
..

7
2
:
.

v

3
.
9
.
.
.
.

_
..

A
.
.
.

4
.
.
.
c
}
-

a
t
)

.
.
1
“

3
.
.
.
.

.
._

.
1
.
.
.
.
2

e
i

l

-
_
l
.
’
l
i
‘
i
.
'
,
‘
.
V

é
m
b
v
r

3
“

i
i
.
.
.

h
.

,

g
a
r
m
m
m
r

x
.

r
a
n
k
m
r
t

‘
1

..
.
i
d
.

1
.
9
.
"
.

.

‘
3
.
x

9
.
5
.
.

.
:
u

u
.
)
a
:

I
.

\
5

 
4

~

.
1

.
-

a

V
l
.
!
.

\
v

.
q
u
1

s
.

.

 



“TE

0 LIBRARY

N Michigan State

University

 

 
  

This is to certify that the

dissertation entitled

A KINETIC THEORY BASED NUMERICAL STUDY OF

CORE COLLAPSE SUPERNOVA DYNAMICS

presented by

TERRANCE T. STROTHER

has been accepted towards fulfillment

of the requirements for the

  

 

Ph.D. degree in Physics

Lfifim 3L0
Wfichrofessor’5 Signature

December 11, 2009
 

Date

MSU is an Affirmative Action/Equal Opportunity Employer

-
u
-
o
-
-
-
-
-
-
-
-
-
-
u
-

 

 



 

PLACE IN RETURN Box to remove this checkout from your record.

TO AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

 

DATE DUE DATE DUE DATE DUE

 

 

 

 

 

 

 

 

 

      
5108 K1IPrCIjIAoc8ProsICIRCIDateDue.hdd

 



A KINETIC THEORY BASED NUMERICAL STUDY OF CORE COLLAPSE

SUPERNOVA DYNAMICS

By

Terrance T. Strother

.A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Physics

2009



ABSTRACT

A KINETIC THEORY BASED NUMERICAL STUDY OF CORE

COLLAPSE SUPERNOVA DYNAMICS

By

Terrance T. Strother

The explosion mechanism of core collapse supernovae remains an unsolved problem

in astrophysics after many decades of theoretical and numerical study. The complex

nature of this problem forces its consideration to rely heavily upon numerical simula-

tions. Current state-of-the—art core collapse supernova simulations typically make use

of hydrodynamic codes for the modeling of baryon dynamics coupled to a Boltzmann

transport simulation for the neutrinos and other leptons. The results generated by

such numerical simulations have given rise to the widely accepted notion that neu-

trino heating and convection are crucial for the explosion mechanism. However the

precise roles that some factors such as neutrinos production and propagation, rota-

tion, three-dimensional effects, the equation of state for asymmetric nuclear matter,

general relativity, instabilities, magnetic fields, as well as others play in the explo-

sion mechanism remain to be fully determined. In this work, we review some of the

current methods used to simulate core collapse supernovae and the various scenarios

that have been developed by numerical studies are discussed.

Unlike most of the numerical simulations of core collapse supernovae, we employ

a kinetic theory based approach that allows us to explicitly model the propagation

of neutrinos and a full ensemble of nuclei. Both of these are significant advantages.

The ability to explicitly model the propagation of neutrinos puts their treatment on

equal footing with the modeling of baryon dynamics. No simplifying assumptions

about the nature of neutrino-matter interactions need to be made and consequently

our code is capable of producing output about the flow of neutrinos that most other

simulations are inherently incapable of. Furthermore, neutrino flavor oscillations are



readily incorporated with our approach. The ability to model the propagation of a

full ensemble of nuclei is superior to the standard tracking of free baryons, a particles.

and a “representative heavy nucleus”. Modeling the weak reactions that free baryons

and hundreds of species of nuclei undergo results in a more realistic evolution of the

nuclear composition. The explicit knowledge of nuclear composition at all times not

only allows us to study its evolution in greater detail than it has before, but it also

puts us in the unique position to directly model certain nuclear decay modes and

the effects that nuclear structure have on non-weak nuclear reaction that occur in

supernovae quite straightforwardly.

A systematic study of the influence that electron capture rates and the nuclear

equations of state have on the collapse and explosion phase is conducted. The algo-

rithmic implementations and motivations for using the various values and expressions

for the electron capture rates and nuclear equations of state are explained and the

new forms of output that our code is singularly capable of producing are discussed.

Dynamics that may prove to be an entirely new neutrino capture driven explosion

mechanism were observed in all of our simulations.
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Chapter 1

Introduction

Supernova explosions are believed to be one of the main sources for heavy element

production (A > 56) in the universe. The origins of the heavy elements and the role

that supernova explosions play in their creation remains an area of intense research

[1-14]. Studies of supernovae are conducted in two complementary ways, through

construction and operation of rare isotope accelerators such as the Facility for Rare

Isotope Beams (FRIB), and through astronomical observation of supernova explosions

and their numerical modeling. It is the latter subject to which this thesis attempts

to contribute.

In chapter 2, a brief review of the generally accepted picture of core collapse super-

novae is presented. Due to the complex nature of the supernova problem, numerical

simulations play a critical role in understanding the specific mechanisms that drive

the core collapse and subsequent supernova explosion. We therefore include a sue-

cinct overview of recent numerical supernova simulations in this chapter as well. we

pay particular attention to those that influenced our work. This is not intended to

be a complete overview of recent numerical supernova simulations, rather its purpose

is to highlight the different approaches that groups have taken.

In chapter 3, we introduce the approach that we used to model core collapse

1



supernovae. Here the algorithmic implementations, numerical techniques used, and

approximations and assumptions made are all explained in detail. We also discuss

the code’s capabilities and limitations on a single processor as well as what it can do

when ported to a massively parallel computer cluster.

In chapter 4, we rigorously derive the expressions from statistical mechanics used

to characterize the electron gas and describe the numerical evaluation and tabulation

of said quantities. All derivations make use of the fully relativistic formalism.

In chapter 5, we explain how all of the weak processes currently included in our

simulation are modeled, present the formulae used for the associated weak reaction

cross sections, and describe the tabulation of all of the quantities needed by the

simulation to model the net effects that weak reactions have on neutrino test particle

dynamics and the temperature distribution. All particle scatterings are modeled using

semi-classical relativistic mechanics.

In chapter 7, we describe the ways in which the code has been tested for potential

numerical problems. Both the dynamic data management tests as well as the external

tests of the numerical implementation of the physical models in our code are explained

and their results are discussed.

In chapter 8, we discuss the results generated by several simulations with some

parameters systematically varied in such a way that we can draw conclusions about

the dependencies the collapse and explosion have upon them. These parameters are

discussed at length in both in this chapter and chapter 3. The neutrino capture

induced explosion mechanism observed in all calculations is discussed in detail and

differences between the results are explored as well.

In chapter 9, our work is summarized. The phenomenon seen in all calculations

that may prove to be the first glimpse at a new explosion mechanism presented in

chapter 8 is reflected upon and the validity of these calculations is discussed. The

short term and long term plans for our code are given as well.

2



In this thesis, we will make use of standard symbols in the body of the text and

the equations displayed, such as c for the speed of light, ME) for the solar mass, G

for Newton’s gravitational constant, It for Plank‘s constant, it for or Plank’s constant

divided by 27r, k for the Boltzmann constant, and A for the atomic mass number of a

nucleus. Other abbreviations and symbols used are explained as they are introduced.

The primary source code used to generate the results presented in this thesis is

written in C as are all of the supporting codes that create the input files it needs to

run and process its output. Due to the primary source code’s length, approximately

25,000 lines, it is not included as part of this thesis. Instead electronic copies are

available at http: //www.pa.msu.edu/~bauer/code/SuperNova/ .



Chapter 2

Review of Core Collapse

Supernovae

In this section, we divide our brief reviews of the physics of core collapse supernovae

and the recent efforts to numerically model them in the following way: First we present

a short summary of the evolution of a core collapse supernova candidate star. Then

we give a synopsis of the accepted picture of the core collapse and bounce followed by

discussions of the proposed driving mechanisms for the subsequent explosion. Finally

we discuss the different approaches that selected groups have taken, in the last ~ 15

years, taken to simulate core collapse supernovae numerically. Again we stress that

the reviews presented here are not complete. It is far beyond the scope of this work

to exhaustively discuss all of the relevant physical processes here as well as the efforts

made to numerically model them. For in—depth analyses on any of these topics, the

reader is referred to the associated citations. In addition, there are other groups that

are not mentioned here for brevity’s sake. These groups are undoubtedly making

meaningful contributions to the field. The works discussed here were chosen due in

part to relevance to our own wok and also because we feel that they represent a broad

sampling of the different techniques used to simulate core collapse supernovae.

4



2.1 Review of Pre-Supernova Evolution

Stars spend most of their lifetimes in hydrostatic equilibrium. During this time, nu-

clear fusion reactions synthesize heavier elements from lighter elements. Each time

a fusion reaction occurs, the mass of the fusion product is less than that of the fuel.

The mass-defect is changed into thermal energy that counteracts the gravitational

force and allows for a hydrostatic equilibrium in the star. When the nuclear burning

fuel at the center is exhausted, the thermal pressure decreases and the star expe-

riences gravitational contraction. Due to this gravitational compression the central

temperature rises until the temperature becomes sufficiently high to ignite the next

nuclear burning phase. This sequence of nuclear burning to central fuel exhaustion,

contraction, and ignition of a next burning phase repeats itself a number of times that

depends on the initial mass of the star. If the star’s initial mass was great enough, this

cycle occurs until the fusion of the nuclear fuel in the core is no longer energetically

advantageous. At the end of a star’s hydrostatic life, it is left with an onion-skin-like

stratification where each layer consists of the ashes of the previous burning phases.

As an example, let us consider the pre—supernova evolution of a newly born star

that is comprised almost entirely of hydrogen and a has a mass large enough to fuse

all of the nuclei present in the core until fusion becomes endothermic. In this case, the

star first burns through its 1H fuel by fusing it into 4He via one of the three branches

of the proton-proton (p-p) chain once the core temperatures exceed ~ 4 x 106 K [15].

If there are any trace amounts of carbon, nitrogen, and oxygen (CNO) nuclei initially

present, it is also possible fuse 1H into 4He, or an a particle, via one of the branches

of the CNO bi-cycle at core temperatures greater than 1.5 x 107 K [15]. The threshold

temperature for this reaction is higher because the Coulomb repulsion is greater and

consequently requires higher thermal energies to penetrate.

Once the core has consumed all of its 1H fuel, the star contracts and the core heats
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up until its temperatures reach 108 K when it can burn its 4He by fusing into 12C

via the triple-a process [15]. Once the 4He abundance becomes sufficiently low, the

otherwise much less likely reaction 4He-I-12C—>160 also occurs [15]. For 4He burning.

the higher temperatures are not only needed to overcome the Coulomb repulsion

between the particles involved, but also to ensure that the rate at which a particles

fuse together is large enough to offset the very short lifetime of the intermediate

4He+4He—>8Be nucleus.

After the core has burned through all of its 4He supply, the star contracts again

until the core reaches a temperature of 5 x 108 K when carbon burning, the fusion

of 12C nuclei, can occur [15]. Oxygen burning, having a higher Coulomb barrier

to contend with, only occurs at temperatures above 109 K [15]. The fusion of 12C

and 160 nuclei is negligible since the intermediate temperature at which the 12C-

160 Coulomb barrier becomes penetrable, the 12C nuclei supply is quickly consumed

through carbon burning [15]. Carbon and oxygen burning can yield a variety of final

state heavy nuclei. For carbon burning, the possible final state heavy nuclei are 24Mg,

23Mg, 23Na, 20Ne, and 160 [15]. For oxygen burning, the possible final state heavy

nuclei are 328, 318, 31F, 28Si, and 24Mg [15]. These reactions also produce free

neutrons, protons, and (1 particles. These are all immediately captured by the heavy

nuclei present since there is no Coulomb repulsion between neutrons and the heavy

nuclei, and the temperature is sufficiently high at this point to render the Coulomb

barrier between the protons and (1 particles and the heavy nuclei easily penetrable.

Thus, in addition to the primary heavy nuclei created by carbon and oxygen burning,

secondary reactions can generate a variety of isotopes with non-negligible abundances

[15].

Following the consumption of the core’s 12C and 160 supply, the star’s contrac-

tion resumes until core temperatures become high enough to burn the nuclei created

by carbon and oxygen burning. Since 288i plays a dominant role in the reactions
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that generate the nuclei present after this phase of hydrostatic nuclear burning is

complete, this phase is referred to as silicon burning. The silicon burning phase is

more complicated. Another process that disintegrates heavy nuclei becomes impor-

tant. At temperatures above the oxygen burning threshold, but well below those

required to allow the very large mutual Coulomb barrier between these heavier nuclei

to have a non-negligible penetration probabilities, photodisintegration begins to occur

[15]. Through this process, free baryons and light nuclei are emitted when energetic

photons produced by fusion reactions disintegrate heavy nuclei. These free baryons

and light nuclei are then immediately recaptured by the heavier nuclei present. These

complementary processes tend to equilibrium, however the resultant state of nuclear

statistical equilibrium (NSE) is not perfect. There is a leakage towards the stable

iron group nuclei Fe, Co, and Ni generated largely by fusion reactions involving Si

nuclei at temperatures above ~ 3 x 109 K [15]. These nuclei are resistant to photo-

disintegration up to temperatures of approximately 7 x 109 K because they have the

highest binding energy per nucleon. These nuclei are also the end of the exothermic

fusion process. Therefore after the silicon burning phase, fusion no longer offers any

resistance to gravitational collapse.

The contraction of the star recommences. Now the core relies upon the pressure

exerted by the electrons present in it to resist the inward crush of gravity. As the cores

contraction ensues, the electron gas becomes increasingly degenerate. If the cores

mass is not too large, the degenerate electron gas pressure can halt the gravitational

contraction. The condition that must be satisfied for this to happen is

where Moore is the mass of the core, 77 is its electron fraction, and MC’h is the so-

called Chandrasekhar mass [15]. The Chandrasekhar mass limit is the maximum mass
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of a self-gravitating sphere which can be supported by the pressure of a degenerate

electron gas. Small finite temperature corrections can be added to the right hand

side of condition (2.1) [16], but they are omitted here.

2.2 Review of Core Collapse and Bounce

If the star being considered had an initial mass that was sufficiently large, at least ~ 8

to 11 MO [17], condition (2.1) can only be satisfied temporarily. Electron captures

by heavy nuclei lower the electron fraction 7), and thereby the Chandrasekhar mass,

and the core’s mass increases with time. The core’s mass increase is a result of

the previously mentioned onion-skin-like stratification the star develops as it burns

through its nuclear fuel supply. Each layer in which nuclear burning is still occurring

loses mass in the process as the nuclear ash it creates becomes part of the mass of

the layer below it. This is schematically depicted in figure 2.1 for the innermost two

layers. In particular, figure 2.1 shows how the core’s mass increases as the silicon

O burning —>

Si burning —>

 

 

Figure 2.1: Schematic depiction of the core mass increasing as the layers of nuclear

burning above it continue to produce nuclear ash.

burning layer surrounding it continues to produce the iron group nuclei that it is

made of. Once condition (2.1) is no longer satisfied, the core begins to collapse. Two

other major instabilities then develop.

First the rate at which electrons are captured by heavy nuclei increases as the
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core collapses and densities increase. The core is therefore deprived of its primary

pressure source at an accelerating pace and consequently the collapse accelerates

[15]. Secondly, since the electron gas is highly degenerate, it is largely insensitive to

changes in the core’s temperature. Thus only drastic increases in temperature can

significantly increase the electron gas pressure. Two factors prevent such increases

in the core temperature. One is that electron captures are a thermal energy sink in

the early stages of the collapse since the neutrinos created stream freely out of the

core and carry away energy [17]. Second, at temperatures well below those that can

significantly increase the electron gas pressure, photodisintegrations take place at a

rapid rate [15]. While the temperatures are sufficiently high that nuclear interactions

mediated by the strong and electromagnetic interaction are in equilibrium, those

mediated by weak interactions are not [16]. This allows some photodisintegrations to

result in irreversible losses of a large amounts of thermal energy and accelerate the

rate at which electrons are captured [15]. In particular the reactions

56Fe + 7 —> 13 4He + 4 n (2.2)

4He+’7 —> 2p+2n (2.3)

which take ~ 100 MeV and ~ 24 MeV of thermal energy to induce respectively can

occur with a high frequency [15]. Some of the free protons produced by this reactions

quickly capture electrons preventing the inverse fusion process from happening. Since

the electron capture rate of free protons is larger than those of the nuclei present in

the core at this stage [16], this source of free protons further accelerates the rate of

electron capture and hence the collapse continues to accelerate as well. Thus it is

the thermal energy lost through the electron capture induced NSE leakage described

above and the rapidly increasing rate at which electron captures pull thermal energy

out of the core that keep the temperature from drastically increasing and substantially



raising the pressure exerted by the electron gas.

With the electron gas rendered incapable of halting the collapse, it becomes nearly

a free fall. At this point, the dynamics of the collapsing core naturally divide the

core into two regions: an inner core and an outer core. The inner core collapses

homologically and infall velocities are subsonic [16]. It’s outer boundary is the point

at which infall velocities begin to exceed the local sound velocity [16]. Much of the

outer core moves at supersonic velocities [16, 18]. Sound signals can only propagate

inside the inner core.

It is generally believed that the collapse continues until the nuclear matter is

sufficiently dense that the neutrons become degenerate and generate a pressure strong

enough to stop the collapse and repel the infalling matter [15]. This moment is

referred to as bounce. Since the core is not pure neutronium, the density at which

bounce occurs is super-nuclear. This super-nuclear density is found by most numerical

simulations to be approximately three times normal nuclear matter density [16, 17].

During the collapse a large amount of gravitational energy is released. This energy

AEgmv can be approximated for a core with mass MC = 1.5 MG) if we assume that

the radius of the core at bounce is Rb z 20 km [15] and that its initial radius at the

beginning of the collapse R,- >> Rb. In this case

2
2 1 1 GMC 46

AE mu m —GMC (— — —) z —— z 3 x 10 J (2.4)

9 Hi Rb Rb

Coupling as little as ~ 1% of this energy to the rest of the infalling star would supply

more than enough energy to eject the outer layers of the star and explain the observed

supernova explosion energies of ~ 1 Foe = 1044 J [15, 16, 17]. We turn our attention

now to the theories that attempt to explain this phenomenon.
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2.2.1 Proposed Explosion Mechanisms

All of the proposed explosion mechanisms discussed in this section share the generally

accepted picture of how the core dynamics unfold immediately following bounce.

After the stiffened nuclear matter pressure repels the infall, a mild pressure wave

propagates through the inner core [16]. As this pressure wave propagates through the

sonic boundary that divides the inner and outer cores, it turns into a shock. After

this, the various proposals diverge and we now consider them individually.

2.2.2 The Prompt Shock Mechanism

A tempting driving mechanism for supernova explosions is the so—called prompt shock

mechanism. In this scenario, the shock simply blasts its way through the outer core

and outer layers of the star and results in an explosion. Analytical arguments and

numerical calculations initially suggested that the energy the shock has when it is

formed is sufficiently large to accomplish this [19].

After extensive examination, this picture was deemed to be overly simplistic [21,

22, 23, 24, 25]. The shock loses a tremendous amount of energy as it propagates

through the outer core. The temperatures and densities in the shock are high enough

to significantly enhance the electron capture rates that occur in it and result in major

losses in thermal energy. Additionally, photodisintegrations result in the loss of a large

amount of thermal energy and supply a source of free protons in the way described

in section 2.2. These free protons very rapidly capture electrons and result in further

thermal energy losses. A successful prompt shock explosion requires the shock to

propagate all the way through the outer core where the density profile drops off

steeply and the hot silicon burning layer can resupply the shock with thermal energy

[16, 17, 18]. Unfortunately calculations have found that this only occurs in the very

lightest of stars that can end their lives with supernova explosions [16, 17]. The
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outer cores of more massive stars are too large for shocks to propagate to their outer

boundaries. At some point inside the outer core that is too large, the shock turns

into an accretion shock in which additional infalling material accretes to the existing

core and the outward motion has stopped. Thus the explosion fails. Therefore, if this

picture is correct, it explains only a small fraction the observed supernova explosions

and therefore cannot serve as a complete theory. Another driving mechanism for

supernova explosions must exist.

2.2.3 The Neutrino Revival Mechanism

Numerical studies conducted by Wilson et al. led to the discovery of the possibility

that neutrino absorption by nucleons can revive a stalled shock [26, 27]. This model,

in which a prompt shock is initiated, then stagnates, and is later revived by neutrinos

is called the delayed shock model. A detailed description of how this process occurs

is beyond the scope of this brief review and for this purpose we refer the reader to

a useful summary given by Janka [19]. For our purposes here, it suffices to note

that a non-negligible fraction of the neutrinos produced by electron capture and

electron-positron pair annihilations in regions of the core with higher densities and

temperatures can transport energy to the shock and that some of this energy is

translated into kinetic energy of matter [16, 17]. Ultimately the shock resumes its

outward path and results in a supernova explosion. This is still widely believed to

be a correct model of a core collapse supernova [16, 17, 19, 20]. However this theory

is not free of problems. Not only is this mechanism critically dependent upon the

values used for neutrino capture cross sections and production rates as well as other

quantities not known with great certainty, but the modeling of neutrino transport

between the very short and infinitely long mean free path limits is quite problematic

as well [17]. As a result of this, simulations have yielded mixed results for the delayed

shock mechanism [16, 17, 28, 29, 30, 31, 32]. These results have been analyzed in
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great detail [20]. Since we expect the supernova explosion driving mechanism to be

quite robust, a more satisfactory explanation is still sought.

2.2.4 The Convection Revival Mechanism

Convection is yet another way by which thermal energy can by supplied to a stalled

shock to revive it. This mechanism is fundamentally different from the delayed shock

mechanism since it heats the shock by mixing it with hot matter from deeper within

the core rather than by direct neutrino capture. As in the previous section, we wish to

avoid a lengthy rigorous discussion of the hydrodynamics of convection in supernovae

and instead we simply note that in the wake of the shock, much of the matter is unsta-

ble to convection [17]. In particular it is the region between the neutrino sphere, the

hot dense part of the core in which neutrinos are in thermal equilibrium with matter,

and the stalled shock where rapid convection quickly develops. Matter just above

the neutrino sphere is heated by neutrino capture quite efficiently. It is then moved

up the convection cell where it mixes with the cooler material in the stalled shock

and warms it. Its place just above the neutrino sphere is taken by cooler matter that

has sunk there from the cooler regions above and is receptive to heating by neutrino

capture and the cycle repeats itself. In this way, more of the gravitational energy

that has been converted to other forms and stored in the core as thermal excitations,

electron and neutrino chemical potentials, etc. is made available to the explosion.

Additionally, convection inside what will end up being the neutron star can further

aid the explosion by intensifying neutrino luminosities. Numerical simulations that

model convection, which is most naturally done in at least two spatial dimensions,

seem to suggest that conveCtion plays a vital role in generating supernova explosions

[20, 33, 34, 35, 36]. With this notion in mind, we note that the two-dimensional sim-

ulations by Herant et al. that modeled convection yielded successful explosions while

their one-dimensional simulations that did not model convection failed to explode
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[35, 36], even though these simulations made use of the same microphysics.

2.2.5 The Acoustic Vibration Mechanism

A very interesting supernova explosion driving mechanism that relies upon acoustic

power generated in the inner core as the driver was recently proposed by Burrows et

al. [37, 38]. Two-dimensional axisymmetric simulations over the full 180° of rotating

and non-rotating progenitors of various masses found that the acoustic power gener-

ated early on in the inner turbulent region stirred by the accretion plumes and most

importantly the subsequent excitation and sonic damping of core g-mode oscillations

to be the driving mechanism of supernova explosions [37]. The spherically asymetric

sound pulses radiated from the core steepen into shock waves that are found to merge

as they propagate into the outer mantle and deposit their energy and momentum

with high efficiency [37]. One of the most appealing features of this model is that the

acoustic power that drives the explosion does not diminish until accretion on to the

core subsides. Therefore this power source is available as long as it may be needed to

generate an explosion. All Newtonian simulations conducted by Burrows et al. have

yielded successful explosions that, when top-bottom asymmetric, are self-collimating

[38]. This model is quite encouraging. However this theory requires further investi-

gation as other simulations capable of detecting core oscillations have failed to do so

while they have yielded successful explosions driven by more traditional mechanisms

since the acoustic driving mechanism was suggested [33]. We note that these results

may not be mutually exclusive. It is possible that the acoustic driving mechanism is

a fallback mechanism of sorts employed when the shock is not revived [38].
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2.3 Recent Numerical Studies

Our review of the different techniques recently used to numerically model core collapse

supernovae is presented in the following way. First the equation of state (E08) and

weak interaction rate input needs of numerical calculations are discussed. Then the

approaches used by selected groups are divided by the number of spatial dimensions

they attempt to model and are briefly described.

2.3.1 Equation of State

All simulations of supernovae require some sort of EOS that can characterize the ther-

modynamic properties of matter in local thermodynamic equilibrium (LTE). Typical

input needed by an EOS are the local temperature, mass density, and electron frac-

tion. All other statistical mechanical quantities of interest, such as pressure or internal

energy density, are calculated using the EOS. Intensive efforts are have been made to

determine a realistic EOS for hot dense matter, in particular the nuclear contribution

[39, 40, 41, 42, 43, 44]. The results of these efforts cannot generally be expressed in a

simple analytic form. Instead these results must be tabulated, or a code numerically

calculates them as needed. We note that some groups run semi-analytic codes that

do use a simple formula for the E08 [19, 45, 46, 47, 48]. These formulae are not

rigorously derived. They are designed to mimic the key features that a realistic EOS

is expected to possess. Since this is not the direction we ultimately want to take our

code in, none of the works discussed here make use of such simple approaches, and we

discuss them no further. In this section we focus on the efforts made to numerically

determine the electron-positron and nuclear gas EOS.

A very popular EOS is the Lattimer and Swesty EOS. It has been used by many

simulations recently [34, 36, 49, 28, 50, 51, 52, 53]. A formal discussion about the

assumptions and techniques that Lattimer and Swesty used when deriving their gen-
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eralized EOS for hot dense matter can be found in their 1991 publication [39]. We

note here that Lattimer and Swesty worked out their EOS in the compressible liquid

drop model based on the non-relativistic Skyrme Hartree-Fock framework. It models

the presence of the electron-positron and nuclear gases and is applicable only in re-

gions where NSE can be assumed. Therefore it is ideal for the progenitor core, but

must be replaced by something else in lower density regions.

Where the density is low enough, the nuclear contribution to the EOS is negligible

and an EOS that models the presence of the electron—position gas is sufficient. There

are several equations of state (EsOS) that do this, and their computational speeds

and accuracies have been compared [54]. The Helmholtz EOS, developed by Timmes

and Swesty, executes the fastest, displays perfect thermodynamic consistency, and

has a maximum fractional error of 10’6 when compared to Timmes’ very slow exact

calculation. It is typically regarded as the EOS of choice when the nuclear contribu-

tion to the EOS can be neglected. A methodical discussion about the assumptions

and techniques that Timmes and Swesty used when deriving their electron-postiron

EOS can be found in [54]. Here we state that it is a sophisticated EOS that, in

addition to modeling the presence of a non-interacting electron-positron gas, models

other phenomena such as the interaction between electrons and ionized nuclei and

the pressure exerted by radiation. Furthermore, it is applicable over the enormous

density and temperature ranges 10"9 kg/m3 to 1018 kg/m3 and 103 K to 1013 K

respectively.

The fact that the nuclear contribution to the EOS does not transition from dom-

inant to irrelevant instantaneously means that there can be discontinuities in EOS

knowledge in the transition between regions where the Lattimer Swesty EOS is ap-

plicable and where the Helmholtz EOS is sufficient [40]. Some groups attempt to

circumvent this difficulty with a patchwork approach in which multiple EsOS are

used to span the gap between these two limits [34]. Other groups opt to use one E08
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that can be used in all regions of the star [37].

One such EOS has been developed by Shen et al [40]. Shen et al. constructed

their EOS of nuclear matter using the relativistic mean field theory for a wide range

of densities, temperatures, and electron fractions. They treat the lepton gases as

uniform and non-interacting. Their EOS is calculated specifically for use in supernova

simulations and neutron star calculations. A rigorous description of their derivation

of this EOS is beyond the scope of this discussion. A very concise description of

their approach can be given in the following way: First they use relativistic mean

field theory to construct the EOS of homogeneous nuclear matter. Then they use the

Thomas-Fermi approximation to describe inhomogeneous matter, where heavy nuclei

and free nucleons coexist. This EOS is preferred by some [37] over the Lattimer Swesty

EOS since it is relativistic, more realistically models the presence of 0: particles, and

again is continuously applicable everywhere it is needed.

2.3.2 Weak Interaction Rates

All supernova simulations make use of some weak reaction rates. Since these rates

govern the deleptonization and leptonization rates of matter, they singificantly im-

pact the dynamics of core collapse supernovae. Consequently a tremendous amount of

resources have been invested into calculating them theoretically [55, 56, 57, 58, 59, 60,

61, 62, 63, 64, 65]. The theoretical calculation of these rates can be quite involved; so

here we simply mention that older calculations used the independent particle model

and more recent calculations are made using shell model. These rates are tabulated

over a range of temperatures, mass densities, and electron fractions relevant to super-

novae for the purpose of interpolation. A slightly more in-depth consideration of the

differences between the older and more modern rate calculations is given in section

3.12. We also note that efforts are currently underway to experimentally measure

and tabulate electron capture rates relevant to a variety of astrophysical environ-
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ments as well. Some of these efforts are being made at the National Superconducting

Laboratory at Michigan State University (NSCL) [66]. Once FRIB is online, these

efforts can be expanded closer to the proton and neutron drip lines. Ultimately an

extensive tabulation of experimentally measured astrophysical rates will not only aid

in our theoretical understanding of how nuclear structure effects these rates, but will

be directly available to those that need them for numerical calculations.

2.3.3 One-Dimensional Simulations

One-dimensional simulations that assume spherical symmetry are still useful. Even

though most one-dimensional Simulations fail to produce explosions, much of the un-

derlying microphysical processes that govern the dynamics of core collapse supernovae

can only be modeled in great detail by using them. That is why some groups use data

generated by one-dimensional simulations and map it onto their multidimensional

simulations [17, 36]. Additionally, they can still be used to accurately model cer-

tain isolated portions of the collapse and subsequent explosion [9]. One-dimensional

simulations are also useful because their results can be compared to those produced

by multidimensional simulations so that the importance of multidimensional effects

can be studied [36]. The fact that realistic one-dimensional simulations tend to fail

to explode suggests that multidimensional effects are of critical importance to the

explosion mechanism.

Liebendfirfer, Mezzacappa et a1. [28, 52]

Liebendc’irfer, Mezzacappa et al. recently revisited one-dimensional studies of type

11 core collapse supernovae [28, 52]. There goal was to employ an advanced tech-

nique to model the transport of neutrinos called multi-group flux-limited diffusion

in their one-dimensional simulations in order to determine if previous failures with
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one-dimensional simulations were the result of approximations made in this area. The

multi-group flux-limited diffusion method is a sophisticated algorithm that realisti-

cally models the transport of neutrinos of different flavors and energies [67]. More

accurate knowledge of neutrino flavor and energy distributions is essential for accu-

rately modeling neutrino-matter interactions, as all of these cross sections depend

strongly on neutrino energy and many on neutrino flavor as well [68]. Liebendorfer

and Mezzacappa’s simulations followed the collapse of a 13 MO star using both New-

tonian [52] and general relativistic [28] gravity. They made no attempt to artificially

model the effect of convection. Their simulations made use of the aforementioned

Lattimer Swesty EOS and an adaptive grid. Their adaptive grid uses cells of vari-

able volumes that can contract to resolve rapidly changing distributions and enlarge

in region where distributions change slowly to save computation time and memory.

None of their one-dimensional simulations resulted in an explosion. The fact that

the inclusion of the multi-group flux-limited method did not result in successful ex-

plosions lends further credence to the notion that multi—dimensional effects are key

ingredients to the supernova explosion.

Herant et al. [36]

Another recent study of type 11 core collapse supernovae in one dimension was

conducted by Herant et a1 [52]. They modeled the collapse of a 15 MO progenitor

calculated by Woosley and Weaver [18] using a second order Runge-Kutta hydrody-

namic grid based code with adaptive cell size. Their model uses Newtonian gravity,

makes no attempt to artificially model the effects of convection, and uses a very sim-

ple treatment of neutrino transport. By labeling each grid cell optically “thick” or

“thin” based on the density they contain, neutrino transport is modeled in one of two

ways in them.
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In optically “thick” cells, neutrino transport is approximated by diffusion. Dif-

fusion is modeled using the so-called flux-limited method which assumes that the

neutrino number density n in a cell satisfies

dn c .. .. -.

——-=min —Vn,V-DVn) 2.5.. (.I I < >

where D is a diffusion coefficient. This coefficient can place limitations on neutrino

diffusion into cells with high neutrino number densities where neutrino degeneracy

is non—negligible. Equation (2.5) clearly places an upper limit in the neutrino flux,

hence the name flux-limited.

In optically “thin” cells, the widely used central lightbulb approximation [69, 70,

71, 72] is employed. This approximation assumes that matter is bathed in a neutrino

flux originating from the center of the star. The magnitude of the flux is essentially

determined by the neutrino production rates in optically “thin” regions and the rate

at which neutrinos can diffuse from optically “thick” regions to optically “thin” ones.

The neutrino production rates used where calculated by Takahashi et al [55]. The

one-dimensional calculations made by Herant et al. fail to yield explosions.

2.3.4 Two-Dimensional Simulations

As previously stated, it is widely believed that convection plays an essential role in

the revival of stalled shocks. To model convection naturally, at least two dimensions

are required. This is the obvious appeal that two-dimensional simulations have over

their one-dimentional counterparts. Presumably it is not merely a matter of pure

coincidence that two-dimensional simulations tend to be more successful at yielding

explosions than one-dimensional simulations.
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Herant et al. [36]

The initial conditions and algorithms used to model the gravitational force and

microphysics for the two-dimensional calculations performed by Herant et al. are

identical to their one-dimensional simulations discussed above. The only difference

between the two models is the numerical technique and the number of dimensions

used. The numerical technique they employ is called smooth particle hydrodynam-

ics. This technique is used to model a variety of two-dimensional simulations of

astrophysical environments and its defining feature is that it represents continuous

mediums with a finite number of discrete particles [35, 36, 73, 74, 75]. While spherical

symmetry is assumed for gravitation, cylindrical symmetry is assumed for all other

purposes. This means that at most only half of the two-dimensional space needs to

be considered. Most of their simulations do not even do that much and only use an

opening angle of 90°. Preliminary comparisons of simulations they ran with various

opening angles from 90° up to 180° showed little difference.

The primary conclusion of Herant et al. is that convection above the neutrino

sphere provides supernovae a robust and self-regulating explosion mechanism that is

effective under a wide range of physical parameters. They compare the star after its

shock has stalled to a powerful convective thermodynamic engine. The region above

the neutrino sphere serves as the engine’s hot reservoir and the star’s envelope serves

as its cold reservoir. Due to the large temperature difference between these reservoirs,

the efficiency of this thermodynamic engine is high and leads to a self regulating ex-

plosion mechanism. Once the envelope is heated enough to explode, the cold reservoir

is gone and the engine stops. This may be why most measured supernova energies

seem to fall in the 1 to 2 Fee range [15, 17]. They do concede however that convection

is truly a three-dimensional phenomenon and that the inclusion of rotation into their

model may alter their findings.
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Fryer and Heger [36]

Fryer and Heger have also recently modeled type II core collapse supernova in two

dimensions [36]. Their model is very similar to the two-dimensional model of Herant

et al. discussed above. The only significant differences are that they use spherically

symmetric general relativity to model gravitation, a patchwork of ESOS for regions

of different densities with the Lattimer Swesty EOS for the high density region, and

their initial conditions are different. They use a rotating 15 MO progenitor with an

equatorial rotation velocity of ~ 200 km/s that was calculated by Heger and Langer

[76]. They enforce the conservation of angular momentum for each of the particles

used in the smooth particle hydrodynamic scheme separately.

They found that rotation had the effect of limiting convection overall and restrict-

ing it to the polar regions. As a result of this, the convective region takes longer to

overcome the accretion shock and the explosion occurs at later times and is weak-

ened. These explosion are highly asymmetric. The mean velocity of matter in the

polar region is roughly twice that of the equatorial region. These asymmetries are

expected and may be possible explanations for the observed polarization of emitted

light [77, 78, 79]. While some of their results are encouraging, this model is not a

complete explanation. Uncertainties in the numerical implementation of such things

as neutrino transport, neutrino-matter cross sections, the E308, and the spherical

symmetric gravity limit their ability to make quantitative estimates and the specific

results they present should be interpreted as “best-estimates”. The trends they ob-

serve, like weaker explosions and lower black hole formation limits, are more secure.
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Burrows et a1. [37, 38]

The most recent two-dimensional calculations made by Burrows et al. have led to

the possible discovery of the previously mentioned acoustic powered supernova explo-

sion. Since their results were already summarized in section 2.2.5, here we just briefly

review the numerical techniques they used. They made use of the VULCAN/2D code

developed by Livne [80]. VULCAN/2D was developed with astrophysical application

in mind and is an implicit method for compressible multidimensional flows. It consists

of a purely Lagrangian step followed by an explicit remapping step. The remapping

limits the time step size by the “particle crossing time” or accuracy considerations,

whichever is more restrictive in a given instance. VULCAN/2D is a Newtonian,

two-dimensional, multi-group, multi-angle radiation hydrodynamics code that uses

multi-group flux-limited diffusion. Its calculations are axially/azimuthally symmet-

ric, extend over the full 180°, makes use of a Cartesian grid for the innermost ~ 20

km, and a spherical grid for regions further out.

The fact that the code uses the full 1800 opening angel is an essential requirement

for any simulation that hopes to follow vibrational modes of the core. Furthermore

the central Cartesian grid allows the best zoning to be maintained in the core. This

Cartesian grid can be made to follow the core as it moves as well. They employ the

Shen EOS briefly described in section 2.3.1 and all of their neutrino-matter interaction

physics is taken from the works Burrows and Thompson, and Burrows, Thompson,

and Pinto [68, 81].

2.3.5 Three-Dimensional Simulations

Due to the enormous computational power required by three-dimensional supernova

simulations and their tremendous complexity, few have been done. Fryer has been one

of the most prominent figures on the forefront in this regard. He has used the smooth
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particle hydrodynamics technique to model core collapse supernovae in three dimen-

sions as well as collapsars and the merging of two white dwarfs [33, 82, 83, 84, 85]. In

this section we review the most recent three-dimensional supernova simulation Fryer

ran with Young.

Fryer and Young [33]

The progenitor used by Fryer and Young is a non—rotating 23 MO calculated by

Young and Arnett [86]. It was calculated by the state of the art Tycho stellar evolution

code. Instead of the classic mixing-length theory technique of modeling convection,

Tycho uses a more realistic algorithm based on multidimensional studies of convection

in the progenitor star. One of the most significant differences in its output is the

lack of kinks in the density and temperature profiles seen in traditional calculations

[18] that are artifacts of mixing-length theory which ignores hydrodynamic transport

processes at and outside of the convective boundary.

They use the SNSPH code [82] which is a parallel, three-dimensional, radiation

hydrodynamics code implementing tree code Newtonian gravity, smooth particle hy-

drodynamics, and flux-limited diffusion transport schemes. For comparison purposes

with other groups, they make use of the Lattimer Swesty EOS down to densities

of 1012 kg/m3. This intentional over usage of the Lattimer and Swesty EOS has

the effect of significantly altering the entropy profile of the convective region in their

model.

Their simulation did not launch an explosion until over 600 milliseconds after

bounce. This provided them with an ideal opportunity to study the evolution and

structure of the convection below the accretion shock to late times. Ultimately con-

vection did revive the shock and power the explosion. Convective down-flows buffeted

the neutron star, giving it velocities in the 150 — 200 km/s range. Such neutron star
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velocities are comparable to the low velocity simulations of Scheck et al. [87]. The

E = 1 mode was not found to dominate the convection in their simulation and this

precluded the neutron star from acquiring velocities > 450 km/s. It is however pos-

sible that these larger velocities could be achieved with only minor modifications to

the initial conditions and numerical setup [87, 88]. Additionally, their simulation did

observe neutron star movement, but this movement did not develop into strong oscil-

lations and become the energy source for the supernova explosion like Burrows et al.

found. This too might be due to the lack of 8 = 1 mode dominance of the convection.

Again we stress that these different findings are not necessarily contradictions. It is

possible that numerical viscosity in the particles the smooth particle hydrodynamic

approach uses to represent the inner regions of the star damp out these oscillations.

As previously mentioned it might also be the case if the convective engine would not

have worked, the acoustic driving mechanism would have developed. Further investi-

gation into the different results of the Fryer and Young simulation and the Burrows

et al. simulation is indeed warranted.
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Chapter 3

The Test Particle Approach

Despite the many advances hydrodynamic based calculations have made in the field

of supernova science, a great deal more must be done before these simulations can be

regarded as complete. A truly complete hydrodynamic simulation would in principle

have to model the dynamics of multiple fluids with strongly time dependent viscosities

to simulate the presence of a full ensemble of nuclei and neutrinos. Additionally,

the sysem being modeled is three-dimensional, relativistic, has huge magnetic fields

and length scales that vary drastically in time, and it must make use of relativistic

radiation transport algorithms and Boltzmann transport algorithms for neutrinos.

Most state-of-the-art hydrodynamic supernova simulations typically only track the

abundances of free baryons, a particles, and an “average heavy nucleus”. A notable

exception to this is the work of Hix [89]. Fhrthermore, state-of-the—art hydrodynamic

simulations make simplifying assumptions about the flow of neutrinos, and few are

done in three dimensions. Failing to model the propagation of a full ensemble of nuclei

can possibly average away nuclear structure effects that may influence core dynamics.

Between the limits of neutrino trapping and free streaming, many of the simplifying

assumptions made by traditional hydrodynamic treatments of the flow of neutrinos

can be problematic. Since these state-of-the-art hydrodynamic calculations already
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strain the capabilities of high performance supercomputers, there may be a long wait

before more complex models that simulate the presence of hundreds of different species

of nuclei and propagate neutrinos in a general way in a three-dimensional system can

be realized. This motivates us to move away from the traditional hydrodynamic

approach that we are familiar with and draw from other disciplines of physics in an

attempt to circumvent this technological roadblock. It turns out that the field nuclear

collision modeling is an ideal candidate for this purpose.

Numerical simulations of intermediate and high energy nuclear collisions must be

able to model particle production, shock wave formation, collective deflection, as well

as the interplay between regular and chaotic collective dynamics. Transport theories

based on semi-classical implementation of kinetic theory [90, 91, 92, 93, 94, 95, 96]

have been highly successful in meeting these requirements and in doing so reproducing

experimental observables and pointing the way to new physical insight into these

systems. The simulation of a core collapse supernova poses similar challenges [30, 34,

36, 52, 81, 97, 98]. It is therefore tempting to implement these types of kinetic theory

based approaches for the physics and astrophysics of supernova explosions. This is

the aim of our work.

Our simulation of a core collapse supernova focuses on the stellar core. The

motivation for doing this is that the genesis of the supernova explosion is believed

to be in the core and we therefore concentrate our efforts on realistically following

the core through the explosion phase in the hopes of using the unique advantages

that our approach has to gain new insight into the mechanics of the collapse and

subsequent explosion. In particular we hope that, through explicitly modeling the

propagation of neutrinos and a full ensemble of nuclei, we can probe the dependence

of weak reactions on certain nuclear structure effects that other supernova simulations

are inherently incapable of and study the impact that these dependencies have on the

collapse and explosion mechanisms.
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3.1 Origins of the Test Particle Approach

Efforts to advance the field of nuclear collision simulation beyond the hydrodynamic

[99], mean field [100], and cascade [101] approaches required modeling phase space dy-

namics by numerically solving a non-relativistic semi-classical transport equation with

a two-body correlation source term. This equation, called the Boltzmann-Uehling-

Uhlenbeck (BUU) equation, is a semi-classical approximation of the Wigner trans-

formed time dependent Hartree-Fock equation that neglects all particle correlations

higher than two-body correlations. It is given by [96]
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where f is the Wigner transformation of the one-body reduced density matrix, U is

the mean-field potential, and g is an isospin degeneracy factor.

The left hand side of the BUU equation is the so-called Vlasov term that describes

the temporal change of the phase space density f due to the interactions of the

nucleons with the mean field. The right hand side of the BUU equation is the collision

integral that represents the effects of the correlations due to the two-body collisions

on the phase space density. The collision integral runs over all possible initial incident

phase space element momentum vectors (72 and all possible final phase space element

momentum vectors (71, and (72,. The delta functions conserve energy and momentum

and the exit and entrance channels given by the final two terms respectively are

weighted by the phase space availabilities of the states the phase space elements

28



are scattering into and out of respectively in accordance with the Pauli Exclusion

Principle.

Some initial attempts to numerically solve the BUU equation involved fully dis-

critizing the relevant six-dimensional phase space and calculating the phase space

densities in each grid cell in every time step. However even the coarsest of grids

constructed for this purpose were prohibitively large containing ~ 109 lattice sites.

To sidestep this limitation, it was proposed that, instead of tracking the value of the

phase space densities in each cell, one could only follow the initially occupied phase

space cells in time and represent them by imaginary particles, henceforth referred

to as test particles. These imaginary test particles were then propagated in a way

that modeled the physical evolution of the phase space. They interact with one an-

other via mean field one-body potentials and scatter with realistic cross sections. For

the simulation of nuclear collisions, using 100 to 1000 test particles per baryon was

sufficient to accommodate the complexity of the phase space dynamics.

The test particle method formally approximates the phase space density with a

sum over delta functions [105]

N: t) = 2: 63(F- 17,-(0)63 (5— are) (3.2)

where N is the total number of test particles. The initial coordinates of these delta

function point particles, or test particles, have to be determined by some physical

input model. For simulations of nuclear collisions, a local Thomas-Fermi approxi-

mation, properly Lorentz-boosted, is sufficient. Inserting this solution into the BUU

equation generates the following simple first-order linear differential equations that

govern the motion of the centroid coordinates of these test particles in the full six
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dimensional phase space
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where again N is the total number of test particles, UE0S is the mean field one-body

nuclear EOS potential, U0 is the effective one-body Coulomb interaction potential

between the ith test particle with charge q,- and the rest of the N — 1 test particles,

and C(15)) symbolizes the effects that two-body collisions with other test particles

have on the 2th test particle’s momentum.

Solving the BUU equation with the test particle method has reproduced exper-

imental data quite effectively [96, 102, 103]. Proceeding in a completely analogous

fashion, the test particle approach can be used to generate simple semi-classical equa-

tions of motion for the centroid coordinates of test particles used to model the phase

space dynamics of systems with more complicated coupled transport equations. This

has been done successfully for relativistic systems in which particle production is im-

portant and coupled transport equations had to be simultaneously numerically solved

[104].
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3.2 Modeling Macroscopic Systems With Test Par-

ticles

In the previous section, we discussed the origin of the test particle approach and

described how it can be used to model a microscopic system. In that case, there were

many more test particles than there were physical particles. If we wish to model a

macroscopic system with a very large number of physical particles, a mole or possibly

much more, it is clearly impossible to have the number of test particles, th, exceed

the number of physical particles, N Computational limitations require that in
phyS'

situations such as this that Nphys/th >> 1.

The test particle approach can still be applicable in these cases so long as th

is sufficiently large to capture the gross dynamics of the macroscopic system’s phase

space. The ratio NphysNV”, effectively determines a scale cutoff of sorts below which

details cannot be resolved. When Nphys/Mp becomes sufficiently large, some truly

microscopic phenomena become impossible to directly simulate with test particles.

Therefore it must be established that these unresolvable details do not impact the

gross phase space dynamics and/or can be taken into account indirectly. This can be

accomplished with convergence tests.

These types of scale issues are certainly not unique to the test particle approach.

Hydrodynamic calculations have to spatially discritize the systems being simulated

and when the systems’ total volumes are large enough, the number and size of the

cells the volumes are divided into can raise the same scale and resolution concerns.

Representative particle models, which are very similar to test particle calculations in

the large Nphys/Aftp limit, have to contend with scale and resolution issues as well

when the importance sampling of the particles the system is comprised of is made.

Failure to represent physical particles with certain characteristics with a sufficient

number of representative particles can prevent calculations from resolving details
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that are essential to the gross system dynamics.

Having established that the test particle approach that has been used so success-

fully in the study of nuclear collisions can be applied to macroscopic systems as well,

we have opened the door to its application to the study of supernovae. This matter

is discussed in the next section.

3.3 Modeling Supernovae with Test Particles

For supernovae, the one-body transport equation for the baryon phase space density

fb(:z:p) for the particular state b of the baryon is given by [106]

  

8fb(:1:p) Hi mi . Mg .

at + Emmvffbfxpl - WVfquftlvjjfbffcpl + WVstngfbffFP)

= 15mm + 13,,(mp) (3.4)

Here II the phase space element momentum, E; (p) and M; are the effective en-

ergy and mass of the baryon in the particular state b, Up(a:) and Us are the mean

field nucleon vector and scalar potentials, and 15b and 151/ are the baryon-baryon

and baryon-neutrino two-body correlation source terms that take into account how

collision between baryons and baryons and neutrinos impact the baryon phase space

density. The latter term is what couples the one-body transport equation for the

baryon phase space density to that of the neutrino phase space density. The form

and evaluation of 15b are discussed in our previous work [107]. 15V can be derived in

analogy to work on coupled transport equations for heavy ion collisions [108]. The

relativistic quantum nature of these source terms makes them more complicated than

the BUU source term discussed in section 3.1, however their structure is the same.

For any neutrino species, the transport equation simplifies to an equation of mo-
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tion that contains only the streaming and baryon-neutrino collision terms since there

are no mean field contributions and the effects of neutrino-neutrino collisions are

neglected,

at Eu(k)

 fy(a:k) = [gt/(13k) (3.5)

It should be noted that employing this formalism implicitly enables us to incorporate

matter oscillation of neutrinos into our model.

These coupled transport equations are solved as discussed in section 3.1 by ap-

proximating the phase space densities with sums over delta functions. Semi-classical

equations of motion for the six-dimensional phase space centroid coordinates of test

particles that represent baryonic matter and those that represent neutrinos are readily

obtained and are tracked at all times. In this way, the dynamics of baryonic matter

and neutrinos are treated in an identical fashion. This feature is very different from

traditional hydrodynamic calculations.

The initial conditions for baryonic or matter test particles are determined by the

chosen progenitor. For neutrino test particles, the initial conditions are determined

by the local kinematics at the site of their creation. The initial conditions and equa-

tions of motion for both types of test particles are discussed in greater detail sections

3.4 and 3.7. Matter test particles must represent a very large number of nucleons.

To ease the modeling of weak interactions, each neutrino test particle represents the

same number of neutrinos as a matter test particle represents nuclei. This number is

taken to be the core’s mass divided by the 56Fe nuclear mass divided by the number

of matter test particles used to model the core. Beyond these similarities, matter and

neutrino test particles are quite different and are hence described separately.
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3.4 Matter Test Particles

In addition to a tracking the location of matter test particles in six dimensional

phase space, the locations of the matter test particles in multiple cubical grids is

always known as well. These grids are used to model the scattering of nuclei and free

baryons and calculate three dimensional statistical distributions and gravitational

force fields. They are discussed in detail in section 3.9.2.

Every matter test particle has its own temperature. Initially this is determined

by the temperature distribution of the chosen progenitor. A matter test particle’s

temperature can change in two ways. Local weak reactions can induce changes in

the temperature of the matter represented by a matter test particle. So can exposure

to other matter test particles representing matter at different temperatures. Both of

these processes are exhaustively discussed in sections 3.11 and 3.17 respectively.

Each matter test particle explicitly represents a fixed number of nuclei and can

explicitly represent free baryons as well. These free baryons come in multiples of the

number of nuclei a matter test particle represents. Initially the type of nuclei and

number of free baryons a matter test particle represents is determined by the chemical

composition of the chosen progenitor. At later times, these properties are determined

by local electron capture rates and the number and type of interactions each matter

test particle has with neutrino test particles. For simulations that include the fusion

of free baryons and nuclei, the number of free baryons a matter test particle captures

can also influence these quantities. These weak and strong processes are described in

sections 3.11 and 3.18 respectively. There are a total of 385 nuclei with 2 S A S 60

that a matter test particle can represent. These nuclei extend from the proton drip

lines to the neutron drip lines for all nuclei with 2 S A S 60 in the table of nuclear

masses we use [109]. This table is displayed in figure 3.1. We note here that any

table of nuclear masses can be used so long as we can determine the electron capture
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a Included Stable Nuclei

[j Included Unstable Nuclei 
Figure 3.1: Table of stable and unstable nuclei currently includcd in our simulation.

rates for all of the nuclei it contains. This qualifier shall be. discussed further in

section 3.11. The propagation of a full ensemble of nuclei is a significant advantage

our approach has over traditional hydrodynamic calculations.

Matter test particles implicitly represent electrons as well. \Ve assume that for

each proton represented by a matter test particle. free or bound in a nucleus. there is

an electron nearby so that macroscopic charge neutrality is preserved. This assump—

tion renders the matter test particles charge neutral and advantageously permits us

to avoid modeling Coulomb forces between them. Note that the charge neutrality of

matter test particles is essential as the Coulomb interaction is N 40 orders of mag-

nitude stronger than gravity. Electromagnetic interactions would therefore dominate
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the the matter test particle dynamics in an unrealistic way.

For the purposes of calculating gravitational forces and density distributions, all

matter test particles are assigned the same average mass. This average mass is taken

to be the mass of the core divided by the number of matter test particles used to

model it.

After the insertion of the delta function approximation of the baryon phase space

density into equation (3.4), it is found that centroid of each matter test particle is

subject to three forces: gravitation, a mean field nucleonic force, and a force exerted

by the surrounding electron gas on the electrons it implicitly represents. The latter

two forces are dependent upon local statistical distributions and are notationally

lumped together and denoted by Floc- Matter test particles can also scatter with

one another. The equations of motion for the centroid coordinates of the matter test

particles are given by the following first-order differential equations

65.. -' -' .. ~_.

a-tpj = FG,j+F10c(Tj)+C(Pj)

 
 

d 173'
—i~'- = (3.6)
dt3 2 2 2
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where F’ - is the ravitational force actin on the j matter test particle and C 13' -)

Ga g g J

symbolizes the effects that two-body collisions with other matter test particles have

th matter test particle’s momentum. N is the number of matter test particleson the 3'

used to model the core and is constant. These first-order differential equations are

numerically solved using the time tested 4th order Runge—Kutta method [110].

For calculations run on a single processor, N cannot greatly exceed 10°, otherwise

run times become prohibitively long [111]. This does impose some statistical limita-
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tions on single processor simulations. These limitations shall be addresses in section

7.2 where conservation of energy is discussed. Computational errors scale almost uni-

versally with l/x/N in our approach, so these limitations are expected to vanish in

the large N limit. Values of N such as 108 or even larger are currently feasible on

parallel computer clusters [112].

3.5 Matter Test Particle Initial Conditions

The evolution of stars on the main sequence is thought to be well understood [15,

113, 114]. Exhaustive efforts to numerically model main sequence stars have led

to a multitude of models that successfully reproduce observed behavior [18, 76, 86].

Consequently there are many sets of calculations that could potentially serve as initial

conditions for our model. For our preliminary single processor calculations, we chose

to work with the spherically symmetric non-rotating 15 MG Woosely and Weaver

progenitor [18]. This progenitor was chosen since it is very well known and has

been used as the initial conditions for several other supernova simulations, making

it particularly useful for comparison purposes [18, 115]. The core of this progenitor

is 1.33 MO [18]. Its density and temperature distributions are depicted in figure

3.2. The matter test particles are initially spatially configured in such a way that

the density distribution of our core matches the spherically symmetric Woosely and

Weaver core. The specific way in which we calculate density and other distributions

is discussed in section 3.9. Once the test particles have been been assigned their

initial spatial coordinates, the determination of the initial test particle temperatures

is straightforward. It is simply read from a fit of the temperature distribution given

in figure 3.2. The initial momentum space coordinates and nuclear properties of the

matter test particles are slightly more involved and are addressed separately below.
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Figure 3.2: Plot of the initial density and temperature distributions of the progenitor

as functions of enclosed solar mass taken calculated by Woosely and Weaver [18].

3.5.1 Initial Matter Test Particle Momentum Space Coordi-

nates

The Woosley and Weaver progenitor is calculated up to the point at which the im-

plosion begins. The outer edge of the core is just beginning to collapse at 1000 km/s

[18]. This initial condition is suflicient to determine the initial momentum space co-

ordinates of the matter test particles in simulations of non-rotating cores. To see

this, consider the following. Recall that the dynamics of a collapsing core naturally

divide the core into two regions: an inner core and an outer core. In the inner core,

collapse velocities are proportional to radial distance 7' [18]. In the outer core, collapse

velocities can be approximated as being proportional to 1/\/F [18]. The inner core

can be taken to enclose 0.6 MG to 0.8 MG) [18]. Thus having knowledge of the initial

collapse velocity at the outer boundary of the core and the dynamics of the collapse

discussed above is enough to generate an initial radial collapse profile.

For any simulations that include rotation, we simply add to the initial velocity
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collapse velocity of each matter test particle the rotational velocity at its location

determined by the selected initial angular velocity profile. Since the Woosley and

Weaver progenitor is assumed to be spherically symmetric, we cannot choose an ini-

tial angular velocity distribution that is too large. Otherwise the conservation of

angular momentum would result in spherical asymmetry of the progenitor’s core.

Thus we should restrict ourselves to more modest profiles like those shown in figure

3.3. The three angular velocity distributions depicted in figure 3.3 are the initial
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Figure 3.3: Plot of the initial angular velocity distributions calculated by Heger and

Langer for their 15 A19 rotating progenitor taken from a private communication from

Chris Fryer.

angular velocities calculated by Heger and Langer for their 15 MO rotating progen-

itor [76, 116]. Our earliest works did discuss more rapidly rotating cores, but these

calculations where geared towards probing the role of angular momentum in the early

stages of the collapse [107, 112, 117]. These early calculations can only meaningfully

follow the very beginning of the collapse since, beyond using initial conditions which

indicated that some electron captures had occurred in the core’s center, weak reac-

tions were not modeled and the electron gas was assumed to be perfectly degenerate

at all times.
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3.5.2 Initial Matter Test Particle Nuclear Properties

The chemical composition of the Woosley and Weaver progenitor is shown in figure

3.4. The chemical composition of the core is rather simple. It is comprised of 54Fe,

56Fe, and “Fe” nuclei with 48 S, A S, 65 with neutron excesses greater than 56Fe.

Due to a limited availability of electron capture rates, we restrict of considerations to

nuclei with A g 60. We now have ways to extrapolate electron capture rates to nuclei

with A > 60, however this technique was not developed until quite recently and all

of the results presented in this thesis shall assume that A g 60. The number of
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Figure 3.4: Initial chemical composition of the progenitor as a function of enclosed

solar mass taken from Woosely and Weaver [18].

matter test particles that represent 54Fe, 56Fe, and “Fe” nuclei within a given radius
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is read from a fit of figure 3.4. The particular species of nuclei represented by a matter

test particle that represents “Fe” nuclei is selected by a Monte Carlo algorithm that

samples the nuclei included in our simulation that satisfy the definition of “Fe” nuclei

given above.

3.6 Neutrino Test Particles

Our simulations explicitly model the propagation of neutrinos by representing them

by test particles as well. In this way, we treat the dynamics of baryons and neutrinos

on equal footing. This is another advantage that our approach has over traditional

hydrodynamic calculations. Neutrino test particles are assumed to be massless, move

at the speed of light, and subject to no mean-field-type forces. The only way they

can interact with other test particles is through scattering with or being captured by

matter test particles. Thus the propagation of neutrino test particles is quite simple.

Merely multiplying the unit momentum vector of a neutrino test particle by the speed

of light and propagation time determines its new location. No complicated numerical

method of approximating the solutions to differential equations is required. This light

speed propagation does put limits in on the time step size. To realistically model the

propagation of neutrino test particles, the time step size should be no larger than

10-5 s. For the purpose of updating three dimensional statistical distributions that

can be altered by weak reactions, the locations on the neutrino test particles in one

of the cubical grids the matter test particles are tracked in is always known. This

cubical distribution grid is described in detail in section 3.9.2.

Unlike matter test particles, the number of neutrino test particles is not constant.

Neutrino test particles can be created and destroyed. The latter process can be

induced by a weak interaction or by the neutrino test particle escaping the core. The

number of neutrino test particles therefore varies greatly at different times during the
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simulation. The specific mechanisms by which neutrinos are created and destroyed

that are included in our simulation and how we model them are discussed at length

in section 3.11. For the remainder of this consideration of neutrino test particles, it

suffices to note that the only neutrino production mechanism currently included in

our model is electron capture by nuclei and free protons.

3.7 Neutrino Test Particle Initial Conditions

We do not model the presence of the neutrinos created before the simulation begins.

Some neutrinos created by the electron captures that lower the central electron frac-

tion enough to begin the collapse will undoubtedly still be in the present in the core

when our simulation starts. However the densities are low enough to make impact

that neutrino-matter interactions have on the core dynamics at this stage of the col-

lapse negligible. Thus we need not model the propagation of these neutrinos. We

model only the presence of neutrinos created after our simulation begins with neutrino

test particles. Since all neutrino test particles are created when the nuclei and/or free

protons represented by a matter test particle capture an electron, all neutrino test

particles represent electron neutrinos. However neutrinos and anti-neutrinos of other

species can be represented by test particles as well. For reasons discussed at length

in section 3.11, only the presence of electron neutrinos is currently modeled. The

initial spatial coordinates of a neutrino test particle are determined by the location

where the electron captures that result in its production are modeled. The initial mo-

mentum space coordinates are determined by the species of the nuclei that capture

the electrons and the temperature and number density of the gas the electrons are

captured from. A rigorous description of precisely how newly created neutrino test

particles’ momentum vectors are determined is presented in chapter 5.
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3.8 Data Management

For the purposes of calculating statistical distributions, gravitational forces, modeling

weak and strong reactions and two-body collisions, it is necessary to organize test

particles according to their spatial locations. In addition to spatially grouping the test

particles, it is also necessary to organize the matter test particles in these groupings

by their nuclear properties so the effects of weak and strong reactions that occur in

the them can be efficiently modeled. The spatial grouping of test particles is done in

two ways throughout the simulation. They are addressed separately below.

3.8.1 Spherically Symmetric Spacial Test Particle Grouping

To group test particles by their radial distances from the origin, spherical shells defined

by matter test particle occupancy are used. To locate the inner and outer radii of these

shells, a quicksort algorithm is used that sorts the matter test particles by their radial

distance from the origin in a one-dimensional array. To minimize the vulnerability

of distributions calculated with these spherical shells to statistical fluctuations, we

require the number of matter test particles contained in each shell to be at least 104.

For single processor simulations with 106 matter test particles, this limits us to 100

spherical shells in which statistical distributions can be determined. These spherical

shells are redetermined after the matter test particles have been moves to their new

locations in each time step.

3.8.2 Three-Dimensional Spacial Test Particle Grouping

Spacially grouping test particles in three dimensions is more complicated. Some of

the cubical grids used for this purpose contain 106 grid cells or more. Therefore

systematically searching for the grid cell a given test particle is contained in would

be very wasteful. To make efficient use of these grids, one must have a clever way of
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accessing test particles that are located in a given grid cell. We address this issue by

assigning each test particle a number called the grid index, [grid’

Ig’f‘id = 01223; +A/Iiy+iz (3.7)

where 2'33, 2'3), and z' z are the 1:, y, and z indices of the grid cell containing the test

particle, and 0 3 ix, 2y, 2'; < M, where M3 is the total number of cells in the relevant

grid. Employing a quicksort algorithm after each time step ensures that test particles

with the same value of Igrz'd are stored next to each other in a one-dimensional array.

In this way, test particles inside a given grid cell can be found in a very efficient way,

with an algorithm that scales as N log N. Usage of this algorithm only requires the

recalculation of the 11:, y, and 2 grid cell indices of a test particle in any grid it must

be tracked in after it is moved to a new location.

3.8.3 Grouping Matter Test Particles By Nuclear Properties

Once it has been determined that a specific weak or strong test particle reaction is

to be modeled in a volume, spherical shell or grid cell, we must be able to efficiently

access matter test particles in that volume that represent the nuclei and free baryons

involved in the reaction. To address the first of these needs, we proceed in a similar

fashion to the way in which the three dimensional spatial grouping needs were met.

We assigning each matter test particle a number called the nuclear composition index,

[camp

where A and Z are the atomic mass number and nuclear charge of the nuclei repre-

sented by the matter test particle and Zmag; is the maximum charge of any nucleus

included in our simulation. For simulations with Amax = 60, Zmag; = 30. A quick-
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sort algorithm is employed in each volume in every time step to ensure that the

matter test particles with the same value of [comp are stored next to each other in a

one-dimensional array.

To efficiently access matter test particles in a given volume that represent a cer-

tain number of free protons or neutrons for each nucleus they represent, we assign

each matter test particle numbers called the free proton and free neutron indices.

These numbers are precisely equal to the number of free protons and free neutrons

represented by each matter test particle for each nucleus they represent. Again we

use a quicksort algorithm in each time step to ensure that the matter test particles

with the same free proton and free neutron indices are stored next to each other in

one-dimensional arrays and update the arrays every time a matter test particle’s free

proton or neutron index is changed by a weak or strong reaction.

Each time a matter test particle’s nuclear composition index and or one of its free

baryon indices are changed during a weak or strong reaction, it is immediately moved

to its new location in the effected index array or arrays for the spherical shell or grid

cell containing it. This is done to ensure that weak reactions can still be efficiently

modeled in this volume in the current time step.

3.9 Calculating Distributions

After having explained the algorithms used to divide the core’s volume in such a way

that spherically symmetric and three-dimensional distributions can be calculated in

section 3.8, a description of how distributions are calculated in these volumes is

warranted. There are four distributions that must be directly calculated with matter

test particles to model the dynamics of the core’s collapse: density, electron fraction,

temperature, and the average ,5 of matter. We turn our attention to the calculation

of these distributions when spherical symmetry is assumed first.

45



3.9.1 Spherically Symmetric Distributions

Let N be the number of matter test particles contained in each spherical shell. The

density at Fk, the average radius of the kth spherical shell, with average volume Vic

is taken to be

= N - Mtp

Vk (3.9)Pf'Fk)

where Mtp is the mass assigned to each matter test particle and fit is the average

radius of the kth spherical shell. The electron fraction at the average radius of the

kth spherical shell is taken to be

7707,) -M (3.10)

— Atotfk)

where Ztotfk) is the total sum of the nuclear charges of the nuclei and free protons

represented by matter test particles in the kth spherical shell and Atot(k) is the total

sum of the atomic mass numbers of the nuclei and free baryons represented by matter

test particles in the kth spherical shell. These quantities are readily calculated

N

ztotcc) = Z(Z+np).-

'=1

(3.11)

N

Atotfk) = Z (A + "P + "Nb

221

km spherical shell.where the above sums run over the N matter test particles in the

Z and A are the nuclear charge and atomic mass number of the nuclei represented by

a matter test particle and nP and nN are the number of free protons and neutrons

a matter test particle represents for every nucleus it represents. The temperature at
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kth
the average radius of the spherical shell is taken to be

_ 1 N
T(rk) = NET,- (3.12)

i=1

where T,- is the temperature of the matter represented by the 2th matter test particle.

In the spherically symmetric case, one can only speak sensibly of the radial component

of the average 6 of matter fir. We take average fir of the matter at the average radius

of the kth spherical shell to be given by

— _1_
N .

Z

g
s

€1
7

ll

M
R

31' 'fiz' (3-13)

1

where B;- is the 6 vector of the it” matter test particle and ii,- is the unit vector

h
pointing to the centroid of the it matter test particle. These spherical distributions

are calculated and stored in each time step.

Radial Derivatives of Spherically Symmetric Distributions

The radial derivative of any of the above distributions at the average radii of the

kth spherical is not thespherical shells are approximated in the following way. If the

innermost or outermost shell, the derivative of any distribution at its average radius

is approximated by linearly interpolating the slopes of the lines connecting the value

of the distribution at fk to its values at Fk+1 and fk—l' Consider some distribution

Q in the kth spherical shell. Its radial derivative at 77k is taken to be

362319) 7-‘llr.+1 ‘ 77k X 62071;) - 62919—1)
  

  

57" 7Ik+1_ fie—1 Fig - Fk-l

1" -c i" — 7"

+ _k ’E‘1 x C“ 5+1) f2”) (3.14)

1"k+1 — Tic—1 7‘k+1 - Tie
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The expression used to approximate the radial derivatives of spherically symmetric

distributions at the average radii of the innermost and outermost spherical shells is

less complicated since there is only one neighboring data point. It is simply taken to

be the slope of the line connecting the value of the distribution at the average radius

of the innermost or outermost spherical shell to its value at the average radius of its

only neighboring shell. The radial derivatives of the density, electron fraction, and

temperature distributions are calculated and stored in each time step.

Linearly Interpolating Spherically Symmetric Distributions

To calculate the value of a spherically symmetric distribution or its radial derivative

at an arbitrary radius that is between the innermost and outermost radii at which it

is known, we linearly interpolate it using the closest two data points. For all radii

outside the outermost data point, we equate the value of the distribution or its radial

derivative with its value at the outermost data point. For all radii inside the innermost

data point, the value of a distribution is equated with the its value at the innermost

data point. Due to the assumption of spherical symmetry, the radial derivative of all

distributions must be zero at the origin. Thus for all radii less than the innermost

data point, the radial derivative of a distribution is linearly interpolated between

zero and its value at the innermost data point. Note that by the construction of the

spherical shell that these inner and outer radii approximation will at most affect one

percent of the matter test particles.

3.9.2 Three-Dimensional Distributions

For multi-processor simulation, where memory and speed limitations do not confine

our considerations to spherically symmetric matter distributions, in addition. to cal-

culating spherical distributions, we use two types of cubical grids to calculate and

interpolate three-dimensional distributions. Distribution grids, in which statistical
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distributions are calculated, are static cubical grids centered about the origin that

contain 101 x 101 x 101 grid cells of size 1 km3. The density, electron fraction, and

temperature at the centers of these grid cells are calculated the same way equations

(3.9), (3.10), (3.11), and (3.12) show for the spherically symmetric case. The only

difference is that now N is not a fixed number, rather it is the number of matter

test particles that happen to be in a given fixed grid cell during a particular time

step. The calculation of the average 3 of matter in a distribution grid cell is the

three-dimensional analog of equation (3.13) and as such does not involve matter test

particle unit position vectors.

Since there are more than 106 cells in the distribution grid, some cells will contain

a very low number of matter test particles and others will contain none at all. There—

fore unphysical fluctuations in the distributions can be caused by these occupancy

problems. It is necessary to use this many grid cells not only to resolve fluctuations in

the distributions, but also to allow super-nuclear densities to be measured. To circum-

vent this pitfall, we impose some minimum value that N must be to directly measure

the value of distributions in a given cell with the matter test particles it contains. If

N is below this threshold in a given distribution cell, the value of distributions at the

center of that cell are linearly interpolated using the spherical shells.

Gradients calculated at the center of distribution grid cells that are not on one of

the faces of the cubical distribution grid are approximated using a three-dimensional

analog of equation (3.14). Since the data points in this case are equidistant, the coef-

ficients will always be 1 /2 allowing some further algebraic simplifications to be made

to the formula that are trivial and shall not be commented on further here. Deriva—

tives of a distribution in a grid cells on one of the faces of the cubical distribution grid

with respect to the coordinate that runs perpendicular to the face are taken to be be

given by the slope of the line connecting the value of the distribution at the center of

that cell to its value at the center of its only neighboring cell in that coordinate.
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Once the distribution grids have been calculated, the centers of its cells become

the corners of an interpolation lattice with 100 x 100 x 100 1 km3 grid cells inside of

which we can linearly interpolate three-dimensional distributions and their gradients.

While the core is initially much larger than this cube, we intuitively expect that most

deviations from spherical symmetry will occur, at least initially, near the center of the

core when it is contracted enough to have good occupation in many of the distribution

grid cells. Thus we focus our efforts on determining three-dimensional distributions

in the region in which expect all of the phenomenon of interest to begin.

It is important to note that the fact that the distribution grid must contain at

least 106 cells precludes single processor calculations from making use of it. Since

single processor calculations can only use approximately 106 matter test particles,

it is clear that the distribution grid is far too fine to use. Thus single processor

simulations all assume spherical distributions of matter and exclusively rely upon the

spherical shells to calculate one-dimensional distributions.

3.10 Matter Test Particle Motion

As explained in section 3.4, the motion of the centroid of each matter test particle

is influenced by three forces and scattering with other matter test particles. The

three forces are gravitation, a mean field nucleonic force, and a force exerted by the

surrounding electron gas on the electrons a matter test particle implicitly represents.

These way these forces and collisions are all modeled are discussed separately in the

sections below.

3.10. 1 Gravitation

Currently gravitation is modeled with Newtonian mechanics. We cannot however use

exact Newtonian mechanics as this would be an N2 algorithm. With N = 106, the run
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time would be unacceptably long. To avoid these long run times, we have devised two

ways to model gravitation. For simulations that assume spherical symmetry, we use

a modified Newtonian monopole that makes assumptions about the central density

distribution that remove the numerical singularity at the origin. For simulations

that makes no assumptions about the distribution of matter, we have an algorithm

that is three dimensional, does not violate causality, and is also free of numerical

singularities. We discuss the spherically symmetric model of gravitation first.

Spherically Symmetric Gravitation

The Newtonian monopole approximation is an appealing alternative for simulations

that assume a spherical matter distribution. Its application requires only knowledge

of the locations of a matter test particles and their radial rankings, both of which

are known quantities for all matter test particles. In this picture, the gravitational

force acting on a matter test particle with position vector 7'" and radial rank N + 1 is

simply given by

Fa=—G-N-M(2;Fr3 (3.15)

where G is the gravitational constant and MG is the mass assigned to each matter

test particle for the purpose of calculating gravitational forces. The problem with this

approach is that gravitational forces exerted on the innermost matter test particles

can result in unphysical motion.

Obviously the innermost test particle never feels a gravitational force since ra-

dial rank 1 implies that the N in equation (3.15) is zero. Furthermore, and more

importantly, when the central density is sufficiently high, many matter test parti-

cles can be very close to the origin. All of these test particles except for the very

innermost are subject to very large gravitational forces directed toward the origin.
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Since our time step size is finite, matter test particles move finite distances between

times at which the gravitational forces they feel are computed. Thus any one of these

highly accelerated inner test particles may pass through the origin and move to a

new location that is much farther away from the origin than the last location where

the gravitational force it experiences was computed before it is recalculated. At this

more distant location, the gravitational force may be much lower and result in the

test particle artificially gaining kinetic energy. This violation of energy conservation

can result in many matter test particles being ejected from the core in a given time

step once the central densities become high enough.

To circumvent these inner test particle problems, we assume the density is constant

in the region containing the innermost 50 matter test particles. This assumption

is compatible with the way the density distribution is calculated for the following

reasons. For spherically symmetric simulations, the innermost point at which the

density is known is at the average radius of the spherical shell containing innermost

104 matter test particles which is always larger than R50, the radius defined by

the radial distance to the 50th innermost matter test particle. Thus changes in the

density distribution cannot be measured for r 3 R50 in the spherically symmetric

case. Recall that for three dimensional calculations, to directly calculate the density

inside a cubical grid cell instead of linearly interpolating it off the spherical density

shells, it must contain at least 250 matter test particles in order to avoid fluctuations

due to low occupation. Therefore the sphere defined by R50 will always be much

smaller than the central grid cell if it can be used to directly measure the density in

it. Thus the density does not change much on the interval 0 S r S R50 in the three

dimensional case either.

From classical mechanics, it is known that inside a sphere of constant density

that the gravitational field generates a linear restoring force [118]. Therefore the

assumption of a constant density inside the sphere with radius R50 yields the following
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simple result for the gravitational force acting in a matter test particle with position

vector 7" and radial rank N + 1

F’ —G.N-Mg 77/73, N250
G = (3.16)

—G- 50- Mg; F/Rgo, N < 50

The advantages that this approach has over the unmodified monopole model are as

follows. Unlike the unmodified monopole model, this model can exert a gravitational

force on the innermost matter test particle with radial rank 1. Furthermore, since the

magnitude of the gravitational force decreases linearly to zero inside the sphere defined

by R50, the violations of energy conservation caused by the radially asymmetric

sampling of the gravitational field as test particles pass through the origin discussed

above are negligible. As a result, no matter test particles are ejected from the core

since the origin can no longer act as a numerical singularity. Taking only fractions of

a second to run, this approach is ideal for spherically symmetric calculations where

the minimization of run times can justify minor sacrifices in accuracy associated with

violations of causality resultant from the implicit assumption that gravitational force

act instantaneously in this model.

Three-Dimensional Gravitation

For fully three dimensional simulations of the collapse, an approach is needed that

makes no assumptions about the distribution of matter, does not violate causality,

and is also free of numerical singularities. To fulfill these requirements, we generate a

gravitational acceleration lattice off of which we linearly interpolate the gravitational

acceleration at arbitrary points in the following way. First we divide the volume

the matter test particles occupy into identical cubical cells, the corners of which

will form the lattice sites of what shall be referred to as the mass lattice. Then

we “smear” the mass of each matter test particle over the eight closest lattice sites
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defined by the corners of the cell it is in using what could be described as an inverse

linear interpolation. The fraction of the mass of a given matter test particle that is

“smeared” onto one of the eight closest cites to it is linearly proportional to its distance

to it. Once the mass lattice is constructed, we exactly calculate the Newtonian

gravitational forces that would be experienced by a matter test particle sitting at the

center of each mass lattice cell exerted by the masses accumulated at all of its lattice

sites. In doing so, we create a gravity lattice off of which the gravitational force felt

by a matter test particle at any point inside it can be linearly interpolated.

To avoid action-at-a—distance forces that violate causality, when we calculate the

gravitational acceleration at a particular gravitational lattice site due to the mass

accumulated at mass lattice site at a distance r, we should access the mass that was

accumulated at that mass lattice site at the time r/c in the past, where c is the

speed of light. Since we will generally not have a mass lattice that was calculated

exactly at a time r/c in the past, we linearly interpolate between the two lattices

that were calculated closest to that time. In this way we model the finite propagation

speed of gravitational waves. Once the gravity lattice has been computed, we can

determine the gravitational force acting on a matter test particle at arbitrary points

inside it by linearly interpolation using the eight closest gravity lattice sites to the

point of interest. In effect, this is a 4 dimensional space-time linear interpolation of

the gravitational force. While the calculation of the gravitational force at each site

in the lattice is an N2 algorithm, in this case N is not the number of matter test

particles used in the simulation, it is the number of lattice sites. Choosing the number

of lattice sites to be approximately 104 allows us to calculate the gravitational forces

acting on 106 matter test particles in two to three minutes on a single processor with

minimal sacrifices in accuracy. The lattice sites can be chosen to be static or follow

the core as it contracts but remain at safe distances from each other at all times, thus

we do not encounter any numerical singularities.
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Simulations that model weak reactions require approximately 105 time steps to

follow the core through the explosion phase. Therefore on a single processor more than

two weeks would be spent calculating gravitational forces using the model described

above. It is clear that this algorithm must be implemented on a parallel computing

cluster to keep the run times from becoming prohibitively long.

3. 10.2 Nucleonic Force

The mean field nucleonic force acting on the nucleons represented by the matter test

particles is generated by the mean field nucleon potential energy. Currently all of the

mean field nucleon potential energies are momentum/temperature independent. This

is not a result of necessity, but rather one of circumstance. The decision to make

the simulation capable of following the core through the explosion phase using fi-

nite temperature statistical mechanics was made relatively recently and consequently

time restrictions prevented us from incorporating momentum/temperature dependent

mean field nucleon potential tables. This would be a straightforward exercise. Ad-

ditionally, all of the potentials used by our simulation are symmetric with respect to

proton and neutron exchange. For comparison purposes, our code makes use of two

mean field nucleonic potentials that neglect nuclear asymmetry and one that it takes

into account. These potentials are discussed separately below.

Symmetric Mean Field Nucleon Potentials

Our simulations currently make use of the soft and stiff momentum—independer1t

Bertsch-Kruse—DasGupta (BKD) isoscalar potentials [90]. The soft BKD potential

is given by

7 6

U(p) = a1 + b (i) / (3.17)

p0 P0
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where a = —356 MeV, b = 303 MeV, and p0 = 0.16 frn_3 is the normal nuclear

matter density [119]. The stiff BDK potential is given by

p p 2
U(p) = a— + b (~—-) (3.18)

where a = —l24 MeV and b = 70.5 MeV. Both of these potentials are plotted in figure

3.5 over the density range 0 S p/pO S 3. In figure 3.5, it is seen that both of the BKD
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Figure 3.5: The soft and stiff BKD isoscalar potentials plotted over the density range

0 5 NM) S 3-

potentials exhibit realistic features such as a minimum energy per nucleon at some

density pmz'n near p0, an attraction for p < pmz’nv and a repulsion for p > pmz’n- For

the soft BDK potential, it can easily be confirmed that pmin z p0. For the stiff BDK

potential, the lower value pmin z 0.9 p0 is obtained and the repulsion for p > pmz’n

is much stronger.
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Asymmetric Mean Field Nucleon Potentials

The mean field nucleon potential of isospin asymmetric nuclear matter can generally

be expressed as a power series in the isospin asymmetry 5 = (pn — pp)/(pn + pp)

[120]. In this notation, pn and pp are the neutron and proton densities respectively.

Since we assume that the potential is symmetric with respect to proton and neutron

exchange, there are no odd-order terms in this expansion [120]. Thus us the lowest

order expansion in (5 is given by

U(p, 6) = Uofp) + time) 62 + 0(64) (3.19)

where U0(p) = U(p, 6 = 0) is the mean field nucleon potential in symmetric nuclear

matter and

Usymfpl = (3.20)
1 32mm

2 as?
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where Usym(p) is the so—called symmetry energy.

Many advances have been made recently in our understanding of this symmetry

energy and its role in nuclear collisions and astrophysics [119, 120, 121, 122, 123, 124,

125]. Despite this, the symmetry energy is poorly understood in dense neutron-rich

matter [1, 122, 126, 127]. Unfortunately this is precisely the environment in which

we expect to see the mean field nucleon potential become dominant. Therefore the

best we hope for the inclusion of a potential that has a symmetry term to yield is

a “ballpark” estimate of the effects that isospin asymmetry has on core dynamics.

Further adding to our woes is the fact that some of our calculations yield sufficiently

low electron fractions in the central region of the core that the isospin asymmetry 6

the becomes large enough to require additional terms to be retained in the expansion

made in equation (3.19), about which very little is known. As we shall see in chapter
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8, this issue is primarily a concern only for simulations that make use of electron

capture rates that are considered to be quite large.

Given the uncertainty in the form the symmetry energy assumes and its possible

insufficiency in capturing the potentials total dependence upon isospin asymmetry,

the particular parameterizations of U0(p) and Usym(p) that we choose to use is

arguably immaterial. So long as U0(p) looks something like the BKD potentials for

symmetric nuclear matter, we are safe to use any of the parameterizations from any

discipline of nuclear physics. For convenience sake, we chose to take a result from

the study of nuclear collisions for which the following parameterizations of U0(p) and

Usym(p) were generated [119]

=a1<aw+a2<aa3taH

= News)

where a1 = 22.10 MeV, (12 = —183.05 MeV, a3 = 144.95 MeV, (14 = 12.28 MeV,

(3.21)

a5 = 11.72 MeV, a = 2.1612, and p0 = 0.16 fill—3. In figure 3.6, the lowest order

expansion of U(p, 6) using the above parameterizations of U0(p) and Usym(p) is

plotted over a density range of 0 S p/pO g 3 for the cases 6 = 0, 0.2, and 0.4. It is

clear from figure 3.6 that as the isospin asymmetry 6 increases, the density of minimum

energy per nucleon decreases appreciably. It is easily verified that the densities of

minimum energy per nucleon for the cases 6 = 0, 0.2, and 0.4 are approximately

p0, 0.9/)0, and 0.7p0. Thus we expect simulations that use this EOS to achieve lower

maximum densities which can significantly impact the weak reaction rates that we

expect the bounce and explosion mechanisms to depend upon.

Again we stress that the inclusion of this potential is only to crudely probe the

isospin asymmetry dependence of the collapse dynamics by comparing the results
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Figure 3.6: The lowest order expansion of U (p, 6) plotted over the density range

0 S p/pO S 3 for the cases 6 = 0, 0.2, and 0.4.

obtained using it to the results of calculations that used the isospin symmetric poten-

tials. It is only a step in the direction of incorporating an accurate isospin-dependent

mean field nucleon potential. To do so entirely would require major advances in the

nuclear EOS field itself as well as moving away from the T = 0 limit by using momen-

tum/temperature dependent mean field nucleon potential tables. It should be noted

however that in principle arbitrarily complex potentials can be included in our model

as we have explicit knowledge of nuclear composition everywhere in the core.

The mean field force exerted on a nucleon is taken to be minus the gradient of

the mean field nucleon potential U. The mean field force acting on the nucleons

represented by a matter test particle is taken to be the mean field force that would

act on a nucleon sitting at its centroid times the average number of nucleons a matter

test particle represents. This number is given by the mass of a matter test particle
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divided by the mass of the neutron. This prescription allows to avoid consideration

of matter test particle size and shape. Recall that in sections 3.9.1 and 3.9.2 it was

stated that the Up and 677 distributions are known. Thus the spatial gradient of U

is most efficiently computed using the chain rule

.. aU .. aU ..
VU _ 795% + Eva (3.22)

where the second term in the above appears only when an isospin-dependent potential

is used and U6 is readily computed using U7).

3.10.3 Electron Pressure

During a core collapse supernova, at sub-nuclear mass densities, the main force re-

sponsible for resisting gravitational collapse is generated by the electron gas pressure

[18]. Initially the electron gas can be assumed to be approximately degenerate, but

as the collapse ensues the degeneracy condition is eventually lifted as electrons are

“up-scattered” by increasingly energetic neutrinos [62]. Thus the ability to calcu-

late the electron gas pressure at finite temperatures is a critical requirement for any

simulation that follows the collapse through the explosion phase. While matter test

particles only explicitly represent nuclei and free baryons, the assumption of mat-

ter charge neutrality requires that they implicitly represent electrons as well. It is

through these implicitly represented electrons that matter test particles feel the force

exerted by the surrounding electron gas.

From elementary hydrodynamics [128] it is known that the force per unit volume

acting on an element of fluid by the fluid surrounding it is given by

FV = —VP (3.23)



where P is the fluid pressure at the point the fluid element is centered about. If the

fluid element has a volume V and contains N particles, the average force exerted on

a particle in the fluid element is given by

.. 1 ..

Fave = —_T—I,.VP (3.24)

where n = N/V is the number density of particles in the fluid element. Thus knowl-

edge of the number density and the pressure distributions of the electron gas is suf-

ficient to determine the average force exerted on an electron by those surrounding

it at any point of interest. The force a given matter test particle experiences as a

result of interactions with the electron gas surrounding it is taken to be the average

force an electron at its centroid would be subject to times the number of electrons

it implicitly represents. As stated in sections 3.9.1 and 3.9.2 the density and elec-

tron fraction distributions are explicitly tracked throughout the core at all times and

thus the electron number density distribution is easily calculated. The determination

of the pressure distribution at finite temperatures is more complicated and requires

further consideration.

The exact general expression for the pressure exerted by an electron gas with num-

ber density n and temperature T is a non-analytic integral that required numerical

evaluation [113]. To accurately evaluate these integrals or any of their derivatives

dynamically would be extremely wasteful. Instead we utilize tables. To make use

of the fact that the UT distribution is known and that 671. can easily be calculated

anywhere using other known distributions, we employ the chain rule to evaluate the

spatial gradient of the pressure.

- 8P .. 6P a
VP(n,T) _ (‘37):rvn + (fileT (3.25)
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By tabulating (6P/8n)T and (8P/8T)n over a range of 12’s and T’s relevant to core

collapse supernova, we can linearly interpolate these derivatives at arbitrary n’s and

TS and thereby ensure that 6P can be calculated anywhere. A detailed discussion

of the calculation and tabulation of the electron gas pressure derivatives is presented

in sections 4.1.2 and 4.1.3. Here we note that these tabulated values are calculated

using the fully relativistic formalism.

3.10.4 Matter Test Particle Scattering

All of the matter represented by matter test particles exists in the hydro limit. There—

fore the average effects of elastic two-body collisions involving free baryons and/or

nuclei can easily be taken into account by modeling elastic two—body matter test par-

ticle scattering. This is simple to implement, so long as we know which matter test

particles are close to one another. To determine this, we divide the cubical volume

that initially inscribes the core into identical cubical scattering grid cells. This scat-

tering grid is static and usually contains approximately 200 X 200 X 200 cells with side

lengths of approximately 10 km. This large number of cells is required to restrict the

spatial separation between matter test particles selected for scattering to a physically

reasonable limit. The matter test particles are organized into these grid cells in each

time step using the techniques outlined in section 3.8.2. Low matter test particle

occupancy, is not a concern during the infall phase as the effects the scattering of

matter test particles have on the collapse dynamics will only be important in the

later stages of the collapse in grid cells containing many matter test particles.

At the beginning of each time step, in each cell of the scattering grid containing
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some number of matter test particles k: > 1, a modified Direct Simulation Monte

Carlo technique randomly selects k matter test particle scattering pairs from the cell

for elastic scattering. Once a matter test particle pair has been selected, we boost into

their center of mass (C-O-M) frame and randomize their C-O—M frame momenta. This

is schematically depicted in figure 3.7. All scatterings are modeled using relativistic

El ti -_as c p

 
cm frame

Figure 3.7: Two-body elastic scattering is modeled by randomly repositioning the

C—O—M frame momentum vectors to opposite positions on the surface of the momen-

tum sphere defined by their C-O-M frame momentum.

kinematics. A similar approach was previously used in the simulation of heavy ion

collisions [57]. For simulations that allow free baryons to be captured by nuclei,

fusion is modeled during the matter test particle scattering process. The algorithm

used to model the fusion of free baryons and nuclei is sufficiently complicated that

it is explained separately in section 3.18. Weak reactions are not modeled during

matter test particle collisions. They are modeled using different algorithms discussed
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in section 3.11.

3.11 Neutrino Test Particle Production and

Propagation

The weak processes of critical importance to the collapse and post-bounce evolution

of a core collapse supernova are [29, 59, 129, 130, 131, 132]

p+e_

(A,Z)+e—

u+e—

V+N

1/+(A,Z)

l
l

n+1/e

(A,Z—l)+l/e

u+e_

V+N

u+(A,Z)

p+176

(A,Z+1)+z7e

N+N+V+z7

u+17

(A,Z)+z/+17

u+(A,Z)*

”WWW

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

where a nucleus is symbolized by its atomic mass number A and nuclear charge Z,

N represents a free proton or neutron, and U represents a neutrino or antineutrino of

any flavor. Let us now review the roles these reactions play in the generally accepted

picture of the collapse [1].

During the infall phase, the elastic scattering of neutrinos and nuclei (3.30) is
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mainly responsible for the trapping as its channel abundance dominates those of the

free baryons and its cross section are significantly larger than the neutrino capture

by nuclei cross sections [68]. Shortly after trapping, the neutrinos are thermalized by

energy downscattering, experienced mainly through collisions with electrons (3.28)

whose phase space restrictions favor this process. Reactions (3.26) and (3.27) are

also important during the infall phase and after, as they control the neutronization

of the matter and thereby significantly influence the collapse dynamics.

In the postbounce phase, when free baryon abundances have increased substan-

tially, it is neutrino—nucleon scattering (3.29) that provides the main neutrino opacity.

Lepton capture by nucelons (3.28) and (3.31) are now responsible for the dominant

creation and absorption of electron flavor neutrinos. The dominant source of of u and

7' production is nucleon-nucleon bremsstrahlung [133, 134] (3.33) and V3175 annihi-

lation [135, 136, 137] (3.37). Electron-positron annihilation (3.34) is a subdominant

source for p and '7' neutrinos. Reactions (3.32), (3.35), and (3.36) have not yet been

widely implemented in numerical models so the role that they play is still not clear.

We certainly do not expect all of the nuclei to remain in their ground states through-

out the collapse and explosion, so processes (3.35) and (3.36) must occur. Similarly

if positrons are present, reaction (3.32) must occur as well.

Since our simulation is an attempt to model the dynamics of a core during a

core collapse supernova with a totally new approach, it is sensible to proceed incre—

mentally. Therefore instead of trying to implement all of the above weak reaction

simultaneously, we first incorporate those thought to be important during the infall

phase and bounce. We do this with the intent of studying the results generated by

calculations using the limited infall and bounce weak reaction network and proceeding

with the integration of the rest of the above weak reactions once it has been deter-

mined that these results are valid. This is the current status of the code. As such

only weak reactions (3.26), (3.27), (3.28), (3.29), and (3.30) are have been included
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so far. Our code does not yet model the presence of positrons, p or 7' neutrinos,

anti-neutrinos, or excited nuclei. Rates for many of the processes involving positrons,

p and 7' neutrinos, and anti-neutrinos exist [68], and it is clear how to include them

in our model. Additionally, our model is uniquely poised to accurately simulate the

presence of excited nuclei since it explicitly propagates an ensemble of nuclei. We

look forward to investigating this topic further.

Having established what weak reactions we currently model and our motivation

for temporarily restricting our weak reaction network, we may now proceed with the

descriptions of the specific algorithms used to model these weak reactions. Before

delving into the individual considerations of these algorithms, we make note of a

few characteristics that they all possess. All weak reaction algorithms make use of

tabulated average particle energies and some make use of tabulated average neutrino—

matter interactions cross sections as well. This was done for two main reasons. First,

it circumvents the need to repetitiously randomly sample the thermal energy distribu—

tions of nuclei, free baryons, and electrons during the simulation, that would otherwise

slow the code down. Second, it also allows us to model the phase space restrictions

of average final electron energies and average cross sections of neutrino-matter inter-

actions involving a final state electron that is both faster and more accurate than

dynamically testing each potential weak reaction that is sensitive to these restrictions

for Pauli blocking. Additionally, all weak reaction are modeled in the frame in which

LTE is assumed. The origin of this frame is defined to move with the average 3 of

matter at the site of the reaction. Therefore it is necessary to boost into and/or out

of this frame when modeling weak reactions of any kind.
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3.12 Neutrino Test Particle Production

Since we do not explicitly simulate the presence of electrons, we use electron capture

rate tables to model neutrino test particle production. Our input needs in this regard

exceed those of other simulations since we need electron capture rates for all nuclei

from the proton drip line to the neutrino drip line for all A S 60. As previously

mentioned, most standard hydrodynamic supernova simulations only track the abun-

dances of free baryon, possibly a particles, and an ”average heavy nucleus” [16, 115].

Since this “average heavy nucleus” is generally not a drip line nucleus and its A value

does not drop down into the low single digits, most electron capture rate tables are

confined to nuclei near the valley of )6 stability and, with the exception of free protons,

usually have an A 2 20 [56]. Therefore, until more complete tables become readily

available, we are forced to extrapolate the rates from whatever table we use to the

drip lines and to low A values.

Currently the source for electron capture rates use the Fuller-Fowler-Newman

(FFN) table [56]. More recent calculations of weak reaction rates using new shell

models of the distribution of Gamow—Teller strength have resulted in an improved

and often reduced estimate of its strength compared to those the FFN calculations

yielded using extrapolations of the known experimental rates and a simple single-

state representation of this resonance [138]. Thus one could make the argument that

we should not use the FFN rates [58]. However the rates calculated more recently

using shell model that we might use instead of the FFN rates can be off by orders of

magnitude compared to the experimentally measured values in some instances [66].

Thus given the uncertainty with the calculated rates, our need to extrapolate rates

from any table we use to many nuclei, and the additional uncertainty associated with

these extrapolated rates, no table can suit our needs perfectly. Therefore, we take the

electron capture rates from the FFN table, extrapolate them to the nuclei we need
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them at, and compare the results of calculations preformed with the tabulated FFN

rates and/or the extrapolated FFN rates altered in various ways. In this way, we

can see how the collapse and explosion mechanisms depends on the electron capture

rates. The specific ways in which we change the capture rates are explained in section

5.1. For the remainder of this discussions, it suflices. to note that the electron capture

rates for free protons and all 385 nuclei included in our simulation are tabulated over

a range of densities, electron fractions, and temperatures relevant to] a core collapse

supernova.

3.12.1 Testing For Neutrino Test Particle Creation

To model neutrino test particle production in a given volume, spherical shell or grid

cell, for each species of nucleus (A, Z) present in that volume, we do the following.

First we interpolate the volumetric electron capture rate per nucleus 7‘(A, Z) of the

nucleus being considered from the closest density, electron fraction, and temperature

lattice sites at which it is tabulated. Then we calculate the number of nuclei (A,Z)

present in the volume N(A, Z). Then we compute

N(A,Z)-r(A,Z)-dt-V=m+n (3.38)

where dt is the time step size and V is the spherical shell or grid cell volume, m is

an integer, and n is a number in the set [0,1). We interpret n as the probability

that m + 1 neutrino test particles are produced as the result of electron captures by

the nucleus (A,Z) and 1 — n as the probability that m neutrino test particles are

produced. A simple Monte Carlo algorithm decides between the two possibilities. By

repeating this process for each species of nucleus present in each volume of the core,

we model the capture of electrons by all of the nuclei present in our simulation.

We note here in passing that for multi-proccesor simulations that model neutrino
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in the three-dimensional distribution grid, we model neutrino production here first

in all of the cells that contain enough matter test particles. Then when we model

neutrino test particle production in the spherical shells that contain distribution grid

cells in which this has already been modeled, we subtract the volume of these cells

from the shell volumes. This way we avoid double considerations of neutrino test

particle production in the distribution grid cells.

3.12.2 Creating a Neutrino Test Particle

To create a neutrino test particle in a volume, spherical shell or grid cell, with electron

number density n and temperature T produced when nuclei (A, Z) capture electrons,

we proceed in the following way. First we interpolate EV(A, Z, n, T), the average LTE

frame energy of the neutrino produced when an electron is captured by the nucleus

(A, Z) from a gas with number density n and temperature T from table of such

energies discussed in section 5.2.1. This energy times the number of neutrinos that

are represented by a neutrino test particle determine the magnitude of the neutrino

test particle’s LTE frame momentum vector. This LTE frame momentum vector

is oriented randomly. Then the neutrino test particle is randomly placed in the

volume. The average 6 of matter is interpolated at that location and the neutrino

test particle’s momentum vector is boosted into the lab frame. This weak test particle

reaction changes the local nuclear properties and temperature of matter. The way that

these changes are modeled are discussed in sections 3.14 and 3.16 respectively. Test

particle momentum is not conserved in individual neutrino test particle productions.

The total test particle momentum however can be expected to be conserved relatively

well since such a large number of neutrino test particles are produced with randomly

oriented momentum vectors. Therefore the neutrino test particle momentum vectors

will tend to add to zero.
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3.13 Neutrino Test Particle Matter Interactions

Since we explicitly model the propagation of neutrino test particles, unlike when we

model the production of neutrinos, we do not need to defer to rate tables when we

model neutrino-matter interactions. Instead we employ probabilistic algorithms that

determine if and when the neutrinos represented by a neutrino test particle interact

with matter. The general prescription for modeling the propagation of a neutrino test

particle during a given time step is as follows. A beam attenuation argument is used to

determine if the neutrino test particle is captured in the volume containing it. If it is,

we model the capture of the neutrinos it represents. If it is not captured, we proceed

with its propagation. To determine if the neutrino test particle elastically scatters

with matter in the volume containing it, a beam attenuation argument is again used.

If it does, we model the elastic scattering of the neutrinos the test particle represents.

We test for neutrino-matter interactions between the neutrinos represented by the

neutrino test particle during the given time step by repeating this process for every

volume the neutrino passes through during the given time step. In the sections below,

we individually describe how the aforementioned processes are modeled. However

before immediately proceeding into the discussion of the algorithmic implementation

of these processes, a brief discussion about the impact that neutrino oscillations have

on the flow of neutrinos in the core is warranted.

3.13.1 Neutrino Oscillations in the Core

The effect of coherent forward scattering must be taken into account when considering

the oscillations of neutrinos traveling through matter [139]. In particular one must

consider the interaction energy arising from W-exchange—induced electron neutrino

forward scattering from ambient electrons when calculating transition probabilities

[140]. If the mixing of electron neutrinos and tauon neutrinos is neglected, the prob-
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ability of an electron neutrino with wavenumber k that has propagated a distance L

through matter with electron number density 718 oscillating into the muon neutrino

state is given by [139]

P1_,2(k, L, 716) = sin2(2612) (%)2 sin2 (mi—Ln?) (3.39)

where 1 = 149, 2 = u“, 012 is the so-called mixing angle for electron and muon

neutrinos, L is the distance the neutrino has traveled since its creation, and [U(k)

and lm(k,ne) are the characteristic neutrino oscillation lengths of a neutrino with

wavenumber k in vacuum and matter with electron number density ne respectively.

These characteristic oscillation lengths are given by [139]

 

  

 

 

4ah2k

lva) [771% _ mglc2 (3.40)

2 -1/2

lm(k,ne) = 111(k) 1 + (lg/(5:3)) - 2COS(2912) (lg/(5:3)] (3.41)

with 10(ne) defined by

100...) = 3;: (3.42)

where GF is the Fermi coupling constant.

We assume that formula (3.39) is applicable, since all of our neutrino are initially

electron neutrinos and 613 is sufficiently small compared to 612 that the mixing

of electron and tauon neutrinos can be neglected [141]. This simplifies our consid-

erations significantly as it spares us from have to use the much more complicated

three-neutrino oscillation formula [140].

Now let us consider the general behavior of the transition probability for different

values of the ratio [U(k)/lo(ne). In the limit lv(k)/l0(ne) << 1, equation (3.41) gives

lm(k,ne) % lv(k) and if we insert this result into equation (3.39) we recover the
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vacuum oscillation transition probability [140]

 

L

P1__,2(k, L,ne) it: P1_,2(k, L) : sin2(2012) Sin2 ([7110) (3.43)

U

which has a transition probability amplitude sin2(2612) = 0.8597 [140, 141, 142].

In the limit lv(k)/l0(ne) >> 1, equation (3.41) gives lm(k,ne) z [0(ne) and the

transition probability becomes

  P1_,2(k, L,ne) z sin2(2012) (’0("6))2sin2 ( 107(1)) (344)

and therefore it is clear that by our assumption the transition probability is strongly

suppressed. Since [U(k) or k and [0(ne) or 1/ne, as k and ne become sufliciently

large, we expect the transition probability amplitude to be significantly reduced.

This feature is of particular interest as it implies that high energy neutrinos pro-

duced in regions of the core near or above nuclear matter density have much smaller

probability transition amplitudes than lower energy neutrinos produced in regions of

the core with lower densities. The transition probability amplitudes for intermediate

values of lv(k) /10(ne) are plotted in figure 3.8. To gain a quantitative sense of the

extent to which transition probability amplitudes suppression effects the oscillations

of neutrinos propagating through the core being modeled, we numerically evaluate

formulae (3.40) through (3.42) for the case of 0.1, 1, 10, and 100 MeV neutrinos trav-

eling through matter with electron number densities ranging from 1037 m—3 to 1044

—3
m , the minimum and maximum values respectively expected to be encountered in

the core. To do this, we make use of [m% — mglc4 = 8 x 10"5 eV2 [140, 142]. The

results are displayed in figure 3.9.

It is clear from an examination of figure 3.9 that transition probability amplitudes

are already strongly suppressed for low energy neutrinos ~ 0.1 MeV in the most diffuse
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Figure 3.8: Neutrino transition probability amplitudes for the P1__,2 transition plot-

ted as a function of lv(k)/l0(ne) over the range 0.1 S lv(k)/lo(ne) S 10.

regions of the core and for larger neutrino energies and electron number densities

this suppression is enhanced. Therefore even though our model is can easily model

neutrino oscillations, we do not, since we can safely neglect the effects of neutrino

oscillations in the core. That is not to say that no neutrinos oscillations occur in the

core since a 10_7 or even smaller chance of an oscillation occurring is not irrelevant

in a system containing ~ 1057 neutrinos. However there is no need to represent any

of these neutrinos with test particles. Their relative abundance is simply too low.

Outside of the core, the transition probability amplitude can be much larger and

any future simulations that attempt to model portions of the collapsing star outside

of the core can easily model neutrino oscillations. We also note that if instead of the

two-neutrino oscillation V5 S V“, we should consider quasi-two-neutrino oscillations

118 S 113;, where 113: is some admixture of V” and V7- that is mostly 11,”, is possibly
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Figure 3. 9: Plot of the neutrino transition probability amplitudes for the P1_,2

transition for 0.1, 1, 10, and 100 MeV neutrin4os4propagating through matter with

electron densities1n the range 1037 m—3 to 1044

immaterial. This is the case since a formula just like (3.39) can be derived with a

slightly different mixing angle 611. and mass energy square difference [771% — mg|c4

for such quasi-two-neutrino oscillations [140]. The same amplitude suppression argu-

ments would apply to these hybrid state oscillations as well.

3.13.2 Testing for Neutrino-Matter Interactions

For the purposes of calculating the capture and elastic scattering probabilities of the

co—moving neutrinos represented by a neutrino test particle, simple beam attenuation

arguments are used. The significant advantage that this approach has over tradi-

tional hydrodynamic treatments of neutrino-matter interactions is that it is equally

applicable in all regions of the core. No problematic assumption about the behavior
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of neutrinos between the limits of trapping and free streaming are required.

To see how these beam arguments are constructed, consider the following. Let

a beam of co—moving identical neutrinos (a neutrino test particle) pass through a

differential slab of matter with finite cross sectional area A and differential thickness

dx centered about a point located a distance 2: from the beam’s starting point. Let 5.,-

and ”i be an average neutrino-matter cross section and number density for particle

2' in this differential slab respectively. In this scenario, it is clear from elementary

geometric probability that the probability P that one of the neutrinos in the beam

interacts with the matter in the differential slab is given by

P = Z 6,-(Lr)nz-(:r) A Adm
 

(3.45)

Now let N be the number of neutrinos in a “slice” of the beam before it enters

the differential slab of matter. The number of neutrinos removed from the beam

of identical neutrinos as it passes through the slab, those that have interacted with

matter in it, dN is given by

dN -N-P

da:

From this we conclude that

a: :r’

N(:i:) = N0 exp (—/0 ACE—$0) (3.47)

From this we can calculate the probability that a neutrino will interact with matter
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after traveling a distance at through it Pings) by computing

Pintfl‘) = [_VQLI'éV—(“Q

:r dz’

= 1—exp (-—/0 WT) (3.48)

It is the above formula that is interpreted as the probability that the neutrinos repre-

sented by a neutrino test particle interact with the matter it encounters as it moves

through a volume, spherical shell or grid cell. The integral is numerically evaluated

using the sub-rectangle approximation. For single processor simulations that only

make use of the spherical shells, it is permissible to use only one sub—rectange when

approximating the integral in equation (3.48). This is so for the following reasons.

In the early stages of the collapse, before the core has contracted much, the value

of A is well approximated by a constant in a spherical shell. Thus one sub-rectangle

is sufficient. At later stages in the collapse, in regions of the core the core is highly

contracted, while A may very greatly over a radial interval of c - dt ~ 3 km, because

the shells are defined by matter test particle occupancy, their radial thickness will

be quite small. Therefore, the value of A can still be taken to be roughly constant

in a given spherical shell. No such approximations can be made for multi-processor

simulations that make use of the three-dimensional grid cells as they are fixed in space

and have 1 km side lengths, over which A may vary significantly during the late stages

of the collapse.

Once this integral has been evaluated using the relevant average capture or elas-

tic scattering cross sections described in sections 3.13.3 and 3.13.4, a simple Monte

Carlo algorithm uses it to determine if the neutrinos represented by a neutrino test

particle are captured or scatter elastically with matter in the volume containing it.

The particle number densities 712' are easily calculated since we know the density,

electron fraction, as well as how many matter test particles in a given volume repre-
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sent what nuclei and free baryons. The average neutrino-matter cross sections 6.,- are

interpolated from tables discussed in detail in chapter 5.

3.13.3 Modeling Neutrino Test Particle Captures

Once it has been decided that the neutrinos represented by a neutrino test particle are

captured by nuclei or free neutrons in the volume containing it, a capture channel must

be selected. This is done by generating relative capture channel selection probabilities.

These relative channel selection probabilities are calculated by weighting the average

capture cross sections that were interpolated from a table for the purpose of evaluating

the interaction probability (3.48) by the number of matter test particles in the volume

that represent the nuclei and free neutrons that correspond to each capture channel.

The probability of selecting a capture with index i is therefore given by

N." .

P(2') — 202— —— 3.49

27' N151 ( ’

where here 6k and Nk are the average capture cross section and number of matter test

particles in the volume that represent the nuclei or free neutrons that correspond to

capture channel It respectively. Once these relative probabilities have been calculated,

a Monte Carlo algorithm uses them to select a capture channel. This weak test particle

reaction changes the local nuclear properties and temperature of matter. The way

that these changes are modeled are discussed in sections 3.14 and 3.16 respectively.

After the capture of the neutrinos represented by a neutrino test particle has been

modeled, the memory allocated to it for the purpose of storing the information needed

to model its propagation is de—allocated so that it can be used by another neutrino

test particle created at a later time. As was the case with neutrino test particle

production, test particle momentum is not conserved during individual neutrino test

particle captures. However we do expect the average test particle momentum to be
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conserved since many neutrino test particles with different momentum vectors will be

captured this way so the net effect will tend to cancel.

3.13.4 Modeling Elastic Neutrino-Matter Interactions

If it has been determined that the neutrinos represented by a neutrino test parti-

cle elastically scatter with matter in the volume containing it, an elastic scattering

channel must be selected. This is done in an identical fashion to the capture case

considered in section 3.13.3. The probability of selecting an elastic scatting channel

with index 2' is still given by formula (3.49). The only difference is that now, an

electron channel is present and 5k and Nk are the average elastic scattering cross

section and relative elastic scatting channel abundances that correspond to elastic

scattering channel It respectively. For free nuclear and free baryon channels, Nk is

still the number of matter test particles in the volume that represent the nuclei or free

baryons with elastic scattering index k. For the electron channel, charge neutrality

requires that Nk = Zj Z,Nj where N,- is the number of matter test particles rep-

resenting free protons or nuclei with charge Z in the volume with elastic scattering

index 1'. These 5k’s are interpolated from a table, discussed in section 5.2.4, that

contain the average cross section of elastic neutrino scattering off free baryons and

all the nuclei included in our simulation calculated at selected incident LTE frame

neutrino energies and matter temperatures. As before a Monte Carlo algorithm uses

these channel selection probabilities to select an elastic scattering channel.

Once an elastic scattering channel has been selected, we model the elastic scat-

tering of the neutrino test particle in the following way. Here our considerations are

divided into two categories: elastic scattering off of nuclei and free baryons and elastic

scattering off of electrons. For the former case, we first calculate temperature at the

centroid coordinates of the neutrino test particle and then we calculate the energy of

the co-moving neutrinos represented by the neutrino test particle in the LTE frame
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defined by the average 5” of matter at the centroid coordinates of the neutrino test

particle. Then we interpolate the average final state LTE frame energy of a neutrino

with the given incident LTE frame energy that have elastically scattered by the se-

lected nucleus of free baryon in a gas at the given temperature from a table of such

energies. This table is rigorously described in section 5.2.4. This final LTE frame

neutrino energy gives us the magnitude of the final LTE frame 3-momenutm vector.

This vector is then randomly oriented in the LTE fame and then boosted back into

the lab frame where it serves as the new momentum vector of the co—moving neutrinos

represented by the elastically scattered neutrino test particle.

If the selected elastic channel is the electron channel, we proceed in a similar

fashion to the nuclear and free baryon case. The only difference is that since there

is a final state electron, electron phase space restrictions come into play. Therefore

the final state electron energies of neutrinos elastically scattered by electrons are

tabulated over a range of electron gas temperatures, number densities, and incident

LTE frame neutrino energies. So it is necessary to also compute the electron number

density at the centroid coordinates of the neutrino test particle.

Elastic neutrino-matter interactions do not change the local nuclear properties of

matter. They can however alter the local temperature of matter. A detailed expla-

nation of how changes in the temperature distribution induced by elastic neutrino-

matter interactions are calculated for some of these interactions and in which cases

they are modeled is given in section 3.16. Like the neutrino test particle production

and capture processes, test particle momentum is not conserved during individual

neutrino test particle elastic scatterings. However we do expect the average test par-

ticle momentum to be conserved since many neutrino test particles will have their

momentum vector randomly re-oreiented so the net effect will tend to cancel.
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3.13.5 Neutrino Test Particle Movement

Any neutrino test particle that survives the modeling of neutrino-matter interactions

described above is moved to its new location determined by the number and type of

elastic interactions it has taken part in during the given time step, or lack there of.

In the free streaming case, the neutrino test particle’s movement during the given

time step is simply determined by A5 = 73. c - dt, where 71 is the unit momentum

vector it had at the beginning of the given time step and dt is again the time step

size. If the neutrino test particle passes through multiple volumes, spherical shells

and/or grid cells, during a given time step and scatters elastically with matter in N

of these volumes, it will have has N + 1 momentum vectors during the given time

step. Consequently, its movement during the given time step is determined by

N+1

A53: 2 fii C- 61:7; (3.50)

i=1

h unit momentum vector the neutrino test particle had betweenwhere 71,; is the it

its (N — 1)th and NM elastic scatterings and 6t,- is the time that elapsed between

these scatterings. If the neutrino test particle’s position vector at the beginning of

the given time step was i", then its final position vector at the end of the given time

step is given by :73" = f + A27. Whenever it is the case that 3:, > Reore, where the

core’s radius Reore is taken to be the outer radius of the outermost spherical shell,

the neutrino test particle has escaped the core. Once a neutrino test particle has es-

caped the core, the memory allocated to it for the purpose of storing the information

needed to model its propagation is de-allocated so that it can be used by another

neutrino test particle created at a later time.
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3.14 Updating Matter Test Particle Nuclear

Properties

Every time a weak test particle reaction that changes the nuclear properties of matter

is modeled in a volume, spherical shell or grid cell, we must do two things. First

we must we locate a matter test particle with the appropriate nuclear properties and

change them in a way that reflects the weak reaction that was modeled. Then we must

rearrange the arrays that group the matter test particles in the volume by the nuclei

and/or free baryons that they represent described in section 3.8.3 so that matter test

particles in this volume with specific nuclear properties can still be efficiently located

when modeling additional weak reactions during the current time step. The latter

task'is a straightforward one and shall not be commented on further. The former

task can be complicated and requires further consideration.

Updating the nuclear properties a of matter test particles that represent nuclei

that have captured electrons or neutrinos is quite simple as long as the nuclei were

not originally on the neutron or proton drip line respectively. All that is required

in this case de—incrementing or incrementing the nuclear charge of the nuclei the

matter test particle represents. Now consider the case of a matter test particle that

represents nuclei sitting on the neutron drip line capturing electrons. In this case

simply de—incrementing the nuclear charge of the nuclei would result in matter test

particles that represent highly unstable nuclei existing only briefly over the neutron

drip line. Instead we model the emission of the number of free neutrons required to

make the final state nuclei one of the nuclei included in our mass table [109]. This

is depicted schematically in figure 3.10. In figure 3.10, we see the neutron drip line

nucleus 458 capturing an electron and emitting 3 neutrons to become the nucleus

42F, the nucleus with the largest A g 45 with Z = 15 included in our table of nuclei.

It is through processes like this that matter test particle can acquire free neutron
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Figure 3.10: Schematic depiction of the neutron drip line nucleus 458 capturing an

electron and emitting 3 neutrons to become a 42F nucleus, the nucleus with the

largest A S 45 with Z = 15 currently included in our table of nuclei.

components and why they come in multiples of the number of nuclei represented by

matter test particles. The capture of a neutrino test particle by nuclei represented

by a matter test particle is handled in a completely analogous way when the nuclei

sit on the proton drip line. In this case, free protons are emitted to obtain one of

the nuclei included in our table and a matter test particle acquires one or more free

proton components in the process that also come in multiples of the number of nuclei

represented by matter test particles. The free baryon components of a matter test

particle stream with the nuclei it represents. All matter represented by a matter test

particle has the same temperature.

3.15 Updating Matter Test Particle Temperatures

The ability to realistically model the changes in the temperature distribution is of

critically importance for any simulation that follows the a core collapse supernova

82



through the explosion phase. Not only do the forces generated by the electron gas

pressure and nuclear EOS generally depend upon the local temperature [113, 119, 121,

122], so do the weak reactions that can change the properties of the local electron

and nuclear gases that determine the magnitude and direction of the forces they exert

[56, 58, 62, 68].

Matter test particle’s temperature can be changed by two processes. One is if the

electrons it implicitly represents are in a part of the electron gas where the tempera-

ture is locally changed by weak interactions [58, 62]. The other possibility is that its

temperature is changed due to exposure to nearby matter test particles that represent

matter at different temperatures. Let us explore the former possibility first.

3.16 Weak Interaction Induced Temperature

Changes

Recall from section 3.11 that the weak processes currently modeled in our simulation

are

(A, Z) + e_ S (A, Z — 1) + V3 (3.51)

1/ + e_ S: u + e" (3.52)

1x+ (A,Z) ‘3 11+ (A,Z) (3.53)

where a free baryon or nucleus is symbolized by its atomic mass number A and

nuclear charge Z and 11 represents a electron or muon neutrino. Note that unlike in

section 3.11 where separate notation was used to symbolize nuclei and free baryons,

(A, Z) and N respectively, here it is much more convenient to notationally lump them

together and symbolize them both as (A, Z). In principle, all of these interactions

influence the matter temperature, however not all of the temperature changes they
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induce are explicitly calculated. The processes depicted in equations (3.51) and (3.53)

do in fact result in changes in the kinetic energy density of the local gas of (A, Z) and

(A, Z—1) particles that can induce changes in its temperature. However, with minimal

sacrifices in accuracy, the effects of the recoil of these particles can be neglected

during these interactions. In this approximation, there is no change in the kinetic

energy density of the gas of (A, Z) and (A, Z — 1) particles and therefore no change

in its temperature either. Therefore we only explicitly calculate the changes in the

temperature of the local electron gas induced during the processes given in equations

(3.51) and (3.52) and neglect the changes in the matter temperature that result from

elastic interaction given in equation (3.53). So for the purpose of calculating weak

reaction induces temperature changes, we consider only the changes in the electron

gas temperature that occur as a result of processes (3.51) and (3.52). Turing our

attention to the former processes first, consider the following arguments.

Let UV(n, T) be the kinetic energy density of an element of an electron gas with

number density n and temperature T. Each time an electron is removed from or

added to the gas element via electron or neutrino capture, UV is changed by some

small amount 6UV. This process induces a small change in the number density 671

and, depending on the energy of the electron that was removed or added, a small

change in the temperature 6T. Thus, to first-order, we may write

8U a
5Uv = (3%)T6n + (‘aU_f/‘)n5T (3.54)

From this equation, it is clear that if one has knowledge of 6UV, 6n, and the partial

derivatives (BUV/8n)T and (EUV/8T)n, the temperature changes 6T can be solved

for. The relevancy of the above discussion to our test particle model can be elucidated

in the following way.

For the time being, let us assume that the partial derivatives of UV with respect
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to n and T can be determined at all points in the core. An in depth description of

the specific way in which the partial derivatives of UV with respect to n and T are

calculated is presented in section 4 where we address the calculation and tabulation

of statistical quantities of interest. Thus, to solve equation (3.54) for 6T, all that we

must directly determine with test particles are the quantities 6UV and 6n.

If a neutrino test particle is to be created or captured in a given volume, spherical

shell or grid cell, the electron number density of the gas in that volume is changed

by 6n = IFNV/V respectively, where NV is the number of neutrinos represented by

a neutrino test particle and V is the spherical shell or grid cell volume. Thus the

671 in equation (3.54) is readily calculated. If a neutrino test particle is created in a

spherical shell or grid cell with electron number density n and temperature T when

the nuclei or free protons (A, Z) capture electrons, the electron kinetic energy density

changes by 6UV = Eave(A, Z, n, T) 671., where Eave(A, Z, n, T) is the average kinetic

energy of an electron captured by the nucleus or free baryon (A, Z) from an electron

gas with number density n and temperature T and 671 < 0. This average energy

is interpolated from a table that is discussed in detail in chapter 5 where the weak

interaction tables used in our simulation are described.

Similarly if a neutrino test particle representing neutrinos with energy EV is cap-

tured in a spherical shell or grid cell, with electron number density n and temper-

ature T, by nuclei or free neutrons, the electron kinetic energy density changes by

6UV = Eave(A,Z,n,T,Ez/) - 671, where Eave(A,Z,n,T,E1/) is the average kinetic

energy of an electron produced when the nucleus or free neutron (A, Z), surrounded

by an electron gas with number density n and temperature T, captures a neutrino

with energy E; and 671 > 0. This average energy is interpolated from a table as well

that is thoroughly described in chapter 5. Therefore, since 6UV is also readily calcu-

lated when a neutrino test particle is created or captured during one of the processes

given in equation (3.51) in a spherical shell or grid cell, equation (3.54) is easily used
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to solve for the temperature change 6T in that volume induced by this test particle

process. Now we address how the temperature changes that result from the elastic

neutrino electron interactions depicted in equation (3.52) are calculated.

If a neutrino passing through an electron gas element elastically scatters with one

of the electrons in it, the kinetic energy density will generally change by some amount

6UV. Unlike the capture processes considered above, this process does not change 72..

Therefore 6UV must correspond to some small change in the gas element temperature

6T. Again working in the first-order limit, we write

6U
(SUV = (3%)” 6T (3.55)

When a neutrino test particle representing neutrinos with energy EV elastically scat-

ters with electrons in a volume, spherical shell or grid cell, with electron num-

ber density n and temperature T, the electron kinetic energy density changes by

6UV = Eave(n,T,E1/) ~NV/V, where Eave(n,T,E1/) is the average change in the

energy of an electron elastically scattered by a neutrino with an incident energy E,

in an electron gas with the given 71 and T and NV and V are again the number of

neutrinos represented by a neutrino test particle and the spherical shell or grid cell

volume. This average electron energy change is also interpolated off of a table that is

rigorously discussed in chapter 5. The ability to calculate 6UV in the case of neutrino

test particle electron elastic scattering in a spherical shell or grid cell allows equation

(3.55) to be used to solve for the temperature change 6T in that volume induced by

this weak test particle process.

Thus all temperature changes due to weak reactions currently included in our

model are accounted for. Each time a weak test particle reaction induces a tem-

perature change in a spherical shell or grid cell, the temperature in that volume is

updated. However the temperatures of the matter test particles contained in that
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volume are only updated once in a given time step after all of the weak reactions

have been modeled in it. It is assumed that the weak reaction induced temperature

change of the electron gas in a given volume is spread homogeneously over all of the

matter test particles contained in it.

3. 17 Heat Exhange

Intuitively one would expect that if a “hot” matter test particle found itself sur-

rounded by “cool” matter test particles, that the hotter test particle would warm up

the cooler ones as the cooler ones cool it off. In other words, the subsystem ought

to approach thermodynamic equilibrium in accordance with the zeroth law of ther-

modynamics. Let the average matter test particle temperature in a given volume,

spherical shell or grid cell, be Tave and let tmz'a: be the time it takes for the gas

in this volume to mix and achieve a state of thermodynamic equilibrium. Assume

that the 2th matter test particle is one of the matter test particles inside this volume

h
and has temperature Ti- To calculate the change in the it matter test particle’s

temperature due to exposure to the other matter test particles in this volume during

a time step At, we write

At

mix

 

ATz' mia: = (Tave " T') '
, (3.56)

where it is assumed that At/tmz'a: < 1. If this is somehow not the case, the ratio can

be replaced by unity. Notice that this simple expression meets qualitative expecta-

tions such as, relative to the local average temperature, comparatively hot matter test

particles cool off, comparatively cool matter test particles heat up, and this heating

or cooling towards equilibrium is directly proportional to the ratio of the exposure

time At and the mixing time tmicr' To implement this approach into our test particle
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model, we must calculate tmix-

We take tmz’x to be given by average time it takes a matter test particle to “cross”

the volume containing it, spherical shell or grid cell, as it moves along a straight

line. In a spherical shell, “crossing” the volume means moving a distance equal its

radial thickness Ar. Since the average radial matter test particle velocity 'Dr is'easily

calculated in each spherical shell, in the spherical shells we may define

_A:
tmz’a: [177"

(3.57)

In a three dimensional grid cell, “crossing” the volume means moving a distance equal

to its side length 6. Since the average matter test particle velocity vector 17am? is also

easily calculated in each grid cell, in the grid cells we may define

 

tmia: E I“ | (3.58)

Thus tmz’x is readily determined everywhere in the core. Once per time step, after

the core’s temperature distribution has been determined, equation (3.56) is used to

update each matter test particle’s temperature in a way that models heat exchange

with the other matter test particles contained in the same volume. In this way, mat-

ter test particles retain a “memory” of their exposure to test particles representing

matter at different temperatures.

3.18 Fusion

Like our weak reaction network, our nuclear interaction network is very much a work

in progress. Recall from section 2.1 that at temperatures above 7 x 109 K, interac-
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tions between all of the nuclei present, including the highly stable iron group nuclei,

that are intermediated by the strong and electromagnetic interactions are nearly in

equilibrium. Thus a full nuclear interaction network would have to model fusion,

photodisintegration, and possibly fragmentation simultaneously. We have developed

some techniques to model these processes, however their simultaneous implementa—

tion is not a trivial exercise. Instead, like the weak reaction network, we choose to

proceed incrementally and first implement a simple fusion algorithm. Unlike the weak

reaction network where we were able to first implemented the processes expected to

be dominant in the infall and bounce phases, all of the aforementioned nuclear reac-

tions are important at once. Thus no physically realistic data can be extracted from

simulations that only model one or two of them. Therefore simulations that make

use of the simple fusion algorithm described below can at present only be regarded

as preliminary test calculations.

For the purpose of conducting simple preliminary studies of the role that the fusion

of free baryons and “light” nuclei (A < 60) plays in a core collapse supernovae, we

have devised the following prescription. When we model the elastic scatting of matter

test particle pairs as described in section 3.10.4, we also allow the matter test particles

involved in each collision to capture some or all of the free baryons the other matter

test particle might represent so long as the final state nuclei are among the 385 nuclei

with A S 60 included in our simulation. For all nuclei (A, Z) such that (A + 1, Z) is

a nucleus we propagate, the cross section of neutron capture is typically quite large

(barns) [143]. Thus we always allow the nuclei represented by a matter test particle

to capture free neutrons represented by another test particle that has been selected

as its elastic scattering partner as long as the final state nuclei are among the 385

nuclei with A S 60 included in our simulation. Currently all that is done to model

this process is the incrementing of the atomic mass number of the nuclei represented

by the neutron capturing matter test particle and the de-incrementing of the free
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neutron number of the other matter test particle. Due to the Coulomb repulsion

between protons and nuclei, the free proton capture process is more complicated.

In our model, Coulomb barrier penetration is allowed when the nuclear rest frame

energy of the proton is greater than the so—called touching spheres potential given by

1.44 - Z

Utouch 5 MeV (3.59)

0.8+ 1.2-A1/3

 

where we took the proton radius to be 0.8 fm [144] and the radius of the nucleus

(A, Z) to be 1.2 - A1/3 fm [145]. To test for Coulomb barrier penetration in our

test particle picture, the following is done. For this purpose, we assume that the

matter represented by both matter test particles has the same temperature. This

temperature may be taken to be the temperature at the center of the scattering grid

cell containing the two test particles. With knowledge of the temperature of the gases

of free protons and nuclei, their LTE thermal energy distributions can be determined,

assuming that the gases are non-degenerate. However it is imperative that the relative

motion of these test particles is taken into account when we test for Coulomb barrier

penetration. We do this be defining the origins of LTE frames of the gases of free

protons and nuclei to be the centroid coordinates of the matter test particles that

represent them.

Armed with the knowledge of the energy distributions of the free protons and

nuclei in their respective LTE frames, one could sample these distributions, calculate

the relative 6 of the matter test particles, and with a few Lorentz boosts measure the

proton nuclear rest frame energy and test for Coulomb barrier penetration. However

to avoid the repetitious sampling of the energy distributions and to obtain better

statistics, we interpolate the probability P(A, Z, T, (3) that a proton will penetrate

the Coulomb barrier of the nucleus (A, Z) in a gas at temperature T with the given

relative LTE frame )8 from a table. This table is discussed thoroughly in section 5.3.
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A simple Monte Carlo algorithm determines if the Coulomb barrier is penetrated. If

it is, all that we currently do to model this process is the incrementing of the nuclear

charge and atomic mass number of the nuclei represented by the proton capturing

matter test particle and the de—incrementing of the free proton number of the other

matter test particle.

We note that this is a rather crude algorithm. In addition to not conserving energy,

it does not allow matter test particles that represent nuclei with A = 60 to capture

free baryons. Neither of these situations are indicative of inherent shortcomings with

our model. We know precisely how to incorporate energy conservation into our fusion

algorithm and allowing fusion to produce nuclei with A > 60 is also something that

we know how to do, only time restrictions prevented us from accomplished these tasks

before the results presented in this thesis were generated. Again we emphasis this

algorithm must work in concert with photodisintegration and possibly fragmentation

algorithms for the results to be realistic. This is discussed further in section 8.
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Chapter 4

Electron Gas Statistical Mechanics

Table

Here we describe the process of calculating and tabulating the partial derivatives of

the electron gas pressure and kinetic energy density with respect to electron number

density and temperature needed for the reasons explained in sections 3.10.3 and 3.16

respectively. We also explain the calculation and tabulation of the electron gas 5

parameter, where 5 E p/kT. This quantity is needed to generate the weak reaction

tables discussed in chapter 5. All of our considerations make use of the fully relativistic

formalism. When doing this, we rigorously derive any expressions not taken from

another source. We do not contend that all expression derived here are new results,

however since most treatment of statistical mechanics are confined to the simple

non-relativistic limit, a collection of all of the relativistic expressions we need to

use are not readily found. Thus we elected to derive such a collection of relativistic

expressions and present them as part of this thesis. All relativistic expressions derived

are demonstrated to converge with their well known non-relativisitc limits.

The statistical mechanical properties of the electron gas are tabulated logarithmi-

cally over a range of electron gas number densities and temperatures relevant to the
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collapsing iron core of our chosen progenitor [18]. We tabulate over a temperature

range of 107 K to 1013 K. The electron number density over which we tabulate is

determined by the minimum and maximum values obtained from densities in the set

[10-10p0, 10 p0], where p0 is nuclear matter density, and electron fractions from the

set [0.1, 1]. These are very safe ranges that we fully expect to exceed our needs.

We divide our considerations into three categories: low temperature, arbitrary

temperature, and high temperature. This is done because the low and high tempera-

ture limits are much easier to work in, so we use them where ever they are applicable.

We tabulate the exact arbitrary temperature expressions until they converge to within

one percent of the high and low temperature limits. After this point, we tabulate the

simple high or low temperature limit expressions.

4.1 Arbitrary Temperature Statistical Mechanics

From elementary statistical mechanics [113, 146], it is known that exact expressions

for many statistical properties of an ideal Fermi gas at an arbitrary temperature can

be written as indefinite integrals of functions proportional to the Fermi-Dirac function

given by

1

= exp(£ + E/kT) +1

 

f(E) (4.1)

where T is the temperature of the gas, 5 is related to the chemical potential p via

E —,u/kT, and E is the fermion kinetic energy. While the such integrals cannot

generally be analytically evaluated for arbitrary temperatures, if 5 and T are known,

they can be computed numerically [113, 146, 147].

The temperature of the non-degenerate matter and the density of the degenerate

matter in all phases of a core collapse supernova are such that the momentum dis-
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tribution of the electron gas cannot generally be assumed to be non-relativistic or

ultra—relativistic [18, 113]. We must therefore work with the fully relativistic formal-

ism when deriving the expressions used to determine the electron gas 5, pressure, and

kinetic energy density distributions. Since most considerations of this and related

topics found elsewhere are confined to the simpler non-relativistic limit, we rigor-

ously derive all of these expressions and demonstrate their convergence with their

well known non-relativistic limits. Since the pressure and kinetic energy density dis-

tributions depend upon 5, we consider it first.

4.1.1 Determining 5

The 5 parameter of an ideal Fermi gas is known to be implicitly related to its number

density n and temperature T through the condition [113]

n _ 81/00 p2dp (4 2)

_ 53 0 exp(€ + E(p)/kT) +1 '

 

where E(p) is the fermion kinetic energy expressed as a function of momentum. By

numerically determining the value of 5 that best satisfies the above integral equation

for a given number density and temperature, 5(n,T) can be determined for any n

and T pair at which it is needed.

To ease the numerical evaluation of the integral in equation (4.2), we re—express

it in terms of kinetic energy E instead of momentum p. Working with the fully

relativistic formalism, we write

 

E00) 2 (1/1 + 01/ch — 1) me2

 

_, fl (p/mc)2 =M (4.3)

m02
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l

—+ p2 = —2 (E(p)2 + 2mc2E(p)) (4.4)

From which we conclude that

(E2 + 2m62E) _1/2 (E + meg) dE (4.5)

O
I
H

dp =

If we combine equations (4.4) and (4.5), we get

pzdp = (E2 + 2mc2E)1/2 (E + 77162) dE (4.6)
c3

After inserting the above into equation (4.2), we find that the number density is given

by

(4.7)  

87r /00 (E2 + 2mc2E)1/2(E + m02)dE

(he)3 0 exp(5 + E/kT) + 1

To further simplify the number density integral, we introduce the dimensionless vari-

able u = E/kT

 

kT 3 00 (112 + 2au)1/2(u + a)du

—) n = 87’ (776) f0 exp(5 + u) + 1 (48)

where a E ch/kT. 5(71, T) is determined by a program that systematically searches

for the value of 5 for which the equality

/oo (112 + 2au)1/2(u + a)du = n7r2 (3)3
(4.9)

0 exp(5 + 11) +1 [CT

is most accurately satisfied for the given 71 and T. This process is fairly tedious

and it would therefore be very inefficient to dynamically calculate 5 each time it

is needed during the simulation of the collapse. Instead an external code is used
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to calculate and tabulate 5 and any statistical quantity of interest that depends

on it at selected electron number density and temperature pairs. These tables are

then used by the supernova simulation as two dimensional lattices that are used to

interpolate statistical quantities of interest at arbitrary electron number densities and

temperatures. Armed with the ability to calculate 5(n, T), general expressions for the

pressure and kinetic energy density of an electron gas with a given number density

and temperature can be evaluated. We turn our attention to the first of these matters

IlOW.

4.1.2 Pressure Integral

From elementary statistical mechanics [113], it is known that the pressure of the

electron gas is given by

 

_ :81 0° 11311066119

P(n’T) _ 3113 f0 exp(€ + E(p)/kT) + 1 (4'10)

where the electron velocity U(p) is most generally given by

 

  

_ ii

”(’0’ ‘ me)

= _1_ P

m 1+(p/mc)2

. 87r 00 124dp(1+(p/mc)2)-1/2

7””) = 33.13/11 exp<§+E<p>/k1">+1 “'1”

Again we re—express the integral in terms of relativistic kinetic energy E(p) Squaring

both sides of equation (4.4) and multiplying the result by equation (4.5) gives us

3 2

p4dp = is (E2 + 2mc2E) / (E + mc2) dE (4.12)

c
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Substituting this result and equation (4.3) into the pressure integral yields

 

3 2
8,, 00 (E2 + 2mc2E) / dE

P(n,T) - f0

— 3(hc)3 exp(5 + E/kT) + 1

After again introducing the dimensionless variable 11 = E/kT, we arrive at

 

3/2
3 00 112 + 2cm d'u

P(n,T) = 810“”) kT/O ( )
3 712 exp(5+u)+1

(4.13)

(4.14)

where a _=_ mcz/kT as before. As stated in section 3.10.3, for the purposes of cal-

culating the average force acting on an electron in an element of an electron gas, we

must tabulate (8P/8n)T and (BF/8T)” We address the evaluation of the partial

derivatives of the pressure below.

4.1.3 Partial Derivatives of Pressure

Equation (4.14) tells us that the electron gas pressure depends explicitly upon the

temperature and implicitly upon both the electron number density and temperature

through 5(71, T). Therefore we have

8P ‘ 95(5)(ff—")7’ — 85 371 T

a: 5e) c)(57'),,‘ (95 BTn 8T6

(4.15)

The partial derivatives of the pressure 8P/85 and (UP/Mk are readily obtained by

first differentiating equation (4.14) and then carrying out the numerical integration.

The partial derivatives of 5 however require further consideration.

An examination of equation (4.8) used to numerically determine 5 for a given 71.
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and T, tells us that n depends implicitly upon itself through 5. Therefore if we take

the partial derivative of both sides of (4.8) with respect to n and constant T, we

derive

1-512(5)
_ 35 571T

a a ‘1

+2 +2871 T 85

where we made use of the obvious fact that (071/8n)T = 1. Since 871/85 is easily

determined by first differentiating equation (4.8) and then numerically evaluating the

resultant integral, (65/6n)T can be solved for and therefore so can (BF/870T. To

calculate (35/3T)n, we proceed in an identical fashion and take the partial derivative

of both sides of equation (4.8) with respect to T at constant 71. Doing so yields

o—a—“c—se)‘agarn 6T5

—1

_, (fi) = _ (€13) (£92) (4.17)
8T 71 65 8T 5

where in this case we made use of (871/8T)n = 0. Like (971/65, (8n/3T)€ is sim-

ply calculated by first differentiating equation (4.8) and then numerically evaluating

the resultant integral. This allows (85/6T),n to be solved for, which in turn allows

(BF/8T)” to be calculated.

4.1.4 Kinetic Energy Density and its Partial Derivatives

In addition to tabulating the partial derivatives of the electron gas pressure with

respect to number density and temperature, the same partial derivatives of the kinetic

energy density are tabulated as well. Recall from section 3.16 that these quantities
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are needed to calculate the changes in the electron gas temperature induced by weak

reactions. Calculating these derivatives requires us to first generate an expression for

the kinetic energy density. To do this, we use the density of states approach [147]. In

this picture, the number density n and kinetic energy density UV of the electron gas

are given by

 

 

_ 1 00 D(E)dE

" ‘ v [0 exp(5 + E/kT) + 1 (4'18)

_ 1 00 E - D(E)dE

UV — V [0 exp(5 + E/k‘T) +1 (419)

where E is still the relativistic kinetic energy of the electrons and D(E) is the so-called

density of states. Comparing equations (4.7) and (4.18), we conclude that

87r

(1..)3

 (E2 + 2mc2E)1/2 (E + mc2) (4.20)

  
85 foo E (E2 + 2mc2E)1/2 (E + mc2) (IE

0

 

—> U = 4.21

V (hc)3 exp(5 + E/kT) + 1 ( )

Again after letting it = E/kT, we find that

l 2

kT 3 oo 11 (112 + 2au) / (u + a) du

UV = 8flkT —— / (4.22)

he 0 exp(5 + u) + 1

with a E mc2/kT. It is the above forms of UV that is differentiated and then

numerically evaluated and used to determine the partial derivatives (BUV/8n)T and

(3UV/8T)7). needed to model the efl'ects that weak reactions involving electrons have

on the temperature of the electron gas.
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Proceeding just as before when we calculated the partial derivatives of the pres-

sure, we note that equation (4.22) tells us that UV depends explicitly upon the

temperature and implicitly upon both the electron number density and temperature

through 5(n, T). Therefore we have

BUV _ BUV 55 .

(811 )T — 35(55)T (4.23)

BUV _ _UEZ _5_5 aUv) A

(aTln ’ 1% (wlfifar g “'2‘”

The partial derivatives of the kinetic energy density BUV/85 and (OUV/BT)€ are

readily obtained by first differentiating equation (4.22) and then carrying out the

numerical integration. The partial derivatives of 5 are taken from equations (4.16)

and (4.17) to yield.

aUV _ Buy an ‘1

((9—an — afar) “'25)

—1

(WV = _WV (2%) (3’3) + (2211) (4.26)

3T n (35 35 8T 6 3T 6

The inclusion of the partial derivatives of (BUV/Bn)T and (6UV/8T)n to our list

of tabulated statistical quantities completes the table.

4.2 Low Temperature Statistical Mechanics

When an ideal gas of fermions is said to be in the low temperature limit, its chemical

potential is positive and sufficiently large that p/kT >> 1. In this case, the Fermi-

Dirac distribution approaches a step function centered about the local Fermi energy

and its sensitivity to the temperature is greatly reduced. Since exact expressions for
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many statistical properties of an ideal Fermi gas can be written as indefinite integrals

of functions proportional to the Fermi—Dirac function, this limiting behavior makes

it is possible to derive analytic expressions for the chemical potential, pressure, and

kinetic energy density of an electron gas to any order of accuracy in temperature

corrections [113, 146, 147].

Here we generate these expressions with the lowest order temperature corrections

using fully relativistic kinematics. Since discussions of the Sommerfield expansion

technique [113, 146, 147] usually employed to derive statistical mechanics in the low

temperature limit are typically confined to the simpler non-relativistic limit, we rig-

orously derive this treatment of indefinite integrals of a specific class of functions in a

completely general way and then apply it to the fully relativistic integral expressions

for the statistical quantities of interest. Once these expressions have been obtained,

we demonstrate their convergence with their well known non-relativistic limits.

Recall that the Fermi energy in an increasing function of the number density of

particles in the fermion gas [146]. Thus when the number density of a degenerate

Fermi gas becomes sufficiently large, particles near the Fermi surface can become

relativistic. The conditions in the core are such that the electron gas present in it

be both degenerate and relativistic, so it necessary for our treatment of degenerate

electron gases to be fully relativistic as well.

4.2.1 General Sommerfield Expansions

Let us consider integrals of the form

I = [00° g(E)f(E)dE (4.27)
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where g(E) is any smooth function of fermion kinetic energy E and f(E) is the

Fermi-Dirac function given by

1

f(E) =m (4.28)

where [3 E l/kT and T and p are the fermion gas temperature and chemical potential

respectively. Integrating (4.27) by part, we define

u = f(E) —4 du = %dE (4.29)

do = g(E)dE ——» v = C(E) (4.30)

where G’(E) = g(E) and conclude that

I = E5300 G(E)f(E) — G(0)f(0) — [000 mag—£1113 (4.31)

If we restrict our considerations to functions g(E) such that G(E)f(E) —> 0 as E —>

co, the above expression for I becomes

_ 43(0) _ °° BLI—1+e_fl“ /0 G(E)aEdE (4.32)

If we assume that fly > O, the first term in the above can be expanded into a geometric

series in —e-fl“. Doing so yields

 
00 _. n 00 8f

I=—G(0) 1+ —-e 31‘ — G(E),, dE (4.33)z ( ) f,

If we further restrict our considerations to cases in which 1311 >> 1 in our approximate

treatment of integrals I, we may neglect the additive contributions to terms of the
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order of unity or larger from terms of the order e_fifm with n 2 1.

_. :r = —G(0) + [000 C(E) (€45) dE (4.34)

Additionally, the assumption that 611 >> 1 implies that —8f/8E is narrowly peaked

about E = ,u [113, 146, 147]. This opens the door to approximating C(E) with a

Taylor expansion about E = p. _Carrying out this expansion yields

0° 1 am 00 8f)
I=—00 — — E— n —— dE 4.35(’+,§,n1(aE")E=,./o ( 10 ( 6E ( 1

Now let us turn our attention to the evaluation of —0f/(9E. From the definition of

the Fermi—Dirac function in equation (4.28), it is clear that

__8_f_ = 7 65(E-fll

8E ’ (exam—10,1)?

 (4.30)

Substituting this result into the above yields

 

00 n 00 813(E— )

I = —G(0) + 71::0% (3%) E=#/0 (E _ Hlnfi (BME—H): 1)2dE (4.37)

If we introduce a dimensionless variable t E )3(E — p), the above becomes

00 n 00 n t

I=—G(0)+Z-1-71— LG / ——t8dt
_ n14" 6E" E:.. 4101.11)?

00

1 1 BnG

t — t

[/°° ___._.__ _ j W_4] (.3...
—00 (et + 1) —00 (et + 1)
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Note that the second integral in each term of the above sum is of the order of e—fi”

and can they can therefore be neglected in our approximate treatment of integrals I

if it can be demonstrated that their inclusion is equivalent to adding terms terms of

the order e—fi“ to terms of the order of unity or larger. To prove that this is indeed

the case, consider the following.

Since et/(et + 1)2 is even,

00 tnet

In E / ————2dt 75 0 V even 72. (4.39)

—00 (et + 1)

by parity. However, since it is easy to demonstrate that 10 = 1 and it is clear that

In is a strictly increasing function of even n’s, it must be that In is of the order of

unity or larger for all even 72 Z 0. Therefore the inclusion of the second integral in

each term of the sum in equation (4.38) is equivalent to adding terms of the order

6’5” to terms of the of unity or larger as for each In of the order of unity or larger

there are at most two terms of the order e‘fi“ added to it.

Therefore without further sacrificing accuracy in our approximate treatment of

integrals 1', we may write

001 1 6W6

‘” 1 1 6W0
= G01) — C(O) + Z FEE (w)E_ In

n=2 _

00

ll

\

9
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Where in the second line in the above we made use of the fact that 10 = 1 and 11 = 0

and in the third line we used the fact that G(E) is by definition the anti-derivative

0fg(13)
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We know that the more degenerate a gas of fermions becomes, the more closely

the Fermi-Dirac distributions approaches a step function centered about the local

Fermi energy 6F [113, 146, 147]. This leads us to expect that when a fermion gas is

sufficiently highly degenerate that (3;; >> 1 and u —-> 617, that for any smooth function

g(E) that

00 617 p.

/0 g(E)f(E)dE—+/0 g(E)dE~/0 g(E)dE (4.41)

Thus the contributions made by the terms in the sum in equation (4.40) ought to

be small corrections. Therefore we sensibly seek to derive an expression for our

approximate treatment of integrals I with the lowest order correction in temperature.

Thus we equivalently retain only the term with the lowest order in fi’l in equation

(4.40) and in doing so derive

_ fl 1 1 89

where we again made use of the fact that G"(E) = g(E). We can further refine the

above by noting that the assumption that fly >> 1 —> )u = eF(1 -6) where 0 < 6 << 1.

Therefore the integral in the above may be written in the following way.

p EF 6F

[0 g(E)dE— f0 g(E)dE— f“ g(E)dE (4.43)

To lowest order in 6, the second integral in the right hand side of the above may be

approximated by g(eF)(eF — ,u) giving

M 6F
/ g(E)dE a: /0 g(E)dE — g(eF) (6F — p) (4.44)

0

Inserting this and the readily confirmed result [2 = 7r2 /3 into equation (4.42) and
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expressing fl in terms of T yields

6
7r2

fooo g(EmEldE “/0 F g(E)dE - g(CF) (6F — )u) + g(k-Tflg’m) (4.45)

Approximation (4.45) is the general Sommerfield expansion for a smooth function

g(E). It is applicable for any smooth function g(E) with anti-derivative G(E) that

satisfies G(E)f(E) —> 0 as E —> oo whenever it can be assumed that )3/1 >> 1.

4.2.2 Low Temperature Chemical Potential

To derive a fully relativistic expression for the electron gas chemical potential in the

low temperature limit, it is necessary to consider the number density integral given

in equation (4.18) by

1 (X)

n— [0 D(E)f(E)dE (4.46)
_ V

where D(E) is again the fully relativistic expression for the so—called density of states

previously shown in equation (4.20) to satisfy

asv = C (E2 + 2mc2E)1/2 (E + mc2) (4.47)

where C = 87r/ (hc)3. D(E) /V can easily be demonstrated to satisfy the requirements

that g(E) did when approximation (4.45) was derived. Therefore if we assume that

flit >> 1, we are free to use approximation (4.45) when evaluating the number density

integral simply by replacing g(E) by D(E) /V in the formula. Doing so gives

6 D e 7r2 I

n a: A; F ng — $2 (61: — p) + -—6—(kT)22‘-£—'ul (4.48)
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By the definition of D(E), the first integral is 72.. Therefore we arrive at

 

 

2 I

N W 21904)

" " CIT—Fair) D(eF)

7r2 D'(,u) kT 2

= .F 1‘F6F0(ep)(¥) (4'49)

  

Furthermore, if ,u = eF(1 — (5) with 0 < 6 << 1, any attempt to expand D,(E) about

61: and retain anything beyond the zeroth order term would introduce terms at least

second order in 6. Therefore to lowest order in temperature corrections, we have

 

  

  

2 I 2
7r D (6F) kT

z 1 — — — 4. 0

“ 6F 66F D(EF) (F) ( 5)

Using equation (4.47), one can simply demonstrate that

D’ 262 + 4mc26 + m2c4

(6F) — F F (4.51)5 _

F D(EF) 6%. + 3m626F + 2m2c4

which is a strictly increasing function of cF and it is easily seen that in the zero and

infinite limits of 6131, it approaches 1 /2 and 2 respectively. Therefore eFD'(6F)/D(€F)

is always of the order of unity. Thus if 0 < 6 << 1, it must be that kT/eF < 1

and it serves as the low temperature expansion parameter just as it does in the

non-relativistic limit [113, 146, 147]. For the purpose of generating our statistical

mechanics table in the low temperature limit, we calculate p. at the desired electron

gas number density and temperature pairs and tabulate the parameter 5 E —p./kT.

4.2.3 Low Temperature Kinetic Energy Density

To derive the a fully relativistic expression for the electron gas kinetic energy density

UV and its derivatives, we start with the integral expression given in equation (4.22)
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to be

7 — 1 DO 1 4LV _ V/o E-D(E)f(E)dE (4.52)

E . D(E) /V can, too, be demonstrated to satisfy the requirements that g(E) did when

approximation (4.45) was derived. Therefore if we assume that By >> 1, we are free

to use approximation (4.45) when evaluating the electron gas kinetic energy integral

simply by replacing g(E) by E - D(E) /V in the formula. Doing so gives

6 6 W2 2

UV z /0 F E- Eng — GFLVFZ (EF — p) + F9?— (D(p) + uD'(u))4.53)

The first integral in the above is clearly the ground state kinetic energy density

UVgs.‘

' c 7r2 2

—» UV z UVg.s. — eFD(VF) (6F — ,u) + Fig/1)— (D(p) + [JD/(m) (4.54) 

Inserting ,u = eF(1 — 6) into the above gives

~ 2 D(€Fl

UV NUVgs. " 6F—V—‘S

7r2 2

+ Fig/1)— (D(6F(1 — 5)) + spa — 6)D’(eF(1 — 6») (4.55)

If we expand D and D’ into a Taylor series about 6F and retain only terms up to

first-order in 6, we find

  

D(e ) 7r2D e ) 7r2 D, e )

UVzUVgfi. — a} VF 6+F (VF (kT)2—FeF—%—L6(kT)2

2 2
7r kT

+ —eF(1—5)(D’(6F)—6FD”(4F)6)LV—l (4.56)



Carrying out the above products and again retaining only terms up to first-order in

  

  

 

6 gives

2 D(EF) 7r2 D(EF) 2 7r2 D’(€F) 2

2 l 2
7r D (6F) 2 7r D (61?) 2

— — — 6+ 6 V (kT) 6 (F V (kT)

2 D”

— 7% F Sflmr)? (4.57)

Inserting the expression for 6 implied by equation (4.50) and regrouping results in

 

2 2
~ 7r 2 D(ep) k‘T

UV ~ UVg.S. + FéF V (E; X

7r2 D’(6F) 2 kT 2 «2219”(6F) kT 2 .-

1-0—3—(CF D(EFl) (a?) _FEF M61?) (5) (408)

It has already been established that the assumption /3,u >> 1 implies that kT/cF <<

  

1. It is therefore logical to suspect that the second two terms in the parenthesis

above are negligible higher order temperature corrections. This can be confirmed

by demonstrating that their coefficients are at most of the order of unity. Equation

(4.51) was already used to prove that eFD’(eF)/D(6F) E (1/2,2), so the second

term’s coefficient is of the order of unity and is therefore negligible. To conclude that

same about the third term, we again use equation (4.47) to show

2 D”(€F) _ 2€%+4m0261:~ —m

(5 _

F D(EF) 6%. + 4m026F + m2c4

2C4

  (4.59)

WhiCh is a strictly increasing function of eF and it is easily seen that in the zero and in-

finite limits of 617, it approaches —1 and 2 respectively. Therefore 6%.D”(6F)/D(€F)
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is always of the order of unity or less and the third term in the parenthesis is negligible

as well. Therefore, to lowest in order in temperature correction, the electron kinetic

energy density is given by

 

Uv z UVg.s. 1,3636%?) (If—3:)2 (4.60)

For the purpose of generating our statistical mechanics table in the low temperature

limit, we use equation (4.60) to calculate and tabulate (8UV/6n)T and (BUV/BT)n

at the desired electron gas number density and temperature pairs. The temperature

derivative is trivial and the number density derivative is most conveniently calculated

using the chain rule

BUV = avak—F (4 61)

an T (961: an '

4.2.4 Low Temperature Pressure

We start the derivation of the fully relativistic expression for the electron gas pressure

by considering its general integral expression given in equation (4.13) by

 

p: /0 h(E)f(E)dE (4.62)

where

= 87r 2 mcz 3/2

h(E) _ 3016)?) (E +2 E) (4.63)

h(E) and its anti-derivative satisfy all the requirements that g(E) did when approx-

imation (4.45) was derived. Therefore, if we assume that fly >> 1, we are free to use

approximation (4.45) when evaluating the electron gas pressure by replacing g(E) by

110



h( E) in the formula. Doing so gives

6 2

P z [0 F h(E)dE —— th(cF) (CF — ,u) + %—(kT)2hl(p) (4.64)

The first integral in the above is clearly the ground state pressure Pg_3,. Additionally.

after a quick comparison of equations (4.47) and (4.63), one can see that h’(E) =

D(E) /V. Thus the above can be written

7r2

P z 109.3. — EFh(€F) (EF — ,u) + ?(kT)2l—)T(/Hl (4.65)

Inserting ,u = 6F(1 — 6) into the above, Taylor expanding D(E) about 61:, and

retaining only terms up to first-order in 6 gives

7r2 . 2

P z Pg, — th(eF)5 + g(k—‘T/l— [D(EF) — eFD’(eF)6] (4.66)

Inserting the expression for 6 implied by equation (4.50) and regroupings gives

2 2
7r 2 D(CF) kT

P m P — —

g.s.+ 6 {F V (6F X

 

l—V MEF) 6FD’(‘5F) ”2 (M)2(E)2 (4.67)

eFD(eF) D(eF) —6 D(eF) 617

It has been shown previously that eFD’(eF)/D(6F) E (1/2,2), therefore the last

term is the parentheses above is negligible relative to the first. To determine the

Order of the second term, consider the following. Using equations (4.47) and (4.63),

We find that

h(eF) _ 145151+2mc2

_ _ 4.68

€FD(€F) 3 5F+mc2 ( )
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which is a strictly decreasing function of eF that has a maximum value in the eF ——+ 0

limit of 2/3 and is minimized when 6F —+ 00 as it approaches 1 /3. Thus the second

term in the parentheses above is for all eF of the order of unity and must therefore

be kept. Therefore, to lowest in order in temperature correction, the electron gas

pressure is given by

h(eF) eFD’(€F)

eFD(eF) D(eF)

  1 — V (4.69)(W)?PgP9'3‘+_€F V 6F

 

Proceeding in an identical fashion as before, for the purpose of generating our statis-

tical mechanics table in the low temperature limit, we use equation (4.69) to calculate

and tabulate (8P/8n)T and (BF/8T») at the desired electron gas number density

and temperature pairs. Again we find that the temperature derivative is trivial and

the number density derivative is most conveniently calculated using the chain rule

8
(all?) = 313.2 (4.70)

(977. T (96F an

4.3 High Temperature Statistical Mechanics

When an ideal gas of fermions in is said to be in the high temperature limit, the

Chemical potential is negative and sufficiently large that 5 E —)u/kT >> 1 [113, 146,

147]. This means that for any fermion kinetic energy E, exp(€ + E/kT) >> 1 and the

Fermi—Dirac distribution simplifies to

f(E) -’ eXIX—6 — E/kT) (4-71)

Since exact expressions for many statistical properties of an ideal Fermi gas can be

WI‘it.ten as indefinite integrals of functions proportional to the Fermi-Dirac function,

the above simplification allows the g parameter dependence to be factored out of
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these integrals. In addition to this factorization simplifying the evaluation of these

integrals, it also allows equations (4.2) or (4.7) that relate 5 to the number density

and temperature of the electron gas to be solved algebraically instead of the resorting

to the laborious numerical techniques used in the arbitrary temperature case to solve

for g. As was done for the arbitrary and low temperature cases, the fully relativistic

high temperature expressions for the electron gas 5 parameter, kinetic energy density,

and pressure are rigorously derived and their convergence with their well known non-

relativistic limits are shown.

4.3.1 High Temperature .5 Parameter

To derive an expression for the 6 parameter of an ideal Fermi gas in the high tem-

perature limit, we start with the general equation (4.7) that implicitly relates the

5 parameter to the fermion gas number density n and temperature T through the

condition

_ 00%n— /0 v f(E)dE (4.72)

Where again D(E) is the fully relativistic expression for the density of states shown

in equation (4.20) to be given by

 ESL) = 0:733 (E2 -+— 2m62E)1/2 (E + 777.02) (4.73)
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If the high temperature limit of the Fermi-Dirac distribution given in equation (4.71)

is substituted into equation (4.72), g is easily solved for. Doing so yields

5 = 111 (l [000 DE/E) exp(—E/kT)dE)

In (87” (1%)} 15m) (4.74)

 

with [g(T) defined by

[€(T) E /()00 (142 + 2au)1/2(u + a) exp(—u)du (4.75)

where the dimensionless variable 11. E E/kT was introduced to obtain a dimensionless

integral and a E mcz/kT. While the above integral must be evaluated numerically,

since it depends only upon the temperature, the tabulation process is quite fast and

the high temperature end of our 5 parameter table is easily generated.

4.3.2 High Temperature Kinetic Energy Density

It is clear from the general integral expression for the electron gas kinetic energy

density given in equation (4.19) that in the high temperature limit

UV —> exp(—.§)/OOO§.—€(—E;)exp(—E/kT)dE

_ kT 3
E exp(—€) 87r - kT (E) [U(T) (4.76)

with IU(T) defined by

[U(T) E ADO 24(142 + 2au)1/2 (u + a.) exp(—u)du (4.77)
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where again the dimensionless variable 24 E E/[CT was introduced to obtain a dimen-

sionless integral and a E mc2/kT. This integral must be evaluated numerically as

well. If the expression for 5 from equation (4.74) is inserted into the above equation

for UV, we find that in the high temperature limit

 - nkT (4.78)

For the purpose of generating our statistical mechanics table in the high temperature

limit, we use equation (4.78) to calculate and tabulate (8UV/0n)T and (aw/air)“

at the desired electron gas number density and temperature pairs. The number

density derivative is trivial and the temperature derivative is calculated by first dif-

ferentiating (4.78) using the chain rule and then performing the resultant numerical

integrations.

4.3.3 High Temperature Pressure

Recall from equation (4.13) that the general integral expression for the electron gas

pressure is

00

P =/0 h(E)f(E)dE (4.79)

where h(E) is the anti-derivative of D(E) /V given by

77 3 2

h(E) = 353—3 (E2 + 2m02E) / (4.80)
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In the high temperature limit, equation (4.71) implies

00

P —> exp(—€)/0 h(E)exp(—E/kT)dE

7r 3

E exp(—§)-8§kT (Eh—70:) [P(T) (4.81)

with IP(T) defined by

Ip(T) E [000 (142 + 2au) 3/2 exp(—u)du (4.82)

where again the dimensionless variable u E E/[CT was introduced to obtain a dimen-

sionless integral and a E ch/kT. This integral must be evaluated numerically as

well. If the expression for g from equation (4.74) is inserted into the above equation

for P, we find that in the high temperature limit

‘ 1

For the purpose of generating our statistical mechanics table in the high temperature

limit, we use equation (4.83) to calculate and tabulate (BF/870T and (8P/3T)n at

the desired electron gas number density and temperature pairs. The number density

derivative is trivial and the temperature derivative is calculated by first differentiating

(4.83) using the chain rule and then performing the resultant numerical integrations.
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4.4 Electron Gas Statistical Mechanics in the Non-

Relativistic Limit

While it is only a necessary condition for the fully relativistic electron gas statistical

mechanics derived in sections 4.1, 4.2, and 4.3 to converge with non-relativistic elec-

tron statistical mechanics and not a sufficient case for its validity, it is still instructive

to demonstrate this convergence. In this section, the non-relativistic limits of the

expressions derived for the relativistic electron gas statistical mechanical quantities

of interest with arbitrary, low, and high temperatures are all determined separately.

We begin with the non-relativistic limit of electron gases with arbitrary temperatures.

4.4.1 Non-Relativistic Limit of Arbitrary Electron Gases

For arbitrary electron gases, we consider the non-relativistic limits of the electron gas

density of states, number density, pressure, and kinetic energy density. Considering

first the density of states given in equation (4.20), we notice that the non-relativistic

limit E << mc2 implies

 D(E) = V 0:733 (E2 + 2mc2E)1/2 (E + 77102)

 

1 2

-—> V 87f (2mc2E) / mc2

(hc)3

= V313 (2m)3/2 131/2 (4.84)

which is known to be the expression for the density of states of a non-relativistic

electron gas [147]. In terms of the dimensionless variable 14 = E//6T and parameter

a. E meg/kl" defined in the integral equations (4.8), (4.14), and (4.22) for n, 1’, and
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UV the condition E << mc2 implies u << 0.. Thus for these integrals we have

 

(kT)3 /00 (212 + 2au)1/2(u + a)du

877 —

hc 0 exp(€ + 14) +1

 

3 00 1/2

87r (E) 21/2a3/2/ u (121

h 0 exp

 

c (g + 11) +1

43 3/2 00 ul/zdu

h3 (2ka) /0 exp“ + 10+ 1 (4.85)

3/2

3 oo 62+2au du
871' (hr) kT/o ( )

_3_ E exp({ + u) + 1

87rkT kl)3 (2a)3/2 foo 113/2cm

3 he 0 exp(£ + u) + 1

87rkT 3/2 foo u3/2du

2 [CT 4.86

3h3 ( m ) 0 exp(€ +14) +1 ( )

  

  

 

3 2 1 2
87rkT (Ell) [00 u(u + 2au) / (u + a)du

c 0 exp(€ + 11) +1

 

3 3 2

87rkT (LT) 21/2a3/2 foo “ / d“

he 0 exp(€ + u) + 1

  

47rkT 3/2 00 113/2dr]. .

53 (2ka) f0 exp(€+u)+1 (4.87)

where equations (4.85), (4.86), and (4.87) are known to be the non-relativistic ex—

pressions for the number density, pressure, and kinetic energy density of a Fermi gas

[146].
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4.4.2 Non-Relativistic Limit of Low Temperature Electron

Gases

For low temperature electron gases, we consider the non-relativistic limits of the

electron gas chemical potential, kinetic energy density, and pressure. Starting with

the chemical potential, we note that from equation (4.51), it is clear that the condition

E << mc2 implies

D’(EF) 1

5F D(EF) —* 2 (4.88)
 

Substituting this result into the fully relativistic expression for the low temperature

electron gas chemical potential given in equation (4.50) yields

1_ 71;: (g) 2] (4.89)

which known to be the non-relativistic expression of the chemical potential in the low

#361:

 

temperature limit [146]. It is also known that in the non-relativistic limit that the

density of states can be written as [147]

v 7’ E 3/2

6F

E 3 ” E1/2 (4.90)

Inserting this into the fully relativistic expression for the low temperature electron

gas kinetic energy density given in equation (4.60) gives

2 2
77 [CT

2 _ — 4.UV Uvg_3_+ 46pm (5F) ( 91)
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Since the ground state kinetic energy density in the non-relativistic limit is given by

UVg.s. = 3/5neF [146], the above can be rewritten as

2 2
Sr kT

(4.92)

 

which known to be the non-relativistic expression of the kinetic energy density in the

low temperature limit [146]. Finally, we consider the non-relativistic expression for

the low temperature electron gas pressure. From equation (4.68), we see that in the

non-relativistic limit that

V h(€F) _) 2

€FD(€F) g (4.93)

Inserting this result and equations (4.88) and (4.90) into the fully relativistic expres-

sion of the low temperature pressure of the electron gas given in equation (4.69) leads

to

2 H 2

EF

Since the ground state electron gas pressure in the non-relativistic limit is given by

P95, = 2/5neF [146], the above can be rewritten as

2 2
57r kT

wa. [1+17(—)
(4.95)

6F

 

which known to be the non-relativistic expression of the electron gas pressure in the

low temperature limit [146].
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4.4.3 Non-Relativistic Limit of High Temperature Electron

Gases

For high temperature electron. gases, we consider the non-relativistic limits of the

electron gas 5 parameter, kinetic energy density, and pressure. Beginning with the

5 parameter, we observe that for the I€(T) integral defined in equation 4.75, the

non-relativistic condition 11 << 0. implies that

[€(T) = /000 (112 + 2au)1/2(u + a) exp(——u)d’u

00

__, %(2(1)3/2~/O 211/2 exp(—u)du
(4-96)

The above integral is recognized as the generalized factorial (1 /2)! = (1 /2)( -1/2)! :

(1/2)\/F. Therefore we have

1

I€(T) —+ 21——(27m)3/2 (4.97)
71'

Plugging this result into the high temperature 5 equation (4.74) gives

3
n h

_. _1 _ _—

E “[2( 27rka)

— 16033) + ln(2) (4.98)

 

where A is the so-called called the thermal wavelength [146]. Apart from the additional

ln(2), the above is the well known non-relativistic Boltzmann expression for the 5

parameter [146, 147]. Two things should be noted about this extra ln(2) term. One

is its origin in spin degeneracy. It is possible to build a spin correction into Boltzmann

theory and reproduce this extra ln(2) term by simply taking into account fermion spin
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degeneracy when constructing the partition functions needed to derive the expression

for the 5 parameter. The other is that from the standpoint of numerical convergence

with the Boltzmann result, it is inconsequential. Recall that in the high temperature

limit, 5 >> 1 and since ln(2) a: 0.693, the dominant contribution must come from the

expected term. As the system moves farther and farther toward the high temperature

limit, this discrepancy will become completely negligible.

For the IU(T) integral defined in equation 4.77, the u < a condition implies

[U(T) = 400 11(112 + 2au)1/2(u + a) exp(—u)du

—> $(2a)3/2 ADO 113/2 exp(—u)du

= é—(26)3/2(3/2)!

= §;(27ra)3/2 (4.99)

Inserting this result and the non-relativistic limit of the integral Ig(T) from equation

(4.97) into equation (4.78). for the electron gas kinetic energy density gives

UV _. gnkT (4.100)

which is identified as the non-relativistivic Boltzmann expression for the kinetic energy

density of a gas [146]. Finally, for the [P(T) integral defined in equation 4.82, the
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u << a condition implies

1P(:r) = I/Ooo(u2+2au)3/2exp(—u)du

-—* 03/2 00U3/28X —-u U(2) [0 p( )d

= (2a)3/2(3/2)!

= 4%(2m3/2 (4.101)

Inserting this result and the non-relativistic limit of the integral I{(T) from equation

(4.97) into equation (4.83). for the electron gas pressure gives

P —> nkT (4.102)

which is identified as the non—relativistivic Boltzmann expression for the pressure of

a gas [146].

4.5 Comparing Relativistic and Non-Relativistic

Electron Gas Statistical Mechanics

Having established the convergence of the relativistic electron gas statistical mechan-

ics theory derived in sections 4.1, 4.2, and 4.3 with non-relativistic electron gas sta-

tistical mechanics, we now numerically compare the tabulated electron gas statistical

mechanical quantities computed with the relativistic and non-relativistic formalism

at selected electron gas number densities and temperatures. This is done to gain

a quantitative sense of what temperatures and electron number densities at which
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the relativistic and non-relativistic electron gas statistical mechanics converge and

what how they differ over the range of temperatures and electron number densities

expected to be relevant to collapse of the core being modeled.

4.5.1 Numerical Non-Relativistic Convergence

To demonstrate the numerical convergence of the relativistic and non-relativistic elec-

tron gas statistical mechanics, we access the low temperature low electron number

density corner of our tables. Specifically we consider electron gases with tempera—

ture T = 107 K and number densities 1033 rn—3 S ne 3 1036 m—3. We choose

to consider an electron gases with the lowest tabulated temperature 107 K for the

obvious reason that they will have the lowest thermal velocities and hence will be the

least likely to require relativistic corrections to their thermal velocity distributions.

We consider electron gases with the four lowest number densities tabulated since,

at T = 107 K, the effects of degeneracy are not negligible for 716 Z 1033 m‘3 and

as number densities become sufficiently large, the degeneracy becomes extreme and

relativistic.

In figure 4.1, the 5 parameter is plotted for relativistic (blue) and non-relativistic

(red) electron gases with temperatures and number densities specified above. The

5 values are seen to be in excellent agreement at T = 107 K up to approximately

3 x 1034 m_3. For all greater number densities, the non-relativistic 5 parameter be-

comes more negative. Recall that 5 E ,u/kT, therefore a more negative 5 parameter

means a more degenerate gas. This tendency of non-relativistic electron gases to

become more degenerate than relativistic gases with the same number densities and

temperatures is reflected in figures 4.2 and 4.3. In figure 4.2 it is seen that as the

number densities increase, the non-relativistic gases become increasingly less sensitive

to temperature compared to their relativistic counterparts which is a direct result of

their greater degeneracy. In figure 4.2 it is seen that as the number densities increase,
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Figure 4.1: Plot of the 5 parameter for relativistic (blue) and non-relativistic (red)

electron 3:888 with temperature T = 10 K and number densities 1033 m’3 g 716 g

1036 m— .

the non-relativistic gases become increasingly more sensitive to number density com-

pared to their relativistic counterparts which is also a direct result of their greater

degeneracy.

At sufficiently low number densities, the partial derivatives of the electron gas

pressures and kinetic energy densities converge in figures 4.2 and 4.3. The divergence

of the temperature derivatives of the relativistic and non-relativistic kinetic energy

densities occur at lower number densities in figure 4.2. Conversely the divergence of

the number density derivatives of the relativistic and non-relativistic pressures occur

at lower number densities in figure 4.3. These asymmetries in the relativistic and

non-relativistic divergencies are attributable to subtle differences in the temperature
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and number density dependancies between the relativistic and the non-relativistic

pressure and kinetic energy densities discussed in previous sections in this chapter.
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Figure 4.2: Plots of BP/BT and Bu/ET for relativistic (red/blue) and non-relativistic

(green/turquoise) electron gases with temperature T = 107 K and number densities

1033 m—3 g 71.5 g 1036 66-3.
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Figure 4.3: Plots of BP/Bn and 311/877. for relativistic (red/blue) and non-relativistic

(green/turquoise) electron gases with temperature T = 107 K and number densities

1033 m_3 S 116 S 1036 m-3.
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4.5.2 Relativistic and Non-Relativistic Electron Gases in Su-

pernovae

In all of the finite temperature calculations our code has performed, not just those

presented in this thesis, the lowest temperatures and electron number densities en-

countered were on the order of 107 K and 1037 m”3 respectively and the highest

were on the order of 1011 K and 1045 m"3 respectively. In this section we compare

the tabulated statistical mechanical quantities computed with the relativistic and

non-relativistic formalism of electron gases at temperatures 109 K and 1011 K over

the number density range 1037 m-3 5 715 _<_ 1045 m—3 to obtain a measure of how

the results differ in the environment similar to the system we model.

We begin these considerations with a plot of the 5 parameter of relativistic (blue)

and non-relativistc (red) electron gases at 109 K presented in figure 4.4. Clearly the

non-relativistic gases are much more degenerate than the relativistic gases.

This greater degeneracy of non-relativistic electron gases is merely a continuation

of the trends seen emerging in the last section and is also seen in the plots of the

temperature and number density derivatives of the pressure and kinetic energy density

of electron gases at 109 K shown in figures 4.5 and 4.6. Again it is found that the

non-relativistic gases are less sensitive to temperature changes and more sensitive

to number density changes than the relativistic gases due to their higher level of

degeneracy. Clearly relativistic effects are not negligible.
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Figure 4.5: Plots of BP/aT and Bu/BT for relativistic (red/blue) and non-relativistic

(green/turquoise) electron gases with temperature T = 109 K and number densities

1037 m-3 g 77.6 g 1045 111-3.
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Figure 4.6: Plots of BP/an and 014/071 for relativistic (red/blue) and non-relativistic

(green/turquoise) electron gases with temperature T = 109 K and number densities

1037 m’3 S 126 S 1045 m—3.
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Finally we consider electron gases 1011 K. In figure 4.7, the 5 parameter is plot-

ted for relativistic (blue) and non-relativistic (red) electron gases with temperature

T =1011 K and number densities 1037 m—3 S ne 3 1045 m‘3. The non-
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Figure 4.7: Plot of the 5 parameter for relativistic (blue) and non-relativistic (red)

electron g‘aases with temperature T = 1011 K and number densities 1037 m-3 _<_ 713 S

1045 m' .

relativistic electron gases are once again found to be more degenerate than the rela-

tivistic gases, however at T = 1011 K both relativistic and non-relativistic electron

gases are seen to be partially non-degenerate (5 Z 0) at sufficiently low number

densities.

As in our previous considerations of the temperature and number density deriva-

tives of the pressure and kinetic energy density of electron gases, the plots displayed

in figures 4.8 and 4.9 indicate that the more degenerate nature of the non-relativistic
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Figure 4.8: Plots of BP/BT and (911/ET for relativistic (red/blue) and non-relativistic

(green/turquoise) electron gases with temperature T = 1011 K and number densities

1037 m_3 S 716 S 1045 m—3.

electron gases renders them less sensitive to temperature changes and heightens their

sensitivity to increases in number densities relative to relativistic gases. Additionally

the relativistic and non-relativistic temperature and number density derivatives of

the pressure converge on this range of number densities.
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Figure 4.9: Plots of 8P/8n and 811/871 for relativistic (red/blue) and non-relativistic

(green/turquoise) electron gases with temperature T = 1011 K and number densities

1037 m’3 g ne 5 1045 m“3.
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Unlike the pressure derivatives, the temperature and number density derivatives

of the kinetic energy density do not converge on this range of number densities. This

asymmetry can be attributed to the differences between relativistic corrections to the

temperature dependence of the pressure and kinetic energy density and the relevancy

of these corrections at 1011 K.

At 1011 K, the difference between the relativistic and non-relativistic results are

greater than they were at 109 K. Since the difference was already significant at 109 K,

it is clear that using the relativistic formalism to characterize the electron gas is

imperative. Not only does the relativistic nature of the electron gas profoundly impact

core dynamics directly through the pressure it exerts, but its relativistic statistical

properties also do so in a more indirect fashion by governing weak reactions that

involve initial and/or final state electrons and the impact that they have on matter.
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Chapter 5

Weak and Strong Reaction Tables

In this chapter, the tables used to model weak and strong reactions are discussed in

detail. These tables are divided into three groups: those that govern the rate of elec-

tron capture, those that govern the impact the neutrino production and interactions

have on matter and the flow of neutrinos, and those that govern fusion. We describe

these tables separately in the sections below.

5.1 Electron Capture Rate Tables

A total of four electron capture rate tables are used to study the role that electron

capture plays in the collapse and explosion mechanics. As stated in section 3.12, the

FFN electron capture table serves as the foundation for our treatment of electron

capture. The FFN table contains the base 10 logarithm of the electron capture rates

for free protons and 187 nuclei with atomic mass numbers 21 S A _<_ 60, most of

which are in or near the valley of beta stability. Since we model the propagation of

385 nuclei that exist between the proton and neutron drip lines with A S 60, it is

necessary to extrapolate the FFN electron capture rates along each isobar out to the

proton and neutron drip line as well down to smaller nuclei with 2 g A g 20. The
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isobaric extrapolations are done in one of three ways described below.

The first technique is to simply linearly extrapolate the base 10 logs of the electron

capture rates using the two closest tabulated values to the proton-rich and neutron-

rich boundaries of the FFN table for each A. The second way is to use an enhanced

linear extrapolation that doubles the rate at which the linearly extrapolated base 10

logs of the rates increase as one moves toward the proton drip line and halves the

rate at which they decrease as one moves towards the neutron drip line. The third

way is to use a reduced linear extrapolation that conversely halves the rate at which

the linearly extrapolated base 10 logs of the rates increase as one moves toward the

proton drip line and doubles the rate at which they decrease as one moves towards

the neutron drip line.

The extrapolation to smaller nuclei with A < 21 is currently only done one way.

To extrapolate the electron capture rate to a nucleus (Z, A) with A S 20, we simply

equate it with the smallest nucleus with the same proton to neutron ratio for which an

electron capture rate is either given by FFN table or has been extrapolated. Other

extrapolation techniques that take into account the parity of proton and neutron

numbers of the nuclei are possible, but have not been implemented yet.

Thus far, we have described the methods used to generate three modified version

of the FFN rate table. The results produced by simulations that use these different

tables can be used to study the sensitivity of the core dynamics to the values used

for the extrapolated FFN electron capture rates. To study the core dynamic’s overall

dependence on electron capture rates, another table is needed that uses different

rates from FFN. Motivated by the fact that more modern shell model calculations

typically yield electron capture rates a full order of magnitude or more lower that the

FFN rates [16], we satisfy this need by simply subtracting one from each of the base

10 logarithms of the electron capture rates from the linearly extrapolated FFN table.

This order of magnitude reduced version of the linearly extrapolated FFN table serves
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as the fourth electron capture rate table used to probe the role of electron capture

rates in core collapse supernova mechanics.

5.2 Neutrino Production and Interaction Tables

Recall from sections 3.12.2, 3.13.3, 3.13.4, and 3.16, that the algorithms used to model

the weak reactions included in our simulation and their effects on the temperature

distribution all make use of tables of average interactions cross sections and/or average

particle energies. We tabulate these all of these average cross sections and average

particle energies logarithmically over the same temperature range as we did for the

electron gas statistical mechanics table in section 4. For weak reactions involving

electrons, these cross sections and energies are tabulated over the same range of

electron number densities as we did for the electron gas statistical mechanics table.

For weak reactions that involve an initial state neutrino, these cross sections and

energies are tabulated logarithmically over incident LTE frame neutrino energies from

10"4 MeV to 104 MeV. In the sections below, we describe how we tabulate the

average cross sections and/or average particle energies needed to model each weak

reaction.

5.2.1 Neutrino Production Tables

To model the production of neutrino test particles via electron captures by the nucleus

or free proton (A, Z) and the effects that these reactions have on the temperature

distribution, it was explained in sections 3.12.2 and 3.16 that it is necessary to tabulate

the average energy of an electron captured by the nucleus or free proton (A, Z) from

an electron gas with selected number densities n and temperatures T as well as

the average energy of the neutrino produced during the process for the purpose of

interpolation. This is done in the following way.
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At each (n, T) pair in the interpolation lattice, we systematically sample the ther-

mal energy distributions of the electrons 5000 times and model the potential capture

of each of these electrons by 5000 nuclei or free protons (A, Z) systematically sampled

from the thermal energy distributions of (A, Z) particles. The way that these thermal

energy distributions are calculated are explained in section 5.2.2. These potential cap-

tures are modeled using relativistic classical mechanics. Once the LTE frame kinetic

energies of the electron and (A, Z) particle have been generated, the magnitude of

their momentum vectors are determined and then the vectors are randomly oriented.

Then we simply boost into the C-O-M frame of the selected electron-(A, Z) pair and

check to see if the C-O-M frame energy is large enough to overcome the Q-value of

the electron capture. If it is not, we reject the capture and move on to the next pair.

If it is, we model the capture by changing randomly re-orienting the C-O-M frame

momentum vectors redefining the C-O-M frame to be that of the new neutrino and

final state (A, Z — 1) nucleus or free neutron, and then boosting the neutrino’s mo-

mentum into the LTE frame. This process is similar to the two—body elastic scattering

model described in section 3.13.4 and is schematically depicted in figure 5.1. The

final LTE frame energy of the neutrino is calculated and then its contribution, along

with that of the initial state electron’s LTE frame kinetic energy, are added to the

average energies tabulated for the particular (71, T) pair in the interpolation lattice.

Since 25 million potential electron captures are modeled at each (n, T) pair in the

interpolation lattice, we are confident that our statistics are good. This procedure is

followed for all nuclei and free protons (A, Z) included in our simulation.

5.2.2 Relativistic Thermal Energy Distributions

To generate fully relativistic expressions for the energy distributions for the ideal gases

of electrons, free baryons, and nuclei involved in weak reactions, we divide our efforts

in the following way. First we derive a fully relativistic energy distribution valid for
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Inelastic

 
cm frame

Figure 5.1: Two-body inelastic scattering is modeled by randomly repositioning the

C-O—M frame momentum vectors to opposite positions on the surface of the momen-

tum sphere defined by their C-O-M frame momentum and then changing the mag-

nitude of the C-O~M frame momentum vectors in the way that energy conservation

dictates.

any ideal gas of indistinguishable particles, fermion, bosons, or Boltzmann particles.

Once this general expression has been obtained, we tailor it to describe the energy

distributions of an arbitrary electron gas and the gases of free baryons and nuclei

which are assumed to be non-degenerate. After these specific expressions have been

derived, we demonstrate their convergence with the non-relativistic non-degenerate

Maxwell velocity distribution.

Relativistic Energy Distributions of Arbitrary Gases

Let (n(E)) be the average number of particles in the state with kinetic energy E. By

the definition of the density of states D(E), the number of particles in a gas is N is
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given by [146]

N =/0 D(E)(n(E))dE

1 oo

=>1 = W/o D(E)(n(E))dE (5.1)

From the above is is clear that if the range of integration is restricted to some finite

energy interval, the integral would yield the fraction of particles in that energy inter-

val. This is interpreted as the probability of finding a particle in this energy range.

Thus we identify the probability of a particle being found within some infinitesimal

energy range dE centered about kinetic energy E as being given by

1

P(E)dE = ND(E)(71(E))dE (5.2)

Recall that up to a constant independent of kinetic energy E, the fully relativistic

expression for the density of states satisfies D(E) oc (E2 + 2mc2E)1/2(E + ch).

Therefore the above can be written as

P(E)dE = $132 + 2mC2E)1/2(13 + mc2)(n(E))dE (5.3)

where we have defined

N = [000 (E2 + 2mc2E)1/2(13 + mc2)(n(E))dE (5.4)

Therefore it is clear that the probability of finding a particle in the energy interval

[E1, E2] is given by

1 E2 2 2 1/2 2
P(El g E 3 E2): W /E (E + 2mc E) (E+ mc )(n(E))dE (5.5)

I
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Armed with this general expression for the energy distribution of a gas of indistin-

guishable particles, we can now proceed with the derivations of the energy distribu-

tions of specific gases.

Electron Gas Energy Distribution

During a core collapse supernova, the electron gas can initially be assumed to be

approximately degenerate [18, 62], but as the collapse ensues the degeneracy condition

is eventually lifted as electrons are “up-scattered” by increasingly energetic neutrinos

[62]. Thus, for the electron gas, the most general expression for (n(E)) must be

used as no simplifying assumptions can be made about the degeneracy of the energy

distribution that would remain valid at all times. Since electrons are fermions, the

most general expression for the average number of particles in the state with certain

kinetic energy E is given by the Fermi-Dirac distribution

1

= exp(5+ E/kT) +1

 

=> MB) (5.6)

where again 5 is related to the chemical potential 11 via 5 E ——;1/kT. The electron

gas 5 parameter is tabulated at all the number density temperature pairs that the

electron gas energy distribution must be determined and sampled. Thus we can divide

the electron energy distribution into bins for the purpose of systematic sampling by

numerically evaluating the integrals in equations (5.4) and (5.5) using the techniques

extensively described in section 4.3 where similar integrals were encountered when

electron gas statistical mechanics at arbitrary temperatures was discussed.

Free Baryon and Nuclear Energy Distributions

In our simulation, the gases of free baryons and nuclei are assumed to be non-

degenerate or equivalently in the high temperature limit. If we prescribe to the

142



generally excepted picture of core collapse supernovae though bounce described in

section 2.2, this assumption is safe to make for the free proton and nuclear gases.

Due to their lower number densities and there larger particulate masses relative to

the electron gas, in all regions of the core, their average thermal kinetic energies will

be much larger than their Fermi energies rendering the effects of degeneracy negligible.

However this picture, the assumption of non-degeneracy is not valid for the neutron

gas which is believed to become degenerate and halt the collapse. This neutron gas

degeneracy would then result in the phase space blocking of some electron captures

by free protons and neutron drip line nuclei that would otherwise produce more free

neutrons. The effect of this would be to reduce the number of neutrinos produced

in regions of the core with sufficiently high free neutron number densities. In these

regions, general statistical mechanics must be used to describe the neutron gas. It is

clear how to integrate this into our approach, but currently it is not implemented.

For gases of fermions and bosons, in the high temperature limit where exp(5) >> 1,

the average number of particles in the state with a kinetic energy E approaches the

Boltzmann result

1

(n(E)) = exp(5 + E/kT) i1

 —-> exp(—5 — E/kT) (5.7)

This simplification allows the 5 ’s to be factored out of both integrals in equations (5.4)

and (5.5) and cancel out when the energy distributions are determined by their ratio.

This is quite convenient as it removes the implicit dependence the energy distributions

had on particle number density through the 5 parameter and makes them functions

of temperature alone. The resultant integrals of functions proportional to Boltzmann

factors can also be numerically evaluated using the techniques thoroughly discussed

in section 4.3 allowing us to divide these energy distributions into bins for the purpose

of systematic sampling.
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Maxwell Limit

While it is only a necessary condition for the fully relativistic energy distributions de-

rived above to converge with their well known non-relativistic non-degenerate Maxwell

limits, and not a sufficient case for their validity, it is still instructive to demonstrate

this convergence. In the non-degenerate limit, as demonstrated above, in equations

(5.4) and (5.5), (n(E)) can be replaced by exp(—E/kT). Additionally, it was shown

in section 4.4.1 that in the non-relativistic limit the condition E << mc2 implies

that D(E) —2 CEl/Z, where C is a constant independent of energy. Therefore in

the non-degenerate non-relativistic limit, the N integral defined in equation (5.4)

becomes

N = C/OOOEl/2exp(—E/kT)dE

C
H= C(kT)3/2 [000 u1/2exp(—u)du ( .8)

Again the above integral is recognized as the generalized factorial (1 /2)! = (1 /2)( —1 / 2)!

where (—1/2)! = fl, and the above becomes

N = C(kT)3/Qi2f- (5.9)

The energy distribution given in equation (5.3) therefore becomes

P(E)dE = %E1/2 exp(-E/kT)dE

= WE”?exp(—E/kT)dE (5.10)
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Furthermore, in the non-relativistic limit, the kinetic energy is given by E = mv2/2

and the energy differential is given by dE = mv dv. After inserting these into the

above, we arrive at

 

3 2

P(E)dE = (27:21,) / 47w2 exp(—m'v2/2kT) dv (5.11)

The right hand side of the above is recognized as the probability of finding a particle in

a Maxwellian gas of indistinguishable particles at temperature T within a differential

neighborhood dv of a velocity 0. Thus the non-relativistic non—degenerate limit of the

fully relativistic energy distributions derived in the pervious sections are consistent

with the Maxwell picture as they must be.

Comparing Relativistic and Non-Relativistic Energy Distributions

Having established the convergence of the relativistic energy distributions with the

non-degenerate non-relativistic Maxwell limit, we now numerically compare selected

energy distributions computed with the relativistic and non-relativistic formalism.

First we consider electrons. In figure 5.2, the relativistic energy distribution (blue) and

non-relativistic energy distribution (red) for a gas of electrons with number density

713 = 1033 m_3 and temperature T = 107 K are expressed as functions of velocity

and plotted over the range 0 S v < 0. Note that these electron gas number densities

and temperature are not found in the hot dense core. Such conditions exist outside

the core in the cooler more diffuse regions of the progenitor. Two observations

are made about these energy distributions. One is that they agree very well with

one another. This is expected as relativistic corrections to finite temperature thermal

distributions of non-degenerate electron gases are not significant for T << 109 K [113].

Secondly, they both exhibit the classic Maxwellian curve shape and in velocity space

predict a most probable velocity ”prob = ‘/2kT/me. This too is due to the lower
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Figure 5.2: Plot of the relativistic energy distribution (blue) and non-relativistic

energy distribution (red) for a gas of electrons with number density 713 = 1033 m—3

and temperature T = 10 K expressed as functions of velocity.

temperature and non-degenerate nature of the electron gas.

Next we consider an electron gas with number density 713 = 1039 m‘3 and tem-

perature T = 1010 K. The relativistic energy distribution (blue) and non-relativistic

energy distribution (red) are expressed as functions of velocity and plotted for this gas

are plotted over the range 0 S v < c in figure 5.3. Electron gases with these properties

can be found in the core at intermediates stages of the collapse outside the hottest

and densest region of the core. From figure 5.3, it is clear that relativistic and effects

are quite pronounced for this electron gas. The electron gas treated with the fully rel-

ativistic formalism is found to be partially degenerate and its velocity distribution is

narrowly peaked about U x 0.9945 c and predicts no electron having velocities greater

than c. On the other hand, the electron gas treated with the non-relativistic formal-
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Figure 5.3: Plot of the relativistic energy distribution (blue) and non-relativistic

energy distribution (red) for a gas of electrons with number density 713 = 1039 In”3

and temperature T = 1010 K expressed as functions of velocity.

ism is found to be highly degenerate with an unphysical Fermi velocity UF 3 12 c and

incorrectly predicts that virtually all of the electrons have velocities greater than c.

Since the density of velocity states in this case is well approximated as being homo-

geneously distributed over the velocity sphere v S vF1 the fraction of electrons with

v S c z 1/12 ”F is approximately given by (1/12)3 x 5.79 x 1041. This is why the

area under the non-relativistic energy distribution curve is so small over the velocity

range 0 S v < 0.

Finally we consider the energy distributions of baryonic matter. Since we assume

that baryonic matter is non-degenerate, here we compare the non-degenerate rela-

tivistic energy distribution of baryonic matter expressed as a function of velocity to

the Maxwell distribution. We suspect that relativistic effects will not be as significant
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in this case due to the larger particulate mass. Thus we begin our considerations of

baryonic energy distributions with the baryonic gas that is most likely to become

relativistic: a high temperature free proton gas. Since free protons are the lightest

type of baryonic matter included in our simulation, they are the most likely to ac-

quire large thermal velocities. The highest temperatures expected to be relevant to

supernova dynamics are on the order of T = 1011 K [56]. In figure 5.4, the relativistic

energy distribution (blue) and non-relativistic energy distribution (red) for a gas of

non-degenerate protons with temperature T = 1011 K are expressed as functions of

velocity and plotted over the range 0 S v < 0. Even at this extreme temperature,
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Figure 5.4: Plot of the relativistic energy distribution (blue) and non-relativistic

energy distribution (red) for a gas of non-degenerate protons with temperature

T = 1011 K expressed as functions of velocity.

the free proton gas is seen in figure 5.4 to be well approximated as non-relativistic

and this approximation will become more accurate at lower temperatures. This result
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will hold for gases of slightly more massive neutrons and will certainly be applica-

ble for gases of the 385 more massive nuclei included in our simulation. Thus only

the electron gas needs to be treated with the fully relativistic formalism, however

for symmetry’s sake, relativistic energy distributions are used for baryonic matter as

well.

5.2.3 Neutrino Capture Tables

To model the capture of neutrino test particles by the nuclei or free neutrons (A, Z)

represented by matter test particles and the effects that these reactions have on

the temperature distribution, it was explained in sections 3.13.3 and 3.16 that it

is necessary to tabulate the average energy of an electron produced by the capture

of a neutrino with selected incident LTE frame energies EV by the nucleus or free

neutron (A, Z) surrounded by an electron gas with selected number densities n and

temperatures T as well as the average cross section of this capture for the purpose of

interpolation. This is done in the following way.

At each (n, T, EV) site in the interpolation lattice, we systematically sample the

thermal energy distributions of the (A, Z) particles 10 million times and model their

potential captures of neutrinos with energy EV. Once the LTE frame kinetic energy

of the (A, Z) particle has been generated, the magnitude of the momentum vectors of

the neutrino and (A, Z) particle are determined and then the vectors are randomly

oriented. These LTE frame momentum vectors are then used to calculate the energy

of the electron that might be produced during the capture of the neutrino by the

(A,Z) particle and the cross section of this particular capture. We consider the

former task first.

Just like the way the electron captures were modeled, we model neutrino captures

using relativistic classical mechanics and simply boost into the C-O-M frame of the

selected neutrino-(A, Z) pair and check to see if the C-O-M frame energy is large

149



enough to overcome the Q-value of the neutrino capture. If it is not, we reject the

capture and move on to the next pair. If it is, we model the capture by changing

the C-O-M frame energy in the way that energy conservation dictates, redefining the

C-O-M frame to be that of the new electron and final state (A, Z + 1) nucleus or

free proton, randomly re-orienting the new C-O-M frame momentum vectors, and

then boosting the electron’s momentum into the LTE frame. The LTE frame kinetic

energy of the new electron is calculated and then its contribution is added to the

average value tabulated for the particular (71, T) pair in the interpolation lattice.

To calculate the cross section of the capture of the neutrino being considered by the

nucleus or free neutron (A, Z) being considered, a different prescription is followed.

The neutrino—matter cross section that we use are taken from a very convenient com-

pilation of such cross sections and rates presented by Burrows and Thompson [68].

The effective cross section of neutrino capture by free neutrons given there can be

written as

2
1+39 E +A .

Ugap=(1—fe(Ee))0'0 X (————4A) X (_V2111))

772,36

2 2 1/2
meC

X l— —— W, 5.12

(El/+Anp) A! ( )

where E, is the incident nuclear rest frame neutrino energy Anp = mnc2 — mpc2,

E3 is the final state electron nuclear rest frame energy, and fe(Ee) is the electron gas

Fermi-Dirac function evaulated at E5. The scale cross section 00 is given by

402 (mecz) 2

7r (66)4

 00 = 2 1.705 x 10_20 barns (5.13)
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the axial-vector coupling constant 9A is given by

9A 2 —1.26 (5.14)

and WM is the weak magnetic recoil correction and is approximately given by WM =

1+ 1.1- Ey/mnc2 [148].

To calculate the cross section of neutrino capture by the nucleus (A, Z), detailed

balance is used and it is assumed that electron captures are dominated by the 1 f7/2 ——>

1f5/2 Gammow—Teller resonance [149]. Without the nuclear phase space blocking

term, the effective capture cross section is given by Burrows and Thompson to be

2 2 1/2

cap- _ 902 M _ _Tlei2_0.4 —(1 fe(Ee))C 49A( .6662 ) 1 (El/+6?) (5.15)

where E; is the nuclear rest frame neutrino energy, 62’ = MECQ — MA’C2 E [VI/102 —

MA,c2 +A, with A’ symbolizing the final state nucleus and A symbolizing the energy

of the neutron 1f5/2 state, and C is an estimate of the relevant nuclear spin sums. For

“ballpark” figures for A and C, we use those generated for neutron-rich nuclei with

Z > 20 and N < 40. In this case, A ~ 3 MeV [150] and using zero-order shell model,

C is roughly approximated by a simple piece-wise function of N and Z [68, 129].

c z ng(Z)Nh(N) (5.16)

where Np(Z) is an the estimate of the number of protons in the single-particle 1f7/2

level and Nh(N) is an estimate of the number of neutron holes in the single—particle

1f5/2 level. The zero-order shell model predictions for Np(Z) and N71“") are given
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by [129]

Z — 20, 20 < Z < 28

8, Z > 28

_ 6, N < 34

Nh(N) = (5.18)

40—N, 34<N<40

For any nuclei with Z S 20 or N 2 40, the formula for C is inapplicable and it

is replaced with unity. Zero-order shell model estimates for the nuclear spin sums

needed to weight neutrino capture cross sections can be made for all of the nuclei

included in our simulations. Only time constraints prevented these estimates from

being calculated before the results presented in this thesis were generated.

Using A = 3 MeV for lighter nuclei might not always be a good estimate of the

excitation energy of the final state nucleus and it makes no sense at all for nuclei that

are not neutron-rich, however by the time we can expect to have a large amount of

light and/or non—neutron—rich nuclei in the central region of the core, the neutrinos’

energies will typically be much larger than 3 MeV. Thus any mistakes being made

will be comparatively small. However there are still ways upon which our treatment

of C and A can be improved.

Since both of the formulae we use to calculate the cross section of neutrino capture

by (A, Z) particles depends on the (A, Z) rest frame neutrino energy, once the LTE

frame momentum vectors of the neutrino and (A, Z) particle have been generated.

in addition to modeling the neutrino capture in the way described above, for all

energetically allowed captures, we must also boost the neutrino 4-momentum vector

into the (A,Z) particles rest frame and evaluate the appropriate effective capture

cross section. This effective cross section’s contribution is then added to its average

value tabulated for the particular (n,T, EV) site in the interpolation lattice. Since
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10 million potential neutrino captures are modeled at each (TL,T,E1/) site in the

interpolation lattice, we are confident that our statistics are good. This procedure is

followed for all nuclei and free neutrons (A, Z) included in our simulation.

5.2.4 Elastic Neutrino-Baryon/Nucleus Interaction Table

Recall from section 3.13.4 that for the purpose of modeling the elastic scattering of

the neutrinos represented by a neutrino test particle by nuclei or free baryons (A, Z),

it is necessary to tabulate the average final energies of neutrinos that have elastically

scattered off of the nucleus or free baryon (A, Z) for neutrinos with selected incident

LTE frame energies EV surrounded by matter at selected temperatures T as well as

the average cross section of this elastic scattering. As explained in section 3.16, due

to the fact that these interactions do not alter the energy distribution of the local

electron gas, the changes in the temperature distribution induced by these processes

are neglected. This tabulations are made by following a prescription very similar to

the capture process addressed above.

For each (T, EV) pair in the interpolation lattice, we systematically sample the

thermal energy distributions of the (A, Z) particles 10 million times and model their

elastic scatterings with neutrinos with energy EV. Once the LTE frame kinetic energy

of the (A, Z) particle has been generated, the magnitude of the momentum vectors of

the neutrino and (A, Z) particle are determined and then the vectors are randomly

oriented. These LTE frame momentum vectors are then used to calculate the final

energy of the neutrino elastically scattered by the (A, Z) particle and the cross section

of this particular elastic scattering.

These elastic scatterings are simpler to model than the electron and neutrino

capture cases previously considered since the only difference between the initial and

final states are the energies of the particles involved. These scatterings are modeled

SChematically in an identical fashion to the matter test particle scatterings discussed in
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section 3.10.4 in that they are just C-O—M frame momentum randomizations. Once

the final LTE frame energy of the elastically scattered neutrino is calculated, its

contribution is added to the average value tabulated for the particular (T, EV) pair

in the interpolation lattice.

The way average elastic scattering cross sections are calculated for a given (T, EV)

pair in the interpolation lattice is completely analogous way to the capture neutrino

capture case. The only difference is the formulae used for the cross sections. The

cross section we use from Burrows and Thompson are functions of nuclear and free

baryon rest frame incident neutrino energies E, as well and are insensitive to neutrino

flavor. They are presented below.

The cross section of elastic neutrino-proton scattering is given by

2 2
E 1+ 3

Up = (:1—0931 ( y ) (4 sin4 0W — 2sin2 0W +A) (5.19) 

meC2 4

where 00 and gA are given equations (5.13) and (5.14) and 6W is the Weinberg angle

with sin2 0W 2 0.23. The cross section of elastic neutrino-neutron elastic scattering

is given by

771662

2 1+ 3 2_ 00 2 E; 9A

The total cross section of elastic neutrino-nucleus scattering in the simple coherent

Freedman scattering limit [68] taken from Burrows and Thompson is

 

2 2
_ 3Q Eu 2 _ E _ . 2

0A — 16 ("2862) A [I A (1 28m 91,V)] (5.21)

The general formula that Burrows and Thompson give for elastic neutrino—nucleus

scattering contains terms that take into account the effects of polarization, ion-ion

correlation, and form factor corrections to the coherent scattering. However due to
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the simplicity of coherent scattering and the fact that these corrections are expected

have little effect on supernovae [151], we use the simple coherent Freedman scattering

cross sections.

We note here the absence of phase space availability weighting coefficients of the

form (1 — f) that were present in the capture cross section presented in section

5.2.3. This is in part a consequence of the fact that we currently do not model the

degeneracy of neutrinos or any of the free baryons or nuclei included in our simulation.

As mentioned in section 5.2.2, we know how to take into account the degeneracy of

free neutrons which when implemented would require the neutrino-neutron elastic

scattering cross section to be multiplied by such a weighting coefficient (1 — fn).

Furthermore, we know how to determine when and where in the core the neutrinos

come into thermal equilibrium with matter and how to model their degeneracy in

these regions. How we detect neutrino-matter thermal equilibrium zones will be

elaborated on in section 8.2.2. Once neutrino degeneracy is taken into account, in all

regions of the core in which the neutrinos have come into thermal equilibrium with

matter, all of the elastic cross sections presented above will have to be multiplied by

phase space availability weighting coefficients (1 — fy).

5.2.5 Elastic Neutrino-Electron Interaction Table

Recall from sections 3.13.4 and 3.16 that to model the elastic scattering of the neu-

trinos represented by a neutrino test particle by electrons, it is necessary to tabulate

the following for the purpose of interpolation. At selected incident LTE frame neu-

trino energies EV and electron gas number densities n and temperatures T, we must

tabulate the average final energies of neutrinos that have elastically scattered with

electrons, the average change in the kinetic energy of the electrons that have elas-

tically scattered with these neutrinos, and the average cross section of this elastic

scattering. We create these tables in the following way.
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For each (n, T, EV) site in the interpolation lattice, the way the LTE frame mo-

mentum vectors of the neutrinos and electrons are generated and how we model their

elastic collisions is schematically exactly identical to the way this was done for each

(T, EV) pair in the elastic neutrino-baryon/nucleus interpolation lattice. The only

difference between these algorithms is that in addition to storing the final LTE frame

energy of each elastically scattered neutrino so its average value can be computed and

tabulated, we also do the same for the change in the kinetic energy of each elastically

scattered electron.

The evaluation of the elastic neutrino-electron scattering cross sections is quite

simple since these cross sections are dependent upon the incident neutrino’s LTE

frame energy. Thus no Lorentz boosting is required to evaluate them. Unlike any

of the elastic cross sections considered in section 5.2.4, the neutrino-electron elastic

scattering cross section presented by Burrows and Thompson is sensitive to neutrino

species. Below is a slightly modified version of this cross section which is an interpo-

lation between the analytic non-degenerate and degenerate limits [152, 153].

03 = 200 (mec2) —2 EV (kT + C(11)

fi
l
l
:

) [(CV + CA)2 + g(CV — CA)2 (5.22)

where ,u is the electron gas chemical potential, 6 is the Heavyside step function, for

electron neutrinos CV = 1/2 + 28in2 9W and CA = 1 /2, and for muon and tauon

neutrinos CV = —1/2 + 2sin2 0W and CA = —1/2.

The Heavyside step function was introduced to ensure that the term in the above

interpolation that corresponds to the degenerate limit is only included when working

in the degenerate limit is sensible. Once the electron gas is sufficiently non-degenerate

that [1 < 0, this is not the case and we only include the non-degerate portion of the

interpolation. Note that in the degenerate limit, where kT << )1, the above formula

approaches the appropriate limit without any modifications.
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5.3 Strong Interaction Tables

The simple prescription that we currently use to model the capture of free protons by

“light” nuclei (A < 60) described in section 3.18 requires access to tabulated proba-

bilities of successful Coulomb barrier penetration of the nuclei in a gas at temperature

T in one LTE frame by the protons in a gas at the same temperature T in another

LTE frame for selected temperatures T and relative LTE frame 8’s. This probabil-

ity is tabulated logarithmically over the same temperature range as the rest of the

tabulated quantities 107 K to 1013 K. It is tabulated linearly in increments of 0.05

over a 8 range of 0 to 0.5. The maximum value of 8 = 0.5 was chosen because for

all temperatures T included in this table, the probability of nuclear Coulomb barrier

penetration was always found to be one whenever the relative ,3 of the nuclear and

proton LTE frames exceeded 0.5.

To calculate the penetration probability at a given (T, )8) site in the interpolation

lattice, we systematically sample the thermal energy distributions of the protons 5000

times and check to see each of these protons can be captured by 5000 nuclei (A, Z)

systematically sampled from the thermal energy distributions of nuclei with 1 < A <

60. These potential captures are tested for using relativistic classical mechanics. Once

the kinetic energies of the proton and nucleus have been generated in their respective

LTE frames, the magnitude of their momentum vectors are determined and then the

vectors are randomly oriented. Then we simply boost the proton’s momentum vector

in the nuclear LTE frame with the given relative 8, then boost that vector into the

rest frame of the selected nucleus, and check to see if the proton’s nuclear rest frame

energy is large enough to penetrate the nuclear Coulomb barrier. Recall that we allow

the nuclear Coulomb barrier to be penetrated when the proton’s nuclear rest frame

energy is larger than the so—called touching spheres potential given in equation (3.59).

If it is not, we reject the capture and move on to the next pair. If it is, we increment
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the number of allowed proton captures by the nucleus (A, Z) at temperature T and

the given relative LTE frame 6. Once this has been done for all 25 million proton—

nucleus pairs considered at the given (T, 8) lattice site, the probability tabulated at

that site is simply the number of allowed proton captures divided by 25 million. This

is repeated for all nuclei (A, Z) included in our simulation such that 1 < A < 60 and

(A + 1, Z + 1) is also a nucleus included in our table of nuclei.

We conclude our description of the construction of the weak and strong interaction

tables by noting that the number of events modeled at each lattice site is undoubtedly

overkill. Dynamically checking for convergence via importance sampling could have

reduced the runtime of the codes that generated these tables. However since these

codes only needed to be run once, quickly writing simple subroutines that simulated

an excessively large number of interactions is justifiable.
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Chapter 6

Computational Requirements

The results presented in this thesis were generated by several codes, all of which are

currently 32—bit and written in C. The primary source code reads in and stores to

memory information from input files that are created by four codes and its output is

manipulated by four codes. In this chapter some basic characteristics of these seven

codes are detailed. We begin these considerations with the primary source code.

6.1 Primary Source Code

At present, the primary source code, TPSNc, can only make use of a single processor.

As explained in section 3.8, single processor simulations are limited to approximately

106 matter test particles and must assume spherically symmetric distributions of

matter. Simulations that use 106 matter test particles and assume spherically sym-

metric matter distributions take approximately five days to run to completion on a

Macintosh with 2 x 2.26 GHz Quad-Core Intel Xeon processors. These simulations

use nearly all of the 2 GB of memory available to 32-bit codes. Any attempts to

use significantly more than 106 matter test particles requires more than the 2 GB of

memory. Thus in addition to parallelizing TPSN so that significantly more than 106
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matter test particles can be used, it must also be converted to 64-bit so that it can

address a sufficient amount of memory.

Here we note in passing that by TPSN running to completion, we mean the

simulation eventually encounters a statistical barrier and terminates. The nature

of this statistical barrier is rooted in the way separation of the ejecta from the proto-

remnant impacts the way spherically symmetric density distributions are calculated.

This topic will be discussed further in chapter 8. It suffices to note while making use

of only a single processor and less than 2 GB of memory, TPSN is capable of following

the core tup to the point where the core has clearly divided itself into a well defined

proto—remnant and outward moving ejecta.

TPSN reads in and stores to memory information from a total of sixteen text files.

Three of these files were copied from companion CD to the Numerical Recipes in C

book [110] and are included to allow the code to use optimized quicksort algorithms.

Two of these files, the electron capture rate table and the nuclear mass energy table,

are generated manually. The remaining eleven files are generated 'by five codes that

tabulate the data needed to calculate statistical properties of the electron gas and

model electron capture, neutrino-matter interactions, and proton capture. These

codes are discussed in section 6.2.

TPSN produces a large amount of output. Some of this is in the form of text files

that are used to extract information or make images after the simulation is complete.

Much of the output is currently in the form of images of statistical distributions

generated dynamically, however this is being phased out and replaced by text files

used to generate images after the simulation is complete. When this conversion is

complete, the volume of output produced by TPSN will be greatly reduced. The text

files produced by single processor simulations are manipulated by two codes described

in section 6.3.
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6.2 Input Generating Codes

One of the files TPSN requires is the electron gas statistical mechanics table generated

by ElectronGasStatMech.c. This code tabulates the statistical quantities listed in

chapter 4 for a total of 6, 873 electron gas number density and temperature pairs, 112

number densities and 61 temperatures. When run on a Macintosh with a 2.26 GHz

Quad-Core Intel Xeon processor, this code takes approximately a week to generate

the table. Note that most of this time is spent numerically solving equation (4.9) for

the electron gas 5 parameter. Optimizations can certainly reduce this code’s runtime,

however since it only had to be used once, no such optimizations were ever made.

This code’s memory requirements are minimal.

Nine of the files TPSN requires are made by the three codes that tabulate the

data needed to model neutrino production and neutrino-matter interactions. Since

millions of events had to be simulated for each tabulated interaction’s average cross

section and/or final particle energies calculation, these three codes, ElectronCap—

ture.c, BaryonicNeutrinoInteractions.c, and ElectronNeutrinoInteraction.c, all take

nearly five days to run on the Macintosh octal mentioned above. None of these codes’

memory requirements are large.

The last table that TPSN requires that is generated by a code that we wrote is

the proton capture probability table. This table is created by ProtonCapture.c and

is only utilized by simulations that model proton capture. It, too, has to simulate

millions of events when calculating each tabulated average proton capture probability

and consequently takes approximately five days as well on the Macintosh octal. Its

memory requirements are also minimal.
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6.3 Output Manipulating Codes

Three of the codes that manipulate TPSN’s text file output are used to generate

images. The codes ElectronFraction.c, ElectronFractionBeta.c, and ElectronFrac-

tionBetaRho.c read the file MatterObservables.txt and make plots of the electron

fraction as a function of radius, the electron fractions and the radial component of

the average ,6 of matter [3r as functions of radius, and the electron fraction. fir, and

density as functions of radius respectively. These codes take only a few minutes to

run and have low memory requirements. The images they generate are also used to

make movies. The forth code that manipulates the TPSN’s text file output is Sim-

ulationStats.c which reads the file SimulationStats.txt and extracts information such

as the time and radius at which the outward explosion of matter began, what the

maximum density achieved was, etc. This code runs in less than five seconds and has

very low memory requirements.
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Chapter 7

Diagnostic Tests

Before we need to concern ourselves with the physical validity of specific results gener-

ated by our code, we must be confident that the code is computationally functioning

properly. To assure ourselves that this is indeed the case, a number of preliminary

and dynamic tests have been preformed or built into the code. Not only must we ver-

ify that the data management algorithms are functioning properly, but we must also

make sure the all of the quantities that are expected to be numerically conserved are

done so reasonably well by algorithms that do not explicitly enforce the conservation.

The specific ways that we test the data management algorithms and physical models

the codes makes use of are described in the sections below. Any conserved quanti-

ties not mentioned in the sections below such as the the electron gas thermal energy

and the energies associated with the production and capture of neutrino test parti-

cles, baryon number, lepton number, etc. have their conservation, or approximate

conservation, explicitly enforced in the algorithms that model the relevant physical

processes.
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7.1 Data Management

To test the data management algorithms the code uses to organize the test‘particles

by their spatial locations and nuclear properties, we dynamically check each test

particle as it is accessed from the array used to group it with other test particles

to see if it has the correct properties. Whenever a test particle is accessed from

an array that groups the test particles into the grids defined in section 3.8.2, we

always check to see if it has the correct grid cell indices. Whenever we access a test

particle from an array that organizes the test particles by their nuclear properties,

we always check to see if it represents nuclei with the correct composition index, or

has the right free baryon number. In the event a test particle is pulled from one

of these organizational arrays and does not have the properties it should according

to its location in the array, the code prints an error message to the screen detailing

the nature of the data management flaw and the simulation terminates. Not only

did this prove to be useful for debugging purposes, but it also assures us that the I

data management algorithms used by any simulation that ran to completion without

prematurely terminating worked flawlessly.

7.2 Energy Conservation

The forces that govern the motion of the matter test particles must be tested for

energy conservation in any way possible. In section 3.4 it was stated that the forces

that influence the motion of matter test particles are the “impulse force” between

matter test particle pairs that have elastically scattered, gravitation, and a local force

generated by the local mean field nucleonic potential and electron gas pressure. In this

section, we test the energy conservation of the elastic matter test particle scattering

algorithm, the gravitation model, and, to the extent possible, the algorithm used to

determine the local forces that generated the results presented in this thesis. It turns
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out that the local forces are completely derivable from a potential matter test particle

energy only in the degenerate electron gas limit. This will be discussed in detail later

in this section. Below we systematically implement these algorithms one at a time

using a series of toy models and monitor the how the well the total energy is conserved

by each.

7.2.1 Energy Conservation by Elastic Scattering

Turning our attention first to the elastic matter test particle scattering algorithm,

we use a toy model that exerts no forces on the matter test particles, models no

weak reactions, but does allow the matter test particle two—body elastic scattering to

occur. The only energy the matter test particles have in this case is the kinetic energy

determined by the initial collapse profile described in section 3.5.1. In figure 7.1, we

present a plot of the matter test particle kinetic energy as a function of time over an

interval during which millions of elastic matter test particle scatterings were modeled.

It is clear from figure 7.1 that our matter test particle elastic scattering algorithm

conserves energy quite well. For this toy model, violations of energy conservation are

only caused by computer roundoff errors. This result is expected since this algorithm

in no way depends upon the value of statistical distributions or their derivatives

and as such is invulnerable to the numerical difficulties that can accompany such

dependancies.

7.2.2 Energy Conservation by Gravitation

Now we consider gravitation. Since the results presented in this thesis were gener-

ated using only a single processor, we used the modified Newtonian monopole model

described in section 3.10.1 for gravitation. To test the energy conservation of this

algorithm, we use a toy model that does not model the elastic two-body scattering
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Figure 7.1: Plot of the matter test particle kinetic energy for toy model with no forces

only scattering.

of matter test particles, exert any of the local forces on the matter test particles, and

models no weak reactions, but does model gravitation. In this case, we use static

initial conditions so the matter test particles initially only have gravitational poten-

tial energy and acquire kinetic energy as they are accelerated by the gravitational

field. In figure 7.2, we present a plot of the matter test particle kinetic energy (red),

gravitational potential energy (green), and total energy (blue) as functions of time.

Since this toy model includes no forces that resist the core’s tendency to collapse un-

der its own weight, a time interval of 0.05 s is sufficiently long to observe significant

contraction. It is clear from figure 7.2 that this algorithm also conserves energy very

4th orderwell. For this toy model, violations of energy conservation are limited the

uncertainties with the Runge-Kutta integrator we use to solve the matter test particle

equations of motion and computer roundoff errors. This result is also expected since
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Figure 7.2: Plot of the matter test particle kinetic, gravitational potential, and total

energy for a toy model that only includes gravity.

this algorithm depends only upon the centroid coordinates of the matter test parti-

cles relative to the origin and thus in no way depends upon the value of statistical

distributions or their derivatives either.

7.2.3 Energy Conservation by Local Forces

Next we test the energy conservation of the local forces generated by the local mean

field nucleonic potential and electron gas pressure which do depend on the value

of statistical distributions and their derivatives and are therefore vulnerable to the

numerical instabilities that can accompany such dependancies. Before we discuss the

toy model used test the conservation of energy of the local forces, we must determine

how and in what cases these forces can be derived from a potential energy so that

Flee = ’6Uloc’ where Uloc is the sum of the nucleonic and average electron gas
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matter test particle potentials. It was established in section 3.10.2 that the nucleonic

force acting on a matter test particle is a constant multiple of minus the gradient of

one of the three mean field nucleonic potentials that we currently use evaluated at its

centroid coordinates. Thus one can sensibly speak of a nucleonic matter test particle

potential energy Unuc- The construction of an average electron gas potential energy

”wave that satisfies Fave = —6uave where Fave is the average force acting on an

electron is substantially more complicated and requires further consideration.

Recall from section 3.10.3 that the origins of the general formula for the average

force acting on an electron in an electron gas element by the electrons surrounding

it are found in elementary hydrodynamics. Since forces and conservation laws are all

determined volumetrically in hydrodynamics [128] our unwillingness to speak of the

shape and size of our imaginary test particles imposes certain limitations on how we

can construct the matter test particle potential energy Have that we seek. To see this

consider the following.

Since the general formula for Fave given in section 3.10.3 can be written as

.. 1 _.

Fave = —;VP(TL,T) (7.1)

where n is the electron number density and T is the temperature, it is clear that Have

must satisfy

 

 

aum = la—P (7.2)
8:137: 11 812?;

Thus by the chain rule, it must be that

anave _ 18p

8n _ n 871 (7'3)
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and

 

 

 

allave _ 18p

8T _ 55? (7'4)

Since we know that

azuave = azuave (7 5)

8718T 8T8n '

equations (7.3) and (7.4) imply that

1 52p _. _18_P + _1_ 8213
718T8n _ n2 8T 718n8T

8P

— = 0 .=> 8T (7 6)

The above requirement that the electron gas pressure be independent of tempera-

ture was compatible with our previous works that focused on the early stages of the

collapse phase when the electron gas can still be reasonably well approximated as de-

generate [107, 111, 112, 117, 154]. When working with finite temperature electron gas

statistical mechanics, as we do now, it is not possible to construct an average electron

potential from which one can derive the average force acting on an electron in an

electron gas element by the electrons surrounding it. Therefore one cannot sensibly

speak of an average matter test particle electron potential energy unless the electron

gas is assumed to be perfectly degenerate so that condition (7.6) is automatically

satisfied.

That is not to say that there is no way of monitoring the conservation of energy

by our latest version of the code which works with finite temperature statistical

mechanics even if we wish to avoid considerations of matter test particle shapes and

sizes. We could switch to a volumetric formula for the matter test particle nucleonic
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potential and then divide the core into volumes and use volumetric hydrodynamic-like

conservation laws to test the energy conservation of the local forces. However we are

reluctant to do this as it is a step away from our test particle approach and have not

implemented anything like it yet although it appears to be inevitable. Instead we

defer to test of the conservation of energy by local forces that assume the electron

gas is perfectly degenerate to gain insight into the finite temperature code’s ability

to conserve energy. We feel that this is reasonable temporary fix since the accuracy

with which the local forces conserve energy boils down to our ability to determine

the local value of statistical distributions and their derivatives. Since the gradient

of the local degenerate electron gas pressure will depend on the local values of the

electron number density and its gradient, we will obtain a measure of how well the

code can determine the local value of distributions and their derivatives and we can

do so using matter test particle potentials. Before delving into such considerations,

it is necessary to derive a convenient analytic formula for the pressure exerted by a

degenerate electron gas.

Degenerate Electron Gas Pressure

In the degenerate limit, the pressure integral given in (4.11) simplifies to the analytic

form [113]

 

:9
Pdeg= 38,13/0 F p4“p (7.7)

m \/1+ ()p/mc2

where pF is the Fermi momentum in the degenerate electron gas element and m is

the electron mass. Introducing the dimensionless variable a: = p/mc yields

P _ m4c5 /$F x4dx

deg 352113 0 \/1+:r2
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The above dimensionless integral is easily solved with a hyperbolic substitution. How-

ever, in order to gain further physical insight into the system that will aid in our

attempt determine the average potential interaction energy uave(n), we proceed in

the following less than intuitive way. Via integration by part, we may write

:1: 4
x ,/f F ___:1:d5“ =x%‘/1+x%—3/ F232 1+a:2d:r (7.9)

0 \/l+:1:2 0

After plugging this result into equation (7.8), we arrive at

4 5 m4C5 :1:
_ m c 3 2_ F 2:2 /———

Now let us physically interpret the two terms above. Turning out attention to the

first of these, we note that since the electron number density is given by n = pe/m,

where pg is the mass density of the degenerate electron gas element, the definition of

:1:F can be written as

 

. = ___’i(3“2>1/3(P_e)1/3
F mc m

3 2
3 _ h 37r _p_e

Inserting the above result into the first term on the right hand side of equation (7.10)

and recognizing 1 + 5%. as yF gives us

m4c5

3 / 2 2
gn—7r—c—2h3xF 1+:rF: prec (7.12)

which is simply the total energy density the electron gas element would have if all

of the electrons in it moved with the local Fermi momentum. To shed light on the

physical meaning of the second term on the right hand side of equation (7. 10), consider
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the following.

If the electron gas element is perfectly degenerate, none of the electrons it contains

have a momentum greater then the local Fermi momentum. Thus if the Pauli Exclu-

sion Principle is taken into account, the total energy of the electrons in the element,

Utotal, can be written as

 

UtOtal = 2 Z (/m2c4+p2c2 (7.13)

lflSpF

where the above sum runs over all allowed momentum states with magnitudes no

larger than the local Fermi momentum pF' In the statistical limit [146], the above

summation becomes V/h3 times an integral over a continuous distribution. In spher-

ical coordinates, after integrating over all angles, the above expression becomes

 

P ,

UtOtal = 8772-1) F dpp2(/m2c4 + pgc2 (7.14)

Again defining a: = p/mc and substituting it into the above integral gives

4 5 a:

U10tal =Vm—9- F dxmz 1+3:2 (7.15)
7r2h3 0

A comparison of the above expression to the second term in the right hand side of

(7.10) leads us to the conclusion that this term is none other than the total energy

density of the degenerate electron gas element U‘t/Otal.

Thus, according to the above conclusion and equation ( 7.12), the degenerate elec-

tron gas pressure given by equation (7.10) reduces to

Pdeg = 7Fp302 — Uf/Otal (7.16)

which is merely the energy per unit volume required to promote all of the electrons
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in the element of degenerate electron gas to the local Fermi surface. With this simple

analytic expression for Pdeg’ we can now proceed with the evaluation of its gradient to

determine the average force, Fave, acting on an electron in an element of degenerate

electron gas by those surrounding it.

Degenerate Electron Gas Forces

Using the chain rule, the gradient of the pressure is given by

 

BPde
—-o _ g —o

VPdeg — 3.731: VICF

_ 8 . 2 total "

For organizational purposes, we evaluate the two terms in the parentheses separately

first and then we address the gradient of :1:F' Doing so, we write the first term in the

parentheses of equation (7.17) as

 

5 2 _ 2.6 2
E(vppec) — mc 3$F( 1+a:F n)

= mc2——$—F—n + mc2 1+ :52 an

2 F.6‘x
‘/1+a:F F

Again recalling the definition of 231:, we have

(7.18)

CL‘F = —h—(3772n)1/3

_,,, = (7393:3351 (7.19)



Therefore the partial derivative of n with respect to :rF is simply

0n _ 3(fl9)3 33%

8:13p _ h 3W2

= 31 (7.20)

xF

Plugging equation (7.20) into equation (7.18) and replacing the square roots with 'yF

gives

5 2 2W 2 n_ = _ 3—
amp (7Fpec ) mc 7Fn+mc 7F 53F

2 $17 3

= 7ch n —2— + -— (7.21)

717 33F

Now consider the second term in the parentheses of equation (7.17).

 

aUtotal 4 5 a:

V = me 3 Fd222V1+$2

3331:) ”2&3 83F 0

4 5

_ TL 2 2

Regrouping and replacing the square root with ”yF leads to

 

aUtotal 3 3

V _ A 2 m C 2

With the right hand side of equation (7.20) in mind, the term in the parentheses

above is identified as 3n/:1:F. Thus the above expression simplifies to

aUtOtal

 

2 3
= — .2432F 127ch 17F (7 )
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Substituting equations (7.21) and (7.24) into equation (7.17) gives

 

~ _ 5 2 total ~,
VP — m (VFpeC _UV )VIF

= nvpmc2$§ {7.2T (7.25)

7F

Finally, we turn our attention to the gradient of 23F.

 

1 3

~ h(3"2) / ~ 1 3
Vsz = ————V[n /]

mc

1/3

h 37r2

= ( ) 1n‘2/3vn

me

1 3

1h(322n) / _‘

= — —Vn

3 me n

— 435% (7 26)_ 3 n .

Combining this result with equation (7.25) gives

.. 1 2137671

7F

Note that

2 2 2 2

2 2
(I? ’U

717 C
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Plugging this into the expression for fipdeg given in equation (7.27) yields

_. 1 s

vpdeg = gvpmv%Vn

1 _.

= EvaFVn (7.29)

Finally, with this result, we are poised to generate an expression for the average force

acting on an electron in an element of the degenerate electron gas by the surrounding

electrons.

1

Fave : —;VPdeg

1 6n

= —— — 7.329va n ( 30)

Degenerate Electron Gas Average Potential Energy

While it is assumed that the degenerate electron gas is ideal and therefore non-

interacting, the fact that it obeys the laws of quantum statistics means that there

is a quantum statistical interaction between the electrons that allows them to influ-

ence each others’ kinetic energies. To determine this energy, consider the following

arguments. If

.. 1 .. 2

Fave = —;VPdeg E —VUa/()e (7.31)

it must be that for any i = 1,2,3

B-uave : lapdeg (7 32)

(9.2:,- n 8:5,; '
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Therefore, by equation (7.30), we arrive at

auave _ 119171111727:

8:13,,- 3 n 83:,- (733)

In the degenerate limit, Uave is a function of n only. Therefore the chain rule tells us

 

that

auave : EPFUF

8n 3 12

TI. (9115122601,) / 1 [TI pF(n,)’UF(Tl,) I_, -—————d = _ d 7.34[0 8n’ n 3 0 n, n ( l

where the upper limit of integration, n, is the local electron number density. Carrying

out the simple integration on the left hand side of the above and expressing vF(n’)

in terms of pF (n,) in the right hand side yields

2 —1/2

1+ (M) dn’ (7.35)
193:0“)

’ me

1 n

Uavefn) = 3772/0 n
 

where we took uave(0) = 0 since 77. = 0 implies that there is no electron gas. Eir-

thermore

pF(n’) = h(37r2n’)1/3

I 1 3
—>’n : _—

3772h3pF

—->an = ——1———p%dpF (7.36)

22h3
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The insertion of the the above expressions for n, and dn’ into equation (7.35) allows

that integral to be expressed solely in terms of Fermi momentum.

1 PF 19' 2 _
Uave(n) = ‘TE/O Pl? 1+('m_1:) dP’F

= {(1+ ((7%)?)1/2 —1}mc2

= (,F _ 1) mc2 (7.37)

Thus the average quantum statistical interaction potential energy that satisfies Fave =

—6uave, with Fave = —1/n- 6Pdeg is simply the kinetic energy of an electron that

moves with the local Fermi momentum. Since we are free add to this potential energy

2
an arbitrary constant, for convenience, we add me and define average interaction po-

tential energy of an electron in an element of degenerate electron gas uave(n) to be

the total energy of an electron moving with the local Fermi momentum

uave(n) E ’7ch2 (7.38)

Thus we can define an average matter test particle electron potential energy Uave

simply by evaluating Have at each matter test particle’s centroid coordinates and

multiplying the result by the number of electrons it implicitly represent.

Testing the Energy Conservation of Local Forces

Armed with a general expression for Have in the degenerate electron gas limit, we

can now test the ability of local forces to conserve energy. The toy model constructed

to do this only simulates the local forces generated by the local mean field nucleonic

potential and electron gas pressure. We choose to we use static initial conditions so
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the matter test particles initially only have local interaction potential energy and ac-

quire kinetic energy as they are accelerated by the effective interaction potential field.

Since this the matter test particles will repel one another as they interact through

local forces in this toy model, at some point the roughly 100 data points we have

to interpolate distributions and their radial derivatives off of will start to become

widely separated. Since the data points must be sufficiently close to one another to

accurately resolve radial changes in distributions, the fact that the test particles are

moving away from one anther will eventually lead to problems. Thus we only follow

this toy model for 0.05 5, during which the core significantly expands, and do not

expect energy to be conserved perfectly. In figure 7.3, we present a plot of the matter

test particle kinetic energy (red), local interaction potential energy (green), and total

energy (blue) as functions of time. It is clear from figure 7.3 that this algorithm con-
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Figure 7.3: Plot of the matter test particle kinetic, local interaction potential, and

total energy for a toy model that only includes local forces.
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serves energy reasonably well. For this toy model, violations of energy conservation

4th order uncertainties with the Runge—Kutta integratorare not just generated by the

we use to solve the matter test particle equations of motion and computer roundoff

errors. Limitations on our ability to calculate statistical distributions and their gra-

dients come into play as well. As the core expands, the total energy decreases by

approximately 7%. This is attributable to the expected statistical issues associated

with large radial separation between data points mentioned above. This does increase

our confidence that we are capable of calculating the values of distributions and their

radial derivatives with fair accuracy at arbitrary points. Although this is admittedly

not the a very tough test. In full calculations, as the core collapses, distributions will

change much more rapidly radially and it will become more important to accurately

calculate the local values of distributions and their radial derivatives.

One could propose using a toy model that includes gravitation which would cause

the core to contract and keep the data points from getting too far apart from one

another. However in the absence of weak reactions, which cannot sensibly be included

in a model that assumes the electron gas remains perfectly degenerate at all times,

other statistical problems are expected to arise. To see that this is the case, consider

the following.

Single processor simulations usually have about 100 data points spread over the

radius of the core at which statistical distributions are known. This means that if any

of the statistical distributions begin to change too rapidly radially before the core is

contracted enough so that the data points at the average radii of the spherical shells

are sufficiently close enough together to resolve these radial changes, we cannot safely

interpolate between the data points. In full calculations where weak reactions are

modeled, electrons captures reduce the electron gas’s ability to resist the inward crush

of gravity and the collapse rapidly accelerates. Consequently none of the statistical

distributions radially change too much before the core is contracted enough to resolve
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their radial behavior. Such is not the case for the proposed toy model. The lack of

electron captures would allow the electron gas to repel the inward crush of gravity after

the core has only slightly contracted. This would then generates ripples in the density

distribution that would occur when the data points are not close enough together to

resolve them. This was found to be the case in some preliminary calculations. In these

studies, many matter test particles were subject to unphysical forces and energy was

not conserved. In essence, this toy model would be less of a test of energy conservation

as it would be a test of how far we must push the code in a direction in which we

expect it to perform poorly before energy conservation completely breaks down.

Thus we opt to save this proposed toy model for calculations performed after the

code has been parallelized and converted to 64-bit so 107 or even 108 matter test

particles could be used to construct many more more spherical shells all containing

substantially more matter test particles than we currently do. These calculations

would be capable of easily resolving any density ripples that would be formed as the

electron degeneracy pressure begins to halt the collapse in toy models with no weak

reactions.
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Chapter 8

Numerical Results

In this chapter, we discuss the results generated by several calculations. Simulations

were performed using all three nucleon potentials described in section 3.10.2, the four

different modified version of the FFN electron capture rate tables discussed in section

5.1, and various numbers of spherical shells that divided the core into volumes for the

purpose of calculating distributions. The motivation for systematically varying the

nucleon potentials and electron capture rates is to study any physical dependencies

the collapse and explosion mechanisms may have upon them. The purpose of sys-

tematically varying the number of spherical shells is to test for unwanted numerical

dependence upon the number of spherical shells used to calculate statistical distribu-

tions. Additionally some preliminary calculations that model fusion were performed

in each series. The inclusion of the fusion calculations is merely confirm that the

subroutines designed to model this are functioning properly since the nuclear inter-

action network is incomplete at this time and no realistic data can be generated by

simulations that make use of it and they are discussed no further. Other than these

differences, all of the simulations discussed here had identical inputs. All simulations

were performed on a single processor, made use of the 106 matter test particles, and

the same initial conditions. All of the results presented here were generated by sim-
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ulations of the collapse of a non-rotating 1.33 ME) core with the initial density and

temperature distributions shown in figure 3.2, initial chemical composition given in

figure 3.4, and the initial collapse profile described in section 3.5.1.

Before we proceed into a discussion about the distinctions between results obtained

by the different simulations, we first address what these simulations have in common.

This is done because irrespective of which nucleon potential or electron capture rate

table was utilized or how many spherical shells the simulations made use of, a similar

phenomenon that profoundly impacted core dynamics was seen emerging in all of

them. The resultant dynamics may prove to be the first glimpse of a completely new

explosion mechanism that is entirely different from the accepted picture. Hence an

in depth description of this phenomenon, what precipitates it, and how it effects the

core’s evolution is warranted. Once this description is complete, we will compare the

results of different simulations.

To aid in our description of the new dynamics observed in all of our simulations,

while making general comments applicable to all simulations presented in this thesis,

we specifically reference the output of one particular calculation. This calculation

made use of the soft BKD nucleon potential and the linearly extrapolated FFN elec-

tron capture rate table with all entries reduced by an order of magnitude discussed

in sections 3.10.2 and 5.1 respectively. We chose to reference this calculation for two

main reasons. One is that isospin independent nucleon potentials are generally better

understood than isospin dependent nucleon potentials for the reasons explained in

section 3.10.2. It turns out that of the two isospin independent nucleon potentials

we use, the phenomenon we have repeatedly mentioned is slightly more pronounced

in the soft potential case and thus we chose to make an example out of calculation

that used it. The second reason we elected to reference this calculation is that the

electron capture rate table it used is probably the most realistic of the four different

electron capture rate tables we generated for the reasons explained in section 5.1.
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8.1 New Dynamics Observed

In all of the calculations we performed, the first deviation form the accepted picture

observed in statistical distributions was found in the electron fraction. Therefore

we commence our description of the new dynamics seen in our simulations with an

account of how the electron fraction distribution evolves in time. After we explore this

topic and the impact that these electron fraction configurations have on the overall

collapse and explosion mechanics, we examine the genesis of the resultant dynamics

in neutrino—matter interactions and nuclear structure.

8.1.1 Evolution of the Electron Fraction

Initially the electron fraction distribution was always found to change in time in such

a manner that is consistent with the accepted picture of a core collapse supernova.

Electron capture rates initially slowly increased as the collapse progressed and at

later times rapidly increased and eventually led to rapid deleptonization of the inner

core. This can be seen in the electron fraction plots from our reference calculation in

figures 8.1, 8.2, and 8.3. In these plots each red dot symbolizes the electron fraction

in a spherical shell.

Not long after the inner region of the core begins to rapidly deleptonize, an unex-

pected phenomenon is observed in each calculation. In the accepted picture of core

collapse and bounce, this rapid deleptonization continues throughout the entire inner

region of the core further reducing its primary pressure source thus allowing the rest

of the core to easily collapse into it and generate a bounce through the canonical

mechanism described in section 2.2. Contrary to this notion, all of our calculations

found that neutrino captures at intermediate radii inside the inner region of the core

deposited a large amount of electrons in a narrow spherical shell centered about a

radius of approximately 50—60 km. The electron fraction in this region became in-
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creasingly elevated as did the pressure of the electron gas. Eventually a well defined

narrow spike in the electron fraction always formed. This electron fraction spike is

seen in various stages of development in figures 8.4, 8.5, and 8.6.

The significance of the spike in the electron fraction distribution can be understood

in the following way. It is seen in figures 8.4, 8.5, and 8.6 that the spike is sufficiently

narrow that the magnitude of the radial derivative of the electron fraction almost

everywhere in it becomes large compared to other locations in the core. Thus the

radial derivative of the electron fraction in the spike at radii greater than the radius of

its peak can become extremely large and negative. Conversely the radial derivative of

the electron fraction in the spike at radii less than the radius of its peak can become

extremely large and positive. This coupled with the a presumably large negative

radial derivative of the density distribution in this region, demonstrated to be true

in section 8.1.3, gives rise to two important features in the electron number density

distribution. One is an much steeper drop off in electron number density at radii

just outside the radius of the spike’s peak than would otherwise occur if the spike

was absent. The other is a less steep drop off in electron number density at radii

just inside the radius of the Spike’s peak than would otherwise occur if the spike was

absent. The former results in a large increase in the outward pressure exerted by the

electron gas present at radii just outside the electron fraction Spike’s peak radius that

works against the inward collapse of the outlying infalling matter. The latter results

in a reduction in the pressure exerted by the electron gas that would otherwise resist

the tendency of the matter inside the electron fraction spike’s peak radius to collapse

under its own weight. To see the extent to which these unexpected changes in the

pressure profile of the electron gas impact core dynamics, we next study the radial

component of the average 3 of the matter in the spherical shells.
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Figure 8.1: Plot of the initial electron fraction in the spherical shells.
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Figure 8.2: Plot of the electron fraction in the spherical shells shortly after the inner

region of the core’s rate of deleptonization began to increase.
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Figure 8.3: Plot of the electron fraction in the spherical shells shortly after the inner

region of the core has begun to rapidly deleptonize.
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Figure 8.4: Plot of the electron fraction in the spherical shells shortly after the spike

develops.

189



l
1 . shell electron fraction

 

  
0 2'50 500 750 1000

r[km] t=0.119058

Figure 8.5: Plot of the electron fraction in the spherical shells showing fully relep-

tonized matter in the spike having an electron fraction approximately equal to matter

in the outermost shells where the effects of electron capture are negligible.
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Figure 8.6: Plot of the electron fraction in the spherical shells showing hyper-

leptonized matter in the spike having an electron fraction greater than matter had at

any point in the core before the collapse began.
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8.1.2 A Possible New Explosion Mechanism

In this section we present and analyze a series of plots that show both the electron

fractions and the radial component of the average 5 of matter, denoted by 57-, in

the spherical shells. This is done to highlight the dependence the radial motion of

matter has on the electron fraction configuration. To ensure that the details of the

Br distribution can be resolved, it is plotted on a base 10 logarithmic scale. This

precludes us from displaying negative values. Therefore color is used to differentiate

between negative Er’s, which indicate inward radial motion and positive Br’s, which

indicate outward radial motion. The former is symbolized by a red dot and the latter

by a green dot. In these plots each magenta dot symbolizes the electron fraction in a

shell.

These plots are taken from our reference calculation at the same times the previous

series of plots were in the last section. As such the first three plots presented in figures

8.7, 8.8, and 8.9 depict intuitively expected Br distributions as no unexpected features

have yet developed in the electron fraction distribution. Initially the 37‘ distribution is

determined by the initial collapse profile. At later times, all of our simulations found

that inward acceleration was seen everywhere in the core and eventually became the

largest for matter at intermediate radii. Matter at this distance from the origin is

close enough to experience a larger gravitational acceleration than matter on the outer

region of the core, but it is far enough from the origin that its inward motion is not

impeded by particle collisions that occur in the high density inner region of the core.

The last three plots of the electron fraction and Br distributions require more in

depth considerations as the presence of the electron fraction spike complicates the

31' distribution in every simulation. In figure 8.10 shows the electron fraction and

Br distributions shortly after the spike develops. Two important statements must be

made about this plot. One is that matter is clearly decelerated in the region between
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the electron fraction Spike’s peak and the outer edge of the rapidly deleptonized inner

region of the core where the the electron fraction distribution is depressed. The other

is that matter is seen beginning to move outward in this plot as indicate by the green

dot. In our reference calculation, after this time step an increasing number of spherical

shells were found to have positive Br’s that increased in magnitude and a well defined

outward moving density wave was formed. Therefore the significance of the green dot

in figure 8.10 is that it is the radius at which the outward explosion of matter begins

to occur. In our reference calculations the radius at which the explosion began was

approximately 58 km. Similar results were obtained by the rest of the simulations.

This is a significant deviation from the accepted picture. Instead of the outward

explosion of matter being generated by the pressure exerted by matter at supernuclear

densities accumulated in a small volume near the origin, all of our calculations found

that the an outward explosion of matter formed occurs at radii greater than 50 km

and is the result of a build up of electrons produced during neutrino captures that

significantly increases the outward electron gas pressure. The propagation of the

density wave formed by the neutrino capture driven explosion can be seen in figures

8.11 and 8.12. In these figures, it is seen that the ejecta acquires velocities in the

neighborhood of one tenth the speed of light. The proto—remnant is more difficult

to discern from these plots and we therefore postpone in depth discussions about it

until the next section where density plots are considered. It suffices to say here that

while the proto—remnant is tightly gravitationally bound, violent collisions between

energetic matter test particles can cause the value of Br in a some of the shells

that comprise the proto—remnant to become momentarily positive. Thus examining

a single plot of the 37' distribution can make the identification of the proto—remnant

perplexing. Only when all of the 37‘ distribution plots are considered, particularly in

the form of a movie, can the outer edge of the proto-remnant be distinguished from

the ejecta.
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Figure 8.7: Plot. of the initial electron fraction and Br of matter in the spherical shells.
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Figure 8.8: Plot of the electron fraction and Br of matter in the spherical shells shortly

after the inner region of the core’s rate of deleptonization began to increase.
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Figure 8.9: Plot of the electron fraction and 37‘ of matter in the spherical shells shortly

after the inner region of the core has begun to rapidly deleptonize.
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Figure 8.10: Plot of the electron fraction and Br of matter in the spherical shells at the

time the outward explosion of matter forms shortly after the spike develops and the

matter between the Spike’s peak and the outer edge of the rapidly deleptonized inner

region of the core where the electron fraction is depressed has clearly decelerated.
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Figure 8.11: Plot of the electron fraction and Br of matter in the spherical shells

showing fully releptonized matter in the spike having an electron fraction approxi-

mately equal to matter in the outermost shells where the effects of electron capture

are negligible and a large outward moving density wave is visible.
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This neutrino-mater interaction driven explosion mechanism appears to be com-

pletely consistent with the physics that have been included in our model so far. Not

only is it clear what. powers it, its origins in neutrino-matter interactions, nuclear

structure, and quantum statistical mechanics discussed in section 8.2 are well under-

stood, and it has survived every numerical convergence test it has been subject to.

More convergence tests must conducted before we can be completely confident that

the mechanism is entirely physically consistent with the physical processes currently

being modeled. This subject is discussed further in section 8.5. Additionally, more

physical processes must be built into our model before we can safely conclude that

this explosion mechanism is completely physically realistic. This subject is discussed

further in chapter 9.

8. 1.3 Explosion Dynamics

To gain further insight into the dynamics of the new explosion mechanism our calcu-

lations are consistently yielding thus far, we now study a series of plots that show the

density distribution as well as the electron fraction and Br distributions. This shall

allow us to examine the role that density plays in this scenario and how it quanti-

tatively differs from the accepted picture of the bounce and explosion. The density

is plotted on the same base ten logarithmic scale as the 31" distribution is in units

of nuclear density p0. Other than the appearance of the black dots that symbolize

the density in the shells, these plots are identical to those that appeared in the last

section.

The first three plots are taken at times before the electron fraction spike develops

and as such no phenomena that are completely at odds with the canonical story of

this stage of the collapse are observed. The first plot seen in figure 8.13 again simply

shows the initial conditions of the Woosley and Weaver progenitor. The analyses

of the density distributions in the next two figures are more complicated and are
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presented separately below.

The second plot given in figure 8.14 shows an expected increase in the density in

most of the core leveling off at the origin. However it also shows some fluctuations

that are due to the low densities in the outer edge of the core. These low density

fluctuations were found in all calculations. Since none of the important processes that

govern the core’s evolution take place in the outermost region of the core, we need

not concern ourselves with these fluctuations as the high density regions of the core

where our statistics are much better truly drive the dynamics. We do note, however,

that the magnitude of these fluctuations will be reduced when the number of matter

test particles is increased. They appear in all plots to varying extents and we shall

comment on them no further.

The third plot displayed in figure 8.15 an expected increase in the density of shells

with intermediate radii and a slight density inversion in the innermost region of the

core. This density inversion is seen at this stage in the collapse in all calculations.

Thus far its origins appear to be physically consistent with the density and electron

fraction distributions and the resultant forces generated by the gravitational field and

electron pressure. It turns out that the interplay between these two forces gives rise

to an inward acceleration profile that is slightly larger at radii in a small range outside

the outer radius of the density inversion zone. This result should not come as to great

of a shock since the gravitational acceleration profile of a spherically symmetric star

peaks at some distance from the origin that depends on its density profile and the

core is no longer in hydrostatic equilibrium. Not only has this result been observed by

simulations with all of the physical parameters systematically varied, it has survived a

battery of preliminary numerical convergence test. It has been observed in simulations

that use 106 matter test particles and 50, 75, and 100 spherical shells to calculate

statistical distributions. Additional convergence test using substantially more than

106 matter test particles and more than 100 spherical shells must be run as well,
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however these test will have to wait until the code has been converted to 64—bit and

parallelized.

The fourth plot displayed in figure 8.16 corresponds to the time the neutrino-

matter interaction driven explosion begins. Several things must be noted about the

density distribution at this time. The density is now steeply increasing for radii

less than 125 km. Over this range, the density increases by roughly three orders

of magnitude. The interplay between the forces generated by the gravitational field

and electron pressure no longer result in an density inversion at small radii. A close

examination of the innermost density data points reveals that the innermost two

shells have a lower density than the other shells. This is due to the fact that these

shells contain half as many matter test particles as the rest and as such are twice

as susceptible to statistical fluctuations. These two shells are really one shell that

was cut in half in an attempt to generate a data point as close as possible to the

origin in order to minimize substantial numerical artifacts caused by a lack of data

over too large of a distance from the origin. When the physical density inversion

vanishes, these two shells lag slightly behind. Their densities are quickly driven up

to the intuitively expected values by the dynamics in the shells with better statistics.

Furthermore since this explosion mechanism is not directly sensitive to the value of

the density or its gradient near the origin, we have no reason to suspect that these

momentary fluctuations impact the explosion dynamics in an appreciable way.

Since this is the plot of the density distribution at the time of explosion, it is im-

portant to point out that nowhere in the core have we achieved supernuclear densities.

This is yet another way in which this neutrino capture driven explosion mechanism

significantly differs from the accepted bounce and explosion picture. In fact the high-

est density at this point in our reference calculation only slightly more than 0.36 p0

and more importantly at the radius at which the outward explosion of matter forms

the density is on the order of 10‘3 p0. All of or calculations yield results similar
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to this. The maximum density in the core when the explosion begins is always well

below nuclear matter density and the density at the radius where it is always on the

order of 10-3 p0.

The fourth and fifth plots presented in figures 8.17 and 8.18 are very similar.

Except for the outermost region of the core where low density fluctuations occur,

the density in both plots is now a strictly decreasing function of radius and the

central densities are both marginally greater than nuclear matter density. The division

between the proto-remnant and the is somewhat clear in the fifth plot and very clear

in the sixth plot. Since the shells used to calculate statistical distributions are defined

by matter test particle occupancy, as the ejecta continues to separate from the proto-

remnant, the shell “between” them ends up with a very low density compared to

its two neighboring shells. This depression in the density in this region is physical.

however having only the one data point to describe it is insufficient. Only when

many more matter test particles and spherical shells are used can this part of the

density distribution be resolved. Thus we must terminate calculations before this

occurs. This is the statistical barrier 32-bit single processor simulations encounter

that requires the simulation to be terminated that was alluded to in section 6.1.

When all of the plots presented in this section are considered, it is clear that the

presence of the spike in the electron fraction has the effect dividing into a well defined

high density proto-remnant and outward moving ejecta in the fashion described in

section 8.1.1. At the time our reference calculation was stopped, 0.124 s after the

collapse began, the mass of the proto-remnant was approximately 0.253 MG) and it’s

radius was roughly 7.4 km. Its central density, electron fraction and temperature

were 1.653 p0, 0.285, and 2.01 x 1011 K respectively. Results similar to these were

obtained by all simulation and are discussed and compared in sections 8.3 and 8.4.
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Figure 8.13: Plot of the initial electron fraction, Br, and density in the spherical

shells.
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Figure 8.14: Plot of the electron fraction, ET, and density in the spherical shells

shortly after the inner region of the core’s rate of deleptonization began to increase.
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Figure 8.15: Plot of the electron fraction, Br, and density in the spherical shells

shortly after the inner region of the core has begun to rapidly deleptonize and the

density inversion in the innermost region of the core has formed.
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Figure 8.16: Plot of the electron fraction, Br, and density in the spherical shells at the

time the outward explosion of matter begins shortly after the spike develops and the

matter between the Spike’s peak and the outer edge of the rapidly deleptonized inner

region of the core where the electron fraction is depressed has clearly decelerated.
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Figure 8.17: Plot of the electron fraction, Br, and density in the spherical shells show-

ing fully releptonized matter in the spike having an electron fraction approximately

equal to matter in the outermost shells where the effects of electron capture are neg-

ligible and a large outward moving density wave is seen beginning its separation from

the dense proto—remnant.
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Figure 8.18: Plot of the electron fraction, Br, and density in the spherical shells

showing hyper-leptonized matter in the spike having an electron fraction greater than

matter had at any point in the core before the collapse began and the density wave has

successfully propagated almost completely out of the core and has clearly separated

from the dense proto—remnant.
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8.2 Genesis of New Dynamics

Thus far we have described how the neutrino capture driven explosion mechanism

effects core dynamics, but we have not discussed the origin of this mechanism. We

have not given any reason for why the build up of electrons produced by neutrino

capture seems to be so concentrated in the region that it is always found to be and

results in the spike in the electron fraction that drives the dynamics in the fashion

described in the previous two sections. This topic is explored in this section.

For the spike in the electron fraction to be created, it must be that in the narrow

shell in which the spike forms neutrino capture strongly dominates electron capture.

Recall that in all calculations the spike always formed in a region containing neutron-

rich matter with a density on the order of 10—3 p0. The importance of this is

fourfold. Obviously the farther away a nucleus is from the valley of beta stability

and the closer it is to the neutron drip line, the lower its electron capture rate is.

Furthermore, since it is energetically favorable for very neutron-rich nuclei to capture

neutrinos and move towards the valley of stability, the neutrino capture Q-value

becomes positive and large. This increases the bare capture cross section given in

equation (5.15) and therefore the neutrino capture probability increases in the region.

Additionally at densities on the order of 10—3 p0, none of the electron capture rates

are insurmountably large and neutrino captures are not likely to be forbidden by the

Pauli Exclusion Principle. This sets the stage for neutrino capture dominance.

8.2.1 Qualitative Analysis of Genesis

Before we begin an analysis of the code’s output to describe the genesis of the neutrino

capture explosion mechanism, let us qualitatively walk through how this scenario

unfolds in our simulaitons. Recall that the region of the core comprised of neutron-

rich matter with a density approximately equal to 10—3 p0 where the spike in the
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electron fraction distribution forms is centered about a radius roughly 50 km from

the origin. To its interior is a region of hotter denser matter in which the degeneracy

of the electron gas suppresses neutrino capture rates and electron capture rates are

strongly dominant. The energy of the neutrinos escaping this hotter denser region

increases as it continues to contract as does the rate at which it emanates neutrinos.

Thus the region where the electron fraction spike forms is bathed in an increasingly

intense flux of increasingly energetic neutrinos. For the reasons stated in the previous

paragraph, neutrino capture rates in this region quickly outpace electron capture rates

and the local electron fraction rises. Not only can neutrino captures push neutron-

rich nuclei back along isobars towards the valley of stability, as the energies of the

neutrinos propagating through the region increase, they can push some nuclei past

the valley of stability into proton-rich territory. In addition to this leptonization

mechanism, it turns out free neutrons are highly abundant in this region and they

capture a large amount of neutrinos as well. The heavy presence of free neutrons is

the result of numerous electron captures by neutron drip line nuclei in the region.

Through these two mechanisms, the region can become hyper-leptonized. As it does,

it absorbs nearly all of the high energy neutrinos from the flux bathing it. This

deprives outlying regions of the opportunity to become hyper-leptonized and is the

reason that only the base of the outer edge of the electron fraction spike thickens

after it is formed. The tallest part of the electron fraction spike remains narrow and

radically alters the radial derivative of the electron number density distribution. This

in turn divides the core into a proto—remnant and ejecta in the fashion described in

section 8.1.1.

We now undertake the task of confirming that the picture painted above is indeed

an accurate description of our results. The density and the level of leptonization of

matter in the core has already been established by the plots presented in the previous

sections. However, the the fact that neutrino capture probabilities are significantly
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higher in the region where the spike in the electron fraction distribution forms than

they are in the region immediately to its interior due to the effects of electron gas

degeneracy must be substantiated. We must also verify that the changes in the nuclear

composition of the core described above regarding nuclei and free baryon distributions

is accurate. Furthermore we must confirm that the description of the neutrino energy

distribution given in the qualitative overview, in particular the fact that the matter

in the electron fraction spike filters out all of the high energy neutrinos, are correct.

Various forms of output generated by the code are used to validate the statements

made in the qualitative overview.

8.2.2 Neutrino Capture Probability Distribution

To confirm that neutrino capture probabilities in the region where the electron frac-

tion spike forms are comparatively much higher than they are in the region interior

to it where statistical constraints imposed by electron gas degeneracy suppresses neu-

trino captures, we consider four plots of the neutrino-matter interaction probability

distributions. These four plots show the elastic scattering and capture probability

distributions in the core at times chosen to highlight the emergence of important

features. Before we consider the plots of the neutrino-matter interaction probability

distributions just before and after the spike in the electron electron fraction distribu-

tion froms, we must consider two plots of these distributions from early times in the

collapse to make sense of one of the features seen in these plots.

Figure 8.19 shows the neutrino—matter interaction probability distributions before

the innermost region of the core has begun to rapidly deleptonize. Not surprisingly

both the elastic scattering and capture probabilities increase as the temperatures

and densities increase. Figure 8.20 shows the neutrino-matter interaction probability

distributions shortly after the innermost region of the core has begun to rapidly

deleptonize. Here a steep drop off is seen in the capture probability at smaller radii
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that corresponds exactly to the region that is now neutron rich. This turns out to be a

nuclear structure effect. While the bare neutrino capture cross sections are larger for

neutron rich nuclei because such captures are energetically advantageous, recall from

equations (5.15) and (5.16) that this cross section is weighted by a zero-order shell

model estimation of the relevant nuclear spin sums that approximates the number of

neutron holes in the single particle 1f5/2 level.

It was shown in section 5.2.3 that for all nuclei that this weighting factor is appli-

cable for, it is a linearly decreasing function of neutron number N for N 2 34. Thus

for neutron-rich nuclei there is a linear reduction in the capture cross section as its

neutron number increases. The fact that the capture probability plot shows a linear

decrease on a logarithmic scale is simply a consequence of the fact that cross sections

are exponentiated in the beam attenuation arguments used to calculate interaction

probabilities. Thus plotting the interaction probabilities on a logarithmic scale makes

these plots linearly dependent on the cross section weighting factors. Clearly sensi-

tivity to this nuclear structure dependence of the capture probability distribution can

only be realistically modeled by a simulation that propagates a full ensemble of nuclei.

In figure 8.21 we present a plot of the neutrino-matter interaction probability dis-

tributions shortly before the electron fraction spike forms. Here it is seen that there

is a rapid increase in the capture probabilities in the very innermost region of the

core. This increase is due to the now large abundance of free neutrons in this region

of the core produced by c0pious amounts of electron captures by neutron drip line

nuclei. This is explicitly demonstrated to be the case in section 8.2.3. Finally in

figure 8.22 a plot of the neutrino—matter interaction probability distributions at the

time the outward explosion of matter begins is shown. This plot is rather similar

to the previous plot except for a slight zigzag in the capture probability distribution

seen at very small radii. The region in which the capture very steeply drops off cor-

responds to a region in which the temperature increases by roughly a factor 2.5 and
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the electron number density increases by slightly more than an order of magnitude.

This is readily confirmed by examining plots density, electron fraction, and temper-

ature distributions at this time. It is also easily confirmed by examining the of the

table of electron gas 5 parameters (5 E —/.L/kT) generated by the code the produces

the electron gas statistical mechanics tables that the electron gas goes from being

somewhat degenerate to very degenerate over this radial interval. Thus the rapid

decrease seen here is due to the fact that many neutrino captures are forbidden by

the Pauli Exclusion Principle. Inside this region the temperature increases enough to

ease these statistical constraints. Thus we have confirmed that the neutrino capture

probability is found to be significantly higher in the region where the spike in the

electron fraction distribution forms than it is in the region immediately to its interior

due to the effects of electron gas degeneracy as stated in the qualitative overview of

the neutrino capture explosion mechanism given in section 8.2.1.

Here in passing we note that in figures 8.21 and 8.22 it is seen that the neutrinos

in the innermost shells have an elastic scattering probability of 1. The neutrinos

in this region have come into thermodynamic matter. This is the criterion we use

to determine if neutrinos are in thermodynamic equilibrium with matter that was

alluded to in section 5.2.4.
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Figure 8.19: Plot of the neutrino-matter interaction probabilities in the spherical

shells before the innermost region of the core has begun to rapidly deleptonize.
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Figure 8.20: Plot of the neutrino-matter interaction probabilities in the spherical

shells shortly after the innermost region of the core has begun to rapidly deleptonize.
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Figure 8.21: Plot of the neutrino-matter interaction probabilities in the spherical

shells after the rapid deleptonization of the innermost region of the core has led to a

 
large abundance of free neutrons.
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Figure 8.22: Plot of the neutrino-matter interaction probabilities in the spherical

shells shortly at the time the outward explosion of matter begins and the electron gas

in the inner portion of the innermost region has become very degenerate.
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8.2.3 Evolution of the Nuclear Composition

To confirm that neutrino captures are creating proton-rich nuclei in the region where

the spike in the electron fraction forms, we consider three plots of the core’s nuclear

composition. In figures 8.23, 8.24, and 8.25, the initial nuclear composition of the

core, its composition after its inner region has begun to rapidly deleptonize, but

before the spike in the electron fraction has started to develop, and its composition

at the time the outward explosion of matter began are presented. Before proceeding

directly into the comparison of these plots, we briefly explain their meaning. In these

figures, each cell that corresponds to a free baryon or nucleus with A > 1 whose

presence is being modeled in the core is assigned a color based on their “test particle

count”. For nuclei with A > 1 the test particle count is simply the number of matter

test particles that represent a given nucleus. For free protons and neutrons, the test

particle count refers to the total number of free protons and neutrons all matter test

particles represent for each nucleus they represent. Therefore if a large number of

matter test particles participate in drip line weak reactions, they may represent many

free baryons for each nucleus they represent. Thus it is possible for the test particle

count as it is defined here to greatly exceed 106 and it is for this reason that the test

particle count legend assigns colors up to values of 108.

Having established how to correctly interpret figures 8.23, 8.24, and 8.25, we

proceed with their comparison. Figure 8.23 shows the initial composition of the

Woosley and Weaver core comprised exclusively of Fe group nuclei. Figure 8.24

shows the nuclear composition of the core after its inner region has begun to rapidly

deleptonize, but before the spike in the electron fraction has started to develop.

Notice that in addition to many more neutrino-rich nuclei, free baryons are present in

the core, as are some non-neutron-rich and proton-rich nuclei. Printouts of the text

files used to store the nuclear composition of matter in the spherical shells confirm
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that this build up of non-neutron-rich and proton-rich nuclei is concentrated in the

region were the spike in the electron fraction distribution will form. This is significant

because the electron fraction in this region has not changed yet. Only the dispersion

of nuclei it contains has. This is another example of why it is of critical importance

that the propagation of a full ensemble of nuclei is modeled. Figure 8.25 shows the

nuclear composition of the core at the time the outward explosion of matter began.

At this time there has been approximately an order of magnitude increase in the

number of free protons is observed'as well as a noticeable increase-in the number

of proton-rich nuclei. Again printouts of the text files used to store the nuclear

composition of matter in the spherical shells confirm that this build up of proton-rich

nuclei is concentrated in the region were the spike in the electron fraction is. Thus

the changes in the distribution of nuclei described in the qualitative overview of the

neutrino capture driven explosion mechanism are confirmed.

Next we confirm that the region where the electron fraction spike develops contains

a large abundance of free neutrons and that an appreciable fraction of these free

neutrons capture neutrinos and become free protons. To do this, we consider two

plots of the number of free baryons per “heavy” nucleus (A > 1). In figure 8.26, we

display a plot of the number of free baryons per heavy nucleus in the core after its

inner region has begun to rapidly deleptonize, but before the spike in the electron

fraction has started to develop. There it is seen that there is indeed a large abundance

of free neutrons in the region of the core that is rapidly deleptonizing. Notice that

despite the fact that the spike in the electron fraction distribution has yet to deve10p,

there is a spike in the free proton abundance at the radius where it will form. At this

point, the only source of free protons in neutrino capture by free neutons. In figure

8.27, we present a plot of the number of free baryons per heavy nucleus in the core

at the time the outward explosion of matter began. In this figure it is seen that the

spike in the free proton abundance that precisely corresponds to the electron fraction
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spike has increased substantially and that these gains in free protons have come at the

cost of lowering the local neutron abundance. Thus the changes in the distribution

of free baryons described in the qualitative overview of the neutrino capture driven

explosion mechanism given in section 8.2.1 are confirmed.
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Figure 8.23: Plot of the initial nuclear composition of the core.
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Figure 8.24: Plot of the nuclear composition of the core after its inner region has

begun to rapidly deleptonize, but before the spike in the electron fraction has started

to develop.
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Figure 8.25: Plot of the nuclear composition of the core at the time the outward

explosion of matter begins.
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Figure 8.26: Plot of the number of free baryons per “heavy” nucleus (A > 1) in the

core after its inner region has begun to rapidly deleptonize, but before the spike in

the electron fraction has started to deve10p.
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Figure 8.27: Plot of the number of free baryons per “heavy” nucleus (A > 1) in the

core at the time the outward explosion of matter began.
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8.2.4 Neutrino Energy Distribution

Finally we confirm that energetic neutrinos produced in the region interior to the

electron fraction spike and are filtered out of the flux of neutrinos that passes through

the spike. This is done by considering two plots of the average neutrino energy

distribution propagating through the spherical shells. In figure 8.28, a plot if the

average neutrino energy distribution in the core at the time the outward explosion

of matter began is given. The core is obviously divided into a region containing

energetic neutrinos and a region containing noticeably much less energetic neutrinos.

The location of this division corresponds exactly to the radial location of the peak of

the spike in the electron fraction distribution. Therefore it is clear that the energetic

neutrinos are being captured as they pass through the spike.

The slight bump in the average energy distribution seen exterior to the location of

the electron fraction spike is due to the fact that electron captures dominate neutrino

captures in this region. Since the captured electron energies are much lower in this

region, the energy of the neutrinos produced is much lower too. To see that the trend

of energetic neutrinos to be captured in the spike is sustained, we consider another plot

of the average neutrino energy distribution in the core after a large outward moving

density wave has formed and is beginning its separation from the dense proto—remnant

is presented in figure 8.29. In this figure, it is seen that the average neutrino energy

drops off slightly less abruptly only because the base of the outer edge of the electron

fraction spike at this time has broadened in the fashion described above. The small

kink in near the origin corresponds to the radius at which the ejecta is separating

from the proto—remnant. Thus the energetics of the neutrinos everywhere in the core

are accounted for and are found to be consistent with the qualitative overview of the

neutrino capture explosion mechanism given in section 8.2.1.
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Figure 8.28: Plot of the average neutrino energy distribution in the core at the time

the outward explosion of matter began.
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Figure 8.29: Plot of the average neutrino energy distribution in the core after a large

outward moving density wave has formed and is beginning its separation from the

dense proto-remnant.
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8.3 Role of the Nucleon Potential

In this section we explore how the neutrino capture explosion mechanism introduced

in the previous section depends on the nucleon potential. This is done by comparing

the results generated by simulations that used the three nucleon potentials described

in section 3.10.2. The three simulations compared here all made use of the linearly

extrapolated FFN electron capture rate table with all entries reduced by an order of

magnitude described in section 5.1. Again we chose to work with simulations that

made use of this electron capture rate table since it is probably the most realistic of

the four different electron capture rate tables we generated for the reasons explained

in section 5.1.

Since the neutrino capture driven explosion mechanism does not require the pres-

sure exerted by matter at supernuclear densities to generate the bounce and it in fact

begins well below the densities where the nucleon potential becomes important, the

nucleon potential cannot directly have a significant impact of the explosion dynam-

ics. It can do so indirectly however by regulating the dynamics of the proto—remnant

that begins to form shortly after the explosion. Recall that it is the flux of neutrinos

emanating from the proto-remnant that supplies the explosion mechanism with the

source electrons it needs drive up the spike in the electron fraction and generate the

pressure profile that continues to accelerate the ejecta out of the core. The nucleon

potentials used in this work determine the energy and intensity of the neutrino flux

emanating from the proto—remnant by determining its density profile. Since the tab-

ulated electron capture rates and average neutrino energies produced during electron

captures both increase as the density increases, the denser a nucleon potential allows

the proto—remnant to become, the more neutrinos it will radiate.

In table 8.1 some basic information describing the core’s dynamics at .the time the

outward explosion of matter began are presented for simulations that use the isospin
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independent soft and stiff BKD potentials and the isospin dependent potential with

a symmetry energy term. Here the time of explosion, the radius at it begins Temp,

and the density at rap and the origin at the time the outward explosion of matter

began are tabulated.

I—EOS temp [S] . Temp [km] P(Texp) [Pol 10(0) [100]

soft 0.1127 58.35 1.297x10—3 0.3627

stiff 0.1147 56.75 1.589x10—3 0.1466

symm 0.1189 51.74 2.529x10—3 0.1230

 

 

        

Table 8.1: Core characteristics at the time the outward explosion of matter formed

as calculated by simulations that used different nucleon potentials.

In table 8.1 it is seen that the soft BDK simulation the central density increased

the fastest, it generated an explosion the fastest, and was able to generate an outward

explosion of matter at the farthest distance from the origin where the density was

the lowest. The stiff BKD potential and the isospin dependent potential, denoted

by symm in the table, came in second and third in these regards respectively. A

careful examination of figures 3.5 and 3.6 reveals that for densities in the range

0 S p/pO S 0.35 the soft BKD potential has the steepest radial derivative and is

therefore the most attractive followed closely by the stiff BKD potential and less

closely by the more shallow isospin dependent potential. Obviously the potential

that is the most attractive at densities below 0.35 p0 will initially allow densities to

accumulate the fastest in the central region of the core and radiate an intense flux

of energetic neutrinos capable generating an outward explosion of matter at farther

radii where the matter is more diffuse. Thus the results given in table 8.1 are to be

expected.

In table 8.2 some basic information describing the proto—remnants calculated by

simulations using the three different nucleon potentials at the time the simulations

were terminated is presented. Here the time at which the simulation was terminated

and the central density, total mass, and radius of the proto—remnant at the time of
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termination are tabulated. The central densities in all simulations assumed their

final values well before the termination time. The differences between these central

densities is consistent with the different densities of minimum energy discussed in

section 3.10.2 and seen in figures 3.5 and 3.6. The differences between the proto-

remnant masses is related to the time taken generate an outward explosion of matter.

Even though explosions that took longer to form started at smaller radii, the extra

time taken to form always allowed more mass to fall into region that would become

part of the proto—remnant. The difference in their radii is again related to the different

densities of minimum energy as well as the general differences in the shapes of the

potentials.

 

 
EOS tstop [3] 10(0) [100] M [fl/[O] R [km] .

soft 0.1240 1.653 0.253 7.348

stiff 0.1240 1.290 0.279 7.689

symm 0.1350 0.8908 0.372 11.32

  

       
Table 8.2: Proto—remnant data generated by simulations that used different nucleon

potentials.

Similar comparison analyses were conducted for simulations that used the other

three versions of the FFN electron capture rate table described in section 5.1. Both

for brevity’s sake and to avoid redundancy, we do not present them here. It suffices

to say that the results are very similar to those given above. Simulations that used

different electron capture rates did in some ways yield some substantially different

results, however the role the nucleon potential played in all cases was identical and

the relative differences between the results produced by simulations that used the

same electron capture rate table were the same as those seen in the discussion above.
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8.4 Role of Electron Capture Rates

In this section we probe the sensitivity of the neutrino capture explosion mechanism to

the value of electron capture rates. This is done by comparing the results generated

by simulations that used the four versions of the FFN electron capture rate table

described in section 5.1. Again since the differences between the accepted picture

of bounce and explosion and the neutrino capture explosion mechanism are slightly

more pronounced in simulation that use the soft BKD potential, all of the simulations

compared here used it.

In this section we refer to the previously considered simulation that used the lin-

early extrapolated FFN table with all of its entries reduced by an order of magnitude

simulation 1. The simulation that used the so—called reduced linearly extrapolated

FFN rate table described in section 5.1 is called simulation 2. The simulation that

used the linearly extrapolated FFN rate table is called simulation 3. The simulation

that used the so-called enhanced linearly extrapolated FFN rate table described in

section 5.1 is called simulation 4.

In table 8.3 the same basic information describing the core’s dynamics at the time

the outward explosion of matter began are presented for simulations 1, 2, 3, and 4

is presented as was given in table 8.1. Again the time of explosion, the radius at it

begins ramp, and the density at Temp and the origin at the time the outward explosion

of matter began are tabulated.

 

# temp [8] Temp [km] P(Texp) [P0] {9(0) [P0]

1 0.1127 58.35 1.297x10“3 0.3627

2

3

 

 

0.1100 51.33 2.124x10—3 0.2005

0.1092 53.32 1.801x10—3 0.2830

4 0.1091 55.66 1.521x10—3 0.3026        
Table 8.3: Core characteristics at the time the outward explosion of matter formed

as calculated by simulations that used different electron capture rates.
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Despite the fact that simulations 2, 3, and 4 use tables that are now thought to

be less realistic overestimates of electron capture rates, the results they generate are

quite similar to simulation 1. The larger electron capture rates initially allowed the

core to collapse more quickly more quickly in these simulations and consequently the

core contracts more in all cases before the explosion is generated. At later stages in

the collapse, the extrapolated electron capture rates were used with greater frequency

and some divergences between these three simulation were observed. Simulation 2

had lower rates simulation 1 and consequently took longest of the three to produce

enough energetic neutrinos to generate the explosion. That is also why the outward

explosion of matter was formed at the smallest radius of the three. Simulation 4 had

the highest extrapolated capture rates and therefore was able to generate an explosion

the fastest at the greatest radius of the three.

In table 8.2 some basic information describing the proto—remnants calculated by

simulations 1 and 2 at the time of termination is presented. It turns out that the

high values of the extrapolated electron capture rates used by simulations 3 and 4

lead to sufficiently violent separations between the proto-remnant and ejecta that

the simulations had to be terminated in the earliest stages of the separation for the

reasons explained in section 8.1.3. Therefore no meaningful data about the proto-

remnant fit for comparison data from simulations 1 or 2 could be extracted. Thus

for simulations 1 and 2 only do we tabulate the time at which the simulation was

terminated and the central density, total mass, and radius of the proto—remnant at

the time of termination.

 

 
# tstop [s] 19(0) [100] 1” [MO] R [km]

1 0.1240 1.653 0.253 7.348

2 0.1224 1.565 0.253 7.436

 

 

        

Table 8.4: Proto-remnant data generated by simulations that used different electron

capture rates.
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It is seen here that despite the subtle differences in the way the cores evolved in

simulations 1 and 2, the end result is quite similar. The two proto—remnants are iden-

tical in mass and have only minor differences in density and volume. Comparisons like

the one above for sets of simulations that used the other two nucleon potentials were

also conducted. The results obtained about the dynamics at the time the outward

explosion of matter began were very similar to those presented in table 8.3. The study

of the proto—remnant proved to be much more difficult in these cases. Due to the more

shallow but also more forceful explosions generated the stiff BKD potential, the ad-

dition of the larger capture rates led to problems for all three simulations in resolving

the even the earliest stages of the separation of the proto—remnant and ejecta, just

like simulations 3 and 4 did in the above consideration. For the series of simulations

that used the isospin dependent potential, the situation unfolded just like it did in the

case above, but for different reasons. In this case proto-remnant calculated by isospin

dependent potential simulation 2 was nearly identical to the proto—remnant calcu-

lated by isospin dependent potential simulation 1, but the other two proto—remnants

were lost due to the expected unphysical behavior of the isospin dependent nucleon

potential for highly asymmetric nuclear matter described in section 3.10.2.

8.5 Robustness of Explosion Mechanism with Re-

spect to Variation of Numerical Parameters

Before we attempt to advance our model through the inclusion of additional physical

processes, it is imperative that we demonstrate that the new dynamics observed thus

far are independent of the code’s numerical parameters. In this section, we discuss

the ways the neutrino capture driven explosion mechanism has been tested for depen-

dence on the code’s numerical parameters has been subject to as well as those it shall

be subject to in the future. Obvious candidates for numerical parameters the results
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might depend on are the number of matter test particles used to model the core and

the number of spherical shells used to calculate statistical distributions. The number

of tests for dependancies on these parameters that single processor 32-bit simulations

can be subject to is rather small. It has been previously mentioned that simulations

that use 106 matter test particles and 100 spherical shells are considered low reso-

lution. It has also been stated that we cannot increase the number of matter test

particles significantly beyond 106 for these simulations and without doing that we

cannot substantially increase the number of spherical shells either. Previous calcula-

tions have shown that 106 is a rather firm lower limit for the number of matter test

particles used irrespective of the number of spherical shells the core is divided into.

We can however follow the core through the beginning of the explosion phase using

less spherical shells with reasonable accuracy. The agreement will not be perfect since

reducing the number of shells reduces the accuracy of our calculations, but “ballpark”

similarities between them can be expected. The same statistical difficulties that 100

shell simulations encounter when the attempting to calculate the density distribution

when the ejecta separates from the proto—remnant; they will just manifest themselves

much more quickly when substantially less than 100 shells are used. Thus we compare

the output of our reference calculation when 100, 75, and 50 spherical shells are used

to calculate statistical distributions.

In table 8.5 the same basic information describing the core’s dynamics at the time

the outward explosion of matter began are presented for simulations that use 100, 75,

and 50 spherical shells as was given in table 8.1 and 8.3. Again the time of explosion,

the radius at it begins ramp, and the density at Temp and the origin at the time the

outward explosion of matter began are tabulated.

The agreement between the calculations is not perfect, but the neutrino capture

driven explosion mechanism still worked and its physical description given in section

8.2 is valid in all cases. Again, since we know that 50 and 75 shell simulations
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shell # temp [s] Temp [km] p(rea:p) [pol 10(0) [100]

100 0.1127 58.35 1.297x 10—3 0.3627

75 0.1147 53.67 1.501x10"3 0.2037

50 0.1189 61.12 1.407x10’3 0.2805

 

        
Table 8.5: Core characteristics at the time the outward explosion of matter formed as

calculated by simulations that used different numbers of spherical shells to calculate

statistical distributions.

are less accurate than 100 shell simulations, we did not expect to see an actual

numerical convergence of the tabulated quantities. To see this, calculations using

more spherical shells each containing more matter test particles than they currently

do must be performed and this cannot happen until the code is converted to 64—bit

and parallelized. The fact that the radius at which the outward explosion of matter

formed in the 50 and 75 shell simulations is within i5 km of the 100 shell result is

encouraging as is the fact that the density at these radii at the time of explosion were

all quite similar.

In addition to running convergence tests using more matter test particles and

spherical shells, convergence tests can be performed in conjunction with the works

of other groups. To do this, several things must be noted. First the main difference

between the neutrino capture driven explosion mechanism introduced here and the

traditional picture of bounce is the capture of neutrinos that exist between the limits

of trapping and free streaming. Traditional hydrodynamic treatments of neutrino

transport are not as reliable in this realm while our beam attenuation arguments

are equally applicable everywhere in the core at all times. Thus we want to avoid

comparisons that involve modeling neutrino-matter interactions. Therefore two ob-

vious avenues present themselves. One is simply to compare our simulation to that

of hydrodynamics groups with all neutrino-matter interaction algorithms deactivated

in both codes. In this case good agreement can be expected. Another possible test

would be to run our code through the time the outward explosion of matter began
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and then use the data generated as initial conditions for a hydrodynamic code and

see if its core explodes in a similar fashion. All of these test will be performed once

the code is converted to 64-bit and parallelized.

We note that we can make some comparisons between our neutrinos modeled in

our simulations and those modeled in traditional hydrodynamic calculations. As long

we restrict these comparisons to regions in which the neutrinos are either trapped

of free streaming where traditional hydrodynamic treatments of neutrino transport

are sufficient, convergence can be expected. This is seen to be the case when figure

8.29 is considered. The energies in the hottest densest region of the core have the

energies of 100—150 MeV and the escaping neutrinos have energies in the 5-10 MeV

range. These are the results predicted by hydrodynamic calculations [16]. This is an

encouraging result. The only region in which our neutrinos behave unexpectedly is

in the intermediate range in which only our formalism can realistically model their

propagation.
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Chapter 9

Conclusion

Clearly the main achievement of this work is the possible discovery of an entirely

new supernova explosion mechanism. The confluence of events that lead to the rapid

and highly localized accumulation of electrons produced by neutrino captures at radii

on the order of 50 km that alters the gradient of the in such a way that it cuts the

core into two parts, a well defined proto-remnant and ejecta, is a completely novel

concept that are code is uniquely poised to model. We are encouraged to see that

this neutrino capture driven mechanism is robust enough to launch explosions in

all simulations using three different nucleon potentials, four different electron cap-

ture rate tables, and three different numbers of spherical shells. However we realize

that in addition to converting the code to 64—bit and parallelizing the code, activating

the three-dimensional subroutines, and conducting more numerical convergence tests,

there is still more physics that needs to be added to our model. Fusion and photodis-

integration must be built in, so do several weak reactions mentioned in section 3.11,

the effects of neutrino and neutron degeneracy, additional nuclear decay modes, and

a temperature dependent nucleon potential. It is clear how to accomplish all of this

with the test particle approach.

We do not yet regard this work as complete, but we are confident that we are
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working in the right direction with our approach. The ability of the of the test particle

method to treat the dynamics of baryons and neutrinos on equal footing, explicitly

model the propagation of neutrinos in a general way that is applicable in all regions of

the core at all times, and explicitly model the propagation of a full ensemble of nuclei

are all significant steps forward. As explained in section 8.2, without all of these

assets that only our code possesses, our code would not be capable of generating a

neutrino capture driven explosion. They each play a critical role in its realization.

We look forward to continuing to improve out model in the ways mentioned above

and seeing if the neutrino capture driven explosion mechanism is still observed. Some

physics related to weak reactions yet to be built in to our model is expected to have

the effect of reducing the magnitude of the localized accumulation of electrons that

powers the explosion. The extent to which they do this remains to be seen. Specif—

ically the effects of neutrino degeneracy and neutrino pair production will tend to

stabilize the core against developing hyper-leptonizationed regions through neutrino

capture. Clearly the inclusion of neutrino degeneracy can have the effect of forbidding

some electron captures from occurring in regions where neutrino number densities be-

come sufficiently large. Furthermore neutrino pair production generates antineutrinos

that can be captured by free protons and nuclei thereby creating positrons that can

deleptonize the core without necessarily producing neutrinos.

Since neutrino degeneracy and the highly temperature dependent neutrino pair

production rates do not become relevant until high densities and temperatures are

achieved in the innermost region of the core [68], the neutrino capture driven explo-

sion is well underway before we need to concern ourselves with their effects. However

continuous neutrino capture in the hyper-leptonized region is responsible for increas-

ing the rate at which the ejecta is accelerated out of the core. Thus the impact that

neutrino degeneracy and pair production have on the core dynamics my still prove to

be problematic for the neutrino capture driven explosion mechanism. At this point we
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do not believe that the effects of neutrino degeneracy and pair production will prove

to be fatal for the neutrino capture driven explosion mechanism, however we cannot

be certain of this until all of the physics discussed above is built into our model.

Once full three-dimensional calculations have been run, we expect to see devia-

tions from spherical symmetry in the density distribution that are both intuitively

anticipated and have been seen in previous preliminary calculations [107]. We have

long since hypothesized that the resultant density depletion along the axis of rotation

will lead to focussing of neutrino emission along the poles which will amplify the par-

ity violation induced recoil kick scenario proposed for the neutron star remnant by

Horowitz et al. [155, 156]. It will be interesting to see how this phenomenon might

effect the neutrino capture driven explosion mechanism assuming that it proves to

still be viable. Furthermore, three-dimensional simulations will explicitly enforce the

conservation of momentum in each neutrino test particle matter test particle inter-

action that takes place inside the three-dimensional distribution grid described in

section 3.9.2. This is expected to enhance the explosion mechanism as, in addition

to the ejecta being subject to the outward force exerted by the electron gas, it will

acquire net outward momentum through the enforcement of momentum conservation

in neutrino-matter interactions. However, before such observations can be made, we

must implement the aforementioned changes.

This thesis has laid out the path for a multi—year investigation into the new ways

to understand the physics of supernova explosions and has taken important first

steps. The future of this work looks extremely bright, and it promises to provide

a new intellectual bridge between nuclear physics and astrophysics. In particular,

it has the capability to serve as the nexus for efforts made at nuclear physics labo-

ratories such as NSCL and FRIB and laboratories that study neutrino physics like

DUSEL, the Deep Underground Science and Engineering Laboratory. The explicit

modeling the propagation of neutrinos and a full ensemble of nuclei, coupled with
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the completely general treatment of neutrino-matter interactions the kinetic theory

formalism naturally employs, gives our model the ability to use output generated by

the aforementioned facilities to simulate the evolution of the nuclear composition of

the core in ways that no other supernova simulation is currently capable of. As this

model advances, we hope to see its kinetic theory based approach establish itself as

the new gold standard for supernova calculations.
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