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ABSTRACT

A PROGRESSIVE RELIABILITY

FRAMEWORK FOR WIRELESS SENSOR

NETWORKS

By

Saad Bin Qaisar

This dissertation investigates a new framework for achieving high data rates and

negligible error probabilities by distributing the processing over multi-hop networks.

In particular, we consider the case of reliable data transmission in energy constrained

Wireless Sensor Networks (WSNs). Low rate channel coding can increase reliability

and eliminate the need of costly retransmissions of sensor data. However, low rate

channel coding on end-to-end basis puts a considerable burden in terms of transmit

energy on resource constrained sensor nodes. We propose a setup that progressively

provides reliability as information traverses the multi-hop wireless sensor network.

Precisely, we propose an Optimal Progressive Error Recovery Algorithm (OPERA)

under which, individual intermediate sensors that are relaying data toward the base

station, partially and optimally channel-decode the incoming packets as data reaches

the final destination. We use iteratively decodable Low Density Parity Check (LDPC)



codes in order to illustrate the efficiency of the proposed architecture. The proposed

OPERA setup optimally distributes the decoding iteration budget over the entire

network with minimal energy expenditure. We provide a comparison between our it-

eration assignment algorithm with both random iteration assignment and end-to-end

channel coding, and show that OPERA performs considerably better. In addition,

further motivated by resource limitation of sensor nodes and the well-known sensor

reachback problem, we propose a version of OPERA that is proportionally fair to

individual sensor nodes using rate adaptivity in channel coding. We use systematic

puncturing of LDPC codes to develop a rate compatible framework that is fair to

individual nodes by both, progressive decrease in parity as information reaches the

destination node, and restricting the per node processing based on their location in the

multi-hop WSN. We present various scenarios for a WSN to achieve rate-compatibility

and discuss associated complexity/energy usage and distortion/reliability tradeoffs.

Further motivated by distributed architectures, we propose a distributed version of

OPERA in which decoding iterations are assigned in a pair-wise fashion to individ-

ual nodes. Under the proposed Distributed Progressive Error Recovery Paradigm

(D-OPERA), nodes collaborate, in a distributed pair-wise manner to allocate the

processing budget to individual nodes and obtain near optimal performance. We

further investigate the performance of proposed framework when multiple paths are

available for data originating nodes to the destination. We apply the OPERA frame—

work to both still images as well as video streams and present an architecture for

reliably transmitting video in WSNs without fast depleting their energy resources.
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CHAPTER 1

Introduction



This monograph investigates theoretical and practical aspects of data reliability in

energy constrained Wireless Sensor Networks through processing within the network.

1.1 Processing Within the Network

In a multi-hop Wireless Sensor Network (WSN), reliable delivery of information to

the base station is of prime importance for many applications. In many wireless

sensor networks, such as machine monitoring and vehicle detection networks [4], the

actual data needs to be transferred with an extremely low probability of error. End-

to—end Forward Error Correction (FEC) and retransmission based schemes prove too

costly for energy constrained sensor nodes [4]. In this work, we propose a more

practical approach that is based on optimally distributing iterative channel decoding

over sensor network. In such a paradigm, the guarantee with which the base station,

or collector, gets the data from a sensor is a function of the processing within the

intermediate nodes between source and destination (in-network processing [38]).

“Full processing” and “forwarding” represent two extremes of in network process-

ing. Full processing implies complete decoding and re—encoding the information‘sent

by the source without considering any complexity or delay constraints, thus achieving

the channel capacity. Under forwarding, each intermediate node is only allowed to

forward the received information without any processing thus significantly reducing

the achievable data rate (assuming no path diversity). Most of the WSN applications

have complexity or delay constraints and full processing may not be feasible. “Partial

processing” provides an intermediate ground between forwarding and full processing.



Allowing intermediate link nodes to perform finite complexity processing achieves a

significant portion of the ultimate capacity in fairly noisy networks [38].

1.1.1 Motivation for this Work

Partial recovery from errors at intermediate sensor nodes has not been studied thor-

oughly, and probably no work has been published in this area (to the best of our

knowledge). A related context was mentioned by Fragouli et al. who discussed the

benefits that can be achieved due to finite length processing at intermediate nodes [38].

Thus, motivated by achieving data reliability in sensor networks while maintaining

energy efficiency, we study progressive recovery of errors in WSNs through partial

decoding at intermediate nodes.

1.2 Overview of Contributions

This monograph makes several research contributions: a versatile reliability frame—

work for Wireless Sensor Networks that provides error robustness to the data by par-

tial processing of LDPC encoded data, a statistical model for variation of errorrate

with decoding iterations for LDPC codes, novel algorithms that form corner stone of

processing assignment within the network: both in centralized and distributed fashion

and a fairness based framework that ensures maximization in network lifetime using

a novel rate compatibility structure.

We present an architecture that distributes processing over the multi—hop network

such that resulting bit error rate is minimized at the destination node. In this context,



we present a centralized processing allocation algorithm (OPERA) that assigns iter-

ations to individual nodes such that network throughput is maximized with minimal

expenditure of energy within the network. We cast the problem of optimal processing

within the network as rate distortion optimization and employ dynamic programming

to reach the solution. We use iteratively decodable Low Density Parity Check codes

to show efficiency of our scheme. We present a statistical model for variation of error

rate after each LDPC decoding iteration. The model is vital for the partial process-

ing setup where information about error rates at the end of a prescribed number of

iterations is critical for optimal distribution of the iteration budget.

We not only present iteration assignment algorithm, but also fairness based frame-

work that is proportionally fair such that sensor nodes with fewer energy resources

spend lesser computational and transmit energy than those that are resource rich.

Precisely, we introduce two enhancements for the centralized iteration assignment

technique. A rate compatible version that uses systematic puncturing of LDPC codes

to achieve fairness, and a finite processing based bounded version that puts a com-

putational upper bound on each node in order to achieve both fairness as well as

network lifetime maximization.

Though OPERA provides a progressive reliability framework, it assumes a central

processor with complete topological knowledge of the network including the associated

link error rates and separation between the nodes. Such global knowledge may not

be available in more aggressive sensor network deployments where the network is

remotely deployed, and left unattended afterwards [35]. Therefore, motivated by

aforementioned facts and the centrality of OPERA, we further investigate provision of



reliability in a distributed fashion over the end—to-end path. We propose a Distributed

Progressive Error Recovery Algorithm (D-OPERA) that recovers errors for a WSN

in a distributed manner. Nodes collaborate, in pair-wise fashion, to distribute the

progressive decoding budget. We discuss the convergence properties of the proposed

scheme and ways to put least burden on the individual nodes in terms of algorithm

computational overhead using warm start.

We investigate the performance of proposed framework with path diversity and

selective processing budgeting based on significance of data to be transmitted over a

given link. We investigate how variation in processing budget allocation to pairs of

nodes affects the overall network performance at the destination node.

We consider two applications of the proposed framework: one to still images and

second to video streams. Firstly, we show the performance of proposed framework

when used in conjunction with still images for transmission of visual content in vi-

sual sensor networks. Secondly, we use the path-diversity framework to develop an

architecture for reliable delivery of video content within a sensor network. We show

the performance gains that can be achieved using the proposed framework.

1.3 Organization

The rest of the monograph is organized as follows. ’We formulate the problem in

Chapter 2. Chapter 3 provides background on LDPC codes and relevant theorems,

rate-compatible LDPC coding and presents a statistical model for variation in channel

error probability with number of decoding rounds for a given LDPC code. Chapter



4 discusses the proposed approach for progressive error recovery using in—network

processing in a centralized fashion and provides a fairness based architecture, whereas,

we present a distributed architecture for processing assignment in Chapter 5. Chapter

6 discusses the proposed progressive error recovery framework in conjunction with

path diversity. Chapter 7 and 8 apply the proposed framework to both still images

and video data. We give the future directions accompanied by conclusion in Chapter

9.



CHAPTER 2

Background and Previous Works



In this chapter, we provide background to fundamental concepts that have been

used throughout this monograph. Firstly, we provide a brief overview of Wireless

Sensor Networks and associated research challenges.

At the end, we talk about previous works on reliability in wireless sensor networks.

2.1 Wireless Sensor Networks

Recent advances in micro—electro—mechanical systems (MEMS) technology, wireless

communications and digital electronics have enabled the development of low—cost,

low power, multi-functional sensor nodes that are small in size and have an ability

to communicate over short distances [4]. A traditional sensor network may consist

of numerous sensor nodes spread over a large geographical area. A unique feature of

sensor nodes is their ability of cooperatively undertaking certain tasks. Nodes use

their processing capabilities to locally carry out simple computations and transmit

only the required and partially processed data.

Sensor networks enjoy a vast range of applications including those in surveillance,

monitoring, intelligence, healthcare, military and product quality assurance. Amore

recent development is the conception of wireless multimedia and visual sensor net-

works that promise to add multimedia carrying capabilities to sensor nodes that have

limited power, computational capacities and memory [3]. The realization of such a

network necessitates overcoming various challenges including new architectures for

collaborative, distributed and resource—constrained processing that allow for reliable

delivery of multimedia content to the destination node. This monograph aspires to



 

[a] Sensor Node

Q Base Station

   
 

Figure 2.1. A wireless Sensor Network

overcome few of these challenges by proposing an energy efficient reliability framework

for sensor networks.

2.2 Binary Symmetric Channel

A binary symmetric channel is a communications channel model used in coding and

information theory. In this channel model, a transmitter intends to send a bit to

the receiver and receiver wishes to receive it. In most of the cases, it is assumed

that bit would be transmitted correctly, though, at times, it would be flipped with a



small ’crossover error probability’ 6. A binary symmetric channel is used frequently

in information theory due to its ease of analysis.

 

 

 

 

   

Figure 2.2. A binary symmetric channel with error probability 6

As shown in Figure 2.2, a BSC can transmit only one of two symbols, say a 0 or 1. A

binary symmetric channel with crossover probability 6 is a channel with binary input

and binary output and error probability 6. If X is the transmitted random variable,

and Y is the received variable, then the channel is characterized by the conditional

probabilities:

PT(Y=0|X=0) = 1—6

PT(Y = 0|X =1) = 6

Pr(Y =: 1|X = 0) = e

PT(Y =1|X =1) 2 1— 6 (2.1)

where 0 g 6 31/2.

10



The capacity of a binary symmetric channel is 1 — H(e), where H(e) is the binary

entropy function [8] .

2.3 Previous Work

Few efforts have been made for energy efficiency based reliability in sensor networks

using forward error correction. Shih et a1. [35] use convolutional codes and their

punctured derivatives. They conclude that for convolutional encoding and Viterbi

decoding, on end-to-end coding should be used above error probability greater than

as transceiver power dominates at high probabilities of error.

Sankarasubramaniam et a1. [30] study the energy efficiency based packet size op-

timization in sensor networks and examine the effect of error control on energy effi-

ciency. They show that some FEC coding schemes can improve the energy efficiency of

a communication link, several others, including retransmissions are energy inefficient.

They give a performance comparison between binary BCH codes and convolutional

codes concluding that the binary BCH codes outperformed the best convolutional

codes by almost 15%. Their work highlights the fact that number of FEC parities

significantly impacts energy efficiency, more so than the decoding energy consump-

tions.

Sartipi et a1. [31] presented a framework in which they consider combined source and

channel coding with LDPC codes for sensor networks. A system with forward error

correction (FEC) can provide an objective reliability while using less transmission

power than a system without FECNVe propose to use LDPC codes for FEC. They

11



show that wireless sensor networks using LDPC codes are almost 45% more energy

efficient than those that use BCH codes, which were shown to be 15% more energy

efficient than the best performing convolutional codes.

All these works are based on end-to-end error recovery thus catering for worst

case channel conditions. In terms of power consumption, transmitting an additional

single bit of data is much costlier than the instructions used for computations in a

sensor node [18]. For example, in a recent study, a single bit of data transmission has

been shown to be equivalent to 2000 computational instructions executed in a sensor

node [12]. Thus, energy tradeoff between communication and computation makes a

case for processing the data inside the network rather than simply transmitting the

sensor readings. Therefore, for improved reliability of data from a source node to the

collector and conservation of energy, in-network processing can be highly beneficial.

The proposed progressive error recovery framework ensures this by partial decoding

of packets and hence enhancing the data reliability at the destination with introduc-

tion of minimal complexity as compared to end-to-end channel coding. In addition,

keeping in view the energy efficiency of LDPC codes in sensor networks [31], the pro-

posed paradigm uses them to achieve enhanced throughput while maintaining energy

efficiency.

12



CHAPTER 3

LDPC Statistical Model
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3.1 LDPC Codes

LDPC codes have gained considerable attention due to their near capacity perfor-

mance. Gallager provided an algorithm for decoding of LDPC codes that is near op-

timal [10]. The algorithm iteratively computes the distribution of variables in graph-

based models, and comes under different names/variations including Sum Product

Algorithm (SPA), Belief Propagation Algorithm (BP), or more generally, Message

Passing Algorithm (MPA). Richardson et a1. [29] [27] give concentration theorem for

LDPC codes.

Theorem 3.1.1 ( LDPC Concentration Theorem) Let Pena) be the expected

fraction of incorrect messages which are passed in the lth iteration of LDPC de-

coding, where expectation is over all instances of the code, the choice of the message

and realization of the noise. For any 6 > 0 , the probability that the actual fraction

of incorrect messages which are passed in the lth iteration for any particular such

instance lies outside the range converges to zero exponentially fast in n to the mean

of the ensemble.

Thus, for a sufficiently large n, we can pick up any LDPC code and the results

achieved would have small deviation from the ensemble mean.

Although the concentration theorem provides a highly critical and fundamental

observation regarding the performance of LDPC codes, the theorem does not provide

a precise estimation model of the performance of LDPC decoding at the end of an

arbitrary lth iteration. Such precise estimation is crucial for the proposed OPERA

framework; in particular, when optimizing the distribution of LDPC decoding it-

14



erations among sensor nodes, a precise estimation for LDPC decoding model (as a

function of the number of iterations) is required to provide the desired optimization.

Consequently, before proceeding, we show a set of simulations that enable us to de-

rive an estimation model for the performance of LDPC decoding as a function of an

arbitrary lth decoding iteration.

For the simulations, we employ a degree seven density evolution optimized irregular,

Progressive Edge Growth(PEG) based LDPC codes [15] with variable node degree

polynomial A09) 2 0.20796 + 0.27192 + 0.52201, message length k = 1024 bits. The

results obtained are equally valid for any randomly picked LDPC code. We use a log-

domain Sum Product Algorithm (LSPA) [10] for iterative decoding of the code which

has advantages in terms of implementation, computational complexity and numerical

stability [42] which is critical in the context of sensor networks.

3.2 Statistical Model

Figure 3.1 shows the expected bit error rate obtained as number of decoding iterations

are increased for different channel error probabilities averaged over 1000 runs for an

LDPC code, operating below code capacity. We see a sharp decrease in bit error rate

as decoding iterations are increased. In fact, the decrease is exponential in nature.

Based on the above observations, we develop an exponentially decaying statistical

model for the variation of bit error rate with decoding iterations. This model is then

used in subsequent chapters for our proposed progressive error recovery mechanism.

Equation (3.1) expresses the relationship between the estimated bit error rate f for
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Figure 3.1. Bit Error Rate as a function of Decoding iterations and Channel Error

probability for a rate PEG (3,6) regular LDPC code with 6min = 0.025 and 6mm; 2

0.07

a given channel error probability and the number of decoding iterations for our code

as

fetid, i) = arenaefitmdfl + wease’i'ivnd” (3.1)

Where 6mm 3 6 S cm“, 0 < l S Imam , is the corresponding index value with

respect to 6mm and a(e,nd),fi(ei,,d),7(emd) and Il’(€ind) are the statistical coefficients

[21].
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Figure 3.2 gives the root mean square error in the proposed statistical model. It

is evident from the figure that the statistical model provides a close enough approxi-

mation of the LDPC error rate variation with number of iterations.
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Figure 3.2. Root Mean Square Error vs Decoding Iterations for proposed statistical

model

Therefore, as evident from equation (3.1) and LDPC decoding curves, significant

enhancements in performance can be achieved as the number of LDPC decoding

iterations are increased at the receiver provided the channel error probability is below

the achievable performance bound [6] for the ensemble of codes. This result can be

used to formulate an in-network processing framework to maximize the achievable

17





reliability at the destination.
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CHAPTER 4

Centralized Processing Allocation

19



For the centralized processing distribution problem, we are looking for an optimal

tuple [D, I‘(l),E] such that F(l) S Falbudget i.e. a minimal overall bit error rate that

meets the budget constraint. The problem can be viewed as one that allocates the

overall iteration budget F(l) budget among all nodes in the network such that distortion

is minimum.

The computational complexity of optimally mapping the iterations to the network

is high, as NTM region consists of all possible operating points obtained by choosing

all possible combinations of iteration assignments within the budget constraint. The

hull of the NTM region would provide the desired optimal solution. We first solve

the problem for a single path line network, which can then be mapped to the entire

network.

4. 1 Problem Formulation

A multi-hop wireless channel can be represented as a cascade of channels (Figure 4.1).

Consider a line network with N nodes in cascade. We make following assumptions

regarding the network:

1. The nodes in the network are quasi-stationary

2. Each node is capable of decoding the received messages

3. All nodes have equal significance and similar capabilities in processing and com-

munication

4. Nodes are left unattended after deployment
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Figure 4.1. A Multi-hop line network

5. Each node has preset number of transmission power levels and at a given time,

all nodes are transmitting at same power level.

6. Nodes transmit to a central coordinator over a multi-hop network

The links between the nodes are assumed to be binary symmetric with each node

transmitting at power level PT per bit. Relay nodes are allowed not only to forward

the incoming information, but also to process it. In order to obtain channel error

probability for a binary symmetric channel (BSC), the general expression for Signal

to Interference Noise Ratio (SINR) can be given as in Equation (4.1):

Pr
SINR:

PA+ZPint

(4.1) 

where PA is the ambient noise power, and Pint is the interference power of any

concurrent transmissions elsewhere in the network. Sources of ambient noise may

include other devices operating in the same frequency band or other networks co—

located with the WSN. Let T9; be the set of all the transmitting nodes in the network

and {nut 6 Tx} be the subset of nodes simultaneously transmitting over a certain

subchannel, with transmit power Pt for each node. Then the SINR at node njfor a

transmission from node ni,i 6 T; can be calculated as in [14]:
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P.

 

 

SINR = P (4.2)

PA + ZteryéiW

Where d(ni, nj) is the separation between n,- and nj, and a > 2.

If Q(;1t) Zfixfoo eflu/2du, then the channel error probability 6 as described

in [26] is:

e(n,-)—— Q((\/2(SINR(n,-))) (4.3)

The source node no generates k message bits which are encoded using a rate R code.

The resulting codeword is transmitted over the first link with error probability 61.

Node 711 performs [1 LDPC decoding iterations and the bit error rate in the resulting

packet is a function of 61 and l1:

61, = f(€1,11) (44)

After partial processing at the second node, the error rate in the resultant packet is:

I

62’ = f(€2.l2) * 61 (4-5)

where 61 * 62 : 62(1 — 61) + 61(1 — 62) For the cascade line network, we define the

total number of decoding iterations in the entire network as:

N-l

' = Z 13- (4.6)

j=1

where lj is the number of decoding iterations at node nj.

For N hops in cascade, the overall distortion measure D can be expressed as:

D = f(f(f(f(€1,l1)* €2.12) * ---€jalj) * ---€N—1»lN—1) * 6N (4-7)
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For an end-to-end path with E = 61, E2, . . . ,ej, . . . , €N—1 and given iteration budget

F(Z)budget1 we intend to find an iteration assignment vectorl = l1, l2, ..., lj, . . . , lN_1 in

such a way that the net throughput is maximized at the final destination. Conversely,

D(F) is minimized. We refer the tuple [D, F(l),E] as Network Throughput Measure

(NTM).

The problem can be seen as a budget constrained allocation problem, such that D

is minimized subject to constraint I‘(l) S Palbudget' From the constraint highlighted

above, our problem becomes similar to minimizing a distortion measure given a budget

constraint under a rate distortion framework. Therefore, an algorithm providing NTM

operating point with minimum distortion D while remaining within budget constraint

is desirable.

4.2 Optimal Progressive Error Recovery Algo-

rithm

To find out the optimal hull of NTM region, we employ a dynamic programming

approach similar to the method used in determination of the RD region for optimal

quantizer design [33]. The algorithm stated is greedy in nature and it is possible

that it may not find the optimum tuple [D, F(l),E], though it does provide optimal

solution under various practical scenarios [24] [33] [36].

The starting point of our algorithm is the case when no iterations are assigned to

any intermediate nodes. Hence, D is maximum and F(l) minimum. Thus the tuple
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[D0, I‘(l)0, E] has DO closest to the D axis. The algorithm then adds a single iteration

to intermediate nodes, one by one in a greedy fashion, and selects the node where the

minimum D is achieved. This provides the next operating point [D1, F(l1),E]. The

procedure is repeated till I‘(l) S Palbudget is satisfied and all the iterations are now

assigned.

 

.i [002),“has, 3.]

' [D‘°'”,I‘(I)‘°’”,E]

 
[0' , r(1’)',g] = [D‘°'”,l‘(l)‘°'”, 5]

4
  r(1’)

  
 

Figure 4.2. Selection of Next Optimal Point [D1, I‘(l)1,E] for Dynamic Programming

algorithm

Thus, the algorithm maximizes the separation between optimal point achieved in

the prior run D‘ and the new points D+ obtained in the current run for all interme—

diate nodes on the path. This corresponds to maximizing the gradient between the

two points.
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Mathematically, we have:

 

 

_ — _ +

l = arginaxj=1.N_1 [ P. D_+ (4.8)

W )- Wj)

where, we take I‘(l—) — F(l+) = 1.

For a multipath multihop network with nodes transmitting to a central coordinator,

iterations are assigned to individual paths and the results are averaged over all the

paths after decoding at base station to obtain expected bit error rate.

4.3 Fairness

Any discussion about performance of a rate control scheme must address the issue of

fairness, since there exist situations where a given scheme might maximize network

throughput, while denying access to some network nodes. Fairness is particularly

a concern in WSN scenarios where network lifetime maximization is a prime design

objective. In a typical WSN, after collecting the data of interest, the sensors must

reach-back [5] and transmit the information to a single receiver. This may introduce

higher complexity at few nodes closer to the receiver, than others, considering a

network with multiple flows across sets of nodes that may not necessarily be disjoint.

Any fairness framework for rate maximization scheme should thus consider both,

reach—back and network lifetime maximization, in consideration.

Though OPERA maybe optimal in throughput sense, it may not necessarily be fair

to nodes that have greater traffic loads primarily because of their closer vicinity to

the base station and greater number of flows passing through them leading to the

base station. In other words, we do not intend to aggravate the sensor reach-back
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problem [5]. A fairness based scheme is thus greatly desired that addresses these

issues. Such a scheme is particularly important in remote deployments of the net-

work where network lifetime maximization is a prime concern. Thus, in this section,

we propose a version of OPERA that is proportionally fair such that sensor nodes

with lesser energy resources spend lesser computational and transmit energy than

those that are resource rich. Precisely, we propose two enhancements for OPERA. A

rate compatible version OPERATC that uses systematic puncturing of Low Density

Parity Check codes to achieve fairness, and a finite processing based bounded ver-

sion OPERAbound that puts a computational upper bound on each node in order to

achieve both fairness as well as network lifetime maximization.

4.3.1 Bounded OPERA (OPERAbound)

We introduce an upper ceiling to the processing a node can perform for each flow

passing through it based on maximum processing capacity [cap of the node. Since

most widely used sensor network routing algorithms are different forms of shortest

path routing algorithm, we consider the routes from individual nodes to the base

station forming a tree rooted at the base station [16]. We distribute the processing

capacity leap based on the number of flows passing through the node. With the

assumption of all the nodes transmitting simultaneously back to the base station, the

number of flows passing through a node is simply the depth of sub-tree rooted at

that node. Thus, greater the depth, greater the number of flows passing through the

node, and lower is the number of iterations it can perform per fiow. Therefore, per
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flow iteration budget for jth node is Simply 1ij(lget = lcap/stub, where, stub IS the

number of nodes in the sub-tree for that node. For the scenario where stub > leap,

only leap flows are randomly chosen and no decoding iterations are allocated to rest

of the flows.

 

Base

Station

  
 

Figure 4.3. A wireless sensor network with tree topology

Figure 4.3 elaborates this further. Consider two reference nodes A and B in a

multihop network with all nodes transmitting their traffic back to the base station.

The subtree, rooted at A has six child nodes whereas, B has only one. Thus, each flow

passing through A gets 1 /6th the processing capacity of A, whereas, single flow passing

through B gets full processing capacity of B, ensuring network lifetime maximization

by more just usage of network resources.
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4.3.2 Rate Compatible OPERA (OPERAM)

OPERA"; addresses sensor reachback problem with the introduction of network par-

titioning. For a multihop WSN with N nodes, we form a partition {N33}er based

upon their proximity to the base station, where I belongs to set of integers. The

partitions thus formed satisfy following two conditions.

(1:61

NxflN§=<I>,{x,y}EI,a:7éy (4.10)

As illustrated in Figure 4.4, we start by assigning rate RN1 mother code to partition

N1. Moving further down over the end-to-end path, rate RN33 punctured codes

are assigned to each partition Nx till we reach the destination node. The resulting

distortion over the end-to—end path is thus given as:

D =fN;,;(N_1)(fo(N—2)(fo(j—1)(fN$1 (61’ ll) * 62’ [2) (4.11)

* ...6j,lj) *"'€N—1’lN—l) * 6N

where, fNltjkj, lj) is the bit error rate achieved at jth node belonging to partition

N1- after lj decoding iterations with channel error probability ej. The distortion

obtained is used in Equation (4.6) to get the optimal iteration assignment I.

It is pertinent to mention here the tradeoff in design of network partitions. If the

rate is increased significantly through parity drop with respect to primary rate, then

the message may not remain decodable at the destination node. On the contrary,

If very few bits are dropped, then we are not fair with resource constrained nodes.

Thus, a balance should be maintained between performance and energy tradeoff.
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Figure 4.4. Progressive decrease in parity for a multihop WSN

4.3.3 OPERA with Power Control

PER/1pc addresses the fairness issue by variation in transmit power for individual

nodes as information reaches closer to the destination node. We use network par-

titioning in a similar fashion as for rate-compatible PERA. We start by assigning

transmit power PN1 to partition N1. Power levels PNJ; are assigned to each partition

NJ; as we move further down over the end-to—end path till we reach the destination

node. The resulting distortion at the destination node can be given as in (11) which

is used in (9) to obtain the desired iteration assignment.

4.4 Simulation Setup

For the proposed OPERA scheme, we assume that if e < 6mm , only one iteration,

is sufficient to completely decode the LDPC code, on average, a behavior confirmed
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from the trend in Figures 3.1 and 7?. and [29]. A node behaves as a forwarding

node if either 6 > em” or no iteration is assigned to it. We set 6mm = 0.01 and

6mm; = 0.08 (See [6] and [29] for tighter bound on 6mm). For a single path, we fix

11061.net = 60 iterations. We take per bit transmit power PT = ImW, per second,

for each node unless specified otherwise (e.g. in case of power control).

The total energy spent by sensor nodes per packet delivery to the destination node

is the function of computational energy and the transmission energy. We have

Etotal = ETrans. + EComp. (4~12)

where, Ecomp is the computational energy spent per packet for partial processing

within the network and ETrans.iS the per packet transmission energy for end-to—end

delivery.

Fossorier et a1. [9] in their work on low complexity LDPC iterative decoding, tab-

ulate a comparison of mathematical operations required for one iteration of vari-

ous LDPC decoding algorithms including MPA. Assuming each node a sensor mote

equipped with Atmel Atmega128L processor, and 2000:1 ratio between per bit trans-

mit energy and computation energy spent per instruction [12], and average number

of ones per column in a parity check matrix of a code from ensemble of (n,)\,p)

LDPC codes [32] as (fol A(9)d6) we provide performance curves for OPERA in

the subsequent section using PEG irregular LDPC codes.

For a Wireless Sensor Network with multiple flows, we consider N nodes spread

over a 107nx10m square grid according to a random distribution, with base station at
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coordinates (5,5). Transmission range of each node is limited to r = 2m. Since the

most widely used wireless sensor network routing algorithms (DSR, AODV, Directed

Diffusion) are different forms of shortest path routing algorithms, we assume that at

any given time the routes from individual nodes to the base station form a tree rooted

at the base station [16]. We are thus discounting the possibility of using bifurcated

routing i.e. multiple paths from source to destination. Hence, we assume that all

the network nodes sending traffic back to the base station on shortest paths already

established through some routing algorithm.

4.5 Results

4.5.1 End-to-end vs OPERA for a Line Network

We consider 100 instances of a line network for N = 5 with variation in separation

between the nodes. The results achieved are averaged over all occurrences. We

= 0.731 and Rand Fortake end-to-end maximum and minimum rates R min'
endmax

OPERA, we consider multiple rates ROPERA = 0602,0569. All the results are

averaged over 1000 runs. Figure 4.5 shows the performance comparison between

OPERA and end-to—end schemes with average end—to—end equivalent error probability

Eendeq- It is essential to note here that both OPERA and end-to-end results here

are after decoding at the destination node. For end-to-end case, Etotal = Emms

whereas, (12) gives the total energy for OPERA. The results show that OPERA

outperforms end-to—end channel decoding with much lesser energy required for a given
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Figure 4.5. End-to—end vs OPERA for a Line Network

performance.

4.5.2 OPERA with Multiple Flows

Figure 4.6 presents the variation in throughput using OPERA for a network with

multiple flows leading to the base station. The plots show that it is feasible to

optimally trade-off complexity/energy usage with distortion/reliability by varying

the assignment of iterations. The two extremes of the Complexity-Distortion curve in

Figure 4.6. represent the performance that is offered when two extremes of in-network

processing is employed. When we do not conduct any decoding at intermediate

nodes, the accumulation of errors increases exponentially. In such a scenario a large

number of packets eventually received at the collector may have zero or very little
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Figure 4.6. Optimum curves for Expected Bit Error Rate vs. Energy spent for

OPERA with varying network size

information utility. In other extreme when decoding is employed at all or almost all

the intermediate nodes, the data reliability can be increased significantly, but the

energy consumption also increases. Thus, in such an operation mode, even though

the throughput of a sensor network is improved, the network life-time is decreased.

Our proposed approach allows us to fine-granularly operate at a large number of

intermediate points. Thus in an actual deployment, the operating point can be chosen

in accordance with the current demands of the network. If an important event is being

sensed, we may choose to operate at high in—network processing point, as against that
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if the network is in more passive state, we may prefer saving energy despite getting

noisy readings.

The results in 4.6 further show that as the number of nodes increase the amount

of in-network processing required to achieve improvement in reliability reduces. This

can be explained by highlighting that, as the node density increases, the number of

error prone links decrease. Since error recovery is primarily required only due to

the presence of noisy links, decrease in the number of noisy links naturally leads to

reduced requirement of network processing.

The above observation has important implications about adapting the functional

usage of a sensor network through its life-time. We illustrate our point by way of

an example: Let us say that a network initially composed of 150 sensors demands

a functional usage represented by an error probability of 0.004. To support such a

demand with in-network processing, we shall have to spend 5.70 Joules. With time as

sensors die the density of sensors reduces; let’s say our density drops to 100 sensors.

At such point if the functional demand is not reduced the amount of energy that will

have to be spent is in fact increased to 6.4 Joules. This increase in energy spending

may set-off a chain reaction eventually leading to the death of a network. Thus, as the

density reduces, it may be essential to adapt the functional demands from a network.

The Complexity-Distortion curves obtained by our analysis can provide important

guidelines on how these demands should be reduced as sensors start dieing.
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Figure 4.7. OPERA vs Random Iteration assignment

4.5.3 Random Assignment Vs OPERA

We compare the efficiency of our iteration assignment algorithm with random assign-

ment when the decision to add iteration at a given node over the path is random such

as by tossing a coin. The procedure is repeated until all the iterations are assigned

to an end-to-end path. Figure 4.7 shows the efficiency of OPERA as compared to

random assignment. The gap between the two curves indicates the enhancement in

throughput we get by progressive iteration assignment through OPERA than ran-

domly.
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4.5.4 OPERA with fairness

Bounded OPERA

Figure 4.8 gives a comparison between iteration assignments for OPERAbmmd with

leap = 300 and leap = 30, respectively, N = 150 and Falbudget = 60 iterations. In

both the cases, we achieve reliable communication after destination node decoding,

though, distribution of iterations is much more fair in the latter without concentration

of processing load on few nodes and leaving the rest with underutilized capacity.

Though, if lcap is further reduced, the path budget may not get fully distributed over

the end-to-end paths, thus, deteriorating performance. Figure4.9 highlights this effect

by comparing OPERAbound throughput curves for both [cap = 30 and [cap = 25. A

careful selection of [cap is thus significant in achieving throughput gains.

Rate Compatible OPERA

We consider two cases for OPERA“ with variation in network partitioning for

N = 150. Nodes transmit at mother code rate RN1 = 0.5 when they are ei-

ther a data originating node or belong to N1. As the code block enters subse-

quent network partition, the block is subjected to rate variation as: a)RN23 = 0.5

b)RN2 2 051,ij3 2 0.52.

We set 11051.net = 60 iterations for each path. It is assumed that each node

knows the puncturing rate of the frame it would be receiving. Such information can

be passed once during the initialization phase of the network, when all nodes maybe

communicating at same rate.
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Figure 4.8. OPERAbmmd with per node a)lcap = 300 and b)lcap = 30
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Figure 4.9. OPERAbound with [cap 2 30 and leap = 25, RN 2 0.50

Figure 4.10 shows the performance of OPERATC as compared to OPERA. We see

that OPERArC consumes lesser energy than OPERA initially. This energy saving is

due to lesser number of transmissions by the nodes closer to destination, though, price

paid is the loss in decoding performance at the destination node. As in—network pro-

cessing is increased, OPERATC approaches OPERA in terms of throughput achieved

for given energy budget with more fair energy distribution. The results also indicate

the tradeoff in using higher coding rates, greater number of network partitions and

throughput, with less energy usage by resource constrained nodes at the cost of some

decrease in performance. Therefore, we can strike a compromise between desired re-
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0.52

liability level and network energy resources with variation in network partitions and

coding rates.

Bounded Rate Compatible OPERA

Figure 4.11 gives the performance curves for OPERAbrC with variation in leapThe

plots show that it is practicable to trade-off distortion/reliability with network lifetime

by variation in both the puncturing rates as well as maximum processing individual

sensor nodes can perform. When we have lower leap and higher coding rates, packet

errors may persist despite increase in intermediate node decoding.

In such a scenario, packets eventually received at the collector may have very little

information utility. On the other hand, when [cap is increased and lower coding rates
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Figure 4.11. OPERAbrC with RN2 = 0.51 leap = 30, leap = 60 and RN2 = 0.51,

RN3 = 0.52, [Cap : 60, (cap : 90

are used in network partitions, data reliability can be increased significantly at the

expense of greater energy usage. Thus, in such scenarios, even though throughput

for sensor network is improved, price paid is a reduced network lifetime. The curves

given here provide us the flexibility to select intermediate Operating points. For a real

sensor network deployment, event based operating point selection can be employed.

When a significant event is sensed, lower coding rates at intermediate nodes with

higher leap can be used. When the network is inactive, we can increase coding rates

and/or decrease [cap for enhanced network lifetime.
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4.5.5 OPERA with Power Control

We use identical partitions for OPERAPC as in OPERA”; with RN = 0.50,PN1 =

1mW,PN2 = 098le and PN3 = 0.96mW. Figure 4.12 compares the performance

of OPERA with OPERAPC. We see that though there are some energy savings using

power control, the price paid is degradation in decoding performance. We further

provide results in the figure when power control is used in conjunction with rate

compatible puncturing of LDPC codes: OPERATCPC, taking PN1 = 1mW,PN2 =
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0.98mW,PN3 = 0.96mW/,sz1 = 0.5O,RN2 = 0.51 ,RN3 = 0.52. Again, we see

some power savings though the reliability of information content also suffers. Thus,

based on the application demands 81. network conditions, we can switch between

OPERATCOPERAPC & OPERATCPC to achieve fairness.
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CHAPTER 5

Distributed Processing Allocation
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In previous chapters, we presented a scheme that provides progressive reliability

to WSN data as it traverses the multi-hop network. Though optimal, it assumes

complete topological knowledge of the entire network. Such knowledge may not be

available in real-world sensor network deployments. Thus, we are interested in place-

ment of decoding iterations, in a distributed fashion, at the individual relays that

achieves the highest decode and forward rate. Particularly, we are looking for a

distributed progressive error recovery scheme that satisfies the following goals:

Maximizes the throughput at the destination node in a distributed fashion

0 Each node performs at least a single iteration

0 Provides a decent approximation to the centralized counterpart: OPERA

0 Minimal transmission and computational overhead on the individual sensor

nodes

0 Makes minimal or no assumptions regarding knowledge of the end-to—end path

0 Offers a fair amount of asynchrony in distributing the processing budget

0 Applicable to any iteratively decodable channel code

5. 1 Pair-Wise D-OPERA

For the iteration assignment problem, we are looking for an algorithm that does not

require complete network knowledge and works fairly asynchronously to provide max-

imum reliability at the destination node. A simplistic approach can be to distribute
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iteration budget equally among all the nodes. That does not necessarily maximize

throughput, especially, when the variance among individual channel error rates is

high. On the other extreme, giving individual nodes control of their iteration assign-

ment values over a domain may result in each node choosing the maximum value

for enhanced throughput which renders the finite iteration assignment problem ir-

relevant. Therefore, we are looking for a scheme that both ensures fair amount of

asynchrony with increased throughput at the destination along with optimal use of

nodes’ computational resources.

We propose a scheme in which nodes compute iteration assignments in a pair—wise

fashion using a Leader-Follower relationship. We assume that each node maintains

an estimate of the error conditions of its associated channel based on some network

parameter such as Link Quality Indicator, which is normally the case for WSNs

[16]. The proposed D-OPERA scheme uses a three step approach. In the initial

phase, nodes pair in Leader-Follower relationship. Leader nodes then solve a local

minimization problem and obtain estimates for iteration assignment. The resulting

follower node iteration assignment is then transmitted to the follower node in the last

step. Figure 5.1 shows this diagrammatically.

In order to cater for dynamism in the network, each follower node periodically

reports its channel error 6S probability to the maser node. Leader node compares

both A63 and A6M against a preset threshold 6TH (where A6 = lenew — 601d|). If

either A65 or AEM or both exceed 6TH, iteration assignment is carried out again.

The periodic report frequency for the follower node can be designed based on the

conditions in which nodes would be deployed and desired reliability levels.
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Figure 5.1. D-OPERA Pair-wise iteration assignment

5.1. 1 Pairing

For a given flow, we group the nodes in pairs. Starting from the base station, the

first node encountered is labeled as follower, second leader, and so on till all or all

except a single node is left. Each pair is given a local budget ofW iterations

with any leftover node gettingW iterations. The pairing of nodes does not

require complete network knowledge and can be achieved with quite an ease. The

only information required in the process is number of nodes over the end-to—end path

and total end-to—end iteration budget. We assume that information about total nodes

is available through an underlying routing scheme which is usually the case for multi-

hop wireless sensor networks [16]. Total iteration budget can either be passed to

nodes during individual link establishment phase, or programmed in individual nodes

prior to network deployment.

A side issue in distributed iteration assignment can be when iteration budget is not
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completely divisible by N — 2 and leaves a remainder. This is handled in our work

by rounding to nearest lower integer and adding any leftover iterations to the leader

node closer to the data originator node, assuming data having greater survivability

chance if provided further reliability closer to the originator than destinations, where

errors may have accumulated to an extent that may lead decoding ineffective.

5.2 Local Minimization Problem

For D-OPERA, each leader node now solves a local minimization problem in which

it attempts to minimize the local bit error rate with the condition that iteration

assignment is within the local budget constraint. Mathematically, it solves:

Minimize

Dloc = Pe(€La lL) * Pel€Fa lF)

Such That

2ri
lL-l—lF: N_-(—3

Or

Minimize

Dloc = f(€L, lL) * f(€F1lF)

Such That

(11 + lF) = Fallocal

We assume that the function f (e, l) : ER —-> if? is convex and twice differentiable [21].

We interpret this as the problem of allocating a single resource, with a fixed total

amount F(l) local to two, otherwise, independent activities.
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The problem can be solved using elimination. Thus, we have: Min—

imize

fL(F(l)zocai -lF1€L) * fear, 6F)

Subject to

177 = Fallocaz

IL > 0

lp > 0

where 1 E 311332 is a unit vector with rank 1 = 1 guaranteeing at least a single

solution. Though standard elimination techniques (see for example [7]) can be used

for the solution of minimization problem, they maybe computationally cumbersome

for energy starved sensor nodes in terms of function evaluations and convergence

properties. We instead turn to Newton’s method for constrained optimization that

provides faster convergence with quadratic approximation of the function Djoc that

has advantages in terms of computational complexity with high accuracy and very

fast convergence when the algorithm is initialized with good initial values that are

close to optimal. Details of Newton methods can be found in any standard text (for

example [7]) and are not mentioned due to brevity concerns .

5.2.1 Warm Start and Algorithm Convergence

The resource constrained nature of sensor nodes asks for low algorithm computa-

tional overhead and fast convergence. Faster convergence can be achieved in case of

Newton’s method when initialized to suitable values of the optimization variable. We
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consider four approaches for providing D-OPERA a warm start:

D-OPERA Unitary start: Both the nodes start with a single iteration

D—OPERA Equal start: Both the nodes start with equal number of iterations

D-OPERA Max-Min start: One of the nodes starts with only one iteration,

whereas, the other starts with Falocall — 1, based on the associated channel error

rate with eL 2 eF implying lL 2 IF and vice-versa.

D-OPERA Proportional start: proportional assignment based on the error rates

é

WHERE,“ (rounded to lower integer value). For the case with awith lL =

Leader/Follower node getting zero iteration, a single iteration is borrowed from the

Follower/Leader node to ensure non-zero assignment.

For all these approaches, we note down the resulting error performance, number

of function valuations and the algorithmic runs required to reach to a convergent

solution. The resulting performance curves are presented in subsequent sections.

5.3 Results

For the simulation setup, we keep the assumptions regarding code choice and sensor

motes as for the centralized case in chapter 5. We present both the cases here, first

when we are given only a pair of nodes to be assigned decoding iterations and secondly,

an extension of the proposed technique over multiple flows.
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5.3.1 D-OPERA for a Pair

We consider 100 realizations of a Leader-Follower node pair in cascade over the end-

to—end line network (Figure(4.1)) with each realization resulting in different channel

error probabilities for the pair. The results are averaged over all the realizations.

Leader node executes the algorithm and computes the iteration assignment for the

pair.
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Figure 5.2. Expected Bit Error Rate vs Energy for D-OPERA

Figure 5.2 shows the performance of our scheme for both D-OPERA with all the

initialization options and end-tO-end channel coding. The results clearly indicate that

D—OPERA outperforms end-to—end channel coding by a considerable margin with best

performance achieved with D—OPERA Proportional.

Figure 5.3 and Figure 5.4 analyze the convergence characteristics of the proposed
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Figure 5.3. Processing Budget vs Functional Evaluations of D for D—OPERA

solution with differing warm starts. We see that both in terms of algorithmic iterates,

as well as function evaluations, best convergence characteristics are achieved when the

algorithm is initialized with proportionate number of iterations for both the nodes.

5.3.2 Multiple flows D-OPERA

We consider a wireless sensor network with 150 nodes spread over 10mz10m rectangu-

lar grid according to a random distribution. We place the base station at coordinates

(5, 5). The transmission range of each individual sensor node is limited to a maximum

transmission range of r = 2m. Since most widely used sensor network routing pro-

tocols are some form of shortest path routing algorithm [16], we assume that at any

given time, the routes from individual nodes to the base station form a tree rooted at
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Figure 5.4. Processing Budget vs Algorithmic Runs

base station. Palbudget is varied from 6 to 40 per flow. The results in Figure 5.5 are

after complete decoding at the destination node for both OPERA and D-OPERA.

The results clearly show that D-OPERA provides a close enough approximation to its

centralized counterpart, OPERA. The curves also reaffirm our observation in previous

chapters concerning significance of partial decoding at intermediate hops. When no

decoding is performed at intermediate nodes, accumulation of errors grows exponen-

tially. In such situation, most of the packets received at the destination may have

very little or no information utility. On other extreme, when sufficient decoding is

employed at all intermediate nodes, data reliability increases significantly at the cost

of energy consumption. Our technique allows to fine-granularly operate at number of

intermediate points with variation in 110171111961-
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Figure 5.5. D-OPERA vs OPERA for Multiple Flows
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CHAPTER 6

Progressive Error Recovery with

Path Diversity
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6.1 Introduction and Motivation

We present scenarios in which the proposed partial decoding scheme can provide sig-

nificant performance benefits as compared to the end—to-end counterpart when mul-

tiple paths are available leading to the destination node. We develop our framework

in conjunction with directed diffusion paradigm [17], though the scheme is equally

applicable to any other routing scheme in place with minor modifications.

We investigate the setting when there is asymmetry in the significance of data

generated by individual nodes due to differing reliability demands set forth by each

type of data. An example of such an application can be in security & surveillance

related scenarios where events such as presence of fast moving objects in the vicinity

of sensor maybe of more interest than slow ones, or vice-versa. In such a case,

we intend to provide one of the events greater reliability than the other along-with

minimal energy consumption. Our scheme caters for that by introducing selective

budgetng of network resources for each type of event. The proposed architecture is

especially viable for Wireless Multimedia Sensor Networks (WMSNs) [3] where, there

can be multiple streams of data originating at a source node, and each may require

different level of reliability. For instance, for environmental monitoring applications,

we may have both acoustic and video data feeds that need to be transmitted back

to the base station. Likewise, in some surveillance applications, network designer

maybe willing to dedicate more network energy resources to audio data than video

or vice-versa. Similarly, applications where there can be variation in sensor data

reliability demands such as monitoring and sensing, storage of potentially relevant
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activities, traffic avoidance and control, advanced health care delivery etc [3] are

good contenders for our proposed framework.

We further show that the proposed framework provides flexibility to operate at

much higher error rates with greater energy efficiency. MDR provides an added ad-

vantage in that, unlike traditional reliability schemes where only one path is available

to reach back to the destination node,providing multiple paths for sensor data offers

greater network lifetime by introducing a delay in network partitioning [34].

6.2 Background
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Figure 6.1. A multi-hop wireless sensor network with multiple paths to destination

node
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6.2.1 Directed Diffusion of Interest

For the scope of our work, we assume that a routing scheme such as directed diffusion

[17] is already in place. In directed diffusion, a destination node initiates a request

for data by flooding interests for named data. It uses attribute-value pairs in order to

name data [17]. Each interest contains attributes such as type of interest, timestamp,

active duration & rectangular region over which event is expected to take place. The

interests are passed over the network in a manner that each node knows only its

immediate neighbor. Thus, interest may reach the source node through multiple

paths. Hence, as indicated in Figure 6.1, several paths are available for sending back

the data to the destination node which are selectively reinforced based on network

application and demands. Our proposed methodology employees these paths to route

the data back to destination node.

6.3 Multi-Path Distributed Reliability Framework

6.3.1 Phase I: Data Partitioning

We propose a framework that provides reliability to wireless sensor data maintaining

energy efficiency during the process. This is achieved in two phases: in first phase,

data is partitioned into multiple streams based on its significance/genre. On the

basis of partitions thus obtained, we decide on processing budget at each intermediate

node, for the path assigned to that data stream. In the second phase, this budget

is distributed using an optimization algorithm carried out at selected intermediate
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nodes. Both the phases are presented in subsequent subsections.

In the first phase, nodes partition the data into multiple data sets based on its

significance. The decision on significance can either be source based or destination

based. For the destination based case, destination node initiates an interest for an

event that is passed on over the network. The interest may reach the node through

multiple paths. We propose a new field in directed diffusion interest: ‘importance’

specifying significance of the data. The field can be adapted to have multiple values

based on application in which sensor network is deployed and the precise details are

left for network designer. The information passed by ‘importance ’ field is used by the

source nodes to decide the local decoding budget for each pair of nodes over the end

to end path.

In source based scheme, the decision on significance of data is local to the data

originating node.

6.3.2 Phase II: Multi—Path Distributed Iteration Assignment

Once the source node is decided on data genre and significance level it belongs to,

it assigns the resulting data stream to an end-to—end path. We assume that each

path has equal likelihood to be chosen for a type of data. After path selection and

hand shaking procedures, intermediate nodes decode the data with finite number of

decoding iterations as it traverses the multi-hop network. A question though remains

on the exact number of decoding iterations carried out by each node. We address

this by nodes computing iteration assignments in a pair-wise fashion having a Leader-
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Follower relationship.

In our scheme, each node maintains an estimate of the error conditions of its associ-

ated channel based on some network parameters such as Link Quality Indicator [16].

In the initial phase, nodes pair as Leader-Follower. Pairing of nodes does not require

global knowledge and can be achieved with quite an ease during link establishment

phase. Starting from the source node, first node encountered is labeled as Lead,

second Follower and so on till all or all except a single node is left.

Assuming F a summation operator, each pair has a local pair budget of

F()Pairpz- determined based on significance level of data stream that needs to be

distributed within Lead & Follower nodes such that resulting distortion Dpairpi is

minimum for that set of nodes. Each Lead node asks Follower node for their channel

error probability 6;”. Lead node uses both eF and eL to formulate a local minimization

problem:

Minimize . Dpairpi = f(eL,lL) =1: f(eF,lF)

Such That

1L + lF = Falpairpi

IL > 0

lF > 0

where

61* 62 = 61(1— 62) + 62(1- 61)

We assume that the function f (e,l) : §R —> ER is convex and twice differen-

tiable [23]. We use Newton’s method for constrained optimization to solve the min-

imization problem at the Leader node due to its advantages in terms of computa-



tional complexity and faster convergence when the algorithm is initialized with good

initial values [7]. For the given minimization problem, we initialize the algorithm

with iteration values proportional to the channel error rates such that for the lead

nodel — —€L—I‘(_) - (rounded to lower inte er value) ensurin fast conver n e

within few algorithmic runs. Any leftover node without a pair in the pairing process

F l -

( )pa" iterations. We have already shown the pair-wise iteration assign-is assigned

ment in Figure 5.1 for a single end-tO-end path starting from channel error probability

exchanges between Leader and Follower nodes, iteration assignments based on New-

ton’s optimization and eventually, decoding at intermediate hops.

In order to cater for dynamic network conditions over multiple paths, each Follower

node periodically reports its channel error probability 6F to its Leader. The Leader

compares both 66L and 66F against a preset threshold 6TH (where 66 = [enew — Eoldll-

If either of 66L or 66F exceeds 6TH, iteration assignment is recomputed at the Leader

node and passed on to Follower. The rate at which Follower reports 6F to Leader can

be adapted based on conditions in which network is to be deployed and the reliability

desired.

6.4 Simulation Setup

We consider a source node with multiple paths leading to base station setup through

a multipath reinforcement scheme such as directed diffusion [17]. We assume three

data streams originating at a source node each requiring different reliability level

based on either destination based or source based partitioning. Source node specifies
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the desired reliability level for each stream based on which level it belongs to. We

assume that 6191 is the averaged equivalent error probability [22] over all the hops

for end-to—end path p1,ep2 for path p2 and so on. Thus Gav is the composite error

probability for the network averaged over all the paths. We use multiple realizations

of the end-to—end multi-hop links with variation in error probability such that number

of nodes for each path is Npl = 4,Np2 = 5,Np3 = 4 . Each realization results in a

different individual link error probability such that there is minimal deviation for

each path from average equivalent error probability. We assume all the nodes having

uniform energy levels initially.

We set the information packet size to be k = 1024 bits which is encoded with a

rate R = 0.569 code. We use an LDPC code with degree distribution polynomial

MO) = 0.20706 + 0.27102 + 0.52261 [27] , though, by concentration property of LDPC

codes [27], the deductions made here are equally applicable to any randomly picked

code from LDPC ensemble.

The transmission range of each individual sensor node is limited to a maximum

transmission range r = 2m. We set em,” = 0.005 and 6mm; 2 0.08. We take per hit

transmit power PT = lle, per second, for each node. We assume that if 6 < 6min,

only one iteration is enough to decode the information bits which is usually the.

case [22] [21]. We further assume each node equipped with an Atmel Atmega128L

processor and 2000:1 ratio between per bit transmission energy and computation

energy spent per instruction [12]. The average number of ones per column in a

parity check matrix of a (n, A, p) code from ensemble of LDPC codes is taken as:

(f01 A(6) d6)’1 [32]. Fossorier et a1. [9] give a comparison of mathematical operations
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required for one LDPC decoding iteration for various LDPC decoding algorithms

including sum product algorithm [27]. This information is used to determine the

computational energy spent by sensor nodes for a single LDPC decoding iteration.

We use log-domain sum product algorithm for LDPC decoding due to its advantages

in terms of computational complexity. All results are averaged over 100 runs. For the

end-to—end case, the total energy is the transmission cost of delivering information

bits reliably across the multi-hop network, whereas, energy costs for MDR involve

both transmission and computations within the network.

At the destination node, decoding is performed for each data stream. The resulting

bit error rate and energy levels are sampled such that there is one to one correspon-

dence between energy levels for all the paths and the bit error rates thus achieved for

each path during that run. The results are averaged to obtain expected bit error rate

for corresponding energy level.

6.5 Results and Discussion

Figure 6.2 gives a performance comparison between proposed MDR scheme and end-

tO-end channel coding with variation in end-to—end channel error probability em, .The

results clearly establish that the proposed MDR scheme outperforms end-to-end chan-

nel coding by considerable margin for level of reliability achieved for a given energy

budget. The plots further indicate that for end-to—end approach, as the energy bud-

get is increased, the corresponding decrease in bit error rate is relatively irregular

till enough redundancy is not added to sustain the information bits over entire end-
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to—end path, at which time though there is a sharper decrease, energy cost is also

significantly higher. For MDR approach, rather than adapting the whole packet size

for different reliability levels at much higher energy costs, we achieve the flexibility to

operate at fixed packet sizes with greater energy efficiency by relatively in-expensive

processing within the network, thus ensuring network lifetime maximization.
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, Cay = 0.1125, 0.1175, 0.1190

Figure 6.3 shows the variation of expected bit error rate for MDR scheme when

pair-wise budget I‘(l-)pa,-,. is varied for each data stream. We see that careful choice of

I‘( )paz-T is important in ensuring desired level of reliability. We intend to maximize
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throughput at the destination node, but at the same time, do not want to create a

partition within the network by draining out all the nodes on that path. The results

further indicate the efficacy of MDR in allowing us to operate at end-to-end channel

error rates as high as 61,2 = 0.1364 and still maintaining energy efficiency.
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ii) I‘l-(lpairpl : 4: F(l—)pairp2 = 6, P(l-)pairp3 = 8 iii)l.—‘(l-)]Dm'rp1 = “()pairpz = 8,

P(l)pai1‘p3= 10, Epl = 0.1190, Epg =2 0.1364, 6193 = 0.1190

The plots in Figure 6.2 & Figure 6.3 further show that it is feasible to tradeoff

complexity/energy usage with distortion/reliability for a given sensor network. The

two extremes of the energy/distortion curves in Figure 6.3 indicate the performance
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that is achieved when two extremes of in—network processing is employed. When

no decoding is performed at intermediate nodes, the accumulation of errors is ex-

ponential. Thus, any packets received at the destination node may have very little

or no information utility. On the other hand, when complete decoding budget is

distributed among all the pairs over all the paths, the information reliability is max-

imum, though, network energy consumed also increases proportionally resulting in

decreased network lifetime. Our proposed scheme allows to fine-granularly operate at

intermediate points by adjusting the functional demands of the network such that a

balance is maintained between desired reliability level and network lifetime. Again,

this can be achieved by adapting the pair budget assigned to individual streams over

the network lifetime.
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CHAPTER 7

Application: Still Images
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7.1 Preliminaries and Motivation

In this chapter, we investigate the performance of proposed progressive error recovery

paradigm in conjunction with still images.

As of today, most of the wireless sensor networks deployed handle data that is of

scalar physical phenomena such as pressure, humidity, temperature, location etc [3].

Wide scale availability of CMOS devices such as CMOS cameras and audio sensors

has made it possible to integrate large selection of image and audio processing appli-

cations with sensor networks. Though these developments have opened wide range

of possibilities, they have also brought forth various research challenges including

provision of data reliability with minimal overheads.

In this work, we utilize the progressive error resilience framework in order to provide

error resilience to sensor visual observations as they traverse the multi-hop network

towards the destination node. We propose to use partial channel decoding of visual

data as it approaches the destination node. Unlike some of the prior existing work

where full channel decoding/encoding was conducted under a Network Embedded

FEC (NEF) framework [41], here we use progressive error recovery paradigm dis-

cussed in previous chapters. We show that the proposed paradigm, when used in

conjunction with visual data, significantly enhances received image quality as com-

pared to prevalent reliability schemes for a given network energy budget. We further

show that little bit of processing at intermediate nodes can greatly enhance the peak

signal to noise ratio (PSNR) quality of wireless visual data without compromising

on energy efficiency. \lVe illustrate that our approach is suitable for low-power visual
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sensor networks through rigorous simulations.

7.2 Simulation Setup

We conduct simulations based on both OPERA and D-OPERA presented in chap-

ters 4 and 5. In order to support image transfer, additional features have been added

to the application that enables the fragmentation and reassembly of the compressed

image files. We use standard image sequences ‘Boats’ and ‘Lenna’ for our simulations

. The images are JPEG2000 encoded, packetized, LDPC channel encoded and trans-

mitted through a cascade of binary symmetric channels. A reverse process including

LDPC decoding, re-framing and JPEG2000 decoding is conducted at the receiver.

Due to the nature Of our problem, for the scope of this work, we do not take source-

encoding complexity into consideration and assume that sensor nodes are capable of

successfully encoding the images. We use Peak Signal to Noise Ratio (PSNR) in order

to measure quality of received images.

The captured image at the source node is first encoded using a JPEG2000 encoder

with a compression ratio of 20:1. The JPEG2000 encoded bit stream is then packe-

tized with k = 1024 information bits in each packet and fed to an LDPC encoder with

a degree distribution polynomial:).(6) = 0.20766 + 0.27162 + 0.52261 and code rate R

. The resultant packets are then transmitted over multi-hop network with associated

channel error probabilities 6.

In order to estimate the total energy consumption Etotal of the network for trans-

porting a data packet over end-to-end path, we set transmission power of each node
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PT 2 ImW with 122000 ratio between transmission cost and computation cost [12].

Fossorier et a1. [9] give a comparison of mathematical operations required for LDPC

decoding, per iteration, for various LDPC decoding algorithms including sum product

algorithm. We use log-domain sum-product algorithm due to its advantages in terms

of computational complexity [27]. The average number of ones in an LDPC parity

check matrix is taken as (f01 MO) d6)‘1 [32].We assume that each node is sending mes-

sage back to a central coordinator over a multi-hop WMSN with number of nodes N=4

over the end-toend path. We assume each node equipped with Atmel Atmega128L

processor. For the statistical model, we assume 6mm = 0.005 and em” = 0.08. We

use different realization of the network for each run such that average end-to-end

equivalent error probability eeq remains constant. All the results are averaged over

hundred runs.

7.3 Results and Discussion

Figure 7.1 shows the performance of proposed DPERA scheme in comparison to end-

to-end channel coding with Etotal = 6.5.] for both end—to—end and D-OPERA, with

I‘(—)pa,-,. = 4. We see that D-OPERA performs significantly better as compared to

the conventional end-to—end channel coding in terms of received image quality.

Figure 7.2 highlights this further. We see that for end-to-end equivalent channel

probabilities as high as egg 2 0.14, D-OPERA shows excellent PSNR characteristics.

In comparison, for end-to-end scheme, in order to achieve similar levels of reliability,

we may need much bigger packet lengths (and hence more redundant transmissions)
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Figure 7.1. Average PSNR for D-OPERA with I‘( )pair = 6 and end-to—end for

R = 0.5 LDPC encoded JPEG2000 image

leading to significantly higher consumption of energy. Even if more redundancy is

added for end-to-end scheme, end-to—end error probabilities of the order of 10—1

maybe above the capacity of even best available channel codes.

For the proposed D—OPERA architecture, further savings in terms of energy can be

achieved using prioritization of the data, such that data having greater significance

is assigned a path with higher POW“. and lower significance data lower (I‘(l-)pai,..

For instance, in JPEG2000 progressive coding of image using multiple layers [37],

some layers may require higher protection against channel errors than others based

on their energy efficiency and contribution to final PSNR. In this work, we restrict

our discussion to uniform F( )pair over the end-to—end path.
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Figure 7.2. JPEG2000 encoded ‘boats’ image with seq 2 0.14(clockwise from left) i-

original image after source encoding ii- end-to—end channel coding iii- OPERA with

r(z),,,,dge, = 6 iv-D—OPERA with mom, = 6
 

   
 

Figure 7.3 gives the performance curves for proposed OPERA and D-OPERA

schemes for JPEG2000 encoded Lenna image sequence over a line network with N = 4

and an LDPC code rate of R = 0.5. The curves visibly Show the performance gains

achieved in using OPERA/D-OPERA. For an iteration budget of only six iterations

to be distributed over a pair of nodes, the gain in peak signal to noise ratio is tremen-

dous for progressive error recovery. For end-to-end scheme,we start getting decoding
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Figure 7.3. JPEG 2000 encoded Lenna image with PERA and D-OPERA for a pair

decoding budget of 6 iterations R = 0.5

failure for JPEGZOOO encoded Lenna at approximately 7% channel error probability.

In contrast, we do not encounter decoding failure for error rate as high as 14% and

18% for D-OPERA and OPERA, respectively, with the assumption that 6 remains

below code capacity [28] on individual hops.

For the progressive recovery paradigm, the choice of F(_)pa,-,. is an issue that requires

vigilance for the network designer & should be chosen based on the conditions in

which network is expected to operate. For instance, too high I‘(l_)pm-r may lead to

faster depletion of node resources, Whereas, too low I‘(l)pa,-,. may not provide desired

reliability. Hence, a balance should be struck while setting this parameter.
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CHAPTER 8

Application: Wireless Video
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8.1 Introduction

Wide scale availability of low-cost hardware such as CMOS cameras and microphones

has fostered the development of sensor networks to carry multimedia content [3]. For

instance, Crossbow’s Imote2 multimedia board [1] adds multimedia capabilities to the

Imote2 platform for Wireless Sensor Networks (WSNS) allowing for capturing images,

video as well as audio for playback. This opens door for a variety of applications for

WSNS along with posing certain challenges in terms of reliably routing the multimedia

content from sensor nodes back to the base station. An example of such an application

can be in surveillance and security related scenarios where video data captured by a

remotely deployed camera mounted on a sensor node might need to be reliably sent

back to the central base station. An inherent problem in applications involving video

data is the amount of data generated along with ensuring minimal expenditure of

energy in routing it back to the base station. Using a single path to the destination

would fast deplete resources on that path, resulting in early network partitions and

lesser than expected network lifetime.

In [20], Puri et al. discuss the challenges faced by any video transmission scheme

for wireless sensor networks. They conclude that a broadband network of wireless

video sensors is subjected to three principal constraints: limited processing capabil-

ities, limited power/energy budget and information loss endemic to the harsh-loss

prone wireless communication environment. A related issue is the high transmission

costs for energy ravenous sensor nodes. According to some studies, there is a 1:2000

ratio between transmission cost and computational cost [12] in WSNs, thus making a
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strong case in favor of in—network processing. Any data reliability framework should

keep these limitations under consideration. These limitations and the information

losses call for robust coding algorithms, protocols and architectures that build error

robustness within the WSNs.

Motivated by both error prone nature of links as well as sensor energy limitations,

we provide an architecture that can be used in order to reliably transport video con-

tent in W'SNs. The proposed framework ensures near optimal use of network resources

as well as network lifetime maximization by avoiding partitions in the network due

to over usage of few paths. Particularly, we propose a strategy to add reliability

in WSNs using a three prong approach that builds on: a) multi-stream coding of

video b) multipath transport and c) distributed progressive error recovery through

partial recovery of sensor data at intermediate nodes (discussed later).To the best of

our knowledge, no work exists in this regard with these three components working

together in WSNs. We propose a solution that is best suited to multi—stream coding

of video as prevalent in most modern video coding architectures [20]. The proposed

architecture is distributed in nature such that no complete knowledge is assumed

regarding end-to—end network conditions. Using LDPC codes, we compare the per-

formance of the proposed framework with end-to-end channel coding and Show that

it significantly outperforms it in terms of energy efficiency for level of reliability thus

achieved.
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8.2 Background

In this section, we provide a quick overview on few of the concepts used in the proposed

framework.

8.2.1 Video Coding Techniques

In order to understand the WSN video reliability problem, we take a quick glance on

the nature of coding techniques available for coding video content. Possible candidates

for WSN can be adapted form of either of layered coding (LC), multiple description

coding (MDC) or distributed video coding (DVC).

A typical layered coder includes one base layer and one or more successive enhance-

ments layers that can be used together to achieve a desired level of video resolution

at the destination. The base layer has higher priority than the enhancement layers

as the loss of base layer makes the information received from the enhancement layers

useless [25].

Multiple description coding fragments a single media stream into M independent

sub streams (.M > 2) referred to as descriptions. These descriptions are then sent

over multiple channels and combined at the receiver depending on the desired video

resolution [40].

Predictive video coding (PVC) as used in H.26x or MPEG-x employs two modes

in order to encode video: Intra—coding (1) mode exploiting the spatial correlation in

the frame that contains the current block by using a block transform such as the

discrete cosine transform (DCT), Inter-coding or motion compensated predictive (P)
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mode that exploits both spatial and temporal correlation in the video sequence [20].

Thus, in PVC, the encoded video frames can be partitioned into an I—stream and a

P-stream.

A more recent work on low complexity encoding of sensor video data is characterized

by distributed video coding (DVC) which incorporates concepts from source coding

with side information, creating an intra-coded I-frame along with a side information

counterpart Wyner-Ziv (WZ) frame [20]. The DVC framework, using its PRISM

architecture, promises to provide robustness, light source-encoder architecture and

flexibility in distributing the computational burden of motion estimation between

transmitter and receiver. We can notice here as well that data can be partitioned

into multiple streams consisting both intra—coded as well as side information frames.

In summary, video coding techniques currently in vogue create multiple streams

of data that may differ in their significance. Any video sensor reliability framework

should consider these facts in the design of the technique.

8.2.2 Multipath Transport (MPT)

MPT has been studied at length for both wired and wireless data [19]. Multipath

routing focuses on finding maximally disjoint paths from source to destination node.

Various routing algorithms used in sensor networks such as directed diffusion, dynamic

source routing (DSR), ad-hoc on demand distance vector (AODV) return multiple

paths to the destination node [19]. Routing diversity-where packets are purposely

sent on different routes to insure against the failure of a. single route—can increase error
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robustness in WSNs [13]. Thus, sensor energy limitations and multi-stream nature of

generated video content makes an appealing case in favor of MPT for avoiding early

network partitions through load balancing and provision of error resilience.

8.3 Multi—Path Multi—Stream Distributed Relia-

bility

We discussed various video coding techniques that can be potentially adapted for use

with WSNs. One thing is common in all of them, data can be partitioned into various

streams. These streams can either be self sufficient in that only one of them can be

used to decode the information (such as in MDC) or hierarchical in the sense that

we need one of them in order to decode the second one. We propose a multi-stream

multipath distributed reliability (MMDR) framework that is generic in nature such

that any technique used for encoding, till the time it has streams, we are good. The

framework uses a three prong strategy:

1. Source encode the video data into multiple streams and channel code the re-

sulting streams

2. Assign the video to multiple paths for ensuring load balancing and error re-

silience

3. Use partial decoding at intermediate nodes through distributed progressive error

recovery framework (discussed subsequently) to recover from channel induced

errors
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Figure 8.1 gives the details of the proposed MMDR setup in WSNS. In the initial

phase, the video data is source encoded such that we attain multiple streams. These

streams are then channel coded before assigning to various paths. In the subsequent

subsections, we present the details on the components of the proposed architecture.

8.3.1 Prioritized Data Partitioning

The source encoded video is partitioned into M streams based on the significance of

data towards decoding of video. e.g. assuming that we are using H.264 [25] for coding

video, the encoded video frames are split based on whether they are intra-coded (1-

frames) or inter-coded (P-frames). These streams are then channel encoded before

they are fed to a path assignment block.

8.3.2 Path Assignment

We assume that certain multipath routing scheme such as directed diffusion is already

working underneath that returns multiple paths to the destination [17] [11]. These

schemes also return information on the level of reliability for each path. Based on

this information, K paths are chosen and partitioned M streams of data are assigned

to selected paths. A special case in MMDR is when K < M during path assignment

phase. In such a scenario, packets from multiple streams may share the same path

and intermediate nodes might need information on significance of packets. Thus,

any protocol designed based on MMDR should build that capacity within the packet

streams. We restrict our discussion here for cases when K 2 1M.
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For the example H.264 data, since intra-coded I frames contain greater amount

of data than their P counterparts, they may require further splitting over further

paths for better load balancing, though, P frame streams may also requiring be split,

depending on number of paths available for reaching back to destination and group

of pictures (GOP) size used for encoding video. Intelligent data partitioning schemes

are thus required that partition the frames at their boundaries such that despite losses

in datasets for one frame other frames remain unaffected. For the scope of this work,

we assume that is the case.

8.3.3 Distributed Progressive Error Recovery

We employ distributed progressive error recovery paradigm proposed in chapter 5 in

conjunction with proposed MMDR framework.

8.3.4 Unequal Error Protection

The proposed architecture can be optionally combined with Unequal Error Protection

(UEP), where, the channel coding rate is varied based on various node and network

parameters. This does not come without few challenges though. In most of UEP

literature, the packet size n is kept constant, but information bits k are varied based

on [39]. Again, there are M streams and K g M channel codes maybe used to

encode them though a related issue is, for each variation in information bits, we may

need a different channel code to encode it. Thus, since sensor networks are randomly

deployed, tradeoff in sensor networks is greater amount of storage for each LDPC
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code that might be required at each node depending on type of code used to encode

that particular stream.

8.4 Simulation Setup

In most of the prevalent video coding architectures, video encoding is the primary

computationally extensive task with complexity dominated by the motion-search op-

eration. For the scope of this work, we assume that sensors have the capability to

encode video though, efficient source coding of video still remains a wider research

problem. In addition, we further assume that we are not facing motion estimation

complexity issues that maybe encountered in coding over video sensor nodes and con-

fine our focus towards data reliability aspects using progressive error recovery within

the network. We consider a sensor node transmitting to a base station with multiple

paths leading to the base station obtained through some underlying routing scheme

such as directed diffusion [17]. We keep the assumptions regarding sensor nodes and

the LDPC codes same as chapter 7.

The total energy for end-to—end transmission is taken as the transmission cost in

transmitting n bits over end-to-end multi-hop path, whereas, energy estimate for a

single path in MMDR involves both transmit and computation energy for in—network

processing. We set number of paths K = 4 with multiple realizations of the multi-hop

network for each run such that average end-to—end equivalent error probability em,

remains constant. All the results are averaged over 100 runs. We use two paths in

order to send packets belonging to I frame and two for P frame. We set GOP size
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Table 8.1. H.264 Encoder Parameters

 

 

 

 

 

 

 

 

 

 

Parameter Value

Sequence Foremanqcif

YUV Format 422:0

QP 28

Profile IDC High

Entropy Coding CABAC

Sequence Type IPP

Error Concealment On     
equal to 6. Both I & P—frame data is equally divided on each corresponding path

such that despite losses in datasets for one frame other frames remain unaffected. On

receive side, a resequencer collects all the packets, and assigns them to corresponding

streams, which are then fed to channel and source decoding modules to obtain the

reconstructed video ( 8.1).

8.5 Results

In this section, we present some preliminary simulation results that illustrate the

efficiency of the proposed MMDR architecture in WSNs with use of an H.264 video

encoder[2]

Figure 8.2 shows the performance of MMDR framework as compared to end-to-

end channel coding. We see that MMDR outperforms end-to-end channel coding

by significant margin, achieving reliable communication with much higher energy

efficiency for average end-to—end equivalent error probabilities as high as em, = 0.125

with a pair budget of F( )pair 2 8.
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Figure 8.3 shows the transmitted and reconstructed frame for both end-to-end

channel coding and MMDR framework under different channel conditions with dif-

ferent pair-wise iteration budgets. The results clearly indicate much improved per-

formance under MMDR for same energy levels used during end-to-end transmission.

Figure 8.4 uses peak signal-to-noise ratio (PSNR) in order to measure quality of

video sequences for different end-to—end equivalent channel error probabilities. For

a channel coding rate R=O.5 and average end-to-end equivalent error probability as

high as 0.14, the plots clearly establish that MMDR outperforms end-to-end channel

coding by considerable margins.

The results indicate that MMDR provides reliability to video streams in WSNs

without fast depleting the energy resources of video sensors. They further depict that

little bit of processing at intermediate nodes can greatly enhance video quality at the

destination node. Use of path diversity gives the added flexibility in terms of added

lifetime for WSNs. The rate-distortion curves obtained in Figure 8.2 and Figure 8.4

provide insight onto fine tuning the functional demands from the network in terms

of adjusting the expected bit error rate/PSNR at the destination node for amount of

energy spent in transmitting the bits reliably over end-to-end path.
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Figure 8.1. Multi-Path Multi-Stream reliability architecture for video transmission
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Figure 8.2. MMDR vs end—to-end transmission with R = 0.5,K = 4,N = 4,F(l)pa,-,. =

8 a)€av = 0.12 b)eav = 0.125
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Figure 8.3. Frame 2(P) for Foreman QCIF sequence
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Figure 8.4. Average YPSNR for both MMDR with F ( )pair 2 10 and End-to—End for

R = 0.5 LDPC encoded H.264 video.
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CHAPTER 9

Conclusion and Future Work
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In this work, we have presented a progressive error recovery paradigm that provides

reliability to sensor network data in a progressive fashion. We have presented a

framework that significantly enhances the decoding reliability at the receiver at the

cost of processing within the network through partial decoding. We present both

centralized and distributed approaches in order to map the decoding iterations to

WSN for an iteratively decodable channel code.

The centralized approach presented optimally maps the decoding iterations to the

intermediate nodes and performs significantly better than random assignment. We

give bounds on the performance of the algorithm for computational energy spent

within the network for partial decoding of ensembles of LDPC codes. In addition,

we have proposed a methodological approach for wireless sensor network resilience

against channel induced errors that ensures fairness to individual sensor nodes through

rate adaptivity and introduction of bounds on processing at individual nodes. We give

performance curves for variation in throughput at destination node using systematic

puncturing of LDPC codes and discuss associated energy/throughput tradeoffs.

In addition, we have presented a distributed error recovery algorithm that ensures

complete distribution of all the iterations to intermediate nodes. The bit error rates

thus achieved outperform end-to-end channel coding by considerable margin for the

amount of energy spent within the network. The setup obtained requires minimal

exchange of messages needing only two extra transmissions per pair of nodes (follower

node error rate and iteration assignment). We make no assumption regarding com-

plete topological knowledge for the end to end path. The methodology thus achieved

ensures pair-wise asynchrony in iteration assignment. The proposed proportional

90



warm-start provides fast convergence and guarantees minimal algorithmic overhead.

Given a statistical model for variation of bit error rate with decoding iterations, our

scheme is applicable to any iteratively decodable code.

Further, we have presented a multi-path distributed reliability scheme for wireless

sensor networks. It provides a novel methodology to provide reliability to a Wireless

Sensor Network, in a distributed fashion, in scenarios when there is asymmetry in the

significance of data. The scheme is particularly useful in network conditions when

high levels of end-to-end corruption are expected in the data sent over the multi-hop

network. We show that how little bit of processing within the network carried out

in an intelligent fashion can tremendously help in ensuring reliability of data at the

destination.

We have shown the effectiveness of the proposed architecture with the help of rel-

evant simulations using JPEG2000 images with LDPC codes. The proposed frame-

work provides significantly better performance than prevalent end-to-end reliability

schemes.

Further motivated by the stringent requirements due to resource constrained nature

of sensor nodes, we have proposed an architecture to provide reliability to video in

WSNs. We have described the architectural platform, theoretical foundations, as well

as the bridge from theory to video practice, and presented promising experimental

results based on real-world video sequences that establish the efficacy of our proposed

solution over prevalent reliability schemes in WSNS.

The proposed framework can be extended to other prevalent video coding tech-

niques including but not limited to DVC, SVC or MDC. As indicated in figure 8.1, a
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future extension of this work can be when the packets are unequally protected using

different LDPC codes. Similarly, adaptation of the framework with distributed video

coding is another area that can be investigated.

92



Appendix: A
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Table 1. Coefficients 0(5ind)aflffindla7(€ind),¢(€ind) ,emin = 0.01, 6mm: = 0.08,

in,” = 150, R = 0.509(6) = 0.207196 + 0.271492 + 0.52201

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          

62ml 0(6ind) fiféz'nd) 7(6ind) ¢(€ind)

1 0.000000 0.000000 0.000000 0.000000

2 0.000000 0.000000 0.000000 0.000000

3 0.000000 0.000000 0.000000 0.000000

4 0.000000 0.000000 0.000000 0.000000

5 -0.77040 -0.49120 0.788700 -0.49920

6 -1.04800 -0.57960 1.071000 -0.58730

7 -0.95840 —0.49130 0.981200 -0.49900

8 -3.98e— 18 6.07400 0.062490 -1.38600

9 -0.00036 -0. 11460 0.046340 -1 . 13800

10 -7.110€-8 1.716000 0.046970 -1.04200

11 -1.346e—5 0.576800 0.076540 -1.27000

12 0.058820 -1.11000 0.005659 -0.29750

13 0.414500 -3. 70900 0.035520 -0.56830

14 0.414500 -3. 70900 0.035520 -0.56830

15 0.072770 -0.73810 -0.00013 0.194400

16 0.097310 -0.73360 -0.05287 -1.71600

17 -1.315e—7 1.419000 0.068030 -0.50910

18 0.160900 -0.77600 -0.49400 -2.83200

19 0.086340 -0.44410 -0.00198 0.142800

20 - 1.70300 -0.27440 1.791000 -0.28160

21 -0.00019 0.225600 0.094360 -0.37780

22 0.020100 -0.33230 0.078730 -0.32970

23 -5.860€-6 0.439700 0.094610 -0.24380

24 ~9.053e-7 0.577800 0.098810 —0.22640

25 -0.004318 0.054790 0.095930 -0. 13270

26 -0.003394 0.051480 0.089930 -0.09533

27 -1.125e-5 0.235300 0.089780 -0.11180

28 -0.04832 -0.07443 0.123900 -0.07443

29 -0.43230 -0.08299 0.519000 -0.08480
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Table 2. Coefficients a(€ind)afiffindlflféindliwkind) ,emm = 0.01, 6mm: = 0.08,

(max = 150, R = 0.51, /\(6) = 0.20766 + 0.271192 + 0.52261

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          

Eind a(€ind) [3(Eind) 7(52'nd) wkind)

1 0.000000 0.000000 0.000000 0.000000

2 0.000000 0.000000 0.000000 0.000000

3 0.000000 0.000000 0.000000 0.000000

4 -0.91380 -0.42110 0.936800 -0.42890

5 -1.77200 -0.65740 1.809000 -0.66450

6 -1.30600 -0.51590 1.337000 —0.52340

7 -1.61900 -0.58400 1.654000 -0.59110

8 -1.85300 -0.63560 1.901000 -0.64230

9 0.044220 -1.15700 0.020120 -0.98420

10 -1.21-10 2.061000 0.055540 -0.82360

11 -0.00012 0.128900 0.062320 -0.74030

12 -1.200000 -0.33280 1.253000 —0.33960

13 -1.34900 -0.38230 1.404000 -0.38900

14 -1.26200 -0.34670 1.316000 -0.35340

15 -1.24700 -0.28500 1.305000 -0.29170

16 -0.98590 -0.23840 1.047000 -0.24550

17 -4.074e-6 0.659300 0.064800 -0.36950

18 -0.00111 0.039210 0.070600 -0.34820

19 -5.808e-8 0.835800 0.077180 —0.38230

20 -1.184e—5 0.256500 0.082110 -0.38260

21 -3.646e-5 0.231600 0.072100 -0. 18360

22 0.009536 -0. 14580 0.063390 -0. 14360

23 -0.04482 -0.11370 0.123500 -0.11360

24 0.076050 -0.39250 0.031780 0.000994

25 0.047450 -0.00811 0.002011 0.019310

26 0.071720 ~0.51340 0.045690 0.000358

27 0.069430 -0.63150 0.053900 -3.098€-5

28 0.01408 -0.03402 0.051920 0.000232

29 0.04448 -0.44580 0.060100 4.565e—5
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Table 3. Coefficients a(e,-nd),6(e,-nd),7(e,-nd),r,b(e,-nd) ,emm = 0.01, emax = 0.08,

imam = 150, R = 0.52, W) = 0.20796 + 0.27162 + 0.522191

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          

find 0(6md) fi(€ind) 7(62'nd) wfeind)

1 —0.00095 .0.14510 0.021970 .0.75990

2 000421 -O.33890 0.032100 -0.75180

3 0.014430 4.29300 0.052580 4.43700

4 499.1 4.19800 199.2000 4.19800

5 0.199200 -2.28500 0.007481 0.37550

6 0.073890 4.02700 -5.693e-6 0.533800

7 0.083440 4.07900 -5.137e—7 0.934800

8 0.071620 6.765% -5.554e—6 0.605700

9 0.064960 -0.60780 -1.651e—5 0.618400

10 0.475000 -0.78070 0.45020 -0.91870

11 0.146000 -O.58710 -011250 -099370

12 0.146000 —0.58710 0.11250 -0.99370

13 0.142300 -0.58830 .0.10570 4.01100

14 -O.84500 -0.09831 0.903800 -0.10580

15 0.72450 -0.08762 0.784700 0.09519

16 -0.00536 0.045930 0.076600 -0.19390

17 0.142400 -0.04939 0.213700 -0.08161

18 000010 0.326100 0.079070 -0.17040

19 -002459 -001793 0.098860 -0.08698

20 ~5.471e-5 0.151500 0.072670 0.05144

21 0.027500 0.000000 0.027500 0.000000

22 0.028750 0.000000 0.028750 0.000000

23 0.030000 0.000000 0.030000 0.000000

24 0.031250 0.000000 0.031250 0.000000

25 0.032500 0.000000 0.032500 0.000000

26 0.033750 0.000000 0.033750 0.000000

27 0.035000 0.000000 0.035000 0.000000

28 0.037500 0.000000 0.037500 0.000000

29 0.040000 0.000000 0.040000 0.000000
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Table 4. Coefficients “(Eindlamfindla’lkindlwwfeind) 6min = 0.01, 6mm; = 0.08,

[max = 150, R = 0.5, PEG (3,6) Regular LDPC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          

Emd a(€ind) fi(52nd) 7(6468) Wand)

1 0.000000 0.000000 0.000000 0.000000

2 0.000000 0.000000 0.000000 0.000000

3 0.000000 0.000000 0.000000 0.000000

4 -0.69460 -0.37620 0.712600 -0.38410

5 -0.97150 —0.471 10 0.998500 -0.47830

6 -1. 17000 -0.48130 1.206000 -0.48830

7 -1. 12600 -0.41540 1.167000 -0.42230

8 0.31130 -1.09000 -0.30790 -1.37700

9 0.175600 -0.92100 -0.26610 -1.96300

10 0.435400 -0.66820 -0.38940 —0.74800

11 0.050130 -0.36520 0.017250 -0.36810

12 0.068400 -0.27110 0.000198 0.000539

13 0.009578 -0.04029 0.063590 -0.24560

14 0.065780 —0.14410 0.005974 -0.00118

15 0.054300 -0. 14570 0.022660 -0.00015
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Table 5. Coefficients a(emd),fi(6,-nd),'y(eind),1/J(emd) ,em.,:n = 0.005, emax = 0.08,

[max = 150, R = 0.569,/\(9) = 0.20706 + 0.27162 + 0.52261

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          

Eind 005528) 5(6md) 7(érnd) Wand)

1 -0.020270 -1.924000 0.027520 -2.060000

2 0.023630 -2.398000 0.027520 0.000000

3 -0.235400 -0.318700 0.000000 -0.327400

4 -0.000398 -0.491000 0.242800 -1.441000

5 0.000458 -0.381900 0.034490 -1.272000

6 0.045160 -1.050000 0.039560 0.0000000

7 0.046460 -0.82750 0.000000 -0.286900

8 0.001199 -0.322400 0.051330 -0.735200

9 0.000270 -0. 151600 0.055600 -0.572200

10 0.057380 -0.429300 1.033e-14 0.157400

11 0.114100 -0.311200 -0.051560 -0.282500

12 0.064360 -0.271100 0.001997 -0.042900

13 0.061870 -0.196400 0.003563 -0.000210

14 0.055990 —0. 160700 0.012830 -0.000351

15 0.040590 -0.139000 0.029850 -0.000183

16 0.029480 -0.221600 0.049870 -4.751e—5
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