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ABSTRACT

THE EVOLUTIONARY ORIGINS OF MEMORY USE IN NAVIGATION

By

Laura M. Grabowski

Many organisms are able to cope with environmental variations through an array of

innate behaviors. When environments change too quickly for evolutionary processes,

or when the variation is more unique to a particular place, time, or individual

organism’s experiences, innate responses may need to be augmented by more flexible

responses that use individual life experience. In such situations, memory becomes

necessary. Generally, memory refers to the stored record of experience, and is of

great interest across many disciplines.

I focus this study on the question of how evolution produces complex mem-

ory structures, by examining the interaction of environment and memory during

evolution in an environment where navigation is an important behavior. Digital

organisms evolve to navigate within their environments, based on different sensory

cues. The different environments present differing problems that require different

uses of memory.

The simplest environment is an idealized version of the chemical attractant

gradients in the environments of bacteria such as Escherichia. 0012'. These experi-

ments demonstrated the evolution of both a chemotaxis—like response (2'. e., organisms

evolved to move up the virtual gradient and approach the highest concentration),

and a rudimentary one—timestep memory.

Inspired by maze-learning experiments with bees, in the next suite of experi-

ments, the digital organisms evolved in environments with “paths,” formed by sen-

sory cues in the environment. I used several different types of paths, and each path

type placed different demands for memory use on the evolving organisms. The re-

sults of the first group of path-following experiments demonstrated the evolution of

“reflex” actions, where organisms responded in a fixed way, but differentially, to the

environmental cues. For the second suite of experiments, I focused on evolving a



 
 

one-bit individual memory. One experiment evolved a one-bit life-long memory, i.e.,

remembering a binary decision, in the form of which direction to turn in the current

environment. This meant that an organism needed to store and refer to a single

individual experience in future decision—making, but the content of the information

did not change during the individual’s lifetime. In the next set of experiments, I

focused on evolving a volatile, “short-term“ individual memory. In these environ-

ments, new experiences that influenced future decisions happened at unpredictable

times, requiring the the stored experiences to be updated frequently.

The results of the experiments demonstrate that robust, flexible behavior can

evolve even in simple environments. Organisms that evolved in each of the ex-

perimental environments exhibited clever and flexible behavior that demonstrated

simple behavioral intelligence, revealing capacities such as gathering and differential

use of environmental information, and the ability to use prior individual experience

to guide future actions.
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Chapter 1

Introduction and Background

1.1 Introduction

1.1.1 Motivations

More than fifty years ago, Herbert Simon and Allen Newell created the first artificial

intelligence (AI) system, Logic Theorist (Newell & Simon, 1956). At the time, the

outlook for AI seemed bright, and many computer scientists optimistically projected

that machines with human-level intelligence were no more than a couple of decades

away, at worst. More than half a century later, this optimism has dimmed con-

siderably. Despite many impressive successes in AI and dramatic improvements in

hardware, the ability to create machines with high-level, general purpose intelligence

continues to seem decades away, at best.

Why has AI been unable to deliver on that early promise? Undoubtedly, there

are many contributing factors. One aspect of the difficulty is that human-level

intelligence is a highly complex facility, or system of facilities. In discussing Logic

Theorist, Newell and Simon (1956, p. 61) identified characteristics of these types of

complex systems:

1. There is a large number of different kinds of processes, all of which

are important, although not necessarily essential, to the performance of

the total system;



2. The uses of the processes are not fixed and invariable, but are highly

contingent upon the outcome of previous processes and on information

received from the environment;

3. The same processes are used in many different contexts to accom—

plish similar functions towards different ends, and this often results in

organizations of processes that are hierarchical, iterative, and recursive

in nature.

In many ways, this description of complexity is a good fit for both artificial and

biological systems. The idea of complexity leads to another aspect of the failure

of AI. The perspective that drove the first thirty to forty years of AI research was

highly anthropocentric, focusing on mimicking human cognition and attempting to

recreate aspects of the most complex intelligence known from scratch. This perspec-

tive placed much emphasis on higher-order propositional intelligence. Propositional

intelligence relates to the human capacity for reasoning and abstract thought and

enables humans to do things such as solve logic problems and play chess. This also

overlooks the fact that, in general, humans are not very good at pure propositional

logic, and tend to use a more fuzzy form. This approach tended to overlook other,

simpler forms of intelligence. Many species demonstrate what is termed behavioral

intelligence, intelligence that relates to effective, successful behavior. The interest

in propositional intelligence—knowing that—rather than behavioral intelligence—

knowing how—necessitated a top-down approach to designing intelligent machines.

There is an obvious problem with using top-down methodology to approach intel-

ligence: we still know relatively little about the computations and mechanisms of

intelligence. Moreover, this was certainly not the way that biology produced i11-

telligence. Evidence from evolutionary biology indicates that, just as the modern

human body evolved from earlier physical forms, modern human intelligence evolved

from earlier forms of intelligence. Therefore, rather than undertaking the Herculean

task of designing AI from the top down, we can instead take a page from nature’s

book and explore intelligence from the bottom up, finding the circumstances that

permit intelligence to evolve. This bottom-up approach allows us to examine the



evolution of simpler, fundamental capabilities that may facilitate the emergence of

more complex intelligence.

There are many aspects to intelligent behavior. A key capability is memory.

Memory is a necessary condition for many kinds of intelligent behavior. Without

memory, organisms cannot draw from their own experiences to make decisions. If

organisms have no memory, they cannot learn, they cannot reliably return to im-

portant places in the environment, and they cannot recognize many features of the

world around them. Memory provides a tool that organisms can use to move be—

yond the here-and-now, using their record of experience to build predictions of future

outcomes. In this study, I investigate how evolution constructs this crucial building

block of intelligent behavior.

Digital evolution (Adami, Ofria, & Collier, 2000) provides the tools for exploring

issues, such as evolving memory, from the bottom up and offers certain advantages

over working with living organisms. Studying evolution in silica is much faster than

working with living organisms, environmental conditions can be tightly controlled,

and processes of interest can be readily isolated for study. Digital evolution is also

transparent, so that we can trace everything that is happening during evolution,

without influencing the system. Such an evolutionary approach can provide in-

sights that are valuable in both biological and computational research contexts, by

illuminating fundamental evolutionary issues and by finding surprising solutions to

computational problems. Digital evolution, like natural evolution, may also be able

to discover solutions when our intuitions as designers fail. In fact, computational

evolution approaches have a track record of improving on existing computational

approaches to complex problems, such as automated state diagram construction

(Goldsby, Knoester, Cheng, McKinley, 82: Ofria, 2007), used in software require—

ments engineering, self-healing (Knoester, McKinley, & Ofria, 2007), and adaptive

resource—aware behavior (Beckmann, McKinley, & Ofria, 2007).



1.1.2 Central Issues and Questions

Organisms must be able to respond appropriately to the enviromnent in order to

maximize their chances of survival. Aspects of their environment will often vary

based on time, space, or circumstance, and organisms must react to these variations.

Evolution can incorporate environmental change that is slow-paced, encompassing

several generations (Nolfi & Floreano, 2000). Evolution discovered a variety of

mechanisms that allow all organisms, from the simplest to the most complex, to

respond to variable factors in their environments. Some of these mechanisms involve

reflexive behavioral routines, such as the response of bacteria like Escherichia coli

(E. coli) to move toward food, or innate behavioral preferences and patterns, as

observed in many insects (Dukas & Bernays, 2000). These repertoires of fixed, innate

behaviors allow organisms to successfully manage some well-defined sets of potential

circumstances. However, when the variation becomes less predictable due to more

possible outcomes, because of dependences on time, place, or individual organisms’

experiences, or simply due to more rapid environmental changes, mechanisms with

additional flexibility are needed. In the face of quicker or more unique variation,

memory and learning may provide the advantage, allowing individuals to adjust

behavior according to the local world state (Dukas, 2008; Shettleworth, 1998).

How do environment, memory, and learning interact in an evolutionary context?

This question is of great interest on the biological side of evolving intelligence. It

also has a direct connection to computer science in many ways, for example in the

context Of robot navigation: historically, algorithms for robot navigation have been

particularly brittle when confronted with unpredictability related to locally unique

features or events. Fundamental investigation focusing on the interplay between

environment, memory, and learning can provide key insights for both the biological

and computational perspectives.

There are many dimensions to the evolution of memory and learning, and the

related questions are challenging. How memory and learning evolve is a central issue,

comprising a number of interwoven questions, relating to the evolutionary pathways

and building blocks of memory and learning.



In this dissertation, I investigate how evolution builds complex memory struc-

tures that can be used for learning behaviors. My approach uses evolution in silico,

in virtual environments that present different navigation problems. To successfully

solve these problems, evolution must discover mechanisms for memory and simple

learning, and for differentially responding to environmental cues. With the experi—

ments described here, I addressed four central questions:

0 What environmental conditions promote the evolution of a reflexive response

to a particular cue? This can be viewed as evolving innate “reflex” responses,

i.e., responses that require no learning, and do not change with experience.

Although this is not a memory or learning behavior, it is a key step in two

regards. First, evolving a fixed innate behavior still allows organisms to alter

their responses according to features of the current environmental circum-

stance. Second, as seen in classical conditioning, sets of innate responses may

form the basis for conditioned responses, i.e., simple learning. From a high-

level perspective, reflexes can be thought of as a sort of ancestral or genetic

memory: evolution “hard-coded” the reflexive responses for frequently experi—

enced, potentially harmful or beneficial environmental conditions.

0 What conditions lead to more plastic responses? Phenotypic plasticity is the

ability of a given genotype to express different phenotypes in response to differ-

ing environmental conditions. Some plastic changes are reversible, while others

are not. Reversible plasticity is often considered the simplest form of learning,

since it provides a capacity for altering behavior based on prior experience

(Dukas, 1998).

o What conditions lead to the transition from a set of plastic responses to the

use of memory? This question addresses the transition from a suite of innate

responses, tailored to handle environmental variation, to the storage and use

Of individual experience to guide behavior.

0 Is it harder to evolve a life-long memory than a volatile one? We can view

this question as comparing phenotypic plasticity with more active memory



processes. Phenotypic plasticity involves evolving genetically specified traits

or behavioral options, whereas more active memory processes require the abil-

ity to continually update the information and associations. From a simpler

perspective, we can relate this question to mechanisms for storing information

for differing lengths of time. Some information is useful for a long time, while

other information might be used and discarded. What mechanisms evolve to

support these different types of memory?

I use navigation as the behavior domain for the work presented here. Navigation

behavior fits well with the idea of evolving behavioral intelligence, since navigation

is an example of “knowing how” to manage particular problems of survival. The

ability to interact efficiently and effectively with its environment is a prerequisite for

an organism’s survival (Shettleworth, 1998). Many tasks that are pivotal to survival,

such as foraging, finding shelter, and avoiding danger, require reliable strategies for

moving through the environment. Natural evolution equipped organisms with a va-

riety of navigation strategies, reflecting the varying challenges involved in different

navigational tasks (Roche, Mangaong, Commins, & O’Mara, 2005). Even funda-

mental navigation strategies build on other capabilities that are widely considered

components of intelligence, including sensing and responding to cues in the environ—

ment, and memory. In the context of the current study, navigation is the platform for

investigating how evolution builds memory structures in response to environments

that challenge survival.

The current work is organized as follows. The remainder of this chapter explores

background and related work in memory and learning across several different fields of

study. Chapter 2 presents work related to evolving gradient following behavior and

elementary memory use capabilities. Chapter 3 discusses evolving reflexive behaviors

as precursors to memory and learning. Chapter 4 explores evolving one—bit memory

for both short- and long-term uses. Chapter 5 presents conclusions and plans for

future work.



1.2 Background

1.2.1 Memory and Learning

Definitions

The notions of memory and learning traditionally relate to separate bodies of re-

search. Depending on the research context, memory and learning may be defined

strictly, loosely, or hardly at all. The term memory most often refers to the process

that allows animals to guide their behavior based on information from their own

past experience, or to the stored record of the experience itself; memory research

focuses largely on how information is stored and retrieved.

It is remarkably difficult to synthesize a representative definition of learning. All

of these are definitions of learning:

0 “Learning . . . is a change in state resulting from experience” (Shettleworth,

1998, p. 100).

0 “Learning is the acquisition of neuronal representations of new information”

(Dukas, 2008, p. 146).

0 [Learning is] “more or less lasting changes in the innate behavioral mechanisms

under the influence of the outer world” (Tinbergen, 1951, p. 143).

These definitions run the gamut from broadly inclusive to highly restrictive. Per-

haps the crux of the difficulty was identified by Todd and Miller (1990, p. 307), that

learning is a multi—faceted process, and “must be viewed not as a single monolithic

process, but as the diverse set of distinct mechanisms, abilities, and dynamics that

”

ethologists and psychologists have shown it to be. One common thread through

these definitions is that learning refers to changes in behavior as a result of experi-

ence. As such, discussions of learning imply the existence of memory, whether over

brief periods of time (short-term memory) or for more lasting durations (long-term

memory) (Dukas, 2008).



Questions persist regarding the distinction between memory and learning. Shet—

tleworth (1998) suggests that the traditional memory/learning dichotomy should be

abandoned in light of the more recent emphasis on multiple memory systems. Evi-

dence from many areas of research supports the multiple memory system hypothesis,

especially in humans. The multiple memory system hypothesis is that memory is or-

ganized in different systems, according to the type of information that they mediate,

and that these different types of information are processed and stored in different

brain areas. Forms of memory may be characterized by how long they last, whether

they involve accumulated knowledge or unique experiences, and whether memory

is expressed explicitly, through conscious remembering, or implicitly, by changes in

performance speed or bias (Eichenbaum, 2008). Certainly, memory and learning

are intimately connected, and it is diflicult to imagine the evolution of one without

the other. On one hand, memory is a prerequisite for learning: an organism cannot

learn from its experiences if it has no means to retain and reuse information about

those experiences. On the other hand, memory cannot evolve completely free of cost,

and a costly system will not evolve unless its use provides some adaptive advantage

(Dukas, 1999).

Phenotypic plasticity refers to the ability of an individual organism to change

from one genetically specified phenotype, which includes its behavior, to another,

based on changes in that organism’s environment. Dukas (1998) discusses the im—

portance of phenotypic plasticity and its relationship to learning. Some phenotypic

plasticity is irreversible, and is seen in a phenotype that is determined at one time

during development, and then remains unchanged for the rest of the organism’s

lifetime, such as alternate wing patterns on butterflies. Other plastic traits are

reversible: an individual can change those traits repeatedly in response to an envi-

ronmental change. Examples of this sort of reversible plasticity are gain or loss of

muscle strength according to the level of physical activity, and changes in shell thick-

ness in the gastropod, Littorina obtusata, relative to exposure to predators (Trussell

& Smth, 2000). Reversible plasticity implies that the organism maintains a sensory

capacity to recognize a particular cue from the environment, and a mechanism to



alter something in its phenotype in response to that cue. This reversible plasticity

allows adaptation when the environment changes frequently within the individual’s

lifetime, and permits a genetically determined association between stimuli from the

environment and responses to those stimuli. Basic types of reversible plasticity may

be considered as early forms of learning, since reversible plasticity provides a capac-

ity for altering behavior based on prior experience. Learning is, itself, a complex

and advanced form of plasticity. Simpler plasticity differs from more complex forms

of learning in that plastic responses are still predetermined. That is, the available

responses are genetically pre-determined; which response occurs is determined by

the environmental conditions. Learning, by contrast, is more open—ended: responses

are not already stored, ready for use, but need to be discovered (Dukas, 1998).

Through the remainder of this work, I will use terms as follows.

0 Memory: the mechanisms and processes of storing information about prior

experience.

0 Phenotypic plasticity: the ability of an individual organism to change from

one genetically specified phenotype, which includes its behavior, to another,

in response to environmental changes.

0 Learning: “the acquisition of or change in memory that allows a subject to

alter its subsequent responses to certain stimuli” (Dukas, 1998, p. 133).

Memory, Learning, and Evolution

Memory and learning play crucial roles in intelligent behavior. Even simple organ-

isms exhibit some capacity'for storing and reusing information about their environ-

ments; these capacities can be thought of as rudimentary memory capabilities. The

ability of E. coli to compare the present and past gradient concentrations and be-

have accordingly is a simple form of memory (Koshland, 1979), and the slime mold

Physarum polycephalum has the ability to find the minimum length path between

two points in a maze (Nakagaki, Yamanda, & Toth, 2000). Our intuition tells us

that memory and learning must often be beneficial, since they are so widespread in



nature. Nolfi and Floreano suggest that learning serves several different adaptive

functions:

0 Learning supplements evolution by enabling an organism to adapt to environ-

mental change that happens too quickly to be tracked by evolution.

0 The combination of ontogenetic adaptation (learning) and phylogenetic adap—

tation (evolution) might be able to exploit more environmental information

than evolution alone.

0 Learning may guide evolution, as suggested by Baldwin (Baldwin, 1896) and

Waddington (Waddington, 1942). Baldwin proposed what he called organic

selection, a process through which acquired characteristics could be indirectly

inherited. Through organic selection, individuals that have the ability to ac-

quire a beneficial trait during their lifetime will be selected for; therefore, the

capability for acquiring that trait will be passed on to offspring. Since learn—

ing takes time, Baldwin suggested that evolution might tend to push trait

acquisition to earlier points in life and thus select individuals who already

have those beneficial traits at birth, eliminating the need to learn them. This

indirect genetic assimilation of learned traits was later defined by Wadding-

ton as canalization, which describes developmental robustness to changes in

environment and genotype.

0 Learning might allow complex phenotypes to be produced from much shorter

genotypes by extracting some information necessary for building the phenotype

from the environment. (Nolfi & Floreano, 2000).

There is some debate regarding the selective forces that promote the evolution

of learning. Stephens (1991) identified two opposing forces credited with this role—

environmental change and environmental regularity—and presented a simple model

that supported his argument that “the pattern of predictability in relation to an

animal’s life history determines the evolutionary value of learning” (Stephens, 1991,

p. 77). The model takes into account the influence of three factors—change, regu—

larity, and value—on the evolution of animal learning. Change and regularity are

10



measured by two terms: “between-generation persistence” describes to what ex-

tent environmental states in the parental generation predict states in the offspring’s

generation; “within-generation persistence” specifies how well today predicts tomor-

row within the lifetime of the individual. This model emphasizes how the pattern

of environmental change relates to animal’s life history. Stephens stated that this

model

suggests that the most correct statement one can make is that learning is

an adaptation to within-lifetime regularity and some environmental un-

predictability; this unpredictability may occur either within or between

generations (Stephens, 1991, p.85).

Memory and learning may also incur costs. Some of these costs may be associ-

ated with the development and maintenance of mechanisms that are precursors to

memory and learning (Dukas, 1999). Other costs may include a delay in the acqui-

sition of fitness due to suboptimal behavior during learning, increased unreliability

related to the possibility of learning the wrong things, delayed reproduction time,

and energy costs of the learning process itself (Mayley, 1996). Many mathematical

models of memory (for example Kacelnik and Krebs (1985)) that are based on opti-

mality modeling make the assumption that memory is cost-free and focus on how to

weigh experience and what to forget. In such models, the implicit cost of memory

relates to the use of irrelevant or old information, which might result in suboptimal

performance (Dukas, 1999).

Even though the fitness benefits of memory and learning are relatively well un—

derstood (Dukas, 1998; Dukas & Bernays, 2000; Dukas & Duan, 2000), less is known

about their costs, and evidence for the costs is difficult to come by. At present, the

primary empirical evidence of the evolutionary costs of learning stems from a se-

ries of experiments by Mery and Kawecki, performed with fruit flies, Drosophila

melanogaster. The results of one study (Mery & Kawecki, 2003) suggested an evolu-

tionary trade-off between learning ability and competitive ability: improved learning

ability in experimental fly populations was consistently associated with a decline of

larval competitive ability, compared to control populations. In another study, Mery
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and Kawecki (2004) forced flies to repeatedly use their learning ability by exposing

the fly populations to two-day cycles of alternating substrate conditions. Flies from

lines that had been selected for higher learning ability had lower egg-laying rates

than flies from lines that had not been exposed to selection for increased learning

ability. These results suggest that egg-laying was impaired by either the accumula-

tion of memory interference, or the energy costs of information collection, processing,

and storage. A third study (Mery & Kawecki, 2005) showed that flies subjected to

training that produced long-term memory died sooner under extreme stress (absence

of food and water) than flies subjected to control treatments, suggesting that the

formation and maintenance of long-term memory produced added strain.

1.2.2 Memory and Learning in Insect Navigation

At the beginning of the 20th century, there was a generally held belief that insect

behavior was guided nearly exclusively by instinct. The supposition was that nav-

igation mechanisms worked because evolution had tuned the insects’ sensorimotor

responses and behaviors to function in the animals’ typical environments, leaving

insects incapable of flexibly accommodating unexpected change or of learning charac-

teristics of particular environments (Collett, 1993). Over time, however, researchers

accumulated mounting evidence of learning in various insect species. By the close

of the 20th century, the weight of evidence led to the widespread acknowledgment

that learning plays an integral part in the decision-making of many insects (Dukas,

2008).

Navigation behavior has provided many insights into insect memory and learning.

Insects employ sophisticated navigation strategies that use a variety of environmen-

tal information. Insects, particularly bees and ants, are excellent model systems for

the study of navigation: they are fascinating in their own right, and the strategies

that they employ are similar to those used by birds and mammals. The more mod-

est neural resources of insects may be analyzed more effectively to reveal essential

components of navigation (Collett, 1993; Collett & Collett, 2002).

12



Ants, bees, and other insects use an array of innate strategies for navigation.

These strategies include path integration (Miiller & Wehner, 1988), which is the

continual updating of distance and direction to a reference location (6. g., the nest),

and responses to landmarks and beacons in the environment (Graham, Fauria, &

Collett, 2003; Collett, Graham, & Durier, 2003). The interaction of these strategies

may reduce navigational errors and provide more robust navigational performance

(Collett & Graham, 2004), and may provide a scaffold for acquiring routes between

the nest and other important sites in the environment (Collett et al., 2003).

Research has provided evidence of memory and learning in ants and bees in

numerous contexts related to navigation. Honeybees demonstrate mechanisms for

storing motor sequences, linking motor sequences to visual stimuli, and expectations

of particular visual stimuli at specific points along the route (Collett & Collett, 2002;

Collett, Collett, & Wehner, 2001; Collett, Fry, & Wehner, 1993; Wehner, Michel, &

Antonsen, 1996). Bees in general learn landmarks relative to the celestial compass

(von Frisch, 1967), and this association can be used on overcast days to determine

the compass direction (Dyer & Gould, 1981). Bees are born with a template of

the solar ephemeris function (the daily pattern of solar movement through the sky),

but learn the details of that function for their particular location and time of year

through experience, and can estimate the location of the sun for times they have not

experienced (Dickinson, 1994; Dyer & Dickinson, 1994, 1996). Honeybees associate

both distant and local landmarks with previously traveled routes between the hive

and food (Dyer, 1991), and ants and bees may use interconnected memories of

associations between contextual cues and landmark memories to reliably recognize

visual landmarks and faithfully execute learned travel routes (Collett & Collett,

2002). For long—distance navigation, honeybees depend on large features in the

terrain and celestial cues but use local features to guide them to a goal (Dyer, 1998).

Honeybees and other insects perform learning flights to memorize visual landmarks

near a newly-discovered food source, a behavior called “turn back and look” (Lehrer,

1991). The length of these flights appears to be adjusted by the bees in response to

changing visual information needs (Wei, Rafalko, & Dyer, 2002).
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Studies of maze learning in animals provide insight into the mechanisms involved

in navigation (e.g. Gallistel, 1990). Maze learning studies with insects may be of

particular interest, since many bees and ants often follow fixed routes from the nest

to a foraging site (Collett et al., 2003). In learning a maze, an insect is learning to

follow a well-defined path.

To follow a path means to obey a sequence of instructions. The instruc-

tions could be inherent in the external world, as when water flows down

a river valley along a route imposed by the contours of the land. But

the fact that bees can be trained along arbitrary routes . . . and through

mazes suggests that to some extent bees do have an internal repre—

sentation of sequences of instructions (Collett et al., 1993, p. 693).

Bees have been trained to fly through mazes of varying complexity. Studies by

Collett and colleagues (Collett et al., 1993; Collett & Baron, 1995) used small mazes

to investigate bees’ ability to learn motor or sensorimotor sequences. One study

(1993) presented three different series of experiments that forced bees to fly along

prescribed routes and through obstacles in a large box in a laboratory. The primary

conclusion of this study is that bees remember sensory and motor information that

allows them to reproduce a complex route. The bees to some degree learn a sequence

of detailed instructions and do not rely solely on the external world to dictate their

path. These results suggest that what is stored is a linked series of vectors, each

vector a “command” for flying a certain distance in a certain direction (Collett et

al., 1993).

A study by Zhang and colleagues (Zhang, Bartsch, & Srinivasan, 1996) examined

whether honey bees use specific visual cues to learn to fly through structurally

complex mazes. Bees were trained to fly through mazes in the presence or absence

of visual cues (i.e., color marks). The tested bees showed the ability to learn routes

marked by a visual one (color mark), and routes with no cues, with varying degrees

of success in the different treatments. The authors report several conclusions from

their results. Bees are capable of learning a complex task, such as this maze solving

task, if they learn through step-by—step training, by acquiring a succession of “rules”
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for negotiating the maze (e.g., food is present at a location tagged with a certain

color, and a path labeled with that same color leads to food). Bees can apply learned

rules in new contexts, varying in spatial configuration, spectral domain (color), and

both spatial and spectral domains simultaneously. While learning to follow the color

marks, the bees also learn a set of motor commands for a correct sequence of actions

for negotiating the maze. Bees are able to learn to navigate a maze even in the

absence of internal marks (i.e., visual or scent) and external marks.

A later study by Zhang and colleagues investigated bees’ ability to learn and

remember two different sets of visual stimuli (Zhang, Lehrer, & Srinivasan, 1999).

Bees were trained to fly through a compound Y—maze. While on route to a food

reward, the bees were presented with two different visual stimuli sequences. The

results suggest that the bees were able to successfully store the two different se-

quences at the same time. Another study (Zhang, Mizutani, & Srinivasan, 2000)

probed whether bees learn and recognize structural regularity in the mazes. For

these experiments, bees were trained and tested in four different types of mazes:

constant-turn, where turns are always in the same direction; zig-zag, where each

turn alternates direction; irregular, which has no apparent pattern of turns; variable

irregular, where bees had to learn several irregular mazes at the same time. The

bees performed best in the constant-turn mazes, somewhat poorer in the zigzag

mazes, still worse in the irregular mazes, and poorest of all in the variable irregular

mazes. The authors state that these results demonstrate that the bees’ performance

in the various configurations depends on the structural regularity of the mazes, and

the ease with which the bees can recognize and learn that regularity.

Bees provide an example of behavioral intelligence that can inform my experi-

mental design, and so maintain a strong connection between my experiments and

their biological motivations. I based my experimental environments on selected maze

configurations from the maze—learning experiments with bees, discussed above. As

highlighted in the preceding discussion, bees use a variety of navigation strategies

that demonstrate use of different memory capabilities. Maze environments allow

for systematic manipulation of environmental features to probe aspects of memory
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use and mechanisms, and are easily constructed in virtual settings. By using these

types of environments in the work presented here, I am able to probe specific issues

relating to the evolution of memory.

1.2.3 Computational Approaches to Memory, Learning, and

Evolution

In the context of computer science, the concepts Of memory and learning take

on particular connotations. The term “memory” is linked primarily to hardware-

related issues, and the more specific “associative memory” points to specific neural-

network based implementations, often combined with self-organization (Kohonen,

1977, 2001). Machine learning is an active and rich research area, encompassing

a variety of methods, including supervised learning (Kotsiantis, 2007, review), un-

supervised learning (Kotsiantis & Pintelas, 2004, review), and reinforcement learn-

ing (Kaelbling, Littman, & Moore, 1996; Sutton & Barto, 1998, review). Machine

learning focuses on how to engineer machines that learn, or behave in a manner that

resembles learning, as opposed to evolving learning machines.

Generally speaking, evolutionary computation employs algorithmic methods in-

spired by Darwinian natural selection to find solutions to computational problems.

Traditional evolutionary computation, comprised of such areas as evolutionary algo-

rithms, evolutionary strategies, genetic algorithms and evolutionary programming,

is largely concerned with optimization problems. These approaches also tend to be

highly applied, with a focus on using evolutionary processes in solving particular in-

stances of problems, in contrast to investigating how general solutions arise through

evolution (De Jong, 2006).

Other approaches are more concerned with evolving machines that exhibit some

life-like behavior. Evolutionary robotics is one such methodology. Evolutionary

robotics refers to efforts to develop robots that autonomously evolve and adapt to

their environments (Floreano, Mondada, Perez-Uribe, & Roggen, 2004). This strat-

egy emphasizes the importance of embodiment, autonomy, and adaptation. In this
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technique, adaptation most often occurs as evolution in neural network controllers

through the use of genetic algorithms (Floreano, 1997). Although not truly within

the realm of evolutionary robotics, Valentino Braitenberg’s (1986) work could be

considered a precursor of that field. In these thought experiments, Braitenberg en-

visioned a series of simple wheeled robots, with different kinds of sensors that are

connected in various ways to the wheel motors. When the robots are placed on

a table, they exhibit different behaviors, such as approaching lights, running away

' from lights, and remaining close to the light. In the course of traveling around the

table top, some robots will fall off the table, making it necessary to build copies of

the robots in order to maintain a given number of robots on the table. In copying

the robots, the builder is bound to make mistakes, resulting in new designs and

potential improvements over time. This process of selective copying and random

errors is clearly Darwinian evolution, and Braitenberg’s delightful thought experi—

ments provide an excellent jumping-off point for later work in evolving actual robot

behavior.

The field Of evolutionary robotics has dealt extensively with several facets of

evolving memory and learning. One aspect is phenotypic plasticity, the ability of a

genotype to express differently in different environments. Nolfi, Miglino, and Parisi

(1994) studied this topic by evolving neural network “brains” for virtual robots in

environments that alternated between light and dark; the dynamics of the environ-

ments were designed such that behaviors that were successful in one environment

would be unsuccessful in the other environment. Individuals that evolved under

these conditions were able to tune their behavior appropriately for both kinds of

environments, adapting within an individual “lifetime” to environmental changes.

Although not within the scope of robotics, a closely related study by Stanley,

Bryant, and Miikkulainen (2003) used NeuroEvolution of Augmenting Topologies

(NEAT) to compare neural networks that never changed connection weights to those

that did. In this experimental environment, food switched randomly between nu-

tritious and poisonous. The fixed-weight networks found solutions that worked for

both environmental conditions: different inputs to the networks produced different
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behaviors.

There is increasing interest in the evolution of learning and the interaction be-

tween learning and evolution within the evolutionary robotics community. This

interest is spurred by several purposes that are shared by other approaches and

methodologies. One purpose is to examine the performance advantages of combin-

ing evolutionary adaptation and learning; another purpose is to understand the role

played by the interaction of these two adaptive processes, which employ different

mechanisms and occur at differing time scales (Nolfi & Floreano, 2002). A study by

Floreano and Urzelai (2000) is a strong example of the latter. They evolved neural

networks with local synaptic plasticity and compared them to fixed-weight networks

in a two—step task. The networks evolved to turn on a light and then move to a grey

square. The results showed that local learning rules helped networks alter function—

ality quickly, facilitating moving from one task to the other. Blynel and Floreano

(2003) explored the ability of continuous time recurrent neural networks (CTRNNs)

to show capabilities that resemble reinforcement learning, in the context of T-Maze

and double T-Maze navigation tasks. The robot had to find and “remember” the

location of a reward zone. The learning in this case occurred Without modifica-

tion of synapse strengths, coming about instead from internal network dynamics.

This work was directly related to an earlier study by Yamauchi and Beer (1994),

that investigated the evolution of agents capable Of combining reactive, sequential,

and learning behavior, using CTRNNs to control their agents. A study by Todd

and Miller (1990) explored the conditions under which simple artificial creatures are

more likely to evolve learning mechanisms for differentiating edible from poisonous

food. In this model, learning was a particular connection between a color sensor

and the single motor neuron of a neural network, and the genetic specification that

controlled the development of the learning structure was specified by a single gene.

Tuci et al. (2002) applied evolutionary robotics methodology to studying the evolu-

tion of learning behavior from an ecological perspective, which treats each instance

of learning as a specialized capability that is shaped by selective pressures; from

this perspective, learning can be understood only by reference to the organism or
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its ancestor. Their model required a robot to learn the relationship between a light

and the location of its target. The robot had to interact with its environment to

learn the relationship between the light and the target; in one environment, motion

toward the light took the robot toward its target, but in another environment, the

relationship between light and target was inverted. Results of their experiments

show that artificial evolution can be used to combine low-level building blocks to

produce controllers that are capable of associative learning.

1 .2.4 Avida: Overview

The Avida Digital Evolution platform (Lenski, Ofria, Pennock, & Adami, 2003; Ofria

& Wilke, 2004) is a widely used digital evolution software system. Digital evolution

(Adami et al., 2000) is a form of evolutionary computation that places a popula-

tion of self-replicating computer programs— “digital organisms,” or “Avidians”—in a

user-defined computational environment without an explicit fitness function. Avida

provides a virtual environment, but real evolution occurs: the digital organisms self-

replicate, mutate, and compete, satisfying Dennett’s definition of an evolutionary

process (Dennett, 2002). Digital evolution can be used as a tool to provide a better

understanding of biological processes, and as a method for applying lessons learned

from biology to computational and engineering problems. Avida affords the oppor-

tunity to study evolution in detail, and look “inside” the process as it happens.

These are both difficult things to achieve with a natural organism, even one as sim-

ple as a bacterium. Since Avida is another instance of evolution, we can use Avida

for generalizations about evolution. According to John Maynard Smith (1992),

So far, we have been able to study only one evolving system, and we

cannot wait for interstellar flight to provide us with a second. If we want

to discover generalizations about evolving systems, we will have to look

at artificial ones (Maynard Smith, 1992, p. 772).

Pennock (2007) discusses these issues in detail.
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Figure 1.1: An Avida digital organism. The organism comprises a circular genome,

a virtual CPU with three 32—bit registers, two stacks, and four heads (FLOW, IP,

READ, WRITE). Numerical values can be input from the environment, and results

are output to the environment. (Lenski et al., 2003, p. 139)

The Avida world is a discrete two—dimensional grid of cells, containing a popu—

lation of individual digital organisms, with at most one organism in each grid cell.

Each individual organism (Figure 1.1) comprises a circular list of assembly—like in—

structions, its “genome,” and a virtual central processing unit (CPU). The virtual

CPU consists of three general purpose registers, two stacks, and four heads (FLOW,

used as a jump target; IP, an instruction pointer that denotes the next command

to be executed; READ; and WRITE). Executing the instructions in the organism’s

genome acts on the elements of the virtual CPU, incurring a cost measured in virtual

CPU cycles. Executing Avida instructions accomplishes all functions in the Avida
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world, such as gathering information from the environment or performing logic op-

erations. The Avida instruction set is Turing-complete (Ofria, Adami, & Collier,

2002) and extensible, affording ease in expanding the system’s capabilities through

adding new instructions.

An Avidian replicates by copying its genome into a block of memory that will be

its offspring’s genome. Errors in the copying process produce differences between the

genomes of parent and offspring. These differences are mutations; these mutations

take the form of inserting or deleting an instruction, or changing one instruction

to another instruction. The Avida instruction set has the property of remaining

syntactically correct, even when mutations occur (Ofria et al., 2002). A newly

produced offspring is placed into a randomly selected grid cell, overwriting any

organism occupying that grid cell. This gives an adaptive advantage to organisms

that can replicate more quickly: the organism must compete for the limited space in

the grid. Organisms that replicate sooner than others will have a higher proportion

of descendants in future populations. Avidians can speed up their execution, and

so replicate sooner, by accumulating “metabolic rate” bonuses by performing user—

specified tasks. Metabolic rate is used to allocate virtual CPU cycles. Organisms

with higher metabolic rates are given more virtual CPU cycles in a unit of time than

organisms with lower metabolic rates, and so are able to execute more quickly and

produce offspring sooner.

Each Avida organism has a facing, i.e., the direction in which it is oriented. An

organism must always have a valid facing, meaning that it must face a cell that

is connected to the organism’s cell. Because of differences between the geometries

available in Avida, there are varying numbers of valid facings in certain geometries.

The bounded grid geometry creates a world with defined “edges.” Grid cells at the

edges have no connection to the cells outside the grid boundary. In a bounded grid

geometry, most grid cells have eight valid facing directions (North, Northeast, East,

etc., Figure 1.2); grid cells that are along the edge or in the corners of the grid

have fewer valid facing directions (three in corners, Figure 1.3, and five at edges,

Figure 1.4). A torus geometry creates an infinite plane, with no edges. In a torus
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Figure 1.2: Avida facing, torus or bounded grid interior. Valid facings for an Avida

organism in a torus or in the interior (i.e., non-edge) cells of a bounded grid. The

organism may be oriented toward any of its eight neighbor cells.

geometry, all grid cells have eight valid facing directions (Figure 1.2).

An Avida organism may use the move instruction to move from its current grid

cell into the cell the organism is currently facing. If another organism is occupying

the destination cell, the two organisms exchange places, and their previous facings

are preserved. If an organism moves in such a way that it faces across a grid edge

(on a bounded grid), the organism’s facing is automatically changed, by rotating the

organism to face the next valid clockwise facing.
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Figure 1.3: Avida facing, bounded grid corner. Valid facings for an Avida organism

at the corner of a bounded grid. Only three valid facing directions exist in bounded

grid corners.
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Figure 1.4: Avida facing, bounded grid edge. Valid facings for an Avida organism at

the edge of a bounded grid. Facings toward the grid edge are invalid; the organism’s

facing is automatically adjusted so that it never faces off the edge of the grid.
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Chapter 2

Evolving Rudimentary Memory

Studies of capabilities such as memory and learning often presuppose the existence

of some neural structure, however modest. But the evolutionary roots of these ca-

pacities may predate even simple brains. To address the evolutionary origins of

memory and learning, we need to step farther back in evolutionary history, and

farther down in complexity. Briggman et al. (Briggman, Arbanel, & Kristan, Jr.,

2005) propose that the idea of decision-making applies to a “spectrum of goal-driven

behaviors,” from simple, predictable reflexes to conscious choices made with expec—

tation of specific outcomes. We can apply this same thinking to our investigation

of the evolution of memory and learning, by looking to the simplest forms of those

abilities that we can identify. The decision-making behavior of bacteria, specifically

E. coli, provides a point of departure. There are a number of reasons for using E. coli

as the jumping-off point for studying decision-making and the evolution of memory

and learning: E. coli is simple, studied extensively, and known to obtain and use

environmental information in its survival strategies.

One particular type of simple decision—making is the ability of cells and organ-

isms to orient relative to sensory stimuli. Simple cells and microorganisms exhibit

orientation responses to a variety of environmental stimuli. A distinction is often

made between taxes (singular taxis, meaning tactic response), responses of cells

that are capable of locomotion, and tropisms, in-place responses of cells that are

attached to a substrate. Taxes are positive or negative, involving movement toward
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a stimulus or away from a stimulus, respectively. The type of stimulus provides a

basis for classifying taxes, for example chemical agents (Chemotaxis) or light (photo-

tarris). Orientation mechanisms serve to move organisms toward conditions that are

somehow beneficial, or away from conditions that may be harmful (Carlile, 1975).

Chemotaxis in bacteria may be an ancient process. The process may predate the

divergence of the eubacteria (gram-negatives, gram-positives, and blue-green algae)

from the archebacteria (methane bacteria), since chemotactic behavior is evident in

both kingdoms (Ordal, 1980). T. W. Engelmann and W. F. Pfeffer first described

bacterial Chemotaxis in the late 19th century (Adler, 1975; Berg, 2004), and pioneer-

ing researchers such as Julius Adler revealed its molecular mechanisms beginning in

the 1960’s (Adler, 1966; Berg & Brown, 1972). Chemotaxis involves bacteria’s dif-

ferential reaction to gradients of substances in the environment: the bacteria tend

to move toward certain substances (attractants), and away from other substances

(repellants). E. coli use a simple strategy for motility, moving in response to at-

tractants or repellants in the environment. The bacteria’s movements consist of

more or less straight-line swimming, usually called a “run,” punctuated by random

thrashing that results in a new orientation, usually termed a “tumble.” In a chemi-

cally uniform environment, the movement is essentially a random walk; when a cell

is moving through increasing concentrations along an attractant gradient, however,

tumbling occurs less often, producing a biased random walk that allows the bacteria

to move toward the attractant source (Adler, 1966; Berg, 2004). In short, E. coli

tend to swim in the same direction for longer periods of time when the situation is

improving (i.e., they are moving uphill on the attractant gradient), but return to

the random walk otherwise (Berg, 2004).

Since E. coli are capable of following a chemical gradient, they must, in some

fashion, sense environmental information and make comparisons between separate

sensory values. This separation could be spatial, using simultaneous readings from

spatially separated sensors (e.g., sensors at the front and back of the cell), or tem-

poral, using samples from a single sensor taken at different times. E. coli cells

are relatively small, and evidence indicates that they use temporal sensing rather
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than spatial (Berg, 2004). Since the cells can compare present and past values and

respond relative to that comparison, some researchers regard this capability as a

simple “memory” (Koshland, 1979).

2.1 Evolving Intelligent Tactic Response and a

One-timestep Memory

We have reported results for evolving a taxis—like response, and a small memory

use capability (Grabowski, Elsberry, Ofria, & Pennock, 2008). In this study, we

focused on the de novo evolution of motility and tactic response, inspired by the

chemical gradient-following behavior of organisms like E. coli, as described above.

The purpose of this study was to provide proof-of-concept for motility in the Avida

system, and evolving simple navigation capabilities.

2.1.1 Orientation and Movement in Avida

As with other aspects of an Avida organism’s execution, orientation in Avida is

controlled through Avida instructions. A variety of rotation instructions change an

organism’s orientation in different ways. For example, rotate-right-one and rotate-

left—one change the organism’s facing to the next valid facing in the specified di-

rection, and rotate-label changes the facing by a multiple of 45 degrees, determined

by a NOP label that follows the instruction. In all rotation instructions, only valid

facings are used for the new orientation; any invalid facings are ignored, and the

next valid facing is chosen instead (see section 1.2.4 for details about valid facings).

In these experiments, the implementation of movement is based on the tumble—

and—run Chemotaxis behavior as observed in bacteria like E. coli, described earlier.

We added two instructions to provide motility, move and tumble. The move instruc-

tion moves the organism one grid cell in the direction that the organism is currently

facing. If the destination cell is occupied by another organism, the two organisms

simply exchange cell locations on the grid. To allow room for organisms to move
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around the grid, we added a population cap that limits the size of the total popula-

tion to a user-defined number of organisms. When the cap is reached, organisms are

“killed” at random when a new organism is added. We added the tumble instruction

to emulate the random tumbling orientation behavior of E. coli. When an organism

executes tumble, the organism is given a facing (orientation) at random from the

available valid facings.

2.1.2 Experiments and Results

In our experiments, we demonstrate the evolution of a Chemotaxis-like response. This

response associates a feature of the environment (a gradient) with an advantageous

outcome (a metabolic rate bonus). Two sets of experiments comprised the study.

The first set of experiments focused on the evolution of tactic response under two

different memory treatments, one built in and one evolved. We implemented two

sensing instructions for the different memory treatments: one instruction provide a

built in, or implicit, memory, by giving the organism the current and the previous

sense information; the other instruction provides only the current sense information

(see below for more details of the sense instructions). The second set of experiments

compared two different rotation strategies, one systematic and the other random. We

used the tumble instruction (described above) for the random rotation strategy and

an existing Avida rotation instruction, rotate-right—one for the systematic rotation

(see below for additional information about the rotation instructions).

Idealized Gradient and Sensing

Environments in the real world are inherently complex. For example, gradients

are subject to multiple kinds of dispersal, such as turbulence and diffusion. Living

organisms’ behavior in these complex environments can be difficult to understand,

so controlling for such factors is an important aspect of experimental methodology in

the study of microorganisms (Adler, 1975). The virtual world of Avida provides the

opportunity to abstract the essential features of the environment, to better elucidate

the behavior of the digital organisms.
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Figure 2.1: Example of distance as an idealized gradient. The “concentration” source

location is at the top of the hill. Note that it is not necessary for the peak to be in

the center of the environment (from Grabowski et al., 2008).

The idealized gradient is an abstraction of a physical gradient, using an easily-

calculated quantity to establish the environment’s gradient, removing the need for

complex and computationally expensive artificial physics. An Avidian “senses” the

gradient by using instructions that were added for these experiments. The instruc-

tions function as “black boxes”: the digital organism has access only to the output

of the instruction, not to any information that is used within the instruction’s imple-

mentation. The process of producing the information is impenetrable to the Avidian,

much the same way as the computations within our own brains are hidden from us.

This detail makes it possible for us to implement instructions that allow a digital or-

ganism to “sense” any salient feature or property of the virtual environment without

giving them access to global information.

The idealized gradient for these experiments was formed by the Euclidean dis—

tance between two grid cells, the organism’s location and a “target” location. “Tar-

get” is used here in the sense of a source of a sensory stimulus, i.e., a chemical
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attractant (Figure 2.1). The distance between the current and target locations is

analogous to the concentration of a particular attractant that the organism will move

toward. The sense value provides strictly local information. The organism never has

access to any global information, such as (any) coordinates; it senses the current

gradient concentration (squared distance to target) as a simple integer value. All

calculation details are hidden within the sense instruction’s implementation.

At birth, each digital organism is given a randomly determined target cell, at a

user-defined minimum distance from the organism’s initial location. Since the target

grid cell is analogous to an attractant source, the instruction that was implemented

to “sense” the distance between the organism and its target grid cell is equivalent

to an idealized sensory system. In biological systems, both the sensory system and

the organism’s interest in the particular attractant would have evolved. Just as

we start experiments with a self—replicating ancestor, since we are not investigating

origin of life issues, we can allow the sensory system and the effect of the attractant

to be available at the beginning in these experiments, since the evolution of those

mechanisms was not relevant to our central concern of evolving motility and tactic

response.

We used two sensing treatments for these experiments: one treatment provided

the Avidians with an implicit memory system to remember previous gradient con-

centrations; the second treatment removed this crutch, requiring the organisms to

evolve a mechanism that would allow them to store and reuse previous values on

their own. We used a different sensing instruction in each treatment. One instruc-

tion (sense-and—remember) placed both the current distance information and the

previous distance information into two of the organism’s virtual CPU registers, pro-

viding a small implicit memory. The second instruction (sense-now) did not provide

implicit memory; this instruction placed only the current sense value into a regis-

ter, requiring the organisms to discover a mechanism for storing the prior distance

information. For both sensing instructions, the organism must use additional in-

structions to process these values. For example, comparisons must be performed in

addition to the sense instruction.
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Table 2.1: New Avida instructions used for experiments.
 

 

 

 

 

 

Experiment Instructions used

Taxis, implicit memory sense-and—remember, move, tumble

Taxis, evolved memory sense-now, move, tumble

Rotation strategy, random sense-and-remember, move, tumble-and-move

Rotation strategy, systematic sense-and-remember, move,

rotate-right-one-and-move   
Another set of experiments compared the efficacy of two different orientation

strategies, in the setting of the idealized gradient. In these experiments, we com-

pared the effectiveness of the random tumble instruction to the existing rotate-right-

one instruction, that changes the organism’s facing by one 45—degree clockwise turn.

We implemented specialized instructions to minimize the possibility for organisms to

execute multiple rotation instructions before moving. These instructions combined

the rotation instruction (tumble or rotate-right-one) with a move immediately fol-

lowing. These combination instructions compelled organisms to move immediately

after turning, preserving the distinction between systematic and random rotation

strategies. The rotation strategy experiments used only the implicit memory sensing

treatment, as described above, with the sense-and—remember instruction. Table 2.1

provides a summary of the new instructions used for each set of experiments.

Experimental Setup

We seeded the population of each Avida experiment with a simple self-replicating

organism (an organism with only the capability to replicate, i.e., make a copy of it—

self). This seed organism’s genome comprises 100 instructions, composed of a short

copy loop and a large number of no—operation instructions. Other instructions can

appear only through mutation. All experiments used the default Avida mutation

rates, with a 0.0075 copy-mutation probability per copied instruction, and inser-

tion and deletion mutation probabilities of 0.05 per divide (overall 0.085 genomic

mutation rate for a length-100 organism) (Ofria & Wilke, 2004).

We placed each population in a 100 x 100 cell bounded grid, with a population

cap of 1,000 organisms, to allow room for organisms to move around the grid. We
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Figure 2.2: Average best distance ratio for evolution of taxis experiments using

sense-and—remember instruction (both the current and the previous sensed value

are given to the organism, but comparisons must be performed in addition to this

instruction) and sense-now (the organism must remember previously sensed values

and perform comparisons in addition to this instruction). The average represents

all organisms in the population at each update (total of approximately 1,000,000—

2,000,000 total organisms per run), averaged over all 50 replicates of each treatment

(Grabowski et al., 2008).

ran the experiments for 100,000 updates, the natural unit of time in Avida (in these

experiments, 100,000 updates are approximately 10,000—15,000 generations), with

50 replicate populations in the memory treatments experiments, and 100 replicate

populations in the rotation strategy experiments.

Results

The primary performance metric in these experiments is the best distance ratio. The

ratio is computed as 1 — (db/dz), where db is the distance value of the organism’s
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Figure 2.3: Sample trajectories of evolved organisms using implicit memory (top)

with the sense-and—remember instruction (both the current and the previous sensed

value are given to the organism), and evolved memory (bottom), using the sense-now

instruction (the organism must remember previously sensed values). All rotation

uses the tumble instruction, and the organisms must use additional instructions to

perform comparisons. The trajectories suggest that the organisms are using the

sensed information to track to their target locations.

closest approach to its target (the best distance to target), and d,- is the distance

between the target and the organism at birth (the initial distance to target). Avida

tracks and stores the best distance ratio for each organism, and computes the pop-

ulation’s average best distance ratio for each update. This statistic actually reports

the average best distance ratio as of the last divide (i.e., the parents of the current

population). This technique serves to reduce biasing caused by such factors as the

age structure of the current population.
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Figure 2.4: Average best distance ratio for tumble—and—move and rotate-right—one—

and—move instructions. The figure shows the average best distance ratio over the

entire population, for 100 replicates of each instruction set. Experiments ran for

100,000 updates (approx. 10,000-15,000 generations) (from Grabowski et al., 2008).

As illustrated in Figure 2.2, tactic behavior evolved successfully, both with and

without the use of implicit memory. The behavior emerged quite quickly, within

the first one to two thousand updates. The speed with which motility emerged is

demonstrated by the average best distance ratios over all 100,000 updates for the

two treatments, 0.8396 for taxis with implicit memory and 0.7910 for taxis without

implicit (i.e., with evolved) memory.

The average best distance ratio for the last 50,000 updates shows the overall

success of the evolved taxis strategies, 0.9028 using implicit memory, and 0.8480

with evolved memory. These highly successful strategies emerge quickly and be-

come relatively stable within the first 50,000 updates. Although both treatments

produce successful solutions, the use of implicit memory produces significantly bet—

ter performance, as shown by a Mann—Whitney U-test comparing the average best
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distance ratios at the ends of each experimental run (N = 50, p = 4.93 x 10_7).

Figure 2.3 shows representative trajectories of evolved organisms for each of the two

treatments.

In this simple experimental environment, the difference in the performance of the

random (tumble) rotation strategy and the systematic (rotate-right-one) rotation

strategy was not significant (Mann-Whitney U-test, N = 100, p = 0.286). As

shown in Figure 2.4, the average best distance ratios in the last 50,000 updates

were similar, 0.900 for the tumble-and-move treatment, and 0.893 for the rotate-

right-one-and-move treatment. This result shows that, at least in this discrete,

idealized environment, both the random and systematic rotations strategies perform

“well enough.” We suggest that this result serves as a simple demonstration of

“satisficing”: given a particular set of constraints, the process of evolution will

discover solutions that work adequately under those constraints. Satisficing is a

term coined by Herbert Simon, originally in the context of economics. Satisficing

refers to a decision-making strategy that meets criteria of adequacy rather than

what might be considered optimality. This relates to the idea of bounded rationality,

taking into account both the limitations of knowledge and the limitations of cognitive

capacity in decision-making (Simon, 1957). The notion of satisficing fits well with

evolutionary processes. As human observers, we may think that there is a “better,”

more “optimal” solution to a particular problem. Evolution will choose a “better”

solution when such a solution is discovered, but may move through many “good

enough” solutions on the way to the optimal solution. Movement toward such a

“better” solution will occur in response to changing selective pressures, or by chance

mutations (Grabowski et al., 2008).
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Table 2.2: Memory treatments and simulated noise levels tested.
 

 

 

Memory treatment Noise levels (:l:%)

Implicit memory 10, 20, 50, 75, 100 (sense-random instruction)

Evolved memory 10, 20, 30, 40     

2.2 Further Experiments: Robustness to Sensor

Noise

2.2. 1 Methods

I conducted additional experiments to test the robustness of the underlying evolved

gradient following algorithms. To accomplish this, I added uncertainty in the form

of noise. There are three possible sources of noise in this context: the environment,

meaning the environment itself is variable, the sensors, so that there is inherent

error in the operation of the sensors, or the effectors, such that there is error in

the way that the effectors carry out motor commands. In the natural world, all of

these may happen simultaneously. For the purpose of these experiments, I chose

to introduce simulated sensor noise, while maintaining a stable environment and

correct execution of movement instructions.

To simulate sensor error, I implemented new sensing instructions that added

varying amounts of “noise” into the gradient concentration sensor value (i.e., the

distance to the target cell) by altering the value of the sensed concentration (distance

to target cell) by a randomly selected amount within a user-defined range. The

sensed distance (SD) value was calculated as SD = TrueDistance >I< (1 :I: level),

where TrueDistance is the actual current distance to the target location, and level

is the randomly selected amount of noise. The sensed distance could, therefore, be

either less or more than the actual distance. I implemented two instructions that

used this approach, one that used implicit memory (sense-and-remember-noisy) and

the other requiring evolved memory (sense-now-noisy), as described previously in

section 2.1.2. A different instruction, sense-random, returned a completely random

value for the sensed distance to the target location. Instead of altering the current
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distance value, this instruction generated a random number and used it as the sensed

distance value. The value could be anywhere in the range from 0 to the size of the

world. This method maximized the possible sensor error by simulating a completely

unreliable sensor that conveyed no information. This instruction used only the

implicit memory treatment. Table 2.2 summarizes the simulated noise levels tested

for each memory treatment.

The size of the world, mutation rates, population size, and length of experimental

runs were the same as in the previous idealized gradient experiments (section 2.1.2).

For the sake of comparison, I implemented a hand-coded organism that per-

formed a random walk. This organism used the instruction set from the evolution

experiments described above. Instead of using any sensory information, the hand-

coded organism chose randomly between moving and tumbling at each time step.

Tracing this organism’s trajectory provided an example of random movement, to

serve as a baseline for comparison with the evolved strategies.

2.2.2 Results

As in the earlier experiments (section 2.1.2), I used the average best distance ratio as

the primary performance metric. In related work (Elsberry, Grabowski, & Pennock,

2009) we demonstrated that, in an Avida bounded grid environment, an information-

free movement strategy will allow an organism to approach a target location (a

resource concentration peak, analogous to the target cell location in the current

experiments) to within 20% of the length of the longest side of the grid. Following

from this information, I used a threshold of the average best distance ratio in order

to classify replicate runs as having evolved tactic behavior. A best distance ratio of

0.90 or higher indicated that the population had evolved gradient-following behavior.

This is a reasonable threshold value: since the average best distance ratio measures

the performance of the entire population, not just an individual organism, it is likely

that populations with ratios at or above the threshold value are, on average, using a

gradient ascent strategy. It is unlikely that enough organisms in the population are

“lucky” enough to approach their targets so closely with a random or information—
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free strategy. Since the sample size was small for the simulated noise runs (N = 20),

I tested statistical significance using Fisher’s Exact Test.

Some replicate populations in both the implicit and evolved memory treatments

evolved gradient following behavior under low and moderate levels of noise. At

the i10% noise level, the proportion of runs that evolved gradient climbers was

not significantly different from the noise-free conditions (implicit memory treat-

ment, p = 0.5083; evolved memory treatment, p = 0.1357). Higher levels of noise

resulted in significant differences in the evolution of gradient ascent strategies in

noisy and no noise conditions. With i30% noise, the evolved memory condition

showed a significant difference between noisy and no noise conditions in evolved

taxis (p = 0.0440), but there was no significant difference at :I:40% (p = 0.2880).

It is possible that this non-intuitive discrepancy between the results at i30% and

:l:40% levels may disappear if the sample size or the length of experimental runs

were increased. With the implicit memory condition, noise and noise-free condi-

tions produced significantly different distributions in the populations at levels of

i50% and above (150%, p = 2.338 x 10-6; 175%, p = 1.805 x 10-7; 500%,

p = 6.868 x 10‘9).

We can see some interesting qualities in the evolved strategies by looking at tra-

jectory plots for representative evolved organisms. I tracked trajectories for a single

organism per run during 100 updates, with mutation rates set to zero; the tracking

run terminated if an organism replicated before the 100 updates elapsed. Figure 2.5

shows example trajectories of the top three organisms using implicit memory (i.e.,

the three highest Best Distance Ratio (BDR) values), with and without i10% sim-

ulated sensor noise (Figure 2.5). The character of the organisms’ movement track is

similar in both noisy and no noise conditions. With implicit memory, even at much

higher noise levels (e.g., :I:50% and :I:75%, shown in Figure 2.6, implicit memory

only) some organisms’ algorithms seem to make attempts at using the unreliable sen-

sor information, producing trajectories that resemble a biased random walk. The

picture is different for the evolved memory treatment (Figure 2.5). Only 1 of 20

replicate populations finished the run with a BDR of 0.90 or higher (organism tra—

37



jectory trace shown in bottom row, left-most plot in Figure 2.5). The organisms

that produced the other two plots shown in the bottom row of Figure 2.5 are not

gradient followers. Instead, they use an information-free strategy that exploits the

bounded grid geometry (see more detailed discussion, following).

At the highest noise level (i. 6., using the sense-random instruction, which returns

a random value as the sensor value), the organisms do not use the information at all,

relying instead on an information-free algorithm that provides adequate performance

in the bounded grid environment, as discussed’in Elsberry et al. (2009). It is

important to note, however, that this strategy is not itself random. Figure 2.7

illustrates trajectories of a hand-coded random walker organism and an organism

using the sense-random instruction. The spatial patterns of the two strategies are

markedly different. The information-free strategy in the sense-random instruction

organism evolved to leverage the bounded grid geometry by exploiting the built-

in facing behavior at the edges of the grid. As previously noted, an Avidian must

always have a valid facing. When an organism reaches the edge of the grid, its facing

is automatically changed to the next valid facing such that it never faces across an

edge (see section 1.2.4 for more details about facing). This characteristic of the

geometry allows an organism to “run” continuously, with occasional forays across

the grid, typically on one of the diagonals. In this way, an organism can run near

to its target cell location and accumulate a higher metabolic rate bonus, without

ever sensing the target. In contrast, a true random walk may or may not approach

a target location within a finite amount of time (even though such an algorithm is

guaranteed to hit any location in two dimensions, given unlimited time).

These results demonstrate remarkable robustness in the evolved gradient fol-

lowing algorithms, even with significant simulated sensor noise (:l:20%). This out-

come agrees with results of other studies (e.g., Nolfi and Floreano (2000)). The

information-free strategies evolved in the maximum noise condition (sense-random

instruction) also show remarkable adaptation to the environment by successfully

exploiting the bounded grid geometry.
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Figure 2.5: Sample trajectories of organisms from different memory treatments,

i10% simulated sensor noise. Trajectories shown for the most abundant genotype

at the end of evolution runs for the replicate populations with the three highest

Best Distance Ratios for the two memory treatments (implicit memory, top: both

the current and the previous sensed value are given to the organism; and evolved

memory, bottom: the organism must remember previously sensed values). All rota—

tion uses the tumble instruction, and the organisms must use additional instructions

to perform comparisons.
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Figure 2.6: Sample trajectories of organisms from implicit memory treatment, i50%

and i75% simulated sensor noise. Trajectories shown for the most abundant geno—

type at the end of evolution runs for the replicate populations with the three highest

Best Distance Ratios for the two noise treatments (i50%, top, and :I:75%, bottom).

All rotation uses the tumble instruction, and the organisms must use additional

instructions to perform comparisons.
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Figure 2.7: Sample trajectories for maximum sensor noise and random walk organ—

ism. Trajectories shown for the most abundant genotype at the end of evolution

runs for the replicate populations with the three highest Best Distance Ratios for

the random distance value treatment (top). Random walk trajectories were gener—

ated with the same hand-coded organism, injected into three different locations. All

rotation uses the tumble instruction.

41



2.3 Conclusions

We demonstrated several notable results with the experiments on evolving tactic

behavior in a simplified, idealized environment. First, we provided proof of concept

for incorporating motility into the Avida system. Second, we highlighted interesting

aspects of evolving this fundamental navigation behavior, including satisficing and

robust performance in the presence of sensor noise. Perhaps the most interesting

result was the evolution of the rudimentary memory mechanism that enabled the

storage of the previously experienced gradient concentration for later use.

These results of these experiments underscore that memory is a critical hurdle

to evolving intelligent behavior. The absence of an existing memory mechanism was

clearly a stumbling block in evolving gradient following, in both noise-free and noisy

treatments. In the experiments that follow, I explore the issue of evolving memory

in more depth.
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Chapter 3

Evolving Precursors to Memory:

Reflex Behaviors

A reflexive response is an innate behavior that “has not been changed by learning

processes” (Tinbergen, 1951, p. 2). Such behavior is unlikely to change due to an

individual’s experience. The response is hard-coded in the organism’s genome, so

the organism will always make the same behavioral choice when presented with the

stimulus. A reflex action is typically identified as one that is involuntary and occurs

immediately in response to the stimulus. For my experiments, the stimulus is a

sensory cue from the environment. In general, we expect a reflexive response to

evolve when (1) the environment is stable, i.e., the cue is consistently associated

with the same outcome for the organism, (2) the benefit of encoding the response

outweighs the cost of making the encoding, and (3) the response has some selective

advantage.

From a theoretical point of view, it is reasonable to think that reflexive, or “hard-

wired” responses evolved before learning (Todd & Miller, 1990), and these types of

responses are well known as the basis for conditioning (6. g., Rescorla, 1988). In

addition, we can imagine a scenario where it is better to always do a certain task

than it is to never do that task (hence, the task should evolve); but it may be

better still if the organism can selectively choose to not perform the task under

some circumstances. For example, in a hostile environment, it is better to run away
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from any larger organisms that come near you than to never run at all. But it is

better still if you can identify the approaching organism and know when it is actually

necessary to run.

This initial step of evolving a reflex response is necessary. From a practical

standpoint, if an Avidian cannot evolve to perform an action correctly when it always

should, it will never be able to effectively decide to take that action selectively.

3.1 The Avida State Grid

Inspired by the maze—learning experiments with bees, discussed in section 1.2.2, I

designed a series of experiments to explore the evolution of memory in a navigation

task. Similar to the bee maze experiments, Avidians evolved to follow a path in a

virtual environment. My primary interest in this work was to study evolving memory

use in individual organisms, independent of organism interactions. Since the context

of the experiments includes movement, we implemented a new virtual environment,

called the Avida state grid, as a technical solution to certain limitations of the

existing Avida world. In the state grid, each organism has separate information

about its environment. An individual organism remains in the same location in the

Avida world throughout its lifetime, but also has a virtual grid where it can move.

A single organism is the sole occupant of its state grid; in a sense, the state grid

sets up a situation where the environment may be shared by different organisms,

but each individual is oblivious to the existence of all other individuals, and its

experiences are not influenced by the presence or actions of other organisms. The

only way that organisms affect each other is that the offspring of a higher-fitness

organism may replace a lower-fitness individual. The state grid provides several

other benefits: larger populations can be used, without regard for allowing space

for movement within the world, the simplified environment is easily defined and

understood by human experimenters, and experiments run efficiently with relatively

low computational overhead.
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A single instance of a state grid is an :rxy toroidal grid that has a user—definable

set of states, and each space on the grid has a particular state. Since the grid is

implemented as a torus, an organism is, in effect, on an infinite plane: a movement

trajectory that reaches a grid boundary wraps around to the opposite side of the grid,

eliminating edge effects and minimizing the possibilities for organisms to exploit the

geometry of the environment.

State grids may be defined with arbitrary :r and y dimensions; there is no con-

straint, for example, that the state grid be square. The definition of the state grid

includes the organism’s inital (r, y) location on the grid, its initial facing, and the

details of the grid itself. State grids are defined in the Avida environment configu-

ration file, and each state grid is associated with a reaction that triggers the path

traversal task.

3.1.1 State grid paths

I devised several different state grid environments, based 011 the experimental maze

designs in Zhang et al. (2000). Each state grid contains a single “path” for the

Avidians to follow. The idea behind the paths is that the organism must move

around its environment to find sparsely distributed “food” resources. All movement

requires energy, so each step depletes the organism’s energy store. When an organism

moving along the path encounters food, the food gives the organism more energy

than the amount lost through the movement. Locations that are off the path contain

no food, and so are “empty.” When an organism moves into an empty location, the

organism loses a small amount of energy, without regaining any energy. Numerous

movements into empty locations are detrimental to the organism: continued energy

depletion will impair the organism’s ability to replicate, and increase the chance

that the organism will be replaced by a higher-energy organism. Organisms that

move along the food-rich path build up their energy, and are able to execute at an

accelerated rate.

I varied the configurations of the paths according to the specific experimental

design, using some combination of the following states:
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1. Nutrient: A state that indicates the path, and contributes to building metabolic

bonus (the “food” on the path).

2. Directional cue: A state that indicates a turn to either the right or left (a

single 45-degree increment in the specified direction) is needed to remain on

the path. Directional cues also contain a nutrient, and as such contribute to

building metabolic bonus.

3. Repeat-last: A special directional cue to repeat the last direction of turn,

and contributes to building metabolic bonus.

4. Empty: A state that indicates cells that are off of the path, and reduces

the metabolic bonus. The net loss in energy from a step into an empty cell

counteracts the gain of energy due to a step on the path.

3.1.2 Path traversal task

In these experiments, organisms received metabolic rate bonuses for a path traversal

task. An organism’s bonus depends on how well the organism negotiates the path.

An organism that travels the entire path without stepping off the path receives the

maximum possible bonus. Using the organism’s state history, the task calculates

the number of unique valid path steps, and subtracts the steps into empty states:

traversed = valid — empty (3.1)

where valid is the count of unique path cells encountered, and empty is the total

count of empty states encountered. I had both conceptual and practical reasons

for counting movements to each path cell only once, but counting all movements

into cells that are off the path. Conceptually, the path cells are analogous to food

patches. The organism consumes most of the food in the patch the first time it

moves into a path cell. Subsequent visits to a previously visited location supply

only enough food to offset the energy lost in moving to the location. On the other

hand, empty cells are always empty, and movement always requires energy. Each
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step into an empty location results in a net loss of energy, because the organism

cannot replenish its energy stores at that location. From a practical perspective, I

counted the traversed path cells only once to encourage organisms to travel along

the path, discouraging the evolution of less desirable behaviors. For example, if

each step into a path cell were counted, organisms might evolve to oscillate between

two path cells, never moving beyond those cells. Movement into empty cells should

always be detrimental, since it should always be better for the organism to stay on

the path than to move off the path.

I used the traversed value to calculate the task quality (TQ):

TQ = (traversed/pathLength) =1: processValue (3.2)

with traversed as defined above in Equation 3.1, pathLength is the total count of

path cells (nutrients and directional cues), and processValue is a user-defined value

that sets the bonus maximum.

I used the TQ value to determine the organism’s metabolic rate bonus. I com-

puted the metabolic rate (MR) as:

(BaseRate) * 20 if traversed <= 0

MR 2 (3.3)

(BaseRate) * 2TQ if traversed > 0

This approach delivers an exponential reward, doubling the organism’s metabolic

rate bonus for each step on the path that is not counteracted by a step off the path

into an empty cell. I chose this strategy to encourage organisms to continue traveling

on the paths. This reward system sets up a situation where it is always better to

move than to remain still, and it is better yet to continue moving on the path.

3.1.3 State grid instructions

We implemented four state grid instructions that provide organisms with movement

and sensing capabilities on the state grid. The sg-move instruction moves the organ-
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Table 3.1: State values for state grid experiments. The definition of a state grid

includes a listing of the state of each cell in the grid. The sg-sense instruction

returns the value shown for each state.
 

 

 

 

 

 

State Return Value

Empty —1

Right turn 2

Left turn 4

Repeat last turn 1

Nutrient 0    

Table 3.2: NOP-modified behavior of if-grt-X and if—equ-X instructions.
 

 

 

 

 

NOP Label Value for Comparison

nop—A —1

nop-B 2

nop—C 4

Default (no NOP) 1    

ism into the cell it is currently facing. Organisms can change their facing by using

the sg—rotate-r and sg-rotate-l instructions, which change the organism’s orientation

by one 45-degree increment to the right or left, respectively.

The sg-sense instruction returns a user-defined value that represents the state

in the organism’s current cell. These state values are provided in the state grid

definition; Table 3.1 lists the state values that I used for these experiments. The

return values were not used directly for any calculations, 6. g., task quality. I chose

these particular values because they can be manipulated with relative ease using

the assembly—code—like Avida instruction set. The values were consistent across

all state grids in this and subsequent experiments. This consistency simplified the

organisms’ problem of mapping a particular action to a particular state. In such an

environment, I expected successful organisms to evolve to differentiate between the

states and take specific actions based on the different states.

I also added two new comparison instructions, if-greater—than-X (if-grt-X) and

if-equal-to-X (if-equ—X), that supplemented existing comparison instructions. These

instructions allow an organism to compare the value in its BX register to a prede-

fined value. A no-op (NOP) label immediately following the comparison instruction
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Table 3.3: Instruction set used for experiments. Instructions shown in italics are

not part of the default instruction set. See also Appendix A.1 for explanation of

 

 

 

 

 

 

 

 

 

 

 

 

instructions.

Instruction Instruction Instruction

nop-A inc jmp—head

nop—B dec get-head

nop—C add if-label

if-n-equ sub set-flow

if-less nand if-grt-O

pop IO sg-move

push h—alloc sg-rotate-l

swap-stk h-divide sg-rotate-r

swap h-copy sg-sense

shift-r h—search if-grt-X

shift—l mov—head if- equ-X     
determines the value to use in the comparison, as shown in Table 3.2. I added

the new comparison instructions because an Avida organism has to combine several

different arithmetic instructions in order to compare a register value to any specific

value. The new if-equ-X and if-grt-X instructions provided a shortcut and simplified

the comparison process for the Avidians, and also contributed to evolved genomes

that were simpler to analyze. The details of these new instructions do not adversely

affect the adequacy of our model, since my focus in the experiments is on memory;

the mechanisms of constructing comparisons are not relevant to my questions of

interest. It is also important to note that early pilot experiments that did not use

the new comparisons successfully evolved the desired behavior. Table 3.3 shows the

complete instruction set used for all state grid experiments.

3.2 Experiments

3.2.1 State Grids and Experiment Design

Within the Avida state grid setup, as described in Section 3.1, I implemented two

types of environments, each containing a single “path” for the Avidians to follow.
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Figure 3.1: Example state grid “path.” This grid illustrates a single—turn, left—turn—

only environment. Blue circles indicate the “nutrient” state, yellow triangles show

cells with the “signpost” state, x appears in each cell with the “empty” state, and

the organism’s initial location is shown by the green star.

One environment type contained turns in a single direction (i.e., one path instance

contained only right turns, while another path instance had only left turns, as il-

lustrated in Figure 3.1). All paths used only 45—degree turns, so that a direction

change could be reliably accomplished with a single, unmodified Avida instruction.

The single—direction paths had a spiral shape, and contained three states: direc—

tional cue (right or left, but only one type per grid), nutrient, and empty. The other

environment type contained four states, and paths had both right and left turns.

For each environment type, there were four different paths that organisms were ex-

posed to over the course of evolution. An individual organism experienced only one

state grid path in its lifetime, but its ancestors and descendants experienced different

paths during the course of evolution. I used different paths in order to discourage the

evolution of algorithms that were brute—force solutions of a particular path instance.
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In the first suite of experiments, I set up an environment that provided certain

regularities. I put a directional cue at each turn on the path. This strategy gave

organisms the information they needed to make the turn decision, at the point in

time and space that the decision was made. An organism could sense the cue by

using the sg-sense instruction; each state (nutrient, right turn signpost, left turn

signpost, empty) had a different return value (see Table 3.1). The organism had to

decide what, if anything, to do with the information from the one.

For the first group of experiments, I used four different single-direction state

grids, two that contained only right turns, and two that had only left turns. The

second group of experiments used five state grids that contained both right and left

turns. For both sets of experiments, organisms were assigned one of the state grids

at random upon birth and replication. In this way, different generations of organisms

experienced all the possible environments through the course of evolution. For each

environment type (i.e., single—direction paths and right-left paths), 50 replicate ex-

periments ran for 250,000 updates, with a population maximum of 3,600 organisms

(60 x 60 world). I seeded all runs with the default simple self-replicator ancestor

(i.e., an organism that has only the capability to replicate), and used the default

mutation rates (0.085 genomic mutation rate for a length 100 organism, comprising

a 0.0075 per site copy mutation rate, 0.05 per divide insertion mutation rate, and

0.05 per divide deletion mutation rate (Ofria & Wilke, 2004)).

3.2.2 Results and Discussion

Single-direction Paths

To evaluate the success of different evolved populations, I used both quantitative

performance measures and behavioral tests of evolved organisms. For the quantita-

tive measures of performance, I examined fitness and task quality over time. These

values are tracked and recorded during the course of an Avida experiment. The

behavioral tests involved running execution traces of evolved organisms on different

state grid configurations. The trace record includes the trajectory history of the
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organism, given in the form of state grid cell identification numbers that can be

converted into state grid (:13, y) coordinates for visualization.

Fitness and task quality provide information about how well the organism per-

forms in a given environment. In Avida, fitness equates to metabolic rate divided by

the number of instructions required for an organism to replicate. For these experi-

ments, I tied the metabolic rate bonus exclusively to the path traversal task. Task

quality measures the ratio of the total possible metabolic rate bonus an organism will

receive, based on its performance of the tasks in the environment, and so serves as a

straightforward measure of an organism’s performance of a given task. For example,

an organism with a task quality of 0.03 is relatively low performing in the related

task, while an organism with a task quality of 0.98 is relatively high-performing,

receiving a higher metabolic rate bonus.

In the state grid experiments, task quality is a direct measure of how much of the

path an organism traversed without moving into any empty cells (see section 3.1.2

for the definition of the path traversal task): an organism that traversed all paths

without moving into any empty squares would have a task quality of 1.0. Because

overall metabolic rate (and therefore fitness) for these experiments was associated

solely with the path traversal task, task quality and fitness track closely. To illus-

trate this point, Figure 3.2 shows both the average log(fitness) of the final domi—

nants (prevalent genotype in a population) and the average maximum task quality

(AMTQ) from all 50 replicate experiments for the single-direction path state grids.

The similarity of the curves shows that task quality and fitness are similar in this

particular situation, and that task quality can be used as the performance metric for

the experiments. Figure 3.2 also illustrates that the best-performing organisms from

the 50 replicate experiments navigated, on average, half of each path experienced at

the end of 250,000 updates of evolution. Figure 3.3 shows the distribution of AMTQ

values for these same experiments, with each path shown separately. Although the

sample medians appear lower for the left-turn paths, there was no significant differ-

ence between the AMTQ distributions for each path, as measured by the AMTQ

at the end of evolution (Kruskal—Wallis Test, p = 0.287). Qualitatively, the overall
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Figure 3.2: Average log(fitness) and average maximum task quality (AMTQ) in

single—direction paths experiments. In this case, log(fitness) and task quality track

each other closely, and are both good measures of algorithm performance. The

curves also show that the average task quality over all 50 final dominant organisms

is near 0.6, indicating that, on average, the organisms successfully traversed over

half of each path by the end of the evolution run.

performance appears somewhat noisier on the left—turn—only paths. This character-

istic is also evident in the performance of the population average task quality and

AMTQ of the top-performing population from the set of 50 replicate experiments

(Figure 3.4).
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Figure 3.3: Distribution of average maximum task quality (AMTQ), individual

single—direction paths. Paths 1 and 2 are right-turn—only paths, Paths 3 and 4

are left-turn-only paths. Although the medians for right-turn and left-turn paths

appear different, there is no significant difference in the AMTQ distributions (Mann-

Whitney U-test, p > 0.05 for all pairs of paths; see Table ?? for specific p values).
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gle—direction path experiments. The plot shows the
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To test the behavior of evolved organisms, I ran execution traces for selected final

dominants in different environments. With the first environment, I tested organisms

on the same state grids that the organisms experienced during evolution. My goal in

these tests was to observe how the organisms’ strategies function in the environments

where the behavior evolved. In the second environment, I exposed the organisms to

novel environments, i.e., state grids and paths that the organisms had not experi—

enced during evolution. I used the novel paths in order to demonstrate the generality

of the evolved solutions, or uncover solutions that had been tuned specifically to the

evolutionary environments. In this technique, I systematically removed some of the

regularities from the paths. With such changes in the paths, an organism navigating

on a novel path encounters situations that evolution never had to deal with, thus

probing the organism’s underlying algorithm. For example, I presented organisms

with new configurations of single-direction paths. These new paths had the same

fundamental characteristics as the paths in the ancestral environments (i.e., each

path contains only right turns or left turns), but the details of the paths varied (path

length, number of turns, steps between turns, state grid size). An organism with a

brute-force solution to the paths of the native environments would be unable to fol-

low the new path, since its algorithm will depend on the path regularities that were

present during evolution. On the other hand, an organism with a more generalized

strategy for path—following will navigate a new single-direction path with case. For

a more challenging test, I also exposed the organisms from the single-direction path

ancestral environment to new environments that have both right and left turns in

the same path. These organisms never encountered this situation during evolution

in their ancestral environment. If an organism is able to succeed in the novel en-

vironment, with no additional evolution, the organism must have some mechanism

for dynamically switching between turn directions, even though this circumstance

never occurred during the organism’s evolutionary history. I used this technique of

placing organisms in novel environments for each set of state grid experiments.

Figure 3.5 shows trajectories of the final dominant with the highest ending

metabolic rate among all 50 replicate single-direction path experiments, on a right-
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Figure 3.5: Trajectories of an example evolved organism on paths that were experi—

enced during evolution.

turn-only path (Figure 3.5a) and on a left—turn—only path (Figure 3.5b). This

organism was also the final dominant in one of the top ten populations ranked

by AMTQ. The organism’s trajectories on the other two evolutionary environment

state grids are qualitatively identical to those shown, and so are not included here.

The organism’s evolved strategy performed well in both turn environments. The

organism did some “backtracking” on the right-turn grid, i.e., it turned around and

moved back in the direction of its initial position, retracing its steps on the path.

This fact did not result in a reduction of the organism’s fitness: although the task

quality increases only for unique path cells encountered, the calculation does not

penalize an organism for multiple traversals of a path cell. The only potential dan-

ger for an organism that is “killing time,” like this one, is that the organism could

be copied over by another organism that manages to replicate first. This particular

organism not only avoided that fate, it also evolved to be the most fit individual in

its population. This organism was able to navigate the entire right-turn path, and
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did not enter any empty cells when moving on the right-turn path. The organism

also successfully followed the left-turn-only path, stopping after it encountered a

single empty cell. This particular organism was not able to successfully negotiate

paths containing both right and left turns. On four of the five paths of this type,

the organism failed to replicate, when it became “stuck” at the first turn cue that

indicated a change of direction (i.e., from right to left or from left to right). When

traversing the fifth path, the organism failed to recognize a turn cue, moved into an

empty cell, and then completed replication.

Analysis of the execution trace of this organism as it traverses each of these

two paths reveals how its algorithm operates to produce this behavior. Most of

the path-following and replication code of this organism’s genome is organized into

two modules. The first module, “Module A,” is mostly concerned with moving on a

right-turn, while the second module, “Module B,” focuses on left-turn paths and also

contains a nested copy loop. These code sections are both executed, regardless of

whether the organism is on a right-turn or left-turn path, but the behavior that the

modules produce differs according to the path type (i.e., right or left). In general,

Module A is a “counting” routine. When the organism is on a right-turn path,

Module A counts the organism’s steps. On a left-turn path, Module A counts the

number of rotations the organism executes. Module B allows an organism moving

on a left-turn path to travel to the end of the path, and then replicate. When the

organism is on a right—turn path, the organism uses Module B to “backtrack” on the

path, retracing some of its steps, while it finishes its replication process.

58



The following is a pseudocode description of the functionality of Module A:

do

rotate right

if (CX > 0) copy

COPY

CX <- sense

if (CX == nutrient) rotate left

else if (CX == right turn)

CX <- 128

move

BX <- BX + 1

while (BX != CX)

This code executes differently, depending on whether the organism is currently

in a right-turn or left-turn environment. When traversing a right-turn grid, the

organism uses this loop to count its steps to the end of the path. Setting the CX

register to the value of 128 (by reading the current position of the Instruction Pointer

(IP)) and incrementing the value in the’BX register (which begins at a value of 0

at the first loop iteration) with every loop iteration sets up the exit condition for

the loop: after the organism has taken 127 steps in the loop, the last increment

of the BX register causes execution to exit the loop. When executing this loop

on a left-turn—only path, the organism remains in the same spot and executes the

loop four times, performing a one-eighth turn in each iteration. When the value

of the BX counter reaches 4, the organism exits the loop, and is now facing in the

“wrong” direction (i.e., facing back the way it has already come). The section of

code immediately following this module includes another four one-eighth turns, so

the organism regains the facing it had upon entering Module A.
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Module B operates as follows:

do

move

BX <- sense

if (BX != nutrient) rotate left

if (BX == empty)

while (Iend label) copy

else if (lend label) copy

if (end label) divide

while BX != empty and not end label

When this algorithm is executed on a left—turn-only path, the organism moves

along the path, eventually moving one step off the end of the path into an empty

cell. At that point, the organism “stands still,” and executes a tight copy loop

to complete copying its genome to its offspring, at which time it divides. On a

right-turn path, however, the organism never enters the tight copy loop; instead,

it copies just one instruction for each iteration of Module B, while it retraces its

steps along the path. This strategy produces the backtracking that is visible in

the trajectory plot of Figure 3.5a. The number of instructions needed to produce

an offspring remain similar on right- and left- turn paths (1779 instructions for the

right-turn path shown in Figure 3.5a and 1780 instructions for the left-turn path

shown in Figure 3.5b) since an extra instruction is copied with every iteration of

Module A when the organism is moving on a right-turn path. Table 3.4 lists the

Avida instructions for the two modules described above. I also give a more detailed

discussion of the organism’s step-by-step operation in Appendix A.2.1.

This organism’s performance on novel paths was, however, inconsistent. The

organism successfully negotiated a right-turn-only path, stopping after it encoun—

tered one empty cell at the end of the path (Figure 3.6a). On a novel left-turn-only

path, however, the organism stopped as soon as it reached the first left-turn signpost

(Figure 3.7a). The execution traces of the organism’s traversal of these paths reveal

the reasons for this performance difference. When following a left-turn path, the
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Table 3.4: Avida instructions for example single-direction path organism.

 

 

Module A Module B

sg—rotate-r sg—move

if-grt-O sg—sense

nop-C nop-B

h-copy if-n-equ

h—copy sg-rotate—l

sg-sense if-equ—X

nop—C pop

jmp—head if-less

sg—rotate—l h—search

if-equ-X if-label

get-head nop—C

sg—move h-divide

inc h—copy

if-n-equ mov-head

mov-head     
organism “expects” the first turn to be encountered within the first two or three

movements. When this does not occur, the organism’s execution enters an infinite

loop (Module B discussed above) when it reaches the first turn, and the organism

cannot replicate. This problem does not hamper traversal of a novel right—hand

path. In addition, the organism does not backtrack along the path as it did on the

right-turn paths that were experienced during evolution: the organism stops after

one step into an empty cell, successfully finishes the replication loop, and divides.

These results suggest that the organism’s algorithm is reasonably well generalized

for right-turn environments, but not for left-turn environments. The organism’s per-

formance on a novel left-turn path does improve if the distance to the first turn is

shortened to a few steps.

To test this idea, I altered the organism’s initial position on the paths shown in

Figure 3.6a and Figure 3.7a. The initial position of the right-turn grid was moved

farther away from the first turn, and the initial position for the left-turn grid was

moved closer to the first turn. Execution traces for the organism on the two grids

support the preceding analysis. The organism is still able to successfully traverse
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Figure 3.6: Trajectories of an example evolved organism (same organism as shown

in Figure 3.5) on novel right-turn path. Figure (a) shows the organism’s trajectory

from the original initial position for the path, and Figure (b) shows the trajectory

from a new initial position that created an extended distance to the first turn on

the path (7 steps added to the distance to the first turn).

the right-turn grid, showing that the distance to the first turn does not matter in

a right—turn path. With fewer steps to the first turn on the left-turn path, the

organism is now able to navigate the left—turn path as well. Figures 3.6b and 3.7b

show the organism’s trajectories on the novel paths with new initial locations.

A model by Stephens (1991) demonstrated that within-generation persistence of

environmental factors is more important than between generation persistence as a

selective force in the evolution of learning. For the single-direction path experiments,

the single—direction characteristic of each path furnishes the within~generation reg-

ularity. Changeable features include the details of the path pattern and the path

length. These experiments also present between-generation regularity: the offspring

has a 0.25 probability of having an environment identical to its parent’s environ-
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Figure 3.7: Trajectories of evolved organism (same organism as shown in Figure 3.5)

on novel left—turn path. Figure (a) shows the organism’s trajectory starting at the

path’s original initial position, and Figure (b) shows the trajectory from a new

initial position that shortens the distance to first turn (unused nutrient locations

from original path appear for comparison).

ment (i.e., the offspring may be given the same state grid as its parent), and a

0.50 probability of having the same environment type as its parent (the offspring

may be given a path with the same turn direction as its parent’s path). Even if

the offspring is born into an environment with the opposite turn direction to its

parent’s environment, the core of the path—following problem has its own inherent

regularities.

Given all these predictable factors, it would seem that the most advantageous

strategy for this situation should be to evolve some static solution to the problem.

The preceding discussion, however, points toward some level of plasticity to the

evolved solution used in the case study. This plasticity may be at either the genomic

level, or at the execution level. In other words, the plasticity may involve static

execution flow, where differences in the environment produce different outcomes
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Table 3.5: Number of genomic positions required for path following and the resulting

dynamic plasticity ratios (DPR) for the final dominants from the replicate experi-

ments with the highest average maximum task quality (AMTQ) in single—direction

path experiments. Three replicates tied for the top tank (i.e., their AMTQ values

were the same), and two tied for the next rank. The rank 9 organism evolved as a

one-direction “specialist” i.e., it could function well only on right-turn paths), and

so was not considered in the DPR measurements.

 

 

 

 

 

 

 

 

 

 

Sites Both Sites Left Sites Right Plasticity

Rank Replicate ID Directions Only Only Ratio

1 (tie) 8 55 1 4 0.0847

1 (tie) 14 60 6 7 0.1780

1 (tie) 48 91 13 6 0.1727

4 (tie) 9 58 3 6 0.1343

4 (tie) 31 78 1 2 0.0370

6 32 49 1 3 0.0769

7 19 50 5 12 0.2537

8 30 47 0 3 0.0600

10 46 40 7 14 0.3444        
 

using the same instructions, or dynamic execution flow, where different instructions

are executed, causing different actions to be chosen, depending on the environment

(Clune, Ofria, & Pennock, 2007). As a measure of the proportion of dynamic versus

static plasticity, I computed a dynamic plasticity ratio (DPR). This ratio examines

several components of an organism’s genome: 1) the number of sites (instructions)

that are important on both right-turn and left-turn paths; 2) the number of sites

important only for right-turn paths, and 3) the number of sites important only for

left-turn paths. The total of these three components identifies the number of sites

that are important to the path-following task. The ratio of the number of sites used

for only one direction to the total sites for path following is the dynamic plasticity

ratio, which quantifies the execution-level plasticity of a genome:

Right + Left

DP 2

R Right + Left + Both

(3.4) 

where Right is the count of sites in the genome that are important only for right-

turn paths, Left is the count of sites important only for left-turn paths, and Both
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is the count of sites needed for paths in either direction.

Existing Avida analysis tools identify sites used in specific tasks, through the use

of knock-out experiments. I analyzed the results of the task mapping analysis by

evaluating whether knocking out a particular site decreased the organism’s metabolic

rate for each condition of interest (i.e., right-turn path, left—turn path, both path

directions). That analysis gave site counts for Right, Left, and Both to produce

the DPR.

I ran these analyses on a hand-coded organism that was able to complete the

path traversal task, in order to provide a basis for comparison of DPR values. This

organism’s DPR value was 0.074 (25 genomic positions for both turn directions, 1

position for right, 1 position for left). This DPR value shows little dynamic plasticity

in the hand-coded organism.

I also performed the analyses on the final dominants from the replicates with the

ten highest average maximum task quality (AMTQ) values from the single-direction

paths evolution runs (i.e., the ten replicate populations with the highest AMTQ

at the end of the evolution runs). Of those ten organisms, one had evolved as a

right-turn “specialist” (i.e., it was able to negotiate the right-turn paths but not the

left-turn paths), and so was not included in the DPR analysis. Table 3.5 summarizes

the site counts and DPR information of the evolved genomes.

The range of DPR values is surprising, ranging from a minimum of 0.0370 to a

maximum of 0.3444. The “step—counter” organism, discussed above in detail, has

high DPR, 0.2537, while the dominant from the population with the highest AMTQ

has a low DPR, 0.0847. Such a wide range of DPR values among the dominants of

the top-performing populations suggests that, even in a highly regular environment

where a static solution can perform well, some level of execution-level plasticity may

offer an advantage. Given the nature of this environment, some minimal level of

plasticity is almost a requirement for high performance: organisms must, at the

least, have a mechanism for turning both directions. Specialists, like the right-

turn specialist organism described above, can do well by executing one type of path

perfectly, but a generalist with a good solution for both directions will do better.
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Figure 3.8: Example right—left turn path.

Right-left Turn Paths

The right-left turn environments present fundamentally the same problem to evo—

lution as the single-direction environments. The right-left turn environments are

somewhat more complex, however, since evolution must always contend with both

turn directions in every path.

The state grids for the right—left turn experiments were set up in the same manner

described in section 3.2.1, using four states: nutrient, right signpost, left signpost,

and empty. Figure 3.8 shows an example right—left turn path. Five different paths

were used for this set of evolution experiments. All other experiment details are

identical to the single-direction path experiments, as described in section 3.2.1.

The performance at the end of 250,000 updates of evolution across all 50 replicate

experiments, as measured by the average maximum task quality (AMTQ), was not

significantly different from the populations in the single-direction path experiments
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Figure 3.9: Average maximum task quality (AMTQ) and population average task

quality for all 50 replicate populations in right—left turn path experiments. Task

quality shown is averaged over all five paths experienced during evolution.

(Mann-Whitney U-test, p > 0.05). In the current experiments, the AMTQ at the

end of the evolution experiment was close to 0.5, as opposed to 0.6 in the single—

direction path experiments (Figures 3.9, 3.10). This difference appears to support

the intuition that evolving a solution for paths that contain both directions is slightly

more challenging than the single—direction path. There was, however, no significant

difference in the performance on each path, measured by the AMTQ at the end

of evolution (Kruskal—Wallis Test, p = 0.950). Some populations, however, evolved

good solutions. The final dominant of the top-performing population demonstrated

near perfect performance early in evolution, as shown by its task quality of close to

1.0 on all paths at time 50,000 updates (Figure 3.11).
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Figure 3.10: Distribution of average maximum task quality, right-left turn experi-
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(Kruskal—Wallis Test, 19 = 0.950).
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Figure 3.11: Average maximum task quality (AMTQ) and population task quality

average, top population in right—left turn path experiments. Task quality is shown

for each individual path experienced during evolution.
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Figure 3.12: Trajectories of example evolved organism from right—left turn experi—

ments.

I again tested the behavior of evolved strategies by running execution traces

of the highest AMTQ final dominant among all 50 replicate experiments as the

organism navigated both known paths (i.e.paths that had been experienced during

evolution) and novel paths. Figure 3.12 shows trajectories of this top performing

organism in two of the five evolutionary environments. The organism traverses each

path in its entirety, stopping after taking one step off the end of the path into an

empty cell. This organism performs equally well on the other paths experienced

during evolution, so those trajectory plots are not shown here.

The organism also successfully negotiated novel paths. Figure 3.13 shows trajec-

tories of the highest AMTQ final dominant organism, traced on two different novel

paths. The dimensions of the grid containing both of these paths are different from

the dimensions of the grids in the evolutionary environments: the novel paths shown

have dimensions of 20 x 20 and 19 x 17 (Figure 3.13 (a) and 3.13 (b), respectively),
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as opposed to the 25 x 25 grids that were experienced during evolution. Since all

state grids are toroidal, the grid dimensions should make no difference to organisms,

and organisms do not have access to any global information. However, I included

tests with these different grid dimensions to provide additional evidence that the

evolved algorithms do not work by finding and exploiting geometrical information,

such as grid size, but instead function through gathering and using information from

the environment.

This organism executes most of its movement with a concentrated movement

loop. At a high level, the general structure of the code is move-sense—decide. The

decision concerns whether or not to turn, and if a turn is to be made, which direction

to turn. Within the loop, conditional statements guard the turn directions to provide

the correct execution flow for each environmental cue. The organism has a simple,

but clever, mechanism for using the default behavior of the comparison instructions

to select the correct action, based on the current sense information. The organism

can use the default comparison behavior because it manipulates the current sensed

state value such that the values match the comparisons as needed. I provide more

detail of how this mechanism works, afterthe following pseudocode description.

In pseudocode, this movement loop functions as follows:

do

if (BX > 1) rotate left

COPY

move

BX <- sense

BX <- right-shift(BX) # See details below

if (BX == 1) rotate right # Executes if last sense == Right

else if (BX < CX) # Skip when sense == Left

if (BX > 0) continue # Iterate if sense != Empty

while (BX > O)

The key detail of this loop’s execution is how the right-shift operation prepares

the sensed state value for use with the unmodified comparison statements. Stepping
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Table 3.6: Avida instructions for example right-left turn path organism.

 

Movement Loop

if—grt-X

sg-rotate—l

h-copy

sg—move

sg-sense

shift-r

if-equ—X

sg-rotate-r

if—less

if-grt-O

mov-head

 

   
through the algorithm, starting from the BX<—sense line, the current cell state is

sensed, and the value placed in BX. That value is then right-shifted, dividing most

of the sense values by 2. Recall the state grid return values from Table 3.1. If the

current state is nutrient (return value = 0), BX is still 0; if the state is right-turn

(return value = 2), BX is now 1; if the state is left-turn (return value = 4), BX

is now 2; if the state is empty (return = -1), BX is still -1 (since the operation

is an arithmetic right-shift, the sign bit is preserved in the shift). This low-level

manipulation of the sense value permits the algorithm to use the default behavior

of the comparison instructions, thus avoiding the need for NOP modification of the

instructions.

This particular solution is simple and economical, accomplishing the job with few

extraneous instructions. The organism has evolved an equally economical copy loop

near the end of its genome. The copy loop performs the bulk of the organism’s repli—

cation, and begins execution only after the movement loop has terminated. Table 3.6

gives the Avida code for the example organism’s movement loop, and I provide more

detailed analysis of how the organism’s code operates in Appendix A22.
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Figure 3.13: Tfajectories of example evolved organism from right-left turn exper-

iments on novel paths containing both right and left turns. Figure (a) shows the

organism’s trajectory on a path in a 20 X 20 grid, while Figure (b) illustrates the

trajectory on a 19 x 17 grid path. The dimensions of both of these grids differ from

the dimensions of the evolutionary environments (i.e., 25 x 25).
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3.3 Conclusions

In this chapter, I focused on evolving reflex actions in response to environmental

stimuli. This was an important step in the experimental design, from both the-

oretical and practical perspectives. From a theoretical standpoint, reflexes were

likely the evolutionary precursors of more flexible responses, and are well-studied as

bases for conditioning. On the practical side, we cannot hope to evolve more com-

plex faculties such as memory and learning in Avida if we cannot evolve reflexive

behaviors. These experiments started at a basic level, using simple environments.

The single-direction turn experiments presented the simplest environments, where

the only variation between the environments was in the direction of turns and the

details of the environment layout. The second phase, the right-left turn paths, ex-

tended the single—direction path environments to include both right and left turns

in each environment.

Interesting and clever strategies evolved for both environment types, despite the

simplicity and regularity of those environments. The evolved strategies were not

rote recapitulations of known patterns in the evolutionary environments: organisms

were able to follow paths that they had never experienced during evolution. The

evolution of the “step-counter” organism was a particular highlight of these exper-

iments. Mechanisms that are analogous to step counters play important roles in

animal odometry, and investigating how such mechanisms evolve is of great interest.

Both change and regularity in environments have roles to play in promoting

the evolution of memory and learning (Stephens, 1991). The environments used in

the experiments in this chapter contain many regularities, but incorporate enough

change to suggest that some amount of execution-level plasticity may be useful. To

test this idea, I quantified the execution-level plasticity of selected genomes with

the dynamic plasticity ratio (DPR). The DPR values varied widely, and did not

have a clear story to tell about the desirability of such plasticity in the experimental

environment. However, the presence of higher DPR values suggests that dynamic

plasticity may provide some benefit even when static solutions can suffice.
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Chapter 4

Evolving One-bit Memory

Environmental complexity can present organisms with problems, opportunities, or

a mixture of both. Complexity can be described as “variety, diversity, doing many

different things, or having the capacity to occupy many different states” (Godfrey-

Smith, 2002, p. 232). Complex environments are demanding, requiring organisms to

cope with irregularity and ambiguity. Successful behavior may necessitate decisions

that incorporate past actions as well as the current situation. In complex environ—

ments, memory and learning will often provide needed tools for increasingly flexible

responses.

Flexible behavior spans a wide range of responses. Basic types of reversible

plasticity fall in a part of that range, and may be considered as early forms of

learning; learning itself is a complex and advanced form of plasticity (Dukas, 1998)

(see also section 1.2.1). This connection between basic reversible plasticity and

learning leads to the next step in investigating the evolutionary pathways for memory

and learning: evolving a plastic response. Clune et al. (2007) demonstrated that

plastic responses can evolve in Avida. Their experiments resulted in successful

strategies that used either static flow of execution (the same set of instructions

are executed in the same order, but different environmental inputs result in different

behaviors) or dynamic execution flow (different segments of instructions are executed

depending on the current environment). Dynamic execution flow emerged in some

cases in the experiments discussed in Chapter 3.2.2. For the experiments discussed
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in this chapter, I focused on two questions:

1. How does the use of memory change when evolution occurs in more complex

environments?

2. What are the differences between evolving life-long, stable memory versus

short—term, volatile memory?

4.1 Evolving One-bit Lifetime Memory

In the next set of experiments I investigated evolving a life—long memory, specifi-

cally to produce individuals that store experience that guide their future actions.

This relates to the idea of phenotypic plasticity, discussed above and earlier in sec-

tion 1.2.1, where a given genotype may express differently in an individual organism

in response to environmental differences. Here, we looked for different execution of

the Avidian’s genome, depending on the specific environment the organism found

itself in.

4. 1 . 1 Experiments

The fundamental design of these experiments is the same as the preceding single—

direction path experiments, described in section 3.2. The important difference be—

tween the experiments relates to the cues I used to construct the paths. In the

experiments of the last chapter, I put a directional cue at each turn; a right turn

and a left turn have different return values (see section 3.1.3 for more details). In

that setup, past cues never had to be stored in order to make an informed decision

about the current action. In this second set of experiments, there is a slight twist on

that theme. In these “cue-once” environments, only the first turn on the path gives a

specific directional cue; all subsequent turns have a different sense one that, in effect,

signals an organism to “repeat the last turn direction.” This “repeat—last” sensory

cue is consistent, both within a single state grid and across all state grids, i. e., it

is the same value whether the current path is a left-turn path or a right-turn path.
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Figure 4.1: Example state grid from “cue-once” experiments. The state grids for

this experiments have the “cue—once” directional cue and “repeat-last” states. The

one directional cue, shown by the yellow triangle, signals whether the environment

is a right-turn or left-turn environment (here, a left—turn environment). Subsequent

turns (brown diamonds) are signaled by the “repeat-last” state, that gives the same

return value in both right and left turn environments, serving as a cue to “repeat

the last turn.”

The repeat-last cue is therefore consistent within an environment, but ambiguous

between environments. The idea behind the cue-once setup is that organisms will

need to evolve to be able to identify the environment type from the one specific

directional cue, and then be able to maintain that directional information through-

out its lifetime. The capacity to store that information is analogous to a “life-long”

memory, meaning a memory that needs to be maintained and used, but does not

have to be changed after it is stored. This also resembles phenotypic plasticity, as

discussed earlier: a particular genotype may express differently (in the case of an

Avidian, this means it will execute differently) in response to different environmen-

tal conditions. This type of dynamic execution-flow plasticity (Clune et al., 2007)
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may be either reversible or permanent: if reversible, an organism will be able to

function flexibly in differing environment types during its lifetime; if the plasticity

is permanent, an organism will be incapable of performing appropriately in another

environment once execution for one environment begins.

As in the earlier single-direction path experiments, an organism was randomly

assigned one of four path grids (from a set of two right—turn paths and two left-turn

paths) at birth. The paths were the same as those used in the preceding single—

direction path experiments, with the states of all turns but the first turn changed

to the repeat-last cue, as described above. Figure 4.1 illustrates a path from the

cue-once paths of the current experiments. The other details of the experimental

setup and reward structure were identical to those of the experiments presented in

Chapter 3.

4.1.2 Results and Discussion

Once again, I used task quality to assess performance over the course of evolution.

The average task quality for all four environments (maximum and population av-

erage for all 50 replicate experiments) is shown in Figure 4.2. The curves of both

the maximum and the population average appear to still be gradually rising at

the end of the 250,000 update evolution run, suggesting that continued evolution

may have resulted in additional performance improvement. The population with

the highest AMTQ also appears to be making some improvements at the end of

the run (Figure 4.3). Figure 4.4 shows the distribution of AMTQ values for each

individual path. The average maximum task quality (AMTQ) values at 250,000

updates in this experiment were not significantly different from those measured in

the single—direction path experiments (Mann-Whitney U-Test, 1) = 0.759) and in

the right-left turn experiments (Mann-Whitney U—Test, p = 0.546). The lack of

significant difference between the average task quality indicates that evolution was

able to discover effective strategies for the somewhat more challenging environment

presented in the cue-once experiments. There was also no significant difference in

the performance on each path, measured by the AMTQ at the end of evolution
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Figure 4.2: Average maximum task quality (AMTQ) and population average, all 50

replicate populations in cue—once experiments. Task quality shown is averaged over

all four paths experienced during evolution.

(Kruskal—Wallis Test, p = 0.805). These evolved strategies enabled the organisms to

navigate large portions of the cue-once paths, indicating that evolution succeeded

in building algorithms that differentiate the information from the first turn cue, and

use that information to guide the rest of the execution along the path.
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Figure 4.3: Average maximum task quality (AMTQ) and population average, top

performing population in cue-once path experiments, paths shown separately.
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p = 0.805).
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Figure 4.5: Trajéctories of example evolved organism on paths that were experienced

during evolution in cue-once experiments.



Figure 4.5 shows trajectories of the final dominant organism from the population

with the highest average maximum task quality. Analysis of an execution trace

revealed that the genome has two clear movement modules, one used primarily

for moving on right-turn paths, “Module A,” and the other. ”Module B,” used

exclusively for movement on a left-turn path. The code for Module A comes before

Module B in the genome, and is executed for both right-and left-turn paths. For

left-turn paths, this loop is used to move on the straight portion of the path that

precedes the first turn. An organism moving on a right-turn path divides shortly

after exiting Module A, so Module B is executed only when the organism is moving

on a left-turn path. Module B also contains a nested copy loop, which the organism

executes once it steps off the end of the path into an empty cell.

A pseudocode version of Module A of this genome is as follows:

do

if (BX != CX) rotate right # Skip when last sense==nutrient

move

COPY

BX <- sense

if (BX > 1) copy # True when sense==right or left turn

if (BX > 1) BX <- BX -1 # True when sense==right or left turn

if (BX != OK)

if(BX == 1) continue # Loop if sense==right turn, nutrient

while (BX != empty OR BX != left turn) # Exit if sense==empty, left

This code produces different behavior depending on the path type (right or left)

the organism is traveling on. On right-turn paths, the right turn executes only if the

organism last sensed a right-turn cue; the turn is skipped if a nutrient was sensed.

The copy instruction always executes, and when the organism is on a right-turn

path, it uses this module to perform most of its replication. Execution remains

in this module until the organism senses an empty cell (i.e., it steps off the end

of the path). When the organism senses an empty cell this loop terminates, and

the organism divides when it encounters a divide instruction that is positioned ten
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instructions after the end of this module. When the organism is traversing a left-turn

path, the right-turn instruction never executes, so the organism continues straight on

the path. Execution exits this module when a left—turn cue is sensed; the instruction

immediately following loop exit is a left turn (sg—rotate-l), which executes. Execution

then moves on to Module B, after executing a small section of instructions that

contain no path-following instructions.

Pseudocode for Module B shows its underlying logic:

while ( ) # No exit condition for loop; divide terminates loop.

rotate left

if (BX == 1) move # Step after a left turn

if (Bx > o)

if (BX < CX) rotate right

move

BX <- sense

if (BX < CX) # True if last sense==empty

copy # Enter copy loop only if sense==empty

if (end label) divide

copy # Copy while still moving on path

As previously noted, this module executes only when the organism is moving on

a left-turn path. A left turn is executed immediately after loop entry, and is followed

by a step. Taking a step without sensing first works in the ancestral environments be-

cause there are no cases of turns on two consecutive steps on the path. The next two

comparisons work together to ensure that the organism is facing correctly, depending

on whether a repeat-last or a nutrient is sensed. The comparison if (BX > 0) is

true when the repeat-last cue is sensed; if (BX < CX) is executed, but is false,

so the right turn does not execute. The comparison if (BX > O) is false when

a nutrient one is sensed, so the next comparison is skipped, and the right turn ex-

ecutes. This negates the left turn that was done at the top of the loop, and the

organism moves straight forward on the path. Execution enters the copy loop only
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Table 4.1: Avida instructions for example cue-once path organism.

 

 

Module A Module B

if—n—equ sg—rotate—l

sg-rotate—r if—equ—X

sg-move sg—move

h-copy if—grt-O

sg—sense if-less

if—grt-X sg-rotate—r

h-copy sg—move

if-grt-X sg—sense

dec swap-stk

if—n—equ if-less

if-equ-X h-search

mov—head h—copy

if—label

nop—C

h-divide

mov—head    
 

when the organism senses an empty cell, and the organism remains in the copy loop

until it finishes copying and divides. Table 4.1 shows Avida code sections for this

organism’s two movement modules. I give more a detailed analysis of the operation

of the organism’s Avida code in Appendix A.2.3.

Given the structure of this genome, the question is whether an organism can

“switch” readily between directions. Since the right-turn segment of the genome is

always executed, an organism may be able to transition into left turns after doing

some right turns. However, the converse (right turns after left turns) appears impos-

sible, since there is no mechanism in the execution for returning to the earlier part of

the genome. To test this, I traced trajectories of the organism as it executed on two

novel paths, one from the earlier right-left turn paths, and another that incorporated

right and left cues and repeat-last cues (the second path type will be used during

evolution in the next phase of experiments). Figure 4.6 shows the trajectories. The

trajectories demonstrate that the organism is able to transition from right turns to

left turns, but it cannot switch to right turns after performing left turns. In this

85



     l   

   

 

     

      
    

   

      

 

   

  

    

 

   
 

  

}xxxxxxxxxxxxxxxxxxxxxxxxx [xxx xxxxxxxxxxx..xxx

xxxxx}o>xxxxxxxxxxxxxxxxx xxxxxxxxxxxoxx.xx

xxxxoxxxoxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxx’xxxoxx

xxx.xxxxx}xxx<00dxxxxxxxx xxxx.000.xxxxxxoxxxoxx

xxpxxxXXXOXXQXXXXQXXXXXXX xxx0xxxxx0xxxxx.xx><QXx

xxoxxxxxxoxoxxxxxoxxxxxxx xxoxxxxxxxoxxxoxxxxxox:

ixxoxxxxxx40xxxxxxoxxxxxxx x.xxxxxxxxx<..xxxxxxx’

xx}xxxxxxooxxxxxx<xxxxxxx x.xxxxxxxxxxxxxx...xx.

lxxx.xxxxfixxoxxxx.xxxxxxxx x.xxxxxxxxxxxxx.xxx00x

’XXXXQXXXOXXXQOOQXX xxx x xxoxxxxxxxxxxxxoxxxoox

'xxxx0xxx0xxxxxxxx xxx xx xx xxx>00<xxxxxxxxoxx0xx.

‘xxxx.xxx}xxxxxxx xxox x xxx xxxx xoxxxxxxxoxflxxx.

xxxx’xxoxxxxxxx'xxxcx x xxxx xxx.xxxxxx}x.xxx.

‘XXXXXQQXXXXQQQ xxxxfix x xxxxxxxxixxxOxxxxoxxoxqu

xxxxxooxxxoxxx xxxoxx x xxxxxxxxx.xxx.oo.xxxoxxox

xxxxdxx>o}xx}0000<jxxx x xxxxxxxxxoxxxxxxxxxx}x’xx

‘xxXXOXXXXXXOxxxxxxxxx x xxxxxxxxx0xxxxxxxxx0xx0xx

.xxxxoxx}..dxxx>o}xxxx x xxxxxxxxx.xxxx.ooo.xxxoxx

|xxxx§x}xxxxxx.xxx>xxx x xxxxxfloo.xxxxxxxxxxxxx.xx

xxx0xx0xxxxx0xxxx0xxx x xxxx.xxxxxxx}0..xxxxx0xxx

xxfixxxbxx}.<xxxxxoxxx x xxx.xxxxxxx.xxxxoxxxoxxxx

|xxoxxxxooxxxxxxxxfixxxx x XXXOXXXXXXQXXXXXXQ..XXXXX

XX<XXXXCOXXXXXXX.XXXXX x xxx.xxxxx.xxxxxxxxxxxxxxx

'XXXQ..<XX’.....>XXXXXXXXX xxxx.....xxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxx

_______ - __l _ _ ml

(a) Novel Path, Right and Left States (b) Novel Path, All Turn States

Figure 4.6: Trajectories of example evolved organism from cue-once experiments,

tested on novel paths: (a) Trajectory on a path using the right/left turn states at

every turn, as in the earlier right-left turn path experiments; (b) Trajectory on a

path that incorporates right, left, and repeat-last states.

genome, the change to left-turning is irreversible. The left-turn loop of this genome

is a clear example of a part of a genome that executes in one environment but not

in another environment.

4.2 Evolving One-bit Volatile Memory

In constructing his model of the evolution of animal learning, Stephens (1991) con-

sidered the tension between the importance of environmental change, on the one

hand, and environmental regularity, on the other hand. Stephens terms the case

for the importance of change the absolute fixity argument: assuming that there are

some costs to learning, an absolutely fixed environment should produce a geneti-

cally fixed behavior pattern rather than learned behavior. In other words, in a fixed

environment, there is nothing to learn. The other viewpoint, which Stephens calls

the absolute unpredictability argument, contends that if the state of today’s environ-

ment has no predictive relationship to the state of tomorrow’s environment, there

is no point in learning. In a random or chaotic environment, there is, once again,
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nothing to learn. Stephens’ model resolves this paradox by taking into account

two distinct types of environmental regularity (“within—generation persistence” and

“between-generation persistence”), and argues that the evolutionary value of learn-

ing is determined by “the pattern of predictability in relation to an animal’s life

history” (Stephens, 1991, p. 77). In other words, it is necessary to consider not

only the overall environmental predictability, but also the relationship between pre-

dictability and an organism’s life history. The model shows that within-generation

persistence (the extent to which today’s state predicts tomorrow’s state within an

individual’s lifetime) is more important as a selective pressure in evolving learning

than between-generation persistence (the extent to which states in the parental envi—

ronment predict states in the offspring’s environment): when there is some amount of

change, increased within-generation persistence promotes learning, while increased

between-generation persistence appears to have no effect. However, if an environ-

ment is nearly completely fixed, increasing change either between or within genera-

tions promotes the evolution of learning.

The details of Stephens’ model present an environment and population that

differ from those in the current experiments (e. g., non—overlapping generations, an

environment containing exactly two resources), but the ideas of the model are clearly

pertinent to the present study. In the environments of the state grid experiments,

there is a high. degree of both between- and within-generation persistence. The

parental environment is a good predictor of the offspring’s environment; in general,

there is a 0.25 probability that an offspring’s environment will be identical to that

of its parent, and the environment never changes dramatically. The environment is

temporally fixed but spatially heterogeneous; the primary unpredictability is what

the next state might be.

Even with such simple environments, we can reasonably expect some learning to

evolve. In this case, the learning is quite fundamental, involving remembering one bit

of information. The “cue-once” experiments of the preceding section (section 4.1.1)

took a step in that direction. Those experiments focused on evolving “life-long

memory”: once the bit was stored, it never had to be changed within an organism’s
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Figure 4.7: Example state grid with irregular path. A “new” turn direction (the first

turn or a change from the previous turn direction) is cued by the unique right or left

turn sense value. Subsequent turns in that same direction (brown diamonds) are

signaled by the “repeat-last” state, that gives the same return value when preceded

by either a right or left turn, cueing to “repeat the last turn.”

lifetime. In the final set of experiments, I deal with evolving more active one—bit

memory, or one-bit volatile memory. For these experiments, evolution needed to

contend with intermittent updating of information.

4.2.1 Experiments

The general layout of the state grid paths for these experiments used the right-left

turn paths from the experiments in section 3.2.2, but changed some of the cue return

values. For the irregular paths in these experiments, I used the same state structure

as the cue-once paths, except that each path contained both right and left turns.

If a turn is encountered as a “new” direction—that is, either as the first turn, or

a change from the previous turn direction (e.g., a left turn after one or more right
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turns)—the sense value is the directional cue value. Otherwise, if the current turn is

the same direction as the preceding turn, the sense value is “repeat-last,” as seen in

the cue-once experiments. This arrangement of information along the path means

that an Avidian must change the “remembered” sense cue value an unknown number

of times in its lifetime, and at irregular intervals. Such an arrangement necessitates

flexible use of information from an increasingly complex environment.

Figure 4.7 shows an example irregular path environment. These state grids use

all the cues introduced in the other experiments: nutrient, right turn, left turn,

repeat-last, and empty. The specific sense values for all cues were the same as those

used in all other experiments, as summarized in section 3.1.1. Other details of the

experimental setup remain the same as in all previous experiments.

4.2.2 Results and Discussion

As in the previous experiments, I used the average maximum task quality (AMTQ)

as the primary performance metric for evaluating the evolved strategies. The overall

AMTQ, shown in Figure 4.8, shows a markedly weaker performance than in the other

three experimental environments. The difference in AMTQ at the end of 250,000

updates was significantly different in the irregular path experiments compared to the

other three environments (Mann-Whitney U-test, p < 0.05 in all pairwise compar-

isons between the current experimental treatment and the other three experimental

treatments). There was, however, no significant difference in the performance on

each path, measured by the AMTQ at the end of evolution, as shown in Figure 4.9

(Kruskal—Wallis Test, p = 0.238). This environment may simply be more difficult

than those of the previous experiments. The AMTQ of a single experiment replicate,

shown in Figure 4.10, illustrates some of the effects of the underlying evolutionary

dynamics, and a degree of fragility in the evolving algorithms at many points during

the course of evolution, as mutations perturbed the functioning of the algorithm.

Despite the generally inferior performance of the evolved populations in this

environment, some highly effective strategies evolved. Figure 4.11 illustrates the

trajectories of the final dominant organism from the population with the highest
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Figure 4.8: Average maximum task quality (AMTQ), irregular paths. The plot

shows the combined AMTQ and the overall population average task quality for all

four paths experienced during evolution.

AMTQ at the end of the 250,000 update evolution run. This organism has an

excellent solution for following these paths, stopping after taking one step off the

end of the path into an empty cell. The evolved algorithm is equally effective on

novel paths, as shown in Figure 4.12.
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irregular paths. There is no significant difference between the AMTQ distributions

(Kruskal—Wallis Test, p = 0.238).
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Figure 4.10: Average maximum task quality (AMTQ) for a single replicate in irreg—

ular paths environment. The plots shows the combined AMTQ and the population

average task quality for each individual path experienced during evolution. This

population had the highest AMTQ at the end of the 250,000 updates of evolution.
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Figure 4.11: Trajectories of evolved organism, irregular path experiments. Trajecto-

ries of example organism on paths that were experienced during evolution in irregular

path experiments. In both (a) and (b), the organism stops after encountering one

empty cell.
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experiments on a novel path.

Figure 4.12: Example trajectory, example evolved organism from irregular path
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The execution of this organism’s genome is somewhat complicated, and shows

an impressive degree of flexibility. In general, this organism operates by moving

its execution to different parts of its genome based on the sensed environmental

state. The organism accomplishes all of its path-following with two loops, one for

moving through left-turn path sections, “Module A,” and the other for moving

through right-turn path segments, “Module B.” Unlike the other organisms that I

have examined in detail, this organism has well-defined functional and structural

modularity for handling right-turn and left-turn path sections. Module A appears

before Module B in the organism’s genome. Module A can perform an arbitrary

number of consecutive left turns, and any number of forward steps. Module A has a

nested loop that produces straight-ahead movement on the path; execution remains

in the smaller loop unless a non-zero cue is sensed. Sensing a left-turn or repeat-last

cue triggers an exit of the smaller loop, but execution remains in Module A. Sensing

a right-turn or empty cue results in exiting the smaller loop, and will also cause

execution to exit Module A. There is a section of instructions between the modules

that has no sg-moue instructions, but does have a single right-turn instruction that

negates the last left turn performed before exiting Module A. Using Module B, the

organism can maneuver through right-turn path sections. Module B functions with

arbitrary numbers of forward steps and repeated right turns. If a left turn cue is

sensed, Module B terminates and execution jumps to the beginning of the genome,

eventually reaching Module A again. If an empty cell is sensed while execution is

in Module B, the module terminates and execution continues with the instructions

after the module. In addition to the movement modules, the organism has a tight

copy loop near the end of its genome that accomplishes almost all the copying for

the organism’s replication.
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Module A, for navigating on left-turn path sections, functions as follows:

do

do

move

BX <- sense

if (BX < CX) swap (BX, CX) # Executes if sense==empty

BX <- BX - 1

while (BX < CX) # Exit for any state but nutrient

rotate left

while (BX == repeat last) OR (BX < CX)# Exit for sense==right, empty

The decrement of the value in BX following the sense instruction manipulates

the value in the BX register such that execution remains in the nested loop as long

as the organism is sensing nutrient (meaning that the organism is moving straight

on the path), but will exit the nested loop when any other one is sensed. Whenever

this module is executing, the value in CX is 0 at the top of the loop. Executing

BX <— BX—l with the nutrient return value (0) places a value of -1 in BX, so

execution does not exit the nested loop. Decrementing the repeat-last return value

(1) places a value of 0 in BX, causing execution to exit the nested loop and do the

left turn. When the right-turn return value (2) is decremented, the value in BX

becomes 1, and the nested loop is exited. Execution then exits Module A, after

executing the left turn. The swap of values in BX and CX is executed only if an

empty cell is sensed. The swap places 0 in BX, and -1 in CX, so the nested loop

is exited, and execution leaves Module A after the left turn, since the continuation

condition fails (now BX is equal to CX after BX is decremented).
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Module B, for moving through right-turn path segments, is:

do

rotate right

if (BX < CX) BX <— sense

move

BX <— sense

if (BX == repeat last) continue # Loop if sense==repeat last

else if (BX == left turn) jump IP to O # Jump to start of genome

BX <- BX + 1

rotate left

while (BX != CX)

As noted earlier, an additional sg-rotate-m'ght instruction executes before Module

B entry and ensures proper orientation for turning right, since Module B contains

both sg-rotate-r and sg-rotate-l instructions that always execute. Correct orientation

is maintained by selectively executing the left turn at the end of the module. When

a repeat-last cue is sensed, execution in Module B skips the left turn (since BX=1),

and returns directly to the top of the loop. When a nutrient is sensed, BX=0, so

the increment of BX and the left turn are executed. When the organism senses

a left-turn cue, execution jumps out of Module B and returns to the beginning of

the genome. As in Module A, the value in CX is 0 during execution of Module B.

If an empty cell is sensed, incrementing the value places a value of 0 in BX, and

execution exits the module. Once the organism moves into an empty cell, execution

moves on to the copy loop near the end of the genome, and the organism completes

its replication. Table 4.2 lists the Avida code for this organism’s path-following

modules, and I provide analysis of the Avida code in Appendix A.2.4.

There are two features of this organism that are particularly interesting. The

first is the organization of the genome. The sections of the genome that do the bulk

of the “work” for this organism—the two movement modules and the copy loop—are

functionally and spatially modular. For all three of these loops, very little happens
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Table 4.2: Avida instructions for example irregular path organism.

 

 

 

Module A Module B

sg—move sg—rotate—r

sg—sense if—label

sub nop—B

if-less add

swap nop—B

h-divide if—less

dec sg—sense

if-less sub

mov-head sg—move

push nand

if—label sg-sense

nop-C if—equ—X

shift-r mov-head

nop—A

sg—rotate—l

if—equ—X

if—less

mov-head    
within them apart from the main function of the loop. The loops are also spatially

modular: they are located in different sections of the genome. Example organisms

from the preceding experiments also demonstrate structural modularity, but their

functional modularity is, generally, less defined. The second feature of special in-

terest is the flexibility of execution flow between code modules. The execution flow

. enables the organism to cleverly handle all the contingencies of the environment. For

example, even though Module A (left-turn module) is encountered first in the se-

quential execution of the genome, if a right turn is encountered first, the flow moves

easily through Module A and into Module B (right-turn module). The algorithm

evolved to deftly maneuver along the paths, using the information of the states in

the environment to alter its exeuction.
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4.3 Evolving Complexity

Compared to a natural environment, the current study’s most complex environment

is strikingly simple and sparse. Yet, the simple capabilities that have evolved in the

preceding experiments—for example, sensing environmental information, discrimi-

nation between different sensory values, differential behavior based on environmental

conditions, directed movement through the environment—interact to produce more

complex behavior. Even these simple environments foster the evolution of complex

features. There is a large body of evidence from biology that supports Darwin’s

ideas about the incremental evolution of complex organismal features, such as the

eye. The Avida system allows for detailed study of the evolution of complexity that

is difficult to accomplish in the natural world, due to factors such as long time spans,

extinct intermediate organisms, and incomplete knowledge of biological mechanisms.

In their landmark study, Lenski et al. (2003) demonstrated the depth of in-

sight that Avida experiments can provide to help shed light on the evolution of

complex features and many other issues in evolutionary biology. The results of the

study showed that complex functions (in this case, the ability to perform the most

complex logic task, equals (EQU)) evolved by building on simpler functions that

had evolved earlier. The experiments demonstrate “the validity of the hypothesis,

first articulated by Darwin. . .that complex features generally evolve by modifying

existing structures and functions” (Lenski et al., 2003, p. 143).

As a first step in investigating the evolution of complex features in the context of

memory and simple navigation, I performed experiments that probed whether the

evolution of a more complex capability was facilitated by a simpler capability that

arose earlier in evolution. In other words, did simpler functions serve as building

blocks of more complex functions? In the context of the current experiments, the

increase in the task complexity is a mirror of the increasing complexity of the exper-

imental environments. As the environments become more and more complicated,

evolution must combine more and more simpler functions to successfully cope with

the environments. Key among these functions is the ability to store and reuse in-
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Table 4.3: Summary of ancestors and environments for transplant experiments.

 

 

  

Ancestral Environment Transplant Environment

Single-direction paths Right-left turn paths

Right-left turn paths Cue-once paths

Cue-once paths Irregular paths  

formation from past experience, i.e., memory. Ill addition to the general question

related to the evolution of complexity, the more specific question of these experiments

is: Does having the memory capability afforded by evolving in one environment pro-

vide an advantage when the environment and the accompanying memory demands

change?

4.3. 1 Experiments

For these experiments, I transplanted organisms that evolved in one experimental

environment into the next, more complex environment. To do this, I selected ten final

dominant organisms from each of the first three experiments (single-direction paths,

right-left turn paths, cue-once paths) and seeded them into new runs of experiments

in the next experimental phase. The organisms selected for transplanting had the

ten highest average maximum task quality (AMTQ) values from the 50 replicate

populations of each experimental setup. A high AMTQ value indicated an organism

that performed well on all the paths it experienced (i.e., completed much of the path

length). Table 4.3 summarizes the ancestral environments and the related transplant

environments.

Each of the ten ancestors seeded ten replicate populations for a total of 100 trials.

Experiments began with a full population, by injecting the ancestor organism into

all world grid cells (grid size 60 X 60, population maximum size of 3,600 organisms).

The experiments ran for 250,000 updates, using the default Avida mutation rates.

The experiments used the same sets of state grids that were used in the previous

experiments, as well as the strategy of assigning each organism a randomly selected

state grid at birth.
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Table 4.4: Transplant experiments, ancestral and evolved task quality. Summary of

ancestral average maximum task quality (AMTQ) and evolved AMTQ for surviving

organisms in transplant experiments. Ancestral AMTQ was measured at the end of

3 generations with no mutations occurring. Evolved AMTQ was taken at the end of

250,000 updates of evolution. Ancestral AMTQ entries that appear as “-——” indicate

that the organism was not able to survive in the no—mutations test environment; the

corresponding Evolved AMTQ values show that these organisms were able to adapt

and survive after mutations in later evolution.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Ancestral New Seed Organism Ancestral Evolved

Environment Environment Replicate ID AMTQ AMTQ

8 0 0.6264

9 0.0155 0.9824

19 — 0.9853

Single— Right-left 29 0 0.8741

direction Turn 30 — 0.9441

31 0.0131 0.9441

32 0.9802 0.9823

46 0 0.5773

1 0.013 0.4222

18 0.2405 0.8983

25 0.2405 0.7535

. 30 0 0.7700

Rlfiieft Cue—once 31 0.0131 0.8262

40 0.5055 0.8326

44 0 0.6410

46 0.0225 0.8565

48 0.0242 0.9039

2 0 0.2706

8 0 0.3548

Cue—once Irregular 27 0 01043

33 0.1154 0.9177

42 0.0043 0.1652

45 — 0.0871    
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4.3.2 Results and Discussion

Some of the transplanted ancestors were unable to survive the transplant to the

new environment. An explanation for this phenomenon is that, in at least some of

the cases that were individually analyzed, the algorithms of the organisms were so

tuned to their ancestral environments that they could not survive the environmental

perturbations of the new environment. These organisms are, in a sense, over-fitted

to the problem posed by their native environments. One aspect of this problem is

that, as observed in the genome analysis of preceding sections, some organisms tie

their replication to their path-following algorithm. If these organisms are unable

to navigate the path of the new environment, they will also be unable to replicate,

and so will die early in evolution. The majority of the transplanted ancestors sur—

vived in all three transplant setups (8 of 10 for single-direction to right-left turn

paths; 9 of 10 for right-left turn to cue-once paths; 6 of 10 for cue-once to irregular

paths). All reported results and discussion that follow relate only to the populations

that survived the transplant; the populations that died have been dropped and are

disregarded in the results and discussion.

To have a more complete picture of how the evolved capabilities from the ances-

tral environment affect evolution in the transplant environment, I made a baseline

measurement of the average maximum task quality (AMTQ) of the surviving trans-

planted ancestors in the new environments. I injected each transplant ancestor into

a full population (60 x 60 grid, 3600 organisms), using the new environment, and al-

lowed the population to execute for three generations with a zero mutation rate. The

AMTQ was calculated from the values for each grid at the end of the 3-generation

run, giving the ancestral AMTQ. The ancestral AMTQ measures how much of a

“head start” the transplanted ancestors have, as opposed to starting evolution from

the default self—replicating ancestor. Comparing this baseline value to the AMTQ

at the end of the evolution experiments in the new environments gives an overview

of how much the path-following performance improved over the course of the ad—

ditional evolution. Table 4.4 summarizes the ancestral and evolved AMTQ of each

surviving transplanted ancestor in the new environments. Some of the ancestors
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could not survive in the zero-mutation test environment, but were able to survive

in the actual experimental environment with mutations occurring. Organisms that

have an ancestral AMTQ of 0 are able to replicate in the new environment, but are

not able to move on the paths to garner task quality. This simple two-point com-

parison reveals a wide range of changes from the ancestral AMTQ to the AMTQ

at the end of evolution. It is interesting to observe that the overall performance

of the transplanted. ancestor populations is, in aggregate, strong in all cases for the

transplants from single-direction to right-left turn paths (minimum AMTQ value of

0.5773), but less impressive for the other two environments. These data, however,

compare within the treatment, and so cannot inform us about the possible contri-

butions of earlier evolution. For a better understanding of the dynamics of these

experiments, we need to compare these results to those of the experiments that used

the default self-replicator ancestor.

For the comparisons between the transplanted ancestor experiments and the de-

fault ancestor experiments, I again examined average maximum task quality (AMTQ)

over the time course of the experimental run. If earlier evolution provided building

blocks of the capabilities needed for succeeding in the new environment, the perfor-

mance of the transplanted ancestors populations should be significantly better than

that of the populations that evolved from the default ancestor. Figure 4.13 shows

the AMTQ over time of the two treatments for the right-left turn paths. The AMTQ

distributions for the transplanted ancestors and default ancestors are significantly

different (Mann-Whitney U~test, p = 6.765 x 10‘9). This difference is apparent rel-

atively early in evolution, at 10,000 updates into the runs (Mann-Whitney U-test,

p = 2.471 x 10’6). The transplanted ancestor populations perform demonstrably

better than the default ancestor populations at the end of evolution: 86.1% (68 out

of 79 populations) of the replicate populations had ending AMTQ values above the

median ending AMTQ value for the default ancestor populations.
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Figure 4.13: Average maximum task quality (AMTQ), evolved us. default ancestor,
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irregular paths.

The story is similar for the cue-once paths: the transplanted ancestor popula-

tions, in aggregate, performed better than the populations with the default ancestor

throughout the run (Figure 4.14). The performance difference was significant as

early as 1000 updates into evolution (Mann-Whitney U—test, p = 1.09 X 10‘6), and

remained significant at the end of the run (Mann-Whitney U-test, p = 1.56 x 10"”).

At the end of evolution, 81.8% of the populations seeded with transplanted ancestors

(72 out of 88 replicate populations) had AMTQ values above the median AMTQ

value of the default ancestor populations.

The populations in the irregular path experiments all had lower overall AMTQ

than the populations of the other environments (Figure 4.15). The transplanted an-

cestors and default ancestors produced significantly different AMTQ distributions,

both at 10,000 updates (Mann—Whitney U—test, p = 9.692 x 10—4) and at the end
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of the run (Mann-Whitney U-test, p = 6.564 x 10—6). In addition, the populations

seeded by transplanted ancestors performed significantly better than the default

ancestor populations, since 83.3% of the replicate populations (50 out of 60 popula-

tions) had ending AMTQ values above the median AMTQ value of the populations

seeded with the default ancestor.

The results suggest that, in the three environments of the transplant exper-

iments, earlier evolution provided some components of the functions needed for

evolving more complex traits. The populations seeded with transplanted ancestors

clearly out-performed the populations seeded with the default ancestor. By com-

paring the capabilities needed to succeed in these different environments, we can get

an intuitive sense of why the transplanted ancestors had some advantage in the new

environments. Organisms that succeeded in the single—direction path environments

needed to sense and respond differentially to the four states that composed the en-

vironment (nutrient, right-turn, left-turn, empty), so the organism’s genome must

contain instructions to handle all those states. The only salient difference between

the single-direction paths and the right-left paths is that the latter contain both

turn directions in the same path. Organisms transplanted from the single-direction

environment had to find mechanisms to manage this difference, but they should

have much of what they need already encoded in their genomes (provided they had

not evolved as a “specialist” in one direction or the other in the single-direction

environment). Indeed, one transplant ancestor came to the new right-left turn en-

vironment with a ready-built strategy: replicate ID 32, with an ancestral AMTQ of

0.9802, emerged from evolution in the single-direction environment with a strategy

that worked immediately in the new right-left turn environment. This situation was

an exception and not a rule: most organisms had far less effective solutions when

initially transplanted, as shown by their ancestral AMTQ values (Table 4.4).

The shift from the cue-once environment to the irregular paths environment is

the same sort of lateral step as the shift from single—direction to right-left paths. An

organism that evolved to perform well in the cue-once environment is likely to have

much of what it needs to do well in the irregular path environment. The irregular
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path environments used all the same states as the cue—once environments, with the

difference again being that the irregular path contained both turn directions instead

of only one. The challenging aspect of moving from the cue—once environment to

the irregular path environment was the need for “volatility” in the remembered

experience, i.e., the information needed to be updated at unknown intervals. This

demand could be a difficult problem for an organism that evolved in the cue-once

environment, where the information never needed to be changed. The results of

these experiments indicate that the problem was not insurmountable, and indeed

that the ability to remember one bit of information throughout its lifetime provided

useful building blocks for organisms to construct shorter-term volatile memory. The

detailed investigation of what those building blocks were is outside the scope of the

current study, but may provide valuable insights into contingency in evolution in

future work.

The cue-once environment presented a much larger change from the right-left

turn environment than that between the right-left turn environment and the single-

direction environment. The cue-once environment was, in fact, the first time that

an organism needed to remember individual experience in order to succeed in the

environment. Both the single—direction and right-left turn environments provided

all the information an organism needed at each decision point: each turn was cued

by a specific sense value, with no ambiguity and no reference to another event

or experience. The cue-once paths, on the other hand, required an organism to

somehow record its experience at the first turn, and recall that record of experience

to make later decisions. This situation was further complicated by the between-

grid ambiguity of the “repeat-last” state, that gave the same sensory value in all

path environments. Despite these complications, the organisms that evolved to do

well in a purely reflexive environment were able to transition to an environment

that required memory, and quickly do better than organisms that evolved de nouo

in the environment requiring memory. These results give a general indication that

even though evolving individual memory is fundamentally more challenging than

evolving mechanisms that “hard code” ancestral experience into the genome, earlier
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evolution of those hard-coded responses provide building blocks for more flexible use

of information.

4.4 Conclusions

In the first two sets of experiments in this chapter, I investigated the evolution of

a one-bit individual memory. The one bit of information that needed to be stored

and reused was the binary choice of turning right or left, based on experience in the

individual’s life. The cue-once experiments focused on evolving life-long memory,

meaning a memory that had to be stored and reused, but not changed. In these

environments, a singular individual experience needed to be remembered and used

for future decisions. The irregular path experiments provided the most complex

experimental environment of the study, requiring frequent updating of the stored

information, analogous to short-term memory.

Evolution built effective mechanisms and strategies for these differing memory

demands. The cue-once environment gave rise to evolved features that resemble

both reversible and permanent phenotypic plasticity, with some organisms executing

diflerent parts of their genomes depending on the current environment. The irregular

path environment is clearly the most challenging of the environments presented in

the current investigation, as shown by the markedly lower average maximum task

quality (AMTQ) values in those experiments. In spite of the increased demands of

the environment, effective solutions evolved that both capitalized on environmental

regularity and functioned flexibly in both familiar and novel environments.

The story that emerges from the one-bit memory experiments gives some valuable

insight into how evolution is managing the problem of memory use. In these exper-

iments, the mechanisms for memory involve both genetic organization and volatile

states in elements of the Avida organism’s virtual CPU. The genomes evolve with

identifiable modular features, perhaps in response to the regularities inherent in the

experimental environments. Execution of those modules, however, often depends on

sensory information placed in the organism’s CPU (most often its registers), and
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sometimes cleverly manipulated to ensure correct execution (e. 9., loop termination)

and to permit replication. Evolution discovered the mechanisms for gathering the

information from the environment, storing it for ease of future use, manipulating

the information, and responding differentially to that information, according to con-

text. Organisms leveraged these mechanisms in order to base a decision “now” on

“before,” meaning an individual past experience.

The results of the transplant experiments suggest that information and memory

functions that evolved in simpler environments provide useful building blocks for

evolving more complex memory functions. Some of the organisms that evolved in one

environment evolved further to succeed in a different, more complex environment.

These experiments also show that it is fundamentally more difficult to evolve a

strategy for individual memory than a strategy that uses purely reflexive responses.

My results also suggest that, in the absence of memory decay, it is more difficult

to evolve mechanisms for short-term volatile memory than mechanisms for life-long

memory. This initial foray into investigating the evolution of complex features in a

new context of memory and navigation shows great promise of the potential richness

of insight that may be gained in future detailed study of the emergence of complexity

through evolution.
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Chapter 5

Conclusions and Future Work

5. 1 Conclusions

In this study, I explored the evolution of fundamental memory capabilities in the

context of simple navigation. The experiments demonstrated the evolution of several

levels of memory, from the rudimentary memory in the “warmer-colder” gradient-

following experiments presented in Chapter 2, through the “reflexes” that evolved

in the simplest path-following experiments in Chapter 3, to the one-bit individual

memory that evolved in the experiments in Chapter 4.

While analyzing these experiments, I found several organisms of particular inter-

est. These organisms included the “step—counter” organism of the single-direction

turn experiments, and the sample organism from the cue—once experiments that

executed in a manner reminiscent of phenotypic plasticity in biological organisms.

The results of the experiments illustrate that memory and flexible behavior may

evolve in even the simplest environments. Evolution capitalizes on both environ-

mental change and environmental regularity to construct these solutions. The ex-

periments presented here suggest, not surprisingly, that it is more difficult to evolve

individual memory than to maintain “evolutionary memory” in the form of reflexes,

and further that life-long individual memory evolves more readily than individual

volatile, “short-term” memory. One detail of note is that the experiments of the

current study did not incorporate any decay of stored information. Adding memory
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decay to the experimental design would yield interesting results, and may change

the balance between life-long and volatile memory. Results from the transplant ex-

periments, where evolved organisms from one environment were transplanted into

a new environment and allowed to evolve, suggest that simpler memory functions

(e.g., reflexes) provide building blocks for evolving more complex memory functions.

Taken as a whole, the experimental results that I present here demonstrate the

evolutionary origin of simple behavioral intelligence. Organisms from these exper-

iments were capable of gathering information from the environment, storing that

information, and using the information for decisions. Moreover, organisms that suc—

ceeded in the cue-once and irregular path environments were able to use a past

individual life experience to guide future decision-making.

5.2 Future Work

The experiments that I present here are only the first few steps of an exciting research

initiative that has the potential for a number of important future contributions.

Future directions include both extensions of the current work and new avenues of

inquiry. In the following discussion, I present some of the myriad possibilities for

future investigations.

5.2.1 Extensions of the Current Work

Evolving Other Components of Navigation

Natural evolution produced many impressive navigation abilities in animals. These

capabilities are made up of many interwoven strategies, which are themselves made

up of simpler underlying mechanisms. Memory is undoubtedly one such underlying

mechanism. The experiments of the current work can easily be adjusted to focus on

other component mechanisms for navigation

As has already been noted, one particularly interesting result from the single-

direction path experiments was the evolution of the “step-counter” organism that
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based part of its strategy on counting the number of steps it had taken along its path.

This organism possesses a simple step—counting odometry mechanism. This sort of

self-movement based odometry is an important aspect of many animal navigation

systems. This same organism was also able to count its rotations in order to orient

itself in the correct direction. Such self-referential, or idiothetic, compasses are

another component of animal navigation systems. The initial results from the current

study hold great promise of future insights into questions surrounding the evolution

of components of navigation.

Extending these ideas one more step, we can imagine how the environments

used in the current study can be adjusted so that organisms need to explore the

environment to find resources (such as the “nutrients” that form the paths), and

then return to their initial location as quickly or efficiently as possible. This situation

sets the stage for investigating the evolution of path integration, or dead reckoning,

a remarkable and nearly ubiquitous animal navigation strategy in which an animal

moving through the environment maintains an incrementally updated vector back to

a reference location (e. g., its nest), allowing the animal to return to that reference

location by the most direct route possible at any point in its journey. There is

a rich collection of behavioral evidence concerning this ability in various animals,

and several different models of how the mechanism may work have been presented

(see, for example, Mittelstaedt (1985), Miiller and Wehner (1988), Hartmann and

Wehner (1995)). How evolution produced such a capability is, however, an open

question. Experiments such as those I present in the current work have the potential

to contribute important insights in that discussion.

Associative Memory and Learning

Associative learning can be described as the process by which animals learn about

cause-and—effect relationships between events, and then behave appropriately (Rescorla,

1988; Shettleworth, 1998). Associative learning has been studied extensively, as both

classical/Pavlovian conditioning and operant/instrumental conditioning, across a

wide range of animal species.
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The environments of the path-following experiments can be used to study the

evolution of associative memory. Instead of having fixed return values for the sign-

post states on the paths, we can generate a random number for the state return

value each time a state grid is given to an organism. This random value would per-

sist within the organism’s lifetime, but would change for the offspring’s generation.

In this way, we can simulate the arbitrary stimulus that is important to associative

memory and learning.

We can also vary the relationship between the one and the target. For true

associative memory, the organisms should be able to associate arbitrary features of

their surroundings with their desired goal. So the cue might be prompting a turn

in the paths, or it might indicate that the food source is a certain distance ahead,

regardless of what else the organisms have seen in the interim. This is a far more

complex form of associative memory, but it is clearly very powerful.

Investigating Plasticity

In section 3.2.2, I introduced the dynamic plasticity ratio (DPR), a measure of the

execution-level plasticity of a genome. Intuitively, plasticity should aid evolvability:

more flexibility at the genomic level ought to facilitate change, for example, in

response to environmental change. The DPR analysis of section 3.2.2 did not supply

any solid evidence about the benefits or pitfalls of such plasticity. The results of

the transplant experiments in section 4.3 hint at some interesting information to

be gleaned. In all three experimental environments, the populations that evolved

from transplanted ancestors, that already had some capabilities, out—performed the

populations that evolved from the simple self-replicator default ancestor. These

results have interesting implications for looking at evolvability: in addition to having

some capabilities that may have provided building blocks for more complex traits,

the transplanted ancestors also had, in general, more flexible genomes than the

default ancestor.

It is possible that the DPR, as implemented in the current study, failed to capture

some aspects of execution-level plasticity, or the implications of that information
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may not be as straightforward as I initially thought. Careful review of how the ratio

is calculated and what that information may be reflecting can help improve the

information these analyses provide, further illuminating topics relating to plasticity,

evolvability, and intelligence.

5.2.2 Future Directions

My focus in the projects presented here was on how memory evolves—what traits

evolve, and how they build on each other. One future direction that needs to be ad-

dressed concerns why those traits are favored by selection. What selective pressures

encourage the evolution of memory? Such an inquiry will examine three interrelated

questions: (1) Can we find adaptive steps in the evolution of memory and learn-

ing that are contingent on earlier steps? (2) How much is this capability worth to

organisms, that is, how much are organisms willing to pay for the capability? (3)

Which environments provide the selective pressures that evolve memory and learn-

ing? I have two over—arching, tightly coupled goals for future experiments in this

direction: to gain qualitative insights into contingency and convergence in evolving

memory and learning, and to derive mathematical models relating to contingency

and convergence.

Another important future direction relates to evolving complexity. This topic

was addressed in part by the transplant experiments in section 4.3. The issue of

evolving complex features is a key topic in evolutionary biology, and contributions

in that area are potentially important. The following discussion outlines ideas about

how I can approach the issues of contingency, convergence, and complexity.

Selecting for the Building Blocks of Memory

Historical Contingency in Evolving Memory. Historical contingency in evo-

lution concerns how accidental changes to the genetics of a population shape the path

of future evolution; steps in evolution are thus dependent on prior history. Debate

on this subject revolves around the tension between natural selection and random

processes. Blount et al. describe this “profound tension between random and deter-
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ministic processes” (Blount, Borland, & Lenski, 2008, p. 7899). Natural selection

is systematic, working to adapt populations to their enviroments; random processes

appear in mutations, and even beneficial mutations may disappear through random

drift. Future evolutionary possibilities may be contingent on prior evolutionary his-

tory, due to the interplay between these random and deterministic processes (Blount

et al., 2008).

There are varying viewpoints regarding historical contingency ill evolution. Stephen

Jay Gould argued that historical contingencies make evolution unpredictable, and

”

that if we were to replay the “tape of life, and restart evolution from some point in

the past, the resulting world would be dramatically different from the one that ex-

ists today (Gould, 1989). Gould saw the contributions of deterministic and random

processes as they relate to general form and details:

Invariant laws of nature impact the general forms and functions of or—

ganisms. . .. When we set our focus upon the level of detail that regulates

most common questions about the history of life, contingency dominates

and the predictability of general form recedes into an irrelevant back-

ground. . .. Charles Darwin recognized this central distinction between

“laws in the background” and “contingency in the details”. (Gould, 1989,

pp. 289—290)

John Maynard Smith described evolution as “a series of historical accidents, subject

to engineering constraints on the one hand, to the conservatism of development on

the other” (Maynard Smith, 1986, p. 45). Simon Conway Morris took the oppos-

ing standpoint, arguing that natural selection converges on the same adaptations,

despite accidents of history; in Conway Morris’ view, replaying evolution may un-

cover many similarities in traits; he saw convergence, not contingency, as evolution’s

primary theme (Conway Morris, 2003).

Large scale historical contingency experiments are clearly impossible, but smaller

scale experiments can achieve amazing results. Blount et al. (2008) recently reported

their results on appearance of novel traits in an experimental population of E. coli.

The authors found that the evolution of the studied trait (the capacity to exploit

116



citrate) was strongly affected by historical contingencies, and they traced the ability

to three particular mutations. Blount et al. state

. . .our study shows that historical contingency can have a profound and

lasting impact under the simplest, and thus most stringent, conditions

in which initially identical populations evolve in identical environments.

Even from so simple a beginning, small happenstances of history may

lead populations along different evolutionary paths. A potentiated cell

took the one less traveled by, and that has made all the difference.

(Blount et al., 2008, p. 7905)

Experiments like this are important because they provide glimpses of the intricate

interactions within evolution and the intersections where evolution took one path

instead of another. However, these types of studies are difficult to conduct with

living organisms. Digital evolution offers opportunities for us to replay evolution at

will.

The techniques involved in tracing historical contingency in Avida revolve around

taking data snapshots produced at intervals (e.g., every 50,000 updates during a

run of 1 million updates) in Avida experimental runs and restarting evolution at

different time points. The time points are selected based on the appearance of traits

or behaviors of interest. This equates to replaying the tape of the population’s

shared history; restarting farther back in time (i.e., closer to the beginning of the

run) means there is less shared history. Other aspects of historical contingency in

Avida explore pathways to features. In these tests, we ask the question “can the

feature evolve?” from any point along the lineage of the final dominant (the most

abundant genotype in the population at the end of an experimental run).

I anticipate addressing three main questions with the historical contingency ex-

periments.

1. What are the building blocks of memory and learning? To look at this question,

I can select multiple time points for restarting evolution, before and after an

interesting behavioral change. Looking at what is happening on both sides of
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the change can help tease apart what makes the new behavior beneficial, and

may provide insight into the evolutionary steps needed to build the trait. We

can also zero in on individual mutations to find out if the probability of evolving

a trait improves gradually, or jumps suddenly due to a single evolutionary

event.

. What is the likelihood that memory and learning will evolve if we go back to

different time points during evolution? Different replicates restarted from the

same point may not evolve the same traits by the end of the run. Examining

these results can provide some insight into the importance of the shared history

of evolution and the chain of contingent events within that history. Results of

these experiments may also reveal convergent solutions in evolving memory and

learning, and provide data to support mathematical modeling of contingency

and convergence in the shared evolutionary history of the experiments.

. How does the behavior at the end of a run change depending on how far back

in history we restart evolution? This experiment looks directly at the issue of

contingency: how do different events during evolution affect the outcome? An-

other interesting variation on this experiment can provide information about

population-level influences as opposed to individual-level effects. Restarted

runs can be seeded with either the full population from that time point, or

with just the organism in the final dominant’s lineage. Using both these se-

tups, I can see if there are population effects that help bring about the end

behavior, or if the important events are mostly in the dominant lineage itself.

Costs of Memory. Mery and Kawecki’s experiments (Mery & Kawecki, 2002,

2003, 2004, 2005) highlight the fascinating issue of the evolutionary costs of learning.

I am interested in exploring the balance point between costs and benefits of memory

and learning: how much will organisms pay for a useful trait?

To probe the question of how much organisms are willing to pay for useful mem-

ory, we can provide an instruction that does exactly what the Avidians need it to

do. If the cost of that instruction is no higher than the cost of other instructions,
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the Avidians get the capability essentially for free. Then, we gradually increase the

cost of that instruction (e. g., by making the instruction take a long time to execute).

At some point, the cost of the special instruction will become too high.

For example, recall the experiments from the preceding chapters. Organisms

in those environments must evolve to remember what direction they last turned.

Instead, we can make life easier for them. We can provide an instruction that always

turns the organism to face the correct way along the path; call the instruction rotate-

correct. This instruction keeps the Avidian on the correct path at all times, and so

would be advantageous. Without rotate-correct, organisms have to discover their

own mechanisms for remembering their last action. However, is there a price that

is too high, despite rotate-correct’s utility? I expect that there is such a balance

point. Evolution can still assemble a sequence of instructions that have most of the

same functionality as the special rotate-correct instruction. When the cost of the

special instruction reaches some level, it will be less costly for evolution to search

for a comparable mechanism than to continue to pay the high cost of rotate-correct.

If this is the case, we will be able to accurately predict the cost that organisms are

willing to pay for memory, which in turn provides a measure of what those capacities

are worth.

Influence of Environments in Evolving Memory. The role played by envi-

ronment in evolving memory is an important theme in the work I present here. The

influence of the environment is certainly a key issue in the evolution of intelligence

in general, and the evolution of memory and learning in particular.

One way that we can determine which environments encourage the evolution of

memory is to start with an organism that has the ability to remember key infor-

mation. We can seed populations in different environments with this organism, and

adjust the cost of the instruction that provides the memory capability. We can then

see under which environmental conditions the ability persists at given costs, by ob—

serving if the memory capability persists over time under the pressure of mutations.

If the memory capability is lost, then the environment in question lacks the selective

119



pressures to support memory. Similar to the preceding experiment, this experiment

addresses costs and benefits; this experiment, however, focuses on the part that envi—

ronment plays in the cost/benefit equation. Memory is a complex capability, and so

must have costs associated with it. For some environments—perhaps more complex

ones—the benefits of possessing and using the complex capability will outweigh the

expense of maintaining that complex capability. In other environments, however,

the complex ability may not be as advantageous, and so will disappear over time.

This process will lead to some mathematical models of trade-offs between costs and

benefits. Ideally, we will be able to make predictions of how likely an environment

is to give rise to memory.

Exploring the Evolution of Complex Features

Avida is an invaluable tool for experiments in the evolution of complex features: all

details of the evolutionary record are available for analysis, without any “missing

links” in the genealogy from initial ancestor to descendants (Lenski et al., 2003) The

transplant experiments of section 4.3 established a foundation for using these new

simple navigation environments for experiments in evolving complexity.

To date, most Avida experiments have been done using the nine logic task envi-

ronment (Logic-9) (Ofria et al., 2002). In this environment, organisms are rewarded

for evolving to execute one- and two-input logic operations on bit strings. Lenski et

al. (2003) examined the evolutionary origin of the equals (EQU) operation, the most

complex logic operation in the Logic-9 environment. However, it is unclear how well

the results from the Logic-9 environment generalize. The new environments in the

current study supplement the existing Avida environments. Detailed experiments

such as those found in Lenski et al. (2003) could be repeated in these new navigation

environments, to shed more light on how evolution builds complex features.

The work I have presented clearly demonstrates that investigating simple be—

havioral intelligence can provide real insights. These insights relate both to the

evolution of those simple capacities, and how those simpler functions may coalesce

into more complex faculties. This foundational research is of interest not only to
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those considering the evolution of natural intelligence, but also for the promise it

holds for improving future computational systems. The ultimate goal of my research

is two-fold: to add to the body of knowledge of evolution, and to apply that knowl-

edge to build artificial systems with the same robustness and flexibility evident in

so many of the creatures of the natural world.
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Appendix A

Annotated Avida Code of Selected

Evolved Genomes

A.1 Avida Instruction Set for Experiments

Table A.1 lists the full set of Avida instructions used for all experiments in Chapters 3

and 4 of this study. The experimental instruction set used the 26—instruction default

instruction set, an additional existing comparison instruction (if-grt-O), and 6 new

instructions that we added for these experiments.

For additional information and detail regarding the operation of the instructions

or the Avida virtual hardware, see Ofria and Wilke (2004).

Notes on the Instruction Descriptions:

0 The notation ?XY?, where XY is a register (AX, BX, or CX) or head (IP,

FH, RH, WR) signifies that the CPU component specified is the default for

the instruction. The component may be modified by a no—op (NOP) label

immediately following an instruction.

0 Complement: The complement of a NOP label is the next label, in alphabetical

order, looping around at the end of the list: nop—A —> nop-B -> nop-C -> nop—

A.

o Modification by NOP labels: NOP labels can alter the operation of instruc-

tions by the component of the virtual CPU the instruction operates on. This

change occurs when the NOP label immediately follows certain instructions,
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as described below. When referring to a register, nop—A indicates AX, nop—B

is BX, and nop-C is CX. When referring to a head, nop-A indicates the in-

struction pointer (IP), nop—B is the read-head (RH), nop—C is the write-head

(WH). The flow-head (FH) can be used only by default.

Table A.1: Avida Instruction Set Used in Current Experiments.

 

 
Instruction Description

 

Default Instruction Set

 

nop—A Does nothing by itself, but will modify the operation of an in-

struction by changing the CPU component the instruction op-

erates on (see notes, above).
 

 

 

nop-B See description of nop—A, above.

nop-C See description of nop—A, above.

if—n—equ Compares the contents of ?BX? to the contents of its comple—

ment. If the two values are equal, the next instruction (after a

modifying NOP label) is executed. Otherwise, the next instruc-

tion is skipped.
 

if—less Compares the contents of ?BX? to the contents of its comple—

ment. If the value in ?BX? is less than the value in the com-

plement, the next instruction (after a modifying NOP label) is

executed. Otherwise, the next instruction is skipped.

 

pop Remove the top item from the active stack and place it in ?BX?.

 

push Copy the current contents of ?BX? and place it as a new entry

at the top of the active stack.
 

 

 

swap-stk Change the active stack.

swap Exchange the contents of ?BX? with its complement.

shift-r Reads the contents of ?BX? and shifts all bits one position to the right. This divides the previous value by 2, rounding down.

   Continued on next page
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Table A.1 — continued from previous page

 

 

 

 

 

 

 

 

 

 

 

Instruction Description

shift-l Reads the contents of ?BX? and shifts all bits one position to the

left. Bits in excess of 32 are truncated. For values needing less

than 32 bits for their representation, this multiplies the prior

value by 2.

inc Increment the value in ?BX? by 1.

dec Decrement the value in ?BX? by 1.

add Add the contents of BX and CX and place the result in ?BX?.

sub Subtract the contents of BX and CX and place the result in

?BX?.

nand Perform a bitwise NAND of the contents of BX and CX and

place the result in ?BX?.

IO Output the value of ?BX?, check for any tasks performed, and

input new value into ?BX?.

h—alloc Allocate new memory for the organism, up to the maximum it

is allowed to use for its offspring.

h—divide Divides off an offspring. The parent organism keeps the state of

its memory to the read-head. The offspring’s memory is initial—

ized to the contents of memory between the read-head and the

write-head. Any memory past the write-head is removed.

h—copy Copies the contents of the organism’s memory at the position

 of the read-head to the position of the write-head. If the copy

mutation rate is non-zero, a random instruction will be placed

at the write-head according to the mutation probability.

  Continued on next page
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Table A.1 — continued from previous page

 

 

 

 

 

 

 

 

  
 

 

 

 

Instruction Description

h-search Reads the label that follows the instruction and finds the loca-

tion of a complement label in the code. BX is set to the distance

from the current IP position to the complement, and CX is set

to the size of the label. The flow-head is placed at the beginning

of the complement label. If no label follows, set BX and CX to

zero, and place the flow-head on the instruction immediately

following the h-search.

mov—head Jumps the ?IP? to the position of the flow-head.

jmp—head Reads the value in CX and moves the ?IP? that fixed amount

in the organism’s memory.

get-head Copy the current position of the ?IP? to CX.

if-label Reads in the label following the instruction. If the label’s com-

plement was the most recently copied series of instructions, ex-

ecute the next instruction, otherwise skip the next instruction.

set-flow Move the flow-head to the position in memory given by the value

in CX.

if—grt-O Compares the contents of ?BX? to 0. If the value in ?BX? is

less than 0, the next instruction (after a modifying NOP label)

is executed. Otherwise, skip the next instruction.

New Instructions for Current Experiments

sg-move Move to the cell the organism is currently facing.

sg—rotate-l Rotate one 45° turn left (counter-clockwise).

sg-rotate—r Rotate one 45° turn right (clockwise).

sg—sense Returns the value of the state in the current cell.   Continued on next page
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Table A.1 - continued from previous page

 

Instruction Description

 

if-grt-X Compares the contents of BX to a fixed value determined by

the modifying NOP label (default = 1, nop—A = -1, nop—B =

2, nop—C = 4). If BX is greater than the value, execute the

next instruction (after the NOP label), otherwise skip the next

instruction.

 

if—equ-X Compares the contents of BX to a fixed value, as in if—grt-X,

above. If the value in BX is equal to the value, execute the

next instruction (after the NOP label), otherwise skip the next

instruction.     
 

A.2 Annotated Avida Code of Evolved Organ-

isms

The following sections contain the complete genomes of the example organisms dis-

cussed in Chapters 3 and 4. For each example organism, I provide the full genome,

highlighting the instructions that I will explain in more detail. The detailed expla-

nations focus on the operation of the code for the instructions that are important in

the path-following task. I also include some additional information on the genomes,

including the organism’s gestation time (number of instructions needed to replicate)

and genome sizes.

A.2.1 Single-direction Paths Example Organism

The organism below evolved in the single-direction turn environment. The organism

has two main movement modules, one that is primarily concerned with moving

through right turns (“Module A”), and another that is most important for left turns

(“Module B”). Both of these code sections are executed, whether the organism is
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moving on a right-turn path or a left-turn path; the details of the execution flow

ensure correct execution of all the code for both path directions.

The organism uses Module A, the section that is primarily concerned with right

turns, in an interesting way. When on a right-turn path, the organism uses this

module to count its steps to the end of the path; the loop exit occurs when the

organism reaches the end of the path. When on a left turn path, the organism skips

executing the sg-moue instruction, and counts one-eighth—turns instead of steps.

Execution exits the loop when the organism has completed four one-eighth—turns,

reversing its facing. The code segment that follows this module again reverses the

organism’s facing with four consecutive 45—degree turns to the right.

Module B, concerned primarily with left turns, contains a nested copy loop.

Execution enters the copy loop only when the organism steps off the path into an

empty cell. On the paths experienced during evolution, the copy loop is executed

exclusively when the organism is executing on a left—turn path. When on a right-turn

path, the organism’s replication code is more distributed throughout the genome,

with a number of h-copy instructions sprinkled in various places in the code. In all

cases, the same h-diuide instruction triggers dividing off the completed offspring.

Organism Information:

Gestation Time: 1779

o Genome Size: 185

o Copied Size: 185

Executed Size: 156

Table A.2 shows the complete genome of the organism. Instructions that are

shown in bold, italicized, red text are important for path-following. I discuss the

operation of the path-following instructions in more detail in Table A3.
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Table A.2: Genome, Example Organism, Single-direction Paths Experiments.

Position Instruction Position Instruction Position Instruction

 

L
O
W
K
I
O
C
J
‘
fi
C
A
M
l
—
‘
O if-grt-O

if-grt-O

IO

if-less

if—n—equ

if-equ—X

nop—A

jmp—head

h-search

push

get—head

sub

if-grt-O

h-search

IO

get-head

set-flow

h-search

get-head

if-equ-X

set-flow

nop—A

get-head

IO

swap-stk

add

if-grt-O

if-n-equ

nand

if-grt—O

if—less

if-equ-X

mov-head

nop—A

push

nand

if-label

h—search

nop—A

swap-stk

swap  

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

jmp—head

h-divide

nop—B

get-head

get-head

sg—sense

if-grt-O

if—less

shift-r

inc

get-head

h-alloc

swap-stk

IO

if-label

h-divide

if-grt-X

if-grt-X

shift-l

h-divide

nop—C

h—divide

nop-C

sg-sense

if-label

if-label

set-flow

nop—A

if-grt-O

push

swap-stk

if—equ-X

sg—sense

sub

nop-B

nop—B

IO

h-alloc

sg-move

mov-head

nop—C  

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

inc

dec

add

if-grt-O

h-search

push

shift-r

sub

if-less

nand

POP

sub

swap—stk

swap

sg-sense

if-equ—X

P0P

swap

shift-l

h-divide

set-flow

nop—B

nop—B

push

jmp—head

sg—move

if—equ-X

if-grt-X

jmp—head

swap

add

swap-stk

if-n-equ

shift-l

sub

h-search

sg- rotate- r

ifgrt-0

nop- C

h-copy

h-copy
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Table A.2 — continued from previous page

Position Instruction

 

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

I42

143

sg-sense

nop-C

jmp-head

sg-mtate-l

if-equ-X

get-head

sg-move

inc

if-n-equ

mov-head

sg—move

IO

sg-move

if-grt-O

sg-mtate-r

h—alloc

if—grt-O

swap-stk

nand

sg-mtate-r

Position Instruction Position Instruction

144 if—less 165 swap—stk

145 shift—l 166 h-search

146 nand 167 39-move

147 if—equ—X 168 sg-sense

148 shift-l 169 nap-B

149 sg-rotate-r 170 if-n-equ

150 push 171 sg-rotate-l

151 nop—B 172 if—equ-X

152 add 173 pop

153 sg-rotate-r 174 if-less

154 inc 175 h-search

155 if—equ—X 1 76 if-label

156 h—copy 177 nop-C

157 if-label 178 h-divide

158 nop—B 179 h-copy

159 if—equ—X 180 mov-head

160 add 181 set-flow

16 1 set-flow 182 push

162 get-head 183 swap

163 nop—B 184 nop-A

164 set-flow   
 

Table A3: Genome Detail for Example Organism, Single—direction Paths Experi—

 

 

 

 

 

 

 

 

ments.

Position Instruction Comments

117 h—search Start of Module A.

118 sg—rotate—r Turn right 45°.

119 if-grt-O CX > 0? True when on right-turn path.

120 nop-C

121 h-copy Do an extra copy when on a right-turn path.

122 h-copy Copy (always executes).

123 sg—sense CX=sense  
 

Continued on next page
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Table A.3 - continued from previous page

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Position Instruction Comments

124 nop-C

125 jmp—head If sense was nutrient, CX=0; if sense was right, CX=2;

if sense was left, CX=4

126 sg—rotate—l Executes only when sense=nutrient; undoes right turn at

top of loop.

127 if-equ-X BX=1? True on right-turn path.

128 get-head CX=128 (right—turn path only).

129 sg—move Take a step. Does not execute on left-turn path.

130 inc BX: BX+1.

131 if-n—equ BX!=CX? Tests for loop exit conditions.

132 mov—head Exit on right-turn path after taking 127 steps, then incre—

menting BX to 128. Exit on left-turn path after turning

180° without taking any steps.

137 sg-rotate—r Turn right 45°. lst of 4 consecutive right turns.

142 sg—rotate-r 'Ihrn right 45°. 2nd of 4 consecutive right turns.

149 sg—rotate—r Turn right 45°. 3rd of 4 consecutive right turns.

153 sg—rotate—r Turn right 45°. 4th of 4 consecutive right turns. Or-

ganism’s facing is now reversed; facing “backwards” on

right-turn path, facing correctly on left-turn path.

h—search Start Module B, including a nested copy loop.

sg-move Take a step.

sg—sense BX=sense.

nop-B  
  Continued on next page
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Table A.3 — continued from previous page

 

Position Instruction Comments

 

if-n—equ BX!=CX? True if sense=left, False if sense=0. Al-

ways False on right-turn path (no more turns remaining;

 

 

 

 

 

 

 

  

sense=0)

sg-rotate—l Turn left 45°.

if-equ-X BX=1? Always False.

P0P

if—less BX<CX? True when sense=empty.

h-search Start of copy loop. Entered only when organism moves

into empty cell.

if-label Was last copied nop-A?

nop—C

h-divide If last copied was nop—A, divide.

h-copy Copy an instruction.

mov-head If last sensel=empty, target is top of left-turn loop. If last sense=empty, target is top of copy loop.

 

A.2.2 Right-left Turn Paths Example Organism

The following organism evolved in the right-left turn environment. Although it

has the longest genome of the organisms discussed here, the organism does most

of the “work” with a sequence of ten instructions, used for path-following, and a

short, separate copy loop. The turns in the path-following code are guarded with

conditionals that ensure executing the correct action at the correct time.

Organism Information:

0 Gestation Time: 1438

0 Genome Size: 218
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o Copied Size: 218

o Executed Size: 201

Table A.4 shows the complete genome of the organism. Instructions that are

shown in bold, italicized, red tenet are important for path-following. I discuss the

operation of the path-following instructions in more detail in Table A5.

Table A.4: Complete Genome of Example Organism, Right-left Turn Paths Exper-

iments.

Position Instruction Position Instruction Position Instruction

 

(
C
O
O
K
I
G
O
V
A
C
J
D
M
i
—
‘
O nop-A

nop—A

nop—A

if-n-equ

swap-stk

inc

if-equ—X

dec

push

inc

sub

shift-l

h-alloc

if-n-equ

if—label

nop—A

if—n-equ

shift-l

h-copy

h—divide

P0P

h—copy

add

push

add

nop—B

swap

IO

swap

nand  

30 swap-stk

31 sg-sense

32 inc

33 h-divide

34 get-head

35 inc

36 set-flow

37 IO

38 nop-B

39 sg—move

40 if-n—equ

41 shift-l

42 if—equ—X

43 if-grt-O

44 h—divide

45 nop—C

46 h-alloc

47 pop

48 h-copy

49 inc

50 shift-l

51 swap—stk

52 sg-rotate—l

53 if—n—equ

54 sg—sense

55 h—divide

56 nop—B

57 sg—sense

58 push

59 add  

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

nop-B

sg—sense

h-alloc

push

if-less

h—search

IO

nop—B

if—equ-X

shift-r

if-grt-X

h—search

add

shift-l

h-search

add

sg—sense

if-grt-O

h—divide

nop—C

sg—rotate—l

dec

if-n-equ

if-less

if-grt-O

push

set-flow

if-n-equ

shift—l

add
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Table A.4 — continued from previous page

 

  

Position Instruction Position Instruction Position Instruction

90 shift-r 130 if—equ—X 169 inc

91 sg—rotate-l 131 nop—B 1 70 h-copy

92 shift-l 132 h—alloc 171 if—grt-O

93 nop—B 133 IO 172 10

94 shift-r 134 sub 173 jmp—head

95 h-search 135 sub 174 if—equ—X

96 dec 136 if—grt—X 175 sub

97 swap 137 push 176 nand

98 sub 138 if—n—equ 177 push

99 h—alloc 139 sg—rotate—r 178 h-alloc

100 h—divide 140 swap—stk 179 get-head

101 10 141 h—divide 180 IO

102 IO 142 if—equ-X 181 h—alloc

103 h-divide 143 push 182 nop—C

104 h—divide 144 swap—stk 183 swap

105 shift—r 145 push 184 if—equ—X

106 sg—rotate—l 146 sub 185 h-divide

107 set—flow 147 nand 186 sg—rotate—r

108 nand 148 h—copy 187 sg-rotate-r

109 swap 149 pop 188 h-search.

110 nop—C 150 h—divide 189 if- grt—X

111 nop—A 151 get-head 190 89— rotate-l

112 10 152 nop-C 191 h- copy

113 push 153 h-alloc 192 sg-moiie

114 pop 154 add 193 sg-sense

115 sg—move 155 if-grt—O 194 shift~r

116 jmp—head 156 dec 195 if-equ—X

117 nop—C 157 sg-sense 196 39- rotate-r

118 sg—rotate—r 158 nand 197 if-less

119 push 159 dec 198 if-grt-O

120 if—n—equ 160 h—copy 199 may-head

121 sub 161 h—search 200 if—n-equ

122 shift—r 162 h-copy 201 shift-r

123 push 163 if-label 202 inc

124 nop—C 164 if—equ—X 203 IO

125 shift—l 165 sg—rotate—r 204 set—flow

126 h—divide 166 if—n—equ 205 jmp—head

127 nand 167 sg—rotate—r 206 h-search

128 get—head 168 if—label 207 h—copy

129 shift—l 208 if—label
 

Continued 011 next page
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Table A.4 — continued from previous page

 

Position Instruction Position Instruction Position Instruction

209 nop-C 212 h—divide 215 mov-head

210 if—n—equ 213 pop 216 set-flow

211 mov-head 214 get-head 217 nop—A   

Table A5: Genome Detail for Example Organism, Right—left Turn Paths Experi-

 

 

 

 

 

 

 

 

 

 

 

 

  

ments.

Position Instruction Comments

188 h—search Start movement loop.

189 if-grt-X BX>1? True when sense=left

190 sg—rotate—l Turn left 45°.

191 h-copy Copy an instruction.

192 sg-move Take a step.

193 sg—sense BX=sense.

194 shift-r BX=BX/2 (unless BX<0; then BX value is unchanged).

195 if—equ—X BX=1? True if last sense=right, False otherwise.

196 sg—rotate-r Turn right 45°. Executes only when last sense=right.

197 if—less BX<CX? True when last sense=empty. False for all oth—

ers states, so jump to top of loop.

198 if—grt-O BX>0? Executes only when last sense=empty. Jumps

over moo-head to exit loop.

199 mov-head Exit loop when last sense=empty, otherwise jump to top  of loop.
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A.2.3 Cue-once Paths Example Organism

The following organism evolved in the cue—once environment. This organism has a

right-turn loop, that executes in both right- and left-turn environments, and a left-

turn loop that executes only in left-turn environments. The organism’s replication

scheme differs somewhat between right- and left-turn paths. For a right-turn path,

nearly all copying takes place in the right-turn loop itself, and there is no label-

checking to make sure the whole genome is copied. For left-turn paths, the organism

does some copying in the right-turn loop, and finishes the process in a copy loop

nested in the left-turn loop. This copy loop has the usual label-checking strategy

with if—label. The replication strategy for the right-turn paths (i.e., the strategy that

does not use label-checking) seems risky; however, the strategy works because that

loop terminates only when a left turn or an empty cell is sensed.

Organism Information:

0 Gestation Time: 1168

0 Genome Size: 136

o Copied Size: 136

o Executed Size: 73

Table A6 shows the complete genome of the organism. Instructions that are

shown in bold, italicized, red text are important for path-following. I discuss the

operation of the path—following instructions in more detail in Table A7

Table A6: Complete Genome of Example Organism, Cue-once Paths Experiments.

 

Position Instruction Position Instruction Position Instruction

0 nop—A 5 h-divide 10 if-less

1 nop—A 6 if-equ-X 1 1 shift-r

2 h-alloc 7 get-head 12 set-flow

3 if-grt-X 8 set-flow 13 dec

4 set-flow 9 nop—A 14 inc   
Continued on next page
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Table A.6 — continued from previous page

 
Position Instruction Position Instruction Position Instruction

15 sg-sense 56 sg-rotate-r 96 sg-rotate-r

16 swap 57 sg-move 97 39— move

17 get-head 58 h-copy 98 sg—seiise

18 set—flow 59 sg~sense 99 swap-stir

19 nop—A 60 if-grt-X 100 if-less

20 nop-A 61 he copy 101 h—search

21 if-label 62 if—ngL~X 102 h- copy

22 Shift-1 63 due 103 if- label

23 pop 64 if- n— equ 104 nop- C

24 mov—head 65 if— equ-X 105 h— divide

25 nop—C 66 mov-head 106 mov—head

26 sg-sense 67 sg—rotate—l 107 if-grt-X

27 sub 68 h-search 108 nop-C

28 sub 69 push 109 sg—rotate-r

29 if—grt-0 70 h—copy 1 10 sg-sense

30 inc 71 swap 1 1 1 dec

31 h—divide 72 nand 1 12 if-label

32 add 73 h-copy 1 13 IO

33 if-less 74 get—head 114 IO

34 swap 75 h—search 1 15 if—grt-X

35 get-head 76 h- divide 116 set-flow

36 sg—sense 77 h—alloc 117 IO

37 nop—C 78 h—alloc 118 if-grt-X

38 push 79 Shift-1 119 set-flow

39 add 80 h—divide 120 shift-l

40 if—n—equ 81 if—equ—X 121 if-grt-O

41 nop—A 82 jmp—head 122 if-equ-X

42 IO 83 inc 123 IO

43 inc 84 nop-C 124 if—grt-X

44 h—alloc 85 Shift-1 125 if— less

45 h—alloc 86 nop—B 126 set—flow

46 swap—stk 87 swap—stk 127 IO

47 if—grt—X 88 get-head 128 if—grt-X

48 sg-sense 89 h-alloc 129 set-flow

49 h-alloc 90 h-search 130 if—equ—X

50 h—copy 91 39- rota te-l 131 if-n—equ

51 add 92 if— cqu-X 132 nop—C

52 set-flow 93 sg-move 133 get-head

53 Shift—1 94 if— grl~ 0 134 dec

54 h-search. 95 if—less 135 nop—A

55 if— n—equ    
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Table A.7: Genome Detail for Example Organism, Cue-once Paths Experiments.

 

 

 

 

Position Instruction Comments

54 h-search Begin Module A.

55 if-n-equ BX!=CX? True when last sense=right or repeat last.

56 sg-rotate-r Turn right 45°. Executes when last sense=right or repeat

last, skipped otherwise.

 

 

 

 

 

 

 

 

 

 

57 sg-move Take a step.

58 h-copy Copy an instruction.

59 sg—sense BX=sense.

60 if-grt-X BX>1? True when last sense=right or left, False other-

wise.

61 h-copy Copy an instruction.

62 if-grt-X BX>1? True when last sense=right or left, False other—

wise.

63 dec BX=BX-1.

64 if-n—equ BX!=CX? True for all states except nutrient.

65 if—equ-X BX=1? True when last sense=right or repeat last.

66 mov-head Skip and exit loop if last sense=left or empty, otherwise

jump to top of loop.

 

 

 

 

 

 

   
76 h—divide Divide here when on right-turn paths.

90 h-search Start left turn and nested copy loop.

91 sg-rotate-l Turn left 45°.

92 if—equ-X BX=1? True when last sense=repeat last, False other-

wise.

93 sg-move Take a step.

94 if—grt-O BX>0? True if last sense=left turn or repeat last, False

otherwise.

  Continued on next page
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Table A.7 — continued from previous page

 

 

 

 

 

 

 

 

 

 

 

    

Position Instruction Comments

95 if-less BX<CX? True if last sense=nutrient, False if last

sense=repeat last.

96 sg—rotate—r Turn right 45°. Executes when last sense=nutrient (un-

does turn at top of loop).

97 sg—move Take a step.

98 sg—sense BX=sense.

99 swap-stk Change active stack. No effect on execution outcome.

100 if-less True if last sense=empty, False otherwise.

101 h-search Begin copy loop. Enter only if last sense=empty.

102 h-copy Copy an instruction.

103 if—label Was last copied nop—A? If so, execute instruction follow-

ing NOP.

104 nop—C

105 h-divide Divide.

106 mov-head Remain in loop while sensel=empty or not done copying.

 

A.2.4 Irregular Paths Example Organism

This organism evolved in the irregular paths environment. It operates by differ—

entially setting jump targets (i.e., the value of the flow-head), depending on the

current state value given by using the sg-sense instruction. The organism has dis-

tinct sections of code for right- and left-turn path segments, but can easily change

execution from one direction to the other.

Organism Information:

0 Gestation Time: 2660

o Genome Size: 179
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o Copied Size: 179

e Executed Size: 155

Table A8 shows the complete genome of the organism. Instructions that are

shown in bold, italicized, red text are important for path—following. I discuss the

operation of the path—following instructions in more detail in Table A9.

Table A8: Complete Genome of Example Organism, Irregular Paths Experiments.

Position Instruction Position Instruction Position Instruction

 

L
D
O
O
N
I
C
D
C
D
i
h
-
O
O
N
I
—
I
O nop-A

h-alloc

nop-B

mov-head

nop-B

add

set-flow

swap-stk

inc

add

nop—A

nop-A

set-flow

h-copy

if-less

get-head

jmp—head

IO

if-less

add

set-flow

add

swap-stk

dec

h-search

swap

h—divide

sg—sense

if-n—equ

if-n-equ

nop—A

sub

h-alloc  

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

if-less

h-search

jmp—head

if—equ-X

h-copy

shift-1

h—search

IO

if-grt—O

sg—sense

if—equ-X

sg—sense

nand

if-grt-X

if—less

get-head

push

inc

IO

h-search

push

inc

IO

inc

if-label

if-grt-O

add

add

h-alloc

nop—C

add

shift-l

if—grt-O  

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

get-head

nop-C

if-less

h-search

P0P

set-flow

dec

nand

if-n-equ

h—divide

if—less

get-head

h-search

nop-A

nop—C

mov—head

nop-C

swap

IO

if-less

P0P

if-grt-X

h—search

get-head

dec

push

h-search

shift—l

39-move

sg-sense

sub

if- less

swap
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Table A.8 — continued from previous page

 

   
 

 

 

 

 

 

Position Instruction Position Instruction Position Instruction

99 h— divide 126 if-n-equ 153 if— grt-O

100 dec 127 shift—r 154 nop—C

101 if—less 128 sg-rotate—r 155 shift-l

102 mov—head 129 156 nand

103 push 130 nop—C 157 swap—stk

104 if— lu bet 131 h-search 158 h—copy

105 nap—C 132 sg-rolate-r 159 if—n-equ

106 shift-r 133 if- la bet 160 swap

107 nop-A 134 nop-B 161 if—grt-O

108 sg-rotate-l 135 add 162 nop—B

109 if—equ 136 nap-B 163 if—label

110 if-less 137 if—less 164 push

111 mov-head 138 89-3ense 165 h-search

112 nand 139 sub 166 h-search

113 shift—r 140 39-mom: 167 h-search

114 swap 141 nand 168 h-copy

115 if—grt—X 142 st -scnse 169 if—label

116 swap 143 if-eqa-X 170 nop—C

117 Shift—r 144 mm;-head I71 nop—A

118 if—n—equ 145 if—grt—0 172 h—divide

119 nop—B 146 set-flow 1 73 mov—head

120 shift—l 147 inc 174 jmp—head

121 swap—stk 148 jmp—head 1 75 swap

122 if—equ—X 149 push 176 pop

123 swap 150 sy-rotate-l 177 nop—A

124 if-equ—X 151 if— n-eqn 178 nop—B

125 nop—A 152 mov-head

Table A9: Genome Detail for Example Organism, Irregular Paths Experiments.

Position Instruction Comments

0 nop—A Jump to here from Module B (position 152) if last

sense=left turn.

92 h—search Start of Module A.

93 Shift-1 BX=BXx 2 (no important effect on execution).

94 sg-move Take a step.

95 sg-sense Put the current cell state in BX.    Continued on next page
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Position Instruction Comments

96 sub BX=BX — ex; ex usually 0.

97 if-less BX < CX? Usually not.

98 swap Does not execute.

99 h—divide No effect here.

100 dec BX=BX-1.

101 if-less 'Ifue if sense=nutrient.

102 mov—head Nested straight-ahead loop. Stay in nested loop as long as

moving straight on path; otherwise, skip this instruction.

103 push Save BX to stack, but never use it later.

104 if-label Was last copied nop—A? If so, execute instruction follow—

ing NOP, otherwise skip.

105 nop—C

106 shift-r AX=AX/2; no effect on execution.

107 nop—A

108 sg—rotate—l Turn left 45°.

109 if-equ-X BX=1? True if last sense: =right turn.

110 if-less Execute when last sense=right turn; evaluates to False,

so skip next instruction and exit loop.

111 mov—head Stay in loop if last sense=left turn or repeat last.

131 h—search Start of Module B.

132 sg—rotate—r Turn right 45°.

133 if—label Nothing important for path-following until the move.

134 nop—B

135 add

136 nop—B

137 if—less BX<CX?  
  Continued on next page
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Table A.9 — continued from previous page

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Position Instruction Comments

138 sg—sense BX=sense.

139 sub

140 sg-move Take a step.

141 nand BX=BX NAND CX, but no impact on movement.

142 sg-sense BX=sense.

143 if-equ—X BX=1? True if sense=repeat last; return to top of this

loop.

144 mov-head Stay in this loop if sense=repeat last; otherwise, skip this

instruction

145 if—grt-O BX>CX? True when sense=left turn.

146 set-flow Set flow-head to 0 ( only when sense=left turn ).

147 inc BX=BX+1.

148 jmp—head No effect (CX=0).

149 push

150 sg—rotate—l Turn left 45°.

151 if—n-equ True for all states except empty (sense=-1).

152 mov-head Execute for all states but empty, but targets differ. Stay

  in this module if last sense=repeat last or right turn);

return to beginning of genome if sense=left turn; skip

this instruction if sense=empty, and exit loop.
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