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ABSTRACT
ADAPTATIVE WIRELESS VIDEO USING CHANNEL STATE INFORMATION
By
Yongju Cho

In this thesis, we tackle the following research problems: i) accurate channel capacity
estimation and prediction under Cross-Layer Design with Side-information (CLDS)
wireless protocols; ii) an optimal source and channel coding rate prediction and tuning;
iii) Unequal Error Protection (UEP); and iv) Syndrome Partial Decoding (SPD) for
wireless video in multi-hop networks. 1), ii), iii) and iv) are essential factors to complete a
rate-adaptive video streaming application over wireless LANs. For these problems, we
collected a comprehensive set of datasets (or error traces) which are analyzed and used to
verify our proposed schemes in realistic environments.

We provide analysis of bit-errors at IEEE 802.11b MAC layer and develop channel
Bit Error Rate (BER) prediction scheme. We show that BER can be accurately predicted
by employing multi-tier model which utilizes Received Signal Strength Indication (RSSI)
and checksum of a packet. On the basis of the channel BER prediction scheme, an
optimal rate tuning; which leverages both the probability distribution of channel capacity

prediction error process and an RD (quality) function of a video sequence, is developed.



In order to employ the optimal rate tuning scheme in a practical wireless environment, we
deduce a Rate Distortion (RD) model for above-capacity video and an operational rate for
a specific channel code. It is observed that the optimal rate tuning provides excellent rate
prediction performance. In addition, an UEP scheme; which utilizes characteristics of a
LDPC code, is developed, and we show that the UEP scheme reduces the degradation of
video quality in case of burst errors. The optimal rate prediction architecture under CLDS
protocols, ORPA.,,c , which combines all the described schemes above, provides
excellent performance in terms of accuracy of rate prediction as well as video quality.
Finally, we exhibit the applicability of the proposed architecture in multi-hop wireless
networks by introducing SPD which mitigates the complexity and memory requirement

of Decoding and Forwarding (DF), while providing reasonably high goodput.
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CHAPTER 1
INTRODUCTION

Recently, digital media has had a tremendous impact on the development of the
Internet, telecommunications, and broadcasting areas. The rapid popularization of the
Internet, wireless communication systems, and digital broadcasting networks have led us
to an epochal framework for content services with an end-to-end delivery chain of
content generation, distribution and consumption. Multimedia devices and digital TVs
have accelerated the easy purchase and consumption of a vast number of media content
types. These developments, however, have forced us to consider the reliable delivery of
multimedia content over wireless networks to diverse types of devices. Especially
Quality of Service (QoS) for multimedia content over mobile wireless networks has been
an issue.

To that end, our research embodies an advanced multimedia content delivery that
satisfies the needs of reliability and QoS over wireless networks in an efficient manner.
Our research on reliable video delivery over wireless networks demonstrates five key

aspects: 1) Analyzing the behavior of errors in wireless networks and predicting accurate



Bit Error Rate (BER) by utilizing Cross Layer Design with Side-information (CLDS)
protocols, 2) Predicting an optimal source and channel coding rate, 3) Modeling of an
RD for above-capacity wireless video, 4) Minimizing the video quality distortion in case
of packet loss (Unequal Error Protection (UEP)), and S) Mitigating the complexity and
memory usage at each intermediate nodes in an ad-hoc network, while providing
reasonably high goodput. The solution will eventually lead the user to a better QoS
experience and enable network providers to benefit from more efficient bandwidth

utilization over the entire wireless networks.

1.1. Research Problem

In many wireless environments, deteriorated link conditions cause bit-corruptions.
These corrupted packets cause checksum failures and packet drops at wireless receivers.
To reduce packet losses at the receivers, many recent efforts utilize cross-layer protocols
that do not discard corrupted packets [1][19][31][32]. Consequently, two classes of
wireless multimedia protocols have emerged: (i) Cross-Layer-Design (CLD) [19]
protocols which relay corrupted packets to higher layer for further processing; (ii)

conventional (CON) [19] protocols which drop any packet that has one or more residue



errors'. Prior studies have shown that a significant improvement in wireless video
throughput can be achieved by CLD [1][19][31][32]. Furthermore, it was also exhibited
that side information, which are already available from IEEE 802.11 compliant packets,
is quite valuable for providing channel state information and modeling of the underlying
(effective) video channel. This side information includes Signal to Silence Ratio (SSR)
indicators and MAC-layer checksum, both of which can be used as parameters for
channel estimation [21]. (SSR is a packet-level SNR parameter supported by IEEE
802.11 compliant devices.) This form of CLD protocols that utilize side information have
been referred to as CLDS protocols in prior literature [19][21][33].

Despite of the demonstrated benefits of CLDS, standard features that can exploit
these benefits for CLDS-based video streaming applications remain unexplored. One
such important feature is video rate-adaptation based under CLDS protocol. Figure 1
illustrates the rate-adaptive video architecture on which our research focuses. In the
architecture a server and a client communicate through a heterogeneous network which
consists of a wired and a wireless network. In the given architecture, both a server and a
client are designed to support source and channel rate adaptation. Note that a great deal

of bit corruptions in packets occur in a wireless network whose link quality fluctuates

! Here, a residue error is an error that is not corrected by the physical layer, and hence it
appears at the MAC layer.
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Figure 1 The architecture of the proposed rate adaptation.

significantly due to various interference, fading, multi-path effects, and mobility. Here,

we focus on the wireless channel (as seen by above-PHY layers) for rate estimation and

prediction in the architecture.

The client supports CLDS protocols that leverage residue-error-process and side

information, which can be relayed to an FEC decoder for soft-decoding [37], to estimate

the current channel capacity for a block of packets (or time-window). The current

channel capacity, which is estimated by the channel estimator in the client with the

entropy of the residue error process, is then transmitted to the server as feedback for rate

adaptation. Using the feedback, the rate tuner at the server predicts the optimal source

and channel rates for the next block of multimedia packets to be transmitted.

It is essential to accurately estimate and predict the channel capacity, which is in turn
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can be used to determine the source and channel coding rates, in real-time, for rate-
adaptive video [42]. In particular, when a channel-coding rate is under-estimated relative
to channel capacity, a client virtually recovers all packets (error-free), but operating
below channel capacity naturally and negatively effect the overall throughput of a
wireless video streaming session (and hence the video quality). On the other hand, an
over-estimated rate provides a larger amount of video information in packets (and less
amount of redundancy), but a client receives many corrupted packets with more errors
than a channel code can correct. This significantly degrades overall video quality; i.e., the
performance of a rate-adaptive video streaming application depends greatly .on the
accuracy of the channel state estimate.

When CLDS is employed, the channel capacity can be estimated from the entropy of
the residue error process [21]. However, accurate estimation/prediction of the residue-
error process entropy using only packet-level signal strength information is a challenging
task. While these packet level measurements are much coarser than bit-level granularity
required for error entropy computation; bit level signal strength measurements are not
readily available at the MAC layer of current wireless networks. In addition, we need to
adhere to a rate that is strictly below channel capacity to avoid excessive packet drops.

Therefore, if the predicted channel capacity is directly employed, there is a good



likelihood that the predicted capacity (as a random variable) may exceed the actual
channel capacity, which leads to severe distortion of video quality.

For multimedia streaming applications, it is essential to accurately estimate/predict
the channel capacity to provide QoS. However, it is also important to minimize distortion
of video quality when video packets are corrupted due to busty errors by severe
interference which often occurs in wireless channels. A workaround to this problem is to
employ an Unequal Error Protection (UEP) scheme. Under UEP, parts (e.g., Intra-coded
frames) of the video bit-stream, which significantly affects video quality, are provided
with more protection (i.e. a lower coding rate) and vice versa. Therefore, the video
quality depends heavily on how well the video bit-stream is protected for severe
interference in wireless channels.

An ad-hoc network consists of many wireless hops from a server to a client, and each
wireless link between two intermediate nodes experiences interference. Therefore, it is
obvious that there will be channel capacity drops over each hop, and hence, without
optimal rate adaptation, the video quality can be expected to degrade significantly at any
client located at a far-edge of an ad-hoc network. To overcome this limitation, Decoding
and Forwarding (DF), which fully decodes codewords at each intermediate node, can be

employed to provide the best video quality. However, complexity and memory usage for



the method are significantly high. Furthermore, intermediate nodes, which may be
participating by only forwarding the content toward a receiver further-down a multi-hop
chain, do not have much incentive to perform full decoding-encoding of the channel-
coded wireless video content. For such nodes, we need to minimize their burden in terms
of the operation they need to perform toward the delivery of the video content to the final
receiver.

These issues motivate the robust and practical rate adaptation architecture that we

develop in this thesis.

1.2. Overview of Contributions

In this thesis, we provide novel schemes to adaptively provide reliable video content
delivery over wireless LANs. Our objective is to develop robust and practical rate
prediction architecture to support QoS for wireless scalable video. To that end, Chapter 3
focuses on analysis of bit errors at IEEE 802.11b MAC layer and develops a BER
estimation/prediction scheme under CLDS protocols. In Chapter 4, on the basis of the
BER estimation/prediction scheme (with which the channel capacity is estimated), we

take the RD of video into consideration to predict and optimally tune a source and



channel coding rate. In Chapter 5 we develop the operational rate, the empirical RD
model for above-capacity wireless scalable Video, and UEP to employ our optimal rate
prediction framework to practical rate adaptation architecture. In Chapter 6 we extend
our rate adaptation architecture to an ad-hoc network by employing Syndrome Partial
Decoding (SPD) to efficiently manage the overall processing requirements of
intermediate nodes. Finally, Chapter 7 summarizes key conclusions of this thesis.

In Chapter 3 we describe the method of collecting residual error traces which
represents the various and realistic wireless channels and analyze MAC-to-MAC bit-
error characteristics. Based on the analysis, we develop the multi-tier model (MTM) [35];
which leverages a received packet’s SNR and checksum side-information to predict BER,
to accurately predict BER in future packets over a wireless residual channel. It is
observed that direct inference of BER from SNR results in optimistic estimates because
of the relatively large amounts of error-free data (in comparison with corrupted data)
received on viable wireless networks. Consequently, we propose a model that separates
packet- and bit-error prediction. For packet-error prediction, a 3 order Markov chain
model is used at the first tier, and the current SSR value is used to predict a SSR value of
the next packet at the second tier for bit-error prediction. We demonstrate that the MTM

renders higher prediction accuracy than existing Yule-Walker and finite-state Markov



chain predictors at any physical data rate (2, 5.5, and 11 Mbps).

Although our channel capacity prediction scheme based on the BER prediction
scheme provides very accurate prediction performance, it can not be free from error. In
addition, it is a well know fact that the rate above channel capacity will results in packet
drops and degradation of video quality. For these reasons, in Chapter 4, we develop
optimal rate prediction architecture under CLDS protocols (ORPAcyps) [55]. In this
architecture, we leverage the probability distribution of capacity prediction error process
and the RD function of video to optimally predict and tune a rate that maximizes Peak
Signal-to-Noise Ratio (PSNR) of video contents. We exhibit the efficacy of the proposed
scheme by simulations using actual 802.11b wireless traces, an RD model for the video
source and an ideal FEC model. Simulations using source RD models derived from five -
different popular video codecs (including H.264), show that the proposed framework
provides up-to 5 dB improvements in PSNR when compared with conventional rate-
adaptive schemes.

In Chapter 4 we assume the following assumptions in ORPA(y pg: (i) the channel
code achieves the capacity (i.e., an ideal channel coder), and (ii) a block of packets
cannot be recovered at the client if it is coded with an overestimated rate, i.e., a channel

coding rate that exceeds channel capacity. Thus, in Chapter 5 we incorporate i) an



operational rate for a specific channel code which is not an ideal code, ii) an RD function
for above-capacity video, and iii)) UEP which utilizes LDPC code to optimally
realize ORPAcyps in practical rate adaptation architecture. We show that
ORPAc psprovides the considerably accurate average PSNR to the maximum PSNR
and the higher (at least 6dB in 11Mbps channel) average PSNR to that of ORPA-py for
any given channel. This highlights that the proposed schemes bring ORPA-;pg to a
certain level of completion in practical wireless environments.

It is obvious that each wireless channel between intermediate nodes faces channel
impairment due to interference, fading, and multi-path effects. Hence, when a multi-hop
wireless network is introduced, it can be easily observed that channel capacity decreases
over each hop, and hence, End-to-End (E2E) channel capacity becomes very low. This
leads to significant degradation of goodput and video quality for rate adaptation
applications. The workaround to this problem is to employ Decoding and Forwarding
(DF). For DF, an intermediate node decodes the transmitted packets (or codewords) to
suppress noise on the channel between two intermediate nodes, and re-encodes the
packets, potentially with a different codebook, for transmission towards the destination
[61]. However, complexity and memory usage for the method are significantly high.

Moreover, intermediate nodes, which may be participating by only forwarding the

10



content toward a receiver further-down a multi-hop chain, do not have much incentive to
perform full decoding-encoding of the channel-coded wireless video content. For such
nodes, we need to minimize their burden in terms of the operation they need to perform
toward the delivery of the video content to the final receiver. To that ends, in Chapter 6
we develop the new partial processing framework for rate-adaptive wireless video, which
reduces the overall processing requirements of intermediate nodes. We refer to as
Syndrome Partial Decoding (SPD) architecture. We exhibit that SPD, which reduces the
overall processing requirements of intermediate nodes, provides reasonably high goodput,
when compared to End node decoding and ARQ, and less complexity and memory

requirements, when compared to DF.

1.3. Thesis Organization

The rest of this part is organized as follows. Chapter 2 provides background that is
required to understand the material presented in this thesis. Chapter 3 focuses on
“accurate” BER estimation and prediction of IEEE 802.11b channel. Chapter 4 proposes
optimal rate prediction architecture under CLDS protocols for wireless multimedia. In

Chapter 5 we complete optimal rate prediction architecture to be employed as a real

11



world application. In Chapter 6 we extend optimal rate prediction architecture to an ad-

hoc network by considering efficient processing requirements of intermediate nodes. In

Chapter 7 we summarize key conclusions of this thesis.
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CHAPTER 2
BACKGROUND

2.1. Limitation of current multimedia delivery

mechanism/protocols

One of the fundamental challenges for wireless multimedia systems is the availability
of sufficiently high “effective” bandwidth. In principle, “sufficiently high” “effective”
bandwidth implies bandwidth that can support the best possible multimedia quality in
presence of packet drops and while resolving access among competing nodes over the
shared wireless medium. Video applications are usually extremely bandwidth hungry and
can get adversely affected by excessive reduction in the effective bandwidth. Unlike the
traditional wired Internet based communication, the number of packet drops due to bit
errors can be substantial in wireless networks. In typical multi-room Home/Office
settings, there exist many clients that do not have a Line of Sight (LoS) communication
path with the wireless Access Point (AP). Such clients often experience significant

attenuation in the received signal. In addition, the fading effects and, the variation in
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channel quality there of, experienced by such clients is non—trivial. The video quality

service available to such clients can be severely limited on account of excessive packet

drops due to corruption. The effects of such packet drops can get further exaggerated on

account of interference.

The impact of bit corruptions on the effective bandwidth and thus video quality can

be substantially reduced by adopting a fresh perspective in the design of Multimedia

Communication Protocols for the wireless links. From Shannon’s Information Theory

(especially the Noisy Channel Coding Theorem), it is well established that it is feasible

to communicate information even in presence of bit corruptions (noise). Thus it can be

intuitively argued that even partially damaged packets may contain information that

should not be completely discarded. This information if retrieved can help alleviate the

impact of poor channel quality on video applications. Signal processing algorithms

associated with channel/source decoding can enable the efficient retrieval of information

from corrupted packets. Thus it makes prudent sense to develop multimedia protocols

that do not drop all of the corrupted packets.

The first generation of protocols that relayed corrupted packets to higher layers are

developed by simply turning off a checksum at the link-layer and/or by employing partial

checksums at the transport layer (and at times other layers). To the best of our knowledge,
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the author’s were the first to: extended this work to 802.11b WLANS [1] . Subsequently,
many researchers have appreciated the utility of not dropping corrupted packets in
802.11b networks (e.g. [11]-[18]) and wireless networks in general. We refer to all these
cross-layer protocols that are achieved simplistically by employing partial checksums as
Cross-layer Design (CLD).

CLD protocols have shown great promise in improving multimedia delivery, yet they
suffer from some fundamental drawbacks. We elaborate upon these drawbacks, by
raising the following three important questions.
= How do we estimate the utility of a corrupted packet?

The information content and the utility of a corrupted packet are closely tied with the
level of corruption in a packet. The CLD schemes do not provide any information about
the corruption level in a packet. As a matter of fact, they do not even differentiate
between corrupted or uncorrupted packets. Inability to localize the errors can actually be
a major drawback for CLD schemes, at times causing it to perform worse than the
conventional (CON) protocols that drop/discard corrupted packets. Information retrieval
from corrupted packets incurs a processing overhead. The information content in highly
corrupted packets may be téo little to justify the additional processing, while the

processing overhead can be completely avoided if uncorrupted packets could be

15



identified.

= How do I retrieve information when packet identities are questionable?

CLD schemes drop packets that have a corruption in the header, since such

corruptions can modify Critical Header Fields (CHF), which are essential to determining

the identity of a packet (i.e. flow, destination etc.). Such packet drops due to header

corruption could severely diminish the utility of CLD schemes, and thus entirely nullify

the primary motivation for their design.

*  How do we efficiently retrieve information from corrupted packets?

Finally it is important to realize, that Forward Error Correction (FEC) schemes used

over CON are not suitable for cross-layer protocols. Channel decoding used with cross-

layer protocols need to cater to errors as well as erasures. The ability of a channel

decoding to correct errors is closely tied to the ability to localize the errors. In a CLD

scheme, the FEC is provided with no information about the correctly received packets.

This can severely affect the ability of the decoding algorithm to localize errors. Channel

State Information (CSI) is critical in improving the performance of channel decoding

algorithms.
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2.2. Overview of CLDS

In the discussion provided in the previous sub-section the drawback of CLD
schemes were highlighted. In each of the three questions raised above it was noted that
the performance of CLD schemes can deteriorate due to lack of receiver-side channel
state information or simply side-information that could provide us more information
about the corruption status of the packet. Thus a key component of our work is to
identify mechanism that can practically facilitate the estimation of the corruption status
of packet. We shall use signal strength indications, checksums, traffic information,
temporal correlation etc as side-information to estimate the corruption level. We
generically refer to all cross-layer protocols, which utilize some sort of side-information
as Cross-Layer Design with Side-Information (CLDS).

The various components of a typical CLDS protocol have been shown in the
schematic in Figure 2. Unlike CLD schemes which tumn off a checksum and thus adhere
to a paradigm where the corruption status of a packet is not relayed to higher layers, as
shown in Figure 2, in a CLD scheme the checksum status and all other Link-Quality
Indications are provided to the higher layers. These link-quality indications can be used

by higher layers for improved channel decoding and subsequently for improved source
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decoding. The CLDS scheme also employs a Header-estimation block that can detect the
identity of a packet in presence of noise. The Header-estimation block typically employs
mechanisms/models that facilitate channel prediction/estimation. This channel prediction
(possibly in conjunction with other indicators such as SNR, background traffics) is used

as side-information for robust detection of headers.
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Figure 2 Functional block diagram of CLDS protocol based client

2.2.1. CLDS Channel Evaluation

In order to get a taste of the utility of relaying corrupted packets to higher layers and
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the importance of side-information in such protocols, in this section we consider three
abstract protocols. We shall characterize the behavior of these protocols with equivalent
channel models and subsequently deduce the capacity of these channel models. The

comparison of these capacities should allow us to develop clear insight for the problem at

hand.
CH-HDR
AN
r N\
Header Information | (APP) DATA PAYLOAD
\§ J
NV
CH-DATA

Figure 3 A single Logic Transmission Unit (LTU)

The three communication schemes considered in this paper can be explained by
considering a generic Logic Transmission Unit (LTU) as shown in Figure 3. The general
packet structure can be segregated into two parts 1) the header information’ and 2) the
data payload. In addition to traditional header information (e.g., node addresses etc), the
LTU header contains two sets of checksums CK-HDR and CK-DATA. The CK-HDR

checksum is applied to and dependent on the header information only; while the CK-

2 In many practical implementations the header and CK-HDR might be further

partitioned into multiple headers and checksums. In addition a direct correlation of a
specific standard/architecture/implementation with the above-considered abstract LTU
may not always be possible. Reallocation (or even addition) of some header fields might
be required. However, we intentionally do not address such implementation details to
maintain the generic nature of arguments presented in this section.
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DATA check sum is applied to and dependent on the data payload only. Hence, under

this generic LTU model:

e CON, the conventional (non-cross layer) protocol drops a packet if either of the

checksums CK-HDR, or CK-DATA is not satisfied.

e CLD, turns the CK-DATA checksum off and drops the packet only if CK-HDR is not

satisfied. Therefore, a CLD channel exhibits both erasures (due to CK-HDR violations)

and possible errors in some of the delivered packets. It is important to note that

(without further information or additional parity bits) the CLD channel receiver does

not know which delivered packets are error-free and which packets are corrupted. It

only distinguishes between erasures and delivered packets.

e CLDS is an alternative to the above schemes. Similar to CLD, a CLDS channel drops a

packet only if CK-HDR is not satisfied. However, in CLDS the CK-DATA is not turned

off but neither is the decision to drop a packet dependent on this checksum. Moreover

CK-DATA and information about the success or failure of this check-sum is made

available to the application layer as side information. Therefore, and unlike a CLD

receiver, the CLDS receiver can distinguish corrupted packets from error-free packets.

Each of the above schemes presents a different type of channel to the higher

(application) layer. Before we illustrate, what each of these channel look like, we need to
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establish certain important parameters that can capture the performance of each of the

above protocols. Thus the channels under consideration can be parameterized by:

= 4 : The probability that at least a single bit is in error in the header and/or the data
payload. Thus & is the probability of a packet being dropped in a conventional (non-
cross layer) protocol because at l;east one of the checksums, CK-HDR and/or CK-
DATA, was not satisfied.

= A: The probability that the packet header contains at least a single bit in error. Thus A
is the probability of packet being dropped in the cross-layer schemes because the check
CK-HDR was not satisfied. (Note that this event could occur regardless if there

® is an error within the packet data or not.)

® Z: A discrete random variable that takes on three possible outcomes: S, ={0,1,?}.
Where, (i) Z =7 if the header contains at least single bit error and CLDS drops the
packet. Thus p(Z=?)=A. (ii) Z=0 if a packet contains no errors in the header but
contains at least a single bit error in the data payload. Thus p(Z =0)=(5-A1), i.e.
0 — A represents the probability of a corrupted packet being delivered to a CLD/CLDS

channel receiver. (iii) Z =1 if neither the header nor the data payload contain even a

single erroneous bit. Thus p(Z =1) =(1-9).
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= ¢: The conditional probability of a bit in the data payload being in error given that the
checksum CK-HDR is satisfied and checksum CK-DATA has failed. Given a corrupted
packet at a CLD/CLDS receiver, £ represents the probability of having a random bit
selected from that packet to be in error, i.e. £ specifically represents the probability of
error in corrupted packets relayed to the application layer.

= p: The conditional probability of a bit in the data payload being in error given that
the checksum CK-HDR is satisfied. In other words p is the overall probability of bit

error in packets that are received at the application layer (i.e. all packets that don’t get

(6-2)-¢

dropped due to corruption in the header). Also note that p = -4

Thus,
o The conventional protocol (CON), which is the simplest among the three (CON, CLD,
and CLDS), can be represented by a Binary Erasure Channel (BEC) as shown in
Figure 4 (a). It is well known [30] that the channel capacity of a BEC is given by

1-6; hence, the capacity of a conventional protocol is given by

Coon =1-6 (1)
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o The cross-layer protocol, CLD, can be represented as a cascade of a BEC channel
with probability of erasure equal to A followed by a Binary Symmetric Channel
(BSC) with probability of bit error equal to p, as shown in Figure 4 (b). Such a
cascade can hence be termed as Binary Symmetric/Erasure Channel (BSEC). It can
be easily shown that the channel capacity of such a cascade is given by the product of
the channel capacities of the individual channels:

Ccrp =(1-4)-(1-hy(p)) @)

where hy(p) is the entropy of a binary random variable with parameter p .

o The CLDS protocol can be represented by Figure 4 (c). The channel capacity of the
cross-layer channel in presence of side information Z is as follows: when Z =1
all the bits are transmitted reliably; and in this case, which occurs with probability
(1-9), the (conditional) capacity is 1. When Z =? all the bits get erased and the
conditional capacity is 0 while when Z =0 the channel reduces to a BSC with a

cross-over probability & and the conditional capacity is (1-/A,(¢)). Thus the

channel capacity of CLDS is given by:

Ccrps =(1-0)+(6-4)-(1-hy(£)) 3)

24



(a) (b)
/I (z=1)
1-6
1 8-4 —r(z=0)---- 1.¢ --D1
\\ 8
l \" \\.//
2 (Z2=2) < ?
— N

-
e

A 4 £
/ . '// ~
— e T ()/0
1-8 —
0 (z=1)

(c)
Figure 4 (a) Binary Erasure Channel (BEC) representing the UDP channel (b) Hybrid Binary
Symmetric/Erasure Channel (BSEC) (c) BSEC with Side information Z.
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Figure 5 Comparison of channel capacity for CON, CLD and CLDS, & =0.33.

Figure 4 provides a comparison between the capacities for various channel conditions.

Some important conclusions that can be derived from the above Figure are as follows:

= There exist a variety of channel conditions under which the performance of any

cross-layer scheme is better than CON. In Figure 4 observe performance for

£<0.17.

= There exist channel conditions under which the performance of CON is better than

CLD. In Figure 4 observe performance fore >0.18.

= The performance of CLDS is always better than either of CON or CLD.

26



* The relative performance of CLDS over CLD increases as corruption level

increases.

Above conclusions are formally proved in a publication associated with this work [19].

The same paper provides extensions of the above conclusions to multi-hop

communication. We encourage the reader to refer to [19] for additional details.

Can we do better?

The above discussion clearly exhibits the utility of side-information from a capacity

perspective. However, the CLDS scheme presented employs a rather simplistic side-

information In the CLDS mechanism all the corrupted packets are treated equal, however

in practice the channel impairments experienced by each packet may be distinct. So a

natural question, to ask, is whether we can identify methodologies that allow us to

differentiate between corrupted packets at finer resolution.

The answer to the above question is a YES!. There are multiple methods of providing

additional side-information, however one effective method that we have identified is

based on the observation that: Radio hardware used for reception of 802.11b frames is

capable of recording and associating a SSR to each received frame. Thus the relationship

of SSR to BER can be used to provide a robust CSI to the cross-layer error recovery

mechanism.
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For notational convenience let’s name the CLDS scheme that utilizes SSR as a side-
information as an SSR_aware scheme, while the CLDS scheme that does not utilize the
SSR information can be referred as SSR_unaware scheme. Let f (SSR) denote the
probability of receiving a packet with a particular SSR indication. For a packet received
with g particular SSR indication let & (SSR) represent the probability of a packet being
corrupted and e(SSR) represent the probability of a bit error in the corrupted packet.
Also, for convenience let’s assume that we do not see any packet drops due to header
corrﬁption. Then from equation (3) we already know that the capacity of the

SSR_unaware scheme is given by:

Ssr

Cssr _unaware ~ {1 - Z f (SSR»(SSR )) @

J{z f(SSR)é‘(SSR)){l—hb (Z f(SSR)J(SSR)s(SSR)]\]

where 5= f(SSR)6(SSR) & £=)_ f(SSR)5(SSR)&(SSR) represent the overall

ssr Ssr

probability of a packet being corrupted and the overall probability of bit error in a
corrupted packet respectively.
The capacity of an SSR_aware scheme can be found as:

Cssr _aware = Essg [ Ccrps (6(SSR),£(SSR)) (5)

where, Ccyps(SSR) is the CLDS capacity for a particular SSR value, which can be
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obtained by employing equation (3) for channel parameter values obtained for a

particular SSR value, i.e.
Ccips (6(SSR),&(SSR)) = (1- 5(SSR))+5(SSR)-(1-hy (£(SSR)))

Thus, we obtain:

Cssr_aware =(1=8)+ Y. f(SSR)-8(SSR)(1- hy (£(SSR))) (6)
SSR

At this stage it should be noted that, equation (4) can be rewritten as
CssR _unaware = Ccrps (Essr [5(SSR)], Essr [ £(SSR)])- ()
Thus by convexity of the capacity function [30] and comparing (5) and (7) we have:
Cssr _aware 2 CsSR_unaware (8)
The above deduction can be repeated for a variety of feasible side-information
mechanisms. Thus at this stage, at least from capacity perspective, the motivation for

developing CLDS protocols has been clearly established.

2.2.2. FEC for CLD/CLDS Protocols

The FEC schemes we use are realized by interleaving codewords across packets.
Thus an FEC scheme can be completely characterized by N, the packet block length,
the code length n, code rate R and the packet size s in bits and the symbol size b

(in bits) on which the code has been implemented. Thus each FEC block consists of
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(N.R) message packets and (N-s)/(b.n) codewords. The FEC decoding algorithm
uses erasure decoding when used in conjunction with traditional protocols and erasure-
error decoding when used with cross-layer protocols.

For Reed-Solomon based FEC the symbol size is typically the size of a byte i.e.
b =8. With the CON scheme we employ the conventional FEC decoding as discussed in
[27]. For CLD and CLDS schemes, we modify the algorithm, the decoding algorithm
used for simultaneous erasure and error decoding of RS code is the Berlekamp-Massey
Algorithm (see e.g. [25], [26] for background).

For cross-layer schemes, a significant improvement can be achieved by employing
LDPC based FEC schemes. For Low-Density Parity Check (LDPC) code based FEC
schemes the symbol size is typically chosen to be the size of a bit i.e. b=1. The decoding
algorithm used for LDPC is based on the Log-Likelihood Ratio (LLR) domain (see e.g.
[28]-[29] for relevant background on LDPC codes) implementation of the sum-product
decoder.
2.2.2.1. Side-Information for Improved decoding efficiency:

Performance over CLDS can be improved by taking advantage of the side-
information provided by CK-DATA for FEC decoding. This can be done as described

below
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A. FEC block decoding failure: On occurrence of a block decoding failure the

channel decoder is unable to recover all the dropped/corrupted packets.

However as the FEC block is systematic, message packets that can be

identified as uncorrupted can still be forwarded to the eventual application. In a

cross layer design like CLD as we do not have information about CK-DATA, if

a decoding failure is encountered, the entire packet block is dropped. However

in a CLDS scheme the CK-DATA information is used to forward the correctly

received message packets to the application layer.

B. Apriori estimates for improved FEC decoding: CK-DATA side-information

can be utilized to acquire improved apriori estimate of channel impairments

and thus improve FEC decoding:

a. In case of RS based FEC, we use this information rather simplistically; if

the number of packets for which CK-DATA fails is less than the total

number of redundant packets, then even if all the corrupted packets are

treated as erasures the entire FEC packet block is recovered by pure

erasure decoding. Thus the CLDS scheme can switch to the pure erasure

decoding whenever possible to avoid decoding failure due to a high

corruption level in the packets.
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b. In the LDPC decoding algorithm the LLR L(c;)associated with code bit
c; is initialized at the start of the decoding on the basis of the received bit
y; and an apriori assumption of the bit error probability of the ith bit

being P, as

L(c))= (-1 log(' ;,P") ®

e

The message-passing algorithm (log-domain sum-product algorithm) is then
iteratively used to update L(c;). A bit is decoded to 1 if L(c;)<0 and 0 ifL(c;)>0. An
accurate initialization of LLR plays a key role in the performance of LDPC codes and
thus improved CSI can help in improving the LDPC decoding, in particular if a packet is
received without any errors then L(c;) corresponding to the bits in that packet is
obtained by setting P, =0 and similarly if a packet is dropped L(c;) is obtained by

setting P, = 0.5. Thus we initialize the LLR for various cross-layer protocols as described

below:
A. CLD:
i 1-p g s
L(c;)=(-1)"* log| —— if bit is not erased,
p (10)
L(c;)=0 if bit is erased
B. CLDS:
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L(Ci) =0
L(C') =00

if bit belongs to a dropped packet
L(c;)=(-1)"" log| —
£

if bit belongs to a corrupted recieved packet

if bit belongs to an uncorrupted recieved packet
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Figure 6 Message packet throughputz , after channel decoding, for RS/LDPC based FEC
schemes over CON/CLD/CLDS. Channel conditions are given by 6 =0.33, 4 =0.01.

Figure 6 shows the performance of RS/LDPC based FEC schemes in which each
FEC block consists of 30 packets (20 message, 10 parity/redundancy) of 500 bytes.
Performance trends predicted by the capacity deductions are observed in FEC

performance also. In particular it can be seen that the performance of CLDS schemes are

the best. Even though CLD schemes can perform better than CON, as the corruption

level increases the performance of CLD is worse than CON.
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With regards to the performance of a specific FEC scheme, it can be clearly seen that

LDPC based FEC schemes can provide significantly improved performance when

compared with RS based FEC. This improvement at least in part should be attributed to

the fact that we employ a soft-decoding algorithm for LDPC based FEC. When the

corruption level is high, the performance improvement of LDPC with side-information is

significantly better than all other combinations. Thus, in practical deployments side-

information may play a pivotal role in increasing the robustness of video communication

architecture.

Just as had been commented in the capacity deduction, we highlight that the CLDS

scheme explored above is a simplistic one. Improved performance can be obtained by

including better indicators of link quality. In particular in SSR_aware CLDS scheme we

initialize the LDPC algorithm as follows:

L(c;)=0 if bit belongs to a dropped packet
L(c;)= if bit belongs to an uncorrupted packet
i 1-¢(X)) ...
L(c;)=(-1)"" log W if bit belongs to a corrupted packet (12)
£

with with SSR indication X
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CHAPTER 3
MULTI-TIER MODEL FOR BER

PREDICTION

In this chapter, we describe the method of collecting residual error traces which
represents various and realistic wireless channels; and we analyze MAC-to-MAC bit-
error characteristics of these wireless MAC-layer channels. Based on our analysis, we
develop a multi-tier model (MTM) for BER estimation and prediction. Here it is
important to explain what we mean by BER estimation and prediction. In contemporary
wireless networks [43], [44], a wireless receiver’s link layer performs a packet-level
checksum to determine whether a packet is error-free or corrupted. Obviously, the BER is
zero if a packet passes the checksum, thereby eliminating the need for BER estimation.
For a packet that fails the checksum, the receiver does not know how many bits within
the packet are corrupted. This kﬁowledge is important analytically and in practice, and it
has a direct implication on the effective channel capacity and the choice of certain cross-
layer wireless protocols [45]-[47]. Thus for a corrupted packet, one needs a scheme that

can render an accurate estimate of the number of errors in the packet. Once the BER of

35



the current packet is estimated, the next problem is to predict the number of errors in the
following packets.

The proposed MTM leverages Signal to Silence Ratio (SSR) indication and
checksum side-information to estimate the BER in the current packet and to predict the

BER in future packets.

3.1. Trace Collection

Wireless network simulators often rely on channel models to recreate the
complexities of the real-world. Channel models that fully take into account channel
memory that produces persistence and clustering of errors in transmissions are often
based on Markov chains [8]-[10]. Unfortunately, the complexity of Markov models
grows as O(nz) with increase in the memory length n of wireless channel errors. To
provide an appreciation of the increasing richness of the inhabitants of the 2.4 GHz
Industrial-Scientific-Medical (ISM) band, consider that IEEE 802.11b Wireless Local
Area Networks (WLAN) [57], microwave ovens and cordless phones all operate at these
frequencies. Additional factors which further complicate channel modeling include

effects of interference, differences in environment (open space, office, residential, public
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etc.) and the question of what constitutes “typical” background traffic and noise. Of

course, it is possible to create interference scenarios by placing additional interference

sources in simulated settings and hope that the simulator does a good enough job at

modeling interference effects. However, the validity of assumptions made about traffic

patterns and background noise due to interfering sources is unreliable. Since simulations

[58] are often based on simple channel models, the validity and accuracy of simulator

results is doubtful. The environments are often simplistic and unrealistic in comparison

to what is observed in real-life. To that end, we collect a comprehensive set of residual

bit-error traces representing realistic wireless channels and use them in our experiments

to verify the performance of our developed schemes.
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3.1.1. Data Collection

We collected error traces simultaneously on five IEEE 802.11b wireless receivers (or
sniffers). The receivers were located at different places in a lab, while the access point
(AP) was placed in a room across a hallway from the receivers to simulate a realistic
classroom/office setting [Figure 7]. The receivers’ MAC layer device drivers were
modified to capture corrupted packets. Each experiment comprised of one million

packets with a payload of 1,000 bytes each, i.e., each trace has approximately 1 GB of

Rm2322
I Sniffer1 SnifferS
| g ‘

2181 ¥ Shiffer2 Sniffer4

12 ft

Figure 7 Topologies used for wireless trace collection.
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data, which corresponds to approximately 4 and half hours of error trace collection when

packets are transmitted at 500kbps. Note that the error traces were collected in a

university lab environment so it is not possible to precisely account for movement

activity in the hallway. However, even though the receivers were located in the same

room, they were place in different locations, and consequently they encountered very

different channel state or loss pattern. For instance, it was clearly observed that BER of

the traces collected by the receiver 5 in Figure 7, which was placed near by the window

(which was close to a street) and surrounded by metal bookshelves, was considerably

higher than that of other traces collected by other receivers. Therefore, the error traces

can represent the various and realistic channel states of wireless environment.

A wired sender was used to send multicast packets, in which a multicast IP address is

defined, with a predetermined payload on the wireless LAN; multicasting disabled MAC

layer retransmissions. In addition to a packet’s header and payload information, we

logged signal to silence ratio (SSR) for each packet. The sender used four different

transmission rates which are 500, 750, 900 Kbps and 1 Mbps. Note that a packet rate

(packets per second) differs with transmission rates. At the physical layer, the auto rate

selection feature of the AP was disabled and for each experiment the AP was forced to

transmit at a fixed data rate (2, 5.5 or 11 Mbps). For each trace collection experiment, we
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set a transmission rate and a physical layer data rate, and hence 12 different experiments

were conducted at different times of dayj, i.e., 60 error traces were collected.

3.1.2. Average Statistics of the Traces

TABLE I provides some statistics of the traces collected for this study. Since the
physical layer robustness decreases with an increase in data rate, the average packet error
rate increases with an increase in the physical layer data rate. In particular, the average
packet error rate increases from approximately 10% at 5.5 Mbps to almost 40% at 11
Mbps. Since the wireless receivers were placed at different locations, the receivers
experienced different packet error rates. The overall minimum and maximum error rates
in TABLE I outline that the receivers under consideration were experiencing both good

and bad link conditions.
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TABLE I Statistics of Traces Used In This Study

Phy. data | Avg. PER| Min. Max. Avg. Min. Max.
rate PER PER SSR SSR SSR
(Mbps) (dB) (dB) (dB)

2 5.97% 0.75% 14.31% 14.75 0 34

55 9.79% 0.61% 22.74% 15.27 0 32

11 39.5% 10.99% | 77.83% 16.51 0 35

TABLE II Error Statistics For Varying SSR Values At 11 Mbps

SSR Average Packet- BER of all packets BER of
(dB) Error Rate (error-free & corrupted
corrupted) packets
5 0.701 0.0253 0.0361
13 0.6248 0.0157 0.0251
20 0.2166 0.0048 0.0223
26 0.0384 0.0023 0.0591

The average, minimum and maximum SSR values are also shown in TABLE 1. Note
that the minimum SSR value i.s zero at all three data rates. From a prior analysis [21] [35],
we know this SSR range is of interest for the protocols considered in this paper.

The relationship between SSR values and the channel error rate is also shown in
TABLE 1. 1t is easily observed from the second column of TABLE II that packet error
rates increase drastically with a decrease in SSR values. In particular, the packet error
rate increases by approximately 18% as the SSR decrease from 26 dB to 20 dB. Similarly,

there is a packet error rate increase of about 41% between SSRs 13 and 20.
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3.1.3. BER Behavior at Different SSR Values

Figure 8 uses the 11 Mbps residual channel to show that the BER behavior of the
channel changes considerably with a change in the received packets’ SSR values. (For
brevity, in this section we only show results for the 11 Mbps channels because results for
2 and 5.5 Mbps channels were similar. In the modeling sections, we show results for all
three channels under consideration.) At an SSR of 5 dB, small number of errors in a
corrupted packet are fairly infrequent, as shown by the low normalized frequency of
errors in the [1,200] range of Figure 8 (a). This is mainly because at such low SSR values,
most of the received packets are corrupted, and a large number of bits in these packets
are corrupted. As the SSR increases, the skew of the histogram changes and the corrupted
packets have fewer bit-errors. This trend can be observed in Figure 8 (b), (c) and (d),
which show that the frequency of small number of bit-errors increasgs with SSR. For
instance, at an SSR of 26 dB, almost 25% of corrupted packets have less than five bit-
errors. Comparison of Figure 8 (a), (b), (c) and (d) clearly shows that an increase in SSR

decreases the mean number of bit-errors in a corrupted packet.
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Figure 8 Normalized histograms of the number of bit-errors in a corrupted packet for varying
SSR values; histograms are averaged over all 11 Mbps residual traces, and only number of
errors between [1,200] are shown.

The relationship between SSR values and the channel error rate is also shown in
TABLE II. It is easily observed from the second column of TABLE II that packet error
rates increase drastically with a decrease in SSR values. In particular, the packet error
rate increases by approximately 18% as the SSR decrease from 26 dB to 20 dB.

Similarly, there is a packet error rate increase of about 41% between SSRs 13 and 20.

To avoid repetition, we defer discussion on columns 3 and 4 of TABLE II to a later
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section.
Based on the results presented so far, we deduce that SSR is a robust and effective
side-information of a wireless link’s condition. The following section leverages this side-

information to accurately estimate and predict the BER of the channel.

3.2. A Markov Model for PER Prediction

We first emphasize an important point highlighted by columns three and four of
TABLE II. Note that for low SSR values (i.e., poor link conditions,) the BER computed
using all (error-free and corrupted) packets is somewhat similar to the BER computed
using only corrupted packets. However, when we compare the BER at higher SSR (20
and 26 dB in TABLE II), the BER computed using all packets is orders of magnitude
different from the BER computed using corrupted packets only.

The BER difference for high SSR value is very stark because: (i) most of the received
packets are error-free; and (ii) the relatively small number of corrupted packets has
relatively-high BER. In general, and based on our extensive study of this issue, it became
evident that the relatively-small number of corrupted packets, at relatively-high

SSR/SNR values, provides good (yet conservative and slightly biased) estimates of BER.
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Meanwhile, including the relatively large number of error-free packets in the BER
estimates (especially at high SSR/SNR values), provides highly optimistic (very biased)
estimates of BER in actually corrupted packets. A surprising result shown in TABLE II is
that the BER in the corrupted packets is very high for high SSR values. We observed that
while the total number of corrupted packet at high SSR values is quite small, the
corrupted packets contained a large number of bit-errors. We believe that this
phenomenon occurs because the corrupted packets at high SSR values are mostly due to
packet collisions, and therefore these packets contain are highly corrupted.

High SSR values are quite important because over real-life wireless channels, many
packets are received with high SSR values. (For instance, as shown in TABLE I, we
observed maximum SSR values of 34, 32 and 35 dB for the 2, 5.5 and 11 Mbps channels,
respectively.) Therefore, we propose that at the first tier, an accurate predictor should
solely focus on packet-error prediction. In turn, BER prediction should only be done for

packets which are predicted to be corrupted by the packet-error model.

3.2.1. Correlation of the Packet-Error Process

To determine an accurate first-tier packet-error model, we first analyze the correlation

coefficient of the packet-error process. Let X, denote a discrete binary packet-error
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random process. Thus for a givenn, X, €{0,1} is a binary random variable with
X,=0 and X, =1 respectively representing that packet » is error-free and
corrupted.

For each physical layer data rate, we treat the packet-error sequences obtained from
the traces as realizations of the packet-error process for that data rate. Then the random
process’ autocorrelation function is [39]

R[7]=E{XoX,}, (13)
where E{} is the sample expected value computed using the process realizations.
Using the autocorrelation, we compute the sample correlation coefficient of a packet-

€ITOTI Process:

_E{XoX,}-E{Xo} E{X,} (14)

where oy represents the sample standard deviation of random variable X . This
correlation coefficient provides a normalized measure of the amount of correlation
present in the data. Markov chains are generally used to model processes with low-
correlation values, whereas highly correlated processes are typically modeled using

heavy-tailed models [48].
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Figure 9 Sample autocorrelation coefficient of an 11 Mbps trace.
Figure 9 shows the correlation coefficient of a sample 11 Mbps residual trace.
(Correlation decays for other traces were similar and are therefore skipped.) Clearly, the
packet-error process’ correlation shows an exponentially decaying trend. The correlation
function drops to and stays at an insignificant value at lags of more than three. Thus we

deduce that a 3™ order Markov chain can be used to model the packet-error process.

3.2.2. The 3rd order Packet-Error Markov Model

To predict packet errors, we define a discrete-time Markov chain such that each state

of the chain corresponds to one of the 2} =38 possible combinations of three binary

symbols; each binary symbol represents an error-free or corrupted packet. Transition
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probabilities of the 3™ order Markov chain are computed by sliding a 3-bit window over
the wireless traces and by observing the frequency of a binary pattern x =[xx;...x;]
followed by another bit-pattern y =[yy; ... y¢], for all patterns x and y.

The 3™ order Markov chain model’s transition probabilities are computed from the
packet-errors observed in the traces of this study. Since the BER behavior changes
drastically with respect to the physical layer data rate, for each data rate (2, 5.5 and 11
Mbps), we train a different 3 order Markov model. After model training, given a
packet’s checksum side-information (pass/fail), we use the Markov chain to predict
whether the next packet will be error-free or corrupted. The prediction process is
conducted as follows. From any given state of the 3™ order Markov chain, the process
can transit either to a state with an upcoming error-free packet or to a state with an
upcoming corrupted packet. There are two transition probabilities associated with these
two possible transitions, say p andl-—p. To predict the checksum of the next packet,
we treat these probabilities as a Bernoulli random variable, with probability of success
p corresponding to the probability that the next packet will be error-free, and the
probability of failure 1-p corresponding to the probability that the next packet will be
corrupted. Furthermore, from the checksum of the next packet, we know whether or not

our prediction was correct. If the prediction was correct then the predicted state of the
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Markov chain is used for the subsequent prediction. Otherwise, the Markov chain’s

current state is changed to the opposite of what was predicted.

As explained earlier, BER estimation is only invoked for corrupted packets. In the

following section, we explain the BER estimation using SSR values.
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Figure 10 The multi-tier BER prediction model.
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3.3. Packet-Level Model for SSR Prediction

Once a corrupted packet is predicted by the tier 1 model, at the second tier we use the
SSR of the received packet to predict the SSR of a future packet. For each possible SSR

value (which ranges between 0 and 100 dB), we maintain a discrete conditional

probability distribution of the next SSR values. Thus a conditional probability value F;

yields the probability that if the SSR value of the current packet is i dB then the next

packet will be received at an SSR of j dB. The conditional probability distributions are

computed using corrupt packets observed in the traces.

3.4. BER Prediction using BSC Models

The second tier model predicts the SSR of the next packet using a conditional
probability distribution. In accordance with prior discussions and as shown in TABLE II,
the BER of the channel changes with respect to the channel SSR. In general, we observed
a non-linear relationship between SSR and BER. Therefore, after predicting the next
packet’s SSR, we employ a binary symmetric channel (BSC) model to predict the BER
of the next packet. While we acknowledge that the BSC model is somewhat simplistic

for the present problem, we observed that this simple model can provide quite accurate
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BER prediction, especially at low physical layer data rates. Hence, we use the crossover
probability of the BSC model corresponding to the predicted SSR as the BER estimate of

the next packet.

3.5. Performance Evaluation of the MTM

We now compare the performance of the proposed MTM model with two leading
predictors, namely the Yule-Walker (Y-W) predictor [39] and finite-state Markov Chain
(FSMC) predictor [49],[50].

For the Y-W based BER prediction, we first use SSR values of the last k£ packets to
predict the SSR of the next packet. More specifically, let S, _;.1,S—k+25---55, be
the SSR values of the last k£ packets. The Y-W predictor predicts the next SSR

value, S,,, 1, using a linear filter of the form:

k-1
Sps1= 2 BiSni
i=0

The coefficients of the filter are computed as:
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h[0] R[0] R[] R[2] - R[k-1]T'[R[]
h[1] _ R[1] R[0] R[1]] - R[k-2]| |R[2]

h[k-1]| |R[k-1] - R[1] R[0] R[k]
where R[] is the autocorrelation function of (13). We experimented with different
values of k, and obtained the best Y-W prediction performance for £ =5. Once the

SSR is predicted using the above equations, we use the tier 3 BSC models of Figure 10 to

predict the BER of the next packet.
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The FSMC predictor [49] employs a Markov chain model of SNR values to predict
future SNR values. The FSMC model of SNR values is designed specifically for a fading
channel and the model assumes the availability of SNR values for each symbol. The
FSMC partitions SNR values into N disjoint intervals, where each interval represents
an FSMC state. Different state SNR partitioning strategies have been proposed in prior
literature [49],[50]. It has also been shown that under fading conditions, an FSMC model
in state i can only transit to its neighboring states i—1 andi+1. After predicting the
next SNR value, BSC models are used to predict the BER of the next packet.

Since on a residual channel we only .have packet-level SSR information, the
previously-proposed SNR partitioning algorithms are not directly applicable here.
Moreover, at times we observed large fluctuations in SSR values. These fluctuations
made the constraint of transitioning only to the neighboring states impractical. Therefore,
we modify the original FSMC model [49] such that the model can transit from any
current SSR value to any other SSR value. For fair comparison with the MTM, we place

each SSR value into a different FSMC state.
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To clearly show the accuracy of a BER predictor without short-term biases, we

compare the predicted and actual BERs in non-overlapping time-windows of length 7

TABLE III Average Absolute Error of BER Predictors.

Phy. data rate Three-Tier Yule- Finite-State Markov
(Mbps) Model Walker Chain
2 0.0015 0.0042 0.0028
5.5 0.0044 0.0075 0.0057
11 0.0094 0.0097 0.0101

seconds. In each time-window, we compute the absolute value of the difference between
the predicted and actual BERs. This difference is henceforth referred to as absolutg
prediction error. Clearly, smaller prediction error implies higher prediction accuracy.

Figurell compares the performance of the proposed model with Y-W and FSMC
predictors for 7 =50 seconds; that is, each point shown in Figurell is the average
prediction error in a 50 second time-window. It can be observed that at 2 and 5.5 Mbps
the proposed model provides consistently better performance than Y-W and FSMC
predictors. At 11 Mbps, the accuracies of all the predictors are comparable. Performance
of the MTM at 11 Mbps is less convincing because the bit-error characteristics of the 11
Mbps channel are quite different from 2 and 5.5 Mbps. Specifically, prior studies have
shown that 11 Mbps bit-errors exhibit long-range dependence, and therefore multi-scale

models are required to characterize these bit-errors [S1]. We are currently incorporating
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such models in the multi-tier framework to improve BER prediction at 11 Mbps.

In TABLE III, we compare the average accuracies of the predictors under

consideration. For the results of this table, the absolute prediction error was averaged

over the entire trace. It can be clearly seen that average prediction accuracy of the MTM

is consistently higher than both Y-W and FSMC predictors. Thus, irrespective of the

physical layer data rate, on-average the MTM renders higher prediction accuracy than

both Y-W and FSMC predictors.
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CHAPTER 4
RATE PREDICTION AND TUNING

In this chapter, we develop a rate adaptation architecture using the two main
contributions: channel capacity prediction and optimal rate tuning. Note that the “channel
estimator” in the client and the “rate tuner” in the server shown in Figure 1 employ the
channel estimation and tuning schemes developed in this chapter, respectively.

For channel capacity prediction, BER is estimated from the crossover probability, ¢,
of a BSC model that is inferred from the packet SSR values. The residue-error
entropy, Hy(¢), for a time-window is then calculated using two methods: (i) Hj(€)is
estimated by the average of the instantaneous entropies (entropy of each packet) over the
time-window (CLDS)), or (ii) Hp(¢)is estimated by the entropy of the average BER
over the time-window (CLDS,). These entropy estimates are used as the prediction for
the next time-window. Optimal rate tuning is achieved by finding the rate that provides

the maximum PSNR over the distribution of the channel prediction error process.

58



4.1. Limitations and Optimal Rate Adaptation Period

In this chapter we consider the following simplifying assumptions: (i) the channel
code achieves the capacity (i.e., an ideal channel coder), and a block of packets cannot be
recovered at the client if it is coded with an overestimated rate, i.e., a channel coding rate
that exceeds channel capacity; (i1) A video encoder provides a bitstream having a bitrate
that is exactly the same as the required bitrate, and the bit stream renders PSNR value
[38] according to the bitrate. With (i) and (ii), we realize the architecture where for video
rates that cannot be supported by the underlying channel capacity, the video quality
reduces to zero (i.e., zero PSNR value). Note that without the assumptions (i) and (ii)
(i.e., a realistic channel coder or video encoder was used), we should carefully take the
performances of the channel coder and video encoder into consideration in finding the
optimal rate. Therefore, the above assumptions were made to focus only on the
performance of our proposed scheme.

In addition, the time-window for the experiment is selected such that the variation in
link-quality from one window to the next is minimized. Allan Variance is a measure
which allows us to methodically determine such an optimal size of the window [40], and

it computed as follows:
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2, _ 1 L _ 2
AVAR (r)_2(k—l)'§_l(c(r)"+l C(2),) (15)

where AVARZ(r) is the Allan Variance as a function of averaging time, 7 ;

m
C,,(=1—iZHb(e,~)) is the average channel capacity of the measurement in time
i=1

window »7; and kis the total number of time windows. Note that 7 in equation (15) is
related to the number of packet, m. However, different transmission rates lead to
different packet rates, and hence the number of packets, m, in a time window differs

with transmission rates. For this reason, we expressed equation (15) in terms of 7, with

which we can represent a common time interval for any transmission rate.
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For all traces that we have considered, the Allan Variance of BER is minimal for a
time-window size of 5 seconds [Figure 12]. Hence, in this study we use the time window

with a size of 5 seconds.

4.2. BER and Channel Capacity Estimation

As shown in TABLE II, the BER of the channel changes with respect to the channel
SSR. In general, we observed a non-linear relationship between SSR and BER. Here, we
employ a BSC model, which utilizes each SSR of a packet to estimate the BER over a
given block of packets. While we acknowledge that the BSC model is somewhat
simplistic for the present problem, we observed that this simple model can provide quite
accurate BER prediction; and more importantly it provides a conservative estimate for
the channel capacity due to the lack of a memory model in the channel.

We partitioned the collected traces into training and test data. Next, with training data
we define bins over the entire SSR range and determine the average BER for each bin.
Note that we regard the average BER as the crossover probability in Binary Symmetric
Channel (BSC) model [21], [33], [35]. Hence, a packet renders a BER estimate according

to its SSR. During the testing phase we use these estimates of BER to determine channel
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capacity over the time window (or the number of packets, m for a given transmission

rate) that is defined in equation (15). The channel capacities are calculated as follows:

CLDS§

m ~
Cn  =1-=) Hy(s), (16)
m i=1

_CLDS), | m~

Cn =1-Hy(=) &), and (17
mi-1

_CON | m

Cn =1-=)Z;=1-PER (18)

m

i=l

~

where ¢; represents the channel BER estimate for packet i, Z; is a binary variable

representing the status of the checksum of packet i (z,=1 if checksum fails).
Equation (16) is the capacity estimate CLDS; computed based on the average of the

instantaneous per-packet error-process entropy in a block of m packets, equation (17) is

the capacity estimate CLDS, computed based on the error-process entropy using the
average error of packets over the same m-packet block, and equation (18) is the estimate

of channel capacity under CON protocols.
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4.3. Channel Capacity Prediction

Prior studies have indicated that bit-errors have high temporal correlations, especially
in 802.11b wireless networks [34]-[36]. In Figure 13, the correlation coefficients of a
number of traces are shown and calculated on the basis of the channel capacity process.

The correlation coefficient is computed as

- E[CnCn+l]- E[Cn]E[Cn+l]
Jvar[C,]-var[Cpyy]

p ; (19)

where E[.] and var[] are the sample mean and the sample variance functions. Figure

0.8t 4
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ocarelation
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trace number

Figure 13 Temporal correlation in channel capacity for 11 Mbps traces (traces from
1 to 5 collected with transmission rate at 500, 6 to 7 at 750, 7 to 10 at 900, and 11 to
14 at 1024Kbps).
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13 clearly exhibits the existence of temporal correlation that is non-negligible in all
traces, and it is quite significant in most traces. This correlation can be taken advantage
of to predict the channel capacity for the next time-window. We exploit this correlation
by using the channel capacity estimate of the current packet as an estimate for the next

packet’s channel capacity:

A

Cn+1=Cp ’ (20)

A A A A

~

which deduces the channel prediction error, €, .1 =C,—Cn=Cp—Cp=Cn+1-Chn.

Although we have considered other optimum predictors (e.g., Yule-Walker [39]), our
simulation results demonstrate that the above simplistic prediction in conjunction with
the optimal rate tuning (described below) provides significant improvement over
conventional protocols. Furthermore, the prediction performance of equation (20) is very
similar to the optimum Yule-Walker predictor [39] [TABLE III]. Consequently, we focus
the remainder of this paper (in the context of the proposed rate prediction architecture) on

the predictor determined by equation (20) due it is minimal complexity.

4.4. Optimal Rate Tuning

We need to adhere to a rate that is strictly below channel capacity to avoid excessive
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packet drops. Therefore, if the predicted channel capacity is directly employed, there is a

good likelihood that the predicted capacity (as a random variable) may exceed the actual

channel capacity. A natural workaround to this problem is to make the predicted capacity

more conservative by subtracting a small offset A from the channel capacity prediction,

A

C,—A. Such a strategy can, however, results in considerable long-run bandwidth

wastage, and therefore judicious selection of the A parameter is extremely important.
We propose to find the “optimal” value of A (leading in turn to the optimal video rate)
such that the average video peak signal-to-noise ratio (PSNR) over some period of time

(or over a set of blocks of packets) is maximized:

* N A A
Ap = arg max %Z(I(Cn >C,—A))-0((C,-A)-T)
A n=1
(21)

and Rn = Cn—An
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Figure 14 The channel prediction error process (e ) resembles the probability distribution
of Gaussian.

where, C,, and C, are the actual and predicted channel capacities, and I(-), Q(-)and

T respectively represent an Indicator function®, an RD (video quality) function and a
transmit rate*. Thus the above objective function assumes a rather simple binary quality-
indicator that forces the estimated PSNR value to zero when the rate exceeds the capacity.
Note that based on the present objective function defined in equation (21), the “optimal”
rate can be computed only when the overall statistics and the actual channel capacity

values are available. Since the optimal rate determined using (21) is based on the entire

3 1(4,):{0 if ¢ is not satisfied

1 otherwise

plisinz - pit size where t is time — window (bits per second), and hence R-T

T
is the effective transmission rate which is actually transmitted for the underlying channel.

4 7o
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trace, it cannot be utilized in real-world applications. We resolve this issue by observing
that the probability distribution of the channel prediction error process, e, is very close to
a Gaussian distribution, N(0, O'ez ), as shown in Figure 14. Furthermore, we take into
account the normal distribution, which is well known to have the highest entropy, and
hence provides the most conservative estimate. Based on the Gaussian assumption for the
prediction error, this leads to an expression that replaces the indicator function with the

normal distribution function. The predicted channel capacity can then be optimally tuned

*

by finding arate R, to maximize PSNR n as

R,= argmax  Q(R,-T)-Pr{C, 2R,}+Q'(|R, - Cp|-T)-Pr{C, <R,}
R, (0SR,<1)

1 A
J' 1 exp _(Cn_cn)2
R, \/27r0'e 20'3
= argmax Q(R,-T): , —
R, (0<R, <1
n(0<Ry <) [ —exp ~Ca=C | 22)
0\/27tcre 20-3 g

Cn

R A
L e =G |
R -C|| 0 V27 20; "
+ 0 n nll. ~
I R, 1 2
I 1 exp -(Cn-Cn) Cn
0J27t0'e 2°'e2
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where Q(-) is the RD (quality) function of the video sequence (as a function of total
number of bits used to code the sequence); Q'() is the quality function of the video
sequence for rates above capacity; and I(-) represents the probabilities of rate below
capacity (the first term in equation (22)) and of rate exceeding capacity (the second term
in equation (22)) based on the distribution of channel prediction error process. As we
highlighted in the previous subsection, we assume that Q'() equal to 0. Thus the
predicted channel capacity can be fully utilized and the video quality can be optimized
when the product of the RD function and the probability distribution of the channel
prediction error process is maximized. In the subsequent section, we use the above

objective function to compute the optimal video rate.

4.5. Performance Evaluation

We now compare the performance of the proposed rate prediction
architecture, ORPAcy ps, With ORPAqoy . For notational convenience, henceforth we
refer to the architectures of equation (16) and equation (17) as ORPACLDS1

and ORPAcy ps, , respectively. For ORPAcy , we first use checksums for a time-window

to find the PER, which is in turn used to estimate the channel capacity for the time-
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window. As explained earlier, this channel capacity estimate is then used as the predicted

capacity for the next time-window. For ORPAy , the optimal rate adaptation scheme is
also employed in the same way as the ORPAc;ps schemes.
To compare the performance of each architecture, experiments in this study were
conducted as follows:
1.Estimate the channel capacities of k time windows in a trace by using BER estimate
of each packet and equation (16), (17), (18), and (20).
2 Find the optimal rates of k time windows by using equation (22).
3.Calculate the average PSNR values over all time windows of a trace (when the
chosen optimal rate is greater than the actual capacity for a given time window, we

set the PSNR of the time window to zero) as follows:

k * *
Average PSNR =% > QR T)-1(C, - R, >0).

n=l
4 Repeat 1-3 for different error traces.

As for channel capacity prediction, Figure 15 clearly shows that ORPACLDSl and

ORPAcyps, perform better than ORPAcoy - TABLE IV also compares the performance

of channel capacity prediction in terms of MSE for all three architectures. It can be

observed that at any physical data rate ORPAc;ps provides consistently better
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performance than ORPAcypg, andORPAcoy . Note that exploiting of PER results in
less accurate prediction than the prediction based on a BER estimate, and because of the
convex property of the entropy function, ORPAcy ps, provides more conservative and

hence less accurate measure (in MSE sense) than ORPAcy py; -

From TABLE V, we can observe that accurate prediction alone does not necessarily
imply better overall rate adaptation. Specifically, if capacity prediction is employed
(directly) without optimal rate selection, over-predicted channel capacities cause
significant packet drops, thereby leading to considerable PNSR degradation. Therefore, it
is imperative that any capacity estimation and prediction framework is complemented
with rate tuning.

The excellent performance of the proposed optimal rate tuning scheme can be clearly
seen in TABLE VI and Figure 16. By comparing TABLE VI (optimum rate selection)
and TABLE V (no optimum rate selection), one can observe that the proposed scheme
significantly improves the overall performances of ORPAc;ps, and ORPAcyps, as
well asORPAqpy - ForORPA-oy , it should be observed that the optimal rate tuning
degrades the overall performance at 11 Mbps. This is because ORPA-py predicts the
channel capacity rather conservatively at 11 Mbps due to the fact that large number of

packet drops are often introduced. Hence, the predictions of ORPAr)y are consistently
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and considerably lower than the actually available channel capacity. As a result, the

performance of ORPAq-py at 11 Mbps is slightly degraded.

In TABLE VI, we also compare the overall performances of

ORPAcy ps, ,ORPACLDS2 , and ORPAqoy 1n terms of the average PSNR at different
physical data rates and transmit rates. It can be observed that at any physical data rate,
the proposed rate adaptation architectures, ORPAcyps; and ORPAcypyg, , perform
consistently better than ORPAcy . However, at 2 and 5.5 Mbps channels, ORPAcy ps,
on average performs better than ORPAcyps; Wwhose prediction performance is better
than ORPAcy ps, - It is true that ORPAcyps, 2 ORPAcyps, because of the convexity
property of the entropy function, Hj(&)([41]. Additionally, for 2 and 5.5 Mbps channels,
the variance of channel capacity is considerably smaller than the 11 Mbps channel as
shown in Figure 15. Thus, ORPAcypg; has more probability of selecting the optimal rate
exceeding the channel capacity thanORPACLDS2 even after applying the rate tuning
scheme. This results in the performance degradation of ORPAcypg, in the video quality
although  ORPAcyps, provides a better performance in prediction of the channel
capacity.

To further illustrate the performance of proposed architecture, we have thoroughly

tested it using a comprehensive set of RD functions from various CODECs (H.264,
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Dvix5.1, WMV9, MC-EZBC, and XivD0.9), and a variety of video sequences (Foreman,
Head, Mobile, and Stefan) [38].

TABLE VII and TABLE VIII show that the proposed architecture can achieve up to 5
dB improvement in the average PSNR comparing to ORPA-py and provides
consistently good performance with all types of CODECs and video sequences.

In summary, higher channel capacity and more accurate channel capacity prediction
are achieved by ORPAq;ps than ORPA-py at any physical layer data rate; and this
leads to better channel utilization and more optimum video rate selection. Moreover, as
described in Chapter 3, the collected traces can be considered as the representation of
realistic wireless channels, and consequently the trace-driven experiment results
represent the outstanding performance of our proposed scheme in the realistic wireless

environment.
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TABLE IV Average MSE Of Channel Capacity Prediction.

Phy. Pac‘,(et ORPAcips; | ORPAcips, | ORPAcon
data rate transmit rate 2
(Mbps) (Kbps) InfoBits?) | (nfoBitsd) | (RHoBits)
500 0.0004 0.0007 0.0035
750 0.00002 0.00009 0.0002
5 900 0.0002 0.0006 0.0037
1024 0.0002 0.0009 0.0039
Overall avg 0.0002 0.0006 0.0028
500 0.0005 0.0012 0.0053
750 0.0007 0.0021 0.0121
55 900 0.0002 0.0006 0.0019
1024 0.0017 0.0043 0.0172
Overall avg 0.0008 0.0020 0.0091
500 0.0014 0.0040 0.0563
750 0.0011 0.0056 0.0168
1 900 0.0033 0.0063 0.1267
1024 0.0056 0.0129 0.2462
Overall avg 0.0029 0.0072 0.1115
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TABLE V Prediction Performance (In Terms Of Overall Video Quality) Before The Optimal

Rate Tuning.
Pkt Xmit | om!
Phy Rate (I?;;;) ORPAcips, | ORPAcLps, OR(P d‘;c)ON
(Kbps) dB) (dB) (dB)
500 33.98 12.54 30.95 33.30
750 35.63 21.45 28.04 28.24
5 900 38.63 21.45 28.04 33.31
1024 39.36 27.33 34.80 37.61
avg 36.90 20.69 30.46 33.12
500 33.97 17.50 29.36 32.15
750 35.36 20.25 30.45 31.26
5s 900 38.53 21.48 33.51 34.64
1024 39.37 32.15 37.89 37.31
avg 36.81 22.85 32.80 33.84
500 33.98 28.34 32.05 33.25
750 35.44 32.96 34.61 34.88
1 900 37.95 32.96 34.61 34.68
1024 38.95 38.02 37.39 33.56
avg 36.58 33.07 34.66 34.09
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TABLE VI Prediction Performance (In Terms Of Overall Video Quality) After The Optimal
Rate Tuning.

. Actual
Phy Pk;a)ixemt Chan. | ORPAcips; | ORPAcips, | ORPAcoy
®ops) | TR | (gp) (B) (48
(dB)
500 33.98 33.55 33.70 33.69
750 35.63 34.83 35.34 35.30
5 900 38.63 37.78 37.56 36.84
1024 39.36 38.60 38.94 38.34
avg 36.90 36.19 36.39 36.04
500 33.97 32.32 33.82 33.74
750 35.36 3481 34.81 34 .46
55 900 38.53 37.78 37.56 37.06
1024 39.37 38.83 38.49 37.45
avg 36.81 35.94 36.17 35.68
500 33.98 33.63 33.71 32.61
750 35.44 34.79 3477 34.55
1 900 37.95 35.35 35.36 32.68
1024 38.95 37.49 36.71 32.80
avg 36.58 35.32 35.14 33.16
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TABLE VII Prediction Performance With Foreman Sequence And Various CODECs (pkt

rate = 1 Mbps & phy. rate = 11 Mbps).

Actual
ORPAcips, | ORPAcips, | ORPAcoy

Codec channel

(dB)
(PSNR) (dB) (dB)

H.264 38.95 37.49 36.71 33.56
Dvix5.1 36.93 36.54 36.36 31.55
WMV9 37.12 36.69 36.50 32.37
MC 38.13 37.11 36.87 34.08
XivD0.9 36.52 36.05 35.84 33.22

TABLE VIII Prediction Performance With H.264 And Various Video Sequences (pkt rate =

1 Mbps & phy. rate = 11 Mbps).

Actual

Sequence hannel ORPAcips, | ORPAcips, | ORPAcoy
(PSNR) (dB) (dB) B
Foreman 38.95 37.49 36.71 33.56
Head 39.23 - 38.79 38.60 35.66
Mobile 31.92 31.28 30.98 27.30
stefan 31.51 31.18 31.06 27.46
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CHAPTERSS
RATE ADAPTTION FOR WIRELESS

SCALABLE VIDEO

On the basis of the rate adaptation architecture described in the previous Chapter, in
Chapter 5 we outline the following research topics: i) a Rate Distortion (RD) model for
above-capacity video and ii) Unequal Error Protection (UEP). The proposed topics are
selected to bring Optimal Rate Prediction Architecture under CLDS (ORPAc;ps) to a

certain level of completion and to support utilization of ORPAr; pg in different types of

operational networks.

5.1. An RD Model for Above-Capacity Video

In Chapter 4, for practical video streaming over wireless LANs ORPAq;ps is
developed. We also show that an accurate source and channel coding rate prediction can
be achieved by utilizing the Rate Distortion (RD) of video and the distribution of channel

prediction error process. However, it is important to note that in Chapter 4 we made the
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following assumptions in ORPAcy s : (1) the channel code achieves the capacity (i.e., an
ideal channel coder), and (ii) a block of packets cannot be recovered at the client if it is
coded with an overestimated rate, i.e., a channel coding rate that exceeds channel
capacity. Thus, to optimally realize ORPAq;pg in real world scenarios, we must
incorporate i) an operational rate for a specific channel code which is not an ideal code

and ii) an RD function for above-capacity video.

5.1.1. Operational Rate

In Chapter 4 we assume that the channel code achieves the capacity (i.e., an ideal
channel coder) and a block of packets for a time window cannot be recovered at the
client if it is coded with an overestimated rate; here an overestimated rate is a channel
coding rate that exceeds channel capacity. However, the optimal rate, which is calculated
based on (22), should be adjusted in conjunction with a specific channel code, which is

not an ideal code. Therefore, we formulate the operational rate’ as:

R? =1-a-H(¢), 1<a<

1
HE)' (23)

where & is the actual channel BER. Note that the channel capacity for the considered

5 The operational rate in this study is equivalent to the rate which embodies inferior
performance of a practical code to an ideal code.
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BSC channel can be estimated as C=1-Hy(¢) [53]. For reliable communication (i.e.

distortion free communication,) the operational rate has to satisfy R%” <C. While it is

theoretically possible to satisfy this constraint, in practice the performance of a code is

inferior to the theoretical predictions because of finite length and other design limitations.

We capture this performance drop by introducing the parameter « . Thus, we use a stricter
constraint R +(1-a)H (g)<C , where a hypothetically optimal code can be
represented by =1.

As explained above, the value of a plays a critical role in the rate selection.
Therefore, we first deduce a suitable value for this parameter. Analytical deduction of @,
requires us to consider finite length analysis of LDPC codes. This is a challenging and
reasonably open area of research. In this study, we circumvent this issue, and provide a
practically workable solution, by empirically evaluating the value ofa . Hence, for this
purpose, we conducted a comprehensive set of experiments with LDPC channel code
[52] and test scalable video sequences. For example, we observed that fora =1.8, 99%
of the video packets are decoded successfully. Thus, moving forward, we use this
empirically deduced value in our simulation and performance studies. Further, for

notational convenience, we refer to the R as the operational channel capacity, C ,

which is the maximum achievable rate for the given channel code and for the underlying
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channel. Note that to complete equation (22) we develop an empirical model for the

quality distortion function, Q'(-) of video sequences for rates exceeding capacity.

5.1.2. The Video Rate-Distortion Model

It is well known that a channel coding rate that exceeds the capacity leads to
unreliable communication and increased distortion. The precise increase in distortion
depends on a number of factors, such as: (i) the specific video content, (ii) the error
concealment/resilience and robustness of a particular source codec, and most importantly
(iii) the difference between the overestimated rate and the actual channel ‘capacity.
Commercially available video systems are complex and consist of a number of sub-parts.
Hence, it is difficult (if not impossible) to deduce a closed form analytical expression that
can precisely capture the impact of the overestimated rate on the video quality.
Consequently, we develop an empirical model, which can in turn be used in equation (22),
to express the video quality for normalized rates®. Note that in this study a video test
sequence (foreman) was encoded by using Scalable Video Coding (SVC) [54] to easily

adapt bitrates rather than re-encoding for different rates. When encoding, the following

¢ Rate difference between the over-estimated rate and the operational channel capacity,

. . . R-C%?
which normalized by the over-estimated rate,
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encoding configurations were used: two-layered spatial scalability and three-layered Fine
Granularity Scalability (FGS); 30 frame per-second (fps) only with I and P frames; and
Group of Pictures (GOP) of 64. Note that the above encoding configurations were used
to reduce the computational complexity in wireless mobile terminals, on which our study
focuses. In addition, the LDPC code [52] was used as a channel coder.
To deduce the empirical model, we conduct the following measurement procedure:
1. Compute the operational channel capacity of the underlying channel (i.e., the
average capacity of 11 Mbps traces).
2. Extract the test SVC bitstream at the rate of the operational channel capacity and
compute the PSNR of the stream.
3. Encode the extracted bitstream with the LDPC encoder and transmit it to the
underlying channel.
4. Decode the bitstream packets using the LDPC decoder and the SVC decoder
(with error concealment?).
5. Compute the normalized PSNR8 from the successfully decoded packets.

6. Repeat 3-5 with the increased rate and for four different transmission rates.

7 A lost frame was replaced with the previous frame.
' R- COP '
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Figure 17 The RD (quality) function (Q(-)) of SVC test video sequence for rates below

capacity (a) and the empirical model (Q'(-) ) for video rate distortion for rates exceeding the
channel capacity (b).
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From a comprehensive set of measurements, it can be observed that a normalized
PSNR decreases as a function of normalized rates [Figure 17]. Consequently, we derive
the empirical model to embody the distortion of video quality for rates over the channel
capacity as

f)=ax® +c, 0<x<0.12 (24)
where a=—1.18x102;b=2.148; and ¢ =0.9898. Note thata, b and ¢ were found
by a curve fitting and were specified for the foreman sequence which was encoded with
SVC [54].

We leverage this empirical video quality distortion model, Q'() in equation (22),
to optimally select the source and channel rate, i.e., the channel coding rate [53]. The
performance of ORPA(y ps , which fully employs the model, is described in the following

section.

5.1.3. Performance Evaluation

We now evaluate the performance of the proposed video rate-distortion model by

simulating ORPA¢[ps which employs the proposed model. The simulation procedure

with the video quality functions of the pre-encoded bitstream [Figure 17] is as follows:
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= Op *= 0D
1. Predict the operational optimal rates, R, and Rp+1, for randomly chosen two

consecutive time windows of a randomly chosen trace (by using equation (22)).

2. Extract a bitstream based on the rates from 1.

3. Encode the extracted bitstream packets with the LDPC encoder and transmit the

FEC-encoded packets to the underlying channel.

4. Decode the transmitted packets with the LDPC and the SVC decoder (with error

concealment).

5. Repeat 14 for different traces with transmission rates.

The simulation results are show in TABLE IX. In TABLE IX, the first and the second
columns represent underlying channels (or traces collected at the given physical data
rates and transmit rates), the third column represents time window indices, which were
randomly chosen from a randomly chosen trace, and the predicted (operational optimal)
rates by ORPAcy pg ; the forth column represents bitrates and PSNRs of the video source,
which was extracted based on the predicted rates; and PSNRs of video source which was
preserved at a client are shown in the fifth column.

We can observe from TABLE IX, by utilizing the proposed model in conjunction
with the CLDS protocol, that there is a small amount of PSNR reduction relative to an

error-free decoded bitstream. This distortion is due to burst errors in wireless channel
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which cause severe corruption on a few packets. However, the distortion is very small,
and the bitstream at the clients preserves most of the original video quality (PSNR) for
randomly selected rate adaptation intervals (or time windows) and for different
transmission rates [TABLE IX]. This implies an accurate rate prediction performance
by ORPAc ps and a viable empirical model for video rate-distortion. Note that since the
test bitstream is 10 second long (300 frames), two consecutive time windows were used
for simulations. Thus, the first 150 frames and the rest were extracted according to two
different rates. On the contrary, the video quality was computed from the entire bitstream.

Based on the accurate performance of the proposed video rate-distortion model, we

extend our analysis on the performance of ORPAr;ps to the entire time windows of all

traces by using the following equation:

*Op * Op
O(Rn -T)-I(Rn <CP)
k
1 0,
avg PSNR=="3, ;n” _copl| s (25)
n=l{ +0 o -I(Rn >C/F)
Rn
*Op

where I(-)is an Indication function’; R, is the rate computed by using equation (22);

C/P is the operational channel capacity; and k is the number of time windows in a trace.

" 1= {o if ¢ is not satisfied

1 otherwise
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Additionally, we compared the performance of ORPA-;ps with ORPA-oy to
highlight the efficiency of CLDS protocols in practical rate adaptation applications.

The conventional protocols can only observe the number of packet drops. Thus, for

ORPA¢ oy we estimated the channel capacity for a time window using PER as

_CON | m
Cn =1-—).Z;=1-PER, (26)

i=1

and used the same simulation procedure as ORPAry ps -

As shown in TABLE X, ORPAc;psprovides an average PSNR performance that is
very close to the maximum PSNR for any given channel. Note that the first column
represents the best video quality to be possibly achieved for a transmission rate and for
the given physical data rate. These results remark the performance of the proposed video
rate-distortion model, with which ORPAq;pg is able to provide an outstanding
performance. It should be also noticed that the average PSNRs of both ORPA; pgand
ORPA( ps for the error trace (or channel), at which is collected the transmit rate at 750
transmit rate and the physical rate at 11 Mbps, have significant gains relative to others.
This is due to the fact that almost no rates, which are predicted from the error trace,

exceed the maximum achievable rate, while keeping close to the maximum rates.

Moreover, it can also be observed that ORPAr; pg outperforms ORPA-py . This
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performance difference is due to how the channel is estimated, i.e., BER estimate using

side-information provides more accurate channel state estimate than PER.

TABLE IX Performance of ORPAr-yps Wwith an ideal channel code and with a LDPC code

(In Terms Of Overall Video Quality).

i Time Window Index Extracted
Xmit . ) Decoded
Phy (Optimal Rates) Bitstream .
(Mbps) Rate o vo PSNR(dB) Bitstream
7| &ops) g . PSNR(dB)
(Rn ,Rn+1) Bitrate(Kbps) -
437,438 29.87
29.20
500 (0.774,0.744) (379.7)
1703, 1704 30.28
29.56
(0.877,0.886) (440.3)
227,228 31.57
(0.904,0.901) (677) 3067
750 —
1837, 1838 31.59
31.21
1 (0.890,0.926) (681)
384, 385 30.96
(0.638,0.558) (538.9) 3096
900 .638,0. .
1014, 1015 31.80
31.70
(0.849,0.779) (732)
422,423 32.10
32.05
(0.843, 0.818) (849.1)
1024
739, 740 32.12
32.02
(0.841,0.826) (853.5)
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TABLE X Performances of ORPAq;psand ORPAcoy (In Terms Of Overall Video
Quality).

Phy )Ii:: Actual Channel ORPAcyps ORPAcoN
(Mbps) (Kbps) (dB) (dB) (dB)
29.0564 28.9583 28.7263
29.0133 28.8043 24.3700
500 29.0509 28.8675 24.3804
29.0422 28.6611 27.8340
29.0317 28.8711 23.3747
avg 29.0389 28.8325 25.7371
30.9815 30.7850 30.3802
70 30.9465 30.6392 30.0243
1 avg 30.9640 30.7121 30.2022
31.8695 31.4052 27.0839
900 31.9313 31.6742 27.0339
31.8198 31.3434 18.5583
avg 31.8735 31.4743 24.2254
32.1503 31.5112 0.1117
1024 32.4389 31.8527 11.5011
32.4996 32.0516 24.3254
32.5214 32.0582 30.2564
avg 32.4026 31.8684 16.5486
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5.2. Unequal Error Protection

For multimedia streaming applications, it is essential to accurately estimate/predict
the channel capacity to provide QoS as emphasized in previous chapters. However, it is
also important to minimize distortion of video quality when video packets are corrupted
~ due to burst errors by severe interference which often occurs in wireless channels. A
workaround to this problem is to employ an Unequal Error Protection (UEP) scheme.
Under UEP, parts (e.g., Intra-coded frames) of the video bit-stream, which significantly
affects video quality, are provided with more protection (i.e. a lower channel coding rate)

and vice versa.

5.2.1. UEP Utilizing an LDPC Code

It is well known that for an LDPC code the size of the packet (or message bits) plays
an important role in the channel coding performance, i.e., a lager packet size has a better
chance of successful decoding than a smaller packet with a given coding rate. As shown
in Figure 18 we can observe that the probability of successful decoding is a function of
both the size of packet and the redundancy parameter @ which is used in (23) in section

5.1.1.
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Figure 18 The probability of successful decoding, which is generated with LDPC codes [52]
and SVC bit-stream [54], depends on both the size of packet and the parameter & .
Consequently, when a packet containing I frames is encoded with a which leads to
the probability of success decoding close to 1 (i.e., a@=2.1 for a packet size of 8 Kbits
or more), it is highly likely that the packet is successfully decoded. Note that in the
previous subsection we apply a =1.8 for every video (I- and P- frame) packets where
almost every packet can be successfully decoded. However, channel impairments (e.g.,

burst errors) can be introduced in any wireless channel, and hence, there is always a

chance of a sever packet corruption (or unsuccessful decoding). This results in enormous
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distortion of video quality in case of I-frame packet loss (rather than P-frame packet). To
that end, we differentiate « for I-frame packet from that for P-frame packet.
After a for each I-frame packet is chosen, a for each P-frame packets can be

simply calculated as

n k
I 41
a) Li-3a; L

2 L

i=k+1

where a =1.8;nrepresents the total number of video packets; k represents the number
of I-frame packets; «; represents the redundancy parameter for I-frame packets;
aprepresents the redundancy parameter for P-frame packets; L;represents the length of
ith packet; L,! represent the length of ith packet containing an I-frame; and Lf
represent the length of ithpacket containing a P-frames. Note that the total number of

redundant bits for a given time-window can be expressed as

n k n
a-H() Y.L =H(e)-Y.af -L +ap-H(e)- Y IF (28)

i=1 i=l i=k+1

= 0p
where a-H(¢)=1-R ,and ap isused for FEC encoding of P-frame packets.
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5.2.2. Performance Evaluation

We now evaluate the performance of the proposed UEP scheme by simulating

ORPA(r; ps which employs the proposed model. The simulation procedure with the video

bit-stream [Figure 17 (a)] is as follows:

= 0p
1. Predict the operationally optimal rate, R, for a given time window.

2. Extract a SVC bitstream based on the rates from 1.

3. Choose a;and encode each I-frame packets with the LDPC encoder.

4. Calculate apand proceed FEC encoding for P-frame packets by using equation
27).

5. Transmit the FEC-encoded packets over the underlying channel and decode the
transmitted packets with the LDPC and the SVC decoder (with error
concealment)

6. Compute the normalized PSNR from the SVC decoded packets

7. Repeat 1-6 with an increased channel BER.

The excellent performance of the proposed UEP scheme can be clearly seen in Figure

20. We can observe from Figure 20, by utilizing the proposed UEP scheme in

conjunction with the CLDS protocol, that there is a small amount of PSNR reduction
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Figure 19 The performance comparison in video qualities with the proposed UEP scheme and

0.82

without UEP (when only I-frame packets are lost, i.e., the worst case).

relative to an UEP-free decoded bitstream (worst case occurs when I-frame packets are

lost) as the number of frame loss increases. This PSNR reduction difference is due to the

number of successfully decoded I-frame packets. In other words, the proposed UEP

scheme protects I-frame packets more securely so as to minimize the amount of video

quality distortion.
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CHAPTER 6
SYNDROME PARTIAL DECODING

In general, a client within an ad-hoc network may receive video content after being
transmitted over multiple wireless hops. Due to the cascading effect of noise and
interference, the overall channel capacity of a multi-hop wireless path drops
progressively over each hop, and hence, without optimal rate adaptation, the video
quality is expected to degrade significantly at any client located at a far-edge of an ad-
hoc network. To overcome this limitation, Decoding and Forwarding (DF), which fully
decodes codewords at each intermediate node, can be employed to provide the best video
quality. However, complexity and memory usage for DF are significantly high.
Consequently, we propose Syndrome-based Partial Decoding (SPD). In the SPD
framework an intermediate node partially decodes a codeword and relays the packet
along with its syndromes if the packet is corrupted. We exhibit the efficacy of the
proposed scheme by simulations using actual IEEE 802.11b wireless traces. The trace-

driven simulations show that the proposed SPD framework, which reduces the overall
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processing requirements of intermediate nodes, provides reasonably high goodput'®,
when compared to simple forwarding, and less complexity and memory requirements,

when compared to DF.

6.1. Limitations

Some studies (e.g., [59]-[60]) have focused on wireless multimedia communication
over an ad-hoc network which consist of multiple wireless hops from a server to a client.
It is well known that each wireless channel between intermediate nodes suffers from
impairment due to interference, fading, and multi-path effects. Hence, when a multi-hop
wireless network is employed, it can be easily observed that channel capacity decreases
over each hop, and hence, the End-to-End (E2E) channel capacity can become very low.
This leads to significant degradation of goodput and video quality for rate adaptation
applications.

An ideal workaround to this problem is to employ Decoding and Forwarding (DF).
Under DF, channel coding is employed over every hop of the end-to-end path. Hence, an

intermediate node decodes the transmitted packets (or codewords) to suppress noise on

19 In this study the goodput is defined as the application level throughput, i.e. the number
of information bits per total number of bits forwarded by the network from a certain
source address to a certain destination.
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the channel between two intermediate nodes, and re-encodes the packets, potentially with
a different codebook, for transmission towards the destination [61]. Thus, DF can achieve
optimal performance with regard to network capacity. However, complexity and memory
usage for DF are significantly high. Moreover, intermediate nodes, which may be
participating by only forwarding the content toward a receiver further-down a multi-hop
chain, do not have much incentive to perform full decoding-encoding of the channel-
coded wireless video content. For such nodes, we need to minimize their burden in terms
of the operation they need to perform toward the delivery of the video content to the final
receiver.

The above discussion motivates the usage of partial processing framework for rate-
adaptive wireless video, which reduces the overall processing requirements of
intermediate nodes. In particular, in this paper, we propose Syndrome-based Partial
Decoding (SPD) architecture. The proposed architecture employs CLDS protocols,
which among other things, accurately estimate the channel capacity using simple Binary
Symmetric Channel (BSC) [56] model. The two main contributions of this paper are:

1) A syndrome-based partial decoding scheme. Under this scheme, each intermediate
node only computes the syndromes of the received packet (i.e., partial decoding) and

relays the syndromes along with the packet (if the packet is corrupted) to the next hop.

98



The client then fully decodes the packet by using the syndromes which are appended to
the packet.

2) An optimal packet size selection scheme. As explained later, SPD utilizes channel
Packet Error Rate (PER) as an error parameter for its operation; and hence SPD goodput
heavily depends on the size of packets. Thus, we derive the optimal packet size selection
scheme to maximize the goodput in the proposed architecture.

The proposed SPD architecture is tested using a comprehensive set of wireless
residual error traces collected at 2, 5.5 and 11 Mbps physical data rates of an operational
802.11b network. We compare the performance of SPD with DF, E2E decoding (END)
and automatic repeat request (ARQ). We show that SPD outperforms END decoding and

ARQ and provides relatively good goodput compared to that by DF.

6.2. Syndrome-based Partial Decoding

In this chapter we develop the rate adaptation architecture over an ad-hoc network
using the two main contributions of this paper: SPD and optimal packet size selection.
SPD is achieved by i) only computing a syndrome for a packet at each intermediate node;

ii) forwarding codeword for the syndrome of the packet (only when the packet is
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corrupted at a hop) to the next hop; and iii) fully decoding the packet by using its
syndromes at a client. SPD embodies BER as well as PER; i.e., the goodput is a function
of both BER and PER. Thus, the optimal goodput is achieved by finding an optimal

packet size that provides the best goodput in the proposed architecture.

6.2.1. Architecture for Rate-Adaptation

The architecture of a multimedia streaming application depends heavily on a network
over which it operates. Therefore, in this section, we define the proposed architecture for
rate adaptation. Additionally, we outline the assumptions under which the proposed
architecture is to be evaluated.

The proposed architecture consists of a server, intermediate nodes and a client that
receives packets over a multi-hop wireless network. In the given architecture, a server,
intermediate nodes and a client are designed to support source and channel rate
adaptation. Figure 20 illustrates such architecture. The intermediate nodes and client
supports CLDS protocols that leverage residue-error-process and side information, which

can be relayed to an FEC decoder (for partial decoding at each intermediate nodes or full
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decoding at a client)[37], to estimate the current channel capacity'' for a block of packets
(or a rate adaptation period). The current channel capacity, which is estimated by the
channel estimator with the entropy of the residue error process, is then transmitted to the
server as feedback for rate adaptation. Using the feedback, the rate tuner at the server
predicts the optimal source and channel rates for the next block of multimedia packets to
be transmitted [56].

For this study, we focus on the performance of SPD, and hence we assume the system
employs generic (arguably ideal) channel and source coding schemes. In particular, we
consider the following simplifying assumptions: (i) the channel code achieves the
capacity (i.e., an ideal channel coder), and a block of packets can be successfully
decoded at the client if a source and channel coding rate does not exceed channel
capacity, i.e., R < C[25]; (ii) A video encoder provides a bit-stream having a bitrate that
is exactly the same as the required bitrate, and the bit-stream renders Peak-to-Peak Signal
to Noise Ratio (PSNR) value [38] according to the bitrate. With (i) and (ii), we realize the

architecture where for video rates that cannot be supported by the underlying channel

m
"' Here, the channel capacity is estimated as C, =1 ——I-ZHb (¢;) where ¢, represents
i=1
1 m
the BER estimate for packeti; —ZH »(&;)1s the instantaneous per-packet error-process
m
i=l

entropy in a block of m packets,and » is the time-window index [56].
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capacity, the video quality reduces to zero (i.e., zero PSNR value). Note that without
the assumptions (i) and (ii) (i.e., a realistic channel coder or video encoder was used), we
should carefully take the performances of the channel coder and video encoder into
consideration in finding the rate. Therefore, the above assumptions were made to focus

only on the performance of the proposed SPD scheme.

6.2.2. SPD Overview

Each  intermediate = node  computes the  syndromes of  packet
( Syndrome,, = Check _matrix,,, -Packetf:(,, ) from the server or the previous
intermediate node and forwards the packet with the packet’s syndrome (including the
redundancy of the syndrome; i.e., codeword for the syndrome) only if the packet is
corrupted. Note that when a packet is not corrupted (the syndromes consist of all Os) only
the packet is relayeci to the next hop, Meanwhile, when a packet is corrupted each node
adds its syndrome (including syndrome redundancy) to the packet in an embedded
manner; and hence, this process is repeated until a client receives the packet. A client
then uses the syndromes, which are coded and appended to the packet, to decode the

packet. For example, under the scenario shown in Figure 20, when the packet is
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corrupted at the first hop, then a client receives the packet and two different syndromes

appended to the packet as shown in Figure 20 and computes the syndrome for the last

hop. Note that a syndrome is used as the information needed to successfully decode the

packet which is corrupted in a hop (or a channel link).

It should be noted that a server uses the maximum channel BER

(&max = max(&},&,,£3)) to select the rates rather than E2E BER (&g 5 2 €m0 ) [Figure

20] since each syndrome can be used to correct errors occurred at each hop. This leads

SPD to suppress noise on each channel between a server and a client and to provide the

goodput performance close to DF.

Using Figure 20 as an illustrative example, the packet received at a client is then

decoded along with its syndromes as follows:

i) Decode the codewords for the syndromes that is forwarded from the previous

nodes

i) Decode the codeword for the message with each of the decoded codewords for the

syndromes

Note that the above procedure specifies the (1 bit error correcting) Hamming code

and the similar procedure can be applied to Reed Solomon (RS) code or turbo code, for

which the syndrome polynomial can be employed.
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6.2.3. Goodput Evaluation

In this section, we develop the expression for the goodput of proposed SPD and other
schemes such as DF, End node decoding, and ARQ. As described in the previous
subsection, for SPD the total number of bits transmitted to multi-hop wireless network

increases as PER and the number of hops increase. Therefore, the goodput for SPD,

Goodputgpp can be expressed as

k k
Goodputgpp = = =
Motal h
(k+r).h+Z(PER,- (ke +75;)-) .
i=1 (29)
h
i |

k

(k +r)+zh:(PER,- (ke +1,))

i=l

k

h
(,H k.H(emax)J+ZPERi .(H r-H(emax))
1-H(emax) ) 15 1-H(&max)

3 k

- A
k-(1+—’1’iM-J+ZPER,--r-(1+_.___H(€max) ]
1-H(Emax)) i 1- H(¢max)
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K+ PER,r | Ay | k+3 PER- X HEmad) | 5
i=1 i=1 1-fl(‘gmax)

1
i 1+iPER--M— A
S 1-HGema) | T

where k is the number of information (original source) bits; ris the number of
redundant bits for k; n(=k+r) is the total number of bits in a packet length; &, is the

number of syndrome (bits) of the packet; r;is the number of redundant bits for the

syndrome; A represents the number of hops from a server to a client; and

(k+r)-h+zh:(PER,~-(ksi +rsi)-h)

Note that n,,; = il ; which

Apax = +————H(£ma") .
l_f{(gmax)

normalizes the total number of bits by defining per-hop transmission cost; the length of

ks; " H(Emax) r-H(emax) _ 7 H(Emax)
C  C  1-H(eggy)

ks is the same as that of r;and r;, =

DF corrects error bits (full decoding) and re-encoding at every intermediate node; and

hence, the goodput for DF, Goodput - , can be expressed as

Goodputpp = k__k (30)
n

Potal
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k k k 1

) k+k'H(5max) =k- 1+ H (&max) =k'Amax=Amax
1- H(&max) 1-H(&max)

where ., = %Z'- normalizing the total number of bits by defining per-hop
transmission cost.

End node decoding, which we defined in this study, employs CLDS protocols but
does not incorporate a partial or full decoding at any intermediate node and uses the E2E
channel BER, €z, £, for finding a source and channel coding rate. Thus the goodput for

end node decoding, Goodputgyp , can be expressed as

k k
Goodput = =
VD Mowal  (k+T)
k _ k
[kk_ﬂu_mJ k.(H ) ) Gy
1-H(egaE) 1-H(egzE)
_ k 1
k-Apae  ApE
H(egoE)

where epyp =6 *&y*..*e,and Apyp =1+ . Note that BER for two

1-H(egaE)
cascaded BSCsis & *¢; =g +65 —26-&;.
For ARQ, a packet is re-transmitted until a defined time-out by a server if it is

corrupted during its transmission from a server to a client. Therefore, the goodput for

ARQ can be expressed as
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Goodput ypg =1-PERE (32)

where PERg,p = PER * PER,*..* PER,,.

6.2.4. Optimization of SPD

It is well known that PER changes with respect to a size of packet for a given channel
BER, and Goodputgppis a function of BER and PER. Therefore, we capture this aspect
to find the optimal packet size ( pkt _ size ), which maximizes Goodputgpp, [41] as

*

pkt _size = argmax Goodputgpp

pkt _size
(33)
1
= arg max - :
pkt _size 1+ZPE . H(&max) A
i1 1-H(&max)

It requires to model the PER (as a function of packet sizes) to fully utilize equation (33).

Consequently, we develop an empirical PER model to express the PER for packet sizes.

To deduce the empirical model, we conduct the following measurement procedure:

i) Calculate BER of the underlying channel (i.e., the BER of a collected trace).

i) Calculate PER with respect to a packet size.

iii) Repeat i) and ii) with different traces.
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Figure 21 The empirical PER model.
From a comprehensive set of measurements, we observed that PER linearly increases
as a packet size increases [Figure 21]. Consequently, we derive the empirical model to

embody the PER for packet sizes as
PER=ax+b (34)
where a=1.071x107° , b=0.01597, and xis a packet size. Note thataand b were

found by a linear fitting.
We leverage this empirical PER model to optimally select the packet size which

maximizes Goodputgspp . The performance of SPD, which fully employs this model, is

described in the following section.
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6.3. Performance Evaluation

We now compare the performance of the proposed SPD with DF, End node decoding,
and ARQ in terms of goodput and the total number of bits transmitted in an ad-hoc
network. To compare the performance of each scheme, experiments in this study are
conducted as follows:

1. Calculate the BER and PER of each channel (or hop) for a rate adaptation period.
Note that we use 2 Mbps traces for this simulation and treat each trace as the
channel between two nodes in the network.

2. Find a source and channel coding rate, for a rate adaptation period. Note that we
assume to use an ideal channel code; and hence, we use the capacity as the rate.

3. Calculate the goodput for SPD, DF, End node decoding, and ARQ by using
equations (29), (30), (31), and (32).

4. Find the optimal packet size by using equation (33) which incorporates the

empirical PER model [see (34)] and the corresponding goodput.
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this experiment, a packet size of 8000 bits is used.

5. Calculate the PSNR using the rate-distortion (RD) function of a scalable video
coding (SVC) sequence, Q(-) [Figure 17 (a)][54], for the given goodput as

PSNR = O(Goodputspp, -T) where T represents a transmission (Xmit) rate in

bits-per-second (bps).

As for goodput, Figure 22 shows that SPD outperforms End node decoding and ARQ
and provides the performance, which is a little inferior to DF over hops. However, it
should be noticed that although DF provides the best performance in terms of goodput,

the complexity and memory usage at each intermediate node are significantly high since
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each intermediate node proceeds full decoding and re-encoding of packets. Additionally,
the result shown in Figure 22 does not employ the optimal packet size selection scheme.
The excellent performance of the proposed optimal packet size selection scheme for
SPD can be clearly seen in TABLE XI. The first column of TABLE XI represents the
number of hops; the second, third, and fourth column represent the optimal packet size,
goodput, and PSNR achieved by SPD under the actual channel (i.e., the collected traces
used for simulations in this study); the fifth column represents the optimal packet size
estimated by equations (33) and (34); and the sixth and seventh column respectively
represent the goodput and PSNR with the optimally estimated packet size under actual
channel. As shown in TABLE XI, the optimal packet size selection scheme estimates
very accurate packet size that maximizes both goodput and PSNR. In fact, they are very

TABLE XI The performance of SPD with optimal packet size selection scheme in terms of
goodput (Xmit rate=500Kbps)

hop Actual Optimization
timal timal
Op . PSNR Op . PSNR
pkt_size Goodput pkt_size Goodput
. (dB) . (dB)
(bits) (bits)
2 28555 0.9126 30.38 26700 0.9124 30.38
3 18806 0.8999 30.34 19100 0.8960 30.32
4 14487 0.8760 30.26 14456 0.8759 30.25
5 13754 0.8669 30.23 12649 0.8646 30.21

112



close to the optimum.
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CHAPTER 7
CONCLUSION

In this thesis, we developed an optimal rate prediction architecture using CLDS
protocols, ORPAc;ps to support QoS for wireless scalable video. ORPAqps
combines the following schemes: i) a BER prediction which leads to an accurate channel
capacity estimation and prediction; ii) an optimal source and channel coding rate
prediction and tuning; iii) Unequal Error Protection (UEP); and iv) Syndrome Partial
Decoding (SPD).

As for BER prediction over wireless networks, a multi-tier model (MTM) is
developed. The MTM relies on the premise that packet-error prediction should be
performed before and in isolation from BER prediction. For predicted error-free packets,
BER prediction is not required. The MTM achieved packet-error prediction using a 3rd
order Markov chain model. For predicted packet-errors, the MTM uses a second-tier
model of Signal to Silence Ratio (SSR) values to predict the next packet’s SSR. These
predicted SSR values are in turn used in a third tier for BER prediction. We showed that

the MTM renders higher prediction accuracy than existing Yule-Walker and finite-state
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Markov chain predictors. Consequently, it is revealed that packet level side information
can be utilized to accurately estimate/predict channel conditions.

We observe that accurate channel prediction alone does not necessarily imply better
overall rate adaptation. Specifically, if capacity prediction is employed (directly) without
optimal rate selection, over-predicted channel capacities cause significant packet drops.
To that end, on the basis of the BER prediction we develop an optimal rate tuning
scheme which leverages both the probability distribution of channel capacity prediction
error process and an RD (quality) function of a video sequence. Further, a Rate
Distortion (RD) model for above-capacity video and an operational rate for a specific
channel code are deduced to employ the optimal rate tuning scheme in a practical
wireless environment.

Our experimental results showed that ORPAq;pg provides higher prediction
accuracy and better multimedia quality than ORPA-pn (optimal rate prediction
architecture under conventional protocols) at any physical layer data rate. another
interesting observation is that the proposed optimal rate tuning scheme performs
considerably well on traces with very low temporal correlation, thus highlighting that the
proposed scheme can efficiently cater for bad channel predictions, i.e., the proposed

scheme provides good performance even for relatively memoryless and isolated errors.
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When burst error occurs over wireless networks, it is highly likely that video quality
faces severe degradation. To resolve this problem we develop an UEP scheme which
utilizes characteristics of a LDPC code. It is shown that the proposed UEP scheme
reduces the degradation of video quality. It should be noticed that the impact of such a
scheme is potentially quite significant, not only on the overall video rate selection, but
rather on the overall coding strategy of the video encoder (in terms of rate allocation
among different frame types).

Finally, we proposed the new partial processing framework for multi-hop rate-
adaptive wireless video, i.e., SPD. From our experiments, SPD, which reduces the
overall processing requirements of intermediate nodes, provides reasonably high goodput,
when compared to End node decoding and Automatic Repeat request (ARQ). It is also
observed that SPD provides less goodput than Decoding and Forwarding (DF). However,
the performance difference between DF and SPD is relatively small if we take
complexity and memory requirements into consideration. From this study, we exhibit the
applicability of ORPAr;ps in multi-hop wireless networks by introducing SPD.

The current research shows that ORPAr; pg provides the outstanding performance as
a rate-adaptive video streaming application over wireless LANs. However, it should be

noted that in order to employ ORPAc;pgas a real-time application the followings are
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required: a real-time Rate Distortion (RD) model for both above-capacity video and

below-capacity video. As described in section 5.1.2, the precise increase in distortion

depends on a number of factors, such as the specific video content, the error

concealment/resilience and robustness of a particular source codec, and etc. Thus, it is

very difficult (if not impossible) to deduce an RD model which accurately estimates a

PSNR of any video bit-stream in real-time. Additionally, if SPD incorporates entropy

coding (e.g. Hoffman or run-length coding) for syndromes at each intermediate node, the

goodput can be further improved. These are the possible future topics to possibly utilize

the optimal rate prediction architecture as a real-time rate-adaptive video streaming

application over any kind of wireless LANS.
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Journal Papers

Y. Cho, S. S. Karande, K. Misra, H. Radha, J. Yoo, and J. Hong, “On Channel
Capacity Estimation and Prediction for Rate Adaptive Wireless Video,” accepted for
publications in IEEE Transactions on Multimedia.

S. Karande, U. Parrika, K. Misra, H. Radha, Y. Che, J. Yoo, and J. Hong, “Side-
Information Aware Non-Homogenous Markov Models For The 802.11b MAC-to-
MAC Channel,” submitted to IEEE Communications (under review), 2008.

Y. Cho, H. Radha, and J. Yoo, “Channel Capacity Prediction for Rate Adaptive
Wireless SVC,” submission to European Association for Signal Processing
(EURASIP) on Wireless Communications and Networking.

Y. Cho, H. Radha, and J. Seo, “Multi-hop Rate Adaptive Wireless Scalable Video
Using Syndrome-based Partial Decoding,” submission to Electronics and
Telecommunications Research Institute Journal.

Conference Paper

Y. Cho, H. Radha, J. Yoo, and J. Hong, “A4 Rate-Distortion Empirical Model for Rate
Adaptive Wireless Scalable Video,” Conference on Information Sciences and
Systems (CISS), Princeton University, March 2008.

Y. Cho, S. A. Khayam, S. S. Karande, H. Radha, J. Kim, and J. Hong, “4 Multi-Tier
Model for BER Prediction over Wireless Residual Channels,” Conference on
Information Sciences and Systems (CISS), John Hopkins University, March 2007.

S. Karande, S. Khayam, Y. Cho, K. Misra, H. Radha, J. Kim, and J. Hong, “On
Channel State Inference and Prediction using Observable Variables in 802.11b
Networks,” IEEE International Conference on Communications (ICC), June 2006.
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