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ABSTRACT

AN INVESTIGATION OF USING COLLATERAL INFORMATION

TO REDUCE EQUATING BIASES OF THE POST-STRATIFICATION EQUATING

METHOD

By

Sungwom Ngudgratoke

In many educational assessment programs, the use of multiple test forms

developed from the same test specification is very common because requiring different

examinees to take different test forms of the same test makes it possible to maintain the

security of the test. When multiple test forms are used, it is necessary to make the

assessment fair to all examinees by using a statistical procedure called “equating” to

adjust for differences in the test forms. If equating is successfiJlly carried out, equated

scores are comparable as if they were from the same test form.

Two commonly used observed score equating methods that use the Non-

Equivalent groups with Anchor Test (NEAT) design to collect equating data include the

chain equating (CE) method and the post-stratification equating (PSE) method. It has

been documented that the CE method produced smaller equating biases than the PSE

method, when two groups of examinees differ greatly in abilities. Therefore, the CE

method has been used more widely in practice, even though the PSE method is more

theoretically sound than the CE method. Larger equating biases are due to the fact that

the anchor test score fails to remove unintended differences between groups of

examinees.



Aiming to reduce equating biases of the PSE method, this study used collateral

information about examinees as a new way to construct synthetic population fimctions,

rather than a single variable such as the anchor test score or the anchor test true score.

Collateral information used in this study included the anchor test score, sub-scores, and

examinees’ demographic variables. This study investigated two different methods of

using such collateral information about examinees to improve equating results of the PSE

method. These two methods included the propensity score method (Rosenbaum & Rubin,

1983) and the multiple imputation method (Rubin, 1987). Both simulation data and

empirical data were used to develop the equating function to explore if it was feasible to

use collateral information to reduce equating biases under different conditions including

test length, group differences, and missing data treatment.

The results from simulation data show that sub-scores or sub-scores combined

with other collateral information in a form of propensity scores had a potential to reduce

equating biases for long tests, when there were group differences in abilities. However,

demographic variables had a potential to reduce equating biases for the multiple

imputation method.
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CHAPTER 1

INTRODUCTION

1.1 Background

Equating is a statistical procedure that is used to adjust scores on test forms (e. g.,

X and Y) so that scores on the forms can be used interchangeably (Kolen & Brennan,

2004) as if scores are from the same test forms. Without equating, examinees taking the

easier test form will have an unfair advantage. When test score equating is performed,

standard errors of equating should be estimated to quantify equating errors (AERA, APA,

NCME, 1999). Accurate equating results not only facilitate test score interpretations but

also enhance fair comparisons across individuals, states, and countries.

The Non-Equivalent Groups with Anchor Test (NEAT) design is commonly used

in equating practice because the anchor test score (A) can adjust for preexisting

differences between examinees. In this design, two operational tests to be equated, X and

Y, are given to two samples of examinees from potentially different test populations

(referred to as P and Q). In addition, an anchor test, A, is given to both samples from P

and Q. In observed score equating, when equating data are collected through the NEAT

design, test score equating can be performed using a variety ofobserved score equating

methods such as the Tucker method, the Levine observed score method, the Levine true

score method, the post-stratification method, the Braun and Holland linear method, and

the chain equipercentile method. Among these methods, the post-stratification equating

(PSE) method (von Davier, Holland & Thayer, 2004)~which is also called the “frequency

estimation method” (Kolen & Brennan, 2004) and the chain equipercentile (CE) method

are two important methods commonly used in practice (Holland, Sinharay, von Davier, &



Han, 2007). The role of an anchor test (A) in the PSE method is not only to remove

differences between P and Q but also to estimate score frequencies of the designed

missing data in the NEAT design so that synthetic population functions required to derive

comparable scores using the equipercentile equating function can be constructed (Braun

& Holland, 1982).

The PSE method is based on a strong theoretical foundation that centers on the

generalization of equating function linking X-scores to Y-scores (Harris & Kolen, 1990;

Kolen, 1992), making it more appealing than the CE method. More specifically, the

equating function is computed for a single population. When P and Q differ greatly in

abilities, we do not know for what population the equating function is computed. The

PSE method defines the target population in the form of synthetic population fimctions

(T) which are mixtures ofboth P and Q. In contrast, the CE method is considered to be

less sound in its theoretical foundation because it does not define any synthetic

population functions.

Even though the PSE is more theoretically sound than the CE method, it produces

unfavorable equating functions and researchers prefer the CE method to the PSE method.

Braun and Holland (1982) noted that the PSE and CE methods give different results. The

CE is more preferable than the PSE method since it produces smaller equating bias.

Holland, Sinharay, von Davier, and Han, (2007); and Wang, Lee, Brennan, and Kolen

(2008) found that when groups differ in abilities, the PSE method produces larger

equating bias but less standard errors of equating than does the CE method. This might be

because the anchor test fails to remove the bias to which the nonequivalence ofP and Q



can lead. The bias due to preexisting differences between groups that cannot be removed

by the anchor test precludes valid interpretations and fair uses of test scores.

To reduce equating bias when P and Q differ greatly in abilities, the propensity

score (Rosenbaum & Rubin, 1983) can be a desirable method to augment the PSE

method (Livingston, Wright, & Dorans, 1993). In the equating context, the propensity

score is the estimated conditional probability that a subject will be assigned to a particular

test form, given a vector of observed covariates (e.g., demographic variables and anchor

test scores). Covariates used to estimate examinees’ propensity scores are called

“collateral information”, which is available information about examinees in addition to

their item responses (Mislevy, Kathleen, & Sheehan, 1989). Any examinees with equal

propensity scores are homogeneous in terms of covariates. Propensity scores computed

from both demographic variables and anchor test scores may be intuitively advantaged

because score frequencies ofmissing data may be better estimated and thus synthetic

population firnctions might be precisely estimated, resulting in the more accurate

equating function. Because more covariates have a potential to handle missing data in the

NEAT design, less equating bias is expected. Therefore, the propensity score method

may be another equating method alternative to the method that uses a special anchor test

(Sinharay & Holland, 2007) and the method that uses the anchor test true score (Wang &

Brennan, 2009). The Sinharay and Holland’s method uses an anchor test composed of a

large number ofmedium difficulty items, and it is appropriate for equating that uses an

external anchor test only because the special anchor test construction may not meet the

test specification well (Sinharay & Holland, 2007).



However, it is found that when groups differ greatly, using a few demographic

variables in combination with anchor test scores does not improve equating accuracies

(Paek, Liu, & Oh, 2008). Therefore, it is necessary to find more collateral information

about examinees that is available from the test to adjust for group differences. The

variable that is promising in this regard is the subscore which is a score on the subsection

of the test. For example, a test measuring mathematics proficiency may contain

subsections such as algebra, functions, geometry, and number and operation, and a

subscore is the score assigned to a subsection of the test. Subscore reporting usually

provides more detailed diagnostic information about examinees’ performance that may be

useful, for example, in making individual instruction placement and remediation

decisions (Tate, 2004) and in formatively supporting teaching and learning (Dibello &

Stout, 2007). In equating, subscores are expected to give accurate equating functions

since high correlations between operational test scores and scores on subtests make them

feasible to compute missing data on the operational test through an existing missing data

treatment method such as the multiple imputation method (e.g. Rubin, 1987; Schafer,

1997). Therefore the combination of anchor test scores, subscores, and demographic

variables are worth investigating if it could improve the PSE equating method.

In this study, demographic variables, the anchor test scores, and subscores are

called collateral information. To improve the accuracy ofthe PSE equating results, this

study proposed using two different approaches of using this collateral information to

equate test scores using the PSE method. These two approaches include the propensity

scores (Rosenbaum & Rubin, 1983) and the multiple imputation method (Rubin, 1987;

Schafer, 1997). These two methods were used to fill in missing data in the NEAT design.



For the propensity score method, demographic variables, subscores and the anchor test

score were combined into examinees’ propensity score with which the anchor test score

will be replaced in the PSE method. For the multiple imputation method, demographic

variables, subscores, and the anchor test scores were used as covariates to fill in missing

data.

1.2 Research Questions

Using both real and simulated data, this study explored the feasibility of using

combinations of demographic variables, anchor test scores, and subscores in two different

ways to increase the precision of the PSE method. The main research question concerns

the potential use of subscores combined with demographic variables and an anchor test

score in improving the accuracy of the PSE equating results. In this study, the “traditional

PSE method” refers to the PSE method that uses the anchor test score in the PSE equating

process (von Davier, Holland, & Thayer, 2004). This method is the same as the frequency

estimation method (Kolen & Brennan, 2004). The PSE method that replaces anchor test

scores with the anchor test true score (Wang & Brennan, 2009) is called the “modified

PSE method” in this study to contrast between the original PSE method and the modified

PSE method, even though it is originally called the “modified frequency estimation

method” by Wang and Brennan. The more specific research questions are as follows:

1. How accurate are predicted score frequencies of missing data when the

proposed methods are used to compute missing data?

2. How comparable are predicted score frequencies of missing data produced by

the proposed methods and those produced by the traditional and the modified

PSE methods?



. How do the proposed methods influence equating bias, and standard errors of

equating?

. How comparable are the proposed methods to the traditional and modified

PSE methods in terms of equating bias, and standard errors of equating?



CHAPTER II

LITERATURE REVIEW

This study explored benefits of using collateral information as an alternative

approach to construct synthetic population functions that are required for equating test

scores using the post-stratification equating (PSE) method. The PSE method is an

equating method that uses the non-equivalent groups with anchor test (NEAT) design.

The PSE method and chain equipercentile equating (CE) method are two important

equipercentile function-based equating methods that use the NEAT design. This study

focuses on the PSE method only, because it is developed based on more sound theoretical

foundation than the CE method. The improvement of the PSE is needed because it has

been shown in equating literature that even though it is based on a strong theoretical

foundation, it produced large equating biases than the CE method, especially when

groups differ greatly in abilities. In this regard, this study used collateral information, as

an alternative approach to improve equating results of the PSE method. This study

explored the uses of collateral information the PSE method in two different ways, which

will be explained in the next section.

This chapter reviews concepts and methodologies relating to equating and the

development of the PSE method, and to the existing measurement and statistical

developments that used to develop the approaches to enhancing PSE equating results in

this study. Specifically, there are 12 related sections presented in this chapter which are

outlined as follows:

Section 2.1 Collateral information

Section 2.2 General idea and the importance of test score equating.



Section 2.3 Equipercentile equating function

Section 2.4 Basic idea of the non-equivalent groups with anchor test design

(NEAT).

Section 2.5 Importance of the synthetic population function

Section 2.6 Log-linear presmoothing technique and how it is important in test

equating

Section 2.7 Post-stratification equating (PSE) method and synthetic population

functions

Section 2.8 Method of sub-score estimation

Section 2.9 Propensity scores and the logistic regression approach to propensity

score estimation.

Section 2.10 Multiple imputation method

Section 2.11 Statement of research problem

Section 2.12 Goal of this study and the evaluation indices

2.1 Collateral Information

In test score equating, only test scores are involved in the equating process.

However, when groups of examinees differ greatly in terms of abilities, it is desire that

collateral information about examinees be included in the equating process to reduce

biases due to the group differences (Livingston, Dorans, Wright, 1990; Kolen, 1990).

Collateral information is available information about examinees in addition to their item

responses (Mislevy, Kathleen, & Sheehan, 1989). Familiar examples include

demographic variables, and educational variables such as opportunity to learn variables



and grade received. Collateral information used in this study includes subscores,

demographic variables, opportunity-to-leam variables, and the anchor test score.

2.2 Equating

The use of multiple test forms of the same test is a common practice by many

large-scale assessment programs because of security issues. For example, administering

different forms of the same test to different groups of test takers ensures that a large

portion of items in the item bank will not be exposed to examinees. However, when

multiple forms are used, it is possible that one test form could be harder than another.

This existence of test forms with unequal difficulty raises a question regarding the

fairness of testing which is a major concern for most testing programs. To make

assessments fair to all examinees, it is therefore necessary to adjust for unintended

difficulties that are left imbalanced across test forms by using a statistical adjustment

called equating. Equating is a statistical method used to produce scores that can be used

interchangeably (Kolen & Brennan, 2004) and one of its advantage is that when equating

is successfully done, it produces comparable scores that are fair to test takers who take

different test forms with unequal difficulty.

Equating and linking are two different terms that express how scores on different

test forms are transformed to each other. Even though they have different meaning, both

of these terms are best understood among other score transformation methods such as

anchoring, calibration, statistical moderation, scaling, and prediction (Linn, 1996). While

linking is a generic name for score transformation, equating is the most demanding type

of linking (Linn, 1996). Transforming scores from one test form to scores on another test

form cannot be called equating if it does not satisfy requirements of equating. That is,



tests to be equated should meet requirements as stated by Lord (1980) and by Doran and

Holland (2000). Broadly speaking, tests being equated to each other should measure the

same construct, have equal reliability, and also satisfy three requirements: symmetry,

equity, and population invariance.

The Standard 4.1 10fStandardsfor educational andpsychological testing (AERA,

APA, & NCME, 1999) requires that when test score equating procedures are used to

produce comparable scores, detailed technical information about the equating method and

data collection method used should be provided, and indices measuring the uncertainty in

the estimated equating function should also be estimated and reported. In practice, the

accuracy of equating is commonly assessed through standard errors of equating (von

Davier, Holland, & Thayer, 2004; Kolen & Brennan, 2004) that reflect the degree of

sampling errors in equating firnctions. Equating biases are also indices used to assess the

quality of equating.

2.3 The Equipercentile Equating Function in the Observe-Score Equating

The derivation of the equipercentile equating function is detailed in this section

because it is used by many observed score equating such as the PSE and the CE methods.

Test score equating methods can be divided into two different categories: the observed

score equating and the item response theory (IRT) equating. This study focuses on the

observed score equating method. The most important component of observed score

equating methods is the equipercentile equating function (von Davier, Holland, &

Thayer, 2004).

The equipercentile equating function is developed by identifying scores on the

new form (Y) that have the same percentile ranks as scores on the old form (X). For
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example, to find a form Y equivalent of a Forrn X score, one has to start by finding the

percentile rank of the Form Xscore. Then it has to do with finding the Form Y score that

has the same percentile rank. Algebraically, the equipercentile equating function for

converting Y scores to X scores, eX (y) , is obtained by (Kolen & Brennan, 2004)

9X (y) = F“[G<y>l,

where x and y are, respectively, a particular value ofX and Y, F—1 is the inverse of the

cumulative distribution function F, G is cumulative distribution function of Y.

2.4 The Non-Equivalent Groups with Anchor Test Design (NEAT)

A wide range of test equating designs can be used for collecting equating data but

the non-equivalent groups with anchor test (NEAT) design (von Davier, Holland, &

Thayer (2004) which is also called common-items non-equivalent groups design (Kolen

Brennan, 2004) is the most frequently used in practice. It is because of the fact that when

groups are nonequivalent, some information is needed to adjust for group differences and

typically that information is scores on the anchor test. In the NEAT design (see Table 1),

the two operational tests to be equated, Xand Y, are given to two samples of examinees

from potentially different test populations (referred to as P and Q). In addition, an anchor

test, A, is given to both samples from P and Q.

Samples from P and Q that take the test at different administrations are generally

self selected and thus might differ in systematic ways. One of the well-known systematic

differences between P and Q are ability differences. Adjustments are needed to

compensate for such differences using the appropriate anchor test which can be either

internal or external test. The internal anchor test is a part ofX and Y, while the external

11



anchor test is used only to adjust for group differences but it is not used for scoring the

test. It is recommended that the anchor test should be proportionally representative of the

two tests in content and statistical characteristics.

When groups differ greatly, all equating methods tend to produce large equating

errors because the anchor test fails to adjust for group differences. In practice, the degree

of the precision of equating results could be assessed through estimates of standard errors

of equating (SEE).

Table 1. Non-Equivalent groups with Anchor Test Design (NEAT)

 

 

 

Population Sample X A Y

P 1 V V Not observed

Q 2 Not observed V V

       

It is suggested that to enhance the equating performance of the anchor test in

producing more accurate equating results, the construction of the anchor tests should be

specially created so that their correlations with the tests to be equated are maximized

(Sinharay and Holland (2006, 2007). More specifically, the anchor test can be

constructed by embedding items with moderate difficulty. Doing so relaxes the

requirement of equal distributions of statistical characteristics between the anchor tests

and the operational tests. This newly suggested anchor test construction provides an

alternative guideline for constructing the anchor test as it is an approach for enhancing

the precision ofthe test equating function.
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2.5 The Importance ofSynthetic Population

The designed missing data as parts of the NEAT design makes available a variety

of equating methods that use the NEAT design. Because X is never observed for

examinees in Q and Y is never observed for examinee in P (see Table 1), different types

ofmissing data treatments are required to handle these missing data. For these reasons,

there are several different methods of test score equating under the NEAT design

(Holland, & Dorans, 2006) such as the Tucker method, and the Levine method. However,

two commonly used observed score equating methods that use the NEAT design are the

chain equipercentile (CE) method and the post-stratification equating (PSE) method

which is also known as the frequency estimation method (Kolen & Brennan, 2004).

These two methods are different in the way that the anchor test score is used to produce

an equating function and also in different assumptions about missing data made to handle

missing data arising when the NEAT design is used to collect equating data (Holland,

Sinharay, von Davier, & Han, 2007).

Unlike the CE, the PSE method is considered a strong equating method because it

is more sound in terms of the developed theoretical foundation (Haris, & Kolen, 1990;

Kolen, 1992), making this equating method more appealing than the CE. Braun and

Holland (1982) noted that there are theoretical problems with the CE which center on the

definition of the equipercentile equating function. That is, equipercentile relationships are

defined for a particular group of examinees, as in the PSE method. However, the

equipercentile relationship between Xand Y for the CE method is not defined for a

particular group. More specifically, the PSE method uses synthetic population functions

defined as the weighted mixture ofP and Q as an important tool to equate test scores,
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while the CE method does not define any synthetic population function (Kolen, 1992).

The reason for employing synthetic population functions was detailed by Braun and

Holland (1982). The basic reason of this development is that the NEAT design uses “two

samples ofP and Q” which sometimes are nonequivalent groups—they are different to

some degrees depending on for example how well they are sampled. However, an

equating function for the NEAT design is typically viewed as being defined for a single

population. To obtain a “single” population for defining a single equating relationship,

therefore P and Q must be combined (Kolen & Brennan, 2004). Given the appeal of the

synthetic population function, this study focuses on the PSE method.

To obtain a single population for defining an equating relationship, Braun and

Holland (1982) used the target population (7) or the synthetic population function which

is the weighted mixture ofP and Q to combine P and Q. T is an important ingredient of

the PSE method for performing equating. T is a mixture ofboth P and Q,

T 2 WP + (1 - w)Q, where w is the weight given to P. The weight can be any number

raging from 0 to 1 but in Holland, & Rubin (1982) the usual w is a proportion of sample

size from P relative to the total sample size (P+Q) defined by w = Np /(Np + NQ) ,

where Np and NQ represent the sample sizes ofP and Q, respectively.

2.6 Presmoothing the Score Distribution

In computing equipercentile equating functions, the estimates ofpopulation score

distributions can be used in place of the observed sample distributions. The estimated

score distributions are typically much smoother than the distributions observed in the

sample (Livingston, 1993). Therefore, the estimated distributions are often described as
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smoothed, and the process is often referred to as smoothing. The PSE method uses

smoothed distributions in computing equating relationship.

Log-linear models (Holland & Thayer, 2000) are a smoothing model that offers

the user a flexible choice in the number ofparameters to be estimated fiom the data. The

log-linear smoothing model is detailed as follows.

Assume there is a random variable X that defines the test form Xwith possible

values x0 ,..., xj , withj is the possible score values, and the corresponding vector of

observed score frequencies n=( n0,..., nj )t that sum to the total sample size N. The

vector of the population score probabilities p=( p0 ,..., pj )t is said to satisfy a log-linear

model if

loge(pJ-) = a+uj +bjfl

Where the ( pj) are assumed to be positive and sum to one, [9j is a row vector of

constants referred to as score functions, fl is a vector of free parameters, uj is a known

constant that specifies the distribution of the ( p1') when ,3 = 0, and a is a normalized

constant that ensures that the probabilities sum to one.

When uj is set to zero, the log-linear model used to fit a univariate distribution is

1 .

108.2(1)!) = 0+ Zfliocjy'

i=1
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The terms in this model can be defined as follows: the (xj )i are score functions of the

possible score values of test X (e. g., x1-, x37 ,..., xI-) and the ,61- are free parameters to be

estimated in the model fitting process. The value of1 determines the number of moments

of actual test score distribution that are preserved in the smoothed distribution. For

example, if[=4 then the smoothed distribution preserves the first, second, third, and

fourth moments (mean, variance, skewness, and kurtosis) of the observed distribution.

Similarly, the bivariate distribution of the scores of two tests (e.g., X and Y) is

given by

I H G F

Iogxpfl.) = a + 21[are,->.- + hzlflyhonh + 21 Flag/omen!” ,
r: = g: =

Where pjk is the joint score probability of the score (xj , yk; score xj on test Xand

score yk on test Y). This model produces a smoothed bivariate distribution that preserves

I moments in the marginal (univariate) distribution ofX; H moments in the marginal

(univariate) distribution of Y; and a number of cross moments (G SI, F S H) in the

bivariate X-Y distributions.

2. 7 Post-Stratification Equating (PSE) Method

The process of equating test score using the PSE method is composed of two

major steps. The first step is to estimate score frequencies of missing data by invoking

conditional assumptions such that score frequencies of missing data are obtained for

constructing synthetic population functions. Anchor test scores are usually used as the

conditional variable for the PSE method (von Davier, Holland, & Thayer, 2004). So in
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this study, the traditional PSE method is referred to the PSE method that uses anchor test

scores. The second step is to use derived synthetic population firnctions to equate test

score on the new form (Y) to score on the old form (X) using the equipercentile equating

function. Equated scores are scores on the new form (Y) that have the same percentile

ranks as scores on the old form (X).

In order to create the T forX and Y (TX and Ty), score distributions from both

populations must be known but, as seen in Table 1, scores on X for the population Q and

scores on Y for the population P are however unavailable due to the characteristic of the

NEAT design (known as designed missing). Therefore some statistical assumptions need

to be invoked to obtain the score distributions for themissing parts to be used for

constructing the synthetic population.

Test equating methods that use the NEAT design employ different untestable

statistical assumptions about the uses of anchor test data to predict the scores on the

designed missing parts. The post-stratification equating (PSE) method assumes that the

conditional distributions ofXconditional on the anchor test data (A) are the same across

populations and it is similar for the distributions of Y conditional on A, which are

expressed by

f(xl A,P)=f(x|A,Q) (1)

and

f(y I 4Q) = f(y | AP) (2)

Let Ifxp be the marginal distribution ofX for the population P, fxQ the marginal

distribution ofX for the population Q, fyQ the marginal distribution of Y for the

17



population Q, and fyp the marginal distribution of Y for population P, then the

distributions for the synthetic population for Form X and Y are

f(x) = WXfo + (1* WX)fo (3)

f(y) =(1—erfyP+WnyQ- (4)

The quantities frQ in (3) and fyp in (4) are usually missing data (unobserved)

but can be obtained as follows by using assumptions (1) and (2):

fo:ZfOC’A:aiQ)=Zf(xiA:a9P)haQ (5)

fyp=2f(y,A=alP)=Zf(ylA=a,Q)hap (6)

where haQ and haP are marginal distributions ofA for the population Q and P,

respectively. The expression in (5) and (6) can be substituted into (3) and (4),

correspondingly, to provide expressions for the synthetic population as follows:

f(x) =WXfo+(1—WX)Zf(x| A=a,P)haQ (7)

f(y) =(1—WY12fO’IA=0,Q)haP+WnyQ (8)

Then equating scores on Xto scores on Y based on the synthetic population

functions can be carried out using the equipercentile equating fimction mentioned earlier.

This equating function is analogous to the equipercentile relationship for random groups

equipercentile equating function (Kolen & Brennan, 2004).

Even though the PSE is theoretically a promising method, under general realistic

conditions, the PSE equating relationship does not correspond to the relationship for the
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CE method (Braun & Holland, 1982). Moreover, it produces larger equating biases than

does the CE method (e.g., Wang, Lee, Brennan, & Kolen, 2008; Holland, von Davier,

Sinhary, & Han, 2008). The reason for this shortcoming might be because the PSE

method employs the less reasonable missing data assumption when compared to the CE

method (Holland, Sinharay, von Davier, & Han, 2008) which does not require any

assumption about missing data. It is later found that there is more evidence revealing that

using scores on the anchor test to make the conditional assumption as a way to deal with

the missing data assumption of the PSE method is less reasonable. By using anchor test

true scores to replace anchor test scores, the result of the PSE method is however much

improved and more accurate than that of the CE (Wang & Brennan, 2009). This method

is called the modified fi'equency estimation method.

Therefore, it comes to understand that when attempting to improve the equating

result of the PSE method it is better to use a good variable as a conditional variable to

predict frequencies of missing data in the NEAT design and anchor test true score is a

promising choice. Another attempt proposed by Holland and Sinharay (2007) is to

construct an anchor test with items with medium difficulty, but their method is

appropriate for an external anchor test only. However, the use of anchor test true score

may not be sufficient to remove biases when P and Q differ greatly.

This study proposes to use subscores combined with anchor test scores in two

different ways to handle rrrissing data and group differences. The two methods will be

explained in the next sections. Using both subscores and anchor test scores in this study is

based on the idea that using more information to predict score frequencies of missing data

is expected to increase the accuracy of equating results. By using the combination of
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subscores and anchor test score, the prediction of score frequencies of missing data could

be improved because high correlations between operational test scores and subscores I

could have a potential to increase the accuracy of the prediction of missing data. This

method is also viable when a number of good examinee demographic variables are not

available to compute the propensity score (Rosenbaum & Rubin, 1982) which is a

recommended conditional variable to be used to handle group differences (Livingston,

Dorans, & Wright, 1992). Although using examinees’ demographic variables combined

into examinees’ propensity score to adjust for group differences is recommended, a large

number ofdemographic variables is recommended because a smaller set of demographic

variables used to compute propensity scores could not add much value to the equating

results (Paek, Liu, &Oh, 2008)

2. 8. Subscore Estimation

There has been much interest in assisting students in determining which of the

skills within a particular domain of knowledge needs improvement and numerous testing

programs report subscale scores defined by the test design. Most of achievement tests

have subsections and a subscore is the score assigned to a subsection of the test. Subscore

reporting usually provides more detailed diagnostic information about examinees’

performance that may be useful, for example, in making individual instruction placement

and remediation decisions (Tate, 2004) and in formatively supporting teaching and

learning (Dibello & Stout, 2007).

Tests with multiple subsections imply a mulidimensional structure of tests. Using

scores on subtests may provide additional information about examinee performance

rather than using only total test scores. To estimate and report subscores of a test,
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sophisticated approaches such as multidimensional item response theory (MIRT) can be

used. Alternatively, subscores can also be estimated using the classical test theory (CTT)

where subscale scores are estimated from number-correct responses. The Haberman

method (2008) of subscore estimation, which is based on CTT, was adopted in this study

because it produced estimates of subscores that that were highly correlated with estimates

from the MIRT approach (Haberman, & Sinharay, 2008). Moreover, it is straightforward

and does not require much computation time.

The methodological approach to subscore estimation is illustrated and detailed in

Haberman (2008) and Sinharay, Haberman, and Puhan (2007). The Haberman method of

subscore estimation is typically a regression of true subscore on both observed score and

observed total score, and the linear regression of true subscore r“. on the observed

subscore SX and the observed total score Sz is estimated by

HEY I SXaSZ) = E(SX)+/5’(TX iSX 'SZ)[SX -E(SX)I

+.3(TX iSZ 'SX)[SZ —E(Sz)] ,

where

AUX iSX 'SZ) ___ 0(TX)1P(SX’TX)_P(TX’SZ)p(SXaSZ)I

otsx)r1-p2<SX,Sz)1

 

and

1m I 52 -SX) = “(’XWSZ’W- p(TX’SX)P(SXaSz )1

o<Sz>[1—p2<SX,SZ)]

This method of true subscore estimation gives weights to both the total score and

 

the subscore and provides a better approximation of a true subscore than is provided by

observed subscore alone (Haberman, 2008).
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2. 9. Propensity Score Method

Faced with the potential selection bias resulting from nonequivalent groups,

researchers performing observational studies have become increasingly interested in

statistical adjustments to the estimates of treatment effects based on the propensity score

(Rosenbaum & Rubin, 2006).

Propensity scores (Rosenbaum & Rubin, 2006) are the estimated conditional

probability that a subject will be assigned to a particular treatment, given a vector of

observed covariates. It is considered a one-dimensional summary of multidimensional

covariates such that when the propensity scores are balanced across the two groups, the

distributions of all covariates, X, are balanced in expectation and across the two groups

(D’Agostino & Rubin, 2006.). In other words, propensity score analysis is the process by

which the attempt is to balance nonequivalent groups by estimating each participant’s

conditional probability of treatment assignment using observed covariates. Then one can

use these probabilities for case matching, stratification, covariate adjustment, or

weighting ofobservation.

When brought to equating context, treatment assignment can be regarded as “test

form assignment” and the observed covariates are examinees’ demographic variables.

Even though examinees take different test forms, if they are homogenous in terms of the

propensity score, their distribution of covariates is the same, no matter what test form is

administered to them. It is therefore reasonable to assume that any groups of examinees

who have the same propensity scores would have identical distributions of their total

scores, which would be the realistic assrunptions for the PSE method. This argument is

similar to the assumption made by Wang and Brennan (2009). The only difference is that
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this study uses the propensity score as the conditional variable instead ofthe anchor test

true score used in Wang and Brennan.

In the observational study, propensity scores are computed from examinees’

information such as collateral information (Mislevy & Sheehan, 1989). Once the

examinee’s information is obtained, they are combined into the examinee’s propensity

score that represents an examinee’s likelihood ofbeing assigned to a particular test form

(e.g., test form 1). Using the propensity score estimation is a way to achieve this goal and

estimated propensity scores can be used for case matching, stratification, covariate

adjustment, or weighting of observation. In practice, the examinee information

commonly used to compute propensity scores are examinees’ demographic variables.

Ideally, the demographic variable that is appropriate for estimating propensity score

should be a variable that can distinguish the two groups of examinees.

This study used subscores, the anchor test score, and demographic variables to

compute examinees’ propensity scores. This set of examinees’ information is called

collateral information about examinees in this study. Once examinees’ collateral

information is obtained, they are combined into examinees’ propensity scores using a

statistical modeling. The propensity score has a value ranging from 0 to 1.00. Any

examinees taking different test forms and having equivalent propensity scores would be

balanced in collateral information.

Numerous propensity score methods such as logistic regression, classification

trees, bootstrap aggregation, and boosted regression have been proposed in the literature

in the observational study to estimate propensity scores (Luellen, 2007). Even though the

equating literature has not illustrated yet what method is the most effective in producing
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propensity scores, it was found in the observational study that the logistic regression

method worked well at reducing bias and tended to result in more precise estimates of

treatment effect with less potential for introducing bias (Luellen, 2007). Therefore, this

study used the logistic regression method to compute examinees’ propensity scores.

Logistic regression is a form of statistical modeling that is often appropriate for

binary outcome variables (that is, data yl- that take on the values 0 or 1). It describes the

relationship between a binary outcome variable and a set of covariates. A logistic

regression has applications in various fields such as medicine and social science research

and its advantages is that the model interpretation is possible through odds ratios, which

are functions of model parameter. The logistic regression function is given by

 

_ _ exp(a + ,Bx)

P(y_1|x)—l+exp(a+,6x)’

where P(y=1) denotes probability of Y=l , representing its dependence on values of

explanatory variables (A9, a denotes the intercept and ,6 the coefficient. When the model

holds with #0, the binary response is independent ofX. The simplest way to interpret a

logistic regression coefficient is in terms of “odds ratios.” If two outcomes have the

probabilities (p, 1-p), then p/(I-p) is called the odds. The log odds of logistic function

has a linear relationship (Agresti, 1990, p. 86) which is given by

10% Pro =1 I x)
 

Pr<y=01x>l=a+flx'

2.10 Multiple Imputation Method

Missing data often occurs due to factors beyond the control of the researcher.

Missing data may be planed. For example, they are part of the research design which is
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similar to missing data arising due to the NEAT design. Missing data can create biases in

parameter estimates that can lead to generalization problems. When missing data is

serious, valid inferences regarding a population of interest cannot be made. This occurs

when missing data is not missing at random. For example, it is missing in a manner

which makes the sample different from the population from which it was drawn.

There are several methods developed to handle missing data such as listwise

deletion, pairwise deletion, and imputation of missing data (replace the missing data with

estimated scores). The multiple imputation method (Rubin, 1987) has increasingly gained

interested to researchers in various fields because it has been shown to produce unbiased

parameter estimates (Schafer & Graham, 2002). In the multiple imputation method,

missing values for any variable are predicted using existing values from other variables

(covariates). The predicted values are called “imputes”, and are substituted for the

missing values, resulting in a full data set called an “imputed data set.” This process is

performed multiple times producing multiple imputed data sets (hence the term “multiple

imputation”). The results from m imputed data sets are analyzed using standard statistical

analyses and the results from m complete data sets are combined to produce inferential

results. It is recommended that small number ofm (e. g., 5 imputations) is adequate for

multiple imputation (Fichman and Cummings, 2003) but larger is better when fraction of

missing data is large (Schafer, 1997).

Currently, multiple imputation procedures are more accessible to researchers. One

can impute missing data using software such as SAS. The SAS V9.lsoftware ”(SAS

Institute, 2003) has a procedure “proc mi that enables one to impute missing data easily.
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2.10.1 Missing data mechanism

Data are missing for many reasons. For example, participants dropped out from a

longitudinal study, died, or refused to answer surveys. In some cases, missing data is a

result of a research design itself. The data collection that uses the NEAT design is an

example of a design that creates missing data.

Missing data are problematic because most statistical procedures require a value

for each variable. When a data set is incomplete, the data analyst has to decide how to

deal with it. Causes of missing data fit into three categories, which are based on the

relationship between the missing data mechanism and missing and observed values. The

first is missing completely at random (MCAR). MCAR means that the missing data

mechanism is unrelated to the values of any variables. The second is missing at random

(MAR). MAR means that the missing values are related to either observed covariates or

response variables. When missing data is MCAR or MAR, the missing mechanism is

ignorable and the best method to use to impute data is the multiple imputation method

that uses maximum likelihood (ML). The third is not missing at random (NMAR).

NMAR means that missing values depend on missing values themselves. When missing

data is NMAR, the missing data mechanism is non-ignorable.

When equating data are collected using the NEAT design, examinees taking X

will have missing values on Y, and examinee taking Y will have missing values on X.

Missing data of the NEAT design is said to be missing by design. Conventionally, it has

been assumed that this missing data mechanism is MAR (Holland & Rubin, 1982). That

is, score distributions of two different groups of examinees are assumed to be identical

when the anchor test score is held constant. When missing data mechanism is MAR, the
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anchor test score can be used to fill in missing values. This assumption is feasible when

there are no group differences in terms of ages or abilities. However, when groups differ

greatly in abilities, this assumption is likely to fail. In the literature, certain background

information has been recommend for matching observations when the anchor test score

fails to reduce equating biases due to group differences (Livingston, Dorans, & Wright, &

Dorans, 1992).

2.10.2 Introduction to the EM algorithm

The Expectation Maximization (EM) algorithm is a very general iterative

algorithm for ML estimation in complete-data problems. Analyses performed using the

EM algorithm assumes that missing data are MAR (Little & Rubin, 2002). Basically, the

EM algorithm employs iterative processes in which initial estimates of missing data

values are obtained. Basically, the EM algorithm employs these steps: (I) replace missing

values by using estimated values, (2) estimate parameters, (3) re-estimate the missing

values, assuming the new parameter estimates are correct, (4) re-estimate parameters, and

so fourth, iterating until convergences.

Each iteration ofEM consists of an E step (expectation step) and an M step

(maximization step). Each step has a direct statistical interpretation. Specifically, the E

step finds the conditional expectation of the missing data given the observe data and

current estimated parameters, and then substitutes these expectations for the missing data.

The M step performs ML estimation ofparameters just as if there were no missing data,

that is, as if they have been filled (Little and Rubin, 2002).
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One of advantages of the EM algorithm is that it can be shown to converge

reliably. However, when there is a large fraction ofmissing information, its rate of

convergence can be painfully slow.

2.11 The Statement ofResearch Problem and its Solution

It has been shown that the anchor test fails to remove equating biases when

groups differ greatly in abilities. To reduce equating biases produced by the PSE method,

the anchor test score should be replaced with the anchor test true score (Wang &

Brennan, 2009). Although the anchor test true score is an interesting choice in that it can

reduce equating biases of the PSE method, it is not clear if it would produce the accurate

equating result when samples ofP and Q differ greatly in abilities. Group differences

may arise due to some reasons. For example, two samples ofP and Q taking the test at

different administrations are “generally self selected and thus might differ in systematic

ways” (Peterson, Kolen, and Hoover, 1993). One of the well-known systematic

differences between the P and Q are the ability differences and therefore adjustments are

needed to compensate for such differences by using the appropriate anchor test. It was

found that when groups differ greatly in ability, all equating methods that use the NEAT

design produce larger equating biases and standard errors of equating because the

distributions of the scores on the anchor test in the two groups are not the same (von

Davier, 2003). Larger equating biases and standard errors of equating occur when the

anchor test score does not adjust for group differences well (Holland & Sinharay, 2007),

implying that the conditional assumptions about missing data do not hold in this case.

These findings imply that using only anchor test true score may produce less equating

accuracies when groups differ greatly in ability. The possible reason is that using a single
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piece of examinee information (e.g., anchor test score) to adjust for group differences

may not be achieved.

In order to obtain more accurate equating results when groups differ greatly, it is

suggested that multiple pieces of exarrrinee information such as their demographic

variables be used together with scores on the anchor test to make the conditional

distribution assumptions more appropriate. Such information may be combined into a

form of the propensity score (Rosenbaum & Rubin, 1983), where the examinee’ s

propensity score is a conditional probability that the examinee will be assigned to a

particular test form, given a vector of observed covariates. Paek, Liu, and Oh (2008)

found that using a small number of demographic variables did not add much value to

improve equating results. It has been suggested that it would be usefirl to choose

variables that distinguish the two groups of examinees to establish examinees’ propensity

scores (Livingston, Dorans, & Wright, 1990). The variables that are of interest include

variables that are related to opportunity-to-learn (Kolen, 1990).

This study proposed the use of subscores combined with the anchor test score and

demographic variables to improve equating results of the PSE method. Subscores are

increasingly attractive to researchers, educators, and policy makers for the diagnostic

purposes, but their premises have not been explored in the equating context. More

accurate equating results might be obtained by using subscores because high subscore to

total score correlations can produce more accurate score frequencies ofmissing data

needed for constructing synthetic population functions and deriving equating functions.

The use ofmore collateral information about examinees defined as available information
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about examinees in additional to test scores is an alternative to the traditional PSE

method that uses the anchor test score only.

Once collateral information is ready, it can be used to compute score frequencies

of missing data due to the design of the NEAT in two different ways. The first method

combines them into a form of examinees’ propensity scores with which the anchor test

score is replaced to compute such score frequencies. The second method is to use

observed collateral information to impute missing data using the existing multiple

imputation method. This study examined if these two different implementations improve

the PSE equating results.

2.12 The Goal ofThis Study and the Evaluation Indices

The goal of this study is to evaluate the effectiveness of using collateral

information about examinees for the PSE method in two different aspects: the accuracy

of the prediction of score frequencies of missing data; and the accuracy of equating in

terms of equating biases, and standard errors of equating. This investigation was explored

using both simulation data and the empirical data. The following details research

questions ofthis study.

The first question addressed in this study is related to whether the additional use

of the collateral information by the purposed methods (the propensity score method and

the multiple imputation method) offer the improvement to the synthetic population

functions. Specifically, to assess whether it adds the additional improvement to synthetic

population functions is actually to assess the improvement of the prediction of score

frequencies of missing data predicted by purposed methods. This can be assessed by

evaluating the agreement between observed score frequencies of hill data (pseudo-test
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data) and predicted score frequencies of missing data. This study adopted the agreement

indices ofHolland et a1 (2008), where these indices include Pearson [2 statistic, and

Likelihood ratio 12 statistic.

The second research question of this study is related to the performance of the

proposed methods of this study in terms of accuracy of equating fimctions. The

investigation is carried out by evaluating the equating biased and standard errors of

equating. The criterion equating function used for computing the equating bias is the PSE

equating function obtained by using the pseudo-test data or full data which is generated

data without missing data.

The third research question concerns the relative performance of the proposed

methods in establishing accurate equating functions. Given that the anchor test score and

the anchor test true score have been used as conditional variables to make missing data

assumptions of the traditional PSE method and the modified PSE method, respectively,

this investigation is carried out to evaluate the equating performance of the proposed

methods by comparing equating accuracy indices (the equating biases, and standard

errors of equating) produced by the proposed methods and the other methods. The

method that produces the smallest equating biases and standard errors of equating is the

most appropriate for test score equating. The criterion equating function used for

computing the equating bias is the PSE equating function obtained by equating test scores

using the pseudo-test data.
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CHAPTER III

RESEARCH METHOD

The data analysis of this study has two parts: simulation and empirical data

analyses. The simulation data were used to evaluate if it was feasible to use collateral

information about examinees to improve accuracy of the post-stratification equating

(PSE) method in terms of equating biases, and standards errors of equating. There were

three simulation factors investigated in this study including ability differences, test

length, and missing data treatment. For real data analyses, group differences and missing

data treatment were investigated.

This chapter details the research design, data generation, and the equating

procedure for the simulation study. For empirical data analysis, descriptive statistics and

the information about the empirical data set chosen for this study are presented. Note that

the data analyses for the empirical data were the same as those for the simulation data.

3.1 Research Design

This study examined the feasibility of using collateral information about

examinees (sub-scores, anchor test score, and examinees’ demographic variables) in two

different ways (the propensity score stratification method and the multiple imputation

method) as an effort to improve the accuracy of the PSE method. Simulation factors were

manipulated as follows.

3.1.1 Test Length

This study investigated two different test lengths, 60 and 40 items, which

represent long and short tests respectively. Details regarding how tests were generated are

presented in the next section.
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3.1.2. Ability Differences between Groups ofExaminees

Previous studies found that group differences had tremendous effects on both

standard errors of equating and equating biases. This study investigated two types of

ability differences between two groups of examinees. The first type was the condition in

which there were no ability differences between two groups of examinees. The second

type was the condition in which the two groups differ greatly in abilities. More

specifically, the group of examinees taking the second test form or the new test form (the

Q population) was a group that was more proficient than the group taking the old form

(the P population). How to manipulate the degree of group differences is presented in the

next section.

3.1.3 Missing data treatment

Two methods of missing data treatment used in this study included the propensity

score stratification method and the multiple imputation method. When collateral

information was obtained, they were manipulated in eight different sets to investigate

which collateral information set yielded best equating results for the PSE method. As

noted previously, this study pr0posed using collateral information about examinees in the

PSE method to compute score frequencies of missing data. These frequencies are needed

for equating test scores using the PSE method. It was interesting to examine what types

of collateral information provided better improvement to equating accuracy. Therefore,

for each of 8 conditions, the following different sets of collateral information were

investigated.

0 Anchor test score only (A), which is the traditional PSE method

0 Anchor test true score only (T), which is the modified PSE method
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0 Demographic variables only (D)

0 Anchor test and demographic variables (A&D)

- Anchor test score and sub-scores (S&A)

- Sub-scores and demographic variables (S&D)

0 Anchor test score, sub-scores and demographic variables (ALL)

This yielded 64 conditions (8*8=64) investigated in this study, and 100 data sets

were replicated for each condition for the propensity score method. But 20 data sets were

replicated for the multiple imputation method.

3.2 Data Simulation Procedure

This study equated scores on two test forms (X and Y). Tests with multiple

subsections imply a multidimensional structure. It was reasonable in this study to use a

compensatory multidimensional item response theory (MIRT) model (e.g., Reckase,

1997) to generate Xand Y scores. To generate examinees’ multiple test scores or sub-

scores which are sums of correct responses within each subsection, the items parameters

had to be generated. Then item responses for the five subtests were generated using the

compensatory MIRT model. The procedure for the item parameter generation was

explained in the next section.

The probability of a correct response to item i of examineej for the compensatory

MIRT model can be expressed as

exp[l .7a,'0j -bi]

1+ exp[l .7a;9j — bi] 3

 
P(Xi:I|6)=Ci+(I—Ci)

where
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Xiis the score (0, 1) on item i (i=1, ..., n),

a} is the vector of item discrimination parameters (slope),

b,- is the scalar difficulty parameter for item i,

C,- is the scalar guessing parameter for item i, and

6}- is the vector of trait parameters for personj (i=1, ..., N).

3. 2.1 Item Parameter Generation

It was assumed in this study that each of the two test forms to be equated had five

content areas (subsections). Item responses of two test forms (X and Y) were simulated

using a 5-dimensional IRT model. Note that there were 60 items for the long test

condition and 40 items for the short test condition. For the long test condition, 45 items

were Operational test items (each section had 15 items), and 15 items were the anchor test

items. For the short test condition, 30 items (each section had 6 items) were operational

test items, and 10 items were anchor test items. Item parameters were generated

separately for the long test and short test condition.

Specifically, item parameters for the 5-dimensional IRT model were generated as

follows. The vector of slope (a), difficulty (b), and guessing (c) parameters for the

compensatory MIRT model were generated using WINGEN2 (Han & Hambleton, 2007)

such that a~LN(O, .2), b~N(0,1), and c~BETA(8,32), where LN(,u, 0') designates a log-

nonnal distribution with mean p. and standard deviation 00f the logarithm, and BETA(a,

,6) a beta distribution with two parameters or and [3. Note that Form Xand Form Y item

parameters were generated using the same procedure. That is, two sets of item parameters

(forX and Y) were generate separately.
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Item parameters produced by the WINGEN2 were a complex structure, meaning

that items, approximately, measure multiple dimensions equally. This was inconsistent

with item specifications in real practices; items are usually purposely developed to

measure only one dimension. Therefore, modifications were made to produce a more

simple structure. This was done by allowing items to be dominantly loaded on a single

dimension only, by fixing a-parameters corresponding to other dimensions at .01. For

example, in the long test condition, items 1 to 12 had higher a-parameters on the first

dimension than dimensions 2 to 5, by replacing a-parameters for dimensions 2 to 5 with

.01. Similarly, items 13 to 24 had higher a-parameters on the second dimension than

other dimensions, by replacing a-parameters for dimension 1, and a-parameters for

dimensions 3 to 5 with .01.

After item parameters were generated, operational tests (X and Y) and the anchor

test (A) were constructed as follows. For the long test condition, the first 9 items from

each of the five subsections were chosen as operational test items. Therefore, there were

45 items chosen forX and 45 items chosen for Y. The last 3 items from each of the five

SUbsections were chosen as anchor test items. Therefore, there were 15 anchor test items.

For the short test condition, the first 6 items from each of the five subsections were

Chosen as operational test items. Therefore, there were 30 items chosen forX and 30

iterns chosen for Y. The last 2 items from each of the five subsections were chosen as

aIlehor test items. Therefore, there were 10 anchor test items.

To item parameters for an anchor test, the Form Y generating common item

parameters were replaced with the Form Xgenerating common item parameters. This

procedure was used for both long and short test conditions.

36



 

3. 2.2 6 Parameter Generation

This study did not simulate examinees’ demographic variables because simulating

demographic variables was infeasible due to the fact that the distribution ofdemographic

variables and abilities was unknown. Therefore, demographic variables from the real data

were used and merged with the simulated test data, pretending that simulated examinees

had those demographic variables. However, by doing so, the sample sizes in this study

could not be varied and were fixed at 1,361 and 1,266 for test form 1 and 2, respectively.

The five vector of theta estimates were obtained by calibrating empirical data

using a multidimensional IRT model. Specifically, a test form 1 and a test form 2 were

separately fitted to a 5-dimensional item response theory model using the software

WinBUGSl.4 (Spiegelhalter, Thomas, Best, & Lunn, 2003) to obtain examinees’ five

ability estimates. The WinBUGS code used to run WinBUGS is in the appendix C—this

code was modified from the code written by Bolt and Lall (2003). The correlation

Coefficients among the estimates of 0 parameters for the test forms 1 and 2 are in Table 2

and Table 3, respectively. These correlation matrices are roughly similar, indicating that

COvariance structures for the test form 1 and 2 data are roughly comparable.

Table 2. Correlation coefficients among 9 parameters from WinBUGS (test form 1)

 

 

 

 

 

     

i\91 1.00

\

92 .09 1.00

\

63 .55 .15 1.00

\

94 .16 .10 .12 1.00

\

95 .01 .31 .14 .54 1.00

\  
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Table 3. Correlation coefficients among 9 parameters from WinBUGS (test form 2)

 

 

 

 

 

 

91 1.00

92 .21 1.00

93 .37 .03 1.00

94 .05 .24 .27 1.00

95 .19 .01 .10 .47 1.00      
 

As presented in Table 4, averages of the five ability estimates for each test form

were close to zero as the result of the parameterization in WinBUGS that sets the means

of estimates to zeros. Five vectors of theta estimates for the test form 1 and five vectors

of theta estimates for the test form 2 were used along with the generated item parameters

mentioned above to generate item responses for the condition that there were no group

differences. However, when there were group differences in terms of abilities, 0.5 was

added to the five vectors of ability estimates for the test form 2, meaning that examinees

taking the test form 2 were more proficient in‘all five dimensions than those examinees

taking the test form 1. The differences in the mean abilities of .5 were used because small

differences cannot allow for investigating values of collateral information to the

improvement of equating biases. Therefore, greater differences about .4 or .5 in standard

deviation unit of 0 were used (e.g., Holland and Sinharay, 2007).
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Table 4. Average 0 parameters from WinBUGS

 

 

 

 

Average

91 62 03 94 05

Test form 1 0.00 0.00 0.01 0.00 0.00

Test form 2 -0.01 0.01 -0.01 0.01 0.02

      
 

3. 2.3 Item Responses Generation

The simulation data were generated using the SAS V9.1 software (SAS Institute,

2003). Specifically, the probability of a correct response to item i by simulated examinee

j was computed using the compensatory multidimensional item response theory model

(e. g., Reckase, 1997). A response vector of dichotomous item scores for each examinee

was obtained by generating, for each item, a uniform random number (ranging between 0

and 1) and comparing the value with the probability of an examinee of that ability level

passing the item. If the computed probability exceeded the random number, then the item

was scored as correct (1); otherwise, it was scored as incorrect (0).

This study did not generate examinees’ demographic variables, but used

demographic variables from the empirical data set. After item responses data were

generated, they were merged with the demographic variables from real data. Specifically,

the examinees’ demographic variables were linked up with the examinees’ simulated test

scores by matching examinees’ demographic variables with their item responses using

the estimates of their 6 values from WinBUGS. Therefore, every simulation data set has

the same demographic values, and the sample sizes were not varied. Note that test form X
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and test form Y data generated were called “pseudo-test data” and they had no missing

data.

To check if data was acceptably generated, one generated data set was analyzed

through an exploratory factor analysis and a confirmatory factor analysis using the

Mp1usS.2 (Muthen & Muthen, 2008), which is a structural equation model software. It

was found that the exploratory factor analysis produced a 5-factor model that was slightly

better than the 6-factor model. For example, the BIC was 100,083.801 for the 5-factor

model, while it was 100,3 70.907 for the 6-factor model. Moreover, the confirmatory

factor analysis of the simple structure of this test showed that the S-factor model fitted

data very well as indicated by the small and non-significant chi-square statistic (x2

=692.484, df = 670, p=.2658). This evidence indicated that the S-dimension data was

reasonably generated and therefore it was reasonable to use the data generation procedure

to generate test scores used for equating in this study.

3.3 Missing Data Generation

There were two types of simulation data used in this study. The first type of data

was the complete test data, and the second type was the incomplete test data. Each of

these data was used to address different research questions. Data used to address the

research questions 1 to 2 are the pseudo-test data (Holland, Sinharay, von Davier, & Han,

2007), which is the complete test data. The pseudo-test is the test that is manipulated by

pretending that each examinee has scores on both test forms, meaning that it was

pretended that each examinee took both test form Xand Y. The creation of this type of

data was proposed and used to test the assumptions of various equating methods that use

the NEAT design (Holland, Sinharay, von Davier, & Han, 2007). Later, it was used in the
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TEDS-M project to investigate the effectiveness of the balanced incomplete block design

used to collect the international assessment data of the TEDS-M project.

3.3.1 Pseudo Test Data and Missing Data Generationfor 60—Item Test

Under the MIRT model, the Form-X and Form-Y generating item parameters were

used, respectively, to generate item responses X for P and item responses Y for P,

resulting in a number of examinees ofP having 105 item responses (45 items for test

form X, 45 items for test form Y, and 15 anchor test items). Similarly, Form-X and Forrn-

Y generating item parameters were used, respectively, to generate item responses X for Q

and item responses Y for Q, resulting in a number of examinees of Q having 105 item

responses (45 items for test form X, 45 items for test form Y, and 15 anchor test items).

Data for P and Q were then merged and called complete data. A completed data set was

called a pseudo-test which was used as the criterion for comparisons. For example,

observed frequencies of score X for Q and observed frequencies of score Y for P were

used as the true frequencies. Also, the criterion equating functions used for computing

biases were obtained by equating scores on pseudo-tests (completed data).

An incomplete test data set that reflects missing data from the NEAT design was

created from the pseudo-tests data simulated above, by deleting the first 45 item

responses Xfrom Q and the last 45 item responses Y from P. But the 15 anchor test items

were kept in both forms.

3.3.2 Pseudo Test Data and Missing Data Generationfor 40-Item Test

For the 40-item test conditions, pseudo test data and test data with missing data

were generated by the same procedure as for the 60-item test conditions. Specifically, the

generating item parameters for the test form X and test form Y were used to generate item
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responses X for P and item responses Y for P. The same sets of generating item

parameters were used to generate item responses X for Q and Y for Q. P and Q were then

merged, pretending that each examinee had a score X and score Y. This procedure

resulted in examinees having 70 item responses (30 items for the test form X, 30 items for

the test form Y, and 10 anchor test items).

To generate test data from the NEAT design, the first 30 item responses Xwere

deleted from Q and the last 30 item responses Y were deleted from P. But the remaining

10 anchor test items were kept in both forms.

The mean (X ), standard deviation (S.D.), minimum (Min), and maximum

(Max.) for the simulated test form X and Y data are presented in Table 5 and Table 6,

respectively. As shown in these Tables, when there were group differences, the mean for

the test form 2 is greater than that for the test form 1. For example, the mean for the 60

item-test form 2 is 41.66 (SD. = 2.05), which is greater than that for the test form 1

(mean = 35.62, SD. =2.00). However, when there are no group differences, scores on test

form 2 and test form 1 are identically distributed.

Table 5. Descriptive statistics for the simulated test form 1

 

 

 

 

 
 

2 SD. Min. Max.

No Ability 60 items 35.62 2.01 30.47 41.34

Differences 40 items 24.66 1.45 20.52 28.91

Ability 60 items 35.62 2.00 29.57 41.53

Differences 40 items 24.66 1.43 20.75 29.14      
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Table 6. Descriptive statistics for the simulated test form 2

 

 

 

 

 

)7 SD. Min. Max.

No Ability 60 items 36.99 2.05 29.89 44.00

Differences 40 items 23. 31 1.40 18.40 28.64

Ability 60 items 41.66 2.05 34.50 48.25

Differences 40 items 26.48 1.44 21.77 31.01      
 

3.4 Analytic Strategiesfor the Purposed Equating Methods

This study had two parts. The first part was to evaluate the predictions missing

data from the combination of sub-scores and the anchor test score. The second part

evaluated equating results obtained by using the two methods proposed in this study.

Therefore, this research method section comprised oftwo sections corresponding to these

two parts. Specifically, the first section explained the procedure to predict missing data

and how to assess the prediction performance of collateral information, while the second

section described procedures and how to equate test scores using the proposed two

methods.

3. 4. 1 Prediction ofScore Frequencies ofMissing Data

There were two proposed uses of sub-scores to equate test scores. The first

method was to use the examinees’ propensity score as a stratification variable in the

equating process of the PSE method by replacing the anchor test score with the

propensity score. The second method uses a multiple imputation methods
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to compute missing scores directly. When applied to equate test scores, these two

proposed methods used different strategies to estimate score frequencies ofmissing data

required for constructing the synthetic population fimctions.

3. 4. 1. I The Propensity Score Approach to the Prediction ofMissing Data

Holland, Sinharay, von Davier, and Han (2007) provided the approach to

predicting score frequencies of missing data of the NEAT design and their strategies were

adopted in this study. The procedure to predict score frequencies ofmissing data using

the propensity score method is as follows.

First, a logistic models was used to estimate the propensity score (Z) of each

examinee by using collateral information as predictor variables. The detailed sub-scores

estimation and propensity score estimation are presented in Section 3.4.2.1 and Section

3.4.2.3, respectively. Then the loglinear model was used to presmooth the bivariate

distribution of (X, Z) obtained from P and the bivariate distribution of (Y, Z) from Q, by

preserving the first four moment ofXand Y and covariance between Y and Z; and Xand

Z. The presmoothed bivariated probabilites, respectively, are denoted as:

px2 = P{X=x, Z=z|P} and qyz = P{Y=y, Z=z|Q}

These bivariate probabilities were used to form the marginal distributions ofZ in P and

Q, that is

thzszz and th=qu2

x y

Then the conditional probability, P{X=x|Z=z, P}, was computed as the ratio pxz/hzp .

The estimated conditional probabilities were used to obtain the predicted score

probabilities forX in Q as follows:
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fo = 2pxz(th /th)-

2

By similar reasoning, the predicted score probabilities for Y in Q are

fyP = Zpyz(th /th)

z

The predicted frequencies ofX in P and Y in Q, respectively, were NQfxQ and

NpfyP, where NQ and NP were sample sizes of Q and P respectively. The focus of

this section was to assess the agreement ofNQfxQ’ the observed frequencies ofX in Q

(’1le , the agreement of NpfyP. and the observed frequencies of Y in P ( myP ). The

criteria used for this investigation include Pearson chi-square statistic ( 12 ), Likelihood

ratio chi-square statistic (G2 ), and Freeman-Tukey (FT) residuals. The following

formulas define these statistics. In each case, nl- denotes the observed fiequencies and

m,- the corresponding predicted frequencies:

2

mi)
 

. . . 7 ("i "

Pearson chi-square statrstrc, 1‘ = Z

. m.

l i

Likelihood ratio chi-square statistic, G2 = 22 ni log(n,- / m),

i

Freeman-Tukey (FT) residuals, FT residuals = 1/ nl- + tint + - 1[4171i + 1

These three statistics are often used to measure the closeness of the fitted fiequencies to

observed frequencies in discrete distributions of score (Holland & Thayer, 2000). Note

that 12 and G2 measure a summary of the closeness between the observed frequencies

and predicted frequencies. However, FT residuals assess the closeness at each score
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point. FT residuals are also used to assess the rounding effect of the multiple imputation

method at each score point.

3.4.1.2 The Multiple Imputation Approach to the Prediction ofMissing Data

When the NEAT design is used to collect equating data, the missing data occurs

because of the unique characteristic of the NEAT design that creates the designed

missing. That is, scores on test form X for Q and scores on test form Y for P are never

observed. The multiple imputation method using “proc mi” in the SAS V9.1 software

(SAS Institute, 2003) was used in this study to impute these missing data. The procedure

“mi” implemented in the SAS V9.1 was appropriate for the NEAT design because

missing data mechanism generated by the NEAT design is assumed to be missing at

random (MAR; Rubin, 1976) or an ignorable mechanism. In other words, the

subpopulation the two groups represent are assumed to have the same target score

distribution when the anchor test score is held constant (Holland & Rubin, 1982). The

EM algorithm in SAS V9.1 assumes that a missing data mechanism is MAR. When

missing data mechanism is ignorable, the EM algorithm is appropriate to impute missing

data.

In this study, the EM algorithm implemented through the procedure mi in SAS

V9.1 (SAS Institute, 2003) was used to compute test score X for the population Q and test

score Y for the population P. Specifically, this study used 20 simulation data sets each

having 5 imputation data sets. Five imputations were chosen because five imputations are

considered to be adequate in the multiple imputation (Rubin, 1996; Schafer, 1997;

Fichman & Cummings, 2003). Then imputed values were rounded. Any imputed values

less than 0 were set to 0, and any values greater than the maximum score point was set to
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the maximum value of score points. The effect of rounding was trivial at the low and high

ends ofthe score scale as seen in the result section.

For the imputation ith (i=1,. . ., 5) of the data set jth (i=1,. . ., 20), once X for Q and

Y for P were predicted, the predicted score frequency distribution ofX for Q and

predicted score frequency distribution of Y for P were obtained directly, which are

denoted by fo and fyp, respectively.

Similarly to Section 3.4.1.1, the chi-square statistic, likelihood ratio chi-square

statistic, and FT residuals were computed to assess the agreement between the predicted

score frequencies and the observed (true) score frequencies. These statistics were

averaged across 5 imputations and 20 data sets and the resulting averages were used and

reported.

3. 4. 2. Test Score Equating Procedure

This study focused on the PSE method, and the procedure for equating test scores

using methods of this study employed the following steps. These steps were based on the

procedures of the PSE equating method (von Davier, Holland, & Thayer, 2004; Kolen &

Brennan, 2004) but little modifications were made such that the propensity scores were

included in the PSE equating framework. The modified steps were as follows:

1. Estimate subscores using CTT model

2. Place estimates of subscores on the same scale

3. Estimate propensity score using the logistic regression model

4. Construct synthetic population fimctions

5. Equate test score using the equipercentile method
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However, when the multiple imputation method was used, step 3 was not

necessary and thus it was replaced by the multiple imputation approach to score

frequency estimation. Also, step 4 is less complicated than when the multiple imputation

method was used. The following section has more details regarding the procedure of

equating test scores.

3. 4. 2. I Sub-score Estimation

This study generated tests with five subsections. The sub-score estimation used in

this study is based on the classical test theory (CTT). The sub-score estimation used was

adopted from Haberman (2008) and Sinharay, Haberman, and Puhan (2007). The

Haberman method of subscore estimation is a regression of true subscore on both

observed subscore and observed total score, and the linear regression of true subscore TX

on the observed subscore SX and the observed total score S2 is estimated by

L(TX 152052) = E(Sx)+,3(TX iSX 'Szllsx —E(SX)]

+ 16(TX I 52 'lelsz -E(Sz)]

9

where

 

16(TXISX’'SZ )_0'(TX)[P(SX27X)- p(TX’SZ)p(SXaSZ)}

0(SX)[1— ,02(SX’SZ)I

and

 

16(7X ISZ 'SX)= 0(TXllp(SZaTXl-p(TXaSX)p(SX’SZ)I

‘ 0(Szlll—P2(5Xa52)]

This method of true sub-score estimation gives weights to both the total score and

the sub-score and provides a better approximation of true sub-score than is provided by

observed sub-score alone (Haberman, 2008).
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3. 4. 2. 2. Place the Estimated Sub-scores on the Same Scale

The estimates of true sub-scores of different test forms may have different scales

and different meaning especially when two groups of examinees differ greatly in abilities.

Therefore, it is necessary to adjust the estimated sub-scores by using information that is

common across two groups of examinees. In this study, the estimates of true sub-score

were adjusted by the covariate adjustment technique, where the covariate used was the

anchor test score.

Specifically, the jth sub-score for the ith examinee L(‘t’X I SX ,5Z )ij was

adjusted as follows:

Laij = L(TX I SX’SZlij — ,Bj(Ai — A7),

where ,6j is the regression weight of a sub-score L on anchor test score (A), :4- denotes

the mean of the anchor test score, and Ai the score on the anchor test of the examinee i.

3. 4. 2. 3. Estimate Propensity Scores

Exarninees’ propensity scores (Z) were estimated using the logistic regression

model. The outcome variable was the test form (F) (F=0 if test Forrn=X, otherwise 1),

and a set of covariates includes five sub-scores, demographic variables, and the anchor

test score. An estimated examinee’s propensity score is the predicted group membership

of an examinee assigned to the test Form Y. The estimated examinees’ propensity scores

were then divided into 21 strata.
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3. 4. 2. 4. Construct synthetic population

Synthetic population (I) is a mixture ofboth P and Q, T = wP + (1 — w)Q, where

w is the weight given to P. When the propensity scores (Z) were used to construct

synthetic population, the two assumptions of the post-stratification equating (PSE)

method (von Davier, Holland, & Thayer, 2004; Holland, & Dorans, 2006) were modified

as follows:

1. The conditional distribution of X given Z over T,f(X=x| Z=z, T), is the same for

any T of the form T=wP+(1-w)Q.

2. The conditional distribution of Y given Z over T,f( Y=y| Z=z, T), is the same for

any Tof the form T=wP+(1-w)Q.

By using the assumptions 1 and 2, the score distributions ofX and Y for T were

estimated by

f(x)T = WXfo +(1- WXIZfOC | Z = 211’)th

12,), = (1— Wy)Zf(y I Z = 2,0)th + 4ny

where th =P(Z =ZIQ) and th =P(Z =ZIP)

However, when the multiple imputation method was used to estimate missing

data, the propensity score (Z) was not used because the multiple imputation method is

capable of using the collateral information to compute missing data for P and Q directly.

In addition, PSE assumptions mentioned above were not necessary for the multiple

imputation method synthetic population functions were constructed directly from the

imputed score Xand imputed score Y. Specifically, the procedure “mi” implemented in

SAS was used to impute missing data. The EM algorithm was used with the procedure
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“mi” because missing at random is assumed for the equating data obtained through the

NEAT design. “Proc mi” imputed examinees’ total scores Xor Y, while the conditional

variables were the collateral information about examinees. When missing test scores X

and Y data were filled, the score distributions ofXand Y for the target population Twere

then estimated by

f(x)T = WXfo +(1- WX)fo

and

_f(y)T = (1- WYlfyX + WnyQ-

Note that f(x) and f(y)were smoothed distributions obtained by

presmoothing X and Y separately using the log-linear model (Holland & Thayer, 2000).

The first five moments of score distributions were preserved to eliminate irregular

distributions of imputed values.

3. 4. 2. 5. Equate Test Scores

Note that f(x) and f(y) are the distributions of test score ofXand Y,

respectively. The equating that transforms X-raw score to Y-raw score was carried out

using the equipercentile function which is

Equiyoo = G“(F<x)).

where G is the cumulative distribution of Y, F the cumulative distribution firnction ofX,

and G.-1 the inverse of cumulative distribution fimction G.
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3.4.2. 6. Evaluation Criteria

For the propensity score method, the criteria for evaluating equating results

included equating bias, and standard errors of equating (SE). The'following formulas

define these measures:

1 100

Bias(x) =— 218,- (x) — 8(X)] ,

100 ,2,

where éi (x) is the equated score for x at each replication , e(x) is the criterion equating

functions obtained from the equating of scores of the pseudo-test data (without missing

data).

The standard error of equating for a score point x was estimated by

1

_ _L‘OO. _7 2 E

SE(X)—(100i§1[ei(x) 905)] J

where 5(x) is the mean across 100 replications The method that produces the least bias

and SE is the one that works best for equating test scores.

However, for the multiple imputation method, only 20 simulation data sets were

used. However, 5 data sets were imputed for each of the 20 data set. Therefore, standard

errors of equating and equating biases were computed differently from the propensity

score method. The standard errors of equating and equating biases for the multiple

imputation method were computed as follows.

For the data set jth (i=1,. . ., 20) that has 5 imputed data sets (i=1, ..., 5), the

standard error of equating for a score point x for the data set jth was computed by
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1

21 5 A 7 2

SE(X)j= [g Eileifx) —e(x)] J

where éi (x) is the equated score for x at each replication, é(x) is the mean across 5

replications. Since there were 20 replications, the standard errors of equating reported in

this study is the average SE (x) across the 20 replications, which was computed by

20

25130:),-

SE(x) = J” 

20

The equating biases for the data set i[h were computed as

5

Zléi(x) — 806)]

1

Bias(x)]: = —

5 i=1

where e(x) is the criterion. Similarly, the equating bias for a score point x reported in

this study is the average equating biases across the 20 replications, which was computed

 

by

20

ZlBias(x)j

. 1:
B =
1as(x) 20

3. 5. Real data Analysis

Real data analyses were performed to address the research questions 3 and 4. The

research questions 1 and 2 were not investigated using real data in this study because data

in which examinees have scores on both forms were not available. Therefore, only
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standard errors of equating and equating biases were compared. The empirical data is

from a cross-national study ofthe preparation ofmiddle school mathematics teachers

called MT21 (Schmidt, et al, 2007).The comparisons were based on the responses of

students (future mathematics teachers) from the six participating countries (A, B, C, D, E,

and F). Data were collected from teachers in their first or last year ofpreparation by

sampling institutions in each country. Futures teachers were questioned on their (1)

background, (2) course taking and other program activities, (3) knowledge relevant to

teaching—mathematical and pedagogical, and (4) beliefs and perspectives on content and

pedagogy.

The equating data are future teachers’ test scores on the mathematics content

knowledge. There are two different test forrrrs, each ofwhich measures five content

area—algebra, data & interpretation, function, geometry, and number. The distribution of

MT21 items across the five content areas is in Table 7. Table 8 shows test performance of

the six participating countries.

Table 7. Distribution of Items of MT21 Data

 

 

 

 

 

 

 

  

content Form Total

Forml Form2 Anchor

Algebra 2 1 2 8 22

Data 4 3 5 1 2

Function 1 0 3 6 1 9

Geometry 8 7 2 1 7

Number 14 5 3 22

Total 38 30 24 92     
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Table 8. Test score Performance of Six Countries

 

 

 

 

 

 

 

  

X S.D. Min. Max

Country Form 1 Form 2 Form 1 Form 2 Form 1 Form 2 Form 1 Form 2

A 24.09 20.77 10.41 9.76 0 4 45 45

B 29.06 27.48 10.56 8.65 0 O 55 47

C 41.82 35.08 5.97 4.43 21 16 53 44

D 22.66 22.61 6.01 5.57 1 2 39 36

E 41.38 36.89 5.81 4.95 21 19 53 50

F 27.29 27.86 7.71 6.05 6 12 55 45        
 

standard errors of equating and equating biases. That is, there were two conditions

MT21 data were manipulated to investigate the impact of group differences on

investigated: no group differences and group differences. For the no group differences

condition, all cases in the MT21 data were used. The descriptive statistics of the

empirical data are summarized in the Table 9. Table 10 shows correlations between

operational test scores and anchor test scores as well as correlations between Operational

test scores and sub-scores.

Table 9. Descriptive Statistics of the Empirical data

 

 

 

 

 
 

Form Test n )7 SD Min Max Reliability

Form 1 X 1361 20.22 6.94 0 35 .83

Anchor 1361 10.48 4.70 0 21 .81

Form2 Y 1266 17.34 4.68 0 27 .75

Anchor 1266 10.85 4.56 0 21 .80         
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Table 10. Correlations Between the Operational Test Score and Sub-scores

 

 

 

 

Form Anchor Algebra Data Function Geometry Number

Score X .65 .38 .57 .68 .69 .76

Y .61 .62 .48 .43 .73 .53

        
However, when there were group differences, country E and country F data were

excluded from the test form 1, while country A and country D data were excluded from

the test form 2. This resulted in that examinees taking the test form 2 were more

proficient than examinees taking the test form 1. Table 11 shows descriptive statistics for

this condition and Table 12 shows correlations between operational test scores and

anchor test scores as well as correlations between operational test scores and sub-scores.

Table 11. Descriptive Statistics of Empirical Data (Group Differences Condition)

 

 

 

 

 

Form Test n )7 SD Min Max Reliability

Form 1 X 925 17.37 6.51 0 34 .86

Anchor 925 9.66 4.45 0 23 .76

Form2 Y 1009 18.41 4.11 0 27 .84

AnchOr 1009 13 .08 4.97 0 23 .80

 

        
 

Table 12. Correlations Between the Operational Test Score and Sub-scores (Group

Differences Condition)

 

 

 

 

Form Anchor Algebra Data Function Geometry Number

Score X .52 .35 .66 .78 .64 .74

Y .55 .72 .44 .47 .74 .55
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For the propensity score method, analyses of real data were carried out using the

Kernel equating software because it provides a convenient way to estimate standard

errors of equating. However, for the multiple imputation method, 5 data sets of test data

(X and Y) were imputed and each was equated using the SAS macro. Standard errors of

equating were computed based on the results of the five imputed data sets using the same

equation as mentioned in the simulation data analysis section

Equating biases were obtained by comparing a resulting equating function to an

equating function obtained from IRT true score equating. An IRT true score equating

function was obtained by fitting both test form X and test form Y simultaneously to a 3-

parameter logistic IRT model using the software BILOG-MG (Zimowski, Muraki,

Mislevy, & Bock, 2002). For each test form, the estimates of items parameters and the

examinee’s theta value were used to compute the examinee’s probabilities ofresponding

to MT21 items correctly. A sum of these probabilities was the examinee’s true score.

Then true scores of examinees taking X and Y were equated using the KB software (Chen,

Yan, Hemat, Han, & von Davier, 2008) and the resulting equating function was used as

the criterion to compute equating biases.
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CHAPTER IV

RESULTS

The main objective of this study was to explore if it is feasible to use collateral

information about examinees in the post-stratification equating (PSE) method in order to

improve the quality of equating in terms of standard errors of equating and equating

biases. Collateral information used in this study included sub-scores, anchor test scores,

and demographic variables. The traditional PSE equating method and the modified PSE

method use the anchor test true score and the anchor test true score, respectively, to

adjust for group differences. When groups differ greatly in ability, it is necessary to use

more collateral information to adjust for the differences so as to reduce biases due to

unintended differences that cannot be eliminated by the anchor test score. It was

hypothesized in this study that using more information to construct synthetic functions

used to equate test scores under the PSE method could reduce equating biases. In other

words, since constructing synthetic population functions deals with predicting score

frequencies of missing data. When equating data are missing due to the data collection

design called “Non-Equivalent Groups with Anchor Test” (NEAT) design, using more

collateral information to impute score frequencies of the missing data was expected to

gain “predicted score frequencies” that are more close to “true frequencies.” Therefore, it

was expected that collateral information can reduce equating biases. However, this study

also explored the impact of collateral information on standard errors of equating. In

addition, the simulation part of this study assessed how close “score fi'equencies imputed

by using collateral information” and “true frequencies” were using chi-square statistics,

likelihood ratio chi-square statistics, and Freeman—Tukey (FT) residuals.
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This chapter presents equating results (standard errors of equating and equating

biases) of equating methods that used collateral information about examinees in the post-

stratification equating method, in comparison with the traditional PSE method and the

modified PSE method. Collateral information was used in two missing data treatments

(the multiple imputation method and the propensity score post-stratification method) to

obtain score frequencies of missing data used to equate test score using the PSE method.

This study investigated the impact of ability differences between groups of

examinees and test length on standard errors of equating and equating biases. Since

collateral information was expected to reduce biases due to group differences, ability

differences between groups of examinees were manipulated and examined. Test length

was included as another factor because sub-scores have more values for a long test than

for a short test. In practice, both short and long tests are used. Therefore, it was necessary

to assess the impact of test lengths on equating accuracies, when collateral information

was used as the stratification variable in the PSE method. The sample size is a factor

worth studying, but this study did not include the sample size as a simulation factor

because it was challenging to simulate examinees’ demographic variables, and

demographic variables that have potentials to reduce equating biases are not well

documented in equating literature.

Simulation study enables the factors mentioned above to be investigated.

Simulation factors in this study included two treatments of missing data (propensity score

stratification method and multiple imputation method), two ability differences between

two groups of examinees (no differences vs. group differences) and two test lengths (long

test condition [60 items—45 items plus 15 anchor test items] and short test condition [40
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items—30 items plus 10 anchor test items]). The combination ofthese factors yields eight

simulation combinations. For each of the eight conditions, different equating strategies

listed below were conducted to investigate different effects of collateral information on

standard errors of equating and equating bias.

1. Anchor test sore only (A)

2. Anchor test score, sub-scores, and demographic variables (ALL)

3. Anchor test score and demographic variables (A&D)

4. Sub-scores and demographic variables (S&D)

5. Demographic variables only (D)

6. Sub-scores only (S)

7. Anchor test true score (T).

8. Sub-scores and anchor test (S&A)

Therefore, there were 64 (8*8) conditions investigated. For the propensity score

stratification method ofmissing data treatment, 100 simulated data were replicated.

Equating biases and standard errors of equating were computed based on the 100

replications. For the multiple imputation (MI) method, the first 20 data sets of the

simulated 100 data sets were used. Five data sets were imputed for each of the chosen 20

data sets, resulting in 100 analyses. The equating biases and standard errors of equating

were summarized across the 20 imputed data sets.

There are two main sections presented in this chapter. The first section presents

results of equating of simulation data. The equating results that were the target of

considerations include standard errors of equating, equating biases, Pearson chi-square

statistics, likelihood ratio (LR) chi-square statistics, and FT residuals. Standard errors of
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equating and equating biases were used to assess accuracies of equating. Pearson chi-

square statistics, LR statistics, and PT residuals were used to evaluate how well each of

the eight sets of collateral information recovered the, true score frequencies. Better

recovery of score frequencies ofmissing data is associated with smaller equating biases.

The second section presents the equating results using empirical data. To explore

what sets of collateral information about examinees were more effective in terms of

standard errors of equating and equating biases, empirical data were manipulated such

that differences in ability between groups of examinees were varied. Specifically, when

there were no group differences in abilities, all cases in the empirical data set were used.

But when there were group differences, the country C and country E data were excluded

from the test form 1, and the country A and country D data were excluded from the test

form 2.

4.1 The Resultsfrom Simulation Data

4.1.] The Propensity Score Method: Standard Errors ofEquating

When the propensity score method was used to obtain score frequencies of

missing data of the NEAT design to construct synthetic population functions (X and Y) as

required for equating test scores using the PSE method, standard errors of equating and

equating biases were computed from 100 replicated analyses. Figures 4.1a to 4.1d present

standard errors of equating. Specifically, Figure 4.1a presents standard errors of equating

in the long test condition when there were no group differences. Figure 4.1b presents

standard errors of equating in the longer test condition when group differences were

greater. Figure 4.1c presents standard errors of equating in the short test condition when
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there were no group differences. Figure 4.1d presents standard errors of equating in the

short test condition when group differences were greater.

One objective of this study was to compare PSE methods that use collateral

information to the traditional PSE method and the modified PSE method in terms of

standard errors of equating. For the longer test condition when there were no group

differences, Figure 4.1a shows that all equating methods had large standard errors of

equating. Three equating methods that had smaller standard errors of equating included

the traditional PSE method which is the PSE method that uses the anchor test score (A),

the modified PSE method (T), and the PSE method that uses the combination of the

anchor test score and demographic variables (A&D). Standard errors of equating of the

PSE method that uses demographic variable (D) were larger; the values ranged from 3.7

to 9.0. The standard errors of equating for the PSE method that uses the combination of

sub-scores and demographic variables (S&D) were larger at the low end, medium in the

middle, and smaller at the high end of the score scale. When all collateral information

about examinees (ALL) was used in the PSE method, standard errors of equating were

large.
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FIGURE 4.1b. PS standard errors of equating: long test and group differences
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When group differences in terms of abilities were greater (Figure 4.1b), all

methods had standard errors of equating more different from each other. The traditional

PSE method (A) and modified PSE method (T) had the smallest standard errors of

equating. The PSE methods that used demographic variables (D), the method that use the

combination of sub-scores and demographic variables (S&D), and the method that uses

sub-scores (S) had larger standard errors of equating approximately within a range from

2.0 and 10.0. The PSE method that uses all collateral information about examinees (ALL)

and the method that uses the combination of subs-scores and anchor test score (S&A) had

the largest standard errors of equating.

For the short tests condition, Figures 4.1c and 4.1d shows that standard errors of

equating were similar between when there were no group differences and when there

were group differences. Specifically, four equating methods that had the smallest

standard errors of equating included the traditional PSE method (A), the PSE method that

uses demographic variables (D), the PSE method that uses the combination of the anchor

test score and demographic variables (A&D) and the modified PSE method (T). The

methods that involved sub-scores had large standard errors of equating. For examples, the

PSE method that uses all collateral information about examinees (ALL), the PSE

methods that used sub-scores (S), the PSE method that use the combination of sub-scores

and demographic variables (S&D), and the PSE method that uses the combination of sub-

scores and the anchor test score (S&A) had the largest standard errors of equating at the

middle of the scale score. Standard errors of equating of all PSE equating methods were

poorly estimated at the low end and high end of the score scale, and the explanation for

this finding is discusses in chapter V.
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4.1.2 The Propensity Score Method: Equating Bias

As noted in Chapter 111, one objective of this study was to compare PSE methods

that use collateral information to the traditional PSE method and the modified PSE

method in terms of equating biases. The comparisons are presented in Figures 4.2a to

4.2d. For the longer test condition (60 items), equating biases produced by different

equating methods were comparable, except for at the lower end ofthe score scale. Larger

equating biases at the low end of score scale might be associated with zero frequencies.

Even though all equating methods had comparable equating biases, the method that uses

demographic variables (D) had smaller equating biases than the traditional PSE method

(A) and the modified PSE method (T). When groups differed greatly in abilities, Figure

4.2c shows that all methods produced even more different equating biases. Specifically,

they had larger positive biases. The positive impact of sub-scores on equating biases was

evident when groups differ in ability in the long test condition. That is, all methods that

used sub-scores outperformed other methods. Specifically, the PSE method that used sub-

scores (S), the PSE method that used sub-scores and demographic variables (S&D), and

the PSE method that used sub-scores and anchor test (S&A) were the three methods that

had smaller equating biases at the middle of the score scale (20 to 50) , even though

equating biases they produced were large. But their equating biases at the low end of the

score scale were large. The method that uses demographic variables (D) performed best

at the low end and high end ofthe score scale. The traditional PSE method (A) and the

modified PSE method (T) had comparable equating biases; they had larger equating

biases than the methods that involve sub-scores at the middle ofthe score scale, but

smaller at the low and high ends of the score scale.
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For the short tests condition (40 items), Figure 4.2c shows that the traditional PSE

method (A), the modified PSE method (T), and the method that uses the combination of

the anchor test score and demographic variables (A&D) had the smallest and comparable

equating biases at the middle of the score scale. Unlike in the longer test condition, using

sub-scores in the short test condition resulted in larger equating biases. For example, as

seen in Figure 4.2c, the methods that used sub-scores (S, S&A, S&D, ALL) all produced

larger positive equating biases than other methods. Such large positive equating biases

were more evident at the middle of the score scale, which were about 1.5 to 2.0 points

larger than other methods. When groups differ in abilities, all methods produced positive

equating biases as shown in Figure 4.2d. As noted earlier, it was evident that the methods

that used sub-scores performed the least. The modified PSE method (T) had the smallest

equating biases at the score scale of 13 to 40, but had the largest equating biases at the

low end ofthe score scale.

4.1.3 The Propensity Score Method: Predictions ofScore Frequencies

One objective of this study was to assess how well the PSE methods, in

comparison with other methods, predicted score frequencies of missing data.

Better prediction of score frequencies of missing data is thought to reduce equating biases

of the PSE method. This prediction assessment is useful in evaluating which collateral

information set is more effective to be a stratification variable in the PSE method.

Pearson chi-square statistics and likelihood ratio (LR) chi-square statistics were used to

assess the closeness between the predicted frequencies and the true frequencies. Small

Pearson chi-square statistics and likelihood ratio (LR) chi-square statistics indicate small

differences between the predicted score frequencies predicted by collateral information
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and the true (simulated) score frequencies. Note that, there are two missing parts when

data are collected through the NEAT design—Y for population P and X for Population Q.

These missing parts indicate that the sample from the population P was not administered

to the test Y and that the sample from the population Q was not administered to the test X.

This was not a conventional missing data typically occurring in survey research. These

two statistics were therefore reported as measures of the prediction power for the missing

data Y for the population P and the missing data X for the population Q, separately. The

interpretation of chi-square and LR statistics is similar. For example, a chi-square

statistics for P shows the degree to which score frequencies of missing data for

examinees in the population P were predicted by a certain equating method, whereas a

chi-square statistics for Q shows the degree to which score frequencies of missing data

for examinees in the population Q were predicted by a certain equating method.
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FIGURE 4.3b: PS chi-square statistics: long test and group differences
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FIGURE 4.3a: PS chi-square statistics: long test and no group differences
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FIGURE 4.3d: PS chi-square statistics: long test and group differences
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For the long test condition, when there were no group differences, all of the eight

methods predicted the true score frequencies reasonably well. Specifically, nearly all chi-

square statistics were small, compared with when there were group differences in Figure

4.2b. Even though the predictions ofthe eight methods were comparable, the A&D, T,

and D methods had relatively better predictions than other methods. For examples, the

A&D, T and D methods had chi-square statistics close to zero, indicating that using the

combination of the anchor test and demographic variables (A&D), the anchor test true

score (T), and demographic variables (D) predicted missing score frequencies more

accurately than other methods. It is not surprising that the A&D, T, and T methods had

smaller equating biases presented in the previous section. However, when groups differ

greater in abilities, the predictions of some methods were worse than when there were no

group differences, as seen in Figure 4.3b. Figure 4.3b shows that the chi-square statistics

associated with the predictions of A&D, D, and T methods were very large, indicating

that these methods were largely negatively impacted by group differences. The prediction

ofA was roughly unchanged, no matter how large group differences were but was below

the predictions of methods that use sub-scores. The predictions ofmissing score

frequencies for the methods that used sub-scores (S&D, S, and S&A) were less impacted

by group differences, meaning that these methods recovered missing data efficiently in

long tests even when there were group differences.

For the short test condition, the predictions of score frequencies of all methods

were less accurate than in the longer test condition. In Figure 4.3c, chi-square statistics on

average were about 500 for the sample P and 600 for the sample Q, which were larger

than those chi-square statistics in Figure 4.3a. The common finding between Figure 4.3a
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and Figure 4.3c is that the A&D, D, and T methods predicted score frequencies of

missing data more accurately than other methods when there were no group differences.

However, when groups differ greatly in abilities, all methods had less prediction power

than when group differences were small. As see indicated in Figure 4.3d, the traditional

PSE method (A) and the modified PSE method (T) better predicted score frequencies of

missing data than other methods when there were group differences in the short test

condition. The PSE method that used demographic variables had worse predictions of

missing data ofP and Q populations.

The second statistics used to assess the predictions of score frequencies of missing

data was the likelihood ratio (LR) chi-square statistics. The interpretation ofLR statistics

is the same as the Pearson chi-square statistics, that is, smaller LR statistics indicate

better predictions of score frequencies of missing data. Figures 4.4a to 4.4d present the

LR statistics for different equating methods under different conditions. The results of LR

statistics were consistent with the chi-square statistics. For example, when there was no

group difference in the long test condition, the A&D, D, and T methods were the best in

predicting score frequencies of missing data, as evidenced by smaller LR statistics in

Figure 4.4a. But when group differences were greater, the methods that used sub-scores

had better predictions, as shown by smaller LR statistics in Figure 4.4b.

Figure 4.4c shows that the A&D, D, and T methods were the best in predicting

score frequencies of missing data in the short test condition when there were no group

differences. This was evidenced by the fact that they had smaller LR statistics than other

methods. However, when groups differ greatly in abilities, as seen in Figure 4.4d, none of

the methods could predict score frequencies well. That is, they had large LR statistics.
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Even though the methods that use sub-scores (S&D, S, and S&A methods) had

larger LR statistics than other methods, they were not much impacted by group

differences as compared to the methods that use demographic variables (A&D, and D).

The predictions of the D and A&D methods were tremendously impacted by group

differences as evidenced by lower LR statistics. The traditional PSE method (A) and the

modified PSE method (T) were the two methods that best predicted score frequencies of

missing data in the short test condition, when there were group differences.
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4.1.4 The Propensity Score Method: FTResiduals

The Section 4.1.3 provides statistics that measures overall agreements between

observed fiequencies and predicted frequencies. This section presents FT residuals

illustrating agreements between observed frequencies and predicted frequencies at the

score point x of data that were missing due to the NEAT design used. FT residuals were

graphed and shown in the appendix A. It was found that FT residuals for all equating

methods were within i 3 , the range expected for well-fitting prediction (Mostteller &

Youtz, 1961). In addition, FT residuals for the low and high ends of the score were close

to zero, suggesting that differences between observed frequencies and predicted

frequencies are very small at the high and low ends of the scale. This gives a clue that

poor estimates of standard errors of equating and equating biases at the bottom end of the

scale are not due to the prediction of missing data, but it may be caused by zero

frequencies and the linear interpolation used.

4.1.5 The Multiple Imputation Method: Standard Errors ofEquating

One objective of this study was to use the multiple imputation method (M1) to

compute score frequencies of missing data. Its potential to equate test scores was assessed

through standard errors of equating and equating biases. In this study, the first 20 data

sets of the first 100 simulation data sets were used for the multiple imputation (MI)

method. For each of these 20 data sets, five data sets were imputed using the EM

algorithm implemented in the SAS V9.1 (SAS Institute, 2003). Standard errors of

equating and equating biases were computed based on the five imputations and the

resulting standard errors were averaged across 20 data sets. The averages were used as
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the value reflecting “standard errors of equating” of the multiple imputation method.

Equating biases were computed and averaged in the same way.

The M1 standard errors of equating were graphically presented in Figures 4.5a -

4.5d. When there were no group differences in abilities in the long test condition, Figure

4.53 shows that, at the score scale from 22 to 48, all equating methods produced very

small standard errors of equating, that is, standard errors of equating produced by all of

the eight methods were close to zero. However, at the low and high ends ofthe score

scale, standard errors of equating of all methods were more different, but the differences

were greater at the low end of the score scale than at the high end of the score scale.

When groups of examinees differed greatly in abilities, Figure 4.5b shows that all

equating methods had similar small standard errors of equating at score points between

23 and 55, except for the PSE method that uses the combination of sub-scores and

demographic variables (S&D). Standard errors of equating for the S&D method were

larger than those for other methods at score points between 23 and 60. Standard errors of

equating of all methods had larger degree of fluctuations at the low end of the score scale,

suggesting that equating functions were unreliably produced at the low end of the score

scale.

When there were no group differences in terms of abilities in the short test

condition and, Figure 4.5c shows that all methods produced similar standard errors of

equating but larger differences were found the low end ofthe score scale. Specifically, at

the score points between 14 and 40, standard errors produced by all methods were close

to zero, meaning that all of these methods produced equating functions that had small

degree of equating errors at these score points. But all equating methods had more
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divergent equating errors at the low end of the score scale. Even though all methods

produced similar standard errors of equating, the traditional PSE method (T) and the PSE

method that uses the combination of sub-scores and anchor test (S&A) had the smallest

standard errors of equating.

It was found in Figures 4.5c and 4.5d that MI methods had smaller standard errors

of equating, implying that the variation of equated scores among the five imputations was

small. Moreover, MI methods had small standard errors of equating, regardless of the

group differences.

8O



 
 

1 o-HA mm room mser

13‘: HiD «o—o—rs o—o—oT -—-—s&1\

S
l
n
i
r
d
m
t
l

l
i
r
m
r
s

0
1
'

l
-
l
q
r
m
l
i
n
g

\
I

 
  
   

I

i
 

FIGURE 4.5a: MI standard errors of equating: long test and no group differences
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FIGURE 4.5d: MI standard errors of equating: long test and group differences
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In the condition where tests were shorter and groups differed greatly in abilities,

it was found that the standard errors of equating of all MI equating methods were not

much affected by the group differences. The standard errors of equating in Figure 4.5d

were comparable to those standard errors of equating in Figure4.5c. That is, all equating

methods had smaller standard errors of equating at the score points from 15 to 40, but

standard errors of equating were larger at the low end of the score scale. As noted earlier,

the PSE method that uses the anchor test true score (T) and the PSE method that uses

sub-scores and the anchor test score (S&A) had the smallest standard errors of equating.

4.1.6 The Multiple Imputation Method: Equating Bias

Equating biases indicate how large the equating function deviated from the

criterion equating function. A criterion equating fimction was obtained through the

equating of the complete (simulated) data. Specifically, the criterion equating function

was obtained by equating scores of the simulation data which are data without missing

data or the pseudo-test data. The resulting equating function was called “the criterion

equating function.” Then test data with missing data were generated as if these data were

collected through the NEAT design. A series of test score equating was performed using

the generated data. The resulting equating function was then compared to the criterion

equating function. The resulting difference was defined as the equating bias. Figures 4.6a

— 4.6d compare equating biases produced by different equating methods under different

conditions. As noted earlier, when the MI method was investigated, equating biases

presented in this section were the averages of the 20 data sets.

Figure 4.63 shows equating biases of the condition in which test length was 60

and there were group differences. The PSE method that uses demographic variables, the
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modified PSE method (T), and the traditional PSE method (A) underestimated equating

functions as indicated by negative equating biases. The PSE method that uses the

combination of anchor test and demographic variables (A&D) overestimated equating

functions as seen by positive equating biases. The PSE method that uses the combination

of sub-scores and demographic variables (S&D), the PSE method that uses all collateral

information (ALL), the PSE method that uses sub-scores (S), and the PSE method that

uses the combination of sub-scores and anchor test (S&A) overestimated and

underestimated equating functions, depending on the score points on the score scale. In

general, the S&D, S, ALL, and S&A methods had smaller equating biases than other

methods. Note that these methods involve the uses of subs-cores.

Figure 4.6b shows that when the test length was 60 and groups differed greatly in

abilities, all equating methods tended to overestimated equating functions, as indicated by

the fact that the equating biases shifted upward as compared to the Figure 4.6a. But this

pattern was not true for the S&D method at the low end of the score scale. This pattern

shows that the equating biases for the D and T methods that had negative biases in Figure

4.6a were shifted upwards to somewhere close to zero, when groups differed in abilities.

However, the methods that had positive equating biases in Figure 4.6a had even larger

equating biases when groups differ greater in abilities. When groups differ greatly in

ability, the D and T method had smaller equating biases than other methods.
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FIGURE 4.6a: MI equating biases: long test and no group differences
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FIGURE 4.6b: MI equating biases: long test and group differences
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FIGURE 4.6d: MI equating biases: short test and group differences
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Figure 4.6c presents equating biases when test length was 40 and there were no

group differences. As seen in this Figure, the PSE method that uses demographic

variables (D) and the method that uses anchor test true score (T) underestimated equating

functions, as evidenced by negative equating biases. The method that uses the

combination of anchor test score and demographic variables (A&D) overestimated

equating functions as indicated by positive equating biases. The PSE method that uses

sub-score (S) and the PSE method that uses the combination of sub-sores and

demographic variables (S&D) had the smallest equating biases which are close to zero.

The PSE method that uses all collateral information (ALL) and the PSE method that uses

the combination of sub-scores and anchor test score (S&A) had comparable equating

biases. It is clear that the ALL, S, S&A, and S&D methods had comparable equating

biases at the score points ranging from 14 to 40. The traditional PSE method (A) had

small negative biases but larger than those produced by ALL, S, S&A, and S&D. But at

the low end ofthe score scale, the traditional PSE method (A) had the smallest equating

biases.

Figure4.6d shows equating biases when test length was 40 and there were group

differences. Similar to the Figure4.6b, when groups differ in abilities all equating

methods tended to overestimate equating functions, as evidenced by larger degree of

positive equating errors as compared to those in the Figure 4.6c. In this condition, the

modified PSE method (T) and the PSE method that uses demographic variables (D) were

two methods that had the smallest equating biases.
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4.1. 7 The Multiple Imputation Method: Prediction ofScore Frequencies ofMissing Data

One objective of this study is to investigate the efficiency of the multiple

imputation method in predicting score frequencies of missing data. As noted previously,

better score frequencies of missing data results in smaller equating biases for the PSE

method. Therefore, the method that best predicts score frequencies ofmissing data would

have the smallest equating biases. Like the propensity score method section, two statistics

used in this study to measure the closeness between the predicted frequencies and the ‘true

(simulated frequencies) included Pearson chi-square statistics, and likelihood ratio (LR)

chi—square statistics. The smaller chi-square, and LR statistics indicate the greater degree

of closeness between the two frequencies. Figures 4.7a - 4.7d show chi-square statistics

and Figures 4.8a — 4.8d present LR statistics. Note that in these Figures, goodness-of fit

statistics were presented separately for different two populations (P and Q). For example,

a chi-square statistics for P shows the degree to which score frequencies of missing data

for examinees in the population P were predicted by a certain equating method, whereas

a chi-square statistics for Q shows the degree to which score frequencies of missing data

for examinees in the population Q were predicted by a certain equating method.

Figure 4.7a compares chi-square statistics for different equating methods when

the test length was 60 and there were no group differences. It was obvious that the PSE

method that uses all collateral information (ALL), the PSE method that uses sub-scores

(S), the method that uses the combination of sub-scores and demographic variables

(S&D), the modified PSE method (T), and the method that uses the combination of the

anchor test score and sub-scores were combined (S&A) had more comparable and

smaller chi-square statistics than other methods. The traditional PSE method (A) had total
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chi-square statistics larger than the modified PSE method (T). The PSE method that uses

demographic variables (D) had the largest chi-square.

Figure4.7b compares chi-square statistics when the test length was 60 and there

were group differences. It was obvious that when groups differ in abilities, nearly all

equating methods had larger chi-square statistics, except for the method that uses

demographic variable (D), and the increments in chi-square statistics were more

evidenced for the sample of population P or the population that had lower abilities. It was

also obvious that all equating methods predicted score frequencies of missing data better

for Q than P, as indicated by smaller chi-square statistics for Q. In other words, all

equating methods better predicted frequencies for the population that had higher abilities

than the population that had lower abilities. The method that uses the combination of the

anchor test and demographic variables (A&D) had the largest total chi-square, while the

modified PSE method (T) and the PSE method that uses demographic variables (D) had

smaller total chi-squares than other methods. This result was consistent with the equating

bias results in that the T and D methods were two methods that had smaller equating

biases.
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FIGURE 4.7d: MI chi-square statistics: short test and group differences
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Figure4.7c compares chi-square statistics when the test length was 40 and there

were no group differences. The PSE method that uses all collateral information (ALL),

the PSE method that uses the combination of sub-scores and demographic variables

(S&D), the PSE method that use sub-scores (S), and the PSE method that uses the

combination of sub-scores and the anchor test score (S&A) were four methods that had

small total chi-square statistics. The total chi-square statistics for the ALL, S&D, and

S&A were less than 101.88 with the degree of freedom of 80 (40+40), which was not

statistically significant at a = 0.05. The PSE method that uses the combination of anchor

test score and demographic variables (A&D) and the method that uses demographic

variables (D) had the largest chi-square statistics.

Figure 4.7d compared chi-square statistics when the test length was 40 and groups

differed in abilities. When groups differ greatly in abilities, the predictions of all equating

methods were worse than when there were no group differences in terms of examinees’

abilities (see Figures 4.7c and 4.7d). This was indicated by the fact that all methods had

higher chi-square statistics than when groups did not differ in abilities. The chi-square

statistics for Q were smaller than those for P, indicating that again the predictions of the

missing test score X for the population Q was more accurate than those ofthe missing test

score Y for the population P. The prediction of missing data for the PSE method that uses

demographic variables (D) was the most accurate, which is similar to the results in Figure

4.7b.

The second statistics used to measure the closeness of the predicted frequencies

and the true (simulated) frequencies was the likelihood ratio (LR) chi-square statistics.

Figures 4.8a-4.8d presents LR statistics for different equating methods under different
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simulation conditions. The interpretation ofthese statistics is the same as that of chi-

square statistics. The results shows similar pattern ofpredictions between chi-square

statistics and LR statistics. For example, predictions of score frequencies were found to

be more accurate when there were no group differences, and the PSE method that uses all

collateral information (ALL), the PSE method that uses the combination of sub-scores

and demographic variables (S&D), the PSE method that uses sub-scores (S), and the PSE

method that uses the combination of sub-scores and the anchor test score (S&A) had

better predictions of score frequencies of missing data, as evidenced by smaller total chi-

squares for both P and Q. Figure 4.8b and Figure 4.8d show that the predictions for the

population Q were better than that for the population P, and all equating methods had

negative impacts from group differences, except for the method that uses demographic

variables.
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4.1.8 The Multiple Imputation Method: FTResiduals

FT residuals were graphed in the appendix B. As seen in the appendix B, all

equating methods better predicted score frequencies of missing data at the low and high

ends ofthe score scale. Nearly all differences between observed and predicted

frequencies were within at 3.00, the range expected for well-fitting prediction (Mosteller,

Youtz, 1961). But the prediction of score frequencies of missing data for the combination

ofthe anchor test score and demographic variables were larger than 3 for the population

P, when group differ greatly in abilities in the short test condition. This is why the

predictions ofA&D were very poor as seen in Figures 4.7d and 4.8d.

The FT residuals in the appendix B also show that the rounding effect is trivial for

the multiple imputation method at the low and high ends of the score scale. That is, it is

found that nearly all equating methods had very small differences between observed and

predicted frequencies. This finding suggests that poor estimates of standard errors of

equating and equating biases at the bottom end of the scale are not due to the rounding

used to round the imputed value to the nearest integer.

4.2 The resultsfrom empirical data

This study used the propensity score method and the multiple imputation method

to obtain score frequencies of missing data when equating data were collected through

the Non-Equivalent Groups with Anchor Test (NEAT). These frequencies are needed to

equate test scores using the post-stratification equating (PSE) method. Empirical data

used in this study to explore these two methods is the Mathematics Teaching in the 21St

Century data which is a small scale international study aiming at measuring mathematics

and mathematic pedagogy knowledge of teacher candidates or future math teachers of 6
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countries. There are two test forms Xand Y, having 38 and 30 items, respectively, plus 24

common items. X-scores were equated to Y-score using the same methods as for the

simulation study. For the propensity score method, this study used the Kernel Equating

(KE) software (Chen, Yan, Hemat, Han, & von Davier, 2008) because the KB software

can estimate standard errors of equating. However, for the multiple imputation method,

the SAS program developed and used in the simulation section was used to estimate

standard errors of equating, which were the averages of standard errors of equating across

5 imputations. The equating biases were computed as the differences between the

resulting equated scores and the criterion equated scores, where the criterion was

obtained from the Item Response Theory (IRT) true score equating.

There were two conditions manipulated to vary group differences in terms of

examinees’ abilities on the quality of equating. The first condition explored standard

errors of equating and equating biases when there were no group differences. This

condition was achieved by using all cases in the MT21 data. The second condition

compared standard errors of equating and equating biases among equating methods when

groups differ in abilities. This condition was manipulated by deleting data oftwo high

performing countries from the test form 1 and deleing data oftwo low performing

countries from the test form 2. The manipulation resulted in that the group taking the test

form 2 performed better than the group taking the test form 1. The next section presents

standard errors of equating and equating biases of different PSE equating methods.

4. 2. I The Propensity Score Method: Standard Errors ofEquating

Figures 4.9a-4.9b compare standard errors of equating when the propensity score

method was used. Specifically, Figure 4.9a presents standard errors of equating when
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groups were identical in terms of examinees’ abilities, while Figure 4% presents

standard errors of equating when groups differ in abilities. It was obvious that when

groups were identical, the traditional PSE method (A) and the modified PSE method (T)

had smaller standard errors of equating. The PSE method that uses sub-scores (S), the

PSE method that uses the combination of sub-scores and demographic variables (S&D),

and the PSE that uses the combination of all collateral information (ALL) had the largest

standard errors of equating. However, although all equating methods had different

standard errors of equating, their standard errors of equating were small.

When groups differed in abilities, all methods had even more different standard

errors of equating but the modified PSE method (T) had the smallest standard errors of

equating which were less than 0.5, followed by the traditional PSE method (A). Other

equating methods had comparable standard errors of equating, which were larger at the

low and high ends of the score scale but smaller at the middle of the score scale.
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FIGURE 4.9a: PS standard errors of equating: no group differences
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4. 2.2 The propensity Score Method: Equating Biases

Figure 4.10a displays equating biases when there were no ability differences

between groups of examinees, while Figure 4.10b shows equating biases when there were

ability differences between groups of examinees. As seen in Figure 4.10a, the PSE

method that uses demographic variables (D) and the PSE method that uses the

combination of the anchor test and demographic variables (A&D) had smaller equating

biases than other methods, followed by the traditional PSE method (A) and the modified

PSE method (T). The modified PSE method (T) had large positive equating biases at the

low end of the score scale and negative equating biases at the high end of the score scale.

The traditional PSE method (A) had large negative equating biases at the low end of the

score scale. The PSE method that uses the combination of all collateral information

(ALL), the PSE method that uses the combination of sub-scores and demographic

variables(S&D), the PSE method that uses the combination of sub—scores and anchor test

(S&A), and the PSE method that uses the sub-score (S) all had large negative equating

biases. This might be due to the issue of test length discussed in the next chapter.

When groups differ in ability, as seen in Figure 4.10b, nearly all equating methods

had large negative biases. The PSE method that uses sub-scores (S) had the smallest

equating biases. Equating biases shifted downward to be more negative values, as

compared to Figure 4.10a. However, it was not the case for the modified PSE method

(T). The modified PSE method (T) method had even larger equating biases when there

were group differences. Specifically, at the low end ofthe score scale, the equating biases

were large and positive with a maximum of 13.00, while large negative equating biases

were found at the high end of the score scale with a maximum of -12.00.
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The equating biases of the S method tended to be unchanged from Figure 4.10a to

Figure 4.10b, indicating that the S method had biased equating functions but was more

tolerance to ability differences than other methods. Since all equating methods shifted

their equating biases downwards but the S method did not get much impact from group

differences, the equating biases for the S method were more close to zero than other

methods. Although the S method had relatively smaller equating biases, their equating

biases at the low end of the score scale were comparable to those equating biases of the

traditional PSE method at the same range of score points. It can be noted from the Figure

4.10b that the PSE methods that use sub-scores as the information to impute missing data

all had large negative biases.

4. 2.3 The Multiple Imputation Method: Standard Error ofEquating

The multiple imputation (MI) method was another method used in this study to

explore its feasibility to compute the frequencies of missing data of the NEAT design.

Figure 4.11a and Figure 4.11b compare its standard errors of equating under two

conditions. Specifically, Figure 4.1 la displays the standard errors of equating when there

were no group differences in terms of examinees’ abilities, while the Figure 4.11b

presents standard errors of equating when groups differed in abilities.
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As seen in Figure 4.11a, all equating methods had small standard errors of

equating approximately less than .5 at the score points from 5 to 62. All equating

methods had large standard errors of equating at the low end of the score scale, especially

for the traditional PSE method (A). Even though all methods had comparable standard

errors of equating, the PSE method that uses the combination of sub-scores and

demographic variables (S&D) and the method that uses the demographic variables (D)

had approximately smaller standard errors of equating than other methods.

In Figure 4.11b, when groups differ greatly in abilities, all equating methods had

more different standard errors of equating. Standard errors of equating of the S, A, S&D,

and S&A methods were larger than when there were no ability differences between

groups of examinees. However, the standard errors of the D, A&D, and T, and ALL

methods were smaller than other methods and tended to be unchanged from Figure 4.11a

to Figure 4.11b.

4. 2.4 The Multiple Imputation Method: Equating biases

Figures 4.12a and 4.12b compare equating biases of different PSE equating

methods that used the multiple imputation (MI) method to compute score frequencies of

missing data. Specifically, Figure 4.12a displays equating biases when there were no

group differences in terms of examinees’ abilities, while Figure 4.12b displays equating

biases of different equating methods when there were group differences. Note that the

criterion equating function used to compute equating biases in this study was the equating

function obtained through the IRT true score equating.

When there were no group differences, equating methods that had smaller

equating biases close to zero included the PSE method that uses demographic variables
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(D), the PSE method that uses the combination ofthe anchor test and demographic

variables (A&D), and the traditional PSE method (A). The modified PSE method (T) had

large positive biases, while the PSE method that uses sub-scores (S) and the method that

uses the combination of the sub-scores and demographic variables (A&D) had both

positive and negative biases depending on the location on the score scale. The method

that uses all collateral information tended to have negative equating biases.
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When groups differed in abilities, the equating biases displayed in Figure 4.12b

diverged from zero, and different methods tended to have different equating biases.

However, the methods that had relatively smaller equating biases included the PSE

method that uses demographic variables (D), the PSE method that uses the combination

of the anchor test and demographic variables (A&D) and the traditional PSE method (A).

Even though these three methods had comparable equating biases, the D method seemed

to be more preferable because it, on average, had the smallest equating biases. The

traditional PSE method (A), the PSE method that uses sub-scores (S), and the method that

uses the combination of sub-scores and demographic variables (S&D) had very large

equating biases at the low end of the score scale. The traditional PSE method (T) had

large positive biases, while the S and S&D methods had large negative biases at the low

end of the score scale. PSE methods that use sub-scores (S) as the covariates to impute

missing data had large negative biases.
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CHAPTER 5

SUMMARY AND DISCUSSION

5.1 Background

This study investigated if it was feasible to use collateral information about

examinees in the post-stratification equating (PSE) method to improve the quality of

equating in terms of standard errors of equating and equating biases. Collateral

information about examinees investigated in this study included five sub-scores, the

anchor test score, and 24 examinees’ demographic variables. The primary objective of

this study was to explore the feasibility of using this information to reduce equating

biases and standard errors of equating produced by the PSE method.

Theoretically, equating test scores using the PSE method, the equating method

that uses the Non-Equivalent Groups with Anchor Test (NEAT) design, is achieved when

score frequencies of missing data are obtained to construct synthetic population

functions. For the NEAT design, there are two test forms (e.g., X and Y) and the anchor

test (A), and there are two samples of examinees drawn from two different populations

(e.g., P and Q) (von Davier, Holand, & Thayer, 2004). Examinees take each of these two

test forms plus the anchor test. Therefore, examinees taking Xwill have missing scores

on Y, while examinees taking Y have missing scores on X. The assumptions about the test

score distribution conditional on the anchor test score have to be invoked and they are

assumed to be invariant for both P and Q. By using these assumptions, score frequencies

of missing data are obtained. Once score frequencies of missing data are obtained,

synthetic population functions which are the mixture of observed score frequencies (from

examinees’ responses) and predicted score frequencies (from missing data) are
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constructed in the form offx=wfitp+(1-w)fi(Q andfy=wfyp+(1-w)ny, wherefdenotes the

score frequency and w the weight given to P (Braun, & Holland, 1982). Then the PSE

equating is carried out by applyingfit and)3! to the equipercentile fimction.

Researchers have shown that, when groups differ greatly in abilities, the PSE

method produces larger equating biases than the chained equating. Therefore, the chained

equating method has been used more widely than the PSE method, even though the PSE

method has a stronger theoretical foundation than the chained equating method (Kolen,

1990). Specifically, the PSE method identifies the target population of the equating

function defined by the synthetic population functions mentioned above, but the chained

equating method does not define its target population. The equating function is defined

for a “single population” and when groups differ greatly, the chained equating method

has theoretical shortcomings in this regard because we do not know what group of

examinees its equating function is computed for.

The large PSE equating biases are the result of the inaccurate prediction of

missing data. In other words, the role ofA as a conditional variable is not successfirl in

obtaining the score frequencies of missing data. Wang and Brennan (2009) therefore

replaced A with the “anchor test true score” in order to improve the equating biases of the

PSE method. This method is called “the modified frequency estimation method” or “the

modified PSE method” in this study.

This study explored an alternative strategy to improve equating biases by using

more collateral information about examinees as a conditional variable. This is extremely

necessary when groups differ greatly in abilities, only a single anchor test score and

anchor test true score may not impute score frequencies ofmissing data precisely well.
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Therefore, using more collateral information to increase the prediction of missing data is

needed so that equating biases can be reduced. The second objective of this study was to

investigate how precise the collateral information predicts score frequencies ofmissing

data. Better prediction of missing data was expected to be associated with smaller

equating biases.

Since investigations of collateral information in equating literature have not

provided illuminating findings about its impact on standard errors of equating, this study

also explored the effect of using collateral information about examinees on standard

errors of equating of the PSE method.

When collateral information about examinees are available, this study proposed

using two different ways to use this information to construct synthetic population

functions needed for equating test scores under the PSE method. The first method is the

propensity score method (Rosenbaum, & Robin, 1983) by which missing data occurring

when equating data are collected through the NEAT design are predicted by invoking a

conditional distribution of scores conditional on the propensity score. That is, the

propensity score was used to replace the anchor test score in the traditional PSE method.

The second method is the multiple imputation method (Rubin, 1987) by which missing

data were imputed using available data without any assumptions.

Specifically, by using the propensity score method, the conditional distribution

assumption of the traditional PSE method, which is “the conditional distribution of score

given the anchor test score”, were modified by replacing the anchor test score with the

propensity score as a conditional variable. This modified assumption is interesting in that

using more information about examinees plus the anchor test score to create a conditional
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variable in the PSE method would be more realistic—it would be more held. However,

when the multiple imputation (MI) method was used, it imputed missing data directly

from observed collateral information. This was achieved without any changes in the PSE

assumptions.

5.2 Study Design

This study used both simulation data and empirical data. For the simulation study,

four factors investigated included two test lengths (60 items and 40 items), two ability

differences (no differences vs. large group differences), two missing data treatments (the

propensity score method and the multiple imputation method), and eight combinations of

collateral information about examinees. The eight combinations of collateral information

included

1. Anchor test sore only (A)

2. Anchor test score, sub-scores, and demographic variables (ALL)

3. Anchor test score and demographic variables (A&D)

4. Sub-scores and demographic variables (S&D)

5. Demographic variables only (D)

6. Sub-scores only (S)

7. Anchor test true score (T)

8. Sub-scores and the anchor test (S&A).

100 data sets were replicated for the PS method, but the first 20 data sets of the 100 data

sets were replicated for the MI method. However, 5 data sets were imputed using the MI

method for each of the 20 data sets; therefore, 100 analyses were also performed for the

MI method.
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The data analysis has two parts. Part I was to prepare data for equating, and Part II

was the equating part. Part I involves the sub-score estimation and the propensity score

estimation. Sub-scores were estimated using the Haberman (2008) method which is based

on the classical test theory (CTT). This method was chosen to estimate sub-scores used in

this study because it produced sub-scores comparable to those obtained through other

complicated techniques (Sinharay & Haberman, 2008), but it is much easier to be carried

out and less time consuming in computations. The propensity scores were estimated

through the logistic regression model. Note that, within this part, the MI method involved

the sub—score estimation only, but the propensity estimation is not needed for the MI

method. Part 11 used the results from Part I as well as the anchor test score and the raw

score to carry out equating.

For the real data analysis, the Mathematics Teaching for the 21St (MT21) Century

was used. MT21 is a small international comparative study of mathematics teacher

preparations of six countries. MT21 has two test forms each measuring five components

of content knowledge—algebra, data, function, geometry, and number. This study

manipulated the MT21 data such that the investigation of the effect of group differences

in terms of abilities on the standard errors of equating and equating biases was feasible.

Specifically, for the condition where there were no group differences, all cases in the

MT21 data were used. However, for the condition where there were group differences,

Taiwan and Korea data were excluded from the test form 1, and Bulgaria and Mexico

data were excluded from the test form 2. Equating was performed using the KB software

because it estimates standard errors of equating used for the comparisons between

equating methods. Equating biases were defined as the differences between the obtained
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equating function and the criterion equating function obtained through the IRT true score

equating.

5.3 Resultsfrom the Simulation Data

5.3.1 The Prediction ofScore Frequencies ofMissing Data

One of the objectives of this study is to evaluate the accuracy of the PSE methods

that use collateral information in predicting score frequencies of missing data. This

evaluation was to find information to address why a certain PSE equating method had

smaller or larger equating biases. Small equating biases are expected to be associated

with accurate predictions of score frequencies of missing data.

Results from the simulation study showed different predictions of missing data

between the propensity score method and the multiple imputation method. For the

propensity score method, PSE methods that use sub-scores had more accurate predictions

of score frequencies missing data than other methods when there were group differences

in the long test condition. In a short test condition, these PSE methods had larger chi-

square and LR chi-square statistics, meaning that they did not predict score frequencies of

missing data well. However, where there were no group differences the PSE method that

uses the combination ofdemographic variables and the anchor test score, and the PSE

method that uses demographic variables had smaller chi-square statistics and LR chi-

square statistics than other methods, indicating that these two methods when used with

the propensity score method better predicted score frequencies of missing data. But when

there were group differences, these two methods could not better predict missing data

than the PSE methods that use sub-scores.
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However, for the multiple imputation method, the PSE methods that use sub-

scores as a component ofpredictors ofmissing data had smaller chi-square and LR chi-

square statistics when there were no group differences. This was true for both long and

short test. However, when there were group differences the PSE method that uses

demographic variables had smallest chi-square and LR chi-square statistics.

5.3.2 Comparisons between the Traditional PSE Method, the Modified PSE Method, and

the PSE Methods that Use Collateral Information

The second objective of this study is to assess the comparability of predicted

score frequencies of missing among the proposed methods, the traditional PSE method

and the modified PSE methods.

For the propensity score method of missing data treatment, when there were no

group differences, the methods that had the smallest chi-square and LR chi-square

statistics included the PSE method that uses the combination of sub-scores and

demographic variables, and the method that uses demographic variables, followed by the

modified PSE method and the traditional PSE method. When there were group

differences in the long test condition, the methods that had smaller chi-square and LR

chi-square statistics included ones that involved sub-scores. But when there were group

differences in the short test condition, the modified PSE method and the traditional PSE

method had smaller chi-square and LR chi-square statistics than other methods.

For the multiple imputation method ofmissing data treatment, when there were

no group differences in both long and short test conditions, the methods that involve sub-

scores had the smallest chi-square and LR chi-square statistics than other methods. But

when there were group differences, the PSE method that use demographic variables had
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smaller chi-square and LR chi-square statistics, followed by the modified PSE method,

and the PSE method that uses all collateral information. This was true fOr both long and

short tests.

5.3.3 Standard Errors ofEquating and Equating Biases ofthe PSE Methods that Use

Collateral Information

This study proposed using collateral information in the PSE equating method. The

equating quality of these methods was evaluated by standard errors of equating and

equating biases. The third objective of this study evaluated standard errors of equating

and equating biases of the PSE methods that use collateral information. This evaluation

assessed the quality of these PSE methods.

For the propensity score method ofmissing data treatment, all PSE methods that

use collateral information had large standard errors of equating. Among these methods,

the method that uses the combination of anchor test and demographic variables had

smaller standard errors of equating, followed by the method that uses demographic

variables. These two methods still had the smallest standard errors of equating in the

short test condition.

In terms of equating biases, all PSE methods had comparable equating biases as

seen in Figure 4.2a. When there were group differences, the methods that use sub-score

had the smallest equating biases (Figure 4.2b). However, this was not true for the short

test condition. In the short test condition, the methods that involved sub-scores had larger

positive equating biases than other methods (see Figures 4.2c and 4.2d).
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5.3.4 Comparisons between the PSE Methods that Use Collateral Information, the

Traditional PSE Method, and the Modified PSE Method in Terms ofStandard Errors of

Equating and Equating Biases

The fourth objective of this study is to compare standard errors of equating and

equating biases between the PSE methods that use collateral information, the traditional

PSE method, and the modified PSE method.

For the propensity score method of missing data treatment, standard errors of

equating of the traditional PSE method and the modified PSE method tended to be

smaller than other methods in all conditions. The PSE method that use the combination of

anchor test and demographic variables also had small standard errors of equating

comparable to the traditional PSE method and the modified PSE method.

In terms of equating biases, the methods that involve sub-scores had the smallest

equating biases when there were group differences in the long test condition. However, in

the short test condition when there were group differences, the traditional PSE method

and the modified PSE method had smaller equating biases as seen in Figure 4.2d. In

addition, Figure 4.2c shows that the methods that involve sub-scores had large equating

biases than other methods. These results show that sub-scores did not provide much value

when tests had small number of items.

For the multiple imputation of missing data treatment, all methods had

comparable small standard errors ofequating as seen in Figures 4.5a-4.5d. In terms of

equating biases, when there were no group differences, the traditional PSE method, the

modified PSE method, and all PSE methods that use sub-scores had smaller equating

biases than other methods (see Figures 4.68 and 4.6c). However, when there were group
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differences, the modified PSE method and the PSE method that uses demographic

variables had the smallest equating biases (see Figures 4.6b and 4.6d).

5. 4. Resultsfrom the Empirical Data

This study used the Mathematics Teaching in the twenty first Century (MT21)

data to investigate the impact of collateral information used in the post-stratification

equating (PSE) method on standard errors of equating and equating biases. Data were

manipulated such that the impact of group differences could be investigated.

For the propensity score method, standard errors of equating of all equating

methods that used different sets of collateral information had similar standard errors

equating with the maximum less than 1.00, when there were no group differences. Even

though standard errors of equating were comparable, the traditional PSE method and the

modified PSE method had the smallest standard errors of equating. However, when there

were group differences, the modified PSE method produced stable standard errors of

equating, no matter how large the group differences were. But other methods had even

larger standard errors of equating.

In terms of equating biases, when there were no group differences, the PSE

method that uses the combination of the anchor test and demographic variables and the

method that uses demographic variables had smallest equating biases, followed by the

traditional PSE method and the modified PSE method. However, when there were group

differences, the PSE method that uses sub-scores became the method that, on average,

had smallest equating biases as seen in Figure 4.10d. All other methods, except for the

modified PSE method, that used different collateral information had even larger negative

equating biases. The modified PSE method had large positive equating biases at the low
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end ofthe score scale and large negative equating biases at the high end of the score

scale. Even though the PSE method that uses sub-score had smallest equating biases, the

other methods that use sub-scores as a component in the propensity score estimation had

large equating biases.

For the multiple imputation method, all equating methods that use different sets of

collateral information had comparable standard errors of equating, but when there were

group differences, standard errors of equating of all methods were more different as seen

in Figures 4.11a and 4.1 lb. No matter how large the group differences were, standard

errors of equating of all methods were fairly small.

In terms of equating biases, similarly to the propensity score method, all equating

methods had comparable equating biases when there were no group differences. The

traditional PSE method, the method that uses the combination of the anchor test score and

demographic variables, and the PSE method that uses demographic variables had

relatively smaller equating biases than other methods. When groups differ greatly in

abilities, nearly all methods tended to increase equating biases to more negative values.

But the equating biases of the PSE method that uses sub-scores did not have much impact

from group differences, and therefore, on average, it had smallest equating biases, even

though equating biases were large.

5.5 Discussion

There are some important issues found in this study to be discussed in this

section. These issues discussed below are related to the efficacy, and feasibility of using

collateral information in the PSE equating methods, as well as the recommendation to use

collateral information in practice.

118

  



5.5.1 Why Collateral Information Is Necessary? and Its Efliciency in the PSE Method

When equating data are collected through the Non-Equivalent Groups with

Anchor Test (NEAT) design, two observed score equating method commonly used

include the chain equipercentile equating method and the post-stratification equating

method. However, the chain equipercentile equating method has been more widely used

because it has smaller equating biases when groups of examinees differ greatly in

abilities. The chain equating has been questioned and the question is centered on the

target population of the equating function. More specifically, the equating function is

computed for a single population. Typically, when the NEAT design is used to collect

equating data, there are two groups of examinees each taking test X or test Y plus the

anchor test (A). When these groups of examinees differ greatly in abilities, it implies that

they are drawn from two distinct populations. Therefore, what is population the equating

function is computed for is the question not addressed by the advocates of the chain

equipercentile method.

Unlike the chain equipercentile method, the PSE method defines the target

population of equating function but unfortunately has larger equating biases than the

chain equipercentile method. Large equating biases are associated with the realistic of the

conditional assumptions of the PSE method that are invoked to compute score

frequencies of missing data, especially when group differences are greater. This is the

major reason why practitioners have preferred the chain equipercentile method to the PSE

method.

The traditional PSE method has two assumptions about missing data invoked to

compute score frequencies ofmissing data. As mentioned in von Davier, Holland, and
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Thayer (2004), “the conditional distribution ofX given A is population invariant” and

“the conditional distribution of Y given A is population invariant.” These assumptions

seem to be acceptably held when there are no group differences. But when groups differ

greatly in abilities, the role ofA as a conditional variable has been questioned (e.g., Wang

& Brennan, 2009). When A fails to adjust for group differences, larger equating biases

are expected.

There are research studies attempting to reduce equating biases when groups

differ greatly in abilities. These studies ranged from using a specially designed A

(Holland & Sinharay, 2008) and anchor test true scores (Wang & Brennan, 2009).

Alternatively, this present study investigated if collateral information about examinees is

capable ofreducing equating biases.

When collateral information is used to replace the anchor test, they have to be

combined into a single piece of information, and the propensity score method provides an

efficient way to combine this information into a form ofpropensity scores. In this study,

examinees’ propensity scores (Z) were computed using the logistic regression model and

the propensity score is the probability ofbeing administered the new test form (Test form

Y) given a set of collateral information treated as a set covariates. If the examinee A took

the old test form and had the same propensity score as the exarrrinee B who took the new

test form, these two students are said to be equivalent in terms of covariates. Therefore, it

is reasonable to use the propensity score to replace the anchor test score in the process of

PSE equating.

Since this study used more information in the form of the propensity score as a

conditional variable, the traditional PSE method is thus modified by replacing A with Z.

120



These modified assumption are “the conditional distribution ofX given Z is population

invariant” and “the conditional distribution of Y given Z is population invariant.” These

modified assumptions are realistic because two groups of examinees having equivalent

propensity scores (or collateral information) are likely to have similar proficiency level;

therefore, their score distributions are more likely to be invariant than when using the

anchor test score only as a conditional variable. This belief is evaluated in this study and

supported by the simulation study, showing that the PSE methods that use collateral

information had more accurate predicted score frequencies of missing data and smaller

equating biases than the traditional PSE method and the modified PSE method.

The simulation study shows that when there were no group differences, all

equating method had comparable equating biases. However, the methods that use sub-

scores as predictors in the propensity score estimation are better than the traditional PSE

method and the modified PSE method in the long test condition when group differences

are greater. Based on this result, the new direction to reduce equating biases of the PSE

method would be centered on the sub-scores, even though fiirther studies are needed to

refine its potential. The question why the sub-score is better than the anchor test and the

anchor test true score in terms of the equating bias reduction is discussed below.

Why sub-scores have smaller equating biases than the anchor test score and the

anchor test true score when used with the propensity score method might be because this

study used a more powerful measurement model called the diagnostic assessment model

to measure examinees’ proficiencies. Precise measures of examinees’ proficient are more

appropriate to be used as a conditional variable to compute score frequencies ofmissing

data. Sub-score estimation has been a new growing area in the psychometric field.
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Psychometricians have recently increased attention to sub-score estimation (e.g.,

Roussos, Templin, & Henson, 2007; Haberman & Sinharya, 2008) because sub-scores

provide more information about students’ strengths and weaknesses than a single score.

The Habennan’s method of sub-score estimation used in this study estimates sub-scores

using the classical test theory. This method is useful because it not only provides

estimates of sub-scores comparable to those from other methods (Haberman & Sinharay,

2008) but it also is easier and less time consuming in computations. When sub-scores are

used in the PSE method, they are expected to be more precise estimates of examinees’

ability than the anchor test score which is a single score. They also better represent

examinees’ proficiency than the anchors test true score because they reflect complete

dimensions ofproficiency of examinees, similar to the multidimensional item response

theory model (e.g., Reckase, 1997). However, the anchor test true score is just a

combination ofmany dimensions ofproficiency. Therefore, they are more realistic

variables for predicting examinees’ test score on the test form that they have not been

administered to.

5.5.2 Propensity Score Method vs. Multiple Imputation Method

As indicated in the previous section, collateral information provides an alternative

approach to reduce equating biases. When collateral information is obtained, we need a

method to use this information for computing score frequencies of missing data required

to construct the synthetic population firnctions which are the inputs for the PSE method.

This study found that when there were no group differences, the propensity score and the

multiple imputation methods tended to have comparable equating biases and predictions

of score frequencies. However, they seemed to yield different results when there were
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group differences in terms of abilities. Specifically, the propensity score method resulted

in smaller equating biases for the PSE methods that use sub-scores or the combination of

sub-scores and other collateral information about examinees. However, the demographic

variables were most useful to predict score frequencies ofmissing data using the multiple

imputation method. These results were consistent between simulation data and empirical

data analyses.

In terms of standard errors of equating, the multiple imputation method had

smaller values than the propensity score method. However, practitioner should be

cautious when comparing the propensity score method with the multiple imputation

method in terms of standard errors of equating because the standard errors of equating for

the two methods were computed in this study using different approaches. The PS method

estimated standard errors of equating using the Kernel Equating software in which

standard errors of equating were estimated by the Tayler’s series expansion method (von

Davier, Holland, and Thayer, 2004), while the MI method uses the method similar to

resampling methods.

5.5.3 Issue ofthe Length ofSub-scores

This study found that sub-scores for the long test had a potential to reduce

equating biases, but this is not the case for the short test. This has an implication that

equating biases can be reduced when long sub-scores are used with the propensity score

method. This is reasonable in that sub-scores are precisely estimated in a long test

because a long test is more reliable than the shorter test. This was consistent with

Sinharay, Haberman, and Puhan (2007) where they noted that subscores are more

meaningful for the long test.

123

  



5.5.4. Selection ofDemographic Variables

This study shows that demographic variables have potential to reduce equating

biases for the multiple imputation method. In the equating literature, the documentation

about what demographic variables are useful for equating has been unclear. This study

used demographic variables that are related to examinees’ opportunity to learn in

mathematics. These variables are highly correlated with test performance and thus they I

are expected to reduce equating biases because they can predict test scores of the missing

4
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4

“
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“
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7

data reasonably well.

 When various demographic variables are available, practitioners should be

cautious that not every set of demographic variables can reduce equating biases. Some

demographic variables that are less relevant to examinees’ proficiency are intuitively not

associated with small equating biases. For example, Paek, Liu, and Oh (2008) found that

using sex, ethnicity, and grade of students did not add much value to improve equating

results.

5.5.6 Sub-score vs. Demographic Information

This study found that both sub-scores and demographic variables are feasible to

reduce equating biases. The sub-score can reduce equating biases when the propensity

score method was used in the situation when groups differ greatly. However,

demographic variables are useful when they were used with the multiple imputation

method to impute score frequencies ofmissing data. This study recommends that the sub-

score is a better choice than the demographic variables because the sub-score is within

the test. However, additional money is needed when one wants to gather good

demographic information for the PSE equating.
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5.5.7 Unfair Advantages Due to Equating Biases

The propensity score methods tend to yield positive biases at the low end of the

score scale, indicating that low-achieving examinees will get an unfair advantage.

Specifically, all propensity score equating methods overestimated equated scores,

especially at the low end of the score scale (0—10 for the short test condition and 0-18 for

the long test condition). For example, the sub-score and demographic variables gives an

unfair advantage to examinees whose scores on the old form (test form 1) are less than 18

over those examinees performing better on the old form (test form 1). However, the

minimum for the simulation data of this study is 30 for the long test condition and 18 for

the short test condition, meaning that there are no examinees having scores in the range

of 0-18 and 0-29 for the short test and long test, respectively. This pattern is called “zero

frequencies.” Therefore, the unfair advantage issue is not a major concern for the

simulation data of this study. This is also true for the multiple imputation method.

But the propensity score methods that use sub-scores had large positive equating

biases in the middle of the score scale. This indicates that using sub-scores with the

propensity score method will give an unfair advantage to examinees whose abilities are

about average, while other examinees will get a disadvantage.

For the multiple imputation method, when there were group differences, all

methods had different patterns of biases. What groups get a more unfair advantage

depends on the equating method used. Generally, low and high achieving examinees have

either an unfair advantage or an unfair disadvantage, depending on the equating method

used. However, as mentioned earlier, there are zero frequencies at the low and high end
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of the score scale. Therefore, the equating bias is not a major problem that creates unfair

(dis)advantages for this study.

5.5.8 A Potential for Bias When Rounding in Multiple Imputation

This study found that standard errors of equating and equating biases were poorly

estimated at the bottom end of the scale. Rounding in multiple imputation method has

been thought to be a cause of biases (Horton, Lipsitz, & Parzen, 2003). But it was found

in this study that rounding the imputed scores to the discrete scores worked well at the

low and high ends of the score scale. Specifically, the differences between imputed score

frequencies and true frequencies are close to zero at the low and high ends of the score

scale. Therefore, rounding is not a cause ofpoor estimates of equating biases and

standard errors of equating. However, zero frequencies and the linear interpolation might

be two sources of poor estimates of these statistics.

5.5.9 Effect of the Order of Group Differences between Examinees of P and Q

In the situation where there were group differences between populations ofP and

Q, this study simulated data such that the examinees ofQ are more proficient than the

examinees of P. This scenario is consistent with the practice of some testing programs

such as the program that uses computerized testing. That is, the new test form (Y)

administered to a new group of examinees is usually easier than the old form (X) because

of the practice effect and cheating.

When the examinees ofQ were more proficient than those of P, the propensity

score methods and multiple imputation equating methods tended to result in positive

equating biases, a finding is consistent with Holland and Sinharay (2007). However, this

study did not investigate the situation where examinees ofP are more proficient than
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examinees of Q. For this condition, Holland and Sinharay (2007) found that equating

biases were negative when P performs better than Q.

5.5.10 Requirements of Equating

The term “linking” refers to any function or transformation used to connect the

scores on one test to those of another test. But “equating” is a special case of linking. A

linking between scores on two tests to be considered an equating has to satisfy the

following requirements (Dorans & Holland, 2000; Petersen, 2008):

0 Same construct: The two tests must both be measures of the same

characteristics (ability or Skill).

0 Equal reliability: Scores on the two forms are equally reliable.

0 Symmetry: The transformation is invertible.

1» Equity: It does not matter to examinees which test they take.

0 Population invariance: The transformation is the same regardless of the

groups from which it is derived.

Any score transformation that satisfies the above five requirements is considered

equating (Dorans & Holland, 2000). This study did not check all of these requirements.

The simulation data and empirical data used in this study seem to satisfy the first and

second requirements. Moreover, since this study used the equipercentile equating

function to derive comparable scores, the third requirement is thought to be satisfied by

the definition of equipercentile equating function (Kolen, & Brennan, 2004). However,

whether or not linking methods that use the propensity equating method and the multiple

imputation method satisfy the remaining requirements is an interesting area for future

research.
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5. 6 Implications

The results from this study provided some strategies that provide smaller equating

biases than the PSE methods that have been used in practice: the traditional PSE method

(e.g., von Davier, Holland, & Thayer, 2004) and the modified PSE method (Wang &

Brennan, 2009). The findings from this study therefore have tremendous implications for

practitioners. That is, this study shows that it is reasonable to use more collateral

information to reduce equating biases when groups differ greatly in abilities. Two choices

are provided in this study. The first choice is to use the propensity score method to

combine sub-scores or the combination of sub-scores and other demographic variables.

This choice works best with the propensity score method in the long test. The second

choice is to use demographic variables with the multiple imputation method to predict

score frequency of missing data directly without making conditional assumptions.

Sub-scores are more appealing than demographic variables because they are

within the test; one does not have to spend times, costs, and energy to collect them for

equating. This recommendation is proper for the equating purpose only but does not to

say that demographic variables are not useful and should not be collected at all.

5. 7 Limitations

There are some limitations of this study. First, this study used very special

simulation data in which item responses were simulated but demographic variables from

real data were fixed. Therefore, the sample size could not be varied because, by using

demographic variables from the real data, 2627 rows of demographic variables from the

empirical study had to be merged with the simulated item responses and thus every

simulated data has 2627 cases. Second, for the empirical data analysis, the equating
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biases were defined as the differences between the obtained equating function and the

equating function from the IRT true scores. The simultaneous calibration was performed

using the software BILOG-MG to obtain the estimates of item and abilities parameters

for computing IRT true scores. However, MT21 data is thought to be multidimensional

data because it measures multiple content areas, and therefore, item and ability

parameters may be biased due to the multidimensionality issue.

5.8 Future Direction

There are many issues to be further studied to refine the results of the PSE

methods that use collateral information.

First, it is obvious that equating biases and standard errors of equating at the low

end of the score scale are large. These large equating biases and standard errors of

equating were not precisely estimated because there were few examinees having low

scores and because this study used the linear interpolation method to connect the score

distribution at the low and high end of the score scale where score fi'equencies were

sparse. Further study may continuize score distributions using the continuization method

(von Davier, Holland, & Thayer, 2004) to solve the discreteness nature of score

distribution and thus equating biases and standard errors of equating can be more

precisely estimated.

Second, this study found in the empirical data analysis that the PSE method that

uses sub-scores did not work in terms of equating biases. However, the result from

simulation data analyses indicated that it outperformed other equating methods in the

long test condition but it did not work in the short test condition. So the result from

empirical data analysis is consistent to that of a simulation data analysis in the short test

129

  

 



condition. As noted in chapter 3, the MT21 data has some sub-sections that have very

small number of items (e.g., the algebra section of Test form 1). Therefore, it is necessary

to use another empirical data set that has lengthy subsections to see if the methods that

involve sub-score really can reduce equating biases in practice.

Third, it is interesting to apply the kernel equating framework (von Davier,

Holland, & Thayer, 2004) to the methods of this study because the kernel equating

framework provides an efficient way to compute standard errors of equating and will

improve the accuracy of standard errors of equating.

Fourth, this study shows that some PSE methods that use collateral information

reduced equating biases (e.g., the method that uses sub-score), and in the longer test

condition it had smaller equating biases than the traditional PSE method. As mentioned

earlier, several previous studies highlighted that the traditional PSE method always

produces larger equating biases than the chain equating when groups differ greatly in

abilities. Hence, the chain equating has been used more widely in practice, although it has

a theoretical shortcoming. Therefore, it is also interesting to compare the methods that

use collateral information with the chained equipercentile method in terms of equating

biases. This comparison will provide evidence for practitioners to determine if the PSE

method with collateral information can become a better choice of equating methods as it

is theoretically supposed to be than the chain equating method.

Fifth, it is interesting to apply the propensity score method to adjust for group

differences in other equating designs in order to fully gain insight into its usefulness.

Finally, given that in some conditions the propensity score is more realistic to be a

conditional variable to estimate score frequencies of missing data, it is possible to use
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propensity scores to derive the classification consistency indices oftwo equated forms

(Yi, Kim, & Brennan, 2007). This is usual when a test developer is interested in the

extent to which an examinee who happens to take a particular form would have a

consistent classification decision if he or she had taken an equated alternate form.
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Appendix A. FT Residuals for the Propensity Score Method
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Appendix A. FT Residuals for the Propensity Score Method (Continued)
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Appendix A. FT Residuals for the Propensity Score Method (Continued)

  
34 O»-

2?

 

 

l
i
'
l
'
R
n
s
i
r
l
l
m
l

 

    
 

 

 
 

 

  
  

...2.

—3 I - _ _ I I f I I r I I "I

, 0 5 10 15 2o 25 35 40 45

I SCORE

Figure A.5 No Group Differences, 45 Missing Items, Demographic Variables

(D)

M __ 54 _ _ _____ _

.‘ a—a-a P m Q

\ i '

f \ l\ 5 9;

, .=‘ I

I’
_— ii A

7: it i

f1 1

—1< ‘1 :IE

'1.

-2* '1.
1“ ..

—3I I I I :41er I I I I

o 5 10 15 20 25 30 35 40 45

SCORE 
 Figure A.6 No Group Differences, 45 Missing Items, Subscores (S)

135  



Appendix A. FT Residuals for the Propensity Score Method (Continued)
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Appendix A. FT Residuals for the Propensity Score Method (Continued)
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Appendix A. FT Residuals for the Propensity Score Method (Continued)
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Appendix A. FT Residuals for the Propensity Score Method (Continued)
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Appendix A. FT Residuals for the Propensity Score Method (Continued)
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Appendix A. FT Residuals for the Propensity Score Method (Continued)
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Appendix A. FT Residuals for the Propensity Score Method (Continued)
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Appendix A. FT Residuals for the Propensity Score Method (Continued)
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Appendix A. FT Residuals for the Propensity Score Method (Continued)
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Appendix A. FT Residuals for the Propensity Score Method (Continued)

|
"
'
|
'
R
o
s
i
d
u
n
l

 

 

 

all. ‘I‘.

l

'1

‘.

 

 I I  
5 1o 15 2o 25 30 ;

SCORE 1

Figure A25 Group Differences, 30 Missing Items, Anchor Test Score (A)

 

I

l

l
"
'
|
'
R
o
s
i
d
l
m
l

 

 

 

 
 

 

3‘ ___-___ ‘;

i

2‘ ,

// ‘

l

14

0‘
I

—3‘ T Y I T

0 10 15 20 25 30

SCORE  
 

Figure A.26 Group Differences, 30 Missing Items, All Collateral Information (ALL)

145



Appendix A. FT Residuals for the Propensity Score Method (Continued)
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Appendix A. FT Residuals for the Propensity Score Method (Continued)
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Appendix A. FT Residuals for the Propensity Score Method (Continued)
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Appendix B. FT Residuals for the Multiple Imputation Method
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Appendix B. FT Residuals for the Multiple Imputation Method (Continued)
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Appendix B. FT Residuals for the Multiple Imputation Method (Continued)
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Appendix B. FT Residuals for the Multiple Imputation Method (Continued)
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Appendix B. FT Residuals for the Multiple Imputation Method (Continued)
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Appendix B. FT Residuals for the Multiple Imputation Method (Continued)

 
 

34

'
1
‘

l
"
|
'
R
o
s
i
d
l
m
l

9

    
   
 

  
 

 

0 E1 10— 1'5 20 5“"3'0 35 115—"'45

SCORE

Figure 8.1 1 Group Differences, 45 Missing Items, Anchor Test Score & Demographic

variables (A&D)

3‘ _

1
m P m Q

l
"
l
'
R
o
s
i
d
l
m
l

9

  
 

-3‘ 1 1 1 1 1 1 1 1

o 5 10 15 20 5 30 35 4o 45

SCORE

Figure B.12 Group Differences, 45 Missing Items, Subscores & Demographic variables

(S&D)

154

  
 



Appendix B. FT Residuals for the Multiple Imputation Method (Continued)
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Appendix B. FT Residuals for the Multiple Imputation Method (Continued)
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Appendix B. FT Residuals for the Multiple Imputation Method (Continued)
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Appendix B. FT Residuals for the Multiple Imputation Method (Continued)
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Appendix B. FT Residuals for the Multiple Imputation Method (Continued)
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Appendix B. FT Residuals for the Multiple Imputation Method (Continued)
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Figure 8.23 No Group Differences, 30 Missing Items, Anchor Test True Score (T)

 

 

F’""

  

31—"

F
T

R
o
s
i
d
l
m
l

 

     
 

_21

_3< I f I I ‘

o 5 1o 15 20 5 30

SCORE

Figure B.24 Group Differences, 30 Missing Items, Subscores and Anchor Test Score

(S&A)

160



Appendix B. FT Residuals for the Multiple Imputation Method (Continued)
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Appendix B. FT Residuals for the Multiple Imputation Method (Continued)
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Appendix B. FT Residuals for the Multiple Imputation Method (Continued)
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Appendix B. FT Residuals for the Multiple Imputation Method (Continued)
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APPENDIX C: WinBUGS Code for the Test Form 1

hdodel

{

#Read in Item Responses

for (j in 1:N){

for (k in l:T){

x[i,k] <- response[j,k]

}}

# Specify five-dimensional Two-Parameter Logistic Model

for(jhilflfl){

for (k in 1:T) {

pfivk] <-

exp(al [k]*theta[j ,1]+a2[k]*theta[j ,2]+a3 [k] *thetaLi ,3]+a4[k] *theta[j ,4]+a5[k]*theta[j,5]+

d[l<])/

(1+exp(a1 [k]*theta[j,1 ]+a2[k]*theta[j ,2]+a3 [k]*theta[j,3]+a4[k]*thetaLi ,4]+a5[k]*theta[j ,

5]+d[k]))

x[j,k] ~ dbern(p[j,k])

}

#Specify Prior for Thetas

thetafj,l:5] ~ dmnorm(mu[1:5],tau[1:5,1:5])

}

# Specify Priors for Discrimination and Difficulty Parameters

a1[l] <-0

aZ[1] ~ dnorm(0,.5)

a3[l] ~ dnorm(0,.5)

a4[l] ~ dnorm(0,.5)

a5[l] ~ dnorm(0,.5)

d[l] ~ dnorm(0,.5)

for (k in 2:62) {

a1[k] ~ dnorm(0,.5);

a2[k] ~ dnorm(0,.5);

a3[k] ~ dnorm(0,.5);

a4[k] ~ dnorm(0,.5);

a5[k] ~dnorm(0,.5);

d[k] ~ dnorm(0,.5);

}}

list(N=1361,T=62, mu=c(0,0,0,0,0),

tau = structure(.Data = c(l,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,l,0,0,0,0,0,1),.Dim = c(5,5)),

response=structure(.Data=c(

aLLLflflQQQQflQLQLQQQQLLQQQQQQLQQQLQLQLLLQLQQLLQQLQQQQQLLQQQQQQQL

LaoadndaaadmaommmmdaddodLLQLLLmLLmoLLLadaddadamddaaadddadnomad

LaodddaaaaodauaaaaoaoaaLLLQLQLQQLQaLQLadddmaaduaddaamaaLLLana

LdadmmdunoLdmadaaaduaadanrarLLQQLQLLLLdommadeaaadLoddmrnrdndm

LaLLLQLLLLLLLQQLLQLQLLQLLLuLQLLLLQQLaLLQLaQLmLLQQmLQQQQLLLaLLL

0,1.0,0,l .O,l.l .l ,l,l ,0,l ,0,0,0,l,l,0,I,0,l,l,l,0.l,l,0,l,l,l,l .0.0,0.0,0.0,l,l ,|,0,0,0,0.l,l ,1.0,0,l.0,0,0,0.0,0,l,l,l.l ,0,
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