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ABSTRACT 

COMPARATIVE ANALYSIS OF ORTHOGONAL MATCHING 
PURSUIT AND LEAST ANGLE REGRESSION 

By 

Mazin Abdulrasool Hameed 

The problem of finding a unique and sparse solution for an underdetermined linear system has 

attracted significant attention in recent years. In this thesis, we compare two popular algorithms 

that are used for finding sparse solutions of underdetermined linear systems: Orthogonal 

Matching Pursuit (OMP) and Least Angle Regression (LARS). We provide an in-depth 

description of both algorithms. Subsequently, we outline the similarities and differences 

between them. OMP and LARS solve different optimization problems: OMP attempts to find 

an approximate solution for the l0-norm minimization problem, while LARS solves the l1-norm 

minimization problem. However, both algorithms depend on an underlying greedy framework. 

They start from an all-zero solution, and then iteratively construct a sparse solution until some 

convergence is reached. By reformulating the overall structure and corresponding analytical 

expressions of OMP and LARS, we show that many of the steps of both algorithms are almost 

identical. Meanwhile, we highlight the primary differences between the two algorithms. In 

particular, based on our reformulation, we show that the key difference between these 

algorithms is how they update the solution vector at each iteration. In addition, we present 

some of the salient benefits and shortcomings of each algorithm. Moreover, we exploit parallel 

processing techniques to speed-up the convergence of the algorithms.  
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NOTATIONS 

𝑥 Solution vector which is usually sparse 

𝑦 Observation or measurement vector 

𝑛 Size of the solution vector 𝑥 

𝑚 Size of the measurement vector 𝑦 

𝑘 Sparsity (number of nonzero entries of the solution vector 𝑥 ) 

𝐴 Projection matrix of size 𝑚 × 𝑛 

𝑎𝑖 𝑖𝑡ℎ column of the matrix 𝐴 

𝐼 Active set 

𝐼𝑐 Inactive set 

𝑡 Iteration counter 

𝑟𝑡 Residual vector at iteration 𝑡 

𝑐𝑡 Correlation vector at iteration 𝑡 

𝑥𝑡 Current solution vector at iteration 𝑡 

∆𝑥𝑡 Solution update vector at iteration 𝑡 (i.e. ∆𝑥𝑡 = 𝑥𝑡 − 𝑥𝑡−1) 

𝑑𝑡 Updated direction of LARS at iteration 𝑡 

𝛾𝑡 Step size of LARS at iteration 𝑡 

𝜆𝑡 The largest absolute entry in the correlation vector at iteration 𝑡, and represents the 
absolute correlation of the active columns in LARS  
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Chapter 1 

1 Introduction 

1.1 Background 

Various applications in science and nature can be modeled as an underdetermined linear system 

which is characterized by having fewer equations than unknowns. Therefore, finding a solution 

for an underdetermined linear system is a central issue for a wide range of areas and applications. 

Some of these areas include: Compressed Sensing (CS) [1,2,3,4,5], error correction [6,7], 

minimum distance problems in coding theory [8], and a wide range of inverse problems [9]. In 

this thesis, we focus on presenting the problem of finding a solution for an underdetermined 

linear system in the context of the area of compressed sensing. In that context, instead of sensing 

a signal using a high sampling rate (e.g. the Nyquist rate), CS senses a compressive 

representation of that signal using a number of measurements that is smaller than the signal 

dimension. As a result, CS generates fewer measurements than traditional signal sampling 

methods that have been based on the Nyquist criterion for decades. Consequently, the CS 

framework leads to solving the following underdetermined linear system: 

 𝑦 = 𝐴𝑥 ( 1.1) 

Here, 𝑦 ∈ 𝑅𝑚  is the measurement vector (compressive samples), 𝐴 is a known  𝑚 × 𝑛  

projection matrix with 𝑚 < 𝑛, and  𝑥 ∈ 𝑅𝑛 is an unknown vector that represents the signal that 

we need to find. 

In the system of Equation ( 1.1), the number of unknowns is more than the number of 

equations. Therefore, there are either infinitely many solutions, or no solution if the vector 𝑦 is 
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not in the space spanned by the columns of the matrix 𝐴. To avoid the case of having no solution, 

we assume that the matrix 𝐴 is a full rank matrix, and its columns span the whole space 𝑅𝑚 . In 

practice, and for virtually all real applications, a unique solution for this system is required. It has 

been well-established under the area of compressed sensing and related literature that if the 

signal 𝑥 has a sparse representation (includes only a few nonzero entries) in some space 

(transform domain), it can be recovered uniquely [2,4,10,1,11,3,12]. 

To find the sparse solution for the underdetermined linear system, the following optimization 

problem should be solved: 

 min
𝑥   ‖𝑥‖0        𝑠𝑢𝑏𝑗𝑒𝑐𝑡   𝑡𝑜     𝐴𝑥 = 𝑦 ( 1.2) 

where ‖𝑥‖0  is l0-norm, which represents the number of nonzero entries in a vector 𝑥 (i.e. 

 ‖𝑥‖0 = {# 𝑜𝑓 𝑖 ∶  𝑥(𝑖) ≠ 0}. When  ‖𝑥‖0 ≪ 𝑛 , 𝑥 is consider to be sparse. 

Solving the optimization problem characterized by Equation ( 1.2) yields to a sparse solution 

that represents the given vector 𝑦 as a linear combination of the fewest columns of the matrix 𝐴. 

Suppose that the vector 𝑥 has only 𝑘 nonzero entries with  𝑘 < 𝑚 < 𝑛. To find such 𝑘 nonzero 

entries of the vector 𝑥, 𝑘 columns of the matrix 𝐴 that best approximate the vector 𝑦 should be 

identified. For example in Figure  1.1, when shaded columns are recognized, nonzero shaded 

coefficients of the vector 𝑥  can be computed. 

The l0-norm minimization problem expressed by Equation ( 1.2) is an NP-hard problem [13]. 

To obtain a global solution, we need to examine the feasibility of all 2𝑛  sparsity patterns of the 

vector 𝑥. Hence, the computation complexity of solving problem ( 1.2) is 𝑂(2𝑛 ), which is not 

practical when 𝑛 is very large. As a result, some efforts in this area tend to find an approximate 

solution with tractable complexity by tolerating some error: 
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 min
𝑥 

 ‖𝑥‖0        𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜     ‖𝐴𝑥 − 𝑦‖2 < 𝜖 ( 1.3) 

where 𝜖 > 0 is a small constant. 

The problem characterized by Equation ( 1.3) is commonly known as “sparse approximation” 

[13].  

  

 
Figure  1.1: A sparse solution of an underdetermined linear system 

 

Because l0-norm is a nonconvex function, one approach for finding a suboptimal solution of 

the problem ( 1.2) is relaxing the l0-norm by an l1-norm which is convex function [14,15,16]: 

 min
𝑥 

 ‖𝑥‖1        𝑠𝑢𝑏𝑗𝑒𝑐𝑡   𝑡𝑜     𝐴𝑥 = 𝑦 ( 1.4) 

In the signal processing literature, the l1-norm minimization problem ( 1.4) is known as “Basis 

Pursuit” [14]. The solution that is obtained by solving problem ( 1.4) is equivalent to the solution 

of l0-norm minimization problem ( 1.2) under some conditions [17,18,19,20,21]. The l1-norm 

minimization ( 1.4) is a convex optimization problem, and therefore, it can be solved globally and 

efficiently by adopting some convex techniques such as the interior point method [22].  
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Another general direction for finding a sparse solution of the underdetermined linear system 

( 1.1) is to use greedy algorithms [23]. There has been a wide range of greedy algorithms 

proposed in the literature for finding sparse solutions for the CS problem. One popular family of 

greedy algorithms, which received a great deal of attention, is the family of greedy pursuit 

algorithms. Some of these algorithms include: Matching Pursuit (MP) [24], Orthogonal 

Matching Pursuit (OMP) [25,26,27], Stagewise Orthogonal Matching Pursuit (StOMP) [28], 

Regularized Orthogonal Matching Pursuit (ROMP) [29], Orthogonal Complementary Matching 

pursuit (OCMP) [30], Gradient Pursuit (GP) [31], and Compressive Sampling Matching pursuit 

(CoSaMP) [32]. Another popular framework, which can be considered greedy in nature, for 

solving the underdetermined system ( 1.1) is Least Angle Regression (LARS) [33]. 

Before elaborating further on both of these families of algorithms, namely matching pursuit 

and least angle regression, we briefly highlight the overall strategy used by these and other 

greedy algorithms. First, it is worth emphasizing that one of the primary motivations for pursuing 

greedy algorithms is that they are faster than convex techniques. However, greedy algorithms do 

not always yield as an accurate solution as convex techniques do. Being iterative, a greedy 

algorithm usually makes the choice that appears the best at that particular iteration of the 

algorithm. In essence, a greedy algorithm makes a locally optimal choice at each iteration with 

the hope that this choice will lead to a globally optimal solution. In other words, these algorithms 

iteratively make one greedy choice after another until the final solution is reached. Thus, the 

choice made by a greedy algorithm may depend on past choices, but not on future choices. 

Equally important, greedy algorithms, in general, never change their pervious choices that are 

made so far. 
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To find a solution for the optimization problem (1.2), greedy algorithms typically begin from 

an all-zero solution, and then iteratively build a sparse solution by selecting a set of columns 

from the matrix 𝐴 that best approximates the vector 𝑦. Furthermore, such algorithms usually 

update the solution 𝑥 at each iteration in a way that depends on the selected columns up to that 

point. This update leaves a residual signal, which represents the part of the measurement vector 

𝑦 that have not been used to recover the solution vector (up to that point); and hence, this 

residual will be used at the next iteration. These steps are repeated until the current residual falls 

below a certain very small value.  

1.2 Contributions 

In this thesis, we focus on analyzing and comparing the two, arguably most popular greedy 

algorithms that are used for finding a sparse solution of an underdetermined linear system: 

Orthogonal Matching Pursuit (OMP) and Least Angle Regression (LARS). OMP approximates 

the l0-norm minimization problem (1.2), while LARS solves the l1-norm minimization problem 

(1.4). Although they solve different optimization problems, we show that both OMP and LARS 

have almost identical steps after reformulating the underlying analytical expressions of these 

algorithms. The significant difference between them is how they update the solution vector. Even 

then, we illustrate some of the subtle similarities and differences between their update strategies; 

and try to shed some light on their strengths and weaknesses in that respect.  

More specifically, our key contributions include: 

• Providing a comparative analysis of OMP and LARS in terms of how they find a sparse 

solution of an underdetermined linear system. Comparing such popular and widely used 
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algorithms is important to their understanding that could lead to better and more efficient 

implementations. 

• Providing a thorough insight and detailed derivation of computing the updated direction 

vector and step size parameter that are used in LARS. Prior work, including the original 

LARS paper [33] did not provide the same level and detailed analysis that is presented in this 

thesis. 

• Reformulating some algorithmic steps of OMP and LARS to discover similarities and 

differences between them. 

• Presenting some of the benefits and shortcomings of OMP and LARS. 

• Simulating the comparative analysis of OMP and LARS through different examples covering 

a wide range of cases. 

 

1.3 Thesis Organization 

 The rest of the thesis is organized as follows: 

• In chapter 2, we review three greedy pursuit algorithms that are used for finding a sparse 

solution of an underdetermined linear system, and concentrate on explaining the OMP 

algorithm. We start from the basic MP algorithm, which is considered the ancestor of OMP. 

Then, we describe OMP in detail. We end the chapter by explaining StOMP, which is a 

modified version of OMP. 

• In chapter 3, we review how LARS can be used for finding a sparse solution of an 

underdetermined linear system [34]. First, we describe the basic LARS algorithm [33] and the 

derivations of its main steps. Then, we explain how LARS can be modified to solve the well-
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known Least Absolute Shrinkage and Selection Operator (LASSO) problem [35], which can 

be defined as a constrained version of ordinary least square for solving the l1-norm 

minimization problem.  

• In chapter 4, we compare OMP and LARS in terms of their algorithmic steps and 

performance. We reformulate some steps of OMP and LARS to discover the similarities and 

differences between them. To study the performance of OMP and LARS, we compare the 

convergence time and solution accuracy in each algorithm.       

• In chapter 5, we simulate the comparative analysis of OMP and LARS using MATLAB. In 

general, we go through different examples to demonstrate the similarities and differences 

between OMP and LARS from various perspectives. First, we employ OMP and LARS to 

reconstruct some images from their compressive samples. Afterward, we exploit parallel 

processing techniques to speed-up convergence of the algorithms, and observe the efficiency 

of using different number of processors. Next, we examine the performance of OMP and 

LARS in terms of mean square error (MSE) as a function of the measurement size 𝑚 and the 

sparsity 𝑘. To study the difference in updating process of OMP and LARS, we examine and 

plot the coefficients of the solution and correlation vectors over iterations. Note that the 

correlation vector represents the correlations of columns of the matrix 𝐴 with current residual 

vector 𝑟. At last, we generate two different examples, and utilize OMP and LARS to 

reconstruct the sparse vector in each example. At each iteration of the algorithms, we plot the 

updating process in three dimensions (3D) view. 

• Finally, in chapter 6, we state the conclusion of this thesis and some potential future work.    
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Chapter 2 

2 Greedy Pursuit Algorithms 
Greedy pursuit algorithms attempt to find an approximate solution for the l0-norm minimization 

problem ( 1.2). In this chapter, we review three greedy pursuit algorithms that are used for finding 

a sparse solution of an underdetermined linear system, and concentrate on explaining the OMP 

algorithm. First, we explain the basic MP algorithm which is considered the ancestor of OMP. 

Then, we describe OMP in detail. We end this chapter by explaining StOMP, which is a 

modified version of OMP. 

 

2.1  Matching Pursuit (MP) 

Matching Pursuit (MP) [24] is a basic iterative greedy algorithm that searches for a sparse 

solution of an underdetermined linear system. The fundamental vector in MP is the residual 

vector 𝑟 ∈ 𝑅𝑚 , which represents the remaining part of the measurement vector 𝑦 after updating 

the solution vector. Henceforth, we assume that the columns of the matrix 𝐴 are normalized to 

have unit l2-norm (i.e. ‖𝑎𝑖‖2 = 1, 𝑖 = {1,2, … . ,𝑛}, where 𝑎𝑖 is the 𝑖𝑡ℎ column of the matrix 𝐴). 

MP starts from an all zero solution, and initializes the residual with the measurement vector 𝑦 

(i.e. 𝑟0 = 𝑦). Then at each iteration 𝑡, MP computes the correlation vector by multiplying 

columns of the matrix 𝐴 with the residual vector 𝑟 from the previous iteration as follows:  

 𝑐𝑡 = 𝐴𝑇𝑟𝑡−1 ( 2.1) 

Next, it selects a column from the matrix 𝐴 that is highly correlated with the current residual 𝑟. 

Indeed, the MP algorithm selects a column from the matrix 𝐴 that corresponds to the entry in the 
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vector 𝑐𝑡 that has the largest magnitude (i.e. the largest entry in the vector 𝑐𝑡 is determined by 

considering the absolute value of each entry in the vector 𝑐𝑡). This can be expressed by the 

following equation: 

 𝑖 = arg max
1≤j≤n 

|𝑐𝑡(𝑗)| ( 2.2) 

where 𝑖 is the index of the selected column. 

Afterward, the 𝑖𝑡ℎ solution coefficient 𝑥(𝑖) associated with the selected column is updated: 

 𝑥𝑡(𝑖) = 𝑥𝑡−1(𝑖) + 𝑐𝑡(𝑖) ( 2.3) 

The last step of MP is computing the current approximation to the vector 𝑦 via multiplying the 

matrix 𝐴 by the current solution vector 𝑥𝑡, and finding a new residual vector by subtracting the 

vector 𝑦 from the current approximation: 

 𝑟𝑡 = 𝑦 − 𝐴𝑥𝑡 ( 2.4) 

The residual vector 𝑟𝑡 will be used in the subsequent iteration (𝑡 + 1) to calculate a new 

correlation vector 𝑐𝑡+1, and select a new column. These steps are repeated until the norm of the 

residual 𝑟𝑡 falls below a certain very small value (𝜖). The MP algorithm can be summarized in 

Figure  2.1.  
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Figure  2.1: The MP algorithm 

 

  
The MP algorithm is simple and intuitive for finding a sparse solution of an underdetermined 

linear system. However, it suffers from slow convergence because it requires a large unbounded 

number of iterations to find a solution. The computational complexity of the MP algorithm is 

𝑂(𝑚𝑛𝑇), where 𝑇 is the number of iterations that are required for MP to coverage to the final 

solution. 

 

 

𝑖 = arg max
1≤𝑗≤𝑛 

|𝑐𝑡(𝑗)| 

• Input: the vector 𝑦 ∈ 𝑅𝑚 , the matrix 𝐴 ∈ 𝑅𝑚×𝑛 , and the termination threshold for the 

residual norm 𝜖. 

• Output: the sparse vector 𝑥 ∈ 𝑅𝑛 . 

• Task: approximate the vector 𝑦 by using the fewest columns of the matrix 𝐴. 
 

1. Initialization: 𝑥0 = 0, 𝑟0 = 𝑦, 𝑡 = 1 

2. Compute the correlation vector:  𝑐𝑡 = 𝐴𝑇𝑟𝑡−1 

3. Find a column index of the matrix 𝐴 that is best correlated with the current residual vector. 

This can be achieved by determining the index of the largest absolute entry in the vector 

𝑐𝑡: 

4. Update the 𝑖th solution coefficient:  𝑥𝑡(𝑖) = 𝑥𝑡−1(𝑖) + 𝑐𝑡(𝑖) 

5. Compute the new residual vector : 𝑟𝑡 = 𝑦 − 𝐴𝑥𝑡 

6. If ‖𝑟𝑡‖2 < 𝜖, terminate and return  𝑥 = 𝑥𝑡  as the final solution. Else, increase the iteration 

counter: 𝑡 = 𝑡 + 1 and return to step 2 
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2.2  Orthogonal Matching Pursuit (OMP) 

In many applications, MP is not practical since its complexity increases linearly with the number 

of required iterations (𝑇). Therefore, MP was revised to limit the number of required iterations 

by adding an orthogonalization step. The modified MP is known as Orthogonal Matching 

Pursuit (OMP) [25,26,27]. OMP inherits many steps from MP. The primary modification that is 

made by OMP is using a least square formula to achieve better approximation to the 

measurement vector 𝑦 over the selected columns. OMP keeps indices of the selected columns in 

a set called the active set 𝐼. Therefore, the selected columns are called the active columns. 

 Like MP, OMP starts from an all-zero solution, and initializes the residual to the 

measurement vector 𝑦. At each iteration, OMP selects a column from the matrix 𝐴 that is best 

correlated with the residual vector 𝑟. Then, OMP appends the index of the selected column to the 

active set. The next step is to find the active entries (the entries that correspond to the active set 

𝐼) of the solution vector 𝑥 by solving the following least square problem over the active columns: 

 𝑥𝑡(𝐼) = arg min
𝑣 
‖𝑦 − 𝐴𝐼𝑣‖2

2 ( 2.5) 

Here, 𝐴𝐼  is a sub-matrix that is formed by the active columns, and 𝑥(𝐼) is a sub-vector which 

holds the active entries of the vector 𝑥. 

By using well-known linear algebra techniques, problem ( 2.5) can be solved by projecting the 

vector 𝑦 onto the space spanned by the active columns. This can be achieved by solving for 𝑥𝑡(𝐼) 

in the following equation: 

 𝐴𝐼𝑇𝐴𝐼𝑥𝑡(𝐼) = 𝐴𝐼𝑇𝑦 ( 2.6) 

Note that Equation ( 2.6), which is widely known as the normal equation, represents a linear 

system with a unique solution. 
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Then, and as in the MP algorithm, a new residual vector is computed using Equation ( 2.4). 

These steps are repeated until the norm of the current residual falls below a certain very small 

value 𝜖. When OMP terminates, the vector 𝑦 is spanned by the set of active columns. More 

importantly, OMP ensures that the residual vector 𝑟 is orthogonal to all active columns at each 

iteration. Consequently, the correlations of the active columns will be zeros at the next iteration. 

Therefore in OMP, no column is selected twice, and the active set grows linearly with the 

iteration counter. OMP can be summarized in Figure  2.2. 

 

 
Figure  2.2: The OMP algorithm 

 

𝑖 = arg max
𝑗∈𝐼c |𝑐𝑡(𝑗)| 

• Input: the vector 𝑦 ∈ 𝑅𝑚, the matrix 𝐴 ∈ 𝑅𝑚×𝑛, and the termination threshold for the 

residual norm 𝜖. 

• Output: the sparse vector 𝑥 ∈ 𝑅𝑛. 

• Task: approximate the vector 𝑦 by using the fewest columns of the matrix 𝐴. 
 

1. Initialization: 𝑥0 = 0, 𝑟0 = 𝑦, 𝑡 = 1, 𝐼 = ∅ 

2. Compute the correlation vector:  𝑐𝑡 = 𝐴𝑇𝑟𝑡−1 

3. Find a column index of the matrix 𝐴 that is best correlated with current residual vector. 

This can be achieved by determining the index of the largest absolute entry in the vector 

𝑐𝑡: 

where 𝐼c is the inactive set (the set have indices of columns of the matrix 𝐴 that are not in the 

active set  

4.  Add 𝑖 to the active set:  𝐼 = 𝐼 ∪ {𝑖} 

5.  Solve the least square problem:  𝐴𝐼𝑇𝐴𝐼𝑥𝑡(𝐼) = 𝐴𝐼𝑇𝑦 

6. Compute the new residual vector : 𝑟𝑡 = 𝑦 − 𝐴𝑥𝑡 

7.  If ‖𝑟𝑡‖2 < 𝜖, terminate and return  𝑥 = 𝑥𝑡  as the final solution. Else, increase the iteration 

counter: 𝑡 = 𝑡 + 1 and return to step 2 
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To further illustrate the OMP algorithm, we consider the following example. 

Example 2.1: assume that the matrix 𝐴 contains two columns (𝑎1,𝑎2) as illustrated in Figure  2.3.  

In this case, the solution coefficients (𝑥(1), 𝑥(2)) that generate the vector 𝑦 as a linear 

combination of the columns 𝑎1,𝑎2 should be found: 

𝑦 = 𝑥(1) 𝑎1 + 𝑥(2)𝑎2 

OMP starts by determining which column is highly correlated with the current residual. Recall 

that the residual vector is initialized to the vector 𝑦 at the beginning of the first iteration. In this 

example, the vector 𝑦 is correlated more with the vector 𝑎1 than the vector 𝑎2. For this reason, 

OMP selects the vector 𝑎1 during the first iteration. Then, OMP takes the largest possible step in 

the direction of the vector 𝑎1; this is achieved by projecting the vector y onto the vector 𝑎1 to get 

the current solution coefficient 𝑥1(1) (red bold line in Figure  2.3). This leaves some error value 

that is represented by the residual vector 𝑟1. This residual is orthogonal to the vector 𝑎1 which in 

this example represents the active set. At the second iteration, a new column is selected which 

represents the best correlated column with the current residual 𝑟1. In this simple illustrative 

example, the column 𝑎2 which was left out from the first iteration, is selected now and its index 

is added to the active set 𝐼. Next, the vector 𝑦 is projected onto the space spanned by the columns 

𝑎1 and 𝑎2 to obtain the current solution coefficients 𝑥2(1) and 𝑥2(2) (blue bold line in 

Figure  2.3). Since the vector 𝑦 belongs to the space spanned by 𝑎1 and 𝑎2, there is no residual 

signal left after the second iteration (i.e. 𝑟2 = 0). In this case, OMP terminates and returns the 

vector 𝑥2 as the final solution. 



 

14 
 

 
Figure  2.3: OMP approximates the vector 𝑦 by using the columns 𝑎1,𝑎2 in Example 2.1 

The Red bold line represents the approximation to the vector 𝑦 at the first iteration; while the 
blue bold line represents the approximation at the second iteration. For interpretation of the 
references to color in this and all other figures, the reader is referred to the electronic version of 
this thesis. 
 
 
 

The orthogonalization step expedites convergence of the OMP algorithms to the final 

solution. Because of this step, the OMP algorithm is faster than the basic MP algorithm. In OMP, 

a column is selected and added to the active set only once. This implies that there is no chance 

for the same column to be selected twice since the residual vector has zero correlation with the 

active columns, because it is always orthogonal to all active columns after updating the solution 

coefficients. On the other hand, a column may be selected more than once during MP’s 

computation. Therefore, MP requires more iterations than OMP to converge to the final solution. 

Nevertheless, each iteration in the OMP algorithm requires a higher computational cost than an 

MP’s iteration. This is because of the orthogonalization step (solving a least square problem) that 

is used by the OMP algorithm. 

𝑦

𝑥1(1)

𝑟1𝑥2(2)

𝑥2(1)

𝑎2

𝑎1
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In the OMP algorithm, there is a high probability to recover a 𝑘 sparse signal (includes only 

𝑘 nonzero entries) in at most 𝑘 iterations using the vector 𝑦 and the matrix 𝐴 [36]. As a result, 

the computational complexity of the OMP algorithm would be 𝑂(𝑚𝑛𝑘). Hence, OMP is an 

efficient algorithm for finding a sparse solution of an underdetermined linear system when the 

sparsity 𝑘 is relatively small. Note that the sparsity 𝑘 of any vector refers to the number of 

nonzero entries in that vector. It is worth noting, in the statistical literature, there is a similar 

algorithm to OMP that is known as “Forward Stepwise Regression” [37].  

2.3  Stagewise Orthogonal Matching Pursuit (StOMP) 
In many signal processing applications, such as image inpainting [38] and cartoon-texture 

decomposition [39,40], the underdetermined linear system is extremely large in scale, and the 

unknown vector (𝑥) is not very sparse (i.e. includes many nonzero entries). In such cases, OMP 

is not a practical algorithm to find the solution vector 𝑥 because the computational complexity of 

OMP increases linearly with the number of nonzeros 𝑘. Therefore, OMP has been revised in a 

way to find less accurate solutions for such large scale underdetermined linear systems in a 

reasonable time. The modified version of OMP is called Stagewise Orthogonal Matching Pursuit 

(StOMP) [28]. The StOMP is characterized by adding several columns to the active set at each 

iteration instead of considering a single column as in the case of OMP. StOMP selects columns 

that their absolute correlations with the current residual exceed a specific chosen threshold value. 

Thus, the convergence of StOMP is faster than OMP since StOMP requires less number of 

iterations than OMP to find the solution vector 𝑥. The drawback of the StOMP algorithm is the 

accuracy of the resulting solution. In other words, although StOMP is faster than OMP, the 

calculated solution by StOMP is less accurate than the calculated one by OMP. It should be clear 

that StOMP offers a trade-off between the accuracy of the final solution and the required time to 

find that solution. 
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The algorithmic steps of StOMP are similar to OMP’s steps, except that in OMP, a single 

column is added to the active set at each iteration, while in StOMP, more than one column can be 

added to the active set at each iteration. It is important to mention that in the StOMP algorithm, 

the threshold value (𝑡ℎ𝑟) is calculated at each iteration by the following equation: 

  𝑡ℎ𝑟 = 𝑠𝜎 ( 2.7) 

where 2 ≤ 𝑠 ≤ 3 is the threshold parameter, and  𝜎 = 
‖𝑟‖2 
√𝑛

  is the formal noise level. 

Note that the parameter 𝜎 is updated at each iteration since it depends on the residual vector 𝑟. 

The StOMP algorithm can be summarized in Figure  2.4. 

 
Figure  2.4: The StOMP algorithm  

𝑖 = { 𝑗: |𝑐𝑡(𝑗)| > 𝑡ℎ𝑟𝑡 , 𝑗 ∈ 𝐼c } 

• Input: the vector 𝑦 ∈ 𝑅𝑚 the matrix 𝐴 ∈ 𝑅𝑚×𝑛, the termination threshold for the residual 

norm 𝜖, and the threshold parameter 𝑠. 

• Output: the sparse vector 𝑥 ∈ 𝑅𝑛. 

• Task: approximate the vector 𝑦 by using the fewest columns of the matrix 𝐴. 
 

1. Initialization: 𝑥0 = 0, 𝑟0 = 𝑦, 𝑡 = 1, 𝐼 = ∅ 

2. Compute the correlation vector: 𝑐𝑡 = 𝐴𝑇𝑟𝑡−1 

3. Compute the threshold: 𝑡ℎ𝑟𝑡 = 𝑠𝜎𝑡   where 2 ≤ 𝑠 ≤ 3  and  𝜎 = 
‖𝑟𝑡−1‖2 

√𝑛
 . 

4.  Find indices of columns that their absolute correlations with the residual vector exceed the 

threshold value: 

where 𝐼c is the inactive set (the set have indices of columns of the matrix 𝐴 that are not in the 

active set  

5. Add 𝑖 to the active set:  𝐼 = 𝐼 ∪ {𝑖} 

6.  Solve the least square problem:  𝐴𝐼𝑇𝐴𝐼𝑥𝑡(𝐼) = 𝐴𝐼𝑇𝑦 

7.  Compute the new residual : 𝑟𝑡 = 𝑦 − 𝐴𝑥𝑡 

8.  If ‖𝑟𝑡‖2 < 𝜖, terminate and return  𝑥 = 𝑥𝑡  as the final solution. Else, increase the iteration 

counter: 𝑡 = 𝑡 + 1 and return to step 2. 
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Chapter 3 

3 Least Angle Regression (LARS) 
LARS was originally proposed by Efron, Hastie, Johnstone and Tibshirani as a new model 

selection algorithm to solve overdetermined linear systems [33]. In addition, Efron et al 

demonstrated how LARS can be modified to solve the known LASSO problem in a more 

efficient way than traditional convex optimization techniques. Later, Donoho and Tsaig proposed 

to use the modified LARS to find a sparse solution of an underdetermined linear system, which 

is known as “homotopy algorithm” [34].  In this chapter, we review and study how LARS can be 

used for finding a sparse solution of an underdetermined linear system [33,34]. First, we describe 

the basic LARS algorithm [33]. Then, we provide a thorough insight about the modified LARS 

for solving the LASSO problem which is considered an effective way for solving the l1-norm 

minimization problem ( 1.4) [34]. In addition, we provide a detailed derivation of LARS main 

steps, which was not explained in the prior work [33,34] at the same level we present here. 

 

3.1  Basic LARS Algorithm 

In Section  2.2, we have seen that the OMP algorithm relies on solving the least square problem 

to update the solution coefficients at each iteration. As we stated earlier, OMP adopts the largest 

possible step in the least square direction of the active columns. Therefore, OMP is considered 

an extreme fitting method that can be overly greedy. OMP may not select some columns that are 

significant in terms of accuracy of the targeted sparse solution. This is because these columns are 

highly correlated with columns that have already been in the active set. To overcome this 

problem, the Least Angle Regression (LARS) was used to find a sparse solution of an 
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underdetermined linear system [34]. LARS is considered less greedy than OMP since it adopts 

appropriate step that is fairly smaller than the OMP step. In other words, LARS increases the 

coefficients of the solution vector that associated with the active set as much as needed (as 

explained further below). 

Similar to OMP, LARS starts by initializing: the solution vector 𝑥 with an all-zero, the 

residual vector 𝑟 with the measurement vector 𝑦, and the active set 𝐼 with an empty set. Then, at 

each iteration, a new column is selected from the matrix 𝐴, and its index is added to the active 

set. At the first iteration, LARS selects a column, say 𝑎𝑗, that is highly correlated with the 

residual vector 𝑟. This implies that the residual vector 𝑟 has a smaller angle with the column 𝑎𝑗 

than other columns of the matrix 𝐴. Then, LARS increases the coefficient 𝑥(𝑗) that is associated 

with the selected column 𝑎𝑗. This causes the absolute correlation value of 𝑎𝑗 with the current 

residual to decrease as 𝑥(𝑗) is increased. LARS takes the smallest possible steps in the direction 

of the column 𝑎𝑗 until another column, say 𝑎𝑘, has as much absolute correlation value with the 

current residual as the column 𝑎𝑗. Now, instead of continuing in the direction of 𝑎𝑗, LARS moves 

forward in the direction that is equiangular with the selected columns (𝑎𝑗 ,𝑎𝑘) until a third 

column, say 𝑎𝑚, has much absolute correlation value with the current residual as much as 𝑎𝑗 and 

𝑎𝑘. The procedure is continued to add one column until no remaining column has correlation 

with the current residual. The name “least angle” comes from a geometrical interpretation of the 

LARS process, which chooses the updated direction that makes the smallest and equal angle with 

all active columns. 

To further illustrate the LARS algorithm, we consider the two-dimensional system that was 

described in Example 2.1. LARS initializes the solution vector to an all zero and the residual to 

the measurement vector 𝑦. As shown in Figure  3.1, LARS begins to select the column 𝑎1 
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because it has absolute correlation with the initial residual (the vector 𝑦) more than 𝑎2 

(i.e. 𝜃1(1) < 𝜃1(2), where 𝜃𝑡(𝑖) is the angle between the column 𝑎𝑖 and the current residual 𝑟 at 

iteration 𝑡). Then, the LARS algorithm proceeds in the direction of 𝑎1 by adding the step size 𝛾1 

(the red bold line in Figure  3.1) which is chosen in a way that makes columns 𝑎1 and 𝑎2 have the 

same absolute correlation with the current residual at the next iteration (i.e. 𝜃2(1) = 𝜃2(2)). 

When the solution vector 𝑥 is updated, the solution coefficient 𝑥1(1) = 𝛾1. At the second 

iteration, LARS adds the column 𝑎2 to the active set, and proceeds in the direction that is 

equiangular with the columns 𝑎1 and 𝑎2. Because there is no remaining column, LARS adds step 

size 𝛾2 (the blue bold line in Figure  3.1) that leads to the vector 𝑦. LARS terminates since the 

residual is zero, and the solution coefficients equals to: 𝑥2(1) = 𝛾1 + 𝛾2𝑑2(1) and 𝑥2(2) =

𝛾2𝑑2(2), where 𝑑2 is the updated direction at the second iteration which is equiangular with the 

active columns (𝑎1, 𝑎2).   

In the LARS algorithm, two important parameters are required to be computed: the updated 

direction vector 𝑑 that should be equiangular with the active columns, and the step size 𝛾 which 

is a scalar that is multiplied by the updated direction 𝑑 to update the solution vector 𝑥. The 

remaining steps of the LARS algorithm are roughly similar to the corresponding OMP’s steps 

that were described in Section  2.2. 
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Figure  3.1: LARS approximates the vector 𝑦 by using the columns 𝑎1,𝑎2 

The red bold line represents the approximation to the vector 𝑦 at the first iteration, and the blue 
bold line represents the change that adds to the previous approximation to obtain the 
approximation at the second iteration.  𝑎2 ∥  𝑎2���.  𝜃𝑡(𝑖) is the angle between the column 𝑎𝑖 and 
the current residual at iteration 𝑡. d2 is the updated direction at the second iteration. 
 

3.3.1 Derivation of Updated Direction 

In this section, we provide our derivation of computing the updated direction that is used in   

[34]. The updated direction should form an equal angle with the active columns toward the 

residual vector 𝑟. We start the derivation of the update direction 𝑑𝑡  ∈ 𝑅𝑛  at iteration 𝑡 by 

projecting the previous residual vector  𝑟𝑡−1 onto the space spanned by the active columns. This 

is achieved by solving for 𝑥� in the following normal equation: 

  𝐴𝐼𝑇𝐴𝐼𝑥� = 𝐴𝐼𝑇𝑟𝑡−1 ( 3.1) 

By using Equation ( 2.1), the active entries of the correlation vector can be found as follows: 

𝑎2

𝑦

𝜃1 1

𝑎2

𝑎1
𝛾1

𝛾2

𝜃1 1 < 𝜃1(2)

𝜃1 2 𝜃2 2

𝜃2 1 𝜃2 1 = 𝜃2(2)

𝑥1 1 = 𝛾1
𝑥1 2 = 0

𝑥2 1 = 𝛾1 + 𝛾2𝑑2 1
𝑥2 2 = 𝛾2𝑑2(2)
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 𝑐𝑡(𝐼) = 𝐴𝐼𝑇𝑟𝑡−1 ( 3.2) 

Substituting ( 3.2) into ( 3.1):  

  𝐴𝐼𝑇𝐴𝐼𝑥� = 𝑐𝑡(𝐼) ( 3.3) 

At each iteration of the LARS algorithm, the active columns have the same absolute correlation 

with the residual vector. This correlation value is represented by the parameter 𝜆𝑡. Consequently, 

we can factorize 𝑐𝑡(𝐼) as follows: 

 𝑐𝑡(𝐼) = 𝜆𝑡 𝑠𝑖𝑠𝑛�𝑐𝑡(𝐼)� ( 3.4) 

 By using ( 3.4), Equation ( 3.3) can be rewritten as: 

  𝐴𝐼𝑇𝐴𝐼𝑥� = 𝜆𝑡 𝑠𝑖𝑠𝑛 (𝑐𝑡(𝐼)) ( 3.5) 

𝜆𝑡 is a scalar; dividing Equation ( 3.5) by the value of 𝜆𝑡 leads to:  

  𝐴𝐼𝑇𝐴𝐼𝑑𝑡(𝐼) =  𝑠𝑖𝑠𝑛 (𝑐𝑡(𝐼)) ( 3.6) 

where 𝑑𝑡(𝐼) = 𝑥�/𝜆𝑡  is a sub-vector of the updated direction vector 𝑑𝑡 that holds the entries 

corresponding to the active set 𝐼. The goal of Equation ( 3.6) is to calculate the entries of the sub-

vector 𝑑𝑡(𝐼) which ensures that the absolute correlations of the active columns are declined 

equally. LARS sets entries that are not in the active set to zero (i.e. 𝑑𝑡(𝐼𝑐 ) = 0). 

3.1.2 Derivation of Step Size 

At each iteration, the LARS algorithm computes the step size 𝛾 to update the solution 

coefficients that correspond to the active set. This kind of update is necessary to cause a column 

from the inactive set to be included in the active set at the next iteration. This can be achieved by 

making the active columns similar to the selected column in terms of the absolute correlation 

with the current residual vector. 
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  Derivation of closed-form expression for calculating the step size 𝛾 was briefly stated in the 

original LARS paper [33]. Therefore, In this section, we obviously provide our complete and 

detailed derivation of that expression. We start the derivation of the step size 𝛾 by assuming the 

LARS algorithm is currently at iteration 𝑡. In this case, the step size 𝛾𝑡 is required to be 

calculated. In LARS, the current residual vector is computed in the same way as OMP, which is 

expressed in Equation ( 2.4): 

 𝑟𝑡 = 𝑦 − 𝐴𝑥𝑡 ( 3.7) 

And the previous residual is obtained by: 

 𝑟𝑡−1 = 𝑦 − 𝐴𝑥𝑡−1 ( 3.8) 

To find the relationship between the current and the previous residual vectors, we subtract 

Equation ( 3.8) from Equation ( 3.7):  

𝑟𝑡 − 𝑟𝑡−1 =  𝑦 − 𝐴𝑥𝑡 − 𝑦 + 𝐴𝑥𝑡−1 

Equivalently: 

 𝑟𝑡 = 𝑟𝑡−1  − 𝐴(𝑥𝑡 − 𝑥𝑡−1) ( 3.9) 

At each iteration, LARS updates the solution vector 𝑥 via adding the multiplication of the scalar 

𝛾𝑡 by the vector 𝑑𝑡 to the previous solution vector. This is expressed as follows: 

 𝑥𝑡 =  𝑥𝑡−1 + 𝛾𝑡𝑑𝑡   ( 3.10) 

By substituting ( 3.10) in ( 3.9), we obtain: 

 𝑟𝑡 = 𝑟𝑡−1 − 𝛾𝑡𝐴 𝑑𝑡 ( 3.11) 

Because 𝑑(𝐼𝑐 ) = 0, Equation ( 3.11) can be simplified to:  

 𝑟𝑡 = 𝑟𝑡−1 − 𝛾𝑡𝐴𝐼𝑑𝑡(𝐼) ( 3.12) 
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The correlation vector c in the next iteration is computed by: 

 𝑐𝑡+1 = 𝐴𝑇𝑟𝑡 ( 3.13) 

By substituting ( 3.12) in ( 3.13), we get:  

                 𝑐𝑡+1  = 𝐴𝑇(𝑟𝑡−1 − 𝛾𝑡𝐴𝐼𝑑𝑡(𝐼)) 

                               = 𝑐𝑡 − 𝛾𝑡𝐴𝑇𝐴𝐼𝑑𝑡(𝐼) ( 3.14) 

At each iteration of LARS, the parameter 𝜆 represents the absolute correlation of the active 

columns. In fact, 𝜆 represents the largest absolute value over entries of the correlation vector. 

This can be expressed as follows: 

 𝜆 = ‖𝑐‖∞ = |𝑐(𝐼)| ( 3.15) 

where ‖ ‖∞ is the maximum norm, and  ‖𝑐‖∞≝max(|𝑐(1)|, |𝑐(2)|, … … . . . , |𝑐(𝑛)|). 

Hence, 𝜆 can be computed for the next iteration 𝑡 + 1 as follows: 

𝜆𝑡+1 = |𝑐𝑡+1(𝐼)| 

By using Equation ( 3.14), we get: 

 𝜆𝑡+1 = |𝑐𝑡(𝐼) − 𝛾𝑡𝐴𝐼𝑇𝐴𝐼𝑑𝑡(𝐼)| ( 3.16) 

From ( 3.6), we have: 

 𝑑𝑡(𝐼) = (𝐴𝐼𝑇𝐴𝐼)−1𝑠𝑖𝑠𝑛(𝑐𝑡(𝐼)) ( 3.17) 

By substituting  𝑑𝑡(𝐼) of ( 3.17) into ( 3.16), we obtain: 

𝜆𝑡+1 = |𝑐𝑡(𝐼) − 𝛾𝑡𝐴𝐼𝑇𝐴𝐼(𝐴𝐼𝑇𝐴𝐼)−1𝑠𝑖𝑠𝑛(𝑐𝑡(𝐼))| 

 𝜆𝑡+1 = |𝑐𝑡(𝐼)− 𝛾𝑡 𝑠𝑖𝑠𝑛(𝑐𝑡(𝐼))|                           ( 3.18) 

Substituting ( 3.4) in ( 3.18):  

𝜆𝑡+1 = �𝜆𝑡 𝑠𝑖𝑠𝑛�𝑐𝑡(𝐼)� − 𝛾𝑡 𝑠𝑖𝑠𝑛(𝑐𝑡(𝐼))� 
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                                             𝜆𝑡+1 = �𝑠𝑖𝑠𝑛�𝑐𝑡(𝐼)�(𝜆𝑡  − 𝛾𝑡)� 

 𝜆𝑡+1 = |𝜆𝑡  − 𝛾𝑡|                                            ( 3.19) 

Recall that at each iteration, the updated direction 𝑑 ensures the absolute correlations of the 

active columns are declined equally. In other word, the value of 𝜆 is decreased at each iteration. 

Moreover, LARS selects the smallest step size that causes a column from inactive set to join the 

active set at next iteration. Therefore, the value of 𝛾𝑡 should be positive and less than 𝜆𝑡. As a 

result, Equation ( 3.19) can be simplified to:   

 𝜆𝑡+1 = 𝜆𝑡 − 𝛾𝑡 ( 3.20) 

We assume the 𝑖𝑡ℎ column is added to the active set at the next iteration 𝑡 + 1. Therefore, the 

absolute value of its correlation should equal to 𝜆𝑡+1. 

 |𝑐𝑡+1(𝑖)| =  𝜆𝑡+1 ( 3.21) 

where 𝑖 ∈ 𝐼𝑡𝑐, and 𝐼𝑡𝑐 is the inactive set at iteration 𝑡. 

Using Equation ( 3.14), the correlation of the 𝑖𝑡ℎ column can be computed by the following 

equation: 

 𝑐𝑡+1(𝑖) = 𝑐𝑡(𝑖) − 𝛾𝑡𝑎𝑖𝑇𝐴𝐼𝑑𝑡(𝐼)  ( 3.22) 

By substituting ( 3.22) and ( 3.20) in Equation ( 3.21), we get: 

�𝑐𝑡(𝑖) − 𝛾𝑡𝑎𝑖𝑇𝐴𝐼𝑑𝑡(𝐼)� = 𝜆𝑡 − 𝛾𝑡 

±(𝑐𝑡(𝑖) − 𝛾𝑡𝑎𝑖𝑇𝐴𝐼𝑑𝑡(𝐼)) = 𝜆𝑡 − 𝛾𝑡 

±𝑐𝑡(𝑖) ∓ 𝛾𝑡𝑎𝑖𝑇𝐴𝐼𝑑𝑡(𝐼) = 𝜆𝑡 − 𝛾𝑡 

𝛾𝑡 ∓ 𝛾𝑡𝑎𝑖𝑇𝐴𝐼𝑑𝑡(𝐼) = 𝜆𝑡 ∓ 𝑐𝑡(𝑖) 

𝛾𝑡(1∓ 𝑎𝑖𝑇𝐴𝐼𝑑𝑡(𝐼)) = 𝜆𝑡 ∓ 𝑐𝑡(𝑖) 
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𝛾𝑡 =
𝜆𝑡 ∓ 𝑐𝑡(𝑖)

1 ∓ 𝑎𝑖𝑇𝐴𝐼𝑑𝑡(𝐼)
 

Let 𝑣𝑡 = 𝐴𝐼𝑑𝑡(𝐼)  

𝛾𝑡 =
𝜆𝑡 ∓ 𝑐𝑡(𝑖)
1 ∓ 𝑎𝑖𝑇𝑣𝑡

 

The LARS algorithm finds the minimum positive step size 𝛾𝑡 that makes one column from the 

inactive set 𝐼𝑐  join the active set 𝐼 at the next iteration 𝑡 + 1.  

 𝛾𝑡 = min
𝑖∈𝐼𝑐

 �
𝜆𝑡 –  𝑐𝑡(𝑖)
1 − 𝑎𝑖𝑇𝑣𝑡

,
𝜆𝑡 + 𝑐𝑡(𝑖)
1 + 𝑎𝑖𝑇𝑣𝑡

� ( 3.23) 

In ( 3.23), only positive components within every choice of 𝑖 are considered when the minimum 

is taken. 

After the updated direction 𝑑𝑡 and the step size 𝛾𝑡 are calculated, LARS updates the solution 

vector as expressed by Equation ( 3.10), and computes the new residual as expressed by Equation 

( 3.7). These steps are repeated as long as there is still a column from the inactive set that has 

correlation with the current residual. When no remaining columns have correlation with the 

current residual (i.e. 𝜆 approaches zero), LARS terminates and the vector 𝑥𝑡 is returned as the 

final solution. The basic LARS algorithm can be summarized in Figure  3.2. 
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Figure  3.2: The basic LARS algorithm 

 

 

𝐴𝐼𝑇𝐴𝐼𝑑𝑡(𝐼) = 𝑠𝑠𝑠𝑠(𝑐𝑡(𝐼)) 

𝛾𝑡 = min
𝑖∈𝐼𝑐

 �
𝜆𝑡 –  𝑐𝑡(𝑖)
1 − 𝑎𝑖𝑇𝑣𝑡

,
𝜆𝑡 + 𝑐𝑡(𝑖)
1 + 𝑎𝑖𝑇𝑣𝑡

� 

• Input: the vector 𝑦 ∈ 𝑅𝑚 the matrix 𝐴 ∈ 𝑅𝑚×𝑛, and the termination threshold for the 

residual norm 𝜖. 

• Output: the sparse vector 𝑥 ∈ 𝑅𝑛. 

• Task: approximate the vector 𝑦 by using the fewest columns of the matrix 𝐴. 
 

1.Initialization: 𝑥0 = 0, 𝑟0 = 𝑦, 𝑡 = 1, 𝐼 = ∅. 

2.Compute the correlation vector:  𝑐𝑡 = 𝐴𝑇𝑟𝑡−1 

3.Compute  the maximum absolute value in the correlation vector:  𝜆𝑡 = ‖𝑐𝑡‖∞ 

4. If 𝜆𝑡 is zero or approaches a very small value, LARS is terminated and the vector 𝑥𝑡 is 

returned as the final solution, otherwise the following steps are implemented. 

5. Find the active set: 𝐼 = {𝑗: |𝑐𝑡(𝑗)| = 𝜆𝑡} 

6. Solve the following least square problem to find active entries of the updated direction: 

where 𝑠𝑠𝑠𝑠(𝑐𝑡(𝐼)) returns the sign of the active entries of the correlation vector 𝑐𝑡 

7. Set the inactive entries of the updated direction to zero: 𝑑𝑡(𝐼c) = 0 

8. Calculate the step size: 

where 𝑣𝑡 = 𝐴𝐼𝑑𝑡(𝐼)   

9. Update the solution vector: 𝑥𝑡 =  𝑥𝑡−1 + 𝛾𝑡𝑑𝑡 

10. Compute the new residual vector: 𝑟𝑡 = 𝑦 − 𝐴𝑥𝑡 

11. If ‖𝑟𝑡‖2 < 𝜖, terminate and return 𝑥 =  𝑥𝑡  as the final solution. Else, increase the 

iteration counter: 𝑡 = 𝑡 + 1 and return to step 2. 
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3.2 Modified LARS for solving the LASSO problem 

In certain circumstances, the l1-norm minimization problem stated in ( 1.4) can successfully find 

the sparsest solution while OMP fails [14,27,15]. The l1-norm minimization problem can be 

solved by using the standard convex optimization techniques. However, the convex optimization 

methods require heavy computations especially when the underdetermined system is very large. 

The Least Absolute Shrinkage and Selection Operator (LASSO) [35] was proposed by Tibshirani 

to solve the l1-norm minimization problem ( 1.4) efficiently. LASSO minimizes the least square 

error subject to the l1-norm of the solution vector being less than some threshold (q): 

 min
𝑥 
‖𝑦 − 𝐴𝑥‖2 

2       𝑠𝑢𝑏𝑗𝑒𝑐𝑡   𝑡𝑜     ‖𝑥‖1 ≤ 𝑞 ( 3.24) 

In other words, LASSO finds the least square solution subject to an l1-norm constraint on the 

solution vector. LASSO ( 3.24) can be rewritten equivalently as an unconstrained optimization 

problem: 

 min
𝑥 

 
1
2
‖𝑦 − 𝐴𝑥‖2 

2 +  𝜆‖𝑥‖1  ( 3.25) 

where 𝜆 ∈ [0,∞) is a scalar regularization parameter that handles the trade-off between the mean 

square error and the l1-norm of the solution vector 𝑥. 

To see how Equation ( 3.25) solves the l1-norm minimization problem ( 1.4), the vector 𝑥 is 

initialized with an all zero for large 𝜆, and then 𝜆 is decreased gradually. When 𝜆 approaches 

zero, the solution of LASSO ( 3.25) converges to the solution of l1-norm minimization problem 

( 1.4) [34].  
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LARS with a minor modification has been used to solve LASSO ( 3.25) faster than traditional 

convex optimization methods [33,34]. To explain this, we start solving ( 3.25) as a minimization 

problem by setting its gradient to zero and solve the following equation: 

 𝜕𝑥 �
1
2
‖𝑦 − 𝐴𝑥‖2 

2 +  𝜆‖𝑥‖1� = 0 ( 3.26) 

This can be simplified to: 

 −𝐴𝑇(𝑦 − 𝐴𝑥) +  𝜆𝜕𝑥(‖𝑥‖1) = 0 ( 3.27) 

Because the residual 𝑟 = 𝑦 − 𝐴𝑥, Equation ( 3.27) can be rewritten as: 

  −𝐴𝑇𝑟 +  𝜆 𝜕𝑥 (‖𝑥‖1 ) = 0 ( 3.28) 

Recall that the correlation is calculated by: 𝑐 = 𝐴𝑇𝑟, Equation ( 3.28) can be expressed as: 

−𝑐 +  𝜆 𝜕𝑥(‖𝑥‖1 ) = 0 

 𝑐 =  𝜆 𝜕𝑥(‖𝑥‖1 ) ( 3.29) 

The gradient of ‖𝑥‖1  cannot be found because l1-norm is discontinuous at zero. Therefore, 

subgradient of  l1-norm can be found as follows: 

 𝜕𝑥‖𝑥‖1 = �𝑣 ∈ 𝑅𝑛 ∶   𝑣(𝑖) = 𝑠𝑖𝑠𝑛�𝑥(𝑖)�     𝑖𝑓   𝑥(𝑖) ≠ 0 
𝑣(𝑖) ∈ [−1,1]             𝑖𝑓   𝑥(𝑖) = 0

� ( 3.30) 

At each iteration of LARS, only coefficients of the solution vector 𝑥 corresponding to the active 

set 𝐼 are nonzeros (i.e. 𝑥(𝑖) ≠ 0 , 𝑖 ∈ 𝐼). The other coefficients are zeros (i.e. 𝑥(𝑖) = 0, 𝑖 ∈ 𝐼𝑐). 

Hence, by using ( 3.30), Equation ( 3.29) can be expressed for the active set as follows: 

 𝑐(𝐼) = 𝜆 𝑠𝑖𝑠𝑛(𝑥(𝐼)) ( 3.31) 

and for the inactive set, Equation ( 3.29) can be expressed as follows:  
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 |𝑐(𝐼𝑐)| ≤ 𝜆 ( 3.32) 

Thus, LARS can be used to solve the LASSO problem if it satisfies the constraints stated by 

Equations ( 3.31) and ( 3.32) at each iteration. In other words, to solve LASSO, LARS should 

ensure:  

1- The absolute correlations of the active columns are equal to 𝜆. 

2- The signs of the correlation and the solution vectors are matched for the active entries.  

3- The absolute correlations of the inactive columns are equal or less than 𝜆.  

LARS maintains the condition stated by equality ( 3.32) at each iteration because the absolute 

correlations of the inactive columns are always less than 𝜆. If they are equal to 𝜆, the columns 

should be in the active set (step 5 of the LARS algorithm in Figure  3.2). Also LARS partially 

maintains the condition stated by Equation ( 3.31) which is the absolute correlations of the active 

columns are equal to 𝜆. However, LARS does not enforce the signs matching of the active 

entries between the correlation and solution vectors. Some of the solution coefficients associated 

with the active set may change signs while the signs of corresponding correlation coefficients are 

still the same. Therefore, LARS should be modified to maintain the sign matching constraint that 

states in the following equation: 

  𝑠𝑖𝑠𝑛 �𝑥(𝐼)� = 𝑠𝑖𝑠𝑛�𝑐(𝐼)� ( 3.33) 

LARS violates the condition ( 3.33) when one of the solution coefficients that is associated with 

the active set crosses zero. Therefore, if any solution coefficient associated with the active set 

hits zero during the LARS procedures, the corresponded column to this coefficient should be 

removed from the active set, and the updated direction 𝑑 is recalculated by solving Equation 

( 3.6). Hence, we need to determine the step size 𝛾 which causes one of the solution coefficients 
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that is associated with the active set to be zero after updating solution process. By using Equation 

( 3.10), the 𝑖𝑡ℎ solution coefficient is updated as follows: 

𝑥𝑡(𝑖) =  𝑥𝑡−1(𝑖) + 𝛾𝑡𝑑𝑡(𝑖)  

 The value of 𝑥𝑡(𝑖) would be zero if: 

𝛾𝑡 = −
𝑥𝑡−1(𝑖)
𝑑𝑡(𝑖)

 

The smallest positive step size that causes the 𝑖𝑡ℎ solution coefficient associated with the active 

set to be zero, can be found by the following minimization problem: 

 𝛾𝑡 = min
𝑖∈𝐼 

�−
𝑥𝑡−1(𝑖)
𝑑𝑡(𝑖)

�  ( 3.34) 

where the minimum is taken only over positive value.  

Therefore, at each iteration, the modified LARS for solving LASSO computes two step sizes: 

one adds a column to the active set as stated by Equation ( 3.23), and the other drops a column 

from the active set as stated by Equation ( 3.34). To distinguish between these two values of the 

step size, 𝛾+ is used to refer to the step size computed by ( 3.23), and 𝛾− is used to refer to the 

step size computed by ( 3.34). The modified LARS selects the smallest step size:  

 𝛾𝑡 = 𝑚𝑖𝑛  {𝛾𝑡+, 𝛾𝑡−}   ( 3.35) 

The modified LARS uses the step size computed by ( 3.35) instead of the step size computed by 

( 3.23) in the basic LARS algorithm. Equally important, for updating the active set, if 𝛾𝑡 = 𝛾𝑡+, 

the 𝑖𝑡ℎ column would be added to the active set at the next iteration 𝑡 + 1 as follows: 

where 𝛾𝑡+ = 𝑚𝑖𝑛
𝑖∈𝐼𝑐

 �
𝜆𝑡 –  𝑐𝑡(𝑖)
1 − 𝑎𝑖𝑇𝑣𝑡

,
𝜆𝑡 + 𝑐𝑡(𝑖)
1 + 𝑎𝑖𝑇𝑣𝑡

� and   𝛾𝑡− = 𝑚𝑖𝑛
𝑖∈𝐼

�−
𝑥𝑡−1(𝑖)
𝑑𝑡(𝑖)

�  
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 𝐼 = 𝐼 ∪ {𝑖}  ( 3.36) 

In contrast, if 𝛾𝑡 = 𝛾𝑡−, the 𝑖𝑡ℎ column would be removed from the active set at the next iteration 

𝑡 + 1 as follows: 

 𝐼 = 𝐼 − {𝑖}  ( 3.37) 

The remaining steps are the same as they are in the basic LARS algorithm stated in Section  3.1.  

 The modified LARS requires more iterations than the basic LARS because in the modified 

LARS, some columns are added to and dropped from the active set, while in the basic LARS, 

columns are always added to the active set. The computational complexity of modified LARS is 

𝑂(𝑚𝑛𝑇), where 𝑇 is the number of required iterations which is normally equal or greater than 

the number of nonzero entries of the solution vector 𝑥 (i.e. T ≥ 𝑘). Note that the constant that 

hides in asymptotic notation (big 𝑂) of the modified LARS is much higher than the one of OMP, 

because the modified LARS executes many additional steps to compute the step size 𝛾 while 

OMP does not. However, the modified LARS is considered an efficient algorithm for solving the 

LASSO problem because it requires less computational cost than traditional convex optimization 

methods.   
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Chapter 4 

4 Comparative Analysis of OMP and LARS 
In the signal processing and statistical literatures, OMP and modified LARS for solving LASSO 

are considered popular algorithms for finding a sparse solution of an underdetermined linear 

system. In this chapter, we compare OMP and modified LARS in terms of the algorithmic steps 

and performance. We reformulate some steps of OMP and modified LARS to identify the 

similarities and differences between them. To study the performance of OMP and modified 

LARS, we compare the convergence time and the solution accuracy in each algorithm. 

4.1  Algorithmic Steps  

Pervious work by Donoho and Tsaig [34] showed that the basic LARS algorithm that was stated 

in Section  3.1 and OMP have the same algorithmic steps, except the updating solution step. As 

stated earlier, OMP updates the active entries of the solution vector 𝑥 by solving the least square 

problem. This is achieved by projecting the vector 𝑦 onto the space spanned by active columns; 

which is conducted by solving the following normal equation: 

 𝐴𝐼𝑇𝐴𝐼𝑥𝑡(𝐼) = 𝐴𝐼𝑇𝑦 ( 4.1) 

On the other hand, the basic LARS algorithm updates the active entries of the solution vector 𝑥 

by solving the following penalized least square problem: 

 𝐴𝐼𝑇𝐴𝐼  𝑥𝑡(𝐼) = 𝐴𝐼𝑇𝑦 − 𝜆𝑡+1 𝑠𝑖𝑠𝑛�𝑐𝑡(𝐼)� ( 4.2) 

Equations ( 4.1) and ( 4.2) are identical if the penalization term �𝜆𝑡+1 𝑠𝑖𝑠𝑛�𝑐𝑡(𝐼)�� is removed 

from Equation ( 4.2). However, Donoho et al [34] did not demonstrate the derivation of ( 4.2). 

Therefore, we formulate our derivation of ( 4.2) in appendix A. 
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In our work, we compare OMP and modified LARS for solving LASSO from a different 

perspective. We reformulate some steps in the algorithms to reflect more similarities and 

differences between these algorithms. For simplicity, hereafter in this chapter and the next ones 

of this thesis, we use the abbreviation “LARS” to refer to the modified LARS algorithm that is 

specialized for solving the LASSO problem.  

OMP and LARS solve different optimization problems: OMP is used to find an approximate 

solution for the l0-norm minimization problem stated by Equation ( 1.2), while LARS is used to 

solve the l1-norm minimization problem stated by Equation ( 1.4). Nevertheless, both OMP and 

LARS depend on an underlying greedy framework. Indeed, they have almost the same 

fundamental algorithmic steps. Both algorithms start from an all-zero solution, an empty active 

set, and the measurement vector 𝑦 as initial residual. They depend on the correlation between the 

columns of the matrix 𝐴 and the current residual to maintain the active set. They compute the 

residual vector in the same manner. Furthermore, in both algorithms, it is required to solve the 

least square problem over the active columns to update the solution vector 𝑥.  

However, OMP and LARS are different in some steps. At each iteration of LARS, a column 

is added to or removed from the active set, while in OMP, a column is always added to the active 

set. In addition, each algorithm adopts a different way to update the solution vector 𝑥. OMP 

takes the largest possible step in the least square direction of the active columns. OMP achieves 

this through updating the active entries of the solution vector 𝑥 by projecting the vector 𝑦 onto 

the space spanned by the active columns. On the other hand, LARS takes the smallest possible 

step that forces a column from the inactive set to join the active set, or drops a column from the 

active set. The algorithmic steps of OMP and LARS are compared in Table  4.1. 
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 OMP LARS 

Initialization 𝑥0 = 0, 𝑟0 = 𝑦, 𝑡 = 1, 𝐼 = ∅ 𝑥0 = 0, 𝑟0 = 𝑦, 𝑡 = 1, 𝐼 = ∅ 

Compute correlation 𝑐𝑡 = 𝐴𝑇𝑟𝑡−1 𝑐𝑡 = 𝐴𝑇𝑟𝑡−1 

Update active set 
𝑖 = arg𝑚𝑎𝑥

𝑖∈𝐼𝑐
|𝑐𝑡(𝑗)| 

𝐼 = 𝐼 ∪ {𝑖} 

𝜆𝑡 = ‖𝑐𝑡‖∞ 

If (𝛾𝑡−1 = 𝛾𝑡−1+  𝑜𝑟 𝑡 = 1) // add column 

𝑖 = { 𝑗 ∈ 𝐼𝑐: |𝑐𝑡(𝑗)| = 𝜆𝑡 } 

𝐼 = 𝐼 ∪ {𝑖}  

If (𝛾𝑡−1 = 𝛾𝑡−1− ) // remove column 

𝑖 = { 𝑗 ∈ 𝐼: 𝑥𝑡−1(𝑗) = 0} 

𝐼 = 𝐼 − {𝑖} 

Update solution 

𝐴𝐼𝑇𝐴𝐼𝑥𝑡(𝐼) = 𝐴𝐼𝑇𝑦 

𝑥𝑡(𝐼𝑐) = 0 

𝐴𝐼𝑇𝐴𝐼𝑑𝑡(𝐼) = 𝑠𝑖𝑠𝑛(𝑐𝑡(𝐼)) 

𝑑𝑡(𝐼𝑐) = 0 

 𝑣𝑡 = 𝐴𝐼𝑑𝑡(𝐼) 

𝛾𝑡+ = 𝑚𝑖𝑛
𝑖∈𝐼𝑐

�
𝜆𝑡 –  𝑐𝑡(𝑖)
1 − 𝑎𝑖𝑇𝑣𝑡

,
𝜆𝑡 + 𝑐𝑡(𝑖)
1 + 𝑎𝑖𝑇𝑣𝑡

� 

𝛾𝑡− = 𝑚𝑖𝑛
𝑖∈𝐼

�−
𝑥𝑡−1(𝑖)
𝑑𝑡(𝑖)

�  

𝛾𝑡 = 𝑚𝑖𝑛  {𝛾𝑡+,𝛾𝑡−} 

𝑥𝑡 =  𝑥𝑡−1 + 𝛾𝑡𝑑𝑡 

Compute residual 𝑟𝑡 = 𝑦 − 𝐴𝑥𝑡 𝑟𝑡 = 𝑦 − 𝐴𝑥𝑡 

Stopping condition ‖𝑟𝑡‖2 < 𝜖 ‖𝑟𝑡‖2 < 𝜖 

Increase iteration 
counter 

𝑡 = 𝑡 + 1 𝑡 = 𝑡 + 1 

Table  4.1: The algorithmic steps of OMP and LARS 
 

 



 

35 
 

From Table  4.1, it is observable that the algorithmic steps are identical in both algorithms, 

except the steps for updating the active set and the solution vector. To find more commonality 

between OMP and LARS, we reformulate the steps for updating active set and the solution 

vector in the OMP algorithm. 

4.1.1 Reformulating step for updating the active set  

As we stated early on, one of differences between OMP and LARS is the way of updating the 

active set. To compare them in terms of updating active set step, we reformate the step in the 

OMP algorithm. At each iteration, OMP selects a column from the inactive set 𝐼𝑐 that has the 

highest absolute correlation with current residual. This can be expressed as follows: 

 𝑖 = arg𝑚𝑎𝑥
𝑖∈𝐼𝑐

|𝑐𝑡(𝑗)| ( 4.3) 

where 𝑖 is the index of the selected column.  

To make the updating active set step of OMP comparable with the corresponding step of LARS, 

we divide the step of finding the index 𝑖 in Equation ( 4.3) into two steps: 

1- Computing the largest absolute entry in the correlation vector: 𝜆𝑡 = ‖𝑐𝑡‖∞. 

2- Determining an index of column from the inactive set that its absolute correlation with the 

current residual vector equals to 𝜆𝑡. This can be described as follows: 

 𝑖 = { 𝑗 ∈ 𝐼𝑐: |𝑐𝑡(𝑗)| = 𝜆𝑡 } ( 4.4) 

Then, 𝑖 is added to the active set as follows: 𝐼 = 𝐼 ∪ {𝑖}. 

In Table  4.2, we state the original step for updating the active set and the reformulated one in 

OMP and LARS. It is noticeable that the step for updating the active set is the same in both 

algorithms if LARS always adds columns to the active set. Therefore, the basic LARS algorithm 

that is stated in Section  3.1 is similar to OMP in the way of updating the active set, because it 
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always adds columns to the active set and never removes them from the set. On the other hand, 

the modified LARS for solving the LASSO problem differs from OMP in the step for updating 

the active set. The modified LARS adds or removes columns to/from the active set, while OMP 

always adds columns to the active set. 

 OMP LARS 

Update active set 

(original) 

𝑖 = arg  𝑚𝑎𝑥
𝑖∈𝐼𝑐

|𝑐𝑡(𝑗)| 

𝐼 = 𝐼 ∪ {𝑖} 

𝜆𝑡 = ‖𝑐𝑡‖∞ 

If (𝛾𝑡−1 = 𝛾𝑡−1+  𝑜𝑟 𝑡 = 1) // add column 

𝑖 = { 𝑗 ∈ 𝐼𝑐: |𝑐𝑡(𝑗)| = 𝜆𝑡 } 

𝐼 = 𝐼 ∪ {𝑖}  

If (𝛾𝑡−1 = 𝛾𝑡−1− ) // remove column 

𝑖 = { 𝑗 ∈ 𝐼: 𝑥𝑡−1(𝑗) = 0} 

𝐼 = 𝐼 − {𝑖} 

Update active set 

(after reformulating) 

𝜆𝑡 = ‖𝑐𝑡‖∞ 

add  column 

𝑖 = { 𝑗 ∈ 𝐼𝑐: |𝑐𝑡(𝑗)| = 𝜆𝑡  } 

𝐼 = 𝐼 ∪ {𝑖} 

𝜆𝑡 = ‖𝑐𝑡‖∞ 

If (𝛾𝑡−1 = 𝛾𝑡−1+  𝑜𝑟 𝑡 = 1) // add column 

𝑖 = { 𝑗 ∈ 𝐼𝑐: |𝑐𝑡(𝑗)| = 𝜆𝑡 } 

𝐼 = 𝐼 ∪ {𝑖}  

 If (𝛾𝑡−1 = 𝛾𝑡−1− ) // remove column 

𝑖 = { 𝑗 ∈ 𝐼: 𝑥𝑡−1(𝑗) = 0} 

𝐼 = 𝐼 − {𝑖}  

Table  4.2: The original step for updating the active set and the reformulated one in OMP and 
LARS                                          
 

4.1.2 Reformulating step for updating the solution vector 

The other difference between OMP and LARS is the way of updating the solution vector. To 

compare them clearly, we reformulate the step for updating the solution vector in OMP to make 

it comparable with corresponding step in LARS. This can be explained as follows: let 𝐼 be the 

active set at iteration 𝑡, and 𝐼  ̅ be the active set at iteration 𝑡 − 1. We assume that OMP is 
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currently at iteration 𝑡. The active entries of the solution vector 𝑥 are computed via solving 

Equation ( 4.1): 

 𝐴𝐼𝑇𝐴𝐼 𝑥𝑡(𝐼) = 𝐴𝐼𝑇𝑦 ( 4.5) 

The residual vector at iteration 𝑡 − 1 is obtained by: 

 𝑟𝑡−1 = 𝑦 − 𝐴𝑥𝑡−1 ( 4.6) 

Because only active entries of 𝑥𝑡−1 are nonzeros, we can rewrite ( 4.6) as follows: 

𝑟𝑡−1 = 𝑦 − 𝐴𝐼̅ 𝑥𝑡−1(𝐼)̅ 

 𝑦 = 𝐴𝐼̅ 𝑥𝑡−1(𝐼)̅+ 𝑟𝑡−1 ( 4.7) 

By substituting 𝑦 of ( 4.7) in ( 4.5), we obtain: 

𝐴𝐼𝑇𝐴𝐼 𝑥𝑡(𝐼) = 𝐴𝐼𝑇(𝐴𝐼̅ 𝑥𝑡−1(𝐼)̅ + 𝑟𝑡−1) 

By simplifying this expression, it follows: 

𝐴𝐼𝑇(𝐴𝐼 𝑥𝑡(𝐼) − 𝐴𝐼̅ 𝑥𝑡−1(𝐼)̅ ) = 𝐴𝐼𝑇 𝑟𝑡−1 

Recall Equation ( 3.2) that computes the active entries of the correlation vector: 𝑐𝑡(𝐼) = 𝐴𝐼𝑇𝑟𝑡−1. 

This leads to: 

 𝐴𝐼𝑇(𝐴𝐼 𝑥𝑡(𝐼) − 𝐴𝐼 ̅𝑥𝑡−1(𝐼)̅ ) = 𝑐𝑡(𝐼) ( 4.8) 

At each iteration of OMP, one column is added to the active set. Therefore, the active set 𝐼 at 

iteration 𝑡 has one column that is not included in the active set 𝐼 ̅of the previous iteration (𝑡 − 1). 

The coefficient of 𝑥𝑡−1 that is corresponding to this column is zero. Hence, we get: 

 𝐴𝐼 ̅𝑥𝑡−1(𝐼)̅ = 𝐴𝐼𝑥𝑡−1 (𝐼) ( 4.9) 

By substituting ( 4.9) in ( 4.8), the following equation is obtained:  

𝐴𝐼𝑇(𝐴𝐼 𝑥𝑡(𝐼) − 𝐴𝐼 𝑥𝑡−1(𝐼) ) = 𝑐𝑡(𝐼) 

Equivalently:  
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 𝐴𝐼𝑇𝐴𝐼 �𝑥𝑡(𝐼) − 𝑥𝑡−1(𝐼)� = 𝑐𝑡(𝐼) ( 4.10) 

At this point, let us define the vector Δ𝑥𝑡  ∈ 𝑅𝑛  where  Δ𝑥𝑡(𝐼) = 𝑥𝑡(𝐼) − 𝑥𝑡−1(𝐼) and  

Δ𝑥𝑡(𝐼𝑐) = 0. Therefore, Equation ( 4.10) can be expressed as follows: 

 𝐴𝐼𝑇𝐴𝐼  Δ𝑥𝑡(𝐼) = 𝑐𝑡(𝐼) ( 4.11) 

The active entries of the vector Δ𝑥𝑡 can be obtained by solving Equation ( 4.11), while the 

remaining entries of the vector are set to zero (i.e. Δ𝑥𝑡(𝐼𝑐) = 0). The formula for updating the 

solution vector 𝑥 can be rewritten in terms of the vector Δ𝑥 as follows: 

 𝑥𝑡 = 𝑥𝑡−1 + Δ𝑥𝑡 ( 4.12) 

As a result, we divide the step for updating the solution vector that is expressed by Equation 

( 4.1) in the OMP algorithm into two steps: 

1- Computing active entries of the vector Δ𝑥 as expressed in Equation ( 4.11), and setting the 

remaining entries to zero. 

2- Updating the solution vector 𝑥 as expressed in Equation ( 4.12). 

 With respect to LARS, the vector Δ𝑥 can be calculated by using Equation ( 3.10) as follows:  

 Δ𝑥𝑡 = 𝛾𝑡𝑑𝑡 ( 4.13) 

The original step for updating the solution vector and the reformulated one are listed for OMP 

and LARS in Table  4.3. 
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 OMP LARS 

Update solution 

(original) 

𝐴𝐼𝑇𝐴𝐼𝑥𝑡(𝐼) = 𝐴𝐼𝑇𝑦 

𝑥𝑡(𝐼𝑐) = 0 

𝐴𝐼𝑇𝐴𝐼𝑑𝑡(𝐼) = 𝑠𝑖𝑠𝑛(𝑐𝑡(𝐼)) 

𝑑𝑡(𝐼𝑐) = 0 

 𝑣𝑡 = 𝐴𝐼𝑑𝑡(𝐼) 

𝛾𝑡+ = 𝑚𝑖𝑛
𝑖∈𝐼𝑐

�
𝜆𝑡 –  𝑐𝑡(𝑖)
1 − 𝑎𝑖𝑇𝑣𝑡

,
𝜆𝑡 + 𝑐𝑡(𝑖)
1 + 𝑎𝑖𝑇𝑣𝑡

� 

𝛾𝑡− = 𝑚𝑖𝑛
𝑖∈𝐼

�−
𝑥𝑡−1(𝑖)
𝑑𝑡(𝑖)

�  

𝛾𝑡 = 𝑚𝑖𝑛  {𝛾𝑡+,𝛾𝑡−} 

𝑥𝑡 =  𝑥𝑡−1 + 𝛾𝑡𝑑𝑡 

Update solution 

(after reformulating) 

𝐴𝐼𝑇𝐴𝐼  Δ𝑥𝑡(𝐼) =  𝑐𝑡(𝐼) 

Δ𝑥𝑡(𝐼𝑐) = 0 

𝐴𝐼𝑇𝐴𝐼𝑑𝑡(𝐼) = 𝑠𝑖𝑠𝑛(𝑐𝑡(𝐼)) 

𝑑𝑡(𝐼𝑐) = 0 

 

𝑣𝑡 = 𝐴𝐼𝑑𝑡(𝐼) 

𝛾𝑡+ = 𝑚𝑖𝑛
𝑖∈𝐼𝑐

�
𝜆𝑡 –  𝑐𝑡(𝑖)
1 − 𝑎𝑖𝑇𝑣𝑡

,
𝜆𝑡 + 𝑐𝑡(𝑖)
1 + 𝑎𝑖𝑇𝑣𝑡

� 

𝛾𝑡− = 𝑚𝑖𝑛
𝑖∈𝐼

�−
𝑥𝑡−1(𝑖)
𝑑𝑡(𝑖)

�  

𝛾𝑡 = 𝑚𝑖𝑛  {𝛾𝑡+,𝛾𝑡−} 

Δ𝑥𝑡 = 𝛾𝑡𝑑𝑡 

𝑥𝑡 =  𝑥𝑡−1 + Δ𝑥𝑡 𝑥𝑡 =  𝑥𝑡−1 + Δ𝑥𝑡 

Table  4.3: The original step for updating the solution vector and the reformulated one in OMP 
and LARS  
 

 

By using the reformulated steps that we derive in Sections  4.1.1 and  4.1.2, the algorithmic steps 

of OMP and LARS can be rewritten as shown in Table  4.4. 

 

 

 



 

40 
 

 OMP LARS 

Initialization 𝑥0 = 0, 𝑟0 = 𝑦, 𝑡 = 1, 𝐼 = ∅ 𝑥0 = 0, 𝑟0 = 𝑦, 𝑡 = 1, 𝐼 = ∅ 

Compute correlation 𝑐𝑡 = 𝐴𝑇𝑟𝑡−1 𝑐𝑡 = 𝐴𝑇𝑟𝑡−1 

Update active set 

𝜆𝑡 = ‖𝑐𝑡‖∞ 

add column 

𝑖 = { 𝑗 ∈ 𝐼𝑐: |𝑐𝑡(𝑗)| = 𝜆𝑡  } 

𝐼 = 𝐼 ∪ {𝑖} 

𝜆𝑡 = ‖𝑐𝑡‖∞ 

If (𝛾𝑡−1 = 𝛾𝑡−1+  𝑜𝑟 𝑡 = 1) // add column 

𝑖 = { 𝑗 ∈ 𝐼𝑐: |𝑐𝑡(𝑗)| = 𝜆𝑡  } 

𝐼 = 𝐼 ∪ {𝑖}  

 If (𝛾𝑡−1 = 𝛾𝑡−1− ) // remove column 

𝑖 = { 𝑗 ∈ 𝐼: 𝑥𝑡−1(𝑗) = 0} 

𝐼 = 𝐼 − {𝑖}  

Compute solution 

update vector 

𝐴𝐼𝑇𝐴𝐼 Δ𝑥𝑡(𝐼) =  𝑐𝑡(𝐼) 

Δ𝑥𝑡(𝐼𝑐) = 0 

𝐴𝐼𝑇𝐴𝐼𝑑𝑡(𝐼) = 𝑠𝑖𝑠𝑛(𝑐𝑡(𝐼)) 

𝑑𝑡(𝐼𝑐) = 0 

 

 
𝑣𝑡 = 𝐴𝐼𝑑𝑡(𝐼) 

𝛾𝑡+ = 𝑚𝑖𝑛
𝑖∈𝐼𝑐

�
𝜆𝑡 –  𝑐𝑡(𝑖)
1 − 𝑎𝑖𝑇𝑣𝑡

,
𝜆𝑡 + 𝑐𝑡(𝑖)
1 + 𝑎𝑖𝑇𝑣𝑡

� 

𝛾𝑡− = 𝑚𝑖𝑛
𝑖∈𝐼

�−
𝑥𝑡−1(𝑖)
𝑑𝑡(𝑖)

�  

𝛾𝑡 = 𝑚𝑖𝑛  {𝛾𝑡+,𝛾𝑡−} 

Δ𝑥𝑡 = 𝛾𝑡𝑑𝑡 

Update solution 𝑥𝑡 =  𝑥𝑡−1 + Δ𝑥𝑡 𝑥𝑡 =  𝑥𝑡−1 + Δ𝑥𝑡 

Compute residual 𝑟𝑡 = 𝑦 − 𝐴𝑥𝑡 𝑟𝑡 = 𝑦 − 𝐴𝑥𝑡 

Stopping condition ‖𝑟𝑡‖2 < 𝜖 ‖𝑟𝑡‖2 < 𝜖 

Increase iteration 
counter 

𝑡 = 𝑡 + 1 𝑡 = 𝑡 + 1 

Table  4.4: The algorithmic steps of OMP and LARS after reformulating 
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 Form Table  4.4, it is observable that the algorithmic steps of OMP and LARS are almost 

identical; the only differences are in updating the active set and computing the solution update 

vector (the vector Δ𝑥). For updating the active set, OMP always adds a column to the active set 

at each iteration, and this column would never be removed later. On the other hand, in LARS, a 

column is added to or removed from the active set at each iteration. For computing the vector 

Δ𝑥, both OMP and LARS solve the least square problems stated in Equations ( 4.11) and ( 3.6) 

respectively. However, each algorithm relies on different parameters to achieve this. OMP uses 

the active entries of the correlation vector 𝑐, while LARS uses only the signs of them. Equally 

important in OMP, the vector Δ𝑥 is directly computed by solving the least square problem as 

stated in Equation ( 4.11). In contrast, in LARS, the vector Δ𝑥 is computed by the following 

steps: 

1. Determine the updated direction 𝑑 by solving the least square problem ( 3.6). 

2. Compute the step size 𝛾 by Equation ( 3.35). 

3. Multiply 𝛾 by 𝑑 to obtain the vector Δ𝑥 as express in Equation ( 4.13).  

4.2  Performance Analysis 

To analyze the performance of OMP and LARS, we compare these two algorithms in terms of 

the convergence time and the accuracy of the final solution. 

4.2.1 Convergence time 

 In convergence to the final solution, OMP is much faster than LARS because: 

1. Generally speaking, OMP requires less number of iterations than LARS to converge to the 

final solution. This is because OMP always adds columns to the active set, while LARS adds 

or removes columns to/from the active set. 



 

42 
 

2. At each iteration, OMP computes the vector Δ𝑥 in one step by solving the least square 

problem ( 4.11). Whereas in LARS, computing the vector Δ𝑥 involves many steps as stated in 

Section  4.1. These steps require more computations than solving the least square problem. 

4.2.2 Accuracy 

In terms of the recovered sparse solution, OMP is considered less accurate than LARS when 

some columns of the matrix 𝐴 are highly correlated. OMP takes the largest possible step in the 

least square direction of the active columns by solving the least square problem to update the 

solution vector 𝑥. As a result, the residual vector will be orthogonal to all active columns at the 

next iteration. In other words, the residual vector will have zero correlation with all active 

columns. Consequently, columns that are highly correlated with the active columns would have 

small correlation with the current residual. Recall that at each iteration, OMP select a column 

that has the largest absolute correlation with current residual. Therefore, OMP does not select 

these columns even though they are significant for recovering the sparse solution. On the other 

hand, LARS does not this problem because it uses a fairly smaller step than the OMP step, and 

increases the coefficients of the solution vector associated with the active set as much as  needed. 

For this reason, LARS selects important columns for recovering the sparse solution even though 

they may be highly correlated with the columns that have already been in the active set .To 

demonstrate this, we consider the following example: 

Example 4.1: assume the matrix 𝐴 contains three columns (𝑎1,𝑎2,𝑎3), where the columns 𝑎1 

and 𝑎2 are highly correlated as shown in Figure  4.1. We generate the vector 𝑥 ∈ 𝑅3 which its 

first and second entries are nonzeros, and the third one is zero: 

𝑥 = �
0.9613
0.2757

0
� 
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The measurement vector ݕ is obtained via multiplying the matrix ܣ by the vector ݔ (i.e. ݕ ൌ  .(ݔܣ

As a result, the vector ݕ would be a linear combination of the columns ܽଵ and ܽଶ. 

     
Figure  4.1: Columns of the matrix ܣ and the measurement vector ݕ in Example 4.1 

 

We use both OMP and LARS to find the vector ݔො that represents the vector ݕ as a linear 

combination of columns of the matrix ܣ. In Figure  4.2 and Figure  4.3, we illustrate the 

approximation change to the vector ݕ which is accomplished by OMP and LARS at each 

iteration. Note that the approximation change is calculated by multiplying the matrix ܣ by the 

current solution update vector Δݔ௧. 

OMP starts by selecting a column from the matrix ܣ that has maximum absolute correlation 

with the initial residual (i.e. the vector ݕሻ. In this example, the column ܽଵ is selected at the first 

iteration because it is highly correlated with initial residual as shown in Figure  4.2, and added to 

the active set. Then, OMP takes the largest possible step in the direction of the column ܽଵ by 

projecting the vector ݕ onto the column ܽଵ. This leaves some error represented by the residual 
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vector 𝑟 which is orthogonal to 𝑎1. At the second iteration, the column 𝑎2 would be less 

correlated with the residual vector since it is highly correlated with the column 𝑎1. In this case, 

the column 𝑎3 has the largest absolute correlation with the current residual. Therefore, the 

column 𝑎3 is selected and added to the active set as shown in Figure  4.3. Then, OMP takes the 

largest possible step in the space spanned by the columns (𝑎1,𝑎3) toward the vector 𝑦. After 

updating the solution vector, the residual will be zero and OMP terminates. Note that the column 

𝑎2 is never selected even though it is important for recovering the original vector 𝑥. 

On the other hand, similar to OMP, LARS starts by adding the column 𝑎1 to the active set at 

the first iteration as shown in Figure  4.2. However, LARS moves in the direction of the column 

𝑎1 until the column 𝑎2 has absolute correlation with the current residual as much as 𝑎1. At the 

second iteration, LARS adds the column 𝑎2 to the active set, and moves in the direction that is 

equiangular with both 𝑎1 and 𝑎2 toward the vector 𝑦 as shown in Figure  4.3. The residual will be 

zero after updating the solution vector. Therefore, LARS terminates at the end of the second 

iteration. Note that LARS selects the column 𝑎2 which is essential to reconstruct the original 

vector 𝑥, while OMP does not.  

Figure  4.4 shows the coefficients of the reconstructed vector 𝑥� over iterations of OMP and 

LARS. As shown in the figure, LARS achieves very small error norm (almost zero), while OMP 

obtains a high error norm. Note that the error is computed by the following equation: 

 𝑒𝑟𝑟𝑜𝑟 = 𝑥 − 𝑥� ( 4.14) 

where 𝑥 is the original sparse vector, and 𝑥� is the reconstructed one by the algorithms 

Therefore, this implies that LARS can reconstruct the sparse vector 𝑥 when two or more columns 

of the matrix 𝐴 are highly correlated, while OMP fails. However, LARS is slower than OMP. 
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OMP LARS 

Selection Selection 

 

Updating Updating 

 : Inactive columns of the matrix ܣ    
 : Active columns of the matrix ܣ  
 : Measurement vector ݕ 
 : Approximation change  (ܣΔݔଵ) at the first iterations 

Figure  4.2: The selection and updating steps at the first iteration of OMP and LARS in Example 
4.1.The approximation change is obtained via multiplying the matrix ܣ by the current solution 
update vector Δݔ௧  
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OMP LARS 

Selection Selection 

 

Updating Updating 

 : Inactive columns of the matrix ܣ    
 : Active columns of the matrix ܣ                    
 : Measurement vector ݕ 
 : Approximation change  (ܣΔݔଵ) at the  first iterations 
 : Approximation change  (ܣΔݔଶ) at the  second iterations 

Figure  4.3: The selection and updating steps at the second (last) iteration of OMP and LARS in 
Example 4.1. The approximation change is obtained via multiplying the matrix ܣ by the current 
solution update vector Δݔ௧ 
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OMP LARS 
initialization initialization 

iteration 1 iteration 1 

 

iteration 2 iteration 2 
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 : Inactive columns of the matrix ܣ    
 : Active columns of the matrix ܣ                    
 : Measurement vector ݕ 

Figure  4.4: The solution coefficients of the reconstructed vector ݔො over iterations of OMP and 
LARS in Example 4.1, and Euclidean norm of error between the original sparse vector ݔ and the 
reconstructed vector ݔො after the algorithms terminate  
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Chapter 5 

5 Simulation Results and Discussion 
In this chapter, we simulate the comparative analysis of the OMP and LARS algorithms stated in 

previous chapters by using MATLAB. In general, we would go through different examples to 

demonstrate the similarities and differences between OMP and LARS from different 

perspectives. First, we employ OMP and LARS to reconstruct some images from their 

compressive samples. Afterward, we exploit parallel processing techniques to speed-up 

convergence of the algorithms, and observe the efficiency of using different number of 

processors. Next, we examine the performance of OMP and LARS in terms of mean square error 

(MSE) as a function of the measurement size 𝑚 and the sparsity 𝑘. To study the difference in the 

updating process of OMP and LARS, we observe the coefficients of the solution and correlation 

vectors over iterations. Finally, to study the performance of OMP and LARS from different 

aspect, we generate two different examples of an underdetermined linear system. We utilize 

OMP and LARS to reconstruct the sparse vector in each example. At each iteration of the 

algorithms, we plot the updating process in three dimensions (3D) view. 

5.1 Reconstructing images from their compressive samples  

To demonstrate the efficiency of OMP and LARS, we reconstruct gray images from their 

compressive samples by using both algorithms, and measure the error between the original image 

and the reconstructed one. To estimate the convergence speed of each algorithm, we record the 

time and the number of iterations that algorithms require to reconstruct the images. 
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We use images of size (512 × 512) pixels. First, we divide each image into 4096 patches of 

size (8 × 8) pixels. We reshape every patch into a vector of size (64 × 1) as shown in 

Figure  5.1. Each patch vector is normalized through dividing its entries by the maximum value 

found in the image. 

The matrix 𝐴 is obtained by multiplying two matrices: 𝑚 × 𝑛 random matrix 𝜙, and 𝑛 × 𝑛 

transformation matrix 𝜓: 

 𝐴𝑚×𝑛 = 𝜙𝑚×𝑛 × 𝜓𝑛×𝑛 ( 5.1) 

where 𝑛 = 64. 

The random matrix 𝜙 is generated by using Gaussian distribution, and the transformation matrix 

𝜓 is generated by using Discrete Cosine Transform (DCT) [41]. 

 To obtain the measurement vector 𝑦, the random matrix 𝜙 is multiplied by each patch of 

image: 

 𝑦𝑖 = 𝜙 × 𝑝𝑖 ( 5.2) 

where 𝑝𝑖  represents the 𝑖𝑡ℎ patch, and 𝑖 = 1,2, … … ,4096 

Now, the underdetermined linear system is expressed as follows: 

 𝐴 × 𝑥𝑖 = 𝑦𝑖 ( 5.3) 

where 𝑥𝑖 is the sparse representation of the patch 𝑝𝑖. 

To obtain 𝑥𝑖 for each 𝑖, we employ OMP and LARS with the system ( 5.3) as shown in 

Figure  5.1. Then, the transformation matrix 𝜓 is multiplied by 𝑥𝑖 to obtain the reconstructed 

patch 𝑝̂𝑖: 

 𝑝̂𝑖 = 𝜓 × 𝑥𝑖  ( 5.4) 
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Figure  5.1: Reconstruct a patch of an image from its compressive samples by using OMP or 
LARS 
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After reconstructing all patches, we form the recovered image. Figure  5.2 and Figure  5.3 show 

the recovered images for measurement size 𝑚 = 32 and 𝑚 = 16 respectively. 

 Then, we compute the mean square error (MSE) between the original patch and the 

reconstructed one: 

 𝑀𝑆𝐸𝑖 =
1
𝑛
� �𝑝𝑖(𝑗) − 𝑝̂𝑖(𝑗)�

2
𝑛 

𝑗=1 
 ( 5.5) 

After computing MSE for all 4096 patches, we calculate the average mean square error over 

them: 

 𝐴𝑣𝑒𝑟𝑎𝑠𝑒 𝑀𝑆𝐸 =
1

4096
� 𝑀𝑆𝐸𝑖

4096 

𝑖=1 
 ( 5.6) 

We depend on the value of Peak Signal to Noise Ratio (PSNR) to determine the performance of 

the algorithms which is computed by: 

 𝑃𝑆𝑁𝑅 = 10 log10 �
𝑀𝐴𝑋(𝑥)

𝐴𝑣𝑒𝑟𝑎𝑠𝑒 𝑀𝑆𝐸
� ( 5.7) 

where 𝑀𝐴𝑋(𝑥) is the maximum possible entry in the patches. Note that 𝑀𝐴𝑋(𝑥) = 1 because 

the image patches are normalized.   

If an algorithm has high PSNR, this implies that it can successfully reconstruct the original 

images with small error. The values of PSNR for OMP and LARS with measurement size 

𝑚 = 32 and 𝑚 = 16 are shown in Figure  5.2 and Figure  5.3 respectively. 

To estimate the convergence speed of the algorithms, we record the number of iterations that 

each algorithm requires to converge to the final solution for each patch. Then, we compute the 

average number of iterations over all patches in the same way that we did with MSE. However, 

the number of iterations is not an accurate measure of the algorithms’ speed because computation 

involved at each iteration of LARS takes longer time than the computation of OMP iteration. To 
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get a better measurement of the algorithms’ speed, we also record the required time for each 

algorithm to recover the whole image in a certain computer. In this simulation, we use a Dell 

laptop that is equipped with CPU Intel (i3, 2.13 GHz) and (4 GB) of memory. The average 

number of iterations and the required time for OMP and LARS with measurement size 𝑚 = 32 

and 𝑚 = 16 are shown in Figure  5.2 and Figure  5.3 respectively. 

From Figure  5.2 and Figure  5.3, it is observable that the number of iterations required by 

OMP is less than the number of iterations required by LARS to recover the same images. This is 

because OMP always adds columns to the active set, while LARS adds or removes columns 

to/from the active set. Equally important, OMP consumes less time than LARS. Nevertheless, 

LARS obtains higher PSNR than OMP. The justification for this is that LARS selects the most 

important columns from the matrix 𝐴 to recover the sparse solution even though these columns 

are highly correlated, while OMP does not. 
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Figure  5.2: Reconstructed images from their compressive samples by using OMP and LARS 
with 𝑚 = 32 and 𝑛 = 64 
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Figure  5.3: Reconstructed images from their compressive samples by using OMP and LARS 
with 𝑚 = 16 and 𝑛 = 64 
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5.2 Using parallel processing to speed-up convergence of the 
algorithms 

In the previous section, we divided an image into a number of patches. After that, the 

compressive samples of each patch were obtained. Next, the algorithms (OMP and LARS) were 

used to reconstruct the original patches as illustrated in Figure  5.1. Because samples of each 

patch are independent of samples of other patches, and the same algorithmic steps are executed 

to samples of all patches, we can utilize the parallel processing techniques to expedite the 

convergence of the algorithms. 

According to the Flynn classification [42], reconstructing all patches of an image from their 

compressive samples falls under single instruction multiple data (SIMD) class. This is because 

identical algorithmic steps are performed to samples of different patches to recover the whole 

image. In this case, samples of patches are distributed over different processers. All processors 

execute the same algorithmic steps to recover their own patches. Subsequently, the recovered 

patches are combined from processers to form the entire image. 

Both OMP and LARS calculate the Gramian matrix (𝐴𝑇𝐴) to solve the least square problem 

over active columns. Computing the Gramian matrix involves heavy computation. Equally 

important, the matrix 𝐴 is identical for all patches. Therefore, for efficiency reason, the Gramian 

matrix (𝐴𝑇𝐴) is off-line computed first, and then it is distributed to all processors [43]. 

To examine impact of using many processors on convergence time, we reconstruct an image 

from its compressive samples as we did in Section  5.1. However, in this section, we use more 

than one processor to run OMP and LARS. We illustrate variation of the convergence time with 

respect to the number of used processors as shown in Figure  5.4. It is noticeable that the 

convergence time reduces as the number of used processors increases. In addition, we observe 

that the reduction in convergence time is not significant as the number of processors increases 
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above 6. This is because the communication overhead among processors grows as the number of 

used processors increases. 
 

 
Figure  5.4: The convergence time of OMP and LARS against the number of used processors 

  

 
 

 



 

57 
 

To calculate the gain of using many processors, we compute the speedup ratio by using the 

following equation: 

 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑇(1)
𝑇(𝑝) ( 5.8) 

where 𝑇(1) is the convergence time of an algorithm by using one processor, 𝑇(𝑝) is the 

convergence time of an algorithm by using 𝑝 processors, and 1 ≤ 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 ≤ 𝑝. 

The ideal speedup ratio equals to the number of used processors (𝑝). Normally, the speedup ratio 

is less than 𝑝 because of time lost in communication overhead among processors. The ideal and 

actual speedup ratios for the OMP algorithm are shown in Figure  5.5. 

 
Figure  5.5: The ideal and actual speedup ratios for the OMP algorithm against the number of 
used processors 
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5.3  Impact of measurement size and sparsity on MSE  

In this section, we examine the performance of OMP and LARS in terms of mean square error 

(MSE) as a function of the measurement size 𝑚 and the sparsity 𝑘. We consider various 

underdetermined linear systems that have different measurement size 𝑚 and different sparsity 𝑘. 

For all of the considered underdetermined linear systems, the value of 𝑛  is fixed to 1000. For 

each trial of underdetermined linear system, we randomly generate the matrix 𝐴 of size 𝑚 ×

1000 by using Gaussian distribution. The columns of the matrix 𝐴 are normalized to have unit l2 

norm. Then we generate the sparse vector 𝑥 ∈ 𝑅1000 which has 𝑘 nonzero entries in random 

positions. The nonzero entries of the vector 𝑥 are also obtained from Gaussian distribution, and 

all other entries are set to zero. The vector 𝑥 is also normalized. We multiply the matrix 𝐴 by the 

sparse vector 𝑥 to compute the measurement vector 𝑦: 

 𝑦 = 𝐴 × 𝑥 ( 5.9) 

At this point, we employ OMP and LARS to reconstruct the original sparse vector of 

undetermined linear system described by Equation ( 5.9). Then, we compute MSE between the 

original sparse vector and the reconstructed one as follows. 

 𝑀𝑆𝐸 =
1
𝑛
��𝑥(𝑗) − 𝑥�(𝑗)�

2
𝑛

𝑗=1 
 ( 5.10) 

where 𝑥� is the reconstructed sparse vector by the algorithms 

In Figure  5.6, the average MSE of 100 trials is illustrated as a function of 𝑚 for different 

values of 𝑘 with using OMP and LARS. For each value of 𝑘, we observe that the average MSE 

decreases as the value of  𝑚 increases, until it settles to a very small value about (10−34) after 

specific value of 𝑚, say 𝑚� . Having the average MSE approaching such small value implies that 

the algorithms successfully reconstruct the original sparse vector. Hence, the value 𝑚�   is 
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considered as the minimum size of measurements to make the algorithms able to recover the 

original 𝑘 sparse vector. From the figure, we observe that OMP and LARS require more 

measurement 𝑚 to successfully recover the sparse vector as number of nonzeros 𝑘 is increased. 

In addition, we notice that LARS recovers the sparse vector with less average MSE than OMP 

for 𝑚 < 𝑚� . Therefore, LARS obtains better results when the measurement size 𝑚 is smaller than 

𝑚�  . 

To examine the performance of the algorithms from a different viewpoint, we plot the 

average MSE as a function of 𝑘 for different values of 𝑚 as shown in Figure  5.7. We can see that 

the average MSE starts from almost zero; then after a certain value of 𝑘, say 𝑘� , it obviously 

increases to some values above zero.  Therefore, by using the measurement vector of size 𝑚, the 

algorithms can recover a 𝑘 sparse vector if  𝑘 < 𝑘� . Furthermore, we observe that LARS recovers 

a 𝑘 sparse vector with less average MSE than OMP when 𝑘 > 𝑘� . As a result, we can state that 

LARS is better to be used than OMP when the sparsity 𝑘 is fairly large.  
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Figure  5.6: Average MSE of 100 trials between the original sparse vectors and the reconstructed 
ones by OMP and LARS as a function of measurement size 𝑚 for different sparsity 𝑘  
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Figure  5.7: Average MSE of 100 trials between the original sparse vectors and the reconstructed 
ones by OMP and LARS as a function of sparsity 𝑘 for different measurement size 𝑚 
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5.4 Variation of the solution and correlation coefficients 
over iterations 

In this section, we aim to monitor the updating process of OMP and LARS to the solution vector 

over iterations. We use both OMP and LARS to recover a sparse solution of an underdetermined 

linear system. At each iteration of OMP and LARS, we plot the solution coefficients. To run an 

example, we consider an underdetermined linear system with 𝑚 = 50, 𝑛 = 100, and 𝑘 = 10. 

We generate the matrix 𝐴 and the sparse vector 𝑥 of the system by using Gaussian distribution in 

the same way we did in Section  5.3. To obtain the measurement vector 𝑦, we multiply the matrix 

𝐴 by the sparse vector 𝑥 as express in Equation ( 5.9). At this point, we employ OMP and LARS 

to reconstruct the original sparse vector. The solution coefficients that corresponding to the 

active columns are shown over iterations of OMP and LARS in Figure  5.8. 

Form Figure  5.8, we observe that both OMP and LARS terminate with the same solution 

coefficients. However, they are different in the way of updating the solution coefficients. In 

OMP, when a column is added to the active set, the corresponding solution coefficient is 

increased to the largest possible value. The coefficients of the active set may decrease slightly in 

the subsequent iterations, because they will be affected by other columns that would be added to 

the active set later. On the other hand, at each iteration of LARS, all coefficients corresponding 

to the active set are increased to the smallest possible step in a way that makes a column from the 

inactive set join the active set at the next iteration. In addition, we observe that columns are 

added to the active set in different order in the algorithms as shown in Figure  5.8. Moreover, 

LARS requires one more iteration than the case of OMP to converge to the final solution, since it 

adds one more column (column 72 in this example) to active set, and increase its corresponding 

solution coefficients to a very small value (almost zero). The reason behind this is that LARS 
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solves the l1 norm minimization problem. Therefore, some coefficient that are zero in original 

sparse vector would be equal to very small value but not exactly zero in the reconstructed sparse 

vector by LARS.  

 
Figure  5.8: The solution coefficients that correspond to the active columns over iterations of 
OMP and LARS 
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 Furthermore, to see how the correlations of columns of the matrix 𝐴 with the current residual 

are changed, we illustrate them over some iterations of OMP and LARS as shown in Figure  5.9 

and Figure  5.10 respectively. 

  At each iteration, OMP adds a column that has maximum absolute correlation with current 

residual vector to the active set, and updates the solution coefficients to make its correlation zero 

at the next iteration. This is because OMP ensures that the current residual vector is always 

orthogonal to all active columns.  For example in Figure  5.9, OMP adds the 99𝑡ℎ column to the 

active set at the second iteration, and its correlation would be zero at the third iteration. OMP 

continues to add a column to the active set until the norm of the current residual approaches zero. 

  On the other hand, LARS first selects a column that has the maximum absolute correlation 

with the initial residual (the vector 𝑦), and then updates the corresponding solution coefficient in 

a way that makes the absolute correlation of selected column equal to the largest absolute 

correlation over columns that are not in the active set. For instance in Figure  5.10, LARS selects 

the 55𝑡ℎ column at the first iteration, and updates the solution coefficient to make its absolute 

correlation similar to the absolute correlation of the 91𝑡ℎ column. Therefore, the 91𝑡ℎ column 

would be added to the active set at the second iteration.  In similar manner, LARS iteratively 

adds a column to the active set, and decreases the absolute correlations of the active columns 

until no column has correlation with the current residual. 

 We conclude that OMP updates the solution vector to make absolute correlations of the 

active columns equal to zero, while LARS updates the solution vector to make absolute 

correlations of the active columns equal to same value (𝜆) as follows: 

 
OMP:    |𝑐(𝑖)| = 0   

LARS:   |𝑐(𝑖)| = 𝜆  
∀ 𝑖 ∈ 𝐼 ( 5.11) 

Note that 𝜆 is decreased at each iteration; when 𝜆 = 0, LARS converges to the final solution 

vector.  
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Figure  5.9: Absolute correlation of columns of the matrix 𝐴 in some iterations of OMP 
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Figure  5.10: Absolute correlation of columns of the matrix 𝐴 in some iterations of LARS 
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5.5 Study the algorithms performance through three 
dimensions (3D) examples 

In this section, we study the performance of OMP and LARS from different perspective by using 

three dimensional systems. We create two different examples of underdetermined linear system 

with 𝑚 = 3, 𝑛 = 6, and 𝑘 = 2. Then, we use OMP and LARS to reconstruct the sparse vector of 

these examples. We illustrate the updating process of algorithms at each iteration in three 

dimensions (3D) view. 

  In both examples, we generate the matrix 𝐴 and the sparse vector 𝑥 by using Gaussian 

distribution in the same way we did in Section  5.3. We multiply the matrix 𝐴 by the sparse 

vector 𝑥 to obtain the measurement vector 𝑦 as expressed in Equation ( 5.9). Now, by having the 

matrix 𝐴 and the vector 𝑦, we use OMP and LARS to reconstruct the sparse vector 𝑥. To 

determine the performance of the algorithms, we compute MSE between the original sparse 

vector 𝑥 and the reconstructed one by the algorithms as stated in Equation ( 5.10). 

Example 5.1: we generate the matrix 𝐴 in this example to have columns that are slightly 

correlated. To quantify the correlation between columns of the matrix 𝐴, we use the mutual 

coherence 𝜇 which is computed as follows: 

 𝜇 ≝𝑎𝑟𝑠 𝑚𝑎𝑥
𝑖≠𝑗

�< 𝑎𝑖 ,𝑎𝑗 >� ( 5.12) 

where 𝑎𝑖 is the 𝑖𝑡ℎ column of the matrix 𝐴  

In this example, 𝜇 = 0.5124 which is considered a fairly small. The columns of the matrix 𝐴 and 

the measurement vector 𝑦 are drawn in Figure  5.11. We illustrate the approximation change 

(𝐴∆𝑥) to the vector 𝑦 at each iteration of OMP and LARS in Figure  5.12. We notice that both 

OMP and LARS obtain almost the same MSE which is approximately zero. This implies that 
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OMP and LARS achieve the same performance and succeed to reconstruct the sparse vector 

when columns of the matrix ܣ are slightly correlated. 

 

 : Columns of the matrix ܣ    
 : Measurement vector ݕ 

Figure  5.11: The columns of the matrix ܣ and the measurement vector ݕ in Example 5.1  
 

  

 Equally important, for lower dimensional underdetermined linear systems, a rectangular 

matrix (matrix contains more columns than rows) that has small mutual coherence ߤ is rarely 

existed and hard to find. To obtain the matrix ܣ ∈ ܴଷൈ଺ that has ߤ ൌ 0.5124 in this example, we 

generate 10 million matrices by using Gaussian distribution, and select the matrix that has the 

smallest mutual coherence ߤ. 
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OMP LARS 
iteration 1 iteration 1 

iteration 2 iteration 2 

ܧܵܯ ൌ 4.1087 ൈ 10ିଷଷ ܧܵܯ ൌ 4.6222 ൈ 10ିଷଷ 

 : Inactive columns of the matrix ܣ    
 : Active columns of the matrix ܣ  
 : Measurement vector ݕ 
 : Approximation change (ݔ∆ܣ) 

Figure  5.12: The approximation change (ݔ∆ܣ) at each iteration of OMP and LARS in Example 
5.1, where ߤ ൌ 0.5124, and the approximation change ൌ ܣ ൈ  ݔ∆
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Example 5.2: we generate the matrix ܣ in this example to have columns that are highly 

correlated, and ߤ ൌ 0.8885. The columns of the matrix ܣ and the measurement vector ݕ are 

drawn in Figure  5.13. As we did in Example 5.1, we illustrate the approximation change (ݔ∆ܣ) 

to the vector ݕ at each iteration of OMP and LARS as shown in Figure  5.14. From the figure, we 

observe that the value of MSE in the case of LARS is very small (almost zero), while in OMP, it 

is high. Therefore, this implies that LARS succeeds to reconstruct the sparse vector ݔ, while 

OMP fails. Equally important, LARS converges to the final solution in two iterations, while 

OMP requires three iterations to converge to the final solution. As a result, LARS achieves a 

better performance than OMP when columns of the matrix ܣ are highly correlated. 

 

 : Columns of the matrix ܣ    
 : Measurement vector ݕ 

Figure  5.13: The columns of the matrix ܣ and the measurement vector ݕ in Example 5.2 
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OMP LARS 
iteration 1 iteration 1 

 

iteration 2 iteration 2 

iteration 3  
 

ܧܵܯ ൌ ܧܵܯ 0.0384 ൌ 2.7785 ൈ 10ିଷଵ 
 : Inactive columns of the matrix ܣ    
 : Active columns of the matrix ܣ  
 : Measurement vector ݕ 
 : Approximation change (ݔ∆ܣ) 

Figure  5.14: The approximation change (ݔ∆ܣ) at each iteration of OMP and LARS in Example 
5.2, where ߤ ൌ 0.8885, and the approximation change ൌ ܣ ൈ  ݔ∆

-1
0

1

-1

0

1
-1

0

1

-1
0

1

-1

0

1
-1

0

1

-1
0

1

-1

0

1
-1

0

1

-1
0

1

-1

0

1
-1

0

1

-1
0

1

-1

0

1
-1

0

1



 

72 
 

Chapter 6 

6 Conclusion and Future Work 

In this thesis, we developed a comprehensive comparison between two popular algorithms (OMP 

and LARS) that have been widely used for finding a sparse solution of an underdetermined linear 

system. We provided a thorough description of both algorithms. OMP attempts to find an 

approximate solution for the l0-norm minimization problem, while LARS solves the l1-norm 

minimization problem. Although OMP and LARS solve different minimization problems, they 

both depend on an underlying greedy framework. They start from an all-zero solution, and then 

iteratively construct a sparse solution based on correlation between columns of the matrix 𝐴 and 

the current residual vector. They converge to the final solution when norm of the current residual 

vector approaches zero. We showed that both OMP and LARS have almost similar algorithmic 

steps after reformulating the corresponding analytical expressions. Nevertheless, they are 

different in maintaining the active set and updating the solution vector. To maintain the active 

set, LARS adds or drops columns to/from the active set, while OMP always adds columns to the 

active set and never removes them from the set. Moreover, OMP and LARS adopt different ways 

to update the solution vector. At each iteration, OMP updates the solution coefficients to the 

largest possible value that makes the residual vector is orthogonal to all active columns. In 

contrast, LARS updates the solution coefficients to the smallest possible value that forces a 

column from the inactive set to join the active set, or drops a column from the active set.  

 In addition, we analyzed the performance of OMP and LARS in terms of convergence time 

and accuracy of the final solution. In general, OMP converges to the final solution in less number 

of iterations than LARS because LARS may drop columns from the active set at some iterations, 
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while OMP does not. Equally important, LARS computes the solution update vector (the vector  

∆𝑥) which is used to update the solution vector 𝑥, in many steps, while OMP computes it in one 

step. Therefore, LARS executes many additional steps that OMP does not have. As a result, 

OMP requires less time than LARS to converge to the final solution. 

 However, in some scenarios especially when columns of the matrix 𝐴 are highly correlated, 

LARS can successfully reconstruct the sparse vector, while OMP fails. The reason behind this is 

that OMP does not select columns that are highly correlated with columns that have already been 

in the active set, even though these columns are important to recover the sparse vector. In 

contrast, LARS does not face this problem.  

  With respect to future work, we recommend to study the impact of mutual coherence of the 

matrix 𝐴 on the performance of OMP and LARS for different measurement size 𝑚 and different 

sparsity 𝑘. In addition, we believe that there is a good room to improve the implementations of 

OMP and LARS, and propose a new algorithm that combines benefits of OMP and LARS.  
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Appendix A 

In this appendix, we formulate our derivation of penalized least square problem expressed by 

Equation ( 4.2), which can be exploited to compute active entries of the solution vector in the 

basic LARS algorithm that was stated in Section  3.1. Indeed, Equation ( 4.2) is used to compare 

LARS with OMP in [34]. We start the derivation by recalling Equation ( 3.6) that computes the 

updated direction of LARS: 

 𝐴𝐼𝑇𝐴𝐼𝑑𝑡(𝐼) = 𝑠𝑖𝑠𝑛�𝑐𝑡(𝐼)� (A.1)  

where 𝐼 is the active set at the iteration 𝑡. 

Multiply Equation (A.1) by the step size 𝛾𝑡 which is a scalar: 

 𝐴𝐼𝑇𝐴𝐼  𝛾𝑡𝑑𝑡(𝐼) = 𝛾𝑡 𝑠𝑖𝑠𝑛�𝑐𝑡(𝐼)� (A.2)  

From Equation ( 3.10), we obtain:- 

 𝛾𝑡𝑑𝑡(𝐼) = 𝑥𝑡(𝐼) −  𝑥𝑡−1(𝐼) (A.3)  

Substituting (A.3) into (A.2): 

𝐴𝐼𝑇𝐴𝐼(𝑥𝑡(𝐼) −  𝑥𝑡−1(𝐼)) = 𝛾𝑡 𝑠𝑖𝑠𝑛�𝑐𝑡(𝐼)� 

 𝐴𝐼𝑇𝐴𝐼  𝑥𝑡(𝐼) = 𝐴𝐼𝑇𝐴𝐼 𝑥𝑡−1(𝐼) + 𝛾𝑡 𝑠𝑖𝑠𝑛�𝑐𝑡(𝐼)� (A.4)  

Recall the residual vector 𝑟 at iteration 𝑡 − 1 is computed by the following equation: 

 𝑟𝑡−1 = 𝑦 − 𝐴𝑥𝑡−1 (A.5)  

Because only active entries of 𝑥𝑡−1 are nonzeros, we can rewrite (A.5) as follows: 

 𝑟𝑡−1 = 𝑦 − 𝐴𝐼 ̅𝑥𝑡−1(𝐼)̅ (A.6)  

where 𝐼 ̅is the active set at iteration 𝑡 − 1. 
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As OMP, the basic LARS always adds columns to the active set and never removes them from 

the set. Therefore, the active set 𝐼 at iteration 𝑡 has one column that is not included in the active 

set 𝐼 ̅of the previous iteration (𝑡 − 1). The coefficient of 𝑥𝑡−1 that corresponded to this column is 

zero. Hence, we obtain: 

 𝐴𝐼 ̅𝑥𝑡−1(𝐼)̅ = 𝐴𝐼𝑥𝑡−1(𝐼) (A.7)  

 By substituting (A.7) into (A.6), we obtain: 

 𝐴𝐼 𝑥𝑡−1(𝐼) = 𝑦 − 𝑟𝑡−1 (A.8)  

Using (A.8) in (A.4): 

𝐴𝐼𝑇𝐴𝐼 𝑥𝑡(𝐼) = 𝐴𝐼𝑇(𝑦 − 𝑟𝑡−1) + 𝛾𝑡 𝑠𝑖𝑠𝑛�𝑐𝑡(𝐼)� 

 𝐴𝐼𝑇𝐴𝐼 𝑥𝑡(𝐼) = 𝐴𝐼𝑇𝑦 − 𝐴𝐼𝑇𝑟𝑡−1 + 𝛾𝑡 𝑠𝑖𝑠𝑛�𝑐𝑡(𝐼)� (A.9)  

The active entries of the correlation vector are computed via: 𝑐𝑡(𝐼) = 𝐴𝐼𝑇𝑟𝑡−1. Hence we can 

rewrite Equation (A.9) as follows: 

 𝐴𝐼𝑇𝐴𝐼  𝑥𝑡(𝐼) = 𝐴𝐼𝑇𝑦 − 𝑐𝑡(𝐼) + 𝛾𝑡 𝑠𝑖𝑠𝑛�𝑐𝑡(𝐼)� (A.10)  

Substituting 𝑐𝑡(𝐼) of ( 3.4) into (A.10): 

𝐴𝐼𝑇𝐴𝐼 𝑥𝑡(𝐼) = 𝐴𝐼𝑇𝑦 − 𝜆𝑡 𝑠𝑖𝑠𝑛�𝑐𝑡(𝐼)� + 𝛾𝑡 𝑠𝑖𝑠𝑛�𝑐𝑡(𝐼)� 

 𝐴𝐼𝑇𝐴𝐼 𝑥𝑡(𝐼) = 𝐴𝐼𝑇𝑦 − (𝜆𝑡 − 𝛾𝑡) 𝑠𝑖𝑠𝑛�𝑐𝑡(𝐼)� (A.11)  

Recall Equation ( 3.20): 𝜆𝑡+1 = 𝜆𝑡 − 𝛾𝑡, we can rewrite (A.11) as follows: 

𝐴𝐼𝑇𝐴𝐼 𝑥𝑡(𝐼) = 𝐴𝐼𝑇𝑦 − 𝜆𝑡+1 𝑠𝑖𝑠𝑛�𝑐𝑡(𝐼)� 

This leads to the penalized least square problem expressed by Equation ( 4.2). 
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