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ABSTRACT 

THREE ESSAYS IN APPLIED ECONOMETRICS 

By 

Monthien Satimanon 

The three essays are self-contained and are the combination of applied and empirical 

econometrics. They are “Comparisons of Approaches in Measuring Willingness to Pay for 

Environmental Services”, “Comparisons of Approaches in Measuring Causes of  Wage 

Inequality”, and “Estimation of Binary Response Model with Endogeneity and Hetero- 

skedasticity.” 

 The first essay proposes a comparison of both parametric and semiparametric estimation 

of willingness to pay (WTP) for environmental services. In order to solve for problem of 

inconsistency of estimation since heteroskedasticity, several conventional and new methods are 

used in the analysis. The methods are Probit (Probit), Heteroskedasticy Probit (HP), Turnbull 

(T), Watnabe (2010), Ahn (2000), and sieve semiparametric estimator (S). The comparison 

includes the estimated parameters as well as the estimated standard errors since the WTP is 

derived from these parameters. Monte Carlo simulations have been used to compare finite 

sample properties of each estimating methods. The empirical application comes from a study of 

the demand for payment for environmental services, water quality preservation, in eastern Costa 

Rica. By Monte Carlo Simulation, we found out that neglecting heteroskedasticity could lead to 

over estimation of WTP by almost 100 percent. In the empirical study, we found out that WTP 

for water conservation program in villages in eastern Costa Rica is about 2400 Colones that is 

about two times of the current monthly water cost program. This estimate is consistent with 

previous studies in the water conservation program. 



The second essay proposes a comparison of both parametric and semiparametric 

estimation of causes of income equality. In quantile regression setting, this paper analyzes the 

determinants of wage inequality with endogenous categorical regressors. The framework of Lee 

(2007) has been extended to cover the case where control function comes from generalized 

residuals of ordered probit models. We found out that the proposed method yields not only 

consistent but also efficient estimated parameters when there is a present of both endogeneity 

and heteroskedasticity while the conventional estimators led to overestimated parameters. In 

addition, we use all the proposed to estimate the return to education on wage using the data from 

Current Population Survery (CPS). We found out that returns to education are not monotonically 

increase throughout the wage distribution.  

The third essay analyzes the binary response model that encounters the problems of 

endogeneity and heteroskedasticity that lead to inconsistent estimated parameters. Our model 

allows both heteroskedasticity in structural and reduced formed equation. To handle both 

problems, we employ control function estimation with sieve estimator. The first step generates 

control function with flexible form of multiplicative exponential heteroskedasticity. The second 

step employs the use of maximum likelihood method to find the average partial effects with the 

adjusted standard errors based on Ackerberg et.al. (2012). Monte Carlo simulations are 

conducted to study the performance of this new estimator comparing to standard binary choice 

models. Then, the estimator is applied to estimation of female labor supply.  
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CHAPTER 1: COMPARISION OF APPROACHES TO ESTIMATING 

DEMAND FOR PAYMENT FOR ENVIRONMENTAL SERVICES  

 

 

1.1. Introduction 

 This paper proposes a comparison of both parametric and semiparametric 

estimation of willingness to pay (WTP) for environmental services. Payment for 

environmental services (PES) is an approach that uses economic incentives either 

provided by public or private sector to protect natural resources. PES programs range 

from classical soil and water conservation to the new areas such as drinking and farming 

water supply and carbon sequestration. Hence, PES programs have been of recent interest 

globally and have led to an increasing number of empirical studies. Two important 

questions for PES studies are what determine the willingness to pay (WTP) or demand 

for PES? and what determines participation in PES programs by payment recipients?. 

Both of these questions have been answered by estimating the dichotomous choice 

(binary choice) models by using standard Probit or Logit estimation. The standard 

procedure of this contingent valuation can be found in the work of Haneman (1984) and 

Haab and McConnell (2003). In this binary response valuation models, WTP usually 

refers to conditional mean that is derived from estimated parameters under given 

underlying distributional assumption. The problem with this set up is that the welfare 

evaluations will crucially depend on these specific distributions. Unlike the linear 

probability model, the consistencies of estimated parameters depend on the underlying 

distribution as well as the conditional variance of the estimated model.  In this context, 

semiparametric estimation provides an interesting alternative since it allows flexible 

functional form for conditional variance. 



 

 

2 

 

 Semiparametric methods have been used in estimation of binary choice model for 

a long period of time, as summarized in Li and Racine (2008). In most theoretical studies, 

the semiparametric models have been compared with parametric binary choice model by 

simulation. Horowitz (1992) found that semiparametric models will be more robust when 

the estimated model contains heteroskedasticity. Klein and Spady (1993) and Li (1996) 

also found strong support for the semiparametric model. In empirical application of 

semiparametric methods to welfare measurement in binary choice model, Chen and 

Randall (1997), Creel and Loomis(1997), An (2000), Cooper (2002), and Huang et.al 

(2009) found out that the semipametric results are robust and can be used as a 

complementary procedure along with the parametric estimation. In addition, it can be 

used to check whether the parametric model encounters any inconsistency problems 

because of underlying distribution, unobserved heterogeneity, and heteroskedasticity.  

 The comparing methods of estimation for the binary choice models are Probit 

(Probit),  Heteroskedasticy Probit (Hetprob), Turnbull, Watnabe (2010), An (2000), and 

sieve semiparametric estimator (Sieve). The sieve method assumes exponential 

heteroskedasticity of the normal distribution with flexible functional form. Hence, 

comparison includes the estimated parameters as well as the estimated variances since the 

WTP derives from these parameters.  

 The data used for the comparison of welfare measures comes from a study of the 

demand for payment for environmental services (PES) in eastern Costa Rica. The data set 

come from the extended surveys of Ortega-Pacheco et.al. (2009). The respondents are 

asked to vote “Yes” or “No” in the response to additional payment for the people who 

live in the upstream and mountainous area to preserve the quality as well as quality of 



 

 

3 

 

water sources that will be used in the lower area. The bid value has been provided in 

standard referendum contingent valuation. The goods here are clearly defined since the 

people who live along the downstream self-financed their existing water supply and 

already pay the water fees monthly. With the new estimation methods and extended data 

from previous study, the results show that the choice of methods and models can 

influence the mean willingness to pay.   

 

1.2 Binary Response Model and Estimation Methods 

 The estimated model in this study is specified as exponential willingness to pay 

function as in Haab and McConnell (2003). The exponential willingness to pay with 

linear combination of attributes and additional stochastic term is  

    iiz
eiWTP

 
      (1.1) 

where i  is a stochastic error with mean zero and unknown variance 2 .The probability 

that individual ‘i’ will answer “yes” for the corresponding offered bid it  will be 

determined whether the random willingness to pay is greater than the offered bid.  

)()( itiWTPPiziyP 1         (1.2) 

  = ))(exp( itiizP   

  = ))ln(( izitiP    

By assuming that the unknown standard errors is  , equation can be standardized to  
















 izitiPiziyP
)ln(

)( 1  = )*)ln(( izitiP      (1.3) 
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The conventional process in estimating the parameters of the model in (1.3) is to 

specifying the distribution of the error terms. In most of the studies, i  are independently 

and identically distributed (IID) with mean zero and variance 1. Then, either the 

underlying distribution of normal and/or logistic will be assumed as in the case of Probit 

and Logit estimation. For comparison in this study, only the basic Probit will be used.  

 

 1.2.1 Probit 

In Probit model, the probability of “yes” will be model in term of latent variable that 

1iy  if 0 iitiziy  )ln(** and probability of “no” will be defined as 0iy  

if 0 iitiziy  )ln(** . Or, binary response model is in the form of index 

function  01  iitiziy  )ln(* .Also, for the errors term, it is assumed to be 

),(~
20  Ni and ),(~ 10Ni . Hence the distribution is assumed to be as followed.  

 ))ln(*()( itiziziyP  1       (1.4) 

where )(x  is the cumulative standard normal distribution. Then, the parameters can be 

estimated up to a scale as well as the marginal effects. In order to estimate this model, the 

maximum likelihood estimation will be used. Defining a new )( 11  m  parametric vector   

 *,B  where )( 1m  is the dimension of covariates including constant terms, and 

define the data vector  itiziX ,  the likelihood function will be  

    })'()'({),( iyBiXiyBiXn
iiXiyBL  11     (1.5) 

Then, the familiar log likelihood function is  

)]}'(ln[)()'(ln{),(ln BiXiyBiXiyn
iiXiyBL  11   (1.6) 
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1.2.2 Heteroskedasticity Probit (Hetprob)  

The simple estimation will be modified with the unobserved heterogeneity by 

incorporating the heteroskedasticity into standard Probit model. The variance 2 will be 

varying as a function of attributes. The variance will be a multiplicative function of iz as 

followed 

   )exp( izi          (1.7) 

Substituting this variance into equation (1.3) yields multiplicative heteroskedastic probit 

model. 













)exp()exp(

)ln(

)exp(
)(

iz

iz

iz

it

iz

iPiziyP







1       

  = )**)ln(**( izitiP         (1.8)  

Defining a new )( 11  m  parametric vector *}*,*{* B where 1m  is the 

dimension of covariates including constant terms. Then, the log likelihood function will 

become  

 *)]'(ln[)(*)'(ln),(ln BiXiyBiXiyn
iiXiyBL  11    (1.9) 

 The result of estimation from equation (1.6) and (1.9) will be useful in positing 

whether our estimated model contain heteroskedasticity or not. Furthermore, the other 

assumptions that can be relaxed is functional specification of i . 

 

1.2.3 Sieve estimator, Probit model with distribution-free heteroskedasticity 

(Sieve) 
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 Sieve estimation refers to one class of semiparametric estimation that solves the 

problem of infinite dimensional parameter. The sieve method employs the optimization 

routine that tries to optimize the criterion function over finite approximated parameter 

spaces (sieves). The sieve method, in the simplest form, might be similar to how we 

choose the bandwidth and numbers in plotting the histogram. As pointed out by Chen 

(2007), the method of sieves is very flexible in estimating complicated semiparametric 

models with (or without) endogeneity and latent heterogeneity. It can easily incorporate 

prior information and constraints, and it can simultaneously estimate the parametric and 

nonparametric parts, typically with optimal convergence rates for both parts. Khan (2005) 

proposed a estimation method that is a further expansion of Horowitz (1992) method. The 

important assumption is the conditional median restriction to ensure the identification of 

estimated parameters  .  

  0)( iXimed        (1.10) 

and symmetric distribution of the error terms the local nonlinear least squares estimator 

for   01  iitiziy  )ln(*  is defined as  

2

1

1

1

 



























n

i nh

BiX
iy

nB
B

*'
minargˆ       (1.11) 

where nh is a sequence of positive numbers such that 0nh as n . This estimator 

will yield the estimated B with one of the estimated element to be normalized to 1 as 

usual for semiparametric estimation. Blevins and Khan (2011) provides the procedure to 

estimation equation (1.11), they suggested the use of probit criterion function for the 

sieve nonlinear least squares. The criterion function is  
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   
n

i
izlBiXiy

n
lBi

21
))(exp(*')*,(      (1.12) 

where )( izl is finite dimensional scaling parameter and   is a finite vector of parameters. 

Then, they introduce a finite-dimensional approximation of  )( izl  using a linear-in-

parameters sieve estimator as in Chen (2007). They define the estimator as followed. Let   

)( izjb0 denotes a sequence of known basis function and  )(),...,()( iz
n

bizjbiznb 


00  

for some integer n . Then, the function  )(exp izl will be estimated by the following 

sieve estimator 







niz

nb 


)'(exp  where n  is a vector of constants. Let   

nAnn  ),(   where nA  is the sieve space. The estimator can be defined by  

  






n

i
izngBiXiy

n
nA

n
1

21
)(*'minargˆ


      (1.13) 

The choice of )( izng  is arbitrary and can be any possible series such as power 

and polynomial series, and spline. In this study, we estimate the )( izng  by exponential 

function that contains the power series of  )( iz  as a domain. Chen (2007) proved that the 

estimated parameters from sieve estimation will be asymptotically normal and consistent 

when the estimated number of sieve parameters grows with respect to number of 

observations. However, in this paper we are interested in the estimation of willingness to 

pay so we have to apply further step in estimation. From estimation of equation (1.12), 

we can get the estimation of )( izng , and then we will plug this one in the probit 

estimation of equation (1.3). The main reason that we proceed in two step estimation is 

that we can apply the results from Ackerberg et.al. (2012) in order to estimate the 
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asymptotic variance by using parametric approximation since it requires less computation 

power to get the variance of the estimate of  *B  and willingness to pay. Moreover, the 

first step estimation of equation (1.12) can be conduct by using Sieve-M estimator that 

comprises of both non-linear least squares as in Blevins and Khan (2011) and the use of 

standard maximum likelihood with flexible function Chen (2007). They should yield the 

same asymptotic result; however, their finite sample properties will be examined through 

Monte Carlo study among the nested models. Then, the usual delta method or Krinsky 

and Robb will easily compute the willingness to pay and its variance. 

 

1.2.4 Using the survival function to estimate the willingness to pay  

 Consider a PES project as in our study, villagers are asked to pay a given bid for 

either there will be conservation or not, hence the willingness to pay, iWTP , may be 

viewed as a survival time in a survival analysis. By giving a particular bid across 

individual, we can get a one to one response between the binary choice models as in 

1.2.1-1.2.3 to the survival model. In this context we can define the general failure-time 

distribution as )()( izitiWTPPizit  , given fixed it , it is the simple model of survival 

probability )()( izitFizitS 1 . In this study, three estimators will be used to illustrated 

and compared with the given binary choice models. They are Turnbull estimator, An 

(2000) estimator, and Watanabe (2010) estimator.  

 

1.2.4.1 Turnbull estimator 

 Turnbull estimator is a distribution-free estimator that relies on asymptotic 

properties. When there are large number of observations and the offered bid increases, 



 

 

9 

 

the proportion of “no” responses will be higher and the survival function is decreasing in 

bid. That is, the survival function supposed to mimic the real survival function when 

observations are large and it assumed to decrease monotonically. The steps in which 

Turnbull estimation are carried are as followed: 

- For each bid indexed  mjjt ,...,, 1  calculate the proportions, jF , of “no” 

responses. For example, if the first bid is 10 and has been given to 100 

villagers and 10 villagers answered “no”. This proportion, 1F , will be 0.1. If 

the second bid is 20 and has been given to 100 villagers and 20 villagers 

answered “no”. This proportion, 2F , will be 0.2.  

- Calculate this proportion for all of the bids level j . 

- If jFjF 1 , there is no need for adjustment. 

- If jFjF 1 , there is need to pool bid j  and 1j together and then calculate 

the proportions of “no” with the observations from both of the bid categories. 

For example, if the second bid is 20 and has been given to 100 villagers and 

20 villagers answered “no”. This proportion, 2F , will be 0.2. In addition, if 

third bid is 30 and the has been given to 100 villagers and 15 villagers 

answered “no”. This proportion, 3F , will be 0.15. Then, we have to merge 

second and third bid to one category and calculate the new 2F  that is equal to 

(20 + 15) /(100 +100) = 0.175 

- Continue this process of merging to allow for monotonicity in survival 

function. 
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- Set 11 mF , or there is no one who will pay after the last bid, survival 

function = 0. 

- Calculating probability distribution for each bid level as follows:  

jFjFjf  1 . 

- The expected lower bound of willingness to pay will be  
m
j jfjt

0
*  

In this study the expected lower bound and upper bound as in Haab and  

McConnnell (1997) will be calculated to find the mid-point which will be compared with 

other estimators.  

 

1.2.4.2 An (2000) 

He introduced a semiparametric model that has the same property as Cox  

Proportional hazard model with discrete time and unobserved heterogeneity as in Jenkins 

(1995). Willingness to pay is represented by the link function as follows 

 iiizfiWTP   ),(        (1.14) 

where f can be generalized by  generic link function that is assumed to be continuous 

and differentiable with 00  )( and  )(lim iWTPmiWTP . i  is assumed to follow 

a Type-I extreme value distribution. This lead to the conditional survivor function as 

same as Cox proportional hazard model of the form  

))(exp()()( izeiWTPizitiWTPPiziWTPS


      (1.15) 

Then, by pursuing the double bound dichotomous contingent valuation model and 

unobserved heterogeneity with unit-mean Gamma density, he formulated the same log 
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likelihood function as in Jenkins (1995) that is called discrete choice proportional hazard 

model with shared frailty.      

),(ln iziyBL   

)}/)exp(*)'exp({}/)exp(*)'exp(({log






   ni

l
nj

l lBizlBiz
n
i 1

11  

            (1.16) 

However, in this study with single bound dichotomous choice model, it is not possible to 

assume shared frailty since there is only one bid or failed time per one individual. In 

addition, there is no data grouping mechanism. Hence, the likelihood function in equation 

(1.16) is not suitable for this study. Stripping off both shared frailty and data grouping 

mechanism, the log-likelihood in (1.16) will become the same as standard Cox 

proportional hazard model in survival analysis with the mean willingness to pay equal to 

area under the curve of survival function. 

  
m

diz
eiiziWTPE

0



 )))((exp()(      (1.17) 

where i  is defined as in equation (1.14). Following approximation as in An (2000)’s 

equation (1.17), it will be  

][))(exp()( 11 


 jtjt
m
j

izeiiziWTPE


       (1.18) 

 

 1.2.4.3 Watanabe (2010) 

 The paper presented the nonparametric model to find mean willingness to pay 

with modeling it as the survival function as in the case of Turnbull and An(2000). 

The survival function is defined as  
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)()( itiWTPPitS           (1.19) 

And the support of willingness to pay need to be in the range of offering bid ],[ mt0 . 

Given the observed “yes” and “no” answer in standard single bound dichotomous choice 

model, the probability of answering “yes” will be assumed to follow Bernoulli random 

variable with the conditional probability of )()( itiWTPPitiyP 1 and expected value 

of )()( itSitiyE 1 . Then he assume the distribution of the the bid it  follows 

- A bid  it  follows a continuous distribution )( itf  over the range of ],[ mt0 , 

and 0)( itf  in the range. 

- The range of support of bid and willingness to pay are equal to ],[ mt0 . 

Under these two assumptions the expected willingness to pay of single bound 

dichotomous choice willingness to pay condition on observe attributes will be equal to  

  mt dtizitiWTPPiziWTPE
0

)()(  

     
mt dtizitiyE

0
),(       











 izit

itf

iy
E ,

)(
   (1.20) 

In order to estimate equation (1.20), the following assumption is required, 

),,( izitiy  is independent and identically distributed. Then, the consisted estimator of the 

minimum mean-squared errors linear approximation of equation (1.20) is ̂iz  where ̂
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are estimated coefficients from running linear regression 
)( itf

iy
 on intercepts and 

attributes iz . 

 These three estimators share similar characteristics in order to get better precision 

of estimating mean willingness to pay. First, the support of willingness to pay has to lies 

within the support of bid distribution. Second, number of distinct bids (ideally bid should 

continuously distributed as in case of survival time) matters in achieving the less 

interpolation errors of willingness to pay. Though, An and Watanabe claims that their 

estimator are non/semiparametric; however, they need to assume certain form of 

distribution either on unobserved heterogeneity or bid distribution. Lastly, for 

nonparametric estimators, the need for independent and identical assumption is required 

for estimation in Turnbull and Watanabe. 

To conclude this section, there are certain insights that might be gained from 

comparing these six methods of estimation. The probit and heteroskedastic probit models 

are computationally simple and should be more efficient if the underlying distributions 

are correctly specified. On the other hands, the four nonparametric and semiparametric 

models in this paper are not nested with each corresponding probit and heteroskedastic 

probit, but heuristic comparison can be made as in Beluzzo (2004). Results of Probit, 

Hetprob, and Sieve can be compared to see whether the underlying normal distribution is 

a valid assumption or not. In addition, results from Probit, Hetprob and Sieve can be 

compared to see whether the there is a problem of heteroskedasticity in the data 

generating process or not.  
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1.3 Monte Carlo Simulation for Single Bound Dichotomous Choice Model 

Monte Carlo simulations were carried out to compare the finite sample properties 

of six estimators with respect to varying conditional variances. The sample size is 500 

and the number of simulation trials is 1000 at each simulation. First we consider the case 

where data generating process followed Watanabe (2010). That is true willingness to pay 

(WTP) follow the linear exponential function as )exp( iziWTP   121 , where    

1z  is considered to be individual attribute, i  is random errors term and 1  and 2  are 

parameters. The data generating process are as followed: 

Case 1: 31  , 502 . , ).,(~ 64001 Nz , and ).,(~ 6400Ni , the bids are set 

up following process as in Watanabe (2010). There are 20 equal bid levels 

ranging from 0 to 400 assigned randomly to 500 observations with 25 

observations facing the same bid level. 

In case 1), the sieve estimator and heteroskedasticity probit model use the same variance 

adjustment term that is exponential of 1z . 

 First, when the standard probit specification is true for estimating the WTP, the 

result are as expected, the probit estimator performs best not only in terms of bias but 

also variance of estimation. The three estimators under survival function analysis yield 

similar results. They under predict the mean WTP by almost 50 percent. However, their 

variances are quite low compared to the dichotomous choice models. The lower variance 

can be attributed to assuming the smoothness of survival function that make the extreme 

value less affect the mean WTP. In addition, for each underlying survival function, they 

are multiplied with corresponding bid points that further lead to lower variances of 

estimated mean willingness to pay. For the case of heteroskedasticity probit and Sieve 
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estimator, the misspecification in conditional variance lead to bias in prediction of mean 

WTP; nevertheless, the bias is not as severe as the case of survival function. Comparing 

Sieve and Hetprob estimators, both of them yield quite similar result in terms of mean 

WTP, variances, and RMSEs. Out of 1000 replications, the likelihood ratio test between 

heteroskedasticity probit and probit shows that the overspecified model is not that better 

fit than the latter one at 95 percent confidence. That is, only in 58 trials that the probit 

model is rejected with respect to the heteroskedasticity probit model. To conclude, the 

standard methods yield the best prediction for willingness to pay when there is no 

underlying conditional variance. 

Case 2: True WTP follows )exp( izziWTP   23121 , 31  , 

502 . , 503 . , ).,(~ 64001 Nz , ).,(~ 64002 Nz , and 

))..exp(,(~ 2101100 zzNi  . There are 20 equal bid levels ranging from 0 to 

400 assigned randomly to 500 observations with 25 observations facing the 

same bid level. 

In this setup, heteroskedastic probit estimator (Hetprob) should yield the best 

approximation of the mean WTP. From Table 2, it overestimates the WTP by 5 percent 

with lowest variance among dichotomous choice models. On the other hands, there are 

two sieve estimators here, Hetrprob1 and Sieve1. They use the variance formula as in 

Blevins and Khan (2011) that over specified the conditional variance. Hetprob1 solutions 

come from maximum likelihood estimation at the first step while Sieve solutions apply 

nonlinear least squares first. Both of them provide the overestimated mean WTP and 

higher variance than three survival function models. It might be the case that the extreme 

values from the data generating process drive the result of mean WTP estimation.  
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Sieve1 yields similar result to probit estimator while Hetprob1, though having 

same explanatory variables for the conditional variance as Sieve1, yields similar results 

to Hetprob. It is important to note that Sieve1 estimator provide highest variance than 

Hetrprob1 given the highest maximum WTP estimated is 221 that is 100 percent higher 

than all estimates from other methods.  We suspect that nonlinear least squares estimation 

of over specified model might be more biased and less efficient than maximum 

likelihood.  

Comparing across the nested model of Probit, Hetprob and Hetprob1 by using 

likelihood ratio test, there are only 125 trials that reject Probit against correctly specified 

Hetprob. In addition, there are only 213 trials that reject correctly specified Hetprob 

against over-specified Hetprob1. Hence, adding three more explanatory terms to 

conditional variance to Hetprob1 compared to Hetprob does not change the likelihood 

ratio between the two methods that much. This might help in explaining why there is 

more increase in bias and variance of estimation from using nonlinear least squares Sieve 

compared to using maximum likelihood Sieve.   

It is surprising that in this case Turnbull estimator yields the best result with 

lowest bias and RMSE among the all estimators. Moreover, An and Watanabe estimators 

still underestimate the mean willingness to pay by 25-30 percent with low variances.  
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Table 1.1 Basic willingness to pay model 

True Model mean willingness to pay =  47.746 

  Turnbull Watanabe An Probit Hetprob Sieve 

Mean willingness to pay 28.920 19.990 23.970 48.008 37.292 36.048 

Bias 18.556 27.486 23.506 -0.532 10.184 11.428 

Variance  10.910 11.029 8.209 60.203 40.590 40.918 

Root mean squared errors(RMSE) 18.848 27.686 23.680 7.777 12.013 13.096 

Maximum WTP 41.400 32.000 44.085 77.511 164.072 57.258 

Minimum WTP 19.800 10.400 19.812 18.569 12.557 12.870 

Frequency of rejection         58   

Note: Monte Carlo Bias and Root mean square errors are measure with respect to true model willingness to pay. 
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Table 1.2 Heteroskedastic Probit willingness to pay model 

True Model mean willingness to pay =  37.773 

  Turnbull Watanabe An Probit Hetprob Hetprob1 Sieve1 

Mean willingness to pay 38.395 30.178 27.682 52.035 39.223 42.193 53.327 

Bias 0.622 -7.595 -10.091 14.262 1.450 4.420 15.554 

Variance  23.394 18.050 11.958 98.292 57.737 82.785 403.976 

Root mean squared errors(RMSE) 4.877 8.702 10.667 17.369 7.736 10.115 25.415 

Maximum WTP 55.927 46.400 48.711 89.358 66.803 80.388 221.391 

Minimum WTP 19.800 18.400 21.107 22.335 12.557 14.122 12.896 

Frequency of rejection         125 213   

Note:  1) Monte Carlo Bias and Root mean square errors are measure with respect to true model willingness to pay. 

 2) Hetprob represents heteroskedasticity model with correctly specified errors Hetprob1 represents heteroskedasticity model 

with overspecified standard errors as in Blevins and Khan (2011) with maximum likelihood estimation. 

 3) Sieve represents Blevins and Khan (2011) non-linear least squares estimation. 
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Case 3: True WTP follows )exp( izziWTP   23121 , 31  , 

502 . , 503 . , ).,(~ 64001 Nz , ).,(~ 64002 Nz , and 

))...exp(,(~
2
2

1021202
1

100 zzzzNi  . There are 20 equal bid levels ranging 

from 0 to 400 assigned randomly to 500 observations with 25 observations facing 

the same bid level. 

In Table 1.3, only the Sieve1 and Hetprob1 estimator assumes the correct form of 

conditional variance, where the normal Sieve2 and Hetprob2 estimator assumes the 

conditional variances as in Blevins and Khan (2011). As expected the misspecification of 

conditional various affect the estimated mean WTP for all of the dichotomous choice 

models. The Probit and Hetprob1 models those are under specified the conditional 

variance lead to higher level of WTP than expected by 20 percent or more. Although, the 

Sieve1 and Hetprob1 estimator should yield lower bias; however, their RMSEs are still 

higher than the comparable Turnbull model but lower than An and Watanabe. Comparing 

across nested models, only Probit without conditional variance leads to considerable 

biased estimator that overshoots willingness to pay by 18 percent. At least by inserting 

conditional variance terms either correctly specified (Sieve1 and Hetprob1), over 

specified (Hetprob2  and Sieve2) helps in reducing the bias of estimated mean WTP. 

Using nonlinear least squares is precise with low variance when only the conditional 

variances are correctly specified. Considering the survival function models, all of them 

underestimate mean WTP with lower variances and Turnbull estimators yields the least 

biased result. 
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Comparing across the nested model of Probit, Hetprob, Hetprob1, and Hetprob2 

by using likelihood ratio test, there are only 124 trials that reject Probit against under 

specified Hetprob. There are only 177 trials that reject under-specified Hetprob against 

correctly specified Hetprob1 and there are 135 that reject Hetprob1 in favors of Hetprob2. 

This comparison points out that given unknown form of conditional variances, it is better 

to flexibly model them rather than ignore them. Adding conditional variance terms will 

help not only reduced bias but also make estimated results more efficient. Nevertheless, 

over fitting the conditional variances tend to increase the variances compared to under 

fitting model. 

To conclude, comparing across six estimators yield interesting results, first, the 

survival function models give less variance than all of the dichotomous choice models 

that might come as a result of smoothing and interpolation. Out of three survival 

functions, Turnbull estimator midpoint might be the best among three estimators. 

However, in these setups, survival function models always yield inconsistent results that 

mean WTP will not converge to the true one even in large sample. We suspect that the 

result from Table 1.2) where Turnbull estimator outperforms all other estimators might 

comes out of data generating process. On the contrary, the dichotomous choice models 

perform better in term of less bias when conditional variances are prevalent either 

misspecified or not. For sieve estimator with maximum likelihood that assumes flexible 

conditional variance function, it performs best comparing to the rest of the models. 

However, since it shares the same feature as the other two dichotomous choice models, it 

always yields higher variance than survival function models. Hence, sieve estimator 

provides the middle ground in which we can compromise between assuming underlying 



 

 

21 

 

distribution with flexible conditional variance and give less bias willingness to pay when 

form of conditional variances is unknown.  

 

1.4 Data and Estimating Results 

 

1.4.1 Data 

 The data in this study came from eastern Costa Rica. The research sites contain 

not only the two communities as in Ortega-Pacheco et.al. (2009) but also four 

communities within the region that were recently surveyed as presented in Table 4. The 

communities’ local water supply is too polluted for drinking water usage due to heavy 

use of chemical substances in nearby pineapple and banana plantation. Their drinking 

water supply comes from aqueducts that pipe in water from the forested upper reaches of 

their watershed. The communities have local water boards that oversee the construction 

and maintenance of these water systems and levy monthly fees for water. However, 

changes in land use in the upper reaches of the watersheds threaten the quality of the 

communities’ drinking water.  To protect their water, the communities are considering 

PES programs to keep land uses from changing in the upper watershed.  The surveys 

assess local resident’s willingness to pay to finance these PES programs. The payment 

vehicle is a monthly surcharge on their water bill. There are 1179 completed interviews 

from the surveys.  
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Table 1.3 Heteroskedastic Probit with square exponenetial variance willingness to pay model 

True Model mean willingness to pay = 44.986 

  Turnbull Watanabe An Probit Hetprob Hetprob1 Hetprob2 Sieve1 Sieve2 

Mean willingness to pay 37.552 29.390 26.541 52.253 39.138 41.885 42.1929 43.341 51.120 

Bias -7.434 -15.596 -18.445 7.267 -5.848 -3.101 -2.793 -1.645 6.134 

Variance  20.129 17.015 11.853 92.106 53.508 69.425 82.785 111.529 342.966 

Root mean squared errors(RMSE) 8.683 16.133 18.764 12.038 9.365 8.891 9.518 10.688 19.509 

Maximum WTP 53.787 44.800 54.703 90.071 66.606 87.964 80.388 131.567 149.185 

Minimum WTP 24.051 18.400 20.391 15.155 14.495 17.343 14.122 20.212 12.896 

Frequency of rejection         124 177 135     

Note: 1) Monte Carlo Bias and Root mean square errors are measure with respect to true model willingness to pay. 

 2) Hetprob represents heteroskedasticcity model with under specified conditional variance as in case 2 with only   and   . 

 Hetprob1 represents heteroskedasticity model with correctly specified conditional variance. Hetprob2 represents heteroskedasticity 

model with overspecified standard errors as in Blevins and Khan (2011) with maximum likelihood estimation. 

 3) Sieve1 represents non-linear least squares estimation with correctly specified conditional variance.  

Sieve 2 represents Blevins and Khan (2011) non-linear least squares estimation with overspecified conditional variance
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Table 1.4 Communities in the study 

Community Herediana Cairo-

Francia 

Florida Alegría Milano Iberia 

       

Interviews 397 164 248 131 136 103 

 

The dependent variable is the binary choice variable of voting “Yes” or “No” for 

the program for a particular fee (cost) in addition to the current water bill. The 

independent variables are the fee (cost) of the program, female dummy, age, high school 

dummy, household income, and other household characteristics. In the Table 5, summary 

statistics of variables used in estimation are presented along with their description. In 

total, there are 1141 observations to be used after using respondent with reported income. 

The respondents are asked to Vote “Yes” or no for the proposed increase in the 

monthly water fee. From, the observations about 66 percent of people voted “Yes”. This 

variable will be the dependent variable    in the estimated model. The bid value for each 

respondent will range from 400 to 2400 Colones, this represents the additional water fee 

that each respondent has to pay for the PES program. This additional fee is a direct 

payment to people who manage land upstream. The recipient of the fee payment will in 

return conserve the resources in the surrounding catchments. This will ensure the 

preservation of both water quality and quantity. The other dependent variables are female 

which indicates the sex of respondents, age of respondents, number of household 

members under age 18, and education level of respondent. Average monthly income is 

142,364 Colones that is slightly higher than national average household income of 

140,000 Colones and slightly lower than household incomes in urbanized and 

metropolitan areas of Costa Rica’s Central Valley (Ortega-Pachego et al, 2009). 
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1.4.2 Estimation Results 

 The methods presented in Section 2 were estimated using Vote “yes” as 

dependent variable. The set of other covariates are monthly cost, income, female, age, 

number of member less than 18, and education. Table 6 gives coefficient estimate 

obtained from Probit, Heteroskedastic Probit, sieve estimator as well as mean willingness 

to pay. For the An’s method and Turnbull, only the mean willingness to pay will be 

presented since the parameters estimated from An’s method is clearly not comparable to 

the previous four methods and Turnbull estimator does not use covariates in calculating 

willingness to pay. 

Overall, the key variables in the model are significant and yield expected signs. 

The additional monthly cost has a negative impact on the probability of voting “Yes” in 

all four estimation methods. If the sex of respondent is female, then it will have led to 

lower probability of voting yes to the PES. Furthermore, the age of respondents and 

number of household member under age 18 both have negative effects on the probability 

of voting for the program. For the education variable, if the respondent has high school 

degree, it might lead to higher chance of voting. The monthly income also has a positive 

effect on probability of voting "yes".  

Regarding the estimated willingness to pay, as expected, the mean willingness to 

pay from survival function models, Turnbull, Watanabe, and An yield lower estimates 

compares to the Probit, Heteroskedastic Probit, and Sieve as presented in Table 1.6. The 

estimated results from dichotomous choice models exhibit similar results to the previous 

studies where WTP for water conservation is approximately two times the current cost of 

monthly water usage. The estimated mean willingness to pay from the dichotomous 
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choice models is roughly 28 percent higher than survival models. On the other hands, the 

differences between Probit, Heteroskedastic Probit and Sieve estimators are only about 5 

percent. This is similar to the case 2 in Monte Carlo simulation where estimation from the 

dichotomous choice models yields willingness to pay that is higher than survival 

functions model. That is, at least including flexible conditional variances or parametric 

conditional variances will increase the precision of estimating willingness to pay. In 

addition, including unobserved heterogeneity by conditional variances might be 

complement to modeling it as in An (2000) where there is a need for double bound 

dichotomous question that might suffer from framing issue.  However, including the 

conditional variance come at a cost of increasing the variance of estimation since extreme 

value can significantly affect Sieve estimator as observed in simulation study.  

Our findings have some implications for the use of discrete choice and survival 

functions in contingent valuation study. First, modeling unobserved heterogeneity is 

important either by modeling conditional variance in the single bound questions. Also, if 

the questionnaire can incorporate double bound question there is possibility of using 

survival function model with censored discrete time as in An (2000). In addition, future 

developing of the survival model that includes cluster and heterogeneity in form of 

spatial location might be of interest. Secondly, each proposed estimator contains 

information that helps in better approximation of willingness to pay and is rather 

complement than substitute. Given that underlying willingness distribution is unknown 

along with actual differences between bid design and distribution, the survival function 

model at least can provide the lower bound of mean willingness to pay while 

dichotomous choice can capture the effect of extreme value. 
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Table 1.5 Data description and descriptive statistics (N=1141) 

Description Measurement Mean Std. Dev. Min Max 

Response to " Would you vote for or 

against the program if you would have 

to pay [cost] Colones more on your 

water bill  (yes or for = 1, no or 

against = 0) 1 Or 0 0.659 0.474 0 1 

      

Monthly cost of program (on top of 

current water bill) from the vote 

question. Defined in the preamble to 

the vote question and varied across 

respondents Colones 1243.087 758.098 400 2400 

      

A dummy for sex of the respondent 

(female = 1 male = 0) 1 Or 0 0.725 0.447 0 1 

      

Age of respondents  43.176 15.113 18 93 

Number of household member under 

age 18  1.515 1.418 0 9 

      

A dummy for schooling (high school 

or more = 1 otherwise = 0) 1 Or 0 0.120 0.326 0 1 

      

Monthly household income Colones 142364.4 141374.8 7000 2000000 
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Table 1.6 Estimated coefficients  

Dependent variable =1 if respondent  

vote "Yes",  

0 if the vote is "No". 

Probit HP Sieve Watanabe Turnbull An 

Monthly Cost -0.0004*** -0.0007*** -0.0003*** -0.3552***     

  (-8.29) (-3.10) (-2.36) (-8.42)     

Female -0.2420*** -0.2250 -0.1298 -198.4140***     

  (-2.53) (-1.41) (-0.56) (-2.82)     

Age -0.0150*** -0.0203*** -0.2490*** -13.3100***     

  (-4.85) (-3.19) (-2.63) (-5.73)     

Household members -0.0608** -0.0363 -0.0860*** -45.5040**     

  (-1.95) (-0.33) (-2.53) (-1.81)     

Education 0.0955 0.7335 
 

121.4693     

  (0.65) (0.94) 
 

(-1.22)     

Income 2.56E-06*** 6.60E-06*** 4.31E-06*** 0.0011***     

  (4.95) (2.10) (3.37) (4.53)     

Intercept 1.5679*** 1.9731*** 1.3856** 2643.5690***     

  (7.02) (3.58) (1.82) (17.58)     

  

    

    

Mean Willingness to Pay 2340.69 2492.7 2426.02 1592.29 1630.99 1407.28 

Note:  1)*** is significant at 99%, ** is significant at 95%, and * is significant a 90% confidence interval 

 2) The number in parenthesis is t-statistic 

 3) Sieve estimator assumed parameter of education to be normalized to 1. 

 4) For Watanabe estimator, the value of dependent variable is 2400 times dependent variable. 
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 Lastly, for the use of Watanabe‘s method in calculating willingness to pay, the 

method relies on the crucial that the bid construction is uniformly distributed. This is 

assumption is certainly violated in this empirical application and other empirical papers 

where the bid designed is setting up as a discrete cut-off point, or possesses the discrete 

distribution structure. Therefore, our use of Watanabe’s estimator might be only a special 

case. It leads to underestimation of WTP since we offered the bid at a lower end more 

than the upper end of bid design.  

 

1.5. Conclusion and further study 

 This study has presented a comparison of approaches of estimation for the 

willingness to pay in the contingent valuation set up. The standard exponential 

willingness to pay model has been estimated by Probit, heteroskedastitc probit, and 

semiparametric estimators. In addition, at the time of study, this paper is the first one that 

applied sieve estimator to estimate willingness to pay. The estimation results come from 

the contingent valuation study of payment for environmental services in Costa Rica. The 

referendum of the study is asking respondent to vote “Yes” or “No” to an additional 

monthly water fee to pay for conservation of water resources by the group of people who 

live upstream. 

Regarding Monte Carlo simulation, the difference between survival function 

models and dichotomous choice models show the significant effect of conditional 

variance on WTP. It is possible that the low WTP form survival function models might 

come as a result of assuming monotonicity and the estimator heavily filtered out the 

effect of extreme value. We might need to further explore this issue and the use of better 
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semiparametric estimators that can be more flexible. Also, the use of quantile regression 

might be of interest. The empirical results from the dichotomous choice models yield 

similar results as the previous study in term of WTP; however, the estimation from the 

survival function models give significantly lower estimation of WTP when there is 

relaxation of underlying distribution assumption. On the other hand, if the model allows 

only a flexible functional form of conditional variance(Sieve), the estimated WTP is 

slightly higher by 5 percent compared to the standard Probit model.  

 Nevertheless, there is still more work to be done within this area of research. 

Given, single bound dichotomous choice model, the current sieve estimation model still 

has no canned package that empirical researchers can easily use. For double bound 

dichotomous choice model, controlling the unobserved heterogeneity by spatial 

correlation of known and unknown form might be interesting.  
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CHAPTER 2: COMPARISON OF APPROACHES TO MEASURING THE 

CAUSES OF INCOME INEQUALITY 

 

 

2.1 Introduction 

  

 This paper proposes a comparison of both parametric and semiparametric 

estimation of causes of income equality. In the United States of America, income 

inequality had followed the Kuznets’ hypothesis of an inverse-U shape over the 

developmental process since the Great depression until the early 1950s. That is, the 

inequality rising with industrialization and then declining, as more and more workers join 

the high-productivity sectors of the economy (Kuznets 1955). There was a remarkable 

decrease in relative gap between high-income Americans and low-income American. 

From about 1950 until the early 1970s, this narrowing gap stayed constant (Ballard and 

Menchik 2008). However, since the late 1970s, the income distribution has followed a U-

shaped pattern.  Piketty and Saez (2003) argue that it is just a remake of the previous 

Kuznets’ curve relationship between income inequality and income. A new industrial 

revolution or wave of development had taken place in service and digital industries, 

thereby leading to increasing inequality. Inequality will decline again at some point in 

time as more and more workers benefit from innovations and market mechanism in 

which it will shift the worker from industrial sector to service sector. That is, income can 

be more equalized when labor can leap the benefit from education, new technology, and 

innovation. However, since the early 1980s, there is no sign of reducing inequality. In 

United States, the share of top 10 percentile income bracket has risen from 32.87 percent 

in 1980 to 45.60 percent in 2008 (Saez 2008).  
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 Despite abundant literature on the income distribution at the national and 

international level, there has been relatively little attention to the causes of income 

inequality in the regional as well as state level. In addition, most of the inequality 

literature in the United States and developing countries has focused on average treatment 

effect of education and fringe benefit provided by government as determinants of income 

inequality. However, most of the analysis of the causes of income inequality has 

employed the conditional mean estimation in either cross-section or panel data setup that 

ignores the possibility of various effects of education or government policies on income 

distribution.  

It has been well recognized that the resulting estimates of effects of education on 

the conditional mean of income are not necessary indicative of size and nature of the 

return to education on the upper and lower tail of income distribution Abadie, Angrist 

and Imbens (2002). In addition, the partial effects of government policies such as 

Medicaid, Medicare, and food stamp on income fall under the same context. Quantile 

regression offers a complementary mode of analysis and gives a more complete picture of 

covariate effects by estimating the conditional quantile functions. 

Furthermore, in the recent development literature, it has been pointed out that 

there exists the endogeneity issue regarding the causality of income and education 

attainment. Hence, the estimating results of treatment effect might be inconsistent. 

Taking advantages of the newly developed quantile regression with control function, this 

study compares the result from conventional quantile regression to the results of this new 

estimation method.  
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Semiparametric methods have been used in estimation of quantile regression for 

quite some time, as summarized in Koenker (2005). The main different between the two 

methods is either to assume parametric or nonparametric conditional quantile function.   

In most studies, the semiparametric models have been compared with parametric quantile 

regression model by simulation. Koenker (2005) point out that semiparametric model will 

be more robust when the parametric specifications fail and data analysis must require 

flexible conditional quantile function. Frolich and Melly (2008) have categorized the 

estimation of quantile treatment effect into four different cases. There are conditional and 

unconditional treatment effects and whether the selection is “on observables” or “on 

unobservables”. Selection on observables is referred to the case of exogenous treatment 

choice and selection on unobservable is referred to the case of endogenous treatment 

choice.    

If the quantities of interest are conditional quantile treatment effects with 

exogenous regressors, the parametric method as in Koenker (2005) can be used. 

However, if the conditional treatment is binary and endogenous, the method suggested by 

AAI may be used. This method contains the semiparametric element in the estimation of 

instrumental variables in a reduced form equation. AAI found out that the semipametric 

results are robust and can be used as a complementary procedure along with the 

parametric estimation. Firpo (2007) developed semiparametric estimation for the quantile 

treatment effect that is unconditional. This method consists of two steps estimation that 

consists of nonparametric estimation of the propensity score and computation of the 

difference between the solutions of two separate minimization problems.  Frolich and 

Melly (2008) (FM) developed the binary instrumental variable method for unconditional 
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quantile treatment effects that reaches the semiparametric efficiency lower bound. Lee 

(2007) considers conditional endogenous treatment effect with the use of control function 

rather than IV estimation. This method is easier to compute than the IV methods 

described above and can be extend to cover more flexible estimation since it is a special 

case of sieve estimation.  

In this paper, we try to apply and extend the control function method as in Lee 

(2007) to cover the case of discrete endogenous variables that are ordinal. We 

approximate the controlled function by using concept of generalized residuals with 

flexible functional forms. Then, viewing these residuals as an approximation of control 

function, we use these residuals in the estimation of quantile treatment effects. Our 

findings reveal a way to improve the robustness of estimation results and provide a case 

study for more complete picture of the covariate effects, when the endogenous regressors 

are ordered outcome. In addition, this method can be used to check whether the 

parametric model encounters any inconsistency problems because of endogeneity.  

 The methods that will be in this paper for Monte Carlo simulation of quantile 

regression are Koenker (K), Abadie, Angrist, and Imbens (AAI), Firpo (F), Frolich and 

Melly (FM) and control function with sieve semiparametric estimator (S). The 

comparison includes the estimated treatment effects as well as the simulated standard 

errors. However, the first four methods are not applicable to the case where there are 

ordered binary regressors.  Therefore, in this study, only the control function with sieve 

estimator can correct for such endogenity problem.  

In section two, I provide the background of Great Lakes state regarding income 

distribution within the Great Lake Region and USA from 2000-2009 given there are two 
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recessions within this period: Dot com meltdown of 2001 and financial crisis of 2008. 

This can help in choosing the independent variables to use in comparison of both 

parametric and semiparametric models. In section three, I present detail of each 

methodology. Monte Carlo Simulation will be discussed in section four while section five 

presents data empirical results, and section six provides concluding remarks.  

 

2.2 Great Lake income distribution and determinants of inequality 

 The Great Lake states comprises of Michigan, Illinois, Indiana, Ohio and 

Wisconsin that is based on Bureau of Economic Analysis (BEA) regions in 2009. These 

states share certain economic characteristics as well as had been most severely hit by 

financial crisis of 2008. In 2009, real gross domestic product of the whole region fall by 

3.4 percent. At the bottom of the region is Michigan with 5.2 percent reduction followed 

by 3.6 percent in Indiana, 3.4 percent in Illinois, 2.7 percent in Ohio and 2.1 percent in 

Wisconsin. Moreover, the real per capita GDP of the Great Lakes are the second lowest 

in the country at the value of 38,856 dollars. Among these states, Michigan has the lowest 

real per capita GDP of 34,157 dollars. 

 Despite the facts that financial meltdown and housing price bubble lead to the 

national wide reduction in real GDP in 2009. Great Lakes states suffered from the decline 

of manufacturing goods sector since 2005. On average, this industry has been accounted 

for about 20 percent of this regional GDP. In 2009, the durable-goods manufacturing (i.e. 

automobile), contributed to more than 2 percentage points to the decline in real GDP in 

Michigan and Indiana, and more than 1 percentage point in Ohio and Wisconsin. That is, 

these states are facing contraction of their main industry.  
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 On the income distribution side, by using the Current Population Survey data 

(CPS), this region share similar story particularly regarding the change in income of the 

top 10 percentile and 50 percentile(median). In Michigan, for the household at 50 

percentile, real income grew by only 3.4 percent over the period of 1976-2006.  While the 

top 10 per centile real income grew by 31.6 percent over the same time. In Ohio, the 

situation is quite similar; the top 10-percentile income grew by 37.2 percent while the 

median group income grew by 18.3 percent. In Illinois, the top 10-percentile income 

grew by 36.5 percent and the median income grew only 10.1 percent.  Certainly, the 

worsening income distribution across the region makes leaping the benefit of innovation 

to become more crucial if they want to reduce such inequality. 

In summary, over the past 30 years, the income growth rates of these states have 

been lower than the national average as well as exhibit the pattern of income distribution 

that is worse than the national level. Given that and combined with population of these 

five states that is approximately 50 million, the causes of inequality in this region is well 

worth studied since there are numerous literature that points out to the adverse effects 

income inequality. 

 Conventionally, the main explanation for household income inequality has been 

driven by an increase in gap of labor-market earnings or wage. The neoclassical 

explanation is that there has been a sharp increase in the demand for highly skilled labor 

due to globalization, innovation, and changing in demand based on Engle curve. 

Following agricultural product and food, the income elasticities of demand for 

manufacturing product, both durable and non-durable, have been declined. These led to 

changes in corporate-governance procedures. The wage gaps between those with more 
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education and those with less education and experience have increased greatly given the 

shift in consumer demand and need to minimize the cost of operation. 

Other explanations include the decline in the relative strength of labor unions 

either in public and private setup, the decrease in the real value of the minimum wage, 

and the increase in immigration of low-skilled workers. These explanations are well 

understood and certainly affect people more at the bottom of income distribution. For 

discussion of these trends, see Levy and Murnane (1992), Bound and Johnson (1992), 

Saez and Piketty (2003), Autor et.al. (2008), and Bakija and Heim (2009). Empirical 

results of these studies come from finding the average relationship between indexes of 

income inequality to the interested regressors. 

However, the staggering fact is that in 2007 the incomes share of the richest first 

percentile reached a staggering 18.3%. The last time America was such an unequal place 

was in 1929, when the equivalent figure was 18.4% (Economist 2011). Also, the income 

(excluding capital gains) of the richest one percentile is approximately 3 times of the 

richest 10 percent while including the capital gain the results is 5 times (Saez 2008). 

Applying the neoclassical growth theory that the main hypotheses for the different in 

income will tell a story that the group of top 1 percent is three times more skilled, 

educated, and productive than the top 10 percent might seems questionable.  

One way to explain this phenomenon might be looking at the Endogenous Growth 

Theory (Acemoglu 2008). In the age of innovation where growth have been highly 

associated with investment in human capital and endogenous creation of new products 

and technology, the real returns to labor with lower skilled than the frontier will be 

reduced. While only labor at the highest possible frontier or with diversified skill and 
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capital holders will leap more benefit out of the growth. In order to capture this 

phenomena, quantile regression might give a better picture than standard average 

treatment effects model.  

Why should we worry about income inequality? There are two important 

economic concerns. First line of thought opting from the possibility of social fairness and 

conflicts. There are the effects of income inequality on the mortality in US. The papers 

by Kaplan et.al (1996) and Kawachi et.al. (1997)  found the positive correlation between 

income inequality and mortality. Moreover, there are several studies pointed out that 

region with high income inequality are more prone to adverse effects of natural disaster 

than the other. Kahn (2005) found that area with higher income inequality measured by 

Gini coefficient suffer more deaths and damage in the wake of natural disasters. Anbarci 

et.al. (2005) discussed how the number of fatalities from earthquake positively response 

to income inequality. Shaughnessy et.al. (2010) provided the evidences of effects of 

Hurricane Katrina on income inequality and vice versa.   

In the neoclassical economic idea, the quote of “That (inequality) it is not a big 

concern if the rich are getting richer so long as the poor are doing well too.”(Economist 

2011) is still relevant. However, in recent, the incorporation of political economy and 

endogenous growth model, Acemoglu (2008), Rajan (2010), and Ritchie (2010) pointed 

out the adverse effect of income inequality on the prospect of economic growth via 

political policy and innovation process of the economy.  

Rajan (2010) reckoned that technological progress increased the relative demand 

for skilled workers. This led to a widening gap in wages between them and the lower- 
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skilled workforce. He argued that this growing gap lays the ground for the housing credit 

boom that precipitated the financial crisis. The US government put on the two state 

enterprises, Fannie Mae and Freddie Mac, to lend more to poorer people as instruments 

of public policy. Subprime mortgages rose from less than 4% in 2000 to a peak of around 

15% in 2008. This credit boom led to an enormous housing bubble and the worst 

financial crisis since great depression.  According to this, he argued that well-intentioned 

political responses to the rise in inequality might lead to devastating side effects.  

On the innovation and technological development part, Ritchie (2010) argues that 

country with high level of natural resources, distributional alliances of political party and 

ruling elites, education systems that has political priorities rather than economic and 

technology priorities, and high income inequality will lead to low levels of technical 

intellectual capital. That is, it might be suitable to explain lower level of higher education 

attainment by in the U.S. For example, percentage of bachelor's degrees awarded in 

mathematics and science of USA in 2006 is lowest among the OECD average, even 

lower than Mexico (http://nces.ed.gov).  Also, if we look at the latest U.S. Census Bureau 

(2010),  out of 226,793 observations of people with the age over 18, only 17.7 percent got 

there bachelor degree, and only 9.3 percent attained the degree higher than bachelor. 

Following the argument in Acemoglu (2008) and Murray (2008), when income is not 

normally distributed and more skewed to the right (evidence of high income inequality), 

it is harder for household with average income to attain college not to mention higher 

education. In addition, if the students inherited skill is normally distributed, given such 

income structure, cost, and benefit of college and higher degree, the rate of attainment for 

higher education will be lowered. In turn, this will lead to lower prospect of growth since, 
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at the current stage of economic development, innovation and technological adoption 

relies heavily on human capital. 

Given that, inequality might be detrimental to the overall economy; this study will 

use new estimation method to test whether the root cause of wage inequality is still 

education attainment. In addition, from simulation study, we want to be certain that the 

estimated return to education is no biased. Finally, for empirical study, we will analyze 

the return to education for each level of them simultaneously in order to see which level 

of education can contribute the most to wage. 

 

2.3 Models and Estimation Methods 

 The estimated model in this study is specified as system of equations as followed: 

  ),,( iuixiDQiy         (2.1) 

  ),,( ivixizGiD         (2.2) 

Where (.)Q  is quantile function; iy  is continuous outcome; iD  are individual ordered 

treatment effects in form of dummy variables that represent each ordered outcome;     

izixiD ,;  are exogenous covariates; iu  and  iv  are possibly related unobservable; and,  

(.)G  is known or unknown function.  For example, if there is only one endogenous 

binary treatment iDiD 1 . If there are two ordered  endogenous treatment effects    

),( iDiDiD 21 , ),( 101 iD  as well as ),( 102 iD  and ),,( 210iD  in equation (2.2). 
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When treatment is exogenous and conditional upon given covariates, then the use of 

standard quantile regression is appropriate. That is, equation (2.2) is not relevant, the 

standard Koenker method as in section 2.3.1 can be used. 

 

2.3.1 Quantile Regression 

 Koenker’s Quantile regression (K) exhibits a more complete picture of 

relationship between iy  and ix  at the different points in the conditional distribution of iy . 

The q th quartile estimator of q̂  and q̂ minimizes over q  and q  on the objective 

function    

  )'(,minarg)ˆ,ˆ( qixlqiDiyqlqq     (2.3) 

Where q  lies between 0 and 1 and )}({* 01  uquq  as in Koenker (2005). Then, 

lq̂  and q̂ represent the choices of quantile that will estimate for the different value of  

  and  . For example, if 90.q , much more weight will be put at the income at 90 

percentile and when 50.q , the estimated result is the same as least absolute deviation 

estimators. Let )',( ixiDX   and )'',( qlqq   , the asymptotic distribution of 

estimator defined in (2.3) is given by  

  ),()ˆ(  
q qJqJNqqn 110       (2.4) 
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where ]'*)'([ XXqXxyfEqJ   and ]'[)( XXEqqq  1 . The term q is estimated 

by ].'[)( XXnqq  11  qJ  has been estimated by kernel method as in Koenker (2005) 

  '
ˆ'

ˆ XX
nh

qXiY
k

nnh
TJ  












 


1
     (2.5) 

In addition, he pointed out the advantages of QR as followed. First, it is not sensitive to 

outlier and will be more robust than ordinary least squares (OLS) when the dependent 

variable does not contain influential observations.. That is, in the case of studying income 

distribution which is not normally distributed and skewed to right, it is certainly better to 

use the method that  is in sensitive to change in extreme high or low wage income. 

Secondly and most important for our study, QR provides the estimators for the impact of 

covariate on the full distribution of income at any particular percentile of distribution, not 

just the conditional mean.  

 

2.3.2 Endogenous quantile treatment effect 

 Currently, several methods can deal with only one binary endogenous treatment 

quantile effects and use to compare to the case of interest when we aggregate the ordered 

endogenous effects to only binary effects.  
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2.3.2.1 Abadie, Angrist, and Imbens (2002) (AAI) 

 If the treatment is endogenous or self-selected as in case of education attainment 

or job training program, the traditional quantile regression will be biased and the use of 

instrumental variable (IV) might be used as suggested by AAI with the following 

framework and assumptions. Adopting the set up as in AAI and Frolich and Melly 

(2010). iy  is a scalar outcome variable as in (2.1). However, iD  is a binary treatment 

indicator, and iz  is binary instrument. In the case of return to education, iy  is wage, iD  

indicates college attainment, and iz  might be father, mother, or spouse education. Then, 

the value of  1y  corresponds to the outcome of the education 1iD  and 0y  corresponds 

to the outcome of the education when 0iD . In addition, we can write 1D  as an 

individual education attainment when 1iz  while 0D  indicates education attainment 

would be if 0iz . The underlying assumptions are as followed. 

 For almost all values of ix : 

(i) Independence: ),,,( 0101 DDyy  is jointly independent of  iz  given ix .   

(ii) Nontrivial assignment: ),()( 101  ixizP . 

(iii) First-stage: ][][ ixDEixDE 01  . 

(iv) Monotonicity: 10011  ][ ixDDP . 

(v) Model for potential outcomes    

qixDqDDDixiyqQ  '),,(  01       (2.6) 
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where qQ  refers to the q-th conditional quantile of iy . Given assumptions (i)-(v), AAI 

show that the conditional quantile treatment effect for the compilers (i.e. observations 

with 01  iDiD  can be estimated by weighted quantile regression: 

  )''(*,minarg)ˆ,ˆ( qixqiDiyq
AAI

iWIV
q

IV
q      (2.7) 

)(

)(

)(

)(

ixizP

iziD

ixizP

iziDAAI
iW

1

1

11

1
1









  

This is a two-step estimator in which the )( ixizP 1  is need to be estimated first, in this 

paper the local logit estimator has been used as in Frolic and Melly (2007). Moreover, in 

order to avoid the problem of non-convex optimization problem, AAI suggest the use of 

positive weights                   

],,[ ixiDiyAAIWEAAI
iW         (2.8) 

Equation (2.8) will be estimated by linear regression and if some of these estimated 

weights are negative in the finite samples, they will be set to zero. 

Then, the asymptotic distribution of the AAI estimator is given by 

),()ˆ(
110  qIqqINq

IV
qn  ,       (2.9) 

where )(*]'*)(,[ 010101
DDPDDixixqixDDixiyfEqI    and )'(Eq 

with ))()((),( ixizPizixHiyixqmAAI
iW 1 and   



 

 

47 

 

Xqixiyqiyixqm ))'((),( 01   and
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qI  will be estimated by kernel estimation that uses Epanechnikov kernel as suggested by 

Abadie et.al. (2002) 
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     (2.10) 

Where AAI
iŴ  are estimates of the projected weights. )(ˆ ixH is estimated by regressing 
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qixiyq  on ix . Lastly,  

))(ˆ)((ˆ))ˆ'((ˆ ixZPZlxHXIV
qixiyqAAI

iW 101      (2.11)

)'ˆˆ(ˆ Eq            (2.12) 

 As stated before, AAI method can only be applied to endogenous treatment 

effects where the iD  is only binary. That is, the model can estimate the case where 

observation of interest attains certain level of education, high school, or not. So, it is not 

possible to use the iD , that are ordered outcome as endogenous regressors. 
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2.3.2.2 Unconditional quantile treatment effect Firpo (2007) and Frolich and Melly 

(2008) 

 The unconditional treatment effect for quantile can be defined as  

01 y
qQ

y
qQq           (2.13) 

The distinct feature between the conditional and unconditional treatment effects is 

that the unconditional effect, by definition, will not change with respect to the different 

set of covariates ix . Also, unconditional effects can be estimated consistently at the    

n  rate without any parametric restrictions. That is, these estimators will be entirely 

nonparametric, and the assumption (i) will not be needed. Also, in estimating this 

nonparametric model, it is needed to assume that the support of the covariates ix  is the 

same independently of the treatment. For almost all values of ix , 

110  )( ixiDP          (2.14) 

However, the unconditional method still needs the inclusion of covariates ix  for various 

reasons. First, ix  are needed to make the identification plausible. Secondly, including    

ix  will improve efficiency. Following Frolich and Melly (2008), it is better to explain 

the endogenous treatment with a binary instrumental variable iz first. Given 

assumption(iv), the estimator for q  is as followed: 

)(*,minarg)ˆ,ˆ(   iDiyq
FM

iWIV
q

IV       (2.15) 
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
 iD

ixizPixizP

ixizPizFM
iW      (2.16) 

 FM
iW  need to be estimated first as same as in the case of AAI

iW . Also, the 

optimization in (2.15) will face the same non-convex problem as in equation (2.7). 

Therefore, the alternative weight has to be used. That is, 

],,[ ixiDiyFMWEFM
iW         (2.17) 

 Firpo (2007) and Frolich and Melly (2008) use assumption (ii) and (2.14) together 

to identify unconditional treatment effect. The estimator of Firpo (2008) is a special case 

of (2.15), when iD  is used to be its own instrument or iDiz  . The weighting estimator 

and weight for the estimate of q  are as followed:

  )(*,minarg)ˆ,ˆ( iDiyq
F

iWq       (2.18)  
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)( ixiDP
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ixiDP
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1

1 





 .      (2.19) 

Then, the process to estimate the weight function will be employed as same as in the case 

of  FM
iW  and AAI

iW . 

Firpo (2007) and Frolich and Melly (2008) provides the asymptotic distribution of the 

estimated treatment effects as followed. From equation (2.18), Firpo (2007) states that    

q̂  distributes as 
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),()ˆ( vNqqn 0         (2.20) 
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

 . 1Y
qQ  and 0Y

qQ  have been estimated by q
ˆ̂  

and ̂ . The densities )(
Yd
qQYdf  are estimated by kernel estimators with Epanecnikov 

kernel function and Silverman bandwidth choice. 
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     (2.21) 

    )(,
yd
qQXdiDYF   is estimated by local logit estimator. In addition, the density will 

be estimated by kernel regression as in the case of the exogenous treatment.  These two 

methods also suffer the same setback as in the case of AAI, where binary instrument will 

be required for only on binary endogenous variable.  



 

 

51 

 

In addition, there is other IV method suggested by Chernokuzhov and Hansen 

(2005), (2006), and (2008) that does not require binary instrument; however, in this 

study, we do not employ their method for comparison since it is more computationally 

intensive than the other proposed methods. In addition, it can deal with the case where 

there are more than one endogenous variable but we need to fully understanding and 

define the relationship between those endogenous variables. If not, it will entail bias 

problem similar to the case of instrumental variable regression.  

 

2.3.3 Sieve estimator and control function 

Sieve estimation refers to one class of semiparametric estimation that solves the 

problem of infinite dimensional parameter. The sieve method employs the optimization 

routine that tries to optimize the criterion function over finite approximated parameter 

spaces (sieves). The sieve method, in the simplest form, might be similar to how we 

choose the bandwidth and numbers in plotting the histogram. As pointed out by Chen 

(2007), the method of sieves is very flexible in estimating complicated semiparametric 

models with (or without) endogeneity and latent heterogeneity. It can easily incorporate 

prior information and constraints, and it can simultaneously estimate the parametric and 

nonparametric parts, typically with optimal convergence rates for both parts.  

The main reason that this paper employs the sieve estimator is that it can simplify 

semiparametric inference for the quantile treatment effects. So far, the four methods of 

estimation employs at least certain degree of semiparametric estimation for their 

respective variances with relatively complicated formulation and computationally 
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intensive. In addition, the estimated variance varies with not only choice of kernel 

function but also bandwidth selection.  

Following the results in Ackerberg et.al. (2012), it has established the numerical 

equivalence between two estimators of asymptotic variance for two-step semiparametric 

estimators when the first-step nonparametric estimation is implemented. That is, in the 

first stage, the sieve M-estimator (Sieve maximum likelihood, Sieve minimum distance, 

series estimator) will be applied to the model of interest, and then in the second stage, 

estimation can be set up as if the problem is completely parametric for the purpose of 

inference on treatment effects.  

Secondly, in this method, the endogeneity will be treated as omitted variable case 

as in equation (2.1) and (2.2) since wage will certainly depend on unobserved personal 

characteristics that linked to education attainment. In addition, we can allow more than 

one endogenous variables that can be either categorical or ordered that is drawback for 

previous methods of estimation. In addition, even the instrumental variables that allow 

more than one endogenous variables as in Chernokuzhov and Hansen (2005, 2008) 

cannot cover the case of endogenous categorical and ordered regressors. The paper 

corrects for endogeneity by adopting the control function approach, as in case of Lee 

(2007) but there is a different in first stage and second stage estimation.  

We newly propose that the first step is to construction of estimated generalized 

residuals irĝ  a ordered-probit of iD  on ),( izix . This step is approximation of control 

function that help in solving the endogenous problem. The idea of generalized residual 

for the group or ordered outcome can be found in Chesher and Irish (1987) and 

Gourieroux et.al. (1987). The generalized residuals is as equation (2.22) 
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 lc  is the estimated cut points or threshold parameters, for example, if there are 

three values of iD , 210 ,,iD  there will be ),( iDiDliD 21 , 21,l , then there will be 

two cut points, 1c  and 2c  given that  01lc  and  31lc . After getting the 

estimated irĝ  from equation (2.22), it will be plug in to the (2.3) as an additional 

independent variables. The second step of estimation is partially linear quantile 

regression of iY  on iZ , iD  and igr . However, it is difficult to assume the stochastic 

relationship between igr  and i  (the errors terms from the main equation), so we use the 

sieve estimator for putting the linear combination of power series of irĝ  as regressors in 

the equation of    

 ))ˆ('()ˆ,,(,minarg)ˆ,ˆ( irgfnqizlqliDiyqirgizliDtlqq     

           (2.23) 

where t  is the trimming function that is set to equal to 1 and irĝ  and its power function 

even interacting the residuals with other regressors. In addition, we can use other form of 

control functions such as fourier, spline or Taylor series approximation in the second 

stage of quantile regression. Moreover, practitioner can assume other form of distribution 

in the first stage given that there is the correct form for generalized residuals. 

Then, the variance of the treatment effects can be estimated by either bootstrap or 

finding the solution of inverse quantile functions analytically.  In this paper, we choose 

the bootstrap method for inference since the inverse function will mainly depend on the 
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control function that we choose. Moreover, this leads complicated analytical formula and 

computationally intensive procedure. The reason that bootstrap estimator for variance is 

valid that we proceed in two step estimation as in Ackerberg et.al. (2012). Also, 

estimating the asymptotic variance by using parametric approximation and bootstrap 

requires less restrict assumptions in order to get establish consistency and asymptotic 

normality as in the case of Lee (2007).   

To conclude this section, there are certain insights that might be gained from 

comparing these five methods of estimation. The conditional treatment effect models are 

computationally simple and should be unbiased if there is no underlying endogeneity. On 

the other hands, the four semiparametric models in this paper have each own advantages 

and heuristic comparison can be made to see differences in treatment effects across 

income distribution.  In addition, results from unconditional treatment effects, it might be 

helpful for policy makers and applied economists since they capture the effects in the 

entire population rather than a large number of effects for different covariate 

combinations.  

 

2.4. Monte Carlo Simulation 

This section presents the Monte Carlo simulation result for comparing finite 

sample properties of sieve control function estimator with the methods described in 

section 2.3 given that we have not developed its asymptotic property. There are three 

focuses in the simulation: the changes in root mean squared errors of the parameters with 

varying degree of endogeneity, robustness to heteroskedasticity for quantile endogenous 

treatment effects, and size of the test for statistical inference given varying of 
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endogeneity. In addition, we report the mean of estimated coefficients as well as bias and 

standard deviation. 

 

2.4.1 Data generating process 

The data generating process (DGP) is given by  

iuixixiDiDiy  22112211  )()( ,   ni ,...,,21  

ivizizixixiD  24132211 * ,    ni ,...,,21  

),,( 210iD  

For the sake of simplicity, we assume that the exogenous variables have 

homogenous effects throughout the entire distribution. However, for endogenous 

covariates we can follow Melly (2007) and Lee (2007) that assume homogenous marginal 

effects in their Monte Carlo Simulations or follow Chernokuzhov et.al. (2005) that allows 

the marginal effects to be monotonically increases with respect to quantile.  

The DGP for each variable is given by 
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For one endogenous variable 

iviziziXiXiD  21150250150 **.*.*.* ,    ni ,...,,21 , 

iuiXiXiDiy  2211121 **)(*  ,    ni ,...,,21  

),( 10iD  

For two endogenous variables 

iviziziXiXiD  21150250150 **.*.*.* ,    ni ,...,,21 , 

iuiXiXiDiDiy  2211251111 **)(*.)(*  ,   ni ,...,,21  

The )(  is the th percentile value of normal cumulative density function for 

example at .5 quantile the value of ).( 50 is 0.5.  The endogeneity problem comes from 

the correlation between errors term from ),( iviu . We assume that there are only three 

categories of ordered endogenous variables. Simulation results are based on 1000 

replications with number of observations of 10,000 since we are interest in all part of 

income distribution especially to capture the treatment effects at the tails of distribution. 

 

2.4.2 Bias, standard deviation of Estimator, and Power 

 In this section, we present results from Monte Carlo simulation with varying 

degree of endogeneity in two main cases. The first case, we compare the model where 
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there is only one binary endogenous variable. The second, we compare the model where 

there are two ordered endogenous variables. In the first case, we compare the estimate by 

the method proposed in third section. The second case control function method is 

compared with standard quantile regression, two-stage least squares with strong 

instruments, and regression with predicted probability from Probit as instrumental 

variables. 

 

2.4.2.1 One endogenous variable model 

 In this section, we compare the finite sample properties of sieve estimator with 

the well-established estimator of the quantile treatment effects that can only take care of 

one endogenous variable. When there is no endogeneity, as presented in Table 2.1, 

standard quantile regression yields the lowest bias and variance for the coefficient 

estimated. However, Firpo yields least precise estimate as expected by unconditional 

quantile treatment effects. For, the unconditional quantile regression, the bias is higher 

along with variance. Moreover, mean rejection for FM is closest to the 0.05 level that we 

set up. 

By introducing mild degree of endogeneity in table 2.2, the methods that does not 

take in to account, endogeneity tends to slightly overestimate the quantile treatment effect 

at the median. The Sieve estimator still yield less bias with higher variance compared to 

the standard quantile regression. The FM and AAI methods do slightly overestimate the 

parameter but come out with higher variance than the rest.  
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Table 2.1 Monte Carlo Simulation for Mean without endogeneity 

True   )(  is 1 Correlation between errors is 0 

 = 0.5 Qreg Control 

Control 

Median Firpo 

Frolich 

and Melly 

Abadie 

Imbens 

and Angrist 

Mean of )(  0.999 0.997 0.999 0.913 1.004 0.995 

Parameters       

 

    

Bias -0.001 -0.003 -0.001 -0.087 0.004 -0.005 

        

 

    

SD 0.030 0.080 0.031 0.058 0.085 0.077 

        

 

    

Root Mean  0.030 0.080 0.031 0.105 0.085 0.077 

Squared Errors       

 

    

        

 

    

Mean 0.038 0.051 0.034 0.310 0.05 0.054 

Rejection             

Table 2.2 Monte Carlo Simulation for Mean with 0.1 degree of correlation 

True  )(  is 1 Correlation between errors is 0.1 

 = 0.5 Qreg Control 

Control  

Median Firpo 

Frolich and 

 Melly 

Abadie  

Imbens and  

Angrist 

Mean of  )(  1.113 0.998 1.114 1.030 1.021 1.005 

Parameters       

 

    

Bias 0.113 -0.002 0.114 0.030 0.021 0.005 

        

 

    

SD 0.030 0.080 0.030 0.059 0.085 0.077 

        

 

    

Root Mean  0.118 0.080 0.118 0.067 0.088 0.773 

Squared Errors       

 

    

        

 

    

Mean 0.038 0.053 0.974 0.073 0.061 0.049 

Rejection             
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Table 2.3 Monte Carlo Simulation for Mean with 0.5 degree of correlation 

True   )(  is 1 Correlation between errors is 0.5 

 = 0.5 Qreg Control 

Control 

 Median Firpo 

Frolich and 

 Melly 

Abadie  

Imbens and 

 Angrist 

Mean of )(  1.568 0.992 1.568 1.499 1.080 1.067 

Parameters             

Bias 0.568 -0.008 0.568 0.499 0.080 0.067 

              

SD 0.029 0.078 0.029 0.058 0.086 0.069 

              

Root Mean  0.569 0.079 0.569 0.502 0.118 0.097 

Squared Errors             

              

Mean 1.000 0.046 1.000 1.000 0.149 0.163 

Rejection             

 

 The results change dramatically when we introduce higher degree of endogeneity 

as in Table 2.3 and 2.4. Koneker method and Firpo methods provide higher bias of over 

than 50 percent to almost 100 percent when correlation among errors is 0.9. The Sieve 

estimator still yield less bias with low variance when compare to those two, at correlation 

of 0.9, sieve estimator produces moderately underestimated coefficient. On the other 

hands, FM and AAI slightly overestimate the coefficient with higher variance. In 

addition, the mean rejections of almost all of the methods except sieve, FM, and AAI 

jump to 1 implying that those methods might be unreliable.  

Comparing these methods with current number of observations and number of 

replication, in order to gain good approximate of root mean square errors, has been 

conducted only at median since it is time consuming for FM and AAI method to 

converge at the both tail of distribution. In addition, for these two methods, the estimation 

of the whole quantile process, as pointed out by Melly (2006), is nearly impossible and 
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the results confirm bias does go away even with lower number of replication. That is, 

from our experience, control function along with standard quantile regression can be 

computed faster than the previous two methods especially at the tail of distribution. 

Lastly, putting the control function with the generalized residuals from 

conditional median yields infinitesimal different result from the standard quantile 

regression. Only, when the correlation is 0.9, there is a clear difference. However, from 

Table 2.2 to Table 2.4, they shows that using such generalized residuals from conditional 

median cannot solve the endogeneity problem. 

Table 2.4 Monte Carlo Simulation for Mean with 0.9 degree of correlation 

True  )(  is 1 Correlation between errors is 0.9 

 = 0.5 Qreg Control 

Control  

Median Firpo 

Frolich and 

 Melly 

Abadie  

Imbens and 

 Angrist 

Mean of  )(  2.008 0.948 2.004 1.972 1.135 1.228 

Parameters       

 

    

Bias 1.008 -0.052 1.004 0.972 0.135 0.228 

        

 

    

SD 0.025 0.071 0.042 0.054 0.087 0.052 

        

 

    

Root Mean  1.008 0.088 1.004 0.974 0.158 0.234 

Squared Errors       

 

    

        

 

    

Mean 1.000 0.106 1.000 1.000 0.367 0.996 

Rejection             

 

2.4.2.2 Two endogenous variables model 

 There are no direct comparable methods that can estimate the endogenous 

quantile treatment effects with ordered endogenous variables. Assuming the errors to is 
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normally distributed, we can use Monte Carlo simulation to compare the property of 

control function estimator to the standard two-stage least squares method that can take 

care of two endogenous regressors properly. We compare sieve estimator with quantile 

regression, two-staged least squares with strong instruments and two-staged least square 

with predicted probabilities as instrument.  

In addition, as same as in section 2.4.2.1, we present the result with varying 

degree of endogeneity. When there is no endogeneity, the quantile regression, sieve, and 

2SLS with probabilities yield the best estimate of coefficients as expected, however, 

putting the power series or probabilities to control for endogeneity yields higher variance 

of estimation.  However, the drawback of standard instrumental variable (Z) persists both 

in the case where there is more than one endogenous variable. For simulation and 

estimation, the relationship between these two variables has to be established. Assuming 

that both of these variables are not related is plausible but not valid in almost all of the 

case. Hence, even with no endogeneity, the results from third column in Table 5 yield 

bias and high variance since we do not have information on the relationship such that we 

can estimate the model with full information maximum likelihood or GMM. 

 When we introduce mild degree of endogeneity, the Koenker estimation yield 

overestimated results for both coefficients with low level of mean rejection. The sieve 

and 2SLS with probabilities produce less biased results with similar level of mean 

rejection implying more precise and robust results. Moreover, introducing the corrected 

terms, series of generalized residuals or predicted probabilities always increase the Monte 

Carlo standard deviations. At 0.5 level of correlation, neglecting endogeneity, leads to 
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almost 100 percent increase in median treatment effects as well as still accepting that the 

estimated effects is statistically different from zero. On the contrary, the sieve and 2SLS 

with probabilities are really closed and reliable. For standard IV results, the bias is not 

getting better as well as standard deviation. We might conclude that dealing with more 

than one endogenous variable is quite problematic in terms of not only finding the strong 

instrumental variables but also modeling relationship between them. 

 In table 2.8, we present the result where the correlation is 0.9, sieve estimation 

yield more biased results compared to two-stage least squares with predicted probabilities 

though the Monte Carlo variance is lower. Moreover, for the other two methods, the 

results are certainly biased. However, one caution is in the case of two-stage least squares 

with instrumental variables, this method yield the highest bias among the entire 

estimators with high variances. That is, we certainly will fail to reject that the estimated 

coefficient will be different from zero and led to the worse estimators of all the methods. 

To conclude, sieve estimator, though might not be the best estimator to control for 

endogeneity, at least can reduce the bias as well as give a valid estimate for quantile 

treatment effect when there is one or more endogenous variables. That is, without 

calculating analytical asymptotic theory for this sieve estimator, the proposed procedures 

constitute a probable approximation for estimating quantiles treatment effects and for 

making reliable inference for this two-step estimation. 
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Table 2.5 Monte Carlo Simulation for Mean with 0 degree of correlation 

True  )(1  is 0.5 Correlation between errors is 0 

 = 0.5 Qreg Control 2SLS with Z 2SLS with Prob 

Mean of  )(1   0.499 0.499 -0.772 0.501 

Parameters         

Bias -0.001 -0.001 -1.272 0.001 

          

SD 0.034 0.049 36.110 0.095 

          

Root Mean  0.034 0.049 36.132 0.095 

Squared Errors         

          

Mean 0.044 0.049 0.017 0.051 

rejection         

True    )(2  is 0.75 Correlation between errors is 0 

 = 0.5 Qreg Control 2SLS with Z 2SLS with Prob 

Mean of   )(2  0.749 0.750 1.203 0.748 

Parameters         

Bias -0.001 0.000 0.453 -0.002 

          

SD 0.037 0.071 13.424 0.052 

          

Root Mean  0.037 0.071 13.432 0.052 

Squared Errors         

          

Mean 0.040 0.055 0.017 0.047 

rejection         
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Table 2.6 Monte Carlo Simulation for Mean with 0.1 degree of correlation 

True   )(1  is 0.5 Correlation between errors is 0.1 

 = 0.5 Qreg Control 2SLS with Z 2SLS with Prob 

Mean of   )(1  0.582 0.499 -1.267 0.501 

Parameters         

Bias 0.082 -0.001 -1.767 0.001 

          

SD 0.034 0.049 36.110 0.095 

          

Root Mean  0.089 0.049 41.239 0.095 

Squared Errors         

          

Mean 0.671 0.048 0.010 0.052 

rejection         

True  )(2  is 0.75 Correlation between errors is 0.1 

 = 0.5 Qreg Control 2SLS with Z 2SLS with Prob 

Mean of   )(2  0.900 0.750 1.374 0.748 

Parameters         

Bias 0.150 0.000 0.624 -0.002 

          

SD 0.362 0.072 15.018 0.052 

          

Root Mean  0.392 0.072 15.031 0.052 

Squared Errors         

          

Mean 0.984 0.042 0.009 0.048 

rejection         
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Table 2.7 Monte Carlo Simulation for Mean with 0.5 degree of correlation 

True )(1  is 0.5 Correlation between errors is 0.5 

 = 0.5 Qreg Control 2SLS with Z 2SLS with Prob 

Mean of   )(1  0.918 0.494 2.996 0.502 

Parameters         

Bias 0.418 -0.006 2.496 0.002 

          

SD 0.324 0.046 53.678 0.095 

          

Root Mean  0.529 0.047 41.239 0.095 

Squared Errors         

          

Mean 1.000 0.052 0.013 0.052 

rejection         

True  )(2  is 0.75 Correlation between errors is 0.5 

 = 0.5 Qreg Control 2SLS with Z 2SLS with Prob 

Mean of   )(2  1.503 0.741 -0.281 0.749 

Parameters         

Bias 0.753 -0.009 -1.031 -0.001 

          

SD 0.338 0.072 22.547 0.052 

          

Root Mean  0.825 0.072 22.571 0.052 

Squared Errors         

          

Mean 1.000 0.053 0.012 0.046 

rejection         
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Table 2.8 Monte Carlo Simulation for Mean with 0.9 degree of correlation 

True )(1  is 0.5 Correlation between errors is 0.9 

 = 0.5 Qreg Control 2SLS with Z 2SLS with Prob 

Mean of   )(1  1.244 0.469 -0.569 0.502 

Parameters         

Bias 0.744 -0.032 -1.069 0.002 

          

SD 0.027 0.038 76.284 0.095 

          

Root Mean  0.744 0.049 41.239 0.095 

Squared Errors         

          

Mean 1.000 0.133 0.009 0.046 

rejection         

True   )(2  is 0.75 Correlation between errors is 0.9 

  = 0.5 Qreg Control 2SLS with Z 2SLS with Prob 

Mean of   )(2  2.095 0.690 1.046 0.749 

Parameters         

Bias 1.345 -0.060 0.296 -0.001 

          

SD 0.029 0.062 29.145 0.052 

          

Root Mean  1.345 0.086 29.147 0.052 

Squared Errors         

          

Mean 1.000 0.174 0.009 0.044 

rejection         

 

2.4.2.3 Sensitivity analysis for the control function estimator to heteroskedasticity 

 Unlike normal regression, the estimated parameters from quantile regression can 

be effected by heteroskedasticity. Suppose the true data generating process depicts linear 

quantile regression where there are only exogenous variables ),( 21 XX  and there is only 
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one exogenous variable )( 1X  that enter in to both conditional quantile equation as well 

as multiplicative heteroskedasticity, then we expect that estimated coefficient of  1X will 

vary with the value of quantile. Moreover, even if we add one additional binary 

endogenous variable )( iD1  to estimation, we suspect that heteroskedasticity will further 

lead to bias estimation of both coefficients of ),( iDX 11 . However, control function 

might provide flexible way to estimate the model by interacting generalized residuals 

with 1X as more control variables. The data generating process come from part 2.4.1, we 

focus on the case where there are one binary endogenous variable as the following  

iviziziXiXiD  211502501501 **.*.*.* ,     ni ,...,,21  

iwiXiXiDiy  22121111 **)()(  ,    ni ,...,,21  

where iuiXiw *)..( 15010   

The only difference from section 2.4.1 is the new DGP contains 

heteroskedasticity problem in exogenous independent variable and might exacerbate the 

biases of both endogenous treatment effect and coefficient of iX1 . The simulation 

contains the same 1,000 replications with 10,000 observations. Then, we compute Monte 

Carlo mean, standard deviation, and root mean squares error as before. 

The result in Table 2.9 shows that even with mild endogeneity, correlation at 0.1, 

control function without interaction term can let to a biased result of about 10 percent for 

the estimated parameters of binary endogenous variable. However, for the estimation of 
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coefficient of iX1 , the bias is not that severe. Only at the 90 percentile where the bias is 

large for the case of control function. 

Table 2.9 Monte Carlo Simulation for the case of Heteroskedasticity and Endogeneity 

with 0.1 degree of correlation 

  True )(1  is 0.2 Correlation between errors is 0.1 

 = 0.1 Qreg Control 

Control with 

Interaction 

Frolich and 

Melly 

Abadie Imbens and 

Angrist 

Mean of 

)(1  0.252 0.212 0.200 0.444 0.229 

Parameters     

 

    

Bias 0.052 0.012 0.000 0.244 0.029 

      

 

    

SD 0.018 0.061 0.035 0.099 0.031 

      

 

    

Root Mean  0.055 0.062 0.035 0.264 0.042 

Squared 

Errors     

 

    

      

 

    

Mean .811 0.051 0.039 0.691 0.152 

rejection           

  True )(2  is 0.36 Correlation between errors is 0.1 

 = 0.1 Qreg Control 

Control with 

Interaction 

Frolich and 

Melly 

Abadie Imbens and 

Angrist 

Mean of   

)(2  0.366 0.362 0.360   0.386 

Parameters     

 

    

Bias 0.006 0.002 0.000   0.026 

      

 

    

SD 0.018 0.019 0.033   0.041 

      

 

    

Root Mean  0.019 0.019 0.033   0.049 

Squared 

Errors     

 

    

      

 

    

Mean 0.039 0.020 0.048   0.093 

rejection           
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Table 2.10 Monte Carlo Simulation for the case of Heteroskedasticity and Endogeneity 

with 0.5 degree of correlation 

  True    )(1  is 1 Correlation between errors is 0.5 

 = 0.5 Qreg Control 

Control with 

Interaction 

Frolich and 

Melly 

Abadie Imbens and 

Angrist 

Mean of   

)(1  1.259 1.029 0.995 1.069 1.145 

Parameters     

 

    

Bias 0.259 0.029 -0.005 0.069 0.145 

      

 

    

SD 0.017 0.044 0.027 0.096 0.029 

      

 

    

Root Mean  0.260 0.052 0.028 0.118 0.148 

Squared 

Errors     

 

    

      

 

    

Mean 1.000 0.094 0.032 0.121 0.999 

rejection       `   

  True )(2  is 1 Correlation between errors is 0.5 

 = 0.5 Qreg Control 

Control with 

Interaction 

Frolich and 

Melly 

Abadie Imbens and 

Angrist 

Mean of   

)(2  1.037 0.999 1.001   1.115 

Parameters     

 

    

Bias 0.037 -0.001 0.001   0.115 

      

 

    

SD 0.013 0.013 0.024   0.036 

      

 

    

Root Mean  0.039 0.013 0.024   0.121 

Squared 

Errors     

 

    

      

 

    

Mean 0.719 0.019 0.045   0.891 

rejection           
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Table 2.11 Monte Carlo Simulation for the case of Heteroskedasticity and Endogeneity 

with 0.9 degree of correlation 

  True )(1  is 1.8 Correlation between errors is 0.9 

 = 0.9 Qreg Control 

Control with 

Interaction 

Frolich and 

Melly 

Abadie Imbens 

and Angrist 

Mean of   

)(1  2.057 1.759 1.798 1.304 1.981 

Parameters     

 

    

Bias 0.257 -0.041 -0.002 -0.497 0.181 

      

 

    

SD 0.019 0.049 0.032 0.216 0.028 

      

 

    

Root Mean  0.257 0.064 0.032 0.541 0.183 

Squared 

Errors     

 

    

      

 

    

Mean 1.000 0.121 0.038 0.668 1.000 

rejection           

  True )(2  is 1.64 Correlation between errors is 0.9 

 = 0.9 Qreg Control 

Control with 

Interaction 

Frolich and 

Melly 

Abadie Imbens 

and Angrist 

Mean of   

)(2  1.656 1.559 1.496   1.711 

Parameters     

 

    

Bias 0.016 -0.081 -0.144   0.071 

      

 

    

SD 0.016 0.018 0.028   0.030 

      

 

    

Root Mean  0.023 0.083 0.147   0.077 

Squared 

Errors     

 

    

      

 

    

Mean 0.122 0.996 0.996   0.697 

rejection           

 

In sum, from simulation results, control function can correct the bias problem 

from the heteroskedasticity and endogeneity to a certain degree. When, the 
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heterskedasticity is multiplicative, putting interaction term between generalized residuals 

and independent variables might help. In addition, from sieve estimator perspective, 

increasing the number of interaction or creating better sieve approximation function with 

more terms is necessary when the number of observations is large.  

 

2.4.3 Test size result 

We present the test size results from three methods to correct for endogeneity 

problems. The first one is control function estimation of median regression by using 

generalized residuals as control. The second one is two-stage least squares with 2 

instrumental variables and the last one is two-stage least squares with predicted 

probabilities from ordered probit as instrumental variables. The test size has been 

calculated based on 1000 replications for both the data generating process with two 

endogenous variables and one endogenous variable. Generally, in order to adopt control 

functions of ordered outcome method for quantile regression, we worry about its finite-

sample size property comparing to standard mean regression whether it should report 

lower p-value than the true size, so we reject the null hypothesis more often than we 

should when there is no endogeneity or low degree of endogeneity.  

For our example with given DGP, we want to simulate the size of a 0.05 level test 

of endogeneity based on Hausman-type statistics. The null hypothesis for the first method 

is 00 :H  against 00 :H  where    is the coefficient of the control function. 

Under the null, we have use the naïve estimator for standard errors of  . For the other 

two instrumental variables method we perform the test based on standard Hausman test. 
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Then, we obtain their respective valuep   and compare it to true size. The results are in 

the following table. 

When 0 , or there is no endogeneity, the actual test size is 0.065 for control 

function, it is reasonably close to the nominal size of 0.05. However, it is a little higher 

than the cases where we use two-stage least squares. That is, we fail the null hypothesis a 

little more often than the other two methods. However, out of 1,000 replications, the 

difference is only 15, it make us become less concern about the validity of employing the 

control function. Moreover, when there is slight degree of endogeneity at 10. , the 

size of the test is larger, we almost certainly reject the null hypothesis of no endogeneity 

in case of control function and two-stage least squares with predicted probabilities. 

However, with the case of standard instrumental variables, it does not reject the 

hypothesis of no endogeneity as often as other two methods; only about 600 out of 1,000 

that it rejects. When we increase the correlation  )( to 0.5 and 0.9, all of the tests 

perform well; they always reject the case of no endogeneity. 

Table 2.12 Test size based on model with two ordered endogenous variables 

Test Size Two ordered endogenous variables 

      = 0  = 0.1  = 0.5  = 0.9 

Control  0.065 0.951 1 1 

with 

generalized  

    residuals 

    Ivregress 0.047 0.597 1 1 

with 

Instrumental 

     Variables 

    Ivregress 0.058 0.978 1 1 

with predicted   

 

    

probabilites         
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Table 2.13 Test size based one binary endogenous variable 

Test Size Probit binary endogenous variable 

      = 0  = 0.1  = 0.5  = 0.9 

Control  0.061 0.848 1 1 

with 

generalized 

 

      

residuals         

Control  0.510 0.511 0.481 0.379 

with median 

 

      

residuals 

 

      

Ivregress 0.054 0.573 1 1 

with 

Instumental 

 

      

Variables         

Ivregress 0.06 0.948 1 1 

with predicted 

 

      

probabilites         

 

In table 2.13, we compare size of test as in table 2.12, but rather than having two 

ordered-endogenous variables, we lump the two-ordered outcome to be only one binary 

outcome and re-estimate with the same three methods. We find out that the test performs 

quite well at zero degree of endogeneity and rejects the null hypothesis more often at 

even slight degree of endogeneity. Only at 1.0 , the control function rejects null 

hypothesis less often comparing to the case where we have two-ordered outcome. Then, 

when   increases to 0.5, all of the tests completely reject the hypothesis of no 

endogeneity.  

Moreover, rather than using conditional expectation to calculate generalized 

residuals from the probit as in the first column, we calculate the predicted residuals from 

conditional median and plug it in as independent variable in the second stage quantile 

regression. However, the conditional median residuals is not correct way to detect and 
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correct endogeneity since it does not reject the null hypothesis of endogeneity for almost 

all level of  . Thus, we should use conditional expected residuals rather than median. 

Table 2.14 Test size with 1000 observations and variance of (9, 1) 

Test Size Two ordered endogenous variables 

      = 0  = 0.1  = 0.5  = 0.9 

Control  0.054 0.213 1 1 

with 

generalized    

 

    

residuals         

Ivregress 0.047 0.091 0.958 1 

with Z   

 

    

          

Ivregress 0.059 0.227 1 1 

with predicted   

 

    

probabilites         

Test Size Probit binary endogenous variable 

      = 0  = 0.1  = 0.5  = 0.9 

Control  0.061 0.151 0.998 1 

with 

generalized         

residuals         

Control  0.508 0.494 0.481 0.494 

with median 

 

      

residuals 

 

      

Ivregress 0.058 0.199 0.919 1 

with 

Instumental         

Variables         

Ivregress 0.059 0.199 1 1 

with predicted         

probabilites         

 

Next, we consider the case where the variance of  ),( iviu  change to (9, 1). Also, 

we will reduce number of observation to 1,000. Increasing the variance from 1 to 9 will 

certainly reduce the imply R-squared of the data generating process. For example, when 
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the variance is 1, without considering the variation in endogenous terms, the implied R-

squared equals to (4+4)/(4+4+1) = 0.89 or 89 percent. When we change it to 9, the 

implied R-squared is (4+4)/(4+4+9) = 0.47 or 47 percent that is closed to normal cross 

sectional data R-squared. In table 3, we represent the test sized based on two and one 

endogenous variable with 1000 observations and variance of (9, 1). 

To conclude, from the test size simulations, adopting control functions for the 

model of quantile regression at median with ordered endogenous variables might be a 

valid way to control for endogeneity and perform statistical inference in order to check 

whether we really face endogeneity problem.  

 

2.5. Data and Estimating Results 

 In this paper, we apply the methods described in section 3 and 4 to estimating the 

causes of income inequality in USA and Great Lake States. The data is Currently 

Population Survey (CPS) from the period of 2001 to 2009. During this period, two shocks 

potentially affect household income in the top quantile. They are the dot-com crisis of the 

2001 and the Financial Crisis of 2008. The measurement of log wage of the person with 

highest education will be used as dependent variable while household characteristics, 

education, union coverage, and age are used as dependent variables in finding quantile 

treatment effect. In the case that there are two same level of highest education in the 

household, we will use person with highest wage income.  
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Table 2.15 Percentiles, cut-off level of nominal household income ($) 

  10th 25th  50th 75th 90th 

2000 10344 20720 40551 70646 108487 

2001 10572 21521 42024 73000 112040 

2002 10632 21500 42125 74900 114504 

2003 10580 21384 42381 75000 114626 

2004 10500 21620 43160 76803 118662 

2005 10890 22108 44097 78000 121012 

2006 11250 23010 46001 81000 126838 

2007 12000 24600 48020 85028 133726 

2008 12143 25000 50000 88294 136435 

2009 12157 25000 50000 89133 138774 

Source: Current Population Survey (CPS) 

 As shown in Table 2.15, the income different between the top 10 percent and the 

bottom 10 percent is approximately 10 times. This trend has persisted over the past 10 

years. Only in 2001 and 2008, is the period where the income of the top 10 percent 

stagnated because of the recession. On the other hands, for the household at the median 

of income distribution, the difference is about four times compared to the bottom 10 

percent. Without considering the people at the top 1 percent as in Saez (2008), there is a 

certain evidence of income inequality. 

Table 2.16 Summary statistics for the year 2001-2009  

  2001 2005 2009 

Average Household income 55482 60432 68409 

Percentage of Household with high school 0.201 0.192 0.192 

Percentage of Household with College 0.296 0.321 0.332 

Percentage of Household with higher than college 0.116 0.132 0.149 

Percentage of Household in Manufacturing Sector 0.015 0.014 0.013 

Percentage of Household in Management and Financial 

Sector 0.115 0.079 0.083 

Number of observations (Household) 49633 76447 76185 

Source: Current Population Survey (CPS) 
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Table 2.16 contains statistics of some key variables that will be used in 

estimation. The average income shows a steady growth despite two recessions during the 

period of sample. On the education attainment, household with the high school education 

refers to the case where the most educated person in the household achieve high school 

degree where the household with college refers to most educated person in the household 

holds bachelor degree. It is clear that for the past ten years, the household with high 

school degree from the survey stays at about 20 percent of total population. There is a 

growth of household with college degree from 29 percent to 33 percent and household 

with higher than college degree from 11 to 14 percent.   

 The linear quantile effects model of income determination with the interested 

explanatory as discussed in section 2 will be as follows: 

)ln(wage  covunAgeMcollegecollegehighschool 543210    

iuGreatlakeMaFiManuwhite  9876     (2.25) 

where  )ln(wage is the log wage of most educated person in the household 

highschool  = 1 if household member of highest education got high school degree = 0 

otherwise.  

college  = 1 if household member of highest education got bachelor degree = 0 otherwise 

Mcollege  = 1 household member of highest education got high degree than bachelor = 0 

otherwise 
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Age  is age of person in the household with highest education. 

uncov = 1 if household member of highest education is under union coverage = 0 

otherwise 

white  = 1 if household member of highest education is white = 0 otherwise 

Manu  = 1 if household member of highest education worked in Manufacturing sector 

last year = 0 otherwise 

MaFi = 1 if household member of highest education worked in Management and 

Financial sector last year = 0 other wise. 

Greatlake  = 1 if the household lives in the Great Lake States 

First, we assume that education attainment is exogenous at first in order to 

provide a quick picture of what are the determinants of income or return to education. 

The linear model will be estimated by qreg command in STATA® as well as regression 

with robust standard errors. We pool the data from CPS survey from year 2001 to 2009 to 

be one data set. We choose the household with positive wage income that has more than 

2 members. Then, we keep only the case where the second most educated member is 

either wife, husband, partner, or parents.  The results are in the following Table 17. 

At a first glance, not taking in to account the possibility of endogeneity in 

education attainment, the effects of education attainment on the wage income are 

significant across all the quantile as well as from standard regression. The results show 

that higher level of education always lead to higher wage income no matter what point of 
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income distribution. In addition, all of the coefficients are significant at 1 percent. These 

result are more in line with classical economic theory, the relative differences in wage 

can be explain by the education. Moreover, at quantile 90 and 99, the return to education 

seems to be highest especially for the people with degree higher than college. One way of 

looking at this high value of Mcollege is that it might be possible to look through one of 

the most popular graduate level program, Master in Business Administration (MBA). 

According to http://www.businessweek.com/interactive_reports/roi_rankings.html, the 

average salary of the newly graduate top 20 business school is about 100,000 dollars for 

the graduate of 2008 class. 
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Table 2.17 Estimate result assuming education attainments are conditionally exogenous 

(n = 349,825) 

Estimation OLS Quantile10 Quantile50 Quantile90 Quantile99        

            

highschool 0.2303*** 0.2578*** 0.2341*** 0.1923*** 0.2485*** 

 

(0.0038) (0.0082) (0.0033) (0.0058) (0.0224) 

college 0.4957*** 0.5500*** 0.4619*** 0.4685*** 0.9190*** 

 

(0.0032) (0.0071) (0.0028) (0.0050) (0.0189) 

Mcollege 0.8623*** 0.8990*** 0.7610*** 0.9687*** 1.247*** 

 

(0.0045) (0.0092) (0.0037) (0.0066) (0.0251) 

Age 0.1145*** 0.1757*** 0.0976*** 0.0725*** 0.0612*** 

 

(0.0010) (0.0015) (0.0006) (0.0011) (0.0041) 

Age
2
 -0.0013*** -0.0021*** -0.0017*** -0.0007*** -0.0006*** 

 

(0.00001) (0.00001) (0.00006) (0.00002) (0.00004) 

uncov 0.0042** 0.01351*** -0.007*** -0.0190*** -0.0234** 

 

(0.0017) (0.0041) (0.0016) (0.0029) (0.0112) 

white 0.1197*** 0.1484*** 0.1081*** 0.1253*** 0.1110*** 

 

(0.0036) (0.0078) (0.0031) (0.0055) (0.0211) 

Manu -0.01669*** -0.3526*** -0.0910*** 0.0083*** 0.1540** 

 

(0.0140) (0.024) (.0010) (0.0167) (0.0646) 

MaFi 0.3918*** 0.4131*** 0.3336*** 0.4040*** 0.4010*** 

 

(0.0037) (0.0083) (0.0033) (.0058) (0.0224) 

Greatlake -0.0323*** 0.0823*** 0.0336*** -0.014** -0.0448* 

  (0.0038) (0.0086) (0.0034) (0.0061) (0.0233) 

      

Notes: (i) The standard errors for the coefficients are in parenthesis 

 (ii) *, **, and *** denote significance at the 10,5, and 1% level respectively 

 For the case of age, it forms a quadratic relationship with the wage that is wage is 

growing with age at a decreasing rate for all of the quantile distribution. On the union 

coverage, it might be positively relates to wage at the lower end of income spectrum but 

not for the quantile 50, 90 and 99.  
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Table 2.18 Estimate result assuming education attainments are endogenous (n = 349,825) 

Estimation 2SLS Quantile10  Quantile50 Quantile90 Quantile99        

             

highschool 0.0142 -0.0794***  0.0499*** 0.0853*** 0.5910*** 

 

(0.0117) (0.0235)  (0.0100) (0.0056) (0.0670) 

college 0.1528*** 0.0133  0.1628*** 0.2534*** 1.1502*** 

 

(0.0163) (0.3275)  (0.0150) (0.0175) (0.1204) 

Mcollege 0.0747** -0.2109***  0.0906*** 0.2553*** 0.3381** 

 

(0.0268) (0.0490)  (0.0256) (0.0200) (0.2024) 

Age 0.1298*** 0.1968***  0.1100*** 0.0807*** 0.0576*** 

 

(0.0011) (0.0020)  (0.0001) (0.0004) (0.0042) 

Age
2
 -0.0014*** -0.0023***  -0.0012*** -0.0008*** -0.0005*** 

 

(0.00001) (0.00002)  (0.000001) (0.000005) (0.00004) 

uncov 0.0069** 0.0176***  -0.0056*** -0.0169*** -0.0136*** 

 

(0.0017) (0.0035)  (0.0012) (0.0012) (0.0112) 

white 0.1148*** 0.1435***  0.1047*** 0.1223*** 0.0624*** 

 

(0.0036) (0.0081)  (0.0038) (0.0015) (0.0211) 

Manu -0.1134*** -0.2613***  -0.0426*** 0.0463*** 0.2022*** 

 

(0.0140) (0.0278)  (.0011) (.0011) (0.0868) 

MaFi 0.5006*** 0.5707***  0.4244*** 0.4772*** 0.5287*** 

 

(0.0058) (0.0102)  (0.0051) (0.0086) (0.0567) 

Greatlake 0.0286*** 0.0783***  0.0311*** -0.0141** -0.0353*** 

  (0.0038) (0.0078)  (0.0030) (0.0078) (0.0107) 

       

Notes: (i) The standard errors for the coefficients are in parenthesis 

 (ii) Standard errors come from bootstrap with 200 replications. 

 (iii) *, **, and *** denote significance at the 10, 5, and 1% level respectively 

Being white yield the same positive and significant effect on wage throughout 

regression and quantile regression. As expected for the decline in industrial sector, 

working in manufacturing gives less wage at a lower part of income while at a higher 

income distribution, the coefficients is still positive. In addition working in financial 
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service sector always yield higher wage. Lastly, working in great lake state is on average 

associate with lower income; however, it is not true for quantile 10 and 50. 

Secondly, when we treat the education attainments as endogenous ordered 

variables and we should, the estimated results are starkly different. The first column from 

Table 2.18 describes the case where we correct for endogeneity by first calculating the 

generalized residuals and then use the standard regression. By looking at the average 

effects of education attainment, we found out that return to education is not as high as in 

Table 2.17. Getting high school yields positive return to wage but not significant at 10 

quantile. Moreover, earning college degree leads to higher return to wage comparing to 

earning more than high school. This result is the clear when we focus on the 10 quantile 

and 50 quantile; the return to education of bachelor degree is higher than both high 

school and even graduate degree. At 90 quantile, it is the place where the wage is 

increasing, as the level of education attainment is higher, but only at this quantile is 

where the return to education of graduate becomes higher than college. Then, at 99 

quantile the return to education of graduate degree is highest but is still lower than the 

bachelor degree. That is, the return to education is not monotonically increases with the 

level of education attainment. By correcting for endogeneity, it reveals that returns of 

education on wages do not always increase throughout the income distribution.  

Specifically, attaining high school though positively related to higher wage than 

not getting high school degree, the coefficients are quite small throughout the wage 

distribution compared to other education degrees. Next attaining college degree leads to 

highest impact on wage. We might be able to say that bachelor degree is a must-have for 
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higher wage.  The low coefficients of high school education even at 90 and 99 quantile 

point out that high school degree is not sufficient anymore. In addition, for the higher 

than college degree (graduate degree), the impact on wage is still positive but 

incrementally less than the college degree. The lower return of graduate degree might be 

a good indicator of why only 10 percent of observations from the survey pursued 

graduate degree.  

One explanation for such lower return to graduate degree is Neoclassical Growth 

theory; the reduction for the return of graduate degree might be related to skill-set 

demanded in the current world economy. Globalization makes outsourcing of the 

graduate skill-set possible. That is, not only the US corporation can conduct foreign 

direct investment abroad to lower the cost of low-skill labor(high school) but also firm 

can lower the cost of high-skill labor, too. Wan (2008) pointed out that the cost of hiring 

US engineer to design computer chip is approximately three times higher than cost of 

hiring Chinese engineer and two times higher than hiring Korean engineer of the same 

caliber. In addition, Endogenous Growth theory predicts the economy where only people 

at the high end of human capital spectrum and capital holder will leap more benefit from 

economy. That is, at the 99 quantile, education attainment alone might not be enough in 

explaining the different in wage. People with graduate degree earn higher wage than 

people without high school education. However, it might not be true if we compare to the 

bachelor degree. 
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2.6 Concluding Remarks and Further Study 

 Unlike previous studies on income distribution, this empirical study examines the 

relationship between determinants of income throughout entire distribution by using 

quantile regression. Although, various methods of quantile treatment effects that are 

robust to endogeneity have been examined, but none of them has taken into account the 

ordered endogenous regressors.  We propose the use of control function with sieve 

estimator to correct for the endogeneity problem. The Monte Carlo simulation shows that 

our proposed method is usable and works well against other method. Correcting for 

endogeneity reveals interesting results, the different levels of education attainment 

significantly increases wage. However, ignoring endogeneity leads to overestimate of the 

return to education. In addition, wages are not monontonically increasing with education 

throughout wage distribution. At the both low and high wage spectrum, it proves out that 

bachelor degree is not enough for the current state of the economy. Moreover, focusing 

on graduate degree attainment might not be the key in improving wage, their coefficients 

are increasing throughout the income distribution but it can be lower than bachelor 

degree attainment even at the 99 quantile. Moreover, only at the 90 quantile is where the 

returns to graduate degree is slightly higher than bachelor degree. 

 Regarding policy implications, on the surface, it might be suitable to say that 

government should promote higher education attainment; however, there are issues that 

are more concerned. At first, higher education is not cheap and given the current state of 

income inequality and economy, only the people at the higher end of the spectrum will be 

able to leap the benefit. In addition, some might argue the definition of education whether 
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the university should provide knowledge that can be practically used and related to the 

economy or being holistic. Also, there is a differences opinion regarding the education 

system, in the East Asian countries, it is a belief that judgementalism and incentive 

system are an important elements in leading the student to study science and technology 

as well as pursuing higher education than bachelor degree Wan (2008).  

Future research into this issue might be beneficial by either conducting Monte 

Carlo simulation or empirical study of endogenous effect of education on income (not 

only wage) inequality of people at the higher end of income spectrum (higher than 90 

percent). In addition, the choices of control function, sieve estimator, as well as 

instrumental variable do really affect the estimated results. Further sensitivity analysis 

and asymptotic theory are of interest in order to ensure the robustness of estimator.  
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CHAPTER 3: BINARY RESPONSE MODEL WITH CONTINUOUS ENDOGENOUS 

VARIABLE AND HETEROSKEDASTICITY 

 

3.1 Introduction  

This paper describes a simple estimator for the binary choice model with continuous 

endogenous regressors and heteroskedasticity in both the structural and reduced form equations. 

As pointed out in Wooldridge (2010), either endogeneity or heteroskedasticity can lead to the 

problem of inconsistency in the estimation of both binary choice model coefficient as well as 

average partial effects (APEs).  

Many approaches have been proposed to handle the endogeneity in the binary responses 

model including full information maximum likelihood, limited information maximum likelihood, 

special regressor, instrumental variables, and control functions. Applying instrumental variables 

to a Linear Probability Model (LPM) is the easiest approach to implement and the estimated 

coefficients are equal to (approximate) APEs. There are two main drawbacks for using LPM. 

First, by construction, it ignores the bounded nature of the binary response. That is, it does not 

guarantee the fitted values – which are supposed to be probabilities – lie with the interval of zero 

and one. Secondly, its functional form may not be general enough to well approximate all 

response probabilities, thereby leading to poor estimates of APEs, especially for subgroups in the 

population. 

 Full information maximum likelihood is the most common estimation method to deal 

with either endogeneity or heteroskedasticity in the binary response model. The popular 

econometrics package Stata® has commands to deal with each problem separately (called 
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“ivprobit” and “hetprob,” respectively.) But we may want to allow both features in the same 

time, and for flexibility reason, we might want to allow heteroskedasticity in both the structural 

and reduced form equations. One can use full maximum likelihood, but that is computationally 

intenstive. Instead, a two-step control function approach is attractive. 

 Recently,  several studies include flexible form of hetreoskedastitcity into binary 

response model without taking into account endogeneity. Khan (2013) proves the equivalence 

results of the maximum score estimator of Manski (1985) and Horowitz (1992). The proposed 

estimator used sieve nonlinear least squares for estimating the distribution free form of 

heteroskedasiticity with the Probit criterion function. Chesher (2009) and Holderlin (2009) used 

the index restriction along the line of quantile regression to estimate the binary model with 

heteroskedasticity in the form of unobserved heterogeneity in the structural equation. Their 

methods are complicated and required semiparametric estimation of conditional distribution 

function. Moreover, in Chesher (2009), he focused on the identification of ratios of derivatives of 

the index while Holderlin (2009) focused on median interpretation of the result. None of these 

papers allows consistent estimation of the average partial effect, which is a focus in this paper. 

 There are group of papers that can deal with both endogeneity and heteroskedasticity 

problems. They are using “special regressor” proposed by Lewbel (2000) and applied to binary 

choice model in Dong et.al. (2012). The special regressor must satisfy three assumptions. It is 

conditionally independent of the error, additive with the model error in the binary response 

model, and continuous with the large supports. In practice, these assumptions essentially require 

that the special regressor is independent of other observable explanatory variables, as well as the 

error. Plus, the special regressor approach  can deal with only the case of heteroskedasticity in 

the special regressor only. In addition, their marginal effects come from Average Index Function 
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as in Lewbel et.al. (2012). This function is easy to compute but is not the same an average partial 

effect. In addition, it appears sensitive to outliers as well choice of bandwidth and kernel to 

approximate the index function.  

The last method is control function. The general approach is  standard and can be found 

in textbooks such as Wooldridge (2010) and Greene (2008). The method was first used by 

Heckman (1976) to correct for endogeneity in a linear model with a binary endogenous 

explanatory variable. For the simple binary response model and continuous endogenous 

explanatory variables, it was first proposed by Rivers and Vuong (1988) and Blundell and Smith 

(1989). For the semiparametric estimation, the example is Blundell and Powell (2004) and Klein 

and Vella (2008). 

The previous literature on control functions has assumed that, when applied to standard 

model such as probit and Tobit, or semiparametric index functions, that heteroskedasticity is 

either absent or of a very restrictive form. In this paper, we adopt the use of control function 

approach to address endogeneity and hetersoskedasticity problem since it can incorporate both 

heteroskedasticity in reduced form equation and structural equation.  The advantage of the 

control function is that for the first stage estimation, we can specify flexible functional form of 

heteroskedasticity; for example, exponential heteroskedasticity. Then, we can apply the 

asymptotic property of sieve estimator from Ackerberg et.al. (2012). It leads to valid statistical 

inference for second-stage parameters. For the second step of estimator, we assumed also the 

heteroskedasticity in the probit model as in Wooldridge (2005). Hence, we can easily estimate 

APEs and find their standard errors by mean value expansion theorem or bootstrapping.  
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This paper does not cover analytical and asymptotic theory of the control function with 

sieve estimator as in Chen (2007) and Ackerberg et.al. (2012). From the perspective of regularity 

conditions, the problem here is standard, so there should be no surprises when it comes to the 

asymptotic theory. Instead, we conduct Monte Carlo simulations to investigate how the proposed 

estimation works when the true data generating process contains only endogeneity, endogeneity 

with heteroskedasticity in reduced form equation, and endogeneity with heteroskedasticity in 

both equations.  The performance is measured by Monte Carlo bias and root mean square errors 

of the estimated APES, as well as mean of standard errors from the simulation.  

The simulation results show the considerable benefit of modeling heteroskedasticity in 

either the first stage estimation or the second stage estimation. Without incorporating 

heteroskedascity, the linear model of endogenous regressor yields biased and insignificant 

results. In addition, the standard two-step estimation leads to upward-biased APEs. For, the 

empirical study, we apply the proposed method to the model of female labor supply decision 

making, that is binary probit model. The only endogenous variable will be non-wife income as in 

study of Mroz (1987) 

The rest of the paper is organized as followed. Section 2 describes the model and APEs. 

Section 3 contains the results from Monte Carlo Simulation that compares control function with 

the LPM, probit, hetprob, and ivprobit from Stata®. Section 4 demonstrates the application to 

female labor supply. And, Section 6 is conclusion. 
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3.2 Model and Estimation Method 

In this paper, I consider the binary response model where one of the explanatory variables is 

correlated with the error term in the latent variable model. 

}
*

{ 0111  iyiy                      (3.1)    

where the latent variable *
iy1  is assumed to be in the linear in parameter model of the form 

iiyiiy 121β1z1  *         (3.2) 

iεiiy 22βz2           (3.3) 

iiiiii 1z1z2zz1z11z  ,        (3.4) 

 From structural equation (3.1) and (3.2), the binary response model contains continuous 

endogenous variable iy2  and exogenous variables i1z . Then, equation (3.3) is the reduced form 

equation of iy2 . The subset of exogenous variable in (3.4) is used in the identification of model 

with heteroskedasticity as well as endogeneity in structural equation. Furthermore, I assume that 

the error terms in (3.2) and (3.3) contain multiplicative heteroskedasticity of the form 

))(,(~| 111
2
1

011z1  izhNii and ))(,(~| 2iz2
2

0iz2  hNi   

 To deal with heteroskedasticity in the reduced form equation, I divide equation (3.2) and 

(3.3) by their respective standard deviation )( 111z1 ih  and )( 2iz2 h . We can write equation 

(3.2) and (3.3) as follows:  

iiyiiy 1211z1  ~~~*~          (3.5) 
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iiiy 221z2  ~~~           (3.6) 

where the tilde refers to transformed data.  

 In order to take care of endogeneity problem, we must make a strong assumptions that 

governs the relationship between the standardized errors i1
~  and i2

~ .For identification, i1
~  and 

i2
~ is conditional independent of iz . Next, we assume that )~,~( ii 21   has zero mean, bivariate 

normal distribution with the following variance covariance structure,   
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We can write the linear projection of i1
~  on i2

~  

  1211 eii   ~~         (3.8) 

where 1  is correlation between i1
~ and i2

~ .  Given that i2
~  is normally distributed, then in this 

case iy2  conditional on iz  has features of a normal random variable. This model cannot solve 

the endogeneity problem when *
iy1  appears in the reduced form equation (3.3). As pointed out by 

Wooldridge (2010). The model is applicable when iy2  poses the endogeneity problem that 

comes from omitted variables or measurement error.  The normalization of variance of i2
~  is 

necessary in estimating the parameters in (3.5) up to scale and obtaining average partial effects 

(APEs). Then, I employ the control function approach similar to Rivers and Vuong (1988), it 

includes extra regressions in the structural equation (3.5) such that the remaining variation in 

iy2
~ will not be correlated with i1  and i1

~ . Under joint normality assumption in (3.7), we can 

rewrite (3.8) as 
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 ieihiiih 1111z1211z1111iz1  )(~)(~)(        (3.9) 

where )()( 111iz1111iz  h . Also, because or assumption in (3.8), 1e is normally distributed 

with  01 )( ieE  and variance ))((
2
1

1111iz2
1

 h . Therefore, we can now get the structural 

equation with control function as  

 iehiiyiy 1111iz1211iz211iz1  )(~)(~~*~       (3.10) 

 )))((,(~~,~,|)(
2
1

1111iz2
1

0221111iz1   hNiiyizieh     (3.11) 

Using equation (3.9) to rewrite the structural equation in term of normal distribution, we get 

]))((/~)(~~[()~,~,|(
2
1

1111iz2
1211iz211iz2211   hiiyiiyiziyP   (3.12) 

If there is no endogeneity of  iy2  or iy2
~ then estimation of (3.12) will be the same as standard 

heteroskedasticity probit model. If we do observe i2
~ , we can estimate each respective parameter 

with the maximum likelihood estimation of (3.12). However, i2
~ is not observed, we can replace 

it with the consistent estimator of i2
~ , i2̂

~ . Hence, we suggest the following procedure.  

Step 1. Obtain the standardized residual i2̂
~  from the maximum likelihood estimation of iy2  on 

iz . Also, we do not have to specifically identify the specific form of )( 2iz2 h . We propose the 

use exponential function that can allow for the interaction and power series that we can flexibly 

increase their terms with respect to the number of observations.  
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Step 2. Apply maximum likelihood estimation of equation (3.12). However, we have to specify 

the functional form of )( 111iz2
1

h . I suggest the use of exponential standard deviation as same 

as in hetprob command in Stata®.  

 This two-step estimator is easy to implement; however, we need to adjust the second-

stage standard errors by taking into account the first-stage estimation. This procedure is common 

as in the chapter 12 of Wooldridge (2010). We proceed in two-step estimation as in Ackerberg 

et.al. (2012) such that the corrected standard errors of ),( 1  are asymptotically equivalent to 

that of Murphy and Topel (1985).  I show the adjustment procedure in the appendix A.  

In order to obtain the APEs, we adopt the average structural function (ASF) defined by 

Blundell and Powell (2004), and is similar to Wooldridge (2005). From (3.12), ASF is defined as 
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By assumption that i2   is normally distributed, a consistent estimator of the average structural 

function is  
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For the continuous covariate in iz   and iy2 , their APEs are partial differentiate of (3.13)  

with respect to each parameter and averaging out with respect to both i2  and 11iz  as in (3.15). 
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The APEs for binary exogenous variable is the differences of ASF in (3.14) when the exogenous 

variable is set to one and zero.  
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Then, we calculate the APEs standard error based on their corrected two-step estimation. 

The standard errors of the APEs will be derived the procedure as in question 12.17 in 

Wooldridge (2010). The detail is in the appendix B. 

 

3.3 Monte Carlo Simulation 

The purpose of this section is to compare the proposed estimators’ APEs, (HetIVhetprob), with 

standard estimators: regression(OLS), two-stage least squares(2SLS), Probit, instrumental 

variables probit(IVprob), heteroskedasticity probit(Hetprob), and instrumental variable probit 

with heteroskedasticity(IVhetprob). These estimators are evaluated under correct model 

specification under different scenarios. There are four main scenarios. Firstly, all of the 

dependent variables are exogenous. Secondly, there is only one endogenous variable in the probit 

model. Thirdly, there will be one endogenous variable in the probit model and heteroskedasticity 

in the first stage estimation. Lastly, there is only one endogenous variable in the probit model 

and heteroskedasticity in both first and second stage estimation. 
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3.3.1 Data generating process (DGP) 

 

3.3.1.1 The data generating process contains only exogenous variables 

The number of observation   and the number of iteration are set to be 1000 and 1000, 

respectively. The data generating process (DGP) for the first scenario is given by  

Niiixixixiyiy ,...,,,
* 21131321211121101       (3.16)

Niiiziziy ,...,,, 212222121202         (3.17) 

The parameters are setting as follows: 

1221211202135012501131210   ,,,,.,.,,  

The DGP for each variable is given by 

),(~),,(~),(~),,(~),,(~ 10210112
31021031 NizNizixNixuix   

The error terms are randomly drawn from normal distribution with mean 1 and covariance 0. 
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. Hence, probit and regression should be the best estimator. The true 

APEs are obtained from plugging in the correct parameters to the APEs formula, then averaging 

the estimates out across them sample and simulate 1000 times with respective number of 

observations, 1,000 and 3,000.  That is, it is equal to     
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 


s
j ijxijxijxijy

s 1 32250150232
1

 *)..(       (3.18) 

where   represents each true respective parameters. The results are in table 3.1 and 3.2. The 

tables report the means of the APEs over 1000 replications, the standard deviations (SD) of 

Monte Carlo simulation, and the mean of the adjusted standard errors (SE). When there is no 

heteroskedasticity and endogeneity, all of the estimation methods work really well. All of them 

have very low bias and variance that leads to low root mean squares errors (RMSE). In addition, 

the relative values of SD and SE are close for all of the estimators, this indicates that the adjusted 

standard errors method, by mean value expansion theorem, work well when the data generating 

process is not complicated. Moreover, by over fitting the model, the standard deviations of the 

nonlinear models are slightly higher than the linear one. Therefore, the simulations under the first 

condition suggest that nonlinear and linear model are comparable and can be use alongside with 

each other when there are no endogeneity and heteroskedasticity problem. 

 

3.3.1.2 The data generating process contains only endogeneity 

 To examine whether the proposed estimators work under endogeneity, the data 

generating process incorporate moderate endogeneity through the covariance matrix of errors 
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and 501 .  . Then, the linear projection of i1  on i2  is  

1211 eii   . The instrument’s predictive power is 0.5 that is strong instrument by setting

50225021120 .,.,   . The rest of the parameters and data generating process is the same 
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as in section 3.3.1.1.  The true value of APEs for each variable is generated from the mean of the 

APEs from Monte Carlo simulations as same as in 3.3.1.1. For example, the true APE of 2y  is 

approximated from simulations by first computing the derivative of (3.14) with respect to 2y , 

and then taking the average across the distribution of i1 : 
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These approximated true values of the APEs with respect to both endogenous and exogenous 

variables are the benchmark for comparing the estimated APEs across the models. Table 3.3 and 

3.4 report simulation results when there are 1000 and 3000 observations. As expected with 

strong instrument, the nonlinear two-step models that takes into account endogeneity provide 

less biased results than the linear model (2SLS) and the other models that do not take into 

account endogeneity. However, 2SLS yields less bias than either normal probit or 

heteroskedastic probit. On the volatility of each estimator, the linear and one-step model 

provides less standard deviation than the two-step model. Overall, the root mean squares errors 

of the two-step models with endogeneity are still less than the one-step model. In Table 3.5 and 

3.6, they represent the results when the instruments are weak. With the two-stage least squares 

and other one-step estimators, they are biased upward while the two-step estimators with 

endogenetiy are biased downward. Comparatively, all of them yield similar root mean square 

errors. Interestingly, by using IVhetprob and HetIVhetprob to estimate the only endogenous 

probit model, the Monte Carlo standard deviations are not much different from the correctly 

specified Ivprobit results.   
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3.3.1.3 Data generating process with endogeneity and heteroskedasticity in reduced form  

In this scenario, all other parameters are the same as in 3.3.1.2, except, the 

heteroskedasticity in the first stage estimation will be in the form of multiplicative 

heteroskedasticity with exponential functional form. It changes the first stage estimation error 

term to ))exp((,(~| 2iz120z2 Nii  and the covariance matrix of the errors term change to  
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where i2

~  is ).exp(/ 2iz5012 i . Hence, in the first stage estimation, 

if we suspect that the error terms contain heteroskedaticity, we will estimate it first and then 

standardized such errors and use it in the second stage estimation. While holding other 

parameters to be the same as before, table 3.7 and 3.8 present very interesting result.  

 With strong instruments of 0.5 predictive powers, the last two estimators IVhetprob and 

HetIVhetprob that take into account heteroskedasticity outperform the other four estimators not 

only in term of less bias but also comparable standard errors. In addition, the linear model 

performs poorly; it heavily under estimate APEs of the endogenous variable while over estimates 

the rest of the APEs for exogenous variables. Interestingly, regarding the bias, it is even worse 

than the nonlinear models that do not take into account endogeneity and heteroskedasticity 

problem.  

With weak instruments of 0.1 predictive powers, the IVhetprob, and HetIVhetprob lead 

to more positive biased of the APEs for the endogenous variables. However, the bias is still less 

than the other nonlinear models. On the contrary, the two-stage least squares suffered the most 

from weak instrument. It not only yields biased APEs for endogenous variables, but also the sign 

is in correct with high standard deviations and standard errors. This certainly will lead to 
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rejection of the significant result when applying the linear model to the nonlinear setup. More 

importantly, even the observations increases from 1000 to 3000, the bias does not go away. The 

increase in number of observations slightly reduces only standard deviation and standard errors. 

 

3.3.1.4 Data generating process with endogeneity and heteroskedasticity in both 

equations 

For the last condition, the first stage estimation contains heteroskedasticity as in 3.3.1.3, 

then, the errors term in the second stage estimation is the same as in equation 3.10. Then, 

)( 111iz1 h defines as multiplicative heteroskedasticity with exponential of the form )exp( ix21  

while the other parameter for data generating process are the same as in 3.3.1.3. The derivations 

of APEs as well as adjusted standard errors are in the appendix.  From Table 3.11, the linear 

estimator still yields biased result for all estimated APEs.  For the APEs of endogenous 

explanatory variable, the estimators those do not take in to account the heteroskedasticity in the 

structural equation yields downward biased result while the standard heteroskedastic probit leads 

to upward bias. Even though, the proposed HetIVhetprob leads to upward bias result for the 

APEs of endogenous variables, it provides some advantages over other estimation methods that 

do not model heteroskedasticity, the APEs for 2x  of linear model, probit, and Ivprobit not only 

are biased but also negative rather than being positive. One last important note is that the APE of 

endogenous explanatory variable from probit estimation has lower bias than the HetIVhetprob; 

however, its APEs of other exogenous variables are more bias than HetIVhetprob.  
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Lastly, the mean rejection rate of the APEs from the proposed method is certainly lower 

than both linear instrumental variables model and the heteroskedastic model as seen in table 

13.12. Using linear model leads to mean rejection rate of 1 while using the heteroskedastic probit 

model alone lead to mean rejection rate of 0.967. That is, out of 1,000 simulations, we are almost 

certainly rejecting the estimated APEs from both of the models. The mean rejection rate of 

HetIVhetprob is about 0.14 or 14 percent given its complicated variance structure and higher 

simulated variance than the other methods. 

 

3.4. Empirical Study: Application to female labor supply 

In this section, we apply the above procedure in estimation of female labor force 

participation that is binary choice model. The female decision to join labor force may be affected 

by endogeneity as suggested by Mroz (1987). In addition, it might contain the heteroskedasticity 

problem, too. This makes the response probability and the APEs depend on the form of variance 

and need to be incorporated into estimation of female decision model.  

 In the static decision making model with continuous endogenous variable, the estimation 

focus on non-wife income as a sole endogenous variable. The non-wife income might be related 

to certain unobserved individual female characteristics as well as her husband characteristics. For 

heteroskedasticity, in order to be comparable to the Monte Carlo simulation, the 

heteroskedasticity in reduce form equation has exponential form with husband experience and 

education )exp( huseduc21experhus  21 . In the second stage estimation, only female 

experience and its square are in the exponential heteroskedastic term 
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)exp(
2

1211 experδexperδ  . Later on, the flexible form of the heteroskedasticity can be 

introduced in both stage of estimation. Then, the analytical standard errors from the delta method 

will be hard to derive and become too cumbersome as pointed out in Wooldridge (2005). The 

standard errors of APEs will come from bootstrapping.  

 The data set for the application comes from Wooldridge (2012) book; it contains 

information for female labor participation from Current Population Survey (CPS) in 1991. There 

are 5634 observations. Table 3.13 provides the summary of the 5634 observations. In the 

reduced form equation, the husband education and experience are instrumental variable for non-

wife income, where both the husband experience and experience enters into the exponential 

heteroskedasticity. Table 3.14 provides the result from reduced form equation estimation. The 

high value of t-statistics suggests that both husband education and experience is strong 

instrument. In addition, the estimation of the conditional variance terms are also significant. 

The specification of structural equation is     

iexperikidgeikidltieduc
i

inlf  146136121110 *   

iinwifeinciexper 1
2

15          (3.20)  

The reduced form equation is 

ihusexperhuseducinwifeinc 22121         (3.21) 

Then, the structural equation is 

iexperikidgeikidltieduciinlf  1461361211101 [  



106 
 

]01
2

15  iinwifeinciexper        (3.22) 

This specification is similar to example in Wooldridge (2010) and (2012) textbook; however, I 

drop the age out since it is highly correlated with experience; the correlation coefficient is 

0.9682. 

At first, in order calculate the analytical standard errors, only the wife experience and 

experience square enter into the exponential heteroskedasticity term. Table 3.15 and 3.16 report 

the estimated APEs. The results for estimated APEs are interesting and provide a comparable 

result to Monte Carlo simulation. From table 3.15, ignoring endogeneity will lead to over-

estimation of APEs for non-wife income; however, when the standard instrumental variable 

regression is used, the partial effects will be much smaller. In contrast, if researcher believe that 

instrumental variable probit needed to be used in order to control for both engogenity and 

nonlinearity; the partial effects of -0.00328 will be really close to regression of 0.00331. This 

might lead to the conclusion that estimating partial effects from linear model is usable and 

comparable to what seems to be right underlying model of Ivprobit.  However, the result from 

heteroskedastic probit model lead to the starkingly different with APEs of -0.00696, it is almost 

two times higher than the result from regression and Ivprobit and about four times higher than 

two stage least squares (2SLS).  

 Then, from the significant of the heteroskedastic term in both first stage and second stage 

estimation, table 3.16 provides the APEs of non-wife income. They shows that considering the  

heteroskedasticity in the first stage is not enough, the APEs from IVhetrprob is similar to two-

stage least squares but it is not significant. Then, by simply modeling the heteroskedasticity in 

the second stage, the APEs turn out to be -0.00459 for the basic Hetivhetprob model that has 
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wives’ experience and square of experience in the conditional variance terms. This result is 

similar to simulation when the HetIVhetprob is correctly specified in table 3.11 and 3.12. That is, 

the conditional variance both in first stage and in second stage influences the estimated APEs not 

only in terms of their values but also in terms of standard errors of endogenous variable. Also, 

when we allow flexible functional form of  predicted errors and predicted errors square to be in 

the conditional variance function, the results are in column 3 and 4 in table 3.16, we can see that 

the APEs for non-wife income turns out to be -0.0054 and -0.0049. These APES are higher than 

the other estimated APEs from models that do not take into account heteroskedasticity.  

 On the other exogenous variables, the estimated APEs from heteroskedasticity 

(HetIVHetprob) model show a different story, especially the APEs for education and having kid 

in the age greater than 6. The APEs of education are more negatively affected the probability of 

labor supply in such model than the rest. In addition, APEs of having kid in the age greater than 

six become positive and significant while the other model show only positive but not significant 

result. These results are consistent with the Monte Carlo simulation study. 

 

3.5 Conclusion 

This paper proposes a two-step estimation method for the binary model with 

heteroskedasticity and continuous endogenous variable. The method employed is the used of 

control function that allow the flexible functional form of the conditional variance in the first 

stage estimation that still yield a valid second stage variance estimation and adjustment. The 

Monte Carlo simulations study is conducted to test whether the proposed estimation is better or 

not under different data generating process that start from  the simple binary model. The binary 
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model with endogeneity is correct, and the binary model with heteroskededaticity and 

endogeneity is correct. The results elucidate that not taking into account all of the either 

endogeneity or heteroksedasticity in both steps of estimation might lead to biased result. Most 

importantly, using the linear probability model to estimate APEs is not always the best or 

considered just fine approximation in various situations. The application to female labor supply 

from CPS data yields similar conclusion to Monte Carlo simulation. Estimating the APEs by 

using the linear model yield lower APEs than the model that taken into account 

heteroskedasticity. In addition, the estimation of the model with heteroskedasticity yields APEs 

that is statistically significant compared to the models that do not put the heteroskedasticity in 

the estimation. 
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Table 3.1 The correct model is Probit  

 

True Value OLS Probit Hetprob Ivprobit IVprobhet HetIVprobhet 

APE 

N=1000 

     

 

  

     

 

Mean 2y   

(0.09764) 0.0977 0.0976 0.0989 0.0966 0.0966 0.0978 

SD 0.0034 0.0091 0.0094 0.0092 0.0092 0.0095 

SE 0.0031 0.0092 0.0097 0.0105 0.0096 0.0100 

RMSE 0.0034 0.0091 0.0095 0.0093 0.0093 0.0095 

              

Mean 1x  

(0.01627) 0.0163 0.0162 0.0164 0.0160 0.0161 0.0162 

SD 0.0093 0.0044 0.0046 0.0044 0.0044 0.0046 

SE 0.0093 0.0045 0.0046 0.0044 0.0052 0.0048 

RMSE 0.0093 0.0044 0.0046 0.0044 0.0045 0.0046 

              

Mean 2x  

(0.01627) 0.0161 0.0162 0.0164 0.0160 0.0160 0.0162 

SD 0.0093 0.0045 0.0048 0.0045 0.0045 0.0048 

SE 0.0094 0.0045 0.0047 0.0046 0.0050 0.0048 

RMSE 0.0093 0.0045 0.0048 0.0045 0.0045 0.0048 

              

Mean 3x  

 (0.0651) 0.0456 0.0651 0.0659 0.0643 0.0643 0.0651 

SD 0.0070 0.0075 0.0077 0.0075 0.0076 0.0078 

SE 0.0067 0.0076 0.0079 0.0076 0.0079 0.0083 

RMSE 0.0207 0.0075 0.0077 0.0076 0.0076 0.0078 
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Table 3.2 The correct model is Probit  

 

True Value OLS Probit Hetprob Ivprobit IVprobhet HetIVprobhet 

APE 

N=3000 

      

       
Mean 2y  

(0.09762) 0.0977 0.0976 0.0978 0.0972 0.0972 0.0975 

SD 0.0020 0.0050 0.0050 0.0050 0.0050 0.0051 

SE 0.0018 0.0051 0.0051 0.0047 0.0052 0.0052 

RMSE 0.0020 0.0050 0.0050 0.0050 0.0050 0.0051 

              

Mean 1x  

(0.01627) 0.0165 0.0164 0.0164 0.0163 0.0163 0.0164 

SD 0.0053 0.0024 0.0024 0.0024 0.0024 0.0024 

SE 0.0054 0.0026 0.0026 0.0025 0.0026 0.0026 

RMSE 0.0053 0.0024 0.0024 0.0024 0.0024 0.0024 

              

Mean 2x  

(0.01627) 0.0164 0.0163 0.0163 0.0162 0.0162 0.0162 

SD 0.0053 0.0025 0.0026 0.0025 0.0025 0.0026 

SE 0.0054 0.0026 0.0026 0.0025 0.0028 0.0028 

RMSE 0.0053 0.0025 0.0026 0.0025 0.0025 0.0026 

              

Mean 3x  

 (0.0651) 0.0458 0.0652 0.0654 0.0650 0.0650 0.0651 

SD 0.0040 0.0042 0.0042 0.0042 0.0042 0.0042 

SE 0.0038 0.0042 0.0043 0.0041 0.0043 0.0044 

RMSE 0.0197 0.0042 0.0042 0.0042 0.0042 0.0042 
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Table 3.3 The correct model is Ivprobit with 50225021 .,.    

True 

Value 2SLS Probit Hetprob Ivprobit 

IVprobhe

t HetIVprobhet 

APE 

 

      

 N=1000         

Mean 2y   

(0.09158) 0.1062 0.1114 0.1126 0.0928 0.0929 0.0935 

SD 0.0070 0.0097 0.0103 0.0124 0.0124 0.0129 

SE 0.0059 0.0098 0.0104 0.0109 0.0113 0.0126 

RMSE 0.0162 0.0221 0.0234 0.0125 0.0125 0.0130 

              

Mean 1x  

(0.01526) 0.0180 0.0178 0.0180 0.0156 0.0156 0.0158 

SD 0.0086 0.0051 0.0053 0.0045 0.0045 0.0046 

SE 0.0084 0.0048 0.0049 0.0043 0.0045 0.0063 

RMSE 0.0090 0.0057 0.0059 0.0045 0.0045 0.0047 

              

Mean 2x  

(0.01526) 0.0174 0.0174 0.0177 0.0153 0.0153 0.0154 

SD 0.0083 0.0050 0.0054 0.0044 0.0044 0.0047 

SE 0.0084 0.0048 0.0051 0.0045 0.0038 0.0080 

RMSE 0.0086 0.0051 0.0055 0.0045 0.0045 0.0048 

              

Mean 3x  

(0.06106) 0.0359 0.0706 0.0713 0.0620 0.0620 0.0624 

SD 0.0055 0.0090 0.0094 0.0096 0.0096 0.0099 

SE 0.0060 0.0091 0.0094 0.0097 0.0107 0.0115 

RMSE 0.0257 0.0131 0.0139 0.0096 0.0096 0.0100 
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Table 3.4 The correct model is Ivprobit with 50225021 .,.    

True Value 2SLS Probit Hetprob Ivprobit IVprobhet HetIVprobhet 

APE 

 

      

 N=3000        

Mean 2y  

(0.0919) 0.1065 0.1121 0.1124 0.0941 0.0941 0.0943 

SD 0.0041 0.0055 0.0055 0.0071 0.0071 0.0071 

SE 0.0034 0.0055 0.0056 0.0061 0.0071 0.0071 

RMSE 0.0151 0.0210 0.0212 0.0074 0.0074 0.0075 

              

Mean 1x  

(0.01531) 0.0176 0.0177 0.0177 0.0157 0.0157 0.0157 

SD 0.0050 0.0027 0.0027 0.0024 0.0024 0.0024 

SE 0.0049 0.0028 0.0028 0.0025 0.0037 0.0036 

RMSE 0.0055 0.0036 0.0036 0.0024 0.0024 0.0024 

              

Mean 2x  

(0.01531) 0.0178 0.0178 0.0178 0.0157 0.0157 0.0158 

SD 0.0049 0.0028 0.0029 0.0025 0.0025 0.0026 

SE 0.0049 0.0028 0.0029 0.0025 0.0040 0.0041 

RMSE 0.0055 0.0037 0.0039 0.0026 0.0026 0.0026 

              

Mean     

(0.06126) 0.0360 0.0709 0.0711 0.0628 0.0628 0.0629 

SD 0.0031 0.0052 0.0053 0.0054 0.0054 0.0055 

SE 0.0034 0.0051 0.0052 0.0054 0.0062 0.0063 

RMSE 0.0254 0.0110 0.0111 0.0057 0.0057 0.0057 
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Table 3.5 The correct model is Ivprobit with  10221021 .,.    

True Value 2SLS Probit Hetprob Ivprobit IVprobhet HetIVprobhet 

APE 

N=1000 

 

      

          

Mean 2y  

(0.0705) 0.0797 0.0918 0.1124 0.0607 0.0612 0.0610 

SD 0.0479 0.0107 0.0055 0.0293 0.0297 0.0302 

SE 0.0458 0.0111 0.0056 0.0259 0.0258 0.0271 

RMSE 0.0488 0.0238 0.0422 0.0309 0.0311 0.0317 

              

Mean 1x  

(0.01176) 0.0130 0.0132 0.0177 0.0095 0.0096 0.0096 

SD 0.0063 0.0043 0.0027 0.0044 0.0044 0.0045 

SE 0.0065 0.0041 0.0028 0.0052 0.0052 0.0053 

RMSE 0.0064 0.0045 0.0065 0.0049 0.0049 0.0050 

              

Mean 2x  

(0.01176) 0.0132 0.0132 0.0178 0.0096 0.0096 0.0095 

SD 0.0067 0.0042 0.0029 0.0044 0.0045 0.0049 

SE 0.0065 0.0041 0.0029 0.0052 0.0051 0.0055 

RMSE 0.0069 0.0044 0.0067 0.0049 0.0049 0.0054 

              

Mean 3x   

(0.04702) 0.0178 0.0536 0.0711 0.0390 0.0392 0.0391 

SD 0.0034 0.0109 0.0053 0.0149 0.0150 0.0157 

SE 0.0046 0.0106 0.0052 0.0185 0.0183 0.0190 

RMSE 0.0294 0.0127 0.0246 0.0169 0.0169 0.0176 
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Table 3.6 The correct model is Ivprobit with 10221021 .,.    

True Value 2SLS Probit Hetprob Ivprobit IVprobhet HetIVprobhet 

APE 

N=3000 

 

      

          

Mean 2y  

(0.0713) 0.0798 0.0924 0.0927 0.0673 0.0676 0.0675 

SD 0.0260 0.0063 0.0066 0.0228 0.0227 0.0230 

SE 0.0258 0.0062 0.0065 0.0112 0.0113 0.0115 

RMSE 0.0274 0.0220 0.0223 0.0231 0.0230 0.0233 

              

Mean 1x  

(0.0119) 0.0133 0.0133 0.0133 0.0110 0.0110 0.0110 

SD 0.0037 0.0025 0.0025 0.0030 0.0030 0.0031 

SE 0.0037 0.0024 0.0024 0.0031 0.0031 0.0032 

RMSE 0.0040 0.0029 0.0029 0.0031 0.0031 0.0032 

              

Mean 2x  

(0.0119) 0.0134 0.0133 0.0133 0.0109 0.0109 0.0109 

SD 0.0038 0.0024 0.0025 0.0029 0.0029 0.0030 

SE 0.0037 0.0024 0.0025 0.0031 0.0031 0.0033 

RMSE 0.0041 0.0027 0.0029 0.0030 0.0030 0.0031 

              

Mean 3x   

(0.04756) 0.0179 0.0533 0.0534 0.0438 0.0439 0.0439 

SD 0.0019 0.0059 0.0061 0.0098 0.0098 0.0100 

SE 0.0026 0.0059 0.0060 0.0108 0.0108 0.0109 

RMSE 0.0297 0.0082 0.0085 0.0105 0.0104 0.0106 
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Table 3.7 The correct model is Ivprobhet with 50225021 .,.     

True Value 2SLS Probit Hetprob Ivprobit IVprobhet HetIVprobhet 

APE 

N=1000 

 

      

          

Mean 2y  

 (0.0893) 0.0188 0.1109 0.1122 0.1065 0.0896 0.0900 

SD 0.0249 0.0097 0.0101 0.0129 0.0203 0.0210 

SE 0.0177 0.0100 0.0106 0.0117 0.0225 0.0220 

RMSE 0.0748 0.0237 0.0250 0.0215 0.0203 0.0211 

              

Mean 1x  

(0.01488) 0.0172 0.0175 0.0177 0.0172 0.0150 0.0150 

SD 0.0125 0.0049 0.0050 0.0048 0.0049 0.0050 

SE 0.0124 0.0047 0.0047 0.0046 0.0060 0.0060 

RMSE 0.0127 0.0055 0.0057 0.0053 0.0049 0.0050 

              

Mean 2x  

(0.01488) 0.0175 0.0172 0.0174 0.0168 0.0147 0.0147 

SD 0.0124 0.0046 0.0048 0.0046 0.0046 0.0048 

SE 0.0124 0.0047 0.0048 0.0046 0.0062 0.0060 

RMSE 0.0127 0.0051 0.0054 0.0050 0.0046 0.0048 

              

Mean 3x   

(0.05953) 0.0451 0.0698 0.0706 0.0686 0.0592 0.0595 

SD 0.0067 0.0080 0.0083 0.0082 0.0120 0.0124 

SE 0.0088 0.0080 0.0083 0.0085 0.0186 0.0178 

RMSE 0.0159 0.0131 0.0139 0.0122 0.0120 0.0124 
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Table 3.8 The correct model is Ivprobhet with 50225021 .,.    

True Value 2SLS Probit Hetprob Ivprobit IVprobhet HetIVprobhet 

APE 

N=3000 

 

      

          

Mean 2y  

(0.0896) 0.0164 0.1108 0.1111 0.1075 0.0911 0.0913 

SD 0.0141 0.0056 0.0056 0.0070 0.0123 0.0124 

SE 0.0101 0.0056 0.0056 0.0062 0.0115 0.0117 

RMSE 0.0745 0.0220 0.0222 0.0192 0.0124 0.0126 

              

Mean 1x  

(0.01492) 0.0176 0.0173 0.0173 0.0172 0.0152 0.0152 

SD 0.0073 0.0027 0.0028 0.0027 0.0028 0.0028 

SE 0.0071 0.0027 0.0027 0.0027 0.0037 0.0037 

RMSE 0.0078 0.0036 0.0037 0.0035 0.0028 0.0028 

              

Mean 2x  

(0.01492) 0.0168 0.0171 0.0172 0.0170 0.0150 0.0150 

SD 0.0071 0.0027 0.0027 0.0027 0.0028 0.0029 

SE 0.0071 0.0027 0.0027 0.0027 0.0035 0.0036 

RMSE 0.0074 0.0035 0.0035 0.0034 0.0028 0.0029 

              

Mean 3x  

(0.05971) 0.0453 0.0698 0.0699 0.0693 0.0607 0.0607 

SD 0.0039 0.0046 0.0047 0.0047 0.0072 0.0072 

SE 0.0050 0.0045 0.0045 0.0046 0.0102 0.0103 

RMSE 0.0149 0.0111 0.0112 0.0107 0.0072 0.0073 
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Table 3.9 The correct model is Ivprobhet with 10221021 .,.    

True Value 2SLS Probit Hetprob Ivprobit IVprobhet HetIVprobhet 

APE 

N=1000 

 

      

          

Mean 2y  

(0.08054) -0.0841 0.0982 0.0993 0.0784 0.0798 0.0801 

SD 0.6349 0.0092 0.0094 0.0286 0.0175 0.0181 

SE 0.6699 0.0095 0.0100 0.0495 0.0159 0.0168 

RMSE 0.6559 0.0199 0.0210 0.0286 0.0176 0.0181 

              

Mean 1x  

(0.01342) 0.0131 0.0155 0.0156 0.0117 0.0132 0.0132 

SD 0.0687 0.0045 0.0046 0.0051 0.0044 0.0045 

SE 0.0815 0.0044 0.0045 0.0064 0.0048 0.0049 

RMSE 0.0687 0.0049 0.0051 0.0054 0.0044 0.0045 

              

Mean 2x  

(0.01342) 0.0161 0.0155 0.0157 0.0117 0.0132 0.0133 

SD 0.0589 0.0044 0.0047 0.0050 0.0044 0.0046 

SE 0.0724 0.0044 0.0046 0.0065 0.0048 0.0050 

RMSE 0.0589 0.0048 0.0052 0.0053 0.0044 0.0046 

              

Mean 3x   

(0.05369) 0.0415 0.0624 0.0632 0.0474 0.0526 0.0528 

SD 0.0383 0.0076 0.0077 0.0159 0.0111 0.0113 

SE 0.0505 0.0077 0.0080 0.0214 0.0125 0.0131 

RMSE 0.0402 0.0116 0.0122 0.0171 0.0111 0.0114 

 

 

 

 

 



118 
 

Table 3.10 The correct model is Ivprobhet with  10221021 .,.    

True Value 2SLS Probit Hetprob Ivprobit IVprobhet HetIVprobhet 

APE 

N=3000 

 

      

          

Mean 2y  

(0.0809) -0.2341 0.0986 0.0988 0.0869 0.0822 0.0823 

SD 0.5626 0.0051 0.0051 0.0227 0.0108 0.0109 

SE 0.4575 0.0053 0.0053 0.0374 0.0083 0.0084 

RMSE 0.6448 0.0184 0.0186 0.0235 0.0109 0.0110 

              

Mean 1x  

(0.01348) 0.0170 0.0156 0.0157 0.0123 0.0137 0.0137 

SD 0.0412 0.0026 0.0026 0.0038 0.0026 0.0026 

SE 0.0404 0.0025 0.0026 0.0042 0.0028 0.0028 

RMSE 0.0413 0.0034 0.0034 0.0039 0.0026 0.0027 

              

Mean 2x   

(0.01348) 0.0130 0.0156 0.0157 0.0123 0.0137 0.0138 

SD 0.0472 0.0027 0.0028 0.0039 0.0027 0.0028 

SE 0.0512 0.0025 0.0026 0.0042 0.0028 0.0028 

RMSE 0.0472 0.0034 0.0035 0.0040 0.0027 0.0028 

              

Mean 3x   

(0.05393) 0.0416 0.0631 0.0632 0.0498 0.0549 0.0550 

SD 0.0317 0.0043 0.0043 0.0132 0.0067 0.0067 

SE 0.0329 0.0043 0.0043 0.0144 0.0070 0.0070 

RMSE 0.0340 0.0101 0.0102 0.0138 0.0067 0.0068 
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Table 3.11 The correct model is HetIVprobhet with 50225021 .,.    

True Value 2SLS Probit Hetprob Ivprobit IVprobhet HetIVprobhet 

APE 

N=1000 

 

      

          

Mean 2y  

(0.12227) 0.0220 0.1103 0.1661 0.1035 0.0896 0.1389 

SD 0.0241 0.0065 0.0210 0.0128 0.0203 0.0324 

SE 0.0177 0.0064 0.0208 0.0108 0.0225 0.0645 

RMSE 0.1035 0.0140 0.0482 0.0230 0.0388 0.0362 

              

Mean 1x  

(0.02045) 0.0168 0.0167 0.0263 0.0165 0.0150 0.0230 

SD 0.0120 0.0067 0.0070 0.0066 0.0049 0.0071 

SE 0.0124 0.0066 0.0067 0.0065 0.0060 0.0135 

RMSE 0.0126 0.0077 0.0091 0.0077 0.0073 0.0075 

              

Mean 2x  

(0.02045) -0.0058 -0.0101 0.0133 -0.0099 0.0147 0.0114 

SD 0.0126 0.0086 0.0080 0.0085 0.0046 0.0074 

SE 0.0124 0.0062 0.0071 0.0062 0.0062 0.0111 

RMSE 0.0291 0.0317 0.0107 0.0315 0.0074 0.0117 

              

Mean 3x   

(0.08186) 0.0452 0.0659 0.1053 0.0653 0.0592 0.0913 

SD 0.0069 0.0090 0.0158 0.0090 0.0120 0.0198 

SE 0.0088 0.0078 0.0151 0.0079 0.0186 0.0465 

RMSE 0.0373 0.0183 0.0283 0.0188 0.0256 0.0220 
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Table 3.12 The correct model is HetIVprobhet with 50225021 .,.    

True Value 2SLS Probit Hetprob Ivprobit IVprobhet HetIVprobhet 

APE 

N=3000        

        

Mean 2y  

(0.123) 0.0201 0.1105 0.1604 0.1045 0.0881 0.1386 

SD 0.0136 0.0038 0.0106 0.0069 0.0108 0.0181 

SE 0.0101 0.0036 0.0105 0.0061 0.0068 0.0255 

RMSE 0.1038 0.0130 0.0389 0.0198 0.0365 0.0239 

Mean 

Rejection 

Rate  1 0.917  0.947  0.814  .881   0.140 

Mean 1x  

 (0.0205) 0.0174 0.0168 0.0256 0.0167 0.0152 0.0232 

SD 0.0072 0.0039 0.0037 0.0039 0.0036 0.0038 

SE 0.0071 0.0038 0.0035 0.0038 0.0085 0.0060 

RMSE 0.0079 0.0054 0.0063 0.0054 0.0065 0.0047 

              

Mean 2x   

(0.0205) -0.0067 -0.0105 0.0140 0.0104 -0.0095 0.0125 

SD 0.0075 0.0051 0.0043 0.0051 0.0047 0.0043 

SE 0.0071 0.0036 0.0035 0.0036 0.0132 0.0044 

RMSE 0.0282 0.0314 0.0078 0.0313 0.0304 0.0091 

              

Mean 3x   

(0.082) 0.0456 0.0660 0.1025 0.0658 0.0591 0.0922 

SD 0.0039 0.0052 0.0081 0.0052 0.0062 0.0109 

SE 0.0050 0.0044 0.0077 0.0045 0.0117 0.0203 

RMSE 0.0367 0.0168 0.0220 0.0170 0.0237 0.0149 
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Table 3.13 Data description 

Variable Definition Mean 

Standard 

deviations 

inlf  1 if wife is in labor force 0.583 0.493 

nwifeinc  non-wife income, $1000s  30.269 27.212 

educ  wife's year of schooling 12.984 2.165 

6kidlt  1 if have child age <6 years 0.279 0.449 

6kidge  1 if have child age >=6 years 0.308 0.462 
exper  experience(age - education - 6) 20.444 10.445 

2exper  exper squared 527.042 468.289 

huseduc  husband's year of schooling 13.147 2.977 

husexper  
 

husband age - huseduc-6 23.305 11.761 

 

Table 3.14 Estimation of Reduced form Equation 

nwifeinc Coefficient SE z P>z 

          

Mean Equation         

husexper  0.360 0.032 11.340 0 

huseduc  3.454 0.121 28.520 0 

constant -23.500 1.952 -12.040 0 

 

Variance 

Equation         

huseduc  0.101 0.003 30.270 0 

husexper  0.016 0.001 16.400 0 

constant 1.464 0.057 25.620 0 
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Table 3.15 Empirical Result of APEs with analytical standard errors. 

  OLS 2SLS Probit Hetprob Ivprobit 

  inlf inlf inlf inlf inlf 

VARIABLES           

nwifeinc -0.00331*** -0.00195** -0.00328*** -0.00696*** -0.00316*** 

  [0.00023] [0.00095] [0.00023] [0.00115] [0.00084] 

educ 0.0353*** 0.0318*** 0.03607*** 0.07641*** 0.03579*** 

  [0.00257] [0.00356] [0.00261] [0.01165] [0.00324] 

exper 0.00245 0.00077 -0.00611*** -0.00875*** -0.00615*** 

  0.00261 0.00289 0.00077 0.00170 0.00255 

expersq -0.00021*** -0.00018***       

  [0.00006] [-0.00006]       

kidlt6 -0.171*** -0.175*** -0.17416*** -0.14538*** -0.17413*** 

  [0.01794] [0.01860] [0.01827] [0.03763] [0.01827] 

kidge6 0.01660 0.01330 0.01467 0.01310 0.01473 

  [0.0166] [0.01690] [0.01852] [0.04340] [0.00550] 

            

Observations 5,634 5,634 5,634 5,634 5,634 

*, **, ***: significant at 10%, 5% and 1% level respectively. 

Adjusted analytical standard errors are in the [ ]. 
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Table 3.16 Empirical Result of APEs with analytical standard errors and Bootstrap standard 

errors 

  IVprobhet HetIVprobhet1 HetIVprobhet2 HetIVprobhet3 

  inlf inlf inlf inlf 

VARIABLES         

nwifeinc -0.00205 -0.00459* -0.00534*** -0.00490*** 

  [0.00210] [0.00285]   

     (0.001614) (0.001509) ( 0.001913) 

educ 0.03372*** 0.07002*** 0.07183*** 0.08265*** 

  [0.00442] [0.01434]     

    (0.012299) (0.012102) (0.013432) 

exper -0.00653 -0.00924*** -0.00927*** -0.01048*** 

  [0.00528] [0.00287]     

    (0.001761) (0.001819) (0.002094) 

kidlt6 -0.17357*** -0.19280** -0.19262*** -0.17163*** 

  [0.03848] [0.05996]     

  

 

(0.026883) (0.001819) (0.025359) 

kidge6 0.01546 0.06580** 0.06123** 0.07777** 

  [0.01123] [0.02353]     

    (0.038130) (0.037438) (0.034927) 

          

Observations 5,634 5,634 5,634 5,634 

*, **, ***: significant at 10%, 5% and 1% level respectively. 

Adjusted analytical standard errors are in the [ ]. Bootstrap standard errors are in the ( ). 
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APPENDICES 

 

APPENDIX A: Asymptotic Variance for the two-step estimators 

 In order to obtain the standard errors for estimated APEs, first we need to compute the 

adjusted standard errors of the estimated parameters. Our estimator is a common two-step M-

estimator, where the first stage estimation is maximum likelihood estimation. Then, the 

estimated standardized residuals are plugged in to the maximum likelihood estimation(MLE) in 

the second stage. The adjustment of  asymptotic variance is well known and explained in 

textbooks as Greene (2008) and Wooldridge (2010) with minor differences in either using outer 

product of the score to approximate the information matrix or using the information matrix 

directly. In this paper, it follows the step as in Murphy and Topel (1985) for the adjustment. That 

is, it uses the outer product approximation to the information matrix.   

The standardized residuals come from the first stage MLE that solves 
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In the second step, the estimated standardized residuals i2
~̂  are plugged in the other MLE 

estimation. Hence, the first stage problem is  
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and this objective function depends on the estimated parameters from the first stage. Let  

)0,0(   be the true value of the estimated parameters. Then, the following score, outer product 

of the score and Hessian matrix terms are    
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Outer products of the score are 
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Hessian matrices are   
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Then, let assume that the sample scores are normally distributed asymptotically with the 

following mean zero and variance covariance matrix: 
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From the first step maximum likelihood estimation of normal distribution with exponential 

heteroskedasticity, the mean value expansion theorem around 0  and ̂  gives 
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That is the same as the asymptotic result under standard regularity condition                 
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Then, applying the same mean value expansion to the second-step estimation of its first-order 

conditions around 0  and ̂  gives the required result for variance adjustment:    
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Hence,  
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where                                                                 
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If the expected value outer product of the score is equal to the information matrix then,  
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This is equivalent to equation (3.34) in Murphy and Topel (1985) and comparable to equation 

12.34 in Wooldridge (2010).  

In order to estimate the adjusted standard variances of each parameters V̂ , each elements of the 

above equation need to be estimated.  

1) 1


H  is the asymptotic variance of naïve estimator of the second-step estimation without 

taken into account the first stage estimation and can be estimated by  
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2) H  and H  are the derivative of the score from second-step estimation with respect 

to first stage parameter and its transpose, respectively. They, can be estimated by  
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3) 1
H  is the asymptotic variance of first stage estimation parameters )ˆ( 0 n . 
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4) O  and O  are the multiplicative terms of the score in the first stage and second stage 

and its transpose. They can be estimated by  
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This estimated adjusted variance might not be robust when the underlying distribution is not 

correctly specified. However, Hardin (2002) showed that the robust version of Murphy Topel 

estimation. This paper doses not adopt such formula since it will not be equivalent to result of 

Ackerberg et.al. (2012).  

To obtain score and Hessian from first-step estimation, the log likelihood in matrix form is as 

follows 
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Hence, the score function can be represented by gradient vector 
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For 
2
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, assume that the heteroskedasticity term is multiplicative with exponential function 

)exp( 2z2  , 

2





 )(
  )()'(

)exp(

)'*(
' 2z22z2

2z2

z2






 yyZ .     (A.28) 

From the gradient matrix, the Hessian matrix is  
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The information matrix is the negative of the expectation of the Hessian ])([)( z HEI  . 

Then, the estimation of )ˆ( 0 Avar  
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In the second step, the estimation of   )'/(),','(
2111  θ  comes from the 

heteroskedastic probit of iy1  on  )~̂,,( iiy 221iz  , where  i2̂
~  is the standardized error from the 

first stage estimation and )( 111iz2
1

h  is the heteroskedastic variance. Assuming that 

)exp()( 111iz2111iz2
1

 h . The log-likelihood function for each individual observation i is 
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The score function and gradient vector is  
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The inverse of Hessian 
1


H  for the heteroskedastic probit is a mess as pointed out in 

Wooldridge (2010). Hence, we adopt the result from his example 13.1,  iz0)(iE H  is a 4x4 
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partitioned matrix, where iz  contains both endogenous, exogenous, and instrument variables, 

that have simple form.  

Using product rules, taking derivatives of   1  /)ˆ,(il  with respect to 1  yields 
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Evaluating the above expression at 0  and take the expectation, the second term will be equal to 

zero, then first diagonal element, [1,1],  of the 
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The [1,2] element is  
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The [1,3] element is  
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The [1,4] element is  
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The [2,1] element is  
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The [2,2] element is  
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The [2,3] element is 
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The [2,4] element is  
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The [3,1] element is  
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The [3,2] element is  
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The [3,3] element is  
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The [3,4] element is  
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The [4,1] element is  
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The [4,4] element is  

2
21111iz1

11iziw11iziw2

















)exp())()((

)}({

AΦAΦ

)'(A
.       (A.57) 

Finally, the last element need for the two-step adjustment is  
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Plugging in the estimated coefficient of    ̂ , ̂ , and 1̂  yields the estimated variance V̂ . 
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Appnedix B: Asymptotic Variance for the APEs 

B.1 Standard errors for the continuous explanatory variables. 

 First, we need to obtain asymptotic variance of )ˆ( ηη -N , where  )),(,2y,(  ˆˆˆ 1zgη   is 

partial derivative of  )2y,(fFSA 1zˆ  with respect to 1z , 2y   and )),(,2y,( 1zgη   is 

partial derivative of )2y,(fASF 1z  with respect to 1z , 2y . For example the APEs for 

continuous 2y  is  
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Then, we can insert the interesting value of 2y  or further average out 2iy . Moreover, this set up 

leads to the dilemma as stated in Wooldridge (2010) chapter 15, if either 2iy , subset of 1iz , or 

i2̂
~  enters into the heteroskedastic function, the sign and magnitude of APEs might not be the 

same as estimated parameters. Forη , its value depends on where the value of  1iz , 2iy , i2  

evaluates, so in order to get single number for each variable, we average them over 11iz and i2 . 
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Using problem 12.17 and 15.15 in Wooldridge (2010), by applying mean value expansion 

theorem,  
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where ][ )),(,2y,()),(,2y,(  1z1z ggEG  . 

For example, assumed that 2iy  does not enter into the variance, the Jacobian of )),(,2y,( 1zg  

of  2y  or APE of  2y  with respect to second-step parameter θ is 
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The Jacobian of APE of 2y   with respect to first-step parameter γ is  
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For 
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Hence, we can write,  
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Thus,  
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A consistent estimator for the asymptotic variance of APEs is  
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By construction, the conditional expected values of the score function of both first and second 

stage estimation equals to zero, then, )),(,2y,(  ˆˆ
1zg will not be correlated with ), 00 (iGe , 

which means  
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Hence, asymptotic variance of APEs depends on variance of itself plus positive definite matrix 

of the adjustment term. For standard error for any particular APE, it will be the square root of 

corresponding diagonal element of the above equation, divided by N . 

 

B.2 Standard errors for the binary exogenous explanatory variables. 

 Assumed, that there is one element of 1z  is binary exogenous variables 1z  with 

coefficient  . Hence, the APE of 1z  can be written as  
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For the estimate of )( 1zAPE  ,it is  



139 
 

 


N
i

AA
N 1 1iz
1

])ˆ()([          (A.75) 

Then, applying mean value expansion theorem as we did before  in (A.63) 
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 where ][ )),(,2y,()),(,2y,(  1z1z hhEH   

If 1z  does not enter into the variance, the Jacobian of ),(,2y,(  ˆˆ
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The Jacobian of APE of 1z  with respect to first-step parameter γ is  
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Following the same development as previous section, the asymptotic variance of APEs is  
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A consistent estimator for the asymptotic variance of APEs is  
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Therefore, we can write the asymptotic variance as  
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The standard errors of each respective APE will be the square root of corresponding diagonal 

element of the above equation, divided by N . If continuous exogenous variable enters into 

conditional variance, APEs will be more complicated and similar to equation (15.76) in 

Wooldridge (2010). 
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