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ABSTRACT

PANCREATIC B-CELL FATTY ACID METABOLISM AND

MODULATION OF FUNCTION IN RESPONSE TO GLUCOLIPOTOXICITY

By

Christopher D. Green

Type 2 diabetes is associated with gradual diminishment of pancreatic islet B-cell

function in response to chronic hyperglycemia and elevated plasma free fatty acids

(FFAs), defined as glucolipotoxicity. The effects of glucolipotoxicity on B-cells include

decreased insulin gene expression, diminished glucose-stimulated insulin secretion

(G818), and ultimately decreased B-cell mass. Loss of B-cell GSIS has been linked to

increased lipogenic gene expression and triacylglyceride (TAG) accumulation.

Activation of the liver X receptor (LXR) transcription factor further increases lipogenic

gene expression and TAG accumulation but increases both basal insulin release and

G318. Here, INS-1 B-cells treated with the LXR agonist T0901317 during chronic

hyperglycemia increased lipogenic gene expression, de novo synthesis of TAG, and basal

and G818. LXR-activated INS-1 cells exhibited increased fatty acid (FA) oxidation and

expression of genes involved in mitochondrial B-oxidation. Inhibition of fatty acyl-CoA

synthesis and mitochondrial B-oxidation blocked the elevated basal insulin release. Thus,

together with the rapid turnover ofTAG in LXR-activated cells, these results indicate that

enhanced basal insulin release involves oxidation of fatty acyl-CoAs generated during

turnover of neutral lipid pools. Increased synthesis and turnover of TAG suggested

increased lipolysis of complex lipids and the generation of lipid signaling molecules such

as diacylglycerol. In this manner, inhibition of TAG turnover and diacylglycerol binding

proteins reduced the LXR-mediated increase in G818.
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LXR activation in INS-1 cells also increased monounsaturated FA (MUFA)

synthesis and elevated stearoyl-CoA desaturases (SCD) l and 2 gene expression, rating-

limiting enzymes in MUFA synthesis. SCD] and 2 gene expression were then identified

to be elevated in pre-diabetic Zucker diabetic fatty (ZDF) rat islets, whereas diabetic ZDF

rat islets had reduced expression of SCDl, SCD2 and Elovl-6, a FA elongase involved in

MUFA synthesis. These findings suggested SCDs and Elovl-6 could be involved in the

B-cell response to metabolic load. Elevated exogenous FFA levels, particularly saturated

FAs, cause toxic effects to B-cells that include altered endoplasmic reticulum (ER)

integrity, which is linked to induction of ER stress responses and apoptosis. Using

siRNAs and adenoviral constructs, altered SCD or Elovl-6 gene expression in INS-l cells

was examined for its effects on ER stress and apoptosis mediated by exogenous palmitate

(16:0). Knockdown of SCDs decreased MUFA synthesis and increased susceptibility of

INS-1 cells to palmitate-induced ER stress and apoptosis, whereas over-expression of

SCD2 increased palmitate desaturation to palmitoleate (16:1,n-7) and reduced palmitate

toxicity. Elovl-6 knockdown decreased palmitate conversion to stearate (18:0) and oleate

(18:1,n-9) and tended to reduce palmitate-induced ER stress and apoptosis, while Elovl-6

over-expression increased synthesis of 18:0 and 18:1,n-9 and increased susceptibility to

palmitate-induced toxicity. Further studies showed that coordinated expression of SCDs,

Elovl-6 and Elovl-S, which elongates 16:1,n-7 to vaccenate (18:1,n-7), is required for

maintaining balanced de novo synthesis of n-7 versus n-9 MUFAs.

In conclusion, these studies demonstrate that modulation of TAG synthesis and

turnover and MUFA synthesis significantly alters the B-cell response to glucolipotoxicity.
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INTRODUCTION

Type 2 diabetes (T2D) accounts for more than 90% of diabetes cases, which is

projected to affect 300 million people worldwide by 2025 (1, 2). Whereas type 1

diabetes requires insulin administration due to the complete absence of pancreatic islet B-

celliinsulin secretion, T2D results, in part, from the inability of B-cells to secrete enough

insulin to overcome insulin resistance and maintain glucose homeostasis. As

dysregulated glucose metabolism develops, sustained periods of hyperglycemia and

elevated plasma free fatty acids (FFAs) contribute to the progressive loss of B-cell

function, collectively termed glucolipotoxicity (3). The adverse effects of

glucolipotoxicity on B-cells include decreased insulin gene expression, diminished

glucose-stimulated insulin secretion (GSIS), and ultimately the loss of B-cell mass (4). A

major goal of our lab is to understand how these effects develop and to identify

mechanisms to protect from B-cell dysfunction.

Modulation of fatty acid (FA) metabolism in B-cells in response to

glucolipotoxicity is essential for maintaining proper function. Chronic exposure of B-

cells to elevated levels of glucose or glucose plus FFAs increases the storage of FA in

triacylglyceride (TAG) and diminishes GSIS (3). Thus, accumulation of TAG in B-cells

has been associated with the pathogenesis of B-cell dysfunction. Evidence has emerged,

however, for protection of B-cells from glucolipotoxicity by modulating the expression

and activity of genes involved in de nova FA synthesis (lipogenesis) and TAG storage.

This includes regulation of lipogenic genes via liver X receptor (LXR) activation and

genes involved in monounsaturated FA synthesis (5, 6). This dissertation provides

insight into the mechanism of elevated insulin secretion from LXR-activated B-cells
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under chronic hyperglycemia, and examines the roles of altered expression of FA

desaturase and elongase genes involved in monounsaturated FA synthesis in response of

B-cells to exogenous saturated FAs. The findings of this research identify mechanisms

that could be utilized to prevent the onset of B-cell failure and T2D.
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Chapter 1. Literature Review

1. Fatty Acid Metabolism and Regulation of Genes Involved in Lipogenesis

1.1. Fatty Acid Structure and Classification

Fatty acids (FAs) serve numerous essential biological functions, such as

stabilizing cellular membranes, providing energy storage depots, and participating in

signal transduction. The efficacy of these functions is largely dependent on the FA

structure. FAs are composed of hydrocarbon chains of various lengths with a methyl

group and a carboxyl group residing at opposite ends of each chain. FAs with

hydrocarbon chains that are completely saturated with hydrogen atoms are termed

saturated FAs. An example of a saturated FA is the sixteen-carbon FA palmitic acid,

represented as 16:0. Modified FAs containing one or more double bonds are termed

unsaturated FAs. The number of double bonds further categorizes these FAs into

monounsaturated FAs (MUFAs), containing one double bond, and polyunsaturated FAs

(PUFAs), containing two or more double bonds. Unsaturated FAs are characterized by .

denoting the position of the carbon of the first double bond, counting from the methyl

end. For example, the MUFA oleic acid is represented as 18:1,n-9, as it has eighteen

carbons, one double bond, and the double bond is nine carbons from the methyl end. A

PUFA such as arachidonic acid. (20:4,n-6) has four double bonds and only the position of

the first double bond is listed. As in all cells, the cellular FA composition of islet B-Cells

consists of a broad range of saturated and unsaturated FAs, the concentrations of which

are under tight regulation.
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1.2. Modification of Fatty Acid Structure

1.2.1. Desaturation

Modification of FAs by oxidative desaturation uses NADH-cytochrome b5

reductase, cytochrome b5, and a desaturase to convert a single carbon-carbon bond to a

cis-double bond (Figure 1.1). In mammals, the FA desaturases capable of enzymatic

addition of a cis-double bond include delta 5 desaturase (ASD), A6D, and A9D, also

called stearoyl-CoA desaturase (SCD). The ‘A’ refers to the position of the carbon the

double bond is added, counting from the carboxyl end. The ASD and A6D genes are

involved in PUFA synthesis. Substrates preferentially desaturated by the A6D are oleic

acid (18:1,n-9) and the C18 and C24 PUFAs, whereas ASD prefers C20 PUFA substrates

(7). ASD and A6D activities [are essential for the synthesis of the PUFAs mead acid

(20:3,n-9), arachidonic acid (20:4,n-6), and docosahexaenoic acid (22:6,n-3) (7, 8). ASD

and A6D are ubiquitously expressed with the highest level found in liver, followed by

brain and heart (9). The ASD and A6D genes were identified to be expressed in rat islets

and B-cells (10), but a unique role in B-cell function has not been demonstrated.

Stearoyl-CoA desaturase (SCD) is the rate-limiting enzyme for MUFA synthesis,

particularly palmitoleate (16:1,n-7) and oleate (18:1,n-9). SCD isoforms cloned thus far

include four from mouse (SCD1—4) (11-14), two in rat (SCDl and 2) (15), three in

hamster (SCD1-3) (16), and three in human (SCDl, 2, and 5) (17-19). Analysis of

substrate specificity using microsomal fractions from cells over-expressing SCD 1, 2, or

4 demonstrated the ability to desaturate C13-Cl9 saturated FAs with a particular

preference towards stearic acid (18:0) (20). SCD3 desaturated C13-C16 FAs but not

stearic acid (18:0), suggesting that SCD3 should be redefined as a palmitoyl-CoA
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desaturase (20). SCD] is highly expressed in adipose tissue and liver, tissues with

enhanced capacity for neutral lipid storage (12). The activity of SCD] is more than 2-

fold higher for stearic acid than palmitic acid (20). This in turn increases synthesis of

oleic acid (18:1,n-9) and correlates with the requirement of SCD] activity for neutral

lipid storage, as oleic acid is the preferred substrate for TAG storage (21). SCD2

expression in mice is primarily found in the brain, presumed to be important for myelin

formation (11), and is required for lipid synthesis during early development (22). Human

SCD2 is expressed at high levels in the brain and whole pancreas (19). SCD3 expression

is restricted to skin sebaceous glands and is thought. to be involved in making wax esters

for the skin (14, 23, 24). The mouse SCD4 isoform is expressed specifically in the heart

(13).

Although studies have identified direct roles for SOD] and SCD3 in lipid storage

and wax ester synthesis, respectively, the significance of the SCD2 and SCD4 isoforms in

lipid metabolism remains unclear. More specifically to the islet B-cell, the gene

expression profile of SCDs and the contributions of specific SCD isoforms to normal [3-

cell function have not been determined.

1.2.2. Elongation

FA elongation by addition of a malonyl-CoA C2 unit to a fatty acyl-CoA is

catalyzed in four steps: condensation of the fatty acyl-CoA with malonyl-CoA, reduction

using NADPH, dehydration, and reduction to the fatty acyl-CoA product (Figure 1.1).

The rate-limiting condensation step is catalyzed by various FA elongases, the activities of

which are substrate dependent. Seven subtypes of FA elongases have been identified in

mouse, rat, and human, and are referred to as e_longation 9f yery long chain fatty acids
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(Elovl-1 to 7) (www.cnsembl.org). Elovl-l, 3, and 4 elongate a broad range of very long

chain FAs (>C20) and are involved in sphingolipid synthesis, brown adipose and skin

barrier function, and retinal function, respectively (25-30). Elovl-2 and Elovl-5 are

mainly involved in n-3 and n-6 PUFA synthesis, with Elovl—2 elongating C20 and C22

PUFAs and Elovl-5 elongating C18 PUFAs as well as palmitoleic acid (16:1,n-7) (31-

34). The expression of Elovl-2 and Elovl-5 was detected in most tissues with the highest

level being in the liver (35). Elovl-6 is capable of elongating C12-16 saturated FAs and

palmitoleic acid (16:1,n-7) (31, 32). Although the expression of Elovl-6 is low is most

tissues (35), its activity significantly regulates stearic acid (18:0) synthesis, the precursor

of oleic acid (18:1,n-9) (36). Elovl-7 substrates and expression have not been

characterized.

In regards to MUFA synthesis, FA elongation assays using microsomal

preparations demonstrated Elovl-5 and Elovl-6 to elongate C16 FAs for the generation

C 18 MUFAs. The roles of these genes in the de nova synthesis of MUFAs in intact

mammalian cells, however, have not been addressed. In addition, a unique role for FA

elongases in B-cells is not known.
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Figure 1.1. Reaction diagrams for FA desaturation through the stearoyl-CoA

desaturase complex and general FA elongation. Microsomal FA desaturation occurs

through the transfer of two electrons from NADH to oxygen to produce a desaturated FA-

CoA and water. Microsomal FA elongation occurs through the following sequential

reactions: 1) FA-CoA condensation with malonyl-CoA to form 3-ketoacyl—COA, 2) 3-

ketoacyl-CoA reduction to 3-hydroxyacyl-COA using NADPH, 3) 3-hydroxyacyl-COA

dehydration to trans-2,3-enoyl-COA, 4) trans-2,3-enoyl-COA reduction to acyl-CoA.

KAR, 3-ketoacyl-COA reductase. TER, trans-2,3-enoyl-C0A reductase.
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1.3. Exogenous Fatty Acid Uptake and Essential Fatty Acids

A major source of intracellular FAs comes from transport of exogenous FA

derived from circulating chylomicrons, lipoproteins, free FAs (FFAs), and protein bound

FAs (e.g. albumin). ChylomiCrons and lipoproteins consist of lipid droplet/protein

complexes composed of triacylglycerol (TAG), cholesterol esters, glycerophospholipids,

cholesterol, and apolipoproteins, and are secreted from the intestine and liver,

respectively. FAs incorporated into chylomicrons primarily originate from dietary fat

afier digesting a meal. TAG, the predominant source of dietary FA (37), is cleaved in the

lumen of the intestine by pancreatic lipase at the sn-1 and sn-3 positions to produce FFAs

and 2-monoacylglcyerol (2-MAG) (3 8-40), the latter of which can be further cleaved to

glycerol and FFA (41). MAG and FFAs are then transported inside enterocytes where

they are used to reassemble TAG for chylomicron formation (42, 43). Lipid droplets

within lipoproteins that are secreted from the liver contain a mixture of FAs derived from

both exogenous and de nova (see next section) sources. Circulating chylomicrons and

lipoproteins, particularly very low density and low density lipoproteins (VLDL and

LDL), are cleaved by lipoprotein lipase to release FFAs for storage and use in peripheral

tissues (44). FFAs are also released into the circulation during fasting by activation of

TAG and cholesterol ester hydrolysis in lipid storage depots, such as adipose tissue and

the liver (45). Subsequent uptake of exogenous FFAs at peripheral tissues occurs through

either facilitated transport by FA transport proteins or by diffusion of the plasma

membrane.

Dietary FAs are the source of the essential FAs linoleic acid (18:2,n-6) and '

linolenic acid (18:3,n-3). Essential FAs are defined as essential because animals lack the
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A12D and A15D enzymes required for the synthesis of n-6 and n-3 FAs. Conversion of

linoleic acid and linolenic acid to other PUFAs, such as arachidonic acid (20:4,n-6) and

docosahexeanoic acid (22:6,n-3), is important for normal cellular function. Endogenous

synthesis of arachidonic acid from 18:2,n—6 requires sequential desaturation and

elongation activities of A6D, Elovl-5, and ASD, while docosahexeanoic acid synthesis

from 18:3,n-3 additionally requires elongation by Elovl-2, desaturation by A6D, and

peroxisomal B-oxidation (Figure 1.2) (7).

1.4. De Novo Fatty Acid Synthesis

De nava synthesis of FAs characterizes the intracellular, cytosolic production of

FAs that are made entirely fi'om intracellular acetyl-CoA and malonyl-CoA, derived

mainly from the tricarboxylic acid cycle‘(TCA). The accumulation of cytosolic acetyl-

CoA and malonyl-CoA is highly dependent upon glucose metabolism and the carbon flux

in and out of the TCA cycle. Exposure of cells to elevated glucose levels increases

transport of the glycolytic product pyruvate into the mitochondria, conversion of

mitochondrial pyruvate to citrate via the TCA cycle, and export of citrate from the

mitochondria. ATP-citrate lyase (ACL) then catalyzes the cleavage of cytosolic citrate

into acetyl-CoA and oxaloacetate, the latter of which can be converted back to pyruvate

for entry into the mitochondria. Carboxylation of ACL-derived acetyl-CoA via acetyl-

CoA carboxylase (ACC) provides the necessary FA elongation substrate malonyl-CoA.

Fatty acid synthase (FAS) performs all the enzymatic reactions necessary for FA

elongation and subsequently utilizes one acetyl-CoA and seven malonyl-CoA units to

produce the saturated FA palmitic acid (16:0) (46, 47). Together, elevated glucose

increases de nova FA synthesis through elevated carbon flux through the TCA cycle and
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export of citrate, which can be sequentially converted through ACL, ACC and FAS to

palmitate.

De nova or exogenously derived palmitic acid can be used for MUFA synthesis

through two pathways: Elovl-6 elongation to stearic acid (18:0) followed by SCD

desaturation to oleic acid (18:1,n-9); SCD desaturation to palmioleic acid (16:1,n-7) and

either Elovl-6 or Elovl-5 elongation to vaccenic acid (18:1,n-7) (Figure 1.2). Synthesis of

oleic acid (18:1,n-9) has been demonstrated to be important for storing excess saturated

FA produced after exposure to a high carbohydrate diet, an effect that is blocked by

reducing SCD] gene expression (48). Thus, enhanced de nova FA synthesis drives the

synthesis and storage of MUFAs as a mechanism to prevent the accumulation of

excessive levels of endogenous FFA. During conditions of essential FA deficiency, de

nova FA synthesis also provides MUFAS as substrates for PUFA synthesis of mead acid

(20:3,n—9) through sequential A6D desaturation, Elovl-l elongation, and ASD

desaturation of oleic acid (Figure 1.2) (8).
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Figure 1.2. Synthesis of FAs de novo and from exogenous essential FAs. Glucose-

derived palmitic acid (16:0) can be further modified by two pathways: Elovl—6 elongation

to stearic acid (18:0) and SCD desaturation to oleic acid (18:1,n-9); or SCD desaturation

to palmioleic acid (16:1,n-7) and Elovl-5/Elovl-6 elongation to vaccenic acid (18:1,n-7).

Essential FAs from the diet, linoleic acid (18:2,n-6) and linolenic acid (18:3,n-3), are

processed to long chain unsaturated FAs through the desaturases A6D and ASD, the

elongases Elovl-5 and Elovl-2, and peroxisomal [ii-oxidation. During essential FA

deficiency, de nova synthesized 18:1,n-9 is converted to mead acid (20:3,n-9) by A6D,

Elovl-1, and ASD. Modified from Fatty Acid Regulation ofGene Transcription (8).
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1.5. Glycerol 3-Phosphate Pathway of Triacylglycerol Synthesis

TAG serves as a storage depot for excess intracellular FFAs. In eukaryotes,

synthesis of TAG de nova proceeds through stepwise FA acylation of glycerol 3-

phosphate, a product of the glycolytic intermediate dihydroxyacetone phosphate. In the

first step, an activated FFA, fatty acyl-CoA (FA-CoA) formed from an acyl-CoA

synthetase, is esterified onto glycerol 3-phosphate by glycerol-3-phosphate

acyltransferase (GPAT) at the sn-1 position to form lysophophatidic acid (LPA) (Figure

1.3). Synthesis of LPA occurs at the mitochondrial and endoplasmic reticulum (ER)

membranes, as GPAT isoforms are found at both locations (49, 50). Next, another FA-

CoA is transferred to LPA by a family of l-acylg1ycerol-3-phosphate acyltransferases

(AGPATs), located in the ER membrane, to form phosphatidic acid (PA) (51, 52).

Dephosphorylation of PA by a PA phosphatase (PAP) 1, also referred to as lipin,

produces diacylglyceride (DAG) (53). Both PA and DAG can be utilized for the

synthesis of glycerolphospholipids. The final reaction in TAG synthesis involves the

addition of a third FA-CoA to DAG, catalyzed by a DAG acyltransferase (DGAT) (53).

The rate of de nova TAG synthesis is highly affected by substrate availability and,

through both direct and indirect mechanisms, substrate-induced transcriptional regulation

of genes involved in FA synthesis and storage as described below.
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Acyl-CoA Acyl-CoA
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Endoplasmi
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TAG

Figure 1.3. Glycerol-3 phosphate pathway for triacylglyceride synthesis. A FA-CoA

is esterified to glycolysis-derived glycerol-3 phosphate by glycerol-3 phosphate

acyltransferase (GPAT) to form lysophosphatidic acid (LPA) at either the mitochondrial

or the ER membrane. A second FA-CoA is esterified to LPA by acylglycerol-3

phosphate acyltransferase (AGPAT) to form phosphatidic acid (PA). PA is then

dephosphorylated to diacylglycerol (DAG) by PA phosphatase (PAP). Finally, a third

FA-CoA is esterified to DAG by diacylglycerol acyltransferase (DGAT) to form the

triacylglyceride (TAG). PA and DAG can also be directly used for phospholipid

synthesis (PI, PG, CL, PC, PE, and PS).
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1.6. Transcriptional Regulators of Lipogenesis

1.6.1. Carbohydrate Response Element Binding Protein

Glucose metabolism is initiated through uptake, phosphorylation, and subsequent

glycolysis. In addition, glycolytic intermediates can enter the hexose monophosphate

shunt. Flux through the hexose monophosphate shunt produces xyulose 5-phosphate, an

activator of protein phosphatase 2A that has been proposed to dephosphorylate and

activate the carbohydrate response element binding protein (ChREBP) a member of the

basic helix loop helix leucine zipper (bHLH/leu zip) transcription factor family (54).

Binding of ChREBP and its heteromeric partner Max-like protein X (Mlx) to promoters

of genes containing carbohydrate response elements (ChREs) activates transcription of

genes involved in glucose metabolism and de nova FA synthesis (55, 56). Genes known

to contain ChREs include L-pyruvate kinase (LPK), ACC, FAS, and mitochondrial

GPAT (thPAT) (57-59). Studies in liver using a dominant negative Mlx demonstrated

that glucose transporter 2 (GLUT2), malic enzyme (ME), and SCDl are also regulated by

the ChREBP/Mlx complex (55). Enhanced pyruvate production by increased GLUT2,

LPK, and ME expression increases pyruvate entry into the mitochondria and generation

of TCA cycle intermediates. Accumulation ofTCA cycle intermediates favors the efflux

of citrate and conversion to acetyl-CoA by ACL that is driven towards synthesis and

storage of FAS via increased ChREBP/Mlx-mediated expression of ACC, FAS, SCDl,

and thPAT.
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1.6.2. Sterol Regulatory Element Binding Protein-1c

Sterol regulatory element binding proteins (SREBPs) are bHLH/leu zip

transcription factors and key regulators of lipid synthesis (60). Under non-stimulated

conditions, inactive and unprocessed SREBPs reside in the ER membrane and interact

with the SREBP cleavage activating protein (SCAP) and Insig-2 (61-63). Activation of

SREBP involves translocation of the SREBP/SCAP complex to the Golgi where the

bHLH/leu zip domain is cleaved by site 1 and site 2 proteases and subsequently

transported into the nucleus to initiate gene transcription (64, 65). Isoforms of SREBP

include SREBP-1a, -1c, and -2. SREBP-1c is a major activator of the expression of

genes involved in FA synthesis, whereas SREBP-2 induces genes involved in cholesterol

synthesis and SREBP-1a activates genes for both FA and cholesterol synthesis (60). Low

intracellular sterol levels initiate processing of SREBP-1a and -2 but not -lc (66, 67).

SREBP-1c processing is initiated by insulin through decreased gene expression and

protein abundance of Insig-2 (68), which releases its interaction with SCAP and allows

the SREBP/SCAP complex to translocate to the Golgi (62, 63). Although the mechanism

is still unclear, insulin-mediated SREBP-1c processing increases the metabolism of

glucose and synthesis of FAs through binding to promoters of glucokinase (GK), ACL,

ACC, FAS, Elovl-6, SCD l and 2, and thPAT (59, 69-76). Elevated GK expression

increases the rate-limiting step of glycolysis, while the latter enzymes increase the

shuttling of TCA cycle intermediates into FAs that are stored in complex lipids. In this

manner, intake of dietary carbohydrates, specifically simple sugars, activates ChREBP to

divert glucose to storage as FAS, and this process is enhanced through SREBP-lo by

insulin secreted from glucose-stimulated pancreatic B-cells.
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1.6.3. Liver X Receptors

Cholesterol and lipid homeostasis are also regulated by liver X receptors (LXR) or

and [3, members of the nuclear hormone receptor superfamily of transcription factors.

LXRs are activated by intracellular oxysterols (cholesterol intermediates), and recently,

LXR was identified to directly bind and be activated by glucose (77). The LXRor

isoform is highly expressed in the liver, intestine, adipose tissues, and macrophages,

whereas LXRB is ubiquitously expressed (78). LXR heterodimerizes with its retinoid X

receptor (RXR) partner, which then bind LXR response elements and activate

transcription of genes involved in cholesterol catabolism and efflux such as CYP7A1, the

rate-limiting enzyme for bile acid synthesis, and ATP-binding cassette (ABC) A1 and

ABCGl, plasma membrane transporters involved in sterol transport (70, 79). Promoters

of genes involved in de nova FA synthesis that contain LXR response elements include

ChREBP and SREBP-10 as well as FAS, SCD], SCD2, and others (80-84). The

synthetic agonist T0901317 also activates LXRs, and its use in mice reduced

atherosclerotic plaques caused by cholesterol accumulation (82). LXR activation in the

liver, however, caused a significant increase in TAG accumulation and secretion of very

low density lipoproteins (85). In addition, LXR was shown to be required for insulin-

induced SREBP-1c transcription (86), and LXR or/B -/- mice fed a high carbohydrate diet

have reduced expression of some genes involved in FA synthesis (87). Together this

illustrates that LXR is a key mediator of de nova synthesis and storage of FAs.
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Figure 1.4. Transcriptional regulation of lipogenic gene expression by glucose and

insulin. During conditions of elevated glucose, flux through the hexose monophosphate

shunt (HMP) activates ChREBP to induce L-type pyruvate kinase (L-PK) and drive the

synthesis of pyruvate through glycolysis. Insulin secreted into the circulation from

glucose-stimulated B-cells increases SREBP-1c processing, which can induce

glucokinase to enhance glucose metabolism. Both ChREBP and SREBP-1c activation

lead to the induction of genes involves in de nova synthesis and storage of FAs. LXRs

can also bind and be activated by glucose and subsequently stimulate lipogenesis idirectly

through ChREBP and SREBP-1c and directly through FAS and SCDl/2.
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1.7. Fatty Acid Oxidation

In mammals, mitochondria and peroxisomes carry out chain shortening of FAs

through B-oxidation. This process involves the multi-step enzymatic removal of C2 units

from a FA-CoA to produce a shortened FA-CoA and acetyl-CoA, the latter ofwhich is

utilized by mitochondria to generate ATP. Mitochondrial B-oxidation of FA is dependent

on camitine palmitoyltransferase-l (CPT-1)—mediated conversion of FA-CoAs to FA-

camitine for transport into the mitochondria. Inside the inner mitochondrial membrane,

the FA-carnitine is converted back to FA-CoA by CPT-2, and B-oxidation reduces short

to very long-chain FA-CoAs completely to acetyl-CoAs. Peroxisomes, however, reduce

 

medium to very long-chain FA-CoAs to shorter chain FA-CoAs and acetyl-CoA that are

transported to the mitochondria for further [Bi—oxidation (88).

During periods of nutrient deprivation or fasting, TCA cycle intermediates

decrease, which leads to the induction ofFA oxidation. Reduced glycolytic and TCA

cycle generation ofATP causes an increase in the AMP/ATP ratio and activation of the

cellular energy sensor AMP activated protein kinase (AMPK) (89, 90). AMPK-mediated

phosphorylation inhibits ACC and activates malonyl-COA decarboxylase, effectively

reducing cytosolic levels of malonyl-COA (89, 90). Mitochondrial B—oxidation of FA is

dependent on carnitine palmitoyltransferase-l (CPT-l)-mediated conversion of FA-CoAs

to FA-carnitine for transport into the mitochondria. CPT-l activity is allosterically

inhibited by malonyl-CoA (91). Thus, reduced TCA cycle flux and AMPK activation

relieve CPT-l inhibition by malonyl-CoA to allow for FA oxidation and the generation of

ATP.
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Genes involved in peroxisomal B—oxidation are induced by the peroxisome

proliferator activated receptor-a (PPARa) transcription factor. Natural ligands of

PPARa identified thus far include FFAs, FA-CoAs and glucose (92, 93). PPARa also

regulates some genes participating in mitochondrial B-oxidation (94). Together, direct

glucose regulation of PPARa could possibly serve to prevent accumulation of excess

intracellular FFAs during exposure to elevated levels of carbohydrates by elevating

mitochondrial and peroxisomal FA oxidation. Similar to LXR, PPARa heterodimerizes

with RXR to initiate transcription, suggesting that activation of these opposing pathways

may compete for RXR.
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2. Pancreatic B-Cell Insulin Secretion and Role of Fatty Acid Metabolism

2.1. Mechanism of B-Cell Insulin Secretion

Pancreatic B-cells respond to a rise in circulating blood glucose levels by

secreting insulin, such as after digesting a carbohydrate-containing meal. The secretion

of insulin into the circulation, in turn, signals peripheral tissues to store glucose as

glycogen or lipid. Glucose-stimulated insulin secretion (GSIS) requires uptake and

metabolism of the sugar and occurs in two phases; an initial first-phase of insulin release

lasting up to ten minutes and an amplification second-phase that begins thereafter (95-

97). It is well accepted that the first-phase and initiation of the second-phase of GSIS is

dependent upon an increased ratio of ATP/ADP, which results from the flux of glucose

through glycolysis, the tricarboxylic acid (TCA) cycle, and mitochondrial oxidative

phosphorylation (95, 97). The increased ATP/ADP ratio inhibits ATP-sensitive

potassium (K+ATP) channel opening and causes depolarization of the plasma membrane,

activation of voltage-dependent Ca2+ channels, and influx of Ca2+ that directly and

indirectly triggers insulin release (Fig) (95-98). Stimulation of insulin secretion from [3-

cells in response to glucose can be potentiated by other stimulatory effectors (e.g. fatty

acids, amino acids, and incretin hormones) that generate secondary messengers to signal

granule exocytosis (99-102). Mechanisms involved in the amplification phase of GSIS

are less understood. Evidence has emerged, however, for glucose-stimulated regulation

of FA metabolism and the generation of lipid signaling molecules in the mechanism of

GSIS. (99, 103, 104).
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Figure 1.5. Mechanism of the ATP-sensitive K+ channel-dependent pathway of

glucose-stimulated insulin secretion (GSIS). Exogenous gluocose is taken up into

pancreatic B-cells through a glucose transporter (Glut2). Next, metabolism of glucose

through glycolysis and the mitochondrial (Mito.) TCA cycle generates ATP and alters the

ratio of ATP to ADP. The ATP-sensitive K+ channel is then inhibited by ATP, which

leads to depolarization of the plasma membrane and an influx of Ca2+. Finally, insulin

granules are released by both direct and indirect actions of Ca2+ on proteins involved in

granule exocytosis.
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2.2. Regulation of Fatty Acid Metabolism in Pancreatic B-cells

The pancreatic B-cell is innately designed to sense and efficiently metabolize

glucose over a wide range of physiological concentrations (3-20 mM), due in part to the

high Km of both GLUT2 (17 mM) and GK (8 mM) (103). As glucose levels rise,

minimal activity through the hexose monophosphate shunt aids in driving the glycolytic

production of pyruvate (105). Together with low pyruvate conversion to lactate, due to

negligible lactate dehydrogenase (105), pyruvate in the [ES-cell is directed towards

mitochondrial TCA cycling. Studies demonstrate that stimulation of B-cells with

elevated glucose subsequently increases mitochondrial efflux of TCA intermediates,

ACC-mediated generation of malonyl-CoA, and the synthesis and storage of FAs (106-

110). In regards to [ii-cell FA storage, a considerable portion of glucose is metabolized to

glycerol 3-phosphate, from glycolytic dihydroxyacetone phosphate, for use in the

backbone of glycerolipids (99). As in the liver, glucose-stimulated de novo FA synthesis

in B-cells coincides with increased expression of L-PK, ACC, and FAS (110-113). In [3-

cells elevated glucose has been shown to induce the binding of ChREBP to L-PK as well

as ChREBP and SREBP-1c binding to FAS (111, 112).

SREBP-1c activity is essential for glucose induction of lipogenic genes in B-cells

(114, 115). Over-expression of SREBP-1c in a B-cell line induced the expression of

ACC, FAS, Elovl-6, SCD], and SCD2 (114), and in rat islets, increased ACC and FAS

by SREBP-1c over-expression correlated with elevated TAG synthesis (116). In B-cells,

although both LXRor and [3 are expressed (5), LXRB is the predominant isoform and is

required for maintenance of B-cell function (117). Pharmacological activation of LXRs

increased the expression of ABCAl, involved in cholesterol efflux, as well as SREBP-1c,
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GK, ACC, and FAS, resulting in intracellular TAG accumulation (5, 118). In addition,

elevated glucose was shown to increase LXRor translocation into the nucleus (119), the

activity of which could mediate the glucose-induced increase in ChREBP gene

expression observed in B-cells.

Similar to FA synthesis, FA oxidation in B-cells is subject to multiple levels of

regulation by glucose. Of particular importance is the interaction of malonyl-CoA with

CPT-1 and inhibition of mitochondrial FA uptake. Although high glucose reduces FA

oxidation through the generation of malonyl-COA, FA oxidation can be significantly

augmented by over-expression of CPT-1 during exposure to high glucose conditions

(120). Another mechanism for inhibiting FA oxidation is through generation of ATP, or

reduction of the AMP/ATP ratio through enhanced glycolysis and mitochondrial

oxidative phosphorylation. This is associated with decreased B-cell AMPK activity,

which leads to reduced ACC phosphorylation and increased ACC-derived malonyl-CoA

(121-123). Elevated glucose also causes a significant decrease in PPARor gene and

protein expression as well as promoter binding to genes involved in FA oxidation (124),

possibly through the decrease in AMPK activity (125). In contrast to glucose, exposure

of B-cells to exogenous FAS increases CPT-1 and decreases ACC gene expression,

thereby blocking glucose-stimulated repression of mitochondrial FA oxidation.

Overall, these mechanisms allow the pancreatic B-cell to function properly by

directing excess exogenous carbon in the form of glucose into FAs for storage or excess

FFAs to degradation via FA B-oxidation. The following sections describe the

relationship between the regulation of FA metabolism and the mechanism of GSIS from

[ES-cells.
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2.3. Mitochondrial Anaplerosis/Cataplerosis

Enhanced glucose flux through glycolysis generates pyruvate. Mitochondrial

pyruvate has two options for entry into the TCA cycle: conversion by pyruvate

dehydrogenase (PDH) to acetyl-CoA or conversion by pyruvate carboxylase (PC) to

oxaloacetate (105, 126-128). PDH and PC activities provide the necessary substrates for

initiating the sequential synthesis of TCA cycle intermediates beginning with citrate and

ending with conversion of malate to oxaloacetate to reinitiate the cycle. Anaplerosis

describes the replenishment of TCA cycle intermediates. After TCA cycle intermediates

are fully replenished, exit of carbons from the cycle is defined as cataplerosis. In B-cells,

glucose-stimulated anaplerosis via PC activity is high, metabolizing approximately half

of pyruvate to oxaloacetate (105, 126-128). This anaplerosis/cataplerosis of TCA cycle

intermediates generates second messengers thought to be involved in signaling for insulin

secretion, including the cataplerotic products NADPH, malonyl-CoA and FA (103). The

primary production of NADPH via anaplerosis/cataplerosis is pyruvate cycling, the re-

synthesis of pyruvate fi'om cycle intermediates. Pyruvate cycling processes include the

malate-pyruvate, citrate-pyruvate, isocitrate/alpha-ketoglutarate-pyruvate, and

oxaloacetate-pyruvate shuttles (127, 129-135). Studies using [U-13C]-g1ucose supported

this idea showing that two pyruvate “pools” exist in B-cells (127, 132). One pool is

derived from glycolytic pyruvate and another is synthesized from a TCA cycle

intermediate. It is hypothesized that NADPH serves as a second messenger as the level

of NADPH correlates with GSIS, and gluctaredoxin—l, an NADPH target, was recently

identified to be involved in GSIS (130, 136, 137). At this time, however, it is still unclear

as to which pyruvate cycling process is most important. Nevertheless, it is clear that
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glucose—stimulated cataplerosis activity is high as it drives synthesis of malonyl-CoA

(100, 106, 129, 138), the precursor for de novo FA synthesis.

2.4. Generation of Lipid Signaling Molecules

2.4.1. Role of Malonyl—CoA

Glucose-stimulated anaplerosis/cataplerosis increases 1) mitochondrial efflux of

citrate, 2) conversion of citrate to acetyl-CoA by ACL, and 3) the generation of malonyl-

CoA fiom acetyl-CoA by ACC. The role of malonyl-CoA in GSIS is based on the ability

of malonyl-CoA to inhibit CPT-1 activity (91). This blocks mitochondrial Iii-oxidation of

FAS and leads to the accumulation of FFAs, FA-CoAs, DAG and other lipid signaling

molecules. ACC gene expression is naturally high in B-cells, allowing for rapid

generation of malonyl-CoA prior to GSIS (106-108, 113, 139). Increasing FA oxidation

by over-expression of CPT-1 or knockdown of ACC gene expression significantly

reduces GSIS (120, 140, 141). Additionally, knockdown and over-expression of PPARa

increases and decreases GSIS, respectively (142, 143). Thus, GSIS involves the

formation of endogenous FAs and lipid signaling molecules, which are allowed to

accumulate when malonyl-COA levels are sufficient to block FA oxidation (100, 138,

140, 141). In support of this concept, reducing malonyl-CoA levels by over-expressing

cytosolic malonyl-COA decarboxylase (MCDc) increased FA oxidation, decreased FA

esterification, and reduced GSIS in the presence of endogenous FFA, a more

physiologically relevant state (100). The above studies show that synthesis of malonyl-

CoA plays an important role in GSIS by blocking the elimination of FA-CoAs through

FA oxidation, resulting in the accumulation of lipid signaling molecules that can

participate in insulin secretion.
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2.4.2. Free Fatty Acid, Long Chain Fatty Acyl-CoA, and Diacylglycerol

Inhibition of FA oxidation by malonyl-CoA permits pancreatic B-cell

accumulation of lipid signaling molecules, such as FFA, long-chain FA-CoA (LC-CoA),

and DAG. Exocytosis of insulin granules is a complex process involving granule

synthesis, transport to the plasma membrane, docking, priming, and membrane fusion

and release of insulin (144). FFA, LC-CoA, and DAG enhance insulin release through a

number of mechanisms.

Intracellular FFA and LC-CoA levels are tightly regulated. Although de novo

synthesized FAS can be rapidly converted to LC-CoA for incorporation into complex

lipids, production of FFAs themselves could affect insulin release (99). Exposure to

elevated glucose and exogenous FFA increases synthesis of intracellular lipid signaling

molecules as well as activates islet B-cell G protein-coupled receptors, which enhances

GSIS (145). GPR40 (or FFAl receptor) is highly expressed in rodent and human islets

(145, 146) and was identified to bind exogenous FFAs. The effect of GPR40 activation

by FFA on GSIS involves increased intracellular Ca2+ levels through release of ER Ca2+

stores via the Gorq-phospholipase C pathway (147). Knockdown of GPR40 in mice,

however, demonstrated that its activation accounts for only half of the exogenous FFA

enhancement of GSIS, supporting the role of FFA-induced increases in additional

endogenous lipid signaling molecules (148). In addition to circulating FFA, B-cells have

been shown to release FFA when treated with elevated glucose (149). In this way, FFA-

mediated GPR40 activation could be a possible mechanism for amplification of GSIS by

endogenously synthesized FA.
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Elevated synthesis of LC-CoAs enhance GSIS by increasing the acylation of

proteins directly involved in insulin granule exocytosis. Protein acylation is necessary

for membrane targeting of specific proteins known to be involved in fusion of granules

with the plasma membrane, such as synaptosomal-associated protein-25 and

synaptogamin (150, 151). LC-CoAs were further shown to increase islet lipase activity

(152). As discussed in the next section, this could provide an additional mechanism for

amplifying the production of lipid signaling molecules. Additionally, glucose stimulation

of B-cells also alters the specific species of LC-CoAs that are incorporated into

phospholipids (110), which could cause membrane remodeling and effect granule fusion.

DAG is also rapidly synthesized de novo in B-cells by acute exposure to elevated

glucose (108, 110, 153). Generation of DAG by elevated glucose has been implicated in

GSIS through activation of various DAG binding proteins. DAG binding proteins

include protein kinase C isoforms (PKCs), protein kinase D (PKCu), chimaerins, Ras

guanyl nucleotide-releasing proteins, mammalian homolog of caenorhabditis elegans

UNC13 protein (Munc-13s), and DAG kinases (154). In B-cells, glucose stimulates the

phosphorylation of many proteins, in part, through PKC (155), which occurs through

both Ca2+-dependent (classical) and —independent (novel) PKC isoforms. Studies in B-

cells have additionally demonstrated that glucose promotes the translocation of PKCs

(155-157). Roles both for and against PKC activation in the mechanism of GSIS have

been presented. This is in part due to the lack of isoform specific PKC inhibitors and the

existence of compensatory mechanisms regulating protein phosphorylation that hinder

the determination of which PKCs are directly involved in GSIS (158). Thus, a role for

specific PKC isoforms in GSIS cannot be withdrawn. Enhanced activity of Munc-l3
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potentiates normal GSIS in vitro, and islets from mice lacking Munc-13 had reduced

insulin secretion and abnormal glucose tolerance (159, 160). This is in agreement with

the role Munc-l3 binding to DAG and being involved in synaptic granule priming (161).

2.5. Lipolysis and Glycerolipid/Fatty Acid Cycling

In addition to de novo synthesis, lipid-signaling molecules can also be generated

from lipolysis of glycerolipids. Lipolysis describes the activity of lipase-catalyzed

hydrolytic removal of FAS from a range of complex lipids. The final products of

glycerolipid lipolysis are FFAs and glycerol, the latter of which cannot be reactivated to

glycerol-3-phosphate for lipid synthesis in B-cells due to the absence of glycerol kinase

gene expression (162). Thus, measurement of extracellular glycerol content is used as an

index of lipase activity. Interestingly, rat islets and B-cells stimulated with elevated

glucose have increased glycerol release (99, 163, 164), which correlates with increased

activity of a number of lipases (described below) (164-167). The combination of

enhanced lipolysis and increased synthesis of glycerolipids suggested FFAs released by

lipolysis could be rapidly reincorporated into glycerolipids, creating a glycerolipid/FA

cycle capable of enhancing the generation of lipid signaling molecules (99). In light of

the fact that glucose modulates lipase activity, a number of studies have identified various

lipases capable of contributing to GSIS.

2.5.1. Neutral Glycerolipid Lipolysis

2.5.1.1. Hormone-Sensitive Lipase

Glycerolipid/FA cycling in B-cells has emerged as a new metabolic pathway

possibly involved in GSIS‘(99). Although it remains to be determined as to which pool

of glycerolipids is most important, studies have drawn attention to neutral glycerolipids,

28



Specifically

actiVlU' inC

adiponumn‘

was the {IN

(174, 175)-

mice general

responses (I ‘

mice. demon

Additionall}'~

TAG (168, l'

DAG was 001

maybe througl

(178,179). In

with a fl-Cell 5

phase of insul i

(1781. Taken 1

exocytosis.
but

2.5.1.2. Adipos

Enzyma

showed
that th-

(168,170, 177

 
lhan adiponutrgi

Regulation of

 



specifically TAG and cholesterol ester (CE). Lipases known to have TAG lipolysis

activity include hormone-sensitive lipase (HSL), adipose tissue TAG lipase (ATGL), .

adiponutrin, G82, and carboxylesterase 3, also termed TAG hydrolase (168-173). HSL

was the first TAG lipase identified to be expressed in B-cells and regulated by glucose

(174, 175). A role for HSL in GSIS has been unclear as independent lines of HSL null

mice generated on different genetic backgrounds exhibited inconsistent insulin secretory

responses (163, 176). Lipolysis was still present and activated by glucose in HSL null

mice, demonstrating the presence of other lipases involved in B-cell function (163).

Additionally, HSL has a higher substrate preference for DAG, MAG, and CE than for

TAG (168, 177). Studies found the hydrolysis of neutral cholesterol esters rather than

DAG was completely blocked in HSL null mice and that its effect on insulin secretion

maybe through directly regulating membrane cholesterol levels and granule exocytosis

(178, 179). In fact, HSL was found localized on insulin granule membranes (180). Mice

with a B-cell specific deletion of HSL were found to have significantly reduced first-

phase of insulin release, thus showing that HSL has a direct role in insulin exocytosis

(178). Taken together, these studies show that HSL may participate in insulin granule

exocytosis, but HSL is not the key TAG lipase linked to GSIS.

2.5.1.2. Adipose Triacylglyceride Lipase

Enzymatic characterization of ATGL, adiponutrin, GS2, and carboxylesterase 3

showed that these lipases have a higher activity for TAG than DAG compared to HSL

(168, 170, 172, 173). Recently, ATGL gene expression was identified to be much higher

than adiponutrin, GSZ, and HSL in both rat islets and the INS832/13 B-cell line (165).

Regulation of ATGL gene expression was found to be reduced in islets of fed versus
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fasted rats, and this correlated with reduced ATGL gene expression when B-cells were

exposed to long-term elevated concentrations of glucose (165). Knockdown of ATGL

gene expression in B-cells reduced TAG lipase activity, increased TAG content, and

decreased insulin secretion in response to glucose, exogenous FA, and the incretin

hormone glucagon-like peptide-1 (165). Similarly, isolated islets from ATGL null mice

displayed increased TAG content and decreased glucose- and exogenous FA-stimulated

insulin secretion (165). In both B-cells and mouse islets with reduced ATGL expression,

however, there was no change in total glycerol release. The absence of a change in total

glycerol release demonstrates a compensatory mechanism that could be activated to

maintain lipolytic activity. This is at odds with ATGL having a major role in total

glycerol release. The authors propose that B-cells contain fuel—insensitive and —sensitive

TAG pools. Fuel-sensitive TAG pools localized close to insulin granules could then be

regulated by ATGL and other TAG/FA cycling enzymes and provide lipid signaling

molecules that participate in insulin secretion.

2.5.2. Phospholipases C and D

Glycerophospholipids represent a considerable pool for glycerolipid/FA cycling

of de novo and exogenously derived FAs for participation in GSIS. As described above,

Ca2+ influx upon exposure to elevated glucose signals for insulin release through both

direct and indirect mechanisms. Of these mechanisms, influx of Ca2+ activates

phospholipase C (PLC), which cleaves phosphatidylinositol to generate inositol

phosphates and DAG (166, 181). Insulin secretion from glucose-stimulated B-cells

parallels an increase in the release of inositol phosphates (166), which can amplify insulin

secretion by activating the release of Ca2+ from intracellular stores (182-184).

30



 

Compared 10 ml

pronounced and

This reduced SCC

islets by phamtak

studies it is apt

phosphatidylinos

Phosphol

choline and pho

phosphatidic
aci

mammals, PLD

PLD2 was local

trafficking,
endt

The release of l

promoting
curtl

“891 Interest

phOSPhOrylatior

phOSPhatase or

membrane fuS i

 
knockdown of

lllSllllll
granUlg

phOSphatidic '4

o .

  



Compared to rat islets, the second—phase of insulin release in mouse islets is less

pronounced and coincides with lower levels PLC expression and activity (166, 185).

This reduced second-phase in mouse islets could be elevated to levels comparable to rat

islets by pharmacological activation of PLC or DAG binding proteins (166). From these

studies it is apparent that active release of inositol and DAG by PLC lipolysis of

phosphatidylinositol has a role in GSIS.

Phospholipase D (PLD) catalyzes the hydrolysis of phosphatidylcholine to

choline and phosphatidic acid. Subsequent dephosphorylation of phosphatidic acid by

phosphatidic acid phosphatase can also generate DAG. Two isoforms of PLD exist in

mammals, PLDl was found in the Golgi apparatus and on intracellular vesicles, while

PLD2 was localized primarily to the plasma membrane (186, 187). Intracellular vesicle

trafficking, endocytosis, and exocytosis are associated with increased PLD activity (188).

The release of phosphatidic acid derived from PLD likely aides in membrane fusion by

promoting curvature of the membrane due to the small negatively charged head-group

(189). Interestingly, PKC is able to activate PLD by direct interaction rather than

phosphorylation (186). Thus, it is feasible that generation of DAG from phosphatic acid

phosphatase or PLC could induce translocation of PKC to activate PLD and facilitate

membrane filSIOD. In B-cells, GSIS was elevated and reduced by over-expression and

knockdown of PLD], respectively (167). In addition, PLDl was partially localized to

insulin granules (167). These findings suggest PLD may have two roles, one to provide

phosphatidic acid for glycerolipid/FA cycling and another to directly effect insulin

granule exocytosis.
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2.5.3. Phospholipase A2

Lipolysis of glycerophospholipids by phospholipase A at either the sn-1 (PLAl)

or sn-2 (PLA2) position generates FFA and lysophospholipids, the latter of which can

also contribute to glycerolipid/FA cycling and act in signal transduction (190). In rodent

and human islets, a Ca2+-independent ATP-sensitive PLA2 (iPLAZB) was identified with

specific activity towards arachidonic acid at the sn-2 position (191). Arachidonic acid

(AA) comprises approximately thirty percent of the total glycerophospholipid FA mass in

rodent islets (192), and free AA accumulates in islets stimulated with glucose (193).

Inhibition of potassium channels by ATP is amplified by increased cytosolic AA (194),

and in vitro studies showed knockdown and over-expression of iPLA28 reduced and

amplified GSIS, respectively (195, 196). In mice, however, failure of iPLAZB over-

expression to amplify GSIS and inconsistencies in iPLA2l3 knockdown mice question

whether iPLA2B is involved in normal glucose homeostasis (190, 197, 198).
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Figure 1.6. Proposed model for the role of FA metabolism in glucose-stimulated

insulin secretion. Glucose stimulation drives the generation of pyruvate (Pyr), which

enters the TCA cycle to modulate ATP production and undergoes pyruvate cycling to

generate NADPH. Mitochondrial cataplerosis and pyruvate cycling increase the level of

malonyl-CoA, which blocks FA oxidation. De novo and exogenous FFAs are converted

to LC-CoA and esterified to glycerol 3-phosphate (Gly3P) to enter into the

glycerolipid/FA cylc (GL/FA cycle). Finally, the combination of GL/FA cycle-mediated

generation of lipid signaling molecules (LSM), such as DAG, increased NADPH, and

increased ATP/ADP ratio signal the B-cell to secreteinsulin.
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3. Glucose and Fatty Acid Mediated Pancreatic fi-Cell Dysfunction

3.1. Glucotoxicity vs. Glucolipotoxicity in Type 2 Diabetes

Type 2 diabetes (T2D) is characterized by insulin resistance and pancreatic B-cell

dysfunction, due to both genetic and environmental factors, that results in the inability to

maintain glucose homeostasis. In the early stages of the pathogenesis of T2D, the onset

of insulin resistance causes glucose levels to rise and triggers B-cell compensatory

responses that include increased synthesis and secretion ‘of insulin. T2D ensues when [3-

cells fail to secrete sufficient amounts of insulin to maintain norrnoglycemia.

Glucotoxicity and glucolipotoxicity have been proposed to underlie this progression of B-

cells from compensation towards dysfunction and eventually failure (3, 199). Sustained

periods of hyperglycemia are associated with adverse effects on the B-cell such as

diminished GSIS, decreased insulin gene expression, and apoptosis, collectively referred

to as glucotoxicity (4, 199). In obesity-associated T2D, hyperglycemia is often

accompanied by hyperlipidemia and elevated levels of plasma FFAs, which also

contribute to B-cell dysfunction (200-202). Damage due to chronic elevations in FFAs,

referred to as lipotoxicity (203), was found to require FA esterification and to be

dependent upon elevated glucose (3). This concept of B-cell dysfunction from the

combination of glucose and FAs is defined as glucolipotoxicity (3). The major

mechanisms accounting for the effects of both glucotoxicity and glucolipotoxicity

recognized thus far are reviewed in the following sections.
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3.2. Mechanisms of B-Cell Failure

3.2.1. Endoplasmic Reticulum Stress

Hyperglycemia signals B-cells to continuously synthesize and secrete large

quantities of insulin. Over time, the rate of insulin translation exceeds the protein folding

capacity of the B-cell endoplasmic reticulum (ER), causing accumulation of unfolded

proteins (204). If sustained, buildup of unfolded proteins causes ER stress and activation

of the unfolded protein response (UPR). The UPR acts to reduce ER stress, preserve ER

integrity, and prevent cell death. Transduction of this response is mediated by the ER

transmembrane proteins inositol requiring ER-to-nucleus signal kinase (IRE) 1, double-

stranded RNA-activated kinase (PKR)-like ER kinase (PERK), and activating

transcription factor (ATP) 6 (204). BR stress induces IREl dimerization and

autophosphorylation to gain endoribonuclease activity and splice the mRNA encoding X-

box binding protein (Xbp) 1 (204). Spliced Xbpl (Xbpls) protein transcriptionally

activates genes involved in expansion of the ER, protein maturation, protein folding and

export from the ER, degradation of misfolded proteins, and lipid metabolism (205-210).

PERK and ATF6 remain inactive in the ER by binding with the ER chaperone Ig heavy

chain binding protein (BiP, also known as GRP78 and HSPAS) on the luminal side of

membrane and are activated as BiP detaches from the membrane to assist in protein

folding (211-214). PERK phosphorylates and inactivates eukaryotic translation initiation

factor (eIF) 2a, leading to decreased translation of most proteins except some specific

proteins such as ATF4 (215, 216). ATF4 induces genes important for amino acid import

and resistance to oxidative stress (217). Activated ATF6 is translocated to the Golgi,

cleaved, and transported into the nucleus to initiate transcription of ER chaperone genes
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such as BiP, enhancing ER protein folding capacity (218, 219). Together, IREI, PERK,

and ATF6 pathways act to preserve ER function, which if not maintained can lead to B-

cell failure and ultimately cell death (204).

Rat islets cultured in elevated glucose demonstrated that glucotoxic conditions

can induce the UPR, exhibiting activation of IREl (by increased Xbpls) and ATF6 (by

increased BiP expression) (220). This correlates with increased Xbpls and BiP

expression in T2D human islets cultured in elevated glucose compared to non-diabetic

controls (221). Exposure of B-cells to elevated concentrations of exogenous FFAs also

activates UPR pathways. Multiple B-cell line models treated with the saturated FA

palmitate significantly induces Xbpls, eIF20t phosphorylation, and protein levels of

ATF4 and ATF6 (222-224), whereas only minimal ER stress is elicited by the MUFA

oleate, Activation of all three UPR pathways by palmitate was demonstrated in human

islets as well (222). These effects in a B-cell line could be partially reversed by over-

expressing the ER chaperone BiP (224). In addition to UPR pathways, electron

microscopy of B-cells treated with palmitate and pancreatic sections from T2D patients

observed alterations in B-cell ER integrity reflected as distention of the ER (221, 223).

Thus, the inability to maintain proper ER function in the B-cell could be a significant risk

factor for the development of T2D.

3.2.2. Oxidative Stress

Pancreatic B-cells have low levels of antioxidant enzymes compared with other

tissues (225, 226), rendering fi-cells particularly susceptible to oxidative stress. Elevated

production of reactive oxygen species during chronic hyperglycemia is detrimental to B-

cells (4). Pathways through which ROS can be produced from elevated glucose include
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oxidative phosphorylation, glyceraldehyde autoxidation to methylglyoxal and glycation,

a-ketoaldehyde formation and glycosylation, DAG activation of PKCs, hexosamine

metabolism, and sorbitol metabolism (227). In B-cell lines and isolated islets, approaches

to reduce ROS production by use of antioxidants and over-expression of antioxidant

enzymes protected from chronically elevated glucose-induced decreases in insulin gene

expression, transcription factor binding to the insulin gene promoter, and GSIS (4, 228,

229). This demonstrates B-cell firnction is significantly affected by chronic

hyperglycemia-induced oxidative stress. The involvement of oxidative stress in FA-

mediated B-cell dysfunction, however, remains unclear, as evidence both for and against

a role ofFAs in oxidative stress have been presented (230, 231).

3.2.3. Malonyl-CoA Inhibition of Fatty Acid Oxidation and Lipid Accumulation

Generation of malonyl-CoA via ACC activation during short-term glucose

exposure is essential to normal B-cell GSIS due to the ability of malonyl-CoA to interact

with CPT-1 and inhibit FA oxidation. Chronic hyperglycemia, however, continuously

drives malonyl-CoA production and subsequent synthesis and storage of FAs into TAG,

which has been linked to diminished B-cell GSIS (199, 232). The effects of chronic

hyperglycemia on de novo lipogenesis, TAG accumulation, and loss of B-cell function

was found to correlate with elevated nuclear SREBP-1c in diabetic islets (233, 234).

Over—expression of a constitutively active nuclear SREBP-1c in islets and B-cell lines

also resulted in increased lipogenesis and reduced GSIS (116, 235). This suggested that

sustained glucose-stimulated lipogenesis and TAG accumulation via SREBP-1c

activation facilitated diminished GSIS.
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SREBP-1c has also been implicated in glucolipotoxicity during B-cell exposure to

elevated levels of exogenous FFAs. Treatment of islets with elevated palmitate increased

lipogenic gene expression and the nuclear form of SREBP-1c, increased TAG content,

and decreased GSIS (236). These effects were prevented by treatment with

eicosapentaenoate (20:5,n-3), which is known to reduce SREBP-1c processing (236).

More direct evidence of a relationship between malonyl-CoA and FA oxidation comes

from examination of palmitate-induced B-cell death. Elevating FA oxidation through

AMPK and PPARa activation protected B-cells from palmitate-induced cell death,

whereas blocking CPT-l activity increased susceptibility to cell death from palmitate

(237, 238). Together, these studies demonstrate that the intracellular capacity to

modulate FA synthesis and oxidation could significantly predispose B-cells to the

damaging effects of glucotoxicity and glucolipotoxicity.

3.2.4. Dysregulated Glycerolipid/Fatty Acid Cycling

The role of glycerolipid/FA cycling in normal fi-cell function, particularly GSIS,

relies on balanced synthesis and turnover of neutral lipid pools. To determine if

excessive TAG synthesis was directly implicated in the loss of GSIS during chronic

hyperglycemia, the final step ofTAG synthesis in islets was increased by over-expression

of DGATI (239). Elevated DGATl increased TAG accumulation and reduced GSIS,

demonstrating that a loss of B-cell function may occur without a paralleled increase in

TAG turnover (239). In line with this idea, knockdown of the TAG lipase ATGL

reduced TAG turnover as well as GSIS (165). Conversely, excessive neutral lipid

hydrolysis by over-expression of HSL also impairs GSIS (240), further supporting the

importance of balanced lipid synthesis and turnover for normal B-cell function. In
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addition to glucotoxicity, exogenous saturated FAs are incorporated less efficiently into

TAGS than MUFAs, which coincides with diminished GSIS and increased cell death

caused by saturated FAs (241). These studies show that dysregulation of glycerolipid/FA

cycling contributes to (El-cell dysfunction.

3.2.5. Apoptosis-Mediated Loss of B-Cell Mass

Reduced B—cell mass, or number of B-cells, that occurs naturally or due to B-cell

failure and apoptosis is a critical factor in the development of T2D. In obese individuals,

the level of fasting plasma glucose inversely correlates with the average percent of [3-

cells occupying the whole pancreas (242). Although the mechanisms are not entirely

clear, loss of B-cell mass has been attributed to both ER and mitochondrial induction of

apoptosis. Unresolved ER stress can induce apoptosis via pathways that include the

ATF4-mediated transcription of the proapoptotic genes CCAAT/enhancer binding protein

(C/EBP) homologous protein (CHOP) and ATF3 (243, 244) and [RBI-mediated

activation of c-Jun N-terminal kinase (JNK) (245, 246). CHOP induction is increased in

islets cultured in hyperglycemic conditions, exposed to elevated palmitate concentrations,

and from human T2D patients (220, 222, 224). Protection from B-cell death by CHOP

deletion in multiple diabetes models further demonstrated CHOP to be a major

component of ER stress-mediated apoptosis (247). Activation of JNK affects multiple

pathways, such as CHOP induction, and inhibition of JNK activity in fi-cells partially

protects from palmitate-induced apoptosis (222). In addition to the IREl and PERK

pathways, palmitate-induced B-cell ER stress depleted Ca2+ from the ER (222), which

can trigger mitochondrial release of cytochrome C and initiation of the caspase—9 cascade

(248, 249). This cascade in part causes deoxyribonuclease-mediated DNA degradation
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(250), an effective marker for palmitate-induced (fl-cell apoptosis (223, 224).

Mitochondrial release of cytochrome C has also been associated with generation of ROS

(251). Taken as a whole, this illustrates that (fl-cell dysfunction from exposure to chronic

conditions of glucotoxicity and glucolipotoxicity can lead to the induction of downstream

apoptotic pathways and contribute to reduced B-cell mass.
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Figure 1.7. Mechanisms involved in B-cell dysfunction from glucolipotoxicity.

Chronically elevated glucose drives malonyl-CoA synthesis, which blocks mitochondrial

FA oxidation by inhibition of CPT-1. Next, LC-CoAs formed from de novo and

exogenous saturated FA (SFA) are mostly driven towards glycerolipid storage as TAG.

Accumulation of endogenous glucose metabolites and SFA-CoAs causes ER and

oxidative stress to the B-cell, displaying activation of the unfolded protein response

(UPR) and generation of reactive oxygen species (ROS). Sustained UPR activation and

ROS generation lead to diminished glucose-stimulated insulin secretion, decreased

insulin gene expression, and ultimately a loss of B-cell mass.
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3.3. Evidence and Mechanisms of B-cell Compensation

Prior to the onset of T2D, B-cells are capable of activating various compensatory

mechanisms to com with the increased demand for insulin secretion and to prevent B-cell

failure from glucolipotoxicity. Of these mechanisms, regulation of FA metabolism

through enhanced lipogenesis, glycerolipid/FA cycling, and MUFA synthesis have been

identified to participate in B-cell compensation.

3.3.1. SREBP-1c and Liver X Receptors

In animal models of T2D, diminished GSIS has been associated with increased

expression of SREBP-1c and TAG accumulation in islets, and this led to the hypothesis

that increased neutral lipid storage via SREBP-1c activation was toxic to B-cells (233).

The link between SREBP-1c activation and loss of GSIS was shown by over-expression

of a constitutively active form of SREBP-1c, which forced lipogenic gene expression,

increased TAG synthesis, and reduced GSIS (116). This idea, however, was contradicted

by studies showing that the ability of islets to compensate for chronic hyperglycemia by

secreting more insulin was dependent on SREBP-1c (234). In the Zucker diabetic fatty

(ZDF) rat, increased islet SREBP-1c expression coincides with elevated lipogenesis and

decreased GSIS (233). It was recently shown, however, that over-expression of a

dominant negative SREBP-1c in ZDF rat islets prevented the increase in lipogenic gene

expression and TAG content, but it did not correct for the diminished GSIS (252). In

addition to SREBP-1c, activation of LXRs with the synthetic agonist T0901317 in

isolated rat islets and fi-cell lines increased nuclear SREBP-1c accumulation, lipogenic

gene expression, and TAG content as well as elevated both basal and GSIS under normal

culture conditions (5, 118). Although elevated insulin secretion from LXR-activated (3-
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cells was inhibited by knockdown of SREBP-1c (253), its mechanism is still unknown.

Furthermore, it remains to be determined if LXR activation can enhance insulin secretion

from B-cells cultured chronically in hyperglycemic conditions. Together, these studies

suggest that enhanced de novo lipogenesis may have a critical role in B-cell compensation

in response to glucotoxic and glucolipotoxic conditions.

3.3.2. Glycerolipid/Fatty Acid Cycling

Dysregulation of glycerolipid/FA cycling in (i-cells has been shown in various

models to cause reduced GSIS. This implies that balanced incorporation and turnover of

FAs into glycerolipids is important for maintenance of B-cell function. Unlike the ZDF

rats, obese Zucker fatty (ZF) rats exhibit insulin resistance but maintain norrnoglycemia.

The ability of ZF rats to maintain glucose homeostasis was associated with enhanced (3-

cell glucose- and FA-stimulated insulin secretion compared to lean control rats (104). ZF

rat islets were identified to have increased glucose-responsive capacities for FFA

esterification and lipolysis, evidence of enhanced glycerolipid/FA cycling (104).

Inhibition of lipolysis by the general lipase inhibitor orlistat blocked the increased insulin

secretory response (104). In addition, FA oxidation tended to be elevated as well (104),

indicating ZF islets may have enhanced activation of pathways for detoxification of

excess FFAs. This in vivo evidence demonstrates that enhancing both synthesis and

turnover of glycerolipids in B-cells may significantly reduce susceptibility to developing

T2D in obese individuals.

3.3.3. Monounsaturated Fatty Acid Synthesis

Elevated TAGS often occur in obesity-associated T2D and has been correlated

with high expression and activity of SCD] in adipose and liver (254). In rodent models
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lacking SCDl expression, TAG levels remain low and these animals are protected from

high fat- and high carbohydrate-diet induced obesity and T2D (48, 255), suggesting that

SCDs could be potential pharmacological targets for the treatment of these conditions.

One study, however, showed that deletion of SCDl in mice that are genetically

susceptible to obesity and T2D resulted in an earlier onset of T2D (256). This effect was

associated with the accumulation of saturated FAs in islets and diminished GSIS (256),

suggesting SCDl expression and activity is important for maintenance of fi-cell function.

In agreement with this hypothesis, rat islets and B-cell lines with naturally occurring high

levels of SCD] expression are protected from palmitate-induced cell death (6, 257). It is

likely, however, that altered expression of other genes could also be involved as well.

For example, the subpopulation of palmitate-resistant B-cells from the MIN-6 B-cell line

also exhibited increased expression of CPT-1 and enhanced FA oxidation, which would

contribute to the detoxification of palmitate (6). Whether over-expression of SCD by

itself can protect (ft-cells from saturated FA-induced dysfunction remains to be

determined. Intriguingly, the SCD2 isoform is highly expressed in rat islet B-cells (257),

raising the question of whether SCD2 has a significant role in islet B-cell function.

44



4. Statemen

Reg1

lucolipoto

n
o

to be depei

mediated r:

activation c

bOIh basal

glucose. 11

nova lipoge

found that

S}nthesis, a

SCDS, the 1

Wm 5.1711

assays, I ex

MUFA S,Vn1

e1Gilgation i

Elongation, [

and lSlets fr

the effects .

lunction in r

“mm/2951':

Slg’llficaml;

 



4. Statement of Problem and Specific Aims

Regulation of FA metabolism significantly affects pancreatic B-cell responses to

glucolipotoxicity. The role of SREBP-1c in B—cell compensation versus failure appears

to be dependent on the level of its activation. Using a synthetic LXR agonist, LXR-

mediated regulation of SREBP-1c provides a way to examine the effects of moderate

activation of lipogenesis on B-cell function. Our lab identified LXR activation to elevate

both basal insulin secretion and GSIS from INS-l B-cells chronically cultured in high

glucose. In light of this finding, I explored the effects of LXR activation on B-cell de

nova lipogenesis and the mechanism of elevated insulin secretion. During this research I

found that LXR-activated B-cclls have an enhanced capacity for de nova MUFA

synthesis, and this coincided with increased expression of SCDl and SCD2. Unlike

SCDs, the rate-limiting enzymes for MUFA synthesis, role of FA elongases in de nova

MUFA synthesis is unknown. Thus, based on known substrate specificity elongation

assays, I examined the effects of altered Elovl-5 and Elovl-6 expression on de nova

MUFA synthesis. In contrast to the liver, less is known about FA desaturation and

elongation in B-cells. To better understand the role of B-cell FA desaturation and

elongation, I characterized FA desaturase and elongase gene expression in INS-1 B-cells

and islets from the ZDF rat model of progressive B-cell failure. In addition, I examined

the effects of altering SCD2 and Elovl-6 expression on B-cell FA metabolism and

function in response to elevated levels of exogenous saturated FAS.

I hypothesized that modulation ofde nova lipogenesis and monounsaturated FA synthesis

significantly effects pancreatic ,B-cell compensation in response to glucolipotoxicity.
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The specific aims are:

Aim 1: To characterize the effects of LXR-activation on de nova FA and neutral lipid

synthesis and to determine which aspects of FA metabolism contribute to elevated basal

insulin release and GSIS during chronic hyperglycemia.

Aim 2: To define the roles of the FA elongases Elovl-5 and Elovl-6 in the de nova

synthesis ofMUFAs.

Aim 3: To characterizes the expression of FA desaturase and elongase genes in a setting

of progressive B-cell failure and to examine the effects of altering the expression of genes

involved in MUFA synthesis on fi-cell FA metabolism and viability in response to

exogenous saturated FAs.

The findings from this research will contribute to the understanding of how regulation of

FA metabolism effects B-cell compensation in response to glucolipotoxicity.
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Chapter 2. Materials and Methods

1. Materials. T0901317 was purchased from Cayman Chemical (Ann Arbor, MI).

Palmitic acid was from Nu-Chek Prep, Inc. (Elysian, MN). [1-14C]palmitic acid and D-

[5-3H]glucose were from PerkinElmer Life Sciences (Boston, MA). [2-14C]acetic acid

and D-[U-14C]glucose were from ICN Pharmaceuticals, Inc (Costa Mesa, CA). Fatty

acid-free BSA for insulin secretion studies was from Roche Applied Science

(Indianapolis, IN). Fatty acid-free BSA for FA treatments was from Celliance

(Kankakee, IL). Primary antibodies used at a 1:1000 dilution, unless noted otherwise,

were phospho-JNK (pSAPK/JNK; 9255), total JNK (SAPK/JNK; 9252), and cleaved

caspase-9 (9507) from Cell Signaling Technology (Beverly, MA); SREBP-1 (IgG-2A4),

GADD153/CHOP (SC-7351) and actin-HRP (horseradish peroxidase-conjugated; sc-

1615-HRP) at 1:3300 from Santa Cruz (Santa Cruz, CA). Secondary antibodies used at

123300 were goat anti—rabbit-HRP from Vector Laboratories, Inc. (Burlingame, CA) and

goat anti-mouse-HRP from Bio-Rad Laboratories (Hercules, CA). Apoptosis ELISA kit

was from Roche Diagnostics (Cell Death Detection ELISA; Indianapolis, IN).

2. Fatty acid preparation. Palmitic acid was bound to fatty acid free BSA as described

previously (258). Briefly, stock solutions of 100 mM palmitic acid dissolved in 0.1 M

sodium hydroxide and 5% fatty acid free BSA dissolved in RPMI-1640 without glucose

were heated to 70°C and 55°C, respectively. The palmitic acid solution was then added

drop-wise into the BSA solution to make a final stock of 5 mM palmitic acid/5% BSA.

The solution was then kept at 55°C for 10 min, vortexed, brought to room temperature,

and either used immediately or stored at —20°C for up to 3 three weeks. Aliquots of the 5

mM/5% palmitic acid/BSA stocks were then thawed at 55°C for 15 min, vortexed, and
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brought to room temperature before diluting into culture media to give the final indicated

concentrations of fatty acid and BSA (0.5%).

3. Human islets. Human islets were obtained from the Juvenile Diabetes Research

Foundation Human Islet Distribution Program at the University of Minnesota, University

of Miami, and Northwest Tissue Center, Seattle. Islets were maintained in N2 medium or

RPMI-l640 plus 10% PBS containing 100 units/ml penicillin, 100 pg/ml streptomycin

and 0.5 pg/ml fungizone. For gene expression experiments, islets were cultured for three

days in N2 medium in the absence or presence of 10 pM T0901317. For lipid synthesis

experiments, islets were cultured for 36 hrs in RPMI-l640 medium containing 11.1 or

22.1 mM glucose plus 5 uM T0901317 (see below). Then incubated for 12 hrs under the

same conditions in the presence of 1 pCi [2-14C]acetic acid.

4. Animals and islet isolation. All animal procedures were approved by the institutional

animal care and use committee at Michigan State University. Sprague-Dawley rats were

from Charles River Laboratories and fed Harlan-Teklad laboratory chow (No. 8640) prior

to islet isolation between 8-10 weeks old. Male fa/fa Zucker Diabetic Fatty rats (ZDF-

Leprfa/Crl and lean controls (fa/1’) received at 4 and 11 weeks of age were purchased

from Charles River Laboratories and fed the Purina 5008 diet. All animals were kept on

a 12:12 hr lightzdark cycle with food and water ad libitum. At 6 and 13 weeks of age,

ZDF rats were weighed and blood glucose measured. Prior to islet isolation, blood was

collected from the abdominal aorta and plasma insulin levels were measured using a Rat

Insulin Radioimmunoassay (RIA) kit (Millipore, Billerica, MA). Islets were dissociated

from pancreatic tissue by collagenase digestion and isolated by hand.
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5. INS-l cell culture. INS-1 cells were routinely cultured in INS-l media (RPMI-1640

media containing 11.1 mM glucose, 10% FBS, 1 mM pyruvate, 10 mM Hepes, 50 uM 2-

mercaptoethanol, 100 units penicillin/ml and 100 ug streptomycin/ml) as previously

described (259). In all experiments, cells were seeded at a density of 0.2x106 cells per

cm2 and cultured for 24 or 48 hrs in INS-l media. Cells were then cultured for 48 hrs in

INS-1 media containing 4 or 16.7 mM glucose and vehicle or 10 uM T0901317. For

fatty acid treatments, cells were cultured for the indicated times in a modified INS-1

media containing 0.5% FBS and palmitate complexed to BSA as described below.

6. siRNA treatment. Control, Elovl—5, Elovl-6 and SCD2 siRNA were from

Dharmacon, Inc. (Lafayette, CO). siRNAs were introduced into cells by electroporation

using the Amaxa Nucleofector (program D-026, Gaithersberg, MD) in electroporation

buffer (7 mM ATP, 11.6 mM MgC12-6H20, 68 mM K2HPO4, 14 mM NaHCO3, and 2.2

mM glucose). Cells were cultured for 24 hrs in INS-l media and subsequently treated

with modified INS-1 media containing increasing concentrations of palmitic acid without

or with 1 uM G66976 for the indicated times. Cells were then harvested for mRNA and

protein analysis, and apoptosis (see below). For FA and complex lipid analyses using

palmitate, electroporated cells were cultured for 24 hrs in INS-1 media followed by 12 hr

treatment with modified INS-l media plus 400 MM palmitic acid and luCi [1-

14C]palmitic acid. For de nova FA analysis, cells were cultured for 24 hrs in 5.5 mM

glucose and subsequently cultured for 24 hrs in INS-1 media containing 11.1 mM

glucose. Cells were then harvested for mRNA analysis or continued culturing overnight

with 1 uCi [2-14C]-acetic acid (51 mCi/mmol, ICN Pharmaceuticals, Inc., Coasta Mesa,

CA), after which lipids were extracted and analyzed for MC incorporation.
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7. Adenovirus preparation. Elovl-5 and Elovl—6 cDNA were cloned and used for

construction of recombinant adenoviruses as previously described (35). SCD2 cDNA

was cloned into TOPO plasmids (Invitrogen) from reverse transcribed INS-1 cell mRNA

using the following primers: sense 5’-

ATAGTCGACATGCCGGCTCACATACTGCAAGAG-3 ’; antisense 5 ’-

ATACTCGAGTCAGCCACTCTTGCAGCTCTCCTCCCC-3’ (Acc. No. AB032243). A

recombinant adenovirus over-expressing SCD2 was constructed using the Adenoviral

Vector System (Stratagene). In short, the coding regions of SCD2 were ligated into

pShuttle-CMV, recombined with pAdEasy—l in BJ5183 cells, propagated in XL10 Gold

ultracompetent cells, and packaged into adenoviral particles in Ad—293 cells.

Adenoviruses were further amplified and then titered in HEK293 cells using the Adena-X

Rapid Titer kit (Clontech, Mountainview, CA). An adenovirus over-expressing [3-

galactosidase was obtained from Dr Newgard, Duke University, North Carolina. For

transduction of genes into INS-l cells, 90% confluent cell cultures were infected for 2 hrs

with 5 or 10 pfu per cell and then cultured for an additional 24 hrs in 5.5 or 11.1 mM

glucose INS-1 media to allow for gene expression. Afierwards, cells were treated for the

indicated times in modified INS-1 media without or with increasing concentrations of

palmitic acid. Cells were then harvested for protein analysis and apoptosis. For FA and

complex lipid analyses using palmitate, cells were infected for 2 hrs, cultured for 24 hrs

in INS-l media, and treated with 400 uM palmitic acid with 3 uCi [1-14C]palmitic acid

for 12 hrs prior to lipid extraction. For de nova FA analysis, cells were cultured in INS-l

media containing 11.1 mM glucose with 1 uCi [2-14C]-acetic acid for 24 hrs prior to

lipid extraction.
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8. RNA analysis. Total RNA was extracted using TRIZOL (Invitrogen). Levels of

mRNA in human islets were determined by real-time qPCR using Light Upon Extension

fluorogenic primers (Invitrogen, Table 2.1) as previously described (260). Relative

amounts of mRNA were calculated using the comparative cycle threshold method.

Results for human islets were normalized to the abundance of B—actin mRNA. For

rodent islets and INS-1 cells, cDNA were synthesized using iScript cDNA Synthesis kit

(Bio-Rad, Hercules, CA). Quantitative real—time (qRT) PCR was conducted by

combining synthesized cDNA and various sets of gene-specific forward and reverse

primers (Integrated DNA Technologies, Coralville, IA) with Platinum SYBR Green

qPCR SuperMix-UDG (Invitrogen). qRT-PCR reactions were carried out using the

Mx3000P quantitative PCR System (Stratagene, La Jolla, CA). The relative amounts of

mRNAs were determined by the comparative cycle threshold method. All samples were

analyzed in triplicate. Gene expression is reported relative to cyclophilin or ribosomal

protein L32 (RPL32) mRNA levels. Primers for SYBR Green qRT-PCR are listed in

(Tables 2.2 and 2.3).
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Table 2.1. Oligodeoxynucleotide sequences used for quantitative RT-PCR.

 

Light Upon Extension Quantitative RT-PCR primers

 

Name Species Direction Sequence (5’ to 3’)

B—actin Human Forward CACGCCACCTTCTACAATGAGCTGCGG#

Reverse GGTCATCTTCTCGCGGTTGG

SREBP—1 Human Forward GACGGCCTCTGGAACCTCATCCGTC§

Reverse TAGCATCCACTCGCAGAGCA

ACC Human Forward CACATGCTCCAAACCAGGCCATGTG§

Reverse GCCAGTCCACACGAAGACCA

FAS Human Forward CACCTTAACCTGGTAGTGAGTGGGAAGGTG§

Reverse CTTTCCGGGTGGTCGAAGA
 

#6-carboxy-4’,5’-dichloro-2’,7’-dimethoxy-fluorescein-labeled B-actin primer used as

internal control for all real-time RT—PCR reactions.

§6-carboxy-fluorescein—labeled forward PCR primers used for real-time RT-PCR

reactions.
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Table 2.2. Oligodeoxynucleotide sequences used for. quantitative RT-PCR.

 

SYBR Green Quantitative RT—PCR primers

 

Name Species Direction Sequence (5’ to 3’)

Cyclophilin Rat Forward CTTCTTGCTGGTCTTGCCATTCCT

Reverse TGGATGGCAAGCATGTGGTCTTTG

RPL32 Rat Forward AAACTGGCGGAAACCCAGAG

Reverse GCAATCTCAGCACAGTAAGATT

SREBP- 1 Rat Forward GATTGCACATTTGAAGACATGCTT

Reverse GGGTCCCAGGAAGGCTTCCAGAGA

ACCOt Rat Forward CGATGTI‘CTGTTGGACAACGCCTT

Reverse TCTCTGATCCACCTCACAGTTGAC

FAS Rat Forward GTGCACCCCATTGAAGGTTCC

Reverse GGTTTGGAATGCTGTCCAGGG

ABCAl Rat Forward AGCAGTTTGTGGCCCTCTTGT

Reverse TGAAGTTCCAGGTTGGGGTACTTG

ABCGl Rat Forward ATGGAAGGTTGCCACAGCTTCTC

Reverse AGTCATGGTCTTGGCCAGGTAGT

CPT-la Rat Forward AGACCGTGAGGAACTCMACCCAT

Reverse CACAACAATGTGCCTGCTGTCCTT

CPT-2 Rat Forward TCCTGCATACCAGCAGATGAACCA

Reverse ACAGTGGAGAAACTCTCGGGCATT

VLCAD Rat Forward GTGGGAATGTTCAAAGGCCAGCTT

Reverse AAGGAGTCATTCTTGGCAGGGTCA

LCAD Rat Forward AATGGGAGAAAGCCGGAGAAGTGA

Reverse GAAACCAGGGCCTGTGCAATTTGA
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Table 2.3. Oligodeoxynucleotide sequences used for quantitative RT-PCR.

 

SYBR Green Quantitative RT-PCR primers

 

Name Species Direction Sequence (:to 3’)

Insulin Rat Forward GCTTTTGTCAAACAGCACCTT

Reverse CTCCAGTGCCAAGGTCTGAAG

SCD] Rat Forward ACATTCAATCTCGGGAGAACA

Reverse CCATGCAGTCGATGAAGAAC

SCD2 Rat Forward ATGCCGGCTCACATACTG

Reverse GACCAGTGTGATCCCGTACA

D5D Rat Forward TGGAGAGCAACTGGTTTGTG

Reverse GTTGAAGGCTGACTGGTGAA

D6D Rat Forward TGTCCACAAGTTTGTCATTGG

Reverse ACACGTGCAGGCTCTTTATG

Elovl-1 Rat Forward CCCTACCTTTGGTGGAAGAA

Reverse TCCAGATGAGGTGGATGATG

Elovl-2 Rat Forward TTTGGCTGTCTCATCTTCCA

Reverse GGGAAACCGTTCTTCACTTC

Elovl-3 Rat Forward AATTCTGGTCCTGGGTCTTTC

Reverse CCAAAGCTCGTAAACAGTAGCA

Elovl-4 Rat Forward GAAGTGGATGAAAGACCGAGA

Reverse GCGTTGTATGATCCCATGAA

Elovl-5 Rat Forward ACAGCTTCATCCACGTCCTCATGT

Reverse AGCTGGTCTGGATGATTGTCAGCA

Elovl-6 Rat Forward CAACGGACCTGTCAGCAA

Reverse GTGGTACCAGTGCAGGAAGA

Elovl-7 Rat Forward TGGCGTTCAGCGATCTTAC

Reverse GATGATGGTTTGTGGCAGAG

Xbp 1 s Rat Forward GAGTCCGCAGCAGGTG

Reverse GCGTCAGAATCCATGGGA

Xbplt Rat Forward GAGCAGCAAGTGGTGGATTT

Reverse TCTCAATCACAAGCCCATGA

ATF3 Rat Forward GAAGGCACAAAGTCCCGCTTTCAA

Reverse TTCAAATACCAGTCTCCACGGGCT

CHOP Rat Forward AACTGTTGGCATCACCTCCTGTCT

Reverse TCCTCAGCATGTGCACTGGAGATT
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9. Western blot analysis. For analysis of SREBP-l protein, microsomes and nuclear

extracts were isolated as previously described (261). Proteins (30-100 pg) were resolved

by SDS-PAGE and transferred to nitrocellulose membranes as described previously

(262). Proteins were detected with specific primary antibodies and the corresponding

secondary antibodies and the bands were then visualized on film with SuperSignal West

Pico and Dura chemiluminescent kits (Thermo Fisher Scientific, Rockford, IL). Protein

bands were quantified by densitometry scanning.

10. Insulin secretion studies. INS-l cells were preincubated twice for 30 min at 37°C in

Krebs Ringer bicarbonate buffer (KRBB) (259) containing 2 mM glucose and

subsequently incubated for 60 min in KRBB containing either 2 or 20 mM glucose. For

studies using etomoxir (100 uM), orlistat (50 uM) or calphostin C (1 uM), agents were

present throughout the incubation period in KRBB. Triacsin C (10 uM) was added 5 hrs

prior to secretion studies. Verapamil (100 uM) was only present during the final 1 hr

.incubation in KRBB. Insulin released into the media and insulin content from acid-

ethanol extracted cells were determined by radioimmunoassay (Linco, St. Louis, MO).

Total cell protein was determined by Lowry assay.

11. Glucose utilization studies. Glucose usage was measured using a modification of

the method of Zawalich and Matschinsky (263) as previously described (259). Briefly,

cells were incubated for 30 min at 37°C in KRBB containing either 2 or 16.7 mM glucose

and [5-3H]glucose. Duplicate 50 ul samples were added to a tube containing 1 N HCI.

The tubes were placed in vials containing 0.5 ml of H20, sealed, and incubated at 50°C

for 18 hrs. Tubes were then removed from vials, scintillation cocktail was added, and
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samples were counted in a Beckman scintillation counter. Glucose utilization was

expressed as picomoles of glucose metabolized per min per mg protein.

12. Complex lipid analysis and fatty acid profile. For de nova lipid synthesis, INS-l

cells were cultured for 48 hrs in INS-l media containing 4 or 16.7 mM glucose and

vehicle or 10 pM T0901317. During the last 12 hrs, cells were cultured in INS-l media

containing 4 or 16.7 mM glucose, vehicle or 5 uM T0901317, and 1 uCi [2-14C]acetic

acid (51 mCi/mmol). Cells from l4C-labeling studies were harvested and lipids

extracted as previously described by Pawar et al. (264). For analysis of complex lipids,

lipid extracts were separated by thin layer chromatography (TLC) as previously described

(264). Quantification of l4C-labeled lipids was determined on a Molecular Dynamics

Phosphoimager 820.

Analysis of 14C-labeled FA profile was performed as previously described (35).

FA analysis from glucose was determined by culturing INS-1 cells for 48 hrs in 4 or 16.7

mM glucose, and during the last 24 hrs 4 or 16.7 pl of [U-14C]glucose (260 mCi/mmol)

was added to the media. Total lipid extracts from labeling studies were saponified (0.5 N

KQH in 80% methanol, 1 hr at 50°C), neutralized, extracted in diethyl ether, dried, and

resuspended in methanol and 0.1 mM BHT. FAs were then fractionated by reverse

phase-HPLC using a J’sphere ODS—H80 (YMC-Waters, Milford, MA) column and

quantified by flow-through scintillation counting (IN/US Systems, Inc., Brandon, FL).

Total FAS were quantified by evaporative light scatter, and unsaturated FA were

quantified by UV absorption at 192 nm.

For total FA synthesis from glucose during the insulin secretion study, cells were

incubated for 1 hr with either 2 or 20 mM glucose plus 4 or 40 pCi of [U-14C]glucose
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(260 mCi/mmol), respectively. Cells were extracted, extracts saponified, and 14C-

labeled FA quantified as described above.

Indexes of elongation and desaturation were determined using the 14C counts

incorporated into each specific FA species and calculating the ratios of product(s) to

substrate. Elongation of 16:0 and 16:1,n-7 was determined from the ratios of 18:0 plus

18:1,n-9 to 16:0 and 18:1,n-7 to 16:1,n-7, respectively. Desaturation of 16:0 and 18:0

was determined from the ratios of 16:1,n-7 plus 18:1,n-7 to 16:0 and 18:1,n-9 to 18:0,

respectively.

13. Palmitate oxidation. INS-l cells were then incubated for 1 hr in KRBB containing 2

mM glucose, after which cells were incubated for 1 hr in KRBB containing 50 uM

palmitate, 2 pCi/ml [1-14C]palmitic acid (56 mCi/mmol), and 2 or 20 mM glucose.

Palmitate oxidation was determined by measuring [14C]C02 released into the medium

using the method of Parkera et al. (265).

14. Statistical analysis. Islet studies are representative of 5 to 6 animals per group. All

INS-l cell data represent 3 to 6 independent experiments performed in duplicate.

Statistical significance was determined using one-way ANQVA followed by Bonferroni’s

multiple comparison test for more than two groups or Student’s t-test for comparing two

groups. P values < 0.05 were considered significant.
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Chapter 3.

Elevated Insulin Secretion From Liver X Receptor-Activated Pancreatic

B-Cells Involves Increased de Nova Lipid Synthesis and Triacylglyceride

Turnover

Abstract

Increased basal and loss of glucose-stimulated insulin secretion (GSIS) are

hallmarks of B-cell dysfunction associated with type 2 diabetes. It has been proposed that

elevated glucose promotes insulin secretory defects by activating sterol regulatory

element binding protein-1c (SREBP-1c), lipogenic gene expression and neutral lipid

storage. Activation of liver X receptors (LXR) also activates SREBP-1c and increases

lipogenic gene expression and neutral lipid storage, but increases basal and GSIS. This

study was designed to characterize the changes in de nova fatty acid (FA) and

triacylglyceride (TAG) synthesis in LXR-activated B-cells and determine how these

changes contribute to elevated basal and GSIS. Treatment of INS-l B-cells with a LXR

agonist T0901317 and elevated glucose led to markedly increased nuclear localization of

SREBP-1, lipogenic gene expression, de nova synthesis of monounsaturated fatty acids

and TAG, and basal and GSIS. LXR-activated cells hadincreased FA oxidation and

expression of genes involved in mitochondrial B-oxidation particularly camitine

palmitoyltransferase-l. Increased basal insulin release from LXR-activated cells

coincided with rapid turnover of newly synthesized TAG and required acyl-CoA

synthesis and mitochondrial B-oxidation. GSIS from LXR-activated INS-l cells required

influx of extracellular calcium and lipolysis suggesting production of lipid-signaling
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molecules from TAG. Inhibition of diacylglyceride (DAG)-binding proteins, but not

classic isoforms of protein kinase C, attenuated GSIS from LXR-activated INS-l cells.

In conclusion, LXR activation in B-cells exposed to elevated glucose concentrations

increases de nova TAG synthesis; subsequent lipolysis produces free fatty acids and

DAG, which are oxidized to increase basal insulin release and activate DAG—binding

proteins to enhance GSIS, respectively.

Introduction

Type 2 diabetes mellitus occurs when pancreatic B-cells fail to secrete sufficient

amounts of insulin necessary to overcome insulin resistance at peripheral tissues and to

maintain glucose homeostasis. Loss of B-cell function in type 2 diabetes has been

suggested to occur when B-cells are chronically exposed to elevated circulating glucose

and free fatty acids (FFA) — a state defined as ‘glucolipotoxicity’ (3, 4). Sterol regulatory

element binding protein 1c (SREBP-1c), a basic helix 100p helix transcription factor,

plays a major role in inducing lipogenic gene expression in liver and adipose tissue (69,

266, 267), and thereby partitions glucose towards synthesis of lipid. The ability of

elevated glucose to increase the nuclear form of SREBP-1c in B—cells (114, 115, 268) has

been proposed to serve as a possible mechanism for glucolipotoxicity, and to explain the

predominate role of elevated glucose in B-cell dysfunction (268). Consistent with this

hypothesis, expression of a constitutively active nuclear form of SREBP-1c in islets or B-

cell-lines increased lipogenic gene expression, triacylglyceride (TAG) synthesis and

storage, and suppressed glucose-stimulated insulin secretion (GSIS) (115, 116, 235, 268,
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269). Islet failure in Zucker Diabetic Fatty (ZDF) rats is also associated with increased

expression of SREBP-1c and TAG accumulation (232, 233, 270).

Although activation of SREBP-1c is an attractive mechanism to explain

glucolipotoxicity, recent reports suggest that the role of SREPB-lc in fi-cell function is

more complex. First, SREBP-1c activation and lipid synthesis are required for adaptive

changes leading to hypersecretion of insulin from mouse islets exposed to elevated

glucose concentrations (234). Second, inactivation of SREBP-1c in ZDF rat islets failed

to restore GSIS suggesting that increased SREBP-1c and intracellular TAG are not the

principal cause of B-cell secretory dysfunction (252). Third, activation of liver X

receptors (LXR) in islets and B-cell-lines increased SREBP-1c, lipogenic gene

expression, neutral lipid storage, and basal and GSIS (5, 253).

LXRor (NR1H3) and LXRB (NR1H2), are nuclear receptors involved in

transcriptional control of genes involved in cholesterol, fatty acid, and glucose

metabolism (271). LXRor is primarily expressed in liver, kidney, intestine, and

macrophages, whereas LXRB is ubiquitously expressed (78, 272). LXR is activated by

oxysterols (273) and glucose (77). In macrophages, LXR regulates reverse cholesterol

transport through increased expression of genes encoding ATP-binding cassette (ABC)

cholesterol transporters ABCAI (274) and ABCGl (275). In liver, LXR controls

transcription of genes involved in conversion of cholesterol into bile acids (273, 276) and

excretion of biliary cholesterol (277). LXR also directly and indirectly, through

increased SREBP-1c expression, activates lipogenic gene transcription including acyl

CoA carboxylase (ACC), fatty acid synthase (FAS), and stearoyl CoA desaturase l

(SCDI) and 2 (SCD2) (81, 278-280).
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LXRa and LXRB are expressed in rodent and human pancreatic islets and B-cell

lines (5, 281). Islets from LXRB knockout mice accumulated lipid, have reduced

expression of cholesterol transporters, and reduced GSIS (117, 253). Treatment of islets

and B-cell lines with the LXR agonist T0901317 increased expression of lipogenic genes

and lipid accumulation (5, 118). Importantly, LXR agonists elevated basal and GSIS

from islets and B-cell lines through a mechanism dependent upon increased SREBP—1c,

and pyruvate carboxylase and ACCor activity (5, 253). These findings suggest that LXR

activation promotes insulin release by stimulating anaplerotic and cataplerotic pathways,

possibly to supply malonyl-CoA for de nova fatty acid and lipid synthesis. The principal

aims of the study presented herein were to characterize the changes in de nova FA and

TAG synthesis in LXR-activated B-cells and determine how these changes in lipid

metabolism may contribute to elevated basal and GSIS.
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Results

3.1. Effect of glucose and LXR activation on SREBP-1 and lipogenic gene

expression.

Culturing INS-1 cells in 16.7 mM glucose for 48 h increased protein levels of

both the microsomal precursor (125 kDa) and nuclear active (65 kDa) forms of SREBP-1

(Figure 3.1A) (26]). Activation of LXR by the addition of T0901317 further increased

microsomal precursor and nuclear forms of SREBP-1 for each glucose concentration

tested. These results show that elevated glucose and direct activation of LXR by

T0901317 can independently and synergistically activate SREBP-l synthesis, processing

and nuclear localization in B-cells. Since LXR regulates only SREBP-1c and not

SREBP-la (279), these changes in SREBP-l likely reflect increased SREBP-1c nuclear

abundance.

Activation of LXR in a number of tissues results in direct and indirect induction

of genes involved in lipogenesis and cholesterol efflux. Culturing INS-1 cells in 16.7

mM glucose for 48 h led to a modest increase (1.4- to 2-fold) in mRNA levels of SREBP-

], FAS, SCDl and 2, and a large increase in ACCa (6.4-fold) (Figure 3.1B). LXR

activation with T0901317 markedly increased the expression of SREBP-1, FAS, SCD],

SCD2, ABCAl and ABCGl irrespective of the glucose concentration. T0901317 also

led to a 2.3-fold increase in ACCa gene expression in cells culture in low glucose, but

did not further increase ACCa expression in cells cultured in elevated glucose.

Treatment of human islets with T0901317 (10 pM) for 72 h also led to a 6- to 13-fold

increase in expression of SREBP-1 , FAS, and ACCa mRNA (Figure 3.1C).
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Figure 3.1. Glucose and LXR activation increase SREBP-1 expression and

nuclear localization, and lipogenic gene expression. INS-l cells were cultured for

48 hrs in media containing 4 or 16.7 mM glucose i 10 uM T0901317. A.

Microsomes and nuclear extracts were fractionated by SDS-PAGE and SREBP-1

immunoreactivity was detected by Western analysis. Results shown are

representative of four independent experiments. B. Total RNA was isolated and

analyzed for SREBP-1, ACC, FAS, SCDl, SCD2, ABCAl and ABCGl mRNA

expression by real-time RT-PCR. Control genes cyclophilin and ribosomal protein

L32 (RPL32) were unaffected by T0901317 or glucose (data not shown). Data are

relative to cyclophilin and normalized to cells cultured in 4 mM glucose (mean i

SEM, n = 4). C. Isolated human islets were cultured for three days in medium

supplemented without or with 10 uM T0901317. Total RNA was isolated and

mRNA expression levels were determined by real-time RT-PCR (mean i SEM, n =

3).
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3.2. Effect of glucose and LXR activation on lipogenesis.

To assess de novo lipogenesis, INS-l cells were incubated for 36 hrs in 4 or 16.7

mM glucose :1: T0901317 and then incubated for 12 hrs under the same conditions in the

presence of [2-14C]acetic acid. Total lipids were analyzed by TLC to measure 14C

incorporation into polar lipids (phospho- and sphingolipids), FFA, TAG, cholesterol, and

cholesterol esters (264). Figure 3.2A illustrates the fractional distribution of 14C in

neutral, polar, and non-esterified lipid fractions. The percent of 14C in the polar lipid

fraction ranged from 88 to 71% and was sensitive to both glucose and T0901317. For

cells incubated in 4 mM glucose, 83.1 i 1.5% (N = 4) of 14C-labeled lipid were polar

lipids and the fractional distribution was not altered by T0901317 (82.2 i 1.4%).

Treatment of cells with 16.7 mM glucose shifted the fractional 14C distribution from

polar lipids (77.6 a: 2.0%) to neutral lipids, and this was further shifted by T0901317

(71.1 :t 1.3%).

In cells cultured in 4 mM glucose, the fractional distribution of 14C assimilation

into cholesterol, CE, FFA, and TAG was 7.7 i 0.6%, 0.6 :t 0.1%, 1.1 i 0.2%, and 1.7

i0.3%, respectively, and this was unaltered by treatment with T0901317 (Figure 3.2A).

Culturing cells in 16.7 mM glucose led to a 5.4- and 2.5-fold increase in 14C-labeled

TAG (9.1 :l: 1.6%, p < 0.01) and CE (1.4 i 0.3%, p < 0.03), respectively. Addition of

T0901317 led to an additional 2-fold increase in 14C-labeled TAG (16.7 :t 1.9%, p <

0.01) and a ~50% reduction in 14C-labeled cholesterol (4.0 :l: 0.4, p < 0.03) and CE (0.7

i 0.1, p < 0.04), respectively. Similar changes in fractional distribution of 14C-labeled

polar lipids and TAG were observed in experiments using D-[U-14C]glucose (data not

shown). Changes in 14C-labeled TAG were also proportional to changes in TAG mass
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(data not shown). Treatment of human islets with T0901317 also increased 14C-labeled

TAG and reduced 14C-labeled cholesterol (Figure 3.3A). Overall, these results

demonstrate that activation of lipogenic genes in B-cells by elevated glucose and

T0901317 markedly increase de novo lipid synthesis and partitioning of carbon from

acetic acid or glucose into complex neutral lipids, particularly TAG.

3.3. Effect of LXR activation on fatty acid profile.

Total lipids extracted from [2-14C]acetic acid labeled INS—l cells were saponified

and the FA profile was determined by reverse-phase HPLC. When INS-1 cells were

incubated in 4 mM glucose, 4.5%, 53.1%, 23.6%, 5.7%, 5.3%, and 7.8% of 14C-labeled

FAs were myristic acid (14:0) palmitic acid (16:0), stearic acid (18:0), palmitoleic acid

(16:1,n-7), vaccenic (18:1,n-7) and oleic acid (18:1,n-9), respectively (Figure 3.2B).

Incubation of cells in 16.7 mM glucose only modestly affected the fractional distribution

of 14C-labeled FAS and this was reflected by a small increase in 14C-labeled palmitoleic

acid (16:1,n-7). In contrast, treatment of cells with T0901317 led to a large change in the

fractional distribution of 14C-labeled FAs such that 14C-labeled palmitoleic (16:1,n-7),

vaccenic (18;l,n-7) and oleic (18:1,n—9) acids increased by ~2-fold. T0901317 also led to

a ~25% reduction in 14C-labeled palmitic (16:0) and stearic (18:0) acid. The T0901317-

induced change in 14C-labeled FAs occurred with a commensurate increase in MUFA

pool size and decrease in saturated FA pool size (data not shown). Treatment of isolated

human islets with T0901317 also changed the fractional distribution of 14C-labeled FAs

with an increase in palmitoleic acid (16:1,n-7) synthesis and a reduction in stearic acid

(18:0) production (Figure 3.3B). These results show that activation of LXR in B-cells

increases de nova synthesis ofMUFA.
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Figure 3.2. Elevated glucose and T0901317 increase de nova lipid synthesis in

INS-1 cells. INS-l cells were cultured for 48 h in 4 or 16.7 mM glucose :1: 10 uM

T0901317. Cells were then incubated overnight under the same conditions in the

presence of [2-14C]-acetic acid. A. Total lipids were extracted from the cells and

separated on silica TLC plates with hexanezetherzacetic acid (90:30zl). Plates were

dried, and radioactivity was detected and quantified on a Phosphoimager. Data are

reported as percentage of total labeled lipid. Percent of labeled polar lipid is

reported as a numeric value at the top of the graph. B. Total lipids were saponified

and incorporation of 14C into fatty acids was determined by reverse—phase HPLC.

Data are reported as percentage of total labeled fatty acid. Values are the mean i:

SEM for four independent experiments.
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Figure 3.3. T0901317 increase de nova lipid synthesis in human islets. Human

islets were cultured for 36 hrs in medium containing 11.1 or 22.2 mM without or

with 5 uM T0901317. Islets were then incubated for 12 hrs under the same

conditions in the presence of l u Ci [2-14C]-acetic acid. Assimilation and

distribution of 14C into complex lipids and fatty acids species was determined as

described in Figure 3.2. A. Incorporation of 14C into triacylglyceride, cholesterol,

cholesterol esters, and free fatty acids. B. Incorporation of 14C into specific fatty

acids. Values are means, n = 2.
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3.4. Impact of LXR activation on basal and glucose-stimulated insulin secretion.

INS-l cells were cultured for 48 hrs in 4 or 16.7 mM glucose d: 10 uM T0901317,

after which insulin release was measured in response to a 1 hr challenge with either 2 or

20 mM glucose. Acute treatment of INS-1 cells, previously cultured in 4 mM glucose rt

T0901317, with 20 mM glucose led to an ~2-fold increase in GSIS (Figure 3.4A). In

comparison, INS-l cells cultured in 16.7 mM glucose for 48 hrs had reduced basal insulin

release (2 mM glucose) and GSIS. In cells cultured in 16.7 mM glucose plus T0901317,

insulin release was increased when cells were stimulated with 2 or 20 mM glucose and

there appeared to be a partial recovery of GSIS. Although long-term exposure of INS-l

cells to elevated glucose reduces insulin expression (282), increased insulin release from

cells cultured in 16.7 mM glucose plus T0901317 was not due to increased cellular

insulin content (Figure 3.4B). Moreover, treatment of cells with T0901317 did not

significantly alter glucose utilization at either 2 or 16.7 mM glucose (Figure 3.4C).

Similar findings were also observed for glucose oxidation (data not shown). These data

indicate that LXR-activated INS-1 cells cultured under an elevated glucose load have

increased basal and stimulated insulin release, and this is independent of increased insulin

content or changes in acute glucose metabolism.
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Figure 3.4. INS-1 cells cultured in elevated glucose and T0901317 have

increased insulin release. INS-1 cells were cultured for 48 h in 4 and 16.7 mM

glucose i 10 uM T0901317. Cells were washed and preincubated at 370C in KRB

buffer containing 2 mM glucose for 60 min. A. Acute insulin release was then

determined by incubating cells for 60 min at 370C in KRB buffer containing 2 or 20

mM glucose. Data represent the mean i SEM for four independent experiments

performed in triplicate. *, p < 0.03 when compared to cells cultured in 16.7 mM

glucose. B. Intracellular insulin content from INS-l cells that under went an acute

glucose (2 mM) challenge as described above. Data represent the mean 5: SE. of

four independent experiments. *, p < 0.05 when compared to cells cultured in 4 mM

glucose. C. Glucose utilization was measured by incubating cells for 30 min at 370

C in KRB buffer containing either 2 or 16.7 mM glucose and [5-3H]-D-glucose.

Conversion of [5-3H]-glucose to [3H]-H20 was determined. Data represent the

mean :t SE. of five independent experiments. * and #, p < 0.04 or p < 0.001,

respectively, when compared to cells cultured in 4 mM glucose.
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3.5. MUFA synthesis is not obligatory for elevated insulin release from LXR-

activated INS-l cells.

Exposure of human islets to elevated glucose and exogenous palmitate induces

apoptosis and diminishes GSIS, whereas these effects are reversed by co-exposure to

MUFAs (283). Thus, enhanced insulin secretion from LXR-activated INS-1 cells could

be mediated by the increased conversion of de novo synthesized palmitate to MUFAs.

To test this hypothesis, INS-1 cells were electroporated with SCD targeted siRNA and

cultured for 48 hrs in 16.7 mM glucose with or without T0901317. SCD siRNA knocked

down both SCD1 and SCD2 gene expression and markedly reduced the induction of

SCD1 and SCD2 by T0901317 (Figure 35A). The expression of A6D was not effected

by SCD siRNA. In cells cultured with [1-14C]-palmitate during the last 24 hrs, SCD

knockdown significantly reduced the conversion of 14C-labeled palmitate into MUFAs

(Figure 3.5B). After culture for 48 hrs in 16.7 mM glucose with or without T0901317,

insulin release from INS-l cells with reduced SCD expression was slightly increased

rather than decreased (Figure 3.5C). Nevertheless, this shows that elevated insulin

release from LXR-activated INS-1 cells is not dependent on the induction of SCD gene

expression.
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Figure 3.5. Knockdown of SCD with siRNA does not inhibit insulin release

from LXR-activated INS-1 cells. INS-1 cells were electrophorated in the presence

of 100 nM control siRNA or siRNA against SCD1 and 2. Cells were cultured for 12

hrs in 11.1 mM glucose and then cultured for 48 hrs in 16.7 mM glucose with or

without T0901317. After which mRNA levels, MUFA synthesis from 14C-labeled

palmitate, and insulin release were assessed. A. SCD siRNA blocked the ability of

T0901317 to increase SCD l and 2 mRNA levels. SCD siRNA, however, did not

affect T0901317 induction of delta 6 desaturase (D6D) (n=3). B. Knockdown of

SCD decreased the conversion of 14C-palmitate (16:0) to palmitoleate (16:1) or

oleate (18:1) (n=3). C. Knockdown of SCD failed to decrease insulin release from

LXR-activated cells cultured in 16.7 mM glucose (11 = 6).
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3.6. Role of fatty acid oxidation in elevated insulin release.

To investigate the role of FA oxidation in insulin release, secretion studies were

performed in the presence of an inhibitor of long-chain acyl CoA synthetase (ACS),

triacsin C, or an inhibitor of camitine palmitoyltransferase-l (CPT-1), etomoxir. Triacsin

C prevents conversion of FFA to LC-CoA thereby indirectly inhibiting B-oxidation of

FFA, whereas etomoxir directly inhibits the rate-limiting enzyme of B-oxidation. In INS-

] cells cultured for 48 hrs in 16.7 mM glucose, etomoxir (100 pM) had no effect on

insulin release in response to a 1 hr challenge with 2 or 20 mM glucose (Figure 3.6A). In

contrast, the enhanced basal insulin release (2 mM glucose) from INS-1 cells cultured in

16.7 mM glucose plus T0901317 was reduced 25% (p < 0.001, N = 6) by etomoxir. In

LXR-activated cells cultured in 16.7 mM glucose, triacsin C reduced basal insulin release

by 38% (p < 0.001, N = 6) (Figure 3.6A). These data suggest that enhanced basal insulin

release from LXR-activated cells cultured in 16.7 mM glucose requires conversion of

FFA to LC-CoA and increased B-oxidation. Consistent with this possibility,

[14C]palmitate oxidation under basal glucose conditions (2 mM) was elevated ~3-fold in

INS-1 cells cultured for 48 h in T0901317 (Figure 3.6B). Although palmitate oxidation

was suppressed by elevated glucose (20 mM), [14C]palmitate oxidation remained

elevated ~3.5-fold in LXR-activated INS-l cells. Oxidation of [14C]palmitate in LXR-

activated cells was also inhibited ~65% by triacsin C and ~90% by etomoxir. Increased

FA oxidation in T0901317-cultured INS-1 cells correlated with increased mRNA levels

of genes involved in mitochondrial B-oxidation (Figure 3.6C) including CPT-1a,

camitine palmitoyl transferase-2 and long chain acyl CoA dehydrogenase, but not very

long chain acyl CoA dehydrogenase. These data strongly support the hypothesis that
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LXR activation increases basal insulin release from INS-1 cells by a mechanism

involving increased B-oxidation of fatty acids.

3.7. Role of triacylglyceride turnover in elevated insulin secretion.

The relationship between enhanced insulin release and the turnover of TAG was

examined using the general lipase inhibitor orlistat. Treatment of INS-1 cells cultured in

4 mM glucose with orlistat (5-50 pM) increased basal insulin secretion (data not shown).

The mechanism accounting for the elevated basal insulin release is unknown, but may be

related to metabolic stress associated with low glucose and the inability to turnover lipid

pools. Consistent with this, orlistat (50 uM) had no effect on basal insulin release from

INS-1 cells initially cultured in 16.7 mM glucose 5: T0901317 (Figure 3.7A). Orlistat,

however, completely blocked insulin release in response to 20 mM glucose. These

results suggested that enhanced GSIS from LXR-activated INS-1 cells cultured in 16.7

mM glucose was associated with turnover of TAG. To examine TAG turnover, INS-l

cells were cultured in 16.7 mM glucose and T0901317 for 48 hrs, and during the last 6

hrs were labeled with [2-14C]acetic acid. After labeling, cells were subjected to

conditions mimicking an acute insulin release assay in the presence of orlistat and

turnover of labeled lipid was measured. Incubation of cells for 2 hrs in 2 mM glucose led

to an ~65% decrease in TAG and DAG labeling, and an ~50% decrease in FFA labeling

(Figure 3.7B). Treatment of cells for 1hr in 2 mM glucose followed by 1 hr in 20 mM

glucose tended to slow the turnover of TAG and DAG. Orlistat completely blocked the

turnover TAG and led to a precipitous fall in labeled FFA, possibly due to FA oxidation

of cellular FFA. Orlistat has also been shown to inhibit FAS (284), suggesting that

orlistat may block GSIS from LXR-activated INS-l cells by inhibiting de nova lipid
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synthesis. To test this possibility, INS-1 cells cultured for 48 h in 16.7 mM glucose :1:

T0901317 were subjected to an acute insulin release assay in the presence of 2 or 20 mM

glucose containing [U-14C]glucose and incorporation of 14C into FA from methanol-

soluble lipids was determined. Incubation of control and LXR-activated cells for 1 h

with 20 mM glucose markedly increased 14C-labeled FA and this was further increased

by orlistat (Figure 3.7C), suggesting orlistat’s action on GSIS is independent of inhibition

of de nova lipogenesis. These data suggest that a byproduct of TAG turnover such as

DAG or FFA may participate in enhanced GSIS from LXR-activated INS—1 cells.

To investigate a potential role for DAG, acute insulin release studies were

performed in the presence of calphostin C, an inhibitor of protein kinase C (PKC) that

competitively interferes with DAG and phorbol ester binding. GSIS from LXR-activated

INS-1 cells was attenuated by calphostin C (1 uM) (Figure 3.8), but not by other PKC

inhibitors - GO6976 or GO6983 (data not shown). Because calphostin C and orlistat only

affected GSIS, the role for influx of calcium through the L-type voltage-gated calcium

channel (L-VGCC) was tested. The L-VGCC inhibitor verapamil (100 pM) completely

inhibited GSIS from LXR-activated INS-1 cells without affecting basal insulin release.
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Figure 3.6. Elevated basal insulin release from LXR-activated INS-l cells

involves increased fatty acid oxidation. INS-l cells were incubated for 48 h in

16.7 mM glucose i T0901317 (10 uM). A. Insulin release (60 min) in response to 2

or 20 mM glucose was then assessed in the presence or absence of etomoxir (100

uM) or triacsin C (10 uM). Values are mean :h SEM for six independent

experiments. *, p < 0.001 when etomoxir- or triacsin C-treated cells are compared

to control cells. B. FA oxidation was determined by measuring [14C]C02

production from cells incubated for l h in 2 mM glucose followed by a l h

incubation with palmitic acid (50 pM), [14C]palmitic acid, and 2 or 20 mM glucose.

Data are mean :t SEM for 3 independent experiments. *, p < 0.01 when cells

cultured in 16.7 mM glucose plus T0901317 are compared to cells cultured in 16.7

mM glucose. #, p < 0.001 when triacsin C- or etomoxir-treated cells are compared

to cells cultured in 16.7 mM glucose plus T0901317. C. Total RNA was extracted

and mRNA levels for camitine palmitoyl transferase-let (CPTl), camitine palmitoyl

transferase-2 (CPT2), very long chain acyl CoA dehydrogenase (VLAD) and long

chain acyl CoA dehydrogenase (LCAD) were determined by real time RT-PCR.

Data are mean i SEM for 3 independent experiments. *, p < 0.02 when cells

cultured in 16.7 mM glucose are compared to cells cultured in 16.7 mM glucose plus

T0901317.
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Figure 3.7. TAG turnover is required for enhanced glucose-stimulated insulin

release from LXR-activated INS-l cells. A. Impact of orlistat on insulin release.

INS-1 cells were incubated for 48 h in 16.7 mM glucose :t T0901317 (10 pM).

Insulin release (60 min) in response to 2 or 20 mM glucose was then assessed in the

presence or absence of orlistat (50 pM). Values are mean :1: SEM for six

independent experiments. *, p < 0.001 when orlistat-treated cells are compared to

control cells. B. Impact of orlistat on turnover of de nova-derived TAG, DAG and

FFA. INS-l cells were cultured for 48 h in 16.7 mM glucose :1: T0901317 (10 pM).

During the last 6 h cells were incubated with [2-14C]-acetic acid (t=0), after which

cells were subjected to conditions for an acute insulin release study: 1 h incubation

in 2 mM glucose followed by an 1 h incubation in 2 or 20 mM glucose. Total lipids

were extracted and analyzed as described in Figure 3A. Values are mean i SEM for

3 independent experiments. Data are presented relative to 14C-labeling at t=0.

Phosphoimager intensity values at t=0 for TAG are 482,621 i 59,573, for DAG are

39,461 i 4,451 and for FFA are 37,267 :1: 3,691. C. Impact of orlistat (50 pM) on de

nova FA synthesis from glucose. INS-1 cells were incubated for 48 h in 16.7 mM

glucose :l: T0901317, and subjected to a insulin release assay with 2 or 20 mM

glucose containing 4 or 40 uCi of [U-14C]glucose, respectively. 14C-labeled FA

were quantified as described in the Experimental Procedures. Values are mean i

SEM of 3 independent experiments. *, p < 0.001 orlistat-treated cells are compared

to control cells.

83



I
n
s
u
l
i
n
r
e
l
e
a
s
e
(
n
g
/
m
g
l
h
r
)
>

R
e
l
a
t
i
v
e
l
a
b
e
l
i
n
g

T
o
t
a
l
F
A
C
o
u
n
t
s
/
p
g
p
r
o
t
e
i
n
o

*

90- E2 mM Glucose

80' -20 mM Glucose

70- *

60-

50-

40-

30-

20-

10-

o- 
  

 

Control Orli'stat Coritrol Orli'stat

16.7 mM Gluc 16.7 mM Gluc + T0

Et=0

-2 mM Glucose

520 mM Glucose

1_4- IIIIDZ mM Gluc + Orlistat

1.2_ -20 mM Gluc + Orlistat

 W   
TAG DAG1 ,2 FFA

1 0000-

8000-

E 2 mM Glucose

- 20 mM Glucose

6000-

4000-

2000-

 

 

0-

Veh Veh Orlistat

16.7 mM Gluc 16.7 mM Gluc + T0

84



3
(
-

3
(
-

 

   
 

1: 70'!

% E2 mM Glucose

g 60' -20 mM Glucose

g 50-

a) 40-

in

8 30-

E

‘- 20-

.E

3 10-

U)

E 0' l l I l

Control Verap .Cal C Control Verap Cal C

16.7 mM Gluc 16.7 mM Gluc + T0

Figure 3.8. Enhanced glucose-stimulated insulin release from LXR-activated INS-1

cells is attenuated by verapamil or calphostin C. Insulin release (60 min) in response

to 2 or 20 mM glucose was then assessed in the presence or absence of verapamil (100

uM) or calphostin C (1 uM). Values are mean i SEM for six independent experiments.

*, p < 0.01 when verapamil- or calphostin C-treated cells are compared to control cells.
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Discussion

Culturing INS-1 cells in elevated glucose led to increased nuclear SREBP-1c,

lipogenic gene expression, TAG synthesis, and loss of GSIS. These findings are

consistent with reports that SREBP-lo activation, either by elevated glucose or over-

expression, in B-cell lines or islets increased lipogenic gene expression, TAG synthesis

and decreased GSIS (114-116, 139, 235, 268, 269, 285). Compared to INS-l cells

cultured in elevated glucose, LXR-activated INS-1 cells had significantly elevated

microsomal and nuclear forms of SREBP-1c and lipogenic gene expression particularly

SREBP-1, FAS, SCD1 and SCD2. These findings are consistent with the role of LXR in

regulating SREBP-1 gene transcription, and LXR and SREBP-lo in regulating FAS,

SCD1 and SCD2 gene transcription (21, 286). Of the lipogenic genes examined only

ACCa mRNA levels were more strongly induced by elevated glucose than by LXR

activation. Glucose has been reported to bind and activate LXR (77), but this does not

appear to play a prominent role in INS-l cells because elevated glucose did not induce

expression of LXR target genes including ABCA1 and ABCGl. As expected, increased

lipogenic gene expression in LXR-activated INS-1 cells cultured in elevated glucose

markedly increased de nova neutral lipid synthesis. Because LXR activation only

affected lipid synthesis and insulin secretion in cells cultured in elevated glucose suggests

that the two events are linked. This is likely an adaptive effect because it has recently

been shown that metabolic flux through lipogenic pathways is not required for normal

GSIS (287, 288). Hypersecretion of insulin, however, has been shown to involve the

induction of SREBP-lo and enhanced lipid synthesis in mouse islets cultured in elevated

glucose (234).
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Fatty acid D9 desaturases (SCD1 and SCD2) function as the rate-limiting step for

MUFA synthesis and play an integral role in neutral lipid (TAG and CE) synthesis (21).

In agreement with increased SCD1 and SCD2 mRNA levels, LXR-activated INS-1 cells

exhibited a 2-fold increase in de nova derived MUFA (16:1,n-7, 18:1,n-7, 18:1,n-9) and a

commensurate drop in synthesis of saturated FA (16:0, 18:0). The increase MUFA

synthesis in LXR-activated INS-1 cells cultured in elevated glucose corresponded with

increased MUFA mass (data not shown). Chronic exposure of islets and B-cell lines to

oleic (18:1,n-9) or vaccenic (18:1,n-7) acid have been reported to increase basal insulin

release (289-291), suggesting that increased MUFA synthesis in LXR-activated cells

might be directly involved in basal insulin release. To test this possibility, siRNA

targeting SCD1 and SCD2 were introduced into LXR-activated INS-1 cells. SCD1/2

siRNA effectively decreased SCD1 and SCD2 mRNA levels and MUFA synthesis, but

did not lower insulin release from LXR-activated INS-l cells. These data indicate that

increased de nova MUFA synthesis is not an obligatory step for enhanced insulin release

from LXR-activated INS-l cells, but likely facilitates neutral lipid synthesis.

Enhanced basal insulin release from LXR-activated INS-1 cells was attenuated by

triacsin C and etomoxir, indicating a role for increased acyl-CoA formation and FA

oxidation. Under our experimental paradigm for insulin release studies, INS-1 cells are

first preincubated for 1 hour in 2 mM glucose followed by incubation for 1 hour in either

2 or 20 mM glucose. During this timeframe, newly synthesized TAG is rapidly turned

over (Figure 3.7) and likely serves as the source of the FFA for acyl-CoA formation and

oxidation. INS-1 cells cultured in elevated glucose also have increased de novo

synthesized TAG, but do not have elevated basal insulin release. This suggests that INS-
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1 cells cultured in elevated glucose either do not synthesize sufficient quantities of TAG

to sustain increased basal insulin release or that LXR activation stimulates additional

pathways associated with lipid metabolism. Consistent with the later, LXR activation

was shown here to increase FA oxidation and this correlated with increased expression of

genes involved in mitochondrial B-oxidation particularly CPT-lat. Recently, Colin et al.

showed that activation of LXR with synthetic agonists induced PPARCX and subsequently

its target CPT-l in the intestine, but not the liver (292). This suggests that LXR agonists

may also induce CPT-l through PPARa in B-cells. Alternatively, LXR-activation of

INS-1 cells may increase de nova synthesized FA to levels sufficient to induce CPT-lat.

This possibility is supported by the observation that long-term exposure of INS-l cells to

long-chain FA increases CPT-1 gene expression and FA oxidation (290, 293). Our

findings also raise the possibility that LXR activation can protect the B-cell from glucose

toxicity by shuttling glucose toward FA, which can be oxidized immediately or after

release from TAG.

Lipolysis of intracellular TAG and the subsequent generation of lipid signaling

molecules including FFA, acyl-CoA and DAG have been proposed to mediate GSIS

(reviewed in (99)). TAG turnover produces a FFA and a predominantly less biologically

active sn2,3-DAG species, which can be further broken down to monoacylglyceride,

glycerol and FFA (294-296). These later products, along with de nova derived FA, can

be reincorporated into biologically active snl,2-DAG species through a glycerolipid/FFA

cycle (297). Based on this, we hypothesize that enhanced GSIS from LXR-activated

INS-1 cells results from elevated lipolysis and formation of lipid products that can

directly serve as signaling molecules (e.g. FFA) or used as substrates for the
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glycerolipid/FFA cycle to generate snl,2-DAG. Consistent with this hypothesis, the ’

general lipase inhibitor orlistat blocked turnover of de nova derived TAG and GSIS in

LXR-activated INS-1 cells, but did not block de nova synthesis of FA (Figure 3.7).

Mulder et al. have also proposed that orlistat attenuates GSIS by blocking the formation

of an acylglyceride-coupling factor (164). If the glycerolipid/FFA cycle is involved in

enhanced GSIS from LXR-activated INS-1 cells, one would predict that inhibition of

acyl-CoA formation with triacsin C would have also blocked GSIS, which did not occur

(Figure 3.6). This might be due to the inability of triacsin C to inhibit all ACS isoforms

(298) and that triacsin C is more efficacious at inhibiting FA oxidation than lipid

synthesis in B-cells (299). It remains a possibility that enhanced GSIS from LXR-

activated INS-1 cells might also involve turnover of phospholipids and direct production

of snl,2-DAG (190). Polar lipid turnover, however, was much slower than TAG

turnover in INS-l cells and not effectively blocked by orlistat (data not shown).

DAG generated from the glycerol/FFA cycle might serve as the coupling factor to

enhance GSIS from LXR-activated INS-l cells. Classic (at, [31, 011, y) and novel (5, e, r],

0) isoforms of PKC are activated by DAG in Ca2+-dependent and —independent manners,

respectively. Pharmacologic inhibition of many of these PKC isoforms with GO6976

(inhibits PKCa, [31) and GO6983 (inhibits PKCa, [3, y, 6, 1;), however, did not attenuate

GSIS from LXR-activated INS-1 cells (data not shown). Calphostin C, which

competitively blocks DAG-binding sites on classic and novel PKC isoforms, PKD

(PKCu) and DAG-binding proteins, significantly attenuated GSIS from LXR-activated

INS-1 cells (Figure 3.8). Blockade of the influx of extracellular Ca2+ with the L-VGCC

inhibitor also completely abrogated GSIS from LXR-activated INS-l cells. Taken as a
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whole, these data suggest that enhanced GSIS from LXR-activated INS-l cells does not

involve classic or novel PKC isoforms, but involves activation of a DAG-binding protein

that is calcium-dependent or mediates biochemical events upstream from the influx of

calcium. There are a number of families of DAG-binding proteins that could be involved

including PKD (PKCp), chimaerins, RasGRPs, MUNCl3s or DAG kinases (reviewed in

(154)). Further experimentation is necessary to determine the exact DAG-binding

protein(s) involved. Straub and Sharp have proposed a similar mechanism to explain

how FA depletion of rat islets caused large increases in GSIS (300). In their model, FA

depletion is proposed to cause lipid remodeling or increase breakdown of intracellular

TAG, which increases DAG production, activates a DAG-binding protein and augments

GSIS.

Enhanced insulin release from LXR-activated B-cells has been reported to be

associated with increased mRNA levels of de-l, insulin and GLUT2 (253) suggesting a

role for LXR or SREBP-1c in augmenting B-cell phenotype and glucose sensing.

SREBP-l is also required for elevated glucose to increase mRNA levels of de-l and

genes involved in glucose sensing including GLUT2 and glucokinase (234). Similar

changes in gene expression may play a role in enhanced insulin release from LXR-

activated INS-1 cells. Nevertheless, this seems unlikely because glucose utilization and

insulin content were not significantly increased in LXR-activated INS-1 cells.

In conclusion, our study shows that LXR activation of INS-1 B-cells exposed to

elevated glucose increases TAG synthesis; and subsequent TAG turnover can lead to the

production of lipid signaling molecules resulting in elevated insulin release. Similar
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mechanisms may account for the ability of SREBP-1c to establish hypersecretion of

insulin in some models of hyperglycemia.
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Chapter 4.

Stearoyl-CoA Desaturase Modulates Palmitate-Induced Endoplasmic

Reticulum Stress and Apoptosis in Pancreatic fi-Cells

Abstract

Chronic elevations in exogenous free fatty acids (FFAs) have been implicated in

the pathogenesis of B-cell failure and the development of type 2 diabetes. The effects of

exogenous FFA, particularly saturated fatty acids (FAS), on B-cells include endoplasmic

reticulum (ER) stress and downstream induction of apoptosis. Regulation of

monounsaturated FA (MUFA) synthesis through altered FA desaturase and elongase gene

expression may serve to protect B-cells from exogenous saturated FAS. In the Zucker

diabetic fatty (ZDF) rat model of progressive [El-cell failure, islets from 6-week old pre-

diabetic ZDF rats showed a 1.5- to 2.3-fold induction in the stearoyl-CoA desaturases

(SCD) l and 2 mRNA, respectively, compared to control rats. At 13 weeks of age, ZDF

rats were hyperglycemic and exhibited decreased plasma insulin levels, an indicator of B-

cell dysfunction. This was associated with markedly decreased mRNA levels of insulin,

SCD1, SCD2 and Elovl-6, which elongates 16:0 to 18:0 and 16:1,n-7 to 18:1,n-7. These

findings suggested enhanced expression of SCD1/2 and other FA modifying genes may

protect B-cells from damage caused by exogenous saturated FAs. Next, siRNAs and

adenoviral constructs were used to investigate the role of altered SCD and Elovl-6

expression in INS-l fi-cells exposed to exogenous palmitate. Knockdown of SCD gene

expression decreased conversion of palmitate to MUFA and increased the susceptibility

to palmitate-induced ER stress, as measured by splicing of Xbpl, induction of ATF3 and
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CHOP, and JNK phosphorylation. Palmitate-induced apoptosis was also increased by

SCD knockdown, as shown by elevated caspase-9 cleavage and DNA fragmentation.

Over-expression of SCD2 increased synthesis of n-7 MUFAs and markedly reduced the

ER stress and apoptosis induced by palmitate. Elovl-6 knockdown decreased palmitate

elongation and tended to reduce palmitate toxicity, whereas Elovl-6 over-expression

increased palmitate elongation to stearate (18:0) and increased susceptibility to palmitate-

induced JNK phosphorylation and apoptosis. In addition, elevated ER stress in INS-1

cells with decreased SCD expression involved reduced palmitate incorportation into TAG

and activation of Ca2+-dependent protein kinase Cs (PKCs). These findings demonstrate

that altered expression and activity of SCD2 and Elovl-6 modulate the susceptibility of B-

cells to the toxic effect of saturated FAs.

Introduction

Type 2 diabetes arises from an inability of pancreatic B-cells to compensate for

insulin resistance in peripheral tissues. The progressive loss of B-cell compensation is

likely due to reduced insulin secretory capacity or B-cell mass (301-305). Elevated levels

of plasma non-esterified free fatty acid (FFA), a risk factor for insulin resistance and type

2 diabetes (201, 202), have been associated with the pathogenesis of B-cell dysfunction

(4, 203). The response of fi—cells to long-term elevations in fatty acids (FAs), however, is

largely dependent on the FA composition. Saturated FAS, such as palmitate (16:0), cause

diminished insulin secretion and insulin gene expression and the induction of apoptosis

through multiple processes, including generation of ceramides, reactive oxygen species,

and endoplasmic reticulum (ER) stress (223, 237, 306-308). Monounsaturated PAS
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(MUFAs), such as palmioleate (16:1,n-7) and oleate (18:1,n-9), and the polyunsaturated

FA (PUFA) eicosapentaenoate (20:5,n-3) can protect B-cells from apoptosis and insulin

secretory defects induced by saturated FAs (236, 283, 308). In addition to exogenous FA

structure, evidence has demonstrated that the intracellularcapacity to modulate FA fate

has an important role in B-cells.

Alterations in FA metabolism critically affect the response of B-cells to

exogenous FAs, particularly the lipotoxicity of saturated FAs. Approaches used to

enhance FA oxidation and triacylglyceride (TAG) storage have demonstrated significant

alterations in the effects of exogenous saturated FAs on B-cell function (309-311).

Studies have also shown that regulation of FA structure may participate in modulating the

effects of FAS on B-cellsi Subpopulations of MIN-6 and rat B-cells identified to be

resistant to palmitate-induced apoptosis were associated with increased expression of the

FA delta-9 desaturase, stearoyl-CoA desaturase (SCD) 1, and hence increased conversion

of palmitate to MUFAs (6, 257). The level of SCD1 gene expression has also been

correlated with the susceptibility of B-cell lines and islets to ER stress in vitra and with

the severity of diabetes in viva in a mouse model of obesity (256, 312).

FA desaturase and elongase enzymes modify fatty acids by adding a cis-double

bond or two-carbons to a fatty acyl-CoA, respectively. These activities are essential for a

variety of cellular functions, including maintenance of membrane FA composition and

generation of signaling molecules. The desaturase subtypes in mammals include delta 5

desaturase (ASD), delta 6 desaturase (A6D), and SCD. Isoforms of SCD include four in

mouse (SCD1-4) (1 1-14), two in rat (SCD1 and 2) (15), three in hamster (SCD1—3) (16),

and three in human (SCD1, 2, and 5) (17-19). FA elongase (Elovl) subtypes range from
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Elovl-l to 7 in mouse, rat, and human (www.cnsembl.org). Synthesis of PUFAs from

essential dietary FAs occurs through the desaturases A5D and A6D and the elongases

Elovl-2 and Elovl-5 (7, 31, 32). SCD, the rate-limiting enzyme in C16 and C18 MUFA

synthesis, and Elovl-6 synthesize the MUFAs oleate, palmitoleate, and vaccenate (18:1,n-

7) (20, 31). Elovl-5 can also elongate palmitoleate to vaccenate (32). Elovl-1, -3, and -4

elongate a broad array of very long chain FAs (>C20) and are involved in sphingolipid

synthesis, brown adipose and skin barrier function, and retinal degeneration, respectively

(25-30). Unique roles for these enzymes in pancreatic B-cells, however, remain to be

defined.

In this study, we first characterized FA desaturase and elongase gene expression

in rat islets and INS-l B-cells. Next, using the Zucker diabetic fatty (ZDF) rat model, FA

desaturase and elongase genes were identified to be differentially expressed between pre—

diabetic and diabetic ZDF rat islets. Specifically, SCD1 and SCD2 were increased in pre-

diabetic islets and, along with Elovl-6, reduced in diabetic islets. Thus, we hypothesize

that regulation of genes required for MUFA synthesis may significantly affect B-cell

compensation and failure in the pathogenesis of T2D. The results demonstrate that

altered expression of SCD2 and Elovl-6 in INS-1 cells modulate the effects of exogenous

palmitate on ER stress and apoptosis. In addition, enhanced ER stress in the absence of

SCD1 and SCD2 expression may involve altered FA partitioning into neutral lipids and

activation of protein kinase C (PKC).
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Results

4.1. Rat islet and INS-1 cell FA elongase and desaturase gene expression profiles.

To determine which FA elongase and desaturase genes are expressed in B-cells,

elongase and desaturase mRNA levels were characterized in rat islets and INS-l cells

under non-stimulatory glucose conditions. In rat islets and INS-1 B-cells, mRNA

expression was detected for the FA elongases Elovl-l, Elovl-2, Elovl-4, Elovl-5, Elovl-6

and Elovl-7, and the FA desaturases SCD1, SCD2, A5D and A6D (Figure 4.1A-D).

There was no difference between A5D and A6D mRNA levels in either rat islets or INS-1

cells. For SCD mRNA levels, however, the expression of SCD2 was greater than 4-fold

higher than SCD1 in both rat islets and INS-l cells. This suggests that SCD2 may have a

larger role in B-cells, whereas SCD1 is highly expressed in tissues with large lipid storage

capacities such as adipose and liver.
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Figure 4.1. Fatty acid elongase and desaturase gene expression in rat islets and

INS-l cells. Total RNA was isolated from Sprague-Dawley rat islets (A and B) and

INS-l cells (C and D) and analyzed for Elovl-1 to 7, SCD1, SCD2, D5D, and D6D

mRNA expression by real-time RT-PCR. Gene expression is reported relative to

RPL32 and represents mean :t SEM for three independent experiments.
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Figure 4.1. Continued
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4.2. FA elongase and desaturase gene expression in ZDF rat islets.

Before 10 weeks of age ZDF rats are pre-diabetic, displaying obesity and insulin

resistance while maintaining normal glucose levels (313). Here, 6-week-old ZDF rat

blood glucose levels were normal and plasma insulin levels were elevated

(Supplementary Table 2), which coincided with increased islet insulin mRNA expression

(Figure 4.2A and B). ZDF islet expression of Elovl-5, SCD1, and A6D were modestly

increased from 1.4- to 1.6-fold compared to control rats at 6 weeks. Expression of SCD2,

however, was increased fitrther to 2.3-fold over control. After 13 weeks of age, ZDF rats

were hyperglycemic and both plasma insulin and insulin mRNA levels were diminished,

possibly indicating islet failure. Except for A5D and A6D, which decreased with age in

both control and ZDF rat islets, a large 60% decrease in expression was found for Elovl-6

and SCD2 in ZDF islets from 6 to 13 weeks. These results suggest the expression of

enzymes involved in monounsaturated fatty acid synthesis may have an important role in

islet function.
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Table 4.1

Physiolggical parameters of 6 and 13 week old Control (fal?) and ZDF rats
 

 

 

Control (fa/?) ZDF (Leprfa/Crl)

6 week 13 week 6 week 13 week

Body weight (g) 173.8 330.4 179.3 353.5

+/- 9.0 +/- 5.8 , ** +/- 4.0 +/- 11.1 , **

Insulin (ng/ml) 2.0 3.6 9.2 2.6

+/- 0.3 +/- 1.1 +/- 1.4 , "‘ +/- 0.5 , **

Glucose (mg/d1) 83.0 80.6 117.0 316.7

+/- 3.5 +/— 4.0 +/- 5.0 , * +/- 25 , * , *"‘
 

Data are mean +/- SEM. Glucose values are fed blood glucose. *, p < 0.006

compared to Zucker control age matched. **, p < 0.008 compared to 6 week old with

same phenotype.
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Figure 4.2. Differential expression of fatty acid elongase and desaturase genes

in pre-diabetic and diabetic ZDF rat islets. A and B. Total RNA was isolated

from control (fa/1’) and ZDF (Leprfa/Crl) rat islets at 6 and 13 weeks of age and

analyzed for insulin, Elovl-2, Elovl-5, Elovl-6, SCD1, SCD2, D5D, and D6D

mRNA expression by real-time RT-PCR. Data are reported relative to cyclophilin

and represent mean i SEM for five or six animals per group. *, p < 0.04 and #, p <

0.03 when compared to 6 week control and ZDF islets, respectively. **, p < 0.04

when compared to 13 week control islets.
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4.3. Knockdown of SCD and Elovl-6 gene expression modulate MUFA synthesis.

To determine if SCD and Elovl-6 expression alter FA metabolism in B-cells,

siRNAs were introduced into INS-l cells and examined for effects on palmitate

metabolism. In cells cultured for 36 hrs in INS-l media, SCD siRNA effectively reduced

both SCD1 and SCD2 mRNA levels compared to control (siCTL), but resulted in

increased Elovl-6 mRNA (Figure 4.3A). Elovl-6 siRNA reduced Elovl-6 mRNA but did

not affect SCD1 or SCD2. As a control, neither SCD nor Elovl-6 siRNAs affected Elovl-

5 mRNA levels. Effects of siRNAs on FA metabolism were determined by culturing

INS-l cells for 12 hrs in 400 uM palmitate plus [1-14C]palmitic acid. Total lipids were

extracted, saponified, and the FA profile analyzed by reverse-phase HPLC. In INS-l

cells with control siRNA, 14C-labeled palmitate was distributed by 83.9, 6.7, 6.4, 1.0,

and 1.9% into palmitic acid (16:0), stearatic acid (18:0), palmitoleic acid (16:1,n-7),

vaccenic acid (18:1,n-7), and oleic acid (18:1,n-9), respectively (Figure 4.3B). SCD

siRNA significantly reduced the ability to convert palmitate into MUFA, as the fractional

distribution of 14C-labeled 16:1,n-7, 18:1,n-7, and 18:1,n-9 decreased between 66 and

97%. This resulted in increased accumulation of 14C-labeled palmitic acid and the ratio

of saturated FAs to MUFAs (data not shown). Elovl-6 siRNA caused a marked decrease

in palmitate elongation, as shown by an approximate 50% reduction in the fractional

distribution of 14C-labeled 18:0 and 18:1,n-9. This led to a 1.5-fold increase in labeled

16:1,n-7. These results show that knockdown of SCDs or Elovl-6 effectively decreases

the respective desaturation and elongation of palmitate and alters MUFA synthesis.
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Figure 4.3. Modulation of SCD and Elovl-6 gene expression alters synthesis of

specific MUFAs species derived from exogenous palmitate. A. Effect of SCD2

and Elovl-6 siRNAs an mRNA levels. INS—1 cells were electroporated with siRNAs

for control (siCTL), SCD (siSCD) or Elovl-6 (siElovl-6) and cultured for 36 hrs in

INS-1 media. Levels for Elovl-5, Elovl-6, SCD1 and SCD2 mRNA were

normalized to RPL32 mRNA and reported as fold expression relative to siCTL

.treated cells. Data are mean :1: SEM for three independent experiments. *, p < 0.02

when compared to siCTL cells. B. Effect of SCD and Elovl-6 siRNAs on

conversion of exogenous palmitate to MUFA. INS-1 cells electroporated with

siRNAs for siCTL, siSCD, or siElovl-6 were treated with INS-l media containing

400 pM palmitate and [1-14C]-palmitic acid for 12 hrs. Total lipids were extracted,

saponified, and incorporation of 14C into FAs was determined by reverse-phase

HPLC. Data represent the percent of labeled FA. Values are the mean 3: SEM for

three independent experiments.

105



F
o
l
d
R
e
s
p
o
n
s
e

EElovl-S

25., -Elovl-6

ESCD1

2.0_ -SCD2

*

0.5-

 
0.0-

110-

.
3

O O

l

(
O

O

l

 P
e
r
c
e
n
t
P
a
l
m
i
t
a
t
e
I
n
c
o
r
p
o
r
a
t
i
o
n

0
1

?

siCTL

   

      ///
/
/
}
}
/
/
/
/
1

/'.' L

-18:1n9

—‘ mwnm

-16:1n7

E18zo

-16:0

siSCD siElovl-6

106



4.4. Susceptibility to palmitate-induced ER stress is increased by SCD knockdown.

Loss of B-cell function upon exposure to exogenous FFAs, particularly saturated

FAs, involves activation of the ER stress response pathways inositol requiring ER to

nucleus signal kinase (IRE)1, PKR-like ER kinase (PERK), and, to a lesser extent,

activating transcription factor (ATF)6 (204). In ZDF islets, the response to exogenous

FFAs could be affected by altered SCD and Elovl-6 gene expression, described in Figure

4.2. To test whether reduced SCD or Elovl-6 expression affects the Iii-cell response to

exogenous FFAs, INS-1 cells treated siRNAs were cultured for 9 hrs with 0, 200, or 400

uM palmitate and examined for the induction of ER stress. In control cells, only 400 uM

palmitate induced a 2.3- to 4-fold increase in splicing of X-box binding protein 1 (Xbpls)

and mRNA levels of ATF3 and CHOP, markers of IREl and PERK activation,

respectively (Figure 4.4A). Palmitate induction of CHOP mRNA levels corresponded

with a 5.5-fold increase in CHOP protein (Figure 4.4B). In INS-l cells treated with 200

MM palmitate, decreased SCD expression significantly increased the sensitivity to Xbpl

splicing and induction of ATF3 and CHOP mRNA by approximately 2-fold. Compared

to control cells, induction of ATF3 mRNA, CHOP mRNA, and CHOP protein by 400

pM palmitate was increased further by SCD siRNA. In contrast, decreased Elovl-6

expression tended to reduce Xbpl splicing and CHOP protein levels induced by palmitate

at 400 uM, but it was not significant.

IREl also mediates phosphorylation of Jun N-terminal kinase (JNK) (245), which

can lead to enhanced CHOP expression and apoptosis (204). In B-cells treated with

FFAs, INK was phosphorylated prior to the induction of CHOP expression (314). INS-l

cells treated for 6 hrs with 400 uM palmitate displayed increased JNK phosphorylation,
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and this was markedly increased 2-fold by decreased SCD expression (Figure 4.4C).

These findings demonstrate that susceptibility to palmitate-induced ER stress is enhanced

in [ii-cells with a reduced capacity to synthesize MUFAs.

4.5. SCD knockdown impacts susceptibility to palmitate-induced apoptosis.

INS-1 cells with decreased SCD and Elovl-6 expression were then examined to

determine whether early changes in sensitivity to ER stress correlated with the induction

of apoptosis. In response to increasing concentrations of palmitate, control cells treated

for 24 hrs with 300 and 400 uM palmitate had increased caspase-9 cleavage and DNA

fragmentation, markers of apoptosis (Figure 4.5A and B). The susceptibility to both

caspase-9 cleavage and DNA fragmentation in cells with decreased SCD expression were

significantly increased at 200 uM palmitate. Compared to control cells, the induction of

apoptosis was further increased at 300 and 400 uM palmitate by SCD knockdown,

whereas knockdown of Elovl-6 did not affect either apoptotic marker. Thus, this data

confirms a recent report that palmitate induced lipotoxicity is increased by simultaneous

knockdown of both SCD1 and SCD2 (257).
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Figure 4.4. Sensitivity to palmitate-induced ER stress is increased by SCD

knockdown. INS-1 cells electroporated with siRNAs for control (siCTL, C), SCD

(siSCD, S), or Elovl-6 (siElovl-6, B) were treated for 9 hrs with modified INS-l

media containing increasing palmitate concentrations. A. Effect of knockdown of

SCD and Elovl-6 on levels of spliced Xbpl (Xbpls), Xbpl total (Xbplt), ATF3 and

CHOP mRNA. Data are mean i SEM for three independent experiments and are

expressed relative to siCTL cells. * and #, p < 0.02 when compared to 0 uM siCTL

cells and siCTL cells at the same palmitate concentration, respectively. B. Effect of

SCD or Elovl-6 siRNA on CHOP protein levels. Whole cell protein extracts were

fractionated by SDS-PAGE and CHOP protein was analyzed by Western blotting.

Data are mean :2 SEM for four independent experiments. * and #, p < 0.03 when

compared to 0 pM siCTL cells and siCTL cells at 400 uM palmitate, respectively.

C. Effect of SCD and Elovl-6 siRNA on JNK phosphorylation. INS-1 cells

electroporated with siRNAs for control (siCTL, C), SCD (siSCD, S) or Elovl-6

(siElovl-6, E) were treated for 6 hrs without or with 400 uM palmitate.

Phosphorylated and total JNK (pJNK and JNKt) were analyzed by Western blotting.

Data are mean d: SEM for three independent experiments. * and #, p < 0.03 when

compared to 0 uM siCTL cells and siCTL cells at 400 uM palmitate, respectively.
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Figure 4.4. Continued
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Figure 4.5. Suceptibility to palmitate-induced apoptosis is increased by SCD

knockdown. INS-l cells electroporated with siRNAs for control (siCTL, C), SCD

(siSCD, S), or Elovl-6 (siElovl-6, B) were treated for 24 hrs with increasing

palmitate concentrations. A. Effect of SCD and Elovl-6 siRNA on caspase-9

cleavage. Cleaved caspase-9 proteins were analyzed by Western blotting. Results

shown are representative of six independent experiments. B. Effect of SCD and

Elovl-6 siRNA on DNA fragmentation as determined by ELISA. Data represent

fold induction and are mean :1: SEM for six independent experiments. *, p < 0.02

when compared to 0 pM Luc. #, p < 0.04 when compared to siCTL at the same

palmitate concentration.
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4.6. Over-expression of SCD2 and Elovl-6 differentially modulate MUFA synthesis

and markers of ER stress.

Naturally occurring elevated expression of SCD1 and SCD2 in rat islets and [3-

cells coincides with reduced palmitate-mediated lipotoxicity, presumably due to SCD1

activity (6, 238). In rat islets and B-cells, however, the SCD2 isoform is expressed much

higher than SCD1 (Figure 4.1 and 4.2) (257). To test whether enhanced SCD2 and Elovl-

6 gene expression alone affect B-cell FA metabolism and ER stress, adenoviral constructs

were used to over-express the respective genes in INS-1 cells treated with palmitate. In

cells over-expressing luciferase (Luc) and cultured for 12 hrs in 400 uM palmitate plus

[1-14C]palmitic acid, 14C-labeled palmitate was distributed by 71.5, 10.6, 10, 2.5, and

5.3% into palmitic acid (16:0), stearic acid (18:0), palmitoleic acid (16:1,n-7), vaccenic

acid (18:1,n-7), and oleic acid (18:1,n-9), respectively (Figure 4.6A). Over-expression of

SCD2 significantly increased palmitate conversion to MUFAs, as the fractional

distribution of 14C-labeled 16:1,n-7 and 18:1,n-7 was increased 1.3- and 2.1-fold,

respectively. This resulted in a marked increase in the accumulation of n-7 rather than n-

9 MUFAs (data not shown). Elovl-6 over-expression, however, significantly increased

palmitate elongation products, as the distribution of 14C-labeled 18:0 and 18:1,n-9 were

increased 2.3- and 1.8-fold, respectively. These results demonstrate that in [fl-cells over-

expression of SCD2 preferentially drives synthesis of n-7 MUFAs, whereas over-

expression of Elovl-6 drives synthesis of stearate (18:0) and oleate (18:1,n-9).

Next, INS-l cells over-expressing either SCD2 or Elovl-6 were treated with 400

uM palmitate and examined for activation of ER stress. In contrast to SCD knockdown,

over-expression of SCD2 resulted in a marked 56% reduction in CHOP protein levels
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after 9 hrs of palmitate treatment compared to control cells (Figure 4.68). Palmitate—

induced JNK phosphorylation at 6 hrs was also reduced 40% by SCD2 over-expression

(Figure 4.6C). Although Elovl-6 over-expression did not alter CHOP protein, it resulted

in a significant 1.6-fold increase in JNK phosphorylation in palmitate treated cells

compared to control cells. Together, this shows that enhanced SCD2-mediated synthesis

of n-7‘ MUFAs protects from ER stress induced by exogenous palmitate, whereas ER

stress is potentiated by enhanced Elovl-6 expression.

4.7. Effects of SCD2 and Elovl-6 over-expression on palmitate-induced apoptosis.

INS-l cells with elevated SCD2 and Elovl-6 gene expression were then treated for

24 hrs with increasing concentrations of palmitate and monitored for apoptosis. Control

cells over-expressing luciferase exhibited significant capase-9 cleavage at 400 MM

palmitate and a dose-dependent increase in DNA fragmentation at 200, 300, and 400 uM

palmitate (Figure 4.7A and B). Over-expression of SCD2 showed a marked reduction in

cleaved caspase-9 and a 30-60% decrease in DNA fragmentation at each FA

concentration tested compared to control cells. Elovl-6 over-expression increased both

apoptotic markers at intermediate levels of palmitate but not at the 400 uM level. These

results provide the first direct evidence that enhanced SCD2 and Elovl-6 expression

modulate lipotoxicity in B-cells.
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Figure 4.6. SCD2 and Elovl-6 over-expression on MUFA synthesis and

palmitate-induced ER stress. A. Effect of SCD2 and Elovl-6 over-expression on

MUFA synthesis. INS-1 cells treated with Ad-CMV-Luciferase (Luc), Ad—CMV-

SCD2 (SCD2), or Ad-CMV-Elovl-6 (Elovl-6) were treated with INS-1 media

containing 400 uM palmitate and [l-l4C]-palmitic acid for 12 hrs. Total lipids were

extracted, saponified, and incorporation of 14C into FAs was determined by reverse-

phase HPLC. Values are the mean 3: SEM for three independent experiments. B.

Effect of SCD2 and Elovl-6 over-expression on CHOP protein levels. INS-l cells

treated with Ad-CMV-Luciferase (Luc, L), Ad-CMV-SCDZ (SCD2, S) or Ad-CMV-

Elovl-6 (Elovl-6, B) were treated for 9 hrs with INS-l media containing increasing

palmitate concentrations, after which CHOP protein was analyzed by Western

blotting. Data are mean :t SEM for six independent experiments. * and #, p < 0.02

when compared to control (Luc) cells treated with 0 or 400 uM palmitate,

respectively. C. Effect of SCD2 and Elovl-6 over-expression on JNK

phosphorylation. INS-l cells treated with Ad-CMV-Luciferase (Luc, L), Ad-CMV-

SCD2 (SCD2, S) or Ad-CMV-Elovl-6 (Elovl-6, E) were treated for 6 hrs without or

with 400 pM palmitate. Phosphorylated and total JNK (pJNK and JNKt) were

analyzed by Western blotting. Data are mean i SEM for three independent

experiments. * and #, p < 0.03 when compared to control (Luc) cells treated with 0

or 400 uM palmitate, respectively.
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Figure 4.6. Continued
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Figure 4.7. SCD2 and Elovl-6 over-expression on palmitate-induced apoptosis.

INS-1 cells treated with Ad-CMV-Luciferase (Luc, L), Ad-CMV-SCD2 (SCD2, S)

or Ad-CMV—Elovl-6 (Elovl-6, E) were treated for 24 hrs with increasing palmitate

concentrations. A. Effect of SCD2 and Elovl-6 over-expression on caspase-9

cleavage. Cleaved caspase-9 proteins were analyzed by Western blotting. Results

shown are representative of six independent experiments. B. Effect of SCD2 and

Elovl-6 over-expression on DNA fragmentation as determined by ELISA. Data

represent fold induction and are mean d: SEM for six independent experiments. *, p

< 0.03 when compared to 0 uM Luc. #, p < 0.03 and 5, p < 0.05, when compared to

Luc at the same palmitate concentration.
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4.8. Elevated CHOP expression by SCD knockdown coincides with increased

diacylglycerol formation and involves Ca2+-dependent PKC activation.

Palmitate-induced lipotoxicity has been proposed to involve reduced

incorporation into TAG and cholesterol ester (CE) compared with MUFAs (6, 315). To

determine if modulation of palmitate toxicity in INS-1 cells involved changes in neutral

lipid synthesis, cells treated for 12 hrs with 400 uM palmitate plus [1-14C]palmitic acid

were analyzed for 14C-labeled palmitate incorporation into complex lipids. Compared to

control cells, INS-1 cells treated with SCD siRNA had a 25% reduction in palmitate

incorporation into TAG, resulting in a significant 2.4-fold increased accumulation of

DAG (Figure 4.8A). In cells over-expressing SCD2 complex lipid synthesis was not

significantly altered (data not shown), suggesting protection from palmitate toxicity by

enhanced SCD2 expression may not involve changes in neutral lipid synthesis. Elovl-6

siRNA did not affect TAG levels but reduced DAG levels by 23%, whereas complex

lipid synthesis was not affected by over-expression of Elovl-6 (data not shown).

ER stress mediated by exogenous palmitate has been associated with release of

ER Ca2+ into the cytoplasm (222). The combination of increased ER Ca2+ release with

accumulation of DAG could cause B-cell dysfunction through sustained Ca2+-dependent

protein kinase C (PKC) activation. To test this possibility, INS-1 cells treated with

control or SCD siRNA were treated for 9 hrs with 400 uM palmitate and without or with

the Ca2+-dependent PKC inhibitor Go6976. In SCD knockdown cells, inhibition of

Ca2+-dependent PKCs resulted in a significant 41% reduction of CHOP protein levels

(Figure 4.8B). Taken together, increased susceptibility to palmitate-induced B-cell
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dysfunction by SCD knockdown involves increased DAG accumulation and PKC

activation.
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Figure 4.8. Effect of SCD knockdown on palmitate-induced ER stress involves

diacylglycerol accumulation and activation of Ca2+-dependent PKCs. A. INS-1

cells electroporated with siRNAs for control (siCTL), SCD (siSCD), or Elovl-6

(siElovl-6) were treated with modified INS-l media containing 400 uM palmitate

and [l-l4C]-palmitic acid for 12 hrs. Total lipids were extracted, fractionated by

TLC and 14C-labeled palmitate incorporation into complex lipids was determined

by densitometry. Data represent fold change and are mean i SEM for three

independent experiments. *, p <0.01 when compared to siCTL. B. INS-1 cells

electroporated with siRNAs for control (siCTL, C) or SCD (siSCD, S) were treated

for 9 hrs with 400 uM palmitate and without or with 1 pM G66976. Whole cell

protein extracts were fractionated by SDS-PAGE and CHOP protein was analyzed

by Western blotting. Data are mean i SEM for three independent experiments. *, p

< 0.02 when compared to siCTL cells.
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Discussion

Chronic elevations in FFAs are associated with loss of [i-cell function and the risk

of developing type 2 diabetes (4, 203). Modulation of intracellular FA metabolism in [3-

cells is essential for preventing the toxic effects of FFAs and maintaining proper function.

This study examined whether alterations in FA desaturase and elongase gene expression

contribute to B-cell compensation and failure in response to lipotoxicity. Rat islets and

INS-1 B-cells were found to express the desaturases SCD1, SCD2, A5D, and A6D, and

the elongases Elovl-1, Elovl-2, and Elovls-4 to -7. In contrast to liver and adipose tissue,

SCD2 is the predominant SCD isoform expressed in rat islets and B-cells (Fig 1) (257),

and to date, the importance of SCD2 in B—cell MUFA synthesis has not been addressed.

In addition, altered expression of SCDs and Elovl-6 in pre-diabetic and diabetic ZDF rat

islets emphasizes that the capacity to synthesize MUFAs could significantly affect

function, including the susceptibility of B-cells to lipotoxicity.

ZDF rats exhibit gradually increased plasma FFAs levels prior to the onset of

overt diabetes (313). Thus, alterations in B-cell FA metabolism likely affect the response

of ZDF islets to exogenous FFAs. Pre-diabetic ZDF rats at 6 weeks of age maintained

euglycemia but were hyperinsulinemic, which correlated with increased islet insulin gene

expression. Islets from pre-diabetic ZDF rats expressed significantly higher levels of

SCD1, A6D, Elovl-5, and particularly SCD2, than control rats. This is consistent with

studies showing elevated expression of SCD1, A6D, and Elovl-5 in livers of ZDF rats,

Zucker fatty rats, and insulin resistant ob/ob mice (316-318). Increased Elovl-5

expression may serve as a negative feedback mechanism due to the ability of PUFAs to

inhibit transcriptional activity of the sterol regulatory element binding protein-1c, a
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regulator of lipogenesis (319, 320). More importantly, increased SCD gene expression in

pre-diabetic ZDF rat islets may have a protective role by increasing the conversion of

lipotoxic saturated FAs into MUFAs as observed in Zucker fatty rat islets (257). SCD

and A6D gene expression is induced by insulin in liver (318, 321). Thus, elevated plasma

insulin levels in ZDF pre-diabetic rats and Zucker fatty rats likely contribute to increased

islet desaturase gene expression (Fig. 2) (257). As both control and ZDF rat islets aged,

ASD and A6D gene expression decreased significantly, consistent with decreased PUFA

desaturase activity found during aging in other tissues (322, 323). Hyperglycemic,

diabetic ZDF rats at 13 weeks had decreased plasma insulin levels that coincided with

reduced islet insulin gene expression, indicating islet failure. These islets also had

reduced expression of SCD1, SCD2, and Elovl-6. Decreased SCD expression could be a

result of islet failure due to reduced plasma insulin levels and a lack of islet insulin

signaling. Loss of SCD expression and activity could contribute to islet failure due to

increased accumulation of saturated FAs. Reduced Elovl-6 expression may have a

protective role by decreasing elongation of palmitate to stearate and allowing it to be

immediately desaturated to palmitoleate, a less lipotoxic FA.

Altered SCD and Elovl-6 gene expression in pre-diabetic and diabetic ZDF rat

islets raised the possibility that changes in MUFA synthesis may modulate B-cell

function. To examine the roles of SCDs and Elovl-6 in B-cells, these genes were

knocked down and over-expressed in INS-1 cells and subsequently treated with elevated

levels of palmitate. SCDs primarily desaturate the saturated FAs palmitate (16:0) and

stearate (18:0). Reduced SCD1 and SCD2 expression in INS-1 cells exposed to

exogenous palmitate significantly decreased total MUFA synthesis and increased the
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ratio of saturated FA to MUFAs. Over-expression of SCD2, however, selectively

increased n-7 MUFAs palmitoleate (16:1,n-7) and vaccenate (18:1,n-7), not oleate

(18:1,n—9). This is at odds with increased oleate in cells over-expressing SCD1 (315),

and raises the possibility that SCD2 preferentially desaturates palmitate over stearate.

Elovl-6 elongates both palmitate and palmitoleate. Reduced Elovl-6 expression in INS-1

cells decreased palmitate elongation and increased palmitoleate accumulation. Over-

expression of Elovl-6 strongly drove elongation of palmitate but not palmitoleate,

resulting in enhanced synthesis of stearate and oleate. Taken together, conversion of

exogenous palmitate into specific MUFAs, n-7 or n-9, in INS-1 cells is dependent on the

level of expression and activity of SCD2 and Elovl-6.

ER stress results in activation of the unfolded protein response pathways IREI,

PERK and ATF6 (204). IRE] induces genes important for ER expansion and reducing

protein load by splicing and, in turn, activating the transcriptional activator Xbpl (206).

PERK phosphorylates eukaryotic translation initiation factor 2a (eIF20t) to inhibit

general protein translation while enhancing others such as ATF4 (244). Sustained

PERK-ATF4 activation induces the pro-apoptotic genes ATF3 and CHOP (244, 324).

Active ATF6 induces ER protein chaperones to aid in protein folding (219). In B-cells,

exogenous saturated FAs largely activate the IRE] and PERK pathways, increasing Xbpl

splicing, eIF20t phosphorylation, ATF4 protein, and mRNA and protein levels of ATP3

and CHOP (222, 223). Here, INS-l cells treated with palmitate exhibited increased Xbpl

splicing, ATP3 and CHOP mRNAs, and CHOP protein. Decreased SCD gene expression

significantly increased the sensitivity to palmitate induction of each of these ER stress

markers, whereas decreased Elovl-6 tended to reduce Xbpl splicing and CHOP protein.
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Over-expression of SCD2 reduced palmitate induction of CHOP protein, demonstrating

for the first time that SCD2 can modulate ER stress. Liver X receptor (LXR)-activated [3-

cells display increased SCD1/2 gene expression and protection from lipotoxicity (257,

325). LXR activation, however, did not alter ER stress, suggesting other mechanisms

were involved (257). CHOP is also mediated through IRE] activation of the cJun/cFos

pathway by phosphorylation of JNK (204). INS-1 cells exposed to elevated palmitate

had increased JNK phosphorylation, and this was significantly enhanced and reduced by

knockdown and over-expression of SCDs, respectively. Decreased Elovl-6 expression

tended to lower JNK phosphorylation by elevated palmitate, whereas over-expression of

Elovl-6 increased palmitate-induced JNK phosphorylation. Thus, altered stearate

production could affect ER stress. Overall, these findings directly demonstrate that

enhanced MUFA synthesis, particularly through SCD2, reduces the susceptibility to

palmitate-induced ER stress.

Accumulation of endogenous palmitate causes the release of ER Ca2+ stores,

which could activate the intrinsic apoptosis pathway (204, 222). Increased ER stress in

INS-1 cells with decreased SCD expression coincided with increased sensitivity to

palmitate-induced caspase-9 cleavage and DNA fragmentation, hallmarks of apoptosis.

This confirms that SCD knockdown increases susceptibility to B-cell dysfunction (256,

257). Consistent with a role of SCD to protect B-cells from palmitate-induced ER stress,

SCD2 over-expression significantly reduced both markers of apoptosis. Decreased

Elovl-6 expression did not significantly affect palmitate-induced apoptosis, whereas it

was increased by over-expression of Elovl-6. The minimal effect of reduced Elovl-6 on

ER stress and apoptosis could be due to the absence of a simultaneous increase in SCD
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gene expression. Thus, Elovl-6 knockdown increases palmitoleate synthesis, but SCD2

over-expression drives it further and additionally increases total MUFA synthesis.

Protection from lipotoxicity in cells with elevated expression of SCD] has been

proposed to involve enhanced palmitate incorporation into neutral lipids (6, 315).

Surprisingly, SCD2 over-expression did not enhance storage of exogenous palmitate into

TAG or cholesterol ester (data not shown). This absence of an effect of SCD2 on neutral

lipid synthesis could be due to enhanced glycerolipid/FA cycling or FA oxidation, thus

the role of SCD2 in neutral lipid synthesis is under investigation. INS—1 cells with

decreased SCD1 and SCD2 expression had lower palmitate incorporation into TAG and

CE but a buildup of DAG, consistent with SCD1 involvement in TAG and CE synthesis

(21, 315). Palmitoyl-CoA has been shown to activate PKCs (Corkey 2000).

Accumulation of DAG and palmitoyl-CoA combined with release of ER Ca2+ could

cause sustained activation of Ca2+-dependent PKCs, which may result in increased B-cell

dysfunction such as ER stress. In support of this possibility, treatment with the Ca2+-

dependent PKC inhibitor G66976 reduced the effect of palmitate on CHOP protein levels

in INS-l cells with decreased SCD expression.

In conclusion, we demonstrate that altered SCD and Elovl-6 expression in INS-1

cells modulates MUFA synthesis and susceptibility to palmitate-induced B-cell

lipotoxicity. These findings emphasize that regulation of SCDs and Elovl-6 may

significantly contribute to the preservation or loss of B-cell function and the development

of type 2 diabetes.
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Chapter 5.

Role of Fatty Acid Elongases in Determination of De Novo Synthesized

Monounsaturated Fatty Acid Species

Abstract

Enhanced production of monounsaturated fatty acids (FAS) derived from

carbohydrate-enriched diets has been implicated in the development of obesity and

insulin resistance. The FA elongases Elovl-5 and Elovl-6 are regulated by changes in

nutrient and hormone status and have been shown using intact yeast and mammalian

microsome fractions to be involved in the synthesis of monounsaturated FAs. Herein,

targeted knockdown and over-expression of Elovl-5 or Elovl-6 was used to determine

their roles for de nova synthesis of specific species of monounsaturated FA in

mammalian cells. Treatment of INS-1 cells with elevated glucose increased de nova FA

synthesis and reduced the ratio of saturated to monounsaturated FAS. Elovl-5

knockdown decreased elongation of 16:1,n—7, whereas Elovl-5 over-expression increased

synthesis of 18:1,n-7 but was dependent on stearoyl-CoA desaturase driven substrate

availability of 16:1,n-7. Knockdown of Elovl-6 decreased elongation of both 16:0 and

16:1,n-7, resulting in accumulation of 16:1,n-7. In contrast to Elovl-5, Elovl-6 over-

expression preferentially drove synthesis of 16:0 elongation products 18:0 and 18:],n-9

but not 18:1,n-7. These findings demonstrate that coordinated induction of FA elongase

and desaturase gene expression is required for balanced synthesis of specific n-7 versus
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n-9 monounsaturated FA species. Furthermore, Elovl-6 is identified as a critical

regulator in determining de nova synthesized FA end products.

Introduction

Diets high in carbohydrates and saturated fat are well established to cause altered

fatty acid (FA) metabolism and elevated triglyceride accumulation, contributing to the

development of obesity and type 2 diabetes. Elevated levels of carbohydrates specifically

enriched in mono- and disaccharides induce the transcription of genes that increase

glucose metabolism and lipogenesis in the liver (57, 326, 327), diverting excess catabolic

metabolites into FAS for storage as triglycerides and cholesterol esters. FA elongase and

desaturase enzymes catalyze the conversion of saturated FAs synthesized de nova from

glucose into monounsaturated FAs (MUFAs) such as palmitoleate or oleate. The

accumulation of MUFAs have been associated with hypertriglyceridemia and adiposity

(254, 328, 329), and inhibition of MUFA synthesis decreases triglyceride levels and

protects from diet-induced obesity and insulin resistance (36, 48, 255). Interestingly,

palmitoleate was recently identified as an adipose tissue-derived lipid hormone capable

of enhancing muscle insulin sensitivity (330). These findings emphasize the importance

of understanding the mechanisms regulating the production ofMUFAs.

Synthesis of de nova FAs involves the enzymes acetyl-CoA carboxylase (ACC)

and fatty acid synthase (FAS) which carboxylate cytosolic acetyl-CoA to malonyl-CoA

and covalently bond malonyl-CoA C2 units to produce the C16 FA palmitate (16:0),

respectively (8). After activation to palmitoyl-CoA, a FA elongase adds an additional

malonyl-CoA to make stearoyl-CoA (18:0). MUFAs not derived from exogenous

sources are synthesized by a delta-9 desaturase addition of a cis-double bond to
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palmitoyl-CoA and stearoyl-CoA to form, palmitoleoyl-CoA (16:1,n-7) and oleoyl-CoA

(18:1,n-9), respectively. Palmitoleoyl-CoA may also be elongated to vaccenyl-CoA

(18:1,n-7).

Stearoyl-CoA desaturases (SCDs) are delta-9 desaturases and rate limiting for

MUFA synthesis (20). SCD subtypes identified in mammalian cells thus far include

SCDs 1-5 (1 1-15, 18). Saturated FAs desaturated by SCDs contained chain lengths from

Cl3-19 for SCDs l, 2, and 4 and C12-16 for SCD3 (20). Synthesis of C18 MUFAs de

nova from glucose requires chain elongation of C16 FAS by a FA elongase (Elovl), yet it

remains uncertain which elongases are involved in synthesis of specific MUFA species

(e.g. 18:1,n-7 versus 18:1,n-9).

Substrate specificity analyses using yeast and in vitro microsomal preparations

identified the elongases Elovl-5 (FAEl, Relol, Helol) and Elovl-6 (LCE, FACE, rEloZ)

to be involved in MUFA synthesis (31-33, 331). Elovl-6 and SCD gene expression are

induced by insulin, liver X receptors, sterol regulatory element binding protein-l

(SREBP-1), and glucose induction of the carbohydrate-regulatory element binding

protein/MAX-like factor X heterodimer (318, 325). In mice, hepatic Elovl-5, Elovl-6 and

SCDs are induced by activation of peroxisome proliferator-activated receptor or and in

leptin deficient, obese (ob/ob) mice, whereas they are suppressed by long-term feeding of

diets high in saturated fat (318). Coordinated expression of elongases and desaturases by

transcription factors that regulate lipogenic pathways, thus control the levels of MUFAs.

In vitro assays have shown that Elovl-5 elongates unsaturated FAS, including 16:1,n-7,

18:3,n6 and 18:4,n3 (32, 33, 33]). Relative to Elovl-5, Elovl-6 more effectively

elongates C12-16 saturated FAs and 16:1,n-7 (3], 32). Because oleate (18:1,n-9) is the
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predominate MUFA in cells, Elovl-6 may play a larger role in MUFA synthesis than

Elovl-5 by converting palmitate to stearate, a saturated precursor of oleate.

Modulating the expression ofFA elongase and desaturase genes has physiological

significance, as mice with knockdowns of either Elovl-6 or SCD1 are protected from

diet-induced obesity (36, 48, 255). The mechanism regulating the determination of

specific de nova derived MUFA end products, however, remains to be defined. This

study presents a comprehensive analysis of the effects of both decreased and increased

expression of Elovl-5, Elovl-6, and SCDs on FAs synthesized de nova from glucose in a

mammalian cell line. The results demonstrate that altering the expression of each

enzyme causes significant changes in select MUFA species synthesized de nova.

Results

5.]. Regulation of FA elongase and desaturase genes by glucose

Studies characterizing the substrate specificity of FA elongases in mammalian

cells have focused primarily on in vitro assays using cellular extracts or fractions. These

in vitro assays indicated that Elovl-5 preferentially elongates 16:1,n-7 and

polyunsaturated FAS, while Elovl-6 elongates 14:0, 16:0, and 16:1,n-7 (31-33, 331).

Little is known, however, about their substrate preference in intact cells, particularly in

regards to de nova derived FAs. To study the roles of Elovl-5 and Elovl-6, INS—1 cells

were used to model intracellular de nova FA synthesis, as these cells are known to induce

lipogenic gene expression in response to glucose (112, 234). INS-1 cells were treated

with either 4 mM or 16.7 mM glucose to determine the glucose responsiveness of
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lipogenic genes and FA elongase and desaturase genes indicated to be involved in MUFA

synthesis (Figure 5.1A).

Genes required for de nova synthesized palmitate (16:0), ACC and FAS, were

increased 7.9- and 1.8-fold, respectively, by 16.7 mM glucose compared to 4 mM glucose

(Figure 5.]B). The expression of Elovl-5 and Elovl-6 was increased 1.3-fold, whereas

SCD expression was elevated 2.6-fold for SCD1 and 3.2-fold for SCD2. These results

show that between the FA elongases and desaturases involved in MUFA synthesis, the

expression of SCDs in INS-l cells is more responsive to glucose than Elovl-5 and Elovl-

6. Further, this suggests that modulating the expression of Elovl-5, Elovl-6, and SCDs

could significantly alter the elongation and desaturation status of newly synthesized FAs.

5.2. Elevated glucose increases the abundance of de novo synthesized FAs and alters

the ratio of saturated to monounsaturated FAs.

Synthesis of de nova FAs in response to glucose was determined by measuring

14C-glucose incorporation into FAs in cells cultured for 48 hrs in either 4 mM or 16.7

mM glucose. INS-1 cells cultured in 16.7 mM glucose showed a 6- to 13-fold increase in

14C-labeled saturated FA and MUFA compared to cells cultured in 4 mM glucose

(Figure 5.2A). The percent of labeled FAs was significantly increased for 16:1,n—7,

18:1,n-7 and 18:1,n-9, and decreased for 16:0 and 18:0 (Figure 5.2B). Thus, there was a

38% decrease in the ratio of total saturated FA to MUFAs in 16.7 mM glucose treated

cells (Figure 5.2C). These data demonstrate that elevated glucose increases both the

abundance of de nova synthesized FAs and the conversion of saturated FAs to MUFAs.

INS-l cells cultured in 11.1 mM glucose were subsequently used to examine the role of

Elovl—5 and Elovl-6 for synthesis of specific 18:] FA species.
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Figure 5.1. Glucose increased mRNA levels of genes involved in de nova lipogenesis

and FA elongation and desaturation. A. Diagram of genes regulating end products of

de novo FA synthesis. B. Levels of mRNA of de novo FA synthesis genes. Total mRNA

was extracted from cells cultured for 48 hrs in 4 mM versus 16.7 mM glucose and

analyzed by qRT—PCR. Data are relative to RPL32 expression and normalized to cells

cultured in 4 mM glucose.

compared to 4 mM glucose.
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Figure 5.2. Elevated glucose increased de novo FA abundance and

monounsaturated FA synthesis. Cells were cultured for 48 hrs in 4 mM or 16.7

mM glucose. During the last 24 hrs the culture media was supplemented with [U-

l4C]-glucose (specific activity of glucose was held constant). Total lipids were

extracted, saponified, and 14C incorporation into FAs was quantified by rp-HPLC.

A. Newly synthesized FAs are represented as counts incorporated into specific FA

species normalized to protein. B. Percentage of total labeled FA. The percentage of

labeled 16:1,n-7, 18:0, 18:1,n-7, and 18:1,n-9 in high glucose cultured cells are

significantly different when compared to cells cultured in low glucose (p < 0.05). C.

Ratio of total saturated FAs to total MUFAs. Data are the mean : SE. for three

independent experiments. *, p < 0.03 when compared to low glucose.
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Figure 5.2. Continued
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5.3. Selective knockdown of Elovl-5 or Elovl-6 impact synthesis of specific MUFA

species.

siRNAs were used to determine the relative contributions of Elovl-5, Elovl-6 or

SCD1/2 on the de nova synthesis of specific FAs species in INS-l cells cultured in

elevated glucose. siRNAs selective against Elovl-5 or Elovl-6 decreased expression of

the target mRNA by 75% and 81% with no significant effect on non-target mRNA levels

(Figure 5.3A). SCD siRNA reduced SCD1 and SCD2 by 91% and resulted in a 1.68-fold

increase in Elovl-6. Next, de nova FA synthesis was assessed in siRNA treated cells

using 14C-acetic acid. Decreased expression of Elovl-5 mRNA led to increased 14C-

labeling of 16:1,n-7 and decreased labeling of 16:0 (Figure 5.38). There was no

significant change in 14C-labeled 18:0 and 18:1,n-7, but there was a trend for increased

14C-labeled 18:1,n-9. These data are consistent with reduced elongation of 16:1,n-7 and

increased flux to 18:1,n-9 production. Decreased expression of Elovl-6 led to decreased

14C-labeling of 18:0 and 18:1,n-9, and increased 14C-labeling of 16:0 and 16:1,n-7.

There was no change in labeled 18:1,n-7. These data are consistent with Elovl-6

mediating elongation of 16:0 to 18:0. Reduction of SCD expression decreased 16:1,n-7,

18:1,n-7 and 18:1,n-9 synthesis and led to increased 14C-labeling of 16:0 and 18:0.

Indexes of elongation and desaturation were calculated to determine the effects of

decreased Elovl—5, Elovl-6, and SCD expression on the handling of specific FAS. In

control cells, the elongation indexes for 16:0 and 16:1,n-7 are the same, whereas the

desaturation index for 18:0 is approximately 3-fold greater than 16:0 (Figure 5.3C and

D). Elovl-5 siRNA decreased 16:1,n-7 elongation and resulted in increased 16:0

elongation and desaturation, but caused no change in 18:0 desaturation. Elovl-6 siRNA
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reduced 16:0 and 16:1,n-7 elongation and 18:0 desaturation. Elovl-6 siRNA had no

effect on 16:0 desaturation. Reduced SCD expression decreased 16:0 elongation and

caused a greater decrease in 16:1,n-7 elongation. As expected, desaturation of 16:0 and

18:0 with siSCD was also markedly decreased. These results demonstrate that decreased

expression of Elovl-5 or Elovl-6 has dramatic effects on the synthesis of specific FA

species derived de nova from glucose.
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Figure 5.3. FA elongase and desaturase siRNA decreased gene expression and

modulated MUFA synthesis. Cells electroporated with control (CTL), Elovl-5,

Elovl-6 and SCD siRNA were cultured for 24 hrs in media containing 11.1 mM

glucose followed by RNA extraction or overnight treatment with the same

conditions plus [2-14C]-acetic acid. A. Levels of Elovl-5, Elovl-6, SCD1, and

SCD2 mRNA, relative to RPL32 mRNA levels. Data are normalized to siCTL cells

and represent the mean .4.- S.E. (n=3). *, p < 0.02 when compared to siCTL. B. Total

lipids were extracted, saponified, and 14C incorporation into FAs was quantified by

rp-HPLC. Data presented as percentage of total labeled FA species (n=3). C.

Elongation index for each specific siRNA. Data are the mean :1: SE. (n=3). *, p <

0.05 for 16:0, and #, p < 0.03 for 16:1n—7 when compared to siCTL. D. Desaturation

index for each specific siRNA. Data are the mean t SE. (n=3). *, p < 0.04 for

16:0, and #, p < 0.02 for 18:0 when compared to siCTL.
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Figure 5.3. Continued
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5.4. Over-expression of Elovl-5 or Elovl-6 leads to selective synthesis of specific

MUFA species.

To further examine the selectivity of Elovl-5, Elovl-6, and SCD2 in de novo FA

synthesis, adenoviruses were constructed to over-express each individual gene and

examined for their effect on de novo FA end products. Compared to a control adenovirus

containing B—galactosidase (AdB—gal), over-expression of Elovl-6 resulted in a large

increase in 14C-labeled 18:0 and 18:1,n-9 and decreased labeling of 16:0, 16:1,n-7, and

18:1,n-7 (Figure 5.4A). The elongation index from cells over-expressing Elovl-6 showed

a large 3.6-fold increase in 16:0 elongation to 18:0 with no change in the rate of 18:0

desaturation to 18:1,n-9 (Figure 5.48 and C). The increased 16:0 elongation led to a 54%

decrease in 16:0 desaturation and only a small, insignificant increase in 16:1,n-7

elongation. These results are consistent for production of 18:1,n-9 at the expense of

16:1,n-7 and 18:1,n-7.

Elovl-5 over-expression had a limited effect on 14C-acetic acid incorporation into

FAs compared to Elovl-6 over-expression. Elevated Elovl-5 expression led to decreased

14C-labeled 16:0 and 16:1,n-7, and increased 14C-labeled 18:0 and 18:1,n-7 (Figure

5.5A). The effect of Elovl-5 on 16:1,n-7 and 18:1,n—7 labeling corresponded with a

significant increase in the elongation index of 16:1,n-7 (Figure 5.5B). The minimal effect

of Elovl-5 might be due to low 16:1,n-7 substrate availability. To test this possibility,

cells were treated with an adenovirus over-expressing SCD2 alone or in combination with

Elovl-5 over-expression. SCD2 over-expression caused a decrease in 14C-labeled 16:0

and 18:0 and a marked increase in 14C-labeled 16:1,n-7 and 18:1,n-7. This resulted in a

5-fold increase in the 16:0 desaturation index and a 1.5-fold increase in the 18:0
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desaturation index (Figure 5.5C). Compared to SCD2 alone, the combination of Elovl-5

and SCD2 further increased 18:1,n-7 and reduced 16:1,n-7, demonstrating that Elovl-5

elongates de novo synthesized 16:1,n-7. These results emphasize a larger role of Elovl-6

and SCD than Elovl-5 in de novo FA synthesis in this cell model and point to the

elongase Elovl-6 as being critical for regulating newly synthesized FA end products.
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Figure 5.4. Effect of increased Elovl-6 expression on de novo FA end product

formation. INS—1 cells were infected with adenoviruses expressing B-galactosidase

(B-gal) and Elovl—6 and were then cultured for 24 hrs in 11.1 mM glucose and [2-

14C]-acetic acid. Total lipids were extracted, saponified, and 14C incorporation into

FAs was quantified by rp-HPLC. A. Percentage of total labeled FA species (n=3).

B. Effect of B-galactosidase and Elovl-6 on elongation index. Data are the mean :t

S.E. (n=3). #, p < 0.01 for 16:0 when compared to B-gal. C. Effect of [3-

galactosidase and Elovl-6 on desaturation index. Data are the mean :1: S.E. (n=3). *,

p < 0.006 for 16:0 when compared to B-gal.
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Figure 5.5. Effect of increased Elovl-5 or SCD2 expression on de novo end

product formation. INS-1 cells were infected with adenoviruses that express [3-

galactosidase (B—gal), Elovl-5 or SCD2. Cells were cultured for 24 hrs in 11.1 mM

glucose and [2-14C]-acetic acid. Total lipids were extracted, saponified, and 14C

incorporation into FAs was quantified by rp-HPLC. A. Percentage of total labeled

FA species (n=3). B. Effect of B-gal, Elovl-5 and SCD2 on elongation index. Data

are the mean 1 S.E. (n=3). #, p < 0.02 for 16:1,n-7 when compared to B-gal. C.

Effect of B-gal, Elovl-5 and SCD2 on desaturation index. Data are the mean :1: S.E.

(n=3). *, p < 0.007 for 16:0, and #, p < 0.002 for 18:0 when compared to B-gal.
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Discussion

The expression of FA elongases and desaturases is highly regulated by

transcription factors involved in glycolytic and lipogenic gene expression (318). This

coordinates changes in nutrient and hormone status with the activation of lipogenic genes

and altered synthesis of specific FAs and complex lipids, which can impact the

susceptibility to disease. Exposure to elevated carbohydrates activates transcription

factors such as SREBP-1c and ChREBP that induce the expression of genes that enhance

glucose metabolism as well as the synthesis and storage of PAS (69, 57). As shown here,

elevated glucose induced the expression of ACC, FAS, and FA elongases and

desaturases, which increased the synthesis of de nova derived FAs. The role FA of

elongases in determining end products of de novo FA synthesis from glucose has been

largely speculative. Although substrate specificities of Elovl-5 and Elovl-6 in vitro using

yeast and microsomal preparations indicated elongation of 16 carbon PAS (31, 32), the

effect of altered expression of these enzymes on the specific species of FA synthesized

from glucose has not been addressed. This study is the first to characterize the effects of

both reduced and enhanced expression of Elovl-5 and Elovl-6 on the intracellular end

products of de nova derived FAs in mammalian cells. The findings reveal a significant

role for FA elongase activity in regulating the synthesis of de nova derived MUFAs and

establishing the balance between 16:1,n-7, 18:1,n-7, and 18:1,n-9.

Elongation of FA by Elovl-5 is essential for control of hepatic lipid homeostasis

as over-expression in liver decreased triglyceride content and knockdown led to

activation of SREBP-1c, increased lipogenic gene expression, and hepatic steatosis (320,

332). Elovl-S substrates include polyunsaturated FAs such as 18:4,n3, a precursor for
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20:5,n3 FA synthesis, as well as 16:1,n-7 (32, 33, 331). Elevated levels of carbohydrate

leads to increased synthesis of both 18:1,n-7 and 18:1,n-9 FA in INS-1 cells and liver

(48). Targeted reduction of Elovl-5 expression decreased the elongation of 16:1,n-7 to

18:1,n-7 and increased elongation of 16:0 to 18:0 and the synthesis of 18:1,n-9,

illustrating an ex vivo role for Elovl—5 in the elongation of 16:1,n-7. Findings in INS-l

cells are in stark contrast to Elovl-5 null mice, which have increased rather than

decreased hepatic levels of 18:1,n-7 (320). Although 18:1,n-7 levels were unexpectedly

elevated in Elovl-5 null mice, PUFA levels were reduced as expected. The increased

levels of hepatic 18:1,n-7 maybe associated with reduced synthesis of 22:6,n3, an

inhibitor of SREBP-1 processing (8, 320). Indeed Elovl-5 null mice had increased

SREBP-1c levels, de novo FA synthesis, and Elovl-6 expression, which can elongate

16:1,n—7 to 18:1,n-7 (320). Over-expression of Elovl-5 in INS-l cells decreased the

amount of de nova derived 16:1,n-7 but only had a minimal effect on 18:1,n-7. The

minimal effect of increased Elovl-5 expression was likely due to limited substrate

availability as INS-1 cells have very low concentrations of 16:1,n-7 relative to 16:0.

Consistent with this possibility, over-expression of SCD2 significantly increased 16:1,n-7

synthesis, which was available for Elovl-5 to elongate to 18:1,n-7. Under many

physiologic states, increased SCD expression occurs with increased expression of Elovl-5

(and Elovl-6) (318). Elovl-5 might function to keep cellular concentrations of 16:1,n-7

low, thereby preventing accumulation of 16:1,n-7 that can serve as a cell-signaling

molecule (330). Although the mechanism is unknown, exposure of cells to 16:1,n-7

enhances insulin signaling and its accumulation in the blood has been shown to correlate

with increased muscle insulin sensitivity and protection from hepatic steatosis (3 6, 330).
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The preferred substrate for triglyceride storage of excess FAs is the MUFA oleate

(18:1,n-9) (21). Synthesis of 18:1,n-9 de nova requires the elongation of 16:0 to 18:0

prior to desaturation. Elovl-6 over—expression in INS-l cells largely drove the elongation

of 16:0 to 18:0 and promoted synthesis of 18:1,n-9 rather than elongation of 16:1,n-7 to

18:1,n-7. Conversely, reduced expression of Elovl-6 significantly decreased the products

of 16:0 elongation (i.e. 18:0 and 18:1,n-9) while increasing 16:1,n-7. In addition,

elongation of 16:1,n-7 to 18:1,n-7 was also decreased with siElovl-6. A role for Elovl-6

in 16:0 elongation is supported by Elovl-6 null mice, which displayed decreased hepatic

accumulation of 18:0 and 18:1,n-9 and increased 16:0 and 16:1,n-7 (36). The effect of

decreased elongation of both 16:0 and 16:1,n-7 by reduced Elovl-6 expression and

activity is a shuttling of de nova synthesized FA towards the production of 16:1,n-7. Our

data shows expression and activity of Elovl-6 is mostly involved in elongation of de nova

synthesized 16:0 to produce n-9 MUFA species.

Although Elovl-5 and Elovl-6 activities can influence synthesis of specific MUFA

species, SCD activity clearly plays the predominate role in total MUFA synthesis. This

was exemplified by the large reduction in 16:1,n-7, 18:1,n-7 and 18:1,n-9 in INS-1 cells

with reduced SCD1 and SCD2. Interestingly, Elovl-6 mRNA, but not Elovl-5 mRNA,

was induced in SCD deficient INS-1 cells. This finding supports the unique role of

Elovl-6 in synthesis of 18:1,n-9, the predominate MUFA in cells, and suggests that

MUFA provide negative-feedback control on Elovl-6 expression. Over-expression of

SCD2 in INS-l cells, in the absence of increased Elovl-5/Elovl-6, led to increased 16:1,n-

7 and 18:1,n-7, but had little impact on 18:1,n-9 synthesis. These data suggest that
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without coordinate regulation of FA elongases, elevated SCD activity will disrupt the

balance of 16:1,n-7, 18:1,n-7 and 18:1,n-9.

In conclusion, this study presents a comprehensive analysis of the effects of altered

expression of Elovl-5 and Elovl-6 on de novo synthesized MUFAS. Our results

demonstrate that Elovl-5 preferentially converts 16:1,n-7 to 18:1,n-7, whereas Elovl-6

preferentially elongates 16:0 to 18:0, which can be further desaturated to 18:1,n-9. Loss

of coordinate control of Elovl-5, Elovl-6 and SCD can disrupt production of specific

 

MUFA species, which may negatively influence cell function.
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Chapter 6. General Conclusions and Future Studies

Chronic hyperglycemia and elevated FFA levels have been associated with the

pathogenesis of [fl-cell dysfunction and T2D (4). Pancreatic [ii-cell FA metabolism is a

growing area of research focused on identifying mechanisms to prevent the adverse

effects of glucolipotoxicity. Recent studies demonstrated that [El-cells possess innately

enhanced regulation of specific FA metabolic pathways that contribute to preserving

proper function (6, 104, 234, 257). This dissertation provides novel information into how

changes in FA metabolism through activation of LXRs and alterations in MUFA

synthesis modulate B-cell fimction in response to glucolipotoxicity.

Islet fi-cells from hyperglycemic animal models of T2D exhibit diminished GSIS

in conjunction with elevated lipogenic gene expression, de nova FA synthesis, and TAG

accumulation (116, 233). This association between diminished GSIS and lipogenesis has

been proposed to occur through activation of SREBP-1c, a major transcriptional regulator

0f lipogenic genes (116, 233). The findings presented here, however, demonstrate that

enhanced activation of SREBP-lo, lipogenic gene expression, and TAG synthesis by

aetivation of LXRs results in elevated basal insulin release and GSIS during chronic

h)r'perglycemia. These results conflict with studies showing over-expression of a

c30nstitutively active SREBP-lo increases TAGS and causes loss of GSIS (116). The

difference could be that B-cells are sensitive to the level of SREBP-1c activation, as its

expression is required for LXR-mediated enhancement of insulin secretion (253). In

addition, LXR activation may affect other FA metabolism pathways that impact B-cell

1:Llnction. Consistent with this possibility, elevated basal insulin release from LXR-

activated INS-1 cells was blocked by inhibition of acyl-CoA formation and FA oxidation,
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Figure 6.1. Mechanisms of protection from glucolipotoxicity by activation of LXRs

and enhanced MUFA synthesis. LXR activation during chronic hyperglycemia drives

de novo synthesis of 16:0, conversion of 16:0 to n-7 MUFAs, and TAG synthesis. In

addition, LXR activation increased CPT-l gene expression and FA oxidation.

Subsequent lipoylsis of glycerolipid pools in LXR-activated B-cells increased basal

insulin secretion, via the enhanced FA oxidation, and increased GSIS through generation

of DAG. ER stress and loss of B—cell mass from exposure to excess exogenous palmitate

was reduced by enhanced SCD2-mediated synthesis of n-7 MUFAs.‘ Whether LXR

activation and increased MUFA synthesis affect oxidative stress remains to be

determined. Furthermore, how SCD2 protects from palmitate toxicity is still unknown.

Overall, utilization of mechanisms designed to enhance LXR and SCD2 activity could

provide significant protection of B-cells from glucolipotoxicity.
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which coincided with increased FA oxidation and expression of genes involved in

mitochondrial B-oxidation. The link between LXR activation and increased CPT-l gene

expression and FA oxidation is unclear, but may involve FA-mediated regulation of

AMPK and ACC or an effect ofLXR on PPARa as shown in the intestine (292).

Enhanced TAG synthesis and FA oxidation combined with the observation that

TAGs are turned over rapidly indicated that the effect of LXR activation on GSIS

involved turnover of neutral lipid pools. Inhibition of lipolysis by treatment of INS-1

cells with the general lipase inhibitor orlistat blocked the turnover of TAG and reduced

GSIS. Turnover of TAG could, in turn, provide lipid signaling molecules such as DAG

to enhance insulin secretion. In support of this hypothesis, elevated GSIS from LXR-

activated cells was reduced by inhibition of DAG binding proteins. Thus, elevated GSIS

by activation of LXRs involves TAG turnover and signaling through DAG. Our findings

indicate that a balance between synthesis and turnover of neutral lipid pools is necessary

for enhanced glycerolipid/FA cycling to protect B-cells from chronic hyperglycemia.

This is supported by studies showing that altering only synthesis or turnover of neutral

lipids causes reduced GSIS (104, 165, 239, 240).

Taken together, LXR activation elevates insulin secretion through a mechanism

involving increased de nova synthesis and turnover of TAG and enhanced mitochondrial

B-oxidation. These findings support the emerging role of increased glycerolipid/FA

cycling in B-cell compensation (99). Obese ZF rats maintain normoglycemia, in part,

through enhanced islet glucose- and FA-stimulated insulin secretion (104). Interestingly,
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ZF rat islets display increased FA esterification, lipolysis, and FA oxidation as well as

increased LXRa gene expression (104, 257). Therefore, LXRs could be key regulators of

B-cell glycerolipid/FA cycling. Future studies will be necessary to determine if LXR is

required for glycerolipid/FA cycling.

In conjunction with elevated TAG synthesis, LXR activation increased MUFA

synthesis and expression of the FA desaturases SCD1 and SCD2. Characterization of FA

elongase and desaturase genes in rat islets and INS-1 cells identified expression of the

elongases Elovls 1, 2, 4, 5, 6 and 7, and the desaturases SCD1, SCD2, ASD and A6D. In

contrast to the liver, SCD2 was the predominant SCD isoform expressed in B-CCIIS, as

shown recently (257). In addition, we demonstrated that SCD1 and SCD2 gene

expression is elevated in pre-diabetic ZDF rat islets and reduced, along with Elovl-6, in

diabetic ZDF rat islets. Prior to the onset of T2D, ZDF rats display gradually increasing

concentrations of plasma FFAs (313), which are associated with loss of B-cell function

(4). This suggested that regulation of genes involved in MUFA synthesis could be

involved in B-cell compensation and failure during the development of T2D. In support

of this hypothesis, we show that knockdown of SCD1 and SCD2 increased the

susceptibility of INS-l cells to palmitate-induced ER stress and apoptosis, confirming

that SCD expression is required for protection against lipotoxicity (257). Increased

palmitate toxicity in SCD knockdown cells was associated with reduced TAG, increased

DAG, and Ca2+—dependent PKC activation. This correlates with studies showing that

palmitate toxicity is associated with reduced incorportation into neutral lipids compared

to MUFAs (241, 315). Although reduced palmitate toxicity in rat islets and MIN-6 [3-

cells correlates with enhanced SCD1 and SCD2 expression (6, 257), enhanced regulation
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of other FA metabolism pathways could account for this protection as well. For example,

ZF rat islets and MIN-6 B-cells have increased expression of SCDs and CPT-1, which

coincided with increased FA oxidation (6, 104, 257). Here, we show for the first time

that elevated expression of only SCD2 protects from palmitate-induced ER stress and

apoptosis. Protection by SCD2 over-expression, however, did not coincide with

increased TAGS. Further studies are needed to determine how enhanced SCD2

expression modulates lipotoxicity. In addition, palmitate toxicity tended to be reduced by

Elovl-6 knockdown, whereas it was enhanced by Elovl-6 over-expression. This

correlates with Elovl-6 knockdown having beneficial effects in liver, as Elovl-6 null mice

are protected from diet-induced insulin resistance (36).

In the liver, increased MUFA synthesis coincides with increased expression of

both SCD and Elovl-6 (318). Here, we show that elevated expression of either SCD2 or

Elovl-6 alone alters the conversion of exogenous palmitate into specific MUFA species,

n-7 versus n-9. The increased palmitate toxicity in cells over-expressing Elovl-6 is likely

due to the significantly increased stearate production in the absence of a simultaneous

increase in SCD expression. Interestingly, Elovl-6 drove the synthesis of both exogenous

palmitate and de novo derived FAs towards stearate and oleate, rather and vaccenate.

This demonstrates that although Elovl-6 elongates palmitate and palmitoleate in vitro (31,

32), its primary function is to elongate palmitate to provide the precursor for oleate

synthesis. The FA elongase Elovl-5 is also involved in MUFA synthesis, as it elongates

16:1,n-7 to 18:1,n-7 (32, 33). Although Elovl-5 knockdown in INS-1 cells decreased

elongation of de novo synthesized 16:1,n-7, its over-expression had a limited effect on

18:1,n-7 synthesis, which depended on SCD driven substrate availability of 16:1,n-7.
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Taken together, our results show that altered expression of either SCD, Elovl-6 or Elovl-5

significantly effects MUFA end products, emphasizing the importance of coordinated

regulation of these genes for maintaining balanced synthesis of n-7 versus n-9 MUFAs,

as found in liver (318).
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