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ABSTRACT

ANALYTICAL AND QUANTITATIVE CHARACTERIZATION OF

WIRELESS SENSOR NETWORKS

By

Muhammad Usman Ilyas

In this thesis we characterize key properties of wireless sensor networks (WSN) by

analytical and quantitative methods. These include the link-layer bit error rate (BER)

process, network lifetime and topology.

For the analysis of the BER process, we collected a large set of packet traces

over IEEE 80215.4 links. Our packet traces distinguish themselves from other data

sets in that they record channel state information (CSI) as well as full and partial

packet erasures. A channel model, which is conditioned on observed CSI, is developed.

This conditional model reduces the variance of the BER’s distribution by one order

of magnitude. Packet traces are also analyzed to determine memory length of bit

errors. Correlation analysis of bit and symbol level traces reveals that memory length

of errors in all traces is 2 bits and 2 symbols, respectively. For packet-level traces

consisting of BER measurements of individual packets the traditional correlogram

based analysis fails and so we introduce relative mutual information (RMI) as a more

robust method for measuring channel memory. RMI based analysis of packet traces

shows that memory length of the BER ranges from 0 to 2.360.

The research on the network lifetime problem proposes joint minimization of mean

and variance of sensor power consumption rates as an alternative to the minimax

formulation of the lifetime problem in WSN. This proposed statistical optimization

objective better fits the vision of WSNs consisting of large numbers of inexpensive,

redundant, disposable sensors than the minimax formulation which focuses on the

top power consuming node. We formulate this problem in quadratic program (QP)

form. To avoid scalability issues of using a QP, an approximate dynamic program



(DP) formulation of lower complexity rooted in operational rate—distortion theory

is developed. For a randomly generated WSN of 100 nodes DP exhibits upto 44%

reduction in variance at the cost of 19% increase in its mean, with many intermediate

operating points of higher benefit /cost ratios to choose from.

The research on topological characteristics of WSNs explores the possibility of

building WSNS with small-world topologies that combine desirable properties of Eu-

clidean/lattice graphs with those of random graphs. An analytical model is developed

to explain the phase difference in characteristic path length and clustering coefficient

in lattice graphs when shortcut links of limited range are used. We test and im-

plement a software based system for commercial-off-the—shelf motes that increases

communication range of links in WSNs using cooperative communication and diver-

sity combining. A trace based implementation demonstrates proof-of—concept of its

ability to reduce the fraction of packets with errors on a channel from 20% down to

1% and reduce the BER of packets that cannot be corrected. This is followed by an

implementation on the Crossbow Imote2 sensor mote. Results from the mote based

implementation show an increase in packet reception rate from 22 -— 30% to 73 —- 76%.

Finally, we develop a centrality measure to identify well connected clusters of

central nodes for the placement of network resources. For mesh network topologies

that are characteristic of WSNs, eigenvector centrality (EVC) consistently fails to

identify more than a single, arbitrarily located cluster of nodes as the most central.

We introduce principal component centrality (PCC), a node centrality inspired by the

Karhunen Loéve transform/principal component analysis. we demonstrate PCC’S

ability to identify a larger number of central hub nodes than EVC, depending on the

number of features used in its computation.
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Chapter 1

Introduction



1.1 Organization

This research characterizes, analytically and quantitatively, the bit error rate (BER)

process, the network lifetime and the topological preperties of wireless sensor net-

works (WSN) [2], [59]. The following section describes the contributions made in this

dissertation.

1.2 Overview of Contributions

Chapter 2 provides an analytical model for the end-to-end capacity between nodes in

a WSN and the base station. This study distinguishes itself from previous studies of

wireless network capacity in that it assumes a many-to—one data flow (in place of an

all-to-all flow) producing what is called the funneling or reachback effect. The model

also takes into account in-network data fusion/ compression. We consider scenarios

in which there is a) no compression, b) opportunistic compression and c) perfect com-

pression. The model shows that the distribution of power consumption rates of nodes

is skewed due to the uneven traffic load flowing through nodes. Power consumption

is lessened in systems in which sensor measurements are highly correlated and take

advantage of it by employing aggressive data compression like Slepian-Wolf coding

[114].

Chapters 3 and 4 relate to modeling of the BER process in IEEE 802.15.4 chan-

nels low-rate wireless personal area networks (LR-VVPAN). Chapter 3 describes the

experimental setup used to collect a large set of residual packet traces. These traces

distinguish themselves from traces collected by other studies in that they also cap-

I3111‘e channel state information (CSI) measurements alongside every packet and events

such as packet losses and truncated packets. The traces are used to establish the de-

gr66 of correlation between CSI measurements and the BER process that packets



are subjected to. After establishing the usefulness of CSI for estimating BER, we

develop CSI-driven models of the BER process for sets of traces collected in different

environments. Divergence measures between the models derived from different traces

show that there is very small average divergence between different models leading

to a CSI-driven BER model that is independent of physical environment. Thus CSI

measurements of traffic received over a particular link can be used to estimate the

BER and assign it a link cost. Chapter 4 analyzes the memory properties of errors

in the traces. Correlation based analysis on bit and symbol level traces reveals a

constant memory length of 2 bits and 2 symbols, respectively. Furthermore, we high-

light the inability of correlation analysis to provide a clear measure of memory length

of the BER process when a channel is subjected to periodic interference and arbi-

trary selection of a significance threshold for the correlation function. To address this

shortcoming of the correlation function based analysis we introduce relative mutual

information (RMI) [56], a normalized form of Shannon’s mutual information (MI)

[32] that provides a more robust means of measuring memory length.

Chapters 5 and 6 contain our work on the network lifetime problem in WSNs.

The lifetime of a WSN is typically defined as the time until the first node runs out of

power. The corresponding optimization problem can formulated as a minimax linear

program (LP) ([18]). However, the vision of the future of WSN calls for a network

consisting of a very large number of devices that are inexpensive and redundant. The

fact that WSN applications by their very nature impose a many-to-one data flow

that produces a funneling effect (see Milgram [82]) leads to large variations in the

Power consumption rates in nodes. Chapter 5 proposes the redistribution of traffic

rOuted to a VVSN’s base station by the joint minimization of the mean and variance

0f power consumption rates. Such a statistical objective function cannot be held

hOstage by the life of an individual sensor but takes a more global view of network

lifGtime. This chapter provides a formulation of the optimization problem in the
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form of a quadratic program (QP) ([18]). The quadratic nature of the optimization

problem puts restrictions on the scalability of the QP approach. Chapter 6 provides

an approximate formulation of the lifetime problem in the form of a dynamic program

(DP) ([18]). Experiments show that in WSN as large as 100 nodes there is a visible

difference in the rate of reduction of variance and rate of increase increase in mean of

power consumption rates as shorter routes are traded-off in favor of routes that are

less efficient in the greedy, shortest-path—first (SPF) sense.

Chapters 7, 8 and 9 describe topological properties of WSNs, particularly the

small-world effect. Chapter 7 describes the place small-worlds networks [128] oc-

cupy on the spectrum of networks with node connections varying between order and

randomness. In this chapter we describe the potential benefits of having wireless

networks with small-world topologies and previous approaches to achieve this goal.

Small-world networks are characterized by a phase difference between the drops in

characteristic path length and clustering coefficient of networks as the fraction of

links in the network that are shortcuts is increased. Prior models of characteristic

path length and clustering coefficient in various types of graphs did not consider the

addition of range limited links. This chapter presents analytical models for both

these quantities for graph topologies that are subject to the constraints of wireless

networks. The model developed in this chapter can be parameterized to accommo—

date any of the existing approaches to building small—worlds in WSNs. Chapter 8

describes a method based on single-input multiple-output (SIMO) principles, called

the generalized ‘Poor-Man’s-SIMO-System’ (gPMSS), a practical implementation of

Shortcut links in WSNs by leveraging cooperative communication and diversity combi-

nation principles. The diversity combining methods explored include selection diver-

Sity, equal gain and maximal-ratio gain diversity combining, where the weight factors

Used in maximal-ratio combining are provided by the CSI-driven channel model of

the BER developed earlier in chapter 3. gPMSS enables the construction of small-
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world networks in wireless networks by alternative means. Its chief advantage over

existing approaches lies in the fact that it is not based on any modifications to the

hardware of sensor motes. Proof of concept is provided by performing detailed anal-

ysis on a set of wireless channel packet error traces and also implemented on the

Crossbow Imote2 sensor mote. The work on gPMSS is also relevant to the research

on the network lifetime problem. Chapter 9 attempts to identify the most central

nodes/regions in a wireless network. It highlights the problems demonstrates the

shortcoming of pre-existing centrality measures (degree, closeness, betweenness and

eigenvector centrality). A new measure of node centrality called principal component

centrality (PCC) is proposed which addresses the shortcoming of eigenvector central-

ity in identifying well connected hubs within graphs characteristic of wireless mobile

ad-hoc networks and WSNs. The hubs in a network identified by PCC can be used

for the placement of shared network resources, e. g. endpoints of shortcut links.

Finally, chapter 10 concludes this dissertation by summing up our finding.



Chapter 2

Network Channel Capacity of

IEEE 802.15.4 Wireless Sensor

Networks Under Reachback



2.1 Introduction

Over the past several years different. assumptions have been made about the structrn‘e

and capabilities of wireless sensor networks (WSN) and the devices they are consti-

tuted of. In [43] Gupta and Kumar studied the scalability of wireless networks with

randomly chosen source destination pairs. Their conclusions offer two solutions to the

scalability problem; 1) Design smaller networks, or 2) localize communication by clus-

tering nodes. The idea of a WSN consisting of homogeneous devices gradually gave

way to that of a network consisting of a homogeneous mix of nodes with non-uniform

device capabilities. In this newly emerged view of WSNs, sensors are grouped into

clusters. Each cluster of sensor nodes elects from among its members a clusterhead

I10de (CLH) that acts as a gateway for all incoming and outgoing communications.

Consequently, WSNs can be thought of as hierarchical networks with 5 levels.

However, since most previous work on WSNS distinguishes only between two roles

for devices, sensors and CLHs, we assume a two-level hierarchy with s = 2. This

assumption is also supported by the IEEE 802.15.4 low rate-wireless personal area

networks (LR-VVPAN) draft standard. The standard refers to a hardware device with

ITlOre resources with a more complex implementation as a full function device (FFD)

and a device with fewer resources and a simpler, less expensive implementation as a

reduced function device (RFD). For the remainder of this chapter we will assume a

VVSN built out of devices compliant with the IEEE 802.15.4 physical layer (PHY)/

Inedium access control (MAC) specifications.

Level 1, the lower level, refers to the network formed by a CLH and its associated

Sensors. Typically, all devices within a cluster are capable of communicating with

ea~Ch other directly. Therefore, communication between sensors and their CLH are

a'SSurned to take place over a single hop. We will use the terms cluster, intra-cluster

or Cluster-level communication interchangeably to refer to the exchange of messages
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Figure 2.1: Physical layout & network topology of WSN.

between nodes belonging to the same cluster. Communication within a particular

Cluster proceeds at a common frequency, i.e. there is a potential for interference

between transmissions of different sensors of a cluster. Different clusters may or may

not use differing frequencies. l\"‘Ioreover, the network topology within a cluster is

reStricted to a star topology with the CLH at the center.

Level 2, the upper layer, refers to the network formed by the CLHs of all clusters

in the WSN and the base station. We will also refer to this network as the overlay net-

WOrk (ON). We assume that the CLHs participating in the ON are capable of routing

and relaying their own and other clusters’ packets towards the base station. More-

Over, since the most widely used WSN routing algorithms like destination-sequenced

disfiance vector (DSDV) [99], directed source routing (DSR) [61], ad—hoc on-demand

distance vector (AODV) [100], directed diffusion [58] etc., are different. forms of short-

8



est path routing algorithms, we assume that at any given time the routes from CLHs

to base station in the ON form a tree rooted at the base station. We are discounting

the possibility of using bifurcated routing, i.e. multiple paths from source to desti-

nation. We will use the terms overlay, overlay network or CLH-level communication

interchangeably to refer to the exchange of messages between nodes belonging to

the ON. Moreover, it is assumed that message exchanges between CLHs in the ON

take place at one frequency, i.e. like sensors in a cluster, CLHs in the ON have the

potential to produce interference for each other. However, this frequency channel is

assumed to be free of interference from cluster-level communication. Moreover, the

topology of the ON is a mesh topology.

As 2.1 shows, as traffic generated by the CLHs situated farther away approaches

the base station, the expected volume of traffic carried by a link increases. This

leads to a capacity bottleneck around the base station that subsequently limits the

rate at which CLHs, and ultimately sensors, can inject data into the network. This is

Called the reachback problem [9] Thus source coding is used to alleviate the effects of

the reachback channel. Besides entropy coding methods, a very popular compression

method in WSNs is Slepian-VVolf coding [114] which assumes prior knowledge of the

degree of correlation between sensors.

2 . 2 System Model

2~2.1 Wireless Networking Standards for WSNs

In Our attempt to formulate a generalized expression for the end-to-end capacity of a

Channel between an arbitrary sensor and the base station we remain open to the pos-

Sibility of a number of different wireless networking technologies. Besides proprietary

radio interfaces, the most commonly encountered standardized wireless networking



technologies found in early implementations of WSNs are the IEEE 802.11x wireless

local area network (WLAN) standard [51], the IEEE 802.15.1/ Bluetooth standard [4]

and the IEEE 802.15.4 standard [5]. The distinguishing features of these three net-

working standards are many. Table 2.1 lists only the features that we were concerned

with in our work, i.e. the operating frequencies and the types of MAC protocols.

As we will show in a later section, our interpretation of how the end-to-end capac-

ity of a wireless channel can be computed requires us to assume a pathloss model to

model the physical channel. Pathlosses depend on numerous environmental factors

whose effects are generally too complicated to predict. Two parameters that influ-

ence pathlosses in a major way are the frequency and transmitter-receiver separation.

We assume that all transmissions are taking place in the 2.4 — 2.4835GHz industrial

scientific and medical (ISM) band which is used in all three wireless networking stan-

dards under consideration. This will allow us to use a single pathloss model that will

be applicable to all three networking standards under consideration. Therefore, our

end-to—end channel capacity expression will not be applicable to WSNs using IEEE

802.15.4 networks operating in the 868—868.6MHz or 902—928MH2 bands. In addi-

tiOn, we are allowing for both collision avoiding carrier sense medium access/collision

aVOidance (CSMA/CA) and collision—free time division multiple access(TDMA), type

IVIAC protocols. The choice of the MAC protocol mode will affect parameters in the

model.

Let N be the total number of sensors in a WSN of M clusters. Let Cit/2' E

{1, 2,3, . . . , M} denote an individual cluster consisting of one CLH and N,- sensors

(therefore; N = 2911 Ni): Sensors are addressed using a 2-dimensional address

SCheme in which the ith cluster’s jth sensor node is labeled ni(j)Vi E {1, 2, 3, . . . , M},

VJ E {1,2,3, . . . ,Ni}, with viz-(0) denoting its CLH, and n0(0) denoting the base

StEltion. We also define a frequency function f (n,- (j )) that returns the frequency at

‘which the device passed in the argument communicates within a cluster. This way
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Table 2.1: Tabular listing of relevant features of the three wireless networking tech-

nologies under consideration for use in WSNs.

 

 

Feature IEEE 802.15.4 IEEE 802.11b IEEE 802.15.1/

Bluetooth

Frequencies 2.4-2.4835 GHz 2.4-2.4835 GHz

1.W

2. 992—928MH59

3. 2.4-2.4835GHz

      

A-lACtype Polling

1. TDMA in GT8 1. CSMA/CA in

, DCF

2. CSMA/CA in

CTS 2. Polling in

PCF

Topologies Meshed Star Star Star/Meshed Star

(DCF)/Meshed (Piconet)

Star (PCF)
\
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f (712(0)) denotes the intra—cluster communication frequency of cluster Ci. We use

fit/27 E {1, 2, 3, . . . ,M} as a shortened form to denote the cluster frequencies of all M

clusters. Similarly, we abbreviate f (710(0)) by f0 to denote the frequency used by

CLHs for communicating in the ON. The probability of n113(1) making an interfering

transmission at the same time as n.,-(j) is making its transmission is denoted by

an (l) ("i(j))- We also define a frequency indicator function in equation 2.1;

0; f (n-dflHWUi) , (2.1)I ('rti(j),nk(l)) =

f 1; f (712:ij = f (7119(1))

VVith the definitions of symbols describing the network in place we now come to

the terms that will quantize the channel conditions, i.e. capacity and probability of

error terms. First off we define the probability of a bit error or the bit error rate

(BER) denoted by p. The 802.15.4 standard uses binary phase shift keying (BPSK)

Illodulation at 20 and 40kbps and offset-quaternary phase shift keying (O—QPSK)

mOdulation at 250kbps. Both BPSK and QPSK modulators make hard decisions

ba-Sed on the received symbol and output either a ’0’ or a ’1’. Therefore, assuming

an additive white Gaussian noise (AWGN) channel both BPSK and QPSK receivers

Can be modeled by binary symmetric channel (BSC) with probability of error p. p is

defined as the fraction of transmitted bits that are received without errors. Hence, this

term models the channel between the Physical layers of the OSI model transmitter

and receiver.

_ # of bits received without errors (2 2)

# of bits transmitted '

Frames in 802.15.4 are protected only by a 16 bit frame check sequence (FCS)

With no error correction capability. This implies that whenever even a single bit in an

entire frame is received in error the receiver discards the entire frame. Packetization
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affects net throughput. We denote the fraction of transmitted bits that are received

without errors by 6. 6 will be referred to as the packet error rate (PER). Since packets

are either received correctly and forwarded to the next higher layer or discarded due

to FCS failure, the PER is equivalent to the probability of error 6 of a binary erasure

channel (BEC). A BBC is used to model the channel between the MAC Layers of the

OSI model transmitter and receiver.

_ #z of packets received without errors

— # of packets transmitted

 a (2.3)

Finally, since we are assuming the use of Slepian-VVolf coding we have take into

account the dependencies that introduced in data streams. As a result of these

dependencies packets that will be received error free will at times not be decodable due

to losses in transmissions from other sources. As a result, packets that are received

free of errors can end up being undecodable due errors in another transmission it

(hipends on. Therefore, we define the PER. with SIepian—VVolf coding as the fraction

Of transmitted packets that are decodable by the receiver denoted by 6DEC'

# of decodable packets received

" = 2.4

ODEC # of packets transmitted ( )

 

p, 6 and (5DEC for links within a cluster are denoted by pCL’ 6CL and (5DEC—CL'

Sirnilarly, the corresponding quantities for links on the ON are abbreviated by pON’

50N and 6DEC—ON: Since, the ON channel between an arbitrary CLH and the

baSe station may comprise of multiple hops we need to define additional quantities for

the end-to—end channel in the ON pON—E2Ei 60N—E2E and 5DEC—ON-E2E'

FiIlally, the channel formed between each individual sensor and the base station

IS Characterized by a combination of the above computed values and denoted by

pON—S2BS’ 60N—S2BS and 6DEC—ON—S2BS' To clarify, figure 2.2 shows the

relationship between 5DEC—CL’ (Sosa—0N: 5DEC—ON—E2E
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Figure 2.3: Slepian-Wolf coding in cluster-level communication.
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2.2.2 Source &: Channel Coding

\Ne consider three options for source coding; 1) No source coding, 2) opportunistic

compression [71], and 3) Slepian- Wolf coding. The first option does not perform

any compression at all. Data is merely collected at each CLH, concatenated, packe-

tized and routed to the base station. Opportunistic Compression assumes correlation

between different sensor readings. Each CLH compresses data it receives from down-

stream based on other data available to it from other sources. Slepian-Wolf coding

was first proposed by Slepian and Wolf in [114]. However, we make some simplifying

assumptions about Slepian-Wolf coding as it applies to WSNs. These assumptions

have been taken from Marco and Neuhoff in [80] and [81]. Slepian—Wolf coding also ex-

plOits the spatial correlation of sensor readings in neighboring sensors and is employed

as a. means to compress data before transmitting it to the base station. Slepian-Wolf

COding is based on equation 2.5. However, Slepian-Wolf assumes that the degree

Of correlation is known prior to transmission, whereas opportunistic compression as-

Sumes no prior knowledge. Consider a cluster i as in figure 2.3 consisting of Ni sensors

and a CLH in which the first sensor 711(1) produces reading XIlifl)’ the second sensor

712' (2) produces reading X , 2 and so on.

”A )

(2.5)

The size of all N,- sensor readings after lossless compression is lower-bounded by

t1leir joint entropy. As an example, Slepian-Wolf coding within a cluster proceeds as

fOllows.

1. Sensors transmit their readings to their CLH. For the purpose of simplifying
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analytical expressions, let us assume that the transmissions to the CLH are

scheduled in the ascending order of sensor nodes’ ID numbers.

2- The first transmission Xn'(1) by nz-(l) is not compressed (see first term on
2,

left-hand side of ( 1))

3. The second sensor nl-(2) compresses its sensor reading to H (Xni(2)[Xni(1))

based on the side information of n,- (1)’s transmission of size H (X (1)). There-

h

rni

f tl '75 d ‘ 1 't I t»- -. 't“ 't dct (X . .ore, 1e ] no e in cus er 2 ransnn s IS '1 a as H ni(J)IXni(]‘1)

"Xn-(1)) bits. This way the total volume of all transmissions approaches

2

the joint entropy as shown in (1) and also depicted in figure 2.3.

However, this coding scheme has one major disadvantage. While the savings

in transmissions can be substantial, depending on the spatial distribution of the

phenomena being sensed, the failure of the CLH to receive the kth transmission

results in its inability to reconstruct all subsequent transmissions k + 1 through N,-

for that round. The high sensitivity of a receiver’s ability to decode packets to packet

losses, and the fact that bit and packet error rates in single hop wireless networks are

Orders of magnitude higher than those in multi-hop wired networks makes the use of

IV'IAC layer channel codes imperative. Even without any dependencies between data

Streams the BERs of end-to-end channels representative of multi-hop paths in wireless

n(itworks can often times be large enough to impose unrealistically large overheads

On end-to—end channel codes.

The PERs of various links will depend on the size of packets. When Opportunistic

Compression or Slepian-Wolf coding are employed that will depend on the degree of

COrrelation in data readings. To model the lossless compression of data and determine

the message sizes Lm (n, (j )) we use the model proposed by Pattern, Krishnamachari

a11d Govindan in [97]. The use of Slepian-Wolf coding forces an order on the devices in

the WSN which is also described in detail in [97]. The number assigned to a particular
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device ni(j) in this order is returned by the order function O(-) which returns a value

in the range 1 S O (ni(j)) S N.

2.2.3 Power Consumption Model

The total energy E (n,(j)) consumed in mote n,(j) in equation 2.6 is modeled

as the sum of energies consumed in communication ETX (n,- (J)) and processing

EPR (7120))-

E ("Nil = ECOMM ("1(0) + EPR (”2' (1')) - (2-6)

ECOMM (ni(j)) in equation 2.7 can be further broken down into energy con-

sumed in transmission ETX (ni(j)) and reception ERX (nZ-(j)).

ECOMM (in (1')) = ETX (”101) + ERX W31) - (2-7)

The total energy spent by all devices in a network divided by the uncompressed

number of bits of data communicated to the base station yields the energy per symbol

(EPS) of the network configuration in equation 2.8.

Ni

2.1-Z1 531:1 Enifj)

N,- '

2,1312,le (an'(i))

The processing cost incorporates the cost of performing source and channel coding

EPS = (2.8)

and decoding operations encoding and decoding. Since several algorithms of varying

degrees of complexity are available for both source and channel coding we model the

COmplexity of these operations at the transmitter and receiver by terms cngn1 and

(21,332, respectively. The cost is dependent on the message size L-m on which the

Operations are performed.
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2.3 Channel Model

In this section we derive a channel model for the end—to—end channel between a trans-

mitter and receiver communicating in a multi-hop 802.15.4 wireless network. The

first. step consists of identifying a suitable pathloss model for the 2.4 - 2.4835CH2

ISiVI band. We use the model put forward by the physical channel modeling sub-

group of the IEEE 802.15 taskgroup 4 in [86] for this purpose. Figure 2.4 depicts

a transmitter and receiver communicating over a multi-hop wireless channel. The

transmitter and receiver are depicted by the two protocol stacks of the Open Sys-

tems Interconnect (OSI) model. At the Physical layer of the OSI model we assume

a discrete memoryless channel (DMC). The pathloss model is an abstraction of the

Physical channel between a single transmitter and receiver. In terms of the OSI

model, the pathloss model represents an abstraction of everything that falls under

the Physical layer. From the pathloss model we can determine a bit error model that -

Will be representative of everything below the data-link layer. The ultimate goal here

iS to determine a model that is capable of abstracting everything down from layer 5

0f the OSI model. In the next step, we add another layer of abstraction to the bit

error model by using it to obtain a packet error model. The packet error model is an

abstraction of the network stack from the Network layer down. Note that the packet

eI‘ror model can serve as an end-to—end model in single-hop networks. However, for

IIlulti-hop networks such as the ones we are considering we will have to modify the

packet error model to obtain the desirable end—to—end packet error model that will

abstract everything from the session layer down. This successive abstraction of the

Channel between transmitter and receiver based on the next lower model is depicted

in figure 2.4. The layers of the OSI model inside a dashed box represent the layers

encapsulated in the corresponding model.
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Figure 2.4: End-to—End channel between a transmitter and receiver on a multihop

Wireless network.

2.3.1 1-Hop Communication

The expressions we derive in this section are equally applicable to all l-hop commu—

Ilication links in the WSN, irrespective of whether they are in the ON or cluster.

Therefore, we will refrain from using the CL and ON at the end of the subscripts

0f the sought quantities, i.e. received signal power, SINR. BER and PER. From the

pathloss model in [86] we can obtain the expression in equation 2.9 to obtain the

Dower P (Viz-(j) —) nk(l)) of a signal transmitted by ni(j) at receiver nk(l).
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(2.9)

Here, PTX—a-mp (typically 17an for IEEE 802.15.4 compliant devices) is the

Signal power at. the transmitter after amplification before it is passed to the antenna,

"TX—ant is the transmitter antenna efficiency. 77RX—ant is the receiver antenna

Efficiency and K, PLO, and K0 are environmental parameters that depends on the

Operating environment (see [86]). Since we are assuming that a WSN consists of de-

vices with identical radio interfaces transmitting at a fixed power we consider these

terms to be constant across the entire network. We also define two reference param-

eters fc and do for this pathloss model. For the sets of parameters provided in [86],

fc is set to 5GHz and do is set to 1m. This leaves the expression dependent on the

transmission frequency f and the distance between devices 72.,(3') and nk(l) that is

rGturned by the distance function d (n,(j), nk(l)).

In order to obtain the BER for a DMC we need an expression for the signal-to-

interference 8 noise ratio (SINR). The general expression for the SINR is given in

equation 2.10. Using the expression for the pathloss model described above we can

arrive at an expression for the SINR in the terms of known quantities.

 

PTX
SINR = , (2.10)

PA 'I' Z Pint

where PTX is the power of the received signal for which the SINR is being com-

puted and Pint is the power of interfering signals caused by undesired concurrent

transmissions elsewhere in the network. PA is the ambient noise power of interfer-
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ence produced by sources that are not part of the WSN and are not modeled by

any terms in Pint: Sources of ambient noise power may include but are not limited

to other networks that are co—located with the WSN under consideration [136] or

devices or appliances (microwave ovens, cordless phones) that operate in the same

frequency band. Since at the cluster-level all transmissions are directed from sensors

to their respective CLH, the term SINR (n,(j) —-> nAll» represents the SINR of the

transmission from nZ-(j) to nk(l). In the general case, all sensors and CLHs can be

considered potential sources of interference. Obviously, we assign qni (j) (712(3)) 2 0.

The interference power 23 Pint in equation 2.10 is the sum of all other signals that

are received originating from sources other than n11 (j). This term is computed by

Summing the interference power of all sensors. In order for nk(l) to contribute to

the power of the interference signal for a transmission originating from nZ-(j), nk(l)

must be 1) operating in the same frequency band and 2) transmitting at the same

time as n.z'(j). Transmitters operating at different frequencies make effectively no

contribution to interference. Therefore, the indicator function defined earlier is used.

The probability that a sensor will produce an interfering signal at the same time as

712(3) transmits is accounted for by multiplying the term further by anm (”2'ij

SINR (711(7) —-) 7tk(l))

If (ni(j),nk(l)P (n,,j(j) —> nk(l)))

PA + 2:2le 23:0 era-e). fr-nm<n>>)qnm(.,)mew) (nme) a nae)’

(2.11)

Then equation 2.11 is the final expression for SINR(ni(j) —) nk(l)). In the

Ilext step we use the SINR and Q-function to obtain the probability of error for a

BSC. The use of the Q—function to arrive at the BER using the SINR is described
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by Rappaport in [104]. If Q(a: z? f1 6%d'u, then the probability of receiving

a bit error at nA.(l) in a transmission originating at ni(j) is called the bit error rate

(BER) p(n.-]() ——> nA.(l)). IEEE 802.15.4 uses two different modulation techniques.

802.15.4 uses Binary Phase-Shift Keying (BPSK) at the 20 and 40kbps data rates

in the 868 — 868.6MH2 and 902 — 9281MHz bands, respectively. At 250kbps in

the 2.400 — 2.4835G'Hz band it uses offset-qrxadrnture phase-shift keying (O-QPSK).

In either case the BER is obtained by using the Q—function. Equation 2.12 shows

the relationship between SINR and BER for a QPSK receiver. Equation 2.13 is the

corresponding equation for a BPSK receiver. This can be thought of as the probability

Of error in a binary symmetric channel (BSC). The corresponding channel capacity

in terms of the BER is obtained from equation 2.14, where Hb(-) is a function that

returns the entropy of a Bernoulli random variable with the parameter provided in

the argument.

 

p(n2'(j) —+ nA.(z =Q(\/ZSIR(we )—> nA(1)))

 

 

 

_u (2.12)

=))_/00 e Ydu.

J27? \/QSINR(nl-(j)——>nk(l))

p(n,l-(j) ——> nA.(l)) =Q(n(\/SINR1'0)—+ nA.(l)))

_u (2.13)

= —/00 e gdu

fl? \/SINR(7‘2.Z-(j)——>rz.A.(l))

CBER(”ij()——>nA(l))=1-—Hb(ni(j)—+71A(l)) (2.14)

From the BER we now determine expression 2.17 for obtaining the probability

of a packet loss or the packet error rate (PER) 6 (ni(j) —+ nA.(l)) for a transmission

fI‘om n2(j) to nA.(l). The PER corresponds to the probability of error of a binary

eI‘asure channel (BEC). We assume that without channel coding a received packet is

discarded if a single bit is in error, a valid assumption considering our choice of wireless
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standards. Lh is the per sample header size in bits. The size of the sample making up

the message depends, of course, on the entropy reduction method employed. When no

source coding is used Lm (n3(t)) is simply (H (X7218(0)] , where H() is the entropy

function. When opportunistic compression is used the size of a message originating

at 713(t) is Lm(n3(t)) is H [H (Xn5(t)|Xn5-(1)""1X715(t——1))-|' Ffom 2.15 we

trivially obtain expression 2.16 for the channel capacity CpER (n2(j) —> nA(l)) in

terms of 6 (71.10) ——> nA.(l)). Note that for the case of Slepian-Wolf coding, 2.15 and

2.16 do not yet take into account the additional losses due to a receiver’s inability

to decode a received message caused by losses in transmissions of other messages the

received message is dependent on.

o‘ (71,:(3') —-> nA(1)) = 1 — [1 — p (712(7) —> nA.(l))]Lh+le(n5(t))l (2.15)

CPER(n.i(j)—>nk(l)) =1— p(nl-(j)—>1riA.(l)) (2.16)

Now we consider the case where Slepian-Wolf coding is employed and a further

expression for the PER of a message can be obtained which takes into account losses

in streams that the receiver depends on to decode the message. Since cluster-level

communication is single hop only and the ON is essentially a multi—hop network the

expressions for (5DEC—CL and (5DEC—ON are significantly different and we will

depart from our practice of finding general expressions that we followed to this point.

6DEC—CL (“1(1) —+ Rim» = 1— [1— :2 (TIA-(j) —> nA:(0))] Lh+Lm (2.17)
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where,

W (”2‘0” 2 lH (Xnan'All

A=XA,Va:1§aSO(n,i(j)) (2.18)

CPER-SW—CL (MO) -> will») = 1 - Oreo—CL (7120') -> ”110»

2.3.2 Overlay Network Communication

We now turn our attention to the end—to-end capacity of the channel between an

arbitrary CLH and the base station communicating over a multi—hop wireless network.

The case in which all CLHs are directly communicating with the base station in the

ON becomes a special case of the more general case of a multi—hop ON. Like for the

l-hop case, we start from the expression for SINR, this time for a signal transmitted

by a CLH Til-(0) to its upstream neighbor. This is given in 2.19.

Before proceeding further we define a set of new functions that will subsequently

be used in this section. R1T(nz-(0)) returns the immediate upstream neighbor of CLH

nZ-(O), where upstream denotes the direction towards the base station in the network

topology. R1i(n.i(0)) returns the set of CLHs that is 1 hop downstream from 711(0),

where the term downstream refers to the direction away from the base station in

the network topology. RT(ni(0)) returns the set of all CLHs that are upstream from

viz-(0). Similarly, R‘L(ni(0)) returns the set of all CLHs that are downstream from

712(0).
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Note that for a TDMA protocol in the ON anm) = 0V1: , and hence 2.19 simplifies

to 2.20.

P (mm) —+ Elfin-MOD)
SINR01N(71,A(O)) = PON A (2.20)

Applying the Q—function leads us to similar expressions 2.21 and 2.22 for the BER

as before.

 

pON(n,-(0)) = Q (\/2SINRON(nA(0)))

 

 

 

1 00 _

= —— e 2 u

«2? /\/2511\7R0N(n,-(0)) d (2'21)

Pow/("MOD = Q (\/SINRON(n.-<0)>)

1 00
_u

: _ e 2 A.
m/,/51N120N(n,(0)) d (2'22)

From 2.21 and 2.22 we can obtain equation 2.23 a recursive definition for the BER

of the multi-hop, end-to—end channel between a CLH and the base station.

FON—EQElnimll =PONl'71-2loll [1—mum (R1T<n.<0>>)]

+pON—E2E (R1T('rlzt(0))) [1 — pON(7'Ll-(0))] . (2.23)

The expression for the PER for a packet originating at 7227(0) on a link between

nA.(0) and its upstream neighbor R1T(nA(0)) is then provided by equation 2.24.
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6ON—n-k(0)("i(0)) = 1— (1 - powwowlethlniio”. (2.24)

where (50N_nk(0)(nj(0)) = 1 if ‘nA:(0) 51$ RT(n]-(0)) and the message size origi-

nating from Til-(0) is,

[Vi

Lm(nA-<0)) = Z H<X.->. (2%)

i=0

This leads us to the final expression 2.26 for the end-to-end PER from an arbitrary

CLH ni(0) to the base station. Equation 2.27 gives the corresponding expression for

the end—to-end capacity.

501wE2E(n,-(0)) = 1 — an(0)ERT(ni (0)) (1 — 6ON__nk(0)(n,-(0))) (2.26)

CPER—O.7V—E2E(”i(0)) = 1 - 6OlV—E2E(ni(0)) (2.27)

For Opportunistic compression and Slepian-Wolf coding the derivations for expres-

sions in equations 2.19 through 2.27 proceed in exactly the same manner, equation

2.25 being the exception. Opportunistic compression and Slepian-Wolf coding replace

equation 2.25 by equation 2.28 and 2.30, respectively.

Lm(‘n,,;(0)) = (Alamo) . . . X7Li(Ni)|A)l (2.28)

A = {vxa : a e Ri(n,(0))} (2.29)
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Lm(n,(0)) = Z Lm(a) (2.30)

aeRi(n,-(0))

2.3.3 Sensor-To-Base Station Capacity

Using the above results the sensor-to—base station BER/ PER for any arbitrary sen-

sor nZ-(j) can be obtained by multiplying the cluster-level BER p(nz(j)) in 2.12/

PER 601.2(3)) in 2.17 with the end—to—end BER pON_E2E(n.lj(0)) in 2.23/ PER

(50N—E2E(nz(0)) in equation 2.26, respectively. This yields an expression for the

sensor-to—base station BER in equation 2.31 and a corresponding sensor-to—base sta-

tion PER expression in equation 2.32. From 2.31 and 2.32 we can obtain the corre-

sponding capacity expressions in equations 2.33 and 2.34.

11521350110 ))

= pON—E2E(ni(0)) [1 - Pill-1(0)] + 290110)) [1 — P0AV—E2El71n0lll (231)

652350110» = 1 - [1 — 6mm») [1 — alumnae») (2.32)

CBER_SQBs(nzi(J')) = 1 - Hb(p3233('r11(1))) (2-33)

CPER—SQBS(”Z'U)) :1" 60120))

(2.34)

= [1 — we») [1 - alumnae»)
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2.4 Results and Analysis

For the following experiments we use an 802.15.4 network with its MAC operating

in TDMA/ GTS enabled mode. We use the PHY channel model for residential

environments in [86]. The WSN consists of N = 150 sensor nodes randomly placed

over a square region of dimensions 10 x 10 according to a uniform random distribution.

To create longer multi-hOp routes in the ON we place the base station at coordinates

(0,0). We assume a set of 15 available frequencies for cluster-level communication

in addition to one frequency reserved for communication between CLHs in the ON.

Figure 2.1 depicts a sample WSN. Circles denote the positions of CLHs while the

x-marks denote the positions of sensors. Sensors in closest proximity of the means

obtained by the k-means clustering algorithm [44] are assigned the role of the CLH

for that cluster. Solid lines depict the topology of the ON while broken lines indicate

a sensor’s association with its respective CLH.

Values for the correlation factor p are varied through )0 = 0.1, 1, 10, 20, 30. Increase

in p can alternatively be viewed as an increase in the node density. The number of

CLHs N1 is also varied through M = 5, 10,20, 30,40. We assume the use of near

capacity achieving channel codes at the MAC layer and evaluate the EPS for the

cases when,

1. No source coding,

2. Opportunistic compression, and

3. Slepian-Wolf coding are employed.

For each of these cases we assume two sets of complexity vectors (:1, (11, c2, (12,

1) {5,1,10,1}, and 2) {5, 2, 10, 2}. The constant coefficient at the receiver side c2 is

assigned a higher value than the corresponding transmitter side coefficient (:1 because

channel decoding is typically more complex than encoding. This produces six options
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Correlation Number of CLHS

(a) No source coding 011 = 1, 02 = 1, c1 = 5, and c2 = 10.

 

 
Correlation Number of CLHs

(b) No source coding (11 = 2, (12 = 2, cl = 5, and c2 = 10.

Figure 2.5: EPS spent across the network for varying degrees of spatial correlation

and number of CLHs.

to evaluate. Obviously, a low is desirable. Furtl'iermore, based on the measurements

reported by Polastre, Szewczyk and Culler in [101] and Madden, Franklin, Hellerstein

and Hong in [79] we take the ratio of per bit energy consumption for transmission,
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Correlation Number of CLHs

(a) Opportunistic compression a1 = l, 012 = 1, c1 2 5, and c2 = 10.

 

Correlation Number of CLHs

(b) Opportunistic compression (.11 = 2. (12 = 2, C1 = 5. and Cg : 10.

Figure 2.6: EPS spent across the network for varying degrees of spatial correlation

and number of CLHS.

reception, and instruction execution to be 1 : 0.6 : 1 /800.

Figures 2.5a, 2.5b. 2.6a, 2.6b, 2.7a and 2.71) plot EPS against the degree of cor-

relation and the number of CLHs. Figures 2.5a and 2.5b show a decrease in the EPS
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Correlation Number of CLHs

(a) Slepian-Wolf coding 011 = 1, a2 = 1, c1 = 5, and c2 = 10.
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Correlation Number of CLHs

(b) Slepian-Wolf coding (11 = 2, (r2 = 2, 01 = 5, and C2 = 10.

Figure 2.7: EPS spent across the network for varying degrees of spatial correlation

and number of CLHs.

with increasing number of CLHs and no variation with increasing values of p. The

second observation is according to expectations because we are not using any source

coding to leverage the correlation in the data. Figure 2.6a, 2.6b, 2.7a and 2.7b ex-
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hibit similar trends but on very different scales. EPS increases with increasing M

and decreases with increasing ,0. The greater exploitation of the inherent correlation

in the data means a smaller scale of the EPS for figure 2.7a and 2.7b relative to

figures 2.6a and 2.61). The sudden increase at high M and p can be attributed to

outlier values. These results lead us to conclude that weakly correlated data favors

the omission of any source coding scheme and a higher number of M. For highly

correlated data on the other hand Opportunistic Compression and Slepian-Wolf cod-

ing are the better choice. At high values of p the value of M plays an increasingly

negligible role. The choice between Opportunistic compression and Slepian-Wolf will

depend on the complexity of the available implementations of the two, i.e. at similar

complexities Slepian-Wolf outperforms Opportunistic compression but in a compar-

iSOII between Slepian—Wolf with complexity vector {5,2,10,2} with Opportunistic

Compression with complexity {5, 1, 10, 1} the latter outperforms the former.
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Chapter 3

CSI Driven Model of BER Process

011 IEEE 802.15.4 Links
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3. 1 Introduction

The bit errors and packet losses that are observed at the wireless receiver’s medium

access control (MAC) layer are modeled by a random process that is commonly re-

ferred to as the error process. An understanding of the error process is of fundamental

importance for a wide variety of reasons, e.g. design of high level (network layer and

above) protocols, retransmission strategies, error correction and concealment strate-

gies etc.

The IEEE 802.15.4 low rate—wireless personal area network (LR-VVPAN) standard

[5] is of particular interest to the wireless sensor network (WSN) research community

because it is the first wireless communication standard built around devices with

severe constraints on power consumption rates. Thus it is widely anticipated that

IEEE 802.15.4 will play a major role in WSN applications. This chapter analyzes

the performance and contributes to the understanding of IEEE 802.15.4 based LR-

VVPANS.

The objective of this empirical study is it to gain better insight into the time

Varying error process. We begin our analysis with a correlation analysis of the bit

Error rate (BER), link quality indication (LQI) and received signal strength indica-

tion (RSSI) processes and establish that if a packet’s BER is known to be non-zero,

18‘ it has failed the cyclic redundancy check (CRC) test, it is correlated with its

LQI and RSSI measurements. Based on the knowledge and the empirical data set

We Come up with a model for the BER’s probability density function (PDF) driven

by Channel state information (CSI) measurements. We evaluate the utility of this

model in different environments by dividing the data set. along lines of different col-

lections environments, generating models for each of them and, using traces from

Other environments as test data, measuring divergence between models and test data.

We further analyze the amount of memory in IEEE 802.15.4 LR—VVPAN links at the
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packet, symbol and bit level.

3.1. 1 Previous Work

To develop a better understanding of wireless channels’ error and loss processes,

several recent data trace collection efforts have targeted a variety of wireless networks,

including 3G networks [70], WaveLAN and 802.11x WLANs [93],[67],[66],[133],[105],

CC1100 based MICA2 networks [137] and 802.15.4 LR-WPANS [77[,[116],[115],[64].

All of these efforts involve the collection of received data while offering different levels

of insight and resolution (e.g., bit-, byte—, and/or packet-level) into the error process

on wireless channels. These studies usually focus on what is referred to as the residual

error process. In general, residual errors are bit-level or packet—level errors that are

not corrected by the PHY-layer and hence appear at the MAC-layer. Such errors

(usually) cause packet drops in traditional wireless MAC protocols such as IEEE

802.11 and IEEE 802.15.4. Most the error trace collection efforts restrict the error

process resolution to packet—level information. The most that can be extracted from

packet-level traces are statistics such as

0 Packet reception rates (PRR), the fraction of transmitted packets that are re—

ceived error-free and pass the CRC.

. Packet error rates (PER), the fraction of transmitted packets that are received

with at least one bit in error and fail the CRC test.

- Packet loss rates (PLR), the fraction of transmitted packets that are not received

at all.

By our definition of these terms.

PRR = 1 — PER — PLR (3.1)
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Table 3.1: Traffic information and statistics collected in various studies.

 

 

Network PRR PLR/ Bit Truncated CSI

PER Errors Packets Available

[93] WaveLan J

[66],[67] IEEE 802.11b J J

[77] IEEE 802.15.4 J J

[116],[115] IEEE 802.15.4 J J

[133] RFM/MICA J

[137] CC1100/ MICA2 J J

[105] IEEE 802.11x J J

[64] IEEE 802.11g J J J

This Work IEEE 802.15.4 J J J J J        
 

Khayam, et al. work in [67] was arguably the first bit-level residual error trace

collection efforts for 802.11b/g W’LANs. hileanwhile, there have been other trace

collection efforts for the more recent IEEE 802.15.4 LR-VVPAN, but like most 802.11

trace collections these too are limited to the observation of packets that pass the CRC

test. Table 3.1 tabulates the statistics and observable parameters in various works.

The collection of data packets for traces is often augmented by recording of addi-

tional information with each packet. Various wireless networking standards require

measurement of physical layer channel conditions. For example, 802.11b/g requires

the measurements of signal-to—noise ratio (SNR) and background traffic: noise level.

Sirnilarly, 802.15.4 mandates the measurement of RSSI and LQI of each received

packet. We refer to all such measurements by the umbrella term CSI. As the side-by-

Side comparison in Table 3.1 shows, our error traces are by far the most detailed in

terfns of data collection and the recording of CSI. Our traces distinguish themselves

in that they log are he only ones to provide bit-level residual error traces for IEEE

802.15.4, the positions of lost packets, as well as partially lost packets, a phenomenon,
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which is probably unique to 802.15.4, and whose cause is explained a little later in

this chapter. Further details regarding the meaning and definition of these parameters

will also be provided.

The remainder of this chapter is organized as follows. Section 3.2 provides a de-

tailed description of the setup used for trace data collection. Section 3.3 establishes

the degree to which CSI measures provide information about the BER process. Sec-

tion 3.4 uses maximum likelihood estimation (MLE) to arrive at a CSI driven model

of the BER process. Section 3.5 evaluates the CSI driven BER model. Section 3.6

concludes this chapter.

3.2 Trace Collection Setup

To our knowledge, this is the first detailed trace collection effort for IEEE 802.15.4.

These traces differ from previously collected ones in quantitative and qualitative as—

pects. We collected error traces of approximately 10 million packets in a way that

Provides, to the authors’ best knowledge, an unprecedented level of insight into the

effects of the wireless channel state 011 the level of corruption of packets.

3-2-1 Experimental Setup

The trace-collection setup is depicted in Figure 3.1 and consists of a Crossbow

IVII)1R2400 MICA2 mote [34] transmitter and another MICA2 mote mounted on a

Crossbow MIB600 Ethernet gateway [33] as receiver. The gateway is connected to

a host PC running an application that continuously retrieves data from the receiver

and logs it.
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3.2.2 Packet Payload

TinyOS [75] is one of the most widely used open source operating system in WSN

devices. TinyOS v1.1 allows various packet formats to be transmitted. We suitably

modified code to enable the standard 802.15.4 frame format which TinyOS v1.1 labels

CC2420 Frame Format (after the Chipcon CC2420 chipset [120] used in MICA2

devices). Strictly speaking, the term packet refers to the protocol data unit (PDU)

exchanged between network layers of the transmitter and receiver while the term

frame is used for PDU’s exchanged between MAC layers. However, since our analysis

is restricted to the MAC layer alone there is little cause for confusion and we will

be using these two terms interchangeably to refer to MAC layer PDUs. The exact

MAC frame format used is shown in Figure 3.2. The size of the frame is 41 bytes and

comprises of a 1 byte Length Field, 2 byte frame control field (FCF), 1 byte sequence

number, 2 byte destination PAN ID, 2 byte destination address, 1 byte type field, 1

byte group field, 29 bytes of data/payload followed by a 2 byte frame check sequence

(FCS) containing a CRC. The contents of the payload field are of our own choosing

and consist of 3 unused bytes, the Source Address, the Destination Address and 6

CODies of a 32 bit sequence number. The sequence number in the data/payload is

Used to keep track of lost packets. If the sequence number between two consecutively

received packets skips one or more numbers that is indicative of a packet loss. The

Sequ ence number field alone proves insufficient for this task in the face of long fades.

A130 , a single bit error in the 1 byte counter could easily become a source of ambiguity

(did we just lose two long sequences of packets or receive bit errors in the sequence

nuTuber field?) Note that transmitted packets differ only in the 1 byte sequence

nuTuber in the header and the six 32 bit sequence numbers in the payload, and the

CRC. For a particular trace all remaining bits remain unchanged. However, since

the wireless channel will introduce bit errors the copies of the sequence number used
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to track packet losses in the received packet may differ. For this purpose we use a

majority vote of the received sequence numbers to determine the transmitted sequence

number. From this we reconstruct the contents of the Data/Payload field and hence

the transmitted packet.

3.2.3 Trace Generation

Bit-level error traces can be generated by comparing a transmitted packet with its

received version. A simple bit-wise XOR operation on the transmitted and received

packets yields a bit pattern in which a zero (‘0’) signifies a bit that is received without

error while a one (‘1’) represents an inverted bit. We observe that in some cases the

length of the received packet is shorter than the transmitted packets. This constitutes

a partial loss and we use the term truncated packets to refer to such packets. An erased

bit in a received packet will be denoted by a two (‘2’) in the error trace. Truncated

packets are logged when bits in the MAC header’s length field are inverted and the

receiver stops listening to the wireless channel prematurely. It has also been observed

that if bits in the length field are inverted in such a way that the length of the incoming

PaCket appears longer than actual the length of the logged packet still equals that

Of the transmission. Although the Length field in the received packet may falsely

indj cate a longer packet, the absence of a carrier signal allows the receiver to detect

the end of the transmission.

3-2 -4 Channel State Information

Each received packet’s logged entry is accompanied with three pieces of packet level

CSI parameters. The first is the FCS status of the packet modeled by random variable

(1’ \Vitli the nth packet’s FCS status is represented by d)[n].

Ordinarily receivers only distinguish between two states, i.e. FCS Pass (denoted
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Figure 3.1: Equipment setup for trace collection.

 

        
 

  

 

Octets:

1 2 1 2 2 1 1 29 2

Frame Sq Dest Dest Data /

Le“ Control No PAN ID Addr TV“ (3'9 Payload FCS

2 1 1 4 4 4 4 4 4 1

0x8 Src Dst SeqNo SeqNo SeqNo SeqNo SeqNo SeqNo 0x

401 Adr Adr (1) (2) (3) (4) (5) (6) 00

           
 

Figure 3.2: CC2420 MAC frame format used for experiments.

by 9")[n] = 0) if the CRC value in the FCS field matches the CRC of the received

Packet, and FCS Fail if does not. Since we have knowledge of packet erasures and

Size of transmitted packets we extend the definition of FCS status to accommodate

the reason for failure. We restrict the definition of FCS Fail BE (denoted by (b[n.] = 1)

to IIlean that the size of a received packet matches the size of the transmitted packet

and the CRC failure is due to bit errors (BE). We further define two additional states,

FCS Fail PL (denoted by gb[n] = 2) and FCS Fail CL (denoted by ¢[n] = 3), where

PL and CL are abbreviations for partial loss and complete loss respectively. Packets
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Figure 3.4: Residential deployment environment.

that are partially lost cannot pass the CRC test and are marked FCS Fail PL. Packets

that are not received at all, i.e. when the decoded Sequence Number at receiver skips,

are marked FCS Fail CL.

The Crossbow MICAz sensor mote uses a TI Chipcon CC2420 transceiver chip

[120] for its communication subsystem. The CC2420 is an IEEE 802.15.4 compliant

radio interface. In accordance with the standard, the receiver measures RSSI. The
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RSSI constitutes the second piece of our CSI parameters and is modeled by random

variable P and the nth packet’s RSSI denoted by p['n]. The RSSI is recorded as an 8

bit, signed 2’s complement value.

Technically, the CC2420 does not measure the LQI directly. Instead, it measures

tl‘le correlation CORR between the first 8 received symbols (of the PHY header)

a11d a corresponding 8 known symbols (preamble). IEEE 802.15.4 uses 16-ary Offset.-

Quadrature Phase Shift Keying (O-QPSK) modulation which encodes 4 bits in one

sy' 1111101. The first 8 symbols, 4 bytes, of the PHY header comprise of the Preamble

S(2(111(311(‘(3 consisting of 32 binary zeros. The LQI is then defined as

LQI = (CORR — c1) - c2. (32)

where the two constants c1 and c2 are functions of the Packet Error Rate (PER)

measured over an extended period of time and are determined experimentally. c1

and c2 serve to scale the 7 bit value of the correlation to the full range of an 8

bit I'lumber. Since 8.2 is merely a linear transformation of the measured CORR we

Sirnply take c1 = 0 and c2 = 1. The LQI is modeled by the random variable A and

the 71th“ packet’s LQI denoted by Mn]. Although the BER process is not considered

a CSI measure we are including it here nevertheless. The BER process is modeled

by random variable B and the 71th packet’s BER is denoted by Mn]. It must be

mentioned here that the term BER is not used in its strict traditional sense where it

denotes the long term average probability of a bit error, such as in a binary symmetric

Channel (BSC). Instead the BER is computed over each individually received packet.

Thus, for the nth received )acket it is defined as,
I

Number of inverted bits in. nth received packet

BER = mm] = (3-3)

Length in bits of nth received packet
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Table 3.2: State space variables, symbols and values.

 

 

 

Quantity Symbol of Symbol of Real- Valid Values Assigned to

Packet Level ization of Random Random Processes

Random Pro- Process

cess

FCSStatus (I) 05hr] qb =

r

O, FCS Pass

4 1, FCS Fail BE

2, FCS Fail PE

\ 3, FCS Fail CL

RSSI P p[n] p E Z /\ —128 S p 3127

LQI A Mn] AEZ+A0$A_<_127

BER B em] BeR+Aongl      
 

The value of BM] associated with the nth packet is the instantaneous measure of

the BER over that packet. Note that at this point we do not make any assumptions

abOut the distribution of the inverted bits within a packet. Completely lost packets,

with q) = 3, are assigned [1 = —128, /\ = 0, and 13 = 1'

Readers might argue that transmitter receiver separation could have been included

as another dimension of the phase space. However, numerous previous works like

l101] and ones listed in Table 3.1 have already established the tenuous nature of

the relationship between CSI and distance. Hence, transmitter receiver separation

iS excluded from the phase space. Thus each received packet is characterized by its

FCS Status, LQI, RSSI and BER processes. Together they constitute four state space

variables of our system. Table 3.2 summarizes this notation and lists the range of

possible values each may assume.

43



3.2.5 Spectral and Environmental Diversity

The traces collected in this study are divided into two sets, a multi-channel (MC) trace

set, and a multi-environment (ME) trace set. In order to obtain sets of traces rich

in environmental diversity, traces in the ME trace set were collected over a period of

months, at different times of the day, in office, residential and outdoor environments.

All ME traces were collected while operating in channel 26 in the 2.48OGHZ band.

The reason for choosing channel 26 was the fact that it is the channel in the frequency

spectrum that is the farthest removed from all 802.11bg frequency channels.

Each trace collection is characterized by the locations of the transmitter and

receiver, separation between them, packet transmission rate to in packets per sec-

ond (pps) and whether communication was line-of—sight (LOS) or non-line-of-sight

(NLOS). For all our traces the transmission power was kept constant at the default

OdB which corresponds to 1mW. Figure 3.3 and Figure 3.4 depict floor plans of the

environments in which traces were collected. The circles labeled T1 through T18

denote transmitter locations. The corresponding locations of receivers are marked by

R1 through R18. For the remainder of the chapter, we refer to individual traces TRl

through TR19. Traces collected in the same location are collectively referred to by

the name of the trace collection environment. This way TR1 through TR8 are collec-

tively referred to as the ‘Hallway’ trace set, TR9 through TRIS as the ‘Lab’ trace set,

TR16 and TR17 as the ‘Residential’ trace set and TR18 and TR19 as the ‘Outdoor’

trace set. With the exception of the ‘Hallway’ traces none of the environments had

any significant WLAN interference sources. Traces are subject to interference from

cordless phones and microwave ovens. Table 3.4 briefiy characterizes the various trace

Sets by providing PER, PLR and PRR of each.

The MC set consists of 16 traces, labeled MC-ll through MC-26, all collected

in the same residential, non-line—of—sight (NLOS) setting with 15 feet transmitter-
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receiver separation. The transmitter is operated at full transmission power. Each

MC trace is collected at one of the 16 channels numbered 11 through 26 specified by

IEEE 802.15.4. The residential environment used for the collection of the MC set is

subject to interference from multiple IEEE 802.11x WLANs. At the time the MC set

was collected there were two networks in WLAN channel 1, two networks in channel 6,

one network in channel 10 and 2 networks in channel 11 with varying activity levels.

Figure 4 of [56] depicts the population of the 2.4GHz ISM band and what IEEE

802.11b/g \NLAN channels interfere with which IEEE 802.15.4 LR—WPAN channels.

Furthermore, the transmit power of IEEE 802.11b/g devices is 30mW which is

significantly higher than the 177th of 802.15.4. As Srinivasan, Dutta, Tavakoli and

Levis reported in [115], to a co-located 802.11 \IVLAN sharing the same spectrum

traffic from IEEE 802.15.4 devices appears as noise. One might argue that since

interference scenarios are part of our evaluation, other interference sources occupying

the ISM band (see figure 3.5) such as Bluetooth/ IEEE 80215.1 [4], microwave ovens

and cordless phones should also have been part of our traces. However, as Sikora

and Groza have shown in their study [112] on the coexistence of 802.15.4 with other

systems in the 2.4GHz ISM band, co—located Bluetooth networks and microwave

ovens have no discernible effect on the operation of IEEE 802.15.4 networks. The

Effects of 802.11b/g networks on the other hand are significant and have been the

Subject of many studies ( [112], [48], [132], [102]), which is why we have only included

802.11b/g networks as interference sources.

3.3 Correlation Analysis of CSI Measures

A primary objective of this study is to model the probability density function (PDF)

of the BER process B conditioned on CSI. It is important to highlight that although

we were able to observe the BER process in our trace-collection study, in an actual
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Table 3.3: Collection environments of various traces in the ME trace set.

 

 

      
 

 

 

Trace Environment Interference Distance LOS/

Sources (feet) NLOS

ME—l Office bldg corridor 802.11x 40 LOS

(strong)

ME—2 Office bldg corridor 802.11x 60 LOS

(strong)

ME—3 Office bldg corridor 802.11x 70 LOS

(strong)

ME—4 Office 802.11x 20 NLOS

ME—5 Office 802.11x 20 NLOS

ME—6 Residence 802.11x (multi- 15 NLOS

ple networks)

ME-7 Office bldg corridor 802.11.x (low) 20 L08

ME—8 Office bldg corridor 802.11.x (low) 50 LOS

ME-9 Office bldg corridor 802.11.x (low) 100 LOS

ME—10 Office bldg corridor 802.11.x (low) 80 LOS

ME-ll Outdoors - 100 LOS

ME-12 Office bldg corridor 802.11x (low) 120 LOS

Table 3.4: Error rates in trace sets.

TraceSets PER PLR PRR

Hallway 0.1877 0.0762 0.7361

Lab 0.0275 0.0161 0.9564

Residential 0.0993 0.0420 0.8587

Outdoors 0.0005 0.0030 0.9965    
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Figure 3.5: IEEE 802.11b and IEEE 802.15.4 channels in the ISM band.
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network application the error process can only be estimated; and hence )3[n] is not

observable in actual networks. However, all other processes (cf)[n], {)[n], and /\[n]) are

observable. Hence, the problem of determining p([3[n]), the PDF of the error process

5hr], for the nth received packet based on observable CSI measures /\[n], p[n] and ¢[n].

Note that this is different from prior uses of CSI such as in [116] where it is shown

that the average PLR/PER of a link is correlated with the average RSSI. When ¢[n]

this indicates that the received packet passed the CRC and can be considered free

0f errors, i.e. [5b).] --= 0 with certainty. When at = 3 the packet is erased completely

and there is no data and no CSI available. This leaves us to focus on the cases when

4) = 1, 2, i.e. the received packet contains errors and/or is partially lost, i.e.

Alrzlmlnllel'lll = 1, 2 -+ ptb’lnll
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Reducing the uncertainty surrounding the PDF of ,S[n] of a packet received with some

bits in error on the basis of its LQI and RSSI implies that these CSI measurements

are somehow correlated with p([3[n]). We begin by establishing that CSI parameters

are indeed highly correlated with the actual BERs of packets by means of correlation

based analysis. The uncertainty in the knowledge about 13(13 [n]) is measured in terms

of its variance.

Packets with low BER are expected to have high RSSI and LQI, and vice versa.

Thus, to qualify as ‘useful’ RSSI and LQI must both be negatively correlated with

BER. Let T2703 ) denote a signal consisting of the BERs observed for packets captured

in trace TRi. If X and Y are two random variables with means E[X] and E[Y], then

the correlation coefficient ny(t) is defined as

Cov[X, Ytl

\/Var[X] Var[Yt]

5le - Ele)(Yt — Ell/till

_ t/EM - Ban \/Em21 —— 32m]

 
 

RXYU) =

 
 

Where Yt is the t time delayed version of Y. When correlation is computed for a

range of time delays the set of correlation coefficients so obtained will be referred to

as a correlation function. For every trace we treat the observed values of state Space

Variables B, /\ and p as time series signals and compute the correlation coefficients

between them. Ideally we would like to see RBp(0). the cross-correlation coefficient of

B and P, and RBA(t), the cross-correlation coefficient of B and A, to be very close

‘30 —1. For sake of completeness we also computed Rp[\(t), the cross—correlation

Coefficient of P and A. These values are computed separately for different trace sets

by concatenating signals of state space variables from all traces contained in a trace

set. Strictly speaking though, correlation coefficients should be computed separately
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Table 3.5: Cross correlation of different random processes.

 

 

RBAU) BBB“) RAP“)

Hallway -0.4662 -0.2938 0.8414

Lab -0.2745 -0.0919 0.5978

Residential -0.2071 —0.0091 0.5346

Outdoors —0.3262 -0.1613 0.8443      

for each trace. However, the results shown in this subsection change very little across

traces in the same trace set. Therefore, for brevity reasons we are presenting results

for the set of concatenated traces. As Table 3.5 shows, for packets observed at the

receiver (packets with (b = 0,1,2), both RSSI and LQI have exhibit a moderate

to strong negative correlation with the BER. Furthermore, RSSI and LQI are also

strongly correlated.

This trend is also observable in a visual inspection of the data. We are able to

obtain the joint distribution pBAP4416 , A, p, (b) and from it any conditional distribu-

tion, such as pB(/3|/\, ()5 = 1, 2) and pB(/3|p, d = 1, 2), by means of the error traces we

collected. Figures 3.6 and 3.7 show two conditional distributions p3(5 |/\, d = 1, 2)

and pBffilp, qb = 1, 2), respectively. The axis along the left hand side of the horizontal

plane is the BER axis. The axis along the right hand side of the horizontal plane is

the CSI measure (LQI in figure 3.6 and RSSI in dBm scale in figure 3.7). Thus for

each value of LQI and RSSI the figures depict a valid PDF of BER. Figure 3.6 depicts

how variance and average BER of packets in the low LQI range increases which is

in accordance with our previous observations. The same trend is visible for RSSI in

figure 3.7. Thus, the figures depict inverse relationships of the BER with both CSI

measures. Our analysis so far leads us to conclude that both RSSI as well as LQI

measurements made with each received transmission have the potential to serve as

good indicators of the BER for that particular packet.

49

 



PDF of BER conditioned on LQI

p
B
(
B
I
X
.
¢
=
1
.
2
)

 

 100

Figure 3.6: PDF of B conditioned on A and (I) = 1, 2.

3.4 CSI Driven BER Model

In this section we employ maximum likelihood estimation (MLE) to determine the

parameters opr(B|)\, p, d) = 1, 2), an exponential PDF modeling pBwlA, p, qb = 1,2).

From collected traces we observe that the BER PDFs are always decreasing functions.

We will be modeling PDFs of BER by a discretized exponential PDF. The shape of

the exponential PDF is determined by a single parameter b as shown in 3.6,

—a:

8T; :1: 2 0. (3-6)

o
-
I
H

f(:v;b) =

The MLE estimates of parameter b can be obtained from a data set by,

b = E[X]. (3.7)
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PDF of BER conditioned on RSSI
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Figure 3.7: PDF of B conditioned on P and <1) = 1, 2.

The MLE of b for all observed combinations of values of (A, p) constitutes a model of

the BER process. b(A, p) are depicted in Figure 3.8. Depending on the objective of the

application seeking the channel state estimate, 13B(,6 |A, p, (b = 1, 2) can now either

be used as is or mapped to a single numerical value representative of the channel

state. For lack of a better graphical representation, figure 3.9 shows pB(p’|/\,p =

88dBm,d = 1,2), the PDFs of the BER process observed over the range of LQI

measurements with RSSI fixed at 88dBm (chosen arbitrarily for illustration purposes).

Figure 3.10 displays the same PDFs modeled by MLE exponentials. The above model

leaves us with two very important questions.

Q1: How useful is this model in terms of reducing uncertainty or variance

of the BER’s PDF?
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Parameters of exponential PDF at different LQI and RSSI
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Figure 3.8: Values of b for various (A, p).

Q2: How universally applicable is this CSI driven BER model especially

when we consider that wireless channels behave very differently in different

environments?

We will address these two questions in the following section where we evaluate

this model.

3.5 Model Evaluation

3.5.1 Variance Reduction

Taking variance as a measure of uncertainty in stochastic systems we evaluate the

expected value of variance in estimates of the BER. In other words, we contrast

the performance of LQI and RSSI used individually and when used in conjunction

by evaluating the expected value of the variance of estimates of the BER’s PDFs,

i.e. E[VAR[pB(/3[/\,p,¢ = 1,2)]] = E[VARB|AP], E[VAR[pB(,B|A,¢> = 1,2)]] =
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Actual pB(|3|}t,p=88dBm) from collected traces
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Figure 3.9: The PDFs of the BER obtained from the actual traces for various LQI

measurements at an RSSI of 88dBm, pB(_B|/\, p = 88dBm, ab = 1,2).

E[VARBIA], and E[VAR[pB(,8]p, (,5 = 1,2)]] = E[VARBIP]. These expected values

are computed over the joint PDF pAP(/\, p|¢ = 1, 2) of LQIS and RSSIS with which

packets with errors are received, also obtained from our traces. Table 3.6 tabulates

the expected value of variance with which we estimate the BER process. Clearly,

once again we see that using LQI and RSSI together is more beneficial and estimates

the error process with lesser uncertainty.

3.5.2 Dependence On Deployment Environment

So far we have established that for every error-prone packet with (,6 = 1, 2 it is possible

to obtain a better estimate of the PDF of its BER based on measurements of RSSI

and LQI. Ideally, we would like to make this estimate dependent solely on the RSSI

and LQI and would like to see little or no dependence on the physical environment.
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Figure 3.10: The PDFs of the BER for the same range of LQI measurements at RSSI of

88dBm as modeled by a discretized exponential PDF, pB(i3|/\, p = 88dBm, (0 = 1,2).

To evaluate the application of the CSI driven BER model in different environment

we partition the data set according to collection environments, i.e. ’Hallway’, ’Lab’,

’Residential’, and ’Outdoor’, and use'cach to arrive at a CSI driven BER model

independently. Ideally the four models so obtained should be identical. As we already

know, each model is a set of PDFs. If /\ and p vary in the ranges )‘mz'n S /\ g Amaa:

and pmin _<_ p S pmaay, respectively, that means each model will consist of (at most)

Table 3.6: Expected value of variance when using different combinations of RSSI and

LQI as CSI.

 

Expected Variance

 

E[VARB]; CSI = None 1.7000 x 10—3

ElVARBIA]; CSI = LQI 8.0863 x10"4

E[VARBIP]; CSI 2 RSSI 8.1242 x10—4

   E[VARBMP]; CSI = LQI + RSSI 5.7524 X10—4
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(Amag; — )‘min + 1) x (pmaj; — pmin + 1) number of PDFS pB(fi|A,p,¢ = 1,2),

one PDF of B for every combination of possible (A,p) tuples, we show that the

PDFS 153(6 |/\, p, 05 = 1, 2) obtained from one trace set closely approximate the PDFs

pBM} I/\, p, 45 = 1, 2) of a different race set for the same values of (A, p). This way

traces the CSI driven BER model derived using data from one environment will

be verified against test data collected in a different environment. At this point we

require a measure that. quantifies the degree of similarity between two PDFS. A well

established divergence measure is the Kullback-Leibler Divergence (KLD), also known

as relative entropy. The KLD of two PDFs pX and py is denoted by D(pX H py)

and defined as,

 Dex II 103/) = Z px<z>zog( (3.8)

SpX denotes the region of support of PDF pXv or the elements in the domain

0f PX for which pX(:I:) > 0. Note that according to the definition of D(pX H py),

if SpX Q SPY then for any :1: (,2 SpX the KLD is 00. Although this should not

happen in a large data set consisting of a comprehensive set of traces from various

10Cations, trace packets in individual partitions of the data set might not exhibit

SUfficient diversity across the entire spectrum of possible values of (A, p) to avoid such

a result. To circumnavigate this pitfall in our analysis we use a modified form of

the KLD called the K-directed divergence (KDD) introduced by Lin in [76] which is

defined,

 

PX (1") )

K = E a? 10 . ~
(I? X H Py) $6 p px( ) 9 (%p (‘17) $1) (y) (3.9)

The KDD’S most significant feature relevant to our application is that the denomina-

t01‘ of its fractional term will never be zero, and hence the KDD cannot evaluate to 00.

Thlls, to measure the similarity between PDF 15B—X03 |/\, p, 09 = 1, 2) derived from

55



traces collected in an environment X and a PDF pB_Y(,8|A,p, cf) 2 1,2) of traces

collected in an environment Y we employ the KDD. A complete comparison of two

environments will require the computation of KDDs for each (A, p) pair. This yields

an entire set of KDD measures. Ideally, all KDDs in this set should be close to zero.

In figure 3.11a we plot the histogram of the set of KDDS obtained from comparing

the CSI driven BER model derived from the ’Residential’ set with the PDF of the

data collected from the ’Office’ trace set. As the histogram shows, the vast majority

of KDDs are zero, with very few that are non-zero but nevertheless close to zero.

Similarly, figure 3.11b is the same histogram plot for PDFs from ’Hallway" and

’Outdoor’ traces. A particular reason why we chose this example for illustration is

that it uses the ’Outdoor’ trace set which exhibits and significantly different from that

of the other three sets (see table 3.1). These differences are manifesting themselves

in a less obvious way in the histogram of KDD values in figure 3.11b. The histogram

rises to a non—zero entry at the bin centered at 1 which, however, remains insignificant

in Comparison to the number of entries in the bin centered at O. For the vast majority

0f Valid (A, p) pairs the KDD between different trace sets is zero. we conclude that

the CSI driven model for the PDF of the BER process is applicable in a variety of

environments.

3 - 6 Conclusions

7 . . .
V) e collected and analyzed an extens1ve and diverse set. of res1dual error traces from

802.15.4 links. Listed below are our conclusions.

1. LQI and RSSI exhibit moderate negative correlation with the BER. process (and

strong positive correlation with each other).

2. LQI and RSSI can be used to reduce uncertainty regarding in the BER individ-
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Figure 3.11: Histogram of KDD values for a) Model from ‘Residential’ trace set and

‘Lab’ traces and b) Model from ‘Hallway’ trace set and ‘Outdoor’ traces.
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ual packets are subjected to.

3. The CSI driven BER model remains valid across a variety of physical environ-

ments.
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Chapter 4

Memory Properties of the

Link-level BER Process in IEEE

802.15.4 Links
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4. 1 Introduction

Communication channels in the real world are not perfect and are prone to introduce

errors into transmissions. Errors are orders of magnitude more frequent in wireless

channels than in wired channels. Design of network protocols and other architectural

components of wirelessly networked communication systems entail a better under-

standing of the error process that affects transmissions. The memory length of the

error process is an important parameter of interest that has to be taken into con-

sideration in the formulation of channel models. In particular, channel models that

take into account the persistence of errors in wireless channels, such as those based

on Markov chains, require information about the memory length of the error process.

Previous works ( [68], [66], [67]) measuring memory length in 802.11b channels

were restricted to the bit-level error process and relied on the correlation function

based analysis, which sometimes worked well enough at that scale. We were the first

to perform bit-level analysis for IEEE 802.15.4 low rate-wireless personal area network

(LR~WPAN) [5] channels and extend it to symbol and packet—level error processes in

[56]. In this chapter we are extending our previous analysis by using a much larger

data set that spans not only the set of all 16 channels in which 802.15.4 operates,

bUt also a variety of physical environments. The failure of traditional correlation

analysis is explained using results from [54]. At the bit and symbol level the error

Processes are modeled by binomial processes (a bit/symbol is either received correctly

or incorrectly). The packet-level process is called the bit error rate (BER) process

and is denoted by B. The BER process B is defined as a series of measurements of

h
the rate at which each packet has been subjected to bit-errors. The nt measurement

in a realization of B is denoted by Mn] and is computed as shown in equation 8.1.

# of bits in nth packet received with. error (4 1)
 [i n =

[ J # of bits received in nth packet
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We are concerned with determining the memory length of errors due to the effects

of slow and fast fading. As we will demonstrate, the determination of this memory

length is complicated by several factors which include slow fading, non-stationarity

due to long stretches of interference, and periodic interference. A way around the ef-

fects of slow fading and interference is to preprocess the BER process by de-trending

and normalization [131]. However, this is complicated by their non—periodic, unpre—

dictable nature.

Like some prior works that measured memory length of errors, this research too

depends on bit-level, binary signals, called residual bit-error traces (short: error traces

0r traces), representing the positions of bit—errors in received transmissions. The basic

concept of error traces is very simple and is explained easily enough. An error trace

is a map of bit positions of all packets collected in the course of a trace collection

session that reached the receiver with errors. Conceptually, for a single packet such

a bitmap of errors is obtained by comparing a transmitted packet (free of errors)

with its received version (may contain errors and failed the cyclic redundancy check).

This way the sequence of BERs computed by equation 8.1 for each packet in a trace

constitutes the BER process. The complications involved in working with traces arise

due to lack of access to low level drivers and/or firmware that need to be modified to

gain access to packets received with errors, otherwise discarded by receivers.

The remaining chapter is organized as follows. Section 4.2 demonstrates the use of

correlation coefficient in measuring the memory length of bit, symbol and packet-level

error processes. Section 4.3 presents the results of Hurst analysis on the packet-level

BER process. Section 4.4 describes relative mutual information (RMI), an alternative

means of measuring memory of in measuring the memory length of the BER process

observed of IEEE 802.15.4 LR—WPANS channels. Section 4.5 concludes the chapter.
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4.2 Memory Length Measurement By Correlation

Analysis

4.2.1 Correlation Function

Let X be a random process consisting of random variables [X1, X2, . . . , XN, . . .]. The

corresponding measurements in a random process are denoted by [51:1,:1:2,. . . ,xN,

...] X (m) is an m time unit delayed (right-shifted) version of X. To measure

memory length we compute the correlation coefficient. of X and Xim) for a. range of

values of m. Thus, the correlation coefficients denoted by RX(m) are a function of

m and are defined as,

  

UXUXUn) 0X0X(7n) . (4'2)

Here Cov (X , X (m)) denotes the covariance of X and X(m), aX the standard

deviation of X, pX the mean of X, and E [] the expectation function. This function of

m is also known as the correlation function or correlogram. The value of m after which

the correlation function RX(m) becomes ”insignificant” and drops below threshold

Rt is the memory length [WX of process X. There is no clear consensus on what

the value of Rt should be. In the simplest of cases the smallest value of m for which

the correlation function is 0 or close to it is taken as a measure of MX' There

is a 95% significance level that is frequently used as a rule of thumb to determine

whether M’X is zero (successive measurements in X are independent) or non-zero

(successive measurements in X are not independent). For a signal of N consecutive

2
measurements the 95% significance range is defined as i—f—N. If 95% of correlation

coefficients for m in the range 1 S m 5 14V— lie within this specified range, then
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(b) All bit-level traces of the ME trace set.

Figure 4.1: Auto-correlation functions for bit level traces of the MC and ME trace

sets.

consecutive measurements are deemed independent, leaving MX = 0.
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(a) All symbol-level traces of the MC trace set.

 
(b) All symbol-level traces of the ME trace set.

Figure 4.2: Auto—correlation functions for symbol level traces of the MC and ME

trace sets.

(4.3)min (Rx(7n) < Rt) .

m

MX=
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4.2.2 Correlograms of Bit and Symbol-level Traces

For analysis of bit and symbol-level error processes we compute RbUc) and R3(k)

defined as,

R 1.: =ER A31? ,Rsk =ER5k,i.b() lb( )l () l ( )l (4.4)

h packet’s bit andRb(k,i) and R3(k,i) are the correlation functions of the it

symbol traces with its kth‘ following packet, respectively. The correlation functions

Rb(k) and 123(k) of a particular trace are computed as the expectation function

over i of Rb(k,i) and R3(k,i), respectively. If for a k > mb,m3 the correlation

functions Rb(k) and 123(k) drop to a value very close to zero, then mb and 7713 are

the bit and symbol-level channel memory of the channel. Figures 4.1a and 4.1b plot

the auto—correlation functions or correlograms of all bit-level traces in the MC and

ME trace sets, respectively. What is apparent from this figure is that in spite of

the wide variation in trace collection parameters, we consistently observe a bit-level

channel memory mb of at most 2 bits across all traces regardless of channel frequency

and environmental differences. Similarly, figures 4.2a and 4.2b are the correlograms

of the symbol-level traces for the MC and ME trace sets, respectively. Ffom both

correlograms it is clearly visible that symbol level memory ms is also (at most) 2.

Therefore, there is no further need to check for long range dependence (LRD) and we

conclude that the bit and symbol-level error processes in 802.15.4 wireless channels

have constant memory of (at most) 2 bits and 2 symbols, respectively.

4.2.3 Correlograms of Packet-level Traces

Figure 4.3 depicts the correlogram functions for all 16 traces in the MC trace set,

and figure 4.4 for the 12 traces in the ME trace set. For the computation of the
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autocorrelation function, the length of each of the traces is truncated to a uniform

N = 100,000 points, making the 95% significance range [—0.0063,+0.0063]. By

this measure it appears as if all channel traces exhibit memory to some degree. To

determine just how much memory several rules of thumb have been used in literature.

These include;

Rt = min,- (RB(i) = 0) : Correlation coefficient falls close to insignificance/zero. In

all our analyzed traces this has rarely been the case.

Rt = 0.1 x RB(1) : Correlation coefficient. drops to less than 10% of the coefficient

at lag 1. By this standard, the memory length of the BER process will range

in the tens to thousands of seconds.

Rt = min, (IRB(i) — RB(j)| < 6) : Vj > i, 6 ——> 0 : Correlation coefficient becomes

steady and subsequent changes between consecutive values are within a very

small value 6. Periodic interference, most likely from IEEE 802.11b beacon

frames, causes periodic spikes in the correlogram functions rendering this cri—

terion useless. Furthermore, there is no clear interpretation of the value of

correlation coefficients and the degree of predictability of one measurement on

another.

According to all these selection criteria for Rt, memory lengths of all these traces

lie in the range of tens to hundreds of seconds. Clearly, that rules out correlogram

analysis to measure memory length of fast fades. The failure of the correlogram anal-

ysis is explained by the non-stationary nature of the BER processes captured by the

traces. Figure 4.5 plots the BER process observed in MC-25, the trace of the MC

trace set that was collected with devices operating in channel 25. For clearer visibil-

ity, the BER process was pre-processed by passing it through a 600 point averaging

filter. There is an initial period of about 14003ec in which the channel experiences
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Figure 4.3: Auto-correlation functions for traces of the MC trace sets.

a moderate BER which then increases to a much higher value for about 9003ec. It

then reduces to a very low value and remains so for the remainder of the trace. We

attribute these changes in channel conditions to interference from co-located devices

sharing the spectrum in the 2.4GHz ISM band. When the correlation function is

computed over a trace which experiences a change in channel conditions like the one

in figure 4.5, the correlation function is expected to maintain a significant value for

an extended period of time.
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4.3 Hurst Analysis of Packet-level BER Process

The correlation function alone did not allow us to make a definitive conclusion about

memory length. For this reason we employ the Hurst parameter H for which several

estimators exist in literature [10]. We use the Hurst parameter, (or Hurst exponent)

as a means of determining whether a process is LRD or not. A stationary process is

said to be LRD if there exists a real number a E (0, 1) and constant c]; > 0 for which,

R(k)

lim 2 1. (4.5)

lit—>00 Cpk_a

 

The Hurst parameter is defined as H = 1 — 7%. A process is determined to be

LRD if 0.5 < a < 1. Several methods exist for estimating the Hurst parameter. In
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Figure 4.5: BER process of trace MC-25 after filtering by 600 point averaging filter.

this work we use the Aggregate Variance, the R/S method, the Periodogram method,

the Absolute Value method, the Abry-Veitch estimator and the Whittle estimator,

details for all of which can be looked up in [10]. We use the SELFIS tool deveIOped

by Karagiannis, Faloutsos and Riedi as part of their work [63]. Figures 4.6a and 4.6b

plot HBER, the Hurst parameter of the BER process for the MC and ME trace sets

using all the above listed estimators. In addition, for each trace we plot the average

Hurst parameter over all estimators (thick line). The plots of the Hurst parameter

are accompanied by those of three other quantities, i.e. the average packet error rate

(PER), the average packet loss rate (PLR) and the average conditional bit error rate

(CBER). The average PER for a trace is the ratio of number of packets received

with failed CRC to total number of transmitted packets. The average PLR is the

ratio of the number of packets never received by the receiver to the total number
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of packets transmitted. The average CBER is the expected value of the BER of all

received packets whose CRC failed. As all plots show, there are significant variations

in the estimates of the Hurst parameter computed by different methods. Estimates

of obtained by the absolute moments and aggregate variance methods consistently

provide the highest estimates, whereas the ones obtained by Abry-Veitch and Whittle

estimators are consistently the lowest. The ones provided by the Periodogram and

R/S methods fall approximately in the middle of this range. This observed ordering

holds true for HBER across MC and ME trace sets.

4.3.1 Observations For MC Trace Set

For the MC traces we observe that most estimates of HBER rise in three distinct

places, peaking for channels 13, 17 and 25. Channels 13, 17 and 25 occupy the

centers of the spectrum bandwidth occupied by interfering channels 1, 6 and 11 of

IEEE 802.11b/g. The degree of interference experienced by channels is measured

by the average PER and average PLR. Thus HBER bear some correlation with the

average PER and average PLR and, hence, the interference from nearby 802.11b/g

W'LANs. The Abry-Veitch estimator is the only estimator that defies this obser-

vation and in fact exhibits inverse correlation with average PER and average PLR.

Estimates of HBER for channels experiencing strong interference are high enough

to conclude LRD in the packet-level error process. But at the same time we observe

that for 802.15.4 channels that do not experience interference from 802.11b/g WLANS

estimates of H are close to or below the critical threshold of 0.5. It appears that. in-

herently the packet-level error process in 802.15.4 channels is not LRD, except when

it is subjected to 802.11b/g interference. The explanation for this behavior comes

from Karagiannis, Faloutsos and Riedi [63] who concluded that periodic interference

in an otherwise memoryless channel can give the appearance of LRD (when LRD is

69



 

0.2" Q 0

A A A A Q

n A a u D a A

U D 8

ii a ° 8 8 5’ ° 7 8 a 9 i ? ° 2 
 

12 14 16 18 20 22 24 26

MC-Channel #

(a) MC trace set.

 

+Aggregate Variance

+ R/S

+Periodogram

+Absoiute Moments

+Abry—Veitch Estimator

L +Whittle Estimator

‘ *Average H

c Average CBER

0 Average PER

A Average PLR

 

  
 

 
 

0.2T ‘ A °

'3 A ‘ 8 a a

0 E if D 4' L a R A A A A

2 6 10 12

ME—Trace #

(b) ME trace set.

Figure 4.6: Plots of estimates of the Hurst parameter obtained using various tech-

niques along with their average BERs, PERs and PLRs.

determined by estimating H). Moreover, LRD is also unlikely to exist in a process

if estimates of HBER by various methods do not converge, which is surely the case

in our analysis. WLANs periodically transmit a beacon frame every lOOmsec that is

used to synchronize the network. It is the periodic interference from these beacons
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frames that is giving the appearance of LRD in the packet-level error process.

4.3.2 Observations For ME Trace Set

Recall that all these traces in the ME set were collected in channel 26 to reduce

effects of interference. Most traces in this set experience lower average PER and

average PLRs. For many traces the average Hurst parameter often remains close to

0.5. Nevertheless, as in the case of the MC trace set, the estimates of HBER still

do not clearly converge to one value, and when they do it is in a range very close to

0.5. The lack of consensus among estimates, and the close proximity to 0.5 otherwise

leads us to believe that the channels in the ME trace set are also not LRD.

4.4 Memory Length Measurement By Relative Mu-

tual Information

4.4.1 Shannon Information Measures

For random variables X and Y, with probability density functions (PDF) pX(:r) and

PYW) and joint PDF gym/(1r, y), the mutual information I(X; Y) is defined as,

 

(2:, y)

1(X;Y) = Z pXY(3’5> y) 10s2 pXY 1 . (4.6)

Var,y;p(:v,y)>0
(px($)pY(J)>

,

Mutual information [32] can also be understood more intuitively in terms of en-

tropy as,

1(X; Y) _—. H'(X) + H(Y) — H(X, Y). (4.7)

More generally, mutual information is defined between two sets of random vari-
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ables. If random variables X and Y in equation 4.6 are replaced by sets of random

variables X1,X2, . . . ,Xn and Y1,Y2, . . . ,Ym, respectively, then pX(:z:), py(y) and

pxy(x,y) are replaced by respective joint PDFs pX1X2.HXn(:r1,:r2, . . . ,crn) and

leYg...Ym(l/1a92, . . . ,ym), and the joint PDF of all random variables

leXZ...XnY1Y2...Y7n(I1’ 11:2, ' ' ' ,In, yl’ 3127 ' ' ' 33/771)’

4.4.2 Description: Relative Mutual Information

We are essentially faced with the challenge of evaluating;

o How much information random variable Y can provide about another random

variable X;

0 While at the same time providing a measure of the remaining uncertainty about

X.

The Shannon mutual information I(X ; Y) achieves the first goal. However, mutual

information is not restricted to a fixed range. Thus, an evaluation of I(X ; Y) does

not give us a sense of how much information about X or Y remains unknown. We

use relative mutual information (RMI), denoted RM1(X ; Y), previously described by

[29] and adopted by us for the purpose of memory length measurement in [57]. RMI

is defined as;

I(X;Y)

(4.8) 

Note that while I (X ; Y) is a symmetric measure, by definition RMI is non-

symmetric, i.e. RMI(X; Y) 7é RMI(Y; X) because H(X) 7E H(Y). Since 1(X; Y) S

min (H(X), H(Y)), the RMI’s value is limited to the interval [0, 1]. An RMI close to 1

implies Y contains most of the information contained in X, leaving little uncertainty,

while an RMI close to 0 implies the opposite.
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Figure 4.7: For traces MC-ll, MC—12. MC-13, MC-14 and MC-lS each subfigure,

(from top to bottom): [Top] RM’I3(1, m) of BER process observed in MC traces for

lag m varying from 1 through 40. [Middle] ARMIB(1,m) of BER process for the

same channel traces. [Bottom] The memory length MB plotted as a function of 6,

the increments in RMI3(1, m).

 

In the current context we replace. X by the BER process B (0), and replace Y by

the BER process of preceding packets 8(1), i.e. a one—right shifted version of 3(0).

Then RMI (3(0); 3(1)) measures the amount of information that a packet’s BER

,B[n] shares, on average, with the following packet’s BER [fin — 1]. A natural extension

of this measure would be to include more than just the immediately following packet.

but include any arbitrary number m such that,
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Figure 4.8: For traces MC—16, MC-17, MC—18, MC-19 and MC—20 each subfigure,

(from top to bottom): [Top] RMIB(1, m.) of BER process observed in MC traces for

lag m varying from 1 through 40. [Middle] ARMIB(1,m) of BER process for the

same channel traces. [Bottom] The memory length MB plotted as a function of 6,

the increments in RMIB(1,m).

Since we are assuming the BER process to be wide sense stationary, the RMI

becomes a function of m, the number of immediately following measurements. We

use the abbreviated notation RMIB(1, m) for the RMI in equation 4.9. Recall that

RMIB(1,m) is a function of the Shannon mutual information (and hence the joint

PDF) of BER processes B through 3(7”). Ideally, once m exceeds the channel’s

memory length MB, B become independent of B (m) and the Shannon mutual in-

formation equation 4.6 will drop to zero, producing a zero RMI in equation 4.8. But

as in the case of correlogram based analysis, the presence of slow fading complicates

interpretation of RMI. Therefore, for the duration of the slow fade a packet’s BER

will remain weakly correlated with its followers. Hence, after m > MB, this trans-

lates into a slowly increasing RMIB(1,m) for successive values of m until it finally

becomes 1. However, for the problem at hand we are not particularly interested in

slow fades but the memory length of fast fades. Therefore, we define channel memory
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Figure 4.9: For traces MC-21, MC-22, MC-23, MC-24, MC-25 and MC-26 each sub-

figure, (from top to bottom): [Top] RMIB(1,m) of BER process observed in MC

traces for lag m varying from 1 through 40. [Middle] ARMIB(1, m) of BER process

for the same channel traces. [Bottom] The memory length MB plotted as a function

of 6, the increments in RAMBO, m).

length MB as the time it takes for the RMIB(1, m) function to rise to a level after

which it grows only slowly. Then channel memory MB is determined by computing

the RMI function for increasing values of m and setting A!B equal to the largest lag

m for which the amount of additional RMI provided by including the (m + 1) delayed

BER becomes smaller than 6, i.e.

618(6) 2 nmx (|RAIIB(1,m — 1) —— RJUIB(1,m)| 2 6) \7’m 6 [1,00].

(4.10)

Thus the memory length 1113(6) is a function of 6, the significant RMI increment

threshold. That leaves us with the choice an appropriate value of 6. RMI is under-

stood to be the fraction of Shannon information of one random variable contained
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collectively in another set of random variables. Thus, in terms of RMI the memory

length of the BER process can then be understood as the lag m after which every

subsequent BER measurement will contribute less than 100 X ‘70 of new information

about B (O) The feature that makes RMI attractive for use as a tool for memory

measurement is not the fact that provides an unequivocal measurement of the BER

process’ memory length. Like the correlation coefficient before it, the RMI depends

on the subjective selection of a threshold that determines the cutoff between signif-

icance and insignificance. Rather, its strength lies in the fact that there is a clear

interpretation of the threshold (in this case 6) in information theoretic terms, e.g.

6 = 0.15 implies that on average, an MB delayed measurement contains at least 15%

information about the current measurement. Another advantage of using RMI over

the commonly used correlation coefficient is that the changing trends operating on

the timescales of slow fades that cause non-stationary behavior of the BER process

do not complicate the analysis.

4.4.3 Discussion

The plot at the top in figure 4.7 is the R11'IIB(1,m) of traces of IEEE 802.15.4 links

operating channels 11, 12, 13, 14 and 15 for a range of lag values m. The middle

figure plots the ARMI(1, m) functions of the same traces for the same range of lags.

The bottom plot in figure 4.7 shows the memory length as a function of increments

6. Figures 4.8 and 4.9 plot the same quantities for the remaining channels in the

MC trace set. Similarly, figures 4.10 and 4.11 plot RMIB(1,m), ARMIB(1,m)

and M3(6) for the traces in the ME trace set. For our reading of the plots let

us take 6 = 0.15 ,i.e. last measurement within memory length contributes at least

15% information. Then the plots of M8(6) for all traces adequately demonstrate

that all 802.15.4 traces exhibit a memory length within a narrow range of O to 10
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Figure 4.10: For traces ME-l, ME—2, .\lE~3, ME—4, ME—5 and ME—6 each subfigure,

(from top to bottom): [Top] RMI3(1, m) of BER process observed in MC traces for

lag m varying from 1 through 40. [Middle] ARMIB(1, m) of BER process for the

same channel traces. [Bottom] The memory length MB plotted as a function of 6,

the increments in RMIB(1, m).

packets which, at the packet transmission rate of 10 packets per seconds used for

trace collection, corresponds to a time period of 0 to lsec. Thus, diversity in physical

environments and channel selection do not appear to have any significant bearing on

the duration of fast fades, as measured by RMI.

On a side note, there is a major practical challenge to the online and/ or real-

time computation of RMI. The computation of RMIB(1,m) is based on an m +

1 dimensional joint PDF of all processes 3(0),B(1),B(2),...,B(m). Populating

such a high dimensional PDF requires large data set even for moderate values of

m. Collecting data points to fill a modest 10 dimensional PDF takes significant time,

especially when considering that IEEE 802.15.4 is a low rate communication standard.

This makes this methodology especially unsuitable for applications in which this

computation is to be performed online. We repeatedly performed this computation
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Figure 4.11: For traces ME—7, ME—8, MEI—9, ME-lO, ME—ll and ME—12 each subfigure,

(from top to bottom): [Top] RMIB(1, m) of BER process observed in MC traces for

lag m varying from 1 through 40. [Middle] ARMIBU, m) of BER process for the

same channel traces. [Bottom] The memory length MB plotted as a function of 6,

the increments in RMIB(1, m).

offline on different data sets, and found that even on a mid-level server class machine

the computation of the RMI function based on 50,000 data points for m ranging from

1 to 40 takes more than 30 minutes.

4.5 Conclusions

1. All IEEE 802.15.4 channels, regardless of channel selection or physical environ-

ment, exhibit a memory length of at most 2 bits and 2 symbols, respectively.

[
\
3

. Based on the correlation function and LRD based analysis we conclude that

various estimates of Hurst parameter may or may not detect packet level mem-

ory in 802.15.4 channels. The ’memory’, however, is not due to the channel’s

inherent properties at those frequencies, but due to interference from 802.11b/g
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traffic and beacon frames, i.e. if interference is periodic the channel appears to

have memory, if it is not periodic there is no memory.

. The Abry-Veitch and Whittle estimators’ consistent relative insensitivity to

changes in average PER, average PLR, average CBER and interference across

different traces leads us to conclude that they are better measures of the 802.15.4

channel’s inherent degree of LRD.

. The aggregate variance, R/S, periodogram, and absolute moment estimators’

strong dependence on average PER and average PLR leads us to conclude that

these estimators are good detectors of (W’LAN) interference.

. The average CBER to which a packet is subjected by a channel is inversely

related to the average PER/ average PLR. Thus, it appears that interference

produces higher BERs in packets than do channel fading effects.

. We present use of RMI as a standardized version of the mutual information and

apply it to the BER process captured in bit traces. We observe that interference

free 802.15.4 channels are memoryless, while channels experiencing significant

interference from 802.11b/g networks sharing the 2.4GHz ISM band, a common

source of interference, have ”true” memory lengths varying in the narrow range

of 0 to lsec.
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Chapter 5

A Statistical Measure Of Network

Lifetime For Wireless Sensor

Networks
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5. 1 Introduction

One of the most fundamental challenges in wireless sensor networks (WSN) is the

short and often limited supply of energy. Due to the disposable nature of WSN nodes

power sources are often non-replenishable or replenishable very slowly at best. In

either case this forces prudent use of battery power for all operations. Since WSNs

can be spread over large geographical areas multi—hop communication is employed

in transmitting sensor measurements to the data collection point, also known as the

base station. The problem is further compounded by the many-to-one traffic flow

pattern that is imposed by the data collection process. It produces a traffic hot-spot

or bottleneck around the base station and, depending on the positioning of nodes, in

other regions of the network as well. This phenomenon is called the reachback and

was investigated by Barros and Servetto in [9]. If the same sl'iortest-path-first (SPF)

routes [30] are maintained, as in the case of most present day mobile ad-hoc networks

(MANET) and WSN routing algorithms, nodes start running out of energy. Nodes

gradually start disappearing from the sensor network beginning with those handling

the highest traffic volume, the ones communicating directly with the base station.

Such nodes are referred to as critical nodes. Each node going offline will reduce

coverage provided by the WSN. Eventually all nodes in communication range of the

base station will run out of power and the base station will stand disconnected from

all surviving nodes, effectively dropping situational awareness at the base station to

zero. While the nature of the trafiic flow makes the degradation of system capabilities

over time inevitable, it is desirable to make it as graceful as possible. This leads us to

consider a solution that will redistribute the volume of traffic handled by critical nodes

more evenly. It is noted here that any deviation from routes selected using a routing

algorithm based on SPF means selecting a route that is suboptimal in the traditional,

greedy sense (of which there are many even for small sets of critical nodes).
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The above discussion provides us with two objectives; 1) reducing the differences

between energy consumption rates of nodes, 2) but at the same time keeping the

average energy consumption rate low. This requires the joint minimization of both

objectives. Since these two objectives run counter to each other the selection of an

operating point is a trade-off between mean and variance of power consumption rates.

The remaining chapter is organized as follows. Section 5.2 reviews some recent

efforts that attempt to increase longevity of WSNS and positions our work. Section

5.3 describes our interpretation of network lifetime and how the advantages of its use

as an objective over previous definitions. Section 5.4 describes our network model and

introduces terminology. Section 5.5 formulates the problem as a quadratic program.

Section 5.6 describes some results for small scale examples and section 5.7 concludes

the chapter.

5.2 Previous Work

The volume of works spanning energy efficient routing protocols for WSN is extensive.

Early WSNs borrowed routing protocols from ad-hoc wireless networks and MANETs.

The routes selected by dynamic destination-sequenced distance-vector (DSDV) [99],

dynamic source routing (DSR) [61], ad—hoc on-demand distance vector (AODV) [100]

and directed diffusion [58] protocols are ” optimal” only in a greedy, SPF sense which

worked well enough for networks without power constraints. The performance of a

system using these protocols is as much subject to the reachback problem as one

making use of naive SPF routing.

In [25] Chang and Tassiulas formulate the lifetime problem as a minimax linear

program (LP) that seeks to maximize the minimum sensor lifetime. However, while

the approach is theoretically sound and provides a bound for any attempt at maxi-

mizing that particular notion of network lifetime, there are scalability problems which
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are exacerbated by the very large number of optimization variables for which the LP

is solved. This was followed by several other LP formulations of the lifetime problem

[11],[107],[135], [78], all based on the same or similar meaning of network lifetime, of

varying degrees of usability. In [6] Back and de Veciana proposed a proactive multi-

path routing scheme by introducing joint minimization of the ”spreading factor” w,

and the probability of battery depletion of a sensor which is similar to Ilyas and

Radha’s parallel work in [53] that uses average and variance of power consumption

rates in sensors. However, Back and de Veciana’s mechanism used for path discovery

does not take into account several other available conununication links. While the

authors demonstrate the improvements offered by their energy balancing algorithm

in networks with any-to-any data flow the proposed solution does not seem to offer an

improven'ient when the traffic flow is many-to-one/ all-to—one. More recently Khanna,

Liu and Chen [65] took an evolutionary approach. However, this was marked by a

high complexity due to the inherent nature of Genetic algorithms and poses challenges

to scalability.

5.3 Novelty Of Approach

The bulk of previous work on the lifetime problem defines network lifetime as the time

until the first sensor runs out of power. The. rigidity of this definition is of advantage

because it provides a clear objective function for optimization. However, any set

of routes that deviate from greedy SPF routes produce an increase in the power

consumption rates of some nodes, decreasing their individual lifetimes. The prior LP

approaches that maximize the minimum sensor lifetime are no exception. However, by

solely focusing on one sensor’s lifetime (the minimum lifetime sensor), it ignores the

cost, the decrease in other sensors’ lifetimes at which this maximization is achieved.

This also implies a higher rate of failure of sensors as a network approaches the end of
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its life, as defined under LP minimax problem formulations. This definition disregards

the inherent redundancy in WSNs and their ability to cope with a limited device

failure rate. In this chapter we use a notion of lifetime that takes these ”shortcomings”

into account. We propose the joint use of two statistics of P, the random variable

modeling the energy consumption rates of sensors in a WSN, namely;

1. E[P] : the mean of P.

2. Var[P] : the variance of P.

The problem then becomes a joint-minimization problem. This notion of lifetime

takes into account the lifetimes of the entire population of sensors making up the

network. Some previous solutions such as Singh, Woo and Raghavendra [113] describe

the independent minimization of only the variance of node power levels to extend the

lifetime of a network. l\«'Iinimization of E [P] alone is achieved by SPF routing protocols

based on energy as a cost metric. However, selecting routes based solely on the

minimization of E [P] will inevitably lead to the aforementioned reachback problem

where sensor nodes closer to the base station transmit packets at significantly higher

frequency compared to sensor nodes farther away. This problem can be formulated

as a budget constrained allocation problem: The minimization of Var[P] defined as

equation 5.1 is subject to the constraint equation 5.2 that E[P] be less than some

maximum budget value E[P]*, where P,- is the energy consumption rate of node

n,,‘v’ g i g N, and N is the number of nodes.

ZN (Pi. - E[P])2
 min Var[P] = 2:1 . (5-1)

1’\/

Subject to,

N P
E[P] .. ZZZ-,1 7* g E[P]* (5 2)



Using the constraint formulation highlighted above, we can summarize our opti-

mization framework as identifying the set of routes throughout a given WSN such

that the following is satisfied: minE[P]<E[P]* {Var[P]}.

5.4 Network Model

To model devices we are adhering to the IEEE 802.15.4 low-rate wireless personal area

network (LR-WPAN) draft standard [5]. The standard defines two device classes,

reduced-function devices (RFDs) and full-function devices (FFDs). Since RFDs are

incapable of performing routing functions and since we are investigating a routing

solution we use the term node to refer to FFDs only.

A W'SN consists of NFFD + NRFD sensors and one base station. Since we

will only be dealing with FFUs in a routing solution we abbreviate NFFD by N.

FFD routers are numbered 1 through N and denoted by 721 through 17.N The base

station is assigned FFD ID 0 and denoted by ”0' Furtherrnore we are assuming the

nodes participating in the WSN to be capable of measuring received signal strength

indication (RSSI) and link quality indication (LQI) for received packets and adjusting

their transmission power as laid down in the standard. Nodes are capable of varying

transmission power at run—time on a packet-by—packet basis. Transmission power is

chosen as a function of the spatial separation between transmitter and receiver.

For the channel model we adhere to the model of the 802.15.4 Physical Channel

Modeling Subgroup [86]. We are modeling the conu‘nunication range of a sensor in

each direction by a Gaussian random variable Z with mean )1Z and variance 022. As

a result, some links in the network are unidirectional. Each link from a node n.) to

another node nj is assigned a link cost Cij obtained by,
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Here a is an exponential decay factor which varies for wireless communication

from 2 to 4, depending on the type of environment. An assignment of c,j denotes

the absence of a direct link from n, to 729-. Here d(a, b) is a function that returns the

Euclidean distance between the nodes provided in the argument and Bi denotes the

battery reserve of 71.). The cost Cij is the cost of transmitting the packet from 72.,- at a

power that ensures reception at nj with a minimum signal—to—noise ratio (SNR) [104]

of SINRmz’n with required certainty.

For the MAC model we refer to the 802.15.4 LR—VVPAN standard [5]. The stan-

dard is geared towards energy-conservation. Since the protocol supports a slotted

collision sense/multiple access (sCSMA) mode based on time division multiple access

(TDMA) we can make the reasonable assumption that there is little interference as

long as link utilization remains under the maximum possible data throughput rate.

5.5 Quadratic Program Formulation

In view of the new understanding of network lifetime and the associated objective

function we formulate the lifetime maximization program as a quadratic program

(QP). Let Q,- denote the data produced by n,- for transmission to no. This value

can depend on the spatial distribution of the entropy [32] of the underlying event

being sensed by the WSN. Let (1.1-j denote the flow from n.) to its neighbor nj with

which it communicates directly. Furthermore, qij Z 0. If C'ij denotes the cost of

communicating a unit of information directly from n,- to nj, then the cost incurred

by "2' in communicating qz’j to nj is cijqzjj. We are not assuming the use of any in-

network processing that might violate the conservation of flow in the network. This
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Figure 5.1: The law of conservation of flow requires that the sum of incoming flows

qjfl- and data 6.2,; generated at node n.1- must equal the sum of all outgoing flows q'ik'

 

   
 

   
  

      

condition is illustrated in figure 5.1. Then, if Si denotes the set of nodes n, can relay

its flow to, the condition of flow conservation for any single node n,- can be expressed

as,

2765., 963,-, (5.4)

Note that the base station n0 has been deliberately excluded from the condition

of flow conservation in equation 5.4 since it is a consumer of flow. Since links between

nodes are not necessarily bi-directional, hence generally Cz’j # Cjz” If m,- denotes

the cardinality of 5,, then individual elements of 52' are referred to by 51(3) where
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1 S j 3 mi. For the purpose of simplified notation elements within Si are assumed

to be sorted in ascending order of their node IDs. The total number of links in the

network is denoted by M = 22:17”? We formulate the problem as a quadratic

program in matrix form. Let (1 denote the flow vector that is to be optimized and Q

the flow generation vector as in.

T

Q = [(11,810) ' ' ' (11,Sl(7711)q2,5'2(1) ' ° ' q2,SQ(mg)qN,SN(1) ' ° ' qN,SN(mN)]

(5.5)

_ ... T (5 6)
Q. - [Q1522 QNl '

Let the separable cost matrix C be defined as,

- a T

01.510) 0 "' 0

01,310,”) 0 "' 0

C = (5.7)

O C2,Sg(mg) ” ' 0

O 0 U. CfV,SN(1)

_ 0 0 ... CN,5N(mN) -  
C contains the same information as the adjacency matrix of the network, but is

organized in a sparser and separable fashion more suitable for later use. Since the bulk

of power consumed in sensors is due to data transmission we are associating a cost
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only to the data transmission process. Power consumption for reception is usually

constant and Slgmficantly less than transm15s10n power. Since P, = ZjES, 0,311,]-

the objective function of minimizing the variance of power consumption in equation

5.1 can be expressed in the terms defined above as,

2

1 N 1 N

min 75 Z Z We — 7v- :1Z 66qu
2:1 jeS, 2=1€,~S

2 2

N 1 N

z z + N 2: we
i=1 jES,‘ i=1j€3ic

2 N

W a](119 :2: 02'jo
jeS, i=1jeS,

Note that we dropped the 7%, term. Equation 5.8 can be rewritten in matrix form

as.

T 1
min C C +—

(q) q N

 

[V

=mianCTCq + <N2) (lTCgXlTCg)

1 - 2N

=n1ianCTCq + (T) (“7971) (lTCg)
I

1 — 2N

= min QT (CTC + < V2 ) CTlNXNC) q.
j _

Here _1_ denotes a vector of ls. Since the second order coefficient matrix in equation

(5.9)

 

5.9 is symmetric this QP has a. solution, provided that the constraints are well defined.

The budget constraint in equation 5.2 can be expressed in matrix form as,

T
1 (.'

 

89



gtO (5.11)

Finally we need to define the constraint based on the conservation of flow. We

define a flow matrix F of size N x AI as below.

  

FT =

f1,Sl(1)(1a1) f1,31(1)(Na1)

f1,Sl(7I'll)(1"ml) f1331(1)(N, T711)

: 3 (5.12)

f2a52(m‘2) (1’ 212:1 771,-) H. f2,52(m2) (N’ 2:2le m,)

fjv,S]V(1) (1i 2:11:11 771., + 1) H . ffV,Sjv(l) (17V, 26:11 77% + 1)

fN,S./V(mN) (1’ 23:1 722,-) fNi'SmeN) (N’ Z:z'A—L—l mi) 1

Elements f(1,Sb(c) (d, e) for which d = b are set to 1. All elements for which d 6 Sa

are set to —1. All remaining elements are set to 0. That allows us to express the

condition for the conservation of flow like in equation 5.13.

pg 2 Q (5.13)

Thus equations 59,510,511 and 5.13 constitute the QP formulation. Note that

the base station or data collection point no is exempted from the condition of conser-

vation of flow. The nature of this formulation is such that the solution g’“ provides
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the optimal distribution of traffic with which outgoing links should be utilized.

Any routing strategy that seeks to redistribute the traffic load deviates from the

SPF routing strategy that provides minimum global energy consumption, thereby

raising E[P]. The increase in Chang and Tassiulas’ [25] defined network lifetime

comes at the cost of decreased individual lifetimes of some other nodes in the network.

However, the LP formulation is such that there is no control over the cost at which

this increase in lifetime is achieved. A benefit of the QP formulation over previous LP

formulations is that the objective function provides a global View of node consumption

rates.

Unfortunately, the complexity of solving this QP even for moderate values of M

and N is too high to be of interest for practical use. Nevertheless it provides us with

a bound on the best possible solution given a set of constraints.

5.6 Results

We applied the QP formulation to some example networks of varying, yet manageable

sizes of 10, 15 and 20 nodes. The nodes are randomly scattered in a square region

of 10 x 10 dimensions. All nodes are assumed to have equal initial battery reserves

B1(0) 2 82(0) = = BN(0) = 1 with maximum transmission range 7‘ == 10. The

Gaussian noise source producing irregular link costs is set to Z(10, 2). The decay

factor is taken a = 3, typical of omni-directional antennas in open spaces. The

spatial distribution of the sensed event’s entropy is assumed to be uniform. Hence,

all sensors are generating data at a uniform rate as well, i.e. Q1 = Q2 2 . . . = QN'

To illustrate the QPs ability to offer a gradual tradeoffs of Var[P] for E[P]. Each

operating point in figures 5.2, 5.3 and 5.4 is obtained by successively relaxing the

constraint in equation 5.10 by incrementally raising E[P]* and solving each resulting

QP. As expected, each successive solution offers decreasing Va'r[P]. However, after a
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Figure 5.2: Tradeoff of Var'[P] versus E[P] for a network with N = 10.

certain point Var[P] starts increasing again.

5.7 Conclusions

We propose a new definition of network lifetime consisting of E[P] and Va'r[P]. This

notion of network lifetime provides a more inclusive view of the power consumption

of sensors across the network. The objective function offers an alternative view of

network lifetime. We went. on to formulate the optimization problem for the new

objective function in the form of a QP and showed that a solution exists.
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Chapter 6

A Dynamic Programming

Approach to Maximizing Lifetime

of Sensor Networks
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6.1 Introduction

Wireless sensor networks (WSN) are the enabling technology for applications rang-

ing from infrastructure protection and Operation, emergency and crisis intervention,

all the way to surveillance and environmental monitoring systems. One of the most

fundamental. constraints of WSN is the short and often limited supply of energy.

Difficulties accessing sensors post—deph)yment, hostile deployment environments, and

impracticality of performing maintenance operations on individual sensors requires

making sensors disposable. Power sources are often non-replenishable or replenish-

able very slowly at best. In either case this forces prudent use of battery power for

all operations. Since WSNs can be spread over large geographical areas, multi-hop

communication is employed in transmitting sensor measurements from sensor nodes

to the data collection point or base station. The problem is further compounded by

the many-to—one traffic flow behavior witnessed in information gathering for in-situ

and remote sensing applications. It produces a traffic hot-spot around the base sta-

tion and other regions of the network with traffic bottlenecks. Barros and Servetto [9]

called this phenomenon the reachback effect. Wan et al. [125] named it the funneling

effect. If the same shortest-path-first (SPF) routes [30] are maintained, as in the case

of most present day mobile ad-hoc networks (MANET) and WSN routing algorithms,

some nodes will run out of energy sooner than others. Nodes will gradually start dis-

appearing from the sensor network beginning with those handling the highest traffic

volume, i.e. the ones con'imunicating directly with the base station. These nodes

are referred to as critical nodes. Eventually all nodes in communication range of the

base station will run out of power and the base station will stand disconnected from

all surviving nodes, effectively dropping available coverage to zero. It is desirable to

stave off this event for as long as possible. This leads us to consider a solution that

will redistribute the volume of traffic handled by critical nodes more evenly. It is
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noted here that any deviation from routes selected using a routing algorithm based

on SPF means selecting a suboptimal route (of which there are many, even for small

sets of critical nodes). We discuss and compare several methods for obtaining or-

dered listings of suboptimal paths. A dynamic programming algorithm (DPA) then

selects an optimal set of routes. The link cost metrics are derived from physical layer

information, thus qualifying this route selection method as a cross-layer approach.

The above discussion provides us with the objective of reducing the differences

between energy consumption rates of nodes while keeping the average energy con-

sumption rate low. This requires the joint minimization of both objectives. Since

these two objectives have conflicting requirements the selection of an operating point

becomes a trade-off between mean and variance of power consumption rates. We

evaluate a number of route discovery algorithms that produce paths other than the

shortest paths between source and destination. This is followed by picking one path

for each source-destination pair in a way that energy consumption is spread out, yet,

kept low. The core contributions of this work are summarized below.

1. We propose mean and variance of the distribution of node power consumption

rates as alternative optimization objectives for network lifetime.

2. We provide a low-complexity, dynamic programming formulation of the opti-

mization problem rooted in operational rate-distortion theory.

3. We evaluate various algorithms for the discovery of paths deemed sub-optimal

in the SPF-sense as inputs to the dynamic programming algorithm.

The rest of the chapter is organized as follows. Section 6.2 reviews some recent

efforts that attempt to increase longevity of WSNs and positions our work. Section

6.3 describes our network model. Section 6.4 is the formal problem formulation.

Section 6.5 describes four route discovery algorithms. Section 6.6 explains in detail
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the working of the DPA inspired by operational rate—distortion (RD) theory. Section

6.7 presents an in-depth analysis of the performance of DPA and the route discovery

algorithms used in conjunction with it. Finally, section 6.8 concludes this chapter.

6.2 Previous Work

The volume of works spanning energy efficient. routing protocols for WSN is extensive.

Early VVSNs borrowed routing protocols from ad-hoc wireless networks and MANETs.

The routes selected by dynamic destination-sequenced distance-vector (DSDV) [99],

dynamic source routing (DSR) [61], ad—hoc on-demand distance vector (AODV) [100]

and directed diffusion [58] protocols are ”optimal” only in a greedy, SPF sense which

worked well enough for networks without power constraints. These protocols are

prone to the reachback reflect. In [25] Chang and Tassiulas proposed an optimization

approach based on linear programming. However, their formulation maximizes the

minimum node lifetime because it defines the system lifetime as the time until the

first node runs out of power. More recently, Baek and de Veciana proposed in [6] a

proactive multi-path routing scheme which bears some similarity to our own inter-

pretation of the problem by introducing joint minimization of a ”spreading factor” to,

and the probability of battery depletion of a sensor which is very similar to Ilyas and

Radha’s parallel work in [53] that uses average and variance of power consumption

rates in sensors. However, Baek and de Veciana’s mechanism used for path discovery

does not take into account several other available communication links. While the

authors demonstrate the improvements offered by their energy balancing algorithm

in networks with any-to-any data flow the proposed solution does not seem to offer

an improvement when the traffic flow is many-to-one. More recently Khanna, Liu

and Chen [65] took an evolutionary approach. However, this was marked by a high

complexity due to the very nature of Genetic algorithms and poses challenges to scal-
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ability. As we will show in the following sections the DPA proposed here resolves

traffic hotspots in a WSN irrespective of the nature of traffic flow.

6.3 Network Model

6.3.1 Device Model

To model devices we are adhering to the IEEE 802.15.4 low-rate wireless personal

area network (LR-WPAN) draft. standard [5]. The standard defines two device classes,

reduced-function devices (RFDs) and full—function devices (FFDs). RFDs feature only

a limited implementation of the features defined by the standard. They are capable

of associating and communicating with FFDs only and are incapable of performing

routing functions. FFDs on the other hand have a full implementation of the standard

and are capable of associating and communicating with both FFDs and RFDs. FFDs

are also capable of performing routing functions. Since the DPA is a routing algorithm

and only FFD3 are capable of performing routing functions all nodes in our network

model are assumed to be FFDs.

A WSN consists of N _FFD sensors capable of performing routing functions, ad-

ditional RFD sensors and one base station. FFD routers are numbered 1 through

N. The base station is assigned FFD ID 0. Furthermore we are assuming the nodes

participating in the WSN to be capable of measuring received signal strength indi-

cation (RSSI) and link quality indication (LQI) for received packets and adjusting

their transmission power as laid down in the standard. Moreover, nodes are capable

of varying transmission power at run-time on a packet-by-packet basis. Transmis-

sion power is chosen as a function of the spatial separation between transmitter and

receiver and the signal decay factor described next.
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6.3.2 Link Model

We are employing and adhering to the channel model proposed by the 802.15.4 Phys-

ical Channel Modeling Subgroup in [86]. Early exploratory work by Ilyas and Radha

[53] assumed the simple disk model for a node’s communication range. A consequence

of this model was that it made all links bidirectional which is not necessarily true in

real wireless networks. We are modeling the communication range of a sensor in each

direction by a Gaussian ramqhnn variable 3 with mean #3 and variance 0%. Each

j is assigned a link cost Lisj' The link cost is

a function of the energy cost of receiving, processing and (re-)transmitting a packet

link from a node n,- to another node n

(reliably) and the remaining battery level at the transmitter. Although the total

energy consumed is the sum total expended in receiving, processing and transmitting

a packet, this total is dominated by the energy of the transmission step. The cost. of

receiving a packet depends on the platform used for a sensor and is approximately

constant for equally sized packets and the processing energy is negligible in compari-

son. The link cost Li,j in equation 6.1 is the cost to node "i of transmitting a packet

to node nj, that is dw- distance away. For an omni-directional antenna the decay

factor a is usually around 3 [86]. Li,j also takes into account the remaining battery

level in a node. The sum of reception, processing and transmission cost is divided by

the fraction of remaining battery level 8,.

(10 .

«lay-Z where did- 5 Ci

Liaj = l

00 where di‘j > c, (61)
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Table 6.1: Symbols and notation.

 

 

   

Symbol Description

"0 Base station

nlj FFD sensor node with identifier 1

EM- Maximum communication range of n,- in the direction of

G(V, A) Graph consisting of vertex set V connected by directed edge

set A.

Ai,j Directed edge from n,- to nj.

T,- Rate of traffic generated at ”2"

Pi,j k-th best path from 71.2 to n].

E,- Energy consumption rate of 71.,- under the global traffic flow

under consideration.

,u E Sample mean of energy consumption rates E, for 1 S 2' S

N.

0%: Sample variance of energy consumption rates E-z' for 1 _<_

2 S N.

SP(i —-> j, G) Shortest path from n,- to n]- on graph G.

Lm- Link cost on ”i for link from ”2' to nj.

3.,- Fraction of total battery power remaining in "i-

 

Then the power consumption rate of a node n,- V 1 S i S N is denoted Ez- and is

defined in terms if link cost terms like in equation 6.2,

N N

E: Z Z L,“- for all 1 g is N

n=1 .

321k mm

Naefih
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6.4 Problem Formulation

WSNs serve to provide situational awareness and collect data from the entire region

covered by them. An area is said to be covered as long as there is at least one sensor

taking measurements from it. Data reporting of an area can stop due to two reasons,

1) The sensor providing coverage runs out of power, and 2) the sensor is unable to

route its data to the base station due to a partition / fragmentation of the network.

When a node stops cormnunicating data to the base station there is a drop in coverage.

Therefore, the utility of a WSN is related to the time period for which a WSN can

maintain minimum coverage. The skewed distribution of energy consumption rates

in sensors requires a redistribution of traffic load that,

1. Produces a more evened out traffic load across sensors.

2. Yet, at the same time, guarantees low total energy consumption.

In mathematical terms, if E is a random variable modeling the energy consumption

rates of sensors in a WSN, we aim to minimize its sample variance 0% (defined in

equation 6.3) while keeping its sample mean “E low (defined in equation 6.4).

2 __ ZillEi ‘ HE)2
 

0'

E N (6.3)

v

M = ——Z"l=1Ei.
E N (6.4)

This leads to a joint-minimization problem. l\~‘Iinimization of n.E alone is achieved by

SPF routing protocols based on energy as a cost metric. However, selecting routes

based solely on the minimization of nE will inevitably lead to a situation where sensor

nodes closer to the base station transmit packets at significantly higher frequency
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compared to sensor nodes farther away. In a multi-hop WSN this implies significant

variations in individual nodes’ energy consumption rates. Due to the optimality

principle of subproblems, the SPF routes from sensors to the base station form a tree

rooted at the destination. Over time the region of failing nodes will expand from the

base station away. Once this region spreads to the maximum transmission range of

a sensor node in all directions around the base station it is cut off from the rest of

the network. The network will experience a partition [119] despite the fact that there

will be a large number of nodes with significant battery life left. This problem can

be formulated as a budget constrained allocation problem: The minimization of (7%:

in equation 6.5 is the objective function. Minimization of the objective is subject to

the inequality constraint that pE be less than some (user defined) maximum budget

value aE budget in equation 6.6.

 

- 2
mina

E (6.5)

subject to constraints,

N N L7,],

:1 Z N S ”E budget'

71: . = 1

J _ (6.6)

. . 1

A27] 6 PTL,0

In [113] Singh, Woo and Raghavendra describe the independent minimization of only

the variance of node power levels to extend the lifetime of a network. We propose

joint minimization of [,LE and 0%. Using the constraint formulation highlighted above,

we can summarize our optimization framework as identifying the set of routes, one

for each source destination pair in a given W'SN such that 0% is minimized while
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nE _<_ pE budget' This is analogous to minimizing a distortion measure given a rate

budget constraint under an RD framework. Consequently, our proposed dynamic

programming algorithm (DPA) is based on an operational RD—framework where we

strive to select the mean-variantte (MV) operating point that offers the lowest achiev—

able 0%) while maintaining itE S pE budget The solution takes the form of a set of

routes, one from each node to destination (base station). In terms of the optimiza-

tion problem formulated in equations 6.5 and 6.6, the solution is the set of values

k1, k2, k3, . . . , kN that select a corresponding set of paths 1311?), 192/6%, Pfifl’ . . . ,P:%

that minimize the variance of the power consumption under the simultaneous flow of

traffic from all nodes.

We have not, to this point, discussed the generation of sets of alternative routes

Pig) from every node 1 S 2' _<_ N to the base station. In the following section we

describe four different algorithms to obtain alternative paths between sources and

destination.

6.5 Route Discovery

Sub-sections 6.5.1 through 6.5.4 describe the four different route discovery algorithms

used for finding alternative paths from nodes to the base station. The four types

of routes are bottleneck edge disjoint (BED), bottleneck node disjoint (BND), edge

disjoint (ED) and node disjoint (ND). To explain and illustrate the differences between

the route discovery algorithms figure 6.1a through 6.1d show the different routes

determined from sensor node 7199 in a WSN consisting of a base station and N = 99

randomly placed FFD sensor nodes in a square shaped region of size 10 x 10 with

each nodes transmission range chosen from the Gaussian distribution N01.30%)

(with mean #3 and variance 0.2:). For the following discussion we represent the
H

WSN by graph a C(V, A). Nodes are represented by the set of vertices V and the
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Bottleneck Edge Disjoint Routes Bottleneck Node Disjoint Routes

    1 O
(a) BED paths. (b) BND paths.
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Figure 6.1: Paths from 7199 to no.

communication links between elements of V is denoted by the set of edges A. A

directed edge from vertex n," to nj is denoted by Ai,j- Furthermore, let F denote the

minimum spanning tree rooted at the base station on the connected component of G.

We also define the maximum power node function MaxPowNodefl") which returns the

node that experiences the highest power consumption when traffic flows to the base

Station along I‘. The predecessor function Pred(I‘, z") returns the parent node of n,-

in P. The indegree(nz~, F) function returns the in-degree of node n,- in graph I‘. The

Shortest path from vertex "2’ to vertex nj on a graph G is denoted by SP(i —) j, G).
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6.5.1 Bottleneck Edge Disjoint Paths

We define the bottleneck edge to be the outgoing edge from node MaxPowNode(F).

This method repeatedly determines and removes the bottleneck edge, and rediscovers

the minimum spanning tree F and from it the shortest paths from each node to the

base station. Figure 6.1a depicts all BED paths from ”N to no.

 

Algorithm 1 Generate Bottleneck Edge Disjoint Paths

Require: n 2 0 V :2: 3f 0

Ensure: 5(2) 2 {},V1 3 2' S N

G := Topology of WSN with all available links

F := C

while indegree(n0, F) > 0 do

F := Minimum spanning tree on G rooted at no

for all "2' do

if SP(i —) O, F) 74 S(end) then

S(i) :2 {5(1), SP(2'. —> O,F)}

end if

end for

G I: C(V’ A — A(=.\-'IaxPowNode(F),Pred(MaxPowNode(F),F))

end while

 

 

6.5.2 Bottleneck Node Disjoint Paths

A bottleneck node is defined as the node returned by the hvt’laxPowNode(F) function.

This method repeatedly determines the bottleneck node under traffic flow along F,

removes all its incoming edges from the graph, and rediscovers the minimum spanning

tree F and from it the shortest paths from each node to the base station. Figure 6.1b

depicts all BND paths from 7199 to "0°

6.5.3 Edge Disjoint Paths

Edge disjoint paths between two vertices ”i and 'nj in a graph are paths that do not

have any edges in common between them. To determine an ordered set of edge disjoint
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Algorithm 2 Generate Bottleneck Node Disjoint Paths

Require: n 2 0 V 3: ;£ 0

Ensure: 5(2)={},V1§2'S N

G := graph of WSN with all available links

while indegree(n0, F) > 0 do

F := Minimum spanning tree on G rooted at no

for all 222- do

if SP(2 -—) 0, F) # 5(67221] then

5(2) 2: {5(2) SP(2' —> 0,F)}

end if

end for

G := G(V — MaxPowNode(F), A)

end while

 

 

paths from a node ml: to the base station this algorithm repeatedly finds and saves

SP(2' a 0, G) and removes all edges it is composed of from G. The Edge() function

returns the edge set of the path provided in the argument. Figure 6.1c depicts all ED

paths from nN to 220.

 

Algorithm 3 Generate Edge Disjoint Paths

Require: n 2 0 V a: aé 0

Ensure: 5(2) = {},\7’1 _<_ 2' g N

G :2 graph of WSN with all available links

while indegree(nO, F) > 0 do

F 2: Minimum spanning tree on G rooted at 720

for all ”2' do

if SP(2' ——> 0, F) 75 5[end] then

5(2) := {5(2) SP(2 —> 0, F)}

end if

end for

TempMazNode := MaxPowNode(F)

While Temp.MacrNode 75 220 do

G == G(V/1 — ATempMacrNode,Pred(TempMaxNode,F)l

TempltfaxNode := Pred(TempMa:1:N0de, F)

end while

_end while
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6.5.4 Node Disjoint Paths

Node disjoint paths between two vertices 22,- and nj in a graph are paths that do

not have any nodes in common between them. To determine an ordered set of node

disjoint paths from a node 22,; to the base station this algorithm repeatedly finds and

saves SP(2 ——> 0, G) and removes all nodes it is composed of from G. The Vertices

function returns the vertex set of intermediate odes between source and destination

nodes of the path provided in the argument. Figure 6.1d depicts all ND paths from

nN to no. It is worth mentioning here that the ND paths discovered by this algorithm

bear resemblance to the routes determined between source and destination nodes in

the multipath routing method described in Baek and de Veciana [6]

 

Algorithm 4 Generate Node Disjoint Paths

Require: n 2 0 V2: aé 0

Ensure: 5(2')={},\7’1_<_2'S N

G := graph of WSN with all available links

while indegree(n0, F) > 0 do

F 2: Minimum spanning tree on G rooted at 720

for all 22,- do

if SP(2 —-> 0, F) # 5[e'n.d] then

5(2) := {[5(2) SP(2 —-> 0,F)}

end if

end for

TempMaxNode := MaxPowNode(F)

while TempZWaxNode # 720 do

G := G(V — TempMaxNode, A)

TempM0.chode := Pred(TempMazNode, F )

end while

end while

 

 

6.6 Dynamic Programming

The algorithms in the preceding section described four different methods of generating

a list of paths in increasing order of path cost from every node to base station. In

108



  

P101 P201 F’so1 rn" PNO1
  

  

  

  

          

 

 

  
 

 

 

  
 

 

   
 

 
 

     
    
 

  

P1,o2 Paoz P392 1---- Pun2

[31,03 P2,03 P3,o3 ""- PN,O3

I l l I

. . . . [k1 k2 k3 kN]
l l |

4‘ k1 Paokz : J !

Pm i j k3 PN 0kN

i . Pao ’,

I l i J l

l l l l

[31,0r1 l:’2,or2 Paor3 F’N,orN
          

Figure 6.2: N lists of routes sorted in ascending order of path energies.

this section we describe the DPA that selects one path from each list while achieving

the optimization objective. Figure 6.2 illustrates this idea and depicts lists of paths

obtained by one of the route discovery algorithms. Each column corresponds to a

source node 222-, and every box in it represents one of the 7',- paths from source node

”2' to destination "0' The shaded boxes identified by path indices [151, kg, k3, . . . ,kN]

represents the solution vector to the optimization problem. The DPA described in

this section traverses the space of possible solution vectors and attempts to find one

that approximates the optimum solution. but at significantly lower complexity.

6.6.1 Theoretical Background

Similar to the operational rate-distortion [32] problem in source coding [94], this joint

optimization can be mapped into a Lagrange optimization framework [39]. This for-

mulation is feasible if there is an optimum tuple (ME, 02E] such that ,uE S l1E budget
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(i.e. an optimal/minimal overall energy can be found such that it exactly equals the

budget constraint). In this case, one can view the problem as one that allocates the

total energy budget N x ItE budget to all N nodes in the network such that the

2
variance 0E is minimum. This is referred to as the budget constrained allocation

problem [94].

In brief, we can formulate the lifetime maximization problem by considering the

Lagrangian cost J(A) = 0%: + ApE, which depends on the Lagrange multiplier A 2 0.

Identifying the optimum value for the Lagrange multiplier is a crucial aspect of this

approach. In particular, the parameter A represents the slope of the curve in the RD

plane. However, the computational complexity of finding the true optimal solution

is staggeringly high. The MV plane consists of aE on the horizontal axis and 0%:

on the vertical axis. The MV region consists of all MV operating points achievable

by different coml.)inations of possible paths, one from each node, to the base station.

The desired optimal solution will lie on the hull of the MV region. This is very

similar to the problem of finding the optimal quantizer in an operational RD sense

from Information Theory [32]. We exploit some of the strategies used under RD

optimization to develop a DPA for identifying the optimum solution points in the

MV space.

6.6.2 Dynamic Programming Algorithm

In order to reduce the computational complexity of finding the hull of the MV region

we use a DPA similar to the one used in the determining the hull of the RD region

for optimal quantizer design. In the sensor network lifetime maximization problem

under consideration it is desirable to minimize 0%, the variance of node power con-

sumption rates, and “Ev the mean of node power consumption rates. The reduction

in computational complexity over an exhaustive search of all operating points comes
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Figure 6.3: Selection of next optimal point in the MV-plane by DPA.

 

at the cost of DPA being only an operational optimization method approximating

the exact optimal solution. The DPA operates 011 N sorted lists, one for each node,

each containing [P11,—0l— r, paths to base station ordered in ascending order of their

path costs. The algorithm described here is greedy in nature. It is possible that

this algorithm does not find the optimum operational [111;], 0%] point under certain

scenarios. Nevertheless, the algorithm does provide the optimum operational solution

under many practical scenarios. Furthermore, a set of RD variations of this algorithm

are rather popular due to their simplicity and low-complexity ([103],[109],[118]).

(0) 2 (0)
The starting point [12E ,JE ] of the DPA is the operating point that offers the

lowest possible ,12E and is obtained by selecting all P310 where Vj,1 S j g N and

. . . . . 0 .

18 located closest to the 0% ax1s. The nnnnnum mean power consumption 11%) is
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associated with a relatively high variance 0%(0). The DPA uses [11(3) , 033(0)] as a

(1) (1)]
starting point to search for the next achievable operating point [11E ,0’%—: closest

to the hull of the MV region that adheres to the budget constraint Ebudget' The

0) 2 (0)
shortest routes that correspond to [11%. ,0E ] are the ones at the top of all columns

in figure 6.2. If pair [12%). 0%.(0)] satisfies the specified constraint 112.0) S ,uE budget

and [11(El),0%(1)] does not, [ughagjlm] is the optimum point and the algorithm

terminates. However, in general, the above condition is not met except in special

cases (such as where all nodes are at an equal distance and one hop away from the

base station), and the algorithm proceeds to the next step. Rather than considering all

possible route combinations, at any operating point Lug), 0%.(i)] during the (2+ 1)th

iteration, the algorithm introduces the smallest increase AE in energy to each route

- - . ,- -, (’1?) 2 (2) 2+1
by con81der1ng replacement of le,0 111 the set of routes used for [11E ,0E ] by 133,0

in turn. In a network of N nodes this produces up to N new possible operating points

' 2' 1 . . .

for [#%+1)10%~( + ) ]. The exact number of alternative operating pomts depends on

the number of route lists that still have an alternate path left for consideration. Each

of these possible alternatives is obtained by replacing one of the routes that produced

[11%),0%(7)] by the next path and computing a new operating point. This way up to

N different alternatives lflg+1’j),a%(l+1’])] for 1 Sj S N are obtained. For each

of these N possible operating points we compute their slopes MM) with respect to

previous operating point Lag), diam] like in equation 6.7.

 

.. U2('i+1,j)_02(i)

190): E, . E

A?” — 11%) (6.7)

.
, _ . 2 1,'

Equation 6.8 shows that out of these N alternative operating pomts “(EFF J),
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2+1, ' . . .' ' -

(7%; '3) we select the one which offers the lowest gradient /\(l’]m'ln).

jmz’n = arg min(/\(i’j))

(6.8)

Equation 6.9 assigns the point obtained by changing node njn . 1’s path to be the

: 222

next achievable operating point of the MV plane and advances the the route pointer

in column jmz’n of the route list in figure 6.2 down by one position.

(2317- ) 2 (2327 v ): [H mm ,0. 771.277. ]

E E (6.9)

This way the algorithm iteratively determines the next point on the MV region’s hull.

(0) 2 (0)
Figure 6.3 illustrates a simple example. [11E ,0E ] is the starting point and there

are four possible points in the MV plane one of which has to be chosen as the next

operating point on the MV curve. In this example M021) < M02) < M023) < /\(024).

Therefore, the point [11(19’1),0%3(0’1)] corresponding to the smallest slope M021)

(1) 2(1)
be chosen for [11E , aE ]. 111 this manner a curve is obtained in the MV plane which

will

estimates the boundary of the MV region. Figure 6.4 depicts MV curves for a WSN

using different route discovery algorithms at our disposal. The differently sloped lines

(A’, A” and Am) represent different benefit/cost (variance reduction/mean increase)

ratios, that can be used to identify a suitable operating point on the hull of an MV

curve. The curves shown in this figure are truncated at the right end when the mean

value becomes greater than the mean at the initial starting point. If the DPA is

allowed to run to completion the number of points returned by it is approximately

50 to 100 times the ones plotted here. However, the region of the curve that is of

interest to us is the one between the starting point and the point offering I'ninimum
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Figure 6.4: Mean-Variance tradeoffs offered by BED, BND, ED and ND paths.

variance.

6.6.3 Computational Complexity of Finding Optimal Solu-

tion

There are two sources of complexity in this problem; 1) The computation of achievable

operating points, 2) the traversal of the search space for the best achievable operating

point. The graph G(V, A) that represents the WSN consists of a vertex set V of

cardinality N + 1 and a directed edge set A of maximum cardinality N2 + N (we

consider a worst case scenario in which the network topology forms a fully connected

graph). First, we derive an upper bound for the order of complexity of the size of the
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search space for a brute force method. The total number of paths from a node ”2'

to base station n0 with q intermediate hops is (N—1)Pq' Then the total number of

possible paths from n, to no is the number of paths with 0, 1, 2, . . . , N —1 intermediate

nodes, i.e. 26V_1 (N—1)Pq = 281—1 Ali-ail! ! = O(N!). Then the search space

of solution vectors for routes from all N nodes to destination consists of 0(N1N)

points. A linear search of this space leaves the complexity unaffected, i.e. 0(NlN).

Now we compute the complexity of the DP formulation proposed in this chapter.

The size of the search space for in DPA is I121]:- qu. The expression of T2 in terms of

N depends on the route discovery algorithm used. For BED the upper bound on the

number of paths 'ij generated for a node ”2' is (N + 1)N = 0(N2) bringing the total

size of the search space to N - (N + 1)N = 0(N3). The bound for BED can be used

as an upper bound on the number of paths per node generated by ED.

For BND the upper bound on the number of paths 2‘, generated for a node n,-

is N = 0(N) bringing the total size of the search space to N - N = 0(N2). The

bound for BND can be used as an upper bound on the number of paths per node

generated by ND. Since the removal of each entry from the search space requires

the computation of N slopes, the complexity of the DPA for BED and ED is upper

bound by 0(N - N3) = 0(N4) and for BND and ND it is upper bound by N ' N2 =

0(N3). Regardless of whether BED/ED or BND/ND are used for route discovery,

their respective complexity terms 0(N4) and 0(N3), respectively, are still orders

of magnitude lower than O(N!N), the order of the exhaustive brute force search

method.

6.7 Performance Analysis

For the comparative evaluation of BED+DPA, BND+DPA, ED+DPA and ND+DPA

algorithms we generate 100 randomly generated networks deployed in a square shaped
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region of size 10 x 10. In all networks the base station is located at coordinates (0,0)

to obtain large variations in path lengths. N = 99 nodes are randomly and uniformly

scattered in the plane. Transmission ranges E of sensors are Gaussian distributed

according to N(10, 2). The WSN is monitoring a process with an entropy uniform

across the space spanned by the network. This implies that the traffic generation

rates of all sensors are also equal, i.e. T1 = T2 = T3 = = T99 = T. Sensors

are equipped with omni-directional antennas with decay factor a = 3. Initial battery

reserves Bi for all sensors are assumed to be 1.

6.7.1 Mean-Variance Trade-off

Figure 6.4 illustrates the variations in the estimate of the MV region boundary pro-

duced by the DPA when different route discovery algorithms are used for the same

network. In this particular example the BND paths seem to offer the greatest decrease

in 0%, ND the least and BND and ED fall in between the two extremes. However,

similar plots of other networks may reveal that this ordering does not hold true for

all cases.

We will attempt to determine if there is a route discovery algorithm which provides

consistent superior performance over the other algorithms. The four scatter plots in

figure (5.5a through figure 6.5d correspond to the four route discovery algorithms.

Each plot is obtained by applying the DPA to the list of routes produced by one of

the four route discovery algorithm. Each point in a plot corresponds to one of the

100 randomly generated networks. Its position on the horizontal axis indicates the

percent increase in ,aE (denoted A11E) and its position on the vertical axis the percent

decrease in 0% (denoted [30%) offered by the minimum variance point (marked by

red cross hair) on the MV curve with respect to its starting point (marked by black

2
cross hair). The decrease in variance of power consumption rates A0E are savings 5
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that are achievable at a cost C that is the increase in mean power consumption rate

A11.E' In the remainder of this section we will use the terms savings and cost to refer

to the two quantities.

As such, it is desirable that most data points be concentrated in the upper left

corner of the scatter plots, indicating high savings 5 achievable at low cost G. Points

located close to the origin indicate little change from the starting point. Data points

located in the lower right corner indicate bad trade-offs, i.e. low savings in return for

high cost. The great overlap in the regions covered by the points indicates that there

is no clear winner among the route discovery algorithms.

To gain further insight we project data points in scatter plots in figures 6.5a

through figure 6.5d on the horizontal/C axis, and the vertical/5 axis. This process

is similar to finding the marginal distributions of a joint distribution of two random

variables. The four histograms in figure 6.6 are obtained by projection of data points

in figure 6.5a through 6.5d on the horizontal/C axis. Similarly, the histograms in fig-

ure 6.7 are obtained by projecting onto the vertical/5 axis. In most cases the shapes

of the histograms in figure 6.6 and figure 6.7 all appear to indicate an underlying

gaussian distribution. We estimate the values of the mean and variance parameters

of gaussian distributions fitting the histogram using. We compute the maximum like-

lihood estimates (MLE) [122] of the parameters 12C, 0%, )15 and 0%. based on 100

data points for each histogram. The MLEs for BED, BND ED and ND are given in

table 6.2 and the resulting Gaussian distributions properly scaled for comparison are

plotted together with the histograms. Since we were previously unable to clearly iden-

tify one route discovery method as being superior to others in terms of performance

we now evaluate their performances in probabilistic terms. A clear winner will have

a distribution for C with low mean and low variance and a distribution for 5 with a

high mean and low variance. Based on MLE parameters in table 6.2 ND emerges as

the least attractive option because it offers the smallest average savings 115 = 24.37%
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Table 6.2: MLE parameters of marginal histograms generated from applying DPA

with BED, BND, ED and ND route discovery algorithms to 100 randomly generated

network topologies.

 

10 cg. 13 02

BED 15.25 328.76 28.09 353.20

BND 20.94 289.93 36.22 303.03

ED 32.25 504.43 35.37 307.67

ND 29.06 390.07 24.37 250.96

 

        

at nearly the highest average cost “C = 29.06%. V’Ve eliminate it from further con-

sideration. Although with 35.37% ED offers on average one of the largest savings, it

does so at a cost that is even higher than ND, i.e. an average savings of 35.37% in

return for an average cost increase of 32.25%. In comparison, the BND+DPA option

offers an average savings of 36.22% in return for a 20.94% increase in cost, which is

significantly lower than from costs of ED and ND. Finally, BED offers average sav-

ings of 28.09% at an additional cost of 15.25%. In comparison with BND this means

BED offers lower savings for a lower cost. However, the variances of cost. and savings

distributions of BED in table 6.2 show that there is considerably greater variation

and uncertainty about BEDs costs and savings. relative to BND. The significant dif-

ferences in variance terms 0% and (7% can be attributed to the fact that the Gaussian

seems to be an ill—fit for BED’s histograms in figures 6.6 and 6.7 and approximates

an exponential more closely than a Gaussian. While multi-modal distributions could

offer more accurate fits for the data they will complicate performance comparison.

We explain the poor performance of paths generated by ED and ND route dis-

covery algorithms with respect to BED and BND by the fact that they exclude not

just one, but all elements (edges or nodes) of a discovered path from consideration in

subsequent path searches. While this cuts down the size of the search space it also

removes too many alternative paths from consideration.
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Furthermore, the high concentration of values in the bins centered close to 0 in

ED’s histogram in figure 6.7 indicates a high rate of failure of the DPA, i.e. instances

where the DPA is not able to offer a significant trade-off. BED has the highest number

of failures followed closely by ED. A closer look at the scatter plots of BED and BND

in figures 6.5a and 6.5b respectively shows that BED offers better performance on

tight budget constraints on 12E budget in the low range of savings 5whereas BND

performs better when the constraint on 11E budget is more relaxed and higher higher

savings 5 are required. The higher rate failure rate of BED makes its use a more risky

option. Also, it should be noted that the scatter plots only plot trade—offs offered by

minimum variance point, i.e. when A = 0. As the curve plots in figure 6.4 there is a.

large set of points that offer intermediate trade-offs for when lambda is in the range

—-00 < A < 0. This is illustrated in figure 6.4 for three different values of A set to A],

A” and A”,

6.7.2 Spatial Redistribution of Energy

That leaves open the question of how effectively this method evens out the spatial

distribution of energy consumption rates observed under SPF routing. The diffusion

plot in figure 6.8 depicts the spatial distribution of energy consumption under SPF

routing. This plot is obtained by averaging it over the same set of 100 networks

used in the previous section. As expected, as one moves from the upper right corner,

towards the lower left corner where the base station is located there is a gradual

increase in the power consumption rate in nodes. The lower left corner, the region

in immediate vicinity of the base station occupied by critical nodes, forms a traffic

hotspot. To illustrate the differences in the spatial distribution of energy consumption

rates produced by the BED, BND, ED and ND route discovery algorithms and DPA

we first subtract the diffusion plot of the SPF routes in figure 6.8. The results are the

119

 



 

 
 

 

 

 
 

NDUJ 1 NbUJ 1

.9 . . '. _ .9 _

g #1.. a: .... I g
I

v:- r .
°\° - , o\° ,

50 100 100

%inorinnE %inorinuE

(a) BED paths. (b) BND paths.

ED ND

NbUJ 1m, NbUJ 1m

.E ' I I ,E

.5 a) . ‘I" 5' . gm I II ...-I

'- II' .-~.I ' . 5,,- II '

\O l I ‘ . °\o fl... .

° (5'7 50 100 (57 100

% incr in 11E °/oIncrin 11E

(c) ED paths. (d) ND paths.

Figure 6.5: Plots of percent decrease in variance against percent increase in mean.

differential spatial diffusion plots in figures 6.9 through 6.12. Like the plot in figure

6.8, these too are averaged over all 100 networks. All route discovery algorithms

produce a reduction in power consumption rates in the region occupied by a peak in

the SPF’S diffusion map in figure 6.8. This is shown by the blue negative region in the

same place, representing a reduction in node power consumption. We also observe an

increase in power consumption rates marked by a yellow-red-yellow band that envelOps

the blue region on its upper-right side. This signifies a partial shift of relay traffic

from critical nodes to their immediate neighbors that are farther away from the base

station. A closer look at figure 6.9 and 6.10 shows that the redistribution of traffic is
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Figure 6.6: Marginal histograms of percent increase ”A1113 for the scatter plots in

figures 6.5a through 6.5d.

Similar under BED and BND, although BND spreads the energy out over a slightly

larger region and that the reduction in power consumption in BND+DPA is around

8000 units, while BED+DPA produces a maximum reduction of only 7000 units.

Rom our previous analysis we would expect the changes in the traffic distribution

between SPF and ED to be less stark which is confirmed by figure 6.11. Finally, ND

seems to be the worst performer because it produces the least change figure 6.12.
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E

figures 6.5a through 6.5d.

6.8 Conclusions

In this chapter we presented an statistical interpretation of network lifetime that

takes into account a limited degree of node redundancy in WSNs. The interpretation

of network lifetime in terms of the mean and variance of network-wide node power

consumption rates provides us an optimization objective that does not narrowly focus

the on the lifetime of a single node as is the case of most prior work. We provide a

dynamic program formulation of the problem that seeks to optimize variance of power
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Figure 6.8: Diffusion plot of energy consumption rates averaged over all 100 networks

under SPF routing.

consumption rates while constraining the average consumption rate. We develop the

DPA that chooses routes in a way that optimizes for our objective from sets of paths

that would be considered sub—optimal in the shortest path sense. Four variants are

developed based on the BED, BND, ED and ND route discovery algorithms. We

also observe that the routes discovered by the ND algorithm are very similar to

those proposed in previously proposed load balancing techniques such as Baek and

de Veciana's in [6]. Interestingly, under our understanding of network lifetime and a

many-to—one traffic flow ND is the worst performing of all route discovery algorithms.

A statistical performance comparison of these four techniques for the case when A = 0

shows that on average the BND and BED in conjunction with the DPA yield the best
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Figure 6.9: Differential diffusion plots of energy consumption rates averaged over 100

networks using BED paths and DPA.
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Figure 6.10: Differential diffusion plots of energy consumption rates averaged over

100 networks using BND paths and DPA.

performance. BND and BED yield reductions of up to 28% and 36% in variance

of power consumption rates at the cost of raising average node power consumption

by 15% and 21%, respectively. The computational complexity of variants of the

DPA vary from 0(N3) to 0(N4) which is significantly lower than the full search of
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Figure 6.11: Differential diffusion plots of energy consumption rates averaged over

100 networks using ED paths and DPA.
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Figure 6.12: Differential diffusion plots of energy consumption rates averaged over

100 networks using ND paths and DPA.

the solution space which is of complexity 0(NIN). Analysis by means of diffusion

plots verifies that. DPA indeed reduces power consumption of sensors that experience

highest power consumption under shortest path routing algorithms. Diffusion plots

also show that the reduction power consumption is highest under BND, followed
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closely by BED.

The resulting route selection method is one that is suitable for applications with

many-to—one traffic flows. Route discovery algorithms and DPA assume availability

of global network connectivity which is very likely going to be the base station. While

this may exclude its use in some applications we envision it having great application

in critical infrastructure protection/control/monitoring, surveillance network and en-

vironmental/agricultural monitoring applications with infrequent topology changes.
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Chapter 7

Mean-Field Solution of

Small-World Wireless Sensor

Network Models With Range

Limited Shortcuts

127

 



7.1 Introduction

The limited range of wireless channels naturally imposes geometric or Euclidean graph

topologies [98] on wireless networks [117]. Wireless sensor networks (WSN) [2] are a

class of mobile or stationary, multi-hop ad-hoc wireless networks of power constrained

nodes. WSNs are employed by sensing, detection and data gathering applications

which impose a 111any-to-one data flow. ()11 the spectrum of randomness of graphs

the endpoints are occupied by lattice graphs on one end (no randomness) and random

graphs on the other (complete randomness). In between these extremes lie small—world

networks [128]. Lattice graphs are characterized by strongly connected neighborhoods

that imply a high degree of connectivity and resilience, but rather large diameters.

Random graphs [13], on the other hand, are characterized by small diameters (that

imply an ability to retrieve and disseminate information quickly) but low connectivity

between neighborhood nodes. Note that the same topological properties that enable

the fast dissemination of information within a network also enable fast information

retrieval. Clearly, in the context of WSNS both strong connectivity at the local

level and small diameters are desirable, both properties of small-world networks. In

[128] and [127] Watts provided analytical models for 1-dimensional lattice graphs,

connected caveman graphs and Moore graphs. Several attempts have been made to

leverage the small-world network effect in WSNs ([111],[27],[125],[52]). However, to

the authors’ best knowledge there are no analytical models of 2—dimensional Euclidean

graphs with range limited shortcuts that are applicable to WSNS. This research

derives analytical models for the clustering coefficient and characteristic path length

of VVSNs whose topologies are augmented by a small number of shortcut links whose

range is limited by practical limitations. Results show that in spite of the fact that

shortcuts are range limited and significant differences in construction method the

phase difference between drop in clustering coefficient and characteristic path length
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that is the hallmark of small-world networks still appears. Although shortcuts are

range-limited only about 0.005 — 0.05% of nodes had to be equipped with the ability

to communicate over long ranges.

The remaining chapter is organized as follows. Section 7.2 provides a brief back-

ground of small-world networks, their properties and their standing relative to Eu-

clidean and random graphs. Section 7.3 describes different system models for WSNs

with small-world topologies and provides a literature review of prior methods used

to this end. Section 7.4 uses mean field analysis to derive generalized expressions of

clustering coefficient and characteristic path length that can be used to model small

WSNs based on any of the system models in section 7.3. Section 7.5 evaluates the

model for different ranges of parameters. Section 8.8 concludes the chapter.

7.2 Background: Small-World Networks

Small world networks were first discovered by Milgram in social networks in [82].

Watts in [128] and [127] analyzed social networks which included a collaboration net-

work of actors and a collaboration network of mathematicians, to verify Milgram’s

idea of six degrees of separation. More recently Horvitz and Leskovec verified the

presence of six degrees of separation in social networks using a much larger data

set from Microsoft’s Windows Live lVIessenger instant messaging traffic [130]. Since

Milgram’s original experiment several other works have analyzed networks in natu-

ral and man-made systems to discover that their topologies are in fact small world

graphs. Latora and Marchiori [73] and Watts [127] analyzed the neural network of

the C.elegans worm. Montoya and Sole [87] studied food webs in nature. Moore

and Newman [88],[89] studied the transmission of infectious diseases in populations

with small world connectivity. Studies of transportation networks include Latora,

Marchiori [73],[74] on the Boston subway network and Sen et al. [110] on the Indian
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railway network. Small world analysis of communication networks include Adamic’s

[1] on the World Wide Web. i Cancho and Sole [50] studied the lexical networks of

human languages and determined them to be small worlds. More relevant to our

work are studies on creating small world topologies in wireless networks by various

means. Wan et al. [125], Cavalcanti et al. [23] and Costa and Barros [31] showed

that selectively equipping a small fraction of nodes in a WSN with two radios (one

regular, short range IEEE 802.15.4 and one long range IEEE 802.11b) induces a small

world topology. Hubaux et al. [49] and Dimitar et al. [36] propose a small world

application layer for ad hoc networks similar to logical links in peer—to—peer networks.

Dixit, Yanmaz and Tonguz [37] analyze the topology of cellular wireless networks.

Helmy [46],[47] proposes mobility assisted wireless networks to create shortcuts that

mimic random links. Sharma, hilazumdar [111] make selected use of wired links to

create shortcuts.

Among prior models of small world networks are Watts [128] models for the clus-

tering coefficient and characteristic path length of 1-dimensional (circular) lattice

graph, connected caveman graphs and Moore graphs. In [91] Newman and Watts

found a mean-field solution of the small world network model for l-dimensional lat-

tices. Arnaral [3] studied the statistical properties of classes of small world networks

using a taxonomy based on the form of degree distribution of nodes. Some recent

advancements in WSNs have enabled the addition of a number of links with longer

communication range, called shortcuts or global scale links, to a network by various

means (at a cost). In this chapter we derive analytical expressions for two defin-

ing properties of small-world networks, the clustering coefficient C' and characteristic

path length L of geometric graphs in a 2-dimensional plane with a number of range

limited shortcut links. Let G(V, E) denote a graph consisting of a set of N vertices

V = {221, 212,213, . . . ,vN} and a set E of M edges consisting of all edges, where 6M
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Figure 7.1: Illustrated examples for three different classes of graphs; a) Geometric

graph, b) Random graph, and 0) Small world graph.

denotes an undirected edge from ”2' to vj.

7.2.1 Characteristic Path Length

Characteristic path length is defined as the average length of geodesic paths between

all pairs of nodes. For a graph G, the characteristic path length L(G) is defined as

the number of edges in the geodesic path between two vertices, averaged over all pairs

of vertices. If Le - is the number of edges on the geodesic path from v- to Us, then,
3:] Z J

L =Zly=12jv=1Ltj

NUV - 1) (7.1)

 

7.2.2 Clustering Coefficient

The Clustering Coefficient is a measure of the cliquishness, the degree to which ver-

tices in a graph coalesce into tight groups. For a graph G, the clustering coefficient

C(G) is defined as follows. Suppose a vertex v has 100 number of neighbors, then the

maximum possible size of the set of undirected edges between 2) and all its neighbors

is k” ICU-H . Then CU is the fraction of these edges that actually exist in E. The
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clustering coefficient of the graph is then defined as the average GU over all vertices

V, as in equation 7.2.

N ,

C : 27:1 Cl

N (7.2)

The above definitions of characteristic path length and clustering coefficient are

easily extended to directed and weighted graphs.

7.2.3 Small World, Geometric and Random Graphs

We will be using the terms graph and network and the terms node and vertex inter-

change-ably. Geometric graphs have (see figure 7.1a), both large L and C by virtue of

their strong local connectivity. Random graphs (see figure 7.1b) are the other extreme

and are characterized by both small L and C. Small world networks (see figure 7.1c)

have small L but large C.

There are several construction methods for small world networks. Among the

simplest to understand is the 13-model described by Watts in [128]. A small world

network can be constructed from a lattice or geometric graph by rewiring one end of

every edge to a randomly selected node with probability 5’. The type of graph that is

constructed by the fi-model depends on the value of rewiring probability 5. If 6 = 0

the graph remains a lattice/ geometric graph, while 13 == 1 yields a random graph.

Watts and Strogatz [129], Newman and Watts [92], Pandit and Amritkar [96] and

Watts [128] repeatedly demonstrated ,3 =2 0.01 — 0.05 z (9 (7%,) as a typical range of

values for constructing small world networks, which means only a very small fraction

of links has to be rewired. Hence, on the scale of randomness where lattice/ geometric

graphs occupy one extreme and random graphs the other, small world graphs fall in

between the two, but closer to the former than the latter.
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In the context of WSNs the property of random graphs to propagate information

quickly means that nodes can relay important data back to the base station quickly.

The property of Euclidean graphs to have high G and strong local connectivity pro-

duces a stable network structure difficult to partition. It also enables the formation

of clusters which facilitates collaboration among groups of nodes. Thus, the WSN

application den'iands the best of Euclidean and random graphs.

7.3 Small-World Topology Construction Methods

for Wireless Networks

There are several approaches to realize shortcuts in wireless networks with the intent

of creating a small world topology. We conducted a survey of practical techniques.

7.3.1 Hybrid Sensor Network

Sharma, l\=’Iazumdar [111] and Chitradurga [27] proposed the judicious use of wired

links between a small subset of nodes in a WSN . The resultant network is not a

pure wireless network and is called a hybrid sensor network. The graph topology of

hybrid sensor networks uses range limited links for shortcuts instead of truly random

links. From a practical perspective the wired shortcuts limit the possible deployment

scenarios.

7.3.2 Multi-radio Network

The multi-radio node as a means to building small worlds was first proposed by Wan

in [125] with the objective of easing congestion in the primary network consisting of

ubiquitous low-rate links. The multi-radio node architecture has the disadvantage

that it requires a heterogeneous mix of motes. The links of the long range radio
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interface serve as small world shortcut links. The implementation used in [125] uses

IEEE 802.15.4 [5] in conjunction with IEEE 802.11b [51] network interface. The

significantly higher power consumption of IEEE 802.11b is a disadvantage in power

constrained wireless SGDSOI‘ IIGUVOI‘kS.

7.3.3 Receiver Side Cooperation

The third solution is based on single-input multiple—output (SIMO) principles and

is dubbed by Ilyas and Radha as the ’Poor-Man’s-SIMO-System’ (PMSS) because it

uses receiver side diversity combination techniques in a network of commercial-off-the-

shelf components. Its principal strength over hybrid sensor networks and multi-radio

networks is that it circumvents the need for customized or reconfigured hardware.

Instead, it relies on receiver side cooperation in motes to form a SIMO system. This

way c00peration reduces losses and retransmissions while increasing throughput and

channel utilization. In [52] Ilyas and Radha describe the PMSS and how three well-

known diversity combination techniques are adopted for use in a network of commer-

cial IEEE 802.15.4 devices. The diversity combination techniques are derivatives of

diversity combining methods for analog signals presented by Brennan in [19]. Simply

put, the purposes of diversity combining are twofold; a) Select an error-free version of

a received transmission from among multiple received versions or, b) If the first goal

is not achievable, obtain another version of the transmission, with no errors or fewer

errors than any of the individual received versions.

In conclusion of this survey it should be understood that as diverse as these

different implementations of small-world networks in wireless networks may be, the

analytical model can be parameterized accordingly.
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7.4 Mean Field Analysis of Small-World Wireless

Networks

7.4.1 Clustering Coefficient

Sensor nodes are distributed as a 2—dimensional Poisson point process with mean

,0 points (sensor nodes) per unit area. Let there be two nodes '01 and 212 capable

of communicating with nodes within range R1 and R2, respectively. For simplicity’s

sake we will take R1 = R2 = R. If the two nodes are separated by distance r < R then

communication coverage regions of nodes 211 and '02 will overlap, as depicted by the

shaded region in figure 7.2. Let A denote the size of the overlapping communication

coverage regions. Then A is computed by adding the areas of sectors XOX’ and

X0’X’ and subtracting the areas of triangles XOXI and X0’X’ because they have

been added twice during the addition of both sectors. The resulting expression for A

is shown in equation 7.3.

()

A(6l, R) :2 g—NRZ — 2 - Rsind - Rcosél

7r

=26R2 — R2 sin 26 (7-3)

Here 0 is the central angle 1X0’X' in figure 7.2. We can exm‘ess (I as a function of

r.

6(r, R) = arccos “—2

R (7.4)
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Substituting the expression for 6 in equation 7.4 back into equation 7.3 give us A as

26f 2 /1_ 7"
A ,R =2R6 ,)R-— R —— —

[ 7.5

=2R2arccos(r2R)—-7R-1—— ( )

As we already described, for the network topology to be a small world some nodes

a function of r.

have to provide shortcuts or global scale links to other nodes. These nodes will be

referred to as shortcut nodes or global scale nodes. In literature, the graph formed by

global scale nodes is also referred to as a network’s substrate [128]. The remaining

nodes are called local scale nodes. The ratio of the maximum communication range

of global scale link to that of a local scale link is called the scaling factor 5. Now,

let p denote the average node density with which nodes occupy the covered region.

The cooperative communication model for small world WSNS in section 7.3.3 for the

implementation of shortcuts in a wireless sensor network requires multiple nodes to

function as a single receiver. Depending on how many nodes are collapsed into a single

node will reduce the effective node density ,0. Let nc denote the average number of

nodes that combine to function as a global scale node. This reduces the node density

in the equivalent small world graph (spread over area A) to p, which relates to {2

according to equation 7.6.

p, -p _ Ngloballnc — 1)

A (7.6)

 

Note that when shortcut links are implemented in multi-radio networks (subsection

7.3.1) and hybrid sensor networks (subsection 7.3.2) the node density in the small

world graph remains unchanged, i.e. nc——— 1 which implies p -—p. Then A(r, R)p
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Figure 7.2: Overlapping communication regions of two communicating sensor nodes

in a WSN.

denotes the number of edges 3. node (221) distance r away from a reference node (222)

has with the set of nodes that can also communicate with the reference node. Let

F(-v) denote the neighborhood of a vertex v E V, where V denotes the set of all

vertices in the graph G of the wireless sensor network’s topology. We treat the entire

region covered by sensors as a continuous, homogeneous sea of sensors populated with

a uniform density of p, nodes per unit area. Then the total number of edges d in the

neighborhood of vertex u can be computed by integrating A(r, R)p’ with respect to r

over the interval [0, R], the radius of the communication range; The number of links

in the neighborhood F(u) of a node v is denoted by d(F(u)). The exact derivation

of the expression for d(F(v)) in equation 7.7is provided as lemma 1 in this chapter’s

appendix.

are)» =7rp/2R3(2.9604R — V3)

(7.7)
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Let D(F(u)) denote the number of edges in the completely connected graph of node

v and its neighborhood F(v).

D(F(v)) =7rp’R2 X 7rp’R2 = «262124

(7.8)

The clustering coefficient is defined as the expected value of the ratio of the number

of links in a nodes neighborhood to the number of links in a complete graph of its

neighborhood. This can also be defined in terms of previously computed values as;

_ d<r<v>>

C(Gl ‘EV [Danni
 

(79)

For a node that is part of the sea of sensors communicating over local scale links only

we define the clustering coefficient Clocal as,

  

_ dam) _ 2.960412 — \/a

local _D(F(U)) _ 7TH

~2.9604R — \/§ (7.10)

NR

 

Hence, Clocal grows O (712) with respect to R. For a node that is part of the

substrate communicating over local as well as global scale links we define the clustering

coefficient Cglobal as,

 

C dfrlvll + kglobal

l b l:
9 O a D(F(’U)) + kglobalOO/WRZ) 'l' (kglobal _ 1)! (7-11)
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Note that in doing so we assumed that 6 Z 2. Here k l is the average degree of
globa

nodes in the global scale network or substrate with other nodes in the global scale

network. The function for C rows as O n 1 ). It must be noted here
global g (W

that in the computation of Clonal and Cglobal ignores border effects and assumes

nodes are spread on a torus. To obtain the clustering coefficient of the network Glocal

and Cglobal are combined in the ratios in which local and global scale nodes appear.

N

If we define a = . globarl then C is obtained by equation 7.12.

f global‘l'Alocal

 

C =12C' +(1— u)C
global local (712)

7.4.2 Characteristic Path Length

The characteristic path length of a graph is defined as the average length of all geodesic

paths (measured in hops). In a graph G(V, E) the characteristic path length L is

defined as the average of geodesic path lengths [(211, uj) between all connected pairs

of vertices vi, uj E V and u,- # uj. Like the clustering coefficient, the characteristic

path length is also a function of the number of nodes with global scale links. Since the

global scale links are range-limited, and since global scale nodes have to be placed

within communication range of one other to be useful, the area covered by them

is also limited. The region of the WSN that is serviced by global scale nodes may

be fragmented into many different patches. Figure 7.3 shows a model of a WSN.

For analytical ease the shape of the region covered by all nodes of the network is

approximated by a circle of radius VA and center 0. The region covered by global

scale nodes is approximated by a circle of radius m < x/A also with center 0.

The difference between coverage areas of the entire WSN and only the global scale

nodes is a result of the constraint imposed by a) the limited range of shortcuts and b)
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the global vertex degree (the number of shortcut links incident on a substrate node).

Figure 7.3 also shows a node :1: distance removed from O. For the node in the figure

:1: > g and the sensor region can be divided into three separate regions, numbered

1 through 3 in the figure. These regions are defined relative to every node 2). Region 1

consists of all sensors that are reachable from 22 without having to traverse any global

scale links. In figure 7.3, for node v at distance :1: from center 0, region 1 corresponds

to the uncolored white region. Region 2 is the area of size Ag occupied by global scale

nodes and is colored solid gray. Region 3 is the region occupied exclusively by sensors

with local scale links but which is reachable (by a shortest path) only after traversing

region 2. In figure 7.3 region 3 is identified by shading and it’s area is denoted by

5(:13) Assuming the deployment of sensors is sufficiently dense, we approximate the

geodesic path from one node to another by a straight line between them. To proceed

we define three central angles (1 = %ABOB’, [3 = .480] = ABIOJ’ and ’y = AJOJ’,

where 2(02 + 13) + 'y = 277. Since a and c): are functions of :r we will be denoting them

by 07(2) and 7(2).

A
9

x (7.13)

 (1(a) = arccos

Ag

fl (7.14)

 13 = arccos

';r=7r— (1:1:— ’3: 7r—(11t—a() 2 2f) 21 2f (l 6) (7.15)
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Figure 7.3: Geometry of WSN deployment and regions within it with respect to an

individual sensor 22,-.

The area of the region in figure 7.3 labeled region 3 is (see lemma 2 in the appendix)

given in equation 7.16,

 

26+y

Ag
5(1)) :2 AAg sin/3 + £0? " 02(2) _ B) — 2

(716)
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Characteristic path length is denoted by L. It is the average length (in hOps) of

all geodesic paths from every node u,- E V to every other node uj E V. Llocal is

the average number of hops contributed to geodesic paths by local scale links, while

L l is the average number of hops contributed to geodesic paths by global scale
globa

links. Then L can be expressed as equation 7.17.

L =L + L
local global (717)

Based on the 3 regions of the \NSN in figure 7.3, geodesic paths are classified into one

of four different types.

Type 1: Geodesic paths that originate from and terminate at nodes in region

1 and (outside the region covered by the substrate). Type 1 paths consist of

local scale links only.

Type 2: Geodesic paths that originate from a node in region 1 and terminate

at a node in region 2.

Type 3: Geodesic paths that originate from a node in region 1 and terminate

at a node in region 3. Such paths pass through region 2.

Type 4: Geodesic paths that originate from and terminate at nodes in region

2.

We compute Llocal (L ) in equation 7.18 (equation 7.19) as the sum of Llocalffl

(L

global

globalalli the contributions of local (global) scale links to type 2 paths, weighted
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by the normalized frequency of occurrence of type 2' paths.

4

1 .

Llocal zfi Z Llocalm

i=1 (7.18)

4

1 .

Lglobal 26—}? Z Lglobalm

' 2:1 (7.19)

(1)
[0601(1) denote the averageFor a node v in region 1 at a: > Ag distance from 0, let l

spatial distance on type 1 paths traversed over local scale links. Then for a particular

node the size of region1 is A — Ag — 5(.13) Since the deployment of sensors is in 2

dimensions we approximate the size of the region traversed by these paths by the

 

square root of its area, \/A — Ag — 5(2:) Although region 1 is irregularly shaped

we approximate the spatial distance by one half of it, assuming the sensor is located

(1)
approximately in the center of region 1. Then [localml is given by equation 7.20.

 

<1) 1 .
local( ) 2\/ g ( )

(7.20)

A node v at distance a > , /Ag from O has pllocalffl paths to other nodes in region

1. To obtain Llocalu) we integrate this term over the entire region of deployment

of the WSN, i.e. all circumferences of radii ranging from , /Ag through VA. This is
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shown in equation 7.21.

L (1) =—1——— fl 277.1:- (A — A — 5(1)) 1(1) ($)d:r

local (p/A)2 mp p 9 local (721)

Since the paths from u to other sensors in region 1 do not traverse region 2 no global

scale links are used. Hence LglobalU)’ the component of global scale links in paths

to sensors in region 1 is 0, as in equation 7.22.

L (1) = 0
global (7.22)

(2)
For a node v in region 1 at I > Ag distance from 0, let ll

oca
[(2) denote the average

spatial distance on type 2 paths traversed over local scale links. It is approximated

by the mean of the shortest (:r —— Ag) and longest distances (from node v to point B)

from v to a node in region 2, i.e. %(:r — fl + :rsin (1(2)). To include paths from

nodes in region 2 back to node 22 we multiply this term by 2. This is approximated

(2)
by equation 7.23. We roughly approximate lgloballx) by the square root of the area

of region 2 in equation 7.25.

,(2)
local<$l =11: — ”Ag + assin (1(2) (7 23)

Llocal(2) (equation 7.18) is the component of Llocal contributed by node u’s type 2

paths, i.e. to other nodes in region 2. A node v at distance :L' > ,/Ag from 0 has

p”Ag paths to other nodes in region 2. To obtain Llocal(2) we integrate this term

over all circumferences of radii ranging from «Ag through \/A. This is shown in

144



equation 7.24.

(NA)? local

. 1 VII 2

LZOCGZQ) =—
/ . 102711" ' PHAgl( ) (.L')(l;r

V A9
(7.24)

The length of global scale paths from v to sensors in region 2 is approximated like in

equation 7.25.

1(2) (I) = Agglobal (7.25)

Equation 7.26 weighs this by the number of paths from all 2: outside of region 2 to all

sensors inside region 2 (and vice versa) relative to the number of paths between all

pairs of nodes, i.e. (p’A)2.

Lglobalgll =(/—)-——/14)2/\/_A_g/)27r.”rpAm/Agda:

:ppllnAg32/ (A— Ag) (7.26)

(P’A)2

 

(3)
For a node v in region 1 at :1: > A9 distance from 0, let [locallxl denote the average

spatial distance on type 3 paths traversed over local scale links. It is approximated

by equation 7.27.

 1‘3) (1:17) ()+’/‘72_7
local local

(.1: + V_— (/A9+ 2:1: sin 0( (727)
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A node v at distance :1: > ,/Ag from O has p5 (:13) paths to other nodes in region 3.

To obtain Llocall3) we integrate this term over all circumferences of radii ranging

from ,/ Ag through VA. This is shown in equation 7.28.

. (3)
p27r1: - p5(;r)l , (:1:)d.1:

local (7.28)

I

L . . 3 :—
1()C(ll( ) (/)/A)2 / /—‘49

For Lglobalw) in equation 7.29 we approximate the length of global scale links by

the diameter of region 2, 2,/A , and weigh it by the total number of paths from all

u to nodes in region 3, {)5d(r).

1 VA

L 3 277.1: )5(.1)2g(l.1:
globall l: (pA—T—fg / r—4 P I 1W (7.29)

(4)
Final[fifor a node 22 in region 2 at distance x < Ag from 0, let [local denote the

average spatial distance on type 4 paths traversed over local scale links. We assume

that on average, a node ’U in region 2 communicating with another node in region 2

will route (over local links) to a nearby node with global scale links. Once traffic has

I""‘l‘lu‘d the vicinity of the target destination node traffic is routed over local scale

links to the destination. Let hmag; denote the maximum distance of a node from its

Closest global scale node, as expressed in equation 7.30.

l A

h h=1
‘ global (7.30)
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Assuming that equidistant nodes form concentric bands around global scale nodes

the probability mass function pH(h) of the hop distance H is modeled by equation

7.31.

«(1.12)? — «((11 —1)R)2 2h — 1

pH(h) = 2 = 2 '

7r(hmaiL‘R) hmaa: (7.31)

  

Then the 1(4)local is approximated by the expected value of H as in equation 7.32.

hmaa: 2h _ 1

(4)
l . =5H lhl = hlocal ’12::1 hgzax

(7.32)

 

A node v at distance :1: < ,/Ag from 0, within region 2, has pi/Ag paths to other

nodes in region 2. To obtain Llocal<4> we integrate this term over all nodes in region

2. This is shown in equation 7.33.

L1 . 1(4) =_—2(p”A9)21(4)

06“ (1M)2 local (7.33)

L (4) —2(p”A9)2 , /A

910’” (1)/A)? 9 (7.34)

NOW We can back substitute equations 7.21, 7.24, 7.28 and 7.33 into equation 7.18

\0 Obtain Llocal' Similarly, equations 7.22, 7.26, 7.29 and 7.34 are put back into

equation 7.19 to obtain L Equations 7.18 and 7.19 are substituted into 7.17
global“

to obtain the characteristic path length L.
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Figure 7.4: Plots of clustering coefficient C [left] and characteristic path length L,

lfight] as functions of u for different values of R. Network parameters that remain

fixed are A = 10000, kglobal = 4, p = 10, f = 3 and 11c = 1.

7-5 Observations

111 this section We explore the behavior of the analytical models of clustering coefficient

C and characteristic path length L as we vary the length of local scale links R, the

average degree of shortcut nodes in the substrate k l and the scaling factor 5.
globa

For the following evaluations we assumed a network of 100,000 nodes in an area of

size A = 10, 000 and 110 = 1. Unless stated otherwise, the default parameters of the

network are R = 3, g = 3 and kglobal = 4. Figure 7.4 plots the clustering

CDeficient and characteristic path length of networks as functions of 11, the fraction

Of nodes that are shortcut nodes, for different values of R. The clustering coefficient
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Figure 7.5: Plots clustering coefficient C [left] and characteristic path length L, [right]

88 a. function of 11 for different ratios of global scale link to local scale link communi-

cation range é. Network parameters remain fixed at. A = 10000, kglobal = 4, p = 10,

"c = 1 and R = 4.

0 appears as a linearly decreasing function of )1 with identical slopes. The clustering

(30(‘fficient has higher values for longer range R of local scale links. The right pane of

figure 7.4 plots the Characteristic path length for various R. Higher values of R imply

that destinations can be reached in fewer hops, thus reducing the characteristic path

length_ This is born out by the curves of L. Moreover, a side—by—side comparison

Clearly illustrates the phase difference in the reduction of of C and L. This means the

derived analytical model indeed captures the small world effect in the network. Unlike

in Watts’ fl—model [128] of constructing small world networks, C lacks a sharp drop

OE as l4 ~+ 1. The reason for this is the range limitation on shortcuts which imposes a
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Figure 7.6: Plots clustering coefficient C [left] and characteristic path length L, [right]

as a function of a for different values of kglobal' Network parameters remain fixed at

A = 10000,p=10,§=3, R=3andnc=3.

degree of localization in a shortcut link’s reach which leads to clustering. In addition,

all construction methods of small world WSN in section 7.2 add shortcuts on top of

the existing geometric graph instead of rewiring existing links as the ,B-model does

Where each global scale link is added at the cost of removing a local scale link.

Figure 7.5 plots clustering coefficient C and characteristic path length L as func-

tions of l1 for different values of global scale link scaling factors 6. Recall that in

deriVirig the analytical model for the clustering coefficient we made the assumption

that 5 2 2, i.e. shortcut links have a communication range of at leats twice that

Of local scale links. Note that in figure 7.5 all plotted function of C overlap, i.e. as

long as as the assumption 5 2 2 holds, the clustering coefficient as a function of p is
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independent of the global scaling factor g. The small world network effect is clearly

visible by the large gap between clustering coefficient and characteristic path length.

AS expected, the drop in characteristic path length L drops off earlier as 5 increases,

i.e. fewer shortcuts are necessary to achieve the same reduction in L as shortcuts get

longer.

For the networks in figure 7.6 we varied the average number of shortcuts kglobal

incident on global scale node. Larger values of kglobal imply a slower expansion of

the area within a WSN that is serviced by shortcut nodes (region 2 in figure 7.3).

Figure 7.6 shows that as kglobal increases, the rate at which the clustering coefficient

drops increases. We also observe that the number of global scale nodes needed to

achieve a significant reduction in L also increases as evidenced by higher value of a

to achieve the same characteristic path length L for higher kglobal' That is because

at higher kglobal the range limited nature of shortcuts forces more global scale nodes

to be deployed in closer proximity.

However, we observe consistently that the small world effect holds in 2-dimensional

Spatial graphs with range limited shortcuts such as those formed by WSNS with some

shortcuts. What is also interesting is the fact that for a sufficiently dense WSN the

number of shortcuts that is needed to achieve a significant reduction in L is very

small.

7-6 Conclusions

We derived analytical models for both clustering coefficient and characteristic path

length of a 2-dimensional spatial graph with range limited shortcuts that models the

tOpological constraints to which WSNs are subject.

1' The model is sufficiently general to accommodate any small world network

COnstruction methods in wireless networks previously proposed for WSNs and
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is, to the authors’ best knowledge, the first analytical model for networks with

these constraints.

2- VVe observed that for sufficiently dense networks characteristic path length can

be reduced significantly by replacing a 11 z (9(0005 — 0.05) fraction of the local

scale nodes by global scale nodes providing shortcuts in the network. The order

of ,u, the fraction of nodes that are designated shortcut nodes, is about the

same as the value of b, the rewiring probability, in Watts’ small world network

construction method.

3. Whichever small world network construction method is applied carries with it

a cost. The model lends itself for the task of designing WSNs, e.g. determining

the number of shortcut nodes required to achieve a certain characteristic path

length.

APPENDIX

Lemma 1. We derive the expression for d(f (11)), the number of links between the

36’: of nodes consisting ofv and all its neighbors T(u). The region covered. by F('U) is

approximated by a circular region of radius R centered at v. Consider another node

”I at a distance r from node 1) shown in figure 7. 7. Then the number of links from v,

to other nodes in Nb) is A(r)p’. The narrow ring of width dr is inhabited by 27rrp’

Other nodes at the same distance r from u. The number of links from all nodes at

distance 7~ from v is 24.,.p/A(.,.)p’4 Then, to find d((F(’U)), the total number of links

between nodes '1) and [(11), we integrate 27r7~p’A(r)p’ with respect to r over [0, R], the
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ra di'us of communication of v.

R / /

d(F(i')) 2/0 /) 27rrA(r)/) dr

R R
:/O p’227rr 2R2 arccos _QLR — _2_r 1 — 2172—?) dr

R . R (7.A-1)

=47rR2p/2 / r arccos —r—dr — Zp/Z/ rQV 4R2 — r2a'r

0 2R 2 0

=47rR2p’2 . A(R) — gp’2.3(1{)

W’here A(R) and BU?) are evaluated in equations 7.A-2 and 7.A-3.

. , 1 l .2

All?) = arcsin (57-1?) R2 — §r 1— 47—52-51?

+1 2 < " > R—" arcc °‘ —27 Ob 2R 0

1 l

= arcsin (g) R2 -— jig—R + 5R2 arccos (5)

=13? _ —\/—§R

3 4

2
1, ,/ . . . .
313 4R2 _722F1(15’—05,25,4—7l€2)

 

7.2
1 __

4R? 
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(7.A-‘2)

(7.A-3)



2171 (a; b, c, 2) denotes the hypergeometric function {equation 7.A-4) and is evaluated

in equation 7. .4-5,

 

. . .., __ Fe) ”5,404,0442F1(a,b,c,4) —F(b)P(C- b)‘/0 (l —t2)a (it (7.A-4)

  

 

1 —r5 _t2

= — 0.1875 / t (1 ) dt (7'A'5l
0 .

Substituting the value of the hypergeometric function from 7.A-5 into equation 7.A-3

P’I‘Od‘uces equation 7.A-6.

BU?) =§R4 «2 F1(1.5; —-O.5; 2.5; 0.25) — 0 = 06142-134

(7.A-6)

Substituting A(R) and BU?) from equations 7.A-2 and 7.A-6 back. into equation 7.A-1

gives equation 7.A-7.

d(l‘(v)) 22.9604np/2R4 — flap/2R3 (7 A 7)

LeInma 2. We compute the area of region 3 in figure 7.3 for a node a? distance from

O denoted as S(at), where :1: > ,/A9. In order to proceed we compute the area of

triangle BOJ denoted by A(:r). For :2: > ,/Ag, A(r) can be expressed in previously

defined terms as,
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Figure 7.7: Graphical representation of integration term of d(F('v)).

A: A ‘fls' i3

l7 ... (7.A—s)

Similarli, the area of sector JOJ’ with central angle 7' and radius #7 is denoted by

,\

A(CL’). For :1: > ‘ Wig, A(at) can be (;'.'17pr(_ess(_zd in previously defined terms as,

 lilac) =A/éir)7r\/ZZ = g(n —- oz(a') — [3)

7T (7.A-9)

The area of sector 308’ with central angle 2/3 + 7 and radius ,/A9 is denoted by

A(l‘). The, for :1: > M] , like) can be expressed as,

2 awn/(as) 2 2s+'y(:r-)A(x):—27r—7Tl/Ag = —-—2——Ag

(7.A-10)
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We now use Mr), like) and [KL/t) to obtain the area of region 3 denoted by 5(a).

3(1?) =2A(;L‘) + Ru) — Km

. A 2.13+“/(~T)
: ./ _ _ ,.._ __ 7.A-112,/AAgana+2(n an) a) 2 Ag ( )
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Chapter 8

Enabling Cooperative

Communication and Diversity

Combination in IEEE 802.15.4

Wireless Networks Using

Off-the-shelf Sensor Motes
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8 . 1 Introduction

Channel fades and interference effects limit the throughput, useful communication

range and (in case of battery powered devices) lifetime of nodes. In this chapter we

describe the generalized ‘Poor Man’s SIMO System’ (gPMSS), a readily deployable

lovv—cost, low-power, protocol centric approach that enables cooperative communi-

cation in IEEE 802.15.4 [5] wireless sensor networks (WSN). We demonstrate that

gPlVISS reduces the fraction of packets that are received with bit errors or not re-

CE‘iVEEd at all by an order of magnitude, thus reducing the number of retransmissions.

It Illakes the use of long range links that are unfeasible due to high packet loss and

retransmission rates for sible again. We also show that even in instances where gPMSS

is not able to correct all errors from a packet it still succeeds in reducing the number

of bit errors. At the receiver side gPMSS uses diversity combining methods adapted

fI‘Onl their analog domain counterparts of the same name [19] for digital signals. What.

nl'cxkes the application of SIMO diversity combining principles novel from traditional

“'38 is that they are applied to the demodulated version of received packets, after

p1lysical layer processing. W‘ den'ionstrate the efficacy of gPMSS by applying it to

bit error traces collected from IEEE 802.15.4 channels that allow detailed analysis and

precise reproduction of results. we also demonstrate gPMSS’ effectiveness under real-

WOrld conditions by implementation on Crossbow’s Imote2 .NET Micro Framework

SEinsor platform [35.]

Enabling the use of long range links (that would otherwise not be used) makes

gPMSS a viable protocol due to the benefits and utility of such links by several

applications in wireless sensor networks.

Network Lifetime Extension: Funnel-ing is the effect of network traffic from multi-

ple sources flowing to a small number of sink nodes [125]. This traffic surge produces

COngestion in the region around the sink nodes/base station, forcing nodes near sink
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nodes to relay more traffic than other nodes and consume power at correspondingly

higher rates. Since nodes in WSNs have only limited power resources this means that

the sink node’s neighbors will run out of power sooner, leaving the sink node discon-

nected from the rest of the network. Load balancing techniques like [53] attempt to

distribute the burden of relaying traffic to increase the lifetime of sensor networks.

Employing gPMSS in such a scenario will grow the set of neighbor nodes of the sink

IlOde and allow load balancing among more nodes.

 

Small—world Networks: Several attempts have been made at building small-world

network [128] topologies in wireless networks to simplify resource discovery and re-

ducing average path length to facilitate data dissemination. Proposed architectures

required hardware modifications such as adding a secondary radio frequency interface

(ll 24],[125]) or building hybrid networks by augmenting wireless networks with wired

ShOI‘tcuts ([111],[27]). Since gPMSS is a protocol centric approach it does not require

any hardware modifications which adds to its appeal as a lox-x-r—commexity and low-cost

SOlution.

Network Connectivity: Long range links can be used to add links between two

COIliponents of a network that are only sparsely connected with one another.

gPMSS adopts well—understood diversity combining methods for analog signals

and applies them to digital signals (packets). Specifically, gPMSS implements selec-

tion diversity, equal gain diversity combining and maximal—ratio gain diversity com-

bining. The latter relies on a model of the instantaneous bit error rate (BER) driven

by channel state information (CSI) [55], i.e. received signal strength indication (RSSI)

and link quality indication (LQI). We provide proof of concept by applying gPMSS

tO channel traces and demonstrate one order of magnitude reduction in packet losses.

Applying gPMSS to traces allows more detailed analysis and reproducibility that is

rlot possible in a live setup, i.e. the event when receivers are not able to reconstruct

an error-free version of the transmission. We show that even then we are able to
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. Low packet loss ’ .

communication range,

FigLIre 8.1: Application of generalized gPMSS in a wireless sensor network with mesh

toDOlogy. Path from transmitter T to receiver R1 marks the multihop path that would

be taken in a network without gPMSS. Dashed line links between T and receivers R1,

R2 and R3 denote the longer range but high loss links that are used under Generalized

gPMSS.

Siglnificantly reduce the average BER of incorrigible packets. Finally, we implement

gPMSS on Imote2 sensor motes [35] using C# and demonstrate a clear reduction

in packet losses. Experimental results from IEEE 802.15.4 links indicate that using

diversity combining raises packet reception rate (PRR) by up to an additional 130%

Over those in a single receiver.

Our contributions are threefold;

1. gPMSS is a protocol centric, cross-layer approach which means it can be used in

presently deployed wireless sensor networks by making software changes only.

It does not require any modifications to hardware but. runs on networks of

commercial off-the-shelf (COTS) single antenna sensor motes.

2. gPMSS is non-intrusive in the sense that it does not require changes to the

pre—existing IEEE 802.15.4 standard.
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3 - gPMSS is able to reduce power consumed at the transmitter per packet delivered

by up to 68%. This represents a significant increase in the lifetime of sensor

node.

Figure 8.1 illustrates the difference between routes traversed by a packet sent by

transmitter T to a distant node R1 when gPMSS is used (dotted arrows represent

long range links, solid lines represent links between R1, R2, R3 that form a fully

connected graph), and the multi-hop path from node T to R1 when it is not used

( SOlid arrows).

The remainder of this chapter is organized as follows. Section 8.2 reviews some

related works. Section 8.3 describes the three diversity combining techniques for

paCket recovery. Section 8.4 describes the gPMSS that enables cooperation between

ITlllltiple receivers. Section 8.5 describes the trace collection setup and demonstrates

a proof of concept of gPMSS in a manner that can be reproduced. Section 8.6

deSCribes the gPMSS implementation on Imote2 and its results. Section 8.7 discusses

0111‘ results in terms of PRR, retransmission attempts and energy consumption per

I38-01(et. Section 8.8 concludes this chapter.

8 ~ 2 Related Work

T119 concept of spatial receiver diversity is not new and has been studied extensively

in the analog signal domain. Chakraborty et al. proposed the extended automatic

reliDeat-request (ARQ) scheme [24] that recombines spatially diverse versions of a re-

CeiVed packet to detect bit errors and an exhaustive search to correct them if their

n\Unber is less than a threshold value. Extended ARQ has a lot in common with

the version of gPMSS that uses equal gain combining and is agnostic of what MAC

Standard is used, but the results provided in [24] are based on theoretical analysis

Only. Miu et al. [83] proposed a system that used transmitter diversity to increase
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packet reception rate in IEEE 802.11 [51] networks with multiple access points (AP)

as senders. The scheme roughly corresponds to gPMSS with selection diversity, with-

out diversity combination for error correction. Miu et al. generalized this approach

in [85] for applications beyond streaming video. In [84] Min extended the idea further

to reduce packet losses on the uplink (mobile device to AP). However, this required

n‘lodifications to IEEE 802.11b AP hardware or deployment of more APs, and uses

EL dedicated frame combiner connected to all APs through a wired network. It used

the equal gain method for detecting bit errors and, like extended ARQ, relied on

all exhaustive search of the correct bit values. Cheng and Valenti [26], [123] ex-

tGlided the idea for improving throughput on uplinks in IEEE 802.11a networks by

l-lsirlg maximal ratio combining based on CSI measurements. However, like Miu’s

85"Stem it still required a dedicated combiner connected to all APs. In [60] Ji et al.

DrC>I)osed an approach for improving the throughput of downlinks by scheduling trans-

nl iSSions to multiple receivers in IEEE 802.11a/b networks based on explicit feedback

from receivers while maintaining fairness. In [7] Bahl made the case for multi-radio

tr‘Efl—rlsmeivers, but as figure 4 in his paper showed, collaboration between network in-

terfaces is possible only when they are all located on the same device. More recently,

VVOO described SOFT [134] which also exploited receiver diversity for the uplink in

IEEE 802.11 networks similar to Miu’s in [84], but with diversity combining being

I)erformed using maximal ratio combining. Therefore, it too requires a centralized

combiner on the wired network that all APs are connected to. To summarize, the

g1DIVISS system presented is distinct from all these prior works on cooperative com-

r111lliication and diversity combining in wireless networks because it is (1) designed

for IEEE 802.15.4 networks, (2) is purely implemented in software and COTS motes

‘Vithout modifications to mote hardware, (3) is tested on bit error traces collected

from real IEEE 802.15.4 channels, (4) as well as actual implementation on motes.
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8 -3 SIMO Diversity Combining Techniques

T118 solution that is described in this section is dubbed the generalized ’Poor-Man’s-

SIB/I O-System’ because it uses receiver side diversity combining techniques and is

1 ) uilt using commercial-off-tlie-shelf components, without customized or reconfigured

llardware. Receiver diversity improves link quality of wireless channels with high

losses. This way we reduce losses and retransmissions and increase throughput and

(:11 annel utilization. This subsection describes linear diversity combining techniques.

All these techniques are derivatives of the techniques by the same names presented by

Brennan in [19]. Brennan describes scanning diversity, selection diversity, equal gain

(iiVersity and maximal-ratio diversity combining. Although the methods described

})3’ Brennan were meant for analog signals, we have suitably modified and adapted

tllern for use with demodulated, digital signals. we have included the last three,

Selection, equal gain and maximal-ratio diversity combining. Readers should know

t" 118-t even when the diversity combining method used is either equal gain or maximal-

r'd'toio combining, selection diversity is used whenever at least one receiver possesses

an error-free version of a transmissions. Equal gain or maximal ratio combining are

0 . . .
111)? used when none of the gPMSS receivers was able to receive error—free (1.e. the

Si . . . . . . .

t' 11 ation described in figure 8.5c). The purposes of diverSIty combining are twofold.

1 . Select an error-free version of a received transmission from among all received

versions.

2. If the first goal is not achievable, obtain another version of the transmission,

with fewer errors than any of the individual received versions.
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8 -3 -1 Selection Diversity

Selection diversity is the simplest diversity combining technique. Figure 8.2 is an

equivalent system diagram of the selection diversity process. The basic idea in is to

select from all received packets the one that is expected to have the fewest errors.

T11is is advantageous when it is used in conjunction with forward error correction

( 2FEC) because fewer bit errors are easier to correct than more bit errors. When all

r€2C‘eived versions have errors, the best selection diversity can hope to achieve is pick

tl‘le version with the fewest bit errors. We define the BER of the nth packet in a

Sequence as,

# of error bits in nth
 

a la
BER=6[n] = "BC“ 10 .

# of bits in nth recvd pkt (81)

Tlllls the underlying random process producing the sequence of BER observations

[3 [71] is called the BER process and is denoted by B. The term BER is not used in its

St 1‘51 Ct traditional sense where it denotes the long term average probability of bit errors,

811Ch as in a binary symmetric channel (BSC). instead the BER is computed over each

re‘Qeived packet. Unfortunately, under ordinary circumstances the BER process is not

directly observable. A packet’s failure to pass the cyclic redundancy check (CRC)

test only tells us that the number of bits with errors is non-zero (B > 0), but it

(10es not give any information about the number of errors. Therefore, we must rely

on estimates of the BER. The performance of selection diversity will be determined

by the accuracy of the model used to predict the BER of packets that fail the CRC

test. We have used Ilyas and Radha’s [55] CSI measurement-based model of the BER

process on IEEE 802.15.4 links. For each received packet the model relies on two CSI

parameters, i.e. LQI, and RSSI. Measurement of both RSSI and LQI is mandated by
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tlle IEEE 802.15.4 LR—WPAN standard for every received packet. The RSSI random

pro cess is denoted by P, and RSSI measured by a receiver R for the nth packet in a

sequence is denoted by pR[n].

VVe used the MICA2 [34] to demonstrate proof-of-concept and the Imote2 [35] to

(ienjonstrate the functioning gPMSS protocol implementation, both of which use the

Chipcon CC2420 radio transceiver [120]. Technically, the CC2420 does not measure

t1'le LQI directly. Instead, it measures the correlation C between the first 8 received

SDv’ITIbols (of the PHY header) and the corresponding 8 known symbols (preamble).

IEEE 802.15.4 uses lG-ary ()ffset-Quadrature Phase Shift Keying modulation which

el”Icodes 4 bits in one symbol. The first 8 symbols, 4 bytes, of the PHY header

C()1'r1prise of the Preamble sequence consisting of 32 binary zeros. The LQI is then

C1EEfined as,

LQI 2: (C — Cl) - 02. (8 2)

In the Chipcon CC2420 c1 and (:2 are functions of the packet error rate (PER)

I11‘38.sured over an extended period of time and are determined experimentally. c1

and c2 scale the 7 bit value of the correlation to the range of an 8 bit number. Since

eq‘uation 8.2 is merely a shifting and scaling of the measured C we take Cl = O and

C2 2 1. The LQI random process is denoted by A, and LQI measured by a receiver

R for the nth packet in a sequence is denoted by ARM].

Coming back to our description of the CSI-driven BER model of [55], each pair of

LQI and RSSI inputs produces a probability density function (PDF) of the BER of

packets received with those particular CSI measurements. To be useful in the current

C30ntext, the output of the CSI-driven BER model has to be mapped to a single value.

VVe use flcho to denote the Xth percentile of the BER process’ PDF (550% is 8’3

mean). The instances of the BER model return BER estimates denoted as MR1),
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5 ( R2) and BUB). The output selector in figure 8.2 receives as input the estimated

BERs MR1), MR2) and BUB). Based on these estimates it selects the receiver with

t.11e lowest BER estimate as the least error-prone one and accepts its received copy

e1.s the best one and outputs it as D(Sel), i.e.

D661) 2 D<Rr) : r = argininMRi).

z (8.3)

8 - 3.2 Equal Gain Diversity

Tlle equal gain diversity combining method described here is depicted by an equivalent

SE’Stem diagram in figure 8.3. Recall that like D(T), the three received copies Bun),

B ( R2) and 5(R3) are vectors of binary numbers (representing bits) obtained after

del‘l‘lodulation of the received carrier signal. Essentially, equal gain diversity com-

billing uses received data [DU—{1), 15022) and 5(R3) to vote on the value of each

Ollt«Ibut bit. In the example in figure 8.3 performs vector addition of 15031), 15(R2)

and 5(R3), stores the sums in integers and then adjusts the gain by dividing by the

IlLlIIlber of receivers N, where N = 3 in this example. The result will be an array of

rEltional numbers in the range [0, 1]. These numbers are thresholded such that values

less than 0.5 are. remapped to binary zeros, and values greater than (or equal to)

O ‘ '5 to binary ones. The output of the thresholder is D(EG). If S() is a function

EEIDI‘esentmg the operation of the binary deC1sion thresholder, then for an N-receiver

graph/188 cluster the equal gain diversity combining process can be represented as;

[V

. 1 Z i
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Equal gain diversity combining has two advantages over the preceding selection di-

versity combining.

1. It has lower complexity because it does not rely on a BER model.

2. It offers the possibility to recover from all bit errors introduced by the wireless

channel, even when all received versions contain errors.

8 - 3.3 Maximal Ratio Diversity

The maximal ratio diversity combining method described here is depicted by an

eCl Llivalent system diagram in figure 8.4. It combines elements from selection and equal

gain diversity combining. Maximal ratio combining can be described as equal gain

diversity but with weighted addition. 5(R1) , 5(R2) and 5023) are each multiplied

b},
Vveights ml, 102 and "(1)3 computed as,

w,- = l — ,Bin) V1 3 i g N

2 (8.5)

a‘11C1 added. The sum is then re-normalized by dividing by the number of receivers

[\r (in this case N = 3) and thresholded which returns the output DOV-IR) of the

1'11 aximal ratio combining process;

7

D(MR) = 5 (wt , Dean)1

N i—l (8.6)

In the following subsection we proceed to describe the gPMSS protocol that enables

Cooperation between receivers.
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Figure 8.2: Illustration of logical functioning of selection diversity.

 

~D(R1)

 

   

(
J
O

 

 

R2
 

R1

1 .,~ (R2)

,c ... D<EG>
      

    

  

~D(R3)
 

R3

   

Figure 8.3: Illustration of logical functioning of equal gain diversity.

8 .4 gPMSS Protocol

This section describes the operation of the gPMSS protocol. Assume a WSN consist-

ing of a large number of single-antenna COTS receivers communicating over multiple

hops with the base station collecting data. According to some topology construction
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Figure 8.4: Illustration of logical functioning of maximal-ratio gain diversity.

algorithm, a node R1 is chosen as an upstream end-point of a link. To use R1 as

part, of a set of multiple receivers we propose the gPMSS protocol that defines the

message exchange between cooperating receiver nodes to handle transmissions that

ate received with errors or not received at all. The following subsection provides a

brief overview of gPMSS protocol message exchanges for four important operations.

For

T

illustrative purposes we assume a scenario in which there is a distant transmitter

and a receiver R] with two neighbor nodes R2 and R3 that are located close enough

to communicate with R1 with few losses.

8 «4.1 gPMSS Cluster Creation

Tlle ’Poor Man’s SIMO System’ described by Ilyas, Kim and Radha in [52] differs

from gPMSS in the way clusters of receivers are formed. Cluster creation in PMSS was

e3-(plicit, and required the operation by which nodes R2 and R3 come to be associated

as cooperating receiver nodes of a node R1. In gPMSS nodes take advantage of CSI

0f overheard messages. Figures 8.9 and 8.10 density functions of LQI and RSSI of

packets originating from R1, R2 and R3. Nodes in a network with the gPMSS protocol
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Figure 8.5: gPMSS protocol operations.

will maintain such histograms for all neighbors from which they overhear traffic. A

high mean, median or mode of LQI and RSSI density functions is indicative of a link

with high PRR. In this way, once a node determines it enjoys good link conditions

with a neighbor it will act as a member of that neighbor’s cluster of receive nodes.

However, unlike in PMSS this association will not be made explicit by an exchange of
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messages. Instead, the node will make its contribution by participating in selection

diversity and diversity combining functions of the neighbor node. For the following

discussion we will assume that this way two nodes R2 and R3 placed close to R1 make

the assessment that they enjoy a reliable wireless channel with R1 and volunteer to

assist it as cooperating receivers.

8.4.2 Error-free Reception by at Least One Recipient

This section describes the exchange of messages under the gPMSS protocol that

occurs when at least any one of the receiving nodes receives a transmitted packet

without errors. Figure 8.5a depicts the simplest case. The solid lines represent the

transmission and reception of a message between source and destination node. The

dotted lines represent communication that occurs implicitly as a result of a receiver

operating in promiscuous mode, (deliberately) eavesdropping on messages exchanged

between other nodes (marked by solid lines). Here T sends a data message D(T)

to R1 that is overheard by R2 and R3. R1 will promptly responds to T with an

acknowledgement (ACK). R2 and R3 overhear the ACK and recognize that the packet

was successfully received by R1 and no further action is required.

Figure 8.51) depicts the case where R1 is not the final destination. In addition,

T)let us also assume that R1 receives the transmission D( with errors (marked by a

zigzagged arrow), whereas R2 and R3 receive the same error-free. What happens is

that all receivers that receive D(T) error-free choose a random wait-time t1 from an

exponential PDF limited to the range [0, T1]. Let t1(R2) and t1(R3) denote R2 and

R3’s random wait-times, respectively. Let t1(R2) < t1(R3), then R2 will transmit

ACK back to T before R3. R3 will overhear R2’s ACK and cancel transmission of

its own ACK. At any time, if an ACK packet is lost and not received by T, T will

T)(
retransmit D( although it may already have been received and ACK’ed). This
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way the power consumed in nodes forming the gPMSS cluster to relay packets will

be more evenly distributed.

8.4.3 Erroneous Reception by All Recipients

This section describes the exchange of messages under the gPMSS protocol that

occurs when all nodes that form a gPMSS cluster receive a transmission with errors.

T)Figure 8.5c depicts this entire transaction. Here T sends a data message D( to

R1 that is overheard by R2 and R3. Since all receivers R1, R2 and R3 receive

with errors none of them is able to respond to T with an ACK within time T1.

Let Run), Run) and 15023) denote the different versions of D(T) as they are

received by R1, R2 and R3, respectively. Thus, there is no error—free copy of the

transmitted message at any receiver. Nodes R1, R2 and R3 all wait for one another

to respond to T with an ACK. When none of the receivers R1, R2 and R3 overhear

an ACK going back to T within the T1 time of receiving, they infer that none of them

(T)received D error-free. Instead of requesting a retransmission from T, R1 collects

the error-prone versions of the D from cooperating receivers, acknowledging each

one immediately as it receives them. R2 will transmit 15(R2), A(RZ), MR2), which

denotes the concatenation of EU”), the LQI A(RQ) and RSSI {)(RQ) with which it

was received from T, to R1 between [T1,T1 + T2] after it received 15022). Similarly,

R3 will transmit [Di-R3), A(R3),p(R3) between [T1, T1 + T2] after it received 15023).

Once R1 has received {15(R2), A(Rg), p(R2)} and {E(R3), A(R3), p(R3)} it executes

one of the diversity combining algorithms described in the preceding section in an

attempt to recover D(T). If the CRC computed from the recovered packet matches

the appended CRC the attempt is successful. On the receiver side T waits for an

ACK, any ACK from any of the receivers R1, R2 or R3, for a timeout period of TT

until it attempts retransmission of DiT). Note that TT > T1 + T2.
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Figure 8.6: Equipment setup for trace collection.

8.5 Trace Based Proof of Concept

In this section we provide proof of concept of gPMSS by testing its performance on

bit error traces. We collected error traces of a few million packets in a way that

provides, to the authors’ best knowledge, the BER a packet is subjected to and the

LQI and RSSI with which it is received.

8.5.1 Experimental Setup

The trace—collection setup is depicted in figure 8.6 and consists of a Crossbow MPR2400

MICAz mote [34] transmitter and another three MICA2 motes mounted on Crossbow

MIB600 Ethernet gateways [33] as receivers. The three receivers R1, R2 and R3 are

connected to a host personal computer (PC) running three instances of Xlisten (a

data logging application), one for each receiver. This way a data collection session

produces three traces. All traces were collected while operating in channel 26 in

the 2.4800Hz band. The reason for choosing channel 26 was that it is least prone
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Figure 8.7: CC2420 MAC frame format used for experiments.

to interference from any 802.11b/g frequency channels. Our own experience shows

that selecting channel 26 does not completely eliminate interference from co-located

802.11b/g VVLANs, but reduces it significantly.

Packet Payload

TinyOS [75} is one of the most widely used Open source operating system in WSN

devices. TinyOS vl.1 allows various packet formats to be transmitted. We suitably

modified code to enable the standard 802.15.4 frame format which TinyOS v1.1 la-

bels CC2420 Frame Format (after the Chipcon CC2420 chipset [120] used in MICAz

devices). Strictly speaking, the term packet refers to the protocol data unit (PDU)

exchanged between network layers of the transmitter and receiver while the term

frame is used for PDU’S exchanged between MAC layers. However, since our analysis

is restricted to the MAC layer there is little cause for confusion and we use these

terms interchangeably to refer to MAC layer PDUS. The exact MAC frame format

used is shown in figure 8.7. The size of the frame is 41 bytes and comprises of a 1

byte length field, 2 byte frame control field (FCF), 1 byte sequence number, 2 byte
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destination PAN ID, 2 byte destination address, 1 byte type field, 1 byte group field,

29 bytes of data followed by a 2 byte frame check sequence (FCS) containing a CRC.

The contents of the payload field are of our own choosing and consist of 3 unused

bytes, the source address, the destination address and 6 cepies of a 32 bit sequence

number. The sequence number in the payload is used to keep track of lost packets. If

the sequence number between two consecutively received packets skips one or more

numbers that is indicative of a packet loss. The sequence number field alone proves

too small for this task in the face of long fades. Note that transmitted packets differ

only in the 1 byte sequence number in the header and the six 32 bit sequence num-

bers in the payload, and the CRC. For a particular trace all remaining bits remain

unchanged. However, since the wireless channel will introduce bit errors the copies of

the sequence number used to track packet losses in the received packet may differ. For

this purpose we use a majority vote of the received sequence numbers to reconstruct

the transmitted sequence number and from it the entire packet.

Trace Generation

Bit-level error traces can be generated by comparing a transmitted packet with its

received version. A simple bit-wise XOR operation of the transmitted and received

packets yields a. bit pattern in which a zero (’0’) signifies a bit that is received without

error while a one (’1’) represents an inverted bit. We observe that in some cases the

length of the received packet is shorter than the transmitted packets. This constitutes

a partial loss and we use the term partially lost packets to refer to such packets.

Partially erased packets are logged when bits in the MAC header’s length field are

inverted and the receiver stops listening to the wireless channel prematurely. It has

also been observed that if bits in the length field are inverted in such a way that the

length of the incoming packet appears longer than actual the length of the logged

packet still equals that of the transmission. Although the length field in the received
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packet may falsely indicate a longer packet, the absence of a carrier signal allows the

receiver to detect the end of transmission.

8.5.2 Channel State Information

Each received packet’s logged entry is accompanied with three pieces of packet level

CSI parameters. The first is the FCS status of the packet modeled by random variable

(I) with the nth packet’s FCS status is represented by q§[rl.]. Ordinarily receivers only

distinguish between two states, i.e. FCS Pass (denoted o = 0) if the CRC value in

the FCS field matches the CRC of the received packet, and FCS Fail (denoted (lb aé 0)

if it does not. Since we have knowledge of packet erasures and size of transmitted

packets we extend the definition of FCS status to accommodate the reason for failure.

We restrict the definition of FCS Fall BE (denoted o = 1) to mean that the size of a

received packet matches the size of the transmitted packet and the CRC failure is due

to bit errors (BE). Furthermore we classify a packet as being FCS Fail PL (denoted

o = 2) and FCS Fail CL (denoted cf) 2 3), where PL and CL are abbreviations for

partial loss and complete loss respectively. Packets that are partially lost cannot pass

the CRC test and are marked FCS Fail PL. Packets that are not received at all, i.e.

when the decoded sequence number at receiver skips, are marked FCS Fail CL.

Among other CSI there are RSSI and LQI which we described in earlier sections.

Completely lost packets, with db = 3, are assigned p = —128, /\ = 0, and £3 = 1.

Thus each received packet is characterized by its FCS Status, LQI, RSSI and BER

processes.

8.5.3 Implementation Results

Due to shortage of space and due to the consistent similarities in results, we restrict

our discussion to a subset of traces. This particular data. set was collected in an
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Figure 8.8: PDF of BER experienced by receivers R1, R2 and R3 (103(6 2 0) is

cropped out for better view of non-zero range.

office environment over a period of 24 hours consisting of approximately 800,000

transmitted packets. The link between transmitter and receiver was non-line—of—sight,

with a wall, a door and several furniture items in the direct line between them. The

receivers were separated by a distance of 0.25m. The gPMSS cluster consisted of

three receivers, also Crossbow MICAz motes mounted on MIB600 Ethernet gateways.

Figure 8.8 is a cropped portion of the PDF of BERs observed in packets at gPMSS

receivers R1, R2 and R3 that excludes ,6 = O for enhanced visibility. Figure 8.9

depicts the PDF of the LQI of all received packets at R1, R2 and R3. Figure 8.10

depicts the PDF of their RSSI. These three figures clearly show that. all three receivers

experience different channel conditions.
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Figure 8.9: PDF of LQI experienced by receivers R1, R2 and R3.

PER and PLR Analysis

We define two quantities based on the FCS status, the packet error rate (PER) and

the packet loss rate (PLR);

# of reed packets "with. d) = 1,2

PER =

# of transn'zxitted packets ’ (8.7)

 

PLR _ # 0f rcvd packets with q) = 3

— # of transmitted packets ’ (8.8)
 

The packet reception rate (PRR) as PRR 2 1 — (PER + PLR). In figure 8.11 the

first three entries on the horizontal axis plot the PER, PLR and the sum of the two,

PER+PLR, for R1, R2 and R3. For individual receivers PER+PLR happens to be
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Figure 8.10: PDF of RSSI experienced by receivers R1, R2 and R3.

approximately 7%, 17% and 12%. These figures are followed by plots of these same

quantities for the three diversity combining techniques. The simplest technique, se—

lection diversity, appears to track the PER+PLR of the best performing receiver, in

this case R1. Equal gain and maximal ratio diversity combining both perform better

than any individual receiver and selection diversity. This was to be expected. Recall

that selection diversity merely tries to pick out the least corrupted version among a

set, whereas equal gain and maximal ratio actually attempt to correct errors in re-

ceived messages by un-weighted and weighted voting, respectively. This is adequately

reflected in the plot of PER, PLR and PER+PLRS. Both are able to reduce the PER
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Figure 8.11: PER, PLR and PER+PLR experienced by receivers R1, R2 and R3

without gPMSS diversity combining and with selection, equal gain, and maximal

ratio diversity combining.

BER Analysis

In figure 8.12 we plot the histogram (not PDF) of packets with non-zero BER as

experienced by individual receivers R1, R2 and R3 without any diversity combining,

as well as with different diversity combining methods. Again, the trends exhibited by

diversity combining methods are the same across all traces. Figure 8.12 shows that

the histogram of the selection diversity combining closely matches that of the best

receiving individual receiver, i.e. R1. The close match of the histogram of selection

diversity with that of R1 shows it manages to bring a gPMSS’ BER performance

up to that of the best receiving node. Thus, the BER model that is at the heart

of this diversity combining technique delivers good performance. The result of equal
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Figure 8.12: Histogram of BERs observed by receivers R1, R2 and R3 without gPMSS

diversity combining and with selection, equal gain, and maximal ratio diversity com—

bining.

gain and maximal gain diversity combining are even better. For every BER bin in

the histogram, both equal gain and maximal—ratio combining are able to reduce the

number of corrupt packets. Both are very close in their performance, but equal gain

is consistently beating maximal-ratio combining across all BER bins in figure 8.12,

and is also able to maintain this performance across different. trace sets.

8.6 gPMSS Protocol Implementation

This section describes our implementation of the gPMSS protocol for motes and ana-

lyzes its performance. For the mote platform, we selected the Crossbow’s Imote2 with

the pre-installed .NET Micro Framework edition [35]. Using this edition of the Imote2

enabled us to implement gPMSS in the C# programming language which simplified
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and accelerated development. At this point we would like to clarify that although

the Imote2 used for the actual implementation in this section is different from the

MICA2 we used for trace collection in section 8.5, both use the same Chipcon CC2420

radio transceiver [120] which makes them equivalent for the purpose at hand. As the

description of the gPMSS protocol above showed, in a situation when a transmission

is received correctly by at least one recipient, gPMSS implements selection diversity

described in subsection 8.3.1. But when a transmission is received with errors by all

receivers, gPMSS either implements the functionality of an equal gain diversity or

maximal ratio diversity combiner. We have implemented both in C# for Imote2.

The maximal ratio diversity combiner depends on the CSI-driven BER model by

Ilyas and Radha [55]. Since the BER model takes as input an LQI, RSSI pair A, p

we still need to map it. to a probability value. In the first instance we find the 90th

percentile value of the BER’S predicted PDF, i.e. the BER for which the value of the

cumulative distribution function (GDP) is 0.9. In the second instance we map PDFs

of the BER to their corresponding 50th percentile. We analyze the performance of

the gPMSS protocol in a setting with one transmitter and N = 3 receivers. The

receivers run a complete implementation of the gPMSS protocol described in section

8.4. For the experiment the timeout constants were set to T1 = 10 sec, T2 = 12 sec

and TT 2 30 see. We deliberately chose large values for T1, T2 and TT to avoid

synchronization issues and justify them by the low—rate nature of target applications

for IEEE 802.15.4. For the time being we have not attempted to optimize them to

maximize throughput while still avoiding synchronization problems. The experiment

was conducted at a residence with moderate Wi-Fi network interference.
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8.7 Results and Analysis

This section analyzes and compares PRR, energy per packet and effect of retransmis-

sion limits on packet delivery rate with and without gPMSS.

8.7.1 Packet Reception Rate

We denote the total number of transmissions made from transmitter T by CT, and the

number of retransmissions among them by CR. Similarly, the number of transmitted

packets that are received at R1, R2 and R3 without errors are denoted by C1, C2

and C3, respectively. Finally, CS denotes the number of packets for which diversity

combining was attempted and succeeded, and CF the number of packets for which it

failed. All these values are tabulated in table 8.1. Each row in the table corresponds to

a trial experiment using a variant of gPMSS specified in the first column. The results

presented here are for three variants, i) Maximal-ratio combining using 690% for the

BER point estimate, ii) Maximal-ratio combining using the 650% for the BER point

estimate, and iii) equal gain combining. To make sense of the packet counts in table

8.1 and quantitatively assess the benefits of using only selection diversity, and using

selection diversity in conjunction with maximal-ratio/ equal gain combining we look

at PRRs, denoted by 8. Columns (1), (2) and (3) in table 8.2 contain the PRRs of the

baseline configuration in which receivers R1, R2 and R3 do not cooperate. Column

(4) contains the PRR when gPMSS is used with the diversity combination method

in column (0). Some of the packets received using gPMSS will have been received

as a result of selection diversity, while others will have been recovered as a result of

diversity combining. The following columns separate the gain in PRR over that in

the baseline configuration by providing the additive increase in PRRS of individual

receivers. Columns (5), (6) and (7) are additive contributions of selection diversity

in 99131)!sz to the PRRs of individual receivers. Thus, AOSD,Rli AQSD,R2 and
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Table 8.1: Packet counts.

 

 

 

         

Diversity. combining CT CR C1 C2 C3 C3 CF

Max-Ratio 690% 3170 855 937 893 957 597 0

Max-Ratio 650% 4167 1039 1254 1322 1198 739 0

Equal Gain 3683 879 819 844 825 497 0   

A6SD R3 are the increments in the PRR with respect to their respective baseline

performances 6R1, 6R2 and 6R3 in non—cooperating mode. Finally, column (8) is

the additive contribution of diversity combining ABDC to the PRR 6913.41.95 of the

system with gPMSS. Thus, since the PRR gains in columns (5), (6), (7) and (8) are

all additive the relationship between the terms in table 8.2 is,

Qgpnss = 9m + A95pm + Moe

= 9R2 + A950,122 + MDC

= 6R3 + A930,123 + MUC-

8.7.2 Energy Per Packet

In this section we compute separately the energy expended by the transmitter T as

well as the receiver cluster R1, R2 and R3 per error free packet communicated to

any one receiver. Let EDAT denote the energy spent to transmit a data packet,

EACK the energy spent to transmit an ACK packet and EACK < EDAT' Then

the energy ET spent by the transmitter T during the course of an experiment is

CT x EDAT' The energy spent by receivers R1, R2 and R3 in acknowledging these

are E131: C1 X EACK’ ER2 = C2 x EACK and ER3 = C3 x EACK' Note

that although energy is consumed by motes in tasks other than radio transmissions,
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Table 8.2: PRR of individual nodes without gPMSS, PRR with gPMSS protocol,

PRR gain for individual receivers R1, R2 and R3 due to selection diversity, and the

PRR gain due to diversity combining.
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6R1 932 933 69PMSS A95min A9513M A6’SD,R3 Moe

Expl: 0.29 0.28 0.30 0.73 0.25 0.26 0.24 0.19

Max-

Ratio

590%

Exp2: 0.30 0.31 0.29 0.75 0.27 0.26 0.28 0.18

Max-

Ratio

550%

Exp3: 0.22 0.23 0.22 0.76 0.40 0.39 0.40 0.13
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Figure 8.13: The energy in nJ consumed by transmitter and receivers per successfully

delivered packet.
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Table 8.3: Energy consumed by transmissions at transmitter and receiver side per

error-free received packet. Columns (1) and (2) correspond to the baseline scenario

using only retransmissions. Columns (3) and (4) correspond to the case when only

selection diversity is used by receivers. Columns (5) and (6) corresponds to the case

where a full implementation of gPMSS is used that employs diversity combining (equal

gain or maximal-ratio) in addition with selection diversity.

 

 

 

 

      

(0) (1) (2) (3) (4) (5) (6)

DlV PT PR PT PR PT PR

comb

Expl 3'383EDAT EACK 1.845EDAT EACK 1'369EDAT 1'516EACK

Max— .].

Ratio 0.516EDAT

390%

Exp2 3'323EDAT EACK 1.744EDAT EACK 1.332EDAT 1'473EACK

Max- +

Ratio 0.473EDAT

350%

Exp3 4.497EDAT EACK 1'596EDAT EACK 1.314EDAT 1'355EACK

Equal +

Gain 0.355EDAT  
 

the power consumed by computations is orders of magnitude less. Since the gPMSS

protocol has computational complexity of 0(N). We compute the energy per packet

consumed at the transmitter PT and the sum of energy consumed by all receivers

together PR as,

ET 

PT = # of packets 7‘

ER

ecvd wo errors ’

 P = .

R # of packets recvd wo errors

(8.10)

(8.11)

Thus, PT and PR are energy consumption rates of transmitter and receivers obtained

by normalizing by number of successfully delivered packets. Table 8.3 lists PT, the per
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decodable packet energy at the transmitter, and PR, the per decodable packet energy

at all receivers combined for all three experiments (listed in column (0)). Columns

(1) and (2) in table 8.3 correspond to the baseline case when gPMSS is not used and

packets received by R1 are retransmitted. Columns (3) and (4) correspond to the case

when only selection diversity is used by cooperating receivers. Columns (5) and (6)

corresponds to the case where a full implementation of gPMSS is used that employs

diversity combination (equal gain or maximal-ratio) in addition to selection diversity.

To keep the relationship general the tabulated values are in terms of EACK and

EDAT-

The Intel Imote2 consumes 79272.]/b when in transmit/receive mode when it op-

erates at 13.MH2 [35]. Based on this figure EDAT for a 41 byte frame is 260nJ and

EACK for a 5 byte acknowledgement frame is 32/lJ. Figure 8.13 plots PT and PR

(in Joules) expended in experiments 1, 2 and 3 when when maximal-ratio combining

with 690%, maximal-ratio combining with 650% and equal gain combining. As in

table 8.3 we also evaluate energy for the cases if no gPMSS and if only selection di-

versity were used. Black lines correspond to energy consumption of the transmitter,

while blue lines correspond to energy consumption of the receivers. Clearly, the trans—

mitter power consumption rate PT and receiver power consumption rates do not vary

significantly across experiments and gPMSS variants. However, there is significant

variation in PT and PR when gPMSS is not used versus selection diversity versus

gPMSS. For all three experiments PT is highest when gPMSS is not used while the

corresponding receiver power consumption rate PR is lowest. Opting to use selection

diversity alone significantly reduces PT for maximal ratio gain variants (Exp 1 and 2)

by about 42% and about 64% for equal gain variant (Exp 3). PR remains unchanged.

Note from the previous section that this is accompanied by a 25% (for Exp 1 and

2) and 40% (for Exp 3) increase in PRR. Thus selection diversity is able to provide

significant power savings while increasing PRR at the same time. V’Vhen gPMSS is

187



 

20 ............ ............ : ............ h

[ +Exp1: w/o gPMSS §

+ Exp1: Max—Ratio [390% 5 :l

15_ + Exp2- W/O gPMSS .......... ........... 1’

+Epo: Max-Ratio B i

Exp3: w/o gPMSS ;

E 10 Exp3: Equal Gain """""" " '

50%

     

 

   

 
 

0 20 40 60 80 100

9 (%)
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g(%)-

employed PT is reduced by about 58% (for Exp 1 and 2) and 68% (for Exp 3) over the

baseline configuration not using gPMSS. However, this is accompanied by an increase

of approximately the same amount of energy on the receiver side. Thus, it appears

that gPMSS shifts some of the power consumption from the transmitter side to the

receiver side.

8.7.3 Packet Transmission Attempts

The number of times the IEEE 802.15.4 MAC will retry transmitting a packet is

controlled by the marMarFrameRetries attribute whose default value is set to 3 but

can be varied from 0 — 7 (refer to IEEE 802.15.4 standard [5]). This limit on the
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number of transmission attempts m for a packet limits the maximum PRR that can

be guaranteed to 9. Conversely, we may ask what is maximum number of transmission

attempts m that the MAC must be allowed in order to ensure that at least 9% of

packets are received without errors? Figure 8.14 plots m against 9 for all three

experiments. Clearly, to achieve any delivery guarantee 9%, fewer transmissions are

required with gPMSS, regardless of whether maximal-ratio or equal gain diversity

combination is used, compared to the case where gPMSS is not enabled. For example,

figure 8.14 shows that to achieve a 95% delivery guarantee we have to allow 9, 9, 13

transmission attempts for the channel conditions observed in experiments 1, 2 and 3.

Using gPMSS, however, the maximum number of transmission attempts required to

achieve the same delivery guarantee 9 = 95% are 3, 3, and 3, respectively. Clearly,

the values of 777. required to achieve 9 = 95% without gPMSS exceeds IEEE 802.15.4’8

lap-abilities. From the plot in figure 8.14 we see that at IEEE 802.15.4’s default value

of m = 4 the maximum achievable delivery guarantee for the three experiments lies

in the range 65 — 75%.

8.8 Conclusions

We presented the gPMSS, a protocol-centric approach to enable receiver cooperation

and diversity combining without requiring any changes to mote hardware or the IEEE

802.15.4 LR—WPAN standard. We described three principal mechanisms enabled by

gPMSS, namely selection diversity, equal gain and maximal-ratio gain diversity corn-

bining. We provide proof—of-concept and demonstrate gPMSS’ efficacy by applying

these diversity combining techniques on bit error traces collected from a network

of IEEE 802.15.4 motes. we demonstrate gPMSS by implementing it on the Intel

Imote2 sensor mote running the .NET i\-"licro framework. We analyze the performance

of gPMSS in terms of PRR, retransmission attempts and power consumption per de—
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livered packet. We saw that gPMSS raises the PRR from 22 — 30% to 73 — 76%, a

relative increase of 150 — 245%. Since gPMSS is a protocol-based solution it implies

a messaging overhead. we observe that power consumption by the transmitter per

correctly delivered packet. is reduced up to 68%. We evaluated the effect of retry limit

imposed by the IEEE 802.15.4 standard of the on the packet delivery rate that can

be achieved. At the default retry limit of 3, (m =2 4) gPMSS can achieve delivery

rates of greater than 99%, against only 65 -— 75% when gPMSS is not used. Thus

we demonstrate that gPMSS is capable of raising PRR, making use of highly lossy

links feasible, thus reducing the number of required retransmission attempts and re-

ducing the energy consumption rate of the transmitter per packet delivered. gPMSS

has direct application in the design of small-world topologies in wireless networks

to reduce the characteristic path length and diameter of networks which facilitates

service discovery and the routing of high priority data in a network. This has the

advantage of not needing any additional hardware([124] and [125]), or adding wired

conuections([27] and [111]). The extension of the effective communication range also

has applications in extending the lifetime of nodes surrounding the base station in

wireless sensor networks subject to the funneling effect. The larger communication

range allows more nodes to communicate with the base station directly and reduces

the traffic load from nodes positioned closer to the base station. More generally,

gPMSS can be used to connect weakly connected components of a network by adding

more links between nodes farther apart.
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Chapter 9

Principal Component Centrality as

a Measure of Node Centrality in

Communication Networks
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9. 1 Introduction

Centrality [14], [15], [17], [42], [106] is a measure to assess the criticality of a node’s

position. Node centrality as a measure of a node’s importance by virtue of its central

location has been in common use by social scientists in the study of social networks

for decades. Over the years several different meanings of centrality have emerged.

Naturally, the idea of ranking nodes for their ability to spread or detect (positive or

negative) influence is of significant interest to social network analysis.

Among many centrality measures, eigenvalue centrality (EVC) is arguably the

most successful tool for detecting the most influential node(s) within a social graph.

Thus, EVC has been a highly popular centrality measure in the social sciences ([45],

[126], [14], [41], [38], [40], [127], [121], [16], [15]) (it is often referred to simply as

centrality). As we demonstrate later in this chapter, one key shortcoming of EVC is

its focus on (virtually) a single influential set of nodes that tend to cluster within a

single neighborhood. In other words, EVC has the tendency of identifying a set of

influential nodes that are all within the same region of a graph. This shortcoming

may not represent a major issue for many social science problems and Internet appli-

cations, such as PageRank, where EVC has been used extensively [72]. Meanwhile,

when dealing with massive networks/graphs, it is hardly the case that there is a sin-

gle neighborhood of influential nodes; rather, there are usually multiple infiucultial

neighborhoods most of which are not detected or identified by EVC.

In order to identify influential neighborhoods, there is a need to associate such

neighborhoods with some form of an objective measure of centrality that can be

evaluated and searched for. To that end, one can think of a centrality plane that is

overlaid over the underlying graph under consideration. This centrality plane may

contain multiple centrality score maxima, each of which is centered on an influential

neighborhood.
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Figure 9.1: This figure shows a graph on the lower plane, overlayed with another

plane of the interpolated surface plot of node centrality scores. The centrality planes

typically exhibit a number of peaks or local maxima.

Nodes that have centrality score higher than other nodes are located under a

centrality peak and are more central than any of their neighbors. We use the term

hubs to refer to nodes forming centrality maxima. Figure 9.1 illustrates this concept.

Thus, these hubs form the kernel of influential neighborhoods in networks. Hence, our

focus in this research is on identifying influential neighborhoods rather than influential

nodes. We will show that EVC has a tendency to be too narrowly focused on a

dominating neighborhood. To this end, we introduce a new measure of centrality

that we call principal component centrality (PCC) that gradually widens the focus of

EVC in a controlled manner. More importantly, PCC provides a general framework

for transforming graphs into a spectral space analogous to popular signal transforms

that operate on random signals.

In this chapter, we give a brief review of common centrality measures accom-
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panied by a critique of their application to wireless network topologies. we then

introduce PCC, a node centrality measure that is inspired by the Karhunen Loeve

transform (KLT) and principal component analysis (PCA). In essence, PCC is a gen—

eral transform of graphs that can provide vital insight into the centrality and related

characteristics of such graphs. Similar to the KLT of a signal, the proposed PCC of

a graph gives a form of cou‘lrmct representation that identifies influential nodes and

more importantly influential neighborhoods. Hence, PCC provides an elegant graph

transform framework that outperforms EVC. In particular, early in this chapter, we

demonstrate EVCs shortcoming by using both EVC and PCC to compute node cen-

tralities in a network small enough to allow meaningful illustration. This is followed

by a thorough description of PCC, and its utility in transforming massive real-world

networks/graphs. we also develop the equivalence of an inverse PCC transform that

attempts to reconstruct a reprlrseutation of the original graph from its influential

neighborhoods.

The rest of this chapter is organized as follows. Section 9.2 gives a background

review of existing centrality measures for graphs, highlights problems in EVC and

motivates our development of a new node centrality. Section 9.3 defines the PCC

measure of centrality. Section 9.4 describes in detail the advantages, mathematical

interpretation, visualization and the effect of varying number of features of PCC.

Section 9.5 concludes the chapter.

9.2 Background

Let A denote the adjacency matrix of a graph G(V, E) consisting of the set of nodes

V =_— (01,122,223, . . . ,vN} of size N and set of undirected edges E. When a link is

present between two nodes u- and vj both A27 j and Aj,’i are set equal to 1 and set to
l

0 otherwise. Let F (0,) denote the neighborhood of vi, the set of nodes vi is connected
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to directly.

9.2.1 Degree Centrality

The degree centrality of a node in a graph is a measure of the relative importance to

the graph’s connectivity. The degree centrality of a node is defined as the number of

edges incident on it. Nodes with more incident edges have higher degree centrality

than nodes with fewer incident edges. If di denotes the degree of node u,- then its

degree centrality is computed by:

 

N “‘1 (9.1)

Degree centrality is a measure of a node’s rate of dissemination (of an infection) in

the immediate short term. It has the advantage that its computation does not require

nodes to exchange information. However, it has two significant disadvantages;

1. Without an exchange of centrality information with other nodes, it is not pos-

sible to interpret and evaluate an individual node’s centrality relative to that

of others.

2. Degree centrality does not take into account the centrality of its neighbors.

9.2.2 Closeness Centrality

The closeness centrality of a node is defined as the mean length of geodesic paths

to all other nodes. Intuitively, nodes occupying a more central location within the

graph are expected to have shorter paths. Closeness centrality is a measure of the

rate at which a node can spread an infection to all reachable nodes. Closeness is

a suitable measure of centrality when the flow of commodity in the network follows
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geodesic paths. Closeness centrality is a good measure of the average detection time

in a network with flows of non-replicating commodity following geodesic paths.

9.2.3 Betweenness Centrality

The betweenness centrality of a. node is defined as the fraction of geodesic paths

(shortest paths) out of all geodesic paths between all pairs of nodes passing through

that node. Thus, nodes located on more geodesic paths have a higher betweenness

centrality than nodes located on fewer geodesic paths. Intuitively, since the subprob-

leln optimality principal holds for the shortest path problem, a node’s location on

a geodesic path implies close proximity to all other nodes on that path. A node’s

betweenness can be interpreted as a measure of disruption caused when the node is

removed from the network. Like closeness, betweenness too assumes that the flow of

commodity is along geodesics. Betweenness centrality is a good measure of the av-

erage probability of detection of flows in a network with non-replicating commodity

following geodesic paths.

9.2.4 Eigenvector Centrality

Eigenvector centrality (EVC) is a relative score recursively defined as a function of the

number and strength of connections to its neighbors and as well as those neighbors’

centralities. Let 17(1) be the EVC score of a node vi. Then,

:I:(i)=;’\- Z we)

J'EFW)

1 N

j=1
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Figure 9.2: A spatial graph of 200 nodes. Node colors are indicative of the range in

which their EVC falls.

Here A is a constant. Equation 9.2 can be rewritten in vector form equation 9.3

where x = {x(1),:1:(2), z(3), . . . ,$(N)}’ is the vector of EVC scores of all nodes.

x = §Ax

Ax = Ax (9-3)

This is the well known eigenvector equation where this centrality takes its name

from. A is an eigenvalue and x is the corresponding eigenvector of matrix A. Obvi-

ously several eigenvalue/eigenvector pairs exist for an adjacency matrix A. The EVC

of nodes are defined on the basis of the Perron eigenvalue AA (the Perron eigenvalue
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is the largest of all eigenvalues of A and is also called the principal eigenvalue). If A is

any other eigenvalue of A then AA > |A]. The eigenvector x = {20(1), 33(2), . . . ,11:(N)}’

corresponding to the Perron eigenvalue is the Perron eigenvector or principal eigen-

vector. Thus the EVC of a node 1), is the corresponding element 2(1) of the Perron

eigenvector x. Note that when the adjacency matrix A is symmetric all elements of

the principal eigenvector x are positive. As mentioned above, EVC is widely used in

the social sciences ( [82], [127], [14], [42], [40], [41], [128], [126], [16], [15]) and is often

referred to simply as centrality.

EVC does not suffer from the same problems as degree, closeness and betweenness

centralities. In computing a node’s EVC it takes into consideration its neighbors’s

EVC scores. Because of its recursive definition, EVC is suited to measure nodes’

power to influence other nodes in the network both directly and indirectly through

its neighbors. Connections to neighbors that are in turn well connected themselves

are rated higher than connections to neighbors that are weakly connected. Like close-

ness and betweenness, the EVC of a node provides a network-wide perspective. At

the same time it can take advantage of distributed methods of computing eigenvec-

tors/eigenvalues of a matrix but does not have to bear the overhead of excess network

traffic. Sankaralingam [108], Kohlschiitter [69] and Canright, EngQi-Monsen and Je—

lasity [20], Bischof [12], Bai [8] and Tisseur [121] proposed some parallel algorithms

for computing eigenvectors and eigenvalues of adjacency matrices.

9.2.5 [The Need for a New Centrality Measure

In the preceding sections we highlighted some of the key characteristics of the most

common measures of centrality. Our discussion left us with only one viable measure of

centrality that takes into consideration the centrality scores of a node’s neighbors and

which provides a network-wide perspective, i.e. EVC. EVC has been used extensively
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to great effect in the study and analysis of a wide variety of networks that are shown

to exhibit small-world and scale-free properties. In [21] Canright and Engo-Monsen

correlated EVC with the instantaneous rate of spread of contagion on a Gnutella

network peer-to-peer graph, a social network of students in Oslo, a collaboration

graph of researchers at Telenor R&D and a snapshot of a collaboration graph of the

Santa Fe Institute. In [90] Newman analyzed the use of EVC in a lexical network

of co-occuring words in Reuters newswire stories. In [22] Carreras et al. used EVC

to study the spread of epidemics in mobile networks. They used three sets of traces

collected by Intel Cambridge, a trace of the public transportation network from the

DieselNet project at the University of h-lassachusetts at Amherst and mobility and

interaction traces from MIT’s Reality Mining project.

Now consider the graph in figure 9.2. It consists of 200 nodes and is typical of

networks of stationary WSN as well as mobile \VSNS such as the cellphone based

Nokia SensorPlanet project ([95], [62]). Its nodes are assigned one of six colors from

the adjacent color palette. Each of the six colors represents one of six bins of a

histogram spanning, in uniform step sizes, the range from the smallest to the largest

EVCs. As the legend accompanying figure 9.2 shows, blue represents the lowest EVCs

and red the highest. We make the following observations:

1. EVCs are tightly clustered around a very small region with respect to the total

size of the network and drops off sharply as one moves away from the node of

peak EVC.

2. EVC is unable to provide much centrality information for the vast majority of

nodes in the network.

3. The position of the peak EVC node appears somewhat ‘arbitrary’ because a

visual inspection shows that almost equally significant clusters of nodes can be
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Figure 9.3: [Top] Histogram of eigenvalues of adjacency matrix and Laplacian matrix

A of network in figure 9.2; [Bottom] Cumulative sum of the sequence of eigenvalues

of adjacency matrix and Laplacian matrix of network in figure 9.2 when sorted in

descending order of magnitudes. In both figures the lines plotted in red color are

averages of 50 networks generated randomly with the same parameters.

visually spotted in other locations in the graph. Counter to intuition, the high

EVC cluster is connected to the rest of the network by a single link.

9.3 Principal Component Centrality

The EVC of a node is recursively defined as a measure of centrality that is proportional

to the number of neighbors of a node and their respective EVCs. As we saw in section

9.2.4, the mathematical expression for the vector of node EVCs is equivalent to the

principal eigenvector. Our motivation for PCC as a new measure of node centrality
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Figure 9.4: Reconstructed topologies of the graph from figure 9.2 using only the first

1, 2, 3, 5, 10, 15, 50 and all 200 eigenvectors.

may be understood by looking at EVC through the lens of the KLT. When the KLT

is derived from an N x N covariance matrix of N random variables, the principal

eigenvector is the most dominant feature vector, i.e. the direction in N-dimensional

hyperspace along which the spread of data points is maximized. Similarly, the second

eigenvector (corresponding to the second largest eigenvalue) is representative of the

second most significant feature of the data set. It may also be thought of as the

most significant feature after the data points are collapsed along the direction of the

principal eigenvector. When the covariance matrix is computed empirically from a

set of data points, the eigendecomposition is the well known PCA [38]. Since we

are operating on the adjacency matrix derived from graph data we call the node

centrality proposed in this research PCC. In a covariance matrix, a non-zero entry

with a ’large’ magnitude at positions (2',j) and (3,1) is representative of a strong

relationship between the i-th and j-th random variables. A non—zero entry in the
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adjacency matrix representing a link from one node to another is, in a broad sense, also

an indication of a ’relationship’ between the two nodes. Based on this understanding

we draw an analogy between graph adjacency matrix and covariance matrix.

In the preceding section we described various centrality measures from litera-

ture. Among them, EVC is the node centrality most often used in the study of

social networks and other networks with small-world properties. While EVC as-

signs centrality to nodes according to the strength of the most dominant feature of

the data set, PCC takes into consideration additional, subsequent features. We de-

fine the PCC of a node in a graph as the Euclidean distance/t2 norm of a node

from the origin in the P-dimensional eigenspace formed by the P most significant

eigenvectors. For a graph consisting of a single connected component, the N eigen-

values ]A1] 2 [Agl _>_ _>_ |AN| = 0 correspond to the normalized eigenvectors

x1,x2, . . . ,xN. The eigenvector/eigenvalue pairs are indexed in order of descending

magnitude of eigenvalues. When P = 1, PCC equals a scaled version of EVC. Unlike

other measures of centrality, the parameter P in PCC can be used as a tuning pa-

rameter to adjust the number of eigenvectors included in the PCC. The question of

selection of an appropriate value of P will be addressed in subsequent subsection 9.4.4.

Let X denote the N x N matrix of concatenated eigenvectors X = [x1x2 . ..xN]

and let A = [A1A2 . . . A N], be the vector of eigenvalues. Furthermore, if P < N and

if matrix X has dimensions N x N, then XNxp will denote the submatrix of X

consisting of the first N rows and first P columns. Then PCC can be expressed in

matrix form as:

 

cp = \/((AXNXP) 9 (*A‘XIV><P))11”><1 (9.4)

The ‘G’ operator is the Hadamard (or entrywise product or Schur product) op-
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erator. Equation 9.4 can also be written in terms of the eigenvalue and eigenvector

matrices A and X, of the adjacency matrix A:

 

CP 2 l/(XNxP @XNxP) (APX1GAPXIA (9-5)

It is important to note a major difference between a traditional ”signal transform”

under KLT as compared with the proposed PCC ”graph transform”. First, recall that,

under KLT, a transform matrix T is derived from a covariance matrix C; and then

the eigenvector-based transform T is applied on any realization of the random signal

that has covariance C. Meanwhile, under the proposed PCC, the adjacency matrix A

plays a dual role: at one hand, it plays the role of the covariance matrix of the KLT;

and on the other hand, one can think of A as being the ”signal” that is represented

compactly by the PCC vector Cp. Effectively, the adjacency matrix A represents

the graph (i.e., ”signal”) that we are interested in analyzing; and at the same time

A is used to derive the eigendecomposition; and hence, we have the dual role for A.

Later, we will develop the equivalence of an inverse PCC, and we will see this dual

role of the adjacency matrix A again.

9.4 Evaluation

9.4.1 Interpretation of Eigenvalues

The definition of FCC is based on the graph adjacency matrix A. For a matrix A

of size N x N its eigenvectors x,- for 1 S i g N are interpreted as N-dimensional

features (feature vectors) of the set of N—dimensional data points represented by their

covariance (adjacency) matrix A. The magnitude of an eigenvalue corresponding to

an eigenvector provides a measure of the importance and prominence of the feature
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represented by it. The eigenvalue A, is the power of the corresponding feature x,- in

A.

An alternative representation of a graph’s topology is the graph Laplacian matrix

which is frequently used in spectral graph theory [28]. The graph Laplacian can be

obtained from the adjacency matrix by setting the diagonal entries of the adjacency

matrix to AM 2 — Z§v=1n7éj Am, i.e. a diagonal entry in a Laplacian matrix is

the negative of the sum of all off-diagonal entries in the same row in the adjacency

matrix. This definition applies equally to weighted and unweighted graphs. The graph

Laplacian is always positive-semidefinite which means all of its eigenvalues are non-

negative with, at least one eigenvalue equal to 0. The adjacency matrix, however, does

not guarantee positive semidefiniteness and typically has several negative eigenvalues.

This is the reason the ordering of features is based on magnitudes of eigenvalues. The

bar chart at the top of figure 9.3 plots histograms of eigenvalues for both adjacency

and Laplacian matrices of the network in figure 9.2. But why then, did we not use

the Laplacian matrix in the first place? The reason is that the eigendecomposition

of the adjacency matrix yields greater energy compaction than that of the Laplacian.

The middle plot in figure 9.3 shows the normalized, cumulative function of the sorted

sequence of eigenvalue powers. The line for the eigenvalue derived from the adjacency

matrix rises faster than that of the Laplacian matrix. The adjacency matrix’ curve

indicates that 25%, 50% and 75% of total power is captured by the first 15 (7.5%),

44 (22%) and 89 (44.5%) features, respectively. In contrast, the Laplacian matrix’

eigendecomposition shows that the same power levels are contained in its first 26

(13%), 61 (30.5%) and 103 (51.5%) features, respectively. Thus eigendecomposition

of the adjacency matrix of graphs offers more energy compaction, i.e. a set of features

of the adjacency matrix captures more energy than the same number of features of

the corresponding Laplacian matrix.
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Figure 9.5: Spectral drawing of graph in three dimensions using entries of x1, x2,

and X3 for the three coordinate axes. Nodes are colored according to their C15 PCC.

9.4.2 Interpretation of Eigenvectors

EVC interprets the elements of the Perron-eigenvector XI of adjacency matrix A as

measures of corresponding nodes’ centralities in the network topology (see section

9.2.4). Research on scale-free network topologies has demonstrated EVC’s useful—

ness. However, when applied to large spatial graphs of uniformly, randomly deployed

nodes such as the one in figure 9.2, EVC fails to assign significant scores to a large

fraction of nodes. For a broader understanding that encompasses all eigenvectors we

revert to the interpretation of eigenvectors as features. One way of understanding

PCC is in terms of PCA [38], where PCC takes part of its name from. PCA finds

the eigenvectors x1,x2, X3, . . . ,xN and eigenvalues of G’s adjacency matrix A. Ev-

ery eigenvector represents a feature of the adjacency matrix. To understand how

these feature vectors are to be interpreted in graphical terms, refer to equation 9.6
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which uses eigenvectors and eigenvalues to reconstruct an approximation AP of the

adjacency matrix A. Reconstruction can be performed to varying degrees of accu-

racy depending on P, the number of features/ eigenvectors used. If we set P = N

in equation 9.6 (all eigenvectors/eigenvalues are used), the adjacency matrix can be

reconstructed without losses (see He [45]). Here, A denotes the diagonal matrix of

eigenvalues sorted in descending order of magnitude on the diagonal (from upper left

corner to lower right corner).

~ A T
AP = XNXPAPXNXNXN

A1 0 0

A 0 A2 0

where A =

0 0 - - - AN  
To illustrate, consider the unweighted, undirected graph G' (V, E) shown in figure

9.2 with adjacency matrix A. A’s entries are either 0 or 1. However, this is not

necessarily true for Ap, the version of the matrix reconstructed using the P most

significant eigenvectors. The entries in AP will very likely contain a lot of fractions.

Therefore, before viewing the recovered topology in the reconstructed adjacency ma-

trix AP its entries have to be thresholded. Prior to plotting the topology, we rounded

values less than 0.5 down to 0 and round values larger than or equal to 0.5 up to 1.

Figure 9.4 plots the adjacency matrix reconstructed from the most significant 1, 2,

3, 5, 10, 15, 50 and all 200 feature vectors. The plot for A1 shows that the recov-

ered topology information is highly localized to the vicinity of nodes with the highest

EVC. The plot using A2 adds another highly connected but still very localized cluster

to the network. Adding more feature vectors extends the set of connected nodes in
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Figure 9.6: PCC of nodes in network of figure 9.2 when computed using first (a) 1

and (b) 2 eigenvectors. The histograms accompanying each graph plot show the dis-

tribution of PCC of their nodes. The lineplot in the histogram represents the average

PCC histograms of 50 randomly generated networks with the same parameters as the

network in figure 9.2.

various parts of the network. As more eigenvectors are added to the computation of

PCC it has the effect of increasing the resolution of centrality scores in nodes lying

in less well connected regions of the network.
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Figure 9.7: PCC of nodes in network of figure 9.2 when computed using first (a) 3

and (b) 5 eigenvectors. The histograms accompanying each graph plot show the dis-

tribution of PCC of their nodes. The lineplot in the histogram represents the average

PCC histograms of 50 randomly generated networks with the same parameters as the

network in figure 9.2.

9.4.3 Graphical Interpretation of PCC

In this section we evaluate the usefulness of the PCC scores assigned to nodes of

a network. Recall that a node’s PCC is its 62 norm in P—dimensional eigenspace.

Perceptional limitations restrict us from redrawing the graph in any eigenspace with
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Figure 9.8: PCC of nodes in network of figure 9.2 when computed using first (a) 10

and (b) 15 eigenvectors. The histograms accompanying each graph plot Show the dis—

tribution of PCC of their nodes. The lineplot in the histogram represents the average

PCC histograms of 50 randomly generated networks with the same parameters as the

network in figure 9.2.

more than 3 dimensions. Figure 9.5 is a drawing of the graph in figure 9.2 in the 3-

dimensional eigenspace formed by the 3 most significant eigenvectors of the adjacency

matrix A. Nodes are colored according to their C15 PCC scores, derived from the 15

most significant eigenvectors, divided into 6 equally sized intervals between the lowest
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Figure 9.9: PCC of nodes in network of figure 9.2 when computed using first (a) 50

and (b) all 200 eigenvectors. The histograms accompanying each graph plot show the

distribution of PCC of their nodes.

and highest PCC score. Based on the interpretation of PCC we expect nodes with

higher (red) PCC scores to be located farther away from the origin at (0,0,0) than

nodes with lower (blue) PCC scores. From figure 9.5 we can see that this is clearly

the case. For clarification, the cluster of low-PCC nodes around the origin (0,0,0) is

marked with a red, dashed oval.
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9.4.4 Effect of Number of Features on PCC

In this section we study the effect varying the number of eigenvectors P has on PCC.

For an illustrated example we revert to the randomly generated network topology of

200 nodes in figure 9.2. We compute PCC while varying P from 1 through 2, 3, 5,

10, 15, 50 and 200. Figures 9.6a, 9.6b, 9.7a, 9.7b, 9.8a, 9.8b, 9.9a and 9.9b re-plot

the network with nodes colored to indicate their PCC scores. The bin size for all

histograms is set to 0.25. Recall that since PCC score at P = 1 are a scaled versions

of EVC, the figure 9.6a. represents the baseline case of EVC. In figure 9.6a, EVC

identifies a small cluster in the upper right corner as the nodes most central to the

network. Note that ironically this cluster is separable from the larger graph by the

removal of merely one link! On the other hand, clusters of nodes in the larger, better

connected part of the graph are assigned EVC on the low end of the scale. As P is

increased from figure 9.6b through 9.9b, more clusters of high PCC nodes pop up.

As expected, the accompanying histograms below each graph plot show that this has

the effect of increasing the variance of FCC scores.

Adding successively more features/eigenvectors will have the obvious effect of

increasing the sum total of node PCC scores, i.e. llxNCm > llxNCn when

m > n. However, it is unclear how much PCC’S scores change as P is varied from

1 through N. In [20] Canright et al. use the phase difference between eigenvectors

computed in successive iterations as a stepping criteria for their fully distributed

method for computing the principal eigenvector. we use the phase angle between

PCC vectors and EVC to study the effect of adding more features. We compute the

phase angle 95(71) of a PCC vector using it features with the EVC vector as,

 

C C

«6(P) = arccos ( P - E ) .

ICPI ICEI
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Figure 9.10: Plot of phase angles g6 (in radians) of PCC vectors with the EVC vector

for the graph in figures 9.6, 9.7, 9.8 and 9.9.

Here, ‘9 denotes the inner product operator. The relationship of the phase angle

with the number of features used in PCC for the network under consideration is

plotted in figure 9.10. Initially, the function of phase angle (25 rises sharply and then

levels off almost completely at 22 features. This means that, in this example, the

relative PCCS of nodes cease to change with the addition of more features beyond

the first 22 features. The phase angle plot may be used for determining how many

features are sufficient for the computation of FCC of a network.

9.5 Conclusions

We reviewed previously defined measures of centrality and pointed out their short-

comings in general and EVC in particular. We introduced PCC, a new measure of

node centrality. PCC is based on PCA and the KLT which takes the View of treating a

graphs adjacency matrix as a covariance matrix. PCC interprets a node’s centrality as

its 62 norm from the origin in the eigenspace formed by the P most significant feature

vectors (eigenvectors) of the adjacency matrix. Unlike EVC, PCC allows the addition

212



of more features for the computation of node centralities. We explore two criteria for

the selection of the number of features to use for PCC; a) The relative contribution

of each feature’s power (eigenvalue) to the total power of adjacency matrix and b)

Incremental changes in the phase angle of the PCC with P features and the EVC

as P is increased. We also provide a visual interpretation of significant eigenvectors

of an adjacency matrix. The use of the adjacency matrix is compared with that of

the Laplacian and it is shown that eigendecomposition of the adjacency matrix yields

significantly higher degree of energy compaction than does the Laplacian at the same

number of features. We also investigated the effect of adding successive eigenvectors

and the information they contain by looking at reconstructions of the original graph’s

topology using a subset of features.

In the future we intend to extend the definition of PCC so it can be applied to both

directed and undirected graphs. Furthermore, we propose to formulate a distributed

method for computing PCC along the lines of Canright’s method [20] for computing

EVC in peer-to-peer systems.
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Chapter 10

Conclusions
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The following three sections list conclusions we learnt from the results of our

research.

10. 1 Channel Modeling

Our analysis and modeling of errors observed in IEEE 802.15.4 traces in chapters 3

and 4 leads us to make the following conclusions.

1. LQI and RSSI exhibit moderate negative correlation with the BER process (and

strong positive correlation with each other).

2. LQI and RSSI can be used to reduce the variance of BER’s estimated PDF of

packets failing the CRC.

3. The CSI driven BER model remains valid across a variety of physical environ-

ments.

4. All IEEE 802.15.4 channels, regardless of channel selection or physical environ-

ment, exhibit a memory length of at most 2 bits and 2 symbols, respectively.

5. Based on the correlation function and analysis for LRD we conclude that various

estimates of Hurst parameter may or may not detect packet level memory in

802.15.4 channels. The memory, however, is not due to the channel’s inherent

properties at those frequencies, but due to interference from IEEE 802.11b/g

traffic and beacon frames, i.e. if interference is periodic the channel appears to

have memory, if it is not periodic there is no memory.

6. The Abry-Veitch and Whittle estimators’ consistent relative insensitivity to

changes in average PER, average PLR, average CBER and interference across

different traces leads us to conclude that they are better measures of the IEEE

802.15.4 channel’s inherent degree of LRD.
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7. The aggregate variance, R/S, periodogram, and absolute moment estimators’

strong dependence on average PER and average PLR leads us to conclude that

these estimators are good detectors of in-band (WLAN) interference.

8. The average CBER to which a packet is subjected by a channel is inversely

related to the average PER/average PLR. Thus, it appears that interference

produces higher BERs in packets than do channel fades.

9. We introduced RMI as a standardized version of Shannon mutual information

and apply it to the BER process captured in bit traces. We observe that interfer—

ence free IEEE 802.15.4 channels are memoryless, while channels experiencing

significant interference from IEEE 802.11b/g networks sharing the 2.4GHz ISM

band, a common source of interference, have true memory lengths varying in

the narrow range of 0 to 2sec.

10.2 Network Lifetime

Our analysis and modeling of the network lifetime problem in wireless sensor networks

(WSN) in chapters 5 and 6 leads us to make the following conclusions.

1. We propose a new definition of network lifetime consisting of the tuple of mean

and variance of node power consumption rates in a WSN. This interpretation

of network lifetime is more inclusive and considers the power consumption of

sensors across the network.

2. We formulated the optimization problem for the new objective function in the

form of a budget constrained QP and showed that a solution exists. The solution

of the QP, however, has a high complexity.
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3. As an alternative to the QP, we developed a greedy dynamic program formu-

lation that chooses routes in a way that optimizes for our objective from sets

of paths that would be considered sub-optimal in the shortest path sense. Four

variants are developed based on the BED, BND, ED and ND algorithms for the

discovery of alternative routes.

4. We also observe that the routes generated by the ND algorithm are very similar

to those proposed in previously proposed load balancing techniques such as

 

Back and de Veciana’s in [6]. Under a many-to—one traffic flow the same ND

paths, when used in conjunction with DPA) yield the worst performance out of

the four route discovery algorithms.

5. A statistical performance comparison of these four route discovery algorithms

for networks of 100 nodes and A = 0 shows that on average the BND and BED

in conjunction with the DPA yield the best performance. BND and BED yield

reductions of up to 28% and 36% in variance of power consumption rates at the

cost of raising average node power consumption by 15% and 21%, respectively.

6. The computational complexity of variants of the DPA vary from 0(NB) to

0(N4) which is significantly lower than the full search of the solution space

which is of complexity 0(NlN). However, for randomly generated networks of

100 nodes we consistently observed that the time to run the DPA on a PC is of

the order of a few seconds.

7. Analysis by means of diffusion plots verified that DPA reduced power consump—

tion of sensors that experience highest power consumption under shortest path

routing algorithms. Diffusion plots also Show that the reduction power con-

sumption is highest under BND, followed closely by BED.

8. The resulting route selection method is one that is suitable for applications
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with rnany-to—one traffic flows. Route discovery algorithms and DPA assume

availability of global network topology information which is usually available at

the base station. While this makes the DPA a centralized solution we envision

it finding applications in critical infrastructure protection/control/monitoring,

surveillance, and environmental/agricultural monitoring applications with in—

frequent topology changes.

10.3 WSN Topology

Our analysis small-world properties of networks with range limited shortcuts, the

application of cooperative communication and diversity combining concepts and cen-

trality measures for WSNS in chapters 7, 8 and 9 leads us to make the following

conclusions.

1. From the analytical model of characteristic path length and clustering coefficient

we observed that for sufficiently dense networks characteristic path length can

be reduced significantly by replacing a ,u z O(0.005 — 0.05) fraction of the local

scale nodes by global scale nodes providing shortcuts in the network.

2. The order of [,L, the fraction of nodes that are designated shortcut nodes, is

about the same as the value of 13, the rewiring probability, in \Natts’ small-

world network construction method.

3. The model lends itself for the task of designing WSNS, e. g. determining the num-

ber of shortcut nodes required to achieve a certain characteristic path length.

4. We demonstrate gPMSS by application to IEEE 802.15.4 SIMO channel traces

and implementation on the Crossbow Imote2 sensor mote. We analyzed the

performance of gPMSS in terms of PRR, retransmission attempts and power
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10.

consumption per delivered packet. We saw that for a setup with 3 receivers

gPMSS raises the PRR from 22 — 30% to 73 — 76%, a relative increase of

150 — 245%.

. we observe gPMSS reduces transmission power per correctly delivered packet

by up to 68%.

. We evaluated the effect of retry limit imposed by the IEEE 802.15.4 standard of

the on the packet delivery rate that can be achieved. At the default retry limit

of 3, (m = 4) gPMSS can achieve delivery rates of greater than 99%, against

only 65 — 75% when gPMSS is not used.

By making use of lossy links feasible, gPMSS can be used as a mechanism for

adding shortcut links to enable small—world network topologies in WSNS.

Shortcuts implemented by gPMSS will reduce characteristic path length and

diameter of networks which facilitates service discovery and the routing of high

priority data in a network. It has the advantage of not requiring any hardware

modifications ([124] and [125]), or adding wired conuections([27] and [111]).

gPMSS used at the base station can increase communication range and the

number of sensors at 1 hop distance, thereby increasing the number of critical

sensors. This extends the lifetime of nodes surrounding the base station in

W'SNs subject to the funneling effect. The larger communication range allows

more nodes to communicate with the base station directly and reduces the traffic

load from nodes positioned closer to the base station. More generally, gPMSS

can be used to connect weakly connected components of a network by adding

more links between nodes farther apart.

We conducted a review of pre-existing measures of node centrality and their

shortcomings with regard to WSNs. We introduced PCC, a new measure of
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node centrality. A node’s PCC can be interpreted as its 62 norm from the origin

in the eigenspace formed by the P most significant feature vectors (eigenvectors)

of the adjacency matrix.

11. While we see PCC as having wider applications, an immediate application of di-

rect relevance is its use in identifying nodes for the placement of shared network

resources, e.g. endpoints of shortcut links created through gPMSS.

12. To select an apprOpriate number of features for the computation of PCC we

explored two methods.

0 The relative contribution of each additional feature’s power (eigenvalue) to

the total power of adjacency matrix. The use of the adjacency matrix is

compared with that of the Laplacian. We concluded that eigendecompo-

sition of the adjacency matrix yields significantly higher degree of energy

compaction than the Laplacian at the same number of features. However,

the cumulative scree plot of neither matrix yields a clear cutoff region for

the selection of number of features P to use for PCC.

o Incremental changes in the phase angle of CP (PCC with P features) and

C1 (EVC) as P is increased. We concluded that PCC reaches steady state

\v'alues with the use of only 5 to 10% most significant features out of all

available feature vectors. Selecting number of features P using the phase

angle function d)(P) yields a very clear cutoff region.
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