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ABSTRACT

STUDY OF PHASE IN FERROMAGNETIC SPIN-TRIPLET JOSEPHSON
JUNCTIONS

By

Yixing Wang

In conventional superconductors, the opposite-spin electrons are bound together to form

Cooper pairs (spin-singlet), whereas the electrons in magnetic materials align parallel to

each other in the same spin band. When a superconductor is placed in contact with a

ferromagnet, researchers have learned that the two electrons from the spin-singlet Cooper

pair enter different spin bands and rapidly lose phase coherence. The coherence length for

the spin-singlet correlation in ferromagnetic materials is around a few . On the other hand,

some theorists proposed that one could obtain long-ranged spin-triplet correlation in some

well engineered superconductor/ferromagnet (S/F) hybrid structures, where the correlation

length could be around a few .

Indeed, during the last few years, several groups around the world have confirmed the

long-range spin-triplet correlation in different systems, including our group. In our case, we

made Josephson junctions containing a ferromagnetic multilayer, which can carry spin-triplet

supercurrent under certain conditions. At the same time, theorists predicted that the phase

of these junctions can be controlled by the magnetizations of the magnetic layers. They

predicted the existence of and junctions. Since our large-area junctions contain multiple

domains, we expected to have a random distribution of 0 or coupling regions across the

junction surface, whereas magnetized samples should have uniquely pi coupling everywhere

according to theories. Indeed we observed the enhancement of the critical current of our

Josephson junctions after magnetizing our samples, which indirectly indicated the mixture



of 0 and coupling in the virgin state. According to a random walk model, we would expect

that the critical current in the as-grown state would be proportional to the square root of the

area of the junction, whereas in magnetized samples it should be proportional to the area.

We have measured the area dependence of the critical current in such junctions, and confirm

that the critical current scales linearly with area in magnetized junctions. For as-grown

(multi-domain) samples, the results are mixed. Samples grown on a thick Nb base exhibit

critical currents that scale sub-linearly with area, while samples grown on a smoother Nb/Al

multilayer base exhibit critical currents that scale linearly with area. The latter results are

consistent with a theoretical picture due to Zyuzin and Spivak that predicts that the as-

grown samples should have global coupling. We even attempted to test the Zyuzin-Spivak

prediction by making spin-triplet superconducting quantum interference devices (SQUIDs).

If the SQUID is made of the two -state junctions, we would expect the flux periodicity to

be half compared with traditional SQUIDs. Yet, we have not observed any half quantum

flux periodicity in our Nb/Al multilayer based SQUID. Further research will be needed to

solve this mystery.Special comment: The integrity of the dissertation has been damaged

during the submission to the graduate school by the Confer, Erica. I would not take any

responsibility for this.
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Chapter 1

Introduction

1.1 Background and motivation

It is well known to people studying traditional metallic superconductors that the current

in these superconductors is carried by Cooper pairs [19, 5]. The Cooper pairs are made

of two s-wave electrons with opposite spins. According to the standard fermi-statistics,

the Cooper pairs obey the fermionic antisymmetry because they have even orbital angu-

lar momentum(l =0) and have odd spin correlations(spin-singlet). On the other hand the

spins of electrons in the majority band or minority of a ferromagnet tend to align with

each other in the same direction due to the exchange field. Due to this incompatibility,

people have not been able to discover any bulk compounds showing the coexistence of

the spin-singlet superconductivity with strong ferromagnetism. However, people have been

working with nano-structured multilayered superconductor/ferromagnet (S/F) systems for

a very long time. Researchers studied the proximity effects between superconductivity and

ferromagnetic order. And they found out that the spin-singlet pair correlations near the

superconductor-ferromagnet interface are very different from the the spin-singlet pair corre-

lations near the superconductor-normal interface [14, 15, 16]. The most obvious signature is

that the superconducting coherence length in the ferromagnet is very short, around a few nm

compared with superconductor/nonmagnetic normal metal system (S/N) [47, 21]. However
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several successful experiments came out during last few years and proved the existence of

the long-ranged spin-triplet correlation in some S/F systems with magnetic inhomogeneity

[34, 57, 62, 2]. It was truly amazing that some theories already predicted this long-ranged

spin-triplet correlation more than 10 years ago [8, 9, 36]. The results of our Josephson junc-

tions with a ferromagnetic multilayer sandwiched between two traditional superconductors

showed several orders of magnitude higher critical current density compared with spin-singlet

S/F/S junctions [34].

On the other hand, the critical current density is just the amplitude side of the story of

the long-ranged spin-triplet correlation (LRSTC). There is also the phase side story of the

LRSTC. The theories also predicted that the phase of these spin-triplet Josephson junctions

are determined by the relative orientation of magnetizations of different magnetic layers

[31, 9, 68]. And we must say that the phase is not unique to the spin-triplet Josephson

junctions, because people working with traditional S/F/S Josephson junctions also observed

the oscillatory nature of the short ranged spin-singlet correlation [54, 12, 58, 52, 55, 56].

These researchers observed the Josephson critical current oscillation in their system due to

the oscillatory proximity effect. These spin-singlet ferromagnetic Josephson junctions show

0-state and π-state depending on the thickness of the magnetic layer [38]. Sometimes, the

oscillation happens on a length scale around a few angstroms for a strong ferromagnet like

Co [55], which presents a technical difficulty in controlling it. And at the same time, we also

lack the means to control the phase of these traditional ferromagnetic junctions, after the

device has been fabricated. However, the phase for spin-triplet Josephson junctions can be

controlled by tuning the directions of the magnetizations of different magnetic layers with

an external magnetic field. Our multilayered ferromagnetic Josephson junctions are really

very good candidates for this phase control.

2



Since our junction size is much bigger than the magnetic domain size, we expect that 0

and π subjunctions randomly distribute across our junctions in the as-grown state. After

magnetizing the samples, on the other other hand, we would expect that a single π-state

would dominate across the whole junction according to the theories. Our work is dedicated

to unveiling the phase side of the story of the long-ranged spin-triplet correlation.

1.2 Structure of the dissertation

The dissertation is organized as follows: In chapter 2, I will give an introduction to some

aspects of ferromagnetism and superconductivity. Also a description of short-ranged and

long-range proximity effects are given at the end of the chapter. The mechanisms to generate

and to observe long-range spin-triplet correlation in S/F multilayer structure are presented.

In chapter 3, the theory of the Josephson effect will be discussed, including the I-V charac-

teristics of Josephson junctions and their response to an applied magnetic field. In chapter

4, I will give a brief discussion of the sample fabrication process and measurement setup. In

chapter 5, I will review some previous results of ours and others to gain some idea about the

0 and π phase concept. In chapter 6, the most important results from our study of the area

dependence of the critical current of our spin-triplet Josephson junctions will be discussed.

Possible mechanisms for different area scaling are also proposed. In chapter 7, in order to

test the possibility of the existence of the π/2 coupling Josephson junction, I will show our

first attempt to measure a long-ranged spin-triplet SQUID. However we did not observe the

half quantum-flux periodicity predicted for a SQUID containing π/2 junctions. In chapter

8, I will give a conclusion and future directions.
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Chapter 2

Ferromagnetism and

Superconductivity

When people talk about superconductors and ferromagnets, the first image might be a super-

conducting ferromagnetic levitation train. The working mechanism is based on the repulsion

force between a superconductor and a permanent magnet. This gives us some idea that su-

perconductors do not like magnetic fields, because the strong magnetic field will try to force

the opposite spins of Cooper pairs into the same direction. And at the same time, it is also

well known that ferromagnetism is incompatible with superconductivity; ferromagnetism

strongly suppresses superconductivity. In superconductor/ferromagnet bilayered structures

this suppression is caused mainly by the exchange interaction, which we can see in the follow-

ing sections. This is the driving force of my work to understand superconductor-ferromagnet

multilayered systems. In this chapter, we will learn the key aspects of superconductivity and

ferromagnetism, and obtain the raw idea of the interplay between the two.
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2.1 Ferromagnetism

2.1.1 Origin of Ferromagnetism

Humans rely on more and more magnetic materials from macroscopic applications to micro-

scopic applications. These applications include electrical power generators and transform-

ers, electric tooth brushes, hard-disks, Giant Magnetoresistance (GMR) readers, etc. Even

though magnetic materials are involved heavily in our daily life, the nature of ferromag-

netism is very complicated and governed by quantum physics, which is far beyond the scope

of this section. Here we try to briefly explain the basic concept of ferromagnetism. Even

though there were some researchers trying to explore the existence of magnetic monopoles

from time to time in the past, it is a fact that there is no evidence for the existence of

magnetic monopoles. Instead an ordered alignment of the atomic magnetic moments is the

origin of the macroscopic magnetic properties of materials. There are two physical sources

of the atomic magnetic moments, which correspond to orbital motion around the nucleus

and spin angular momentum, as shown by Equation 2.1.

−→
M = −g e

2m

−→
J (2.1)

−→
J could be the orbit momentum or spin momentum. The factor g is called the “gyromag-

netic ratio”, correspondingly g=1 for orbital motion and g=2 for spin for a single electron.

However, the orbital magnetic moment contribution is usually very small. And the quantum

And Spin magnetic moments may be only in an “up” direction or in an antiparallel “down”

direction.

In order to explain the spontaneous magnetization of ferromagnetic materials such as iron,
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cobalt, nickel, etc, Heisenberg [29] in 1928 proposed an exchange force model of quantum

mechanical nature. According to his model, the potential energy between two atoms having

spins Si and Sj is governed by

wij = −2Jex
−→
Si ∗
−→
Sj (2.2)

where Jex is the exchange integral. If Jex > 0,
−→
Si and

−→
Sj tend to align parallel to satisfy

the least energy requirement; if Jex < 0, the stable state corresponds to the anti-parallel

spin configuration.The ground state for Jex > 0 case corresponds to the ferromagnetic state,

where all the spins align parallel in the same direction.

Stoner [64] and Slater [59] further proposed the band theory of ferromagnetism. On the

basis of the knowledge of the density of states in the 3d shell and the exchange interaction

acting between 3d electrons, they suggested that there could be slightly more electrons in

the spin-up band compared to the spin-down band. These extra spin-up electrons contribute

to the net magnetic moment.

2.1.2 Magnetic Domains

Most ferromagnetic materials at a temperature below the Curie temperature Tc are com-

posed of small-volume regions in which all magnetic moments align in the same direction,

as illustrated in Fig. 2.1. Weiss [76] in 1907 predicted the presence of the ferromagnetic

domain structure. One piece of indirect evidence for domains is that we could demagnetize

ferromagnetic samples by annealing at temperature higher than Tc or by an alternating mag-

netic field. After demagnetization, magnetic moments of domains could randomly point in

any direction which results in a zero net magnetization of the whole sample. Another piece of
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a) b)

Figure 2.1: In (a) and (b),we show the schematic depiction of domains in ferromagnetic
materials; arrows represent magnetic moments. The direction of magnetic moments varies
from one domain to another.“For interpretation of the references to color in this and all
other figures, the reader is referred to the electronic version of this dissertation.”

indirect evidence is the shape of the hysteresis loop as shown in Fig. 5.11.b). Magnetization

M and field intensity H are typically not proportional for ferro-magnets. If the material is

initially demagnetized, then M varies as a function of H as shown in Fig. 2.2 during the

initial magnetization process. The curve begins at the origin, and as H is increased, M begins

to increase slowly, then more rapidly, finally leveling off and becoming independent of H.

This maximum value of M is the saturation magnetization.

Domain structures corresponding to any real magnetization process are much more com-

plicated compared to the schematic brain-game shown in Fig. 2.2. But it does not mean that

we do not have any clue about what is the driving force of domain evolution. It is related

to the energy stored in the magnetic materials. For homogeneous ferromagnetic materials,

several different types of energy contribute to the total energy, as listed below.

1. Crystal anisotropy energy which generally possesses the crystal symmetry of the ma-

terial. For example, Uniaxial anisotropy is the simplest form of crystal anisotropy.

2. Inverse Magnetostrictive energy which shows up when a stress force is applied to a fer-

romagnetic body. Basically this is just the opposite effect of magnetostriction, wherein

the shape of the a ferromagnetic sample changes during the process of magnetization.
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3. Magnetostatic energy which mainly concerns the energy stored in the magnetic field

generated by magnetization. This energy is most shape-dependent.

4. Zeeman energy which counts the effects exerted by the external magnetic field on

ferromagnetic samples.

5. Domain-wall energy which basically lowers the exchange energy between different do-

mains pointing in different directions. Within a domain wall, the direction of spins

changes gradually from one domain to another in order to avoid an atomic-scale sharp

boundary.

In inhomogeneous magnetic samples, the size and shape of domains are also affected by

the inhomogeneity of the materials, such as voids, inclusions, precipitations, fluctuations in

alloy compositions, crystal boundaries, internal stress, etc.

2.2 Superconductivity

Along the path human beings explore the world, physicists were and are always dedicated

to pushing the boundaries of their view. One of these boundaries was the lowest resistivity

of metals when being cooled down. Before 1911, physicists had been familiar with the idea

that the resistance of metals would decrease when they were cooled down. But what would

they finally obtain when temperature approached towards 0K? No one could nail it down

with 100% certainty at that time. With the technical breakthrough in liquefying Helium,

extremely low temperature experiments came to reality in 1908. Three years later, Heike

Kamerlingh Onnes [37] discovered the superconducting state of mercury at liquid helium

temperature. The most stunning part of the discovery was not just that the resistance of
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mercury came to zero, but that the disappearance of the resistance was so abrupt at about

4K.

As the name of “superconductor” indicates, various abnormal properties of the super-

conducting state intrigued many physicists to seek the origin of superconductivity. These

properties include zero resistance, electronic specific heat, isotope effect, Meissner effect, etc.

Even with clues from these unique superconducting properties, it still took theorists a long

time to figure out the microscopic theory of superconductivity.

The first crucial attempt towards a microscopic theory of superconductivity was proposed

by Leon Cooper [19], who showed that two electrons added above the Fermi level could

form a bound state with energy less that 2ϵf if there is an attraction between them. The

important characteristic of Cooper pairs is that the two electrons in one pair have opposite

spin and momenta, which corresponds to the spin-singlet state. Assisted with the Uncertainty

Principle, the size of Cooper pairs can also be estimated to be around 10−4cm. Compared

with the crystal lattice dimension, the space enclosed by one Cooper pair is so humongous

that there are countless electrons inside. In other words, there definitely exist other Cooper

pairs within the space of one Cooper pair. The superconducting state must be a multi-body

problem.

After taking Cooper pairs into account, John Bardeen, Leon Cooper, and Robert Schrief-

fer [5]successfully developed the microscopic theory of superconductivity called BCS theory

in 1957. They showed that the ground state of superconductivity takes the form

ΨBCS =
∏
k

(uk + vkc
†
k,↑c
†
−k,↓)|ϕ0⟩ (2.3)

where |ϕ0⟩ is the vacuum state. The creation operator c
†
k,↑ creates an electron of momentum
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k and spin up ↑. Therefore we can see that c
†
k,↑c
†
−k,↓ creates one Cooper pair occupying

the pair state (k ↑,−k ↓). At the same time, |vk|2 shows the probability that the pair state

(k ↑,−k ↓) is occupied, and |uk|2 shows the probability that the pair state is unoccupied.

Therefore, in our traditional superconductor, the current carriers are spin-singlet Cooper

pairs.

2.3 Proximity effects

As we have learned from above, electrons in a ferromagnet (F) try to align their spins in the

same direction, while paired electrons in Cooper pairs of a superconductor (S) have their

spins in opposite directions. At the same time, it is well known that electrons in the normal

metal (N) do not have any direction preference for their spins. Therefore, ferromagnets

and superconductors are spin-ordered systems. On the other hand, the normal metal is a

spin-disordered system.

So what will happen when we combine two different systems together? The most famous

spin-valve system will jump into our mind, where people sandwich one normal metal thin

film between two ferromagnetic leads. The spin information from one ferromagnetic layer

of properly engineered F/N/F systems can be read out by the other F layer, which is anal-

ogous to the case of polarized optics. The logic behind this F/N/F structure is “ordered

system”/“less ordered system”/ “ordered system”. Following the same logic, we can con-

struct the S-F-N triangle diagram as shown in Fig. 2.3. The other two nontrivial structures

are S/N/S and S/F/S.
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Figure 2.3: Superconductor-Ferromagnet-Normal metal triangle. Three nontrivial structures
are shown here.

2.3.1 Traditional Proximity effects of S/N and S/F

So let us take a look at the case when one superconductor is placed next to a normal

metal or a ferromagnet. The Cooper pairs leaking from the superconductor side can induce

superconducting-like properties in the normal metal or ferromagnet and this phenomenon is

usually called the proximity effect. At the same time, the weakening effect of superconduc-

tivity due to the leakage of Cooper pairs is called inverse proximity effect.

The microscopic theory behind the proximity effect is called Andreev reflection. The

Andreev reflection process provides the channel to convert single-electron states of a nor-

mal metal into Cooper pairs, when electrons with energy below the superconducting gap

approach the S/N interface from the normal metal side. Imagine there is an electron (ϵ,k,↑)

approaching the S/N interface from the N-side, where ϵ is the energy measured with respect

to the Fermi level. If ϵ < ∆, where ∆ is the superconducting gap parameter, then the
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Figure 2.4: on energy level diagram, a) Andreev reflection process from normal metal to
superconductor. b) Inverse Andreev reflection process from superconductor to normal metal.

electron can’t be transferred into the superconductor because there are no single-particle

states in S with ϵ < ∆. However if this electron can find another electron (−ϵ,−k,↓), then

the two electrons can travel to the S-side of the S/N interface by forming a Cooper pair, as

shown in Fig. 2.4.(a). The disappearance of the second electron left a hole with (ϵ,k,↑) in

the N-side. In the excitation diagram Fig. 2.5, this hole has a negative group velocity which

is just opposite to the group velocity of the first electron. Therefore, this process is called a

reflection process.

Correspondingly, the “leakage” of Cooper pairs into normal metal from S side can be

viewed as inverse Andreev reflection. The two electrons in one Cooper pair enter the N side

with roughly equal opposite momenta close to kf . According to the uncertainty principle,

the wave-functions of these two electrons remain in phase for a time-span around ~/ϵ in the

N side. In the clean limit this time can be equated with one coherence length ξN = ~vf/ϵ,

whereas it corresponds to
√

~D/ϵ in the dirty limit ( The clean and dirty limits refer to the

mean free path being longer or shorter than ξN , respectively) . Here vf is the Fermi velocity

and D is the diffusion constant. Since the available range for energy ϵ is approximately
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a) b)

Figure 2.5: a)1-D free electron Dispersion relation in normal metal, showing two electrons
with opposite momenta and spins bundle together to penetrate into S side. b) Same pro-
cess shown in a excited dispersion spectrum, where the absence of the second electron is
represented as a reflected hole.

2πkBT in the normal metal, we get these expressions for the “normal metal coherence

length” ξN = (~vf )/(2πkBT ) Clean limit; ξN =
√
(~D)/(2πkBT ) Dirty limit.

Similarly, Cooper pairs can also leak into a ferromagnetic layer when they are in elec-

trically good contact. The main difference is that the energy dispersion spectrum in a

ferromagnet is not as simple as in a normal metal. Spin-up electrons and spin-down elec-

trons are in two different bands now, shifted by the exchange coupling energy 2Eex shown in

Fig. 2.6 . Therefore, the Fermi wave vectors for spin-up and spin-down bands are different.

In order to obey the energy conservation, electrons have to adjust their kinetic energy, which

in turn results in the shift of momentum by ∆P = 2Eex/vf [20]. This further leads to the

shift of center-of-mass momentum for one pair of electrons with spin configuration | ↑↓>

by Q = 2Eex/vf , while | ↓↑> electron pairs gain the center-of-mass momentum by −Q.

Since we are considering spin-singlet Cooper pairs, the spin part wave function undergoes

the following transformation,
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1√
2
[| ↑↓> −| ↓↑>] =⇒ 1√

2
[exp[iQx/~] | ↑↓> − exp[−iQx/~] | ↓↑>] (2.4)

after entering the ferromagnetic layer. After taking into account the fact that Cooper pairs

are incident on the interface from all possible angles, the net gain of the center-of-mass

momentum will be Q/ cos θ for each different incident angle θ. In the clean limit after

averaging over all possible angles, we would get the pair correlation function proportional to

sin(x/ξF )/(x/ξF ) in F layer, where ξF = ~vf/2Eex. In the dirty limit, the pair correlation

distribution in F layer is proportional to sin(x/ξ∗F ) exp(−x/ξ
∗
F ) with ξ∗F =

√
~D/Eex after

counting the presence of the strong disorder scattering into the consideration. The wave

function of Cooper pairs not only decays away from the S/F interface as in the case of S/N

interface, but also oscillates in space which is absent in the S/N case.

We show the schematic behavior of the superconducting pair correlations near the S/N

and S/F interfaces in Fig. 2.7. Coherence lengths for clean and dirty limits are also sum-

marized in the Table 2.1. The biggest difference here in going from S/N to S/F is that the

thermal energy kBT is replaced by the exchange energy Eex. And For Fe, Co, Ni, the corre-

sponding Curie temperature TC is 1043K, 1388K and 627K. If we just esimate Eex ≈ kBTC

and assume TC = 1000K and T = 4K, then we can easily see (Eex)/(kBT ) = 250, which

means that ξF would be much shorter compared with ξN . At low temperature ξN would be

around one µm while ξF would be around a few nm.

Clean limit Dirty limit

Normal metal (~vf )/(2πkBT )
√

(~D)/(2πkBT )

Ferromagnet (~vf )/(2Eex)
√

(~D)/(Eex)

Table 2.1: Superconducting Coherence Lengths in ferromagnet and normal metal given both
in clean limit and in dirty limit.
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Figure 2.6: 1-D free electron Dispersion relation in Ferromagnet, showing that two electrons
with opposite momenta and spins entering from S into F side. In this case there is an
exchange energy gap between spin-up band and spin-down band, which results in a shift
between wave vectors of the two electrons.
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Figure 2.7: Schematic behavior of the superconducting pair correlations near the a)
superconductor-normal metal interface and b) superconductor-ferromagnet interface.
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Although the coherence length in ferromagnetic materials is very short, there is another

side of story which is much more interesting. It is the oscillatory nature of this short ranged

proximity effect as indicated in the Fig. 2.7.b). This oscillatory proximity effect leads to

critical superconductivity temperature (Tc) oscillations in S/F bilayers [50, 65], Josephson

critical current oscillation in S/F/S Josephson junctions [54, 12, 58, 52, 55, 56] and density-

of-states oscillations in S/F bilayers [42, 13]. Since the short ranged proximity effect in S/F

systems has been studied extensively, it will not be the main topic of my research.

2.3.2 Long range spin-triplet proximity effects in systems with

non-collinear magnetization

As we already learned in the last section, the traditional spin-singlet correlation in S/F sys-

tems is really very short ranged. So we will ask whether this is the only case in S/F systems.

More than ten years ago, theorists [8, 36] explored the possibility of a long-range proximity

effect in S/F systems. They predicted that the presence of magnetic inhomogeneities in S/F

systems could induce “odd-triplet superconductivity”, which corresponds to electron pairs

with | ↑↑> or | ↓↓>. Since these electron pairs will enter into the same spin band of the

ferromagnetic layer, they would not experience the exchange field any more, which in turn

results in a long-range proximity effect with spin-triplet correlation.

Following the similar mechanism suggested in [8, 10], theorists proposed magnetic in-

homogeneous S/F systems would generate a long-range spin-triplet correlation (LRSTC) as

shown below:

1. Intrinsic inhomogeneity: Domain walls in the ferromagnet are very good candidates

suggested by some theorists [25, 72]. The other way is through spiral magnetic order
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in the ferromagnet [17, 71].

2. Extrinsic inhomogeneity: Engineered structures with multilayered F-layer of non-

collinear magnetizations [70],where different F-layers have different directions of mag-

netization.

3. Spin active region: Here the generation of the long range spin-triplet correlation is

through the spin-flip process at the S/F interface [23, 3].

There were two earlier experimental attempts [39, 60] that provided some evidence for

spin-triplet correlations. Keizer et al. [39] studied NbTiN/CrO2/NbTiN Josephson junctions

using CrO2 as the F-layer and NbTiN as the S-layer. Sosnin et al. [60] worked on a Holmium

(Ho) wire attached to superconducting electrodes. At that time, there was not only difficulty

to find new systems which could generate the long range spin-triplet correlation, but also

it was difficult to reproduce the results. In 2010, several groups [62, 57, 2] around the

world successfully provided significant evidence for this long-range spin-triplet correlation,

including ours [34]. Especially our well-engineered structure [35, 73, 26] provides a very

reproducible system to study the long range spin-triplet correlation.

Even though there are abundant theory papers on this topic, it is very hard to interpret

them because they relied very heavily on the quasi-classical Green’s function formalism.

Yet, here is one very simple diagram in Fig. 2.8 which sketches out the majority of the

physics behind the generation of the long-range spin-triplet correlation. It is very similar to

the argument when we deal with spin eigenstates of one electron in different systems. For

example, one spin-up state in one system can evolve into spin-up and spin-down states in

another system.

When the spin-singlet Cooper pair enters F1, it develops into one short ranged spin-singlet
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Figure 2.8: Mechanism for Spin triplet generation in presence of magnetic inhomogeneities
where the second magnetization (F2) does not align with the first one (F1).

pair |0, 0 > and one short ranged spin-triplet pair|1, 0 >. Then this short ranged spin-triplet

pair |1, 0 > can evolve into three spin-triplet components, two of which are long-ranged, as

depicted in Eqn. 2.5.

S :
1√
2
[| ↑↓> −| ↓↑>]

Spin-singlet Cooper pairs evolve into two components

F1 : |χ > = 1√
2
[exp[iQx/~] | ↑↓> − exp[−iQx/~] | ↓↑>] (2.5)

= cos(Qx)|0, 0 >F1 +i sin(Qx)|1, 0 >F1

“Even spin-triplet pairs” further develop into three more components

F2 : |1, 0 >F1=
sin θ√

2
|1, 1 >F2 +cos θ|1, 0 >F2 −

sin θ√
2
|1,−1 >F2
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where θ is the angle between the directions of the magnetizations in F1 and F2, shown in

Fig. 2.8. We use the standard notation for singlet and triplet spin states:

|0, 0 > =
1√
2
[| ↑↓> −| ↓↑>]

|1, 1 > = | ↑↑>

|1, 0 > =
1√
2
[| ↑↓> +| ↓↑>] (2.6)

|1,−1 > = | ↓↓> .

In deriving the Eqn. 2.5, we have applied the rotation matrix for total angular momentum

j = 1 case. Below, we show the rotation matrix on y-axis:

R(θ) = exp(
−iJyθ

~
) =

1

2


1 + cos θ −

√
2 sin θ 1− cos θ

√
2 sin θ 2 cos θ −

√
2 sin θ

1− cos θ
√
2 sin θ 1 + cos θ

 . (2.7)

2.4 Ways to detect long range spin-triplet correlation

There are mainly two ways to obtain the signatures of the long-ranged spin-triplet correlation

in S/F systems.

The first one is the tunneling spectrum, which measures the differential conductance to

obtain the density of states. Kontos et al. [42] and our group [13] applied this technique in

measuring proximity-induced density-of-states oscillations in spin-singlet S/F systems, where

noncollinear magnetization was not involved. Detecting the long-range triplet correlation in

tunneling is more difficult due to the very small signal. I made one attempt to improve
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the sensitivity of the tunneling experiment, but did not succeed in obtaining clean signals.

My naive reason for this is that the traditional Al2O3 tunneling barrier might not be very

suitable for the current case. We might need a full spin-polarized ferromagnetic oxide to

replace the traditional Al2O3. Currently, we still have one undergraduate student working

on this approach.

The second way to detect the long-range spin-triplet correlations is to measure the Joseph-

son effect in S/F/S junctions, which will be discussed in the rest of the dissertation.
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Chapter 3

Josephson Junction

3.1 Josephson effects

Brian Josephson [32, 33] in 1962 predicted theoretically that Cooper pairs could tunnel

through a thin barrier when this barrier is sandwiched between two superconductors and the

barrier is thin enough. This idea was verified experimentally the following year [1]. People

named this effect the “Josephson effect”.

Although the Josephson effect was originally predicted and verified for a thin insulating-

barrier system, S/I/S, it is a more general effect. Different Josephson junctions can be made

depending on the material of the barrier such as normal metal (S/N/S) or ferromagnetic

metal (S/F/S). Fig. 3.1 shows a schematic geometry for a Josephson junction at the left

side. At the right side of Fig. 3.1, a typical V-I curve is shown for our S/F/S spin-triplet

Josephson junctions. We can see clearly from the V-I curve that junctions carry supercurrent

until the current reaches the critical value IC . At current much larger than |IC |, the V-I

curve is ohmic.

In order to explain the Josephson effect, let us take a look at the macroscopic quantum

model of superconductivity. Along the way to a deeper understanding of superconductivity,

one of the main milestones was the development of the phenomenological theory for super-

conductivity by Fritz and Heinz London [46] and V.L.Ginzburg and L.D. Landau [27]. Fritz
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Figure 3.1: Left side is the geometry of two superconductors separated from each other by a
non-superconducting barrier to form Josephson junction, which could be normal metal (N),
insulator (I) or our ferromagnetic (F). Right side is a typical voltage vs. current characteristic
for one of our samples, with critical current IC ≃ 0.2mA .

London realized that superconductivity is an inherently quantum phenomenon manifesting

itself on a macroscopic scale. Coherent phenomena in superconductors such as flux quan-

tization provide the bases for the macroscopic quantum model of superconductivity. The

key hypothesis of the macroscopic quantum model of superconductivity is that a macro-

scopic wave function Ψ(−→r , t) can be used to describe the behavior of the whole ensemble

of superconducting electrons; Ψ is a complex function with a magnitude and a phase, as

shown by Eqn. 3.1. This macroscopic wavefunction obeys the Schrodinger-like Eqn. 3.2 in

an electromagnetic field. The microscopic theory of BCS can also be used to justify this

hypothesis.

Ψ(−→r , t) =
√
n∗s(
−→r , t) expiθ(

−→r ,t) (3.1)

i~
∂Ψ(−→r , t)

∂t
=

1

2m∗
(
~
i
∇− q∗A(−→r , t))2Ψ(−→r , t) + q∗ϕ(−→r , t)Ψ(−→r , t) (3.2)
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where n∗s(
−→r , t) = Ψ†(−→r , t)Ψ(−→r , t) is the local density of Cooper pairs, A is the vector

potential, ϕ is the scalar potential, m∗ is the mass of one Cooper pair and q∗ = −2e is the

charge of one Cooper pair. Electric field E and magnetic flux density B can be expressed in

term of A and ϕ by Eqn. 3.3 and 3.4.

E = −∇ϕ− ∂A

∂t
(3.3)

B = ∇×A (3.4)

Then we can get the flow of Cooper pairs by following the exact same method as we use

to get the flow of probability in quantum physics, as shown in Eqn. 3.5.

Js =
q∗~
2m∗i

(Ψ†∇Ψ−Ψ∇Ψ†)− q∗2

2m∗
ΨΨ†A (3.5)

By substituting (3.1) into (3.5), we can obtain the supercurrent equation

Js = q∗n∗s(
−→r , t){ ~

m∗
∇θ(−→r , t)− q∗

m∗
A(−→r , t)}. (3.6)

Here we clearly can notice that the superconducting current in a superconductor is related

to the phase gradient and vector potential A. After we pull ~/m∗ out of the bracket and

introduce a gauge invariant phase gradient γ = ∇θ − (q∗/~)A, we see

Js =
q∗n∗s~
m∗

γ. (3.7)

So what will determine the current flowing across Josephson junctions? First of all, the

current definitely can depend on Cooper pair densities on both sides. Second, it is pretty
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obvious that the gauge invariant phase gradient γ will play a very crucial role, which will

also become a variable. And the Cooper pair density n∗s in the electrodes is much higher

than in the non-superconducting layer, which means we can assume that γ in the two super-

conducting electrodes is small. Therefore, we can roughly speculate that the current across

junctions is governed by the gauge invariant phase difference φ across non-superconducting

region, given by

Js = Js(φ)

where φ =

∫ 2

1
γ(−→r , t) · d

−→
l

= θ2(
−→r , t)− θ1(

−→r , t)− q∗

~

∫ 2

1
A · d

−→
l . (3.8)

Similar to any quantum system, any phase change of 2π should not make any difference on

the final Js, which means Js(φ) = Js(φ + 2nπ). At the same time, if there is no current

across the junction, both the phase gradient and the phase difference must be zero. In this

case, Js(0) = Js(2nπ) = 0. From these two arguments, we can obtain the current-phase

relation

Js(φ) = Jc sin(φ) +
∞∑

m=2

Jm sin(mφ) (3.9)

where Jc is the critical current density, which is determined by the coupling strength, Cooper

pair densities in the electrodes. When the Josephson coupling is weak, the second term of

Eqn. 3.9 can be neglected.

In order to get the voltage-phase relation, we need first to derive the so-called energy-
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phase relation (3.10) by substituting (3.1) into (3.2) and assuming n∗s = const.

−~∂θ
∂t

=
m∗

2n∗2s q∗2
J2s + q∗ϕ (3.10)

Then we take the derivative of the gauge invariant phase difference

∂φ

∂t
=

∂θ2
∂t
− ∂θ1

∂t
− q∗

m∗
∂

∂t

∫ 2

1
A · d

−→
l (3.11)

Substitution of (3.10) into (3.11) yields the second Josephson equation

∂φ

∂t
=

q∗

~
[ϕ(1)− ϕ(2)−

∫ 2

1

∂A

∂t
· d
−→
l ]

=
q∗

~

∫ 2

1
(−∇ϕ− ∂A

∂t
) · d
−→
l

=
q∗

~

∫ 2

1
E(−→r , t) · d

−→
l . (3.12)

Here we summarize below the two Josephson equations

Js(φ) = Jc sinφ (1st Josephson equation) (3.13)

∂φ

∂t
=

2π

Φ0
V (2nd Josephson equation) (3.14)

φ = θ2(
−→r , t)− θ1(

−→r , t)− q∗

~

∫ 2

1
A · d

−→
l (3.15)

where we have introduced the quantum flux Φ0 = h/2e and the voltage drop across the

junction
∫ 2
1 E(−→r , t) · d

−→
l = V .
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Figure 3.2: Equivalent circuit of Josephson junction,resistively and capacitively shunted
junction model.

3.2 Resistively and capacitively shunted junction model

According to the Josephson equations, the current passing across a junction would determine

the phase-difference of the junction. For the case I < Ic, a voltage would not develop across

the junction and the phase-difference across the junction also would stay constant; but

for I > Ic, situation will become more complicated because the junction will evolve into

the voltage state, where we need to solve one non-linear equation in order to get overall

knowledge of the system. We will introduce below a well known model called Resistively

and Capacitively Shunted Junction (RCSJ) model, as shown in Fig. 3.2. In this model,

we consider the electron-pair current, the current of normal unpaired electrons due to the

voltage across the junction and the displacement current from the capacitance formed by

the two close superconductor surfaces. If we bias a junction with a constant current I, we

can write down the following equation

I = C
dV

dt
+

V

R
+ Ic sinφ (3.16)
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Figure 3.3: A pendulum analogue of a Josephson junction. A bob of mass m is attached to a
weightless rigid rod, which can rotate freely around the pivot. A external torque T is applied
by a very steady hand, which can swing the pendulum out of the vertical by an angle θ.

By replacing V with (Φ0/2π)∂φ/∂t, we can find out that the total current is related to the

phase difference φ with the result that

I =
Φ0C

2π

∂2φ

∂2t
+

Φ0

2πR

∂φ

∂t
+ Ic sinφ (3.17)

which is very analogous to the motion equation (3.18) of a rigid pendulum shown in Fig.

3.3.

T = ml2θ̈ + Γθ̇ +mgl sin θ (3.18)
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The correspondence between the electrical properties of the junction and the mechanics of

the pendulum is shown below,

Josephson Junction pendulum

Phase difference: φ ←→ Deflection: θ

Total current: I ←→ Applied Torque: T

Capacitance: C ←→ Moment of inertia: ml2

Normal tunneling conductance: 1/R ←→ Viscous damping: Γ

Critical current: Ic ←→ Critical torque: mgl

Voltage across junction: V =
Φ0

2π

∂φ

∂t
←→ Angular velocity: ω = θ̇.

If we apply a small torque, the pendulum will finally settle down at a constant deflection angle

and there is also no angular velocity. Similarly, if a current smaller than Ic passes through the

junction, there’s only a superconducting pair current and no voltage will develop across the

junction (φ is time-independent). On the other hand, if the torque is large enough to deflect

the pendulum by 90o, any further increase in the torque will result in the rotation of the

pendulum, which will lead to a non-zero angular velocity θ̇. Equivalently, any current larger

than Ic will drive the junction into the voltage state. For |I| >> Ic, ∂φ/∂t is proportional

to I, so V-I curve is ohmic. Since Eqn. 3.17 and Eqn. 3.18 are both nonlinear equations,

it is impossible to obtain analytical solutions for arbitrary I. But if we approximate sinφ

as φ, we can solve a second order linear differential equation with constant coefficients

to get one important parameter, namely the damping coefficient for a Josephson junction

λ = (Φ0/2πR)/(2
√

(Φ0C/2π)Ic) = (
√
(Φ0/2π))/(2

√
R2CIc), which can be related to the
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well-known Stewart-McCumber parameter [48, 63] βc = (R2CIc)/(Φ0/2π) = 1/(4λ2).

Similar to some classical mechanical or electrical systems, Josephson junctions can also

be identified as underdamped or overdamped ones based on the βc.

1. Underdamped Josephson junctions: For the βc > 1 case, the junction capacitance

and/or resistance are large, which is very similar to the underdamped pendulum case

where the moment of inertia of the pendulum is large and/or the damping is very

small. Fig. 9.3 in the appendix shows a typical V-I curve.

2. Overdamped Josephson junctions: For the βc << 1 case, the junction capacitance

and/or resistance are small, which corresponds to the overdamped pendulum case

where the moment of inertia of the pendulum is small and/or the damping is very

large. Fig. 3.1 demonstrates a characteristic V-I curve for one of our S/F/S junctions,

where the voltage branch satisfies a simple form V = R ·Re{(I2 − Ic2)1/2}.

3.3 0 and π Josephson junctions

Even though no energy will be dissipated in a Josephson junction in the superconducting

state, there is a finite energy stored in the junction. As we increase the current, the phase

difference of the junction has to change, which corresponds to a finite voltage. The energy

stored in the Josephson junction can be given by

EJ =

∫ tf

0
I · V dt

=

∫ tf

0
Ic sin φ̃(

Φ0

2π

∂φ̃

∂t
)dt (3.19)
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With the phase φ(0) = 0 and φ(tf ) = φ, we can get

EJ =
Φ0Ic
2π

∫ φ

0
sin φ̃dφ̃

=
Φ0Ic
2π

(1− cosφ) = EJ0(1− cosφ) (3.20)

People usually call EJ the Josephson coupling energy, where EJ0 = (Φ0Ic)/(2π). We

also can see that the supercurrent of the junction is related to the Josephson energy EJ of

the system by

I =
2π

Φ0

∂EJ

∂φ
(3.21)

Eqn.(3.20) corresponds to a Josephson junction with the minimum Josephson energy at

φ = 0. Conventional Josephson junctions (the barrier is insulator or normal metal) most

likely follow this energy-phase relation. We call them 0-junctions.

In 1965, Kulik [44] predicted a negative critical current Ic < 0 when studying spin flip

tunneling through an insulator with magnetic impurities. In 1977, Bulaevskii et al. [14]

showed that under certain conditions, spin flip tunneling due to magnetic impurities could

lead to a π phase shift, as shown in Figure 3.4. The ground state now corresponds to a

phase difference of ϕ = π. This type of Josephson junction is called a π-junction. In 1982,

Buzdin [15] predicted that the critical current Ic of S/F/S Josephson junctions would display

damped oscillations as a function of the ferromagnetic layer thickness, where the vanishing

of the critical current signals the transition between the 0 state and the π state as shown

in Figure 3.5. This transition between two states in S/F/S junctions can be correlated

with the sign change of the oscillating pair correlation in F layer shown in Fig. 2.7. And

we mentioned at the end of the section 2.3.1, several researchers have observed Josephson
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Figure 3.4: Normalized Josephson junction current and coupling energy with phase-difference
φ as a variable. a) Zero-junction, b) π-junction.

junction critical current oscillations in S/F/S Josephson junctions [54, 58, 52, 55, 56]. For

example, Ryazanov and his co-workers [54, 52] studied junctions with a weak ferromagnetic

alloy CuNi and they first observed observe the 0-π transition. Later Robinson et al. [55, 56]

found the 0-π transition in S/F/S Josephson junctions using strong ferromagnets, Ni, Co,

Fe and Permalloy (Ni80Fe20).

3.4 Fraunhofer Patterns: magnetic field dependence of

critical current in Josephson junction

Since we are working with finite-size Josephson junctions, a magnetic field applied in the

plane of a Josephson junction will lead to a space dependent current density due to the space

dependent gauge invariant phase difference by following Eqn.(3.15).

When a uniform magnetic field of flux density Bex is applied parallel to a superconductor

surface, the superconductor will produce enough screening current to counteract the magnetic

field, which leads to a finite penetration depth λL of the magnetic field. The magnetic field
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Figure 3.5: Oscillatory dependence of critical current of S/F/S junctions as a function of the
ferromagnetic layer thickness, df predicted by [15].

will decay exponentially away from the surface given by

B(x) = Bex exp(−
x

λL
). (3.22)

λL is called the London penetration depth and is given by

λL =

√
m

µ0nse2
(3.23)

where ns is the density of the Cooper pairs, m is the electron mass and e is the charge.

We consider a circular Josephson junction with diameter D in an external applied field

Bex = (0, By, 0), as shown in Fig. 3.6. In order to study the effect of the applied magnetic

field, we need to find out the phase shift introduced between two positions “ad” and “bc”

33



Y

X

Z L+d
a b

cd

By

S1

S2

I

a) b)

D D

12

Figure 3.6: a)Schematic picture of a circular Josephson junction in an external applied field.
Current flows in the x-direction, magnetic field is along the y-direction. d is the thickness
of non superconducting layer, D is the diameter of the junction and λL is the London
penertration depth. b)Cross section of the junction. The black dotted lines represent the
screening current around the bulk superconducting layers. The two red dot contours show
two different integration loops. (Not scale to the real dimension!)

along the z-direction. First we draw a closed contour shown in Fig. 3.6.b, along which the

total phase difference has to be 2πn, that is

∮
∇θ · dl = 2πn

= ∆θa⇒b +∆θb⇒c +∆θc⇒d +∆θd⇒a (3.24)

In order to get various terms for Eqn. 3.24, we can recall the gauge invariant phase

gradient Eqn. 3.7 in the bulk superconducting region to get

∇θ =
2π

Φ0
(

m∗

nsq∗2
Js +A) (3.25)

and use the gauge invariant phase difference across the non-superconducting region (Eqn.

3.15)

φ = θ2(
−→r , t)− θ1(

−→r , t)− 2π

Φ0

∫ 2

1
A · d

−→
l . (3.26)
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We can write down each term for Eqn. 3.24,

∆θa⇒b =

∫ b

a

2π

Φ0
(

m∗

nsq∗2
Js +A) · d

−→
l (3.27)

∆θb⇒c = −φbc +
2π

Φ0

∫ c

b
A · d

−→
l (3.28)

∆θc⇒d =

∫ d

c

2π

Φ0
(

m∗

nsq∗2
Js +A) · d

−→
l (3.29)

∆θd⇒a = φad +
2π

Φ0

∫ a

d
A · d

−→
l . (3.30)

By substituting Eqn. 3.27-3.30 into 3.24, we can obtain

φad − φbc = 2nπ − 2π

Φ0

∮
C
A · d

−→
l −

∫ b

a

2π

Φ0

m∗

nsq∗2
Js · d

−→
l −

∫ d

c

2π

Φ0

m∗

nsq∗2
Js · d

−→
l (3.31)

In order to figure out the line integration contribution from current density flowing from

“a” to “b” and from “c” to “d”, we need to divide the current density into two components,

circulating screen current and external driving current along the negative x-direction. And

keep in mind that we are talking about a micron-size contour. The z-axis coordinates for

positions “ad” and “bc” are z and z + dz, where dz is infinitesimal.

1. External driving current: The current from the external source is flowing along the

negative x-direction and the spacial density does not change abruptly. One side of the

line integration parallel to the x-axis will cancel the opposite side of the line integration

parallel to the x-axis. At the same time, the portion of the line integration along the

z-direction (perpendicular to the current) contributes nothing to the integration.

2. Screen current: First let us take a look at the case (Fig. 3.6.b case 1) when the line

integral path is away from the London screen region. This line integral is zero, because
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the contour can be chosen to be perpendicular to the screening current [6]. Second

assume we place the line integral path inside the London screen region (Fig. 3.6.b case

2). Then it is similar to the external driving current case.

Therefore the line integral of the current density vanishes and we get

φad − φbc = 2nπ − 2π

Φ0

∮
C
A · d

−→
l = 2nπ − 2π

Φ0
δΦ (3.32)

where δΦ = By(2λL + d)dz. Then we can obtain the differential form of phase shift

φbc − φad = −2nπ +
2π

Φ0
By(2λL + d)dz

⇓

∂φ

∂z
=

2π

Φ0
By(2λL + d). (3.33)

Integration of Eqn. 3.33 gives us

φ(z) =
2π

Φ0
By(2λL + d)z + φ0 (3.34)

Using the current-phase relation, we obtain the supercurrent density

Js(y, z) = Jc(y, z) sin[
2π

Φ0
By(2λL + d)z + φ0]. (3.35)

For the simplest case, we assume that the maximum Josephson current density Jc(y, z)

of the junction is spatially homogeneous and is equal to Jc. Then for a circular junction, the
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total current going through the junction can be given by

I = Jc

∫ D/2

−D/2

∫ √
D2/4−z2

−
√
D2/4−z2

sin[
2π

Φ0
By(2λL + d)z + φ0]dydz. (3.36)

After we maximize Eqn. 3.36 with respect to φ0, we can obtain the expression for the

maximum Josephson critical current,

I(By) =
∣∣∣Jc ∫ D/2

−D/2

∫ √
D2/4−z2

−
√
D2/4−z2

cos[
2π

Φ0
By(2λL + d)z]dydz

∣∣∣. (3.37)

The integral for Eqn. 3.37 can be given

Ic(Φ) = 2Ic(0)

∣∣∣∣∣∣
J1(

πΦ
Φ0

)

πΦ
Φ0

∣∣∣∣∣∣ (3.38)

where Ic(0) = JcπD
2/4,Φ = By(2λL+ d)D and J1 is the first order Bessel function. In Fig.

3.7, we shows a Fraunhofer pattern based on Eqn. 3.38. In Fig. 3.8, we also show the two

specific cases ( a and c ) and one general case (b) for the current density distribution along

a small Josephson junction, which correspond the three marked positions in Fig. 3.7.

37



-3 -2 -1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

1.2

b

c

 

 

I C
(

)/I
C
(0

)

/
0

a

Figure 3.7: Fraunhofer pattern: dependence of the critical current on enclosed flux for a
circular Josephson junction. The corresponding current density distribution for a) b) and c)
cases is demonstrated in Fig. 3.8
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Figure 3.8: Current density across a Josephson junction. The upper part shows the gauge
invariant phase difference across the junction vs. the z coordinate and the lower part shows
the current density distribution along the z axis. (a)Φ = 0 and φ0 = π/2 ; (b)Φ ̸= 0 for a
general case ; (c)Φ = Φ0 and φ0 = −π/2 ;

38



Chapter 4

Sample Fabrication Process and

Measurement

In this chapter, the detailed sample fabrication process for ferromagnetic Josephson junctions

and SQUID samples will be given. Some special technical concerns regarding growth of our

thin films will also be discussed. Even though in name the two kinds of devices seem

somewhat different, it turned out that they followed the same process flow diagram. And we

also made some samples to characterize the magnetic properties using SQUID magnetometry.

Since it is so easy to make these samples with one single sputtering step, I will not discuss

it here.

4.1 Bird’s-eye view of fabrication of Josephson junc-

tion and SQUID device

A sample fabrication diagram is going to be shown to you.

1. Defining the bottom multilayer pattern with photolithography

2. Sputtering the bottom multilayer

3. Make the photoresist pillars
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4. Ion milling and silicon monoxide deposition

5. Liftoff

6. Defining the top Nb pattern with photolithography

7. Sputtering the top Nb

Before all of these, we need to dice some 3” Si wafers to get our half inch chips. The Si

wafer package was opened inside the Cleanroom to avoid attracting dust particles. After spin

coating the wafer with traditional S1813 photoresist and baking the wafer on the hotplate

at 95oC for about one minute, we took this wafer out of the cleanroom to dice it. The

S1813 protection layer on these half inch chips was then removed in hot acetone. Finally we

ultrasonically cleaned these chips in isopropyl alcohol (IPA) solution to remove any acetone

residue. At last, we used nitrogen gas to blow away the IPA. We designed and ordered the

required photomasks for our project. Basically, these masks will act as light shutters to

define the desired features on our chips with the help of the UV light and photoresist.

4.1.1 Defining the bottom multilayer pattern with photolithogra-

phy

In order to define our bottom leads, we either used one mechanical mask with one 300 mm

narrow strip opening or we used photolithography masks as shown in Fig. 4.1. Photolithography

is very similar to the old fashioned film photography. Here we spin coated our chips with

S1813 which is a UV light sensitive polymer and baked at 105oC temperature on the hot

plate. After the solvent was totally driven out, we transferred the designed feature from our

photomask to our chips. Since S1813 is a positive resist, this means the parts exposed to the
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Figure 4.1: The mechanical mask and photomasks used in our bottom leads definition.
All the green features correspond to the open places on the chips which will be covered
with properly designed S/F/S multilayers. The two right-side photomasks were used for
fabricating SQUIDs.

a.

b.

c.

d.

Figure 4.2: a.)Spin coating resist and baking b.) UV light exposure, where red squares
represent mask opaque parts and dark blue square means exposed resist part. c.) Soaking
in chlorobenzene d.) developing in the photodeveloper

UV light would be removed by the developer as shown in Figure 4.2. The detailed procedure

for the S1813 resist will be given in an Appendix. After this, we place our mechanical

masks in our sample holders first if we need mechanical masks to define the pattern. Then

we load our chips in followed by the heat sink copper pieces and locking bridges. All above

steps are carried out in the cleanroom to keep the samples as clean as possible. Then they

are ready to be taken out of the cleanroom and to be loaded into our sputtering system.
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4.1.2 Sputtering the bottom multilayer

All our multilayer S/F/S thin film deposition was carried out in our computer controlled

sputtering system. We have four big triode guns and two small magnetron guns inside the

sputtering chamber, as shown in Fig. 4.3. In order to avoid cross contamination, the plasma

is confined by the aluminum foil wrapped chimneys. There are two automatically controlled

plates inside the chamber. One is the rotating target plate right above the chimneys, which

either open to the 4 large targets or two small ones. The other one is the sample positioning

and masking plate (SPAMA) with 8 opening spots, which our samples are tightened into.

With these two plates controlled by the Labview control program, we deposited our multilayer

films very easily. After loading the samples and closing the chamber, the system was baked

for approximate six hours and pumped for one or two days using a CTI Cryo-Torr high

vacuum pump. The base pressure reached about 3− 4× 10−8Torr. Once the base pressure

was obtained, the system was cooled down with the help of liquid nitrogen. After the

temperature on the samples was around -30oC, we started the plasma by maintaining a

constant Argon flow rate inside the chamber and turning on the sputter gun controller.

After slowly setting the right power for each target source, we still waited for another twenty

to thirty minutes to stabilize the guns and also to clean the chamber.

Then we loaded the gun configuration file into our control program and measured the

corresponding targets’ deposition rates with the film thickness monitoring crystals on the

SPAMA plate. With all target rates set right, we sputtered our samples using the right

sequence files, which was pretty straightforward. And in order to protect the multilayer

films from oxidation, each chip was ended with 5nm Copper, 20nm or 5nm Niobium and

15nm Gold. If Photolithography was used for the bottom layer (e.g. for the SQUID project),
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Figure 4.3: Top view of our sputtering chamber with four main triode guns and two small
magnetron guns.

the resist must be lifted off after sputtering before proceeding to the next step.

4.1.3 Make the photoresist pillars

After we warmed up the sputtering system and took out our samples, we cleaned our samples

again with Acetone followed by IPA. The next very crucial part is our Josephson junction

pillar definition. And our samples were ready for the pillar definition now. In order to

investigate the area dependence of critical current of our Josephson junctions, the diameters

of our pillars were 3µm, 6µm, 12µm, 24µm and 48µm. And for the search for π/2 junctions

in the SQUID project, we defined pillars with 6µm and 12µm diameters. For this step, I

used AZ5214E resist and a tone reversal process, which proved to be very effective. One

simplified diagram is shown in Fig 4.4. The detailed recipe can be found in the Appendix.
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a.

b.

c.

d.

Figure 4.4: a.)Spin coating resist and baking b.) UV light under exposure, where red squares
represent mask opaque parts and dark blue square means exposed resist part. c.) Image
reversal baking and flood exposure d.) developing in the photodeveloper

a. b.

Pillar

Si Substrate Si Substrate

Pillar

Figure 4.5: a.) Insufficient undercut, too straight resist wall b.) One nice pillar with diameter
3µm having right undercut

First we spin coated our chips with AZ5214E and baked them on the hot plate for about

90 seconds. Then we under-exposed the pillar portion with UV light, which initiates some

chemical reaction. A following image reversal bake will further harden the exposed pillars.

Finally, we fully flood exposed our chips to the UV light and then developed them for about

40 seconds. Nicely-shaped pillars came out with a good undercut.

Here we show several sample SEM figures to demonstrate what kind of undercut will be

called suitable for our purpose. All these samples were coated with a very thin layer of Au in

order to prevent charging during SEM imaging and to promote secondary electron emission.
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Since we read the resist data sheet carefully and started from our previous recipe, we

never obtained worse results than those shown in Fig. 4.5.a), where the wall of the resist was

nearly perpendicular to the Si substrate. As we can see, the pillar of Fig. 4.5.b) was perfect

for our following process. The negative slope at the base of the pillar not only protected

the features underneath but also guaranteed the future liftoff solution penetration after

we did our thermal Silicon monoxide deposition. There are several important parameters

affecting the final undercut profiles, such as the reflectivity of the bottom layer, the baking

temperature, the final contact between chip and mask. The higher the bake temperature

is, the smaller the undercut is. The worse the contact is, the bigger the undercut is. For

example, if we did very bad work with the contact, the 3µm pillars could totally disappear

after developing. And the reflectivity of the bottom layer has more influence on the under-

exposure time. In one word, it is not right to claim that the bigger the undercut is, the

better the undercut is.

4.1.4 Ion milling and silicon monoxide deposition

Ion milling is used to define the area of the top Nb contact, hence the current-carrying area

of the junction.

After having the right size photoresist pillars made, the samples could be loaded into

our ion mill chamber. While assembling the sample holders, it is important to apply some

silver paste to the back of our chips before attaching the Copper heat sink. Recently, we

also used a thin stainless metal piece with one small opening at the center to reduce the

processing area. This not only cuts some heat during the ion milling and Silicon monoxide

deposition but also leaves two opening spots at the ends of the bottom multilayer strip, which

could serve as areas for the two contacts. After the samples were loaded into the ion mill
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chamber, a base pressure of 3 × 10−8 Torr or better was achieved with overnight pumping

by a turbo pump. A 3” Commonwealth Scientific Argon Ion beam source was used to get

the ion milling job done at an Argon pressure of 2 × 10−4 Torr. In order to conserve the

integrity of the ferromagnetic multilayers, the ion milling process was stopped at the middle

of the top protection copper layer, which was mentioned at the end of Section 4.1.2.

After ion milling, the turbo pump gate valve was fully opened again and the argon gas

was cut off from the chamber. Then we waited about 1 hour to let the ion mill gun cool

down a little bit and to get the chamber pressure down again. Then the heating power of

the SiOx source was turned on and slowly increased. In order to increase the uniformity

of the deposition, a special kind of baffled boat was used. There are two cavities in this

baffled boat. The SiOx was filled into one cavity on top of which there was a cap. When

the SiOx sublimes, the gas travels indirectly through a series of baffles to the other open

cavity which has an exhaust chimney for the vapor. During the evaporation, the sample was

kept rotating in order to increase uniformity. A SiOx layer with thickness around 100nm

was used to insulate the bottom multilayer from the following top Nb layer.

After the pillar pattern was transferred to the multilayer, the samples were taken out

of the chamber and were ready for resist removal. We used a special resist remover recom-

mended by the resist company, called AZ Kwik Strip Remover. We placed the chips in the

hot remover at around 80oC for about 10 minutes and then agitated the remover by the

ultrasonic bath for about another 10 minutes. The portion protected by the resist was clean

and shiny as shown in Fig. 4.5 for one pillar with 12µm diameter under optical microscope.
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Figure 4.6: One pillar with 12µm diameter under optical microscope after liftoff. The gold
colored circle is the exposed portion of the bottom multilayer and was defined by the resist
pillar. The red brownish part is the bottom multilayer covered with the SiOx layer.
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Figure 4.7: The photomasks used in our top leads definition. All the red features correspond
to the open places on the chips which will be covered with Nb film. The Left mask was for
the area-dependence project. The other two were for the SQUIDs.

4.1.5 Defining the top Nb pattern with photolithography

In order to well define our top leads, we used photolithography masks as shown in Fig. 4.7.

The layout of the top lithography mask carried enough alignment windows to make sure

the top features were exposed right on the place we required. For this step, I still applied

the same S1813 plus chlorobenzene recipe as we did for our bottom multilayer. After the

photolithography and before the sputtering, in the past we did one shallow ion milling for

about 10 seconds. However, it took about at least half a day to get every thing ready to

start this 10 seconds work. So instead I usually just do one minute Oxygen plasma cleaning

in the clean room, which could get rid of most resist residue. About 150nm Niobium was

sputtered with an additional 15nm Au protection layer. Fig. 4.8 shows a SQUID sample

under optical microscope, after lift-off.
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m10

Figure 4.8: Zoom in image of one SQUID sample under optical microscope. The silver-colored
fork-like features correspond to the top leads and the copper-colored fork-like features are
the bottom multilayer under the SiOx. The middle straight line was used to generate the
out-of-plane magnetic field.
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4.2 Fabrication Issues

4.2.1 Growth of base Nb layer

Since we usually have 150nm Niobium as our base seeding layer, the following growth of

multilayer magnetic thin films are affected by the surface morphology of it. There are many

papers in the literature discussing the Nb growth parameters which might influence the final

morphology, such as the substrate temperature, Ar pressure, deposition rate, etc. We tried

two ways to improve the heat conducting efficiency, such as applying high vacuum grease to

the back of our chips to increase the contact area and evaporating a thin layer of Au film

at the back of our substrates. We also tried reducing the thickness of Nb to 100nm to cut

the growth time, equivalently minimizing the heating issue. Even though all these efforts

did not have any apparent effect on our final samples, one must keep in mind there are all

kinds of possibilities which may affect our samples. We found one interesting recipe to get

a smoother Nb base layer, which also generated different results from our traditional pure

Nb base sample. This new base layer was made of Nb and Al stacks. In the following area

dependence chapter, some more detailed description of the stack with AFM surface scan

figures will be shown.

4.2.2 Undercut

As we already mentioned before, it was a very tricky step to obtain a proper and clean pillar.

There is no universal recipe to fit all delicate requirements. Right now, our current one in

the appendix works 100% for the similar base structure. Here we show one special case to

demonstrate the problem of too much undercut. Here we still applied our successful recipe.

We usually would have Cu[5nm]/Nb[20nm]/Au[15nm] as the protection layer for our bottom
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a. b.

Figure 4.9: a.)One 6µm diameter sample with too much undercut. This figure was taken
upside down right after the AZ5214E development. b.) Zoom in image of a corrupted 6µm
pillar under optical microscope after SiOx deposition and the liftoff from the same run of
Fig. a.)

multilayer structure to finish our run. The only thing different for the ruined ones shown

in this section was that the we replaced our traditional Cu[5nm]/Nb[20nm]/Au[15nm] with

Cu[5nm]/TiCu[Xnm]/Au[15nm].

As we can see from Fig. 4.9 , the resist wall of the AZ5214E pillar was not steep enough

at the top, which might cause the hard time of the following liftoff of the SiOx. The dirty

edge in Fig. 4.9.b) was found out to be the residue of SiOx as shown in SEM Fig. 4.10.

Even though we tried to leave these samples in the ultrasonic bath longer, the liftoff process

never turned out right. There could be two possible reasons for this problem. One might be

due to the reflectivity altered by the missing Nb layer or the alloying between TiCu and Au.

The other one might be due to the heat problem during the SiOx deposition, which could

cause the melt-down of the resist because of the excessive undercut. Therefore, the lesson

we learned here is that we should always do dose tests to make sure the recipe is compatible

with the new case even though there might be just some tiny change with our samples.
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Figure 4.10: SEM image of one 3µm pillar after the SiOX liftoff.
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Nb (150 nm)

Au (15 nm)
SiOX (100nm)

Nb (150 nm)

SiOX

F Multilayer

Nb (20 nm)

3 – 24 m

Si Substrate

Figure 4.11: Schematic diagram of S/F/S Josephson junction cross section. Current flow
is in the vertical direction inside the junction. Here we use the red and green colored Nb
Layers to match the Fig. 4.12.

4.3 Measurements

After we do our final liftoff, the samples are ready to be tested. The cross section of a typical

junction is shown in Fig. 4.11. The diameters for single Josephson junctions are 3,6,12 and

24µm. And the ones for SQUIDs are 6 and 12µm. Usually the ARn (product of area and

normal state resistance) for our typical junctions is around 8 f Ω∗m2. For SQUIDs, the ARn

for an individual junction is in the range of 20-40 f Ω ∗m2 due to the contribution from the

CuTi alloy. There are several ways to measure samples, such as differential measurements

dV/dI, I-V scan with SQUID-based current comparator circuits and I-V fast scan with room

temperature electronics. In most cases we obtained our data by using the I-V scan with

the SQUID-based system. There was one exception. S/I/S samples have much higher ARn,

which unlocked our SQUID circuits. In this case, we would have to use the I-V fast scan

system with room temperature electronics.

The typical contact leads configuration corresponding to our different type samples is

shown in Fig. 4.12. After taking into account the zero resistance property of superconducting

Nb film, we can see that these are typical four probe measurement setups. Our sample is
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Figure 4.12: Example showing the contact leads on the real samples a.) Single Josephson
junction. b.) and c.) SQUIDs

mounted on a Quick dipper probe, in which required leads, a superconducting magnet, a

persistent switch and a SQUID detector are built. For our routine Fraunhofer pattern scan,

an in-plane magnetic field is generated by the superconducting magnet. On the other hand,

if we need to observe the modulation of our SQUID sample, an out-of-plane magnetic field

will be provided by the on-chip strip wire by passing current through IM+ and IM−.

4.3.1 SQUID-based electronics setup

The essential piece of our SQUID-based electronics setup relies on a current comparator

module as shown in Fig. 4.13. Basically, the SQUID control electronics tries to maintain

the flux inside the SQUID loop by outputting enough current to make sure no circulating

current flows in the closed loop formed by the sample, the reference resistor and the coupling

inductive wire. This implies that the voltage across the sample is equal to the voltage across

the reference resistor. By ramping the current passing through the sample using a floating

current source, we can switch the Josephson junction between the superconducting state and

the normal state. At the same time, the output voltage of the SQUID electronics is recorded.
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DMM

Voltmeter
SQUID

ELECTROM

Transformer

Rfb

Rfb Rref

Figure 4.13: SQUID based current-comparator circuit used in our setup

Then we can calculate the voltage across the sample by the following relation,

VS = VDMM
Rref

Rref +Rfb
, (4.1)

where Rref=96µΩ (QD-1) or 126µΩ (QD-2) is the reference resistor, Rfb=10kΩ is the

feedback resistor and VDMM is the output voltage of the SQUID electronics recorded by the

DMM. Since Rfb is much bigger than the Rref , we can neglect the Rref in the denominator.

This setup works perfectly for our single junctions and SQUIDs. The data collection
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program and processing program were coded in Labview by me. A few detailed flow diagrams

of these programs can be found in the Appendix.

4.3.2 Room temperature-based electronics setup

In order to test out SIS junctions which have much larger resistance than S/F/S junctions,

we set up a room-temperature based electronics system as shown in Fig. 4.14. A Stanford

DS345 synthesized function generator provided a voltage across the sample Rs and ballast

resistor Rb. The actual voltage across the sample and the one provide by the function

generator were both recorded after proper amplification and signal filtering with a Labview

program written by me. At the same time, a data processing plug-in program was also

running to generate the final I-V data. This original data processing program coded in C++

was initially developed by Fred Pierre, which averaged several cycles together and generated

evenly spaced points along the current axis. However this program was very hard to use

and also assumed the system was working in the current source mode, which was not always

correct for us. After I carefully studied the averaging algorithm of that C++ program, I

wrote the Labview plug-in program which took account of all possible source modes and

could automatically output the final file by getting various input parameters from the source

file.

Input Parameters Source Parameters
Gain Mes (Gain from PreAmp * Gain from Filter )for Voltage Axis
Gain DC Gain from Filter for Current Axis
Steps Points along the final Current Axis

Cutting Level Threshold level to reframe the current axis
Rb Resistance of ballast resistor

Table 4.1: Parameters for Processing program of room temperature fraunhofer program.

Basically, there are two main averaging processes involved here in order to minimize the
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Figure 4.14: Diagram showing wiring configuration for the fast scan measurements. SFG
represents the function generator; GBB represent the Ground breaking box; PSW CONT
represents the persistent switch control box.

57



noise. One is the ensemble averaging, which is very similar to taking data N times to get

the average value for a particular reading. At the same time, we know that the standard

deviation of the mean of N measurements is smaller by a factor of
√
N than the standard

deviation of a single measurement. The only thing different here is that we collected many

cycles’ data and then average them by cycle. The other averaging process we use is boxcar

averaging. It is assumed that the analog analytical signal varies only slowly with time and

the average of a small number of adjacent points is a better measure of the signal than any

of the individual points. In practice 2 to 50 points are averaged to generate a final point.

Both averaging processes are performed by my plug-in program right after the data has been

collected. Last but not least, we intentionally picked a sweep frequency of 3.2 Hz to reduce

the noise from the power lines, which is a multiple of 60 Hz or 120 Hz. In this case, the

60Hz noise signal cancels every 4 cycles and the 120 Hz signal cancels every 2 cycles, which

is also the reason we pick up 48 cycles. A similar description of the ensemble averaging and

the scan frequency selection can be found in the dissertation of Dr. Mike Crosser.

Here is our case. We usually set the frequency of the function generator to 3.2Hz and

scan 48 cycles, which means improves the original signal/noise ratio by a factor of
√
48. And

we also set the ADC 488 to 10 KHz sampling rate. Therefore, for each raw scan we will have

150,000 current-voltage pairs shown by Equation 4.2. The number of data points in our final

processed data are set to 500, which means that each final point is obtained by averaging

the adjacent 6 points as shown by Equation 4.3.

Total samplings per scan = 10kHz × 48cycles

3.2Hz
= 150k samples (4.2)
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Points per boxcar averaging =
Total samplings per scan

500 ∗ 48cycles
≈ 6 points (4.3)

We just mention one more thing to close this chapter. Each raw data file for 150,000 current-

voltage pairs takes about 2.58MB storage. And if we scan a full Fraunhofer pattern with 60

points, it will take about 155MB. Therefore, data storage is one main drawback of this fast

scan system.
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Chapter 5

Interpretation of distortion of

Fraunhofer patterns and enhancement

of critical current

Very convincing evidence for the spin-triplet correlations has been confirmed by several

groups around the world [34, 62, 2, 57], including our group. We measured the critical cur-

rent IC in Josephson junctions with the structure Nb/F′/SAF/F′′/Nb, where SAF stands

for “synthetic antiferromagnet” and F′ and F′′ are thin ferromagnetic layers. The critical

current only provides information about the amplitude behavior of the spin-triplet supercur-

rent. However, the phase across the junctions was still a very intriguing problem. Several

theoretical works [9, 70, 31, 68] suggested that the junctions could be either 0 or π junctions,

depending on the chirality of the successive magnetic moments in the junction. In the π

junction, the current reverses its direction with respect to the phase difference between the

two superconducting electrodes, which is equivalent to the introduction of an extra π phase

factor in the Josephson supercurrent-phase relation. In traditional Josephson junctions, 0

junctions are very common. It is relatively easy to modulate between the 0 and π junction

in a spin-triplet S/F/S, which is not only of theoretical importance but also is crucial from

the application perspective. In this chapter and the next two chapters, we will try to unveil
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this problem.

5.1 Introduction to spin-triplet Nb/F′/SAF/F′′/Nb

Josephson junctions

We introduce some experimental background of our spin-triplet S/F′/SAF/F′′/S Josephson

junctions, most of which can be found in our previous publications [35, 73]. A cross section

of our samples is shown in Fig. 5.1. In order to keep the magnetic layers intact, we stop ion

milling between the bottom of the 20nm Nb and the bottom of the top 5nm Cu layer.

Nb or Nb/Al 

stack

Nb (20 nm)

Nb (200 nm)
SiOX

3 – 48 µµµµm

Au (15 nm)

SiOX

Cu (10 nm)

Cu (5 nm)

Co (dConm)

Cu (10 nm)

Cu (5 nm)

Ru (0.6 nm)

Ni (1.5nm)

Ni (1.5nm)

Co (dConm)

Si   substrate

Figure 5.1: Schematic diagram of Josephson junctions. The Cu buffer layers provide the
seeding layers for the growth of Ni and Co and also play an important role to decouple the
Ni layers from Co layers magnetically.

In Fig. 5.2 a) and b), we show the two voltage-current curves for a 3µm diameter spin-
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triplet Josephson junction with dCo = 6nm, respectively at in-plane field H = 0Oe and

H = −100Oe provided by the superconducting coil on our quick-dipper. All these data were

taken at 4.2K inside the liquid Helium. As we can see here clearly, the critical current of

Josephson junctions depends on the magnetic flux going through the junctions. After we

took a full critical current vs in-plane magnetic field scan, we could get a Fraunhofer pattern

as shown in Fig. 5.2 c), from which we could easily read the maximum critical current.

We determined the normal state resistance for a junction from the slope of the V-I curve

for I >> IC . Sometimes in order to do this, we applied a relatively high in-plane field, such

as 400Oe, to get IC close enough to zero and to make the V-I curve as straight as possible.

The product ICRN of the normal state resistance RN and the maximum critical current IC

is the most important parameter from which we can tell whether junctions are spin-singlet

or spin-triplet. Figure 5.3 shows ICRN for several types of junctions, versus total cobalt

thickness. We can see clearly here that the decay of the ICRN for samples with F′ and F′′ is

very slow compared to the decay for samples without F′ and F′′. This is the hard evidence

for the spin-triplet correlation. We also observed that the data for samples with Ni were

more scattered compared with others. We will discuss this in the following sections.

We just mention one more thing to end this section. All the above results come from

samples with one crucial center piece- the SAF. Recently, we replaced the SAF with a

Ni/[Co/Ni](n) multilayer with out-of-plane magnetization and we also observed the spin-

triplet Josephson current [26].
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5.2 Theoretical background of the phase of long-range

spin-triplet Josephson junctions

Since our long-range spin-triplet Josephson junctions are multilayered ferromagnetic struc-

tures, the Cooper pairs will definitely obtain center-of-mass momentum Q, which in turn

will result in the phase shift. Even the earlier theoretical works [9, 70, 31] already pointed

out that the different magnetic configuration determines whether the ground state of the

system is 0 − state or π − state. In 2010, Trifunovic et al. [68] studied our work [34] and

calculated the pair amplitudes by using a full self-consistent numerical solution of the Eilen-

berger equations. Their results also demonstrated that the ground state of our Josephson

junctions shown in Fig. 5.4 is 0− state for anti-parallel magnetizations in the two Ni layers

and that the ground state for the case with parallel magnetizations in the two Ni layers is

π − state.

If we stick with the similar simple argument in Section. 2.3.2, we also can come to the

same conclusion. We will discuss this problem using the schematic shown in Fig. 5.5.

After the spin-singlet Cooper pair goes through the top Ni layer NiT , it can develop into

two short-ranged components as depicted in Eqn. 5.1.

|χ >a =
1√
2
[| ↑↓>NiT exp(iQtNiT )− | ↓↑>NiT exp(−iQtNiT )]

= |0, 0 >NiT cos(QtNiT ) + i|1, 0 >NiT sin(QtNiT ) (5.1)

Since the short-ranged spin-singlet |0, 0 >NiT will decay even more in the following Co

layer CoT , we can neglect it. On the other hand, the short-ranged spin-triplet |1, 0 >NiT
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will evolve into three components shown in Eqn. 5.2.

|χ >b= i sin(QtNiT )(−
1√
2
|1, 1 >CoT sin θ1 + |1, 0 >CoT cos θ1 +

1√
2
|1,−1 >CoT sin θ1)

(5.2)

We further assume that the decay coefficient for majority band is α and that the decay

coefficient for minority band is β. Similarly, the short-ranged spin-triplet |1, 0 >CoT will

decay very quickly in the Co layer. Therefore, we can neglect |1, 0 >CoT . After the two

long-ranged spin-triplet components go through the top Co layer, we can get

|χ >c= i sin(QtNiT )(−
α√
2
|1, 1 >CoT +

β√
2
|1,−1 >CoT ) sin θ1 (5.3)

Since the majority band of the top Co layer CoT corresponds to the minority band of

the bottom Co layer CoB , and vis-a-vis for the minority band of the top Co layer:

|χ >d= i sin(QtNiT )(−
α√
2
|1,−1 >CoB +

β√
2
|1, 1 >CoB) sin θ1 (5.4)

After taking into account the further decay in the bottom Co layer, we can get

|χ >e = i sin(QtNiT )(−
αβ√
2
|1,−1 >CoB +

βα√
2
|1, 1 >CoB) sin θ1

= i
αβ sin(QtNiT )√

2
(−|1, 1 >CoT +|1,−1 >CoT ) sin θ1 (5.5)

When the electrons encounter the bottom interface between Co and Ni, they undergo
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another rotation and develop into

|χ >f= i
αβ sin(QtNiT )√

2
(− cos θ2|1, 1 >NiB −

√
2 sin θ2|1, 0 >NiB +cos θ2|1,−1 >NiB) sin θ1

(5.6)

Since long-ranged spin-triplet electron pairs |1,±1 > would not be able to converted into

spin-singlet Cooper pairs |0, 0 > , we can neglect them to simplify the math. After taking

into account the exchange field influence on the short-ranged spin-triplet |1, 0 > electron

pairs, we can obtain

|χ >g = −iαβ sin(QtNiT )√
2

(| ↑↓>NiB exp(iQtNiB) + | ↓↑>NiB exp(−iQtNiB)) sin θ1 sin θ2

= −iαβ sin(QtNiT )(|1, 0 >NiB cos(QtNiB) + i|0, 0 >NiB sin(QtNiB)) sin θ1 sin θ2

(5.7)

Finally, Cooper pairs reach the other-side of Josephson junctions,

|χ >h= αβ sin(QtNiT ) sin(QtNiB) sin θ1 sin θ2|0, 0 > (5.8)

Let us treat the simplest case as shown in Fig. 5.4. For the case in Fig. 5.4.(a) where

θ1 = π/2 and θ2 = −π/2, sin θ1 sin θ2=-1 corresponding to a π-state. For the case in Fig.

5.4.(b) where θ1 = −π/2 and θ2 = −π/2, sin θ1 sin θ2=1 corresponding to a 0-state.

Since our junctions consist of multiple domains in the virgin state, they should contain a

mixture of 0 and π subjunctions, shown in Fig. 5.6. It means that the total critical current

of the junction would be proportional to the square root of the the number of domains in a

junction according to a random walk model. Since the number of domains is proportional to
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the area of the junction, the total critical current of the junction would be proportional to

the square root of the area. This contradicts the traditional junction critical current which

is proportional to the area. After we fully magnetize the same junction with a large enough

in-plane field, the magnetizations of the two Ni layers are parallel to each other and the

π − state coupling would dominate across the whole junction. In this later case, the critical

current will be proportional to the junction area, similar to a traditional Josephson junction.

This issue was also our initial motivation to study the phase problem.

5.3 First indirect phase indication: critical current en-

hancement

What will happen for ferromagnetic Josephson junctions if we magnetize them by applying a

large enough in-plane field? Let’s take a look at the spin-singlet case made of our “synthetic

antiferromagnet” without the two extra thin ferromagnetic layers. We show the virgin state

and magnetized state Fraunhofer patterns in Fig. 5.7, for a 10-µm-diameter Josephson junc-

tion of the form Nb(150)/Cu(5)/Co(10)/Ru(0.6)/Co(10)/Cu(5)/Nb(25)/Au(15)/Nb(150),

where all thickness are in nm. There is not much difference between the virgin and the

magnetized states.

For spin-singlet Josephson junctions of the form Nb/PdNi/Nb, made of weekly ferro-

magnetic alloy Pd82Ni12, Dr. Khaire also observed similar results [40]. There is no obvious

change of critical current, even though the center of the Fraunhofer pattern shifted to a field

of around -160 Oe for a sample with dPdNi = 47.5nm and diameter equal to 10µm.

After we inserted the two very thin layer 1.5nm Ni layers, the first thing we noticed

was that the critical current of the samples increased several decades higher compared with
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those without thin Ni layers. And we also noticed that the critical current changed from

run to run and varied from sample to sample in the as-grown state as we shown in Fig. 5.3.

But after we applied a high enough in-plane field, we not only obtained much better shaped

Fraunhofer pattern but also enhanced the critical current several times as shown in Fig. 5.8.

At the same time, the center peak of the Fraunhofer patterns in the magnetized state were

shifted to a negative field by about 30 Oe, where the external applied flux exactly cancels

the intrinsic magnetic flux from the Ni layers.

As we can see, there was not too much change in the Fraunhofer patterns of the Co/Ru/Co

SAF spin-singlet Josephson junction before and after the high-field in-plane magnetization.

Therefore, we believe that it is more likely that the reorientation of the magnetic moments

of the 1.5nm Ni F′ and F′′ layers contributed to the final well-shaped Fraunhofer pattern.

To explain the IC enhancement, we need to introduce the spin-flop concept [35, 73]. In

the virgin state, the two Co layers are anti-ferromagnetically exchange coupled to each other

through the 0.6nm Ru while pointing in all possible directions in the plane. After we applied

a high enough in-plane magnetic field, the two Co layers would be roughly aligned parallel to

the external field direction. However, the two Co layers would never recover to the original

state after we remove the field. Instead, they would scissor to the direction perpendicular to

the external field while maintaining anti-ferromagnetic coupling.

As we already mentioned in the theory introduction, the phase of the junctions depends

on the relative orientations of the multi-ferromagnetic layers. The situation can be illustrated

in Fig. 5.10 .

When the samples were in the as-grown state, the phase fluctuation between 0 and π

of the sub-junctions across one Josephson junction was totally random since the junction

consisted of randomly distributed magnetic domains. In this case, if we applied a fixed
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gauge-invariant phase difference across the junction, some portion of the junction would

provide positive current while others would provide negative current. Then it is apparent

that the critical currents of these sub-junction would cancel one another. If we naively applied

the random-walk model to our case, the typical supercurrent in a given sample would be

proportional to the square root of the number of the domains, hence to the square root of

the junctions. On the other hand, after we magnetized our sample, we would expect the π

phase to be dominant across the junction since the magnetizations of the Ni F′ and F′′ were

parallel to each other, which meant the θ1 and θ2 in Fig. 5.10 had the same sign. In this

case, the critical current for the whole junction would be proportional to the junction area.

The evolution of Ic as the sample is magnetized is shown for a 6-µm diameter Josephson

junction in Fig. 5.11.a). And we also show the magnetization of a Cu(5nm)/Ni(1.5nm)

multilayer in Fig. 5.11.b). The sample was first measured in the as-grown state (H = 0).

Then the magnetizing field H was stepped up to 3600 Oe with varying step sizes evident in

the figure. After application of each value ofH, the field is reduced to zero and the Fraunhofer

pattern is measured in low field. The squares show the resulting values of IcRN as the sample

is magnetized. For low fields, nothing happens, which might mean the magnetization process

is still reversible. Then there is a shallow dip in IcRN for H near 500 Oe, which corresponds

to the turning point on the M-H curve in Fig. 5.11.b), which may be related to a change

of the Ni domain structure. When H is increased above 500 Oe, Ic increases sharply. The

field range where Ic increases corresponds to the field range where the Ni films become

magnetized, which matches the coercive field of the Ni as shown in Fig. 5.11.b). In Fig.

5.11.a), we also show what happens when a field is applied in the opposite direction to the

original magnetizing field (circles). Again, nothing happens for small field values. Then, as

the Ni films are demagnetized, Ic drops to values as low as or even lower than the value at
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the dip we observed when first magnetizing the samples. As the Ni films are re-magnetized

in the negative direction, Ic increases sharply again to a value essentially identical with that

observed on the positive field side. We have measured full magnetization curves for several

samples, and they all look very similar to the one shown in Fig. 5.11.a).

What would happen if we demagnetize samples with an oscillatory decaying in-plane

field as shown in Fig. 5.12 after we fully magnetize them? Here is what we did. We first

magnetized our samples with an in-plane field of 2000 Oe and then reduced the field to

zero. Then we measured our traditional Fraunhofer pattern in low field. Then we applied

one oscillatory decaying in-plane field to demagnetize the sample as shown in Fig. 5.12

with ADem stepping up from 0 Oe to 1200 Oe. After each demagnetization, we took one

Fraunhofer patten. Three typical Fraunhofer patterns representing the initial, mid and final

stage respectively are shown in Fig. 5.13.

After we took the Fraunhofer patterns for all the oscillatory-decay demagnetization fields,

we obtained ICRN vs ADem in Fig. 5.14.a). And we also show in Fig. 5.14.b) the corre-

sponding field shift of the center peak for each Fraunhofer pattern. Since there was no

obvious peak for the Fraunhofer with ADem = 1200Oe, we just set it to zero.

As we can see here, the product ICRN decreased by a factor of 20 relative to the value in

the “fully-magnetized” state, which also gave us the explanation why sometimes we observed

the critical current enhanced up to a factor of 20 compared with its value in the as-grown

state [35].

The most important thing we found out here is the modulation of the critical current in

our junctions by the external in-plane field, no matter whether we magnetized or demagne-

tized our samples.
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5.4 Discussion of distortion of Fraunhofer patterns

In order to understand the relationship between magnetic states and the quality of Fraunhfer

patterns, we first take a look at the spin-singlet case, as shown in Fig. 5.7 for junctions

containing the SAF center piece, and Fig. 5.15 for junctions of the form Nb/Ni/Nb. As we

can see, there is clearly a sharp contrast between these two types of ferromagnetic spin-singlet

Josephson junctions. At the same time, it is well known and has been discussed in Section

3.1 that the general expression for Josephson current density J(x,y) in a Josephson junction

is related to the gauge invariant phase difference φ through J(x,y) = JCsin(φ), where

φ = ∆θ − (q∗/~)
∫
A(x,y)dl. And the total critical current Is is equal to

∫
J(x,y)dxdy.

In any real sample with large area, there are many magnetic domains across the junctions.

These randomly distributed magnetic domains modulate the local magnetic magnetic field

B(x,y). This means the local vector potential is also tuned by the local magnetic domains

indirectly since B(x,y) = ∇×A(x,y). And for our SAF case, we definitely can get much

nicer Fraunhofer patterns since we engineer the two Co layers to get zero local magnetic

flux from the magnetization. Yet for a strong ferromagnetic material like Ni or Co not

incorporated into a SAF, the distortion of Fraunhofer patterns is almost unavoidable, because

of the presence of the randomly oriented magnetic flux due to randomly distributed magnetic

domains. Dr. Khaire et al. discussed four ways to avoid the distortion of the Fraunhofer

pattern [40]. Obviously we now know for sure that the carefully engineered SAF is a good

option. Another way is to work with materials with weak magnetization such as PdNi, in

order to minimize the local magnetic flux contributed by randomly distributed magnetic

domains. As shown in Fig. Allfraunhofers, Dr. Khaire obtained clean Fraunhofer patterns

for Josephson junctions of the form Nb/PdNi/Nb with different thickness of PdNi [40].
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Yet there is an alternative explanation for the distortion of Fraunhofer patterns. Let

us review some results from previous literatures [40, 38]. As we mentioned in the theory

introduction chapter, the phase of the spin-singlet Josephson junctions can be controlled by

the thickness of the magnetic layer. In other words, the proximity effect in a ferromagnetic

layer can lead to a damped oscillation of the superconducting order parameter in the F-layers.

Kemmler et al. [38] studied the most well controlled case with 0-π Josephson junctions, by

putting a 0 junction and π junction side by side in one single junction as shown in Fig.

kemmerlerzeropi.And the corresponding experimental Fraunhofer patterns were also shown

in Fig. kemmerlerzeropiJJ for single phase junctions and for 0-π junctions. It was very

obvious that Kemmler etc. found the double peaks in the junctions with two different phase

sub-junctions.

Dr. Khaire in our group also observed similar results. For her Nb/PdNi/Nb Josephson

junctions, she observed clearly single peaks for junctions with various thickness as shown in

Allfraunhofers. It is because the oscillation period for PdNi is around 4.2nm [40]. Therefore,

the junctions were all single phase ones.

On the other hand, Dr. Khaire also found some very “messy” Fraunhofer patterns for

the Nb/Ni/Nb junctions [40], in the virgin state and magnetized state. The reason for this

observation on Ni Josephson junctions is that the very short oscillation period for Ni results

in the 0 and π sub-junctions randomly distributed across the whole junction, no matter

whether it is magnetized or not.

The reason I favor this alternative explanation is that Dr. Khaire did not get undistorted

Fraunhofer patterns even after she fully magnetized her Nb/Ni/Nb junctions. And I would

like to mention one more comment on the SAF spin-singlet Josephson junction systems.

We all know that Co is a strong magnetic material. Why did the SAF junctions not show
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distorted Fraunhofer patterns in the as-grown state and the magnetized state? The reason

is also pretty straightforward. As we know, Cooper pairs would gain one positive center-of-

mass momentum Q which in turn causes the phase shift δϕ1 = QdCo
1 in the first Co layer.

However, the same Cooper pairs would obtain one negative center-of-mass momentum -Q

in the second layer giving the phase shift δϕ2 = −QdCo
2 . Therefore in sum there is not

any phase shift and also no gain in center momentum, which means there would not be

any damped oscillatory order parameter [11]. Then one uniform phase across the SAF type

Josephson junction will be the case no matter whether it is in the as-grown state or in the

magnetized state.

Even though the mechanism of the phase control in spin-triplet Josephson junctions

is different from the one in spin-singlet Josephson junctions, the concept of 0 and π still

can be applied with spin-triplet Josephson junctions. Regarding our spin-triplet Josephson

junctions, we can now see easily that the “poor” quality of final Fraunhofer patterns in the

as-grown state can be associated with the mixture of 0 and π sub-junctions. However in the

magnetized state, we can regain nice single peak Fraunhofer patterns because one uniform

phase dominates across junctions.

The biggest difference between spin-triplet Josephson junctions and spin-singlet Joseph-

son junctions is whether it is possible to recover neat Frauhofer patterns and to observe the

enhancement of critical current after fully magnetizing the samples. The phases of spin-

singlet junctions are predetermined by the thickness of local magnetic film instead of mag-

netization. On the other hand, the phases across the spin-triplet junctions are determined

by the magnetization, which give us the extra freedom over the control of phase.
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Figure 5.2: a) and b) are two voltage-current V-I curves for a 3µm diameter spin-triplet
Josephson junction with dCo = 6nm, respectively at in-plane field H = 0Oe and H =
−100Oe. c) Critical current (IC) vs applied in-plane field (H) (Fraunhofer pattern) for the
same junction in the as-grown state. The solid lines are just guides for the eye.
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Figure 5.3: The product RN IC of the normal state resistance RN and the maximum critical
current IC vs total cobalt thickness (DCo = 2dCo) in the as-grown state. Red circles are
samples having F′ and F′′ =PdNi with dPdNi = 4nm, green stars are those having F′

and F′′ =Ni with dNi = 1.5nm, while black squares are those with only SAF. The black
solid line is a fit to Aexp(−DCo/ξ), with ξ = 2.3nm. And the red solid line is a fit to
A1exp(−DCo/ξ1) + A2exp(−DCo/ξ2), with ξ1 = 2.4 ± 0.7nm and ξ2 = 16.5 ± 2.2nm.
Red-circle and black-square data were taken by Dr. Khaire and Dr. Khasawneh respectively
[34]. The green-star data were collected by me from samples in the as-grown state.
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Figure 5.4: The phase of the long-range spin-triplet Josephson junction can be tuned by the
relative orientation of magnetizations of the two Ni layers. a) The ground state for parallel
magnetizations in the two Ni corresponds to π − state. b)On the other hand, the 0− state
is the case when the magnetizations of the two Ni layers are anti-parallel.
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Figure 5.5: Left: Schematic diagram of Josephson junction showing the different layer stacked
along the y axis; Right: Magnetizations of different magnetic layers, where we define the
clockwise rotation is position. And all the magnetizations are in the x-z plane.
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Figure 5.6: A schematic depiction of 0 and π states randomly distribute across a Josephson
junction.
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Figure 5.7: Fraunhofer patterns for a 10-µm-diameter spin-singlet Josephson junction made
of our “synthetic antiferromagnet”. The red circle dots were taken after the sample was
magnetized by an in-plane field of 2000Oe; the black squares were measured in the virgin
state. This sample was made by Dr. Khasawneh and the data were taken recently by me.
The solid lines are just guides for the eye.
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Figure 5.8: Fraunhofer patterns for two 3-µm diameter Josephson junctions with F′=F′′=Ni
(1.2nm) and dCo = 6nm, measured in the virgin state (a and c), and after the samples were
magnetized by a large in-plane field (b and d). Two separate virgin-state runs are shown for
each sample. The lines are only guides for the eye. [73]
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Figure 5.9: A schematic cartoon showing the different stages of magnetization process of
the Ni and Co layers before and after we applied a high magnetic field ( for example about
1200Oe). a) Cross section of the magnetic multilayer. b) Magnetization of the domains of
the ferromagnetic layers in virgin state. c) Magnetization of the domains while a high field
is being applied. d) Magnetization of the domains after the field is removed.
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Figure 5.10: Cartoon showing relative orientations of magnetization for the ferromagnetic
layers in our Josephson junctions when viewing along the current flowing direction (i.e. along
the direnction perpendicular to the Si substrate as shown in Fig. 5.1). If angles θ1 and θ2
have the same sign (where we constrain |θ1|, |θ2| < π), the junction will have π coupling; if
they have opposite signs, the junction will have 0 coupling. [73]
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Figure 5.11: a) IcRN product vs. applied in-plane field for a 6-µm diameter Josephson
junction. The sample was first magnetized in positive field (squares), then the sample was
demagnetized and finally re-magnetized in negative field (circles) [73]. b)Magnetization M
vs. in-plane field H (black squares); the sample for M vs. H measurement was made by
Carolin Klose and also was measured by her.
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Figure 5.12: One oscillatory decaying demagnetization field example following the ADem ∗
sin ((i/P ) ∗ π) ∗ exp (−(i/ξ) with ADem = 1100Oe, P = 10 and ξ = 190
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Figure 5.13: Fraunhofer pattern for a 6-µm diameter Josephson junction a) right after sample
was magnetized at 2000 Oe . b) after applying ADem = 800Oe . c) after applying ADem =
1200Oe
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Figure 5.14: First we fully magnetized our sample with 2000 Oe in-plane field. Then we
took Fraunhofer patterns after applying step-increasing oscillatory decaying in-plane field.
a) ICRN vs ADem, b)field shift of the center peak Hshift vs. ADem.
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Figure 5.15: (color online). Critical current vs. in-plane magnetic field for a Nb/Ni/Nb
circular Josephson junction of diameter 10µm, with dNi = 11nm. The black points (squares)
were measured in the virgin state, whereas the red points (circles) were measured after
magnetizing the sample in an external field of +1 kOe. The random pattern arises due
to the intrinsic magnetic flux of the complex domain structure of the Ni layer. Reprinted
figure with permission from [40] as follows: T.S. Khaire, W.P. Pratt Jr. and N.O. Birge,
Phys. Rev. B 79, 094523 (2009). Copyright (2009) by the American Physical Society.
http://link.aps.org/doi/10.1103/PhysRevB.79.094523
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Chapter 6

Experimental results for area

dependence of triplet Josephson

junctions

We already notice in the previous chapter that the phase of spin-triplet junctions is controlled

by the magnetic moments in them. There are also two indirect pieces of evidence for the

existence of 0 and π sub-junctions. We expected that the total critical current of our spin-

triplet junctions will be proportional to the square root of the area in the as-grown state. In

this chapter, we try to test this idea. The schematic diagram of Josephson junction samples

has already been shown in Fig. 5.1.

6.1 Josephson junctions with Nb base

Initially, when I started with this area-dependence project, I did not have too much knowl-

edge about what I would expect. And we also held our breath hoping that we would get nice

Fraunhofer patterns even in the as-grown state. Therefore, when we observed Fraunhofer

patterns as shown in Fig. 6.1 for our 2001 run, we thought that maybe the Ru layer did not

behave very well or that the we should try PdNi instead of Ni as the F′ and F′′ layers.
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Figure 6.1: Josephson junction critical current vs. in-plane magnetic field for junctions with
similar structure as shown in Fig. 5.1 , except here we have dCo = 10nm. The data shown
in a),b),c) and d) were taken in the as-grown state on a single substrate from run-2001, with
junction diameter of 3µm, 6µm,12µm and 24µm respectively.
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At the same time, I also made a mistake during our magnetization process. Even though

at the beginning I realized that magnetic flux would be trapped in the Nb leads after we

magnetized our samples with a high in-plane field, I just did not force myself to remove the

flux by lifting our quick dipper above the liquid helium level. And we were also misled by

an assumption that pillars near the edge of substrates would not work most of time. These

two issues further enhanced my misunderstanding regarding what we obtained.

It really took us a little while to figure out the mystery. We tested our Ru exchange

coupling and made sure that 0.6nm thickness could work for us. And we also proposed to

replace the Ni with PdNi [74] and found there was no obvious improvement of quality of

Fraunhofer patterns in the as-grown state. We also gave up the mechanical mask to arrange

six pillars as close as possible to the center of chips by using photolithography, which also did

not improve the quality of the Fraunhofer patterns in the virgin state. Later the thickness

of Co was also cut to 6nm to see whether it could make some difference. We did not find

any correlation of quality of Fraunhofer patterns with the thickness of Co layers.

After we made sure that nothing was wrong with what we did, we proceeded to study the

area-dependence of critical current of Josephson junctions again. We fabricated and mea-

sured a large number of samples with diameters of 3µm, 6µm and 12µm with the structure

shown in Fig. 5.1. Fig. 6.2 shows the results for samples grown on our traditional thick

(150 nm) superconducting Nb base, for both the virgin and magnetized states. The points

representing the magnetized state (open symbols) are averages of the measurements taken

after application of 1600, 2000, and 2400 Oe in-plane field. (There is little variation of IcRN

between those three measurements as we can see from Fig. 5.11.(a).) The solid symbols

represent the virgin state. We usually averaged over two runs, although a few samples were

measured only once, and one sample was measured 5 times in the virgin state.
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Figure 6.2: (color online) Critical current times normal-state resistance vs. junction diameter
for Josephson junctions grown on a 150-nm Nb base electrode from run-2051. Solid symbols
represent virgin-state data; open symbols represent data acquired after the samples were
magnetized by a large (≈2000 Oe) in-plane magnetic field. [73]

The results of the magnetized state measurements in Fig. 6.2 clearly show that IcRN

is essentially independent of sample area. And we also observed that the product RNA

of normal state resistance and junction area was roughly a constant equal to 8fΩ · m2,

which means RN is inversely proportional to junction area. These observations imply that

Ic is proportional to area. That is the usual situation, and is what one expects when the

Josephson coupling is uniform across the junction area. In contrast, the virgin-state data

show a decrease in IcRN with increasing sample size. According to the random walk model
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discussed previously, Ic should scale with the square-root of the junction area, hence IcRN

should scale inversely with the square-root of area, or equivalently, inversely with junction

diameter D. The virgin-state data shown in Fig. 6.2 do exhibit a noticeable decrease with

junction diameter, supporting the random walk picture, although the dependence is slightly

less steep than Ic ∝ D−1.

If we now look retrospectively at what we did, we realized there was nothing wrong with

our first batch of samples (run-2001). And the data of junctions with diameter of 24µm

located close to the edge of substrates is definitely also reliable. Fig. 6.3 shows a global

decrease trend in IcRN with increasing sample size. Since I did not properly remove trapped

flux from the Nb film, the Fraunhofer patterns in the magnetized state did not behave very

well especially for the large area samples. Therefore, I do not include the magnetized state

for 24µm pillars in Fig. 6.3. However, we also observed that IcRN in the magnetized state

is independent with area [74] without including the 24µm junctions.

6.2 Josephson junctions with Nb/Al multilayer base

While we were still struggling to figure out why we could not get nice virgin-state Fraun-

hofer patterns, we learned that a (Nb/Al)n multilayer could provide a much smoother growth

interface for the following layers compared with our traditional pure Nb base [67, 61]. Re-

searchers often took advantage of this (Nb/Al)n multilayer structure when trying to make

more reliable tunnel junctions. So we fabricated two types of base layers without the fol-

lowing magnetic multilayer in order to assess the quality of Nb/Al multilayer, of the form

[Nb(40nm)/Al(2.4nm)]3/Nb(40nm)/Au(15nm). The results from atomic force microscopy

measurement are shown in Fig. 6.4 . The root-mean-squared roughnesses of the pure 150-nm-
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Figure 6.3: (color online) Critical current times normal-state resistance vs. junction diameter
in the as-grown state for Josephson junctions grown(solid symbols)and in the magnetized
state (open symbols) on a 150-nm Nb base electrode from run-2001.

thick Nb and Nb/Al multilayer are 0.53 nm and 0.23 nm, respectively, over the 250×250nm2

area shown. We can see clearly that the Nb/Al multilayer provides a smoother base than

the pure Nb.

In the same run-2051, we also fabricated some samples with the Nb/Al multilayer base

of the form [Nb(40nm)/Al(2.4nm)]3/Nb(40nm)/Au(15nm) as shown in Fig. 5.1. We made

similar measurement on these samples, as we did with those with the pure Nb base. We

found that IcRN of these samples is independent of junction diameter both in the as-grown
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Figure 6.4: (color online) Atomic force microscopy pictures of (a) a 150-nm thick Nb base
layer and (b) a Nb/Al multilayer. [73]
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state and in the magnetized state, as shown in Fig. 6.5 . However, the value of IcRN of

these samples in the magnetized state is still very close to those of the pure Nb base samples.

3 6 9 12 15
100

1000

 

 

 D ( m)

I C
R

N
 (n

V)

Figure 6.5: (color online) Critical current times normal-state resistance vs. junction diameter
for Josephson junctions grown on a Nb/Al multilayer from run-2051. Solid symbols represent
virgin-state data; open symbols represent data acquired after the samples were magnetized
by a large (2000 Oe) in-plane magnetic field. [73]

6.3 Discussion

After we average a set of samples over the same size for the different base type junctions, we

get the results as shown in Fig. 6.6. We immediately notice that (i) IcRN for the magnetized
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state is independent on the size of junctions and does not depend too much on the type of

base layer; (ii) the virgin-state data for the Nb base samples shows the decreasing trend with

the increasing junction diameter, but not quite following the D−1 shown by the dot-dashed

line; (iii) the virgin-state data of samples on the Nb/Al multilayer base demonstrate the

independence of junction diameter.
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Figure 6.6: (color online) Summary of IcRN data for all the Josephson junctions studied in
run-2051. Each symbol represents the average value for all samples of a given size and base
layer, in either the virgin-state (solid symbols) or after being magnetized (open symbols).
The circles represent samples grown on a 150-nm Nb base layer, while the triangles represent
samples grown on a Nb/Al multilayer described in the text. The dot-dashed line illustrates
the relation IcRN ∝ D−1. [73]

Obviously, the roughness of the base layer does have a very profound effect on the area-
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dependence of critical current in the virgin state.

One possibility is that the roughness of the Nb base layer perturbs the domain structure

of the Ni F′ and F′′ layers –possibly even to the extent that one or both of those layers are

not continuous. From some research, researchers have learned that many magnetic materials

exhibit magnetically “dead” layers when placed next to nonmagnetic or superconducting

materials. [65, 50, 51] Dead layers can arise even at a perfect interface due to electronic

structure effects; [45] they are typically exacerbated by interface roughness or by interdiffu-

sion between the two metals near the interface. In cases when surface roughness is dominant,

one can imagine the presence of isolated magnetic or superparamagnetic clusters that are

only weakly coupled to the bulk of the magnetic film; in the latter case one would expect

large spin fluctuations to be highly detrimental to superconductivity.

A second explanation is that the observed sub-linear scaling of the supercurrent with

junction area for the junctions grown on the rougher Nb base is simply a reflection of the

gradual deterioration of the quality of the Fraunhofer patterns with increasing sample size.

A possible way to address both issues would be to use PdNi alloy rather than pure Ni

as the F′ and F′′ layers. PdNi is a weak ferromagnetic material with small magnetization.

And we already know that we were able to produce Josephson junctions with high-quality

Fraunhofer patterns even with much thicker PdNi layers when Dr. Khaire’s studied the spin-

singlet Josephson junctions as shown in Fig. ??. The optimal PdNi thickness for producing

spin-triplet supercurrent is in the range of 4-6 nm, [34] which is much thicker than the 1-2

nm optimal range for Ni, [41].

We made some samples with dCo = 10nm and dPdNi = 4nm on the pure Nb base while

keeping the rest of the structure of Fig. 5.1. However, we did not gain anything by replacing

Ni with PdNi as shown in Fig. 6.7. The Fraunhofer patterns did not turn out nice and neat

96



as we expected.

(a)

(d)(c)

(b)

Figure 6.7: Josephson junction critical current vs. in-plane magnetic field for junctions with
similar structure as shown in Fig. 5.1 , except here we have dCo = 10nm and dPdNi = 4nm.
The data shown in a),b),c) and d) were taken in the as-grown state on a single substrate
from run-2037, with junction diameter of 3µm, 6µm,12µm and 24µm respectively.

What we can comment on this issue is that the roughness difference of these two type

of base layers really affects the domains of Ni layers in a unique way. And the Josephson

junctions grown on Nb/Al multilayer base do not follow the random walk model.

Zyuzin and Spivak (ZS) have proposed a brand-new view of a Josephson junction contain-

ing a random spatially-varying pattern of 0 and π couplings. [77] Those authors addressed

S/F/S junctions with spin-singlet rather than spin-triplet supercurrent, and considered the
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situation where the F-layer thickness is large, so that the average supercurrent is small,

whereas mesoscopic fluctuations of the Josephson coupling have random sign. Fluctuations

in F-layer thickness with spin-singlet Josephson junctions could produce spatially-varying 0

and π couplings. In our samples, the spin-singlet supercurrent is negligibly small (see Figure

3 in Ref. [34]), and the random-sign spin-triplet Josephson coupling arises from the local

variations in magnetic domain structure. In spite of the different mechanisms underlying

the spatially-varying random-sign Josephson coupling, there is no apparent reason why the

ZS model should not apply to our spin-triplet Josephson junctions. ZS calculated the total

energy of such a junction, and concluded that the ground state corresponds to, on average,

a π/2 phase difference between the two superconducting electrodes. The phase difference

is spatially modulated, with local variations toward lower phase difference in regions of 0-

coupling and larger phase difference in regions of π-coupling. According to the ZS result, the

total supercurrent scales with the junction area, as is the case for conventional Josephson

junctions. And in the next chapter, we will try to investigate the ground state of our Nb/Al

multilayer base samples using a Superconducting Quantum Interference Device (SQUID).
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Chapter 7

First attempt on spin-triplet SQUID

In the previous chapter, it is pretty surprising to notice that the value of IcRN of Nb/Al

multilayer based samples in the as-grown state is a constant. We discussed the possibility

of π/2 phase difference in the ground state proposed by Zyuzin and Spivak. That brings up

a very interesting question, namely, what is the flux period for a DC SQUID made of two

π/2 Josephson junctions? Or in other words, can we determine whether we really have π/2

Josephson junctions if we can get different SQUID behavior? In this chapter, we will discuss

our first attempt to resolve this question using spin-triplet SQUIDs.

7.1 Introduction to SQUID

7.1.1 π/2 Josephson junctions

Since the states corresponding to π/2 and −π/2 are degenerate and have the minimum

Josephson energy, we can write down the following energy expression:

EJ = EJ1(cos 2φ+ 1) (7.1)
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Figure 7.1: Normalized Josephson junction current and coupling energy for π/2-junction
with phase-difference φ as a variable.

We can also find the current-phase relationship from

I =
2π

Φ0

∂EJ

∂φ
= −4π

Φ0
EJ1 sin 2φ = −Ic1 sin 2φ (7.2)

where EJ1 = (Φ0Ic1)/(4π).

In Fig. 7.1, we show the normalized Josephson junction current and coupling energy for

a π/2 junction. By comparing with the 0 and π junctions discussed in Section 3.3, the most

obvious difference is that the period of the π/2 junction is half the period of 0 or π junction.

7.1.2 Traditional SQUID

We have learned that all the electron-pairs in a superconductor can be described by a single

wave function where the electron pairs wave retain phase coherence over long distances. And
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Fraunhofer patterns in Josephson junctions are one of the phenomena that demonstrate the

coherence of Cooper pairs and the diffraction effect of the coherence. Similarly to ordinary

electromagnetic waves, interference can be observed with Cooper-pair waves. One type of

superconducting quantum interference device is made of two Josephson junctions, as shown

in Fig. 7.2. Here we consider the simplest case by assuming that the two junctions have

the identical critical current Ic. According to the first Josephson relation Eqn. 3.13, the

two junctions are characterized by the current-phase relation I1 = Ic sin(φad) and I2 =

Ic sin(φbc). Then we can get the total current

I = Ic sinφad + Ic sinφbc = 2Ic cos(
φad − φbc

2
) sin(

φad + φbc
2

) (7.3)

By following the nearly identical procedure as in section 3.4, we can obtain the gauge-

invariant phase difference φad and φbc. In order to satisfy the requirement that the total

phase change along the closed contour is 2πn, we demand

∮
∇θ · dl = 2πn

= ∆θa⇒b +∆θb⇒c +∆θc⇒d +∆θd⇒a (7.4)

The different terms in Eqn. 7.4 are shown below,

∆θa⇒b =

∫ b

a

2π

Φ0
(

m∗

nsq∗2
Js +A) · d

−→
l (7.5)

∆θb⇒c = −φbc +
2π

Φ0

∫ c

b
A · d

−→
l (7.6)

∆θc⇒d =

∫ d

c

2π

Φ0
(

m∗

nsq∗2
Js +A) · d

−→
l (7.7)

∆θd⇒a = φad +
2π

Φ0

∫ a

d
A · d

−→
l . (7.8)
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Figure 7.2: A dc-SQUID consisting of two Josephson junctions in parallel connected by a
bulk superconducting loop. The broken blue wire indicates the close contour path.
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Substitution of Eqn.(7.5-7.8) into Eqn. 7.4 yields

φad − φbc = 2nπ − 2π

Φ0

∮
C
A · d

−→
l −

∫ b

a

2π

Φ0

m∗

nsq∗2
Js · d

−→
l −

∫ d

c

2π

Φ0

m∗

nsq∗2
Js · d

−→
l (7.9)

Since the superconducting loop is made of superconducting material with thickness and

wideness much larger than the London penetration depth, we can take the integration path

deep inside the superconducting material where the current density Js is negligible. Therefore

the last two terms on the right side of Eqn. (7.9) can be omitted. And the integration of A

around the closed contour is equal to the total flux Φ enclosed by the superconducting loop.

Then we can get

φbc − φad =
2πΦ

Φ0
− 2πn. (7.10)

Therefore we can see that the the gauge-invariant phase difference φad and φbc across the

two junctions are not independent but are interlocked together via the boundary requirement

obtained above.

We can rewrite Eqn. 7.3

I = 2Ic cos(
πΦ

Φ0
) sin(

πΦ

Φ0
+ φad). (7.11)

In general, the superconducting loop has a finite inductance L, so we have to take into

account the flux generated by the circulating current around loop Icir = (I1 − I2)/2. Then

the total flux threading the loop is given by

Φ = Φext + ΦL = Φext + LIcir

= Φext + LIc sin(
φad − φbc

2
) cos(

φad + φbc
2

) (7.12)
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Then we can rewrite the total flux as a function of Φext and φad:

Φ = Φext − LIc sin(
πΦ

Φ0
) cos(

πΦ

Φ0
+ φad) (7.13)

Even though here we consider the most ideal case by assuming the critical current in the

two arms is identical, we still have to solve the Eqns. (7.11) and (7.13) self-consistently in

order to determine the behavior of the SQUID [53].

Before we analyze the limiting cases, we first introduce the screening parameter βL defined

as

βL ≡
2LIc
Φ0

(7.14)

which defines the ratio between the magnetic flux generated by the maximum circulating

current Ic and one half the quantum flux Φ0/2.

7.1.3 Screening effect in SQUID

In this section we are going to take a look at two limiting cases related to the screening effect

due to the finite inductance L of the superconducting loop. Then we will discuss the more

general case.

7.1.3.1 Negligible Screening effect with βL ≪ 1

In the case that βL is far less than one, we can neglect the flux generated by the circulating

current and can treat the external flux as the total flux threading the superconducting loop.

At a given Φext, we can obtain the maximum supercurrent of the SQUID by maximizing
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Figure 7.3: For a SQUID with two identical Josephson junctions in the limit βL ≪ 1, a) the
maximum supercurrent IMax

s versus the applied magnetic flux Φext; b) the total flux versus
the applied magnetic flux Φext.

Eqn. 7.11 with respect to φad. From condition dI/dφad = 0, we can get

cos(
πΦ

Φ0
− nπ + φad) = 0 (7.15)

In other words, we will have sin((πΦ)/Φ0−nπ+φad) = ±1. Then we can find the maximum

supercurrent of the SQUID

IMax
s ≃ 2Ic

∣∣∣∣cos(πΦΦ0
)

∣∣∣∣ . (7.16)

Fig. 7.3 shows the periodic oscillation of the supercurrent as a function of the external flux.

7.1.3.2 Large Screening effect with βL ≫ 1

In the limit βL ≫ 1, it means Φ0/(2LIc)→ 0. Then we can obtain from Eqn. 7.13

0 = sin(
πΦ

Φ0
) cos(

πΦ

Φ0
+ φad) (7.17)
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Figure 7.4: For a SQUID with two identical Josephson junctions in the limit βL ≫ 1, a) the
supercurrent Is versus the applied magnetic flux Φext; b) the total flux versus the applied
magnetic flux Φext.

from which we can get

sin(
πΦ

Φ0
) = 0. (7.18)

The above relation shows Φ = nΦ0, which means that the total flux in the loop is quantized

in Φ0. The SQUID behaves more and more like but not identical to a single loop formed

by a superconducting wire. And the critical current corresponding to this case is equal to

Is = 2ic and is independent of the magnetic field, as shown in Fig. 7.4

7.1.3.3 Finite screening effect

For any finite βL, we have to solve Eqns. (7.11) and (7.13) self-consistently, which is far

beyond our research scope. At the earlier time of the SQUID discovery, researchers [53, 69]

already developed ways to deal with this problem. In Fig. 7.5, we present a schematic Is

versus Φext plot. The depth of the modulation of the critical current is reduced due to the

appreciable screening of the loop. But the period of the modulation is still one quantum flux

Φ0.
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Figure 7.5: A schematic interference pattern for a SQUID with two identical Josephson
junctions with finite βL, the supercurrent Is versus the applied magnetic flux Φext

7.1.4 π/2 SQUID

If we replace the two traditional 0− state Josephson junctions in the SQUID loop with two

π/2 Josephson junctions, then we need to replace Eqn. 7.11 and Eqn. 7.13 with the following

two:

I = −2Ic1 cos(2
πΦ

Φ0
) sin(2

πΦ

Φ0
+ 2φad). (7.19)

Φ = Φext + LIc1 sin(2
πΦ

Φ0
) cos(2

πΦ

Φ0
+ 2φad). (7.20)

Obviously the period of the critical current modulation by the external applied magnetic

field flux will be half compared with Eqn. 7.11. In the case βL ≪ 1, we also can obtain the

maximum supercurrent

IMax
s ≃ 2Ic1

∣∣∣∣cos(2πΦΦ0
)

∣∣∣∣ . (7.21)

Fig. 7.6 shows the interference patten in the case βL ≪ 1.
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Figure 7.6: A schematic interference pattern for a SQUID with two identical π/2 Josephson
junctions in the case βL ≪ 1

7.1.5 Four basic SQUID design parameters

There are basically four parameters which should be chosen to obtain a stable SQUID,

as listed below. More detailed discussion about these parameters has to be involved with

numerical simulations [66, 22, 43, 18].

1. Stewart-McCumber parameter βc: In order to avoid the hysteretic I-V curve, this

parameter has to be restricted to βc ≤ 1. Since our Josephson junctions do not involve

any oxide layer, our S/N/S and S/F/S junctions never show any hysteretic I-V curve.

Therefore we do not need to worry about this parameter too much.

2. Screening parameter βL: In order to get higher modulation of the supercurrent in the

SQUID loop, we would think βL = 0 would be the perfect choice. And at the same

time, it also makes sense that we need larger loop inductance L to increase the SQUID

sensitivity. Most of the time, people will choose βL ≃ 1. Let us assume we have a
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square shaped SQUID loop with dimension d = 10µm. Then according to one empirical

equation [7], we can estimate the inductance of our loop is L = 1.25µ0d ≃ 1.6×10−11H.

Finally we can see the constraint on our critical supercurrent Ic < Φ0/(2L) = 64µA

3. Josephson coupling energy EJ : The junction critical current should be much larger

than the thermal noise current. Otherwise, the phase fluctuation within the junction

will cause the loss of the phase coherence. Computer simulations shows the requirement

to be EJ = Φ0I0/(2π) & 5kBT . In the case of liquid helium temperature, Ic >

(10πkBT (4.2K))/Φ0 = 0.88µA.

4. SQUID loop inductance L: The thermal energy kBT causes a root mean square thermal

noise flux in the loop < Φ2
th >1/2=

√
kBTL. Then we definitely would like to keep this

thermal noise flux much smaller than one quantum flux Φ0. The constraint on the L is

L . Φ2
0/(4kBT ). At 4.2K, we can find out L ≤ 18nH, which is satisfied automatically

by a 10× 10µm SQUID loop.

From the above sections, we can see that the modulation period of the π/2 SQUID is

half of the period of the traditional SQUID. As we stated in the beginning of the chapter,

we should be able to tell whether our spin-triplet Josephson junctions in our SQUID are π/2

junctions or not, based on this period difference.

7.2 Calibration of flux coupling to S/N/S SQUID

Since it is the first time for us to design SQUIDs, to make SQUIDs and to measure them, we

did not have much idea about the whole process. At the same time, we also need to make

sure that the critical current of our Josephson junctions is within the design value range
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in order to make our SQUID workable. Therefore we spent some time in searching for the

proper material to decrease the critical current of our spin-triplet ferromagnetic Josephson

junctions, as discussed in Appendix 9.3.2. Then we designed new photomasks and fabricated

some traditional SQUIDs made of S/N/S Josephson junctions.

Fig. 4.8 shows a SQUID sample under the optical microscope. The copper-colored

fork-like features are the bottom multilayer under the SiOx. The multilayer has the form

Nb(150nm)/CuTi(x)/Nb(20nm)/Au(10nm). The silver-colored fork-like features correspond

to the top leads of the form Nb(200nm)/Au(10nm). The top and bottom leads are insulated

from each other by 120nm thick SiOx. The middle straight line was used to generate the out-

of-plane magnetic field. Initially we thought about winding up a pancake coil to generate

a small out-plane magnetic field to modulate the external magnetic flux in our SQUID

loops. Finally we figured out that a straight on-chip wire can do the same thing and provide

adequate field in SQUID loops. The detailed sample fabrication process can be found in

Chapter .

All the data in this chapter were acquired at 4.2K with the sample in a liquid-helium

dewar. The contact lead configuration on real SQUID samples has been shown in Fig. 4.12 b)

and c). The commercial SQUID was used in a current comparitor circuit as a null detector to

get the traditional current-voltage (I-V) characteristic of the SQUID samples or to measure

the flux-voltage curve. All samples still exhibit the standard I-V characteristic similar to

an overdamped Josephson junction. In Fig. 7.8 a), we show several I-V plots without

any hysteresis. The major difference from our traditional “Frauhofer pattern scan” is that

we now replace the in-plane magnetic field with a much smaller out-of-plane field, which is

perpendicular to our SQUID loop (i.e. perpendicular to the substrate). And this out-of-plane

magnetic field is provided by the straight superconducting wire. After we take all I-V curves
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for each out-of-plane field, we can obtain a plot of Ic versus Iout−plane, where Iout−plane

is the scan current passing through that straight superconducting wire. Fig. 7.7 shows

two standard plots of Ic versus Iout−plane for two S/N/S SQUIDs on one of our samples.

The only difference between the two SQUIDs is the diameters of Josephson junctions. Two

Josephson junctions in one SQUID loop are 6µm in diameter. The two Josephson junctions

in the other SQUID loop are 12µm in diameter. And the loop opening of these two SQUIDs

are the same, 10µm × 10µm. Periodic Ic change with Iout−plane is clearly observed in our

SQUIDs. Then one periodicity of Iout−plane corresponds to one quantum flux Φ0. By the

way, the screening effect is also demonstrated in Fig. 7.7. The SQUID with Josephson

junctions of 12µm in diameter obviously shows more apparent screening effect compared

with the SQUID with Josephson junctions of 6µm in diameter, due to the higher critical

current, i.e. the ratio (Imax
c − Imin

c )/(Imax
c ) in Figure 7.7 b) is smaller than in Figure 7.7

a).

Since it usually takes a couple of hours to finish one scan of Ic versus Iout−plane, we

usually biased the SQUID with a fixed current and measured the modulated voltage as a

function of Iout−plane, which usually can be done within a few minutes. Fig. 7.8.b) shows

the output voltage modulated by the external out-plane flux for fixed bias current, where we

have already equated the calibrated periodicity of Iout−plane to one quantum flux.

7.3 Characterization of spin-triplet S/F/S SQUID

After we calibrated our SQUID loop patten, we moved forward to make our real spin-triplet

S/F/S SQUIDs. Now the bottom multilayer has the form [Nb(40)/Al(2.4)]3/Nb(40)/Au(10)

/Nb(20)/Cu(5)/Ni(1.5)/Cu(10) /Co(6)/Ru(0.6)/Co(6)/Cu(10) /Ni(1.5)/Cu(5)/Nb(5)
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Figure 7.7: The maximum supercurrent Ic versus the out-of-plane magnetic field generation
current Iout−plane for two S/N/S SQUID. a) Two Josephson junctions in the SQUID loop
are 6µm in diameter. b)Two Josephson junctions in the SQUID loop are 12µm in diameter.
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Figure 7.8: a) Current-voltage characteristics of the SQUID, corresponding to the different
Φout−plane. b)Output voltage modulated by the external out-of-plane flux for one bias
current 60µA.
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/Au(10),where all thicknesses are in nm. The top leads are of the form TiCu(x)/Nb(200nm)

/Au(10nm). The top and bottom leads are also insulated from each other by 120nm thick

SiOx. We also fabricated several Nb-based samples with the nearly identical structure in

the same run. The only difference is that we replaced [Nb(40)/Al(2.4)]3/Nb(40)/Au(10)

/Nb(20) portion with Nb(150) in the bottom multilayer, while keeping the rest exactly the

same. Here the extra TiCu layer was used to reduce the critical current density in our

junctions to satisfy the basic SQUID design rules.

We measured both Nb-based and Nb/Al multilayer-based samples, but none of our

SQUIDs showed half quantum flux periodicity. Fig. 7.9 shows the output voltage mod-

ulated by the external out-plane flux both for one of our Nb/Al multilayer-based samples

in the as-grown state and in the magnetized state. In the case of the magnetized state, we

first applied a high enough in-plane magnetic field to fully magnetize the sample. Then we

removed the high in-plane field and also pulled the quick-dipper above the liquid helium

level to remove the trapped flux from the superconducting Nb layer. Usually before we scan

the output voltage versus the external out-of-plane flux, we still scanned our traditional

“Fraunhofer-pattern” by sweeping an in-plane magnetic field, as shown in Fig. 7.10. Since

the peak Ic for the virgin state in Fig. 7.10.(a) locates at Hin−plane = 0, then we obtained

the output voltage versus the external out-of-plane flux by biasing the SQUID with the peak

Ic. In the case of the magnetized state, since the location corresponding the peak Ic is

around −30Oe, we not only biased the SQUID with the peak Ic but also applied the −30Oe

in-plane magnetic field.
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Figure 7.9: Output voltage modulated by the external out-of-plane flux for one bias current,
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magnetize the SQUID.
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7.4 Discussion of results

We can clearly see from Fig. 7.10 that we were able to get the enhanced critical current after

magnetizing the sample which was one of the signatures of spin-triplet Josephson junctions.

However, there was no evidence to demonstrate the half-quantum flux periodicity SQUID.

There are some possible explanations for the failure to observe π/2 state Josephson

junction-SQUID.

First of all, the Zyuzin and Spivak model may not apply to our finite size junctions.

Maybe small junctions are dominated by the largest sub-junction, which is 0 or π. Second

maybe the experimental method might not be right.
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Chapter 8

Conclusions and future perspective

8.1 Overview

The objective of the experiments carried out in this dissertation was to explore the phase

information of Long-Ranged Spin-Triplet Correlations (LRSTC) by studying the ferromag-

netic Josephson junctions. Our spin-triplet ferromagnetic Josephson junctions have been

confirmed to be reproducible and reliable. Yet the phase information is really hard to mea-

sure directly, even though it was proposed at the beginning of the LRSTC theory develop-

ment. Theorists found that the relative orientation of magnetizations of different magnetic

layers can lead to different phases of josephson junctions, 0 or π states. Ferromagnetic mul-

tilayer Josephson junctions made by our group provide us one unique system to dig deep

into this problem.

8.2 Summary of our work

The first indirect evidence observed by our group is the enhancement of the critical current

of our Josephson junctions in the magnetized state. According to the theories, it is possible

that 0 and π subjunctions in the as-grown state are distributed across a single junction and

that the π phase is going to dominate the whole area of the single junction after we magnetize

our sample. Therefore, the enhancement is highly possible since there is no more cancelation
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between 0 and π subjunctions in the magnetized state. Furthermore, according to the

random walk model, the critical current of our junctions is proportional to the square root

of the area of junctions, which totally contradicts the long-held knowledge on the critical

current of traditional Josephson junctions. In order to test this random walk model, we

redesigned new photomasks, made improvement on the sample process and wrote a new

measurement program with an enhanced data acquisition algorithm. We indeed observed

that the critical current of our Nb base samples follows sublinearly with area in the as-grown

state. At the same time, the critical current of these samples scales linearly with the area in

the magnetized state. This type of non-traditional area dependence of the critical current

demonstrates the possible mixture of 0 and π subjunctions in the as-grown state.

While we were working towards improving the quality of our samples, we tried to replace

our traditional Nb base with Nb/Al multilayer base. And we observed that the critical

current of Nb/Al scales linearly with area both in the as-grown state and in the magnetized

state. Zyuzin and Spivak proposed that a π/2 coupling could dominate across the whole

junction due to the spatial fluctuations of the Josephson coupling between 0 and π states.

Since it is really interesting to find out whether a π/2 coupling is possible or not with these

Nb/Al base junctions, we speculated that we could observe half quantum flux periodicity in

a SQUID made of two π/2 Josephson junctions. In order to fullfill the basic requirement of

SQUID design, we spent some time to find proper materials to reduce the critical current of

our junction. Finally we settled down with TiCu. Then we designed new photomasks and

developed new data acquisition programs. Yet the final results from our SQUID samples

did not provide any evidence of the π/2 coupling. However, it cannot definitely be the final

word of this problem.
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8.3 Future work

Currently my colleague Eric Gingrich is working on smaller size junctions by applying elec-

tron beam lithography and trying to realize a single ferromagnetic domain across junctions.

At the same time, he is also replacing our traditional SAF structure with new ferromagnetic

layers with perpendicular magnetic anisotropy, which will further offer an extra channel over

the control of the phase of our spin-triplet Josephson junctions. Then it will further deepen

our understanding of the phase.

We are also collaborating with Prof. Dale J Van Harlingen’s group at the University

of Illinois at Urbana-Champaign. What we are working on is to observe the phase of our

Junctions directly by using their setup. We already ordered a new photomask, fabricated

the samples and sent them to Illinois. We hope that the results from their measurement will

give a more definitive answer to the phase questions.
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Chapter 9

Miscellaneous

9.1 Recipes for Photolithography

In order to form a metallized or insulation pattern on a wafer, there are usually two ways

to do it. One is etching, if the materials you want to use can be etched. We can evaporate

or sputter the desired film onto the wafer first, and etch away the undesired area with the

proper protection from the pattern resist. But sometime the materials we try to take off

can’t be etched, or can only be wet etched, which isn’t very precise for small features. Then

we have to resort to the lift-off technique. In lift-off, we first pattern the resist, followed by

the deposition of the desired materials onto the whole wafer. The resist is then dissolved

away in a solvent, carrying the unwanted film with it. However, the normal positive resist

profile presents a problem due to it’s slope, which is mainly caused by the diffraction effects

of the UV light. The deposition over this slope creates a continuous film making it difficult

for the solvent to dissolve the resist (refer to figure 9.1). If we try to remove the resist,

most likely the edges of the film will tear, or the edges of the film will have abrupt walls.

In the worst cases, the whole pattern can be torn away. Therefore, it is pretty crucial for

the deposited thin film structure to have a clean edge if we try to make contacts on top it.

There are various ways to get proper undercut with proper negative sloped resist profile as

discussed in Dr. Khaire’s dissertation. For my work, I mainly applied two special techniques
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a. c.

d.b.

Figure 9.1: a) Ideal profile of developed positive resist. b.) deposition on top of the ideal
resist pattern. c.) Schematic profile of developed positive resist with slopes. d.) A continuous
film forming on top of the nonideal resist pattern

as shown in the following two sections.

9.1.1 Recipes for S1813

Usually it is impossible for a positive resist S1813 to get an ideal resist profile. Yet the

following recipe can provide enough undercut. Please keep in mind that the undercut profile

obtained using this method relies heavily on the contact between the substrate and the mask,

which is really a serious problem for our case due to the resist buildup around the corners of

the diced chips. Therefore we only apply this recipe to the lithography process for the top

and bottom leads, since the desired features needed here are relatively large (above 10µm).

1. Clean chips carefully

2. Check for obvious defects and dust particles under the optical microscope

3. Spin coat S1813 resist at 5000 RPM for 40 sec.

4. Bake it at 105oC on hotplate for 1.5 min or at 95oC in oven for 30 to 45 minutes.

5. Expose chips under UV light with a mask for 10 sec.

6. Soak in chlorobenzene for 5 min
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7. Blow away the chlorobenzene with N2 gas

8. Bake it at 95oC on hotplate for 1 min to make sure no chlorobenzene residue remains

9. Develop in Microposit 352 for 30-45 sec and rinse it with DI water.

10. Dry chips with N2 gas

11. Remove the resist residue by low power Oxygen plasma for one minute by setting

Oxygen pressure to 500mTorr and power to 100Watt

12. Check under the optical microscope to make sure the work is done properly and there

is no water residue

Side notes: In order to get clear a view of dust particles, sometimes we need to switch

between bright field and dark field modes of the optical microscope. And we take advantage of

the differential interference contrast mode (DIC) to inspect the resist residue. DIC works on

the principle of interferometry through polarized light, which sometimes can reveal otherwise

invisible features. I used Oxygen plasma cleaning to replace our traditional ion milling. This

worked very well and never gave me any trouble. The advantage is that it could increase the

work efficiency by half a day to one day.

9.1.2 Recipes for AZ5214E

For our junction pillar definition part, we applied AZ5214E resist. AZ5214E is also a positive

resist. However, it can be used to produce negative sloped resist profile through the tone

reversal process described below. In Fig. 9.2, we show the three main steps involved in

getting the well-defined pillars, photoresist definition, ion milling and SiOx deposition. It is
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a. d.

b. e.

c. f.

Figure 9.2: Left side corresponds to the case without the proper undercut, while the right
side has the perfect undercut. a) and d) Developed photoresist on top of the film. b) and e)
After ion milling away the desired film. c) and f) After SiOx deposition.

obvious that we also need well-defined undercut to guarantee the pillar definition success by

comparing the left-side and right-side of Fig. 9.2.

1. Spin coat AZ 5214-E at 4000 RPM, 40 sec.

2. Bake on hotplate at 100oC for 1 minute.

3. UV exposure for 3 sec. [In our case, the pillar area on the mask is transparent.]

4. Bake on hotplate at 120oC for 1.5 minutes.[This is the reversal baking step, which is

very crucial to get a well defined undercut.]

5. Flood expose the chips for 20 sec.

6. Develop in AZ Developer for 40 sec and rinse it with water.

7. Load chips into the ion milling sample holders in the cleanroom

8. Load sample holders into the ion mill chamber outside the cleanroom

9. Wait about 10 hours to reach the base pressure 3− 4× 10−8Torr

10. Remove the desired film by ion milling
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11. Deposit 100nm SiOx

12. Lift off

We still need to pay special attention to the final liftoff. Even though we try hard to

have nice and reliable undercut to make out liftoff as easy as possible, it is still pretty

hard to get rid of AZ5214E. It needs help from a special solvent, AZ Kwik Strip remover,

recommended by AZ company. Usually, we merge our samples in AZ Kwik Strip remover

for about 10 minutes on a hotplate at 100oC. Then we help our liftoff with ultrasonics for

10 minutes. Finally, we rinse our samples with Acetone to clean away the AZ Kwik Strip

remover, followed by IPA. The hardship involved here has been proved to be more likely

related to the SiOX deposition part.

With the above recipe, we can obtain very well defined pillars ranging from 3um to 48um

in diameter. Similarly, the contact between the mask and chip affects the undercut outcome,

especially when we work on diced chips.
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9.2 Data collection and processing programs

In order to automate the data collection process, I developed various programs as shown

below. All the program flowcharts are simplified to fit into one page, while keeping the

essence of them. The most important thing to keep in mind is to pay attention to the

persistent switch when changing the current in the superconducting coil, which is used to

generate the in-plane magnetic field. It is crucial to minimize the possible current passing

through the persistent switch when it is in the normal state. That is to say, whenever we

try to change the current in the superconducting coil, it is extremely important to make

sure that the current from the magnet power supply is very close to the current value in the

superconducting coil set previously, before we open the persistent switch. Last but not least,

we need to make sure the SQUID electronics is locked during the whole measurement process,

when we use the low temperature SQUID comparator circuits to take data. Therefore, do

not leave the measurement totally unattended.
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9.3 S/I/S and S/N/S Josephson Junctions

As we pushed our area dependence spin-triplet project further and further, we really tried

very hard to study the phase characteristics of the spin-triplet Josephson junction, as we dis-

cussed in previous chapters. At one point or another, we realized that we need to investigate

the phase through studying SQUIDs. But there are several restrictions to make workable

SQUIDs, which we discussed in the SQUIDs section. One of them is the circulating current

around the SQUID loop. In order to detect the period of SQUID, we need to make sure

the circulating current around our loop would not produce more than one flux quantum in

the SQUID. And at the same time, we also need to maintain the size of our junctions to

include enough magnetic domains to have enough phase fluctuation across the junctions. To

achieve both of these requirements, we needed to reduce the critical current density in our

junctions in a controlled way. We tried to tackle this problem through two ways as shown

in the following sections.

9.3.1 S/I/S Josephson junctions

Since the discovery of Josephson effects, Josephson tunnel junctions always played an im-

portant role not only in basic research but also in applications. Researchers worked hard

to improve the quality and reliability of the Nb based Josephson junctions [28, 49]. There

are also researchers who made spin-singlet ferromagnetic tunnel Josephson junctions [75, 61]

with ultrathin Al2O3 tunnel barriers.

Before we stepped into the unknown, we also fabricated basic S/I/S tunnel junctions.

We first deposited 150nm Nb followed by 5nm Al. And we passively oxidized the Al in the

sputtering chamber with different pure Oxygen pressure for 30 minutes. Then we pumped
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down the chamber to base pressure before we put another 20nm Nb and 10nm Au protection

layers on top of the Al2O3 tunnel barrier. Then we finished our usual pillar definition process

and the top Nb deposition. As we show in Fig. 9.3 and Fig. 9.4 , we got very good Josephson

tunnel junctions. We compare our several characteristic parameters with [49] as shown in

table 9.1.

Data O2 Exposure time JC ICRN AR

source (Torr*S) (kA/cm2) (mV) (Ω ∗ µm2)
Ours-1 18 2.8 0.7 24
Ours-2 180 1.8 1.50 83
Ours-3 1800 0.42 0.82 194
[49] 180 8.9 1.75 20

Table 9.1: Electrical parameters of our S/I/S junction and [49]

At first, we expected the ultrathin Al2O3 tunnel barrier could also work for our spin-

triplet Josephson junctions. The RN IC is around 1∼2 µV for our traditional Ruthenium

synthetic anti-ferromagnetic type spin-triplet junctions. The original plan was that the area-

resistance product of our S/F/I/S with one layer of Al2O3 tunnel barrier inserted into our

S/F/S structure could be increased several orders of magnitude, while we hoped that the

critical current of S/F/I/S could be lowered a little bit. That is to say, we expected the

RN IC would be increased.

But we never obtained any tunnel Josephson junctions with observable superconducting

portion on our I-V curves. Our expectation that ICRN would increase in a S/F/I/S junction

may have been a case of wishful thinking. Now let us assume that RN IC is not changed.

We found from our measurements that the area-resistance product of our S/F/I/S junctions

increased by 5 orders of magnitude. This implies that the critical current of the S/F/I/S

junctions would be decreased by the same 5 orders of magnitude, which means the critical

current would go from the mA range to the nA range. Then we need to consider the
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Figure 9.3: I-V curve for Josephson tunnel junction with passively oxidized Al2O3 tunnel
barrier for sample “ours-2”.

requirement that Josephson junction coupling energy should be greater than the thermal

energy kBT , i.e., IC > 2ekBT/~ = 0.176µA at 4.2K. This answered why we only observed

resistive I-V characteristics. One comment on our pressure control is that the pressure

readings for our samples were not very accurate because our pressure gauge is not well

designed for the working region required by us.
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Figure 9.4: Fraunhofer pattern of Josephson tunnel junction with passively oxidized Al2O3
tunnel barrier for sample “ours-2”.
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9.3.2 S/N/S Josephson junctions

After several trials on S/F/I/S junctions, we noticed it might not be the good choice to

use the Al2O3 tunnel barrier to damp the critical current for our spin-triplet junctions.

Therefore, we moved to Josephson junctions with the normal-metal barrier [4]. At the same

time we also gained one most obvious advantage by using the normal-metal barrier. That

was we never need to worry about the damping problem of Josephson junctions compared

with the traditional S/I/S junctions, because the normal barrier provided enough intrinsic

shunt making S/N/S junctions nonhysteretic. We applied Cu40Ti60 as our normal-metal

barrier. We first put down 150nm Nb followed by Cu40Ti60. Then we put another 20nm

Nb and 10nm Au protection layers on top of the CuTi. Finally we finished our usual pillar

definition process and the top Nb deposition. As we show in Fig. 9.5 and Fig. 9.6 , we

got very good Josephson tunnel junctions. Yet we do not fully understand the center shift

of some Fraunhofer patterns as shown in Fig. 9.6.b), even though we found no magnetic

impurity in Cu40Ti60 target within the detection sensitivity of our EDX .

In order to estimate the normal metal coherence length ξn for Cu40Ti60 in Jc = Jc0exp(−d/ξn),

we also fabricated some Nb/Cu40Ti60/Nb junctions with different CuTi thickness. As we

expected, the junction critical current densities decreased exponentially with the increasing

thickness of CuTi thickness, as shown in Fig. 9.7. And we also found the coherence length

ξn for Cu40Ti60 is about 3.2nm. Compared with usual normal metal coherence length, ξn

for Cu40Ti60 is pretty short, which might be due to the spin-orbit scattering from CuTi [30].
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Figure 9.5: current-voltage curve of our Nb/Cu40Ti60/Nb Josephson junctions with thickness
of Cu40Ti60 of 20nm.
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Figure 9.6: Two typical Fraunhofer patterns of Nb/Cu40Ti60/Nb Josephson junctions with
thickness of Cu40Ti60 equal to 20nm.a) 12µm and b)24µm in diameter
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