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ABSTRACT

A KINETIC THEORY BASED NUMERICAL STUDY OF CORE
COLLAPSE SUPERNOVA DYNAMICS

By

Terrance T. Strother

The explosion mechanism of core collapse supernovae remains an unsolved problem
in astrophysics after many decades of theoretical and numerical study. The complex
nature of this problem forces its consideration to rely heavily upon numerical simula-
tions. Current state-of-the-art core collapse supernova simulations typically make use
of hydrodynamic codes for the modeling of baryon dynamics coupled to a Boltzmann
transport simulation for the neutrinos and other leptons. The results generated by
such numerical simulations have given rise to the widely accepted notion that neu-
trino heating and convection are crucial for the explosion mechanism. However the
precise roles that some factors such as neutrinos production and propagation, rota-
tion, three-dimensional effects, the equation of state for asymmetric nuclear matter,
general relativity, instabilities, magnetic fields, as well as others play in the explo-
sion mechanism remain to be fully determined. In this work, we review some of the
current methods used to simulate core collapse supernovae and the various scenarios
that have been developed by numerical studies are discussed.

Unlike most of the numerical simulations of core collapse supernovae, we employ
a kinetic theory based approach that allows us to explicitly model the propagation
of neutrinos and a full ensemble of nuclei. Both of these are significant advantages.
The ability to explicitly model the propagation of neutrinos puts their treatment on
equal footing with the modeling of baryon dynamics. No simplifying assumptions
about the nature of neutrino-matter interactions need to be made and consequently
our code is capable of producing output about the flow of neutrinos that most other

simulations are inherently incapable of. Furthermore, neutrino flavor oscillations are



readily incorporated with our approach. The ability to model the propagation of a
full ensemble of nuclei is superior to the standard tracking of free baryons, « particles,
and a “representative heavy nucleus”. Modeling the weak reactions that free baryons
and hundreds of species of nuclei undergo results in a more realistic evolution of the
nuclear composition. The explicit knowledge of nuclear composition at all times not
only allows us to study its evolution in greater detail than it has before. but it also
puts us in the unique position to directly model certain nuclear decay modes and
the effects that nuclear structure have on non-weak nuclear reaction that occur in
supernovae quite straightforwardly.

A systematic study of the influence that electron capture rates and the nuclear
equations of state have on the collapse and explosion phase is conducted. The algo-
rithmic implementations and motivations for using the various values and expressions
for the electron capture rates and nuclear equations of state are explained and the
new forms of output that our code is singularly capable of producing are discussed.
Dynamics that may prove to be an entirely new neutrino capture driven explosion

mechanism were observed in all of our simulations.
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Chapter 1

Introduction

Supernova explosions are believed to be one of the main sources for heavy element
production (A > 56) in the universe. The origins of the heavy elements and the role
that supernova explosions play in their creation remains an area of intense research
[1-14]. Studies of supernovae are conducted in two complementary ways, through
construction and operation of rare isotope accelerators such as the Facility for Rare
Isotope Beams (FRIB), and through astronomical observation of supernova explosions
and their numerical modeling. It is the latter subject to which this thesis attempts

to contribute.

In chapter 2, a brief review of the generally accepted picture of core collapse super-
novae is presented. Due to the complex nature of the supernova problem, numerical
simulations play a critical role in understanding the specific mechanisms that drive
the core collapse and subsequent supernova explosion. We therefore include a suc-
cinct overview of recent numerical supernova simulations in this chapter as well. We
pay particular attention to those that influenced our work. This is not intended to
be a complete overview of recent numerical supernova simulations, rather its purpose

is to highlight the different approaches that groups have taken.

In chapter 3, we introduce the approach that we used to model core collapse

1



supernovae. Here the algorithmic implementations, numerical techniques used, and
approximations and assumptions made are all explained in detail. We also discuss
the code’s capabilities and limitations on a single processor as well as what it can do
when ported to a massively parallel computer cluster.

In chapter 4, we rigorously derive the expressions from statistical mechanics used
to characterize the electron gas and describe the numerical evaluation and tabulation
of said quantities. All derivations make use of the fully relativistic formalism.

In chapter 5, we explain how all of the weak processes currently included in our
simulation are modeled, present the formulae used for the associated weak reaction
cross sections, and describe the tabulation of all of the quantities needed by the
simulation to model the net effects that weak reactions have on neutrino test particle
dynamics and the temperature distribution. All particle scatterings are modeled using
semi-classical relativistic mechanics.

In chapter 7, we describe the ways in which the code has been tested for potential
numerical problems. Both the dynamic data management tests as well as the external
tests of the numerical implementation of the physical models in our code are explained
and their results are discussed.

In chapter 8, we discuss the results generated by several simulations with some
parameters systematically varied in such a way that we can draw conclusions about
the dependencies the collapse and explosion have upon them. These parameters are
discussed at length in both in this chapter and chapter 3. The neutrino capture
induced explosion mechanism observed in all calculations is discussed in detail and
differences between the results are explored as well.

In chapter 9, our work is summarized. The phenomenon seen in all calculations
that may prove to be the first glimpse at a new explosion mechanism presented in
chapter 8 is reflected upon and the validity of these calculations is discussed. The

short term and long term plans for our code are given as well.
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In this thesis, we will make use of standard symbols in the body of the text and
the equations displayed, such as c for the speed of light, M for the solar mass, G
for Newton’s gravitational constant, h for Plank’s constant, & for or Plank’s constant
divided by 27, k for the Boltzmann constant, and A for the atomic mass number of a
nucleus. Other abbreviations and symbols uéed are explained as they are introduced.

The primary source code used to generate the results presented in this thesis is
written in C as are all of the supporting codes that create the input files it needs to
run and process its output. Due to the primary source code’s length, approximately
25,000 lines, it is not included as part of this thesis. Instead electronic copies are

available at http://www.pa.msu.edu/~bauer/code/SuperNova/.



Chapter 2

Review of Core Collapse

Supernovae

In this section, we divide our brief reviews of the physics of core collapse supernovae
and the recent efforts to numerically model them in the following way: First we present
a short summary of the evolution of a core collapse supernova candidate star. Then
we give a synopsis of the accepted picture of the core collapse and bounce followed by
discussions of the proposed driving mechanisms for the subsequent explosion. Finally
we discuss the different approaches that selected groups have taken, in the last ~ 15
years, taken to simulate core collapse supernovae numerically. Again we stress that
the reviews presented here are not complete. It is far beyond the scope of this work
to exhaustively discuss all of the relevant physical processes here as well as the efforts
made to numerically model them. For in-depth analyses on any of these topics, the
reader is referred to the associated citations. In addition, there are other groups that
are not mentioned here for brevity's sake. These groups are undoubtedly making
meaningful contributions to the field. The works discussed here were chosen due in
part to relevance to our own wok and also because we feel that they represent a broad

sampling of the different techniques used to simulate core collapse supernovae.
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2.1 Review of Pre-Supernova Evolution

Stars spend most of their lifetimes in hydrostatic equilibrium. During this time, nu-
clear fusion reactions synthesize heavier elements from lighter elements. Each time
a fusion reaction occurs, the mass of the fusion product is less than that of the fuel.
The mass-defect is changed into thermal energy that counteracts the gravitational
force and allows for a hydrostatic equilibrium in the star. When the nuclear burning
fuel at the center is exhausted, the thermal pressure decreases and the star expe-
riences gravitational contraction. Due to this gravitational compression the central
temperature rises until the temperature becomes sufficiently high to ignite the next
nuclear burning phase. This sequence of nuclear burning to central fuel exhaustion,
contraction, and ignition of a next burning phase repeats itself a number of times that
depends on the initial mass of the star. If the star’s initial mass was great enough, this
cycle occurs until the fusion of the nuclear fuel in the core is no longer energetically
advantageous. At the end of a star’s hydrostatic life, it is left with an onion-skin-like

stratification where each layer consists of the ashes of the previous burning phases.

As an example, let us consider the pre-supernova evolution of a newly born star
that is comprised almost entirely of hydrogen and a has a mass large enough to fuse
all of the nuclei present in the core until fusion becomes endothermic. In this case, the
star first burns through its 1Y fuel by fusing it into 4He via one of the three branches
of the proton-proton (p-p) chain once the core temperatures exceed ~ 4 x 108 K [15].
If there are any trace amounts of carbon, nitrogen, and oxygen (CNO) nuclei initially
present, it is also possible fuse 1Y into 4He, or an « particle, via one of the branches
of the CNO bi-cycle at core temperatures greater than 1.5 x 10’ K [15]. The threshold
temperature for this reaction is higher because the Coulomb repulsion is greater and

consequently requires higher thermal energies to penetrate.

Once the core has consumed all of its 1 H fuel, the star contracts and the core heats

5



up until its temperatures reach 108 K when it can burn its 4He by fusing into 12¢

via the triple-a process [15]. Once the 4He abundance becomes sufficiently low, the
otherwise much less likely reaction 4He+12C—160 also occurs [15]. For 4He burning.
the higher temperatures are not only needed to overcome the Coulomb repulsion
between the particles involved, but also to ensure that the rate at which a particles
fuse together is large enough to offset the very short lifetime of the intermediate

4He+4He—>8Be nucleus.

After the core has burned through all of its iHe supply, the star contracts again
until the core reaches a temperature of 5 x 108 K when carbon burning, the fusion
of 12C nuclei, can occur [15]. Oxygen burning, having a higher Coulomb barrier
to contend with, only occurs at temperatures above 109 K [15]. The fusion of 12¢
and 160 nuclei is negligible since the intermediate temperature at which the 12¢.
160 Coulomb barrier becomes penetrable, the 12¢ nuclei supply is quickly consumed
through carbon burning [15]. Carbon and oxygen burning can yield a variety of final
state heavy nuclei. For carbon burning, the possible final state heavy nuclei are 24Mg,
23Mg, 23Na, 20Ne, and 160 [15]. For oxygen burning, the possible final state heavy
nuclei are 328, 315, 31p, 28g; and 24Mg [15]. These reactions also produce free
neutrons, protons, and o particles. These are all immediately captured by the heavy
nuclei present since there is no Coulomb repulsion between neutrons and the heavy
nuclei, and the temperature is sufficiently high at this point to render the Coulomb
barrier between the protons and « particles and the heavy nuclei easily penetrable.
Thus, in addition to the primary heavy nuclei created by carbon and oxygen burning,
secondary reactions can generate a variety of isotopes with non-negligible abundances
[15].

Following the consumption of the core’s 12¢ and 160 supply, the star’s contrac-
tion resumes until core temperatures become high enough to burn the nuclei created

by carbon and oxygen burning. Since 28g; plays a dominant role in the reactions
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that generate the nuclei present after this phase of hydrostatic nuclear burning is
complete, this phase is referred to as silicon burning. The silicon burning phase is
more complicated. Another process that disintegrates heavy nuclei becomes impor-
tant. At temperatures above the oxygen burning threshold, but well below those
required to allow the very large mutual Coulomb barrier between these heavier nuclei
to have a non-negligible penetration probabilities, photodisintegration begins to occur
[15]. Through this process, free baryons and light nuclei are emitted when energetic
photons produced by fusion reactions disintegrate heavy nuclei. These free baryons
and light nuclei are then immediately recaptured by the heavier nuclei present. These
complementary processes tend to equilibrium, however the resultant state of nuclear
statistical equilibrium (NSE) is not perfect. There is a leakage towards the stable
iron group nuclei Fe, Co, and Ni generated largely by fusion reactions involving Si
nuclei at temperatures above ~ 3 x 109 K [15]. These nuclei are resistant to photo-
disintegration up to temperatures of approximately 7 x 109 K because they have the
highest binding energy per nucleon. These nuclei are also the end of the exothermic
fusion process. Therefore after the silicon burning phase, fusion no longer offers any

resistance to gravitational collapse.

The contraction of the star recommences. Now the core relies upon the pressure
exerted by the electrons present in it to resist the inward crush of gravity. As the core's
contraction ensues, the electron gas becomes increasingly degenerate. If the core's
mass is not too large, the degenerate electron gas pressure can halt the gravitational

contraction. The condition that must be satisfied for this to happen is

where Mcore is the mass of the core, 7 is its electron fraction, and M}, is the so-

called Chandrasekhar mass [15]. The Chandrasekhar mass limit is the maximum mass
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of a self-gravitating sphere which can be supported by the pressure of a degenerate
electron gas. Small finite temperature corrections can be added to the right hand

side of condition (2.1) [16], but they are omitted here.

2.2 Review of Core Collapse and Bounce

If the star being considered had an initial mass that was sufficiently large, at least ~ 8
to 11 Mg [17], condition (2.1) can only be satisfied temporarily. Electron captures
by heavy nuclei lower the electron fraction 7, and thereby the Chandrasekhar mass,
and the core’s mass increases with time. The core’s mass increase is a result of
the previously mentioned onion-skin-like stratification the star develops as it burns
through its nuclear fuel supply. Each layer in which nuclear burning is still occurring
loses mass in the process as the nuclear ash it creates becomes part of the mass of
the layer below it. This is schematically depicted in figure 2.1 for the innermost two

layers. In particular, figure 2.1 shows how the core’s mass increases as the silicon

O burning —»

Si burning —»

Figure 2.1: Schematic depiction of the core mass increasing as the layers of nuclear
burning above it continue to produce nuclear ash.

burning layer surrounding it continues to produce the iron group nuclei that it is
made of. Once condition (2.1) is no longer satisfied, the core begins to collapse. Two
other major instabilities then develop.

First the rate at which electrons are captured by heavy nuclei increases as the
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core collapses and densities increase. The core is therefore deprived of its primary
pressure source at an accelerating pace and consequently the collapse accelerates
[15]. Secondly, since the electron gas is highly degenerate, it is largely insensitive to
changes in the core’s temperature. Thus only drastic increases in temperature can
significantly increase the electron gas pressure. Two factors prevent such increases
in the core temperature. One is that electron captures are a thermal energy sink in
the early stages of the collapse since the neutrinos created stream freely out of the
core and carry away energy [17]. Second, at temperatures well below those that can
significantly increase the electron gas pressure, photodisintegrations take place at a
rapid rate [15]. While the temperatures are sufficiently high that nuclear interactions
mediated by the strong and electromagnetic interaction are in equilibrium, those
mediated by weak interactions are not [16]. This allows some photodisintegrations to
result in irreversible losses of a large amounts of thermal energy and accelerate the

rate at which electrons are captured [15]. In particular the reactions

Fe+y — 13%He+4n (2.2)

‘He+y — 2p+2n (2.3)

which take ~ 100 MeV and ~ 24 MeV of thermal energy to induce respectively can
occur with a high frequency [15]. Some of the free protons produced by this reactions
quickly capture electrons preventing the inverse fusion process from happening. Since
the electron capture rate of free protons is larger than those of the nuclei present in
the core at this stage [16], this source of free protons further accelerates the rate of
electron capture and hence the collapse continues to accelerate as well. Thus it is
the thermal energy lost through the electron capture induced NSE leakage described
above and the rapidly increasing rate at which electron captures pull thermal energy

out of the core that keep the temperature from drastically increasing and substantially



raising the pressure exerted by the electron gas.

With the electron gas rendered incapable of halting the collapse, it becomes nearly
a free fall. At this point, the dynamics of the collapsing core naturally divide the
core into two regions: an inner core and an outer core. The inner core collapses
homologically and infall velocities are subsonic [16]. It’s outer boundary is the point
at which infall velocities begin to exceed the local sound velocity [16]. Much of the
outer core moves at supersonic velocities [16, 18]. Sound signals can only propagate

inside the inner core.

It is generally believed that the collapse continues until the nuclear matter is
sufficiently dense that the neutrons become degenerate and generate a pressure strong
enough to stop the collapse and repel the infalling matter [15]. This moment is
referred to as bounce. Since the core is not pure neutronium, the density at which
bounce occurs is super-nuclear. This super-nuclear density is found by most numerical

simulations to be approximately three times normal nuclear matter density [16, 17].

During the collapse a large amount of gravitational energy is released. This energy
AEgrau can be approximated for a core with mass Mc = 1.5 Mg if we assume that
the radius of the core at bounce is Ry = 20 km [15] and that its initial radius at the

beginning of the collapse R; > Rp. In this case

2
2(1 1 GM¢ 46
AFE ~—-GM;f|——-— ]|~ —==3x10*°J 24
grav c ( R; Rb) Ry X (2.4)
Coupling as little as ~ 1% of this energy to the rest of the infalling star would supply
more than enough energy to eject the outer layers of the star and explain the observed
supernova explosion energies of ~ 1 Foe = 1044 3 (15, 16, 17]. We turn our attention

now to the theories that attempt to explain this phenomenon.
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2.2.1 Proposed Explosion Mechanisms

All of the proposed explosion mechanisms discussed in this section share the generally
accepted picture of how the core dynamics unfold immediately following bounce.
After the stiffened nuclear matter pressure repels the infall, a mild pressure wave
propagates through the inner core [16]. As this pressure wave propagates through the
sonic boundary that divides the inner and outer cores, it turns into a shock. After

this, the various proposals diverge and we now consider them individually.

2.2.2 The Prompt Shock Mechanism

A tempting driving mechanism for supernova explosions is the so-called prompt shock
mechanism. In this scenario, the shock simply blasts its way through the outer core
and outer layers of the star and results in an explosion. Analytical arguments and
numerical calculations initially suggested that the energy the shock has when it is
formed is sufficiently large to accomplish this [19].

After extensive examination, this picture was deemed to be overly simplistic [21,
22, 23, 24, 25]. The shock loses a tremendous amount of energy as it propagates
through the outer core. The temperatures and densities in the shock are high enough
to significantly enhance the electron capture rates that occur in it and result in major
losses in thermal energy. Additionally, photodisintegrations result in the loss of a large
amount of thermal energy and supply a source of free protons in the way described
in section 2.2. These free protons very rapidly capture electrons and result in further
thermal energy losses. A successful prompt shock explosion requires the shock to
propagate all the way through the outer core where the density profile drops off
steeply and the hot silicon burning layer can resupply the shock with thermal energy
[16, 17, 18]. Unfortunately calculations have found that this only occurs in the very

lightest of stars that can end their lives with supernova explosions [16, 17]. The
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outer cores of more massive stars are too large for shocks to propagate to their outer
boundaries. At some point inside the outer core that is too large, the shock turns
into an accretion shock in which additional infalling material accretes to the existing
core and the outward motion has stopped. Thus the explosion fails. Therefore, if this
picture is correct, it explains only a small fraction the observed supernova explosions
and therefore cannot serve as a complete theory. Another driving mechanism for

supernova explosions must exist.

2.2.3 The Neutrino Revival Mechanism

Numerical studies conducted by Wilson et al. led to the discovery of the possibility
that neutrino absorption by nucleons can revive a stalled shock [26, 27]. This model,
in which a prompt shock is initiated, then stagnates, and is later revived by neutrinos
is called the delayed shock model. A detailed description of how this process occurs
is beyond the scope of this brief review and for this purpose we refer the reader to
a useful summary given by Janka [19]. For our purposes here, it suffices to note
that a non-negligible fraction of the neutrinos produced by electron capture and
electron-positron pair annihilations in regions of the core with higher densities and
temperatures can transport energy to the shock and that some of this energy is
translated into kinetic energy of matter [16, 17]. Ultimately the shock resumes its
outward path and results in a supernova explosion. This is still widely believed to
be a correct model of a core collapse supernova [16, 17, 19, 20]. However this theory
is not free of problems. Not only is this mechanism critically dependent upon the
values used for neutrino capture cross sections and production rates as well as other
quantities not known with great certainty, but the modeling of neutrino transport
between the very short and infinitely long mean free path limits is quite problematic
as well [17]. As a result of this, simulations have yielded mixed results for the delayed

shock mechanism [16, 17, 28, 29, 30, 31, 32]. These results have been analyzed in
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great detail [20]. Since we expect the supernova explosion driving mechanism to be

quite robust, a more satisfactory explanation is still sought.

2.2.4 The Convection Revival Mechanism

Convection is yet another way by which thermal energy can by supplied to a stalled
shock to revive it. This mechanism is fundamentally different from the delayed shock
mechanism since it heats the shock by mixing it with hot matter from deeper within
the core rather than by direct neutrino capture. As in the previous section, we wish to
avoid a lengthy rigorous discussion of the hydrodynamics of convection in supernovae
and instead we simply note that in the wake of the shock, much of the matter is unsta-
ble to convection [17]. In particular it is the region between the neutrino sphere, the
hot dense part of the core in which neutrinos are in thermal equilibrium with matter,
and the stalled shock where rapid convection quickly develops. Matter just above
the neutrino sphere is heated by neutrino capture quite efficiently. It is then moved
up the convection cell where it mixes with the cooler material in the stalled shock
and warms it. Its place just above the neutrino sphere is taken by cooler matter that
has sunk there from the cooler regions above and is receptive to heating by neutrino
capture and the cycle repeats itself. In this way, more of the gravitational energy
that has been converted to other forms and stored in the core as thermal excitations,
electron and neutrino chemical potentials, etc. is made available to the explosion.
Additionally, convection inside what will end up being the neutron star can further
aid the explosion by intensifying neutrino luminosities. Numerical simulations that
model convection, which is most naturally done in at least two spatial dimensions,
seem to suggest that convection plays a vital role in generating supernova explosions
[20, 33, 34, 35, 36]. With this notion in mind, we note that the two-dimensional sim-
ulations by Herant et al. that modeled convection yielded successful explosions while

their one-dimensional simulations that did not model convection failed to explode
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[35, 36], even though these simulations made use of the same microphysics.

2.2.5 The Acoustic Vibration Mechanism

A very interesting supernova explosion driving mechanism that relies upon acoustic
power generated in the inner core as the driver was recently proposed by Burrows et
al. [37, 38]. Two-dimensional axisymmetric simulations over the full 180° of rotating
and non-rotating progenitors of various masses found that the acoustic power gener-
ated early on in the inner turbulent region stirred by the accretion plumes and most
importantly the subsequent excitation and sonic damping of core g-mode oscillations
to be the driving mechanism of supernova explosions [37]. The spherically asymetric
sound pulses radiated from the core steepen into shock waves that are found to merge
as they propagate into the outer mantle and deposit their energy and momentum
with high efficiency [37]. One of the most appealing features of this model is that the
acoustic power that drives the explosion does not diminish until accretion on to the
core subsides. Therefore this power source is available as long as it may be needed to
generate an explosion. All Newtonian simulations conducted by Burrows et al. have
yielded successful explosions that, when top-bottom asymmetric, are self-collimating
[38]. This model is quite encouraging. However this theory requires further investi-
gation as other simulations capable of detecting core oscillations have failed to do so
while they have yielded successful explosions driven by more traditional mechanisms
since the acoustic driving mechanism was suggested [33]. We note that these results
may not be mutually exclusive. It is possible that the acoustic driving mechanism is

a fallback mechanism of sorts employed when the shock is not revived [38].
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2.3 Recent Numerical Studies

Our review of the different techniques recently used to numerically model core collapse
supernovae is presented in the following way. First the equation of state (EOS) and
weak interaction rate input needs of numerical calculations are discussed. Then the
approaches used by selected groups are divided by the number of spatial dimensions

they attempt to model and are briefly described.

2.3.1 Equation of State

All simulations of supernovae require some sort of EOS that can characterize the ther-
modynamic properties of matter in local thermodynamic equilibrium (LTE). Typical
input needed by an EOS are the local temperature, mass density, and electron frac-
tion. All other statistical mechanical quantities of interest, such as pressure or internal
energy density, are calculated using the EOS. Intensive efforts are have been made to
determine a realistic EOS for hot dense matter, in particular the nuclear contribution
(39, 40, 41, 42, 43, 44]. The results of these efforts cannot generally be expressed in a
simple analytic form. Instead these results must be tabulated, or a code numerically
calculates them as needed. We note that some groups run semi-analytic codes that
do use a simple formula for the EOS [19, 45, 46, 47, 48]. These formulae are not
rigorously derived. They are designed to mimic the key features that a realistic EOS
is expected to possess. Since this is not the direction we ultimately want to take our
code in, none of the works discussed here make use of such simple approaches, and we
discuss them no further. In this section we focus on the efforts made to numerically
determine the electron-positron and nuclear gas EOS.

A very popular EOS is the Lattimer and Swesty EOS. It has been used by many
simulations recently (34, 36, 49, 28, 50, 51, 52, 53]. A formal discussion about the

assumptions and techniques that Lattimer and Swesty used when deriving their gen-
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eralized EOS for hot dense matter can be found in their 1991 publication [39]. We
note here that Lattimer and Swesty worked out their EOS in the compressible liquid
drop model based on the non-relativistic Skyrme Hartree-Fock framework. It models
the presence of the electron-positron and nuclear gases and is applicable only in re-
gions where NSE can be assumed. Therefore it is ideal for the progenitor core, but

must be replaced by something else in lower density regions.

Where the density is low enough, the nuclear contribution to the EOS is negligible
and an EOS that models the presence of the electron-position gas is sufficient. There
are several equations of state (EsOS) that do this, and their computational speeds
and accuracies have been compared [54]. The Helmholtz EOS, developed by Timmes
and Swesty, executes the fastest, displays perfect thermodynamic consistency, and
has a maximum fractional error of 10~6 when compared to Timmes’ very slow exact
calculation. It is typically regarded as the EOS of choice when the nuclear contribu-
tion to the EOS can be neglected. A methodical discussion about the assumptions
and techniques that Timmes and Swesty used when deriving their electron-postiron
EOS can be found in [54]. Here we state that it is a sophisticated EOS that, in
addition to modeling the presence of a non-interacting electron-positron gas, models
other phenomena such as the interaction between electrons and ionized nuclei and
the pressure exerted by radiation. Furthermore, it is applicable over the enormous
density and temperature ranges 10—9 kg/m3 to 1018 kg/m3 and 103 K to 1013 K

respectively.

The fact that the nuclear contribution to the EOS does not transition from dom-
inant to irrelevant instantaneously means that there can be discontinuities in EOS
knowledge in the transition between regions where the Lattimer Swesty EOS is ap-
plicable and where the Helmholtz EOS is sufficient [40]. Some groups attempt to
circumvent this difficulty with a patchwork approach in which multiple EsOS are

used to span the gap between these two limits [34]. Other groups opt to use one EOS
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that can be used in all regions of the star [37].

One such EOS has been developed by Shen et al [40]. Shen et al. constructed
their EOS of nuclear matter using the relativistic mean field theory for a wide range
of densities, temperatures, and electron fractions. They treat the lepton gases as
uniform and non-interacting. Their EOS is calculated specifically for use in supernova
simulations and neutron star calculations. A rigorous description of their derivation
of this EOS is beyond the scope of this discussion. A very concise description of
their approach can be given in the following way: First they use relativistic mean
field theory to construct the EOS of homogeneous nuclear matter. Then they use the
Thomas-Fermi approximation to describe inhomogeneous matter, where heavy nuclei
and free nucleons coexist. This EOS is preferred by some [37] over the Lattimer Swesty
EOS since it is relativistic, more realistically models the presence of a particles, and

again is continuously applicable everywhere it is needed.

2.3.2 Weak Interaction Rates

All supernova simulations make use of some weak reaction rates. Since these rates
govern the deleptonization and leptonization rates of matter, they singificantly im-
pact the dynamics of core collapse supernovae. Consequently a tremendous amount of
resources have been invested into calculating them theoretically [55, 56, 57, 58, 59, 60,
61, 62, 63, 64, 65]. The theoretical calculation of these rates can be quite involved; so
here we simply mention that older calculations used the independent particle model
and more recent calculations are made using shell model. These rates are tabulated
over a range of temperatures, mass densities, and electron fractions relevant to super-
novae for the purpose of interpolation. A slightly more in-depth consideration of the
differences between the older and more modern rate calculations is given in section
3.12. We also note that efforts are currently underway to experimentally measure

and tabulate electron capture rates relevant to a variety of astrophysical environ-
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ments as well. Some of these efforts are being made at the National Superconducting
Laboratory at Michigan State University (NSCL) [66]. Once FRIB is online, these
efforts can be expanded closer to the proton and neutron drip lines. Ultimately an
extensive tabulation of experimentally measured astrophysical rates will not only aid
in our theoretical understanding of how nuclear structure effects these rates, but will

be directly available to those that need them for numerical calculations.

2.3.3 One-Dimensional Simulations

One-dimensional simulations that assume spherical symmetry are still useful. Even
though most one-dimensional simulations fail to produce explosions, much of the un-
derlying microphysical processes that govern the dynamics of core collapse supernovae
can only be modeled in great detail by using them. That is why some groups use data
generated by one-dimensional simulations and map it onto their multidimensional
simulations [17, 36]. Additionally, they can still be used to accurately model cer-
tain isolated portions of the collapse and subsequent explosion [9]. One-dimensional
simulations are also useful because their results can be compared to those produced
by multidimensional simulations so that the importance of multidimensional effects
can be studied [36]. The fact that realistic one-dimensional simulations tend to fail
to explode suggests that multidimensional effects are of critical importance to the

explosion mechanism.

Liebendorfer, Mezzacappa et al. [28, 52]

Liebendorfer, Mezzacappa et al. recently revisited one-dimensional studies of type
IT core collapse supernovae [28, 52]. There goal was to employ an advanced tech-
nique to model the transport of neutrinos called multi-group flux-limited diffusion

in their one-dimensional simulations in order to determine if previous failures with
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one-dimensional simulations were the result of approximations made in this area. The
multi-group flux-limited diffusion method is a sophisticated algorithm that realisti-
cally models the transport of neutrinos of different flavors and energies [67]. More
accurate knowledge of neutrino flavor and energy distributions is essential for accu-
rately modeling neutrino-matter interactions, as all of these cross sections depend
strongly on neutrino energy and many on neutrino flavor as well [68]. Liebendorfer
and Mezzacappa’s simulations followed the collapse of a 13 M, star using both New-
tonian [52] and general relativistic [28] gravity. They made no attempt to artificially
model the effect of convection. Their simulations made use of the aforementioned
Lattimer Swesty EOS and an adaptive grid. Their adaptive grid uses cells of vari-
able volumes that can contract to resolve rapidly changing distributions and enlarge
in region where distributions change slowly to save computation time and memory.
None of their one-dimensional simulations resulted in an explosion. The fact that
the inclusion of the multi-group flux-limited method did not result in successful ex-
plosions lends further credence to the notion that multi-dimensional effects are key

ingredients to the supernova explosion.

Herant et al. [36]

Another recent study of type 1I core collapse supernovae in one dimension was
conducted by Herant et al [52]. They modeled the collapse of a 15 M progenitor
calculated by Woosley and Weaver [18] using a second order Runge-Kutta hydrody-
namic grid based code with adaptive cell size. Their model uses Newtonian gravity,
makes no attempt to artificially model the effects of convection, and uses a very sim-
ple treatment of neutrino transport. By labeling each grid cell optically “thick” or
“thin” based on the density they contain, neutrino transport is modeled in one of two

ways in them.
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In optically “thick” cells, neutrino transport is approximated by diffusion. Dif-
fusion is modeled using the so-called flux-limited method which assumes that the

neutrino number density n in a cell satisfies

dn C= = -

— =min | =|Vn|,V - DVn) 2.5
" i (59 =
where D is a diffusion coeflicient. This coeflicient can place limitations on neutrino
diffusion into cells with high neutrino number densities where neutrino degeneracy

is non-negligible. Equation (2.5) clearly places an upper limit in the neutrino flux,

hence the name flux-limited.

In optically “thin” cells, the widely used central lightbulb approximation [69, 70,
71, 72] is employed. This approximation assumes that matter is bathed in a neutrino
flux originating from the center of the star. The magnitude of the flux is essentially
determined by the neutrino production rates in optically “thin” regions and the rate
at which neutrinos can diffuse from optically “thick” regions to optically “thin” ones.
The neutrino production rates used where calculated by Takahashi et al [55]. The

one-dimensional calculations made by Herant et al. fail to yield explosions.

2.3.4 Two-Dimensional Simulations

As previously stated, it is widely believed that convection plays an essential role in
the revival of stalled shocks. To model convection naturally, at least two dimensions
are required. This is the obvious appeal that two-dimensional simulations have over
their one-dimentional counterparts. Presumably it is not merely a matter of pure
coincidence that two-dimensional simulations tend to be more successful at yielding

explosions than one-dimensional simulations.
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Herant et al. [36]

The initial conditions and algorithms used to model the gravitational force and
microphysics for the two-dimensional calculations performed by Herant et al. are
identical to their one-dimensional simulations discussed above. The only difference
between the two models is the numerical technique and the number of dimensions
used. The numerical technique they employ is called smooth particle hydrodynam-
ics. This technique is used to model a variety of two-dimensional simulations of
astrophysical environments and its defining feature is that it represents continuous
mediums with a finite number of discrete particles [35, 36, 73, 74, 75]. While spherical
symmetry is assumed for gravitation, cylindrical symmetry is assumed for all other
purposes. This means that at most only half of the two-dimensional space needs to
be considered. Most of their simulations do not even do that much and only use an
opening angle of 90°. Preliminary comparisons of simulations they ran with various

opening angles from 90° up to 180° showed little difference.

The primary conclusion of Herant et al. is that convection above the neutrino
sphere provides supernovae a robust and self-regulating explosion mechanism that is
effective under a wide range of physical parameters. They compare the star after its
shock has stalled to a powerful convective thermodynamic engine. The region above
the neutrino sphere serves as the engine’s hot reservoir and the star’s envelope serves
as its cold reservoir. Due to the large temperature difference between these reservoirs.
the efficiency of this thermodynamic engine is high and leads to a self regulating ex-
plosion mechanism. Once the envelope is heated enough to explode, the cold reservoir
is gone and the engine stops. This may be why most measured supernova energies
seem to fall in the 1 to 2 Foe range [15, 17]. They do concede however that convection
is truly a three-dimensional phenomenon and that the inclusion of rotation into their

model may alter their findings.
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Fryer and Heger [36]

Fryer and Heger have also recently modeled type II core collapse supernova in two
dimensions [36]. Their model is very similar to the two-dimensional model of Herant
et al. discussed above. The only significant differences are that they use spherically
symmetric general relativity to model gravitation, a patchwork of EsOS for regions
of different densities with the Lattimer Swesty EOS for the high density region, and
their initial conditions are different. They use a rotating 15 M, progenitor with an
equatorial rotation velocity of ~ 200 km/s that was calculated by Heger and Langer
[76]. They enforce the conservation of angular momentum for each of the particles

used in the smooth particle hydrodynamic scheme separately.

They found that rotation had the effect of limiting convection overall and restrict-
ing it to the polar regions. As a result of this, the convective region takes longer to
overcome the accretion shock and the explosion occurs at later times and is weak-
ened. These explosion are highly asymmetric. The mean velocity of matter in the
polar region is roughly twice that of the equatorial region. These asymmetries are
expected and may be possible explanations for the observed polarization of emitted
light [77, 78, 79]. While some of their results are encouraging, this model is not a
complete explanation. Uncertainties in the numerical implementation of such things
as neutrino transport, neutrino-matter cross sections, the EsOS, and the spherical
symmetric gravity limit their ability to make quantitative estimates and the specific
results they present should be interpreted as “best-estimates”. The trends they ob-

serve, like weaker explosions and lower black hole formation limits, are more secure.
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Burrows et al. [37, 38]

The most recent two-dimensional calculations made by Burrows et al. have led to
the possible discovery of the previously mentioned acoustic powered supernova explo-
sion. Since their results were already summarized in section 2.2.5, here we just briefly
review the numerical techniques they used. They made use of the VULCAN/2D code
developed by Livne [80]. VULCAN/2D was developed with astrophysical application
in mind and is an implicit method for compressible multidimensional flows. It consists
of a purely Lagrangian step followed by an explicit remapping step. The remapping
limits the time step size by the “particle crossing time” or accuracy considerations,
whichever is more restrictive in a given instance. VULCAN/2D is a Newtonian,
two-dimensional, multi-group, multi-angle radiation hydrodynamics code that uses
multi-group flux-limited diffusion. Its calculations are axially/azimuthally symmet-
ric, extend over the full 180°, makes use of a Cartesian grid for the innermost ~ 20
km, and a spherical grid for regions further out.

The fact that the code uses the full 180° opening angel is an essential requirement
for any simulation that hopes to follow vibrational modes of the core. Furthermore
the central Cartesian grid allows the best zoning to be maintained in the core. This
Cartesian grid can be made to follow the core as it moves as well. They employ the
Shen EOS briefly described in section 2.3.1 and all of their neutrino-matter interaction
physics is taken from the works Burrows and Thompson, and Burrows, Thompson,

and Pinto [68, 81].

2.3.5 Three-Dimensional Simulations

Due to the enormous computational power required by three-dimensional supernova
simulations and their tremendous complexity, few have been done. Fryer has been one

of the most prominent figures on the forefront in this regard. He has used the smooth
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particle hydrodynamics technique to model core collapse supernovae in three dimen-
sions as well as collapsars and the merging of two white dwarfs [33, 82, 83, 84, 85]. In
this section we review the most recent three-dimensional supernova simulation Fryer

ran with Young.

Fryer and Young [33]

The progenitor used by Fryer and Young is a non-rotating 23 Mg calculated by
Young and Arnett [86]. It was calculated by the state of the art Tycho stellar evolution
code. Instead of the classic mixing-length theory technique of modeling convection,
Tycho uses a more realistic algorithm based on multidimensional studies of convection
in the progenitor star. One of the most significant differences in its output is the
lack of kinks in the density and temperature profiles seen in traditional calculations
[18] that are artifacts of mixing-length theory which ignores hydrodynamic transport
processes at and outside of the convective boundary.

They use the SNSPH code [82] which is a parallel, three-dimensional, radiation
hydrodynamics code implementing tree code Newtonian gravity, smooth particle hy-
drodynamics, and flux-limited diffusion transport schemes. For comparison purposes
with other groups, they make use of the Lattimer Swesty EOS down to densities
of 1012 kg/m3. This intentional over usage of the Lattimer and Swesty EOS has
the effect of significantly altering the entropy profile of the convective region in their
model.

Their simulation did not launch an explosion until over 600 milliseconds after
bounce. This provided them with an ideal opportunity to study the evolution and
structure of the convection below the accretion shock to late times. Ultimately con-
vection did revive the shock and power the explosion. Convective down-flows buffeted

the neutron star, giving it velocities in the 150 — 200 km/s range. Such neutron star
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velocities are comparable to the low velocity simulations of Scheck et al. [87]. The
¢ = 1 mode was not found to dominate the convection in their simulation and this
precluded the neutron star from acquiring velocities > 450 km/s. It is however pos-
sible that these larger velocities could be achieved with only minor modifications to
the initial conditions and numerical setup [87, 88]. Additionally, their simulation did
observe neutron star movement, but this movement did not develop into strong oscil-
lations and become the energy source for the supernova explosion like Burrows et al.
found. This too might be due to the lack of £ = 1 mode dominance of the convection.
Again we stress that these different findings are not necessarily contradictions. It is
possible that numerical viscosity in the particles the smooth particle hydrodynamic
approach uses to represent the inner regions of the star damp out these oscillations.
As previously mentioned it might also be the case if the convective engine would not
have worked, the acoustic driving mechanism would have developed. Further investi-
gation into the different results of the Fryer and Young simulation and the Burrows

et al. simnulation is indeed warranted.
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Chapter 3

The Test Particle Approach

Despite the many advances hydrodynamic based calculations have made in the field
of supernova science, a great deal more must be done before these simulations can be
regarded as complete. A truly complete hydrodynamic simulation would in principle
have to model the dynamics of multiple fluids with strongly time dependent viscosities
to simulate the presence of a full ensemble of nuclei and neutrinos. Additionally,
the sysem being modeled is three-dimensional, relativistic, has huge magnetic fields
and length scales that vary drastically in time, and it must make use of relativistic
radiation transport algorithms and Boltzmann transport algorithms for neutrinos.
Most state-of-the-art hydrodynamic supernova simulations typically only track the
abundances of free baryons, o particles, and an “average heavy nucleus”. A notable
exception to this is the work of Hix [89]. Furthermore, state-of-the-art hydrodynamic
simulations make simplifying assumptions about the flow of neutrinos, and few are
done in three dimensions. Failing to model the propagation of a full ensemble of nuclei
can possibly average away nuclear structure effects that may influence core dynamics.
Between the limits of neutrino trapping and free streaming, many of the simplifying
assumptions made by traditional hydrodynamic treatments of the flow of neutrinos

can be problematic. Since these state-of-the-art hydrodynamic calculations already
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strain the capabilities of high performance supercomputers, there may be a long wait
before more complex models that simulate the presence of hundreds of different species
of nuclei and propagate neutrinos in a general way in a three-dimensional system can
be realized. This motivates us to move away from the traditional hydrodynamic
approach that we are familiar with and draw from other disciplines of physics in an
attempt to circumvent this technological roadblock. It turns out that the field nuclear

collision modeling is an ideal candidate for this purpose.

Numerical simulations of intermediate and high energy nuclear collisions must be
able to model particle production, shock wave formation, collective deflection, as well
as the interplay between regular and chaotic collective dynamics. Transport theories
based on semi-classical implementation of kinetic theory [90, 91, 92, 93, 94, 95, 96]
have been highly successful in meeting these requirements and in doing so reproducing
experimental observables and pointing the way to new physical insight into these
systems. The simulation of a core collapse supernova poses similar challenges [30, 34.
36, 52, 81, 97, 98]. It is therefore tempting to implement these types of kinetic theory
based approaches for the physics and astrophysics of supernova explosions. This is

the aim of our work.

Our simulation of a core collapse supernova focuses on the stellar core. The
motivation for doing this is that the genesis of the supernova explosion is believed
to be in the core and we therefore concentrate our efforts on realistically following
the core through the explosion phase in the hopes of using the unique advantages
that our approach has to gain new insight into the mechanics of the collapse and
subsequent explosion. In particular we hope that, through explicitly modeling the
propagation of neﬁtrinos and a full ensemble of nuclei, we can probe the dependence
of weak reactions on certain nuclear structure effects that other supernova simulations
are inherently incapable of and study the impact that these dependencies have on the

collapse and explosion mechanisms.
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3.1 Origins of the Test Particle Approach

Efforts to advance the field of nuclear collision simulation beyond the hydrodynamic
[99], mean field [100], and cascade [101] approaches required modeling phase space dy-
namics by numerically solving a non-relativistic semi-classical transport equation with
a two-body correlation source term. This equation, called the Boltzmann-Uehling-
Uhlenbeck (BUU) equation, is a semi-classical approximation of the Wigner trans-
formed time dependent Hartree-Fock equation that neglects all particle correlations

higher than two-body correlations. It is given by [96]

o ., . . p = o = = -
a (T,p,t) + %'v'f‘f(rap’t) - vTvaf(r)pvt)
_ _ 9 3 3 do
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where f is the Wigner transformation of the one-body reduced density matrix, U is

the mean-field potential, and g is an isospin degeneracy factor.

The left hand side of the BUU equation is the so-called Vlasov term that describes
the temporal change of the phase space density f due to the interactions of the
nucleons with the mean field. The right hand side of the BUU equation is the collision
integral that represents the effects of the correlations due to the two-body collisions
on the phase space density. The collision integral runs over all possible initial incident
phase space element momentum vectors gy and all possible final phase space element
momentum vectors (i'l ; and d’2/. The delta functions conserve energy and momentum
and the exit and entrance channels given by the final two terms respectively are

weighted by the phase space availabilities of the states the phase space elements
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are scattering into and out of respectively in accordance with the Pauli Exclusion

Principle.

Some initial attempts to numerically solve the BUU equation involved fully dis-
critizing the relevant six-dimensional phase space and calculating the phase space
densities in each grid cell in every time step. However even the coarsest of grids
constructed for this purpose were prohibitively large containing ~ 109 lattice sites.
To sidestep this limitation, it was proposed that, instead of tracking the value of the
phase space densities in each cell, one could only follow the initially occupied phase
space cells in time and represent them by imaginary particles, henceforth referred
to as test particles. These imaginary test particles were then propagated in a way
that modeled the physical evolution of the phase space. They interact with one an-
other via mean field one-body potentials and scatter with realistic cross sections. For
the simulation of nuclear collisions, using 100 to 1000 test particles per baryon was

sufficient to accommodate the complexity of the phase space dynamics.

The test particle method formally approximates the phase space density with a

sum over delta functions [105]

>

JERY) = 30637 75(0) 8% (7 - (1) (32)

where N is the total number of test particles. The initial coordinates of these delta
function point particles, or test particles, have to be determined by some physical
input model. For simulations of nuclear collisions, a local Thomas-Fermi approxi-
mation, properly Lorentz-boosted, is sufficient. Inserting this solution into the BUU
equation generates the following simple first-order linear differential equations that

govern the motion of the centroid coordinates of these test particles in the full six
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dimensional phase space

d - . = . 5 -

P = -VUEos(m;) — VUc(g;.75) + C(p;)

d. P

i = ™ (3.3)
it = 1,...,N

where again N is the total number of test particles, U g is the mean field one-body
nuclear EOS potential, U is the effective one-body Coulomb interaction potential
between the it test particle with charge g; and the rest of the N — 1 test particles,
and 5(13‘2) symbolizes the effects that two-body collisions with other test particles

have on the itP test particle’s momentum.

Solving the BUU equation with the test particle method has reproduced exper-
imental data quite effectively [96, 102, 103]. Proceeding in a completely analogous
fashion, the test particle approach can be used to generate simple semi-classical equa-
tions of motion for the centroid coordinates of test particles used to model the phase
space dynamics of systems with more complicated coupled transport equations. This
has been done successfully for relativistic systems in which particle production is im-

portant and coupled transport equations had to be simultaneously numerically solved

[104].
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3.2 Modeling Macroscopic Systems With Test Par-

ticles

In the previous section, we discussed the origin of the test particle approach and
described how it can be used to model a microscopic system. In that case, there were
many more test particles than there were physical particles. If we wish to model a
macroscopic system with a very large number of physical particles, a mole or possibly
much more, it is clearly impossible to have the number of test particles, -tha exceed

the number of physical particles, N, Computational limitations require that in

phys'
situations such as this that Nphy s/Nip > 1.

The test particle approach can still be applicable in these cases so long as Aftp
is sufficiently large to capture the gross dynamics of the macroscopic system’s phase
space. The ratio Nphy s /.N'tp effectively determines a scale cutoff of sorts below which
details cannot be resolved. When Nphy s /Aftp becomes sufficiently large, some truly
microscopic phenomena become impossible to directly simulate with test particles.
Therefore it must be established that these unresolvable details do not impact the

gross phase space dynamics and/or can be taken into account indirectly. This can be

accomplished with convergence tests.

These types of scale issues are certainly not unique to the test particle approach.
Hydrodynamic calculations have to spatially discritize the systems being simulated
and when the systems’ total volumes are large enough, the number and size of the
cells the volumes are divided into can raise the same scale and resolution concerns.
Representative particle models, which are very similar to test particle calculations in
the large Nphys /./V'tp limit, have to contend with scale and resolution issues as well
when the importance sampling of the particles the system is comprised of is made.
Failure to represent physical particles with certain characteristics with a sufficient

number of representative particles can prevent calculations from resolving details

31



that are essential to the gross system dynamics.

Having established that the test particle approach that has been used so success-
fully in the study of nuclear collisions can be applied to macroscopic systems as well.
we have opened the door to its application to the study of supernovae. This matter

is discussed in the next section.

3.3 Modeling Supernovae with Test Particles

For supernovae, the one-body transport equation for the baryon phase space density

fp(zp) for the particular state b of the baryon is given by [106]

Ofy(zp) T iy : M} .
PR Eg(p) VT fy(zp) - 'Efgmvap(I)V;)fb(IP) + %Vfl/sv;)fb(lp)
= Ify(xp) + I}, (ap) (3.4)

Here Il the phase space element momentum, El’: (p) and MI’; are the effective en-
ergy and mass of the baryon in the particular state b, Uy(z) and Us are the mean
field nucleon vector and scalar potentials, and / gb and III))I/ are the baryon-baryon
and baryon-neutrino two-body correlation source terms that take into account how
collision between baryons and baryons and neutrinos impact the baryon phase space
density. The latter term is what couples the one-body transport equation for the
baryon phase space density to that of the neutrino phase space density. The form
and evaluation of / Il))b are discussed in our previous work [107]. I gy can be derived in
analogy to work on coupled transport equations for heavy ion collisions [108]. The
relativistic quantum nature of these source terms makes them more complicated than

the BUU source term discussed in section 3.1, however their structure is the same.

For any neutrino species, the transport equation simplifies to an equation of mo-
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tion that contains only the streaming and baryon-neutrino collision terms since there
are no mean field contributions and the effects of neutrino-neutrino collisions are

neglected,
ofy(zk) k-V7T
ot Ey(k)

fu(ak) = If, (ak) (35)

It should be noted that employing this formalism implicitly enables us to incorporate

matter oscillation of neutrinos into our model.

These coupled transport equations are solved as discussed in section 3.1 by ap-
proximating the phase space densities with sums over delta functions. Semi-classical
equations of motion for the six-dimensional phase space centroid coordinates of test
particles that represent baryonic matter and those that represent neutrinos are readily
obtained and are tracked at all times. In this way, the dynamics of baryonic matter
and neutrinos are treated in an identical fashion. This feature is very different from

traditional hydrodynamic calculations.

The initial conditions for baryonic or matter test particles are determined by the
chosen progenitor. For neutrino test particles, the initial conditions are determined
by the local kinemafics at the site of their creation. The initial conditions and equa-
tions of motion for both types of test particles are discussed in greater detail sections
3.4 and 3.7. Matter test particles must represent a very large number of nucleons.
To ease the modeling of weak interactions, each neutrino test particle represents the
same number of neutrinos as a matter test particle represents nuclei. This number is
taken to be the core’s mass divided by the 96Fe nuclear mass divided by the number
of matter test particles used to model the core. Beyond these similarities, matter and

neutrino test particles are quite different and are hence described separately.
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3.4 Matter Test Particles

In addition to a tracking the location of matter test particles in six dimensional
phase space, the locations of the matter test particles in multiple cubical grids is
always known as well. These grids are used to model the scattering of nuclei and free
baryons and calculate three dimensional statistical distributions and gravitational

force fields. They are discussed in detail in section 3.9.2.

Every matter test particle has its own temperature. Initially this is determined
by the temperature distribution of the chosen progenitor. A matter test particle’s
temperature can change in two ways. Local weak reactions can induce changes in
the temperature of the matter represented by a matter test particle. So can exposure
to other matter test particles representing matter at different temperatures. Both of

these processes are exhaustively discussed in sections 3.11 and 3.17 respectively.

Each matter test particle explicitly represents a fixed number of nuclei and can
explicitly represent free baryons as well. These free baryons come in multiples of the
number of nuclei a matter test particle represents. Initially the type of nuclei and
number of free baryons a matter test particle represents is determined by the chemical
composition of the chosen progenitor. At later times, these properties are determined
by local electron capture rates and the number and type of interactions each matter
test particle has with neutrino test particles. For simulations that include the fusion
of free baryons and nuclei, the number of free baryons a matter test particle captures
can also influence these quantities. These weak and strong processes are described in
sections 3.11 and 3.18 respectively. There are a total of 385 nuclei with 2 < A < 60
that a matter test particle can represent. These nuclei extend from the proton drip
lines to the neutron drip lines for all nuclei with 2 < A < 60 in the table of nuclear
masses we use [109]. This table is displayed in figure 3.1. We note here that any

table of nuclear masses can be used so long as we can determine the electron capture
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@ Included Stable Nuclei
O Included Unstable Nuclei

Figure 3.1: Table of stable and unstable nuclei currently included in our simulation

rates for all of the nuclei it contains. This qualifier shall be discussed further in
section 3.11. The propagation of a full ensemble of nuclei is a significant advantage

our approach has over traditional hydrodynamic calculations.

Matter test particles implicitly represent electrons as well. We assume that for
each proton represented by a matter test particle, free or bound in a nucleus, there is
an electron nearby so that macroscopic charge neutrality is preserved. This assump-
tion renders the matter test particles charge neutral and advantageously permits us
to avoid modeling Coulomb forces between them. Note that the charge neutrality of
matter test particles is essential as the Coulomb interaction is ~ 40 orders of mag-

nitude stronger than gravity. Electromagnetic interactions would therefore dominate
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the the matter test particle dynamics in an unrealistic way.

For the purposes of calculating gravitational forces and density distributions, all
matter test particles are assigned the same average mass. This average mass is taken
to be the mass of the core divided by the number of matter test particles used to
model it.

After the insertion of the delta function approximation of the baryon phase space
density into equation (3.4), it is found that centroid of each matter test particle is
subject to three forces: gravitation, a mean field nucleonic force, and a force exerted
by the surrounding electron gas on the electrons it implicitly represents. The latter
two forces are dependent upon local statistical distributions and are notationally
lumped together and denoted by F‘loc Matter test particles can also scatter with
one another. The equations of motion for the centroid coordinates of the matter test

particles are given by the following first-order differential equations

d - - -

;i_tﬁ] = FG,] +Floc(Fj)+C(_’j)
d p;
=7 = J (3.6)
j = 1,...,N
th 7

where ﬁG,j is the gravitational force acting on the j** matter test particle and C (ﬁ])

symbolizes the effects that two-body collisions with other matter test particles have

on the jth

matter test particle’s momentum. N is the number of matter test particles
used to model the core and is constant. These first-order differential equations are
numerically solved using the time tested 4th order Runge-Kutta method [110].

For calculations run on a single processor, N cannot greatly exceed 106, otherwise

run times become prohibitively long [111]. This does impose some statistical limita-
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tions on single processor simulations. These limitations shall be addresses in section
7.2 where conservation of energy is discussed. Computational errors scale almost uni-
versally with 1/v/N in our approach, so these limitations are expected to vanish in
the large N limit. Values of N such as 108 or even larger are currently feasible on

parallel computer clusters [112].

3.5 Matter Test Particle Initial Conditions

The evolution of stars on the main sequence is thought to be well understood (15,
113, 114]. Exhaustive efforts to numerically model main sequence stars have led
to a multitude of models that successfully reproduce observed behavior [18, 76, 86].
Consequently there are many sets of calculations that could potentially serve as initial
conditions for our model. For our preliminary single processor calculations, we chose
to work with the spherically symmetric non-rotating 15 Mx Woosely and Weaver
progenitor [18]. This progenitor was chosen since it is very well known and has
been used as the initial conditions for several other supernova simulations, making
it particularly useful for comparison purposes [18, 115]. The core of this progenitor
is 1.33 Mg [18]. Its density and temperature distributions are depicted in figure
3.2. The matter test particles are initially spatially configured in such a way that
the density distribution of our core matches the spherically symmetric Woosely and
Weaver core. The specific way in which we calculate density and other distributions
is discussed in section 3.9. Once the test particles have been been assigned their
initial spatial coordinates, the determination of the initial test particle temperatures
is straightforward. It is simply read from a fit of the temperature distribution given
in figure 3.2. The initial momentum space coordinates and nuclear properties of the

matter test particles are slightly more involved and are addressed separately below.
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Figure 3.2: Plot of the initial density and temperature distributions of the progenitor
as functions of enclosed solar mass taken calculated by Woosely and Weaver [18].

3.5.1 Initial Matter Test Particle Momentum Space Coordi-

nates

The Woosley and Weaver progenitor is calculated up to the point at which the im-
plosion begins. The outer edge of the core is just beginning to collapse at 1000 km/s
[18]. This initial condition is sufficient to determine the initial momentum space co-
ordinates of the matter test particles in simulations of non-rotating cores. To see
this, consider the following. Recall that the dynamics of a collapsing core naturally
divide the core into two regions: an inner core and an outer core. In the inner core,
collapse velocities are proportional to radial distance r [18]. In the outer core, collapse
velocities can be approximated as being proportional to 1//r [18]. The inner core
can be taken to enclose 0.6 M, to 0.8 M [18]. Thus having knowledge of the initial
collapse velocity at the outer boundary of the core and the dynamics of the collapse
discussed above is enough to generate an initial radial collapse profile.

For any simulations that include rotation, we simply add to the initial velocity
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collapse velocity of each matter test particle the rotational velocity at its location
determined by the selected initial angular velocity profile. Since the Woosley and
Weaver progenitor is assumed to be spherically symmetric, we cannot choose an ini-
tial angular velocity distribution that is too large. Otherwise the conservation of
angular momentum would result in spherical asymmetry of the progenitor’s core.
Thus we should restrict ourselves to more modest profiles like those shown in figure

3.3. The three angular velocity distributions depicted in figure 3.3 are the initial
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Figure 3.3: Plot of the initial angular velocity distributions calculated by Heger and
Langer for their 15 M, rotating progenitor taken from a private communication from
Chris Fryer.

angular velocities calculated by Heger and Langer for their 15 Mg rotating progen-
itor {76, 116]. Our earliest works did discuss more rapidly rotating cores, but these
calculations where geared towards probing the role of angular momentum in the early
stages of the collapse [107, 112, 117]. These early calculations can only meaningfully
follow the very beginning of the collapse since, beyond using initial conditions which
indicated that some electron captures had occurred in the core’s center, weak reac-
tions were not modeled and the electron gas was assumed to be perfectly degenerate

at all times.
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3.5.2 Initial Matter Test Particle Nuclear Properties

The chemical composition of the Woosley and Weaver progenitor is shown in figure
3.4. The chemical composition of the core is rather simple. It is comprised of 54Fe,
56Fe, and “Fe” nuclei with 48 < A £ 65 with neutron excesses greater than 56,
Due to a limited availability of electron capture rates, we restrict of considerations to
nuclei with A < 60. We now have ways to extrapolate electron capture rates to nuclei

with A > 60, however this technique was not developed until quite recently and all

of the results presented in this thesis shall assume that A < 60. The number of
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Figure 3.4: Initial chemical composition of the progenitor as a function of enclosed
solar mass taken from Woosely and Weaver [18].

matter test particles that represent 54Fc, 56Fe, and “Fe” nuclei within a given radius
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is read from a fit of figure 3.4. The particular species of nuclei represented by a matter
test particle that represents “Fe” nuclei is selected by a Monte Carlo algorithm that
samples the nuclei included in our simulation that satisfy the definition of “Fe” nuclei

given above.

3.6 Neutrino Test Particles

Our simulations explicitly model the propagation of neutrinos by representing them
by test particles as well. In this way, we treat the dynamics of baryons and neutrinos
on equal footing. This is another advantage that our approa,_ch has over traditional
hydrodynamic calculations. Neutrino test particles are assumed to be massless, move
at the speed of light, and subject to no mean-field-type forces. The only way they
can interact with other test particles is through scattering with or being captured by
matter test particles. Thus the propagation of neutrino test particles is quite simple.
Merely multiplying the unit momentum vector of a neutrino test particle by the speed
of light and propagation time determines its new location. No complicated numerical
method of approximating the solutions to differential equations is required. This light
speed propagation does put limits in on the time step size. To realistically model the
propagation of neutrino test particles, the time step size should be no larger than
10~9 s. For the purpose of updating three dimensional statistical distributions that
can be altered by weak reactions, the locations on the neutrino test particles in one
of the cubical grids the matter test particles are tracked in is always known. This
cubical distribution grid is described in detail in section 3.9.2.

Unlike matter test particles, the number of neutrino test particles is not constant.
Neutrino test particles can be created and destroyed. The latter process can be
induced by a weak interaction or by the neutrino test particle escaping the core. The

number of neutrino test particles therefore varies greatly at different times during the
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simulation. The specific mechanisms by which neutrinos are created and destroyed
that are included in our simulation and how we model them are discussed at length
in section 3.11. For the remainder of this consideration of neutrino test particles, it
suffices to note that the only neutrino production mechanism currently included in

our model is electron capture by nuclei and free protons.

3.7 Neutrino Test Particle Initial Conditions

We do not model the presence of the neutrinos created before the simulation begins.
Some neutrinos created by the electron captures that lower the central electron frac-
tion enough to begin the collapse will undoubtedly still be in the present in the core
when our simulation starts. However the densities are low enough to make impact
that neutrino-matter interactions have on the core dynamics at this stage of the col-
lapse negligible. Thus we need not model the propagation of these neutrinos. We
model only the presence of neutrinos created after our simulation begins with neutrino
test particles. Since all neutrino test particles are created when the nuclei and/or free
protons represented by a matter test particle capture an electron, all neutrino test
particles represent electron neutrinos. However neutrinos and anti-neutrinos of other
species can be represented by test particles as well. For reasons discussed at length
in section 3.11, only the presence of electron neutrinos is currently modeled. The
initial spatial coordinates of a neutrino test particle are determined by the location
where the electron captures that result in its production are modeled. The initial mo-
mentum space coordinates are determined by the species of the nuclei that capture
the electrons and the temperature and number density of the gas the electrons are
captured from. A rigorous description of precisely how newly created neutrino test

particles’ momentum vectors are determined is presented in chapter 5.
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3.8 Data Management

For the purposes of calculating statistical distributions, gravitational forces, modeling
weak and strong reactions and two-body collisions, it is necessary to organize test
particles according to their spatial locations. In addition to spatially grouping the test
particles, it is also necessary to organize the matter test particles in these groupings
by their nuclear properties so the effects of weak and strong reactions that occur in
the them can be efficiently modeled. The spatial grouping of test particles is done in

two ways throughout the simulation. They are addressed separately below.

3.8.1 Spherically Symmetric Spacial Test Particle Grouping

To group test particles by their radial distances from the origin, spherical shells defined
by matter test particle occupancy are used. To locate the inner and outer radii of these
shells, a quicksort algorithm is used that sorts the matter test particles by their radial
distance from the origin in a one-dimensional array. To minimize the vulnerability
of distributions calculated with these spherical shells to statistical fluctuations, we
require the number of matter test particles contained in each shell to be at least 104,
For single processor simulations with 108 matter test particles, this limits us to 100
spherical shells in which statistical distributions can be determined. These spherical
shells are redetermined after the matter test particles have been moves to their new

locations in each time step.

3.8.2 Three-Dimensional Spacial Test Particle Grouping

Spacially grouping test particles in three dimensions is more complicated. Some of
the cubical grids used for this purpose contain 106 grid cells or more. Therefore
systematically searching for the grid cell a given test particle is contained in would

be very wasteful. To make efficient use of these grids, one must have a clever way of
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accessing test particles that are located in a given grid cell. We address this issue by

assigning each test particle a number called the grid index, I grid>

Ipriq = M%ig + Miy + i (3.7)
where iz, iy, and iz are the z, y, and z indices of the grid cell containing the test
particle, and 0 < iz, iy,iz < M, where M 3 is the total number of cells in the relevant
grid. Employing a quicksort algorithm after each time step ensures that test particles

with the same value of |

grid are stored next to each other in a one-dimensional array.

In this way, test particles inside a given grid cell can be found in a very efficient way,
with an algorithm that scales as N log N. Usage of this algorithm only requires the
recalculation of the z, y, and z grid cell indices of a test particle in any grid it must

be tracked in after it is moved to a new location.

3.8.3 Grouping Matter Test Particles By Nuclear Properties

Once it has been determined that a specific weak or strong test particle reaction is
to be modeled in a volume, spherical shell or grid cell, we must be able to efficiently
access matter test particles in that volume that represent the nuclei and free baryons
involved in the reaction. To address the first of these needs, we proceed in a similar
fashion to the way in which the three dimensional spatial grouping needs were met.
We assigning each matter test particle a number called the nuclear composition index,
Icomp,

Icomp =A- (Zmaa; + 1) + Z (38)

where A and Z are the atomic mass number and nuclear charge of the nuclei repre-
sented by the matter test particle and Zmgqz is the maximum charge of any nucleus

included in our simulation. For simulations with Amqr = 60, Zmaxr = 30. A quick-
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sort algorithm is employed in each volume in every time step to ensure that the
matter test particles with the same value of I¢omyp are stored next to each other in a
one-dimensional array.

To efficiently access matter test particles in a given volume that represent a cer-
tain number of free protons or neutrons for each nucleus they represent, we assign
each matter test particle numbers called the free proton and free neutron indices.
These numbers are precisely equal to the number of free protons and free neutrons
represented by each matter test particle for each nucleus they represent. Again we
use a quicksort algorithm in each time step to ensure that the matter test particles
with the same free proton and free neutron indices are stored next to each other in
one-dimensional arrays and update the arrays every time a matter test pérticle’s free
proton or neutron index is changed by a weak or strong reaction.

Each time a matter test particle’s nuclear composition index and or one of its free
baryon indices are changed during a weak or strong reaction, it is immediately moved
to its new location in the effected index array or arrays for the spherical shell or grid
cell containing it. This is done to ensure that weak reactions can still be efficiently

modeled in this volume in the current time step.

3.9 Calculating Distributions

After having explained the algorithms used to divide the core’s volume in such a way
that spherically symmetric and three-dimensional distributions can be calculated in
section 3.8, a description of how distributions are calculated in these volumes is
warranted. There are four distributions that must be directly calculated with matter
test particles to model the dynamics of the core’s collapse: density, electron fraction,
temperature, and the average § of matter. We turn our attention to the calculation

of these distributions when spherical symmetry is assumed first.
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3.9.1 Spherically Symmetric Distributions

Let NV be the number of matter test particles contained in each spherical shell. The
density at 7, the average radius of the kth spherical shell, with average volume V.

is taken to be
N - My,

A (3.9)

p(Ty) =

where Mtp is the mass assigned to each matter test particle and 7, is the average
radius of the kt" spherical shell. The electron fraction at the average radius of the

kth spherical shell is taken to be

MQ)—EQ&Q (3.10)

B Atot(k)

where Zj,¢(k) is the total sum of the nuclear charges of the nuclei and free protons
represented by matter test particles in the kth spherical shell and Ay (k) is the total
sum of the atomic mass numbers of the nuclei and free baryons represented by matter

test particles in the kth spherical shell. These quantities are readily calculated

N
Ziotk) = ) (Z+np);
i=1
(3.11)
N
Atot(k) = ) (A+np+ny);
=1
where the above sums run over the N matter test particles in the kth spherical shell,

Z and A are the nuclear charge and atomic mass number of the nuclei represented by
a matter test particle and np and np; are the number of free protons and neutrons

a matter test particle represents for every nucleus it represents. The temperature at
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the average radius of the kth spherical shell is taken to be

1 N
T(7,) = ﬁZTi (3.12)
i=1

where T; is the temperature of the matter represented by the ith

matter test particle.
In the spherically symmetric case, one can only speak sensibly of the radial component
of the average 3 of matter Br. We take average (r of the matter at the average radius
of the kth spherical shell to be given by

~ 1

Brtg) = « B; -1 (3.13)

™M=

=1

where ﬁz- is the [ vector of the ith matter test particle and 7, is the unit vector

h

pointing to the centroid of the ith matter test particle. These spherical distributions

are calculated and stored in each time step.

Radial Derivatives of Spherically Symmetric Distributions

The radial derivative of any of the above distributions at the average radii of the

spherical shells are approximated in the following way. If the kth

spherical is not the
innermost or outermost shell, the derivative of any distribution at its average radius
is approximated by linearly interpolating the slopes of the lines connecting the value
of the distribution at 7, to its values at 7, | and 7, _;. Consider some distribution

Q in the kth spherical shell. Its radial derivative at 7. is taken to be

0QTk) _  Tk+1 Tk y Q) — Q(Fr_1)

or Th4+1 — Tk—1 Tk — Tk—1
e —F 1) — Q(F
+ kTRl @l {““) ?( k) (3.14)
Tkl — Tk—1 Th+1 Tk
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The expression used to approximate the radial derivatives of spherically symmetric
distributions at the average radii of the innermost and outermost spherical shells is
less complicated since there is only one neighboring data point. It is simply taken to
be the slope of the line connecting the value of the distribution at the average radius
of the innermost or outermost spherical shell to its value at the average radius of its
only neighboring shell. The radial derivatives of the density, electron fraction, and

temperature distributions are calculated and stored in each time step.

Linearly Interpolating Spherically Symmetric Distributions

To calculate the value of a spherically symmetric distribution or its radial derivative
at an arbitrary radius that is between the innermost and outermost radii at which it
is known, we linearly interpolate it using the closest two data points. For all radii
outside the outermost data point, we equate the value of the distribution or its radial
derivative with its value at the outermost data point. For all radii inside the innermost
data point, the value of a distribution is equated with the its value at the innermost
data point. Due to the assumption of spherical symmetry, the radial derivative of all
distributions must be zero at the origin. Thus for all radii less than the innermost
data point, the radial derivative of a distribution is linearly interpolated between
zero and its value at the innermost data point. Note that by the construction of the
spherical shell that these inner and outer radii approximation will at most affect one

percent of the matter test particles.

3.9.2 Three-Dimensional Distributions

For multi-processor simulation, where memory and speed limitations do not confine
our considerations to spherically symmetric matter distributions, in addition to cal-
culating spherical distributions, we use two types of cubical grids to calculate and

interpolate three-dimensional distributions. Distribution grids, in which statistical
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distributions are calculated, are static cubical grids centered about the origin that
contain 101 x 101 x 101 grid cells of size 1 km3. The density, electron fraction, and
temperature at the centers of these grid cells are calculated the same way equations
(3.9), (3.10), (3.11), and (3.12) show for the spherically symmetric case. The only
difference is that now A is not a fixed number, rather it is the number of matter
test particles that happen to be in a given fixed grid cell during a particular time
step. The calculation of the average 5 of matter in a distribution grid cell is the
three-dimensional analog of equation (3.13) and as such does not involve matter test

particle unit position vectors.

Since there are more than 109 cells in the distribution grid, some cells will contain
a very low number of matter test particles and others will contain none at all. There-
fore unphysical fluctuations in the distributions can be caused by these occupancy
problems. It is necessary to use this many grid cells not only to resolve fluctuations in
the distributions, but also to allow super-nuclear densities to be measured. To circum-
vent this pitfall, we impose some minimum value that A’ must be to directly measure
the value of distributions in a given cell with the matter test particles it contains. If
N is below this threshold in a given distribution cell, the value of distributions at the

center of that cell are linearly interpolated using the spherical shells.

Gradients calculated at the center of distribution grid cells that are not on one of
the faces of the cubical distribution grid are approximated using a three-dimensional
analog of equation (3.14). Since the data points in this case are equidistant, the coef-
ficients will always be 1/2 allowing some further algebraic simplifications to be made
to the formula that are trivial and shall not be commented on further here. Deriva-
tives of a distribution in a grid cells on one of the faces of the cubical distribution grid
with respect to the coordinate that runs perpendicular to the face are taken to be be
given by the slope of the line connecting the value of the distribution at the center of

that cell to its value at the center of its only neighboring cell in that coordinate.
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Once the distribution grids have been calculated, the centers of its cells become
the corners of an interpolation lattice with 100 x 100 x 100 1 km3 grid cells inside of
which we can linearly interpolate three-dimensional distributions and their gradients.
While the core is initially much larger than this cube, we intuitively expect that most
deviations from spherical symmetry will occur, at least initially, near the center of the
core when it is contracted enough to have good occupation in many of the distribution
grid cells. Thus we focus our efforts on determining three-dimensional distributions
in the region in which expect all of the phenomenon of interest to begin.

It is important to note that the fact that the distribution grid must contain at
least 100 cells precludes single processor calculations from making use of it. Since
single processor calculations can only use approximately 106 matter test particles,
it is clear that the distribution grid is far too fine to use. Thus single processor
simulations all assume spherical distributions of matter and exclusively rely upon the

spherical shells to calculate one-dimensional distributions.

3.10 Matter Test Particle Motion

As explained in section 3.4, the motion of the centroid of each matter test particle
is influenced by three forces and scattering with other matter test particles. The
three forces are gravitation, a mean field nucleonic force, and a force exerted by the
surrounding electron gas on the electrons a matter test particle implicitly represents.
These way these forces and collisions are all modeled are discussed separately in the

sections below.

3.10.1 Gravitation

Currently gravitation is modeled with Newtonian mechanics. We cannot however use

exact Newtonian mechanics as this would be an N 2 algorithm. With N = 106, the run
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time would be unacceptably long. To avoid these long run times, we have devised two
ways to model gravitation. For simulations that assume spherical symmetry, we use
a modified Newtonian monopole that makes assumptions about the central density
distribution that remove the numerical singularity at the origin. For simulations
that makes no assumptions about the distribution of matter, we have an algorithm
that is three dimensional, does not violate causality, and is also free of numerical

singularities. We discuss the spherically symmetric model of gravitation first.

Spherically Symmetric Gravitation

The Newtonian monopole approximation is an appealing alternative for simulations
that assume a spherical matter distribution. Its application requires only knowledge
of the locations of a matter test particles and their radial rankings, both of which
are known quantities for all matter test particles. In this picture, the gravitational
force acting on a matter test particle with position vector 7 and radial rank N + 1 is

simply given by
Frn=-G-N-MA 73 (3.15)
G G

where G is the gravitational constant and M(; is the mass assigned to each matter
test particle for the purpose of calculating gravitational forces. The problem with this
approach is that gravitational forces exerted on the innermost matter test particles
can result in unphysical motion.

Obviously the innermost test particle never feels a gravitational force since ra-
dial rank 1 implies that the A in equation (3.15) is zero. Furthermore, and more
importantly, when the central density is sufficiently high, many matter test parti-
cles can be very close to the origin. All of these test particles except for the very

innermost are subject to very large gravitational forces directed toward the origin.
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Since our time step size is finite, matter test particles move finite distances between
times at which the gravitational forces they feel are computed. Thus any one of these
highly accelerated inner test particles may pass through the origin and move to a
new location that is much farther away from the origin than the last location where
the gravitational force it experiences was computed before it is recalculated. At this
more distant location, the gravitational force may be much lower and result in the
test particle artificially gaining kinetic energy. This violation of energy conservation
can result in many matter test particles being ejected from the core in a given time

step once the central densities become high enough.

To circumvent these inner test particle problems, we assume the density is constant
in the region containing the innermost 50 matter test particles. This assumption
is compatible with the way the density distribution is calculated for the following
reasons. For spherically symmetric simulations, the innermost point at which the
density is known is at the average radius of the spherical shell containing innermost
104 matter test particles which is always larger than Ry, the radius defined by
the radial distance to the 50" innermost matter test particle. Thus changes in the
density distribution cannot be measured for r < Rj( in the spherically symmetric
case. Recall that for three dimensional calculations, to directly calculate the density
inside a cubical grid cell instead of linearly interpolating it off the spherical density
shells, it must contain at least 250 matter test particles in order to avoid fluctuations
due to low occupation. Therefore the sphere defined by Rj5q will always be much
smaller than the central grid cell if it can be used to directly measure the density in
it. Thus the density does not change much on the interval 0 < r < Rp) in the three

dimensional case either.

From classical mechanics, it is known that inside a sphere of constant density
that the gravitational field generates a linear restoring force [118]. Therefore the

assumption of a constant density inside the sphere with radius R5) yields the following
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simple result for the gravitational force acting in a matter test particle with position
vector 7 and radial rank A + 1
P ~G-N-M%& 73, N >50
G = (3.16)
-G 50  M% 7/R3), N <50
The advantages that this approach has over the unmodified monopole model are as
follows. Unlike the unmodified monopole model, this model can exert a gravitational
force on the innermost matter test particle with radial rank 1. Furthermore, since the
magnitude of the gravitational force decreases linearly to zero inside the sphere defined
by Rg(, the violations of energy conservation caused by the radially asymmetric
sampling of the gravitational field as test particles pass through the origin discussed
above are negligible. As a result, no matter test particles are ejected from the core
since the origin can no longer act as a numerical singularity. Taking only fractions of
a second to run, this approach is ideal for spherically symmetric calculations where
the minimization of run times can justify minor sacrifices in accuracy associated with
violations of causality resultant from the implicit assumption that gravitational force

act instantaneously in this model.

Three-Dimensional Gravitation

For fully three dimensional simulations of the collapse, an approach is needed that
makes no assumptions about the distribution of matter, does not violate causality.
and is also free of numerical singularities. To fulfill these requirements, we generate a
gravitational acceleration lattice off of which we linearly interpolate the gravitational
acceleration at arbitrary points in the following way. First we divide the volume
the matter test particles occupy into identical cubical cells, the corners of which
will form the lattice sites of what shall be referred to as the mass lattice. Then

we “smear” the mass of each matter test particle over the eight closest lattice sites
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defined by the corners of the cell it is in using what could be described as an inverse
linear interpolation. The fraction of the mass of a given matter test particle that is
“smeared” onto one of the eight closest cites to it is linearly proportional to its distance
to it. Once the mass lattice is constructed, we exactly calculate the Newtonian
gravitational forces that would be experienced by a matter test particle sitting at the
center of each mass lattice cell exerted by the masses accumulated at all of its lattice
sites. In doing so, we create a gravity lattice off of which the gravitational force felt

by a matter test particle at any point inside it can be linearly interpolated.

To avoid action-at-a-distance forces that violate causality, when we calculate the
gravitational acceleration at a particular gravitational lattice site due to the mass
accumulated at mass lattice site at a distance r, we should access the mass that was
accumulated at that mass lattice site at the time r/c in the past, where c is the
speed of light. Since we will generally not have a mass lattice that was calculated
exactly at a time r/c in the past, we linearly interpolate between the two lattices
that were calculated closest to that time. In this way we model the finite propagation
speed of gravitational waves. Once the gravity lattice has been computed, we can
determine the gravitational force acting on a matter test particle at arbitrary points
inside it by linearly interpolation using the eight closest gravity lattice sites to the
point of interest. In effect, this is a 4 dimensional space-time linear interpolation of
the gravitational force. While the calculation of the gravitational force at each site
in the lattice is an N2 algorithm, in this case N is not the number of matter test
particles used in the simulation, it is the number of lattice sites. Choosing the number
of lattice sites to be approximately 104 allows us to calculate the gravitational forces
acting on 108 matter test particles in two to three minutes on a single processor with
minimal sacrifices in accuracy. The lattice sites can be chosen to be static or follow
the core as it contracts but remain at safe distances from each other at all times, thus

we do not encounter any numerical singularities.
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Simulations that model weak reactions require approximately 10° time steps to
follow the core through the explosion phase. Therefore on a single processor more than
two weeks would be spent calculating gravitational forces using the model described
above. It is clear that this algorithm must be implemented on a parallel computing

cluster to keep the run times from becoming prohibitively long.

3.10.2 Nucleonic Force

The mean field nucleonic force acting on the nucleons represented by the matter test
particles is generated by the mean field nucleon potential energy. Currently all of the
mean field nucleon potential energies are momentum/temperature independent. This
is not a result of necessity, but rather one of circumstance. The decision to make
the simulation capable of following the core through the explosion phase using fi-
nite temperature statistical mechanics was made relatively recently and consequently
time restrictions prevented us from incorporating momentum/temperature dependent
mean field nucleon potential tables. This would be a straightforward exercise. Ad-
ditionally, all of the potentials used by our simulation are symmetric with respect to
proton and neutron exchange. For comparison purposes, our code makes use of two
mean field nucleonic potentials that neglect nuclear asymmetry and one that it takes

into account. These potentials are discussed separately below.

Symmetric Mean Field Nucleon Potentials

Our simulations currently make use of the soft and stiff momentum-independent
Bertsch-Kruse-DasGupta (BKD) isoscalar potentials [90]. The soft BKD potential

is given by

7/6
— P P
U(p) = aPO +b (PO) (3.17)
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where a = —356 MeV, b = 303 MeV, and py = 0.16 fm—3 is the normal nuclear

matter density [119]. The stiff BDK potential is given by

2
ol (2 —
U(p) = ap0 +b <PO) (3.18)

where a = —124 MeV and b = 70.5 MeV. Both of these potentials are plotted in figure
3.5 over the density range 0 < p/py < 3. In figure 3.5, it is seen that both of the BKD
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Figure 3.5: The soft and stiff BKD isoscalar potentials plotted over the density range
0<p/pg<3.

potentials exhibit realistic features such as a minimum energy per nucleon at some
density p,,;n near pg, an attraction for p < py,.p,, and a repulsion for p > p,,.,. For
the soft BDK potential, it can easily be confirmed that p,,;,, = pg. For the stiff BDK
potential, the lower value p,,;,, = 0.9 pq is obtained and the repulsion for p > p,,.,

is much stronger.
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Asymmetric Mean Field Nucleon Potentials

The mean field nucleon potential of isospin asymmetric nuclear matter can generally
be expressed as a power series in the isospin asymmetry 6 = (pn — pp)/(pn + pp)
(120]. In this notation, pn and pp are the neutron and proton densities respectively.
Since we assume that the potential is symmetric with respect to proton and neutron
exchange, there are no odd-order terms in this expansion [120]. Thus us the lowest

order expansion in § is given by
U(p.8) = Up(p) + Usym(p) 62 + O(5%) (3.19)

where Up(p) = U(p,d = 0) is the mean field nucleon potential in symmetric nuclear

matter and

1

2
Usym(p) = 3 [M

P (3.20)

0=0
where Usym/(p) is the so-called symmetry energy.

Many advances have been made recently in our understanding of this symmetry
energy and its role in nuclear collisions and astrophysics {119, 120, 121, 122, 123, 124,
125]. Despite this, the symmetry energy is poorly understood in dense neutron-rich
matter [1, 122, 126, 127]. Unfortunately this is precisely the environment in which
we expect to see the mean field nucleon potential become dominant. Therefore the
best we hope for the inclusion of a potential that has a symmetry term to yield is
a “ballpark” estimate of the effects that isospin asymmetry has on core dynamics.
Further adding to our woes is the fact that some of our calculations yield sufficiently
low electron fractions in the central region of the core that the isospin asymmetry §
the becomes large enough to require additional terms to be retained in the expansion

made in equation (3.19), about which very little is known. As we shall see in chapter
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8, this issue is primarily a concern only for simulations that make use of electron

capture rates that are considered to be quite large.

Given the uncertainty in the form the symmetry energy assumes and its possible
insufficiency in capturing the potentials total dependence upon isospin asymmetry,
the particular parameterizations of Uy(p) and Usym(p) that we choose to use is
arguably immaterial. So long as Ugy(p) looks something like the BKD potentials for
symmetric nuclear matter, we are safe to use any of the parameterizations from any
discipline of nuclear physics. For convenience sake, we chose to take a result from
the study of nuclear collisions for which the following parameterizations of Ug(p) and

Usym(p) were generated [119]

o = o (2) e (£ +m ()

vam) = oa(£)" 2o (2)

where a1 = 22.10 MeV, a9 = —183.05 MeV, a3 = 144.95 MeV, a4 = 12.28 MeV,

(3.21)

a5 = 11.72 MeV, o = 2.1612, and py = 0.16 fm=3. In figure 3.6, the lowest order
expansion of U(p,d) using the above parameterizations of Uy(p) and Usym(p) is
plotted over a density range of 0 < p/pg < 3 for the cases 6 =0, 0.2, and 0.4. It is
clear from figure 3.6 that as the isospin asymmetry J increases, the density of minimum
energy per nucleon decreases appreciably. It is easily verified that the densities of
minimum energy per nucleon for the cases § = 0, 0.2, and 0.4 are approximately
P0,0.9p0, and 0.7py. Thus we expect simulations that use this EOS to achieve lower
maximum densities which can significantly impact the weak reaction rates that we

expect the bounce and explosion mechanisms to depend upon.

Again we stress that the inclusion of this potential is only to crudely probe the

isospin asymmetry dependence of the collapse dynamics by comparing the results
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Figure 3.6: The lowest order expansion of U(p,d) plotted over the density range
0 < p/pg < 3 for the cases § = 0, 0.2, and 0.4.

obtained using it to the results of calculations that used the isospin symmetric poten-
tials. It is only a step in the direction of incorporating an accurate isospin-dependent
mean field nucleon potential. To do so entirely would require major advances in the
nuclear EOS field itself as well as moving away from the T = 0 limit by using momen-
tum/temperature dependent mean field nucleon potential tables. It should be noted
however that in principle arbitrarily complex potentials can be included in our model

as we have explicit knowledge of nuclear composition everywhere in the core.

The mean field force exerted on a nucleon is taken to be minus the gradient of
the mean field nucleon potential U. The mean field force acting on the nucleons
represented by a matter test particle is taken to be the mean field force that would
act on a nucleon sitting at its centroid times the average number of nucleons a matter

test particle represents. This number is given by the mass of a matter test particle
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divided by the mass of the neutron. This prescription allows to avoid consideration
of matter test particle size and shape. Recall that in sections 3.9.1 and 3.9.2 it was
stated that the 6p and 67) distributions are known. Thus the spatial gradient of U

is most efficiently computed using the chain rule

~ oU = oU =

where the second term in the above appears only when an isospin-dependent potential

is used and V4 is readily computed using 617.

3.10.3 Electron Pressure

During a core collapse supernova, at sub-nuclear mass densities, the main force re-
sponsible for resisting gravitational collapse is generated by the electron gas pressure
[18]. Initially the electron gas can be assumed to be approximately degenerate, but
as the collapse ensues the degeneracy condition is eventually lifted as electrons are
“up-scattered” by increasingly energetic neutrinos [62]. Thus the ability to calcu-
late the electron gas pressure at finite temperatures is a critical requirement for any
simulation that follows the collapse through the explosion phase. While matter test
particles only explicitly represent nuclei and free baryons, the assumption of mat-
ter charge neutrality requires that they implicitly represent electrons as well. It is
through these implicitly represented electrons that matter test particles feel the force

exerted by the surrounding electron gas.

From elementary hydrodynamics [128] it is known that the force per unit volume

acting on an element of fluid by the fluid surrounding it is given by

Fy=-vp (3.23)



where P is the fluid pressure at the point the fluid element is centered about. If the
fluid element has a volume V and contains N particles, the average force exerted on

a particle in the fluid element is given by
- 1=
Fa'ue = '—EVP (324)

where n = N/V is the number density of particles in the fluid element. Thus knowl-
edge of the number density and the pressure distributions of the electron gas is suf-
ficient to determine the average force exerted on an electron by those surrounding
it at any point of interest. The force a given matter test particle experiences as a
result of interactions with the electron gas surrounding it is taken to be the average
force an electron at its centroid would be subject to times the number of electrons
it implicitly represents. As stated in sections 3.9.1 and 3.9.2 the density and elec-
tron fraction distributions are explicitly tracked throughout the core at all times and
thus the electron number density distribution is easily calculated. The determination
of the pressure distribution at finite temperatures is more complicated and requires

further consideration.

The exact general expression for the pressure exerted by an electron gas with num-
ber density n and temperature T is a non-analytic integral that required numerical
evaluation [113]. To accurately evaluate these integrals or any of their derivatives
dynamically would be extremely wasteful. Instead we utilize tables. To make use
of the fact that the V7T distribution is known and that Vn can easily be calculated
anywhere using other known distributions, we employ the chain rule to evaluate the
spatial gradient of the pressure.

VP(n,T) = (%)Tﬁn + <3—P) vT (3.25)
n
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By tabulating (OP/0dn)r and (0P/0T)n over a range of n’s and T"'s relevant to core
collapse supernova, we can linearly interpolate these derivatives at arbitrary n’s and
T’s and thereby ensure that VP can be calculated anywhere. A detailed discussion
of the calculation and tabulation of the electron gas pressure derivatives is presented
in sections 4.1.2 and 4.1.3. Here we note that these tabulated values are calculated

using the fully relativistic formalism.

3.10.4 Matter Test Particle Scattering

All of the matter represented by matter test particles exists in the hydro limit. There-
fore the average effects of elastic two-body collisions involving free baryons and/or
nuclei can easily be taken into account by modeling elastic two-body matter test par-
ticle scattering. This is simple to implement, so long as we know which matter test
particles are close to one another. To determine this, we divide the cubical volume
that initially inscribes the core into identical cubical scattering grid cells. This scat-
tering grid is static and usually contains approximately 200 x 200 x 200 cells with side
lengths of approximately 10 km. This large number of cells is required to restrict the
spatial separation between matter test particles selected for scattering to a physically
reasonable limit. The matter test particles are organized into these grid cells in each
time step using the techniques outlined in section 3.8.2. Low matter test particle
occupancy, is not a concern during the infall phase as the effects the scattering of
matter test particles have on the collapse dynamics will only be important in the
later stages of the collapse in grid cells containing many matter test particles.

At the beginning of each time step, in each cell of the scattering grid containing
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some number of matter test particles k¥ > 1, a modified Direct Simulation Monte
Carlo technique randomly selects k matter test particle scattering pairs from the cell
for elastic scattering. Once a matter test particle pair has been selected, we boost into
their center of mass (C-O-M) frame and randomize their C-O-M frame momenta. This

is schematically depicted in figure 3.7. All scatterings are modeled using relativistic

Elastic

cm frame

Figure 3.7: Two-body elastic scattering is modeled by randomly repositioning the
C-O-M frame momentum vectors to opposite positions on the surface of the momen-
tum sphere defined by their C-O-M frame momentum.

kinematics. A similar approach was previously used in the simulation of heavy ion
collisions [57]. For simulations that allow free baryons to be captured by nuclei,
fusion is modeled during the matter test particle scattering process. The algorithm
used to model the fusion of free baryons and nuclei is sufficiently complicated that
it is explained separately in section 3.18. Weak reactions are not modeled during

matter test particle collisions. They are modeled using different algorithms discussed
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in section 3.11.

3.11 Neutrino Test Particle Production and

Propagation

The weak processes of critical importance to the collapse and post-bounce evolution

of a core collapse supernova are [29, 59, 129, 130, 131, 132]
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where a nucleus is symbolized by its atomic mass number A and nuclear charge Z,

N represents a free proton or neutron, and v represents a neutrino or antineutrino of

any flavor. Let us now review the roles these reactions play in the generally accepted

picture of the collapse [1].

During the infall phase, the elastic scattering of neutrinos and nuclei (3.30) is
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mainly responsible for the trapping as its channel abundance dominates those of the
free baryons and its cross section are significantly larger than the neutrino capture
by nuclei cross sections [68]. Shortly after trapping, the neutrinos are thermalized by
energy downscattering, experienced mainly through collisions with electrons (3.28)
whose phase space restrictions favor this process. Reactions (3.26) and (3.27) are
also important during the infall phase and after, as they control the neutronization

of the matter and thereby significantly influence the collapse dynamics.

In the postbounce phase, when free baryon abundances have increased substan-
tially, it is neutrino-nucleon scattering (3.29) that provides the main neutrino opacity.
Lepton capture by nucelons (3.28) and (3.31) are now responsible for the dominant
creation and absorption of electron flavor neutrinos. The dominant source of of x and
7 production is nucleon-nucleon bremsstrahlung {133, 134] (3.33) and veDe annihi-
lation [135, 136, 137] (3.37). Electron-positron annihilation (3.34) is a subdominant
source for u and 7 neutrinos. Reactions (3.32), (3.35), and (3.36) have not yet been
widely implemented in numerical models so the role that they play is still not clear.
We certainly do not expect all of the nuclei to remain in their ground states through-
out the collapse and explosion, so processes (3.35) and (3.36) must occur. Similarly

if positrons are present, reaction (3.32) must occur as well.

Since our simulation is an attempt to model the dynamics of a core during a
core collapse supernova with a totally new approach, it is sensible to proceed incre-
mentally. Therefore instead of trying to implement all of the above weak reaction
simultaneously, we first incorporate those thought to be important during the infall
phase and bounce. We do this with the intent of studying the results generated by
calculations using the limited infall and bounce weak reaction network and proceeding
with the integration of the rest of the above weak reactions once it has been deter-
mined that these results are valid. This is the current status of the code. As such

only weak reactions (3.26), (3.27), (3.28), (3.29), and (3.30) are have been included
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so far. Our code does not yet model the presence of positrons, p or 7 neutrinos,
anti-neutrinos, or excited nuclei. Rates for many of the processes involving positrons,
p and T neutrinos, and anti-neutrinos exist [68], and it is clear how to include them
in our model. Additionally, our model is uniquely poised to accurately simulate the
presence of excited nuclei since it explicitly propagates an ensemble of nuclei. We

look forward to investigating this topic further.

Having established what weak reactions we currently model and our motivation
for temporarily restricting our weak reaction network, we may now proceed with the
descriptions of the specific algorithms used to model these weak reactions. Before
delving into the individual considerations of these algorithms, we make note of a
few characteristics that they all possess. All weak reaction algorithms make use of
tabulated average particle energies and some make use of tabulated average neutrino-
matter interactions cross sections as well. This was done for two main reasons. First,
it circumvents the need to repetitiously randomly sample the thermal energy distribu-
tions of nuclei, free baryons, and electrons during the simulation, that would otherwise
slow the code down. Second, it also allows us to model the phase space restrictions
of average final electron energies and average cross sections of neutrino-matter inter-
actions involving a final state electron that is both faster and more accurate than
dynamically testing each potential weak reaction that is sensitive to these restrictions
for Pauli blocking. Additionally, all weak reaction are modeled in the frame in which
LTE is assumed. The origin of this frame is defined to move with the average g of
matter at the site of the reaction. Therefore it is necessary to boost into and/or out

of this frame when modeling weak reactions of any kind.
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3.12 Neutrino Test Particle Production

Since we do not explicitly simulate the presence of electrons, we use electron capture
rate tables to model neutrino test particle production. Our input needs in this regard
exceed those of other simulations since we need electron capture rates for all nuclei
from the proton drip line to the neutrino drip line for all A < 60. As previously
mentioned, most standard hydrodynamic supernova simulations only track the abun-
dances of free baryon, possibly a particles, and an ”average heavy nucleus” [16, 115].
Since this “average heavy nucleus” is generally not a drip line nucleus and its A value
does not drop down into the low single digits, most electron capture rate tables are
confined to nuclei near the valley of 3 stability and, with the exception of free protons,
usually have an A > 20 [56]. Therefore, until more complete tables become readily
available, we are forced to extrapolate the rates from whatever table we use to the

drip lines and to low A values.

Currently the source for electron capture rates use the Fuller-Fowler-Newman
(FFN) table [56]. More recent calculations of weak reaction rates using new shell
models of the distribution of Gamow-Teller strength have resulted in an improved
and often reduced estimate of its strength compared to those the FFN calculations
yielded using extrapolations of the known experimental rates and a simple single-
state representation of this resonance [138]. Thus one could make the argument that
we should not use the FFN rates [58]. However the rates calculated more recently
using shell model that we might use instead of the FFN rates can be off by orders of
magnitude compared to the experimentally measured values in some instances [66)].
Thus given the uncertainty with the calculated rates, our need to extrapolate rates
from any table we use to many nuclei, and the additional uncertainty associated with
these extrapolated rates, no table can suit our needs perfectly. Therefore, we take the

electron capture rates from the FFN table, extrapolate them to the nuclei we need
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them at, and compare the results of calculations preformed with the tabulated FFN
rates and/or the extrapolated FFN rates altered in various ways. In this way, we
can see how the collapse and explosion mechanisms depends on the electron capture
rates. The specific ways in which we change the capture rates are explained in section
5.1. For the remainder of this discussions, it suffices to note that the electron capture
rates for free protons and all 385 nuclei included in our simulation are tabulated over
a range of densities, electron fractions, and temperatures relevant to a core collapse

supernova.

3.12.1 Testing For Neutrino Test Particle Creation

To model neutrino test particle production in a given volume, spherical shell or grid
cell, for each species of nucleus (A, Z) present in that volume, we do the following.
First we interpolate the volumetric electron capture rate per nucleus r(A, Z) of the
nucleus being considered from the closest density, electron fraction, and temperature
lattice sites at which it is tabulated. Then we calculate the number of nuclei (A,Z)

present in the volume N(A, Z). Then we compute
N(A,Z) - r(A,Z)-dt-V=m+n (3.38)

where dt is the time step size and V is the spherical shell or grid cell volume, m is
an integer, and n is a number in the set [0,1). We interpret n as the probability
that m + 1 neutrino test particles are produced as the result of electron captures by
the nucleus (A, Z) and 1 — n as the probability that m neutrino test particles are
produced. A simple Monte Carlo algorithm decides between the two possibilities. By
repeating this process for each species of nucleus present in each volume of the core,
we model the capture of electrons by all of the nuclei present in our simulation.

We note here in passing that for multi-proccesor simulations that model neutrino
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in the three-dimensional distribution grid, we model neutrino production here first
in all of the cells that contain enough matter test particles. Then when we model
neutrino test particle production in the spherical shells that contain distribution grid
cells in which this has already been modeled, we subtract the volume of these cells
from the shell volumes. This way we avoid double considerations of neutrino test

particle production in the distribution grid cells.

3.12.2 Creating a Neutrino Test Particle

To create a neutrino test particle in a volume, spherical shell or grid cell, with electron
number density n and temperature T produced when nuclei (A, Z) capture electrons,
we proceed in the following way. First we interpolate Ey(A, Z,n,T), the average LTE
frame energy of the neutrino produced when an electron is captured by the nucleus
(A, Z) from a gas with number density n and temperature T from table of such
energies discussed in section 5.2.1. This energy times the number of neutrinos that
are represented by a neutrino test particle determine the magnitude of the neutrino
test particle’s LTE frame momentum vector. This LTE frame momentum vector
is oriented randomly. Then the neutrino test particle is randomly placed in the
volume. The average ,5 of matter is interpolated at that location and the neutrino
test particle’s momentum vector is boosted into the lab frame. This weak test particle
reaction changes the local nuclear properties and temperature of matter. The way that
these changes are modeled are discussed in sections 3.14 and 3.16 respectively. Test
particle momentum is not conserved in individual neutrino test particle productions.
The total test particle momentum however can be expected to be conserved relatively
well since such a large number of neutrino test particles are produced with randomly
oriented momentum vectors. Therefore the neutrino test particle momentum vectors

will tend to add to zero.
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3.13 Neutrino Test Particle Matter Interactions

Since we explicitly model the propagation of neutrino test particles, unlike when we
model the production of neutrinos, we do not need to defer to rate tables when we
model neutrino-matter interactions. Instead we employ probabilistic algorithms that
determine if and when the neutrinos represented by a neutrino test particle interact
with matter. The general prescription for modeling the propagation of a neutrino test
particle during a given time step is as follows. A beam attenuation argument is used to
determine if the neutrino test particle is captured in the volume containing it. If it is,
we model the capture of the neutrinos it represents. If it is not captured, we proceed
with its propagation. To determine if the neutrino test particle elastically scatters
with matter in the volume containing it, a beam attenuation argument is again used.
If it does, we model the elastic scattering of the neutrinos the test particle represents.
We test for neutrino-matter interactions between the neutrinos represented by the
neutrino test particle during the given time step by repeating this process for every
volume the neutrino passes through during the given time step. In the sections below,
we individually describe how the aforementioned processes are modeled. However
before immediately proceeding into the discussion of the algorithmic implementation
of these processes, a brief discussion about the impact that neutrino oscillations have

on the flow of neutrinos in the core is warranted.

3.13.1 Neutrino Oscillations in the Core

The effect of coherent forward scattering must be taken into account when considering
the oscillations of neutrinos traveling through matter [139]. In particular one must
consider the interaction energy arising from W-exchange-induced electron neutrino
forward scattering from ambient electrons when calculating transition probabilities

[140]. If the mixing of electron neutrinos and tauon neutrinos is neglected, the prob-
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ability of an electron neutrino with wavenumber k that has propagated a distance L
through matter with electron number density ne oscillating into the muon neutrino

state is given by [139]

o 2 lm(k,’ne) 2 . 2 wL
Pl_,?(k,L,’ne)—Sln (2912) (W) sin (m) (339)

where 1 = ve, 2 = vy, 619 is <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>