
DEFENDING AGAINST BROWSER BASED DATA EXFILTRATION ATTACKS

By

Aditya Sood

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Computer Science - Doctor of Philosophy

2013

ABSTRACT

DEFENDING AGAINST BROWSER BASED DATA EXFILTRATION ATTACKS

By

Aditya Sood

The global nature of Internet has revolutionized cultural and commercial interactions

while at the same time it has provided opportunities for cyber criminals. Crimeware services

now exist that have transformed the nature of cyber crime by making it more automated and

robust. Furthermore, these crimeware services are sold as a part of a growing underground

economy. This underground economy has provided a financial incentive to create and market

more sophisticated crimeware.

Botnets have evolved to become the primary, automated crimeware. The current, third

generation of botnets targets online financial institutions across the globe. Willie Sutton,

the bank robber, when asked why he robbed banks is credited with replying: “That is where

the money is.” Today, financial institutions are online so “that is where the money is” and

criminals are swarming. Because the browser is most people’s window to the Internet, it

has become the primary target of crimeware, bots in particular. A common task is to steal

credentials for financial institutions such as accounts and passwords.

Our goal is to prevent browser-based data exfiltration attacks. Currently bots use a

variant of the Man-in-the-Middle attack known as the Man-in-the-Browser attack for data

exfiltration. The two most widely deployed browser-based data exfiltration attacks are Form-

grabbing and Web Injects. Form-grabbing is used to steal data such as credentials in web

forms while the Web Injects attack is used to coerce the user to provide supplemental in-

formation such as a Social Security Number (SSN). Current security techniques emphasize

detection of malware. We take the opposite approach and assume that clients are infected

with malware and then work to thwart their attack.

This thesis makes the following contributions:

• We introduce WPSeal, a method that a financial institution can use to discover that

a Web-inject attack is happening so an account can be shut down before any dam-

age occurs. This technique is done entirely on the server side (such as the financial

institution’s side).

• We developed a technique to encrypt form data, rendering it useless for theft. This

technique is controlled from the server side (such as the financial institution’s side).

Using WPSeal, we can detect if the encryption scheme has been tampered with.

• We present an argument that current hooking-based capabilities of bots cannot cir-

cumvent WPSeal (as well as the encryption that WPSeal protects). That is, criminals

will have to come up with a totally different class of attack.

In both cases, we do not prevent the attack. Instead, we detect the attack before damage

can be done, rendering the attack harmless.

Copyright by
ADITYA SOOD
2013

ACKNOWLEDGMENTS

This pursuit of my PhD started when I met Dr. Enbody, a great human being and brilliant

mentor. I feel very fortunate that I got a chance to work with him in academia. His open

approach and enthusiasm to work on problems motivated me enough to work diligently

and enjoy my PhD at the same time. Apart from academics, his nature of sharing his life

experiences to guide others is amazing. I also want to thank Dr. Esfahanian for the all the

support provided by him during my PhD. I learned a lot under his guidance. I am deeply

thankful to all my PhD committee members for their time and support.

I cannot forget to pay my regards to my family who provided immense support and

motivation to pursue this target. I have a deep respect for my father, Sh. Jayant Sood and

my brother, Manav Sood, who supported me in difficult times and motivated me to keep

moving towards my goal. All the love shown by my mother, Usha Sood and rest of my family

is unforgettable. Of-course, nothing is of value to me if I did not get a support from my

mentor Mr. L.S. Rana, who helped me in turbulent times and stood by me. I sincerely feel

very blessed to have him and do not have any words to express my gratitude towards him.

I would not be able to complete this journey without the continuous support and patience

shown by my loving wife, Roshni. I really appreciate her support and brave sacrifices she

made during the course of this journey.

At last, I want to thank my friends and my research group, Rohit Bansal and Peter Greko

including all the security community researchers with whom I have learned and shared a lot

in the field of computer security.

v

TABLE OF CONTENTS

LIST OF TABLES . viii

LIST OF FIGURES . ix

Chapter 1 Introduction . 1

Chapter 2 Cyber Crime and Botnets . 7
2.1 Role of Botnets in Cyber Crime . 8
2.2 Generations of Botnets . 11

2.2.1 First Generation: IRC Based Botnets 11
2.2.2 Second Generation: P2P Based Botnets 12
2.2.3 Third Generation: HTTP Based Botnets 13

2.3 Reasons for the Rise of Botnet Attacks . 14

Chapter 3 Stealth Malware Classification . 16
3.1 Rootkits - Stealth Malware . 16
3.2 Stealth Malware Taxonomy . 22
3.3 Browser Malware Taxonomy . 24
3.4 Conclusion . 25

Chapter 4 Malware Distribution and Propagation Tactics 29
4.1 Web 2.0 Malware Infections . 30
4.2 Malware Propagation Strategies . 34

4.2.1 Drive-by Download Attacks . 35
4.2.2 Browser Exploit Packs . 39
4.2.3 Spear Phishing and Spamming . 39
4.2.4 Exploiting Trust in Online Social Networks 41
4.2.5 Web Social Engineering Trickery . 42
4.2.6 Exploiting P2P Networks . 43

4.3 JavaScript as an Exploit Platform . 43
4.3.1 JavaScript Obfuscation . 45
4.3.2 Malicious JavaScript in PDFs . 46
4.3.3 Malicious JavaScript in Flash . 47
4.3.4 Iframe Injections . 48
4.3.5 JavaScript Rootkit Variants . 49
4.3.6 Malicious Widgets . 50

Chapter 5 Browser Security and Hooking . 51
5.1 Browser Security Overview . 51
5.2 Reasons for Browser Exploitation . 55

5.2.1 Browsers as Exploitation Entry Points 55
5.2.2 Browsers Hooking in Userland Space 56

vi

5.2.3 Browsers as Malicious Code Carrier 56
5.2.4 Browsers - Anatomy of Third-party Plugins and Extensions 57

5.3 Browser Hooking and Inherent Techniques 57
5.3.1 Inline Hooking . 58
5.3.2 Import Address Table (IAT) Hooking 60
5.3.3 DLL Injection . 62

5.4 Reliability of Hooking in User Mode . 66
5.5 Conclusion . 68

Chapter 6 Problem Discussion: MitB Attacks 69
6.1 Communication Timeline: No Infection . 69
6.2 Form-grabbing Attack . 70
6.3 Web Injects Attack . 77
6.4 Attack Timeline: After Infection . 86
6.5 Conclusion . 89

Chapter 7 Methodology and Implementation 90
7.1 Encryption to Defeat Form-grabbing . 90
7.2 WPSeal: Web Page Verification . 94
7.3 WPSeal Deployment . 97
7.4 Attack Timeline with Encryption and WPSeal 99
7.5 Encryption and WPSeal - Attack Resistance 102
7.6 WPSeal Requirements and Limitations . 107
7.7 Conclusion . 108

Chapter 8 Experimental Results . 109
8.1 Form-grabbing Experiment . 109

8.1.1 Form-grabbing Test Bed . 109
8.1.2 Form-grabbing Results . 110

8.2 WPSeal Experiment . 116
8.2.1 WPSeal Test Bed . 116
8.2.2 WPSeal Results . 117

8.3 WPSeal in Action . 119
8.4 Conclusion . 128

Chapter 9 Conclusion . 129

Chapter 10 Future Work . 132

BIBLIOGRAPHY . 136

vii

LIST OF TABLES

Table 3.1 A Complete Catalog of Rootkit Techniques - Part (1). 19

Table 3.2 A Complete Catalog of Rootkit Techniques - Part (2). 20

Table 3.3 A Complete Catalog of Rootkit Techniques - Part (3). 21

Table 3.4 Comparison: Hypervisor and Supervisor. 23

Table 5.1 Security Features Support in Popular Browsers. 52

Table 5.2 Browser Architecture: In-Process and Out-of-Process Components. . 53

Table 5.3 Just-in-Time (JiT) Protection for Different Browsers (Source - Accu-
vant Labs Report). 53

Table 5.4 A Catalog - Hooking in Different Browsers. 64

Table 7.1 List of Different Client Side JavaScript Encryption Libraries. 91

Table 8.1 Layout of the set url Tag with Respective Flags. 117

Table 8.2 Layout of the Web Injects Tags in Sample Data. 118

Table 8.3 WPSeal Performance Evaluation. 118

viii

LIST OF FIGURES

Figure 2.1 Cyber Crime Cost Framework - Ponemon Research Report. 10

Figure 3.1 Class A - Browser Malware. For interpretation of the references to
color in this and all other figures, the reader is referred to the elec-
tronic version of this dissertation. 26

Figure 3.2 Class B - Browser Malware. 27

Figure 3.3 Class C - Browser Malware. 28

Figure 4.1 Drive-by Download Attack in Action. 38

Figure 5.1 Inline Hooking Execution Flow. 59

Figure 5.2 IAT Hooking Execution Flow. 61

Figure 5.3 DLL Injection Execution Flow. 63

Figure 5.4 Internet Explorer - Hooked Component (Source : MSDN). 65

Figure 6.1 Form-grabbing Attack in Action. 72

Figure 6.2 Form-grabbing: PR Write Hooking in NSPR4.dll. 74

Figure 6.3 Transmission of Form-grabbed Data using Sockets. 76

Figure 6.4 Form-grabbed Data Collected on the C&C Panel. 78

Figure 6.5 Web Injects Attack in Action. 80

Figure 6.6 Web Injects Code Targeting Wells Fargo Bank. 81

Figure 6.7 Successful Web Injects in Wells Fargo Bank Login Pages on the Client
Side. 83

Figure 6.8 Sample of Fake Pop-ups Injected in Chase Web Pages on the Client
Side (Source: Chase Online Fraud Center). 85

Figure 6.9 Web Injects - Injection Types (Extracted from real time samples). . 88

Figure 7.1 WPSeal Prototype in Action. 95

Figure 7.2 WPSeal Prototype: Random File Generation and Sorting Code. . . 100

Figure 7.3 WPSeal Prototype: Server Side Hash Verification Code. 101

Figure 8.1 HTML Form Generated with Random Identifiers. 111

Figure 8.2 Stolen Information is Hashed and Stored in C&C Panel. 113

Figure 8.3 Stolen Information is Encrypted and Stored in C&C Panel. 115

Figure 8.4 Legitimate Web Page for Testing WPSeal. 120

ix

Figure 8.5 Unauthorized ATM Input Field is Injected in the HTTP Response
using a Client Side Proxy. 121

Figure 8.6 Successful Web Inject - ATM Input Field is Injected in the HTML
Form. 123

Figure 8.7 Transmitting Client-side Hash using a POST Request. 124

Figure 8.8 Submitting a Form to Test the WPSeal Verification. 125

Figure 8.9 Web Page Verification Performed by WPSeal. 126

Figure 8.10 WPSeal Verification Fails for the Conducted Test. 127

x

Chapter 1

Introduction

Cyber crime has been causing huge losses to governments and organizations globally. The

Internet has become a playground for cyber criminals to conduct offensive attacks to steal

sensitive information from victims’ computers using malicious code. The stolen information

is then used to conduct online fraud and thefts which result in large economical losses

worldwide. For that, cyber criminals use sophisticated pieces of software to automate the

infections and information stealing attacks. What does that means actually? The idea

is simple–to build and sell crimeware tools and services in the underground market which

makes the cyber crime process easy for anybody. It is not necessary for a cyber criminal

to be knowledgeable enough to understand the technical details rather he or she can simply

purchase the specific tools to conduct attacks. In addition to this, the attacks have become

targeted: cyber criminals are targeting financial organizations such as banking systems,

government assets and their users. The target sought in cyber crime is the information of

the users. Without information, it is not possible to conduct any cyber crime that involves

money fraud. There are several steps involved in successful execution of a cyber crime but

the most critical one is the stealing of information from users’ machines. The associated

attacks conducted for stealing information are called data exfiltration attacks. Currently

one of the big problems is browser-based data exfiltration attacks in which the malicious

code subverts the integrity of browser application to extract sensitive information. It is a

challenging problem which cannot be solved with existing protection technologies such as

1

anti-viruses, Intrusion Prevention System (IPS), Intrusion Detection System (IDS), etc.

Cyber criminals are developing automated frameworks such as browser exploit packs

and botnets for triggering infections. Browser Exploit Packs (BEPs) are extensively used

for spreading malware (malicious code) by exploiting inherent vulnerabilities in browser

components using drive-by download attacks. BEPs are extensively used to provide Pay-

per Infection (PPI) services in which the buyer pays the money to the crimeware seller

based on the number of successful infections. On a similar front, botnets are the network

of bots (malware) installed on the infected systems which are used for data exfiltration and

system hijacking. Botnets are managed through a Command-and-Control (C&C) panel. The

functionality of botnets can be described as follows. Victim machines are compromised by

installing a bot into the system and a network of those bots is called a botnet. Although

botnets have been used for Distributed Denial of Service (DDoS) attacks, stealing money

from the banks by infecting victim computers has proven to be more lucrative. The bots

installed on the compromised computers steal information from browsers and transmit it

to the C&C panel. The bot herder performs cleaning and data mining on the stolen data

to remove unnecessary information. Once this process is completed, the stolen information

is sold in the underground market or used directly depending on one’s needs. Anderson et

al. [12] conducted a study on the cost of cyber crime and showed that a bot herder earns

millions of dollars a year. For thwarting cyber crime, the collective amount of money spent

by different countries is close to $400 million. This cost is typically calculated for enforcing

cyber laws globally to mitigate impact of botnets.

Man-in-the-Browser (MitB) attacks, specifically data exfiltration attacks, came to exist

with the advent of sophisticated botnets such as Zeus and SpyEye. Actually, MitB attacks

were known earlier but these botnets give a new dimension to browser exploitation and hi-

2

jacking. These botnets belong to third generation because these are economically motivated

and designed primarily to target banking organizations and financial institutions (”that’s

where the money is”). In addition, these botnets are built on the most widely used commu-

nication protocol: HTTP. The majority of business conducted on the Internet uses browsers,

which makes them the most targeted software for exploitation. As a result, MitB attacks

are the perfect choice of cyber criminals. Bots perform MitB attacks for hijacking browsers

and stealing information from the active sessions with the target websites. In general, MitB

is one of the biggest challenges confronted by the security industry these days. Malware ex-

ploits the inherent functionality of browsers thereby circumventing the integrity of browser

operations by hooking inside appropriate Dynamic Link Libraries (DLLs) and modifying the

content before it is sent into the network or shown in the browser. MitB attacks work on

the concept of browser hooking which means the installed malware augments the behavior of

browser components by intercepting the events and calls between them. Primarily, hooking

allows the malware (bots) to hijack the channel used by browsers to communicate with the

end servers. MitB allows the cyber criminals to modify, steal or alter the information well

before it is transmitted on the network. This is possible because malware resides in the

system.

In this thesis, we investigate the two most widely used MitB based data exfiltration

techniques known as Form-grabbing and Web Injects. Both of these techniques are browser

dependent and very effective in exfiltrating sensitive data. In Form-grabbing, the MitB

agent (bot) steals the data present in web forms and hooks it when a HTTP POST request

is sent to the server. As HTTP is a stateless protocol, the server does not know whether

the incoming content has been stolen, altered or modified. This technique can be thought of

as an advanced version of key-logging because it only grabs desired data while ignoring the

3

garbage. Almost all the present-day botnets use Form-grabbing.

In Web Injects, a MitB agent injects illegitimate content in the HTTP responses as a

result of GET and POST requests. Web Injects provide a cyber criminal with an opportunity

to inject any unauthorized content which looks legitimate to the user as it appears to be sent

by the server. Web Injects allow the cyber criminals to force the users to provide sensitive

information that is otherwise unavailable or not easy to get. For example, it is possible to

inject an ATM PIN field below the username and password in the HTML content sent by

the server. As the injected content is inline with the HTML elements, it looks legitimate to

the users. These types of attacks have been used to infect critical web pages of banks such as

Chase, Citibank, Wells Fargo, and others. Web Injects is executed in a sophisticated manner

so it is hard for the users to verify the integrity of web pages. There can be different types of

Web Injects including HTML and JavaScript injections which are website dependent because

different websites have different designs. The advanced Web Injects include Automated

Transfer System (ATS) injections, which are designed to perform automated transactions in

bank websites through browsers without a user’s knowledge. Unfortunately, Secure Sockets

Layer(SSL) and Two-factor Authentication (TFA) provide insufficient defense against these

data exfiltration attacks.

We propose solutions to defend against Form-grabbing and Web Injects. For Form-

grabbing, we use client-side encryption to render the stolen data useless when it arrives at

the C&C panel. For Web Injects, we developed the technique of web page verification in

which the server verifies the integrity of displayed web pages in the browsers. The idea is to

detect if any illegitimate content has been injected by the malware during rendering of web

pages. Both these defenses can work collaboratively and can be deployed and customized

easily in different web environments. Both of these implementations are relatively simple.

4

The contribution of this thesis comes from developing and understanding of the working of

bots so that these defenses can be deployed in a way that the attackers cannot circumvent.

Laborious dissection of the complex object code of multiple bots revealed the key concept of

both how they implement hooking and the timing of that hooking. Divining the limitations

of hooking provided a road map that allowed us to place defenses so bots cannot circumvent

them. Of critical importance is that these techniques assume that the client is infected.

Finally, our defenses are entirely controlled from the server side.

In summary, this thesis makes the following contributions:

• We introduce WPSeal, a method that a financial institution can use to discover that

a Web-inject attack is happening so an account can be shut down before any dam-

age occurs. This technique is done entirely on the server side (such as the financial

institution’s side).

• We developed a technique to encrypt form data, rendering it useless for theft. This

technique is controlled from the server side (such as the financial institution’s side).

Using WPSeal we can detect if the encryption scheme has been tampered with.

• We present an argument that current hooking-based capabilities of bots cannot cir-

cumvent WPSeal (as well as the encryption that WPSeal protects). That is, criminals

will have to come up with a totally different class of attack.

This thesis is organized as follows: Chapter 2 presents the state of cyber crime and how

botnets evolve with time. Chapter 3 introduces the malware taxonomies’ that categorize

the stealth malware. Chapter 4 talks about malware distribution and propagation tactics

in the real world and discusses the role of JavaScript as an exploit platform. Chapter 5

presents the low level details of browser hooking and inherent browser security components

5

Chapter 6 sheds light on the complete details of browser-based data exfiltration attacks :

Form-grabbing and WI. Chapter 7 presents the details of defensive techniques. Chapter 8

discusses the potential results collected from the real time experiments that are conducted

using proposed defenses. Chapter 9 concludes the thesis. Chapter 10 discussed the future

work.

6

Chapter 2

Cyber Crime and Botnets

Attackers are succeeding in exploiting the inherent security vulnerabilities in the Internet

mechanisms. They are conducting online fraud and spreading infections through malware to

make financial gains. Cyber criminals are designing sophisticated pieces of malware to serve

their dubious interests. Thus, the threats posed by targeted Cyber crime 2.0 are proliferating

and have become a serious problem.

The evolution of Cyber crime has been segmented into different phases [1] based on the

proficiency of malware writers which are discussed as below:

• Phase A: During this phase, cyber crime was driven by the sneaker-net viruses. The

viruses were transferred using digital media such as floppies. The infection was limited

in scope and a specific set of machines were infected to accomplish the goal. The

malware was often written by script kiddies and teenagers to demonstrate their skills.

• Phase B: During this phase, the amateurs turned professional and started writing more

malicious malware and worms thereby infecting machines in the growing networks.

Collectively the worms caused damage of millions of dollars. Worms like Sasser and

Netsky are categorized into Phase B.

• Phase C: During this phase, the motive of malware writing graduated to remuneration

and stealing money by infecting a large set of machines. During this time botnets

7

came into existence. The bots were more advanced pieces of malware as compared to

previous generations but they also suffered from high detection risk and removal.

• Phase D: The malware became robust and stealthy. This was because cyber crime

evolved to earn profits that resulted in professional cyber crime using a sophisticated

set of malware. Much of it started in European countries where attackers started

showing mature skills in malware development.

• Phase E: In this phase, the development of malware continued and variants of stealthy

malware came into existence. Phase E represents the present state of the cyber crime

world where cyber crime activities are happening on a large scale that has resulted in

the formation of an underground economy. It comprises of a multi layer malware dis-

tribution system with segments based on the services model. For example: credentials

of email accounts are sold for phishing activities. Basically, a fully formed criminal

enterprise is running in the underground social networks. In this economy, malware

authors are licensing their malicious software and botnets can be rented by the hour

under Pay for Play schemes. The most valuable service offered in the underground

economy is the sale of zero-day exploits and vulnerabilities.

2.1 Role of Botnets in Cyber Crime

Botnets are the primary weapons of cyber crime that generate revenue for cyber criminals.

Attackers use these automated frameworks to infect users on large scale and thereby using

compromised machines to steal money. The financial industries such as banks are encoun-

tering a severe problem of online banking fraud and heists. In spite of several protection

mechanisms developed by security vendors and banks, data exfiltration and online fraud are

8

increasing. In the recent study of cyber crime [12], botnets are considered as a one of the

vital component of the cyber crime economy. The cost involved in the cyber crime based

botnets is decomposed into different components. First, losses involved in cleaning the in-

fected computers. Second, losses that occur due to online fraud and illicit bank transfers.

Third, losses incurred to the hosting service providers due to infection in infrastructure, e.g.

compromised servers. Due to these factors, the cost is distributed along a number of metrics.

This study pointed that cost involved in enforcing cyber laws globally is close to $400 mil-

lion. In addition to this, the study by Price Waterhouse Cooper (PwC) [18] calculated that

global spending on cyber security was expected to be greater than $60 billion and will keep

on increasing by 10 percent every year. An RSA report [19] on cyber crime concluded that

every minute 232 computers get infected. As a result, it is becoming harder for the world to

circumvent global fraud. Figure 2.1 shows the cyber crime cost framework [20] proposed by

the Ponemon Institute.

The recent study of ZeroAccess [13] revealed that this rootkit has been installed over

millions of machines to conduct click fraud and bitcoin [14] mining attacks to earn $100K

per day. ZeroAccess is a rootkit that is dropped by different botnets to infect users’ systems

on a large scale. In 2009 a study was conducted by Microsoft to compute the losses incurred

due to botnets [15] in which it was estimated that a single infected machine costs close to 50

cents. So, a botnet of millions of machines results in significant monetary loss. The attack

of the Yahos botnet [16] on Facebook resulted in $850 million losses globally as estimated by

FBI. In another study of cyber crime [17], it was estimated that by 2015, the US economy

will encounter a loss of $371 million as compared to $263 million in 2012. These statistics

show that cyber crime is increasing at lightning speed and botnets play a critical role in the

success of cyber crime globally.

9

10

Figure 2.1 Cyber Crime Cost Framework - Ponemon Research Report.

2.2 Generations of Botnets

Bots have evolved to be an integral part of the malware economy. They are used extensively

to infect victims’ machines. A bot is a specific type of malware that is designed as a hidden

program with the intent of performing malicious operations. More specifically, a bot is

an executable that installs itself in the victim machine and performs stealthy functions

by manipulating Application Programming Interface (API) calls. In general, bots run as

hidden processes in the context of the system. Once installed, they take complete control of a

victim’s machine and use network connections to transfer data to the controller’s (criminal’s)

domain. When a number of bots interface to a single server, it is called a botnet–a network

of bots.

Traditionally, botnets have harnessed the power of individual bots to attack dedicated

targets for exploitation and to take down networks by Distributed Denial of Service (DDoS)

attacks. Based on the communication protocols and design of Command and Control (C&C)

panels, we have categorized the botnets into three generations:

2.2.1 First Generation: IRC Based Botnets

The first generation of botnets typically uses Internet Relay Chat (IRC) as a communication

protocol. In this, the bot herder designates a channel that is used by IRC bots to connect

back and provide information. Generally, IRC bots connect periodically to the IRC server on

a specific channel waiting for commands. An IRC Channel Operator manages the channel

and is known as the bot herder. IRC based botnets have a centralized Command and Control

(C&C) server. IRC bots use sophisticated operations in encoding and encrypting commands

in the channel that can be displayed to the bot connecting the channel. Examples of first

11

generation botnets include AgaBot, SDBot and SpyBot [2].

2.2.2 Second Generation: P2P Based Botnets

The second generation of botnets use a Peer-to-Peer (P2P) based communication model.

P2P based botnets are designed based on the concept of decentralization so there is no single

point of failure. This results in the presence of several distinct points in the P2P control

networks that need to be eliminated in order to remove the whole botnet. As a result of

decentralization in P2P botnet designs, every bot carries an additional set of responsibilities

and tasks resulting in more flexibility in the network. The main functionality of a bot in

a P2P network is to disperse information to a number of bots within a specified period of

time. The primary characteristics of second-generation botnets are:

• P2P botnets are usually implemented over existing P2P modules such as Gnutella. It

is also possible to have a custom designed module by modifying P2P frameworks such

as JXTA or GNUnet.

• P2P botnets segregate the number of peers that are behind the firewalls and have static

IP addresses. The list of those bots is called the regular-peer list. P2P botnets also

follow the concept of a credit point based peer list. In this scheme, botnets provide a

credit rating to bots that successfully transfer the information to their peers. The two

lists are used to generate a fallback system if the P2P communication is disrupted.

• The communication structure of P2P botnets is based on the Push and Pull notification

messages. The Push messages are comprised of bot herder commands and instructions

to start attacks against the target systems. The bot transmits the commands to the

other peer nodes in the botnet. The Pull messages are based on the success rate of

12

Push notifications. This is because a specific set of nodes initiates the Pull mechanism

and starts downloading updates from server after the updates are forwarded to all the

peers in the network.

• As P2P botnets are decentralized in nature, the botnet administration requires tamper

proof authentication and command updating schemes. The authentication and strong

cryptography measures are required so that the bot should only accept commands from

the bot herder and not from the hostile parties.

Examples of second-generation botnets include Storm [3, 4] and Ngauche [28].

2.2.3 Third Generation: HTTP Based Botnets

The third (and current) generation of botnets uses HTTP as a protocol for communica-

tion. One advantage is that HTTP traffic is rarely blocked. At this point of time, HTTP

based botnets exploit the effectiveness of Web 2.0 technologies such as AJAX to build a

robust structure of botnets. The bot sends queries in normal HTTP requests to receive re-

sponses from the C&C server. With the advent of Web 2.0, it has become easy for the bots

to communicate with the C&C using asynchronous communication. The design of HTTP

botnets is also centralized, but many network resilience techniques can be incorporated to

perform stealthy functions. C&C servers have a well-defined web application framework

with database connectivity. The information that is stolen by the bot is sent directly to the

backend database server and stored in a raw format. A C&C server web application panel

then retrieves the information from the database. Recent variants of HTTP based botnets

such as Zeus and SpyEye have dedicated plugin architecture and can act as intermediate

agents to communicate back with the bots. Examples of third generation botnets include

13

BlackEnergy [6], Rustock [7] and ClickBot.A [8], Zeus [9] and SpyEye [10] are the advanced

level of HTTP based botnets.

All the three generations discussed constitute the majority of botnets. However, some of

the identified botnets use a hybrid design by combining techniques from different generations.

2.3 Reasons for the Rise of Botnet Attacks

There have been tremendous developments taking place in the design and structure of bot-

nets. The same holds true for botnet detection and mitigation. However, due to several

constraints, it has become hard to eliminate the existence the botnets. Several reasons are

discussed as follows:

• There are many flaws in the drafting of cyber laws at the global level. This has

widened the sphere of infections of botnets. For this reason, it is hard to remove the

compromised servers across borders due to existing privacy legislation [11]. Even if the

botnet is detected, the cyber law acts as a diversion in the process of complete removal

of the infections. The global world has not been able to cure this problem.

• Malware is becoming more stealthy and complex. Existence of rootkits and kernel level

malware has circumvented detection mechanisms. Signature based tools are not pow-

erful enough to detect and remove malware. Apart from this, attackers have developed

robust bypassing techniques such as obfuscation to render the host-scanning engine

ineffective. Resilience techniques such as DNS fluxing have been widely implemented

to hide the presence of C&C servers by continuously manipulating the DNS entries of

servers spreading malware.

14

• There are complexities in the process of sharing of intelligence information of existing

cyber crime cases among the organizations. This also serves as a deterrent to the efforts

to bridge the gap between the IP legislation and law enforcement agencies.

In summary, bots are hard to detect, C&C servers are hard to find, and if found, cyber

criminals are hard to prosecute.

15

Chapter 3

Stealth Malware Classification

3.1 Rootkits - Stealth Malware

Rootkits are defined as stealthy programs that are executed in a hidden manner in the

operating system and manipulate the integrity of applications. Rootkits can achieve a va-

riety of malicious goals, which may include hiding malicious user-space objects, installing

backdoors, logging keystrokes, and disabling firewalls. A classification [21] of rootkits was

presented earlier based on the ring structure of the Windows operating system. In this clas-

sification, rootkits are segregated based on the techniques of hooking different components

of the operating system. The rootkit classification is discussed as follows:

• Userland Rootkits: This class of rootkits primarily exploits userland space of the op-

erating system. Userland rootkits accomplish the process of infection by implementing

techniques such as Import Address Table (IAT) Hooking, Inline Function Hooking and

DLL Injections using registry entry as AppInitDLLs, SetWindowsHookEx and Cre-

ateRemoteThread API functions. These methods are discussed in detail in the browser

security and hooking chapter.

• Kernelland Rootkits: This class of rootkits performs hooking in the kernel components.

The majority of kernel level rootkits are designed to manipulate the interface of low-

level system calls. The kernel maintains a System Service Dispatch Table (SSDT) [22]

16

which is a data structure that holds the addresses of native services that are a part of the

NT OS kernel. The services are indexed using respective system call numbers to locate

the addresses for a specific function in the memory. The System Service Parameter

Table (SSPT) provides information to the handler about the number of bytes that are

required by the function parameters for each service number. The INT 2E handler

copies the parameters from the user-mode stack to the kernel-mode stack. The EDX

register is used to identify the contents of the base of the stack frame. The INT 2Eh

handler looks up SSDT based on the service ID passed in EAX register and calls the

corresponding system service. The kernel exports the KeDescriptorTable which is a

data structure that contains a pointer to the SSDT and SSPT. Kernelland rootkits are

installed as device drivers and manipulate the SSDT to redirect the execution flow to

a rootkit function instead of a legitimate one. This allows the rootkit to change the

default memory protection flags in SSDT to thwart the kernel level protection.

Kernelland rootkits are also capable in hooking the Interrupt Descriptor Table (IDT)

in which hook acts as a pass through function used to identify and block requests from

host based protection solutions such as firewalls and Host Intrusion Detection Systems

(HIDS). IDT hooking does not work as normal hooking because execution control is

not handled back to the IDT handler. IDT hooking is a one way process when an

interrupt is triggered.

Direct Kernel Object Manipulation (DKOM) is an advanced technique used by kernel-

land rootkits to manipulate the resource objects directly to perform stealthy operations

such as hiding processes, ports, registry entries and so on without installing a hook.

The majority of kernelland rootkits are written as device drivers because they are im-

17

plemented at a very low level in the control flow which makes them the preferred choice

for hooking.

• Hybrid Rootkits: This class of rootkits utilizes the techniques from both userland

and kernelland rootkits. However, few variants of hybrid rootkits have been analyzed.

For example, a hybrid rootkit might use IAT hooking without opening a handle to

the process. It basically exploits the PsSetImageLoadNotifyRoutine function which

notifies the operating system about the loading of a DLL or process in a memory. This

function registers a driver callback routine which is called every time when a process

image is loaded in the memory.

The various classes of rootkits have been discussed. A complete catalog of backdoor tech-

niques [33] are presented in Table 3.1, Table 3.2 and Table 3.3 used by different classes of

rootkits. However, rootkits functionality has been well explained in the terms of system level

malware by Rutkowska in her Stealth Malware Taxonomy.

18

19

Table 3.1 A Complete Catalog of Rootkit Techniques - Part (1).

Techniques Applicability Code Execution Detecting Strategy
Inline Hooking Patching function prolog Kernel mode Compare the in-memory versions of the

loaded image with the image present on the
disk. Example tool - System Virginity Veri-
fier (SVV).
Launching process in a suspended state. In-
jecting DLL to hook Win32 API and then
monitoring to detect the inline hooking. Ex-
ample tool - Apithief.

Hooking SeAc-
cessCheck

Privilege resources access Resource control Possible to detect by mapping the difference
between the in-memory image and on-disk
image.

Hooking IDT,
GDT, LDT,
SSDT

Altering the state of
GDT/LDT/SSDT by
hooking pointers. Data
structure KIDTENTRY is
manipulated.

Kernel/User mode GDT/LDT hooks are detected using Patch
Guard. IDT hooks are detected using (SVV)
SSDT hooks are detected by checking in-
memory SSDT against the on-disk image.

Model Spe-
cific Registers
(MSRs) Hooking

Hooking
IA32 SYSENTER EIP
MSR.

Kernel mode Polling check used by detection tools can de-
termine whether the MSR values have been
changed or not. Appropriate symbols are re-
quired to perform the MSR value match. Ex-
ample tool - Patch Guard.

Hooking PDE
and PTE

Toggling User/Supervisor
flag in PDE/PTE.

Kernel mode To analyze all the locking pages through
polling check and verify that associated
PDE/PTE is accessible to user mode or not.

20

Table 3.2 A Complete Catalog of Rootkit Techniques - Part (2).

Techniques Applicability Code Execution Detecting Strategy
KTHREAD’s
SuspendApc -
APC Hooking

Modifying the NormalRou-
tine of the SuspendApc
KAPC structure.

Kernel mode Detection is possible by enumerating threads
in all the active process to verify that Nor-
malRoutine parameter in SuspendApc struc-
ture has the value set to nt! SuspendThread.
Example tool - none.

Hooking Cre-
ateThreadNoti-
fyRoutine

Registering a callback func-
tion during termination and
creation of thread.

Kernel mode There is no robust solution present to detect
this kind of hooking. Easy to implement by
user-mode application. Possible step is to
detect whether routine resides in ntdll.dll or
present in paged/ non paged pools. Example
tool - none.

Object Type Ini-
tialization Hook-
ing

Controlling OpenProcedure
and CloseProcedure param-
eters in the NT object type
initialize structure.

Kernel mode Possible way of detection is to validate the
state of object initialization pointers to a le-
gitimate state provided by the operating sys-
tem. Example tool - none.

PsInverted
Function Table
Hooking

Hijacking exception direc-
tory pointer in PsInverted-
FunctionTable

Kernel mode Scanning the loaded module list and compar-
ison of exception directory pointers to those
contained within PsInvertedFunctionTable.
Example tool - Patch Guard.

Hooking De-
layed Proce-
dures

Exploiting kernel features
such as APC and DPC that
allow device drivers to exe-
cute arbitrary code.

Kernel mode Hard to detect because most of the code re-
mains dormant and activates during a tran-
sition state.

21

Table 3.3 A Complete Catalog of Rootkit Techniques - Part (3).

Techniques Applicability Code Execution Detecting Strategy
IAT Hooking Hooking pointers in the IAT

table. IAT hooks are PE
specific.

Kernel/User mode Possible to detect by analyzing the IAT en-
tries for all the PE images loaded in the mem-
ory. Virtual address of the function in the
IAT table should be the same as exported by
the external PE image.

Hooking KiDe-
bugRoutine

Hijacking KiDebugRoutine
to redirect to the custom
hook function in the kernel.

Kernel mode Possible to detect it by verifying that KiDe-
bugRoutine points to a specific location in
the kernel memory image. Example tool -
Patch Guard has the capability to do that.

Asynchronous
Read Loop
(CreateRe-
moteThread +
Kernel Mode
IRP Routine)

Named pipe is used to pass
data to the kernel mode IRP
routine to execute code.

Kernel mode Identifying the malicious named pipes and
other instances.
Fingerprinting in-memory code after the
completion of the IRP routine.

Manipulating
Code Segment
(CS)

Hijacking the Code-
Selector value in the
SAVED STATE structure

to gain root.

Kernel mode It can be detectable using previous tech-
niques if the state is modified during hook-
ing.

DLL Injections Using SetWindowsHookEx
/ CreateRemoteThread
/Registry entry in
Wininit dlls

User mode Detectable using generic techniques.

3.2 Stealth Malware Taxonomy

Rootkits [23, 24, 25] exploit the complex design of modern operating system to hide its

presence. Rutkowska proposed the Stealth Malware Taxonomy [26] (SMT) based on the

hidden nature of rootkits and classified them into four different categories. This classification

is based on the malware interaction with the operating system. Her malware definition

is malicious code that modifies the behavior of the operating system kernel and running

applications. The taxonomy is discussed as follows:

• Type 0 Malware: This is a class of malware that does not perform any modifications

in the operating system processes and kernel level structures. Type 0 Malware runs as

a separate malicious process and does not interact with other processes. Thus, Type

0 Malware performs illicit operations separately without making any changes in the

operating system modules and running applications.

• Type 1 Malware: This is a class of malware that performs modifications in the code

section of various processes in kernelland and userland space. This malware implements

hooking to alter the normal flow of operations in order to run arbitrary code in the

system. Basically, it modifies and hooks the code section which is considered as a

constant resource. With respect to the OS, constant resources are BIOS, PCI devices,

EEPROMS, executable files and memory code sections. Examples of Type 1 malware

include Jynx Kit, Hacker Defender, Apropos, and Sony rootkit.

• Type 2 Malware: This is a class of malware that modifies the dynamic resources in

the operating system. Dynamic resources are directly related to data sections in the

system. However, this set of malware hooks and modifies the function pointer in the

22

kernel data structures, device drivers and user land processes. The function pointers

are hooked and unauthorized code is executed instead of the system function calls.

Examples of Type 2 malware include DeepDoor, FireWalk and FuTo.

• Type 3 Malware: This is a class of malware that resides outside the operating system

and does not make any visible modification in the system memory and hardware reg-

isters. Type 3 Malware does not perform any hooks in the code and data sections of

the operating system. It resides as random data in the memory that is hard to detect.

Basically, it is a hardware based virtualization malware that exploits vulnerabilities

in hypervisors. A comparative layout between hypervisor and supervisor is presented

in Table 3.2. Some of the examples of this type of malware are Bluepill [27, 28] and

Vitriol rootkit [29].

Table 3.4 Comparison: Hypervisor and Supervisor.

Properties Supervisor Hypervisor
Technique Hardware ring security Hardware virtualization

Usage Main OS, Desktops Guest OS, Servers
Application Single OS Multiple OS as guests
Management Security, Processes (host) Guest OS management

Ring Placement Ring 0 One level above ring 0
Hardware Mapping Single OS on hardware Multiple OSs on hardware

Types Single Type 1 (Native), Type 2 (Hosted)

The malware taxonomy presented by Rutkowska is quite different from the definition

used by the anti-virus companies these days. SMT provides deep insight into different

classes of malware thereby questioning the effectiveness of the operating systems in dealing

with malware. SMT discussed that the present design of operating systems is based on the

protection technologies rather than detection mechanisms.

23

According to SMT, an operating system should have a security baseline in order to

verify the integrity of the code. For example, Microsoft Windows uses digital signatures to

sign the standard executables and DLLs that are useful in the verification of memory code

operations. This technique is called System Virginity Verification (SVV) [30]. Rutkowska

raised a point about the impossibility of designing robust system verification tools because

current operating systems do not set security baseline parameters. Another main reason

for the failure to detect malware is that the developers do not sign their code with digital

signatures.

3.3 Browser Malware Taxonomy

Browser Malware Taxonomy (BMT) [31] explains the different classes of malware that exploit

the integrity of various components of browser [32]. This taxonomy enables us to understand

the tactics of browser-based malware and how it is distributed. This taxonomy covers three

basic classes as Class A, Class B and Class C which are discussed in more detail as follows:

• Class A Malware: This class of malware basically installs itself as a browser component

such as add-on or extension. There is no separate process is created for this class of

malware as it shares the same address space of the browser process. In addition,

this malware has the capability to exploit the vulnerabilities in the inherited browser

components. Figure 3.1 shows the high level view of class A malware. Examples

include: Form Spy, FFSniff, Win 32 Bifrose Trojan, etc.

• Class B Malware: This class of malware basically exploits the plugin architecture of

browsers in which vulnerabilities in the third-party plugins are exploited. Generally,

plugins run as separate processes in a more restricted environment and most plugins

24

are platform independent. Because, plugins are third-party code that is integrated

into the browser, exploitation of plugin vulnerabilities impact the browser security at a

large scale. Figure 3.2 shows the high level view of class B malware. Examples include

Trojan.Pidief, Trojan SWF/Redirector etc.

• Class C Malware: This class of malware installs itself in the operating system as

rootkits and hijacks the browser application from outside. This malware exploits the

functionality of the operating system. However, this malware is typically downloaded

onto the users’ machines using Class B and Class A malware. This malware is used

heavily by the bot herders to control the target systems and manipulate them accord-

ingly. Examples include: Zeus, SpyEye, etc. Figure 3.3 shows the high level view of

this class of malware.

3.4 Conclusion

A bot is a type of malware that can be thought of as a userland rootkit. Understanding how

it fits into the world of malware helps one understand how bots work–mostly by hooking into

browsers which are user processes. Understanding userland hooking as practiced by bots is

critical to developing defenses. In subsequent chapters, we will look at details of insidious

attacks on browsers by bots and the hooking process they use. We then capitalize on their

constraints to develop defenses.

25

26

Figure 3.1 Class A - Browser Malware. For interpretation of the references to color in this and all other figures, the reader is
referred to the electronic version of this dissertation.

27

Figure 3.2 Class B - Browser Malware.

28

Figure 3.3 Class C - Browser Malware.

Chapter 4

Malware Distribution and

Propagation Tactics

Malicious software has become an unintended part of the Web 2.0 world. It includes viruses,

worms, backdoors, Trojans, and bots that are hampering the integrity of the online world.

With the advent of new technologies, malware ecology [34] has become more sophisticated

and resulted in a complex challenge for designing malware defenses. Attackers are developing

robust programs that are capable of performing stealthy operations. Botnets such as Storm,

Zeus, and SpyEye are complex frameworks and not individual programs. In order to design

protection mechanisms, it has become important to understand the different variants of

malicious programs. Malware 2.0 [35] has already entered in the market. It is environment

dependent and utilizes different techniques to trigger targeted attacks. Botnets contribute

immensely to the exploitation of DNS systems worldwide in order to hide Command and

Control (C&C) servers which are the heart of botnet frameworks. Drive-by download attacks

have become robust enough to bypass detection systems such as Network Intrusion Detection

System (NIDS) and Host-based Intrusion Detection System (HIDS) as the malware is served

using polymorphic shellcodes sliced into different layers to avoid detection.

Canavan [36] explained that there is no hard rule that malware has to behave consistently

as intended by the malware writer. Generally, if the malware acts consistently as intended

29

by the malware writer, then it is an exception. This is because current malware variants

have dependencies among different components. Malware spreading and propagation has

become dedicated and targeted. In the malware ecology, elements such as Trojans, worms,

phishing emails, droppers, and drive-by downloads are not entirely new but collaborative

use of these elements has threatened the Web2.0 world by presenting a new level of threat

to the Internet.

4.1 Web 2.0 Malware Infections

Web 2.0 has significantly changed the Internet. The new advancements in the web technolo-

gies have enhanced the working functionality of the Internet, but at the same time it has

imposed new threats on the Internet. Web 2.0 has vulnerabilities and they are exploited by

the attackers to spread malware. The enforcement of security mechanisms is important in

the development phase of web-based systems. However, the application of security concepts

in web-based systems is a complex task. The expertise and skills of the developers play a

crucial role in the development of secure web applications. Thus, web applications devel-

oped without addressing the imperative security concerns remain prone to security breaches

[37]. The inherent vulnerabilities [38] in web applications can be exploited by the attackers

to spread malware on a large scale. Rossi et al. [39] discussed the modeling and imple-

mentation of web applications in which his team clearly explained the susceptibility of web

applications to malicious attacks as compared to traditional systems.

Web application vulnerabilities play a crucial role in the success of malware. Attackers

exploit web vulnerabilities to infect victim machines and extract financial benefits by stealing

information. The contemporary protection mechanisms are increasingly becoming ineffective

30

against the attacks. This is because of deficiencies in web application coding and deployment.

Extensive knowledge of web vulnerabilities and robust defense techniques among developers

and administrators is the need of the hour. There has been a continuous discussion [40] about

the mindset of attackers in exploiting the web vulnerabilities. Understanding of attacker’s

perspective can help to infer information about their prospective targets.

Alvarez and Petovic [41] proposed taxonomy for web attack classification based on the

inherent similarities among web attacks. In this taxonomy, the victim’s perspective was

taken into account. Cukier et al. [42] discussed an attack classification based on the traces

collected from the deployed honey pots in the networks. This reflects variations in the

classification of attacks and requisite models.

Fonseca et al. [43] conducted a field study on web vulnerabilities and the perspective

of web attackers. Preferred vulnerabilities, attack modes, targeted websites were analyzed

in the study. Fonseca and Vieira [44] analyzed the security patches developed for web ap-

plications to characterize the inherent faults for software vulnerability classification. Their

Orthogonal Defect Classification (ODC) approach was used to collect the characteristics of

the code that provide information about security vulnerabilities. It was found that most

exploited web application software was written in PHP which showed that PHP based ex-

ploitation is high. Seixas et al. [45] analyzed a number of vulnerabilities in different web

applications to detect the deficiencies in the development language. During this study, two

vulnerabilities, Cross Site Scripting (XSS) and SQL Injection (SQLI) were found to be most

prevalent. It was found that a majority of the web vulnerabilities are due to shortcomings

in the development processes. This study can be useful in building a model that provides

information about the attackers and their attack modes.

Iframes have been used extensively for inclusion of third party content in the parent

31

domain. This type of content sharing is called Cross Domain Sharing (CDS). Iframes require

isolation in which the scripts present in iframes should run according to the configured policy

to work in a secure manner. Malicious content can subvert the browser integrity if the

scripts do not run as required. Nonetheless, the browser has a Same Origin Policy (SOP)

to restrict the execution of scripts between two iframes. Malware authors inject iframes

in a compromised website having a downloading link present in it. The iframes download

that malicious content and serve it as a part of parent website. Barth et al. [46] modified

the existing techniques of inter frame communication to preserve the confidentiality and

authentication in the communication model.

Cross-site Scripting (XSS) [47] is one of the most common web application layer attacks

which is being used in wild by the attackers to serve malware across the Internet. It has been

shown that almost 80% of the web applications are vulnerable to XSS. The XSS vulnerability

is an outcome of inappropriate sanitization and filtration of input data. As a result, attackers

are able to inject data in the form of scripts to render malicious content in the context of web

applications to exploit client side browsers for spreading malware. XSS has been classified

into two types: persistent and reflective. In persistent XSS, the attacker supplied JavaScript

gets permanently stored in the database of a target server. Malicious code is served every

time a user accesses the vulnerable web page. In reflective XSS, the code is not stored but

is reflected in the user’s browser for performing malicious action. Reflected XSS works once

where as persistent XSS works continuously which makes it more devastating. DOM [48]

based XSS is a special case of reflected XSS in which logic errors persisting in JavaScript

and inappropriate use of client side data results in XSS conditions. XSS worms [49, 50]

have also been seen in the wild in recent years because injection of one malicious script on

the social networking website initiates a chain reaction that infects other users in the same

32

network. XSS worms are self propagating because they can spread using the same XSS

vulnerability. XSS worms are platform independent because they exploit vulnerabilities in

the web interface and browsers.

Many XSS based protections have been developed by researchers but this vulnerability

still persists in the wild. Kruegel and Vigna [51] proposed an anomaly based intrusion

detection system for web applications to detect web attacks such as XSS. Their system

is based on characterizing the data collected from HTTP request and mapping them into

patterns to differentiate between legitimate and illegitimate requests. Greene et al. [52]

proposed fine grained taint propagation methods to counter various classes of web application

attacks. Halfond et al. [53] described an approach based on the tracking mechanism of

trusted data. There have been many advancements in browser based XSS filters. A majority

of browsers have implemented filters for disrupting the XSS attacks, specifically the reflected

ones. Software such as NoScript [54] has resulted in raising the bar of client side security

by detecting various types of web attacks and notifying users. Jim et al. [55] proposed the

concept of Browser Enforced Embedded Policies (BEEP) which is a type of white list policy

that a server integrates into every web page to detect and filter malicious scripts. Hallaraker

and Vigna [56] modified the source code of Spider Monkey to trace down the behavior of

client side JavaScript. The malicious behavior was detected by matching of every script

profile with the predefined policies.

SQL Injection (SQLI) is widely used for exfiltrating data from remote servers. SQLI

vulnerability is an outcome of inappropriate development of the web interface with respect

to the database that allows users to input self constructed database queries that execute in

the context of running web application. This enables the attackers to execute any database

statement because of the inappropriate filtering mechanism deployed at client side as well as

33

server side. From a malware perspective, attackers can successfully hide malicious iframes

by encoding them and passing them as variables in the database queries. When the website

retrieves data from the database, the malicious iframes are fetched and are rendered in the

browser and start spreading malware. Attackers are using SQLI to launch mass infection

attacks as described by Huang et al. [57]. Attackers are targeting mass attacks because so

many websites on the internet are vulnerable to SQLI attacks and the vulnerability can be

detected using search engines such as Google. SQLI is exploited in a tricky manner and the

infection flow is explained as follows:

• Attackers design an SQLI tool that harnesses the power of a search engine. The

malicious tool sends a query to the search engine that searches for web servers hosting

vulnerable web pages. Once the reply is received, the tool starts fuzzing the vulnerable

pages.

• If the vulnerability is exploited successfully, the malicious tool starts updating the

database by injecting JavaScript that points to malicious domains serving malware.

• A user visiting a compromised server running exploited web pages is redirected to the

malicious server by the injected JavaScript. Wichman [58] presented generic details of

mass attacks using SQLI in which attack methods were discussed to exploit SQLI in

vulnerable websites.

4.2 Malware Propagation Strategies

The most widely used malware propagation strategies are discussed below:

34

4.2.1 Drive-by Download Attacks

The drive-by download attack [59] is the most prominent attack used by the attackers to

spread malware. In this attack, a victim is lured to visit a malicious web page which has

JavaScript code embedded in it. The code fingerprints the browser version and exploits

vulnerabilities in the browser components and plugins. If successful, malware is downloaded

silently into the victim machine. As a consequence, the compromised machine becomes a

member of the botnet. The life cycle of drive-by download attack is presented in Figure 4.1.

In 2007, Provos et al. [60] found more than three million URLs were serving exploits

through drive-by download attacks. Even more surprisingly, malicious iframes were injected

on both rogue and legitimate websites to infect unsuspecting users with malware. Zhuge et

al. [61] conducted an empirical study of underground malware market in China behind the

drive-by download attacks. Zhuge raised a point about infection through search engines by

presenting a fact that about 1.49% of website results returned by search engines are malicious

in nature. Polychronakis et al. [62] has explained the complete life cycle of web malware.

Day et al. [63] also conducted a detailed study about the infection rate of websites in the

real world. Several factors have contributed to the success of Drive by Download attacks

which are discussed as follows:

• Vulnerable browser clients and plugins are often used in a real time environment. Frei

et al. [64] explained that obsolete versions of browsers really help attackers to trigger

exploits successfully.

• Attack techniques are well documented and publicly available. Drive-by download is

mostly executed by exploiting the heap in the JavaScript rendering engine of various

browsers. JavaScript Heap Spraying technique is used predominantly to exploit heap

35

corruption vulnerabilities by overwriting application data on the heap. The exploit

code sprays the heap which is present in the same location every time. The exploit

redirects the execution flow using heap overflows or buffer overflows. Heap Feng Shui

[65] is an advanced technique that uses the basic concept of Heap Spraying but pro-

vides a high level of control over the heap to perform reliable exploitation in browsers.

Sotirov and Dowd [66] showed the possibility of bypassing various browser protection

mechanisms such as Address Space Layout Randomization [67] to craft efficient ex-

ploits. Daniel et al. [68] extended the concept of the Heap Feng Shui technique and

presented a new variant of exploiting heap overflow vulnerabilities in JavaScript inter-

preters. In this technique, JavaScript commands are used to position function pointers

for smashing heap overflows.

• JavaScript commands are declared to handle functions pointers for reliable exploitation.

We believe that it is also possible to develop exploits using this framework and that it

can be ported to other scripting languages.

• Automated exploit packs are easily available that fingerprint the browser environment

and exploit the vulnerabilities in the browser to download malware. The Metasploit [69]

framework is a collection of exploits that are freely available and are updated readily.

Metasploit has an built in browser security assessment module named Autopwn that

works on the similar strategy as automated exploit packs. It has been noticed that

the exploitation of scripting engine vulnerabilities as well as use of more powerful

interpreted languages [70] to trigger exploitation have assisted in spreading infections.

• Drive-by download attack exploits the powerful interface of the scripting engine to ob-

fuscate the code and also use polymorphic shellcodes [71] for execution and spreading

36

of worms to trigger large scale infections. Attackers are also exploiting vulnerabil-

ities in plugins and embed malicious JavaScript inside PDFs to bypass client side

protections. Additionally, Adobe Flash files have been used extensively for spreading

malware which exploits the vulnerability using Heap Spraying in Action Script. With

the advancements in drive-by download attacks, previously researched methods [72,73]

of detecting malicious network flows by detecting plain text and light weight shellcodes

fail to fingerprint drive-by download attacks. Generally, unpacking and anti morphing

technologies are not robust enough to handle malicious JavaScript codes.

37

38

Figure 4.1 Drive-by Download Attack in Action.

4.2.2 Browser Exploit Packs

Browser Exploit Pack (BEP) is defined as an exploit driven framework which has a number

of exploits bundled together. BEPs are used in conjunction with third generation botnets

such as Zeus and SpyEye for spreading malware. We[74] presented the complete details of the

BlackHole BEP explaining the exploitation techniques. BEPs are designed to execute drive-

by download attacks. The user is forced to visit the malicious domain hosting BEP. Based

on the User-Agent string sent by the browser, BEP fingerprints the user operating system,

installed plugins and browser add-ons. This information is helpful for BEPs to serve the

exploits for installing malware. Basically, BEPs are supporting agents that help the botnets

to spread infections across Internet. BEPs also use IP Logging Detection Trick (IPLDT) in

which exploit is served only one time to the respective IP address. This process is applied

to circumvent the analysis process so that the same IP address should not receive an exploit

more than once. As explained by earlier, dynamic iframe generators are also used to infect

a number of virtual hosts with malicious iframes pointing to BEPs. The most widely used

BEPs are, but not limited to: BlackHole, Phoenix, Bleeding Life, and NeoSploit. BEPs are

also the preferred choice of cyber criminals who use it as a weapon for spreading infections.

4.2.3 Spear Phishing and Spamming

Phishing scams have been widely used to attack online banking and e-commerce users [75].

Phishing is primarily aimed to exploit the user ignorance [76] through social engineering.

Basically, phishing is more driven towards the way humans interact and interpret the mes-

sages from third parties rather than taking advantage of system vulnerabilities. In other

words, phishing is a semantic attack. Free online tools are extensively used for sending

39

phishing emails as these tools help to spoof the identity of the sending party. A primary

use of phishing is to steal sensitive information in order to defraud users. Generally, this is

a form of pretexting in which attacker pretends to be a legitimate party and fool users to

share sensitive information. Second, phishing emails have also been used to send malicious

links to users. Upon clicking those links, users get redirected to malicious websites serving

malware.

Sophos [77], an anti virus firm revealed that automated phishing kits are available online

which can be simply used to spread phishing emails. It means that it is not necessary for

anyone to have detailed knowledge about the phishing attacks; he or she can directly use

these phishing kits. Generally, phishing kits are frameworks that have the capability to

create phishing websites that look legitimate. Phishing kits also have built-in spamming

software that help fraudsters and attackers to generate high volumes of phishing emails.

Phishing attacks work well because users base their trust on the design of a website. In the

malware world, it is not “what you see is what you get.” Phishing attacks follow two basic

techniques.

• First, in a distributed phishing attack, users are not directly routed to a phishing

website rather, many intermediate domains are used. Second, in a redirection attack,

at first all users are forced to visit a primary domain which then redirects users to

different addresses to maintain anonymity.

• Phishing emails are also categorized as spam. There is a small difference between phish-

ing and spamming. Phishing aims at stealing sensitive information whereas spamming

aims to sell products or services. However, both these approaches can be used to

spread malware. Phishing attacks manipulate a browser’s built in security model for

40

users surfing online by generating pop-ups and fake windows. As a result, users fail to

realize the importance of security indicators generated by browsers [78] and this failure

helps phishers to conduct successful attacks. As an example, Spam 2.0 [79] targets

Web 2.0 applications and the model of distribution is legitimate websites. Attackers

compromise the high traffic volume website running Web 2.0 technologies and use that

website as a launchpad to spread phishing emails, spams and malware. Web spamming

has been increased which poisons and misleads the search engine ranking capabilities

to rank malicious web pages with higher ranks than legitimate ones.

4.2.4 Exploiting Trust in Online Social Networks

Online Social Networks (OSNs) such as Facebook and Twitter have also become a launchpad

for spreading malware. There has been tremendous increase in the malware infections in

OSNs. We described the malware infection phenomenon on OSNs [80] as a chain reaction

because of the dependency factor among user profiles. Injecting a malicious URL in message

wall of one profile automatically traverses to a number of profiles. Attacks against OSNs

are termed as natural progressions. Due to the lack of built in security functionality in

OSNs, attackers are using them as infection platforms. In order to start the exploitation

process, an attacker can pick any issue that affects human emotions to drive the user in a

social network to follow the path generated by the attacker. Topics such as friendship gifts,

weather calamities, political campaigns, national affairs, medical outbreaks and financial

transactions have been used for initiating infections. Gao et al. [81] discussed a number of

security issues and available defenses present in OSNs including Sybil attacks. In a Sybil

attack, a reputation system is exploited and subverted by forging identities. Attackers have

been implementing Sybil attacks in OSNs more frequently. As discussed, OSNs do not have

41

sufficient protection against embedded URLs.

4.2.5 Web Social Engineering Trickery

Social engineering [82] is defined as an implicit technique to exploit human vulnerability and

weakness to bypass security systems in order to gain sensitive information and to spread mal-

ware. The human element is the most vulnerable component in security systems. Generally,

social engineering attacks deal with the psychology of users. Generally, users are not clear

about the security measures provided by the websites and browsers. As a result, attackers

exploit this fact in various ways. Attackers are basically skilled manipulators who follow dif-

ferent tactics to exploit human judgment. Social engineering plays a critical role in serving

malware across different domains. Attackers exploit the human trust and ignorance by using

new techniques and tactics. Some of the frequently used malware spreading methods that

require social engineering are discussed as follows:

• Malvertisements: It is a technique of spreading malware through online advertisements

in a hidden manner. This technique is widely incorporated by attackers in their attack

strategy. Li et al.[83] discussed trends of malicious flash generating dynamic content

and web infections. Sood and Enbody [84] discussed details of exploiting online web

advertising through malvertising using Content Delivery Networks (CDNs), iframe

injections, malicious banners and implicit redirection through widgets.

• Rogue Security Software: It is a technique used by attackers to spread malware through

illegitimate software. Once the software is installed into a user’s machine, it entices the

user to visit a malicious domain by generating notification in the browser to download

malware into the system. It can also perform actions such as alerting users in a fake

42

manner by generating pornography windows or showing messages about system reboot.

It can also raise warnings about fake anti virus scanning of the user machine and fake

alerts about malware to force user to download malicious updates from the third party

server. Finally, it may generate fake warnings of ransomware and scareware. Rogue

security software includes fake codecs, fake anti-viruses, malicious toolbars, warez and

cracked software.

4.2.6 Exploiting P2P Networks

Peer-to-Peer (P2P) networks are popular means of sharing files and content on the Internet.

However, the security model of P2P networks is not robust in detecting malicious files that

are exchanged among the parties. Several studies [84] have been conducted in the past

that prove that P2P has been widely used for spreading malware across Internet. P2P

networks are the main source of network worms. Additionally, P2P networks have been

used by botnets as a command and control platform through distributed P2P agents. P2P

infections can cause chain reaction as P2P based malware exploits vulnerabilities among the

P2P clients by scanning P2P in the network topology. Pollution attacks force the peer agent

in the session to download malicious files. It is the major source of malware propagation in

P2P networks.

4.3 JavaScript as an Exploit Platform

JavaScript is the most common component of web development. Since JavaScript is a client

side scripting language, it is widely used by the attackers to exploit the client side software

such as browsers and to execute illegitimate or malicious codes. JavaScript is the key mech-

43

anism used to conduct attacks on the web applications because of its default behavior to

execute code dynamically. JavaScript is designed to interact with the browsers to perform

various operations which make it very powerful and the preferred weapon of exploitation by

the attackers. In order to address security concerns, the JavaScript interface is generally

restricted to work with the browsers in a controlled manner. Browsers have enforced two

restrictions to secure the interaction with JavaScript. First, the web browser imposes a sand-

box mechanism in which JavaScript is allowed to execute in a specific part of the environment

without damaging the rest. Second, web browsers implement Same Origin Policy (SOP) [85]

in which the browser restricts the method and properties of one web page to interact with

other web pages hosted on different domains. Unfortunately, a number of vulnerabilities have

been detected in these two applied restrictions due to insecure implementation of JavaScript

in the websites. Due to the exploitation of vulnerabilities in SOP [86], server side counter

measures are rendered useless. Using dynamic iframes, dynamic script elements and request

proxies SOP can be bypassed easily.

Web 2.0 has given birth to Asynchronous JavaScript (AJAX) technology in which a

subpart of web page can communicate with a third party domain without changing the state

of the parent web page. Attackers have already developed advanced attacks such as pivot

attacks [87] and JS malware [88] to work with AJAX. JavaScript has been used in various

ways to perform malicious operations on the client side by exploiting browser integrity. The

techniques discussed below are used by the attackers to circumvent the security defenses of

browsers and web applications

44

4.3.1 JavaScript Obfuscation

JavaScript Obfuscation [89] is extensively used by attackers. The goal of obfuscation is to

make the program unreadable while preserving its functionality. Obfuscated JavaScript is

hard to understand because of the stealthy code. Obfuscation techniques were created to

protect the copyrights of the developers but eventually attackers started implementing them

to hide malware and bypass host based detection systems. Xu et. al [90] has conducted a

complete and extensive survey of past and present JavaScript obfuscation. Obfuscated code

can be categorized as follows:

• Generic Techniques: In these techniques, the attacker only uses plain obfuscation in

which strings are generated using a single layer or combination of transformation meth-

ods. It includes plain script encryption using XOR, string splitting, string concatena-

tion, and escaping strings to exploit the browser rendering engine. Generic techniques

do not encompass any context dependent information. Deobfuscation of code using

generic techniques can be done manually.

• Encryption: JavaScript encryption can be implemented in various ways. However,

the preferred choice as pointed out by Craioveanu [91] is symmetric encryption using a

mono-alphabetic substitution scheme in which the patterns of plain text are replaced by

cipher text. Decryption happens during the run-time as the decryption key is present

in the payload. The encryption scheme varies in the manner that the decryption key

is encoded in the payload. The scheme can use single layer or multi layer obfuscation

to hide the decryption key.

• Context Dependent and Anti Analysis: These techniques involve the state of HTTP

transaction to execute the obfuscated code. It means that the HTTP context plays

45

a crucial role in determining the success of the obfuscation. Attackers have started

using anti analysis trick using arguments.callee() and location.href() together. The

arguments.callee() function returns the content of the body and prevents the malware

analysts from modifying the of the function calls. The location.href () is used as a part

of the decryption key by verifying the domain address before executing the code. These

techniques preserve the HTTP context for running the code which makes it really hard

to decrypt from a different domain.

4.3.2 Malicious JavaScript in PDFs

Portable Document Format (PDF) has been used by attackers as a carrier to disseminate

malware through embedded JavaScript. PDF has an built in JavaScript interpreter that

facilitates the execution of JavaScript in PDF documents. However, this interaction is limited

as JavaScript is executed in a sandbox to avoid interaction with the local files. Due to the

inherent vulnerabilities in PDF itself, the sandbox can be circumvented to exploit the PDF

security to spread malware. PDF malware loads shellcode from pages, annotations and info

directory objects of PDF.

Stevens [92] conducted an analysis of exploited vulnerabilities in the PDF. Stevens has

also developed a set of open source tools for analyzing malicious PDFs. In PDF exploitation,

JavaScript Heap Spraying plays a critical role in controlling the execution flow so that the

vulnerability can be successfully exploited. As explained by Selvaraj and Nion [93], there

has been a tremendous rise in the PDF malware. Attackers are using phishing attacks and

vulnerable websites to distribute malicious PDF as attachments and inline content. PDF

Dissector [94] is another tool that is used to perform automated analysis of malicious PDFs

and it is well equipped to extract shellcode.

46

Filiol et al. [95] presented a tool named PDF StructAzer that dissects the structure of any

PDF to perform rigorous analysis. Additionally, Filiol discussed the security related issues

in the PDF language and the usage of PDF manipulation software in detail. The security of

PDF can be thwarted easily by tampering with registry entry such as JSPref key that consti-

tutes most critical security related sub keys as bEnableJS and bEnableMenuItems. Generally,

bypassing security mechanisms in PDF is not a big task for attackers to accomplish. At-

tackers have been using obfuscation to make exploits unreadable so that execution occurs in

a stealthy manner. Obfuscation in PDF can be accomplished by using techniques such as

acroform streams, API function call splitting, GetField method for referencing objects, JS

variable splitting, /Namesarray for splitting JS, RC4 encryption, conditional expressions and

multi level compressions and encoding. Wolf [96] discussed real time obfuscation strategies

used by the Browser Exploit Packs such as NeoSploit and CrimePack to build malicious

PDF using app.doc.getAnnotsobjects for multi layered protections. Porst [97] presented the

programming techniques for obfuscation such as chain evaluation, variable representation

using underscore, defining scopes, JavaScript splitting and anti emulation tricks.

4.3.3 Malicious JavaScript in Flash

Flash has been instrumental in creating dynamic web pages and interacting with third party

servers. Primarily, flash plays a crucial role in the online advertising industry. Jagdale [98]

presented analysis of the risks posed by flash applications due to the inability of developers to

implement secure code. Attackers have been using Flash to deliver malware using advertising

networks. Instead of JavaScript, Flash uses Action Script. Flash is also used as a propagation

mechanism for spreading malware across the internet. Malicious code in Flash is designed

as a time based logic bomb in which malicious code looks legitimate initially but is executed

47

only after a specific time.

Flash can be embedded in the PDF files for serving malware. Flash based malicious code

also uses Shared Objects in the Action Script to determine the execution state of malicious

code with respect to timestamps. Attackers use the bit-wise operation to plain text string

and store them as hexadecimal characters in the flash file. In order to deobfuscate the code,

built in functions such as fromCharCode, Parse-int and slices etc are used to deobfuscate

the strings to execute the hidden code.

Ford et al. [99] discussed obfuscation in Flash using the Action Script 3.0 function named

Loader.loadBytes which allows attackers to load a new flash file in the existing flash file.

Acton Script code is basically executed in the tags defined as DoAction and DoInitAction.

Due to the lack of validation in verifying the JMP instruction for defining a location in the

code, attackers exploit this validation routine to execute the JMP by binding it to the code

outside the action tags.

4.3.4 Iframe Injections

Iframes are used to display the content of third party in an inline manner within the parent

web page i.e. embedding one web page in another. Iframes are also the preferred choice of

malware writers to inject malicious URL that downloads malware silently. Iframes are used

in drive-by download attacks because it is possible to bypass SOP to launch cross domain

attacks. Frequently, the hidden iframes [100] are injected in websites after successful ex-

ploitation of vulnerabilities such as Cross-site Scripting (XSS) and SQL Injections (SQLI).

The hidden iframe is not displayed in the website but fetches rogue JavaScript from a mali-

cious domain to execute script in the user’s browser. As discussed earlier, the success rate of

malware also depends on the insecure implementation of SOP by websites. Hosting providers

48

implementing virtual hosting are more prone to mass iframe injections. The concept of web

virtual hosting infection using dynamic iframe code [101] has already been discussed. Iframes

are also used to exploit the shortcomings in the communication flow between HTTP and

HTTPS websites.

4.3.5 JavaScript Rootkit Variants

JavaScript rootkits are defined as malicious programs that hide their presence in the browser

and execute stealthy operations. However, there is no defined criterion that classifies the

JavaScript specific rootkits. Jackson at al. [102] discussed the concept of automated Transac-

tion Generators (TG) that initiate fraudulent transactions from the users’ computers without

stealing the credentials and subverting the authentication mechanism. This type of malware

sits quietly in the OS and waits for the user to start a session with the website. Once the

session is successfully created, the malware exploits the session functionality to trigger a

fake transaction and delete its trace from the website. Adida et al. [103] presented another

variant of a JavaScript rootkit that exploits the stored login bookmarks for stealing user

credentials. The variant of JavaScript rootkit discussed by Adida relies on an untrusted

JavaScript environment and can be exploited to perform rogue operation by using third

party JavaScripts included in the web page. This implies that external JavaScript can com-

municate with bookmarklets. This actually shows that browser design plays a significant

role in the execution of JavaScripts.

49

4.3.6 Malicious Widgets

Widgets are defined as small applications that work inline with the Web-pages and are

hosted in the environment running the widget engine. Widgets are the reusable pieces of

JavaScript code and can be used by any website where as Gadgets are proprietary in nature

and work with only a specific set of websites. Widgets have been created to serve the users

by improving the quality of communication between various websites. This communication

is termed as mashup communication as the two principals communicate with each other

without exploiting the access boundary of one another. JavaScript is used for communication

between the two principals. If a web page has malicious widgets, it can circumvent the access

model by running JavaScript in the access space of another principal.

Raff and Amit [19] disclosed a set of vulnerabilities in the widgets that can be exploited

by the attackers to spread malware. Barth et al. [104] discussed in detailed the privilege

escalation bugs that result in compromising the secure communication interface between

the two principals. Jackson and Helen [105] discussed in detail the poor design of browsers

that fail to handle the communication among the cross domains in a secure manner. In

general, widgets can be used to exploit the trust boundary using JavaScript by exploiting

vulnerabilities to trigger malware infections.

50

Chapter 5

Browser Security and Hooking

In this chapter, we take a broad look at browser security, and then take a closer look at

hooking. Hooking is an advanced technique that allows attackers to infiltrate browsers by

infecting the underlying operating system.

5.1 Browser Security Overview

According to statistics provided by W3C [112], the most popular browsers running on the

Internet are Google Chrome, Internet Explorer (IE) and Firefox. These statistics are based

on the analysis of log files. Considering that, in our study we concentrate on these popular

browsers during this research. A typical browser design constitutes a JavaScript interpreter,

rendering engine, parser, Document Object Model (DOM), isolation using sandbox and Same

Origin Policy (SOP), secure communication and navigation, security user interface, manda-

tory access control, cookies management, secure framing etc. We conducted a survey on all

the existing security features provided by these browsers and cataloged them to understand

the overall security posture. Table 5.1 shows the complete catalog of the security features

deployed by the most popular browsers.

Table 5.2 shows process specific characteristics of different browsers. Based on the above

information, Google Chrome is the most secure followed by IE and then Firefox.

51

52

Table 5.1 Security Features Support in Popular Browsers.

Security Features Internet Explorer Google Chrome Mozilla Firefox
Safe Browsing API Yes Yes Yes

Sandbox Secure Secure Partial
Anti Phishing Yes Yes Yes
Malvertising Yes Yes Yes

File Download Protection Yes Yes Yes
Exploit Mitigation Yes Yes Yes
Private Browsing Yes Yes Yes
Pop-Up Blocker Yes Yes Yes
Crash Control Yes Yes Yes
JIT Hardening Yes Yes No

Iframe Sandboxing Yes Yes Yes
HTTP Strict Transport Security No Yes Yes

Content Security Policy Partial Yes Yes
Cross Origin Resource Sharing Yes Yes Yes

Clickjacking Protection Yes Yes Yes
ECMCA 5 Strict Mode Yes Yes Yes

Reflective XSS Protection Yes Yes NA (Add-on)
Persistent XSS Protection No No No

Accuvant labs [111] also performed a security comparison of the most popular browsers

to quantify the threats. In that study, the researchers concentrated on the security model of

browsers that is required to defend against security vulnerabilities. They looked into malware

protection, exploit mitigation, protection against client-side attacks, sandbox implementa-

tion, etc. to verify the robustness of the browsers. They collected their information into a

couple of figures that we have reproduced in the form of table. Table 5.3 shows different

granular controls required for robust Just-in-Time (JiT) protection for different browsers to

prevent users from client side JavaScript exploits.

Table 5.2 Browser Architecture: In-Process and Out-of-Process Components.

Extensible Components Internet Explorer Google Chrome Mozilla Firefox
Process Address Space Multi Multi Single
Sandbox Robustness High Medium Low

Rendering Engine In-Process Out-of-Process In-Process
Tabs Out-of-Process Out-of-Process In-Process

Plug-ins In-Process Out-of-Process Out-of-Process
Extensions Out-of-Process Out-of-Process In-Process

GPU Acceleration Out-of-Process Out-of-Process In-Process

Table 5.3 Just-in-Time (JiT) Protection for Different Browsers (Source - Accuvant Labs
Report).

JiT Hardening Techniques Google Chrome Internet Explorer Mozilla Firefox
Codebase Randomization No Yes No

Instruction Randomization High Medium Low
Constant Folding Yes Yes No
Constant Binding Yes Yes No

Resource Constraints Yes Yes No
Memory Page Protection No Yes No

Additional Randomization Yes Not Required No
Guard Pages Yes Not Required No

From a security perspective, architecture review and analysis helps in understanding their

53

ability to mitigate the highest risk vulnerabilities. The detailed security analysis of Google

Chrome [113] pointed out different types of attacks associated with Chrome by building a

threat model. Earlier, analysis of scripting languages such as JavaScript and VbScript [114]

revealed several security flaws and using that information security researchers proposed a

secure scripting framework. Alhambra [115], a browser-based framework, was created to

enforce and audit web specific security policies in the browsers. This framework provides an

insight into the compatibilities of different web pages with browsers when secure policies are

deployed. An application isolation [116] technique was implemented in Google Chrome using

finite-state model checking to verify the security properties of different components in the

browser. SMash [117] was presented as secure component model in which sub components

residing in different trusted domains can communicate securely using browser-based policies

based on security specifications. To restrict malware distribution through browser plug-ins

and extensions, Browser Spy [118] was introduced which uses the concept of code integrity

checking and controls the installation and loading of extensions in the browsers. Vex [119]

is another extension analysis systems that looks for security issues and bad programming

constructs in the Firefox browser extensions. Vex implements the concept of flow patterns

using context and flow sensitive static analysis using a high precision benchmarks. Microsoft

[120] also developed a verification methodology which enabled it to verify the security state

of extensions using static analysis. To do that, safety properties were constructed using

formalization of policies (semantics) during run-time of extensions.

Despite all this research effort in strengthening browser security attacks continue. With-

out a doubt this practical research has increased the security of browsers, but it has proven

impossible to totally secure browsers given their inherent design. The next section discusses

several issues that contribute to the malware success and browser exploitation.

54

5.2 Reasons for Browser Exploitation

Several reasons for browser exploitation at a wide scale are discussed as follows:

5.2.1 Browsers as Exploitation Entry Points

Browsers are complex and flexible software that provide a large attack surface for attackers

to exploit. Since a browser is user’s interface to the Internet infecting a browser can provide

access to a wealth of user data such as banking credentials. In addition, since a browser

faces the Internet a vulnerable browser can be a mechanism for a remote attacker to load

malware onto a computer. Finally, as operating systems have hardened applications such as

browsers have become easier targets.

A browser’s design is based on components such as a JavaScript rendering engine, plugin

interface, Document Object Module (DOM) hierarchy, providing a large attack surface. At

the same time operating system hardening techniques such as Data Execution Prevention

(DEP), Address Space Layout Randomization (ASLR), Structure Exception Handling Over-

write Protection (SEHOP), Safe Structured Exception Handling (Safe SEH), stack metadata

obfuscation using GS flag, and heap metadata obfuscation using RtlHeap safe unlinking have

made the exploitation of the operating system harder for the attackers. These days reliable

exploitation of recent versions of operating systems requires multiple vulnerabilities such

as using Return Oriented Programming (ROP) [109] by building ROP chains using ROP

gadgets [108]. The result is that browser-based vulnerabilities are widely used to infect users

with malware.

55

5.2.2 Browsers Hooking in Userland Space

Browsers are simply applications that are installed in the user space of the operating system.

Compromising the communication flow of browsers can provide access to user’s sensitive data.

Accessing user processes is not a tough task for the attackers in spite of the fact that these

processes run in a private address space of their own. Given access to a process’s address

space, an attacker can hook functions to co-opt their capabilities for nefarious purposes.

There are a number of hooking techniques available such as Import Address Table (IAT)

hooking, inline hooking, DLL Injection and Asynchronous Procedure Call (APC) hooking

that result in successful hijacking of browser libraries for manipulation by the attacker.

Using hooking a Man-in-the-Browser (MitB) attack can be developed allowing the malware

to manipulate and sniff sensitive data as it passes back and forth between browsers and

target websites. This is the modus operandi of attackers to gather banking credentials or

hijack banking sessions.

5.2.3 Browsers as Malicious Code Carrier

Because browsers face the Internet, they provide an attack surface that is remotely accessible

to attackers allowing them to load malicious code onto the users’ machines. A security flaw

can enable attackers to install malicious code in the running system. A phishing email can

convince a user to visit a malicious domain hosting drive-by download malware that silently

downloads malware onto the user’s computer. Such an attack is possible because browsers

run JavaScript found on those pages. If an attacker has injected malicious JavaScript into le-

gitimate websites, they get executed to trigger infections. JavaScript is a double-edged sword

that is required for the working of the Internet, but attackers can exploit it for malicious

56

purposes.

5.2.4 Browsers - Anatomy of Third-party Plugins and Extensions

A browser is an integrated software application that uses a variety of third party software

such as Java, Adobe PDF, Flash, Silverlight, and so on to provide a flexible environment

for Internet communication. These third party software are called plugins and run as sep-

arate processes in the browser’s sandbox. In spite of the sandboxing, vulnerabilities have

been found in these plugins that allow attackers to infect the underlying operating system.

Browser Exploit Packs (BEPs) exist which are automated exploitation frameworks that fin-

gerprint browsers and exploit them if vulnerable plugins or components are detected. The

current king of BEPs is BlackHole which carries most of the exploits against vulnerabilities

present in the plugins specifically Java Virtual Machine (JVM). The most widely exploited

plugin is Java followed by Adobe PDF and then Flash. An in-depth analysis of various BEPs

conducted by the Contagio team [107] shows that majority of the exploits embedded in these

automated frameworks are based on plugins.

5.3 Browser Hooking and Inherent Techniques

A hook is a piece of code that manages (handles) intercepted function calls to alter the

behavior of a user or operating system process. Malware such as rootkits implement userland

and kernelland hooking to circumvent the normal execution flow of various API functions.

Our interest is in the hooking of browsers that occurs in user space.

The basic idea of browser hooking is to redirect a function called by the browser. Flow is

redirected to malicious code and then flow is returned to the original function that continues

57

normally. If implemented correctly, malicious code is inserted into the browser’s instruction

stream while allowing all original code to execute. These techniques are not specific to

browsers, but we describe them in the context of browser hooking.

5.3.1 Inline Hooking

In this technique [110], a userland rootkit such as a bot saves the first several instructions

of the target function that are to be overwritten by the hook. These instructions are stored

in a function called the trampoline that is used later to call the original function. The hook

patches the first 3 or 5 bytes of the target function’s prologue to insert a JMP instruction

pointing to the detour engine for changing the execution flow. A detour engine contains

the bot-supplied (malicious) code to be executed. It performs preprocessing, executes the

malicious code and then calls the trampoline function to return control to the target function.

Inline hooking is more robust and powerful than IAT hooking that is covered next. Figure

5.1 shows the execution flow of the inline hooking.

58

59

Figure 5.1 Inline Hooking Execution Flow.

5.3.2 Import Address Table (IAT) Hooking

The IAT table stores the addresses of various functions from different DLLs and is specific to

a process (such as a browser). When a malicious application such as a bot requires an address

of the target function in a DLL, it consults the IAT table (e.g. of the browser) to retrieve the

address. The IAT table is available to the bot because it has gained access to the browser’s

private address space. In this hooking technique, the bot parses the Portable Executable

(PE) format of the browser’s IAT and replaces the browser function’s address with the hook

function’s address. As a result, the hook function is executed when a legitimate function is

called. Figure 5.2 shows the execution behavior of IAT hooking.

60

61

Figure 5.2 IAT Hooking Execution Flow.

5.3.3 DLL Injection

In this technique, a bot injects a malicious DLL into the address space of the target process

(e.g. browser). If the malicious DLL is injected successfully, the bot takes complete control

over the address space of the target process. DLL Injection can be done in three different

ways in Microsoft Windows. First, the malicious DLL can be injected by listing it in a

registry entry named AppInit DLLs. Second, the bot can perform DLL Injection using the

SetWindowsHookEx function. Third, DLL injection can be performed by creating remote

threads in the target processes using CreateRemoteThread, WriteProcessMemory and Vir-

tualAlloc APIs. Figure 5.3 shows how DLL Injection is carried out in the context of the

infected process.

Firefox and IE implement target (to be hooked) functions in the respective DLLs. These

functions can be exported easily by calling functions such as GetProcAddress or LoadLibrary

to find the address of the function to be hooked. Google has built a centralized chrome.dll

which contains massive code of built-in functions and a number of third party libraries. It

is not possible to load the DLL directly and find the respective function. Google Chrome

consults the PRIOMethods structure to manage the addresses.

62

63

Figure 5.3 DLL Injection Execution Flow.

These hooking techniques are the most widely used to conduct browser hooking.

Table 5.3 shows example hooking we have found across three different browsers. In each

case the functions that are hooked control the communication channel. Inline hooking is

widely used for hooking Firefox browser and the code [129] is easily available on the Internet.

Table 5.4 A Catalog - Hooking in Different Browsers.

,

Internet Explorer HTTPSendRequest , InternetReadFile, HTTPQuery-
Info, InternetQueryDataAvailable etc. functions in
WININET.DLL.
WSASend, WSASendTo, send, sendto in WS2 32.DLL
and WSOCK32.DLL respectively.

Mozilla Firefox PR WRITE (p1,p2,p3) function is hooked in
NSPR4.DLL. Primarily, the second and third pa-
rameters are required to be hooked to steal the
information present in the POST request. Other
hooked functions are PR READ, PR OpenTCPSocket,
etc.

Google Chrome Fingerprint ssl SetupIOMethods in ssl InitIOLayer
function to resolve the address. Locate the PRIOMeth-
ods structure is located in memory, the address of
ssl Write. Other hooked functions are PRReadFN and
PRWriteFN in the PRIOMethods structure.

Firefox and IE implement target (to be hooked) functions in the respective DLLs. These

functions can be exported easily by calling functions such as GetProcAddress or LoadLibrary

to find the address of the function to be hooked. Google has built a centralized chrome.dll

which contains massive code of built-in functions and a number of third party libraries. It

is not possible to load the DLL directly and find the respective function. Google Chrome

consults the PRIOMethods structure to manage the addresses. Figure 5.4 shows an example

of Component Object Model (COM) of Internet Explorer. Note the highlighted portion in

red is the network component that is hooked by the bot.

64

65

Figure 5.4 Internet Explorer - Hooked Component (Source : MSDN).

5.4 Reliability of Hooking in User Mode

Hooking is challenging to implement reliably as an attack technique, especially as part of an

automated framework such as a bot. Additional kernel-level techniques are available if the

user is running in administrator (root) mode when the bot infects the system. The reliability

of hooks is significantly reduced in the following scenarios:

• Hooks are installed deep in functions. Hooks that occur in the middle of code can

be challenging because certain hooking mechanisms such as inline hooking rely on

assembly code which is to be used with C and C++ to trigger hooks. Assembly code

is compiler dependent and optimization can have substantial impact on the hooking

code. Automatic manipulation of code that is not at the beginning or end of a function

is an added challenge.

• Appending and prepending of hooks in the hook queue impacts the execution at a

desired time. As we will show later, timing is critical for both attacks and defense.

• Generally, the details needed for hooking in Windows are stored in kernel-level struc-

tures. User mode code cannot access the kernel level structures through Win 32 API

functions. The Windows API does not provide any exported functions or mechanisms

to retrieve information about hooks. For that, kernel level hooking is required. Usu-

ally, there are several undocumented constraints to be by bypassed if non-exported

functions are to be hooked:

– Use of undocumented functions requires building of a kernel-level driver.

– A kernel-level driver requires additional libraries to read the debug information

and symbols to resolve virtual addresses of the loaded modules (DLLs). For this,

66

additional libraries are required such as the Debug Help Library (dbghelp.dll) and

program database (symsrv.pdb) to interact with win32k.sys.

– The dbghelp.dll and symsrv.dll libraries are version specific and change with every

service pack and Windows version.

– A kernel-level driver interacts directly with win32k.sys and if version mismatch

occurs, the system crashes.

– With ASLR present it is not easy to bypass kernel-mode protection for success-

ful running of a driver designed to hook into the kernel. The PROCESSINFO,

DESKTOPINFO, THREADINFO structures vary with every version of Windows

resulting in a change in the desired offsets.

– A kernel-mode code signing policy is implemented in certain versions of Windows

in which the kernel restricts the execution of drivers if not signed with a trusted

certificate.

– Certain versions of Windows implement a thread isolation policy in which the

THREADINFO structure cannot be accessed directly if sessions are different.

– User-access Control (UAC) and Driver-signed Enforcement (DSE) functionalities

are required to be overridden. For that, administrative access is required.

– With the Enhanced Mitigation Experience Toolkit (EMET)[128], additional pro-

tections have been added in the user mode and kernel mode to restrict the exe-

cution of arbitrary code.

In order to hook a function that achieves a particular task, an appropriate function must

exist. Finding an appropriate function takes substantial effort, and none may exist. There

67

exist undocumented functions within Windows that can be hooked but no such function

provides useful functionality that implements a hook into the rendering engine including

JavaScript interpreter in browsers.

Furthermore, we have not encountered any call, documented or undocumented, in the

NT library that allows direct injection in the browser rendering and parsing engine. The

primary reason appears to be that NT provides Windows specific functions, not application

specific. We will see later that this missing capability plays is important in a bots inability

to respond to our defenses.

5.5 Conclusion

Hooking is an advanced attack technique that allows attackers (bots) to take control of com-

munication of user processes (browsers in particular) without rooting the operating system.

Understanding hooking and its limitations was critical for developing our defenses against

the Form-grabbing and Web Inject attacks that current bots use to steal banking creden-

tials. The two limitations that turn out to be critical are the need for functions with needed

functionality to be available for hooking and the timing of when hooking can occur. We will

explore these issues in subsequent chapters.

68

Chapter 6

Problem Discussion: MitB Attacks

In this chapter, we provide details of the Form-grabbing and Web Injects attack methods

that are based on the Man-in-the-Browser (MitB) [121] paradigm to exfiltrate sensitive data

from infected machines.

MitB is a type of Man-in-the-Middle (MitM) attack that uses the same concept of an in-

termediate third-party to hijack a communication channel. In the case of MitB, the malware

resides in the infected machine and hijacks the communication channel between a browser

and a target website. This arrangement allows the malware to intercept events, calls, and

transmitted data. This malware uses hooking described earlier to manipulate the built-in

libraries. In this chapter, we examine the two most widely used MitB attacks named as

Form-grabbing and Web Injects. They exfiltrate user data such as banking credentials from

the browsers.

6.1 Communication Timeline: No Infection

We begin with a timeline of the communication between the client and web server when the

end user machine is not infected.

• Step 1: Using a browser, a user requests a web page, an action that sends an HTTP

GET request. Let’s say the user requests a bank’s login page.

69

• Step 2: The web server (bank) sends the web page content back to the browser running

on the user’s machine.

• Step 3: The browser receives the HTML data through its network component, passes

it through some intermediate components until it reaches the rendering and parsing

engine. The rendering engine performs tokenization on the HTML data, constructs

the DOM tree and displays the web login page to the user.

• Step 4: The user enters username and password values into the login web page form.

The user clicks “submit” which submits the form with its POST data (username,

password). The data is handled by the browser’s network component for transmission

to the server.

• Step5: The web server validates the received data and provides access to the user’s

bank account.

This is a simple timeline without an infection.

6.2 Form-grabbing Attack

A bot uses hooking to control the communication flow in the browser. When the browser

processes a form to send to the server, the bot grabs the form and sends a copy to the

attacker. This process allows the bot to transparently exfiltrate the form data to avoid

detection. Figure 6.1 shows the Form-grabbing attack in action.

Form-grabbing is widely used by present-day botnets to grab information in HTML

forms. Contrast Form-grabbing with key-logging. Form-grabbing allows the bot to capture

and steal only sensitive information present in the forms whereas key-logging captures all the

70

data input by the users. Furthermore, form-grabbed data is labeled, e.g. password, which

simplifies the extraction of specific desired items. Key-logging generates a lot of garbage

data in its logs which can be time consuming (expensive) for the bot master to sift through

to find useful tidbits. In contrast, Form-grabbing’s labeled data can be stashed in a database

for easy storage and extraction. With a botnet, Form-grabbing from a large set of victim

machines, gathering a large set of banking credentials only requires a simple database query

on the bot master’s C&C server to extract the targeted data (i.e. username, password, etc.).

71

72

Figure 6.1 Form-grabbing Attack in Action.

The implementation of Form-grabbing (hooking) attack is different for different browsers.

The primary reason is that browsers have different architectures. Form-grabbing module is

specific to a browser, which means a Form-grabbing module designed for Firefox will not

work against Internet Explorer. For that reason, bot authors have to design separate modules

for different browsers they are targeting for exfiltrating data. Hooking these functions allows

the bot author to grab all the data written by the browser at the network layer. Figure 6.2

shows a hooking of pr write function exported by nspr4.dll in Firefox browser. Hence, it is

perfect function for hooking and implementing Form-grabbing in Firefox.

73

74

Figure 6.2 Form-grabbing: PR Write Hooking in NSPR4.dll.

Form-grabbing happens during form submission when the browser sends a POST request

accompanied with parameters and associated values back to the server. The bot hooks critical

communication functions in the browser’s Dynamic Link Library (DLL) to redirect control

to bot functions for processing of the POST request. When the bot is finished extracting its

desired data, control is transferred back to the legitimate functions in the browsers’ DLLs so

the user is unaware that communication was briefly redirected. For example, a user logs into

his bank account by entering credentials and then submitting the form. The bot hooks the

browser functions that handle the form, steals information and transfers the control back to

the legitimate function. In this way, the bot captures the credentials and transmits them to

the C&C panel for storage. Notice that because the POST data is labeled, the data grabbed

by the bot is labeled-very handy for the bot master! At the same time the legitimate bank

server receives the same data for processing the request.

Once the function is successfully hooked, the bot reads the POST request data and send

it to the C&C panel using sockets as shown in the Figure 6.3.

75

76

Figure 6.3 Transmission of Form-grabbed Data using Sockets.

Figure 6.4 shows an example of data that Form-grabbing produces when observed from

the C&C panel controlled by the bot herder.

It can be clearly seen that the Form-grabbing output is very effective and well arranged.

Bot herders do not require any additional efforts to clean this information for reusing this data

in the underground community for nefarious purposes. Due to this reason, Form-grabbing

technique has becomes the predominant part of every botnet these days.

6.3 Web Injects Attack

Web Injects is an interesting attack based on the concept of MitB using hooking. Using Web

Injects and hooking, the bot can inject illegitimate scripts or HTML content in the HTTP

responses. The injections of a Web Inject are significantly different from Cross-site Scripting

(XSS) injection. This is because the bot agent resides in the system itself as opposed to the

attacker that exploits vulnerabilities in the websites to execute XSS. Figure 6.5 shows the

Web Injects in action.

Figure 6.6 shows an example of a Web Inject. The bot fingerprints the layout of the web

page using data before and data after tag. On successfully validating the tags, the bot injects

the content present in data inject tag in the HTTP responses. The set url parameter is used

to define a target against which the injection is to be executed. All the tags data before,

data after, data inject and set url are used to write a Web Inject. The details of these tags

are discussed below:

• data before / data end: Fingerprint the constructs in the HTML data present in this

tag and inject malicious code after it.

• data inject / data end: Inject the code specified in these tags in the target HTML web

77

Figure 6.4 Form-grabbed Data Collected on the C&C Panel.

78

page.

• data after / data end: Fingerprint the constructs in the HTML data present in this

tag and inject malicious code before it.

• set url: Specify the target URL (web pages) where the malicious code will be injected.

79

80

Figure 6.5 Web Injects Attack in Action.

Figure 6.6 Web Injects Code Targeting Wells Fargo Bank.

The set url tag contains a number of flags that are used to direct the bot to perform

injections on different HTTP requests.

• Flag G: Inject the malicious code in the web pages that are retrieved using an HTTP

GET request.

• Flag P: Inject the malicious code in the web pages that are accessed using an HTTP

POST request.

• Flag L: Direct the bot to extract data present in the data before and data after tags

and transmit it to the C&C panel.

• Flag H: Direct the bot not to send the grabbed data present in the data before and

data after tags. It has not been used widely in Web Injects we have observed. Its

purpose is not clear.

The code presented in Figure 6.6 injects an input field for ATM code in the Wells Fargo

website login pages on the infected machine. Figure 6.7 shows the output of this attack.

Note the request for the ATM pin highlighted with the red square. On similar note, Figure

81

6.8 shows the fake pop-ups injected in the active session with the Chase bank website on the

client side.

82

83

Figure 6.7 Successful Web Injects in Wells Fargo Bank Login Pages on the Client Side.

Web Injects exploit the trust inherent in a known web page source to coerce the user to

enter extra information-in this case the ATM pin. Web Inject data can be categorized into

different modes as discussed below:

84

85

Figure 6.8 Sample of Fake Pop-ups Injected in Chase Web Pages on the Client Side (Source: Chase Online Fraud Center).

• Text: Web Injects that use simple text to be used with HTML elements.

• HTML Tags: Web Injects that use HTML tags as payloads to inject into the HTTP

stream.

• HTML Tags with JavaScript Protocol Handler: Web Injects that use a “JavaScript:”

protocol handler as a value of an attribute or event to execute a set of functions.

• JavaScript: Web Injects that use “script” tags to inject arbitrary scripts or rendering

HTML elements. They use the “src” attribute to download scripts from third-party

domains (or from the same domain).

Figure 6.9 shows different ways in which Web Injects can happen.

6.4 Attack Timeline: After Infection

To conclude this section, we update our timeline to include both the Form-grabbing and

Web Injects attacks.

• Step 1: Using a browser, a user requests a web page, an action that sends an HTTP

GET request. Let’s say the user requests a bank’s login page.

• Step 2: The web server (bank) sends the web page content back to the browser running

on the user’s machine.

• Step 3: The bot hooks the network level component of the browser that handles all the

incoming HTTP data. Through the hook the bot has the capability to read and write

the component’s buffer so it can inject unauthorized JavaScript code into the HTML

response (the Web Inject attack). Let’s say that the bot injects an extra HTML input

86

field into the web login page that asks for an ATM PIN. The web page now carries an

extra input field in addition to the normal username and password request. Control

returns to the browser that passes the page to the rendering and parsing engine for

display.

• Step 4: The user sees a mostly legitimate web page bearing an extra input field. The

user enters username and password values as well as their ATM PIN into the login

web page form. The user clicks “submit” which submits the form with its POST

data (username, password, ATM PIN). The data is handled by the browser’s network

component for transmission to the server. At this point, the bot again hooks the

network component, extracts the HTTP POST data and transmits that copy to the

C&C panel (the Form-grabbing attack). Control is returned to the browser and the

data is transmitted as usual to the server.

• Step 5: The web server validates the received data and provides access to the user to

bank account.

Notice the timing of the attacks. The Web Inject occurs on the incoming HTTP data

while the Form-grabbing is executed on the outgoing data. Both attacks compromise the

network component of the browser.

87

88

Figure 6.9 Web Injects - Injection Types (Extracted from real time samples).

6.5 Conclusion

The timing where the attacks occur is critical to our work. The limitations of hooking both

constrain where the attacks occur in the timeline as well as constrain what the attacker can

do at that time. Our response in the next chapters capitalizes on those constraints.

89

Chapter 7

Methodology and Implementation

In this chapter, we present techniques to disrupt the process of browser-based data exfil-

tration. For Form-grabbing, we will encrypt the data. For Web Injects, we will generate a

signature to validate the displayed page. The key contribution here is not these apparently

simple solutions, but the insight into hooking that allows us to position these solutions to

be effective and impossible for the attacker to circumvent.

7.1 Encryption to Defeat Form-grabbing

MitB attacks such as Form-grabbing occur in the browser running on the client. SSL does

not protect against Form-grabbing attacks because SSL encryption is end-to-end encryption

that is designed to protect against network attacks, not an attack within the browser. Form-

grabbing occurs well before SSL is invoked so data is grabbed well before it is encrypted.

Our dissection of multiple bots to understand hooking attacks allowed us to determine

the weaknesses of those attacks. In particular, they can only hook exposed functions and

they can only hook at particular times in the rendering timeline. The timing is critical. Our

analysis has showed that in Form-grabbing the HTTP POST requests are intercepted at the

network layer of the browser. The bot waits for the browser to send a HTTP POST request

using standard function calls in the library. On observing the HTTP POST request, the

bot executes the hook, reads the POST data, creates a socket and sends the stolen POST

90

data to the C&C panel. After that bot releases the hook and the data is sent in its normal

fashion to the legitimate server. Using client side encryption during rendering we can encrypt

forms before the hook is executed in the browser by the bot. In addition to the timing, the

bot cannot respond by hooking the rendering engine because no appropriate functions are

exposed for hooking. Under our scheme the bot only gets encrypted data. As long as we

use a well-vetted encryption library, the data is useless to the attacker. They steal the data,

but it is worthless.

Any of many cryptographic implementations can be deployed for our client-side encryp-

tion. For testing purposes, we used jCryption. The jCryption [122] (more details in the

experimental section) is a JavaScript based symmetric encryption library. jCryption fetches

the RSA public key of the server and encrypts the shared key that is generated per session.

The encrypted shared key is stored in the active session as a session variable and is valid

for only one session. In addition, Braintree [123] provides client side JavaScript libraries

for implementing pure asymmetric encryption. There are number of client side encryption

libraries in use as shown in the Table 7.1.

Table 7.1 List of Different Client Side JavaScript Encryption Libraries.

JS Encryption Libraries Reference
pidCrypt https://www.pidder.com/pidcrypt/

SJCL http://crypto.stanford.edu/sjcl/
jsCrypto http://code.google.com/p/jscryptolib/

BrainTree https://www.braintreepayments.com/docs/javascript
Cryptico https://github.com/wwwtyro/cryptico

JavaScript Cryptography Toolkit http://ats.oka.nu/titaniumcore/js/
jCryption http://www.jcryption.org/

JavaScript Crypto Library http://www.clipperz.com/
RSA in JavaScript http://www.ohdave.com/rsa/

Client side JavaScript encryption has a known weakness with respect to network-based

Man-in-the-Middle attacks. That weakness doesn’t apply in our case for two reasons: (1) our

91

adversary is not on the network, but is in the browser, and (2) for adversaries on the network

the session between client and server is protected by SSL. That is, against network-based

attacks we are as secure as SSL.

There are certain things that should be taken into consideration while deploying client

side encryption as discussed below:

• Cryptographic hashing algorithms such as MD5 or SHA should not be used because

their purpose is not to protect data, but to authenticate. We mention them because

some websites use cryptographic hashing algorithms to obfuscate sensitive information.

• Symmetric encryption uses a shared secret key for encryption, but effective and secure

key management (e.g. distribution and storage) is too cumbersome for consumer web

banking.

• For asymmetric encryption, only the public key is shared on the client side and no

secret key is shared. The server holds the private key which decrypts the data on the

server side. For this reason, asymmetric cryptographic algorithms are preferred for

implementing client side encryption.

• We strongly recommend that developers should avoid implementation of any custom

cryptographic algorithms. For robust cryptography implementations, existing algo-

rithms should be used that hold strong cryptographic properties and are resistant to

attacks.

The client side encryption happens in the JavaScript rendering and parsing stage. When

a form is submitted JavaScript encrypts the data, either the whole form or the entered data.

By the time the data reaches the network component of the browser, it is already encrypted.

92

Hooking is done in the network component so the exfiltrated data is encrypted. The timing

of hooking and its limitation to certain components is what ensures that our client side

encryption occurs before the bot hooks and exfiltrates data.

In order for a bot to perform API hooking, the DLLs used by browser components

must have exported functions that can be hooked. No useful functions are available by

the browser’s rendering and parsing engines’ components for hooking. Since client side

encryption code is JavaScript code that works in the parsing and rendering engine, the

unavailability of functions to hook prevents the bot from interfering with the encryption. In

addition, the bot has to wait for the data to be input by the user in this stage, i.e. the data

cannot be grabbed earlier. These constraints combined with timing restrictions prevent the

bot from interfering between form submission and encryption.

Is there a way for the bot to tamper with the encryption code? Yes, using the same

technique as Web Injects, a bot could delete the encryption code from the page as it enters

the browser (or modify it). That is, the bot has the capability to hook the network component

of the browser. Note that this attack happens at the network layer and it happens before

rendering. We cannot prevent the deletion, but we can recognize that deletion has occurred.

The WPSeal component discussed next is a verification scheme that will detect that the page

has been modified as it entered the browser. In particular, deletion or modification of the

JavaScript encryption code will be recognized. Upon detecting the modification the server

can take action such as locking the account.

93

7.2 WPSeal: Web Page Verification

In order to strengthen the multi layer defenses proposed above, we propose a novel approach

of detecting Web Injects using a web page verification technique. We explained the problem

of Web Injects in last chapter and in this part, we present the details of our implementation.

Figure 7.1 shows the working prototype of WPSeal.

WPSeal is based on the verification of web pages displayed in the users’ browsers. The

idea behind WPSeal prototype is defined as a follows:

• User requests a specific web page by sending a HTTP request. The web server hashes

the web page before sending the HTTP data back to the user’s browser.

• After generating the hash, the web server creates a session variable. The hash is stored

on the server side in a buffer. The browser fetches the required JavaScript function

from the web server so that hash can be regenerated on the client side.

• On the client side, the malware injects malicious content in the incoming HTTP re-

sponses and browser allows it to render. WPSeal allows this to happen.

• Once the content is rendered, the browser reconstructs the hash of the web page. Since

the web page now contains illegitimate content, the hash is changed. The recomputed

hash is sent to the web server for verification purposes. If the hashes do not match,

the web server flags the session as suspicious otherwise session remains active.

WPSeal is a passive defense as the detection tactic does not monitor Web Injects on the

client side but validates the integrity of the displayed web pages.

94

95

Figure 7.1 WPSeal Prototype in Action.

Before discussing the implementation of WPSeal, it is crucial to understand the con-

straints of Web Injects and then finding ways to increase the security. While developing the

design of WPSeal, we assume that system is infected with malware which means malware

can trigger different methods to subvert the WPSeal. We present the design constraints of

the Web Injects framework and how we build security layers to harden the WPSeal. Let’s

discuss the design restrictions of Web Inject framework.

• Web Inject rules are not developed dynamically rather the rules are static. It means

the malware(bots) do not build or design rules on the fly. The malware author has

to write these rules and then compile them in the malware (bot executable). The bot

injects data based on these rules.

• Our analysis show that Web Injects are designed primarily to inject illegitimate content

in the HTML/PHP/JSP pages. We have not seen a single Web Inject rule that is

designed to inject code inside JS/CSS files. The reason for not tampering the JS/CSS

files is to keep the layout of website intact so that users are not able to detect it.

However, we still expect that bot can do it.

For security, we take several considerations:

• In WPSeal, we do not implement the verification check on the client side rather it is

structured on the server side which makes the WPSeal a passive defense. Let’s discuss

the robustness of this design. First, if the hash is tampered, the protection fails on

the server side. Second, if the recomputed hash is not returned to the web server,

the session is disrupted. In addition to this, a successful Web Inject means that the

injected content is allowed to be rendered in the browser. If that happens, the hashes

will change automatically.

96

• The hashing code is passed in the dynamically generated JavaScript file using PHP

to rebuild the hash on the client side. As an additional step, the hash building code

is obfuscated using a JavaScript obfuscation method that changes the layout of the

code with every request. This helps us to make harder for the malware authors to

fingerprint patterns inside JS files and removing them accordingly.

• Before implementing SHA-1 algorithm to create hash, the web page is cleaned and

arranged using a custom code in order to build a long string as digest which is passed

as a value to SHA-1 algorithm. The web server embeds a random Globally Unique

Identifier (GUID) entry in the web page before sending the HTML contents back to

the browser. This protection helps us to make the web page unique for every single

request and disrupts the hash replay attacks.

By deploying SHA-1, we already used the inherited properties of this cryptographic algo-

rithm.

7.3 WPSeal Deployment

In this section, we present the details of implementation of WPSeal prototype. In the

development of WPSeal, we used PHP on the server side and JS/HTML/DOM form the

client side operations. WPSeal can be understood as a part of client server architecture.

Let’s discuss:

• Server Side Code: WPSeal actually consists of a SHA-1 hash of the requested web page.

But, before passing the value to SHA-1 function, we perform different operations to

organize the web page accordingly. The web page is processed in two separate layers.

97

First, WPSeal removes all the white spaces and special characters present in the “html”

tags. We strictly follow a standard here that a web page should be designed according

to W3C standards so that it contains all requisite HTML content inside “html” tags.

We follow this practice to avoid issues related to normalization and rendering in the

browsers. We prefer to have only alpha numeric contents in the web page as part of

the digest. Second, we implement a alpha sorting on the processed data to rearrange

the web page in the form of ordered alphabets. Once it is done, we successfully build

the digest (string) and pass it to the ob start [124] and ob end flush [125] functions.

The ob start function activates the output buffering which restricts the transmission

of buffer in the scripts. As a result, the buffer is stored internally and is used for server

side processing. Similarly, ob end flush function cleans the buffer at the completion of

the request. At last, the received hash present in the session variable is matched with

the already stored hash on the server side and access is granted accordingly.

• Client Side Code: The browser fetches the JavaScript file generated dynamically on

the server side containing the hash rebuilding code. We deploy different constraints for

this (Refer the last section). The functions are made obfuscated which changes with

every iteration and helps us to keep the logic safe. However, for testing purposes, we

use the functions directly without any obfuscation. So, once the web page is rendered

in the browser, the hash is reconstructed and passed in the random session variable to

the web server. If the hashes match, the session remains active otherwise the session

is flagged as malicious.

Figure 7.2 and Figure 7.3 show the rearrangement of web page contents on the server

side for building hashes in the WPSeal prototype.

98

7.4 Attack Timeline with Encryption and WPSeal

• Using a browser a user requests a web page, an action that sends an HTTP GET

request. Let’s say the user requests a bank’s login page.

• Step 2: Web server receives the request and before sending the web page it performs

following steps:

– The following is included in the web page (possibly earlier): (1) Code to encrypt

the form is included in the page. (2) WPSeal code is included in the page so the

client can generate a hash signature of what is actually rendered and displayed.

– The WPSeal algorithm is applied to the page to generate a hash signature. This

signature is stored on the server side in a variable.

– The web server sends the page back to the user.

• Step 3: The browser’s network component receives the page. However, the bot hooks

the network component allowing it to inject unauthorized JavaScript into the received

page.

• Step 4: The browser now renders the web page. The included WPSeal code will be

executed to generate a hash signature of the page that is actually rendered.

99

100

Figure 7.2 WPSeal Prototype: Random File Generation and Sorting Code.

101

Figure 7.3 WPSeal Prototype: Server Side Hash Verification Code.

• Step 5: After the browser has successfully rendered the web page, the user inputs values

of various form fields (including extra fields added by the Web Inject). When the user

clicks the “submit” button the encryption JavaScript will encrypt the whole form or

just the entered data depending on the implementation and options. Then this HTTP

POST data (encrypted form and hash signature) is sent the network component of the

browser.

• Step 6: The bot hooks the functions present in the network component of the browser,

steals a copy of the HTTP POST request and transmits it to the C&C panel. The

stolen data is already encrypted. After stealing a copy of the data, the bot hands over

control back to the browser to complete the sending of POST data to the server (say

a bank server).

• Step 7: The web server receives the POST data. It extracts and decrypts the form data.

It also extracts the hash signature and validates it against the stored hash signature

on the server side. If hashes match, access is granted to the account. If not, a red flag

is raised about possible tampering on the client side.

This timeline shows how the data exfiltration attacks occur and how the client side

encryption and WPSeal subverts them.

7.5 Encryption and WPSeal - Attack Resistance

Let’s examine how a bot can tamper with WPSeal and client side encryption. The bot can

perform different operations as discussed below:

102

• Client-side Encryption: Encryption is done with JavaScript after the user enters data

and hits the “submit” button. The bot has two options: (1) delete the encryption code

entirely (or modify it) or (2) extract the data before encryption.

– Case (1): If the encryption code is deleted or modified, the web page’s WPSeal

signature will change and the server will recognize a problem. The bot can only

interfere with the client side encryption by injecting unauthorized JavaScript or

simply deleting it (i.e., through Web Inject).

– Case (2): To extract the data before encryption the bot must hook during form

submission. Anything earlier and there is no data to grab; anything later is after

encryption. The encryption code is written in JavaScript which is executed by

the JavaScript interpreter interfacing with the rendering engine. HTML forms

are a part of the rendering engine component, but the bot cannot hook during

the form submission process as no standard API functions are exported by DLLs

used by the rendering engine component that can serve this purpose.

• WPSeal: To circumvent WPSeal the bot has to send to the server a hash signature

for the unmodified page. It has to do this in spite of displaying a modified page to

the user. There are two possibilities: (1) generate a hash from the modified page

that matches the hash from the unmodified page or (2) generate a copy of the hash

for the unmodified page and substitute it into the message to the server. Two trivial

cases should be mentioned. Clearly, simply removing or modifying the WPSeal code

will cause validation to fail. Similarly, a replay attack will fail given any reasonable

WPSeal design (e.g. include a nonce).

– Case (1): This case is basically a collision attack that should impossible to do

103

reliably if well-vetted cryptographic routines are used. There are many to choose

from.

– Case (2): To substitute a hash signature the bot must (a) generate a hash sig-

nature from the original unmodified page and (b) substitute that hash signature

into the message to the server.

∗ Step (a) Generate a legitimate hash: The original unmodified page is only

available when it arrives at the browser before Web Injection happens. It is

available to the bot when the network component is hooked, i.e. immediately

before Web Injects. Let’s elaborate on this scenario. In order to generate

a legitimate hash at this point the bot has two options. First, it might

hook directly into the browser rendering engine. However, this option is not

possible because these components do not provide any exported functions in

the DLLs that can be hooked by bot. Second, the bot implements its own

rendering, parsing and JavaScript interpreter and use hooking to read HTML

data. Let’s first consider the complexity of such custom code.

Currently a bot implements a custom parser that provides the capability to

detect patterns in the memory for incoming HTTP responses. This custom

parser is not the standard parser that is used by the browser. This rela-

tively simple parser is a pattern detection system which finds the specified

HTML patterns in the incoming page–quite different than what happens in

the rendering engine. WPSeal protection comes in the form of JavaScript. In

normal operation the parsing and JavaScript execution happens during run-

time in the rendering engine. Generally, for calculating the hash, the WPSeal

104

JavaScript has to be executed against the complete HTML web page during

(or after) parsing.

Consider custom bot code to handle that parsing and JavaScript. It must be a

browser-specific parsing engine. In particular, the bot has to perfectly match

the tokenization process, tree construction and script execution of a particular

browser. This is a very hard design to implement and any slight mismatch can

skew the injection process and can result in uncontrolled browser behavior.

In theory it is possible so let’s assume that it has been implemented. If the

bot implements the same rendering engine, parser or JavaScript interpreter

used by browsers, it can only do for the browsers that are open sourced.

Mozilla Firefox uses the open source Gecko engine. In contrast, IE uses

the Trident engine (closed source). In addition, the bot has to integrate

the JavaScript interpreter with the rendering and parsing engine. This is

necessary because WPSeal JavaScript code is executed against the HTML

web page, so JavaScript interpretation without parsing is not possible.

Basically, if this custom code is implemented, it creates an entirely new breed

of bot with a complex, advanced design with half of the browser embedded

in the bot itself. In other words, WPSeal will force the bot authors to come

up with a new design.

∗ Step (b) Substitute or Replace the legitimate hash: The bot must replace

the value (hash) of a session variable in the legitimate POST request or send

a similar HTTP POST (custom designed) using sockets. Two cases arise in

this as discussed below:

· Replay attack: grab the legitimate hash from a POST request, send it to

105

the C&C server, and use it for later replay. This is not possible because

each WPSeal page from the server is designed to generate a different hash.

Even if replay is possible, it would be challenging. A bot can generate a

custom POST request using sockets to send the hash to the server. In

order to do so, all the POST parameters and values have to be hard coded

in the bot–a nontrivial task and likely would not be successful given the

variability in the process.

· Second, suppose part (a) successfully generated a legitimate hash. If the

bot performs overwriting of POST data, it must do so in the network

component, and it must do this using hooking. However, there is no such

function exported that the bot can hook that enables the bot to rewrite

one of the parameters in HTTP POST request. In reality, tampering

with HTTP POST request can skew the sessions because it impacts the

stealthy nature of the bot by interacting directly with the legitimate server

from the infected machine. Although this step (second case) is contingent

on the previous step in which the bot has to generate the legitimate hash

using in-built JavaScript interpreter and rendering and parsing engine

which is practically an infeasible design.

We conclude that an attacker using hooking cannot circumvent either the encryption

scheme or WPSeal when used together. They will have to “return to the drawing board”

and come up with a very different attack. That is, adopting our algorithm removes Web

Injects and Form Grabbing from the field.

106

WPSeal is designed to work against the known design of bots. It is not designed to work

against the future design of bots as it is not known at this point of time. We strictly believe

that as the new design of bots evolve, so does the WPSeal.

7.6 WPSeal Requirements and Limitations

• WPSeal prototype uses built-in PHP functions such as ob start and ob end flush for

buffer management. These functions are not available in other web frameworks such

as ASP/JSP. However, WPSeal can be customized. It means the developers have to

design similar functions for buffer management.

• WPSeal is a passive defense that allows the attacks to continue, but renders them

ineffective. This approach is necessary because we wanted to maintain control on the

server side where client side infections cannot directly attack.

• WPSeal assumes that the web page rendering happens in the browser’s user interface.

According to the W3C validation, appropriate markups are required to ensure that

web pages are of good quality. This functionality of W3C validation determines com-

patibility in browser and site usability. WPSeal expects the web pages to be compliant

with W3C validation.

• WPSeal is not designed to work against malware that installs itself in the browser in

the form of components such as Browser Helper Objects (BHO), malicious extensions

or add-ons. However, the design of WPSeal design can be extended accordingly.

• WPSeal is based on the concept of dynamic content generation. Remember, Web

Injects are designed statically and cannot be generated dynamically. The bot author

107

has to analyze the website and the build Web Injects accordingly followed by updating

the bot. A small change or dynamic code generation of web pages by the server can

skew the Web Injects process.

• WPSeal has not been tested against Automated Transfer Attacks (ATS) scripts due

to unavailability of samples. Since, ATS scripts are written in JavaScript and uses

the same technique, we expect that WPSeal will work as it does with standard Web

Injects.

7.7 Conclusion

In this chapter, we introduce defense against Form-grabbing and Web Injects. We protect

against Form Grabbing by encrypting data before the bot can grab it. We protect against

Web Injects by validating what is displayed from the server side using our WPSeal. As a

bonus, WPSeal can also notify the server if the Form-grabbing encryption has been tampered

with. In both cases, the server is notified in time before any malicious activity can proceed.

We also presented an argument that bots using hooking cannot circumvent either of our

defenses. To respond attackers will have to come up with a very different attack.

Together our encryption and validation remove Form Grabbing and Web Injects from

the field. Next we take a look at our prototype.

108

Chapter 8

Experimental Results

8.1 Form-grabbing Experiment

We used two different test beds to conduct experiments to validate the effectiveness of

proposed defenses to combat Form-grabbing and Web Injects. The details are presented

below:

8.1.1 Form-grabbing Test Bed

In our study, we tested the Form-grabbing module of the ICE IX bot [126] which is considered

to be a descendant of the Zeus botnet. The ICE IX bot uses a type of Form-grabbing that

is used by the Third Generation Botnets such as Zeus and SpyEye. Our experiment was

conducted using a live sample of the ICE IX bot. We reverse engineered the ICE IX bot

and modified the binary constructs to install it in a virtual environment so we can control

execution. The primary reason for the modification of the binary is to test the effectiveness

of our client side encryption code against an actual running bot. We compromised the

C&C panel of ICE IX botnet so we could use it for our experiment. The modified binary

installed in our emulated environment (VMWare machine) communicates back with the ICE

IX C&C panel. This setup helped us determine the behavior of ICE IX bot and how stolen

information is stored in the C&C panel.

109

For a target, we designed a custom website with HTML forms that looks like an online

banking website. The website was designed to deliver pages containing client side encryption

code so form data was encrypted before submission. We accessed the website from the virtual

machine infected with our ICE IX bot. All the data stolen by the bot was transmitted back

to the C&C server that was controlled by us. As a result, we could easily observe and analyze

the data stolen by the bot. We used a standard, well-vetted JavaScript encryption library

for encryption.

8.1.2 Form-grabbing Results

The results are based on two different sets of experiments that we conducted. In the first

experiment, we demonstrate our ability to encrypt forms before the bot grabs them. In

addition, this experiment demonstrates that the whole process is controlled from the server

side–no modifications are needed on the client side. Figure 8.1 shows the layout of the

form when it is generated dynamically. In this experiment, we also obfuscate the labels and

encrypt the data–an additional layer of defense if somehow encryption failed. For obfuscation

the ids and names are generated randomly. Because of obfuscation the POST request will not

contain the input field names “username” and “password” so the automated post-processing

on the C&C server will be mislead. In this test, we simply used SHA-1 to produce a hash

of the password; any number of levels of standard encryption could be applied here. We

accessed this form page from a browser on our test machine infected with the ICE IX bot.

We entered the values and submitted the form.

110

111

Figure 8.1 HTML Form Generated with Random Identifiers.

Figure 8.2 shows how exactly the ICE IX bot stores the stolen form data on the C&C

panel. Basically, this is exactly how the bot herder sees it.

112

113

Figure 8.2 Stolen Information is Hashed and Stored in C&C Panel.

In the C&C panel (shown in Figure 8.2), the POST data does not contain any “username”

or “password” string rather the dynamically generated names are present. For this test, we

only hashed the password and not the username to show the difference in the output. The

bot herder receives the hashed password in this case. Additionally, the username can also be

hashed. In this test, we only used SHA-1 algorithm to show that our proposed concept worked

against an actual running bot. Using true encryption is a relatively small modification.

In our second test, we will show that proper encryption can also be deployed to encrypt

the form values before the actual POST request is issued as discussed earlier. After deploy-

ing the client side encryption routine (jCryption in this test) one can see that forms are

encrypted before the bot hooks the browser. That is, the stolen information is encrypted.

The exfiltrated data is stored in an encrypted format on the C&C panel as can be seen in

Figure 8.3.

114

115

Figure 8.3 Stolen Information is Encrypted and Stored in C&C Panel.

To test the robustness of our approach, we also conducted a test using jquery’s form

function which results in a same behavior as shown in Figure 8.3. That is, simply substituting

calls from another encryption library produces the desired results-our approach is robust.

Our experiment with encryption demonstrates that with the current generation of bots we

were able to encrypt form data before the bot grabbed it. The attack and the form grabbing

still happen, but the data is rendered useless. Because we were able to crack the C&C panel

and install it into a test environment, we were able to observe exactly what data appears to

the thief.

It is worth noting here that in the previous chapter, we presented an argument that

attackers using current techniques will not be able to circumvent our encryption without the

server being aware of the activity. Again, they can circumvent, but the server will know when

they do. To truly circumvent our scheme the attackers need to come up with a very different

attack. In the next section, we talk about our experimental results of WPSeal protection.

8.2 WPSeal Experiment

8.2.1 WPSeal Test Bed

We simulated the bot’s injection process by using a client side proxy to inject samples of

Web Injects payloads into the HTTP responses. They were then rendered normally in the

browser. Trying to build a framework around the variety of bots was excessively complicated

and would add no value to the experiment. The end result of the hooking is injected data;

as long as it happens before rendering our test-bed provides an exact test.

116

8.2.2 WPSeal Results

To create test cases we analyzed a number of Web Inject payloads that we found while

penetration testing of malicious domains. These Web Injects are used by several samples of

Zeus, SpyEye. ICE 1X, and Citadel to infect websites on the client side with illegitimate

content. We used these Web Injects to test the WPSeal. We categorized the data as shown

in Table 8.1 using the set url flags described earlier:

• Flag G: Inject the malicious code in the web pages that are retrieved using an HTTP

GET request.

• Flag P: Inject the malicious code in the web pages that are accessed using an HTTP

POST request.

• Flag L: Direct the bot to extract data present in the data before and data after tags

and transmit it to the C&C panel.

Flags can be combined.

Table 8.1 Layout of the set url Tag with Respective Flags.

Tag(Target) and Associated Flags
set url GP GPL GL PL G
1822 1208 351 231 14 18

Our sample size contained 1822 samples of Web Inject payloads that use distinct targets

pointed by the set url tag. Of those, 1208 targets were configured with GP flags, 351 with

GPL flags, 231 with GL flags, 18 with G flags and the remaining 14 with PL flags. We did

not find any instances of the set url tag using the H and P flags alone.

Table 8.2 shows the presence of different tags such as data before, data inject and data after

configured in the set url tag. The sample data shows that multiple Web Inject payloads are

117

Table 8.2 Layout of the Web Injects Tags in Sample Data.

Tag(Target) and Web Injects Payloads.
set url data before data inject data after
1822 3411 3412 3411

configured against a specific target. In addition, we found that multiple Web Inject payloads

were present without any rules defined in the related tags. This is possible and is a viable

scenario because one set url tag can have multiple instances of data before, data inject and

data after tags.

We also extracted the details of the targets from the sample to understand the nature of

Web Injects as it is currently being used and tested the custom payloads against WPSeal.

Table 8.3 WPSeal Performance Evaluation.

WPSeal Test on Custom Web Pages.
SNo. set url GP GPL GL PL G Total Success Failure

1 * Chase* 1 0 11 0 0 12 12 0
2 *Citibank* 43 13 12 0 0 68 68 0
3 *Wells Fargo* 40 0 14 0 10 64 64 0
4 *HSBC* 15 13 11 0 0 39 39 0
5 ”lloydstsb” 43 14 0 0 0 57 57 0
6 ”PayPal” 2 1 30 0 0 33 33 0
7 ”Barclays” 25 13 0 0 1 39 39 0
8 ”BankOfAmerica” 7 1 6 0 0 14 14 0
9 ”TD CanadaTrust” 0 0 11 0 0 11 11 0
10 ”RBS” 5 20 0 0 0 25 25 0
..

In our sample set, we encountered a variety of targets including Chase, Citibank, Wells

Fargo, HSBC, etc. We found that 68 rules were configured against Citibank whereas 64 rules

were defined for Wells Fargo. In addition, the Canadian bank TD CanadaTrust had 25 rules.

We used these samples to test the effectiveness of WPSeal. Since our protection is passive,

we allowed the Web Inject payloads to execute and then built the hashes of the altered web

118

pages. Table 8.3 shows the output of WPSeal. WPSeal detected all (100% success) and this

outcome is contingent on the sample set that we tested. Here are some further observations:

• We only tested the samples that we gathered from malicious domains. However, it

is quite possible that more complex Web Injects code exist. Since WPSeal design is

extensible, it can be modified and deployed accordingly.

• WPSeal is a passive defense which allows the Web Injects to happen at first and then

generates hashes. As a result, hash is altered significantly if any payload is injected on

the client side and rendered in the browser.

• Our tests are specific to the Web Inject technique as it exists in the wild and used by

existing botnets.

• We have not encountered any bypassing technique in the existing design of botnets and

the collected samples. However, we also conducted additional rigorous tests (discussed

later) to validate the robustness of the WPSeal.

8.3 WPSeal in Action

A complete walk-through of WPSeal in action is presented below.

Step 1: The target web page i.e. the test page is designed as shown in Figure 8.4.

Step 2: We injected an illegitimate input field to retrieve an ATM pin associated with

the user’s account. This injection was used by Zeus against the Wells Fargo online bank.

The Web Injects code is placed in the HTML page as shown in Figure 8.5.

119

120

Figure 8.4 Legitimate Web Page for Testing WPSeal.

121

Figure 8.5 Unauthorized ATM Input Field is Injected in the HTTP Response using a Client Side Proxy.

Step 3: After successful injection, the web page is rendered in the browser as shown in

Figure 8.6. Note the added ATM pin request.

Step 4: After the web page form has been filled out, the browser sends the recomputed

hash to the target web server as a part of session variable. The recomputed client side hash

is stored on the server side for verification. The client side hash sent by the browser is shown

in Figure 8.7.

Step 5: The web page looks legitimate. After this, user supplied the required input values

(test credentials for this test) as shown in Figure 8.8 before submitting the form.

Step 6: After inputting the values, the form is submitted and WPSeal is activated as

shown in Figure 8.9.

Step 7: After verifying the hashes, the WPSeal responded as presented in Figure 8.10.

Since, we injected the code earlier, the hashes failed to match. The server is expecting a

different hash.

122

123

Figure 8.6 Successful Web Inject - ATM Input Field is Injected in the HTML Form.

124

Figure 8.7 Transmitting Client-side Hash using a POST Request.

125

Figure 8.8 Submitting a Form to Test the WPSeal Verification.

126

Figure 8.9 Web Page Verification Performed by WPSeal.

127

Figure 8.10 WPSeal Verification Fails for the Conducted Test.

8.4 Conclusion

In this chapter, we demonstrated that we could encrypt forms before the bot grabbed them

and that we could detect that Web Injection had occurred. Both of these processes were

managed from the server side.

128

Chapter 9

Conclusion

Development of an effective client-side security solution depends on the understanding of

the problem at its core. This thesis describes an approach to develop a robust client side

protection mechanism to subvert and detect data exfiltration and in-session web injection

attacks conducted by the MitB malware. The key behind building this solution is the

understanding of browser-based hooking at the component level to determine the attack

timeline in the context of the browser. The knowledge of hooking at the component level

enabled us to fingerprint the libraries and functional calls that are hooked by MitB malware

to execute unauthorized operations in the browser.

We investigated a number of different botnets using techniques such as behavioral analy-

sis, reverse engineering and design verification to dissect the working of botnets at a granular

level. Behavioral analysis revealed information about the bot’s interaction with the oper-

ating system and C&C panel. Reverse engineering helped us to find the structure of bots

and how the different modules were dependent on each other for working. It also allowed

us to gather hidden information residing in the bot binary. Using the information gathered

from the reverse engineering process, we performed design verification checks to validate how

secure the design of botnets was and whether there was a possibility of compromising the

botnet or not. All these procedures helped us to understand the insidious details of MitB

attacks such as From-grabbing and Web Injects. We believe that complex problems can be

solved with easy solutions if it is understood well. We applied the similar notion in solving

129

the problem of Form-grabbing and Web Injects by understanding the userland hooking. A

considerable amount of time was dedicated to dissect the hooking implementation in bots

to verify the complete process of hooking in the browser.

We presented how client side encryption can be used in addition with SSL to defend

against Form-grabbing attacks. Although client-side encryption is not a new concept it

has not been used in the wild as a defense against Form-grabbing attacks. Our research on

hooking reveals that client-side encryption can be deployed effectively to make the credential

harvesting process fruitless for the bot herders even if the form data is stolen. We extended

our solution and presented WPSeal, which is a web page verification solution based on a

hashing mechanism to detect if the MitB malware has injected unauthorized content in the

web pages before the web pages are displayed to the users. On a similar note, hashing is a

well-known concept but it has not been used as a detection solution against MitB attacks.

We developed a prototype to validate our solution which is based on the concept of passive

defense. WPSeal can either be integrated with client-side encryption or it can be used

directly depending on the design of the application. Our research takes a different route

in building client side security solution by avoiding anything software to be installed in the

browser or the end user machine. This makes our protection significantly light and easy to

deploy.

Our design works in collaboration with the existing infrastructure. Our implementation

has several advantages. First, this solution does not require any additional components or

infrastructure, which in turn reduces the cost. Second, WPSeal is based on existing server

side technologies such as PHP/ASP/JSP etc. The developers have to only transform the

prototype into regular code for implementing it in a live production environment. From a

vendor perspective, no additional resources are required and protection can be developed

130

within the existing capabilities. Considering performance, this prototype is reliable and

hardly impacts the performance of websites. The best part about implementation of WPSeal

is that every website can deploy this solution according to their standard coding benchmarks.

Our WPSeal prototype is extensible, modular and effective which means additional defenses

can be integrated with this prototype. In the future work, we discuss the possibility of

implementing WPSeal in different ways and how it is possible to build active monitoring

system on the client side.

The work done and the initial results described in this thesis will be useful in defending

against browser-based data exfiltration attacks. The concept of WPSeal can be used to build

more advanced protection mechanism against the attacks that are unknown at this point of

time. We truly believe that the concepts presented in this thesis will result in building more

efficient and robust client side solutions that are integrated with server side operations. We

hope that this work will be beneficial for security community in building next generation

web-based security defenses to defend against MitB attacks.

131

Chapter 10

Future Work

In our plan for future work, we will investigate the deployment of WPSeal as a part of

Web Application Firewalls (WAFs). The primary reason is WAFs are used extensively in

the complex web-based systems to avoid web application vulnerabilities and to provide high

level performance by reducing the load on web servers. This significantly helps to avoid

exhaustion of resources on the target web servers by implementing multiple components

(worker threads) to handle requests rather a single component. WAFs are designed to

provide more security by filtering malicious content in the HTTP traffic. WAFs implement

several techniques on the incoming and outgoing transmission of HTTP/HTTPS from the

web servers. These techniques include HTTP cloaking, URL rewriting, traffic normalization,

HTTP headers rewriting, port encryption, etc. In the complex web architecture, all these

techniques are deployed at Layer 7 of the OSI model to implement content switching on the

HTTP/HTTPS data. It will be interesting to analyze how effectively the WPSeal prototype

can be integrated into third-party solutions such as WAFs. For Example, it will be useful to

investigate the impact of WAFs’ built-in techniques on the working of WPSeal. Even from

the business perspective, it has become essential for the upcoming products to be easily

integrated into existing security solutions on the Internet.

We also believe that this work of web page verification can also be deployed to detect

web injections that are conducted using Man-in-the-Middle (MitM) attacks in which attacker

injects malicious code such as iframes in all the web traffic flowing inside Local Area Network

132

(LAN) by implementing ARP poisoning and injection on the fly. This will be an interesting

problem to explore because the attack element is not present in the system; rather injections

are happening in the network. In this case, browsers are not hooked so this adds a new

dimension to the problem. We will also look into the feasibility of building a JavaScript

sandbox using our WPSeal prototype as a model. It can be considered as an extended

design of WPSeal. A JavaScript sandbox provides a secure execution of JavaScript and

DOM calls in the browsers. A JavaScript sandbox can have different capabilities such as

DOM mutation in which mutation events are generated that monitor the changes that occur

in the DOM tree while rendering HTML content in the browser. In addition to this, several

event handlers and DOM calls can also be restricted in that JavaScript sandbox which

stops the dependent code on blacklisted calls. The sandbox has the characteristics such as

HTTP headers access, local DOM components access, execution timing, URL white listing/

blacklisting and heuristics that can prove beneficial in building of a web specific product. A

JavaScript sandbox not only detects any malicious code but it can also prevent the execution

of illegitimate code such as malicious iframes, traffic redirectors, etc. A JavaScript sandbox

has a general design pattern of extracting scripts, parsing them and the normalizing them

according to the signatures or filtering rules. For example: - Google Caja [127] provides

a capability to securely run the third-party JavaScripts, HTML, CSS, etc. in the browser.

The idea behind this extended work is as follows:

• Step 1: When a user opens a bank website by sending HTTP request to the web server,

a JavaScript sandbox is downloaded onto the user’s machine.

• Step 2: The existing session with the website is sandboxed. The web server communi-

cates with the JavaScript sandbox and all the information is encrypted.

133

• Step 3: The sandbox verifies (based on WPSeal prototype which can extended ac-

cordingly) different web pages open in the browser to detect any possible changes due

to the injection of malicious code or data exfiltration code. If something malicious is

detected, the session is disrupted and no further communication with the server will

be allowed.

• Step 4: The user will be notified using the same or different channel. In addition

to this, other controls such as account lockout, transactions restriction, etc. can be

implemented. At the same time, alerts can also be sent to fraud detection teams in

the organizations to minimize the risk and associated impact.

As the JavaScript sandbox can be customized, it is possible to deploy it as platform

independent code or with existing web server technologies such as ASP.NET, ASP, JSP,

PHP, etc. Additionally, WAF can also be designed as an additional layer that communicates

with the JavaScript sandbox thereby keeping the web server from participating directly in the

communication. Other web-based technologies such as client-less VPN, web-based gaming,

etc. can also benefit from this type of solution.

We will investigate the concept of web page verification on realistically complex systems.

For example, it will be interesting to know the effectiveness of WPSeal on cloud-based

systems and complex websites. The exploration of this area can investigate the scalability and

maintainability of web page verification solutions and to scrutinize how WPSeal performs in

the Amazon Web Services (AWS) cloud architecture. Cloud is currently a hot research topic

and it is worth it to explore the implementation of WPSeal in cloud-based web architecture.

For additional security layers, we will work on introducing the following techniques in

WPSeal.

134

• Implementing a time-based constraint feature in WPSeal using Asynchronous JavaScript

(AJAX) in which the web server requires the hash of the rendered web page every

minute to keep on validating that nothing bad is going on the client side. This tech-

nique is based on the concept of recording user time on a specific web page . This fea-

ture enables the web server to continuously validate the hash generated in the browser

with the stored one. With the AJAX addition, the full web page is not required to be

refreshed. If the web server does not receive the client side hash in a minute (or some

other specified time), it marks the session as suspicious or flags the IP address. This

information can be tied with existing protection mechanisms such as IP based detec-

tion to detect and map the user information. This kind of functionality has already

been developed by banks in which the devices are registered and tied to specific IP

addresses.

• Designing a function to map (count) the number of parameters in the POST requests.

Bot injects additional input fields in the HTML forms to collect information from the

users which is otherwise not available. When the form is received by the server as a

part of POST request, a check is introduced to verify the count of POST parameters.

If anomaly is detected, the server can flag the session as suspicious.

However, both these cases require an extensive testing in a real time environment.

We have discussed the extensibility of WPSeal prototype in different spheres of web

technologies. The beauty of WPSeal is that it can be customized and written according

to the existing web architecture. It does not require an additional effort or considerable

amendments in the network. WPSeal is an easy to deploy solution.

135

BIBLIOGRAPHY

136

BIBLIOGRAPHY

[1] S. Sjouwerman, Cyberheist: The Biggest Financial Threat Facing American Businesses
since the Meltdown of 2008, KnowBe4 Publisher, April 2011.

[2] P. Barford and V. Yegneswaran, An inside look at botnets, Malware Detection, pp.
171-191, 2007.

[3] C. Nunnery, B. Kang, J. Grizzard, V. Sharma and D. Dagon, Peer-to-peer Botnets:
Overview and Case Study, In Proceedings of the first conference on First Workshop on
Hot Topics in Understanding Botnets, Berkeley, CA, USA, 2007.

[4] F. Dahl, E. Biersack, T. Holz, M. Steiner and F. Freiling. Measurements and Mitigation
of Peer-to-peer based Botnets: A Case Study on Storm Worm, In Proceedings of the
First Usenix Workshop on Large Scale Exploits and Emergent Threats, Berkeley, CA,
USA, 2008.

[5] D. Dietrich and S. Dietrich, P2P as Botnet Command and Control: A Deeper Insight,In
Proceedings of Third International Conference on Malicious and Unwanted Software
(MALWARE), Appl. Phys. Lab., University of Washington, Washington DC, 2008.

[6] J. Nazario, Blackenergy Ddos Bot Analysis. Arbor Networks, Tech. Report, October
2007. http://atlas-public.ec2.arbor.net/docs/BlackEnergy+DDoS+Bot+Analysis.pdf.

[7] K. Chiang and L. Lloyd, A Case Study of the Rustock Rootkit and Spam Bot, In
Proceedings of the First Workshop on Hot Topics in Understanding Botnets, Berkeley,
CA, USA, 2007.

[8] N. Daswani and M. Stoppelman, The anatomy of ClickBot.A, In Proceedings of First
Workshop on Hot Topics in Understanding Botnets, Berkeley, CA, USA, 2007.

[9] A. Boukhtouta, P. Sinha, A. Youssef, M. Debbabi, H. Binsalleeh, T. Ormerod and
L. Wang, On the analysis of the Zeus Botnet Crimeware Toolkit, In Proceedings of
Eighth Annual International Conference on Privacy Security and Trust (PST), pp.31-
38, Ottawa, Canada, August 2010.

[10] A. Sood, R. Enbody and R. Bansal, Dissecting SpyEye ? Understanding the Design
of Third Generation Botnets, Elsevier Computer Networks Journal, vol. 52, no. 3, pp.
436-450, February 2013.

[11] J. Earp, D. Baumer and J. Poindexter, Internet Privacy Law: A Comparison between
the United States and the European Union, Computers & Security, vol. 23, no. 5, pp.
400-412, 2004.

[12] R. Anderson, C. Barton, R. Bohme, R. Clayton, M. Eeten, M. Levi, T. Moore and S.
Savage, Measuring the Cost of Cybercrime, In Proceedings of Eleventh Workshop on
the Economics of Information Security, Berlin, Germany, June 2012.

137

[13] J. Wyke, The ZeroAccess Botnet ? Mining and Fraud for Massive Financial
Gain, Sophos Labs Malware Research Whitepaper, 2012. http://www.sophos.com/en-
us/medialibrary/PDFs/technical%20papers/Sophos ZeroAccess Botnet.pdf

[14] Bitcoin P2P Digital Currency, http://bitcoin.org/about.html.

[15] C. Herley and D. Florencio, Nobody Sells Gold for the Price of Silver: Dishonesty,
Uncertainty and the Underground Economy, In Proceedings of the Workshop on Eco-
nomics of Information Security, June 2009.

[16] BBC News, Arrests over $850m Facebook Botnet Crime Spree, 12 December 2012,
Web, 2 July 2013. http://www.bbc.co.uk/news/technology-20693213.

[17] Banks and Businesses in the Crosshairs: Cybercrime and Its Impact, The Aite Group
Report, Boston, September 22 2011.

[18] Decoding Deals in the Global Cyber Security industry, PWC Cyber Security M&A,
November 2011. http://www.pwc.com/en GX/gx/aerospace-defence/pdf/cyber-
security-mergers-acquisitions.pdf

[19] The Current State of Cybercrime and What to Expect in 2012, RSA Cybercrime
Trends Report, 2012.

[20] Second Annual Cost of Cybercrime Study: Benchmark Study of U.S. Companies,
Ponemon Institute Research Report, August 2011.

[21] G. Hoglund and J. Butler, Rootkits Subverting windows kernel. Addison-Wesley, 2005.

[22] A. Srivastava, A.Lanzi1 and J. Gifin, Operating System Interface Obfuscation and Re-
vealing of Hidden Operations, In Proceedings of Detection of Intrusions and Malware &
Vulnerability Assessment (DIMVA), Springer-Verlag, pp. 214-233, Berlin, Heidelberg,
2011.

[23] G. Erdelyi, Hide and Seek - Anatomy of Stealth Malware, In Proceedings of Black Hat
Security Conference, Amsterdam, Europe, 2004.

[24] J. Rutkowska, Rootkits vs Stealth by Design malware, In Proceedings of Black Hat
Security Conference, Amsterdam, Europe, 2006.

[25] S. Thimbleby and P.C. Anderson. A Framework for Modeling Trojans and Computer
Virus Infections, The Computer Journal, vol. 41, no.7, pp. 444-458, 1998.

[26] J. Rutkowska, Introducing stealth malware taxonomy. The Invisible things
Lab Whitepaper, 2005. http://theinvisiblethings.blogspot.com/2006/11/introducing-
stealth-malware-taxonomy.html.

[27] J. Rutkowska, Subverting Vista Kernel for Fun and Profit, In Proceedings of Black Hat
Security Conference, Las Vegas, USA, 2006.

138

[28] J. Rutkowska, Is Game Over ? Anyone, In Proceedings of Black Hat, Las Vegas, USA,
2007.

[29] D. Zovi, Hardware Virtualization based Rootkits, In Proceedings of Black Hat, Las
Vegas, USA, 2006.

[30] J. Rutkowska, System Virginity Verifier - Defining the Roadmap for Malware Detection
on Windows System, In Proceedings of Hack In The Box Security Conference, Malaysia,
Kuala Lumpur, 2005.

[31] A. Sood and R. Enbody, A Browser Malware Taxonomy, Virus Bulletin Magazine, pp.
8-12, June 2011.

[32] A. Grosskurth and M. Godfrey, A Reference Architecture for Web Browsers. In Proceed-
ings of the 21st IEEE International Conference on Software Maintenance, Washington,
DC, USA, 2005.

[33] Skape, A Catalog of Windows Local Kernel-mode Backdoor Techniques, The Unin-
formed Journal, August 2007. http://uninformed.org/index.cgi?v=8&a=2.

[34] S.Forrest J. Ladau J. R. Crandall, R. Ensafi and B. Shebaro, The Ecology of Malware,
In Proceedings of the Workshop on New Security Paradigms (NSPW , pp 99-106, ACM,
New York, USA, 2008.

[35] K. Baumgartner, Malware 2.0 has Arrived, In Proceedings of Virus Bulletin Confer-
ence, Vienna, Austria, September 2007.

[36] J. Canavan, Me Code Write Good: The l33t Skillz of the Virus Writer, The Symantec
Labs Whitepaper, 2006.

[37] W. Suh, Web engineering: Principles and Techniques, IGI Publishing, ISBN 1-591-
40433-9, 2005.

[38] Y. Huang, F. Yu, C. Hang, C. Tsai, D. Lee, and S. Kuo, Securing Web Application
Code by Static Analysis and Runtime Protection, In Proceedings of the 13th interna-
tional conference on World Wide Web (WWW), pp. 40-52, New York, USA, 2004.

[39] G. Rossi, D. Schwabe, O. Pastor and L. O. (Eds.), Web engineering: Modeling and
Implementing Web Applications, Springer, ISBN: 1-84628-922-X, 2007.

[40] S. Clowes, A Study in Scarlet, Exploiting Common Vulnerabilities in PHP Applica-
tions, In Proceedings of Black Hat Security Conference, Asia, 2001.

[41] G. lvarez and S.Petrovic, A New Taxonomy of Web Attacks Suitable for Efficient
Encoding, Computers and Security Journal, vol. 22, no. 5, pp. 435-449, July 2003.

[42] S. Panjwani, M. Cukier, R. Berthier and S. Tan, A Statistical Analysis of Attack
Data to Separate Attacks, In Proceedings of International Conference on Dependable
Systems and Networks, IEEE Computer Society, pp. 383-392, Washington DC, USA,
2006.

139

[43] M. Vieira J. Fonseca and H. Madeira, The Web Attacker Perspective : A Field Study, In
Proceedings of IEEE 21st International Symposium on Software Reliability Engineering
(ISSRE), IEEE Computer Society, pp. 299-308, Washington DC, USA, 2010.

[44] J. Fonseca and M.Vieira, Mapping Software Faults with Web Security Vulnerabilities,
In Proceedings of IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), pp. 257-266, Alaska, USA, 2008.

[45] N. Sexias, M. Vieira, J. Fonseca and H. Madeira, Looking at Web Security Vulnerabil-
ities from the Programming Language Perspective : A Field Study, In Proceedings of
20th International Symposium on Software Reliability Engineering, pp. 129-135, Kar-
nataka, India, 2009.

[46] A. Barth , C. Jackson and J.C. Mitchell, Securing Browser Frame Communication,
In Proceedings of the 17th USENIX Security Symposium, USENIX Association, pp.
17-30, Berkeley, California, USA, 2008.

[47] M. Mastoianni P. Tramontana G. A. Di Lucca, A. R. Fasolino, Identifying Cross-site
Scripting Vulnerabilities in Web Applications, In Proceedings of Sixth IEEE Interna-
tional Workshop on Web Site Evolution(WSE), IEEE Computer Society, pp. 71-80,
Washington DC, USA, 2004.

[48] A. Klein, DOM based Cross-site Scripting or XSS of the Third Kind, Web Application
Security Consortium Whitepaper, July 4 2005.

[49] W. Alcorn, Cross-site Scripting Viruses and Worms - A New Attack Vector. Network
Security, vol. 2006, no. 7, July, 2006.

[50] M. Thelwall, Social Networks, Gender, and Friending: An Analysis of MySpace Mem-
ber Profiles, Journal of the American Society for Information Science and Technology,
vol. 59, no. 8, March/April, 2008.

[51] C. Kruegel and G. Vigna, Anomaly Detection of Web-based Attacks, In Proceedings
of the 10th ACM Conference on Computer and Communication Security,ACM, pp.
251-261, New York, USA, 2003.

[52] D. Greene, J. Shirley, A. Nguyen-Tuong, S. Guarnieri and D. Evans, Automatically
Hardening Web Applications Using Precise Tainting, In Proceedings of 20th IFIP In-
ternational Information Security Conference, Chiba, Japan, 2005.

[53] W. Halfond , A. Orso and P. Manolios, Using Positive Tainting and Syntax-aware
Evaluation to Counter SQL Injection Attacks, In Proceedings of 14th ACM Symposium
on the Foundations of Software Engineering (FSE), ACM, pp. 175-185, New York,
USA, pp. 175-185, 2006.

[54] G. Maone. Application Boundaries Enforcer (abe) Noscript Module Rules Syntax and
Capabilities. NoScript Website, 2010. http://noscript.net/abe/abe rules.pdf

140

[55] N. Swamy T. Jim and M. Hicks, Defeating Script Injection Attacks with Browser-
enforced Embedded Policies, In Proceedings of 16th International World Wide Web
Conference (WWW),ACM, pp. 601-610, New York, USA, 2007.

[56] O. Hallaraker and G. Vigna, Detecting Malicious JavaScript Code in Mozilla, In Pro-
ceedings of the IEEE International Conference on Engineering of Complex Computer
Systems (ICECCS),IEEE Computer Society, pp. 85-94, Washington DC, USA, 2005.

[57] A. Sood, J. Chiu, W. Tao, K. Ding, C. Ku, W. Huang, F. Yarochkin and S.Huang,
Solving the Puzzle: Mass SQL Injection 0day Flash Drive-by download Attacks
Robint.us and 2677.in, Armorize Blog Article, 13 June 2010, Web, 2 July, 2013.
http://blog.armorize.com/2010/06/recent-evolution-of-mass-sql-injection.html.

[58] L. Wichman, Mass SQL Injection for Malware Distribution, SANS Global
Information Assurance Certification (GIAC) Paper, October 7 2010.
http://www.sans.org/reading room/whitepapers/application/mass-sql-injection-
malware-distribution 33654.

[59] P. Mavrommatis K. Wang N. Provos, D. McNamee and N. Modadugu, The ghost in
the browser: Analysis of web-based malware, In Proceedings of the First Workshop on
Hot Topics in Understanding Botnets, Berkeley, CA, 2007.

[60] M. Rajab N. Provos, P. Mavrommatis and F. Monrose, All Your iframes Point to Us,
In Proceedings of the USENIX Security Symposium, USENIX Association, pp. 1-15,
Berkeley, California, USA, 2008.

[61] J. Zhuge, C. Song, J. Guo, X. Han, T. Holz and W. Zou, Studying Malicious Web-
sites and the Underground Economy on the Chinese Web, In Proceedings of Managing
Information Risk and the Economics of Security, Springer US, 2009.

[62] M. Polychronakis and N. Provos, Ghost Turns Zombie: Exploring the Life cycle of Web-
based Malware, In Proceedings of First USENIX Workshop on Large-Scale Exploits and
Emergent Threats, USENIX Association, Article 8, Pages 8, Berkeley, California, USA,
2008.

[63] B. Palmen O. Day and R. Greenstadt, Reinterpreting the Disclosure Debate for Web
Infections, Managing Information Risk and the Economics of Security, Springer US,
2009.

[64] S. Frei, G. Ollman, T. Dbendorfer and M. May, Understanding the web browser threat:
Examination of Vulnerable Online Web Browser Populations and the Insecurity Ice-
berg, In Proceedings of DEF CON 16 Security Conference, Las Vega, USA, 2008.

[65] A. Sotirov, Heap Feng Shui in Javascript, In Proceedings of Black Hat Security Con-
ference, Amsterdam, Europe, 2007.

[66] A. Sotirov and M. Dowd, Bypassing Browser Memory Protections: Setting Back
Browser Security by 10 Years, In Proceedings of Black Hat Security Conference, Las
Vegas, USA, 2008.

141

[67] O. Whitehouse, An Analysis of Address Space Layout Randomization in Windows
Vista, In Proceedings of Black Hat Security Conference, Washington DC, 2007.

[68] M. Daniel, J. Honor and C. Miller, Engineering Heap Overflow Exploits with
JavaScript. In Proceedings of the USENIX Workshop on Offensive Technologies, 2008.

[69] H.D. Moore, Metasploit and Money, In Proceedings of the Black Hat Security Confer-
ence, Las Vegas, USA, 2010.

[70] J. Gin, M. Sharif, A. Lanzi and W. Lee. Automatic Reverse Engineering of Malware
Emulators, In Proceedings of IEEE Symposium on Security and Privacy, IEEE Com-
puter Society, pp. 94-109, Washington DC, USA, 2009.

[71] B. Karp J. Newsome and D. Song, Polygraph: Automatically Generating Signatures for
Polymorphic Worms, In Proceedings of the IEEE Security and Privacy Symposium,,
IEEE Computer Society, pp. 226-241, Washington DC, USA, 2005.

[72] T. Toth and C. Kruegel, Accurate Buffer Overflow Detection via Abstract Pay load
Execution, In Proceedings of Recent Advances in Intrusion Detection, Springer-Verlag,
pp. 274-291, Berlin, Heidelberg, Germany, 2002.

[73] M. Polychronakis, K. G. Anagnostakis, and E. P. Markatos, Network?Level Poly-
morphic Shellcode Detection using Emulation, In Proceedings of the Third interna-
tional Conference on Detection of Intrusions and Malware & Vulnerability Assessment
(DIMVA), Roland Springer-Verlag, pp. 54-73, Berlin, Heidelberg, Germany, 2007.

[74] A. Sood and R. Enbody, Browser Exploit Packs - Exploitation Paradigm: Death
by Bundled Exploits, In Proceedings of the 21 Annual Virus Bulletin Conference,
Barcelona, Spain, 2011.

[75] R. Chinchani, M. Chandrasekaran and S. Upadhyaya, Phoney: Mimicking User Re-
sponse to Detect Phishing Attacks, In Proceedings of the International Symposium on
a World of Wireless, Mobile and Multimedia Networks, pp. 668-672, Washington DC,
USA, 2006.

[76] M. Holbrook, J. Downs and L. Cranor, Decision Strategies and Susceptibility to Phish-
ing. In Proceedings of the Second Symposium on Usable Privacy and Security (SOUPS),
pp. 79-90, Pittsburgh, Pennsylvania, 2006.

[77] Sophos, Do-it-yourself (DiY) Phishing Kits found on the Internet. In Sophos Blog,
August 19 2004, Web, 2 July 2013. http://www.sophos.com/en-us/press-office/press-
releases/2004/08/sa diyphishing.aspx.

[78] R.C. Miller, M. Wu and S.L. Garfinkel, Do Security Toolbars Actually Prevent Phishing
Attacks?, In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pp. 601-610, Montreal, Quebec, Canada, 2006.

142

[79] A. Talevski, N. Firoozeh, S. Sarenche, P. Hayati, V. Potdar and E.A. Yeganeh, Defi-
nition of Spam 2.0: New spamming Boom, In Proceedings of 4th IEEE International
Conference on Digital Ecosystems and Technologies (DEST), pp. 580-584, Dubai, UAE,
2010.

[80] A. Sood and R. J. Enbody, Social Networks - Chain Exploitation, ISACA Journal -
Information Systems Audit and Control Association, vol. 1, 2011.

[81] T. Huang, J. Wang, H. Gao, J. Hu and Y. Chen, Security Issues in Online Social
Networks, IEEE Internet Computing, vol.15, no.4, pp.56-63, July-Aug, 2011.

[82] K.D. Mitnick and W.L. Simon, The Art of Deception: Controlling the Human Element
of Security, Wiley Publishing, 2002.

[83] Z. Li, K. Zhang, Y. Xie, F.Yu, and X. Wang, Knowing Your Enemy: Understanding
and Detecting Malicious Web Advertising, In Proceedings of the 2012 ACM confer-
ence on Computer and Communications Security (CCS), pp. 674-686, Raleigh, North
Caroline, USA, 2012.

[84] A. Sood and R.J. Enbody, Malvertising: Exploiting Web Advertising, Elsevier Com-
puter Fraud and Security, vol. 2011, no. 4, pp. 11?16, April, 2011.

[85] S. Savage C. Shannon S. Staniford D. Moore, V. Paxson and N. Weaver, Inside the
Slammer Worm, IEEE Security and Privacy, 1, 4, pp.33-39, 2003.

[86] M. Takesue, A Protection Scheme Against the Attacks Deployed by Hiding the Vi-
olation of the Same Origin Policy, In Proceedings Second International Conference
on Emerging Security Information, Systems and Technologies (SECURWARE), IEEE
Computer Society, pp. 133-138, Washington DC, USA, 2008.

[87] H. Saiedian and D. Broyle, Security Vulnerabilities in the Same Origin Policy: Impli-
cations and Alternatives, IEEE Computer , vol.44, no.9, pp.29-36, September 2011.

[88] J. Grossman, Web 2.0 pivot attacks. Whitehat Security Blog, February 4, 2010,
Web, July 2 2013. http://jeremiahgrossman.blogspot.com/2010/02/web-20-pivot-
attacks.html.

[89] M. Johns, On Javascript Malware and Related Threats, Journal in Computer Virology,
vol. 4,no. 3, pp. 161-178, August 2008.

[90] W. Xu, F. Zhang, and S. Zhu, The Power of Obfuscation Techniques in Malicious
JavaScript Code: A Measurement Study, In Proceedings of the 2012 7th International
Conference on Malicious and Unwanted Software (MALWARE). IEEE Computer So-
ciety, pp. 9-16, Washington DC, USA, 2012.

[91] C. Craioveanu, Server-side Script Polymorphism: Techniques of Analysis and Defense,
In Proceedings of the IEEE 3rd International Conference on Malicious and Unwanted
Software, pp. 9-16, Fairfax, Virginia, USA, 2008.

143

[92] D. Stevens, Portable Document Format (PDF) Analysis Tools. Didier Steven’s Blog,
2010. http://blog.didierstevens.com/programs/pdf-tools/.

[93] K. Selvaraj and N.G. Gutierrez, The Rise of PDF Malware, The Symantec Whitepaper,
2010.

[94] Zynamics, Portable Document Format (PDF) Dissector - Tool, Zynamics Proprietary
Software, 2010. http://www.zynamics.com/dissector.html.

[95] E. Filiol, A. Blonce and L. Frayssignes, Portable Document Format (pdf) Security
Analysis and Malware Threats, In Proceedings of Black Hat Security Conference,
Amsterdam, Europe, 2008.

[96] J. Wolf, Omg-wtf- PDF, In Proceedings of 27th Chaos Computer Congress Conference,
Berlin, Germany, 2010.

[97] S. Porst, How to Teally Obfuscate Your PDF Malware, In Proceedings of Reverse
Engineering Conference (RECon), Montreal, Canada, 2010.

[98] P. Jagdale, Blinded by Flash: Widespread Security Risks Flash Developers Don’t See,
In Proceedings of Black Hat Security Conference, Las Vegas, USA, 2011.

[99] C. Kruegel S. Ford, M. Cova and G. Vigna, Analyzing and Detecting Malicious Flash
Advertisements, In Proceedings of Computer Security Applications Conference (AC-
SAC), IEEE Computer Society, pp. 363-372, Washington DC, USA, 2009.

[100] V. L. Le, I. Welch, X. Gao and P. Komisarczuk, Identification of Potential Malicious
Web Pages, In Proceedings of the Ninth Australasian Information Security Conference
AISC ’11), pp. 33-40, Perth, Australia, 2011.

[101] A. Sood, R.J. Enbody and R. Bansal, Exploiting Web Virtual hosting, HackInThe-
Box (HITB) Magazine, Volume 1, 2011. http://magazine.hitb.org/issues/HITB-Ezine-
Issue-005.pdf.

[102] C. Jackson, D. Boneh and J. C. Mitchell, Transaction Generators: Rootkits for the
Web, In Proceedings 2nd USENIX Workshop on Hot Topics in Security (HotSec),
Boston, Massachusetts, 2007.

[103] B. Adida , A. Barth and C. Jackson, Rootkits for Javascript Environments, In Pro-
ceedings of 3rd USENIX Workshop on Offensive Technologies (WOOT), Montreal,
Canada, 2009.

[104] A. Raff and I. Amit. The Inherent Insecurity of Widgets and Gadgets, In Proceedings
of DEF CON 15 Security Conference, Las Vegas, USA, 2007.

[105] A. Barth, C. Jackson and W. Li, Attacks on Javascript Mashup Communication, In
Proceedings of Web 2.0 Security and Privacy (W2SP) Workshop, 2009.

144

[106] C. Jackson and J. Helen, Subspace: Secure Cross-domain Communication for Web
Mashups, In Proceedings of the 16th International World Wide Web (WWW) Confer-
ence, pp. 611-620, Banff, Alberta, Canada, 2007.

[107] Contagio Dump Blog, An Overview of Exploit Packs (Update 17), October 12 2012,
Web, July 2 2013. http://contagiodump.blogspot.com/2010/06/overview-of-exploit-
packs-update.html.

[108] P. Eckhouette, ROP Gadgets, 2011. https://www.corelan.be/index.php/security/rop-
gadgets/.

[109] V. Pappas, M. Polychronakis and A. D. Keromytis, Smashing the Gadgets: Hindering
Return-Oriented Programming Using In-place Code Randomization, In Proceedings of
the 2012 IEEE Symposium on Security and Privacy (SP), pp. 601-615, San Francisco,
California, USA, 2012.

[110] G. Hunt and D. Brubacher, Detours: Binary Interception of Win32 Functions, In
Proceedings of the 3rd USENIX Windows NT Symposium, Seattle, WA, 1999.

[111] J. Drake, P. Mehta, C. Miller, S. Moyer, R. Smith and C. Valasek, Browser
Security Comparison: A Quantitative Approach, Accuvant Labs Report, 2011.
http://www.accuvant.com/sites/default/files/AccuvantBrowserSecCompar FINAL.pdf.

[112] W3Schools, Browser Statistics, 2013.
http://www.w3schools.com/browsers/browsers stats.asp.

[113] A. Barth, C. Jackson, C. Reiss and Google Security Team, The Security Archi-
tecture of the Chromium Browser, Stanford Security Labs Technical Report, 2008.
http://seclab.stanford.edu/websec/chromium/chromium-security-architecture.pdf.

[114] V. Anupam and A. Mayer, Security of Web Browser Scripting Languages: Vulnerabil-
ities, Attacks, and Remedies, In Proceedings of the 7th USENIX Security Symposium,
San Antonio, Texas, USA, 1998.

[115] A. Tang, C. Grier, O. Aciicmez and S. King, Alhambra: A System for Creating,
Enforcing, and Testing Browser Security Policies, InProceedings of WWW Conference,
pp. 941-950, Raleigh, North Carolina, USA, 2010.

[116] E. Chen, J, Bau, C. Reis, A. Barth and C. Jackson, App Isolation: Get the Security
of Multiple Browsers with Just One, In Proceedings of the 18th ACM conference on
Computer and Communications Security, pp. 227-238, Chicago, Illinois, USA, 2011.

[117] F. Keukelaere, S. Bhola, M. Steiner, S. Chari and S. Yoshihama, SMash : Secure
Component Model for Cross-Domain Mashups, In Proceedings of WWW Conference,
pp. 535-544, Beijing, China, 2008.

[118] M. Louw, J. Lim and V. Venkatkrishnan, Enhancing Web Browser Security against
Malware Extensions, Journal in Computer Virology, vol. 4, no. 3, August 2008.

145

[119] S. Bandhakavi S. T. King, P. Madhusudan and M. Winslett, VEX: Vetting Browser Ex-
tensions For Security Vulnerabilities, In Proceedings of USENIX Security Symposium,
Washington DC, USA, 2008.

[120] N. Swamy, B. Livshits, A. Guha and M. Fredrikson, Verify Secu-
rity for Browser Extensions, Microsoft Research Technical Report, 2010.
http://research.microsoft.com/pubs/141971/tr.pdf.

[121] T. Dougan and K. Curan, Man in the Browser Attacks, International Journal of Am-
bient Computing and Intelligence, vol.4, no. 1, pp. 29-39, January-March 2012.

[122] jCryption, http://www.jcryption.org/.

[123] Briantree JavaScript Library, Client Side Encryption with JavaScript,
https://www.braintreepayments.com/docs/javascript/overview/client side encryption.

[124] Ob start Manual, http://php.net/manual/en/function.ob-start.php.

[125] Ob end flush Manual, http://php.net/manual/en/function.ob-end-flush.php.

[126] A. Sood, R. Enbody and R. Bansal, Inside the ICE IX bot - Descendent of Zeus, Virus
Bulletin Magazine, August, 2012.

[127] Google Caja, http://code.google.com/p/google-caja/.

[128] Microsoft, EMET, http://support.microsoft.com/kb/2458544.

[129] Firefox Form-grabber Code, https://github.com/recastrodiaz/formGrabber/.

146

