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ABSTRACT

EVALUATION OF TIME TO RESPONSE IN SYMPTOM MANAGEMENT

INTERVENTIONS FOR PAIN AND FATIGUE EXPERIENCED BY CANCER

PATIENTS

By

Sangchoon Jeon

This research was performed to understand how physical and

psychological characteristics of cancer patients impact symptom response to

management interventions for pain and fatigue. In addition, this research used an

approach to define clinically meaningful reductions in pain and fatigue and

identified important predictors of symptom response using. several survival

analysis approaches.

Six hundred and one cancer patients who were undergoing Chemo-

therapy were enrolled in one of two clinical trials (termed A and B) that tested

interventions for managing cancer-related symptoms over an 8 week period. To

define “symptom response” as a clinically meaningful change in symptoms,

severity categories of mild score (31), moderate score (2-4), and severe score (5-

10) were established based on the reported interference with the patient's daily

life. Time to response was measured by counting the number of days from onset

of symptoms to a symptom response, defined as a transition from severe to

moderate, severe to mild, or moderate to mild severity.



Several survival analysis methods were implemented to identify important

predictors of symptom response including age, comorbidity, and depression after

adjusting for gender, site of cancer, physical function, and trial type (A or B). The

survival analyses were performed under different assumptions regarding the

proportional hazards assumption and the type of censoring. First, by assuming

proportional hazards, the log-rank, Wilcoxon, and Cox proportional hazard model

were used. Second, several alternative methods were implemented that do not

require the proportional hazards assumption, including the Lin & Wang’s test,

Cox model with weighted estimations, and Rahbar’s method. The impact of

interval censoring was assessed by generating Accelerated Failure Time (AFT)

models, and finally the effect of the correlation between pain and fatigue were

explored using a marginal Cox regression model.

All final models found a significant comorbidity effect for pain and fatigue.

Low comorbidity was significantly associated with shorter time-to-response for

pain and fatigue in all applied models. There was no significant effect of age after

adjusting for comorbidity in the Cox proportional hazard model or the marginal

Cox regression model. The AFT model found that younger age and less

depressed patients had shorter time-to-response for pain after adjusting for

comorbidity as well as a priori confounders, including gender, site of cancer,

physical function, and trial type (A or B). None of other survival models found

significant association between depression and time-to-response for pain and

fatigue.
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OVERVIEW

Cancer patients may suffer from multiple symptoms that originate from the

disease itself, the side effects of treatment, or comorbid conditions. Successful

symptom management for cancer patients can help maintain therapeutically

effective chemotherapy, physical and social functioning, and reduce emotional

distress of patients (1-5). To maintain effective management of symptoms, it is

important to understand how physical and emotional conditions of cancer

patients are related to improvement of symptoms in response to interventions.

Pain and fatigue are most prevalent and difficult to resolve among cancer

patients. Severe pain and fatigue cause delay or premature termination of

important therapies or treatments, impair physical function, and cause significant

distress (6, 7). This delay or early termination of treatments may directly affect

survival of cancer patients (8).

This study aims to make two contributions to the research program that

evaluates symptom management for cancer patients. First, understanding the

influence of patient socio-demographic, physical, and emotional conditions on

resolution of symptoms will extend our knowledge of symptom management

interventions by identifying which cancer patients will likely benefit more or less

and sooner or later from symptom management. Second, by defining a clinical

meaningful reduction in each symptom through analysis of time to symptom

response, this study will help define a strategy for evaluating the effectiveness of

interventions for symptom management in cancer patients experiencing pain and

fatigue.



This study will address the following specific research questions:

1)

2)

3)

4)

Can clinically meaningful Changes in pain and fatigue symptoms

be measured using the four dimensions of interference

(emotions, enjoyment of life, relations with others, and general

daily activities) to define clinically meaningful cut-points that

separate levels of symptom severity (mild, moderate, and

severe)?

Using the clinically meaningful severity cut-points, which factors

are predictors of time-to-response in pain and fatigue among

cancer patients when using survival analysis techniques (the log-

rank test, the Wilcoxon test, and the Cox proportional hazard

model) that require the assumption of proportional hazards?

Do the findings based on survival analysis techniques

appropriate for the proportional hazards assumption, hold when

using alternative survival techniques (the Lin & Wang’s test, the

Rahbar’s test, and the Cox model with weighted estimation) that

do not require the proportional hazard assumption?

Do the findings based on survival analysis techniques that are

appropriate for right censoring (the Cox proportional hazard

model and the Cox model with weighted estimation) hold when

using the Accelerated Failure Time model that accounts for

interval censoring?



5) Do the findings from the separate models of pain and fatigue

(the Cox proportional hazard model, the Cox model with

weighted estimation, and the Accelerated Failure Time model)

hold when using the marginal Cox model that accounts for the

correlation between the two symptoms (pain and fatigue)?

Data used in this research are derived from 2 randomized clinical trials of

symptom management. Cancer patients who were undergoing chemotherapy

received symptom management interventions during 6 scheduled intervention

contacts over an 8 week period. Chapter 1 is a comprehensive literature review

that describes what is known about the burden of pain and fatigue among cancer

patients and reviews factors related to severity of these symptoms and their

management. Patient factors include; gender, age, stage of cancer, site of

cancer, the number of comorbid conditions, and depressive symptoms. These

patient factors are important because they may be associated with response of

pain and/or fatigue when interventions are delivered. These factors could

therefore influence the effectiveness of interventions and result in prolonging or

shortening time to response of pain and fatigue.

Chapter 2 describes the methodological issues in assessing symptom

Change and addresses the difficulty of measuring a clinically meaningful

symptom change with conventional methods. Supportive evidence for using

interference based cut-points of symptom severity is described. Previous studies

have suggested methods for developing and testing cut-points to establish

3’ fl

symptom severity categories: such as “mild , moderate”, and “severe”. Symptom



response to interventions for managing pain and fatigue are defined using

transitions among these categories, and used to measure time to symptom

response.

In Chapter 3, several alternative survival analysis methods are introduced

based on their underlying assumptions. The log-rank (Mantel and Haenszel

1959), Wilcoxon (Breslow 1974), and the Cox proportional hazard model (Cox

1972) are commonly used for survival analysis. When survival functions do not

cross one another the hazard functions are proportional, and these methods are

valid. To address how to evaluate time to response of pain and fatigue when the

proportional hazard assumption is not satisfied in survival analysis, we applied 3

different approaches a nonparametric test for equality of survival function (Lin 8

Wang 2004), the Cox model with weighted estimation (Schemper 1992), and a

nonparametric test for equality of survival mean (Rahbar 2007). To answer if the

findings from these survival analysis methods that account for right censoring

can be confirmed using a survival analysis method with interval censoring, the

Accelerated Failure Time (AFT) model is tested. To answer if the identified

factors still have impact on time to response of both pain and fatigue after

accounting for the correlation between two symptoms within a patient, the

marginal Cox model (Wei 1989) was used.

Chapter 4 describes the data and the methods used for the analyses in

this study. Data from 601 cancer patients were collected from the two

intervention trials for symptom management (the Family Home Care for Cancer

project (Trial A) and the Automated Telephone Monitoring for Symptom



Management project (Trail B)). Patients rated their symptoms and multiple

interference items on a 0 to 10 scale at 6 scheduled contacts. They received

symptom management intervention when their symptom severity was rated at a 4

or higher. The optimal cut-points of severity were developed based on the sum of

four interference items1 at the first intervention contact. Severity categories2 from

the identified cut-points were examined to see if they consistently differentiated

across the sum of the four interference items. Once longitudinal differentiation

was confirmed, time to symptom response 3 was used as a measure of

meaningful symptom change in response to interventions. The number of days

from onset contact4 to response contact was recorded as time to response, and

time from onset to last contact without a response was considered the censoring

time. To identify important covariates associated with time to response for pain

and fatigue, several survival analysis methods introduced in Chapter 3 were

employed and their underlying assumptions explicated.

In Chapter 5, results including the development of cut-points and

assessing time to response are described. Based on the identified cut-points,

three severity categories were defined: “mild” (sore of 1), “moderate” (score of 2

through 4), and “severe” (score of 5 or greater). These categories significantly

differentiated the summed interference scores at each of the contacts.

Comorbidity was consistently identified as an important independent covariate

 

1 The 4 interference items include emotions, enjoyment of life, relations with others, and general

daily activities.

2 Severity categories include mild, moderate, and severe level of severity.

3 Symptom response includes transition from severe to moderate, severe to mild, and moderate

to mild categories of symptom severity.

‘ Onset contact is an intervention contact when patient initially reported a severity of 4 or higher

for pain and fatigue.



associated with time to response for pain and fatigue by the different survival

analysis methods used. Patients who had less than 3 comorbid conditions had

shorter time to response for pain and fatigue compared to those who had less

than 3 comorbid conditions. The effects of age and depressive symptom were

not significant in three multivariable models (the Cox proportional hazard model,

the accelerated failure time model, and the marginal Cox model).

In Chapter 6, the following points are summarized: 1) potential biases

associated with combining data sets from two trials 2) evaluation of clinically

meaningful changes in the severity of each symptom, 3) use of survival analysis

to assess time-to-response among symptoms and conclude with an assessment

of the conditions under which each survival technique would be appropriate for

use.

This study demonstrates how to assess symptom changes in response to

intervention in terms of measurement and analysis of symptom data leading to

defining conditions under which time-to-response can be assessed and

alternative approaches for evaluating time-to-response given different

distributional properties of the responses. The developed measure of symptom

response was reviewed as an evaluative measure based on a guideline for

measure in clinical medicine (134). Using different survival analysis methods

provided consistent statistical evidence for the effect of comorbidity on time-to-

response for pain and fatigue. Comorbid conditions are considerable

impediments to reducing pain and fatigue severity through interventions.



CHAPTER 1 BACKGROUND OF CANCER-RELATED PAIN AND FATIGUE

In this chapter, Section 1.1 will describe briefly the experience of pain and

fatigue among cancer patients and its impact on the quality of patient’s daily lives.

The association between cancer-related pain and fatigue during treatments will

also be discussed in this section. In Section 1.2, I will review potential factors

associated with pain and fatigue among cancer patients, in order to evaluate if

these factors are also related to the reduction of pain and fatigue in response to

symptom management.

A literature review was conducted to investigate the burden of pain and

fatigue among cancer patients and the characteristics associated with severity of

pain and fatigue. Relevant literature was found in the MEDLINE database using

the National of Library of Medicine PubMed with the following keywords;

“cancer,” “pain,” “fatigue,” and ”chemotherapy.” Combinations of each keyword

were also used. The review articles were selected by reviewing abstracts; articles

were restricted to the English language and published between 1960 and 2008.

1.1 Burden of Pain and Fatigue among Cancer Patients

This section is an overview of pain and fatigue in terms of the definitions,

prevalence, pathologies, correlation with one another and associations with other

cancer related symptoms. Prevalence describes how commonly cancer patients

suffer from pain and fatigue at any given point in time; and is the preferred term

to describe burden. Incidence measures the burden of symptoms over a specific



time window, however, only prevalence data are presented in the reviewed

studies.

1.1 .1 Cancer-Related Pain

The pain from treatment is greatly short term and its severity varies

relative to the disease itself. According to a practical guideline from the National

Comprehensive Cancer Network (NCCN) (9), pain can be classified into

nociceptive and neuropathic pain according to the predominant mechanisms of

pain pathophysiology. Nociceptive pain, which results from “injury to somatic and

visceral structures and from activating nociceptors,” is described as sharp, well

localized, throbbing, and pressure-like. This type of pain usually occurs after

surgical procedures or from bone metastasis. Neuropathic pain, which results

from “injury to the peripheral or central nervous system,” is described as burning,

sharp, or shooting. It often occurs as an adverse effect of chemotherapy or

radiation therapy (9).

Pain is one of most prevalent symptoms among cancer patients, being

reported between 36% and 75% of patients. Patients with advanced cancer

experience more severe pain (10). In a meta-analysis of fifty-two studies (11),

Everdingen and colleagues estimated the pooled prevalence of pain among

cancer patients for four different subgroups; patients after curative treatment

(33%, 95% confidence interval (CI): 21% to 46%), patients under anticancer

treatment (59%, 95% Cl: 44% to 73%), patients with advanced/metastatic/

terminal disease (64%, 95%Cl: 58% to 69%), and patients at all disease stages



(53%, 95% Cl: 43% to 63%). In a 1991 study of a large population of cancer

patients from seven hospices in Europe, the United States, and Australia, the

prevalence of pain was 60% in breast cancer, 52% in lung cancer, 64% in

colorectal cancer, and approximately 80% in gynecological cancers (12).

According to one cancer pain study (13), 70% of cancer patients with advanced

neoplasm reported pain, while 50% of patients at all stages of cancer reported

pain. Pain is defined as “a sensory and emotional experience associated with

actual or potential tissue damage or described in terms of such damage.” (14)

Cancer-related pain can occur due to the disease or the treatment. When tumor

cells stimulate nerves or cause organ dysfunction patients feel severe pain that

can be relieved by removing the tumor cells. Also, cancer patients often suffer

from pain as a result of surgery, radiation, or chemotherapy.

The National Cancer Institute (NCI) recommends that the management of

pain should be flexible and individualized according to the stage of the disease,

personal preferences, and responses to pain interventions. Patient self-report is

the standard assessment method for pain. Severity of pain is usually rated using

a 0 to 10 point scale; but a categorical or pictorial scale, that uses pictures of

faces for rating pain, is also available (9). Cancer—related pain is managed by

providing psychological supports, specific educational materials, as well as pain-

relieving drugs, such as nonsteroidal anti-inflammatory drugs (NSAIDS), opioids,

and combination of analgesics. The NCCN practice guidelines suggest that

management should be distinguished by three categories (mild, moderate, and

severe) of pain intensity (9). It has been shown that cancer related pain has a



significant association with depression and anxiety. However, the causality

among these symptoms has been debated. Cancer patients with pain reported

severe depression, anxiety, and/or other psychosomatic symptoms in several

studies (15-17). Chronic pain has been considered an important factor leading to

severe depression in cancer patients (18, 19). Depression and/or anxiety from

concern about the disease may worsen pain, and cancer patients with serious

depression and/or anxiety tend to report more pain (15).

1.1 .2 Cancer-Related Fatigue

The National Comprehensive Cancer Network (NCCN) describes cancer-

related fatigue as “a persistent, subjective, sense of tiredness related to cancer

or cancer treatment that interferes with usual functioning.” Although cancer—

related fatigue has been reported as the most important symptom that impairs a

patient’s quality of life and daily activities, it has received less attention in

management compared with other symptoms such as pain, nausea, or vomiting

(20). Fatigue is the most prevalent symptom among cancer patients - a recent

report from the NCCN highlights that 70% to 100% of cancer patients experience

fatigue (21). Most cancer patients suffer from fatigue while receiving cytotoxic

chemotherapy, radiation therapy, bone marrow transplantation, or treatment with

biological response modifiers5 (22). Cancer patients experience fatigue resulting

from the disease itself, cancer treatment, psychosocial burdens, and comorbid

conditions: this fatigue worsens during the course of chemotherapy and persists

 

5 Biological response modifier is a type of cancer treatments that enhances body’s immune

system.
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for months after completing treatment (23). In a study conducted by Greene et al,

82% of breast cancer patients reported fatigue after the first course of

Chemotherapy (24). Among cancer patients receiving a course of chemotherapy

and radiotherapy, 61% reported clinical fatigue (25). In other studies, 89% and

90% of cancer patients reported some degree of fatigue during their

chemotherapy (26, 27).

Cancer-related fatigue is that most people generally suffer from in normal

life, and it is not relieved by rest or sleep (28). Like pain, fatigue is also subjective

and patient self-reports is the standard method for assessment. Additionally, the

medical history, physical examination, laboratory data, and description of patient

behavior by family members are all important sources of information to gauge the

burden of fatigue, especially for children (22). The NCCN practice guideline

recommends that fatigue be managed by an interdisciplinary institutional

committee, comprised of representatives from medicine, nursing, social work,

physical therapy, and nutrition (22).

Despite the high prevalence of fatigue among cancer patients, the

biochemical, physiological, and behavioral mechanisms of this complex symptom

are poorly understood, making it difficult to identify factors that are associated

with fatigue. However, several risk factors associated with cancer-related fatigue

have been proposed. Hwang and colleagues proposed a multidimensional

conceptual model with Situational, biological, physiological, and psychological

dimensions that predict cancer-related fatigue (29). The situational dimension

represents demographic information including age, gender, stage of cancer,

11



active cancer treatment, and caregiver status. The biological dimension can be

described by serum chemistry profiles. There is evidence that anemia, which is a

common side effect of chemotherapy or radiation therapy in cancer patients, is a

major factor causing fatigue (30, 31). The impact of anemia on fatigue may be

different depending on onset time, patient age, and comorbidity. Psychological

factors, such as depression and anxiety, may contribute to the development of

chronic fatigue before and after chemotherapy among patients with solid tumors

(32). Distress after a diagnosis of cancer can be caused by the initial fatigue,

and other side effects of upset, like insomnia which may also increase in patients

undergoing chemotherapy. In a study of cancer patients with a history of

chemotherapy, fatigue lasted the longest relative to other side effects and had

the greatest impact on activities of daily living (5).

1.1.3 Correlations between Pain and Fatigue

Most cancer patients suffer from a number of symptoms which may impair

function, therefore it is important to evaluate the impact of multiple symptoms on

patient outcomes (33). Pain and fatigue are often observed along with other

common symptoms, such as insomnia and depression in cancer patients (34-40).

It has been observed that pain, fatigue, sleep disturbance, emotional distress,

and poor appetite generally occur together (38). Significant negative effects of

the symptom cluster of pain, fatigue and insomnia on physical function was found

to be independent of the type of cancer, treatment, stage of cancer, or comorbid

conditions (39, 40). Dodd et al. defined a “symptom cluster,” as a group of

12



symptoms that are related to each other. They proposed four groups in cancer

patients based on severity of pain and fatigue (i.e. group 1: high fatigue and low

pain, group 2: low pain and low fatigue, group 3: low fatigue and high pain, group

4: high pain and high fatigue) (33).

Many studies have shown that pain and fatigue are significantly

associated with other common symptoms, treatments, and other factors. For

example, in a study with breast cancer patients, pain and fatigue are related to

one another and their presence is associated with depression, insomnia, and

menopausal symptoms such as hot flashes and night sweats (41). Kaasa et al.

found, based on five studies, that pain and fatigue are more common in the more

severity affected populations (i.e. palliative care and those with bone metastasis)

(42). While chemotherapy alone or in combination with radiation has a significant

impact on the level of fatigue, pain is more closely related to the timing of

treatment or to the advanced nature of the disease (43). However, the

assessment of cancer-related symptoms remains complex due to the multiple

symptoms, the multiple etiologies, varying severity, duration, and, co-occurrence

of symptoms.

1.1.4 Impact of Pain and Fatigue on Function and Quality of Life

Patients who are diagnosed with solid tumors and are undergoing

chemotherapy treatment experience multiple symptoms which are a serious

burden for patients as well as for their oncologists and primary care providers (1).

These symptoms negatively impact dimensions of the quality of life, such as
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physical functioning and depression, and are related to increased morbidity and

health care costs (5, 44—46). It has been reported that the cancer-related

symptoms have a positive association with negative emotions (47). Gift et al. (48)

and Cooley (49) found that fatigue and pain are the most distressing symptoms

for lung cancer patients. Pain, fatigue, and depression are recognized as

prominent contributors in the suffering experienced by many cancer patients; and

clinical studies have increasingly focused on obtaining a better understanding of

these symptoms, as well as the development of new, more effective treatments.

1.2 Factors Related to Severity of Pain and Fatigue

Effective symptom management is defined as clinical interventions

designed to reduce symptoms through a combination of drugs and other clinical

treatments. Effective symptom management over time is a key to maintaining

therapeutically effective dosing of chemotherapy agents, physical and social

functioning, and to reducing the emotional distress in patients. To increase the

effectiveness of symptom management, it may be important to identify the health

conditions or patient characteristics which impact the management of symptoms.

Identifying factors that predict Change in these symptoms may also contribute to

the design of effective symptom management studies. By evaluating the effects

of interventions designed to manage pain and fatigue, we will be better able to

identify those that actually help to resolve or to relieve these symptoms. Because

pain and fatigue are key symptoms that may indicate the presence of other
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symptoms (33), the factors associated with the reduction of pain and fatigue may

be important in predicting change in the overall symptom burden during the

period of active symptom management. In this section, potential factors that

influence reduction of pain and fatigue in response to symptom management will

be reviewed.

Gender and Age It is often recommended that the gender and age of

patients should be considered in symptom management (50-53). Since socio-

demographic factors are often associated with disease or other health outcomes,

it may be difficult to interpret their role in symptom response.

It has been argued that female patients report pain and fatigue differently

than male patients. In a recent study, younger patients and female patients had

significantly higher fatigue levels (54). They suspected that higher severity in

younger patients was due to underreporting by patients who were over 80 years

of age. Sechzer and colleagues addressed inappropriate and questionable

generalization of findings in cancer research due to sampling bias toward male

patients. In response, Miaskowski suggested that this bias exists in symptom

management research, and she reviewed articles related to difference in pain

and fatigue according to gender among cancer patients (50). In her review of two

published studies (44, 51) and her own unpublished studies (50), no gender

difference was observed in the prevalence and severity of pain. Research

performed by Cleeland and colleagues (44) found that female patients were more

likely to be untreated for their cancer-related pain compared to male patients. In
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reviews of gender differences in cancer-related fatigue, three studies that

evaluated outpatients who were undergoing chemotherapy or radiation therapy

(54—56) found that female patients reported higher severity and prevalence of

fatigue. However, these gender differences in severity and prevalence could be

explained by other factors associated with gender, such as site of cancer, and

communication with caregiver. In previous research with 110 cancer patients

receiving a 10 contact cognitive behavioral intervention (57), male patients were

more likely to report necessary more time to resolve their fatigue compared with

female patients in unadjusted analyses. However, resolution for gender was not

significantly associated with time to resolve pain and fatigue after adjusting for

site of cancer. More lung cancer in male patients may be responsible for poor

results concerning fatigue.

Age is another factor potentially associated with pain in terms of its

prevalence, severity, and duration. It has been observed that elderly patients are

more likely to have high risk of comorbid conditions and late stage cancer (53, 58,

59). Elderly patients tend to attribute their pain as a normal part of aging and

avoid reporting pain in order not to disrupt their cancer treatment (60). If elder

patients rate the severity of their pain less than they actually feel, their pain might

not be sufficiently managed by nurses or care providers. Because anxiety is

recognized as a risk factor of fatigue (32), the association between age and

anxiety is an important to account for fact, when evaluating the response of

fatigue in different age groups. In a longitudinal study conducted with hospitalized

cancer patients in Tokyo, younger patients were more distressed and reported
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more anxiety than elderly patients (61 ). It is possible that relatively severe anxiety

in younger patients decreases the effectiveness of fatigue management among

younger patients. Also based on these findings, elderly patients were probably

less likely to have intervention for pain and fatigue because they under-reported

their symptoms and have higher comorbid conditions.

Cancer Site and Stage Since pain and fatigue can result from treatment

of the disease, site and stage of cancer are important clinical factors likely to be

associated with response to these symptoms. Site and stage of cancer may also

influence the clinical strategy both for treating disease and managing symptoms.

Paters and colleagues observed that patients with ovarian and lung cancer

experience greater fatigue compared to those with breast and other cancers (54).

In a longitudinal study of elderly cancer patients aged 65 or older (43), patients

with lung cancer were significantly more likely to have pain and fatigue compared

with those with breast cancer. Since the site of cancer is usually associated with

several factors, including gender, age, and stage of cancer, it may be difficult to

separate the effect of cancer site on the response time of fatigue from these

other factors.

Significantly longer time in pain resolution was observed in patients with

late stage of cancer compared with those with early stage of cancer (57).

Advanced stages of cancers were more likely to be related to the occurrence of

pain in two studies, but a significant association between the stage of cancer and

the prevalence of fatigue was not observed (43, 62). In a survey of cancer-
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related pain with the Brief Pain Inventory (BPI), 86% of patients with advanced

cancer believed that their pain was caused by cancer itself (63). When patients

believe their pain is caused by cancer, there is greater interference with their

daily activities (10).

Burden of Comorbidity and Other Symptoms Comorbidity is usually

measured by counting the number of different chronic conditions. Comorbid

conditions are related to older age and chronic fatigue (64). It was found that

both age and comorbidity strongly influence patient clinical decision-making (52,

65, 66); older patients with severe comorbid conditions are less likely to have

intensive cancer treatments (53). According to the NCCN practice guideline;

patient comorbidities are known to be associated with fatigue and they

recommend more attention should be paid to chronic conditions in conjunction

with the treatment of cancer-related fatigue (21 ). In a cohort study among cancer

patients who were older than 64 years of age, high comorbidity, late stage of

cancer, and lung cancer were associated with high risk of pain and fatigue (43).

It is observed consistently that high comorbidity is significantly associated

with high prevalence and longer time to resolve fatigue among cancer patients

undergoing chemotherapy (57). Based on these findings, more comorbid

conditions result in more severe fatigue and may impede treatment of symptoms.

That is, comorbidity is a risk factor for severe fatigue, as well as a modifier of the

effect for symptom management.

18



Since cancer patients usually experience multiple symptoms after

beginning chemotherapy, more symptoms could impede the effect of any single

intervention. Multiple severe symptoms can also produce adverse psychological

outcomes, including anxiety and depression which influence adherence to

treatment (67-69). Co-occurrence of multiple severe symptoms may result in

patients receiving a number of interventions not only for pain and fatigue, but

also for other symptoms. For cancer patients who have poor health-related

outcomes, a large number of interventions may reduce the effect on each of the

symptoms.

Depressive Symptoms A strong interrelationship among pain, fatigue,

and depression has been found (69—73). In a meta-analysis, DiMatteo and

colleagues found that depressive patients are less likely to comply with medical

treatment recommendations (67). They propose several explanations for the

effect of depression on treatment. First, depression often causes a high level of

hopelessness that treatment is not worthwhile. Second, depression may result in

social isolation from individuals who could provide emotional support or

assistance; and third, impairment of' cognitive function could impair memory

which can lead to less compliance among depressed patients.

In general, a measure of fatigue in cancer patients correlates positively

with a measure of depression (74). However, Visser and colleagues suggest that

there is no evidence of a causal relationship between fatigue and depression and

that the same underlying pathology may be responsible for co-occurrence of
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these two symptom (71). They observed the consistent correlation between

fatigue measured by the Multidimensional Fatigue Inventory (MFl-20) and the

mood component of the Center for Epidemiologic Studies of the Depression

Scale (CES-D) at the start of treatment, 2 weeks after completion of radiotherapy,

and 9 months later. Therefore, depressive symptoms represented by the CES-D

may be a good predictor of change of fatigue during the intervention period.

20



CHAPTER 2 BACKGROUNDS FOR MEASURING SYMPTOM RESPONSE

To examine if the factors described in Chapter 1 have an impact on

symptom response to treatment, it is important to define the change in pain and

fatigue that represents “clinically meaningful change.” The conventional

Conceptualization and operationalization of symptom responses have been

conducted in an unsatisfactory manner. The question is, how can optimal cut-

points for severity be determined based upon different magnitudes of

interference with patient’s daily life. Also, there is the question of whether the

established cut-points can reliably and consistently differentiate interference

scores over time.

Section 2.1 describes the important measurement issues in assessing

pain and fatigue for cancer patients and addresses the difficulty of measuring

clinically meaningful change in symptoms with conventional methods. Section 2.2

describes evidence to support the use of interference based cut-points linking

differences in severity scores to levels of interference. The previously suggested

methods for developing and testing cut-points to establish categories of symptom

severity are also described in Section 2.2. A newly proposed method reduces the

conventional ordinal symptom scale of 0 to 10 into a more clinically practical

classification of three categories: “mild,” moderate,” and “severe." In Section 2.3

Response to interventions will be defined using transitions among these

categories.
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2.1 Conventional Measurement: Problems and Suggestions

By definition, symptoms are derived from the patient’s perspectives (38).

Patients are often asked to rate the severity of a symptom on a numerical scale.

Since the American Pain Society used the 11-point scale (from 0=not present to

10=worst possible) for measuring pain (75), it has been extended to measure the

severity of other cancer-related symptoms by the NCCN (21). The Brief Pain

Inventory (BPI) (76) and Brief Fatigue Inventory (BFI) (4) are widely used

instruments that assess sensory (severity) and reactive (interference) dimensions

of pain and fatigue, respectively. These instruments define four aspects of

severity (worst, least, average, and pain/fatigue right now) along with how greatly

pain or fatigue interferes with general activities, mood, walking, normal work,

relations with others, enjoyment of life, and Sleep (Appendix A).

Once the numerical scales are established, the next step is taken to

measure the changes in pain and fatigue. The ultimate purpose in measuring the

severity of symptoms is to evaluate the relationship between the reduction of

symptoms and the degree to which that has an impact on the patient’s quality of

life. More specifically, both practitioners and researchers are interested in the

question of how the interventions prescribed by care providers ameliorate

symptoms, and contribute to maintaining and improving patient’s quality of life.

For that purpose, it is necessary to have a valid and reliable method of

measuring and interpreting changes in symptoms.
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Clinically important changes in the severity of symptoms have been

evaluated in several ways based on either relative difference or absolute

differences (i.e. percent reduction in severity). For instance, Farrar et al. (77)

proposed that an relative improvement of more than 30% on the pain intensity

scale is a clinically important change among cancer patients. They observed pain

intensity for patients who completed clinical trials of pregabalins. The patients

rated their pain on a 0 to 10 point scale at baseline and at the end of the clinical

trial. After completing the clinical trial they also evaluated changes in pain

intensity on a seven-point scale, includes “Very Much Improved”, “Much

Improved”, “Minimally Improved”, “No Change”, “Minimally Worse”, “Much

Worse”, and “Very Much Worse.” Patients who had more than 30% reduction of

pain intensity also evaluated their change in symptoms as “Very Much Improved”

or “Much Improved.” In other studies, a absolute reduction of approximately two

points on a scale of 0 to 10 for pain intensity represented a Clinically important

difference (“Very Much Improved” and “Much Improved” ) (78). Cepeda et al. (79)

performed a study with postsurgical patients to assess meaningful reduction of

pain intensity. Patients rated pain intensity on a 0 to 10 point scale and 4-Likert

scale (None, Mild, Moderate, and Severe) at baseline and every 10 minutes

during administration of analgesic. They also reported the degree improvement in

pain on a 5-point Likert scale. For patients with moderate pain, 35% and 45%

reduction of pain intensity represented “Much Improved” and “Very Much

Improved,” respectively. These ordinal scales are relatively easy to be interpreted

 

6 Pregabalin is an anticonvulsant drug for neuropathic pain
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by clinicians compared with a 0 to 10 scale. Therefore, in this study, I assessed

cut-points to categorize the severity of symptoms measured on a 0 to 10 scale.

However, the use of the 0 to 10 scale may be not sufficient to evaluate the

impact of pain and fatigue on interferences. For example, Serlin (80) found that ~

the absolute difference in the numerical rating on severity may not always bring

about equal levels of differences in distress or functional impairments. Put

differently, 20% reduction of severity of pain on a scale of 0 to 10 may not always

represent the same percent of improvement in physicalfunction or a reduction of

interference scores. Although the validity and reliability of using a scale of 0 to 10

for measuring symptoms has been confirmed to some degree (81), one serious

problem has yet to be addressed: patients tend to interpret differently the lower,

middle, and higher sections of an 11 point scale (80, 82). For example, from a

clinical perspective, the same thirty percent reduction, for instance, 9 to 6 and 3

to 2, may not be equivalent and thus Should not be interpreted to have the same

meaning.

In response, another approach has been developed to represent a

clinically meaningful reduction by using a 3 level categorization scheme: mild,

moderate, and severe levels of symptoms. Serlin et al. (80) proposed a threefold

classification (mild, moderate, and severe) to describe pain severity, based on a

set of interference items. They identified several advantages of the threefold

categorization. First, patients are likely to use the lower, middle, and higher

sections of the 0 to 10 point scale differently. Second, the threefold classification

would be more useful to both clinicians and investigators than a finer
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classification with more than three categories. That is, it could facilitate efficient

communication between a patient and clinician. For instance, mild pain would not

seriously distract patients. Moderate pain could be considered the level of pain

that is hard to be ignored by patients. When patients feel their pain needs clinical

attention, pain could be consider being severe. Third, it could reflect the fact that

a non-linear relationship between severity and interference is better captured

with a threefold classification. The non-linear association between severity of

pain and fatigue and interference has been demonstrated (34, 76, 83-85). In

some cancer pain and fatigue studies, the increased rates of interference were

not equal across the 0 to 10 severity scale and relatively small increases were

observed at two points of severity (4, 80). Therefore, the three levels of pain

severity would be more informative than the finer quantitative gradation such as

the 0 to 10 scale. Also the threefold classification has been often used for

assessments of cancer-related pain by the National Comprehensive Cancer

Network (NCCN), and the Agency for Health Care Policy and Research (AHCPR)

(9, 21, 86). These findings are extended to assess the effect of intervention on

fatigue in this study. Significant changes in relationship between interference and

severity of fatigue were observed for the two cut-points that define the threefold

classification (4).

2.2 Developing Cut-points and Testing Longitudinal Consistency of Cut-

points

25



Patients can express the intensity of their pain. The difficulty is that

intensity is an abstract concept that is likely to differ by patient. Cleeland et. al.

found that the variance of patient self-report can be effectively captured by two

dimensions (“sensory” and “reactive”) in pain intensity (76). The sensory

dimension refers to the severity of pain, while the reactive dimension refers to the

interference with the patient’s function and quality of life caused by pain.

Cleeland defines (87) the measure of symptom burden as “a summative indicator

of the severity of the symptoms that are most associated with a disease or

treatment, and a summary of the patient’s perception of the impact of these

symptoms on daily living.” He suggests that both symptom severity (sensory) and

symptom interferences (reactive) constitute symptom burden. A variety of

instruments are designed to assess both the severity of symptoms and their

interference with daily life (4, 74, 88, 89).

Serlin suggests that severity is a primary factor in assessing a symptom,

because it is more crucial to providing successful clinical management (80).

Interference with daily life also is an important factor in understanding how much

patients suffer from a symptom, because serious interference contributes to high

distress in cancer patients (90). Although high correlations between severity and

interference have been observed in several studies (4, 80, 85, 91), severity on 0

to 10 point scale does not always lead to greater interference. For example,

patients who report a severity of 3 may not experience more interference

compared with those who report a severity of 2 or 1. Therefore, categorization of
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severity based on interference would be a more informative measure since it

describes both symptom severity (sensory) and interference of daily life (reactive).

Anchoring individual patient reports of pain and fatigue severity to

differences in interference using cut-points of mild, moderate, and severe

categories has been shown to be appropriating for both research and clinical

practice (4, 80, 92-94). It is suggested that these established categories, based

on interference scores, provide more stable and more meaningful clinical

interpretation in measuring the impact of behavioral interventions for

management of pain and fatigue than simply calculating the percent of change

using the conventional 0 to 10 scales (77, 78, 95).

There is no agreed-upon definition of the optimal cut-points that separates

mild from moderate and moderate from severe pain or fatigue. Rather, different

researchers define different cut-points. For instance, Serlin et al. (80) performed

an analysis of variance (ANOVA) to find the optimal cut-points of symptom

severity based on interferences in daily life. They defined the following range of

each category using a 1 to 10 scale: 1—4 for mild pain, 5—6 for moderate pain,

and 7—10 for severe pain. The other two studies found the cut-points of severity

based on seven (general activity, mood, walking ability, sleep, enjoyment of life,

normal work, and relations with others) and six interference items (general

activity, mood, walking ability, normal work, relations with others, and enjoyment

of life) using multivariate analysis of variance (MANOVA). In a study with

oncology outpatients (Breast (52%), Prostate (11%), Lung (11%), and Other

(26%)) who experienced pain from bone metastasis, Paul et al. (92) reported that
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5 and 8 were optimal cut-points for moderate and severe pain, respectively. In

the other study with oncology inpatients (Leukemia (33%), Lymphoma (43%),

Breast (10%), Gastrointestinal (6%), Gynecologic (2%), Genitourinary (1%), and

other (5%)) who experienced fatigue, Mendoza et al. (4) suggested that the cut-

points for severity of fatigue, based on six interference items in the BFI, are 1—3

for mild fatigue, 4—6 for moderate fatigue, and 7-10 for severe fatigue in cancer

patients. These studies had fairly consistent cut-points (4 or 5 for moderate, and

7 or 8 for severe) using the ANOVA or MANOVA. However, it is a question that

the used interference scores had a normal distribution. If they did not have

normal distribution, the result form ANOVA and MANOVA may not be valid.

Our research seeks to determine if, while receiving help with managing

their pain and fatigue over time, patients continue to differentiate among levels of

interference according to whether their symptom is categorized as mild,

moderate, or severe. Patient can report their symptom differently by different

measurements. It is known as shift in response which is a major threat to this

argument. As patients implement strategies that lower the severity of pain or

fatigue, they may “recalibrate” their definitions of severity, interference, or both.

For example, patients may report declines in severity but continue to associate

these new levels of severity with the same or increased interference.

Retrospective assessments are likely to be adjusted by current patient

perceptions. In this research patient responses to interventions are followed,

compared with their reports of interference at each subsequent observation at

which symptoms are rated as severe, moderate or mild. I, then, determine if
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interference scores consistently differentiate between severe and moderate and

moderate and mild levels of severity of pain and fatigue. If the integrity of the

interference-based severity cut-points are preserved over time, then they can be

used to measure patient’s responses to these intervention strategies (96).

2.3 Defining Response of Pain and Fatigue

This study aims to identify factors, associated with reduction of pain and

fatigue, in response to symptom-management interventions. In order to pursue

this aim, it is important to define “response of symptom” as a meaningful

reduction of symptom, using a reliable measurement of levels of intensity in

symptoms. That is, a symptom response during the intervention would represent

how successfully pain and fatigue were reduced by treatment. The symptom

response can be effectively reflected by a dichotomous variable: “response” or

“non-response”. After the threefold categories of mild, moderate, and severe

were developed to represent levels of severity in symptoms, their longitudinal

consistency in differentiating interference scores were examined. If established

severity categories differentiate the interference consistently over time, then the

meaningful symptom reduction can be captured by transitioning from moderate

or severe to a lower category level.

The underlying hypothesis therefore is that when pain and fatigue move

from a higher category of severity to a lower category (e.g. Severe to moderate

or mild, moderate to mild) they will exhibit substantial reductions in interference
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scores. I believe that this would represent a clinically important improvement that

oncologists would View as being meaningful. Reduction from moderate to mild

may be less clinically important however. For instance, reduction in fatigue from

3 (moderate) to 1 (mild) may not be considered important by oncologists since

moderate fatigue would not be considered serious enough to alter the treatment

dosing or schedule. However, from a quality of life perspective, a reduction of 3

to 1 in the severity of fatigue corresponds to a decrease in the limitations of daily

activities caused by fatigue and results in substantial improvement in physical

function (21). Therefore, these three shifts (‘severe to moderate’, ‘severe to mild’,

and ‘moderate to mild’) can be interpreted as clinically meaningful reductions in

pain and fatigue, and will be called “symptom response” in this study. Non-

response includes no shift (‘moderate to moderate’ and ‘severe to severe’) and

transition from moderate to severe.
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CHAPTER 3 SURVIVAL ANALYSIS FOR TIME TO SYMPTOM RESPONSE

Having defined and addressed the relevant measurement issues in

Chapter 2, this chapter discusses statistical and technical issues regarding the

use of survival analyses for analyzing time-to-response for pain and fatigue. To

obtain valid results for testing time-to-response of pain and fatigue, it is important

to understand the basic concepts of time-to-event (response) data and the

underiying assumptions for survival analysis methods. In this chapter, I highlight

the analytical problems associated with assessment of time-to-response of pain

and fatigue. These problems include; 1) the proportional hazard assumption, 2)

interval censoring, and 3) not accounting for the existence of correlations

between two symptom outcomes.

Section 3.1 describes the basic concepts and terminology needed in time-

to-event (response) data including censoring, survival function, and hazard rate.

Commonly used survival analysis methods including the log-rank, Wilcoxon, and

Cox proportional hazard methods are introduced and their underlying

assumptions are discussed in section 3.2. When the underlying assumptions of

these methods are not met, then, section 3.3 introduces three alternative

methods including a nonparametric test for survival functions, a modified Cox

model for a non-proportional hazard model, and a survival analysis method

based on mean time-to-response. Section 3.4 introduces survival models for

using interval censored data. Finally, a marginal Cox model accounting for

correlation between pain and fatigue will be introduced in Section 3.5.
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3.1 Survival Analysis for Assessing Time to Symptom Response

The concepts of censored data, survival functions, and hazard rates will

be described in this section.

3.1.1 Censoring

The dichotomized outcome “symptom response” can be defined as the

symptom reduction below a pre-specified level over a defined follow-up period,

when exposed to an intervention. Cancer patients who participated in the trials

analyzed in this thesis had their symptoms monitored and received intervention

strategies at 6 contact periods (Case A in Figure 1). However, individual patients

had different time periods over which their pain or fatigue was monitored. These

different monitoring time intervals could have occurred due to the following two

reasons. First, a patient did not complete the scheduled contacts due to lost to

follow-up (for any number of reasons including death, becoming too sick, being

busy, and not being interested) as shown by Case B in Figure 1. Second, the

onset of symptoms was different for each patient. For example, patients could

report their first pain 4 weeks after starting the 8 week study, as shown by Case

C in Figure 1. This patient who reported pain at 4 week could be monitored only

for 4 additional weeks. In contrast, a patient experiencing pain at the first

intervention contact could be monitored for the full 8 weeks.

For these reasons, symptom response is not observed or the exact time-

to-response is not known for some individuals. These types of data, including in-
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completed observations, are called censored data and there are three possible

censoring schemes; right-censoring, interval-censoring, and left-censoring.

Right-censoring is the most common censoring type. Due to loss to follow-

up or death, monitoring of symptoms is often terminated before patients

experience symptom response. The term of “right-censoring” implies that

symptom response occurs some time after the termination of monitoring patients

or the lost to follow-up. Additionally, even if patients complete the follow-up, there

are some patients who do not experience a response to a symptom until the end

of the study. Any termination of monitoring a symptom before a response occurs

is called right-censoring. Time from onset to termination of monitoring a symptom

or lost to follow-up is becomes the right-censored time for symptom response.

Therefore, right-censored time is always shorter than actual time to response.

Interval-censoring is another form of censoring. This term reflects that

symptom response occurs between two monitoring times but the exact time is

unknown. If a symptom is monitored once every week, actual symptom response

may occur within the interval between the two contacts. Since the exact time to

symptom response is unobservable in this situation, it can be represented by an

interval of time. For interval-censored time, actual time to response is between

the two interval-censored times.

The third type of censoring is left-censoring, which is encountered when

symptom response already occurred before monitoring symptom starts. lf actual

symptom response occurs before the first monitoring contact the time from onset
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to the first monitoring symptom is left-censored time. The left-censoring was not

observed in the data analyzed in this thesis.

With right-censored data, several survival analysis methods have been

developed to estimate survival curves or assess the importance of covariates.

However, few survival analysis methods and software packages are available for

interval-censored and left-censored data.

Figure 1 Monitoring symptoms during intervention period
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3.1.2 Survival Function and Hazard Rate

The following is a brief overview of the concepts of the survival function

and hazard rate for time to pain and fatigue response. The time to pain and

fatigue response is a primary outcome of this research. It can be interpreted as
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the duration of pain and fatigue within the intervention period. This time to the

clinical event (e.g. symptom response) can be summarized by the survival

function (S(t)) and hazard rate (h(t) ). The survival function (S(t)) can be defined

as a probability that a patient’s pain or fatigue does not respond during the length

of time (in days), t , from onset, namely S(t) = p[T>t]. We assume that the

distribution of survival time has a density function, f . Then the survival function

can be written as

S(t)=1—Ef(u)du (3.1)

Greater values of survival function reflect longer time to pain and fatigue

response during the follow-up period. In this study, the survival function,S(t), of

time to pain and fatigue response can be estimated by the empirical survival

function given by

Number of patients with response time > t

S t =

I I Number of patients with symptom at time t

(3.2) 

Kaplan and Meier (1958) introduced a nonparametric technique for

estimating survival function. The product-limit estimator, which is called the

Kaplan-Meier estimator, uses both censored and non-censored observations

to estimate survival function. Let "t be the number of patients with no

response to pain or fatigue at contact I and dj be the number of patients

having symptom response at contact t, then we can obtain the Kaplan-Meier

estimate of the survival function by
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numbers of days from onset.

The hazard rate (h(t)) represents the risk of event occurring during a

specific time point. According to the Dictionary of Epidemiology published by the

International Epidemiological Association (IEA), the hazard rate is defined as “a

measure of the risk of occurrence of an event at a pOint in time t.” (97) In this

application, the hazard rate is interpreted as a probability that a symptom

responds during time interval t, the conditional on the patient having symptoms

at the start of time interval t. Therefore, it can be expressed by the conditional

probability of response time T divided by time interval 6t as follows;

 

p(tsr<t+azjr>t)}_flt_) (34)
6t _

.

h(t)= 11m { 50),

6t—>0

where f and Sare the probability distribution of symptom response time

and survival function, respectively. Opposite to the survival function, the higher

hazard rate represents a positive outcome for symptom response. That is, a

greater hazard rate can be interpreted as a shorter time to symptom response.

The cumulative hazard, H(t): £h(u)du, which integrates the hazard rate from

onset time to a certain'follow-up time t, is widely used for analyzing time to event

data. It can be obtained from the survival function using the following

equation; H(t) = — Iog(S(t)) .
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The median and mean of time-to-event are also important statistics to

evaluate time to symptom response. The median time to response is a time point

when the survival function is 0.5. That is, the time point when half of the patients

had responded to their symptoms. For an example, survival function shown in

Figure 2, the median time to response is 14 days. The mean time to response is

the expectation time that individuals experience response in their symptoms, and

is obtained by calculating the area under the survival function, given by

,u = £0 S(u)du. In Figure 2, the mean time to response is 24.6 days. To obtain the

mean time to response, all censoring cases need to occur before the latest

symptom response is observed. However, when there are individuals whose

symptom did not respond throughout the whole duration of the follow-up, the

mean of time-to-response is not available. In this situation, the restricted mean

can be alternatively used, given by p: £S(u)du where r>0 is an observed

maximum time to response (98-101). Figure 3 describes the situation that about

20% of patients did not report symptom response until after 50 days, the reported

maximum time to response. The restricted mean of time to response is an area

under the survival function until 50 days. Therefore, the restricted mean (22.3

days) from Figure 3 is smaller than the mean of time to response (24.6 days)

from Figure 3.
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Figure 2 An example of median and mean time-to-symptom response
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Figure 3 An example of restricted mean time-to-response
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3.2 The log-rank, Wilcoxon Test, and the Cox Proportional Hazard Model

To assess the association between a covariate and the time to pain and

fatigue response, the probabilities of having pain and fatigue without a response

until a certain time (survival function) are compared across different levels of a

covariate. That is, the null hypothesis of these tests is equality of survival

functions among multiple groups, HO:SI(t)=S2(t)=---=Sk(t) for all t. This is

also equivalent to testing the equality of the hazard rates. Parametric methods

which assume survival function of a specific form are convenient to estimate the

survival function or mean time to response. However, sometimes it is hard to

know whether a survival time has a specific form such as exponential, lognonnal,

or Weibull. Frequently, nonparametric tests, which compare the empirical survival

functions, are used to examine differences in time to event between covariate

groups.

3.2.1 Nonparametric Tests for Equality of Survival Functions

One nonparametric method was developed by Mantel and Haenszel

(102). They suggested the log-rank test to compare survival functions by deriving

ranks of time to response in two groups. Suppose that there are ranked times to

<t

(2)

<"'<t'

(’0
response, t , across two groups and that there are dlj and

(1)

d2]. individual patients who respond to their pain or fatigue in each of the groups

for j: 1,2,...,k. Suppose further that n1]. and n2]. individuals with no responses
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to pain or fatigue in each of the groups just before time t . . Then there are

(1)

nj=n1j+n2j patients who report their symptom just before time ((1.) and

dj =d j +d2j patients who respond to the symptom at time t . If two groups

I U)

have the same survival function, then the number of patients who are responders

to their symptom in one group, dlj’ have a hypergeometric distribution. Therefore,

the expectation and variance of d1]. is given by e1.=n1jdj/n. and

J J

_ _ 2 _ . _ . .

Vlj “"1j"2jdj("j djI/Indnj 1)} respectIvely. The log rank test statlstIc can

be obtained by summing the differences between the number of observed

symptom responses and the expected number of symptom responses in one

group, given by

°=1

’ ~ 22(1). (3.5)
 Log-rank Test Statistic =

having a chi-square distribution with one degree of freedom.

Breslow developed the Wilcoxon test for comparing survival functions. In

the Wilcoxon test, the difference between the number of observed responses and

expected number of responses, dlj —e1j, is weighted by the number of patients

with symptoms that do not respond just before time, t . Therefore, this test is

(1‘)

more sensitive to the magnitude of differences in survival functions at earlier
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times, compared with the log-rank test. That is, the difference in survival function

between groups at one week from onset is more important than that at 4 weeks

from onset. The Wilcoxon test statistic is given by

k

2 ”j‘dlj "“11"
—1

Wilcoxon Test Statistic: J k ~ 12(1), (3.6)

znzvl.
j=1 J J

 

where nj is the total number of individuals with no responses to pain or

fatigue just before time t . . This also has a chi-square distribution with one

(J)

degree of freedom.

Although the log-rank and Wilcoxon tests do not require assumptions

regarding the distribution of the survival function, these tests are appropriate only

when the estimated survival functions in the two groups do not cross. The log-

rank test is more suitable when the proportional hazard assumption is satisfied. I

will discuss in more detail the proportional hazard assumption in the next section.

3.2.2 The Cox Proportional Hazard Model

The nonparametric tests mentioned above are suitable only for univariate

analysis. That is, they are available to compare time-to-response for two or more

groups classified according to a single covariate. However, it is also important to

know the simultaneous impact of patient’s demographic variables or health

related variables on time-to-symptom response. In order to assess associations

between multiple variables and time-to-symptom response, a multivariable
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statistical model needs to be used. One widely used statistical model for survival

data is the Cox proportional hazard model, developed by Cox (103). This model

does not require any specific distribution of time to response, but it requires an

assumption of proportional hazard between groups over time. Therefore, it is

called a semi-parametric model.

To employ the Cox proportional hazard model, it is important to

understand the “Proportional hazard assumption”. Let hi(t) be the hazard rate of

symptom response at time t for patients in group i for 1': 1,2,.... If the hazard

rate of symptom response for patients in group i is proportional to the hazard for

individuals in a reference group, then it can be expressed by hi(’)=¢ih0(’)

fori=1,2,..., where ¢i is a constant for group i and h0(t) is a hazard rate of

reference group (often called a baseline hazard). Using a lognorrnal distribution

of survival time, two hazard functions, hl(t) and h2(t), are shown in Figure 4,

where ¢1>¢2. In this figure, two hazard and survival functions proportionally

increase over time and therefore their graphs do not cross.

Under the proportional hazard assumption, the ratio of the hazards for

symptom response between group i and reference group, (251., can be set as a

function of covariates x. x. The Cox proportional hazard model with
11’ 12,...,xip .

multiple covariates can be written as

h (t)
1'

I100)

 
= ¢i = cxp(fl1xi1 + ’62xi2 +W'Bpxip) . (3.7)
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Figure 4 Hazard functions and survival functions under the proportional

hazard assumption
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Suppose t t

(1) <
<--- < t(k) are kindividual time to response among

(2)

n(2 k) cancer patients. Parameters are estimated from the partial likelihood

function as follows (103);

 

  

. «5.-
k eXP( 'fl)

L : n 1 x! ' I (3'8)

If E RUG» ,

where R(t(i)) is a set of individuals having no symptom response at time, t, and

5,. is an indicator of censoring (=1 if responded, 0 if lost to follow-up). To account

for tied time to response, the approximate partial likelihood function is suggested

by Breslow (104) as follows;

 

  

l ”i
k eXP(Sffl)

L = l , 3.9
Eli Z eXP(x'J-fl) I I I

l] E R0(1'))

where di is the number of patients with time to response, t(i) and Si is the sum

of covariates for all. patients. The partial likelihood function is obtained by

counting patient’s symptoms with response and non-response at each ranked

response time (103). Therefore, the partial likelihood function depends only on

the ranked time to symptom response.

The proportional hazard assumption can be tested by adding an

interaction term between a covariate and a function of time, f(t) =Iog(t/ t'), in

the equation 3.7, where t’ is median time to response (105). For instance, if a

44



covariate, xi, does not have a proportional hazard across time t, the ratio of

hazard rates becomes h(t)/ h0(t)=exp(,6xi+yxif(t)) , where x1.f(t) is the

interaction term between a covariate and a function of time which represents a

change in the ratio of hazard rates over time. When the proportional hazard

assumption is satisfied for covariate, xi, the interaction parameter 7 is zero.

Therefore, testing the null hypothesis (HO : 7:0 vs. 7 i 0), determines whether

the Cox proportional hazard model is appropriate for this covariate. A non-

significant test (p>0.05) indicates that the proportional hazard assumption is

safisfied.

In clinical trials, the output of the Cox proportional model is the hazard

ratio (HR), which indicates a treatment effect on survival or resolution of disease.

For instance, if the outcome is survival time, then a hazard ratio of less than 1 for

the treatment group indicates a longer survival time and therefore a positive

outcome. However in symptom response studies, hazard ratios greater than 1

indicate a positive outcome, in which a patient in the intervention group resolves

symptoms faster than the control group.

The Cox proportional hazard model has a close relationship with the log-

rank test because the Cox proportional hazard model has the same result as that

of the log-rank test when there are no tied observations (105). The log-rank test,

Wilcoxon test, and the Cox proportional hazard model are non-parametric

method and therefore do not require a specific distribution of symptom response

times because they depend on the ranks of response or censored times rather
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than an actual time interval. However, they still require the strong assumption of

proportionality. Figure 5 part (a) illustrates on example where the actual survival

curves cross one another. In part (b), the Kaplan-Meier estimate shows the same

pattern of survival curves. However, the survival curves estimated from the Cox

proportional hazard model (Part (c)) do not cross each other, because the

survival curves are estimated under the proportional assumption. Therefore,

even if the actual survival curves are different in part (a), the estimated survival

curves from the Cox proportional hazard model are fairly similar in part (c).

These methods are not appropriate, when their underlying assumptions

are not satisfied. Therefore, I will introduce recently proposed methods which are

available for non-proportional survival functions in the next section.

Figure 5 Example of survival functions when the proportional hazard

assumption is not satisfied
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3.3 Methods of Survival Analysis without the Proportional Hazard

Assumption

The previously introduced methods are valid when survival functions have

proportional hazards. While the Cox models are popular in health research, they

are valid only under the proportional hazard assumption. Unfortunately, this

assumption is often violated. Schemper (106) lists consequences of

inappropriately using the Cox model when; 1) the power of testing effects of

covariates with non-proportional hazards decreases, and 2) the relative risks for

covariates with increasing or decreasing hazard ratios will be over- or under-

estimated, respectively. The proportionality of hazards should therefore be

checked before a survival analysis is carried out using a Cox model.

In addition, there is the question of how to deal with time-to-response data

when the proportional assumption is not satisfied. In this section, three

alternative methods are introduced.

The first method is a nonparametric test for equality of survival functions

proposed by Lin and Wang (107). When the proportional hazard assumption is

not satisfied, Lin and Wang (107) propose a new nonparametric test that has

greater power to detect overall difference in time to events between groups when

survival curves cross. Let dlj and d2], be the number of responses in Group |

and II at each time tj. The number of patients without any response to pain and

fatigue before time tj is denoted by n1]. and n2]. for Group I and II, respectively.
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When there is no difference between the survival functions of the two groups, the

number of responses, dlj ,has a hypergeometric given by;

_d1j d2) . (3.10)

The expected number of responses in Group I can be obtained from the

 

hypergeometnc dIstnbutIon gIven by; elj ="1jdj/"j where d}. =de +d2j and

it}. = n + n The new test statistic is obtained by the summation of the squared

Ij 2j'

differences of the number of observed responses in symptom and the expected

k 2

number of responses in symptom at each ranked time, A = Z (de "€le . The

test statistic is obtained from the following equation;

._A—E(A)

_ ./Var(A) ’

where E(A) and Var(A) are calculated based on the hypergeometric distribution,

T (3.11)

and are given by

k .d ..(n —d.)

1 j 1 (3.12) 

and
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k 4 3 2 2Var(A) = Z {15wlj )—4E(d1j)E(d1j)+6E(d1j )(E(dlj))

j =1

—3(E(d1j»4 —(Var(d1j»2}

(3.13)

According to their simulation study, this test has a higher power of

detection of differences in survival curves between two groups than the log-rank

and Wilcoxon test when the proportional hazard assumption does not hold.

However, this test has less power than the log-rank. and Wilcoxon test when

survival curves do not cross each other. The Lin and Wang test is available for

testing the survival function only between two groups.

The second method is a modified Cox model that weights a coefficient of

a covariate which does not have a proportional hazard relative to the other

covariates (106). This is a modified Cox model for non-proportionality of hazards.

Several survival models have been developed for non-proportional hazards.

Moreau proposed the piecewise proportional hazard model with separated

parameters of a covariate for each interval of survival time (108). The Relative

survival model was proposed by Esteve and colleagues, and to incorporate non-

proportional hazards, it has different baseline hazards for each interval of survival

time (109). Also, Cox suggested an alternative method of including a time by

covariate interaction term in the Cox proportional hazard model (103). Schemper

proposed a Cox Model with weighted estimation (WCM) for non-proportionality of

hazards (106). For parameter estimation for WCM, the partial likelihood function

of the Cox proportional hazard model (Equation 3.9) is modified. In general, the
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maximum likelihood estimation (MLE) of parameter, ,8, for the Cox proportional

hazard model is obtained by maximizing the partial likelihood function (Equation

3.9). The partial likelihood function for the Cox proportional hazard model has a

maximum value, when the first derivative of log of the partial likelihood function is

zero as follows;

 

k _ 6i. Z . xlrexp(x'j,6)q

——al°gL= Z S. — 16mm» :0. (3.14)

6,6,. i=1 "‘ . Z . exmx'jfl)

JER(I(I))  

For parameter estimation for WCM, the above equation is weighted by a

function of time, f, (ti), for each parameter as follows;

  
61 L k ' 6i' gin)?” “WI/3)-og _ _ JG 1 =

aflr _i§1fr(tz‘) Sir . Z ' exp(x'j,B) 0 (315)

L JERUU» -  

where 4(1) is a weighted function for parameter ,Br, and can be

replaced by the number of patients with a non-responded symptom, R(t(i))

(Gehan score) (110), or total sample size times Kaplan Meier Estimator, nF

(Prentice) (111). Schemper demonstrated better power to detect the effect of a

covariate with non-proportional hazard, compared to the Cox proportional hazard

model. Heinze and his colleagues developed a SAS macro for the Cox model

with weighted estimation (WCM) (112).

Rahbar et al. developed new methods to compare mean of survival time

between groups (113-116). With respect to evaluating time-to-response, the

previously discussed methods examine a null hypothesis that there is no
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difference in survival functions among different levels of covariate across time.

However, Rahbar and his colleagues suggested testing the equality of mean of

time-to-response among different levels of covariate during the follow-up period.

Regardless of difference between tests for survival functions and means of

survival (response) time, the equality test for means in response time is a

feasible way to compare times of response among groups. Also it does not

require the assumption that survival functions do not have proportional hazards.

Rahbar et al. (113) proposed a new nonparametric test for mean survival

time for multiple groups. Let 61. be a mean time-to-response in groupi. The null

hypothesis of this test is H :61=I9 =---=6 . Let ti0 2 k (1)<ti(2)<m<ti(nl.) be

observed the time in response or censored time in group i, and 61.0.) be an

indicator variable of censoring (1 for response, 0 for censoring). The mean time

to response for group i can be estimated by integrating the estimated survival

function over time, given by;

A n A

6i = [Elfin/c +1) ”z°(k)]'SKM(i)(’(/c)) ' (3'16)

The pooled or combined estimator of mean time-to-response among k

groups is given by

A k A A

9‘3 = Z L.6., (3.17)
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 where 1:, = 2 2 l 2 . For groupi, Kaplan Meier mean,é,.,

I 6'" n1+6n n2+---+6'n nk

1 2 k

can be obtained from the equation (3.16). The estimator of variance, a; , is

calculated by the following equation;

 

~2 ni A“i(./))2

011752190) K(t .) ’ (3'18)
’ iJ( )

"i n.

where K(t)= 1+ 2:1i11(t()>t), 201(3)): ZSF(t(19010“)tz(j))'

j:

With the estimated mean and variance, a new test statistic (113), A”, is

proposed to test the difference of survival means among different groups, given

by:

A” =n(é—éC)'F;I(é—éc), (3.19)

where n = n1 +n2 +---+nk is the total number of observations, 67:

( 9 ,-~,ék)' is a vector of Kaplan Meier means, and 6C =(éf,éf,~~,éf)' is a

vector of the combined estimators of means of time-to-response among k

groups, which is defined in equation 3.17, among kgroups. The estimated

variance-covariance matrix of a vector of the estimated mean of time-to-response,

bi =( 1,l92,---,6ik)' , is obtained by the following equation;

53



  

""1 W
1;” = 7,132 7,:2 7an , (3.20)

Kinlk f”2k in]. )

where y‘nizéizafli,n(1_Li2) +2j¢i
612wj1n£j2’

fin” :—&i2wi:111£i_612'w_1j,nl1j£1 42km-l 5';wglnimz, and mi,” :ni/"’ i,j=

Rahbar et al. (113) showed that under the null hypothesis of equality of

mean times to response, the sampling distribution of An converges to a Chi-

square distribution with k -1 degrees of freedom.

In the extension of this idea, Rahbar and colleagues have developed a

nonparametric regression model of mean survival time (114-116). The regression

model accounts for effects of two discrete covariates on time-to-response without

the proportional hazard assumption. Rahbar and Gardiner (114, 115) proposed a

linear regression model for the additive effect of discrete covariates on mean of

time-to-event by estimating average increases of mean time-to-event among

different levels of a covariate.

Suppose that there Is a demographic variable such as patient age

--,c and a health related variablecategorized into m1 levels with values, 0 ml
1962,.

,md . Letsuch as comorbidity categorized into m2 levels with values, dl’d m2
2
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Tijk be time-to-response of pain and fatigue for patient i with age of c}. and

comorbidity of dk . Then a linear regression model for time-to-response is

expressed by

Tijk =a+fl1cj +’82dk +8ljk (3.21)

where (1,8 ”62 are unknown parameters and gijk is unobservable error. It

is assumed that al.. is independent and identically distributed with zero mean

jk

and common variance. It is different from a typical linear regression model,

because the distribution of error, al.]. , is not assumed to be a normal distribution.

Then the mean time-to-response, 6i]. , is estimated by two covariates, C]. and

dk , given by

Bjk = a + file]. + 'Bzdk (3.22)

Rahbar and Gardiner (115) propose the estimators of coefficients,

a,,61,,62 by a linear combination of Kaplan Meier meansfor each level of the

covariates, éjk (e.g. jth level of age and kth level of comorbidity), given by

A

m2 .k_é.lk

zi,=(szl)‘1 z 2 711—71- (3.23)

k=1j¢jI j J"

m (9 —é. _ 1 . . ,

fl2=(m1M2) ‘ z z —Jk———J—k—,and (3.24)

j=lk¢k' ck-ck'
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. _1m1 m2 . , _1m1 .. _1 m2

a=n Z 2 nij. —,61 n X n.d. —,62 n 2 nkck , (3.25)

j=1k=1 J j:] 1'1 k=1-

1 1 m1 m2 m2

where Ml=§m1(m1—I), M2=§m2(m2—1),n= § § njk’ n11: 23 njk’

1-1/(-1 k—l

m1

nk= Z "jk , and "jk is the number of patients at the jth level of age and the
. 1.21

kth level of comorbidity.

An extension of this model, the linear modelwith an interaction effect

between two discrete covariates, was suggested by Rahbar et al. (116). Using

this method, it is possible to identify multiple factors associated with the time of

response in pain and fatigue without a restriction of the proportional hazard

assumption.

In a simulation study, it was shown that this regression model had better

power to detect the interaction effect than the Cox proportional hazard model,

since the rate of censoring before the end of follow-up increases. However, this

method has some drawbacks. First, the largest censoring (lost to follow-up) time

should not be larger than the largest time to response. If this condition is not

satisfied, then the sample mean of time-to-response cannot be estimated.

Second, this method may require a large sample size at each level. Third, this

method does not easily extend to more than two covariates. Fourth, only discrete

covariates are available in this method.

Three methods, Lin 8 Wang’s test, the Cox model with weighted

estimation (WCM), and Rahbar’s method, will be employed in this study to
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determine if they produce results different from the methods of proportional

hazard based (i.e. the log-rank, Wilcoxon test, and the Cox proportional hazard

model). Since there are no commercial software packages for these methods, a

SAS macro was developed for Lin & Wang’s test and Rahbars methods for this

dissertation (Appendix B).

3.4 Methods of Survival Analysis for Interval Censored Data

All of the previously discussed conventional and alternative survival

methods are developed for “right-censored time data” when exact time-to-event

(response) is known. However, it is often difficult to obtain exact time to response

in clinical trials and observational studies, which are usually designed for

monitoring patients at scheduled times. Therefore, it is important to understand

survival analysis methods for interval censoring when all that is known is that a

symptom response occurred between two scheduled intervals. This next section

reviews the history of developing methods for interval censored data, and

introduces the Accelerated Failure Time (AFT) model for interval censoring that

will be used for this analysis.

In this study, patients were monitored at scheduled contacts for an

observed pain and fatigue response. Because the question was that a patient

has response in the last 7 days, time is observed at intervals so the exact time of

onset or time of response is not known. For example if a patient reported a pain

response at the 4th intervention contact, the actual response time could have
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occurred any where between the 3rd and 4th contact. This is a type of interval

censoring. Since methods for interval censoring are more complicated and

available software is limited, the typical approach in previous studies is to use

either the lower or upper bound of the interval, or the middle value of the interval

as the exact time of the event. However, these approaches have been criticized

because it may produce biased estimations (117, 118). Therefore, methods for

interval censoring will be examined and their results compared to determine if

they are different from other methods with right censoring.

The Accelerated Failure Time (AFT) model is an available method

incorporating interval censoring to evaluate time-to-response of pain and fatigue,

and it is defined by the transformation:

T = To ex'fl, (3.26)

where T is time to response for a patient with covariates x' = (x ~,xp) and

1”“2"

T0 is time-to-response from baseline distribution corresponding to a covariate

value of zero. The AFT model assumes that the parameters fl’s can accelerate

or decelerate time-to-response for a patient with covariates, x’ = (x1,x2,---,xp).

That is, the effect of covariates in this model is to change the scale but not the

location of a baseline distribution of time to response. From this transformation, a

survival function can be obtained by

5(2 | x) = P[T > z I x] = P[TO > te—xI’B] = 50(te_x'fl), (3.27)
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where S0 is the survival function for patients with covariate value 0. If logTO

is as, then the ATP model is expressed by logarithm form

log T = x'fl + log T0 = x'fl + 0'8 (3.28)

The error term, 6=(IOgT-x'fl)/0, is a random variable that can be

assumed to have one of a variety of distributions including the standard normal,

standard extreme value, and the logistic distribution. If S(t)=P(£i >t) .

F(t)=P(8i St), and f(t)=dF(t)/dt, parameters B’s and 0' can be estimated

from the log-likelihood function as following (119);

f(u)

Iog1=zlog[ 0" )+Zlog(S(ui))+Zlog(F(ui))+Zlog(F(ui)—F(vl.)), (3.29) 

Where ui=(10gti—xl'.fl)/O'. In this equation, the first sum of log-likelihood

includes uncensored observations, the second sum includes right-censored

observations, the third sum includes left-censored observations, and the last sum

includes interval censored observations. Therefore, the AFT model can be

applied to left-, right-, and interval censored data. If an appropriate distribution is

used for time-to-response with interval censoring, it may provide a more accurate

result than that of a Cox proportional hazard model. Advantages of the AFT

model are to incorporate interval censored data and not to be restricted by the

proportional hazard assumption.

Unlike the Cox proportional hazard model, the AFT model does not

provide a hazard ratio. Therefore, there is an alternative interpretation of results
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from the AFT model. From a AFT model given by Tx =T67 exp(,80+,61X), the

survival time ratio (or the response time ratio), exp(,6) = Tx =1/Tx : 0’ can be used

to measure the effect of a covariate (x) on time-to-response (120). A positive

value of coefficient 8 indicates that a patient who had a higher value of a

covariate (x) took a longer time to response. For example, when a covariate

indicates high comorbidity and ,6 is positive, the response time ratio is

interpreted as a patient with a high comorbidity took a(= cxp(,B))-f0|d longer to

response than one who had a low comorbidity.

3.5 Methods of Survival Analysis When Outcomes Are Not Independent

Unlike the survivorship of patients, in survival analysis of symptom

response in each individual could have multiple events (e.g. response of pain

and fatigue). Since cancer patients usually experience both pain and fatigue (34-

40), time-to-response of pain and fatigue are unlikely to be independent in this

analysis. Single symptom assessment ignores the associations between pain

and fatigue and may underestimate the patient’s total symptom severity burden.

For example, when the effects of symptom management interventions are

evaluated, pain may be more responsive than fatigue and, depending Upon the

association between the two symptoms within individuals, may, indirectly,

decrease in severity more than fatigue. Since pain and fatigue may be

interrelated, as a function of disease, treatment, or patient characteristics, the
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possible correlation should be taken into account in evaluating times-to-response.

Therefore, the marginal Cox model incorporating correlations between pain and

fatigue will be discussed in this section.

Wei and Lin (121) developed the marginal Cox model for multivariable

failure time observations that accounts for correlation among multiple event times

within any subject. They applied this model to an example where multiple

episodes of viral infections could occur in AIDS patients. To account for the

correlations among multiple infections, a robust sandwich covariance matrix

estimator was used. Suppose that n cancer patients can experience up to 2

x . be covariatespotential events (pain and fatigue responses). Let x kip
kil’xki2""’

for ith cancer patient with symptom k (k =1 for pain, k =2 for fatigue). The

marginal Cox model is given by

hk (t | xkil’xki2"°"xkip) = exp('6k1xkil + ’Bk2xki2 +... +flkpxkip )hk0(t), (3.30)

where h and h2 are baseline hazard functions for pain and fatigue
10 0

response. Parameters, ,6 ,B ,...,,B , are estimated by a method developed
k1 k2 kp

by Wei, Lin, and Weissfeld (WLW method) (121). The robust sandwich

covariance matrix estimator (the empirical covariate matrix estimator), which is

widely used for the generalized estimating equations (GEE) (122), can be used

to account for the correlation between pain and fatigue within an individual.

The marginal Cox proportional hazard model can be used to examine the

different effects of a covariate on each outcome, e.g. pain and fatigue, by

testing ,1?“ = 821. Suppose that ,31 1 and 821 are estimated effect of age on time-
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to-response in pain and fatigue, respectively. Significant differences between the

two estimates, ,3“ at A indicate that patient age has a different impact on the
21’

response to pain and fatigue. Therefore, the marginal Cox model allows for either

an overall effect of a covariate on both pain and fatigue (if 811:,821), or two

separate effects ( ,6 at ,B ). Most cancer patients undergoing chemotherapy
11 21

experience both pain and fatigue, therefore the marginal Cox model is

appropriate to account for the correlation between the two symptoms.

In summary, time-to-response of pain and fatigue can be evaluated by

using appropriate survival analysis methods; and it is important to understand the

underlying assumptions of each method. In this analysis, I will demonstrate how

to detect meaningful reduction (response) of pain and fatigue, how to define time

in their response, and how to implement survival analysis methods appropriately

according to underlying assumptions.

Specific Aims of the study

The primary question of this study is what factors are associated with

time-to-response of pain and fatigue among cancer patients who are receiving

symptom management interventions in two clinical trials. The interventions are

designed to reduce the severity of symptoms in patients undergoing

chemotherapy by a nurse, coach, or the AVR system during an 8 week interval

penod.

This study will address the following specific research questions:
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1)

2)

3)

4)

5)

Can clinically meaningful changes in pain and fatigue symptoms be

measured using the four dimensions of interference (emotions,

enjoyment of life, relations with others, and general daily activities) to

define clinically meaningful cut-points that separate levels of symptom

severity (mild, moderate, and severe)?

Using the clinically meaningful severity cut-points, which factors are

predictors of time-to-response in pain and fatigue among cancer

patients when using survival analysis techniques (the log-rank test, the

Wilcoxon test, and the Cox proportional hazard model) that require the

assumption of proportional hazards?

Do the findings based on survival analysis techniques appropriate for

the proportional hazards assumption, hold when using alternative

survival techniques (the Lin 8 Wang’s test, the Rahbar’s test, and the

Cox model with weighted estimation) that do not require the

proportional hazard assumption?

Do the findings based on survival analysis techniques that are

appropriate for right censoring (the Cox proportional hazard model and

the Cox model with weighted estimation) hold when using the

Accelerated Failure Time model that accounts for interval censoring?

Do the findings from the separate models of pain and fatigue (the Cox

proportional hazard model, the Cox model with weighted estimation,

and the Accelerated Failure Time model) hold when using the Cox
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marginal model that accounts for the correlation between the two

symptoms (pain and fatigue)?
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CHAPTER 4 METHODS

Section 4.1 describes the two symptom intervention trials and illustrates

the method used to measure the severity of pain and fatigue, and patient

response to interventions designed address to these symptoms. Section 4.2

identifies the independent and dependent collected as part of the two trials.

Finally, the analytical strategy for identifying important factors affecting time to

response among patients with pain and/or fatigue in these trials is presented in

section 4.3.

4.1 Clinical Intervention Trials for Symptom Management

4.1.1 Subjects and Settings

This study utilizes information from two large randomized clinical trials of

symptom management interventions for cancer patients. These trials were

funded by the National Cancer Institute (R01 CA79280, Trial A, Family Home

Care for Cancer: A Community Based Model and R01 CA30724, Trial B,

Automated Telephone Monitoring for Symptom Management) (123, 124). Each

trial compared two symptom management intervention arms. Trial A compared

nurse and non-nurse (Coach) intervention groups, while Trial B compared a

nurse intervention to an Automated Voice Response (AVR) system intervention.

Trial A required that patients should have a caregiver who agreed to participate

in the study. Trial A and B were performed with the same timelines.
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The same recruitment criteria were used for both trials. Cancer patients

were recruited from one community cancer oncology program, two

comprehensive cancer centers, and six hospital affiliated-community oncology

centers in Michigan, Indiana, Connecticut, and Maryland. From October, 2003

until July, 2006, 1605 eligible patients were approached. The study inclusion

criteria were; 1) 21 years of age or older, 2) have a diagnosis of a solid tumor

cancer or non-Hodgkin’s lymphoma, 3) be undergoing a course of chemotherapy,

4) be ability to speak and read English, 5) possess a touchtone telephone, and 6)

have no cognitive deficits. If a patient had a caregiver, then his/her caregiver

should be able to speak and read English and not have cognitive deficits. Among

the eligible patients, 815 patients consented to participate in either Trial A or B.

The participants were not assigned to any trial particular at the time of initial

recruitment. The trials were approved by the institutional review board (IRB) of

the Michigan State University, as well as IRB’s of the participating sites. The

entry criteria were different between the two trials. The only difference between

the two studies at this stage was that Trial A requires a participation of caregiver

while Trial B does not require.

Second, symptom screening was performed to determine when a patient

would enter into one of the two intervention trials. All enrolled patients undenivent

symptom screening, using the automated telephone response, during the same

time period. Of the 815 recruited, 806 participants were screened to assure that

they met minimum symptom severity criteria. The MD Anderson symptom

inventory (MDASI) was used for this process. This instrument is a widely
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implemented instrument, designed to assess on a 0-10 scale the severity of

multiple symptoms and the impact of symptoms on daily functioning in cancer

patients (Appendix C). The reliability and validity of this instrument was

demonstrated by Cleeland (34). Based on the MDASI, patients were asked to

rate the severity of 13 cancer-related symptoms (i.e. pain, fatigue, nausea,

disturbed sleep, distressed, shortness of breath, remembering things, lack of

appetite, drowsy, dry mouth, sad, vomiting, and number or tingling), and to

describe the impact on 6 items of symptom-related interference with daily

functioning (i.e. general activity, mood, work around house, relations with other

people, walking, and enjoyment of life) during the last 24 hours. In this screening,

an automated voice response version of MDASI (4) called all patients at home

twice weekly for up to six weeks. Patients with caregivers were entered into Trial

A, when they first scored a 2 or higher on both pain and fatigue or a 3 or higher

on pain or fatigue. Patients, who did not have caregiver or whose caregivers did

not agree to participate, were entered into Trial B, when they first scored a 2 or

higher on at least one symptom. Based on this screening, 257 and 417 patients

were entered into Trial A and B, respectively. During the screening, 76 patients

dropped out and were never entered into the intervention phase. Only 2 patients

never reached the symptom threshold for either of the two trials.

Third, the trial participants completed a baseline interview a week after

they were screened and entered. At the baseline interview, patients reported

their symptoms, but were not given any intervention. Among them, 235 and 437

patients completed their baseline interviews in Trial A and B, respectively. Prior
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to the baseline interview 23 and 34 patients dropped out from Trial A and B,

respectively. After completing the baseline interview, participants in Trial A were

randomized to a nurse or non-nurse (Coach), and in Trial B they were

randomized to a nurse or automated-voice-response (AVR) system. Following

randomization, intervention groups received 6 intervention contacts during an 8

week intervention period (See section 4.1.2 for further details). At each

intervention contact patients reported symptoms and received interventions, if

symptom severity reached a 4 or higher at the first intervention contact a week

later. Figure 6 summarizes the flow of patients beginning with eligibility and

proceeding through both trials including lost follow-up, as it occurred after the

initial contact point.
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Figure 6 Flowchart of patient accrual and retention in the Trial A and B
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4.1.2 Intervention Trials for Symptom Management

Trial A was designed to compare a nurse-based intervention with an

intervention delivered by a non-nurse coach. In Trial B, the nurse-based arm was

compared with an Automated Voice Response (AVR) system. Each trial was

designed to compare the impact of intervention strategies in reducing the severity

of symptoms for cancer patients undergoing chemotherapy. A nurse, coach, or

the AVR system reached patients by telephone at pre-scheduled time points. The

first four contacts were scheduled weekly, while the 5th and 6th contacts were

every other week (Figure 7). At each intervention contact, the patients were

asked about each of 16 symptoms7, which included 12 symptoms (without

drowsy) from the 13 symptoms at screening, as well as additional 5 symptoms

(i.e. alopecia, constipation, cough, diarrhea, and weakness). In the intervention

contact, nausea and vomiting were measured as one symptom.

In the nurse-based intervention of both Trial A and B, the trained nurse

provided the patients with cognitive behavioral interventions that involved up to

four strategies for dealing with each of their symptoms. The goal of this cognitive

behavioral intervention was to assist patients in acquiring self-management

knowledge, skills, and behaviors to address symptom problems. Cognitive

behavioral strategies were improved to reduce the severity of symptoms, the

impact on emotional distress, and the physical function. In this nurse-based arm,

if a patient reported a symptom severity of 4 or higher, the nurse, with agreement

from the patient, selected one of the 4 cognitive behavioral intervention strategies

 

7 The 16 symptoms include alopecia, anxiety, constipation, cough, depression, diarrhea, difficult

to breath, dry mouth, fatigue, insomnia, nausea/vomiting, pain, peripheral neuropathy, poor

appetite, difficult to remember, and weakness.
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classified as coping, reframing, education, or eliciting support to overcome the

symptom. Each patient used a Symptom Management Guide (SMG) which

described the cause of each symptom and strategies for managing each

symptom. This manual, written at an 8th grade level, also included information on

when to call the oncologist and how to access other sources of information. The

patients in the non-nurse coach and the AVR arms were referred only to the

SMG, when they reported symptoms at a severity of 4 or higher.

Figure 7 Time line of screening, baseline interview, intervention contacts,

and post interview
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4.1.3 Justifications for combining data from Trial A and B

In this study, I combined the data sets from Trial A and B into a single

analytic file in order to achieve a larger sample size. While combining the two

data sets can leads to a selection bias, I believe this possibility is minimal, and

the differences between the two trials are as follows:

First, Trial A required consent from caregivers, whereas Trial B did not

require caregiver participation. Since patients who had impairment in their

physical functioning or who had adverse health conditions might be more likely to

need assistance from caregivers, there is the potential bias that patients in Trial

A might have poorer health compared with those patients in Trial B. Second, Trial

A had somewhat different criteria for the symptom screening than Trial B. When

eligible patients (i.e. those not having a caregiver) reported 2 or higher on

severity of at least one of the 13 symptoms, they were entered into Trial B. In

Trial A, however, patients were screened based on only pain and fatigue. For

Trial A, patients needed to score 2 or higher on severity for both pain and fatigue,

or 3 or higher on either pain or fatigue. Accordingly, patients in Trial A might have

a greater opportunity to report pain and fatigue at early intervention contacts,

compared with those in Trial B. However, despite differences in criteria for the

presence of pain and fatigue, the prevalence of pain and fatigue was not

significantly different between the two trials. Ninety-six and ninety-four percent of

the patients reported a 4 or higher on severity of fatigue in Trial A and B,

respectively. Prevalence of pain in Trial A (54.6%) was a little higher than that in

Trial B (42.8%). This difference no longer existed among the analyzed samples,
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because the survival analysis of time to response included only patients who had

pain or fatigue during intervention period.

Regardless of the design difference between the two trials, there is

evidence to support combining these data sets in this study.

First, Trial A and B were performed concurrently with the same study

protocol. Patients were screened using the same system. The same nurse

delivered the intervention protocols in nurse-assisted arms of the two trials. In the

education-information arms, Trial A was delivered by a masters prepared social

worker (non-nurse coach arm) and Trial B was delivered by an automated voice

response system (AVR arm). While the mode was different, the protocol for these

arms was identical in terms of the numbers of contacts, amount of time spent

with each patient (approximately 18 minutes per contact), and the use of the

same written materials to deliver symptom management strategies. The time

frame from the recruitment to the end of intervention period was also identical

between the two studies.

Second, the characteristics of the patients were not different between the

two studies. Although more adverse health conditions were expected in patients

with caregivers in Trial A, I did not find differences in comorbid conditions,

depression, or age between the two trials (Table 1 in Chapter 5).

Third, the same instruments were used for assessing symptoms and other

health conditions in both Trial A and B. Therefore, the two trials would be

expected to have similar levels of measurement errors in symptom assessments.
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Fourth, the different entry criteria for symptom screening did not affect the

demographic difference between the two trials. Although Trial A had different

criteria than Trial B, only two patients were excluded in screening because of the

symptom severity requirements in both Trial A and B. (This in part was due to a

fact that fatigue is the most prevalent symptom experienced by patients

undergoing Chemotherapy (43), affecting close to 80% of patients.)

As to the presence of caregivers in Trial A, there were remaining concerns

about differences in gender and site of cancer between the two trials. More

female and breast cancer patients were likely to be in Trial B compared with Trial

A. It has been observed in a prior research that lung cancer patients experienced

relatively severe pain and fatigue compared with patients with breast or other

cancers (54). There is a question if as to whether differences in cancer type led

to unbalanced patients health conditions at baseline between the two trials. Trial

A has more Lung cancer patients (i.e. Breast (24.7%), Colon (7.4%), Lung

(29.3%), Genitourinary (10.7%), Gastrointestinal (6.5%), Gynecological (6.5%),

Pancreatic (2.3%), Non-Hodgkins lymphoma (7.0%), Myeloma (1.4%), and Other

(4.6%)). Trial B has more breast cancer patients (Breast (41.5%), Colon (13.7%),

Lung (15.0%), Genitourinary (6.9%) Gastrointestinal (3.6%), Gynecological

(8.5%), Pancreatic (3.6%), Non-Hodgkins lymphoma (5.2%), Myeloma (1.0%),

and Other (1.0%)).

At the baseline interview, there were no differences in comorbid conditions,

total number of symptoms or depression. However, patients in Trial A had lower

levels of physical functioning (SF-36) at baseline compared with those patients in
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Trial B. To control for the baseline differences, the final models were adjusted for

cancer site, sex, and physical functioning at baseline. If the effects of cancer Site

are different between the two trials, then the effect of cancer site could influence

by the effects of intervention. For-example, if the non-nurse coach intervention in

Trial A is more effective for lung cancer patients, than the AVR intervention in

Trial B, the cancer site effect can be overestimated, because there were more

lung cancer patients in Trial A. To correct on this concern, the interaction

between trial arm and selected covariates (cancer site, gender, and physical

function) that differ by trial will be explored in multivariable analysis. Finally, by

comparing final models for combined data with separate models for each trial, it

will be shown that the identified factors associated with pain and fatigue

response are not due to the differences between the two trials.

4.2 Measures

Symptoms were monitored at the baseline interview, at the each of the 6

intervention contacts (covering 8 weeks), and at the ten week (post-intervention)

interview (Figure 7). At each contact, symptom management interventions were

given to patients if they reported severity of 4 or higher among the 16 symptoms.

The dates of the two interviews and 6 intervention contacts were recorded.

Demographic data, depressive symptom, physical function, comorbidity were

collected at the baseline interview. Site and stage of cancer were obtained from

medical records.

75



Outcome Variable At each of 6 intervention contacts, severity of 16

symptoms 8 and 5 interference 9 items were recorded using a developed

instrument based on Brief Pain Inventory (76) and Brief Fatigue Inventory (4)

(Appendix A). Patients were asked to rate the average severity of pain and

fatigue in the past 7 days on a scale of 0 (not present) to 10 (worst). When pain

or fatigue was present (i.e. severity > 0), patients rated on a scale of 0 to 10 the

extent to which that symptom interfered with their enjoyment of life, relations with

others, general daily activities, emotions, and sleep.

The primary outcome variable for these trials is time-to-response in days

for pain and fatigue. In order to evaluate how long it took to lower the severity of

pain and fatigue by a delivered intervention, the date of contact on which a

symptom was reported to have a severity of 4 or higher was considered the

onset time of the symptom. When patients rated lower severity level (mild or

moderate) compared to the initial severity level (moderate or severe) at onset

that date of contact was defined as the response time.

Two different styles of records for time-to-response will be used in this

stUdy. First, most survival analysis methods10 developed for right censored data

require an actual time to response. Since exact time of onset and response could

not be observed, the date of the scheduled contact was used as a proxy for the

exact time of the events. That is, the number of dates from the contact where a

 

8 The 16 symptoms includes pain, fatigue, nausea, insomnia, distress, difficult to breath, difficult

to remember, poor appetite, dry mouth, vomiting, numbness or tingling, diarrhea, fever, cough,

constipation, and weakness

9 The 5 interference items include emotions, enjoyment of life, relations with others, general daily

activities, and sleep.

1° The implemented survival analysis methods for right censoring in this study includes the log-

rank, Wilcoxon test, Cox proportional hazard model, Lin 8 Wang’s test, Rahbar’s methods, WCM,

and marginal Cox model.
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severity of pain or fatigue was 4 or higher to the contact where a response to the

symptom was first identified was defined as the actual time to response. Second,

a survival method developed for interval censored data (i.e. the Accelerated

Failure Time model) requires an interval time for symptom response. Consider a

hypothetical situation. Let us say a patient reported onset of pain at 1St contact

and symptom response at 5th contact, and the actual response occurred between

4th and 5th contacts. Therefore, a lower bound of time to response should be the

number of days from 1St to 4th contact, while the upper bound must be the

number of days from 1St to 5th contact.

Independent Variables Patient depression was rated using the Center

for Epidemiologic Studies — Depression (CES-D) scale (125). The CES-D

instrument consists of 20-items rated on a 4 — point Likert-type scale (almost all

of the time, most of the time, some of the time, and little/none of the time) (see

Appendix D). The CES-D scale is a widely used reliable measure of depressive

symptoms with an established cut-off of 16 or greater indicating the potential for

clinical depression (126). Physical function was assessed using the 10-item

physical function subscale from the Short Form 36 (SF-36), a widely used QOL

instrument (see Appendix E). The subscale SF-36 has a standardized score of 0-

100 scale, with higher scores representing better physical function. Patient

comorbidity was derived from patient self-report using Katz instrument (127). To

obtain comorbid conditions, patients were asked “Has a doctor ever told you that

you have (a chronic disease)?” (See Appendix F). Comorbidity was measured by
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the total number of 15 Chronic conditions including high blood pressure, diabetes,

other cancer, chronic bronchitis or emphysema, heart problem, angina or chest

pains, stroke, emotional problems, arthritis or Rheumatism, fractured hip, surgical

replacement of joint, incontinence, cataract surgery, hearing aid, and other major

health problems at the intake interview. Patient comorbidity was dichotomized at

the median into 0-2 versus 3 or higher categories.

Cancer site was categorized as breast, lung, colon, and others—where

the pattern includes gastrointestinal, gynecological, genitourinary, pancreatic,

non-Hodgkins lymphoma, myeloma, and others. Using information in the medical

record, stage of cancer was categorized according to the tumor-node-metastasis

staging criteria of the American Joint Committee on Cancer. Based on this scale,

stage of cancer was collapsed into early stage (in situ zero, and stage I and II)

and late stage (stage III and IV).

4.3 Data Analysis for Identifying Factors Associated Time to Pain and

Fatigue Response

Data analysis was performed for developing optimal cut-points to define

the level of pain and fatigue severity (mild, moderate, and severe) and testing

consistency of the cut-points. The shifts (‘severe to moderate’, ‘severe to mild’,

and ‘moderate to mild’) were defined as symptom response. Time-to-response

was measured by the number of days from the onset contact to the response

contact. To identify important factors impacting time to response of pain and
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fatigue, several analysis methods were implemented. First, with the proportional

hazard assumption, the log-rank, Wilcoxon test, and Cox proportional model

were used. Second, the results from the above methods were confirmed by using

the Lin 8 Wang’s Test, WCM, and Rahbar’s methods without the proportional

hazard assumption. Third, using the lower and upper bounds of time to response,

the Accelerated Failure Time (AFT) model was applied. Finally, I tested, using a

marginal Cox model, to determine if the Identified factors in the previous model

were still significant, given the correlation between pain and fatigue symptoms

within a same patient.

4.3.1 Developing Cut-points to Define the Severity Level of Pain and

Fafigue

The first methodological aim of this study is to measure clinically

meaningful changes of pain and fatigue in response to interventions. I developed

optimal cut-points of pain and fatigue severity based on multiple interference

items11 for each symptom.

To use these four interference items (i.e. emotions, enjoyment of life,

relations with others, and general daily activities) for finding cut-points of

symptom severity, an internally consistent reliable interference scale for these

multiple interference items was needed. Patients who reported pain and/or

fatigue at a one or higher on the severity measure were then asked to report

interference with daily activity, emotions, enjoyment of life, and relations with

 

'1 The multiple interference items include emotions, enjoyment of life, relations with others, and

general daily activities.
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others on the same 0-10 scale with 0 being not present and 10 worst possible.

According to an explanatory factor analysis (123), the four interference items

were highly and positively correlated with each other. The eigenvalues (A) and

the loadings of the four interference items on the first factor are listed in Table

1.The results support the fact that the four interference items are expected by

one dimension and that a single summed score can be used to measure

interference. Also the factor analysis with four items revealed that a single factor

explained about 80% of the total variance for both pain-related interference

(7L=3.27) and fatigue-related interference (A=3.08). All four items in both cases

had approximately equal (high) loadings on a single factor with the largest

eigenvalue. Therefore, a single measure was used in this study by adding the

four interference scores (0 to 40 scale). Using a single summed interference

score to reflect the reactive dimension of symptom experience has been Shown

to be valid and reliable in other cancer studies (34).

Table 1 Factor loadings for the four interference items for each symptom at

 

contact 1

m

Pain Fatigue

Interference with enjoyment of life 0.9138 0.9044

Interference with relations with others 0.8960 0.8558

Interference with general daily activities 0.9058 0.8885

Interference with emotions 0.9004 0.8619     

To identify and differentiate mild, moderate, and severe categories of

symptom severity, the optimal cut-points were selected by testing the difference

in the summed interference score. In previous studies (4, 80, 92, 128),
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Multivariate analysis of variance (MANOVA) was used to determine cut-points

categorizing severity levels by maximizing symptom related outcomes (e.g.

interference, emotional status, other functional status). In this study, since the

distribution of interference sum skewed to the right side which is not a normal

distribution, I used the generalized linear model, Let 1<c1<c2 310, where c1 and

C2 are severity of pain or fatigue at the first contact. Since the distribution of

interference sum has a gamma distribution, a generalized linear model with

gamma distributed errors (129) was used as following;

10g(#)= ,60 + fl151+ ,8252 + ,B3T, (4.1)

where p is the mean of summed interference scores; S1 and S2 are dummy

variables for severe and moderate severity”; and T is total number of other

symptoms at the first contact. This model was repeated 36 times with all possible

combinations of c1 and c2 for each of pain and fatigue. If c1 is 2, then there are

8 possible points for c2 between 3 and 10. In the same way, 7, 6, 5, 4, 3, 2, and

1 points are available for c2 when cl is 3, 4, 5, 6, 7, 8, and 9, respectively. This

model was implemented via PROC GENMOD in SAS version 9.1(130). By

seeking the largest size of the likelihood ratio (LR) of generalized linear model

across all possible cut-points (01,62) for severity categories, optimal cut-points

(c: , c; ) separating moderate from mild and severe from moderate were selected.

 

‘2 S1 (severe) is 1 if c2 5 severity, otherwise 0, and S2 (moderate) is 1 if c1 3 severity< c2,

otherwise 0
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The distribution of the summed interference score could be influenced by

other symptoms that were not included in the original four interference items. For

instance, if the sample is divided into two groups according to the number of

symptoms other than pain and fatigue, the distribution of the summed

interference score in one group with a small number of symptoms is likely to be

different from the distribution of the summed interference score in the other group

with a large number of symptoms. Positive correlation coefficients between total

number of other symptoms and the summed interference scores were observed

for both pain (r=0.3440, p-value<.0001) and fatigue (r=0.4427, p—value<.0001).

Therefore, the total number of other symptoms was adjusted for in the

generalized linear models.

To provide additional evidence of validity of the cut-points, the summed

interference scores, the duration of a symptom in the past 7 days, and the

physical function (SF-36) were compared by mild, moderate, severe levels of

pain and fatigue based on the selected cut-points.

4.3.2 Consistent Discrimination of Interference by the Cut-points

To use the selected cut-points defined above for measuring symptom

change, the cut-points should reliably differentiate at every intervention contact.

Therefore, I examined if the mild, moderate, and severe categories of symptom

consistently differentiate the interference sums across 6 contacts for pain and

fatigue. Since symptoms and interferences were repeatedly measured during

multiple contacts, a longitudinal model should be used. By including the
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interaction between time and severity categories (mild, moderate, severe), the

means of the sums for the 4 interference score for three categories were

compared at each contact.

For this analysis, the linear mixed effects (LME) models (131) with

autoregressive covariance structure were employed. The LME model

accommodates multiple missing data points in a longitudinal study. This

consideration was important since several patients did not complete all 6

contacts due to missed contacts or because they dropped out. Further, the LME

model incorporates correlations between contacts within the same patient. Let

c; and c; be the selected cut-points of severity of pain or fatigue at the first

contact. The model incorporating the interaction between the symptom severity

categories (mild, moderate, severe) and time (contact number) was specified as

follows;

y: =flo+fl151t+fl2521+fl3T

+71111+7212 +7313 +7414 +7515

+‘31 151:11 + 51251112 + 51351/3 + 614Su14 + 51551/5

”2132/1 +52252112 + 5235233 + 52452114 + 62552/5

(4.2)

where yt is the mean of summed interference scores at tth contact, Slt

and S2 are dummy variables for severe and moderate severity at tth contact”,

T is total number of other symptoms at the first contact, [1,...,I5 are dummy

 

13 S1t (severe) is 1 if c severity, otherwise 0, and SZt (moderate) is 1 if c < severity<c
2t 3 1t " 2r

othenrvise 0
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variables14 for 6 contacts. Parameters fits and y], s are coefficients for main

effects of cut-points (SI: ,S2t) and time ( I,,...,15 ), respectively. Parameters 61.]. s

are coefficients for interaction between cut-points and time. The LME model were

fitted using PROC MIXED in SAS version 9.1 (130).

Least square (LS) means of the summed interference scores by the

interaction terms were calculated from the model. The L8 mean of the summed

interference scores for mild, moderate, and severe symptom at tth contact can

be estimated by ’60 + ,637‘ + 7t , ,60 + ,637" + 7t + (,61 + 61!) , and ,60 +,63T + 7t +

(32 +3”), respectively, where T is the mean number of symptoms. To test if the

mild, moderate, and severe symptoms have different summed interference score

at tth contact, I tested a null hypothesis: fll+31t=fi2+321=0. If the null

hypothesis is rejected for all 6 contacts, then the categories of mild, moderate,

and severe may consistently differentiate the summed interference score over

time.

Once consistent differentiation of interference by the cut-points is

confirmed, symptom response can be defined by these cut-points as mentioned

above. Finally time to response for pain and fatigue can be measured by

counting the number of days from onset to response (See Outcome Variable

section in Chapter 4.2 Measures).

 

‘4 It is 1 if a patient was in I"1 contact, otherwise 0, where t = 1,2,...,5
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4.3.3 Evaluating Time to Response of Pain and Fatigue

To identify significant factors influencing time to response in the

management of pain and fatigue, the combined data sets from Trial A and B

were used. Since there were differences in gender, cancer site, and physical

function at baseline between the two trials, the factors were tested after adjusting

for these three covariates in multivariable analysis. In this analysis, all covariates

were categorized because some tests are available only for categorized

variables. To avoid multicolinearity between gender and cancer site, I created a

combined variable, categorizing as female & Breast cancer, female & Lung

cancer, female & other cancer, male & lung cancer, and male & other cancer.

Age (60 or younger vs. older than 60 years old) and comorbidity (less than 3 vs.

3 or more comorbid conditions) were categorized using the median values. Since

CES-D of 16 was considered as an important clinical threshold (126, 132). We

used this value to create a binary variable.

The analyses were performed in the following steps: 1) Univariate analysis

tested the effects of each of the covariates, including age, comorbidity, and

depression without adjusting for any other covariate. 2) Multivariable models

tested the effects of those covariates after adjusting for gender, cancer site,

physical function, and trials (Trial A vs. B). The model selecting methods are

described in next paragraph. 3) I tested the interaction between trials (Trial A and

B) and the covariates.
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4.3.4 Survival Analysis Incorporating Right-censoring

The first modeling strategy is to evaluate the time-to-response under the

proportional hazard assumption by using the log-rank test, the Wilcoxon test, and

the Cox proportional model. PROC LIFETEST (for the log-rank test and the

Wilcoxon test: Univariate model) and PROC PHREG (for the Cox proportional

hazard model: Multivariable model) procedures, SAS version 9.1, were

implemented. The hazard ratio was presented to measure the effect of a

covariate on time to symptom response.

Although these methods are most commonly used in survival analysis

methods, they are valid only when the proportional hazard assumption is

satisfied. Therefore, it is important to check the proportionality of hazards. To test

the proportionality of hazards for each covariate, I performed the following steps

(105); 1) created a- non-decreasing log function of time ( g(t) = log(t/t*), where t

is time to response and t* is the median time to response, 2) added the

interaction term between a covariate and the log function of time into the Cox

. . * *

proportional model given by hi(t)=h0(t)exp(fllxil+fl1xillog(t/t )) for each

covariate x1, and 3) tested if the coefficient of interaction term, fl; , is statistically

different from zero. If ,8: is not zero (i.e. the term is p<0.05), then the

covariate,xl, has non-proportional hazard across time. This test was performed

for both univariate and multivariable analysis.
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The second modeling strategy is to evaluate time to response when non-

proportional hazards exist by using the Lin & Wang’s test, Rahbar’s approach,

and the WCM. The first modeling strategy that is based on the proportional

hazard assumption might not appropriately detect the effect of a covariate on

time-to-response, if the hazard functions are not proportional by the covariate.

Therefore, non-proportional hazard based methods may have more valid results,

since these methods do not require the proportionality of hazards. These

methods are also available, when the proportional hazard assumption is satisfied.

l investigated how the results of this modeling strategy are different from that of

the first modeling strategy. Since the Lin & Wang’s test is available only for two

groups and Rahbar’s approach is restricted to two covariates, these methods

were performed for unadjusted analyses only. Only the WCM was used for a final

multivariable model. For the Lin & Wang’s test and Rahbar’s methods, I

developed SAS macros (See Appendix B) and a SAS macro developed by

Heinze and his colleagues was used for the WCM.

4.3.5 Survival Analysis incorporating Interval-censoring

The first and second modeling strategies can be used for right censored

data, but these modeling strategies are not available when time to response is

observed as an interval of time [L,R], where Ls actual time to response 3 R.

The third modeling strategy is to evaluate time to response when it was observed

as an interval of time via the AFT model with a Weibull distribution. Since

symptoms were monitored at the scheduled intervention contacts in Trial A and B,
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actual symptom response occurred between the contact periods. Therefore, the

ATF model with interval censoring would be more appropriate method for

assessing this interval censored data. It would show the difference between

methods with right censored15 and interval censored” time data. Because the

AFT model is a parametric model, an appropriate distribution of time-to-response

needs to be selected. The Akaike lnforrnation Criterion (AIC) can be used for

selecting a distribution in the AFT model (105). I compared four distributions: the

Weibull, exponential, log-normal, and log-logistic distributions using the AIC. The

largest AIC indicates that the best model for both pain and fatigue was based on

the Weibull distributions. PROC LIFEREG, SAS version 9.1, will be used for the

AFT model. Results from the AFT model will be compared that from the Cox

proportional hazard model and the Cox model with weighted estimation.

4.3.6 Survival Analysis for Multiple Events Incorporating Right-

censoring

For the above modeling strategies, the survival analysis models were

performed separately for pain and fatigue. If time to response for pain were

independent from that of fatigue, these separate models for pain and fatigue

would be appropriate. The fourth modeling strategy is to identify the common

effects of covariates on both pain and fatigue, while taking into account for a

correlation between the two symptoms via the marginal Cox model. I produced a

final multivariable model by using PROC PHREG procedure with the aggregate

 

‘5 The survival analysis methods for right censoring includes the log-rank test, the Wilcoxon test,

the Cox proportional hazard model, the Lin & Wang’s test, Rahbar’s methods, and the WCM.

‘6 The survival analysis method for interval censoring includes the AFT model.
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option in SAS version 9.1. The aggregate option was used to produce the

empirical covariate matrix estimator which accounts for the correlation between

pain and fatigue within an individual. Separate covariate effects for pain ( 3pm.”)

and fatigue ( ,8fatigue ) were Included thlS model. In the equality test

(Ho: flpain = flfatigue) based on the emplncal covanate matrix estimator, If the

null hypothesis ( H0) is not rejected, then these two parameters can be replaced

by a single parameter for the overall effect ( flan)"

4.3.7 Diagnostic assessment of the final models

After final multivariable models were built, the adequacy of the model was

assessed. In survival analysis, a standardized method of model diagnosis is to

use residuals which are different from that in the linear regression model. A

residual called the Cox-Snell residual (133) can be used to check the adequacy

of the model. The basic idea of this diagnostic test is that a negative log in the

survival function (— log(S(t))) has an exponential distribution when survival time t

is a continuous random variable. Because a survival function S(t) has a uniform

distribution between 0 to 1, W = —log(S(t)) has an exponential distribution. If the

correct model has been fitted, the Cox-Snell residual (—log(.§(t))) has an

exponential distribution. When a cumulative hazard of the Cox-Snell residuals

are plotted against the Cox-Snell residuals, a straight line with a slop of 1 and

ze ro intercept will indicate that the final model is adequate (1 O5).
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By seeking the significant covariates from the different modeling strategies,

I identified covariates that all consistently recognized as being important factors

for time to response of pain and fatigue. Different results using several other

approaches will be discussed by considering their underlying assumptions
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CHAPTER 5 RESULTS

This chapter presents the results from the evaluation of pain and fatigue

specially the establishment of optimal cut-points for measuring the severity of

pain and fatigue, and then the application of several different statistical methods

for identifying factors associated with the responses to pain and fatigue. The

analyses were performed to answer two major questions: first, how to define

clinically meaningful changes in the response to symptom management

interventions for pain and fatigue; and, second, how to analyze the time-to-

response of pain and fatigue without violating the model assumptions regarding

proportional hazards.

5.1 Demographic and clinical characteristics of the trials

Table 2 summarizes the characteristics of 601 patients in the two

intervention trials. More women were assigned to Trial B (76.2%) than Trial A

(59.1%) (p-value<0.0001). There was no difference in the age distribution

between the two trials, however, differences in the distribution of cancer sites

was observed between the two trials (p-value<0.0001). More breast-cancer

cases were assigned to Trial B (41 vs. 24.7%) while more lung-cancer cases

were assigned to Trial A (27.3 vs. 15.0%) (See Table 2). More patients had late

stage cancer in Trial A (90.1%) than Trial B (82.3%), which is a reflection of the

higher proportion of lung cancer in Trial A which is usually diagnosed later.
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Based on the CES-D score, approximately 35% of patients qualified as

being at risk for clinical depression (i.e. CES-Dz16) in either trial. There was no

difference between Trial A and B in CES-D score (p-value=0.4381). There was

also no difference in the number of comorbid conditions between Trial A and B

(p-value=0.7907). Around 60% of patients reported two or less comorbid

conditions.

Table 2 Characteristics of patients in two intervention trials

m
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Trial A Trial B P-values

Uri-(32.?) (IL-3,2?) (Chi-square Test)

Pafientgender

Male 88 (40.9) 92 (23.8) (.0001

Female 127 (59.1) 294 (76.2)

Pafientage

25 ~ 44 24 (11.2) 57 (14.8)

45 ~ 60 102 (47.4) 178 (46.2) 0.4520

61 ~ 74 70 (32.6) 113 (29.3)

75 + 19 (8.8) 37 (9.6)

Stage of disease

Early 21 (9.9) 68 (17.7) 0.0112

Late 190 (90.1) 316 (82.3)

Site of cancer

Breast 53 (24.7) 160 (41.5)

Lung 63 (29.3) 58 (15.0) <.0001

Other 99 (46.0) 115 (43.5)

CES-D

Less than 16 137 (64.3) 257 (67.4) 0.4381

16 + 76 (35.7) 124 (32.6)

Comorbidity

Less than 3 133 (61.9) 243 (62.9) 0.7907

3 + 82 (38.1) 143 (37.1)



5.2 Meaningful Reductions in Pain and Fatigue among Cancer Patients

To obtain a reliable definition of symptom response, the optimal cut-points

of pain and fatigue will be identified in Section 5.2.1. We will determine if the set

of cut-points consistently differentiate among patient interference over the 6

contacts in Section 5.2.2.

5.2.1 Optimal Cut-points of Pain and Fatigue Severity

To establish the optimal cut-points for differentiating patient interferences

due to pain and fatigue, l explored how the severity of pain and fatigue are

distributed across interference scores at the initial contact. Four of the

interference items17 were highly and positively correlated. We found that sleep

was weakly correlated with the other four items and thus was removed from the

final summed interference scale. The remaining four items were submitted to an

exploratory factor analysis (See Table 1, Chapter 4). As severity of symptoms

increased, the sum of interference score consistently increased. Optimal cut-

points for severity need to be based on clinically important distinctions in

summed interference scores.

Therefore, to establish possible cut-points a generalized linear model with

a gamma distribution function (See Equation 4.1) was used to adjust for the total

number of other symptoms at the first intervention contact. Since the models

were repeated 36 times for all possible combinations of two cut-points (See

 

‘7 The 4 interference items include emotions, enjoyment of life, relations with others, and general

daily activities.
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Chapter 4.3), 36 chi-square (Wald test) statistics were produced. The largest chi-

square statistics for five pairs of two cut-points are listed in Table 3. Larger chi-

square statistic represents better differentiation of interference, and the cut-points

of 2 (for moderate) and 5 (for severe) produced the largest chi-square statistics in

both pain and fatigue. Based on the identified cut-points, the severity levels,

therefore, are defined as “mild” (score of 1), “moderate” (scores of 2 through 4),

and “severe” (score of 5 and greater).

Table 3 Cut-points with five largest chi-square (Wald test) statistics

m

 

 

 

 

 

 

Pain Fatigue

Rank

Cut-points Chi-square Cut-points Chi-square

1 (2, 5) 92.35 (2, 5) 151.68

2 (2, 6) 82.13 (3, 5) 144.80

3 (2, 7) 81.57 (5, 9) 139.11

4 (5, 7) 75.57 (5, 7) 137.23

5 (3, 5) 75.20 (5, 8) 136.80       
w

To ensure how appropriately the selected cut-points represent patient

symptom burden, the distributions of interference sums for mild, moderate, and

severe levels of pain and fatigue are compared in Figure 8. The histograms

represent the distribution of interference scores among patients whose

symptoms were classified as mild, moderate, and severe. Interference sums are

distributed around 3 (median) at the mild level, while they are distributed around

8 and 20 (median) at the moderate and severe level, respectively.
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Figure 8 Distribution of summed interference score (0~40) among mild,

moderate, and severe level of pain and fatigue
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In addition, Table 4 summarizes the cut-points for pain and fatigue. The

means for the summed interference scores, duration of the symptom over the

past seven days prior to delivering the first intervention, patient physical function

(SF-36), and sum of severities of the 14 other symptoms assessed at the

baseline interview are compared across the three severity levels for pain and

fatigue, respectively. Among patients who reported pain or fatigue at the first

contact, 42% and 50% were classified by severe pain and fatigue, respectively.

Only 12% and 6% of patients had mild pain or fatigue, respectively. The means

of the summed interference scores were 3.4, 9.1, and 20.8 for mild, moderate,

and severe pain, respectively. The means of the summed interference scores

were 3.4, 8.8, and 18.3 for mild, moderate, and severe fatigue, respectively.

Greater differences in interference scores between moderate and severe are

observed than that found between mild and moderate. Duration of each symptom

(the number of days in the past week in which patients reported pain or fatigue),

physical functioning score (SF-36), and the sum of symptom severities (i.e. sum

of 14 possible other symptoms) exhibited greater differences between mild and

moderate levels of severity for pain and fatigue than that between moderate and

severe for each symptom. In the case of pain, there is no difference in physical

function scores between moderate and severe severity. These differences

indicate that the established cut-points represent not only interference with the

patient’s lives but also reflect the duration and the impact of pain and fatigue on

their levels of physical function. The difference in physical function scores and

the sum of symptom severities among patients classified as having mild,
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moderate, and severe symptoms provide evidence that the established cut-points

reflect real differences in health conditions.

Table 4 Cut-points for severity categories, number of cases reporting each

symptom, unadjusted ~ mean interference scores, duration before first

contact, and physical function at baseline interview

 

 

 

 

 

 
 

 

 

 

 

      

Severity level of pain mad M33)“; 5:11:53;

No. of patients N (%) 32 (12.4) 119 (45.9) 108 (41.7)

Interference sum Mean (Std) 3.4 (3.3) 9.1 (7.7) 20.8 (10.3)

Duration18 Mean (Std) 2.9 (2.5) 4.7 (2.2) 5.1 (2.0)

Physical function19 Mean (Std) 53.0 (23.9) 49.5 (25.6) 48.9 (27.3)

Symptom severity sum20 Mean (Std) 29.5 (18.4) 40.7 (19.5) 50.6 (23.8)

Severity level of fatigue “8': M233?“ ?::5?

No. of patients N (%) 34 (6.4) 227 (42.9) 268 (50.7)

Interference sum Mean (Std) 3.4 (3.9) 8.8 (6.7) 18.3 (9.3)

Duration19 Mean (Std) 2.8 (2.0) 4.7 (2.1) 5.5 (1.9)

Physical function20 Mean (Std) 77.0 (21.6) 61.9 (24.6) 48.4 (26.4)

Symptom severity sum21 Mean (Std) 25.1 (22.2) 32.2 (18.1) 43.8 (21.7)

w
 

Taking into consideration the magnitudes of interference for pain and

fatigue categories, and how they might influence symptom response to

management interventions, the stability of these cut—points over time will be

 

‘8 Duration is the number of days when patient experience pain or fatigue in past 7 days prior to

the first contact.

19 Physical function is a standardized score on a 0 to 100 scale from (SF-36 subscale).

2° Symptom severity sum is the sum of severities for the 16 symptoms assessed at baseline.
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evaluated in the next section. If differences among these cut points for symptom

severity are stable over successive intervention contacts then they may be used

to determine if the management interventions successfully reduce patient burden

of pain and fatigue.

5.2.2 Longitudinal Consistency of Cut-points for Pain and Fatigue

The question under examination is whether, while receiving interventions

to manage pain and fatigue, the established cut-points continue to represent

significantly different interference levels among patients over time. To use these

cut-points for measuring meaningful change in pain and fatigue it is necessary to

establish that these cut-points consistently differentiate among different levels of

interference during the intervention contacts. This section will examine the

magnitude of the difference in summed interference scores between moderate

and mild and severe and moderate categories of pain and fatigue at each of the

6 contacts.

The least square (LS) means of the summed interference scores reflecting

mild, moderate, and severe scores from the linear mixed model (See Equation

4.2) are presented across 6 intervention contacts in Table 5. The mean summed

interference scores for mild pain and fatigue are less than 5 and they are 15 or

greater for severe pain and fatigue across all contacts. In addition, the

examination of the magnitude of the differences between moderate and mild, and

severe and moderate categories consistently show large differences across all

contacts. Table 5 contains the p—values for testing the equality of the means of
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summed interference (H0: ,[1 =0)21 among the mild, moderate,
mi,t =’um0,t ='use,t

and severe categories at each intervention contact f. If the null hypothesis (H0)

is rejected, then the three categories can discriminate the summed interference

scores at contact t.

According to the estimated LS means for the summed interference scores

in Table 5, there are consistent differences in scores by severity level across

contacts. The estimated interference means in each severity level are similar

over time. For example, the interference mean in» mild, moderate, and severe

fatigue are around 4, 7.5, 15, respectively, at most contact points. These results

indicate that there is a consistent and logical relationship between symptom level

and interference with milder symptom having lower interference scores. The

decline in the mean of summed interference score for the same severity category

is greatest between the first and second contact; and then no further Significant

declines in interference occurred between contact 2 through 6. This pattern may

be due to a difference in the absence of intervention between the first contact

and the later contacts. At each contact, patients reported their symptom severity

and interferences first; and then they received interventions based on the

reported symptom severity. Therefore, the symptom severity and interferences

were measured at the first contact before receiving any intervention. Thus it is

possible that the declines observed between contacts 1 and 2 were a function of

the initial interventions. Because patients could receive any interventions after

 

21 [I . , ,1} , and [I are the LS means of summed interference for mild, moderate,

mz,t mo,t se,t

severe categories at t-th contact
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reporting their symptoms at the first contact, the intervention could affect the

severity and interference from the second contact. From contact 2 through 6, the

difference in interference among the mild, moderate, and severe categories

remained stable and distinct. However, the weight of evidence provided here

indicates a strong and sustained relationship between interference scores and

their corresponding symptom severity categories at all contacts.

Table 5 Estimated means and standards errors of summed interference

score across 6 intervention contacts by severity level of pain and fatigue*

 

 

 

 

 

 

 

 

 

       
* Severity level is determined at each contact point

 

Summed Interference Score

Mean (Standard Error)

Pain Contact 1 Contact 2 Contact 3 Contact 4 Contact 5 Contact 6

Mild 5.5 (3.1) 1.4 (1.8) 5.3 (2.0) 5.7 (2.0) 6.5 (2.1) 5.2 (2.4)

Moderate 10.0 (1.0) 8.1 (0.9) 9.9 (0.9) 8.7 (0.9) 9.3 (0.9) 8.3 (1.0)

Severe 19.5 (0.8) 14.9 (1.0) 16.6 (1.1) 17.2 (1.1) 14.2 (1 .1) 16.5 (1.2)

P—value <.0001 <.0001 <.0001 <.0001 0.0003 <.0001 \

Fatigue Contact 1 Contact 2 Contact 3 Contact 4 Contact 5 Contact 6

Mild 2.3 (2.3) 4.8 (1.2) 3.8 (1.3) 4.2 (1.4) 4.1 (1.5) 2.9 (1.4)

Moderate 10.5 (0.6) 8.0 (0.5) 7.8 (0.5) 7.8 (0.5) 7.5 (0.5) 6.2 (0.5)

Severe 17.3 (0.4) 14.9 (0.5) 14.9 (0.6) 15.0 (0.6) 15.0 (0.6) 15.4 (0.7)

P-value <.0001 <.0001 <.0001 <.0001 <.0001 <.0001  
To use these categories (mild, moderate, severe) for evaluating change in

pain and fatigue, it is important that individual variations in interference scores

should be small, when patients remained in the same level of severity. I

calculated the individual differences of summed interference scores between the
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second contact and later contacts when a severity level remained the same.

Because the association between severity and interference at contact 1 is

different than that at later contacts, I compared the summed interference scores

from contact 2 through 6. Figure 9 shows that distributions of differences

between the summed interference score at the second contact and at later

contacts within the same severity category (i.e. mild, moderate, or severe) over

time. The graphs shown in Figure 9 were created from the data that is pooled

across severity levels, however, there distributions were essentially the same

when the data were stratified by severity. The individual differences of

interference are symmetrically distributed around zero over time, when patients

remain at the same severity level. These distributions show that a large number

of patients report small differences in the summed interference scores at the

same levels of severity. The paired t-test was performed to test the equality of

summed interference scores between contacts at the same levels of severity for

each symptom. The test did not reject the null hypothesis that the summed

interference scores are equal at the same level of severity between contacts at

0.05 level of significant.

This consistent difference among mild, moderate, and severe categories

supports the use of these interference based severity cut-points to define

symptom response for three transitions: severe to moderate, severe to mild, and

moderate to mild. The severity of zero (absence of symptoms) was not included

in the mild category at each contact, because interference scores were not

recorded when the symptom was not present. However, additional shifts
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including severe (2 5) and moderate (2—4) to zero severity should be considered

as meaningful change, and treated as a symptom response. Based on the

defined symptom response categories from this section, I will identify important

factors affecting time-to-response for pain and fatigue. This is presented in

section 5.3. Several survival methods will be implemented to cope with the

methodological problems discussed in Chapter 3.
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Figure 9 Distributions of individual difference in summed interference

scores (0-40) within the same level of severity for pain and fatigue22
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22 Data were generated only among patients who reported the mild, moderate, or severe

categories at the second and each of later contacts
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5.3 Evaluation of Time-to-Response for Pain and Fatigue Symptoms

Survival analysis is an appropriate technique to evaluate the time-to-

response in pain and fatigue incorporating censored observations due to lost to

follow-up. This section presents the results of unadjusted and adjusted analysis

of the time-to-response for pain and fatigue symptoms using several methods

each with different underlying assumptions. The primary exposure variables in

this research are age, depression, and comorbidity. These variables were tested

after adjusting for the following a priori confounders; gender, cancer site, physical

function, and trial type (A or B).

5.3.1 Estimated Survival Functions for Time-to-Response for Pain

and Fatigue

Among 601 patients who had the first contact, 212 (35%) and 451 (75%)

patients reported a severity of 4 or higher in pain and fatigue sometime between

the first and fifth contacts, respectively. By the end of the intervention contacts,

173 (81.6%) and 344 (76.3%) of these patients, achieved a response to pain and

fatigue (i.e. severe to moderate, severe to mild, or moderate to mild), respectively.

The number of days from the onset to response contact was recorded as time-to-

response. The number of days from onset to last contact without a response was

considered the censoring time.

Figure 10 shows the Kaplan-Meier survival function with 95% confidence

intervals for time-to-response for pain and fatigue in Trial A (dash) and B (solid).
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The survival functions for pain and fatigue are very Similar between the two trials.

Even though 6 intervention contacts were scheduled over 8 weeks, variations

were observed. For example, some patients received intervention contacts for up

to 66 days due to delays in the scheduled contacts. In Figure 10 the two survival

functions for pain (panel a) and fatigue (panel b) have large declines around 1

week after onset. Based on the Kaplan Meier estimates, the median time-to-

response for pain and fatigue are 13 and 14 days, respectively. That is, half of

cases with pain and fatigue responded within 2 weeks. About 10% of pain cases

were censored at the end of follow-up (i.e. these cases had not responded by the

6th contact). Therefore, the overall mean for pain cannot be calculated, and

therefore the restricted mean time23 of 19.5 days was alternatively used for pain

(See Figure 2 & 3 in Chapter 3.1.2). The estimated mean time-to-response in

fatigue is 24.2 days.

 

23 The restricted mean time is obtained by calculating an area under survival curve between zero

time and the maximum time to response.
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Figure 10 Estimated survival function of time to response of pain and

fatigue24
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2‘ Response is defined as a reduction of severity levels (i.e. severe to moderate, severe to mild,

or moderate to mild).
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5.3.2 Testing for Time-to-Response by Assuming the Proportional

Assumption Holds

This section identifies Significant factors associated with time-to-response

in pain and fatigue by assuming the proportional hazard assumption holds. The

log-rank, Wilcoxon test, and Cox proportional hazard model were implemented to

assess both unadjusted and adjusted effects. Patient age, depression, and

comorbidity were first assessed without adjustment for other covariates in

unadjusted analysis. In the multivariable model, each of the three covariates was

tested after adjusting for gender, cancer Site, phySical function, and trial. Using

the model selection strategy described in Chapter 4, a final model was developed.

Figures 11, 12, and 13 Show the estimated survival functions for time-to-

response for pain by age (60 or younger vs. older than 60), comorbidity (less

than 3 comorbid conditions vs. 3 + comorbid conditions), and depression (CES-D

< 16 vs. 16 +), respectively. In each of these figures, the estimated survival

functions are less than 0.8 after about 7 days, indicating that more than 20% of

subjects in pain responded within 7 days regardless of age, comorbidity, or

depression. None of the survival functions cross one another in Figures 11, 12,

and 13, supporting that the survival functions are likely to be proportional over

time. To test the proportional hazard assumption, an interaction term between

time and each covariate was tested in the Cox proportional hazard model. None

of these tests were statistically significant and therefore the null hypothesis of

proportional hazards for time-to-response in pain was not rejected (See Table 6).

By holding the proportional hazard assumption, Table 6 summarizes tests for
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equality in survival functions of time-to-response in pain and fatigue by patient

characteristics using the log-rank test, Wilcoxon test, and Cox proportional

hazard model. The median time-to-response and 95% confidence intervals (Cl)

calculated from the Kaplan-Meier survival functions are presented for each level

of each covariate. All three methods identified age and comorbidity, as significant

factors associated with time-to-response for pain. Patients who were older than

60 year old (Median of time-to-response=14 days, 95% Cl=[14, 21]) had longer

time-to-response for pain than younger patients (median of time-to-response =10

days, 95% Cl=[9, 14]). Patients with 3 or more comorbid conditions (median time-

to-response=18 days, 95% Cl=[14, 21]) had a longer time-to-response for pain

compared to those with fewer than three comorbid conditions (median time-to-

response=9, days 95% Cl=[8, 10]). Patients who reported CES-D of 16 or higher

(median time-to-response=14 days, 95% CI=[10, 18]) had a little longer time-to-

response for pain compared with those who reported a less than 16 on CES-D

(median time-to-response=11 days, 95% Cl=[8, 14]), but this depression effect

was not significant in the log-rank test, Wilcoxon test, and the Cox proportional

hazard model.

Figures 14, 15, and 16 show the estimated survival functions for time-to-

response for fatigue by age, comorbidity, and depression, respectively. Fairly

similar survival functions were observed by age in Figure 14. The survival

functions by comorbidity categories (Figure 15) show that the median time to

response is 14 days for both levels of comorbidity. After this time point (14 days),

however, the difference between the two survival functions is greater than that
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before the median time (14 days). The survival functions by depression almost

overlap across time (Figure 16). Tests of the proportional hazard assumption

using the interaction between time and a covariate conclude that all of covariates

satisfied the proportional hazard assumption. Table 6 shows that comorbidity

was the only factor associated with time-to-response in fatigue. Patients who

were 60 years old or younger (median time-to-response=14 days, Cl=[14, 15])

had same median time-to-response for fatigue compared with those who were

older than 60 years old (median time-to-response=14 days, Cl=[14, 21]). Patients

with fewer numbers of comorbid conditions (median time-to-response=14, days

Cl=[13, 14]) had a shorter time-to-response compared with those with greater

than three comorbid conditions (median time-to-response=15 days, Cl=[14, 26]).

The comorbidity effect was significant in all three statistical methods despite of

the Similarity of median time-to-response. Depression was not Significantly

associated with time-to-response for fatigue; median response times were 14

days for all categories of depression.
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Figure 11 Estimated survival functions of time-to-response in pain by age
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Figure 13 Estimated survival functions of time-to-response in pain by

depression
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Figure 14 Estimated survival functions of time-to-response in fatigue by age
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Figure 15 Estimated survival functions of time-to-response in fatigue by

comorbidity
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Table 6 Median time to response and unadjusted tests for time-to-response

for pain and fatigue by the log-rank, Wilcoxon, and Cox proportional model

M Wilcoxon Cox PH Test for

 

 

 

 

 

 

 
 

 

 

 

 

 

        

edian Log-

Time-to-Response in Pain (days) rank Model PH25

( 95% Cl ) P-value P-value P-value P-value

60 or younger 10 (9, 14)

Age .0190 .0293 .0293 .7476

Older than 60 14 (14, 21)

Less than 3 9 (8, 10)

Comorbidity <.0001 <.0001 <.0001 .1321

3 + 18 (14, 21)

Less than 16 11 (8, 14)

CES-D .0896 .1698 .1140 .9361

16 + 14 (10, 18)

. . Median Log- Wilcoxon Cox PH Test for

Tlme-tg-aliieslp:nse m (days) rank Model PH24

9 ( 95% or ) P-value P-value P-value P-value

60 or younger 14 (14, 15)

Age .6939 .4658 .7144 .3105

Older than 60 14 (14, 21)

Less than 3 14 (13, 14)

Comorbidity .0031 .0140 .0060 .4584

3 + 15 (14, 26)

Less than 16 14 (1'3, 15)

CES-D .3641 .6801 .3967 .4161

16 + 14 (14, 21)  
 

 

25 They are the results of testing whether the hazards are proportional for each covariate.
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The multivariate models for time-to-response in pain and fatigue are

shown in Table 7. The main effects including age, Comorbidity, and depression

are tested after controlling for a priori confounders such as gender, cancer site,

physical function, and trial in the final model. Only comorbidity remained as a

significant covariate for both pain (HR=1.70, 95% Cl=[1.18, 246]) and fatigue

(HR=1.32, 95% Cl=[1.02, 1.701). Patients who had lower number of comorbid

conditions (< 3) reported shorter time-to-response for both pain and fatigue.

. To see if there exists any covariate that has a different effect between

Trial A and B, I examined interaction effects between trial and each main effect in

both final models. None of the interactions were significant. In addition, the final

models were performed separately for Trail A and B. In the separate models, the

hazard ratios for other covariates including gender, cancer site, and physical

function were close to 1. The hazard ratios for comorbidity were greater than 1.3

in both models.
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Table 7 Final models of time-to-response in pain and fatigue in the Cox

proportional hazard model

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cox Proportional Hazard Model

Time-to-response in pain H.333? 95% Cl p-value

Age (60 yrs or less vs. > 60 yrs) 1.35 0.95, 1.90 .0909

Comorbidity (<3 vs. 3+) 1.70 1.18, 2.46 .0045

CES-D (<16 vs. 216) 1.18 0.83, 1.67 .3572

Gender (Male vs. Female) 1.21 0.80, 1.83 .3650

Cancer (Breast vs. Other) 0.94 0.63, 1.40 .9313

(Lung vs. Other) 0.94 0.62, 1.41

Physical function26 1.00 0.99, 1.01 .7651

Trial (Trial B vs. Trial A) 1.03 0.73, 1.43 .8778

Time-to-response in fatigue Higgtaigd 95% Cl p-value

Age (60 yrs or less vs. > 60 yrs) 0.92 0.73, 1.17 .4938

Comorbidity (<3 vs. 3+) 1.32 1.02, 1.70 .0359

CES-D (<16 vs. 216) 1.00 0.78, 1.27 .9831

Gender (Male vs. Female) 0.99 0.75, 1.31 .9698

Cancer (Breast vs. Other) 0.97 0.74, 1.28 .2738

(Lung vs. Other) 0.78 0.57, 1.06

Physical function 26 1.00 0.99, 1.01 .1835

Trial (Trial B vs. Trial A) 0.94 0.75, 1.17 .5637     
5.3.3 Testing for Time-to-Response without Assuming the

Proportional Hazards assumption holds

Although the proportional hazard assumption holds for three main effects

of interest (age, comorbidity, and depression) in this data, this section will explore

 

26 It is 1 unit change in a standardized physical function score on a 0 to 100 scale from (SF-36

subscale).
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to see how the results are changed when using alternative survival analysis

methods which do not require this assumption. Three recently proposed

methods: including the Lin & Wang’s test, a Cox model with weighted estimation

(WCM), and the Rahbar’s method were implemented to evaluate time-to-

response. The first 2 methods are available only for univariate analysis, but WCM

can be applied to multivariable analysis models. The three models, including the

Lin & Wang’s test, the WCM, and the Rahbar’s method, are available for both

proportional and non-proportional hazards. Since the proportional assumption

was satisfied, the Cox proportional hazard model appears to be valid, therefore

the WCM had the same result as the regular Cox proportional hazard model.

Table 8 summarizes the results of unadjusted tests for time-to-response

for pain and fatigue by the Lin & Wang’s test, the WCM, and the Rahbar’s

method. Interestingly, the Lin & Wang’s test produced fairly large p-values, but

failed to detect significant effects on time-to-response for pain and fatigue for

most covariates except comorbidity. The WCM produces results similar to those

produced by the Cox proportional hazard model in Table 6. The Rahbar’s method

produced different results than the other methods. This test identified age (p-

value=0.0004), comorbidity (p-value<.0001), and depression (p-value =0.0001)

as significant factors associated with time-to-response in pain. Rahbar’s test also

identified more significant covariates associated with time-to-response for fatigue

including age (p-value=0.0304), comorbidity (p-value =<.0001), and depression

(p-value=0.0014).
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The smaller p-values generated by Rahbar’s test may occur due to

differences in the mean time-to-response. For example, in Figure 16 the

estimated survival functions of time-to-response for fatigue by depression level

are very close to each other until around 30 days. However, about 18% of

patients, who had a CES-D of less than 16, are censored at 55 days, while more

than 10% of patients, who had high depression, responded after 55 days. This

difference results in a smaller mean time-to-response in fatigue in patients with

low depression compared with those with high depression, and produces a

significant p-value in the Rahbar’s test.

The final multivariable WCM is not presented in this section, because the

WCM is essentially identical to the Cox proportional hazard model when all

covariates have proportional hazards.
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Table 8 Unadjusted tests for time-to-response in pain and fatigue by the Lin

8. Wang's test, the WCM, and the Rahbar's method

 

 

 

 

 

 

 
 

 

 

 

 

         

Median .

Time-to-Response in Pain (days) US$33? 532?: Pail“:e

( 95% Cl )

60 or younger 10 (9, 14)

Age .6599 .0004 .0425

Older than 60 14 (14, 21)

_ . Less than 3 9 (8, 10)

Comorbldlty <.0001 <.0001 <.0001

3 + 18 (14, 21 )

Less than 16 11 (8, 14)

CES-D .8106 .0001 .2023

16 + 14 (10, 18) -

Time-to-Response in “3:33? Lin&Wang Rahbar WCM

Fatigue ( 95% Cl ) P-value P-value P-value

60 or younger 14 (14, 15)

Age .9343 .0304 .521 1

Older than 60 14 (14, 21 )

Less than 3 14 (13, 14)

Comorbidity .4697 <.0001 .0206

3 + 15 (14, 26)

Less than 16 14(13, 15)

CES-D .2830 .0014 .6976

16 + 14 (14, 21 )

5.3.4 Testing for Time-to-Response of Pain and Fatigue with Interval

Censoring Type

In Section 5.3.2 and 5.3.3, all the methods account for right-censoring for

time-to—response. However, since patients were monitored over two weeks at

scheduled contact times, the date of contact during which patients reported

response to the symptom may not correspond to the exact date of the response.

Because the symptom response occurred between the prior contact and the

current contact, time-to-response has an interval form. Thus, there is a question
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as to how the findings from methods using right-censored data differ from those

that account for interval censored time. To answer this question, the Accelerated

Failure Time (AFT) model was implemented with interval time-to-response in

pain and fatigue.

The results from the final multivariable models are summarized in Table

9. In contrast to the results of the Cox proportional model, age (TR=0.67, 95%

Cl=[0.46, 0.96]) and comorbidity (TR=0.56, 95% Cl=[0.38, 0.821) have significant

effects in the final multivariable AFT model for pain. In this model, not only low

comorbidity, but also younger age is associated with shorter time-to-response for

pain. The AFI' model of time—to-response for fatigue Shows similar results to the

Cox proportional model. Only comorbidity is significantly associated with time-to-

response.

To test for differential effects between Trial A and B, I examined the

interaction effect between trial and the three main effects on time-to-response for

pain and fatigue in these AFT models. None of these interactions was significant

which indicates that the identified effects did not differ between the two trials.

Furthermore, when two separate models were generated for Trial A and B, the

effects of the covariates are similar to the results shown in Table 9. Therefore,

the difference between Trial A and B did not influence the results from the final

multivariable AFT model.
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in the AFT model with interval censoring

Table 9 Final multivariable models of time-to-response in pain and fatigue

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Accelerated Failure Time Model

Time-to-response in pain 2318:2222: 95% Cl p-value

Age (60 yrs or less vs. > 60 yrs) 0.67 0.46, 0.96 .0289

Comorbidity (<3 vs. 3+) 0.56 0.38, 0.82 .0031

CES-D (<16 vs. 216) 0.68 0.47, 0.98 .0405

Gender (Male vs. Female) 0.63 0.41, 0.97 .0343

Cancer (Breast vs. Other) 0.87 0.55, 1.37 .7862

(Lung vs. Other) 0.89 0.59, 1.34

Physical function27 1.00 0.99, 1.01 .6537

Trial (Trial B vs. Trial A) 1.05 0.74, 1.51 .7722

Time-to-response in fatigue 1:38:33; 95% Cl p-value

Age (60 yrs or less vs. > 60 yrs) 1.18 0.91, 1.53 .2030

Comorbidity (<3 vs. 3+) 0.75 0.56, 0.99 .0411

CES-D (<16 vs. 216) 0.92 0.70 1.20 .5274

Gender (Male vs. Female) 0.95 0.70, 1.20 .7597

Cancer (Breast vs. Other) 0.90 0.67, 1.22 .4979

(Lung vs. Other) 1.13 0.82, 1.57

Physical function28 1.00 0.99, 1.00 .2303

Trial (Trial B vs. Trial A) 1.11 0.87, 1.41 .4098    
5.3.5 Testing for Time-to-Response in Pain and Fatigue while

considering the correlation between the two symptoms

Effect of comorbidity was statistically significant in the three different

modeling strategies in Sections 5.3.2, 5.3.3, and 5.3.4. The previous models

were developed separately for pain and fatigue. Because of the correlations

 

27 It is 1 unit change in a standardized physical function score on a 0 to 100 scale from (SF-36

subscale).

120



between pain and fatigue within an individual, the subjects included in the models

for pain and fatigue are not independent. The validity of the statistical inference

for the two Cox proportional hazard models for pain and fatigue could therefore

be questioned because these time-to-response outcomes are correlated. Th

marginal Cox model is able to account for the correlations between outcomes

within an individual. The main advantage of the marginal Cox model is that it

avoids the inflation of type I errors that occurs when running two separate models

for pain and fatigue. Therefore, the marginal Cox model incorporating the

correlation between pain and fatigue within an individual was used. The marginal

Cox model can include multiple outcomes (i.e., response for pain and fatigue) for

each patient and accounts for the correlation between pain and fatigue (See

Chapter 3.5).

Because the marginal Cox model includes coefficients of each covariate

for both pain and fatigue, the difference in the covariates between pain and

fatigue can be tested. Based on the results of an equality test in the adjusted

models, age (p-value=0.0848), comorbidity (p-value=0.1237), and depression (p-

value=0.3541) were not significantly different and thus do not have significant

different effects on the time-to-response for pain and fatigue. Therefore, using

one coefficient for each covariate in the final model was appropriate strategy.

The coefficients in Table 10 represent the common effect of each covariate on

time-to-response on both pain and fatigue. This model also indicates that only

comorbidity (HR=1.36, 95% Cl=[1.11, 1.67]) is significantly associated with time-

to-response.
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Table 10 Final model of time-to-response in the marginal Cox model

fl

 

 

 

 

 

 

 

      

H328": Corfig/eonce p-value

atlo Interval

Age (60 yrs or less vs. > 60 yrs) 0.96 0.79, 1.17 .7183

Comorbidity (<3 vs. 3+) 1.36 1.11, 1.67 .0030

CES-D (<16 vs. 216) 0.96 0.79, 1.17 .7115

Gender (Male vs. Female) 1.04 0.82, 1.33 .7391

Cancer (Breast vs. Other) 0.99 0.79, 1.24 .4475

(Lung vs. Other) 0.86 0.68, 1.09

Physical function28 1.00 0.99, 1.01 .1440

Trial (Trial B vs. Trial A) 0.94 0.77, 1.13 .5045

E

In the final mode, none of the other covariates (gender, cancer site,

physical function, and trial) representing differences between Trial A and B are

significant. Additionally, I also examined interactions between the indicator

variable for trial (Trial A vs. B) and each covariate, and none was significant. In

separate models for Trial A and B, the magnitude of the comorbidity effect

(HR=1.42, 95% Cl=[1.11, 1.821) in Trial A is not seriously different from that

(HR=1.34, 95% Cl=[0.98, 1.83] ) in Trial 8.

 

2” It is 1 unit change in a standardized physical function score on a 0 to 100 scale from (SF-36

subscale).
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5.3.6 Diagnostic assessment of the final model

To undertake a diagnostic assessment of the final multivariable models

including the Cox proportional hazard model, the AFT model, and the marginal

Cox model, Cox-Snell residuals were estimated (See Chapter 4.3.7). The

residual plots from the Cox proportional hazard model, the marginal Cox model,

and the AFT model are presented in Figure 17 (panel a, b, and c), respectively.

Because the plots are very similar for pain and fatigue for the same models, I am

presenting only plots for pain. The Cox proportional model (panel a) and marginal

Cox model (panel b) have a failiy straight line with a slope of one and zero

intercept. These residual plots indicate that these two models fit the data fairly

well. Although the plot of Cox-Snell residuals for the AFT model (panel c) is not

straight as much as the Cox proportional hazard model and marginal Cox model

(panel a and b), it is fairly linear line with a slope of one and zero intercept.

Therefore, the results from the AFT model is also acceptable.
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Figure 17 Cumulative hazard plot of the Cox-Snell residuals for three final

models

C
u
m
u
l
a
t
i
v
e
h
a
z
a
r
d
o
f
r
e
s
i
d
u
a
l

C
u
m
u
l
a
t
i
v
e
h
a
z
a
r
d
o
f
r
e
s
i
d
u
a
l
 

3.0 ’

2.5 '

2.0 ‘

1.5’

1.0‘

  
 

1.0 1.5 2.0

Cox-Snell Residual

0.5o
“

(a) Cox proportional model

  

3.0 ‘

2.5 ‘

2.0 ‘

1.5‘

1.0:

0.5 *

  
7 '~_’—_‘T-.————-f --T_—_T__~—‘T

0.5 1.0 1.5 2.0

Cox-Snell Residual

2.5

(b) Marginal Cox model

124

2.5

,... _ 7-. ._ _

____.__ ‘—’—_T“

3.0

 



 

     

3.0 l” W“ *

g 2.5

.12

8
3: 2.0 ‘ ”Mr”
o #4 ,,

‘2 "f

‘5 1 5

if ...r/
-C J

.‘é’ 1.0 < ”I

E

‘2’3 0.5

o

0 a, ____,L , BHL _ ,

0 0.5 1.0 1.5 2.0

Cox-Snell Residual

(c) AFT model with interval censoring

5.3.7 Recurrence of pain and fatigue

In this study, a symptom response is defined as the first episode of lower

response for pain and fatigue.

However, symptoms can obviously revert after an initial response (i.e.
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symptom severity level after onset (i.e. severe to moderate, severe to mild, or

moderate to mild). That is, time-to-response was measured from time of onset to

time of first response. As the results from several survival models Show, we

found that low comorbidity is significantly associated with Shorter time of first

recurrence). For example, a patient who responded to pain at third contact could

have severe pain again (i.e. recurrence of pain) at next contact. Thus this patient

could have two episodes of response during the follow-up period. In this study,

we ignored recurrent episodes thus the main effects were assessed only for the



first episode of response. The effects of multiple episodes on the results are

unkown and would require a new analysis.

Table 11 is a summary of recurrence by covariates and the results of

testing (Chi-square test), if recurrent cases are associated with any covariate.

Thirty-four (16%) and eighty five (19%) of patients reported recurrence of pain

and fatigue symptoms, resepectively, after initially responding. There is no

significant difference in the recurrence of pain and fatigue between Trial A and B.

Although a little more recurrences of pain occurred in younger and lower

comorbidity groups, there is no significant difference in any of the covariates.

Therefore, the recurrent symptoms would not seriously affect the covariate

effects on time-to-response.
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Table 11 Recurrence of pain and fatigue after responding to first episode of

 

 

 

 

 

 

 

 

     

pain or fatigue

Recurrence No recurrence P-values

Pain N=34 N=178 .
. (N (%)) (N (%)) (Chl-square Test)

Age

< 60 yrs 26(19.0) 111 (81.0) 01148

60 yrs + 8 (10.7) 67 (89.3) '

Comorbidity

Less than 3 23 (19-3) 96 (80.7) 0 1398

3 + 11 (11.8) 82 (88.2) '

Depression

Less than 16 16 (13.8) 100 (86.2)

16 + 18 (18.7) 78 (81.3) 03276

Trial

Trial A 21 (17.5) 99 (82.5)

Trial B 13 (14.1 ) 79 (85.9L 0'5076

Recurrence No recurrence P-values

Fati ue N=85 N=366 .9 (N (%)) (N (%)) (Chl-square Test)

Age

< 60 yrs 50 (17.9) 230 (82.1) 0 4916

60 yrs + 35 (20.5) 136 (79.5) '

Comorbidity

Less than 3 52 (18-8) 225 (81-2) 0 9593

3 + 33 (19.0) 141 (81.0) '

Depression

Less than 16 54 (13-4) 239 (18-6) 0 7578
16 + 31 (19.6) 127 (80.4) '

Trial

Trial A 56 (19.9) 226 (80.1)

___Tria| B 29 17.2 140 82.8 0'4782  



In summary, comorbidity has a strong independent effect on time-to-

response in pain and fatigue among cancer patients undergoing chemotherapy.

This result is consistent across different survival analysis methods. The

proportional hazard models, including both the Cox proportional hazard model

and the marginal Cox model, had a good model fit. The AFT model which

handles interval censoring detected additional significant variable (i.e. age) on

time-to-response for pain. The marginal Cox model provided an estimate of the

overall effect of comorbidity (HR=1.36, 95% Cl=[1.11, 1.671) on time-to-response

for both pain and fatigue when considering correlation between the two

symptoms for each patient. In this data, low comorbidity was consistently

associated with shorter time-to-response for both pain and fatigue with and

without adjustment. Younger age was also statistically associated with shorter

time-to-response for pain in both adjusted and unadjusted models. However,

because younger age is associated with lower comorbid conditions, the effect of

age was less significant when adjusting for comorbidity. Therefore, younger

cancer patients who have a fewer comorbid conditions respond to their pain and

fatigue in shorter time while they receive symptom managements.
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CHAPTER 6 DISCUSSION

This research identified important factors associated with time-to-response

for pain and fatigue among cancer patients undergoing chemotherapy. When

assessing change in symptoms, it is important to know how to evaluate clinically

meaningful changes in symptoms and what criteria to apply to assess which

survival analysis methods are more appropriate in evaluating symptom response.

This study demonstrates a process for evaluating clinically meaningful responses

of pain and fatigue and compared alternative surviVal analysis models to

evaluate time-to-response. In this chapter, I will discuss and summarize the

following points: 1) potential biases associated with combining data sets from two

trials 2) evaluation of clinically meaningful changes in the severity of each

symptom, 3) use of survival analysis to asses time-to-response among

symptoms and conclude with an assessment of the conditions under which each

survival technique would be appropriate for use.

6.1 Considering Potential Bias from Combining Data Sets

Although pain and fatigue are relatively prevalent symptoms among

cancer patients, the number of patients with symptoms reaching threshold

(severity of 4 or greater) in pain and fatigue was not large in each of the trials. To

gain larger sample size for increasing the statistical power, I used cases of pain

and fatigue from two trials. The two trials were performed with identical timelines

129



and study designs. However, Trial A required the presence of a caregiver as one

of entry criteria. More male patients were assigned to Trial A because mene were

more likely to have a spouse who could act as a caretaker. More female patients

were assigned to Trial B because they were less likely to have a Spouse at home.

Thus as a consequence of the different entry criteria, the higher proportion of

male patients in Trial A increased the number of lung cancer patients in Trial A,

and the higher proportion of women in Trial B resulted in more breast cancer

patients being assigned in Trial B. The differences in cancer types between the

trials resulted in more males and lower physical functioning in Trial A. These

differences can lead to different survival functions for time-to-response for pain

and fatigue between the two trials, which, also, may call into question the wisdom

of combining data from the two trials.

Survival distributions for pain and fatigue were very similar between Trial

A and B, and the coefficients for the trials (Trial A vs. B) were not significantly

different in any of the survival models. This indicates that patterns of response in

pain and fatigue are not different between Trial A and B. Only small changes in

the hazard ratios and response time ratios were observed after controlling for site

of cancer and other covariates. In addition, it was useful to compare the stratified

hazard ratios by sites of cancer. The hazard ratios and their confidence intervals

largely overlapped among patients with breast, lung, and other cancer sites (This

is not presented in the result section.) For example, the hazard ratios for

comorbidity for response in fatigue are 1.31 (95% Cl=[0.87, 1.971) for breast

cancer, 1.45 (95% Cl=[0.84, 2.491) for lung cancer, and 1.20 (95% Cl=[0.83,
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1.741) for other sites. Thus, despite differences in gender, site of cancer, and

physical function between Trial A and B, these factors were not significantly

associated with time-to-response for pain and fatigue. Further, there is no

evidence that these factors modified or confounded the effects of age,

comorbidity, and depression on time-to-response. Because the similar patterns of

survival curves were observed between two trials in this study, it would be

enough to examine the covariate effects after adjusting for the difference

between trials.

6.2 Evaluating Clinically Meaningful Change on Symptom Severity

In this section, I discuss the first research question (Aim 1); can clinically

meaningful changes in pain and fatigue symptoms be measured using the four

dimensions of interference to define clinically meaningful cut-points that separate

levels of symptom severity. To evaluate the effectiveness of symptom

management it is important to use appropriate measures that are sensitive to

detecting meaningful changes in symptoms. Kirshner and Guyatt (134) provided

a guideline that create such measures in clinical medicine or the social science.

They classified three types of measures by their purposes including

discrimination, prediction, and evaluation. They define an “evaluative measure”,

as an instrument used to measure the individual or group change in a dimension

of interest over time. Based on their guideline (134), I will review the categories

of symptom severity (mild, moderate, severe) as an evaluative measure in terms
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of item selection, item scaling, internal consistency, reliability, validity, and

responsiveness.

First, an instrument should include items that represent clinically

meaningful effects of interventions (item selection). The categories of mild,

moderate, and severe are constructed using a combined interference score to

separate severity measures into clinically meaningful categories. In the trials from

which these data were drawn interventions were delivered to patients to reduce

symptom severity. Successful reductions in symptom severity should lower

interference with respect to patients’ daily lives (135). That is, the changes in

these interference items can represent the effect of interventions on reducing the

severity of symptoms. Therefore, all items used satisfy the criterion for an

evaluative measure.

Second, a scale should be sensitive to clinically important improvement or

deterioration (item scaling). Usually a finer scale (0 to 10) than the threefold

classification (mild, moderate, severe) is preferred as a evaluative measure (134).

However, the absolute differences on a 0 to 10 scale of severity may not always

represent an equal level in improvement or deterioration in interferences (80).

Therefore, it is possible that there is no Significant improvement in interferences

while a patient lowers the severity of symptoms from 9 to 7. Although a 0 to 10

scale is more sensitive than the threefold classification, it does not have a clear

threshold to identify clinically meaningful changes. According to Table 4 in

Chapter 5, this threefold classification successfully discriminates the physical

functioning, severities of other symptoms, as well as the summed score for
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comparing the four items of the interference scale. The categories of mild,

moderate, and severe may be sufficiently sensitive to clinically important

changes and provide clear definitions and interpretations.

Third, Kirshner and Guyatt (134) suggest that all items in an evaluative

instrument be internally consistent. The four interference items (emotion,

relationship with others, daily activities, and enjoyment life) have consistently

high correlations over time. The internal consistency among these items can be

proved using the Cronbach’s alpha”. Very high Cronbach’s alpha (around 0.9)

was observed at each of the 6 contacts. That is, it can be interpreted that about

90% of variance in the hypothetical measure (i.e., overall interference with

patient’s life) would be explained by these observed items. Therefore, the four

interference items satisfy the criterion of internal consistency for evaluative

measure.

Fourth, the replicated observations on each individual patient should

remain stable over time (reliability). The evaluative measures need to remain

small in magnitude on the within-patient variance (individual variance of repeated

measures), while the discriminative measures focus on maximizing the between-

patient variance. Figure 9 in Chapter 5 shows the distributions of differences in

interference sums within patients whose severity category are very similar

compared with previous contacts. These distributions which are symmetric

around zero indicate small differences in interferences within a patient. That is,

the expectation of differences in interference sum is zero when patients retain the

 

29 Cronbach’s alpha is a statistic on a 0 to 1 scale used to measure the consistency of multiple

items in an instrument. When items are highly consistent, Cronbach's alpha is close to 1.
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same level of severity. However, some large differences are observed in

relatively small numbers of patients. These large differences occur, because

interference may be associated with not only symptom severity but also with

other psychological or environmental factors. In this study, these large

differences are not associated with age, gender, cancer type, comorbidity, and

depression at baseline. Further research needs to assess what other factors

might explain these changes in interference that occur within patients over time.

Fifth, Kirshner and Guyatt (134) suggest that the measures need to be

compared with some global standard methods for validity. The categories of mild,

moderate, and severe are constructed by modifying the globally used

instruments (Brief Pain Inventory (BPI) and Brief Fatigue Inventory (BFI)) whose

validity has been proved (4, 88). This study proposed the severity of 2 and 5 as

cut-points for categorizing mild, moderate, and severe in both pain and fatigue. In

previous studies, Serlin et al. (80) proposed the cut-points of 5 and 7 for the

categories in pain, and Mendoza et al. (4) proposed the cut-points of 4 and 7 for

the categories in fatigue in cancer patients. These higher cut-points may be

explained by the fact that these methods used the multivariate analysis of

variance (MANOVA) to find the cut-points of severity in symptoms. This analytical

technique assumes a normal distribution of interference items. In this study,

however, interference sums were highly skewed to right and thus the generalized

linear model with a gamma distribution was used to take into account the skewed

distribution. This difference could lower the cut-points in this study below those of

previous studies.
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In this research the interference scale developed to establish interference

based cut-points across the ten-point severity scale meet all five evaluation

criteria set out by Kirshner and Guyatt (134). As a result, this scale represents a

psychometrically sound indicator for separating meaningful interference based

categories for defining severity, and its change (response) to interventions for

managing pain and fatigue.

6.3 Applying Survival Analysis in the Assessments of Symptom

This study demonstrates application of survival analysis techniques in the

assessment of pain and fatigue among cancer patients. Unlike survivorship or

resolution of disease, more considerations and limitations exist, when using

survival analysis models in symptom assessments. In this section, I discuss

research questions (Aim 2 to 5) regarding the applications of survival analysis

techniques.

Survival analysis under the proportional hazard assumption

There is the question as to which factors are predictors of time-to-

response in pain and fatigue among cancer patients when using survival analysis

techniques that require the assumption of proportional hazards (Aim 2). To obtain

an answer for this question, we need to examine the proportional hazard

assumption and to understand the distinctions among the three survival analysis

methods which require the proportional hazard assumption.
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In this study, the proportional hazard assumption was examined by

assessing the interaction between time and each covariate in the Cox

proportional hazard model. However, there are other methods for examining the

proportional hazard assumption using graphical comparison and residuals rather

than the interaction between time and each covariate in the Cox proportional

hazard model (105, 136—139). The graphical method plots the cumulative hazard

functions between groups. If the proportional hazard holds, then the log-

cumulative hazard functions between groups with different levels of a covariate

are parallel across log of time-to-response. Also, GrambSch and Themeau (140)

proposed the use of Schoenfeld residuals for testing the proportionality. In recent

research, Ng'andu (138) compared the power of detecting non-proportional

hazard with these methods and found that the method using the interaction

between time and covariate have equally reliable power compared to the other

methods.

As long as the proportional hazard assumption holds, we need to

understand the distinctions among the log-rank test, the Wilcoxon test, and the

Cox proportional hazard model. In this study these three survival analysis

methods had fairly consistent results that found significant effects of age and

comorbidity on time-to-response for pain and comorbidity effects on the time-to-

response for fatigue. In univariate analysis, the log-rank test is essentially the

same as the partial likelihood function for the Cox proportional hazard model

when there are no individuals having exactly the same time-to-event (105). In

this study, fairly similar p-vales were obtained for the log-rank test and Cox
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proportional hazard model. lgnorable differences in the p-values between the two

methods may be due to the fact that several patients reported symptom

responses at exactly the same time. It is known that the Wilcoxon test is more

sensitive to differences in survival functions as time-to-response closes to zero

(more number of individuals at risk) (105). However, the Wilcoxon test also

produced similar p-values with the two methods. If investigators are more

interested in the difference of time-to-response within relatively short periods

then, the Wilcoxon test would be a better option. Regardless of these differences,

the same results were obtained from these three methods using the univariate

analysis.

In this study, the proportional hazard assumption holds for all covariates

and only comorbidity has significant effect on time-to-response for both pain and

fatigue in the final multivariable Cox proportional hazard model. It is possible that

comorbidity is one of mediators between age and time-to-response for pain and

fatigue. Based on the definition of a mediator that Baron and Kenny described

(141), we can assess possibility of a mediation effect of comorbidity between age

and time-to-response for pain. Baron and Kenny proposed that a mediator

variable should satisfy the following conditions; 1) the predictor (i.e. age) causes

the mediator variable (i.e. comorbidity), 2) the predictor is significantly associated

with the outcome (i.e. time-to-response) without the mediator, 3) the mediator is

significantly associated with the outcome without the predictor, 4) the predictor

has smaller effect on the outcome in the model adjusting for the mediator than

the model not adjusting for it. In several previous studies, it has been observed
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that elderly patients are more likely to have high risk of comorbid conditions and

late stage cancer (53, 58, 59). The significant effects of age and comorbidity on

time-to-response for pain were observed in univariate analysis. The age effect

was not significant after adjusting for comorbidity. Tein and Mackinnon (142)

propose a method for estimating mediation effect with survival data. However,

more research is needed to obtain a reliable confidence interval for this estimator.

Survival analysis ignoring the proportional hazard assumption

Second, the next question (Aim 3) was; whether findings based on

survival analysis techniques that were appropriate for the proportional hazards

assumption hold when using alternative survival techniques (the Lin 8 Wang’s

test, the Rahbar’s test, and the Cox model with weighted estimation (WCM)) that

do not require the proportional hazard assumption. Because the proportional

hazard assumption holds for all covariates, it is not necessary to use these

alternative methods in this study. The proposed methods (the Lin & Wang’s test,

the Rahbar’s test, and the WCM) are available for both proportional and non-

proportional hazards. It is worthy to discuss how differently these methods result

compared to the log-rank, Wilcoxon, and Cox proportional hazard model.

Because the proportional hazard assumption held in this study, there was

no difference between the Cox proportional hazard model and WCM. Because

the WCM is a generalized form of the Cox proportional model to allow for the

inconsistent hazard rates, the WCM produced similar results to the Cox

proportional hazard model.
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The Lin & Wang’s test and Rahbar’s method are available for both

proportional and non-proportional hazards. However, there are some restrictions

using these methods to assess our data. The Lin & Wang’s test did not identify

any significant effect of covariates (i.e’. age, comorbidity, and depression) while

the Rahbar’s method and the WCM found significant effects of age and

comorbidity. It is because large variances occur when large numbers of events

(responses) occur at exactly same time. This negative aspect of Lin & Wang’s

test was not identified in their original study (107). The Rahbar’s test had

relatively very small p-values compared to other methods, because this method

tests for mean survival time while other methods tests for survival functions. Test

of mean survival time is relatively sensitive to small numbers of subjects with

extremely long time-to-response (outliers) compared with that of survival function.

The survival functions between age groups (Figure 14) or depression groups

(Figure 16) are not significantly different until 55 days. Approximately 15% of the

patients who were older or more depressed reported a response to their fatigue

or were censored between 55 and 65 days. However, the patients who were

younger or less depressed were censored at around 55 days. That is, the

differences of survival functions were observed only between 55 and 65 days.

The Rabhar’s method is sensitive to this difference while other methods ignore

that. Therefore, the Rabhar’s method produced smaller p-values than others.

Regardless of these differences, the significant comorbidity effect on time-to-

response for pain and fatigue and the significant age effect on time-to-response

for pain were observed using these alternative methods.
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Survival analysis for interval censoring

The third, question was; whether the findings based on survival analysis

techniques that were appropriate for right censoring hold when the Accelerated

Failure Time (AFT) model is used that accounts for interval censoring. In this

study, patients reported their experience with symptoms, such as severity,

duration, and interference, during the past 7 days. Given that, the exact time of

response cannot be observed, the time-to-response is observed at intervals. For

example, if one patient reports severe pain over 3 weeks and reports mild pain at

the 4th week, then the time of response occurs between the 3ml and 4th week from

the onset of the symptom. The AFT model incorporating interval censoring was

used for this study and the finding was similar to the Cox proportional hazard

model. One reason for the similar results between the AFT model and the Cox

proportional hazard model is thatthe lengths of interval censoring are equal

around 7 days in most cases due to prescheduled contacts. The other reason is

the length of interval censoring is relatively small compared with the mean time-

to-response. For example, the estimated restricted means of time-to-response

are around 20 and 24 days for pain and fatigue, respectively. Therefore,

difference within a length of interval censoring (one week) may not change the

covariate effect compared to the Cox proportional hazard model with right-

censored data. If the length of time between contacts is longer or is not

scheduled on a consistent time interval, then in future research, it is worthy to

compare the results from the Cox proportional hazard model and AFT model

incorporating interval censoring.
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Survival analysis for correlated events

Finally, the last question was; whether the findings from the separate

models of pain and fatigue (the Cox proportional hazard model, the Cox model

with weighted estimation, and the Accelerated Failure Time model) hold when

using the Cox marginal model that accounts for the correlation between the two

symptoms (pain and fatigue). Because pain and fatigue are highly correlated, the

response for pain may be very close to that for fatigue within the same individual.

For example, when a patient has a response to pain, he/she may, subsequently,

experience a lower level of fatigue. Therefore, the time-to-response varies by

individual characteristics rather than type of symptoms (pain or fatigue), and this

trend resulted in fairly similar final models between pain and fatigue. The

marginal Cox model determined if individual characteristics differentially affect

time-to-response for pain and fatigue when considering a correlation between the

two symptoms. This model consistently showed that comorbidity has a significant

effect on time-to-response for both pain and fatigue with larger sample size.

In these data, I did not see considerable limitations from the non-

proportional hazard or interval censoring models. Therefore, the marginal Cox

model can provide the most reliable final model by incorporating the correlation

between pain and fatigue. Although the limitations regarding survival analysis

(Aims 2 to 5) did not seriously affect the final models in these data, this study

Shows what important assumptions need to be considered to use survival

analysis techniques for assessing symptom response and what restrictions the

used survival analysis methods have. The final models revealed a consistently
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strong effect for comorbidity on time-to-response for pain and fatigue under the

different conditions in terms of proportional hazard, interval censoring, and

correlation between pain and fatigue. In these data shorter time-to-response for

pain and fatigue among cancer patients who had fewer comorbid conditions

could be due to less severe pain, fatigue, and other symptoms (21, 43) and more

adherence to treatments (52, 65, 66) than those patients with more comorbid

conditions. Because cancer patients who had fewer comorbid conditions may

have fewer other symptoms that need to be managed, their responses to

management strategies for pain and fatigue are less likely to be interfered with

due to the lower overall symptom burden compared with patients who had

several comorbid conditions. Patients who had fewer comorbid conditions could

continue to follow strategies that the nurses or coach provided while the patients

who had more comorbid conditions might have greater difficulty adhering to the

larger numbers of interventions. Assuming the effectiveness of symptom

management in achieving symptom responses, more comorbid conditions may

interfere with adherence to symptom management thus reducing their

effectiveness in producing symptom response. These differences could result in

more effectively responding for pain and fatigue among patients with fewer

comorbid conditions.

There is a potential that patients’ age can be a confounding factor

between comorbidity and time-to-response for pain and fatigue. However, the

hazard ratios for comorbidity were not changed before and after adjusting for age.

The hazard ratios for comorbidity without adjusting for age are 1.81 (95%
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Cl=[1.26, 2.591) and 1.28 (95% Cl=[2:01, 1.641) in pain and fatigue, respectively.

After adjusting for age, the hazard ratios are 1.70 (95% Cl=[1.18, 2.461) and 1.32

(95% Cl=[1.02, 1.701) which are quite Similar to the hazard ratios prior to

adjustment. Therefore, comorbidity appears to be a main effect and is not altered

to any appreciable extent by age as a confounding effect. Symptom management

for pain and fatigue in cancer patients needs to consider more intensive

strategies for older patients who experience more comorbid conditions.
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Appendix A The Symptom Assessment at Intervention Contact (Example

for Pain)

PATIENT SYMPTOMS - PT VERSION

The next questions ask about the symptoms you have experienced in the past 7

days due to cancer or its treatment, and how they may have affected you.

1. During the past 7 days. on how many days did you experience pain?

(If 0 skip to question 2)

0 1 2 3 4 5 6 7

Not present days

A. On a scale of 0=not present to 10=the worst it could be. how severe is pain

(for you)? .

0 1 2 3 4 5 6 7 8 9 10

Not present worst possible

B. Please rate your pain by telling me the one number that best describes your

pain at its WORST in the past 7 days.

0 1 2 3 4 5 6 7 8 9 10

No pain as bad as you can imagine

C. Please rate your pain by telling me the one number that best describes your

pain at its LEAST in the past 7 days.

0 1 2 3 4 5 6 7 8 9 10

No pain as bad as you can imagine

D. Please rate your pain by telling me the one number that best describes your

pain at its AVERAGE in the past 7 days.

0 1 2 3 4 5 6 7 8 9 10

No pain as bad as you can imagine

E. In the past seven days, how much reliefs have pain treatments or

medications provided? Please tell me the one percentage that most

represents how much reliefs you have received.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

No relief complete relief

F. On a scale of 0=did not interfere to 10=completely interfered, overall, how

much did pain interfere in your life?

0 1 2 3 4 5 6 7 8 9 10

Did not interfere completely interfered
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. Tell me the one number that describes how, during the past 7 days, pain has

interfered with your GENERAL ACTIVITIY

0 1 2 3 4 5 6 7 8 9 10

Did not interfere completely interfered

. Tell me the one number that describes how, during the past 7 days, pain has

interfered with your MOOD

0 1 2 3 4 5 6 7 8 9 10

Did not interfere completely interfered

Tell me the one number that describes how, during the past 7 days, pain has

interfered with your WORKING ABILITY

0 1 2 3 4 5 6 7 8 9 10

Did not interfere completely interfered

. Tell me the one number that describes how, during the past 7 days, pain has

interfered with your NORMAL WORK (includes both work outside the home

and housework)

0 1 2 3 4 5 6 7 8 9 10

Did not interfere completely interfered

. Tell me the one number that describes how, during the past 7 days, pain has

interfered with your RELATIONS WITH OTHER PEOPLE

0 1 2 3 4 5 6 7 8 9 10

Did not interfere completely interfered

. Tell me the one number that describes how, during the past 7 days, pain has

interfered with your SLEEP

0 1 2 3 4 5 6 7 8 9 10

Did not interfere completely interfered

. Tell me the one number that describes how, during the past 7 days, pain has

interfered with your ENJOYMENT OF LIFE

0 1 2 3 4 5 6 7 8 9 10

Did not interfere completely interfered
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Appendix 8 SAS macros

SAS Macro for the log-rank, Wilcoxon, and Ling & Wang’s test

%Macro LinTest(Var=,Symptom=);

DATA Sample; Set Main(Keep= time1 &VAR CENSOR Symptom

where:(Symptom="&Symptom"));

KEEP Z 0 G;

Z=time1;

0=Censor;

G=&Var;

PROC RANK DATA=SAMPLE 0UT=SAMPLES TIES=LOW;

VAR z; RANKs KZ; RUN;

PROC FREQ DATA=SAMPLES NOPRINT;

WHERE 6:1; TABLE KZ / NOPERCENT OUT=T1 OUTCUM;

DATA T1;SET T1; KEEP KZ N1;N1=COUNT; RUN;

PROC FREQ DATA=SAMPLES N0PRINT;

WHERE G=2; TABLE Kz / NOPERCENT 0UT=T2 OUTCUM;

DATA T2;SET T2; KEEP KZ N2;N2=COUNT; RUN;

PROC FREQ DATA=SAMPLES NOPRINT;

WHERE G=1 AND D=1; TABLE KZ / NOPERCENT 0UT=D1 OUTCUM;

DATA D1;SET 01; KEEP Kz D1;01=c0UNT; RUN;

PRoc FREQ DATA=SAMPLES NOPRINT;

WHERE G=2 AND 0:1; TABLE Kz / NOPERCENT 0UT=D2 OUTCUM;

DATA 02;SET 02; KEEP Kz 02;D2=COUNT; RUN;

DATA COM;MERGE T1 T2 01 02; BY KZ;

ARRAY 0[4] N1 N2 01 D2;

00 1:1 T0 4; IF 0[I]=. THEN 0[I]=0;END;

DROP I;

RUN;

PROC IML;

USE COM;
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READ ALL VARc INTO N1;

READ ALL VARO INTO N2;

READ ALL VAR{'DI'} INTO 01;

READ ALL VAR{'D2'} INTO 02;

N=NROW(N1);

M1=N1 [+1];

M2=N2[+,];

S1=REPEAT(M1,N,1);

52=REPEAT(M2,N,1);

K =REPEAT(1,N,I);

00 1:1 T0 N-1;

$1[I+1,11=S1[I,11-N1[1,1];

$2[I+1,1]=S2[I,1]-N2[I,1];

END;

V=S1||DI||S2||D2;

C={'N1','Di','N2','D2'};

CREATE SAM FROM v [COLNAME=C];

APPEND FROM v;

RUN;

QUIT;

DATA CAL;SET SAM;

SumN=SUM(N1,N2);SumD=SUM(01,02);

IF SumN=1 THEN DELETE;

RUN;

DATA CAL;SET CAL;

/*** Log Rank Test ***************************************l

logE=01-N1*SumD/SumN;

logV=N1*N2*Sum0*(SumN-SumD)/(SumN*SumN*(SumN-1));

/*** Wilcoxon Test ***************************************/

WxE=SumN*(DI-N1*SumD/SumN);

WxV=SumN*SumN*N1*N2*SumD*(SumN-Sum0)/(SumN*SumN*(SumN-1));

/*** Lin—Test Statistic *************************************/

E1=N1*SumD/SumN;

V=N1*N2*SumD*(SumN-Sum0)/(SumN*SumN*(SumN-1));

E2=V+E1*E1;

IF SumD>=3 THEN C31=COMB(SumD,3);ELSE 031:0;
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IF N1>=3 THEN 032=COMB(N1,3);ELSE 032:0;

IF SumN>=3 THEN C33=COMB(SumN,3);ELSE 033:0;

E3=3*E2-2*E1+GAMMA(4)*C31*C32/(C33+.000000001);

IF SumD>=4 THEN C41=COMB(SumD,4);ELSE 041:0;

IF N1>=4 THEN C42=COMB(N1,4);ELSE 042:0;

IF SumN>=4 THEN C43=COMB(SumN,4);ELSE 043:0;

E4=6*E3-11*E2+6*E1+GAMMA(5)*C41*C42/(C43+.000000001);

DELTA=(D1-E1)**2;

EDELTA=V;

VDELTA=E4-4*E3*E1+6*E2*(E1*E1)-3*(E1**4)-V*V;

RUN;

PROC MEANS DATA=CAL NOPRINT;

VAR LogE LogV WxE WxV DELTA EDELTA VDELTA;

OUTPUT 0UT=LinTest SUM=;

RUN;

DATA LinTest ;SET LinTest;

TestLogRank=LogE*LogE/LogV;

TestWilcoxon=WxE*WxE/va;

TestLin=(DELTA-EDELTA)/SQRT(VDELTA);

LogRank=ROUND(1-CDF('CHISQUARE',TestLogRank,1),.0001) ;

Wilcoxon=ROUND(1-CDF('CHISQUARE',TestWilcoxon,1) ,.0001) ;

Lin=ROUND(2*(1-CDF('NORMAL',ABS(TestLin))),.0001) ;

RUN;

PROC PRINT DATA=LinTest;

TITLE 'P-VALUES FOR HOMOGENIETY TEST FOR MEAN SURVIVAL TIME';

VAR TestLogRank LogRank TestWilcoxon Wilcoxon TestLin Lin;

RUN;

%MEND;

%Lin783t(Var=pSEX,Symptom=Pain);

%Lin7€st(Var=AGE,Symptom=Pain);

%LinTest(Var=StageCat,Symptom=Pain);

%Lin785t(Var=Comorbidity,Symptom=Pain);

%LjnTEst(Var=CESD,Symptom=Pain);

%Lin763t(Var=ChemoStart,Symptom=Pain);
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%L1078$t(Var=pSEX,Symptom=Fatigue);

%Ljnfest(Var=AGE,Symptom=Fatigue);

%Linrest(Var=StageCat,Symptom=Fatigue);

%Ljn763t(Var=Comorbidity,Symptom=Fatigue);

%Ljn765t(Var=CESD,Symptom=Fatigue);

%L1n793t(Var=ChemoStart,Symptom=Fatigue);

SAS Macro for a nonparametric test for equality of mean survival

time (Rahbar’s Method)

%MACRO NEWTEST(G);

DATA SAM&G;SET SAMPLE;WHERE G=&G;J=1;

PROC RANK DATA=SAM&G 0UT=SAM&G DESCENDING TIES=LOW;

BY J;

VAR Z;

RANKS KZ;

RUN;

PROC SORT DATA=SAM&G ;BY J Z;RUN;

PROC LIFETEST DATA=SAM&G NOPRINT 0UTSURV=SURV&G;

TIME Z*D(0);

BY J;

DATA SURV&G ;SET SURV&G;

LZ=LAG(Z);

LSURVIV=LAG(SURVIVAL);

BASE=Z-LZ;

M=BASE*LSURVIV;

IF SURVIVAL=. THEN M=.;

RUN;

PROC SORT DATA=SURV&G ;BY J 2;

DATA SURV&G ;MERGE SAM&G SURV&G ;BY J 2;

K22=LAG(KZ);

IF K22=KZ THEN DELETE;

RUN;

DATA UME&G ;SET SURV&G ; BY J;

IF FIRST.J THEN TOTAL=0;

TOTAL+M;

RUN;
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PROC MEANS DATA=UME&G NOPRINT;

VAR M;

OUTPUT OUT=SUM&G SUM=UE&G ;

BY J;

RUN;

DATA UME&G ;MERGE UME&G SUM&G;BY J ;

AZ=UE&G -TOTAL;

IF Z=0 THEN AZ=0;

SIGMA&G =(1-_CENSOR_)*((AZ/KZ)**2);

IF _CENSOR_=. THEN DELETE;

RUN;

PROC SORT DATA=UME&G ; BY J;

PROC MEANS DATA=UME&G NOPRINT;

VAR SIGMA&G;

BY J;

OUTPUT OUT=S&G SUM=;

RUN;

DATA UE&G ;MERGE SUM&G S&G;BY J;

KEEP J UE&G SIGMA&G _FREO_;

RUN;

PROC MEANS DATA=SAM&G NOPRINT;

VAR KZ;

OUTPUT 0UT=NUM&G MAX=N&G;

RUN;

DATA UE&G ;MERGE UE&G NUM&G;

SIGMA&G =N&G*SIGMA&G;

STD&G =SORT(SIGMA&G/N&G);

G=&G;

LABEL G='Negative';

RUN;

PROC MEANS DATA=UE&G MEAN MAXDEC=4;

VAR G N&G UE&G SIGMA&G;

RUN;

%MEND;

/**** Test for Two Groups ****/

%Macro Rahbar(Var=,Symptom=);

DATA Sample;Set Main(Keep= timei &VAR CENSOR Symptom

where:(Symptom="&Symptom"));

KEEP Z 0 G;

Z=time1;
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D=Censor;

G=&Var;

%NEMVEST(1);

%NEM7£ST(2);

DATA UES;MERGE UE1 UE2;RUN;

PROC DELETE DATA=UE1;PROC DELETE DATA=UE2;

PROC MEANS DATA=UEs N MEAN STD MAXDEC=4;

VAR UE1 SIGMAI UE2 SIGMA2;

RUN;

DATA ESTIMATE;SET UES;

/***** COMBINED ESTIMATE *****/

SUM1=SIGMA1*N1+SIGMA2*N2;

L1=SIGMA1*N1/SUM1;

L2=SIGMA2*N2/SUM1;

CE1=L1*UE1+L2*UE2;

CE2=L1*UE1+L2*UE2;

N=N1+N2;

0M11=N1/N;0M12=N2/N;

RH01=SIGMA1IOMII;

RH02=SIGMA2/OM12;

COMBINE=RH01*L1*L1+RHO2*L2*L2;

STDCIMB=SQRT(COMBINE/N);

/*** LAMBDA ***/

D1=(UE1-CE1);

02=(UE2-CE2);

SUMD=SQRT(N)*D1+SQRT(N)*D2+SQRT(N);

GAMMA1=((1-L1)**2)*RHO1+(L2**2)*RH02;

GAMMA2=(L1**2)*RH01+((1-L2)**2)*RH02;

GAMMA12=~L1*RH01-L2*RH02+COMBINE;
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RUN;

PROC IML;

USE ESTIMATE;

READ ALL VAR{'D1'} INTO 01;

READ ALL VAR{'DZ'} INTO 02;

READ ALL VAR{'N'} INTO N ;

READ ALL VAR{'GAMMAI'} INTO GAMMAi ;

READ ALL VAR{'GAMMAZ'} INTO GAMMA2 ;

READ ALL VAR{'GAMMA12'} INTO GAMMA12 ;

THETA=D1||02;

CI=GAMMA1||GAMMA12;

02=GAMMA12||GAMMA2;

V=C1‘||C2‘;

VO=GINV(V);

L=N*THETA*V0*THETA‘;

C={'LAMBDA'};

LA=L;

CREATE LAMBDA FROM LA [COLNAME=C];

APPEND FROM LA;

RUN;

OUIT;

DATA PVALUE;SET LAMBDA;

CHI=CINV(O.95,1);

NEWTEST=ROUND(1-CDF('CHISOUARE',LAMBDA,1) ,.0001) ;

PROC MEANS DATA=ESTIMATE MEAN MAXDEC=3;

VAR N1 UE1 STDi N2 UE2 STDZ CE1 SIGMAI SIGMA2 GAMMAI GAMMAZ

GAMMA12; _

RUN;

PROC MEANS DATA=PVALUE N MEAN MAXDEC=4;

VAR LAMBDA NEWTEST;

RUN;

%MEND;

%flahbar(Var=pSEX,Symptom=Pain);

%flBhbar(Var=AGE,Symptom=Pain);

%flahbar(Var=StageCat,Symptom=Pain);

%flahbar(Var=Comorbidity,Symptom=Pain);

%flahbar(Var=CESD,Symptom=Pain);

%flahbar(Var=ChemOStart,Symptom=Pain);

%flahbar(Var=pSEX,Symptom=Fatigue);
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%flahbar(Var=AGE,Symptom=Fatigue);

%flahbar(Var=StageCat,Symptom=Fatigue);

%flahbar(Var=Comorbidity,Symptom=Fatigue);

%flahbar(Var=CESD,Symptom=Fatigue);

%flahbar(Var=ChemOStart,Symptom=Fatigue);

/**** Tests for Three Groups ****/

*Macro Rahbar3(Var=,Symptom=);

DATA Sample;Set Main(Keep= time1 &VAR CENSOR Symptom

where=(Symptom="&Symptom"));

KEEP 2 D G;

Z=time1;

D=Censor;

G=&Var;

%NEM7EST(I);

%NEM7£ST(2);

%NEW7£37(3);

DATA UES;MERGE UE1 UE2 UE3;RUN;

PROC DELETE DATA=UE1;PROC DELETE DATA=UE2;PROC DELETE DATA=UE3;

PROC MEANS DATA=UES N MEAN STD MAXDEC=4;

VAR UE1 SIGMA1 UE2 SIGMA2 UE3 SIGMA3;

RUN;

DATA ESTIMATE;SET UES;

/***** COMBINED ESTIMATE *****/

SUM1=SIGMA1*N1+SIGMA2*N2+SIGMA3*N3;

L1=SIGMA1*N1/SUM1;

L2=SIGMA2*N2/SUM1;

L3=SIGMA3*N3/SUM1;

CE1=L1*UE1+L2*UE2+L3*UE3;

CE2=L1*UE1+L2*UE2+L3*UE3;

CE3=L1*UE1+L2*UE2+L3*UE3;

CE4=L1*UE1+L2*UE2+L3*UE3;

N=N1+N2+N3;

OMI1=N1/N;0MI2=N2/N;OMI3=N3/N;
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RHO1=SIGMA1IOMI1;

RH02=SIGMA2/OMI2;

RHO3=SIGMA3IOMI3;

COMBINE=RH01*L1*LI+RH02*L2*L2+RH03*L3*L3;

STDCIMB=SORT(COMBINE/N);

/*** LAMBDA ***/

D1=(UE1-CE1);

D2=(UE2-CE2);

D3=(UE3-CE3);

SUMD=SQRT(N)*D1+SORT(N)*02+SORT(N)*03;

GAMMA1=((1-L1)**2)*RH01+(L2**2)*RH02+(L3**2)*RHO3;

GAMMA2=(L1**2)*RH01+((1-L2)**2)*RH02+(L3**2)*RH03;

GAMMA3=(L1**2)*RH01+(L2**2)*RHO2+((1-L3)**2)*RH03;

GAMMA12=-L1*RH01-L2*RH02+COMBINE;

GAMMA13=-L1*RH01-L3*RH03+COMBINE;

GAMMA23=-L2*RH02-L3*RH03+COMBINE;

SI=SORT(SIGMA1);

$2=SORT(SIGMA2);

S3=SQRT(SIGMA3);

RUN;

PROC IML;

USE ESTIMATE;

READ ALL VAR{'D1'} INTO DI;

READ ALL VAR{'DZ'} INTO 02;

READ ALL VAR{'D3'} INTO 03;

READ ALL VAR{'N'} INTO N ;

READ ALL VAR{'GAMMAI'} INTO GAMMAI ;

READ ALL VAR{'GAMMAZ'} INTO GAMMA2 ;

READ ALL VAR{'GAMMAB'} INTO GAMMA3 ;

READ ALL VAR{'GAMMA12'} INTO GAMMA12 ;

READ ALL VAR{'GAMMA13'} INTO GAMMA13 ;

READ ALL VAR{'GAMMA23'} INTO GAMMA23 ;

THETA=D1||D2||D3;
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CI=GAMMA1||GAMMA12||GAMMA13;

C2=GAMMA12||6AMMA2||6AMMA23;

C3=GAMMA13||GAMMA23||GAMMA3;

V=C1‘||02‘||C3‘;

V0=GINV(V);

L=N*THETA*VO*THETA‘;

C={'LAMBDA'};

LA=L;

CREATE LAMBDA FROM LA [COLNAME=C];

APPEND FROM LA;

RUN;

QUIT;

DATA PVALUE;SET LAMBDA;

CHI=CINV(0.95,2);

NEWTEST=ROUND(1-CDF('CHISOUARE',LAMBDA,2) ,.0001) ;

PROC MEANS DATA=ESTIMATE MEAN MAXDEC=3;

VAR N1 UE1 STDI N2 UE2 ST02 N3 UE3 ST03 CE1

SIGMA1 SIGMA2 SIGMA3

St 82 $3

GAMMAi GAMMA2 GAMMA3

GAMMA12 GAMMA13 GAMMA23 ;

RUN;

PROC MEANS DATA=PVALUE N MEAN MAXDEC=4;

VAR LAMBDA NEWTEST;

RUN;

*mend;

9cflahbar3(Var=Cance r , Symptom=Pain) ;

%flahbar6(Var=Cancer,Symptom=Fatigue);
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Appendix C The MD Anderson Symptom Inventory (MDASI) (143)

MD. Anderson Symptom Inventory (MDASI) Core Items

Part I. How severe are your symptoms?

People with cancer frequently have symptoms that are caused by their disease

or their treatment. We ask you to rate how severe the following symptoms have

been in the last 24 hours. Please fill in the circle below from 0 (symptom has

not been present) to 10 (the symptom was as bad as you can imagine it could

be) for each item.

1. Your pain at its WORST?

0 1 2 3 4 5 6 7 8 9 10

Not present as bad as you can imagine

2. Your fatigue (tiredness) at its WORST?

0 1 2 3 4 5 6 7 8 9 10

Not present as bad as you can imagine

3. Your nausea at its WORST?

0 1 2 3 4 5 6 7 8 9 10

Not present ' as bad as you can imagine

4. Your disturbed sleep at its WORST?

0 1 2 3 4 5 6 7 8 9 10

Not present as bad as you can imagine

5. Your feelings of being distressed (upset) at its WORST?

0 1 2 3 4 5 6 7 8 9 10

Not present as bad as you can imagine

6. Your shortness of breath at its WORST?

0 1 2 3 4 5 6 7 8 9 10

Not present as bad as you can imagine

7. Your problem with remembering things at its WORST?

O 1 2 3 4 5 6 7 8 9 10

Not present as bad as you can imagine
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8. Your problem with lack of appetite at its WORST?

O 1 2 3 4 5 6 7 8 9 10

Not present as bad as you can imagine

9. Your feeling drowsy (sleepy) at its WORST?

0 1 2 3 4 5 6 7 8 9 10

Not present as bad as you can imagine

10.Your having a dry mouth at its WORST?

0 1 2 3 4 5 6 7 8 9 10

Not present as bad as you can imagine

11.Your feeling sad at its WORST?

0 1 2 3 4 5 6 . 7 8 9 10

Not present as bad as you can imagine

12. Your vomiting at its WORST?

0 1 2 3 4 5 6 7 8 9 10

Not present as bad as you can imagine

13.Your numbness of tingling at its WORST?

0 1 2 3 4 5 6 7 8 9 10

Not present as bad as you can imagine

Part II. How have your symptoms interfered with your life?

Symptoms frequently interfere with how we feel and function how much have

your symptoms interfered with the following items in the last 24 hours:

14. General activity?

0 1 2 3 4 5 6 7 8 9 10

Do Not Interfere Interfered Completely

1 5. Mood?

0 1 2 3 4 5 6 7 8 9 10

Do Not Interfere Interfered Completely

16.Work (including work around the house)?

0 1 2 3 4 5 6 7 8 9 10

Do Not Interfere Interfered Completely
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17. Relations with other people?

0 1 2 3 4 5 6 7 8 9 10

Do Not Interfere Interfered Completely

18.Walking?

0 1 2 3 4 5 6 7 8 9_ 10

Do Not Interfere Interfered Completely

19. Enjoyment of life?

0 1 2 3 4 5 6 7 8 9 10

DO Not Interfere Interfered Completely
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Appendix D The Center for Epidemiologic Studies - Depression (CES-D)

scale (125)

Depression (CESD) Questions Your Feelings

These questions are about how you feel and how things have been with you

within the past month. Please note the answer that comes closest to the way you

have been feeling during the past month. The answer choices are “almost all of

the time,” “most of the time,” “some of the time,” “rarely or none of the time.”

During the past month, how much of the time:

0) rarely/none of the time 1) some of the time 2) most of the time 3) all of the time

1. Were you bothered by things that usually don’t bother you?

2. Have you not felt like eating; had a poor appetite?

3. Have you felt that you could not shake off the blues, even with the help of

family or friends?

Have you felt that you were just as good as other people?

Have you had trouble keeping your mind on what you were doing?

Have you felt depressed?

Have you felt that everything you did was an effort?

Have you felt hopeful about the future?

9
9
9
°
N
9
’
9
1
P

Have you thought your life has been a future?

10. Have you felt fearful?

11.Have your sleep been restless?

12.Were you happy?

13. Have you talked less than usual?

14. Have you felt lonely?

15.Were people unfriendly?

16. Have you enjoyed life?

17. Have you had crying sells?

18. Have you felt sad?

19. Have you felt that people dislike you?

20. Could you not get going?
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Appendix E The Short Form — 36 (SF-36) Physical Functioning Sub Scale

The following questions are about the activities you might do during a typical day.

1. Does your health limit your ability to do activities? If so, how much?

a. Vigorous activities, such as running, lifting heavy Objects, participating

in strenuous sports?

Currently, does your health limit you in ?

---- Yes, limited a lot.

------ Yes, limited a little.

------ No, not limited at all.

 

b. Moderate activities, such as moving a table, pushing a vacuum cleaner,

bowling, or playing golf? .

Currently, does your health limit you in ?

----- Yes, limited 3 lot.

------ Yes, limited a little.

------ No, not limited at all.

 

c. Lifting or carrying groceries?

Currently, does your health limit you in ?

----- Yes, limited a lot.

------ Yes, limited a little.

------ No, not limited at all.

 

d. Climbing several flights of stairs?

Currently, does your health limit you in ?

------ Yes, limited a lot.

------- Yes, limited a little.

------- No, not limited at all.

 

e. Climbing one flight of stairs?

Currently, does your health limit you in ?

------- Yes, limited a lot.

------- Yes, limited a little.

------ No, not limited at all.
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9.

Bending, kneeling, or stooping?

Currently, does your health limit you in

------ Yes, limited a lot.

------- Yes, limited 3 little.

------- No, not limited at all.

Walking more than a mile?

Currently, does your health limit you in

----- Yes, limited a lot.

------ Yes, limited a little.

------ No, not limited at all.

Walking several blocks?

Currently, does your health limit you in

----- Yes, limited a lot.

----- Yes, limited a little.

------- No, not limited at all.

Walking one block?

Currently, does your health limit you in

------ Yes, limited a lot.

------ Yes, limited a little.

------ No, not limited at all.

Bathing or dressing yourself?

Currently, does your health limit you in

------ Yes, limited a lot.

------ Yes, limited a little.

------ No, not limited at all.
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Appendix F The Assessment for Comorbid Conditions (127)

HEALTH CONDITIONS

1. Has a doctor ever told you that you have high blood pressure of

hypertension?

a. Yes b. No

2. Do you have diabetes?

a. Yes b. No

3. Has a doctor ever told you that you have cancer or a malignant tumor,

other than the cancer for which you currently are being treated?

a. Yes b. No

4. Not including asthma, has a doctor ever told you that have chronic lung

disease such as Chronic bronchitis or emphysema?

a. Yes b. No

5. Have a doctor ever told you that you had a heart attack, coronary heart

disease, angina, congestive heart failure, or other heart problems?

a. Yes D. No

6. Have you recently had any angina or chest pains due to your heart?

a. Yes D. No

7. Has a doctor ever told you that you had a stroke?

a. Yes b. No

8. Have you ever seen a doctor for emotional, nervous, or psychiatric

problems?

a. Yes b. No

9. During the last 12 months, have you seen a doctor specifically for arthritis

or rheumatism?

a. Yes b. NO

10. Have you ever fractured your hip?

a. Yes D. No
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11.Have you ever had surgical replacement of a joint?

a. Yes D. No

12. During the last 12 months, have you lost any amount of urine beyond your

control?

a. Yes D. No

13. Have you ever had cataract surgery?

a. Yes b. No

14. Do you ever wear a hearing aid?

a. Yes b. No

15. Do you have any other major health problems, which you haven’t told me

about?

a. Yes b. No

 Specify
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