
(dd)p | (v)g 0 0.0195 0 0.0639 0 | (D.693)
(dd)p | (ee); | -0.0415 | -0.00854 | 0.0171 | -0.00784 | 0.0997 || (D.694)
(dd)p | (ee)p || 0.0364 | -0.0366 | 0.0342 | 0.0482 | 0.0717 || (D.695)
(ov)p | (wv)p || 0500 | 0.125 | -0.250 0 0 (D.696)
() | (v)g 0 0.125 0 0 0 (D.697)
(), | (ee)p || -0.266 | -0.151 | 0.301 | 0.360 |-0.0840 | (D.698)
(), | (ee)gp || 0234 | -0.151 | 0.0512 | 0.360 |-0.0840 | (D.699)
w)p | (7v)g 0 0.125 0 0 0 (D.700)
w)p | (ee)p 0 -0.0666 0 0.192 0 (D.701)
(w)p | (ee)p 0 -0.0666 0 0.192 0 (D.702)
(ee); | (ee); || 0.142 | 0.125 | -0.250 | -0.383 | 0.383 | (D.703)
(ee); | (ée)p | -0.124 | 0.0410 | 0.0512 | -0.215 | 0.299 | (D.704)
(ee)p | (ee)p | 0.109 | -0.0431 | 0.102 | -0.0470 | 0.215 | (D.705)

Table D.33: Couplings C}i\}c (f1,i> f2,5) of the neutral fermion currents below the
electroweak scale in the HP-T model. See text and Eq. (D.453) on page 172 for

details.
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(W)e (RR)e Ciw + b2 k3 Lf Eam
(au); | (au), [ 0237 | 0136 | -0273 | -0.330 | 0.208 [ (D.706)
(au); | (au)p || -0.107 |-0.00569 | 0.0114 | -0.0904 | 0.152 | (D.707)
(au); | (dd); || -0.291 | -0.139 | 0278 | 0.285 | -0.132 | (D.708)
(uu); | (dd)g || 0.0536 | 0.00285 | -0.00569 | 0.0452 | -0.0758 || (D.709)
(au), | (ov)p || 0.344 | 0.142 | -0.284 | -0.240 | 0.0560 | (D.710)
(au), | (7v)p 0 0 0 0 0 (D.711)
(au), | (ee); || -0.183 | -0.134 | 0.267 | 0.375 | -0.283 || (D.712)
(uu); | (ee)gp || 0.161 | 0.00854 | -0.0171 | 0.136 | -0.227 | (D.713)

uu)p | (du)p | 0.0485 | -0.0228 | 0.0455 | 0.149 | 0.0956 || (D.714)
uu)p | (dd); | 0.132 |-0.00569 | 0.0114 | 0.165 | -0.104 | (D.715)
tu)p | (dd)p | -0.0243 | 0.0114 | -0.0228 | -0.0747 | -0.0478 || (D.716)
au)p | (ov)p | 0156 | 0.0171 | -0.0342 | -0.240 | 0.0560 || (D.717)
au)p | (7v)p 0 0 0 0 0 (D.718)
(uu)p | (ee)p | 0.0830 | 0.0171 | -0.0342 | 0.0157 | -0.199 || (D.719)
(uu)p | (ee)p | -0.0728 | 0.0342 | -0.0683 | -0.224 | -0.143 | (D.720)
(dd);, | (dd); || 0.356 | 0.136 | -0.273 | -0.202 | 0.0799 || (D.721)
(dd); | (dd)g | -0.0658 | 0.00285 |-0.00569 | -0.0825 | 0.0519 || (D.722)
(dd), | (ov), | -0.422 | -0.134 | 0.267 | 0.120 |-0.0280 || (D.723)
(dd);, | (w)g 0 0 0 0 0 (D.724)
(dd); | (ee), | 0.225 | 0.142 | -0284 | -0.367 | 0.184 | (D.725)
(dd);, | (ee)p | -0.197 | 0.00854 | -0.0171 | -0.248 | 0.156 || (D.726)
(dd) g g id) p || 0.0121 |-0.00569 | 0.0114 | 0.0373 | 0.0239 | (D.727)
(dd)p | (pv)p || 0.0779 |-0.00854 | 0.0171 | 0.120 |-0.0280 | (D.728)
(dd)p | (v)p 0 0 0 0 0 || (D.729)
(dd)p | (ée)p || -0.0415 | -0.00854 | 0.0171 |-0.00784 | 0.0997 || (D.730)
(dd)p | (ee)g || 0.0364 | -0.0171 | 0.0342 | 0.112 | 0.0717 || (D.731)
(v) gmj) L || 0.500 | 0.125 | -0.250 0 0 (D.732)
(v)p | (v)p 0 0 0 0 0 (D.733)
(o), | (ee)p || -0.266 | -0.151 | 0.301 | 0.360 |-0.0840 | (D.734)
(wv); | (ee)p || 0.234 | -0.0256 | 0.0512 | 0.360 |-0.0840 || (D.735)
(—ug R | (W)g 0 0 0 0 0 (D.736)
(w)p | () 0 0 0 0 0 (D.737)
(w)p | (ee)p 0 0 0 0 0 (D.738)
(ee); | (ee); || 0.142 | 0125 | -0.250 | -0.383 | 0.383 | (D.739)
(ee); | (ee)p || -0.124 | -0.0256 | 0.0512 | -0.0235 | 0.299 | (D.740)
(ee)p | (ée)p | 0.109 | -0.0512 | 0.102 | 0.336 | 0.215 | (D.741)

Table D.34: Couplings CFfC ( 14 fg’j) of the neutral fermion currents below the

electroweak scale in the FP-T model. See text and Eq. (D.453) on page 172 for
details.
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Table D.35: Couplings Cgfc (f1,i> f2,5) of the neutral fermion currents below the
electroweak scale in the UU-D model. See text and Eq. (D.453) on page 172 for

details.

(hf)e (RP)c Cifsm 3 355 355  Eam
(wu), | (@w), | 0.237 [ 0.500 | -0.312 | 0.357 [ (D.742)
(@u); | (@u)p || 0207 | 0 | -0.156 | 0.133 || (D.743)
(@u), | (dd); || -0.291 |-0.500 | 0.234 | -0.291 || (D.744)
gau) L | (dd)g [ 00536 | 0 |0.0779 | -0.0665 | (D.745)
au); | (ov)p || 0344 | 0 0 0.224 || (D.746)
(au), | (v)p 0 0 0 0 (D.747)
(au), | (ee), || -0.183 | 0 | 0.234 | -0.424 | (D.748)
(wu), | (ee)p | 0.161 0 | 0234 | -0.199 | (D.749)
%'u) R (ﬁ_ug R || 00485 | © 0 |-0.0911 || (D.750)
iu)p | (dd), || 0132 | 0 | 0.156 | -0.179 || (D.751)
(wu)p | (dd)p | -0.0243| 0 0 0.0455 || (D.752)
(wu)p | (ov)p | 0156 | © 0 0.224 | (D.753)
E'u) g | ()g 0 0 0 0 (D.754)
u)p | (ee), | 0.0830 | 0 0 |-0.0874 || (D.755)
(au)p | (ee)gp | -0.0728 | 0 0 0.137 || (D.756)
(dd); | (dd); || 0.356 | 0.500 | -0.156 | 0.201 | (D.757)
(dd), | (dd)p | -0.0658 | 0 |-0.0779 | 0.0893 || (D.758)
Eqd; L | (ov)p | 0422 | 0 0 -0.112 || (D.759)
id), | (w)g 0 0 0 0 (D.760)
(dd); | (ee); | 0.225 0 | -0.234 | 0.380 |l (D.761)
(dd); | (ee)p || -0.197 | 0 | -0.234 | 0.268 | (D.762)
(dd) o g d)p || 00121 | 0 0 |-0.0228 || (D.763)
(dd)p | (wv)p || 00779 | 0O 0 -0.112 | (D.764)
( 'dg r | ()g 0 0 0 0 (D.765)
(dd)p | (ee); |[-0.0415| 0 0 | 0.0437 || (D.766)
(dd)p | (ee)p || 0.0364 | © 0 |-0.0683 || (D.767)
él‘/ug L 5171/) L 0.500 0 0 0 (D.768)
) ) 0 0 0 0 (D.769)
(wv), | (ee) |l -0.266 | 0 0 -0.336 || (D.770)
(ov)p | (ee)p || 0.234 0 0 -0.336 || (D.771)
()g | (V)R 0 0 0 0 | (D.772)
(w)p | (ee) 0 0 0 0 (D.773)
(7)g | (ee)p 0 0 0 0 (D.774)
(ee); | (ee); | 0.142 0 0 0.467 | (D.775)
(ee), | (ee)p || 0124 | 0O 0 0.131 | (D.776)
(ee)p | (ee)gp | 0109 | © 0 -0.205 || (D.777)
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f2f2)C C};If(;SM % Eqn.
L | (@), | 0237 ] 0.500 (D.778)
L | (@)g || -0.107 | 0 (D.779)
L | (dd)p | -0.291 |-0.500 (D.780)
L | (dd)p | 00536 | 0 (D.781)
. | (#v)p | 0.344 | 0.500 (D.782)
L | (v)g 0 0 (D.783)
L (éeg . | -0-183 | -0.500 (D.784)
. | (ee)p | 0161 | 0 (D.785)
g | (@u)g || 00485 | 0 (D.786)
g | (dd) | 0132 | 0 (D.787)
r | (dd)g || -0.0243| 0 (D.788)
r | (), || -0.156 | 0 (D.789)
r | )g 0 0 (D.790)
g | (€e)p [ 0080 | 0 (D.791)
r | (€e)p |I-00728 | © (D.792)
L | (dd)p || 0.356 | 0.500 (D.793)
. | (dd)p [ -0.0658 | 0 (D.794)
. | (#v)p || -0.422 |-0.500 (D.795)
L | ()g 0 0 (D.796)
| (ee)p | 0225 | 0.500 (D.797)
L | (Ee)g || 0197 | © (D.798)
R | (dd)p | 00121 0 (D.799)
r | (@) | 00779 | 0 (D.800)
r | (v)g 0 0 (D.801)
r | (ee)p ||-00415| © (D.802)
r | (ée)p | 00364 | © (D.803)
| (#v)p | 0.500 | 0.500 (D.804)
L | (v)g 0 0 (D.805)
. | (ee)p | -0.266 | -0.500 (D.806)
. | (ee)p | 0.234 0 (D.807)
r | (W)g 0 0 (D.808)
r | (ee) 0 0 (D.809)
r | (€e)p 0 0 (D.810)
L §ée§ . | 0.142 | 0.500 (D.811)
L | (ee)p || -0.124 | © (D.812)
» | (ee)p || 0.109 0 (D.813)

Table D.36: Couplings Cgfc (f1,ir f2,5) of the neutral fermion currents (first two gen-

erations) below the electroweak scale in the NU-D model. See text and Eq. (D.453)
on page 172 for details.
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(if2)e (B3f)e Cffsm 3 255 Ean
(@d); | (du), 1 0] 0 [ (D.815)
(ad); | (du)p 0 |[0]| 1 [ (D.s816)
(adg L | (&) 1 0| 0 | (D.817)
(ad); | (ev)p 0 |0| 1 | (D.818)
(d)p | (du)g 0 1| 0 [ (D.819)
(d)p | (ev) 0 |0]| 1 | (D.820)
(@d)p | (ev)g 0 |1] 0 | (D821)
?7% L éu; L 1 |0| 0 | (D822
ve); | (ev)p 0 0| 1 | (D.823)
(ve)p | (ev)p 0 1| 0 | (D.824)

Table D.37: Couplings Cgfc ( i fg,j) of the charged fermion currents below the

electroweak scale in the LR-D model. See text and Eq. (D.814) on page 173 for
details.

(Af2)e (f3f)e CSfsm # %55 Ean
(ad); | (du), 1 [o] 0 [(D.825)
(ud); | (du)p 0 |0]| 1 | (D.826)
(ud) (éu; I 1 0| 0 | (D.827)

ud); | (ev)p 0 |0| 0 | (D.82g8)
(ad)p | (du)p 0 1| 0 [ (D.829)
ad)p | (ev), 0 0] 1 | (D830)
ad)p | (ev)p 0 |0| 0 | (D831)
(ve), | (ev), 1 0| 0 | (D.832)
(ve); | (ev)p 0 |0 0 [ (D.833)
(ve)p | (ev)p 0 |0 0 |(D.834)

Table D.38: Couplings CEfC (f1,i> f3,5) of the charged fermion currents below the
electroweak scale in the LP-D model. See text and Eq. (D.814) on page 173 for
details.
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(fife)e (Bf)e CS fC,SM i 53 B
(ad); | (du)g 1 0| 0 | (D.835)
(ud); | (du)p 0 |0| 0 | (D.836)
(ad); | (ev) 1 0| 0 | (D.837)
(ud); | (ev)g 0 |[0]| 1 | (D.83g)
(ud)p | (du)p 0 0| 0 | (D.839)
(ud)p | (ev)g 0 0| 0 | (D.840)
(ud)p | (ev)p 0 |[0]| 0 | (D.841)

ve); | (ev) 1 |0} 0 | (D842
ve); | (ev)p 0 |(0| 1 | (D.843)
(ve)p | (Ev)p | O 1| 0 | (D.844)

Table D.39: Couplings Cng ( f,s fg,j) of the charged fermion currents below the
electroweak scale in the HP-D model. See text and Eq. (D.814) on page 173 for

details.

(hf2)e (Bfa)e Cifsm

1
T

4

Eqn.

(ad) | (du)p
?ud; L (dug R
ad); | (ev),
(ad); | (ev)p
(ad)p | (du)p
(-ng (ev)
(ad)p | (ev)g
oAl
ve L ev R
(7e)p | (ev)p

1

SO - OO OO~ O

S OO OO OO OO ORI

OOOOOOOOOON@J
=y

(D.845)
(D.846)
(D.847)
(D.848)
(D.849)
(D.850)
(D.851)
(D.852)
(D.853)
(D.854)

Table D.40: Couplings Cffc (f1,i> f3,j) of the charged fermion currents below the
electroweak scale in the FP-D model. See text and Eq. (D.814) on page 173 for

details.



C(Afe)e C(fsfa)e Czich,SM 3 315325 Eqn.
@), | (), 1 [0] 0 [ (D855
(sd), | (dwp | 0 |0 3 | (D85)
(ad) (ev) L |0} 0 (D857
(ﬁd)L (eV)R 0 0 % (D.858)
(ad) (du) g 0 [5| 0 | (D859)
(ad), | (ev), 0 |0| 3 [(D860)
(#d)p | ()p | 0 |3} 0 | (D36Y
(), | (ev), 1 |0| o | (D862
() | (g | O 0| } | (D863
(ve)y | (&)g 0 |i| 0 | (Ds64)

Table D.41: Couplings Cffc ( f1,is f3,j) of the charged fermion currents below the

electroweak scale in the LR-T model. Sce text and Eq. (D.814) on page 173 for
details.

Clhf)e C(fsf)c Cifsmu i 355 EBan
(@d), | (du), 1 [0] 0 [ (D865
ad) [ (du) p 0 |o]| 1 | (D.866)
ad) | (ev), 1 |0]| 0 | (D.867)
(ad) (ev) g 0 0| 0 | (D.868)
(ad) (du) p 0 |3| 0 | (D.869)
(ud) (ev), 0 |o| & | (D870)
(ud) g (ev) g 0 0| 0 | (Ds871)
(ve) (ev), 1 0| 0 | (D.872)
(ve) (ev) g 0 0| 0 | (D.873)
(ve) 5 (ev)p 0 0| 0 | (D.874)

Table D.42: Couplings Cffc ( f1is f3’j) of the charged fermion currents below the

electroweak scale in the LP-T model. See text and Eq. (D.814) on page 173 for
details.
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C(Af2)e C(fsf)c Cifsm % 253 Eam
(ad) [ (du) 1 [o] o [(Ds87)
(ud), (du) g 0 |0 0 | (D.876)
(ad) [, (ev); 1 |0| 0 | (D.877)
(ad), | (ev)pg 0 |0| } | (D87
(ud) p (du) g 0 (0| 0 [ (D.879)
ad) (ev), 0 [0 0 | (D.880)
ud) p (ev)p 0 0| 0 | (D.881)
(ve) (ev), 1 0| 0 | (D.882)
(ve) (ev)p 0 |0| 5 | (D883
(ve) (ev) 5 0 |3] 0 ||(D.884)

Table D.43: Couplings C’ffc ( i f;;,j) of the charged fermion currents below the

electroweak scale in the HP-T model. See text and Eq. (D.814) on page 173 for
details.

C(hf)ec C(ffa)c Cifsm i %55 Ea
(ud) (du), 1 0] 0 [ (D.885)
(ud) (du) 5 0 0| 0 | (D.886)
(ud) (ev) 1 0| 0 | (D.887)
(ud) (ev)p 0 [0]| 0 | (D.888)
(ad) (du) 5 0 0| 0 | (D.889)
(ad) p (ev) 0 0| 0 | (D.890)
(ad) » (ev)p 0 0| 0 | (D.891)
(ve) (ev) 1 0| 0 | (D.892)
(ve) (ev) g 0 0| 0 | (D.893)
(De; B (éug X 0 0| 0 | (D.894)

Table D.44: Couplings Cgfc ( i fg’j) of the charged fermion currents below the

electroweak scale in the FP-T model. Sec text and Eq. (D.814) on page 173 for
details.
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( lfz)c (f3f4)c Cgf?s1\,1 % (UU-D) % (NU-D)  Eqn.
(ad); | (du); 1 1 1 (D.895)
(ad), | (du)p 0 0 0 (D.896)

ud); | (ev), 1 0 1 (D.897)

ud); | (év)g 0 0 0 (D.898)
(ud)p | (du)p 0 0 0 (D.899)
(ad)p | (ev)g 0 0 0 (D.900)
(ad)p | (ev)g 0 0 0 (D.901)
(ve); | (ev) 1 0 1 (D.902)
(ve)p | (ev)p 0 0 0 (D.903)
(ve)p | (ev)p 0 0 0 (D.904)

Table D.45: Couplings Cffc ( f,ir f3,j) of the charged fermion currents below the
electroweak scale in the UU-D and NU-D model. The results for the NU-D model
apply to the first two fermion generations. See text and Eq. (D.814) on page 173 for
details.
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