

LIBRARY Michigan State University

This is to certify that the dissertation entitled

MACROINVERTEBRATE COMMUNITY RESPONSE TO EXPERIMENTAL MANIPULATION OF LIGHT AND NUTRIENTS IN SECOND ORDER STREAMS OF NORTHERN CALIFORNIA

presented by

OSVALDO HERNANDEZ

has been accepted towards fulfillment of the requirements for the

Ph.D. degree in Entomology

| Solution | Entomology | Ent

MSU is an Affirmative Action/Equal Opportunity Employer

PLACE IN RETURN BOX to remove this checkout from your record. **TO AVOID FINES** return on or before date due. **MAY BE RECALLED** with earlier due date if requested.

DATE DUE	DATE DUE	DATE DUE
		-

5/08 K:/Proj/Acc&Pres/CIRC/DateDue.indd

MACRONVERTEBRATE COMMUNITY RESPONSE TO EXPERIMENTAL MANIPULATION OF LIGHT AND NUTRIENTS IN SECOND-ORDER STREAMS OF NORTHERN CALIFORNIA.

By

Osvaldo Hernandez

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Entomology

2009

ABSTRACT

MACROINVERTEBRATE COMMUNITY RESPONSE TO EXPERIMENTAL MANIPULATION OF LIGHT AND NUTRIENTS IN SECOND-ORDER STREAMS OF NORTHERN CALIFORNIA.

Bv

Osvaldo Hernandez

Benthic macroinvertebrate community response to increased light and nutrient augmentation, via riparian canopy removal and salmon carcass addition, was evaluated in second order coastal streams of northern California. The study followed a split-plot experimental design in a total of six streams within the Klamath and Smith River catchments. Each stream consisted of two study reaches (100m) separated by a 250m buffer. Three randomly selected streams received carcass addition (whole-plot factor) and within each stream a study reach randomly received riparian hardwood removal (subplot factor), resulting in four replicated treatments (C- control, N- nutrient augmented, L- light augmented, L+N- light and nutrient augmented). Stream reaches were sampled once premanipulation and four times post-manipulation. Main effect results show that while carcass addition had no effect on macroinvertebrate biomass, canopy removal led to moderately greater biomass (F(1,4)=5.33 p=0.0819), and all postmanipulation biomass were greater than pre-manipulation levels (F(4, 149)=5.14p=0.0007). Pairwise comparisons of macroinvertebrate biomass treatment means, pre and post-manipulation, show no difference within C and N treatments, and greater macroinvertebrate biomass in L (p=0.09) and L+N augmented treatments (p=0.0025). Additionally, red alder (Alnus rubra) leaf pack

mass loss was evaluated among experimental treatments in both spring and fall 2002. During both seasons, 1) all experimental treatments (N, L, L+N) had greater mass loss relative to controls, and 2) control leaf packs had slowest decay coefficients (*k*), while light (L) treatments had fastest decay coefficients. Decay coefficients in the spring were significantly faster in streams with carcass additions than in streams with out carcass additions. Decay coefficients in the fall were significantly faster in the light (L) treatment than in the controls (C).

Results of this study revealed no significant main effect of carcass addition on benthic macroinvertebrate community structure and function in these low order coastal California streams. An ongoing study on nutrient (P) spiraling in the study streams (Harvey and Hill in prep) has shown streams are very non-retentive, i.e. they leak phosphorus rapidly. So the physical, chemical, and biological conditions to effectively take up phosphorus are absent with or without carcasses. Nonetheless, pairwise comparisons pre and post-treatment did reveal a significant effect of augmenting both light and nutrients on mean invertebrate biomass. These results suggest the importance of considering light availability as a component of studies investigating management options that aim to increase salmonid fish production through cascading food web pathways.

I am indebted to a countless number of people who have helped me along the way. I am especially grateful to Dr. Richard W. Merritt, who despite receiving letters and applications from more qualified and apt prospective students, was both willing to give me the opportunity and persistent enough to see me through it all. Thank you, Rico.

ACKNOWLEDGEMENTS

The Green Diamond Resource Company provided access to their property and logistical support. California Cooperative Fish Research Unit at Humboldt State University provided additional logistical support. The Office of Diversity and Pluralism at Michigan State University provided some financial support for field equipment. Moral support provided by fellow friends and students at both Humboldt State University and Michigan State University.

TABLE OF CONTENTS

LIST OF TABLES	vii
LIST OF FIGURES	viii
CHAPTER 1	
INTRODUCTION	4
Introduction	
Literature Cited	3
CHAPTER 2	
BENTHIC MACROINVERTEBRATE RESPONSE TO EXPERIMENTAL	
MANIPULATION OF LIGHT AND NUTRIENTS IN SECOND ORDER S OF NORTHERN CALIFORNIA	STREAMS
Introduction	8
Methods	10
Results	
Discussion	
Conclusion	
Literature Cited	45
CHAPTER 3	
RED ALDER (Alnus rubra) LEAF PACK MASS LOSS AND	
MACROINVERTEBRATE RESPONSE TO EXPERIMENTAL MANIPUL	LATION
OF LIGHT AND NUTRIENTS IN SECOND ORDER STREAMS OF NO	RTHERN
CALIFORNIA	
Introduction	
Methods	
Results	
Discussion	
Conclusions	
Literature Cited	,
APPENDIX	81

LIST OF TABLES

CHAPTER 2 Table 2.1. Study stream characteristics. * Denotes streams with carcass addition
Table 2.2. Checklist of taxa collected from cobble habitats within study reaches of the Smith and Klamath River basins of Northern California. (a- premaipulation, b- postmanipulation, c- open canopy, d- closed canopy, e- control, f- nutrient, g-light, h- light+nutrient, Sc- scraper, Gc- gathering collector, Fc- filtering collector, Sh- shredder, Pi- piercer, Pr- predator, Pa- parasite, A- Accidental Drifter, B-Behavioral drifter)
Table 2.3. Mean P/R ratio analog, calculated from macroinvertebrate biomass by sampling event and treatment. Ratios (>0.75) are autotrophic, (<0.75) are heterotrophic. No statistically significant differences
Table 2.4. Percent of total biomass of top five taxa per sampling event34
CHAPTER 3 Table 3.1. Study stream characteristics. * Denotes streams with carcass addition
Table 3.2. Daily decay rates (k) of red alder leaf packs from experimental study reaches of the Smith and Klamath River basins, northern California. (C= controls, N= augmented nutrients, L= augmented light, L+N= augmented light and nutrients). k values with same letters are not significantly different from each other, Fishers LSD (p =0.05)
Table 3.3. Biomass (mg) and percent dominance of the most abundant taxa: nutrient treatment (carcass, no carcass) by time (Day 15, Day 23, Day 30), from Spring experimental red alder (<i>Alnus rubra</i>) leaf packs
Table 3.4. Biomass (mg) and percent dominance of the most abundant taxa in (C) and (L) treatments by time (Day 15, Day 23, Day 30) from fall experimental red alder (<i>Alnus rubra</i>) leaf packs
Table 3.5. Checklist of taxa collected from experimental red alder (<i>Alnus rubra</i>) leaf-packs from study reaches of the Smith and Klamath River basins of Northern California. (a- Spring, b- Fall, Sc- Scraper, Gc- gathering collector, Fc- filtering collector, Sh- shredder, Pi- piercer, Pr- predator)

LIST OF FIGURES

CHAPTER 2 Figure 2.1. Study reaches within the lower Smith and Klamath River basins of northern California. Fish symbol refer to streams that received carcass additions (after Wilzbach et al. 2005)
Figure 2.2. Mean macroinvertebrate biomass (\pm 1 S.E.) by (a) sampling event. Bars with same letters are not significantly different from each other, Fishers LSD (p = 0.05). And (b) sampling event by carcass interaction, March 2002 t = 2.19, df=9, p = 0.0536
Figure 2.3. Pairwise comparison of pre and post-treatment macroinvertebrate biomass treatment means (± 1 S.E.). L+N significant t = 3.08, df=150, p =0.0025
Figure 2.4. Mean percent Chironomidae by (a) the main effects of canopy type, and sampling event, and by (b) interaction between canopy and sampling event treatments. Bars with same letters are not significantly different from each other, Fishers LSD ($p = 0.05$)
Figure 2.5. (a) Mean Richness and (c) Mean Shannon-Weiner Diversity pre and post-treatment (\pm 1 S.E.). Bars with same letters are not significantly different from each other (p < 0.05)
Figure 2.6. Functional feeding group composition pre (October 2001) and postreatment (October 2003) across all treatments. * Indicates significantly different pre and post-treatment (ANOVA, $p < 0.05$)
Figure 2.7. Interaction effect on percent Shredder (a) pre (October 2001) and post-treatment (October 2003) within closed-canopy reaches, and (b) post-treatment open versus closed-canopy reaches (\pm 1 S.E.). Bars with same letters are not significantly different from each other, Fishers LSD (p = 0.05)41
Figure 2.8. Mean CPOM / FPOM ratio (\pm 1 S.E.) calculated from macroinvertebrate biomass by (a) sampling event, (b) sampling event by carcass streams, and (c) sampling event by no carcass streams. Bars with same letters are not significantly different from each other, Fishers LSD (p = 0.05)42
Figure 2.9. Sampling event effect on mean behavioral / accidental drift ratio (\pm 1 S.E.). Bars with same letters are not significantly different from each other, Fishers LSD ($p = 0.05$)

Figure 2.10. Interaction effect (sampling event by carcass treatment) on mean behavioral / accidental drift ratios (\pm 1 S.E.) in (a) no carcass streams, and (b) in March 2002 between carcass and no carcass streams. Bars with same letters are not significantly different from each other, Fishers LSD (p = 0.05)44
CHAPTER 3 Figure 3.1. Study reaches within the lower Smith and Klamath River basins of northern California. Fish symbol refer to streams that received carcass additions (after Wilzbach et al. 2005)71
Figure 3.2. Percent AFDM experimental red alder leaf pack remaining (+/- 1 S.E.) at day (2, 15, 23, and 30) in study reaches of the Smith and Klamath River basins during a) spring and b) fall
Figure 3.3. Spring a) dry mass and b) Shannon-Weiner diversity (H') (+/- 1 S.E.) of macroinvertebrates on experimental red alder leaf packs at days (15, 23 and 30) from streams of the Smith and Klamath River basins73
Figure 3.4. Fall dry mass (+/- 1 S.E.) of invertebrates on experimental red alder leaf packs at days (15, 23 and 30) from a) streams and b) study reaches of the Smith and Klamath River basins
Figure 3.5. Fall Shannon-Weiner diversity (H') (+/- 1 S.E.) of macroinvertebrates on experimental red alder leaf packs at days (15, 23 and 30) from a) streams and b) treatment study reaches of the Smith and Klamath River basins
Figure 6. Fall shredder biomass (+/- 1 S.E.) on experimental red alder leaf packs among study treatments in the Smith and Klamath River basins76

CHAPTER 1

INTRODUCTION

Northern California's economy is dependent on its natural resources. Much of the landscape has been designated for timber harvest. Del Norte, the most northwestern county has almost equal acreage designated for national forest (157,000) than it does for the forest industry (135,000), although timber production has steadily been decreasing from 60,105,000 board feet in 1996 to 22,691,000 board feet in 2001. Humboldt County located just south of Del Norte, has 262,000 acres designated as national forest and 608,000 acres in the forest industry. Similarly, timber production has been steadily declining in Humboldt County from 517,524,000 board feet in 1996 to 358,225,000 board feet in 2001 (California Department of Forestry Website).

As a result, previously harvested areas are now characterized by a dense red alder (*Alnus rubra*) riparian canopy. Red alder is an early successional species that quickly colonizes disturbed areas with exposed mineral soils. With rapid growth rates of one meter or more in the first year and maximum annual growth of more than three meters a year by two to five year old seedlings (Harrington and Curtis 1986), it quickly dominates riparian margins. However, red alder is a relatively short-lived species maturing at 60 to 70 years with a maximum age of about 100 years and has low commercial value. However, its ecological value to streams has been the focus of studies in the Pacific Northwest. Red alder is capable of fixing atmospheric nitrogen (N₂) that can

result in increases in nitrogen availability both in the soil and in leaf litter that could potentially benefit the quality of allochthonous organic matter to adjacent streams. For example, in an effort to determine how the distribution of macroinvertebrates is affected by interstitial detritus quality and quantity, Culp and Davies (1985) found that total macroinvertebrate densities and biomass were greater in alder detritus than in no detritus and low hemlock detritus in the main channel of Carnation Creek, Vancouver Island, British Columbia. In addition, research on the effects of canopy type on benthic macroinvertebrate and detritus export from headwater streams in southeast Alaska, has shown streams with a red alder dominated young growth canopy exported significantly more macroinvertebrates than did streams with a conifer-dominated young growth canopy (Piccolo and Wipfli 2002).

In addition to the economic importance of timber in northern California, there are numerous streams that are economically important for salmonid fish production. The commercial value of samonids in California in 2001 was \$4,692,093 (Department of Fish and Game website) primarily from Chinook salmon (*Oncorhynchus tshawytscha*) and steelhead (*Oncorhynchus mykiss*). Coho salmon (*Oncorhynchus kisutch*) present in some watersheds in California are currently listed as threatened, which reflects the decline in salmonid populations in the Pacific Northwest (Gresh et al. 2000). The importance of salmonid fish to California's economy has resulted a need for management options that will likely lead to their increased production.

One current management option being considered to stimulate fish production is removal of riparian red alder. Removal of riparian canopy has led to increases in periphyton production (Hansmann and Phinney 1973; Duncan and Brusven 1985a; Feminella et al. 1989; Hetrick et al. 1998a) that enhances benthic invertebrate production (Burns 1972; Newbold et al. 1980; Hawkins et al. 1982; Duncan and Brusven 1985b; Hetrick et al. 1998b). This enhanced invertebrate production may partly be due to the generally higher protein content and digestibility of algae and algal-based detritus than most incoming terrestrial plant matter (Triska et al. 1975). The change in the relative importance from allochthonous organic matter sources on which small order streams depend upon (Vannote et al. 1980) to autochthonous organic matter will result in changes to the invertebrate community composition from primarily shredders and detritivores to scrapers and gathering-collectors (Gregory et al. 1987). These changes in community composition and greater production of benthic invertebrates will result in greater food availability for fish by way of greater invertebrate abundances or possibly through behavioral differences such as invertebrate drift, ultimately leading to greater production of fish.

Another management option for increased fish production is fertilization of streams. Harvey et al. (1998) showed that experimental additions of phosphorus and nitrogen to an arctic tundra stream stimulated production at all trophic levels relative to an unfertilized reach. Declining nutrient supplies historically derived from carcasses of spawned salmon, known as marine derived nutrients, has likely led to increased nutrient limitation in streams of the Pacific Northwest

(Gresh et al. 2000). Fertilization of streams is believed to result in a positive feedback mechanism whereby nutrients from salmon carcasses are incorporated by stream autotrophs. The increased production of autotrophs would then result in greater food availability for organisms in higher trophic levels, up to top predators (salmonid fish). Greater production of fish would result in greater spawner returns and therefore a greater nutrient subsidy of marine derived nutrients.

In an effort to assess the efficacy of these management options we propose to experimentally manipulate light and nutrient levels in previously harvested second order streams with a red alder riparian canopy in northern California. Experimental manipulation is a logical approach to determining the relative effects of increased light, nutrients, or both by contrasting manipulated and controlled areas in natural streams. The objective of this study is to document the effects of increased light and nutrients on coastal cutthroat (*Salmo clarki*) fish production by the food web pathways that support them.

LITERATURE CITED

Literature Cited

- Burns, J.W. 1972. Some effects of logging and associated road construction on northern California streams. Transactions of the American Fisheries Society 101: 1-17.
- Culp,J.M. and Davies,R.W. 1985. Responses of benthic macroinvertebrate species to manipulation of interstitial detritus in Carnation Creek, British Columbia. Canadian Journal of Fisheries and Aquatic Sciences 42: 139-146.
- Duncan, W.F.A. and Brusven, M.A. 1985a. Energy dynamics of three low-order southeast Alaskan streams: Autochthonous production. Journal of Freshwater Ecology. La Crosse 3: 155-166.
- Feminella, J.W., M.E. Power, and V.H. Resh 1989. Periphyton responses to invertebrate grazing and riparian canopy in three California coastal streams. Freshwater Biology 22: 445-457.
- Gregory S.V., G.A.Lamberti, D.C.Erman, K.V.Koski, M.L.Murphy, and J.R.Sedell. 1987. Influence of forest practices on aquatic production. *In* Streamside management: forestry and fishery interactions. *Edited by* E.O.Salo and T.W.Cundy. Institute of Forest Resources, Contribution 57, University of Washington AR-10, Seattle, WA pp. 233-255.
- Gresh,T., Lichatowich,J., and Schoonmaker,P. 2000. An Estimation of Historic and Current Levels of Salmon Production in the Northeast Pacific Ecosystem: Evidence of a Nutrient Deficit in the Freshwater Systems of the Pacific Northwest. Fisheries 25: 15-21.
- Hansmann, E.W. and Phinney, H.K. 1973. Effects of logging on periphyton in coastal streams of Oregon. Ecology 54: 194-199.
- Harrington, C.A. and R.O. Curtis 1986. Height growth and site index curves for red alder. USDA For Serv Res Pap PNW US Pac Northwest For Range Exp Stn.
- Harvey, C.J., Peterson, B.J., Bowden, W.B., Hershey, A.E., Miller, M.C., Deegan, L.A., and Finlay, J.C. 1998. Biological responses to fertilization of

- Oksrukuyik Creek, a tundra stream. Journal of the North American Benthological Society 17: 190-209.
- Hawkins, C.P., Murphy, M.L., and Anderson, N.H. 1982. Effect of canopy, substrate composition, and gradient on the structure of macroinvertebrate communities in cascade range streams of Oregon. Ecology 63: 1840-1856.
- Hetrick, N.J., Brusven, M.A., Meehan, W.R., and Bjornn, T.C. 1998a. Changes in solar input, water temperature, periphyton accumulation, and allochthonous input and storage after canopy removal along two small salmon streams in southeast Alaska. Transactions of the American Fisheries Society 127: 859-875.
- Hetrick, N.J., Brusven, M.A., Bjornn, T.C., Keith, R.M., and Meehan, W.R. 1998b. Effects of canopy removal on invertebrates and diet of juvenile Coho salmon in a small stream in southeast Alaska. Transactions of the American Fisheries Society 127: 876-888.
- Newbold, J.D., Erman, D.C., and Roby, K.B. 1980. Effects of logging on macroinvertebrates in streams with and without buffer strips. Canadian Journal of Fisheries and Aquatic Sciences. 37: 1076 -1085.
- Piccolo, J.J. and Wipfli, M.S. 2002. Does red alder (Alnus rubra) in upland riparian forests elevate macroinvertebrate and detritus export from headwater streams to downstream habitats in southeastern Alaska? Canadian Journal of Fisheries and Aquatic Sciences 59: 503-513.
- Triska F.J., J.R.Sedell, and B.Buckley 1975. The processing of conifer and hardwood leaves in two coniferous forest streams: II Biochemical and nutrient changes. Verh.Int.Ver.Limnol. 19: 1628-1639.
- Vannote, R.L., Minshall, G.W., Cummins, K.W., Sedell, J.R., and Cushing, C.E. 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences. 37: 130-137.

CHAPTER 2

BENTHIC MACROINVERTEBRATE RESPONSE TO EXPERIMENTAL MANIPULATION OF LIGHT AND NUTRIENTS IN SECOND ORDER STREAMS OF NORTHERN CALIFORNIA

INTRODUCTION

Coastal waterbodies of the Pacific Northwest are characterized as oligotrophic (Bisson and Bilby 1998), particularly with respect to phosphorus (Welsh et al. 1998). It has been proposed that in general, this condition has been exacerbated due to declining salmonid stocks (Larkin and Slaney 1997) that historically provided an estimated 95% of the N and P in those systems to a marine derivation (Gresh et al. 2000), before nitrogen-fixing red alder became the dominant riparian tree. Fertilization has been proposed and used as a management technique with the goal of reversing or ameliorating this trend. The idea is that fertilization would lead to greater primary production and cascade up the food web, ultimately increasing the number of salmonid spawners that will return and perpetuate the cycle. There is evidence from southeast Alaska that stream biota, at multiple trophic levels, assimilate these marine derived nutrients (Chaloner et al. 2002), where the effects of enrichment have been evaluated. For example, salmon carcass and carcass analog (salmon cakes - dried salmon pellets) enrichment to stream tributaries in Alaska were shown to result in higher mean condition, production and lipid content of cutthroat trout (Oncrhynchus clarki) than in un-enriched stream sections (Wipfli et al. 2004). Although, these positive responses to enrichment have been documented, effects on stream

chemistry and biota have been inconsistent and context dependent (Janetski et al. 2009; Wilzbach et al. 2005).

In addition to nutrient limitation, many of these coastal streams have undergone a history of timber harvest of their riparian vegetation, which has led to a change in their composition, to a dominance of hardwoods (particularly red alder Alnus rubra) with youngest stands having the highest levels of canopy cover (Russell 2009). This dense canopy cover, which limits primary production. may further be problematic to salmonid production, as autotrophic pathways are important to salmon growth in the spring and summer (Bilby and Bisson 1992; Wilzbach et al. 2005). Removal of riparian canopy has led to increases in periphyton production (Hansmann and Phinney1973; Duncan and Brusven1985a: Feminella et al. 1989: Hetrick et al. 1998a) that enhances benthic invertebrate abundances and biomass (Burns 1972; Newbold et al. 1980; Hawkins et al. 1982; Duncan and Brusven 1985b, Nislow and Lowe 2006). This enhanced invertebrate production may be due partly to the generally higher protein content and digestibility of algae and algal-based detritus than most incoming terrestrial plant matter (Triska et al. 1975). A change in the relative importance from allochthonous organic matter sources upon which small order streams depend (Vannote et al. 1980) to autochthonous organic matter, results in changes to the invertebrate community functional composition from dominance by shredders and gathering-collectors to scrapers (Gregory et al. 1987). These changes in community composition of benthic invertebrates likely result in greater

food availability for fish by way of greater invertebrate abundances or possibly through behavioral differences such as increases in invertebrate drift.

In an effort to determine the relative effects of increased light, nutrients, or both, on macroinvertebrate communities, we augmented light (via canopy removal) and nutrient levels (via salmon carcass additions) in previously harvested second order forested streams with a predominantly red alder riparian canopy in northern California.

METHODS

Study Area

The study was conducted in coastal northern California (Del Norte and Humboldt counties) between October 2001 and October 2003. The area typically experiences warm dry summers and cool wet winters, with average yearly temperatures ranging from 5.5 - 16.5°C and average yearly rainfall ranging between 170 to 200cm. Study reaches were established upstream of anadromy on 2 tributaries of the Klamath (Tarup and Tectah) and 4 tributaries of the Smith River (South Fork Rowdy, Savoy, Little Mill and Peacock) basins (Figure 2.1). Study reaches on second to third order streams had similar catchment areas (Table 2.1). Riparian vegetation consisted primarily (>80%) of red alder (*Alnus rubra*); while surrounding vegetation included coastal redwood (*Sequoia sempervirens*), Douglas-fir (*Pseudotsuga menziesii*), Sitka spruce (*Picea sitchensis*), big leaf maple (*Acer macrophyllum*), tan oak (*Lithocarpus*

densiflorus), and California bay laurel (*Umbellularia californica*). Resident salmonids were cutthroat trout (*Oncorhynchus clarki*), and rainbow trout / steelhead (*Oncorhynchus mykiss*) and hybrids (Wilzbach et al. 2005).

Experimental Design

In an effort to augment nutrients and light to study reaches, salmon carcasses were added to streams, and riparian hardwoods were removed from the riparian margin. The first phase of the study followed a split-plot experimental design, with carcass treatment (carcass, no carcass) as the whole-plot factor and canopy treatment (open, closed) as the sub-plot factor. Each of the streams consisted of two 100m study reaches separated by a 150-200m buffer. Three of the six streams were randomly selected to receive carcass addition, and a study reach within each stream was randomly selected to undergo canopy removal (Table 2.1). The design resulted in three replicate study reaches of four treatments; control (C), augmented nutrients (N), augmented light (L), and augmented light and nutrients (L+N).

Carcass addition of Chinook salmon (*Oncorhynchus tsawytscha*)
carcasses to the three streams was conducted in January of both 2002 and
2003. Salmon carcasses for Tarup creek were procured from California
Department of Fish and Wildlife's Iron Gate Fish Hatchery on the Klamath River.
Carcasses for Little Mill and Peacock creeks were collected from the privately
owned Rowdy Creek Fish Hatchery and from spawned carcasses on the Smith

River. Carcasses were stored frozen until introduced at a level of approximately 1 kg•m⁻². Carcasses were anchored throughout study reaches with rebar in areas of slack water and near debris dams. Grab samples of water were collected in 2002 from each study reach at 2, 6, 15 and 22 weeks after carcass addition and analyzed for multiple water chemistry parameters (Wilzbach et al. 2005).

The canopy treatment was carried out in December 2001 after leaf fall, and involved falling red alder and other hardwoods from a 20m wide band on each side of the stream for the 100m length of each randomly selected stream reach. A 2-man team with a chainsaw and a winch felled the trees to minimize disturbance and direct the cut trees away from the stream. Prior to canopy treatment, the potential available sunlight reaching streambeds was estimated at 20m intervals of all study reaches using a Solar PathfinderTM. Photosynthetically active radiation (PAR) was measured simultaneously in open and closed canopy reaches of a stream using a Li-Cor® quantum sensor model LI-190S after canopy removal. Stream temperatures were monitored using Stowaway®

Macroinvertebrate Sampling

Macroinvertebrates were sampled once pre-treatment in October 2001 and 4 times post-treatment (March and July 2002, and July and October 2003). A total of three macroinvertebrate samples were collected from each study reach at each sampling event. Individual samples were collected from cobble habitats

from randomly selected riffles within a study reach. Other habitats were sampled, but have not yet been analyzed. Individual samples were collected with a D-frame aquatic net placed immediately downstream of agitated habitat for 30 seconds. Samples were rinsed through a 250-µm sieve and transferred into Whirl-Paks®, preserved in 80% ethanol, and returned to the lab for sorting under a dissecting scope. Invertebrates were picked from samples, counted, measured to the nearest millimeter, and identified mostly to generic level for Insecta (except for Chironomidae) using Merritt & Cummins (1996; Merritt et al. 2008). Chironomidae were identified to subfamily and non-insect invertebrates were not identified beyond order level. A total of 180 samples were collected and analyzed.

Invertebrate biomass was calculated using INVERTCALC software (Merritt et al. 2002). Richness was measured as mean number of taxa present. Diversity was calculated based on invertebrate biomass using the Shannon-Weiner diversity index (Hauer and Resh 1996), and percent Chironomidae was also calculated based on invertebrate biomass. Macroinvertebrates were assigned a functional group status (shredders, scrapers, filtering-collectors, gathering-collectors, and predators) according to Merritt and Cummins (1996; Merritt et al. 2008). Percent functional group and functional feeding group ratios (P/R, CPOM/FPOM, Drift Food) were calculated based on biomass (Merritt et. al. 2002).

The response variables biomass, and functional feeding group ratios (CPOM/FPOM and Drift Food) were analyzed by a split-split-plot ANOVA, with

carcass treatment (carcass, no carcass) as the whole-plot factor canopy treatment (open, closed) as the sub-plot factor and sampling event (Oct 2001, March 2002, July 2002, July 2003, and Oct 2003) as the sub-sub-plot factor. Richness, diversity, percent functional group, and P/R ratio were analyzed similarly, however, only Oct 2001 and Oct 2003 sampling events were evaluated, for comparison pre and post manipulation during the same time of year. Additionally, four pair-wise comparisons of macroinvertebrate biomass treatment means, pre and post-treatment, were conducted using Bonferroni adjusted alpha levels of 0.0125 per test (0.05/4). Response variable residuals were tested for normality, and results were transformed where necessary. Means were separated using Fishers LSD at p = 0.05. Although response variables were transformed, they have been presented in untransformed fashion in graphs and tables.

RESULTS

Carcass addition had no significant effect on the following water chemistry parameters tested, SiO₂, nitrogen (TN, NO₃⁻, and NH4⁺), or phosphorus (TP and PO₄³⁻) (Wilzbach et al. 2005). Availability of potential sunlight did not differ among streams or study reaches prior to canopy removal, however, canopy removal often led to a tenfold increase in PAR, (Ambrose et al. 2004). Additionally, canopy removal resulted in higher NH₄⁺ levels in open-canopy reaches, however, winter, summer and maximum weekly average temperatures did not differ

between open and closed study reaches. Small temperature increases (1.5°C) were noted at the downstream end of open-canopy reaches (Wilzbach et al. 2005).

Macroinvertebrate Biomass

There were no differences in mean macroinvertebrate biomass among study reaches during pre-treatment sampling (all $p \ge 0.60$). Mean macroinvertebrate biomass did not differ between streams with and without carcasses (p = 0.64), or between open and closed-canopy reaches (p = 0.08). However, biomass did differ among sampling dates with lowest levels at pretreatment sampling (Figure 2.2a). Additionally, biomass was greater in streams with carcasses than in streams without carcasses during March 2002 (Figure 2.2b). Results of pair-wise comparisons of macroinvertebrate biomass treatment means, pre and post-treatment, show no difference within C, N, or L treatments, and greater post-treatment biomass in L+N augmented streams (p = 0.0025) (Figure 2.3).

Mean % Chironomidae did not differ among study reaches during pretreatment sampling (all p > 0.21), or between streams with and without carcasses (p = 0.07). Canopy treatment (p = 0.004) and sampling event (p < 0.0001) did affect % Chironomidae, with closed-canopy and post-treatment samples having a greater percentage of Chironomidae biomass (Figure 2.4a). Additionally, the interaction of canopy and sampling event treatments also resulted in significantly

greater (all p < 0.0001) % Chironomidae in closed-canopy reaches sampled in October 2003 (Figure 2.4b).

Richness and Diversity

A total of 83 insect genera and three chironomid subfamilies were collected from study reaches of the Smith and Klamath River basins of Northern California, in addition to eight non-insect taxa (Table 2.2). Mean taxa richness did not differ significantly among study reaches during pre-treatment sampling (all $p \ge 0.14$). Mean taxa richness did not differ between streams with and without carcasses (p = 0.47), or between open and closed-canopy reaches (p = 0.50). However, mean taxa richness was greater during the October 2001 (pre-treatment) sampling event, than during October 2003 (p < 0.0001)(Figure 2.5a). There were no significant interaction effects on taxa richness. Shannon-Weiner diversity did not differ significantly between streams with and without carcasses (p = 0.12), between open and closed-canopy reaches (p = 0.91), or among sampling events (p = 0.32) (Figure 2.5b). Additionally, there were no significant interaction effects on diversity (all p > 0.06).

Functional Analysis

Percent functional group composition for scrapers (Sc), filtering-collectors (Fc), gathering-collectors (Gc) and predators (Pr) did not differ between streams

with and without carcasses (all p > 0.19), or between open and closed-canopy reaches (all p > 0.14). Additionally, there were no significant interactions on percent composition for these groups (all p > 0.05). However, there were significant differences on percent composition during pre and post-treatment October sampling effects on these groups (all p < 0.05)(Figure 2.6). The predators were the most dominant functional group present at both pre and posttreatment sampling events, comprising about 40% of the total biomass. Calineuria (Perlidae) and Rhyacophila (Rhyacophilidae) were the dominant (Pr) taxa; each had between 30-50% more biomass in the post-treatment samples. Scraper biomass was overall greater in post-treatment samples. The snail Juga (Pleuroceridae) was the dominant (Sc) taxon in both pre and post-treatment samplings with three times as much biomass in the post-treatment sampling. Similarly, filtering-collector biomass was greater in post-treatment samples. The (Fc) caddisfly *Hydropsyche* (Hydropsychidae) was the dominant taxa in both pre and post-treatment samples with ten times more biomass in post-treatment samples. Gathering-collector biomass was greater overall in pre-treatment samples, with Oligochaeta being the dominant taxon with similar levels of biomass in both pre and post-treatment samplings. There was greater biomass of both Cinyamula (Heptageniidae) and Baetis (Baetidae) in post-treatment samples. Percent shredder (Sh) composition did not differ between streams with and without carcasses (p = 0.79), or between open and closed-canopy reaches (p = 0.71), or between pre and post-treatment sampling events (p = 0.46) (Figure 2.6). However, there was a significant interaction between sampling event and

canopy type (p = 0.008). There was a greater percentage of shredders in October 2003 than in October 2001 within closed-canopy reaches (p = 0.03), as a result of more *Pteronarcys* (Pteronarcyidae), *Amphinemoura* and *Malenka* (Nemouridae) biomass in closed-canopy reaches in post-treatment samples than in closed-canopy reaches in pre-treatment samples. There were also a greater percentage of shredders within closed-canopy reaches than in open-canopy reaches during October 2003 (p = 0.02) (Figure 2.7), as a result of more *Pteronarcys* and the Nemouridae stoneflies *Zapada*, *Malenka* and *Amphinemoura*, in post-treatment closed-canopy reaches than in post-treatment open-canopy reaches.

Analysis of mean P/R ratios resulted in no significant main effects of carcass (p = 0.63), canopy (p = 0.30), or sampling event (p = 0.60) treatments, in addition to no significant interactions (all p > 0.16)(Table 2.3). Similarly there was no main effect of carcass and canopy treatments on CPOM/FPOM (p = 0.92 and p = 0.49) or Drift Food (p = 0.33 and p = 0.33) ratios. Sampling event (p = 0.0035), and the interaction of sampling event and carcass treatment (all p < 0.05) led to significant differences in CPOM/FPOM ratios (Figure 2.8). Similarly, sampling event (p = 0.0008) (Figure 2.9), and the interaction of sampling event and carcass treatment (p = 0.04) led to significant differences in Drift Food ratios (Figure 2.10).

DISCUSSION

Macroinvertebrate Biomass

Overall study design limitations (lower degrees of freedom at the wholeplot level) led to greater significant findings at the subplot (primarily sampling event) and interaction levels of treatments in this study. Invertebrate biomass varied significantly among sampling events, potentially due to seasonal differences in standing stock biomass. However, biomass was significantly greater at all sampling dates post-treatment, including the final sampling event that occurred in the same month as the pre-treatment sampling event. Sampling events yielded similar results in taxonomic composition, according to Jaccard coefficients, no two sampling events were less than 76% similar. Additionally, the top five dominant taxa comprised between 40-55% of the total biomass across sampling dates (Table 2.4), suggesting all sampling dates were dominated similarly by these same taxa. The stonefly Calineuria (Perlidae) was present across all sampling dates as the most biomass dominant organism, comprising 11-17% of the total biomass. A positive response by perlid stoneflies to carcass additions and indirect uptake of nutrients occurring about two months after the addition also was recorded in Washington (Claeson et al. 2006). This evidence and the finding that the greatest percentage of salmon derived nutrients occurs in macroinvertebrates three months after additions (Honea and Gara 2009), lends

support to our finding of greater invertebrate biomass in streams with carcass addition than in streams without carcass addition in March 2002.

Analysis of invertebrate biomass using Bonferroni adjusted pair-wise comparisons of treatment means pre versus post-manipulation reveals a gradual pattern of increased biomass from C to N, and L reaches. Previous studies have shown greater densities of Chironomidae and Ephemeroptera following nutrient additions to experimental stream channels (Perrin and Richardson 1997; Kiffney and Richardson 2001). This study, conducted in natural streams with a red alder riparian canopy failed to show a significant increase in invertebrate biomass subsequent to carcass additions. Carcass additions to streams with a red alder riparian canopy have been shown not to affect stream water chemistry or quality (Edmonds and Mikkelsen 2006; Wilzbach et al. 2005). Previous studies have documented greater abundances of invertebrates in streams with clearcut canopies (Hawkins et al. 1982), in addition to greater biomass of invertebrates in open versus closed canopies (Hetrick et al. 1998b). Our study resulted in greater amounts of invertebrate biomass in light-augmented treatment reaches, although the difference was not significant (p = 0.09). However, we did show positive additive effects on invertebrate biomass through the augmentation of both light and nutrients, suggesting the need to consider light as a limiting factor in marine or salmon derived nutrient study designs.

Chironomidae abundance and biomass have been shown to have a positive relationship with marine derived nutrients (Lessard and Merritt 2006). In addition, chironomid density has been shown to increase in nutrient enriched

experimental streams (Kiffney and Richardson 2001). Our study showed no such relationship to carcass addition, again a potential limitation of the study design. Additionally, our study showed lower % Chironomidae biomass in open versus closed canopy stream reaches, opposite of what is commonly described. Chironomidae have been shown to increase three times after tree harvest (Garman and Moring 1993), and low canopy cover has been shown to result in increased numbers of Chironomidae larvae (Nislow and Lowe 2006). There was a greater percentage of Chironomidae, in terms of biomass, during the post-treatment sampling particularly in the closed canopy reaches.

Richness and Diversity

Invertebrate taxa richness and diversity did not respond significantly to experimental addition of salmon analogs (dried salmon pellets) in Idaho (Kohler et al. 2008). However, invertebrate diversity has been shown to decline during salmon spawning (Lessard and Merritt 2006), presumably the result of disturbance during salmon spawning. We did not assess invertebrate diversity during carcass addition. The difference in mean richness pre and post-treatment in this study resulted from some rare taxa that appeared in between 1-8 of the total number of samples (*Moselia, Polycentropus, Hydatophylax, Ceratopsyche, Rhantus*).

A dominance of predators in study reaches suggests a need for a food base with rapid turnover rates (Merritt et al. 2002), such as chironomid larvae, whose turnover rates have been shown to decrease when in the presence of nutrient enrichment (Ramirez and Pringle 2006). Greater scraper biomass in post-treatment sampling was presumed the result of increased periphyton growth expected after canopy removal (Hetrick et al. 1998a). The absence of significant differences in periphyton ash-free dry mass pre and post-manipulation in this study (Ambrose et al. 2005) may have resulted from increased scraper feeding pressure or scouring. Collectors have been implicated as important for the transfer of marine or salmon derived nutrients through food webs (Chaloner and Wipfli 2002) although in some cases Heptageniidae and Baetidae have been shown to have greater abundances and biomass in control reaches of marine derived nutrient studies (Lessard and Merritt 2006). The positive response by Cinygmula and Baetis in this study likely reflect a lack of disturbance by salmon migration, as our carcass introductions were experimental rather than natural. Shredder biomass only differed at the interaction level (sampling event*canopy treatment) of the study. Invertebrate samples from cobble habitats of closedcanopy stream reaches had greater shredder biomass than the same habitat in open-canopy reaches, likely because of the greater availability of food resource in the form of red alder riparian litter.

Due to sample variability, there were no significant differences in P/R functional group ratios as was expected between open and closed-canopy reaches. Mean P/R ratios by treatment and sampling event show heterotrophy dominated stream reaches, although autotrophy appeared to dominate during the October 2003 sampling event across all treatments during leaf drop (Table 2.3).

CPOM/FPOM functional group ratio varied by sampling event with March 2002 and July 2002 having the smallest ratios, as a result of low numbers of large individuals (ex. Ptronarcys). The March sampling event was marked by a small overall shredder biomass (75mg) versus >140mg at other sampling events, while collector biomass was large in July 2002 (3900mg) versus < 2300mg at other sampling events. Streams without carcass addition had more (ca. 100mg) shredder biomass than streams with carcass additions, particularly during pre and post-treatment October sampling events.

Drift Food functional group ratio was largest during the July 2002 sampling event. The biomass of the mayflies *Baetis* and *Acentrella* (Baetidae) was 2-5 times greater during this sampling event resulting in twice as much behavioral drifter biomass than other sampling events. In streams without carcass additions, primarily *Baetis* (Baetidae), and to a lesser part *Paraleptophlebia* (Leptophlebiidae), are responsible for the greater biomass of behavioral drifters during March 2002, July 2002 and October 2003 when compared to the pretreatment sampling event. The difference in Drift Food functional ratio between streams with and without carcasses in March 2002 was attributable to accidental

drifters such as *Pteronarcys* (Pteronarcyidae), *Calineuria* (Perlidae) and *Rhyacophila* (Rhyacophilidae), in streams with carcasses.

Conclusion

Results of this study revealed no significant main effect of carcass addition on benthic macroinvertebrate community structure and function in these low order coastal California streams. However, invertebrate biomass was significantly greater in streams reaches 2-3 months following carcass additions, suggesting a need to re-evaluate carcass addition effects on a more focused shorter timeframe and a larger spatial scale than in this study. A two year follow up study to Wilzback et al. 2005 was conducted by Harvey and Wilzbach (in prep) in which the design was to add no carcasses to the upper reaches (both canopy treatments) and carcasses to all the down stream reaches (both canopy treatments). Again, this two-year study showed the same fish results - no carcass effect on fish growth. The lack of carcass addition effects may likely reflect limitations of the study's experimental design, in which the subplot factors of canopy removal and sampling date have greater power. In 2-3 months, the effect would likely be largely downstream well out of the experimental area. An ongoing study on nutrient (P) spiraling in the study streams (Harvey and Hill in prep) has shown streams are very non-retentive, i.e. they leak phosphorus rapidly. So the physical, chemical, and biological conditions to effectively take up phosphorus are absent with or without carcasses.

Similarly, removal of riparian hardwoods did not lead to significant main effects in all but one response variable (% Chironomidae). Pairwise comparisons pre and post-treatment however did reveal a significant effect of augmenting both light and nutrients on mean invertebrate biomass. These results suggest the importance of considering light availability as a component of studies investigating management options that aim to increase salmonid fish production through cascading food web pathways.

Table 2.1. Study stream characteristics. * Denotes streams with carcass addition.

	Catc	hment Area	Catchment Area Latitude / Longitude	Open Canopy Gradient (%)	Gradier	ıt (%)
Stream	(km ²	(km²) / Basin		Reach	Open Closed	Closed
Tectah	7.9	7.9 / Klamath	41°15'47"N / 123°57'52"W	Lower	2.9	1.7
Tarup *	4.9	4.9 / Klamath	41°27'45"N / 123°59'32"W	Upper	2.8	6 .
Little Mill	3.4	/ Smith	41°52'27"N / 124°6'47"W	Lower	7.7	9.5
Peacock *	3.5	3.5 / Smith	41°50'11"N / 124°5'23"W	Lower	2.4	4.2
South Fork Rowdy *	4.9	4.9 / Smith	41°55'16"N / 124°5'23"W	Upper	5.6	5.1
Savoy	5.0	5.0 / Smith	41°54'14"N / 124°5'12"W	Lower	4.7	5.6

Table 2.2. Checklist of taxa collected from cobble habitats within study reaches of the Smith and Klamath River basins of Northern California. (a- premaipulation, b- postmanipulation, c- open canopy, d- closed canopy, e- control, f- nutrient, g- light, h- light+nutrient, Sc- scraper, Gc- gathering collector, Fc- filtering collector, Sh- shredder, Pi- Piercer, Pr-predator, Pa- parasite, A- Accidental Drifter, B- Behavioral drifter)

	,,										Drift
Family	Genus			Ρ	res	enc	е			FFG	type
Ephemeroptera											
Ameletidae	Ameletus	а	b	С	d	е	f	g	h	Gc	В
Baetidae	Acentrella	а	b	С	d	е	f	g	h	Gc	В
	Baetis	а	b	С	d	е	f	g	h	Gc	В
Ephemerellidae	Attenella	а	b	С	d	е		g	h	Gc	Α
	Caudatella	а		С	d	е				Gc	Α
	Drunella	а	b	С	d	е	f	g	h	Sc	Α
	Ephemerella	а	b		d		f			Gc	Α
	Serratella	а	b	С	d	е	f	g	h	Gc	Α
	Timpanoga		b	С				g	h	Gc	Α
Heptageniidae	Cinygma	а	b	С	d		f	g	h	Sc	Α
	Cinygmula	а	b	С	d	е	f	g	h	Gc	Α
	Epeorus	а	b	С	d	е	f	g	h	Gc	Α
	Heptagenia	а	b	С	d		f	g		Sc	Α
	Ironodes	а	b	С	d	е	f	g	h	Sc	Α
	Rhithrogena	а	b	С	d	е	f	g	h	Gc	Α
Leptophlebiidae	Paraleptophlebia	а	b	С	d	е	f	g	h	Gc	В

Plecoptera

Table 2.2 (cont.)

Capniidae		а	b	С	d	е	f	g	h	Sh	Α
Chloroperlidae	Kathroperla	а	b	С	d	е			h	Gc	Α
	Suwallia	а	b	С	d	е	f	g	h	Pr	Α
	Sweltsa	а	b	С	d	е	f	g	h	Pr	Α
Leuctridae	Despaxia	а	b	С	d	е	f			Sh	Α
	Moselia	а		С	d	е				Sh	Α
	Perlomyia	а	b	С					h	Sh	Α
Nemouridae	Amphinemura	а	b	С	d	е	f	g	h	Sh	Α
	Malenka	а	b	С	d	е	f		h	Sh	Α
	Nemoura	а		С	d	е				Sh	Α
	Zapada	а	b	С	d	е		g	h	Sh	Α
Peltoperlidae	Soliperla	а	b	С	d	е	f	g		Sh	Α
Perlidae	Calineuria	а	b	С	d	е	f	g	h	Pr	Α
	Doroneuria	а	b	С	d	е	f	g		Pr	Α
	Hesperoperla	а	b	С	d	е	f	g	h	Pr	Α
Perlodidae	Isoperla	а	b	С				g		Pr	Α
	Osobenus	а	b	С				g		Pr	Α
Pteronarcyidae	Pteronarcys	а	b	С	d	е		g	h	Sh	Α
Odonata											
Gomphidae		а	b	С	d	е	f	g	h	Pr	Α
Megaloptera											
Corydalidae	Orohermes	а	b		d	е	f			Pr	Α

Table 2.2 (cont.)

Sialidae	Sialis	а	b		d	е	f			Pr	Α
Trichoptera											
Apatanidae	Apatania	а	b	С	d	е	f	g	h	Sc	Α
Brachycentridae	Brachycentrus	а	b	С	d	е	f			Fc	Α
	Micrasema	а	b	С	d	е	f	g	h	Sh	Α
Calamoceratidae	Heteroplectron	а	b	С	d	е	f	g	h	Sh	Α
Glossosomatidae	Glossosoma	а	b	С	d	е	f	g	h	Sc	Α
Hydropsychidae	Ceratopsyche	а		С		е				Fc	Α
	Hydropsyche	а	b	С	d	е	f	g	h	Fc	Α
	Parapsyche	а	b	С	d	е	f		h	Fc	Α
Hydroptilidae	Ochrotrichia		b	С					h	Gc	Α
Lepidostomatidae	Lepidostoma	а	b	С	d	е		g	h	Sh	Α
Leptoceridae			b		d	е				Sc	Α
Limnephilidae	Cryptochia		b	С					h	Sh	Α
	Ecclisomyia	а	b	С	d	е	f	g	h	Gc	Α
	Hydatophylax	а		С	d	е				Sh	Α
Philopotamidae	Wormaldia		b	С					h	Fc	В
Polycentropodidae	Polycentropus	а		С		е				Pr	Α
Rhyacophilidae	Rhyacophila	а	b	С	d	е	f	g	h	Pr	Α
Sericostomatidae	Gumaga	а	b	С	d	е	f	g	h	Sh	Α
Uenoidae	Neophylax	а	b	С	d	е	f	g	h	Sc	Α
	Neothremma	а	b	С	d	е	f		h	Sc	Α

Table 2.2 (cont.)

Hymenoptera											•
Scelionidae			b		d		f			Pa	Α
Coleoptera											
Dytiscidae	Laccophilus		b	С				g		Pr	Α
	Oreodytes		b	С	d		f		h	Pr	Α
	Rhantus	а		С		е				Pr	Α
Elmidae	Ampumixis	а	b	С	d	е	f	g	h	Gc	Α
	Cleptelmis		b		d	е				Gc	Α
	Dubiraphia		b	С				g		Gc	Α
	Lara	а	b	С	d	е	f	g	h	Sh	Α
	Narpus	а	b	С	d	е	f	g	h	Gc	Α
	Optioservus	а	b	С	d	е	f			Sc	Α
	Rhizelmis	а	b	С	d	е	f	g	h	Sc	Α
	Zaitzevia	а	b	С	d	e	f	g		Sc	Α
Hydrochidae	Hydrochus	а	b	С	d	е	f	g		Sh	Α
Hydrophilidae	Paracymus		b	С				g		Gc	Α
Psephenidae	Acneus	а	b	С	d	е	f	g	h	Sc	Α
Diptera											
Ceratopogonidae		а	b	С	d	е	f	g	h	Pr	Α
	Atrichopogon		b		d		f			Pr	Α
Chironomidae	Orthocladinae	а	b	С	d	е	f	g	h	Gc	В
	Tanypodinae	а	b	С	d	е	f	g	h	Pr	Α

Table 2.2 (cont.)

	Tanytarsini	а	b	С	d	е	f	g	h	Fc	В
Dixidae	Dixa	а	b	С	d	е	f	g	h	Gc	В
Empididae	Chelifera	а	b	С	d	е	f	g	h	Pr	Α
	Clinocera	а	b	С	d	е	f	g	h	Pr	Α
	Hemerodromia	а	b	С	d	е	f	g	h	Pr	Α
Pelecorhynchidae	Glutops ·	а	b	С	d	е	f		h	Pr	Α
Psychodidae		а	b	С	d	е	f	g		Gc	В
	Maurina		b		d		f			Sc	Α
Simuliidae	Simulium	а	b	С	d	е	f	g	h	Fc	В
Stratiomyidae	Nemotelus		b		d	е				Gc	Α
Thaumaleidae		а	b	С	d	е		g		Sc	В
Tipulidae	Antocha	а	b	С	d	е	f	g	h	Gc	Α
	Dicranota	а	b	С	d	е	f	g	h	Pr	Α
	Hexatoma	а	b	С	d	e	f		h	Pr	Α
	Pedicia	а	b	С	d	е	f	g	h	Pr	Α
	Non-Insect										
Collembola		а	b	С	d	е	f	g	h	Gc	Α
Turbellaria		а	b	С	d	е	f	g	h	Pr	Α
Oligochaeta		а	b	С	d	е	f	g	h	Gc	Α
Hydracarina		а	b	С	d	е	f	g	h	Pr	Α
Copepoda		а	b	С	d	е	f	g	h	Fc	В
Ostracoda		а	b	С	d	е	f	g	h	Gc	Α

Table 2.2 (cont.)

Amphipoda				·							
Gammaridae		а	b	С	d	е	f	g	h	Sh	В
Gastropoda											
Pleuroceridae	Juga	а	b	С	d	е	f	g	h	Sc	Α

Table 2.3. Mean P/R ratio analog, calculated from macroinvertebrate biomass by sampling event and treatment. Ratios (>0.75) are autotrophic, (<0.75) heterotrophic. No statistically significant differences.

		Sa	mpling Event		
Treatment	(OCT01)	(MARCH02)	(JULY02)	(JULY03)	(OCT03)
С	0.27	0.46	0.36	0.24	0.76
N	0.41	0.52	0.58	0.61	0.70
L	0.50	0.46	0.56	0.37	0.83
L+N	0.24	0.32	0.33	8.33	1.64

33

Table 2.4. Percent of total biomass of top five taxa per sampling event

	FFG	(OCT01)	(MARCH02)	(JULY02)	(JULY03)	(OCT03)
Calineuria	Pr	14.88	17.08	17.40	11.26	13.41
Oligochaeta	Gc	8.54	6.27	7.41	6.24	
Rhyacophila	Pr	9.15	10.07	7.78		
Pteronarcys	Sh		14.00		11.62	
Turbellaria	Gc	7.35				5.79
Hesperoperla	Pr	6.89			6.42	
Juga	Sc				6.91	8.30
Ironodes	Sc		8.05			
Cinygmula	Gc					8.04
Drunella	Sc			6.12		
Hydropsyche	Fc					4.75
Narpus	Gc			5.70		
Percent Domir	ance	55.48	44.41	42.45	40.30	46.82



Figure 2.1. Study reaches within the lower Smith and Klamath River Basins of northern California (after Wilzbach et al. 2005).

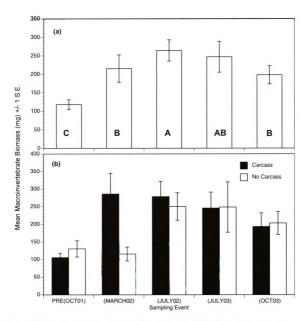


Figure 2.2. Mean macroinvertebrate biomass (\pm 1 S.E.) by (a) sampling event. Bars with same letters are not significantly different from each other, Fishers LSD (ρ = 0.05). And (b) sampling event by carcass interaction, March 2002 t = 2.19, df=9, ρ = 0.05.

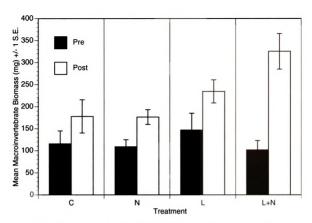


Figure 2.3. Pairwise comparison of pre and post-treatment macroinvertebrate biomass treatment means (\pm 1 S.E.). L+N significant t = 3.08, df=150, p =0.0025.

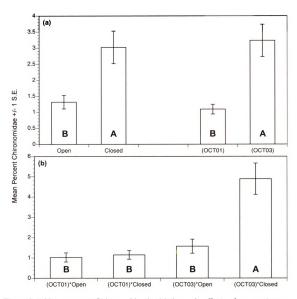


Figure 2.4. Mean percent Chironomidae by (a) the main effects of canopy type, and sampling event, and by (b) interaction between canopy and sampling event treatments. Bars with same letters are not significantly different from each other, Fishers LSD (p = 0.05).

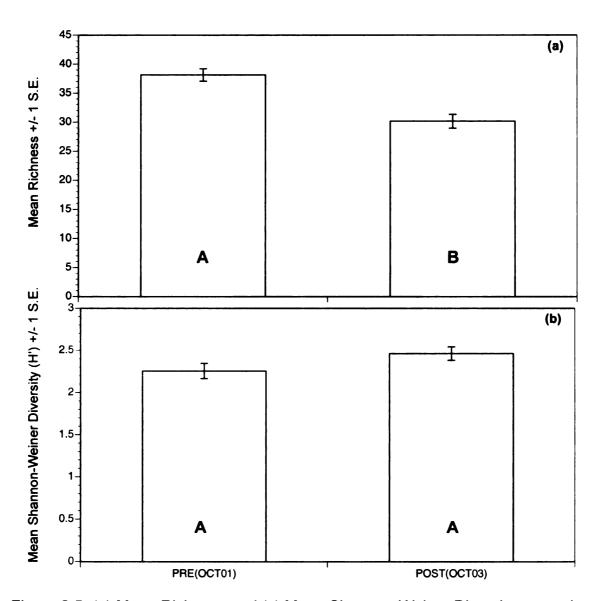


Figure 2.5. (a) Mean Richness and (c) Mean Shannon-Weiner Diversity pre and post-treatment (\pm 1 S.E.). Bars with same letters are not significantly different from each other (p < 0.05).

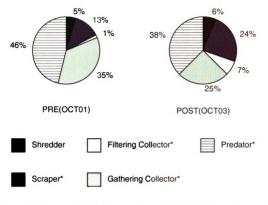


Figure 2.6. Functional feeding group composition pre (October 2001) and postreatment (October 2003) across all treatments. * Indicates significantly different pre and post-treatment (ANOVA, p < 0.05).

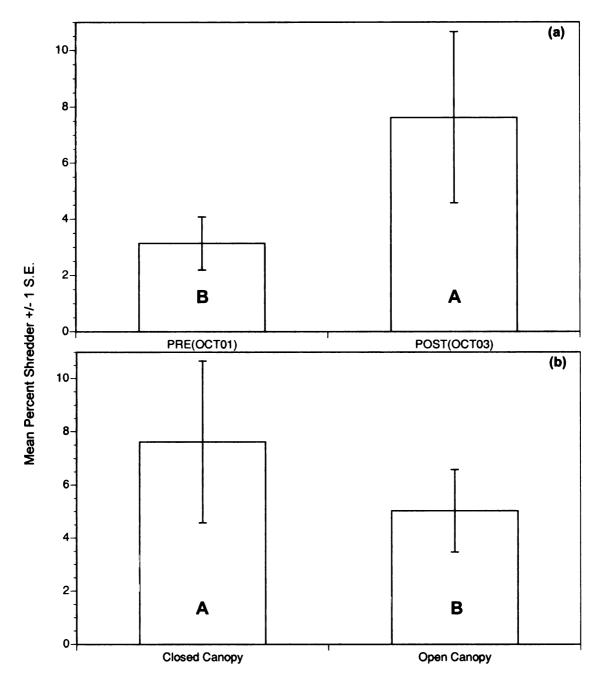


Figure 2.7. Interaction effect on percent Shredder (a) pre (October 2001) and post-treatment (October 2003) within closed-canopy reaches, and (b) post-treatment open versus closed-canopy reaches (\pm 1 S.E.). Bars with same letters are not significantly different from each other, Fishers LSD (p = 0.05).

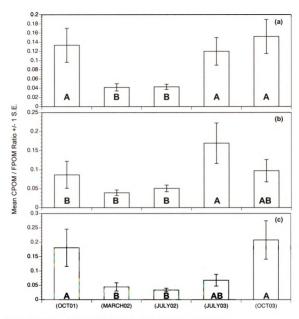


Figure 2.8. Mean CPOM / FPOM ratio (\pm 1 S.E.) calculated from macroinvertebrate biomass by (a) sampling event, (b) sampling event by carcass streams, and (c) sampling event by no carcass streams. Bars with same letters are not significantly different from each other, Fishers LSD (p = 0.05).

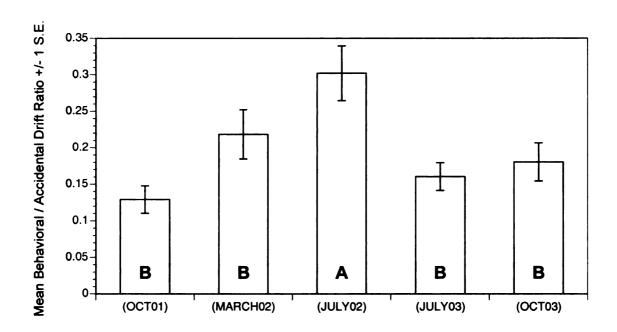


Figure 2.9. Sampling event effect on mean behavioral / accidental drift ratio (\pm 1 S.E.). Bars with same letters are not significantly different from each other, Fishers LSD (p = 0.05).

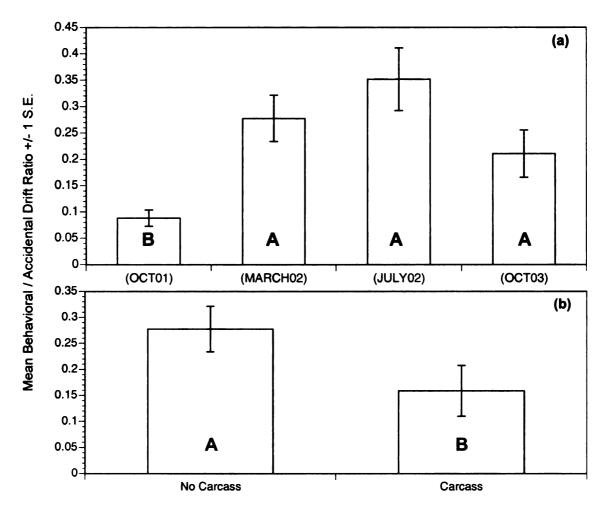


Figure 2.10. Interaction effect (sampling event by carcass treatment) on mean behavioral / accidental drift ratios (\pm 1 S.E.) in (a) no carcass streams, and (b) in March 2002 between carcass and no carcass streams. Bars with same letters are not significantly different from each other, Fishers LSD (p = 0.05).

LITERATURE CITED

Literature Cited

- Ambrose, H.E., Wilzbach, M.A. and K.W. Cummins 2004. Periphyton response to increased light and salmon carcass introduction in northern California streams. Journal of The North American Benthological Society. 23(4): 701-712.
- Bilby, R.E. and P.A. Bisson 1992. Allochthonous versus autochthonous organic-matter contributions to the trophic support of fish populations in clear-cut and old-growth forested streams. Canadian Journal of Fisheries and Aquatic Sciences. 49(3): 540-551.
- Bisson, P.A. and R.E. Bilby. 1998. Organic matter and trophic dynamics. *In River* ecology and management: lessons from the Pacific coastal ecoregion. *Edited by R.J. Naiman and R.E. Bilby. New York, Springer:* 373-398.
- Burns, J.W. 1972. Some effects of logging and associated road construction on northern California streams. Transactions of the American Fisheries Society 101: 1-17.
- Chaloner, D.T., Martin, K.M., Wipfli, M.S., Ostrom, P.H. and G.A. Lamberti. 2002. Marine carbon and nitrogen in southeastern Alaska stream food webs: evidence from artificial and natural streams. Canadian Journal of Fisheries and Aquatic Sciences. 59: 1257-1265.
- Chaloner, D.T. and M.S. Wipfli. 2002. Influence of decomposing Pacific salmon carcasses on macroinvertebrate growth and standing stock in southeastern Alaska streams. Journal of The North American Benthological Society. 21(3): 430-442.
- Claeson, S.M., Li, J.L., Compton, J.E and P.A. Bisson. 2006. Response of nutrients, biofilm, and benthic insects to salmon carcass addition.

 Canadian Journal of Fisheries and Aquatic Sciences. 63(6): 1230-1241.
- Duncan, W.F.A. and M.A. Brusven. 1985a. Energy dynamics of three low-order southeast Alaskan streams: Autochthonous production. Journal of Freshwater Ecology. La Crosse 3: 155-166.
- Duncan, W.F.A. and M.A. Brusven. 1985b. Benthic macroinvertebrates in logged and unlogged low-order southeast Alaskan streams. Freshwater Invertebrate Biology. 4: 125-132.

- Edmonds, R.L. and K. Mikkelsen. 2006. Influence of salmon carcass placement in red alder riparian areas on stream chemistry in lowland western Washington. North American Journal of Fisheries Management. 26(3): 551-558.
- Feminella, J.W., Power, M.E. and V.H. Resh. 1989. Periphyton responses to invertebrate grazing and riparian canopy in three California coastal streams. Freshwater Biology 22: 445-457.
- Garman, G. and J. Moring. 1993. Diet and annual production of 2 boreal river fishes following clear-cut logging. Environmental Biology of Fishes. 36(3): 301-311.
- Gregory S.V., Lamberti, G.A., Erman, D.C., Koski, K.V., Murphy, M.L. and J.R. Sedell. 1987. Influence of forest practices on aquatic production. *In* Streamside management: forestry and fishery interactions. *Edited by* E.O. Salo and T.W. Cundy. Institute of Forest Resources, Contribution 57, University of Washington AR-10, Seattle, WA pp. 233-255.
- Gresh, T., Lichatowich, J. and P. Schoonmaker 2000. An estimation of historic and current levels of salmon production in the northeast Pacific ecosystem: evidence of a nutrient deficit in the freshwater systems of the Pacific Northwest. Fisheries. 25(1): 15-21.
- Hansmann, E.W. and H. K. Phinney. 1973. Effects of logging on periphyton in coastal streams of Oregon. Ecology 54: 194-199.
- Hauer, F.R. and V.H. Resh. 1996. Benthic Macroinvertebrates. *In* Methods In Stream Ecology. *Edited by* F.R. Hauer and G.A. Lamberti. San Diego, Academic Press: 339-370.
- Hawkins, C.P., Murphy, M.L. and N.H. Anderson. 1982. Effect of canopy, substrate composition, and gradient on the structure of macroinvertebrate communities in cascade range streams of Oregon. Ecology. 63: 1840-1856.
- Hetrick, N.J., Brusven, M.A., Meehan, W.R., and T,C. Bjornn. 1998a. Changes in solar input, water temperature, periphyton accumulation, and allochthonous input and storage after canopy removal along two small salmon streams in Southeast Alaska. Transactions of the American Fisheries Society 127: 859-875.
- Hetrick, N.J., Brusven, M.A., Bjornn, T.C., Keith, R.M. and W.R. Meehan. 1998b. Effects of canopy removal on invertebrates and diet of juvenile Coho

- salmon in a small stream in southeast Alaska. Transactions of the American Fisheries Society. 127(6): 876-888.
- Honea, J.M. and R.I. Gara. 2009. Macroinvertebrate community dynamics: strong negative response to salmon redd construction and weak response to salmon-derived nutrient uptake. Journal of the North American Benthological Society. 28(1): 207-219.
- Janetski, D.J., Chaloner, D.T., Tiegs, S.D. and G.A. Lamberti. 2009. Pacific salmon effects on stream ecosystems: a quantitative synthesis. Oecologia. 159: 583-595.
- Kiffney, P. and J.S. Richardson 2001. Interactions among nutrients, periphyton, and invertebrate and vertebrate grazers in experimental channels. Copeia. 2: 422-429.
- Kohler, K., Rugenski, A. and D. Taki. 2008. Stream food web response to salmon carcass analogue addition in two central Idaho, U.S.A. streams. Freshwater Biology. 53: 446-460.
- Larkin, G.A. and P.A. Slaney. 1997. Implications of trends in marine-derived nutrient influx to south coastal British Columbia salmonid production. Fisheries. 22(11): 16-24.
- Lessard, J. and R. Merritt. 2006. Influence of marine-derived nutrients from spawning salmon on aquatic insect communities in southeast Alaskan streams. Oikos. 113(2): 334-343.
- Merritt, R.W. and K.W. Cummins. 1996. Introduction to The Aquatic Insects of North America. Dubuque, Kendall/Hunt.
- Merritt, R.W., Cummins, K.W. and M.B. Berg. 2008. Introduction to The Aquatic Insects of North America. Dubuque, Kendall/Hunt.
- Merritt, R.W., Cummins, K.W., Berg, M.B., Novak, J.A., Higgins, M.J., Wessell, K.J. and J.L. Lessard. 2002. Development and application of a macroinvertebrate functional-group approach in the bioassessment of remnant river oxbows in southwest Florida. Journal of the North American Benthological Society. 21(2): 290-310.
- Newbold, J.D., Erman, D.C., and K.B. Roby 1980. Effects of logging on macroinvertebrates in streams with and without buffer strips. Canadian Journal of Fisheries and Aquatic Sciences. 37: 1076 -1085.

- Nislow, K.H. and W.H. Lowe. 2006. Influences of logging history and riparian forest characteristics on macroinvertebrates and brook trout (*Salvelinus fontinalis*) in headwater streams (New Hampshire, U.S.A.). Freshwater Biology. 51(2): 388-397.
- Perrin, C. and J. Richardson. 1997. N and P limitation of benthos abundance in the Nechako River, British Columbia. Canadian Journal of Fisheries and Aquatic Sciences. 54(11): 2574-2583.
- Ramirez, A. and C.M. Pringle. 2006. Fast growth and turnover of chironomid assemblages in response to stream phosphorus levels in a tropical lowland landscape. Limnology and Oceanography. 51(1): 189-196.
- Russell, W. 2009. The influence of timber harvest on the structure and composition of riparian forests in the Coastal Redwood region. Forest Ecology and Management. 257: 1427-1433.
- Triska, F.J., Sedell, J.R. and B. Buckley. 1975. The processing of conifer and hardwood leaves in two coniferous forest streams: II Biochemical and nutrient changes. Verh.Int.Ver.Limnol. 19: 1628-1639.
- Vannote, R.L., Minshall, G.W., Cummins, K.W., Sedell, J.R., and C.E. Cushing 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences. **37**: 130-137.
- Welch, E.B., Jacoby, J.M. and C.W. May. 1998. Stream quality. *In River ecology* and management: lessons from the Pacific coastal ecoregion. *Edited by* R. Naiman and R. Bilby. New York, Springer: 69-94.
- Wilzbach, M.A., Harvey, B.C., White, J.L. and R.J. Nakamoto. 2005. Effects of riparian canopy opening and salmon carcass addition on the abundance and growth of resident salmonids. Canadian Journal of Fisheries and Aquatic Sciences. 62(1): 58-67.
- Wipfli. M.S., Hudson, J.P. and J.P. Caouette. 2004. Restoring productivity of salmon-based food webs: contrasting effects of salmon carcass and salmon carcass analog additions on stream-resident salmonids.

 Transactions of the American Fisheries Society. 133: 1440-1454.

CHAPTER 3

RED ALDER (Alnus rubra) LEAF PACK MASS LOSS AND MACROINVERTEBRATE RESPONSE TO EXPERIMENTAL MANIPULATION OF LIGHT AND NUTRIENTS IN SECOND ORDER STREAMS OF NORTHERN CALIFORNIA.

INTRODUCTION

Leaf litter is a primary energy source for streams and rivers, particularly temperate headwater streams with a deciduous riparian canopy (Peterson and Cummins 1974). Low order and headwater streams heavily shaded by a riparian canopy are dependent upon these allochthonous sources of energy, as a heavily shaded canopy serves to limit available sunlight to the streambed and therefore limits primary production. Macroinvertebrate shredders are adapted to take advantage of the litter resource, and convert it from coarse particulate organic matter (CPOM) to fine particulate organic matter (FPOM) that is used by filtering and gathering collectors downstream (Merritt and Cummins 1996; Merritt et al. 2008; Vannote et al. 1980). This breakdown of leaf litter is an important process in streams (Benfield 1996), because it involves the conversion of plant biomass to the animal biomass of higher trophic levels.

Leaf litter mass loss rates have been shown to vary depending on microbial conditioning (Crowl et al. 2006), leaf species (Peterson and Cummins 1974), leaf species assemblages (Kominoski and Pringle et al. 2007), nutrient enrichment, and riparian condition. Nutrient enrichment has resulted in mixed effects on leaf litter mass loss, depending on the amount of nutrient enrichment

(Knorr et al. 2005). Studies have reported no effect on leaf mass loss (Ferreira et al. 2007), as well as no effect on leaf pack invertebrate richness or abundance (Ferreira et al 2006). Conversely, some studies have shown a positive effect on leaf mass loss from nutrient enrichment (Yanai 2005; Paul 2006), and yet others have reported suppression of leaf mass loss as a result of nutrient enrichment (Zhang 2003). Riparian condition (light intensity) has similarly yielded mixed results with respect to litter mass loss. For example, Ishikowa et al. (2007) reported effects of clear-cutting on leaf mass loss to be species specific, while Franken et al. (2005) reported no effect of light intensity on leaf mass loss, and Bates et al. (2007) reported 37% greater leaf mass loss in streams with cut riparian vegetation when compared to those with uncut riparian vegetation. It is therefore important to determine and document the effects of natural stream manipulations on organic matter processing dynamics. Two manipulations proposed to stimulate stream productivity and ultimately salmonid growth and abundance are stream fertilization by way of carcass addition and increasing light by way of canopy removal.

METHODS

Study Area

This study was conducted in coastal northern California (Del Norte and Humboldt counties) between October 2001 and October 2002. The area typically

experiences warm dry summers and cool wet winters, with average yearly air temperatures ranging from 5.5 - 16.5°C and average yearly rainfall ranging between 170 to 200cm. Study reaches were established upstream of anadromy on 2 tributaries of the Klamath (Tarup and Tectah) and 4 tributaries of the Smith River (South Fork Rowdy, Savoy, Little Mill and Peacock) basins (Figure 3.1). Study reaches on second to third order streams had similar catchment areas (Table 3.1). Riparian vegetation consisted primarily (>80%) of red alder (*Alnus rubra*); while surrounding vegetation included coastal redwood (*Sequoia sempervirens*), Douglas-fir (*Pseudotsuga menziesii*), Sitka spruce (*Picea sitchensis*), big leaf maple (*Acer macrophyllum*), tan oak (*Lithocarpus densiflorus*), and California bay laurel (*Umbellularia californica*). Resident salmonids were cutthroat trout (*Oncorhynchus clarki*), and rainbow trout / steelhead (*Oncorhynchus mykiss*) and hybrids (Wilzbach et al. 2005).

Experimental Design

In an effort to augment nutrients and light reaching study reaches, salmon carcasses were added to streams, and riparian hardwoods were removed from the riparian margin. The study followed a split-plot experimental design, with carcass treatment (carcass, no carcass) as the whole-plot factor and canopy treatment (open, closed) as the sub-plot factor. Each of the streams consisted of two 100m study reaches separated by a 150-200m buffer. Three of the six streams were randomly selected to receive carcass addition, and a study reach

within each stream was randomly selected to undergo canopy removal (Table 3.1). The design resulted in three replicate study reaches of four treatments; control (C), augmented nutrients (N), augmented light (L), and augmented light and nutrients (L+N).

Addition of Chinook salmon (*Oncorhynchus tsawytscha*) carcasses to the three streams was conducted in January 2002. Salmon carcasses for Tarup creek were procured from California Department of Fish and Wildlife's Iron Gate Fish Hatchery on the Klamath River. Carcasses for Little Mill and Peacock creeks were collected from the privately owned Rowdy Creek Fish Hatchery and from spawned carcasses on the Smith River. Carcasses were stored frozen until introduced at approximately 1 kg•m⁻². Carcasses were anchored throughout study reaches with rebar in areas of slack water and near wood debris dams.

Grab samples of water were collected in 2002 from each study reach at 2, 6, 15 and 22 weeks after carcass addition and analyzed for multiple water chemistry parameters (Wilzbach et al. 2005).

The canopy treatment was carried out in December 2001 after leaf fall, and involved falling red alder and other hardwoods from a 20m wide band on each side of the stream for the 100m length of each randomly selected stream reach. A 2-man team with a chainsaw and a winch felled the trees to minimize disturbance and direct the cut trees away from the stream. Prior to canopy treatment, the potential available sunlight reaching streambeds was estimated at 20m intervals along all study reaches using a Solar PathfinderTM.

Photosynthetically active radiation (PAR) was measured simultaneously in open

and closed canopy reaches of a stream using a Li-Cor® quantum sensor model LI-190S after canopy removal. Stream temperatures were monitored using Stowaway® TidbiTTM submersible data loggers (Wilzbach et al. 2005).

Leaf Packs

Individual leaf litter packs were constructed using red alder leaves at abscission. Leaves were air-dried, weighed to 5-g packs, rewetted, loosely fastened together with a quilting gun and tethered two to a brick for introduction into streams. A total of 720 leaf packs (60 per stream reach) were constructed and deployed 60 per stream reach in both late spring (May-June) and early fall (August-September) 2002. Leaf packs were collected at day-2 (10 leaching packs), day-15 (5 packs), day-23 (5 packs), and day-30 (10 packs), in addition to 30 initial packs to account for handling loss. Handling loss packs were subjected to all conditions, however, time in the water was approximately 5 seconds. Individual packs were removed from bricks, placed in a zip-lockTM bag, and transported to the lab in an ice chest. In the lab, leaf packs were rinsed with de-ionized water and air-dried to a constant mass. After weighing, a sub-sample of each leaf pack was collected for ash-free dry mass (AFDM) determination. Percent AFDM leaf pack remaining and decay coefficients (k) were computed following Benfield (1996). Leaf pack-associated macroinvertebrates were collected from day-15, day-23 and day-30 samples and preserved in 70% ethanol for later identification and enumeration. Invertebrate biomass was calculated using INVERTCALC

software (Merritt et al. 2002), and richness was measured as number of taxa present. Invertebrate diversity was calculated based on invertebrate biomass using the Shannon-Weiner diversity index (Hauer and Resh 1996, Hauer and Resh 2007). Invertebrates were assigned to a shredder, scraper, filtering-collector, gathering-collector or predator functional group status (Merritt and Cummins 1996; Merritt et al. 2008). Percent of each functional group, shredder biomass and shredder diversity were also calculated based on biomass (Merritt et al. 2002). Shredder richness was measured as number of taxa present.

Differences in decay coefficients (k) among experimental treatments (C, N, L, L+N) as well as invertebrate response variables were assessed by analysis of covariance (ANCOVA) with time (days) as the covariate (Barlocher 2005). Initial values at day_0 were excluded from analysis. Response variable residuals were tested for normality, and results were transformed where necessary. Means were separated using Fishers LSD at p = 0.05. Although response variables were transformed, they are presented in untransformed fashion in figures and tables.

RESULTS

Water Chemstry / PAR / Temperature

Carcass addition had no significant effect on the following water chemistry parameters tested, SiO₂, nitrogen (TN, NO₃⁻, and NH4⁺), or phosphorus (TP and PO₄³⁻) (Wilzbach et al. 2005). Availability of potential sunlight did not differ among

streams or study reaches prior to canopy removal, however, canopy removal often led to a tenfold increase in PAR, (Ambrose et al. 2004). Additionally, canopy removal resulted in higher NH₄⁺ levels in open-canopy reaches, however, winter, summer and maximum weekly average temperatures did not differ between open and closed study reaches. Small temperature increases (1.5°C) were noted at the downstream end of open-canopy reaches (Wilzbach et al. 2005).

% AFDM remaining / Decay coefficients (k)

Leaf mass loss was faster in fall the than in the spring 2002. Leaf packs in the control stream reaches had the greatest % AFDM remaining at the end of both spring (55% +/-1.7) and fall (29% +/-1.9) experiments. Leaf packs in the (L) treatment reaches had the least percent remaining in both spring (38.7% +/- 3.5) and fall (11.8% +/-1.9) experiments (Figure 3.2). In the spring, carcass addition had a significant effect (F_{1,317}=22.31 p <0.0001), resulting in greater experimental leaf pack mass loss than in streams without carcass addition (Table 3.2). Invertebrate biomass in streams with carcass additions was dominated primarily by the scraper *Juga* (Pleuroceridae) and the Trichoptera shredder *Heteroplectron* (Table 3.3).

In the fall, the interaction of carcass and canopy treatments had a significant effect ($F_{1,304}$ =8.36 p =0.004) on decay rates, with faster breakdown of leaf packs in the (L) treatment than in the (C) treatment (Table 3.2). Fall invertebrate

biomass was dominated by *Juga sp.*, and was approximately 2-5 times greater in (L) than in (C) treatments (Table 3.4).

Macroinvertebrates

A total of 74 insect genera and three chironomid subfamilies, and 8 non-insect taxa were collected from red alder leaf packs in study (Table 3.5). The caddisflies (Trichoptera), with representatives from 11 families and 21 genera had 9 shredder taxa. Stoneflies (Plecoptera) also had 9 representative shredder taxa.

Spring 2002

Leaf pack invertebrate biomass did not differ significantly between streams with and without carcass additions, between stream reaches with open or closed canopies, or among experimental treatments (C, N, L and L+N). However, an interaction with the covariate (time*carcass; $F_{1,94}$ =5.28, p=0.0238) revealed a pattern of decreasing invertebrate biomass in streams with carcass additions, and increasing invertebrate biomass in streams without carcass additions (Figure 3.3a). Neither main nor interactive effects of the study significantly affected invertebrate richness (all p>0.05). Invertebrate diversity was significantly greater in streams without carcass additions than in streams with carcass additions ($F_{1,50}$ =5.34, p=0.025). Additionally, an interaction with the

covariate (time*carcass; $F_{1,94}$ =4.79, p=0.031) revealed a pattern of increasing invertebrate diversity in streams with carcass additions (Figure 3.3b).

Neither main nor interactive effects of the study significantly (all p>0.05) affected percent functional group (shredder, scraper, gathering collector, filtering collector or predator) or shredder (biomass, richness or diversity).

Fall 2002

Leaf pack invertebrate biomass did not differ significantly between streams with and without carcass additions, between stream reaches with open or closed canopies, or among experimental treatments (C, N, L and L+N). There were interactions with the covariate. Leaf pack invertebrate biomass decreased through time in streams with carcass additions, and increased through time in streams without carcass additions (time*carcass; F_{1,153}=4.0, p=0.0472) (Figure 3.4a). Furthermore, leaf pack invertebrate biomass decreased through time in stream reaches with a closed canopy (time*canopy; F_{1.150}=6.67, p=0.01) (Figure 3.4b). Neither main nor interactive effects of the study significantly affected invertebrate richness (all p>0.05). Invertebrate diversity did not differ between streams with and without carcass additions, between stream reaches with open or closed canopies, or among experimental treatments (C, N, L, L+N). However, there were interactions with the covariate. Invertebrate diversity decreased through time in streams without carcass additions and increased through time in streams with carcass additions (time*carcass; F_{1,158}=4.71, p=0.03) (Figure 3.5a). Furthermore, invertebrate diversity increased through time in all but the (L) treatment (time*carcass*canopy; $F_{1.157}$ =7.19, p=0.008) (Figure 3.5b).

Although not significantly different (F_{1,47}=3.82, p=0.0565), mean shredder biomass was smallest in the (C) treatment and largest in the (L) treatment (Figure 3.6). Shredder richness was not significantly different between streams with and without carcass additions, between open and closed canopies, or among experimental treatments (C, N, L, L+N). Additionally, shredder diversity was significantly greater (F_{1,159}=5.77, p=0.0174) in closed than in open canopy reaches.

DISCUSSION

Although red alder leaf litter pack mass loss occurred faster in fall than in the spring within our experimental study reaches, lack of seasonal replicates prevents formal statistical comparison. There was a larger amount of invertebrate biomass in fall leaf litter packs relative to spring, but the opposite was true of shredder biomass. Perhaps, the greater mass loss in the fall was due to physical abrasion by scrapers, such as *Juga* which dominated the invertebrate biomass, feeding on surface biofilm, as has been reported for some marine gastropods (Proffitt and Devlin 2005). Furthermore, leaf litter pack mass loss is likely the result of greater shredder biomass. Although not statistically significant, faster leaf litter pack mass loss in the spring is due to the dominance of the shredder *Heteroplectron* in streams with carcass additions as well as in the fall in the open

canopy no carcass (L) treatment. Shredder biomass and taxa richness is important to leaf litter mass loss rates (Jonsson et al. 2001). The greater shredder biomass on leaf packs in open canopy reaches may have been the result of lack of available natural leaf litter and therefore a concentration of shredder individuals on the leaf packs in the vicinity. An important aspect to note is that leaf mass loss rates were increased in all experimental treatments relative to control stream reaches, which may affect overall stream food web dynamics.

Leaf pack invertebrate richness was not affected by experimental treatments in this study, as has been previously reported in studies investigating logging effects on leaf processing (Kreutzweiser et al. 2008), perhaps a result of our low-impact approach to canopy removal. However, leaf pack invertebrate diversity was affected during both seasons of study, being overall lower in streams with carcass additions or changing through time. Invertebrate diversity on experimental leaf packs was primarily affected by the overwhelming presence of *Juga*.

CONCLUSIONS

Experimental augmentation of light, nutrients, and both light and nutrients reaching the stream of the study reaches resulted in greater red alder leaf pack mass loss in both late spring and early fall 2002. Although canopy removal in addition to carcass additions had a positive effect on benthic invertebrate biomass of cobble habitats, it's effects on red alder leaf litter mass loss and

invertebrate community structure should also be taken into consideration. Further investigation of this data is needed.

Table 3.1. Study stream characteristics. * Denotes streams with carcass addition.

	Catc	hment Area	Catchment Area Latitude / Longitude	Open Canopy Gradient (%)	Gradie	nt (%)
Stream	(km²	(km²) / Basin		Reach	Open	Open Closed
Tectah	7.9	7.9 / Klamath	41°15'47"N / 123°57'52"W	Lower	2.9	1.7
Tarup *	4 .9	4.9 / Klamath	41°27'45"N / 123°59'32"W	Upper	2.8	6 .
Little Mill	3.4	/ Smith	41°52'27"N / 124°6'47"W	Lower	7.7	9.5
Peacock *	3.5	3.5 / Smith	41°50'11"N / 124°5'23"W	Lower	2.4	4.2
South Fork Rowdy *	4 .9	4.9 / Smith	41°55'16"N / 124°5'23"W	Upper	5.6	5.1
Savoy	5.0	5.0 / Smith	41°54'14"N / 124°5'12"W	Lower	4.7	5.6

Table 3.2. Daily decay rates (k) of red alder leaf packs from experimental study reaches of the Smith and Klamath River basins, northern California. (C= controls, N= augmented nutrients, L= augmented light, L+N= augmented light and nutrients). k values with same letters are not significantly different from each other, Fishers LSD (p =0.05).

	Sp	ring		F	all	
	k		R^2	k		R ²
Controls (C)	0.0195		0.81	0.0443	b	0.75
Nutrient (N)	0.0308		0.63	0.0595	ab	0.74
Light (L)	0.0326		0.64	0.0818	а	0.79
Light and Nutrient (L+N)	0.0303		0.70	0.0520	ab	0.61
Carcass	0.0302	а	0.61			
No Carcass	0.0245	b	0.53			

Table 3.3. Biomass (mg) and percent dominance of the most abundant taxa: nutrient treatment (carcass, no carcass) by time (Day 15, Day 23, Day 30), from Spring experimental red alder (*Alnus rubra*)

leaf packs.

leaf packs.		Carcass		N	o Carcas	S
	Day	Day	Day	Day	Day	Day
	15	23	30	15	23	30
Biomass (mg)						
Juga	4038	1479	980	1357	1313	1286
Calineuria	671				846	876
Heteroplectron	564	2431	1169	476		694
Paraleptophlebia		936	498	434		
Hydatophylax					775	
% Dominance						
Juga	62	21	23	35	26	25
Calineuria	10				17	17
Heteroplectron	9	35	27	12		14
Paraleptophlebia		13	12	11		
Hydatophylax					15	

Table 3.4. Biomass (mg) and percent dominance of the most abundant taxa in (C) and (L) treatments by time (Day 15, Day 23, Day 30)

from fall experimental red alder (Alnus rubra) leaf packs.

nom fall experimental re	,	Control	, a, 10a. pa		Light	
	Day	Day	Day	Day	Day	Day
	15	23	30	15	23	30
Biomass (mg)						
Juga		1669	1818	1538	2935	10055
Paraleptophlebia	141		310	270		219
Heteroplectron	139	163	301	605	915	323
Calineuria	150					
Psychoglypha		640				
Hydatophylax					140	
% Dominance						
Juga		56	54	50	64	90
Paraleptophlebia	19		9	9		2
Heteroplectron	19	5	9	20	20	3
Calineuria	21					
Psychoglypha		22				
Hydatophylax					3	

Table 3.5 Checklist of taxa collected from experimental red alder (Alnus rubra) leaf packs from study reaches of the Smith and Klamath River basins of northern California. (a- Spring, b- Fall, Sc- scraper, Gc- gathering collector, Fc- filtering collector, Sh- shredder, Pi- piercer, Pr- predator)

Order	Family	Genus			FFG
Epheme	roptera				
	Ameletidae	Ameletus	а	b	Gc
	Baetidae	Baetis	а	b	Gc
	Ephemerellidae	Attenella	а	b	Gc
		Caudatella		b	Gc
		Drunella	а	b	Sc
		Ephemerella	а		Gc
		Serratella	а	b	Gc
		Timpanoga		b	Gc
	Heptageniidae	Cinygma	а	b	Sc
		Cinygmula	а	b	Gc
		Epeorus		b	Gc
		Ironodes	а	b	Sc
		Nixe		b	Sc
		Rhithrogena		b	Gc
	Leptophlebiidae	Paraleptophlebia	а	b	Gc
Plecopte	era				
	Capniidae			b	Sh
	Chloroperlidae	Kathroperla	а	b	Gc
		Suwallia	а	b	Pr

Table 5 (cont.)

		Sweltsa	а	b	Pr
	Leuctridae	Despaxia	а	b	Sh
		Moselia		b	Sh
		Perlomyia	а	b	Sh
	Nemouridae	Malenka	а	b	Sh
		Zapada	а	b	Sh
	Peltoperlidae	Sierraperla	а		Sh
		Soliperla	а	b	Sh
	Perlidae	Calineuria	а	b	Pr
		Claassenia		b	Pr
		Hesperoperla	а	b	Pr
		Isoperla	а	b	Pr
		Osobenus	а	b	Pr
	Pteronarcyidae	Pteronarcys	а	b	Sh
Odonata	a				
	Gomphidae		а		Pr
Megalop	otera				
	Sialidae	Sialis	а		Pr
Trichopt	era				
	Apatanidae	Apatania		b	Sc
	Brachycentridae	Brachycentrus	а		Fc
		Micrasema	а	b	Sh

Table 5 (cont.)

	Calamoceratidae	Heteroplectron	а	b	Sh
	Hydropsychidae	Hydropsyche	а	b	Fc
	Hydroptilidae	Hydroptila		b	Pi
	Lepidostomatidae	Lepidostoma	а	b	Sh
	Limnephilidae	Allocosmoecus	а		Sc
		Chyranda	а		Sh
		Cryptochia		b	Sh
		Dicosmoecus	а	b	Sc
		Ecclisomyia	а	b	Gc
		Homophylax	а	b	Sh
		Hydatophylax	а	b	Sh
		Philocasca	а	b	Sh
		Psychoglypha	а	b	Gc
	Polycentropodidae	Polycentropus	а	b	Pr
	Rhyacophilidae	Rhyacophila	а	b	Pr
	Sericostomatidae	Gumaga	а	b	Sh
	Uenoidae	Neophylax	а	b	Sc
		Neothremma	а		Sc
Coleopt	era				
	Dytiscidae	Hydaticus		b	Pr
		Hydrovatus		b	Pr
		Oreodytes	а	b	Pr

Table 5 (cont.)

	Elmidae	Ampumixis	а	b	Gc
		Lara	а	b	Sh
		Narpus	а	b	Gc
		Optioservus	а	b	Sc
		Rhizelmis		b	Sc
	Hydrochidae	Hydrochus	а		Sh
	Psephenidae	Acneus	а	b	Sc
Diptera					
	Ceratopogonidae		а	b	Pr
	Chironomidae	Orthocladinae	а	b	Gc
		Tanypodinae	а	b	Pr
		Tanytarsini	а	b	Fc
	Dixidae	Dixa	а	b	Gc
	Empididae	Chelifera	а	b	Pr
		Clinocera	а		Pr
		Hemerodromia	а	b	Pr
		Oreogeton	а		Pr
	Pelecorhynchidae	Glutops	а		Pr
	Psychodidae	Pericoma	а	b	Gc
	Simuliidae	Simulium	а	b	Fc
	Tipulidae	Dicranota	а	b	Pr
		Hexatoma	а	b	Pr

Table 5 (cont.)

- Mo-ya 	Pedicia	a b	Pr
Non-Insects			
Collembola		а	Gc
Turbellaria		a b	Pr
Oligochaeta		a b	Gc
Hydracarina		a b	Pr
Copepoda		a b	Fc
Ostracoda		a b	Gc
Amphipoda		a b	Sh
Gammaridae			
Gastropodae			
Pleuroceridae	Juga	a b	Sc

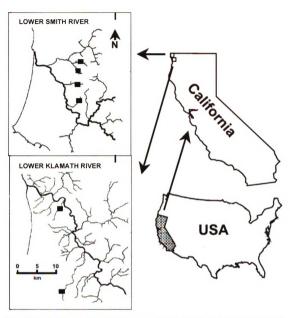


Figure 3.1. Study reaches within the lower Smith and Klamath River Basins of northern California (after Wilzbach et al. 2005).

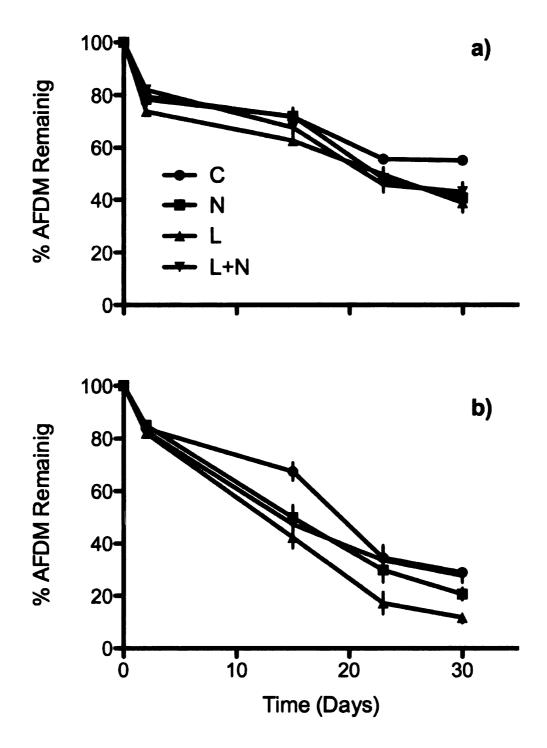


Figure 3.2. Percent AFDM experimental red alder leaf pack remaining (+/- 1 S.E.) at day (2, 15, 23, and 30) in study reaches of the Smith and Klamath River basins during a) spring and b) fall.

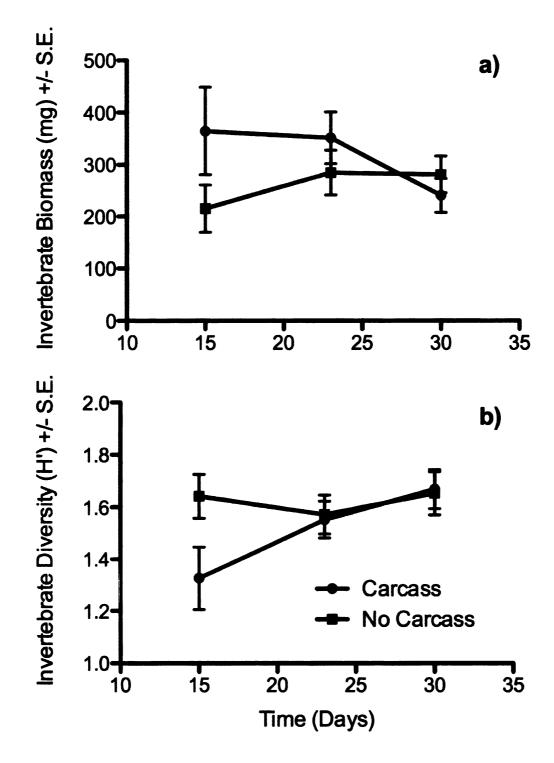


Figure 3.3. Spring a) dry mass and b) Shannon-Weiner diversity (H') (+/- 1 S.E.) of macroinvertebrates on experimental red alder leaf packs at days (15, 23 and 30) from streams of the Smith and Klamath River basins.

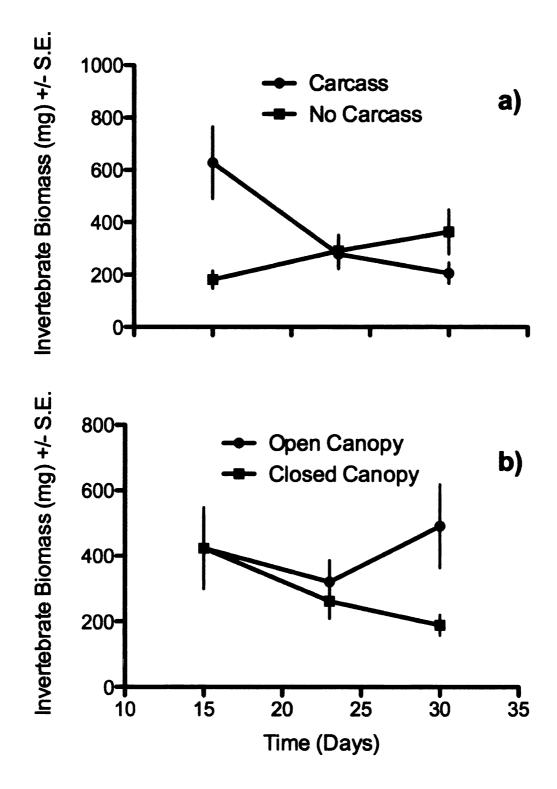


Figure 3.4. Fall dry mass (+/- 1 S.E.) of invertebrates on experimental red alder leaf packs at days (15, 23 and 30) from a) streams and b) study reaches of the Smith and Klamath River basins.

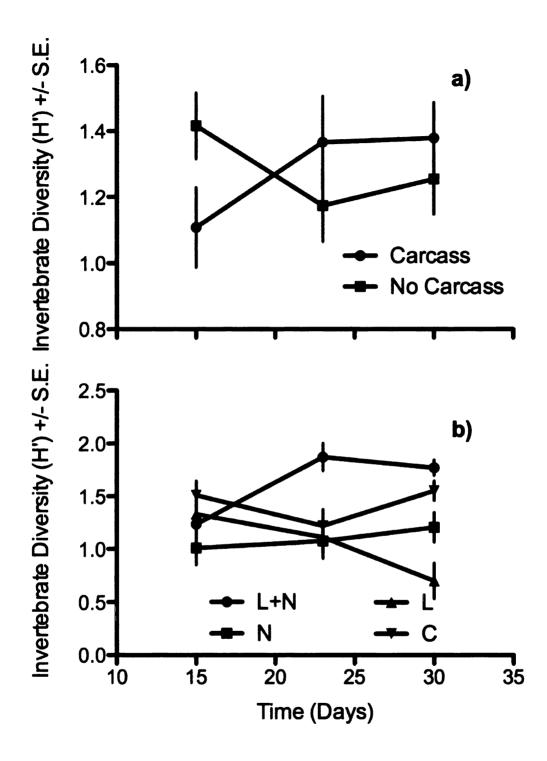


Figure 3.5. Fall Shannon-Weiner diversity (H') (+/- 1 S.E.) of macroinvertebrates on experimental red alder leaf packs at days (15, 23 and 30) from a) streams and b) treatment study reaches of the Smith and Klamath River basins.

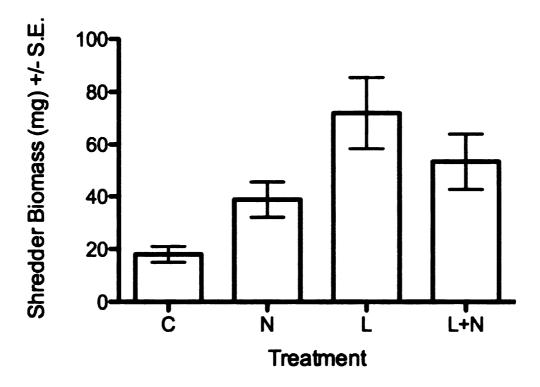


Figure 3.6. Fall shredder biomass (+/- 1 S.E.) on experimental red alder leaf packs among study treatments in the Smith and Klamath River basins.

LITERATURE CITED

Literature Cited

- Ambrose, H.E., Wilzbach, M.A. and K.W. Cummins. 2004. Periphyton response to increased light and salmon carcass introduction in northern California streams. Journal of The North American Benthological Society. 23(4): 701-712.
- Barlocher, F. 2005. Leaf mass loss estimated by litter bag technique. *In* Methods to Study Litter Decomposition: A Practical Guide. *Edited by* M.A.S. Graca, F. Barlocher and M.O. Gessner. The Netherlands, Springer: 37-42.
- Bates, J.D., Svejcar, T.S. and R.F. Miller. 2007. Litter decomposition in cut and uncut western juniper woodlands. Journal of Arid Environments. 70(2): 222-236.
- Benfield, E.F. 1996. Leaf breakdown in stream ecosystems. *In* Methods in Stream Ecology. *Edited by* F.R. Hauer and G.A. Lamberti. San Diego, Academic press: 579-589.
- Crowl, T.A., Welsh, V., Heartsill-Scalley, T., and A.P. Covich. 2006. Effects of different types of conditioning on rates of leaf-litter shredding by *Xiphocaris elongata*, a Neotropical freshwater shrimp. Journal of the North American Benthological Society. 25(1): 198-208.
- Ferreira, V. and M.A.S. Graca. 2007. Fungal activity associated with decomposing wood is affected by nitrogen concentration in water. International Review of Hydrobiology. 92(1): 1-8.
- Ferreira, V., Gulis, V. and M.A.S. Graca. 2006. Whole-stream nitrate addition affects litter decomposition and associated fungi but not invertebrates. Oecologia. 149(4): 718-729.
- Franken, R.J.M., Waluto, B., Peeters, E.T.H.M., Gardeniers, J.J.P., Beijer, J.A.J. and M. Scheffer. 2005. Growth of shredders on leaf litter biofilms: the effect of light intensity. Freshwater Biology. 50: 459-466.
- Greenwood, J.L., Rosemond, A.D., Wallace, J.B., Cross, W.F. and H.S. Weyers. 2007. Nutrients stimulate leaf breakdown rates and detritivore biomass: bottom-up effects via heterotrophic pathways. Oecologia. 151(4): 637-649.
- Hauer, F.R. and V.H. Resh. 1996. Benthic Macroinvertebrates. *In* Methods in Stream Ecology. *Edited by* F.R. Hauer and G.A. Lamberti. San Diego, Academic press: 339-369.

- Hauer, F.R. and V.H. Resh. 2007. Benthic Macroinvertebrates. *In* Methods in Stream Ecology. *Edited by* F.R. Hauer and G.A. Lamberti. San Diego, Academic press: 435-463.
- Ishikawa, H., Osono, T. and H. Takeda. 2007. Effects of clear-cutting on decomposition processes in leaf litter and the nitrogen and lignin dynamics in a temperate secondary forest. Journal of Forest Research. 12(4): 247-254.
- Jonsson, M., Malmqvist, B. and P. Hoffsten. 2001. Leaf litter breakdown rates in boreal streams: does shredder species richness matter? Freshwater Biology. 46: 161-171.
- Knorr, M., Frey, S.D. and P.S. Curtis. 2005. Nitrogen additions and litter decomposition: a meta-analysis. Ecology. 86(12): 3252-3257.
- Kominoski, J.S., Pringle, C.M., Ball, B.A., Bradford, M.A., Coleman, D.C., Hall, D.B. and M.D. Hunter. 2007. Nonadditive effects of leaf litter species diversity on breakdown dynamics in a detritus-based stream. Ecology. 88(5): 1167-1176.
- Kreutzweiser, D.P., Good, K.P., Capell, S.S. and S.B. Holmes. 2008. Leaf-litter decomposition and macroinvertebrate communities in boreal forest streams linked to upland logging disturbance. Journal of the North American Benthological Society. 27(1): 1-15.
- Merritt, R.W. and K.W. Cummins.1996. Introduction to The Aquatic Insects of North America. Dubuque, Kendall/Hunt.
- Merritt, R.W., Cummins, K.W. and M.B. Berg. 2008. Introduction to The Aquatic Insects of North America. Dubuque, Kendall/Hunt.
- Merritt, R.W., Cummins, K.W., Berg, M.B., Novak, J.A., Higgins, M.J., Wessell, K.J., and J.L. Lessard. 2002. Development and application of a macroinvertebrate functional-group approach in the bioassessment of remnant river oxbows in southwest Florida. Jounal of the North American Benthological Society. 21(2): 290-310.
- Paul, M.J., Meyer, J.L. and C.A. Couch. 2006. Leaf breakdown in streams differing in catchment land use. Freshwater Biology. 51: 1684-1695.
- Peterson, R.C. and K.W. Cummins. 1974. Leaf processing in a woodland stream. Freshwater Biology. 47: 129-141.

- Proffitt, C.E. and D.J. Devlin. 2005. Grazing by the intertidal gastropod Melampus coffeus greatly increases mangrove leaf litter degradation rates. Marine Ecology Progress Series. 296: 209-218.
- Vannote, R.L., Minshall, G.W., Cummins, K.W., Sedell, J.R., and C.E. Cushing. 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences. 37(1): 130-137.
- Wilzbach, M.A., Harvey, B.C., White, J.L. and R.J. Nakamoto. 2005. Effects of riparian canopy opening and salmon carcass addition on the abundance and growth of resident salmonids. Canadian Journal of Fisheries and Aquatic Sciences. 62(1): 58-67.
- Yanai, S. and K. Kochi. 2005. Effects of salmon carcasses on experimental stream ecosystems in Hokkaido, Japan. Ecological Research. 20(4): 471-480.
- Zhang, Y., Negishi, J.N., Richardson, J.S. and R. Kolodziejczyk. 2003. Impacts of marine-derived nutrients on stream ecosystem functioning. Proceedings of the Royal Society of London B. 270: 2117-2123.

APPENDIX

Appendix 1

Record of Deposition of Voucher Specimens*

The specimens listed on the following sheet(s) have been deposited in the named museum(s) as samples of those species or other taxa, which were used in this research. Voucher recognition labels bearing the Voucher No. have been attached or included in fluid-preserved specimens.

Voucher No.: 2009-01	-
Title of thesis or dissertation (or other research p	projects):
	for table on fallowing about
Museum(s) where deposited and abbreviations f	or table of following streets.
Entomology Museum, Michigan State U	niversity (MSU)
Other Museums:	
	Investigator's Name(s) (typed) Osvaldo Hernandez
	Date 30, April 2009
*Reference: Yoshimoto, C. M. 1978. Voucher Bull. Entomol. Soc. Amer. 24: 141-42.	Specimens for Entomology in North America

Deposit as follows:

Original: Include as Appendix 1 in ribbon copy of thesis or dissertation.

Copies: Include as Appendix 1 in copies of thesis or dissertation.

Museum(s) files. Research project files.

This form is available from and the Voucher No. is assigned by the Curator, Michigan State University Entomology Museum.

Voucher Specimen Data

Page 1 of 12 Pages

							N	Number of:	Ę.		
Species or other taxon		Label data for specimens collected or used and deposited	ected or	Eggs	Larvae	Nymphs	Pupae	Adults ♀	Adults 3	Other	Museum where deposited
		USA, CA, Del Norte & Humboldt Co.	ldt Co.								
EPHEMEROPTERA											
Ameletidae											
Ameletus	Sp.	Smith River X	X 2001		-						MSU
Baetidae											
Acentrella	sp.	Smith River	III 2002		-						MSU
Baetis	sp.	Smith River X	X 2001		-						MSU
Ephemerellidae											
Attenella	sp.	Smith River X	X 2003		-						MSU
Caudatella	sp.	Smith River X	X 2001		-						MSU
Drunella	sp.	Smith River X	X 2001		-						MSU
Ephemerella	sp.	Smith River V	V 2002		-						MSU
Serratella	sp.	Smith River	V 2002		-						MSU
Timpanoga	sp.	Smith River X	X 2001		-						MSU
Heptageniidae											
Cinygma	sp.	Klamath River V	V 2002		-						MSU
(Use additional sheets if necessary)	ary)										

Received the above listed specimens for deposit in the Michigan State University 2009-01 Voucher No.

Date

(typed)

Investigator's Name(s)

Osvaldo Hernandez

30, April 2009

Voucher Specimen Data

Page 2 of 12 Pages

			_			Ņ	Number of:	of:		
Species or other taxon	Label data for specil used and deposited	Label data for specimens collected or used and deposited	Eggs	Larvae	Nymphs	Pupae	Adults ♀	Adults ♂	Other	Museum where deposited
	USA, CA, Del	USA, CA, Del Norte & Humboldt Co.								
Cinygmula sp.	Smith River	X 2001		-						MSU
Epeorus sp.	Smith River	X 2001		~						MSU
Heptagenia sp.	Smith River	X 2003		-						MSU
Ironodes sp.	Smith River	X 2001		~						MSU
Nixe sp.	Smith River	VIII 2002	2	-						MSU
Rithrogena sp.	Smith River	X 2001		-						MSU
Leptophlebiidae										
Paraleptophlebia sp.	Smith River	X 2001		-						MSU
Capniidae	Smith River	X 2001		~						MSU
Chloroperlidae										
Kathroperla sp.	Klamath River	V 2002		-						MSU
Plumiperla sp.	Smith River	X 2001		-						MSU
Suwallia sp.	Smith River	V 2002		~						MSU
Sweltza sp.	Smith River	X 2001		-						MSU
(Use additional sheets if necessary)										
Investigator's Name(s) (typed)		No. 2009-01	-							
		eived the	listed	specir	nens	for				
		deposit in the Michigan State University	gan St	ate Un	iversi	4				
		Entomology Museum.	Ë							
Date 30, April 2009										
		Curator	Ö	Date						

Appendix 1.1

Voucher Specimen Data

Page 3 of 12 Pages

Voucher Specimen Data

Page 4 of 12 Pages

						Ž	Number of:	of:		
Species or other taxon	Label data for speci used and deposited	Label data for specimens collected or used and deposited	Eggs	Larvae	Nymphs	Pupae	Adults ♀	Adults ♂	Other	Museum where deposited
	USA, CA, Del	USA, CA, Del Norte & Humboldt Co.								
Doroneuria sp.	Smith River	X 2001		-						MSU
Hesperoperta sp.	Smith River	VIII 2002		-						MSU
Perlodidae										
Isoperta sp.	Smith River	V 2002		-						MSU
Osobenus sp.	. Klamath River	. III 2002		-						MSU
Pteronarcys sp.	Smith River	VII 2002		-						MSU
Gomphidae	Klamath River	. X 2003		-					-	MSU
MEGALOPTERA										
Corydalidae									<u> </u>	
Orohermes sp.	Smith River	X 2001		-						MSU
Sialidae										
Sialis sp.). Klamath River	. V 2002		-						MSU
TRICHOPTERA										
(Use additional sheets if necessary)	()									
		Voucher								
Investigator's Name(s) (typed)	~	No. 2009-01								
Osvaldo Hernandez		Received the above listed specimens for	listed s	pecin	nens	ۅٙ				
		deposit in the Michigan State University	an Sta	te Un	iversi					
		Entomology Museum.	نے							
Date 30, April 2009	:									
		Curator	Date	e)						

Voucher Specimen Data

Page 5 of 12 Pages

	ecies or other taxon		Apatanidae	Apatania	Brachycentridae	Brachycentrus	Micrasema	Calamoceratidae	Heteroplectron	Glossosomatidae	Glossosoma	Hydropsychidae	Ceratopsyche	Hydropsyche	Parapsyche	Hydroptilidae	Hydroptila	se additional sheets if necessary)	Investigator's Name(s) (typi	Osvaldo Hernandez			Date 30, April 2009	
				Sp.		sp.	sp.		sp.		sp.		sp.	sp.	sp.		sp.	ary)	(typed)					
	Label data for specimens collected or used and deposited	USA, CA, Del Norte & Humboldt Co.		Klamath River		Smith River	Smith River		Klamath River		Smith River		Smith River	Smith River	Smith River	Smith River	Smith River							
	oecimens colle ited	orte & Humbol		×		×	>		>		×		×	×	>	×	>		No.	Received the above listed specimens for	deposit in the Michigan State University	Entomology Museum.		Curator
	cted or	dt Co.		X 2003		X 2001	VIII 2002		VII 2002		X 2001		X 2001	X 2001	VII 2002	X 2001	VIII 2002		2009-01	above lis	Michigar	Auseum.		
	Eggs																			sted s	n Stat			Date
	Larvae			-		-	-		_		-		-	-	_		-			pecim	e Univ			•
	Nymphs				_															ens fo	ersity			
Vumb	Pupae		_								_		_			_	_							
Number of:	Adults 2											_		_	_		_							
	Other Adults 3		_	_	_	_			_	_			_	_	_									
	Museum where deposited			MSU		MSU	MSU		MSU		MSU		MSU	MSU	MSU		MSU							

Voucher Specimen Data

Page 6 of 12 Pages

	Ī							Z	Number of:	je Je		
Species or other taxon		Label data for specimens collected or used and deposited	cimens collect d	ted or	Eggs	Larvae	Nymphs	Pupae	Adults ♀	Adults ♂	Other	Museum where deposited
		USA, CA, Del Norte & Humboldt Co.	e & Humbold	t 09.								
Ochrotrichia s _k	sp.	Smith River	₹	VII 2003		-						MSN
Lepidostomatidae												
Lepidostoma sp	sp.	Smith River	×	X 2001		-						MSU
Leptoceridae		Smith River	X X	X 2003		_						MSU
Limnephilidae					-							
Allocosmoecus	sp.	Klamath River	٧2	V 2002		-						MSU
Chyranda s	sp.	Smith River	V2	V 2002		-						MSU
	sp.	Smith River	X X	X 2003		-						MSN
	sp.	Smith River	V2	V 2002		-						MSN
Ecclisomyia s ₁	Sp.	Smith River	٧2	V 2002		-						MSU
Homophylax st	sp.	Klamath River	₹	VIII 2002		_						MSN
	Sp.	Smith River	٧2	V 2002		_						MSN
Philocasca s _t	sp.	Smith River	₹	VIII 2002		-				-		MSN
Psychoglypha st	Sp.	Smith River	₹	VIII 2002		-						MSN
Philopotamidae												
(Use additional sheets if necessary)	3											
		>	cher									
Investigator's Name(s) (typed)	क्र	Z	'	2009-01								
Osvaldo Hernandez			Received the above listed specimens for	above lis	ted s	pecin	Sual	چ				
		و	deposit in the Michigan State University	Michigar	Stat	e Cni	versi	<u>~</u>				
		ш	Entomology Museum.	useum.								
Date 30, April 2009		 										
		O	Curator		Date	a						

Voucher Specimen Data

Page 7 of 12 Pages

Cabel data for specimens collected or Cabel data for Cabel	Eggs Larvae	Nymbhs False Specimens of State University Tarvae	Adults ? Pupae Nymphs Larvae
		Adults Q Pupae	Other Adults d Adults p Pupae
		Adults Q Pupae	Other Adults d Adults p Pupae
		Adults Q Pupae	Other Adults d Adults p Pupae
	Adults ♀	Adults ♂ Adults ♀	Other

Appendix 1.1

Voucher Specimen Data

Page 8 of 12 Pages

Museum

Species or other taxon Label data for specimens collected or gail used and deposited used and deposited and deposited with the coopilities sp. Smith River USA, CA, Del Norte & Humbolid Co. The coopilities of the coopilities sp. Smith River VIII 2002 The coopilities of the coopilities sp. Smith River X 2003 The coopilities of the coopilities sp. Smith River X 2003 The coopilities of the coopilities sp. Smith River X 2003 The coopilities sp. Smith	Species or other taxon									
USA, CA, Del Norte & Humboldt Co.			Label data for specime used and deposited	ens collected or	Eggs				Adults ♂	Other
Hydrovatus sp. Smith River VIII 2002 1 Lacophilus sp. Smith River VIII 2002 1 Cheadyles sp. Smith River VIII 2002 1 Rhandumixis sp. Smith River X 2001 1 Cheplefinis sp. Klamath River X 2003 1 Cheplefinis sp. Klamath River X 2003 1 Dubriaphia sp. Klamath River VIII 2002 1 Namith River VIII 2002 1 1 Optioservus sp. Smith River VIII 2002 1 Rhizeinis sp. Smith River VIII 2002 1 Rhizeinis sp. Smith River VIII 2002 1			USA, CA, Del Norte &	Humboldt Co.						
Laccophilus sp. Smith River X 2003 1 Plandus sp. Smith River X 2001 1 Ampumikis sp. Smith River X 2001 1 Cleptelnins sp. Ramath River X 2003 1 Lara sp. Smith River X 2003 1 Napus sp. Smith River VIII 2002 1 Napus sp. Smith River VIII 2002 1 Rhzeans sp. Smith River VIII 2002 1 Rhzeans sp. Smith River VIII 2002 1 Rhzeans sp. Smith River VIII 2002 1	Hydrovatus	Sp.	Smith River	VIII 2002		_		-		
Ampunikis sp. Smith River VIII 2002 1 Ampunikis sp. Smith River X 2001 1 Cleptelmis sp. Smith River X 2003 1 Cheptelmis sp. Kamath River X 2003 1 Lara sp. Smith River VIII 2002 1 Adapus sp. Smith River VIII 2002 1 Optioservus sp. Smith River VIII 2002 1 Rhizelnis sp. Smith River VIII 2002 1 Zalizeviavia sp. Smith River X 2003 1	Laccophilus	Sp.	Smith River	X 2003		-				
Rhantus Sp. Smith River X 2001 1 Ampumixis Sp. Smith River X 2003 1 Cleptelmis sp. Klamath River X 2003 1 Lara sp. Smith River VIII 2002 1 Natural River VIII 2002 1 1 Optioserus sp. Smith River VIII 2002 1 Rhizelnis sp. Smith River VIII 2002 1 Zaitzeviavia sp. Smith River X 2003 1	Oreodytes	sp.	Smith River	VIII 2002		_				
Ampumixis sp. Smith River X 2001 1 Cleptelmis sp. Klamath River X 2003 1 Dubriaphia sp. Klamath River X 2003 1 Lara sp. Smith River VIII 2002 1 Napous sp. Smith River VIII 2002 1 Optioserus sp. Smith River VIII 2002 1 Rhizeinis sp. Smith River X 2003 1	Rhantus	sp.	Smith River	X 2001		_				
sp. Smith River X 2001 1 sp. Klamath River X 2003 1 sp. Smith River VIII 2002 1	Elmidae									
sp. Klamath River X 2003 1 sp. Klamath River X 2003 1 sp. Smith River VIII 2002 1	Ampumixis	s sp.	Smith River	X 2001		_				
sp. Klamath River X 2003 1 sp. Smith River VIII 2002 1 sp. Smith River VIII 2002 1 sp. Smith River VIII 2002 1 sp. Smith River VII 2002 1 sp. Smith River X 2003 1	Cleptelmis	sp.	Klamath River	X 2003		_				
sp. Smith River VIII 2002 1 sp. Smith River X 2003 1	Dubiraphia	sp.	Klamath River	X 2003		_				
sp. Smith River VII 2002 1 sp. Smith River VIII 2002 1 sp. Smith River VII 2002 1 sp. Smith River X 2003 1	Lara	Sp.	Smith River	VIII 2002		_				
Sp. Smith River VIII 2002 1 Sp. Smith River VIII 2002 1 Sp. Smith River X 2003 1	Narpus	sp.	Smith River	VII 2002		_		2		
sp. Smith River VII 2002 1 sp. Smith River X 2003 1	Optioservus	sp.	Smith River	VIII 2002		_	_			
sp. Smith River X 2003 1	Rhizelmis	sp.	Smith River	VII 2002		_		_		
	Zaitzeviavia	sp.	Smith River	X 2003		-		-		
	Investigator's Name(s) (typ	(ped)	No.	2009-01						
(typed) No.	Osvaldo Hernandez		Rece	eived the above lis	sted sp	ecime	ns for			
(s) (typed) No. Received the			odep	sit in the Michiga	n State	• Unive	rsity			
(s) (typed)			Entor	mology Museum.						
(ped(1) (s)	Date 30, April 2009			104	4					

Voucher Specimen Data

Page 9 of 12 Pages

						N	Number of:	4		
Species or other taxon	Label data for specimens collected or used and deposited	ollected or	Eggs	Larvae	Nymphs	Pupae	Adults ♀	Adults 3	Other	Museum where deposited
	USA, CA, Del Norte & Humboldt Co.	boldt Co.								
Hydrochidae Hydrochus sp.	Smith River	X 2003					~			MSU
Paracymus sp.	Smith River	VII 2003					_			MSU
Psephenidae										
Acneus sp.	Smith River	X 2001		-						MSU
DIPTERA										
Ceratopogonidae	Smith River	X 2001		-						
Atrichopogon sp.	Smith River	VIII 2003		-						MSU
Forcipomyinae	Smith River	VII 2002		-						MSU
Chironomidae										
Orthocladinae	Smith River	X 2001		-						MSU
Tanypodinae	Smith River	V 2002		-						MSU
Tanytarsini	Smith River	X 2001		-						MSU
Dixidae										
(Use additional sheets if necessary)										
	Voucher									
Investigator's Name(s) (typed)	No.	2009-01								
Osvaldo Hernandez	Received	Received the above listed specimens for	sted sp	pecim	ens fo	2				
	deposit in	deposit in the Michigan State University	n Stat	e Uni	versity					
	Entomolog	Entomology Museum.								
Date 30, April 2009										
	Curator		Date	40						

Voucher Specimen Data

Page 10 of 12 Pages

	Museum where deposited		MSU		MSN	MSU	MSU	MSU		MSN		MSU	MSU		MSU		MSU							
	Other																							
of:	Adults ♂															_								
Number of:	Adults ♀																							
Ž	Pupae																			ō	≥			
	Nymphs																			nens	iversi			
	Larvae		-	~	-	-	-	-		-		_	-		-		-			pecin	te Un			a
	Eggs																			sted s	n Sta			Date
	ollected or	boldt Co.	VIII 2002	V 2002	VIII 2002	V 2002	VIII 2002	V 2002		VII 2002		X 2003	VIII 2002		V 2002		VII 2002		2009-01	Received the above listed specimens for	deposit in the Michigan State University	Entomology Museum.		
	specimens co	Norte & Hum																7.	Voucner No.	Received 1	deposit in	Entomolog		Curator
	Label data for specimens collected or used and deposited	USA, CA, Del Norte & Humboldt Co.	Smith River	Smith River	Smith River	Klamath River	Smith River	Klamath River		Smith River		Smith River	Smith River		Klamath River		Klamath River							
			sp.		Sp.	Sp.	sp.	sp.		Sp.		sp.	sp.		sp.		sp.	ary)	(typed)					
	Species or other taxon		Dixa	Empididae	Chelifera	Clinocera	Hemerodromia	Oreogeton	Pelecorhynchidae	Glutops	Psychodidae	Maurina	Pericoma	Simuliidae	Simulium	Stratiomyidae	Nemotelus	(Use additional sheets if necessary)	Investigator's Name(s) (typ	Z			Date 30, April 2009	

Appendix 1.1

Voucher Specimen Data

Page 11 of 12 Pages

	Museum where deposited Other		MSU		MSU	MSU	MSU	MSU		MSU	MSU				MSU	MSU	MSU							
	Adults 3					-						_					-							
Number of:	Adults 2		_								_						_							
Nem	Pupae											_								5				
	Nymphs		_			_		_		_		_								ens fo	rersity			
	Larvae		_		_	-	_	-		-	_				_	_	-			pecim	e Univ			
	Eggs																			ted sp	State			Date
	ollected or	boldt Co.	VII 2002		X 2003	X 2003	X 2003	X 2003		X 2001	X 2001				X 2001	X 2003	X 2003		2009-01	Received the above listed specimens for	deposit in the Michigan State University	Entomology Museum.		
	specimens co sited	Norte & Humi																	Voucher No.	Received t	deposit in	Entomolog		Curator
	Label data for specimens collected or used and deposited	USA, CA, Del Norte & Humboldt Co.	Smith River		Smith River	Klamath River	Klamath River	Klamath River		Smith River	Smith River				Smith River	Smith River	Smith River							
					sp.	Sp.	sp.	sp.										ary)	(typed)					
	Species or other taxon		Thaumaleidae	ae	Antocha	Dicranota	Hexatoma	Pedicia	BOLA	Entomobyriidae	Sminthuridae		NON-INSECTA	NEA	Glossiphoniidae	ARIA	HAETA	(Use additional sheets if necessary)	Investigator's Name(s) (typ				30, April 2009	
	Species o		Thaum	Tipulidae					COLLEMBOLA	Entom	Sminth			HIRUNDINEA	Glossi	TURBELLARIA	OLIGOCHAETA	(Use addi	Investi	Osvalo			Date	

Voucher Specimen Data

Page 12 of 12 Pages

	Museum where deposited	MSU	
	Other		
of:	Adults ♂		
Number of:	Adults ♀		
Ž	Pupae		्रदे के
	Nymphs		mens liversi
	Larvae		specir te Un
	Eggs		sted sp n State Date
	collected or	x 2003 x 2003 x 2001 x 2001 x 2003 x 2003	Voucher No. 2009-01 Received the above listed specimens for deposit in the Michigan State University Entomology Museum. Curator Date
	Label data for specimens collected or used and deposited	USA, CA, Del Norte & Humboldt Co. Klamath River X 2001 Smith River X 2001 Smith River X 2002 Klamath River V 2003	Voucher No. Received deposit ir Entomolo
		sp.	(typed)
	Species or other taxon	HYDRACARINA COPEPODA Cyclopoida OSTRACODA AMPHIPODA Gammaridae GASTROPODA Pleuroceridae	litional sheets if nectigator's Name(s) Ido Hernandez 30, April 2009
	Specie	HYDR COPE OSTR Ga GaST Ple	(Use add Inves Osva Date

