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ABSTRACT

IDENTIFICATION OF MATERIAL AND GEOMETRIC PARAMETERS OF
ARTERIAL WALL FOR PATIENT-SPECIFIC VASCULAR GROWTH AND

REMODELING MODELS

By

Shahrokh Zeinali-Davarani

The uncertainty associated with an individual abdominal aortic aneurysm (AAA) rupture

carries a considerable amount of health risks as well as social and economic burden. There is

a need for advanced technologies to mitigate this burden by early detection, patient-specific

risk assessment and clinical management. Computational vascular mechanics has been of

great interest along with the recent advances in medical imaging, experimental technique

and computational simulations. In particular, computational modeling of vascular growth

and remodeling (G&R) has provided further understanding of the G&R process that occurs

in vascular diseases. Despite rapid expansion of our knowledge of vascular G&R, developing

patient-specific models of AAA evolution is still an open problem and subject to numerous

challenges.

In this study, a framework is presented where, first the identification of the intrinsic ma-

terial and geometric parameters for patient-specific modeling is addressed and then a finite

element model of AAA G&R that accounts for medical image-based geometrical models is

introduced. With regard to the material parameters, estimation of parameters of a multi-

fiber family model for passive arteries in the presence of the measurement noise is considered.

First, the uncertainty propagation due to the errors in variables is carefully characterized

using the constitutive model. Then, the parameter estimation of the artery model is for-

mulated into nonlinear least squares optimization with an appropriately chosen weight from

the uncertainty model. The proposed technique is evaluated using multiple sets of synthe-

sized data with fictitious measurement noises. The results of the estimation are compared

with those of the conventional nonlinear least squares optimization without a proper weight



factor. The proposed method significantly improves the quality of parameter estimation as

the amplitude of the errors in variables becomes larger. We also investigate model selection

criteria to decide the optimal number of fiber families in the multi-fiber family model with

respect to the experimental data. The effect of multiple models for mechanical behavior of

arteries is also investigated.

Distribution of the geometric parameters, being wall thickness and fiber orientations, are

estimated using a 2-D parameterization of the vessel wall surface and a global approximation

scheme integrated within an inverse optimization routine. Two conditions determine the

objective of the optimization. First, the fundamental assumption in adaptation models,

namely the existence of vascular homeostasis in normal vessels, should be maintained in

a vessel model built from medical images. Second, the deviation of vessel wall from the

original/image geometry subject to the normal pressure should be minimized. The same

inverse technique is used to investigate the consequence of different homeostasis assumptions

on the optimized distribution of parameters. The numerical optimization method results in

a considerable improvement in both satisfying homeostatic condition and minimizing the

deviation of geometry from the original shape based on in-vivo images.

Then, a finite element model of stress-mediated G&R of arteries based on medical image-

based geometries is presented for simulation of AAAs. Degradation of elastin initiates a local

dilatation of the aorta while stress-mediated turnover of collagen and smooth muscle compen-

sates the loss of elastin. Stress distributions and expansion rates during the aneurysm growth

are studied for multiple spatial distributions of elastin degradation and kinetic parameters

of the growth. Temporal variations of the elastin degradation and kinetic parameters are

also investigated with either direct time-dependent degradation or stretch-induced degra-

dation as possible biochemical and biomechanical mechanisms for elastin degradation. The

results show that this computational model has the capability to capture the complexities of

aneurysm progression due to variations of geometry, extent of damage, and stress-mediated

turnover as an important step towards patient-specific modeling.
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Chapter 1

INTRODUCTION

1.1 Anatomy, structure and function of the aorta

The aorta is the largest artery that supplies oxygenated blood from the heart to other organs

and tissues. It first extends from the heart in upward direction (called ascending aorta)

towards the aortic bend (called aortic arch) and then turns downward into the body towards

the diaphragm (called descending thoracic aorta). The portion of aorta below the diaphragm

(descending abdominal aorta), located in front of spine, extends downward until it bifurcates

into common iliac arteries supplying blood to legs. The aortic wall is comprises three distinct

layers of tunica intima, tunica media, and tunica adventitia. The intima is the innermost

layer of an aorta and consists of a layer of endothelial cells and a subendothelial layer of

connective tissue. The internal elastic lamina separates the intima and the media. The

media is the middle layer consisting if concentrically arranged smooth muscle cells, collagen

fibers and elastin. The external elastic lamina separates the media and the adventitia.

Finally, the outermost layer of an aorta, the adventitia, is primarily composed of fibroblasts,

elastin and longitudinally arranged collagen fibers. The primary structural proteins that

determine the mechanical properties of aortic wall are collagen fibers and elastin, contents

of which vary with age and physiological and pathological conditions and the anatomical

location throughout the body.
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(a)

(b)

(c)

(d)

Figure 1.1: Cross-section of the aorta, stained for smooth muscle cells using H&E (a) stained
for elastin fibers using VVG(b), stained for collagen fibers using picosirius red in light mi-
croscopy (c) or observed under polarized microscope (d). (For interpretation of the references
to color in this and all other figures, the reader is referred to the electronic version of this
dissertation).

A histological image of the cross-section of an aorta with different stains revealing different

constituents is shown in Fig. 1.1. The cell nuclei are blue in (a), elastin is shown in black (b)

while the collagen is red (c). In order to examine the orientation of collagen fibers, polarized

light microscopy can be used (d).

1.2 Mechanical behavior of the aortic tissue

Like many other biological soft tissues, an aorta undergoes relatively large deformations and

its behavior is nonlinear, inelastic, and anisotropic over finite strains. Figure 1.2 shows a

typical stress-strain response of arterial tissue during the uniaxial test. During the first few

loading cycles, the arterial tissue displays stress softening (Fig. 1.2). It then exhibits a nearly

repeatable behavior (Fung et al., 1979), due to which the mechanical behavior of arterial

tissues is commonly described by pseudo-elasticity. Also, as mentioned earlier, an artery is

considered a layered mixture-composite of elastin, collagen fibers and smooth muscle cells

as well as significant amount of water (Humphrey, 2002). Incompressibility has been found

to be reasonable assumption in arterial mechanics (Chuong and Fung, 1984).
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Figure 1.2: Typical stress-strain curves of a circumferential strip of an artery during the
uniaxial test (Holzapfel et al., 2000).
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1.3 Abdominal Aortic Aneurysm

Abdominal aortic aneurysm (AAA) is the focal dilation of the abdominal aorta that en-

larges over the years and eventually rupture which is considered as one the leading causes

of mortality. AAAs affect 2 million people in the US alone and are associated with some

environmental risk factors such as smoking, hypertension and genetic predisposition (Powell,

2002). Despite the abundant clinical studies, the etiology and the natural history of AAAs

remains poorly understood. Aortic aneurysm may reach to 3.5-13 cm in diameter with an

expansion rate of 0.1-1.5 cm/year (Humphrey, 2002). Aneurysmal wall is commonly devoid

of elastin and smooth muscle with a higher ratio of mass for collagen (He and Roach, 1994),

thus giving rise to a fibrotic wall with a stiffer structure. Disruption of elastin, either as a

cause or as a consequence of the disease process, is associated with aneurysm dilation, while

collagen failure was found necessary for rupture (Dobrin et al., 1984).

Current treatments of AAA include either open repair which involves invasive surgery

with extensive tissue dissections or minimally invasive endovascular repair (Vorp and Vande

Geest, 2005). Both treatments are costly and associated with significant amount of risks.

The current clinical decision making for surgical treatments is based on “maximum diameter

criterion”. That is, the likelihood of AAA rupture is assumed to be higher than the risk

of surgical treatments when the aneurysm reaches 5-5.5 cm in diameter (Vorp, 2007). Yet

it is not clear when an individual AAA may rupture since a considerable amount of AAAs

may rupture at smaller sizes. As the population of elderly people grows, the social and

economic burden, imposed by the uncertainty of AAA rupture, will increase. In order to

reduce this public health burden, there are crucial needs for advanced technologies that can

provide AAA patients with early detection, patient-specific risk assessment, and safe clinical

interventions.
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1.4 Computational analysis of AAA

Mechanically rupture of the tissue occurs when the local stress exceeds the tissue strength.

In that sense, computational stress analysis based on 3D Computer Tomography (CT) or

Magnetic Resonance Imaging (MRI) using nonlinear constitutive models of the vessel enabled

researchers to estimate wall stress more accurately (Dorfmann et al., 2010; Fillinger et al.,

2002; Raghavan et al., 2000; Rissland et al., 2009; Speelman et al., 2007) and, hence, led to

a better prediction of AAA rupture risk than the maximum diameter criterion.

However estimation of the stress alone may not provide a reliable estimation of rupture

potential since the rupture potential depends also on the strength (Vorp and Vande Geest,

2005). Strength of AAA wall tissue depends on its integral microstructure which is constantly

evolving in an abnormal fashion. Furthermore, finite element (FE) analysis based on a

patient-specific geometry yields the stress distribution only for a fixed geometry and does

not account for the time evolution of AAA shape and the wall mechanics.

1.5 Computational modeling of vascular growth

During normal or disease conditions (e.g. aortic aneurysms), arterial wall undergoes contin-

uous changes in terms of morphology, histology and biomechanics in an adaptive manner.

Vascular tissue exhibits a remarkable ability to adapt in various physiological and patho-

logical conditions, often thought to be governed by mechanical factors (Driss et al., 1997;

Jackson et al., 2005; Mulvany, 1992). Understanding adaptive processes involving aortic

tissue growth (i.e. change in mass) and remodeling (i.e. change in structure) is instrumental

in developing models capable of simulating AAA evolution.

For the past decade, computational modeling of vascular growth and remodeling (G&R)

have been developed and used to test multiple hypotheses based on experimental and clinical

studies (Watton et al., 2004; Menzel, 2005; Baek et al., 2006; Hariton et al., 2007b; Kroon

and Holzapfel, 2007; Kuhl et al., 2007; Figueroa et al., 2009; Kroon and Holzapfel, 2009a;
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Watton and Hill, 2009). Mechanical stress/strain is the parameter driving adaptation process

in all models. Mechanical homeostasis is the fundamental assumption of most G&R models,

meaning there is a tendency toward a preferred level of mechanical stress/strain throughout

the arterial tissue. Despite being focused on symmetric or idealized geometries, those models

revealed a great potential in understanding basic features of vascular G&R. However, in-vivo

aortic aneurysms normally evolve into irregular 3-D shapes and idealized models of G&R

are not sophisticated enough to capture patient-specific features of an in-vivo AAA.

1.6 Motivations

Ultimately, for clinical applications, the current stage of modeling needs to be improved

to utilize patient-specific geometries of AAAs. Along with the recent advances in medi-

cal imaging, this can revolutionize the state-of-the-art analyses and clinical interventions.

Patient-specific modeling raises new challenges with regard to characterization of patient-

specific parameters of the vessel wall or aneurysmal tissue under certain conditions.

With regard to material parameters intrinsic to the material, mechanical experiments

have been widely conducted to develop appropriate constitutive forms for the mechanical

behavior of arteries and to estimate the associated constitutive parameters. Meanwhile, less

attention has been paid to the fact that measurements are not error-free and precise and

unbiased parameter estimation in vascular mechanics requires one to consider the uncer-

tainty in all measured variables when estimating parameters. Furthermore, identification of

geometric parameters, e.g. wall thickness and material anisotropy, becomes challenging for

patient-specific models when certain conditions are to be satisfied. First condition to be met

is the mechanical homeostatic state as the main assumption for G&R models. Second con-

dition stems from the fact that the stress-free configuration is not available when a medical

image-based geometry is used. That is, during the computation, the geometry no longer

coincides with the original or image geometry under the physiological loads.

6



1.7 Objectives

The ultimate goal of this study is to develop patient-specific models of AAA G&R. Toward

that goal, multiple specific aims are set in this study based on the existing challenges as:

• Develop an enhanced least squares method to account for the measurement noise in

estimation of material constitutive parameters.

• Develop an optimization scheme needed to estimate arterial wall thickness and anisotropy

such that the patient-specific conditions are satisfied.

• Develop a 3-D finite element framework capable of modeling AAAs growth using

patient-specific geometries.

In chapter 2 a weighted nonlinear least squares method that incorporates a noise model is

proposed and its advantage over the conventional nonlinear least squares is demonstrated. In

chapter 3, different constitutive relations are tested for parameter estimation of mechanical

behavior of mouse carotid and rabbit basilar arteries. In chapter 4 an inverse optimization

technique is developed to estimate the distributions of wall thickness and material anisotropy

such that the vascular homeostatic as well as the geometric conditions are satisfied simul-

taneously. Using the proposed technique in chapter 4, different hypotheses for mechanical

homeostasis are examined in chapter 5. In chapter 6 an image-based finite element model

for vascular adaptation is presented and its application to AAA is demonstrated in sample

simulation cases. Chapter 7 presents a framework for simulation of AAA, demonstrates

the potential utility of the framework with additional simulation cases, and discusses its

shortcomings and future developments.
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Chapter 2

ESTIMATION OF MATERIAL PARAMETERS OF ARTERIAL

WALL TISSUE USING A WEIGHTED NONLINEAR LEAST

SQUARES METHOD

2.1 INTRODUCTION

Mechanical properties of the arterial wall vary with anatomical variations and for different

species. It has also been suggested that the structure and material properties of the arterial

wall alter under various physiological or pathological conditions (Langille, 1993; Humphrey,

2008). In such studies, precise parameter estimation is essential to quantify the difference

in mechanical behavior. In vascular mechanics, mechanical behavior of the arterial wall is

typically described by a nonlinear equation,

y = f(x,Θ), (2.1)

where x and y are vectors of independent and dependent variables and Θ is a set of unknown

parameters. Experimental studies in vascular mechanics normally utilize a nonlinear least

squares (NLS) technique in which the sum of the squares of the difference between the exper-

imental measurements and the calculated responses of dependent variables y (e.g., pressure

and axial force) is minimized, while independent variables x (e.g., outer diameter and axial
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stretch) are considered free of error (Pandit et al., 2005; Schulze-Bauer and Holzapfel, 2003;

Wang et al., 2006). All variables, however, are measured with errors and it is known that an

NLS method results in biased parameter estimation when uncertainty exists in all variables

in a constitutive model (Emery et al., 2000; Fadale et al., 1995). In such a case, parameter

estimation should be correctly formulated as the nonlinear least squares optimization with

an appropriately chosen objective function (Fadale et al., 1995; Schwetlick and Tiller, 1985).

It appears that the arterial wall owes its main mechanical characteristics, such as the

progressive stiffening and anisotropy, to collagen fibers and their orientations (Holzapfel

et al., 2000). Many constitutive models have been proposed to account for the distribution

of collagen fibers (e.g. Lanir et al., 1996; Gasser et al., 2006). These models use exponen-

tial functions for collagen fibers in their constitutive models and in general fitted well the

progressive stiffening with the increasing stretch. When there exist measurement noises in

experimental data, however, one often experiences difficulty in obtaining a good fit in the

high stretch region, which also causes inaccurate estimation of vascular stiffness. In this

paper, a weighted nonlinear least squares (WNLS) optimization is presented to estimate the

parameters of a multi-fiber model of arteries (Baek et al., 2007a; Hu et al., 2007; Masson

et al., 2008) considering the uncertainty due to the measurement errors in all variables. An

uncertainty model is first derived from the constitutive equation assuming that experimental

measurements are corrupted by the independent and identically distributed Gaussian noise.

Then, the WNLS optimization is formulated using the inverse of the covariance matrix of

the uncertainty as a correct weight factor. The proposed technique is evaluated using mul-

tiple sets of fictitious data containing the measurement errors (with multiple noise levels)

in all variables and the estimation results are compared with those of the conventional NLS

optimization (without a proper weight factor).

In parameter estimation, the larger number of parameters for a model provides more

flexibility and generally gives better fitting, i.e., decreases the residual error. However, too

many parameters increase the bias error as well as the complexity of the model. When
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the degrees of freedom in parameter estimation exceed the information in the data, the

resulting estimated model cannot be generalized beyond the fitting data. In statistics, this

phenomenon is usually referred to as overfitting (Naik et al., 2007). Therefore, there is a

tradeoff between descriptive accuracy and parsimony, which can be addressed by a model

selection criterion (Wagenmakers and Farrell, 2004). Multiple model selection criteria are

utilized to investigate an optimal number of parameters (or fiber families) for two different

arteries.

2.2 METHODS

2.2.1 Constitutive relations for the mechanical behavior of the

passive artery

Cyclic inflation of an arterial segment at multiple fixed lengths is a typical biaxial test in vas-

cular mechanics. The measurements include the axial force and internal pressure (recorded

by the load cell and pressure transducer) versus changes in the diameter and axial stretch

(recorded by the optical system). Experimental data from the test is used to determine

appropriate constitutive relations based on the assumption of an ideal cylindrical geome-

try of the artery (Humphrey, 2002). In the current study, a microstructurally motivated,

multi-fiber family model is used. That is, a constitutive strain energy including an isotropic

neo-hookean strain energy function (associated with elastin) and strain energy functions due

to multiple collagen fiber families is assumed (Holzapfel et al., 2000; Baek et al., 2007a):

Ŵ =
c

2
(I1 − 3) +

∑
k

c
(k)
1

4c
(k)
2

{
exp

(
c
(k)
2 (λ(k)

2
− 1)2

)
− 1

}
, (2.2)

where, c, c
(k)
1 and c

(k)
2 are material parameters, such that c, c

(k)
1 and c

(k)
2 > 0, (Holzapfel,

2006; Holzapfel et al., 2004). I1 = tr C, where C is the right Cauchy-Green deformation
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tensor. λ(k) is the stretch of the kth fiber family, given by

λ(k) =

√(
λθ sinα

(k)
)2

+
(
λz cosα(k)

)2
, (2.3)

where α(k) is the orientation of the fiber family, and λz and λθ are the axial and circumfer-

ential stretches. The intramural stress can be obtained as

T = −pI+ T̂, T̂ =
2

J
F
∂W

∂C
FT , (2.4)

where p is a Lagrange multiplier, F is the deformation gradient, and J is its determinant.

For an ideal straight tube, the Eq. (2.4) expands to the following three equations

Tθθ = −p+ c
( r
R

)2
+
( r
R

)2∑
k

{
c
(k)
1 (λ(k)

2
− 1)exp

(
c
(k)
2 (λ(k)

2
− 1)2

)
sin2 α(k)

}
, (2.5)

Tzz = −p+ cλz
2 + λz

2
∑
k

{
c
(k)
1 (λ(k)

2
− 1)exp

(
c
(k)
2 (λ(k)

2
− 1)2

)
cos2 α(k)

}
, (2.6)

Trr = −p+ c
( R
rλz

)2
. (2.7)

For a thin membrane, the transmural pressure Pi and the axial force Fz can be approximated

by (See Appendix A)

Pi =
h
(
T̂θθ − T̂rr

)
rm

(2.8)

Fz = 2πrmh
(
T̂zz − T̂rr

)
− π

(
r2m − r2c

)
Pi, (2.9)

where, rm = (ri+ro)/2, h = ro−ri, and rc is the radius of cannula. T̂rr, T̂θθ and T̂zz are the

normal components of stress in the radial, circumferential, and axial directions respectively.

Thus, by substituting (3.1)-(2.4) into (2.8) and (2.9), the theoretical relation between a force

vector y = [Fz, Pi]
T and a displacement vector x = [λz, do]

T can be derived as in Eq. (2.1).
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2.2.2 WNLS optimization for a biaxial test of the artery

In experiments, all variables are measured with errors and we denote the measured variables

as x̂n = [λz(tn), do(tn)]
T and ŷn = [Fz(tn), Pi(tn)]

T at time tn for n = 1, . . . ,m. The true

values of the variables are denoted by x̃n and ỹn, which are corrupted by the measurement

errors, ϵn and en during the experiment, i.e. the measured variables can be written as

x̂n = x̃n + ϵn (2.10)

ŷn = ỹn + en, (2.11)

where ϵn ∼ WN(0,Σϵ) and en ∼ WN(0,Σe) are assumed to be independent and identically

distributed Gaussian noises with zero means and corresponding covariance matrices.

In order to consider the measurement errors in all variables, the total least squares es-

timation problem can be formulated by the following objective function (Beck and Arnold,

1977; Schwetlick and Tiller, 1985):

S =
m∑
n=1

 ŷn − f(xn,Θ)

x̂n − xn


T

Σ−1
n

 ŷn − f(xn,Θ)

x̂n − xn

 , (2.12)

where Σn is a collective covariance matrix of the measurement errors. Then, we need to

solve for 2m + N(Θ) unknowns to minimize Eq. (2.12), where m is the number of data

points and N(Θ) is the number of parameters in Θ. Considering a nonlinear function, such

as Eq. (2.1), an iterative scheme (e.g., Gauss-Newton method) has to be employed. Solving

the nonlinear regression problem with such a large number of unknown variables is very

difficult. Schwetlick and Tiller (1985) stated that for the NLS optimization, solving the total

least squares estimation problem using a standard software “cannot be recommended unless

the problem is small.” Consequently, in this study, we use the classical parameter estimation
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method with only N(Θ) unknowns in the objective function:

S =
m∑
n=1

(
ŷn − f (x̂n,Θ)

)T
Wn

(
ŷn − f (x̂n,Θ)

)
(2.13)

where Wn are appropriately chosen weight matrices. The problem is, then, to solve for Θ

by minimizing Eq. (2.13) with correct weights obtained by the uncertainty model which

will be referred to as the WNLS optimization. Let the uncertainty model vn represent

the uncertainty in ŷn − f(x̂n,Θ). The uncertainty in f(x̂n,Θ) is propagated from the

measurement noise of ϵn, and it can be approximated by using the Taylor series of f with

respect to ϵn and ignoring the higher order terms of ϵn in the series. Then, the uncertainty

model vn for ŷn − f(x̂n,Θ) can be obtained as:

vn = − ∂f

∂x
(x̃n,Θ) ϵn + en. (2.14)

Note that the uncertainty model for the force measurement now includes the effect of mea-

surement noise in the displacement. Eq. (2.14) shows that the uncertainty increases with

an increase in ∂f/∂x, which is a stiffness term in vascular mechanics. To incorporate the

uncertainty model into Eq. (2.13), the inverse of the covariance matrix of the uncertainty has

to be used as the weight factor (Beck and Arnold, 1977; Emery et al., 2000). The covariance

matrix for vn is derived as:

Σvn = E(vnvTn ) =
(
∂f

∂x

)
Σϵ

(
∂f

∂x

)T

+Σe, (2.15)

where E(A) is the expectation of A. Finally, using the uncertainty model Eq. (2.14), the

objective function Eq. (2.13) can be written as:

S =
m∑
n=1

(
ŷn − f (x̂n,Θ)

)T
Σ−1
vn

(
ŷn − f (x̂n,Θ)

)
. (2.16)
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The correct modeling of the measurement error and the formulation of the WNLS optimiza-

tion will provide the minimum estimation error variance. For the computation, however, the

initial estimates Θo are obtained by the NLS optimization without the uncertainty model.

Then, the covariance matrix Σvn in Eq. (2.16) is approximated using the estimates Θo

and x̂n . With Σvn , the new estimates of Θ1 are obtained by minimizing Eq. (2.16). The

covariance matrix Σvn is then updated iteratively using the previous estimates for the next

optimization. The estimates in each iteration are obtained by using constrained optimization

in Matlab (The Mathworks Inc.) with multiple choices of initial points, and one to three

iterations are used to obtain the final estimates in this paper.

Vascular stiffness changes according to alterations in physiological and pathophysiological

conditions, such as aging (O’Rourke and Hashimoto, 2007), hypertension (Hu et al., 2007),

during pregnancy (Hu et al., 1998), and diabetes mellitus (Oxlund et al., 1989). Accurate

assessment of the arterial wall stiffness in physiological range can play an important role

in understanding the pathophysiology and progression of vascular diseases. The linearized

circumferential stiffness from both the WNLS and NLS methods is calculated and compared

for its accuracy (see Baek et al., 2007a for linearization). The results demonstrate that our

proposed scheme provides a more accurate assessment of the arterial stiffness.

2.2.3 Model selection criteria for optimal number of parameters

In order to find the optimal number of parameters (or number of fiber families) for the multi-

fiber family model (Eq. (3.1)), three different criteria for model selection are utilized; Akaike

information criterion (AIC; Glatting et al., 2007), a modified form of AIC (AICc; Glatting

et al., 2007), and the root mean square error measure (RMS; Holzapfel et al., 2005), given
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by

AIC = m ln

(
S

m

)
+ 2 (N + 1) (2.17)

AICc = AIC +
2 (N + 1) (N + 2)

m−N − 2
(2.18)

RMS =

√
S

m−N
(2.19)

where S, N , and m are, respectively, the residual, the number of parameters, and the sample

size. AIC was first introduced by Akaike (1974, 1981) based on the concept of entropy to

describe the tradeoff between bias and variance in model construction. AIC has been used as

a model selection criterion that selects an optimal model by considering both the precision

of fitting and the complexity of the model (Anderson et al., 1994). While the first term

in the right hand side of Eq. (2.17) decreases with a decrease in the residual, the second

term penalizes it for increasing the size (number of parameters) of the model and prevents

overfitting. RMS in Eq. (2.19) has also been used as a heuristic criterion in selecting among

models although no statistical justification exists (Myung, 2000). The number of parameters

that minimizes a given criterion is considered as being optimal for the model.

In the multi-fiber family model, the number of parameters increases with an increase

in the number of fiber families. The fibers are assumed to be symmetric with respect to

the axial axis on the vessel wall. In order to evaluate the model selection criteria, the

residual Eq. (2.16) is obtained by increasing the number of fiber families from 2 to 10 for

each data set. Briefly, the 2-fiber-family model has 4 independent parameters (c, c11 = c21,

c12 = c22 and α1 = −α2). For the 3-fiber-family model, one more fiber family is added in

either circumferential direction or axial direction to minimize the residual, which results in

6 (independent) unknown parameters. The 4-fiber-family model has two symmetric fibers in

helical directions, one in the axial direction, and one in the circumferential direction resulting

in 8 independent parameters. From 6 fiber families, two additional symmetric fibers are

added at each step, yielding three additional parameters (an angle and two parameters for
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the exponential function). Hence, 11, 14, and 17 independent parameters are assumed for

6-, 8-, and 10-fiber-family models respectively.

The model selection criteria are specific to the experimental data. Hence, experimental

data from two rabbit basilar arteries and three mouse carotid arteries are tested in order to

investigate optimal number of fiber families.

2.3 RESULTS

2.3.1 Comparison between the proposed WNLS optimization and

the conventional NLS optimization

In order to demonstrate the effectiveness of the proposed WNLS method, noise-corrupted,

fictitious experimental data were generated and the parameter estimation was performed

using the WNLS method as well as the standard approach (NLS) without an uncertainty

model. Assuming a set of “true” parameters, the synthesized true data was generated for

the inflation test at fixed axial stretches (λz = 1.2, 1.3, 1.4), i.e., the pressure and axial

force data were obtained from Eq. (2.1) for a given radius and axial stretch using the true

parameters. Gaussian noises with given noise levels were numerically generated and added

to the synthesized data of {do, λz, Fz, Pi} to produce fictitious experimental data. The noise

level was defined as the ratio of the standard deviation of the noise to the maximum value

of the data. Figure 2.1 shows the pressure vs. radius plots for λz = 1.2, 1.3, 1.4 for the true

as well as the fictitious data at noise levels of 0.005 and 0.01.

Then, the NLS and proposed WNLS methods were used to estimate parameters for each

fictitious data set. Figure 2.2 shows pressure-radius and axial force-radius plots using the true

material parameters and the data calculated with estimated parameters of the 4-fiber-family

model for both the NLS and WNLS methods. Evidently, the graphs show better fitting

curves for pressure and axial force when the uncertainty model is incorporated (Figures
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Figure 2.1: Pressure versus radius plots for the 4-fiber-family model for a set of true data
(solid lines) and fictitious noisy data (dotted lines) at noise levels of 0.005 (a) and 0.01 (b)
and different axial stretches λz = 1.2, 1.3, 1.4.

2.2(b) and (d)).

Figure 2.3 shows another set of fictitious data with higher slopes in the high stretch region

and the corresponding fitting curves using both the NLS and WNLS methods. The WNLS

significantly improved the slope of the fit especially in the high stretch region (Figures 2.2

and 2.3).

The advantage of the WNLS method over the standard NLS method is more obvious for

the data with higher slopes (Figure 2.3). Table 2.1 summarizes all true and estimated values

of parameters corresponding to Figures 2.2 and 2.3.

For a quantitative measure of estimation errors, the following normalized error was de-

fined as (Baek et al., 2007a):

e =
1

2

(√∑
(Pest − Ptrue)2∑

(Ptrue)2
+

√∑
(Fest − Ftrue)2∑

(Ftrue)2

)
, (2.20)

where Pest and Ptrue are the estimated and true values of pressure. Fest and Ftrue are the

estimated and true values of axial force. Normalized errors, e, were obtained and averaged

over a set of five different random noise sequences at each noise level. Table 2.2 shows

the averaged, normalized errors obtained from both the NLS and WNLS methods at noise
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Figure 2.2: Comparison between the NLS (a and c) and WNLS (b and d) optimizations
for the 4-fiber-family model. Pressure and axial force versus radius are plotted using true
parameters (dotted lines) and estimated parameters (solid lines) for the data with moderate
slopes at different axial stretches λz = 1.2, 1.3, 1.4
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Figure 2.3: Comparison between the NLS (a and c) and WNLS (b and d) optimizations
for the 4-fiber-family model. Pressure and axial force versus radius are plotted using true
parameters (dotted lines) and estimated parameters (solid lines) for the data with stiff slopes
in the high stretch region at different axial stretches λz = 1.2, 1.3, 1.4.
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Table 2.1: True and estimated parameters for the fictitious data with moderate and high
slopes (corresponding to Figures 2.2 and 2.3) and the experimental data from mouse carotid
and rabbit basilar arteries (corresponding to Figures 2.4(a) and 2.4(b)).

c(kPa) c11(kPa) c21(kPa) c31(kPa) c12 c22 c32 α1 (◦)

True 0 0.36 7.9 1.2 4.3 1.64 3.07 40.3
Fig. 2.2 NLS 0 0.71 14.2 1.1 3.72 1.12 3.1 42

WNLS 0 0.39 8.7 1.1 4.23 1.56 3.15 41.4

True 0 0.28 1.73 0.2 4.73 2.96 4.92 45.6
Fig. 2.3 NLS 0 1.3 9.34 0.22 3.05 1.52 4.63 40.5

WNLS 0 0.28 3.4 0.27 4.73 2.36 4.53 44.5

Fig. 2.4(a) WNLS 42 7.29 14 0.0003 0.152 0 3.11 55.9

Fig. 2.4(b) WNLS 0 18 14 6.2 1.37 1.48 5.64 47.9

levels of 0.005, 0.008, 0.01, 0.02, and 0.03. The WNLS method resulted in normalized errors

smaller than those from the NLS method at all noise levels.

True and estimated values of the circumferential stiffness at Pi = 75mmHg and λz = 1.3

corresponding to Figures 2.2 and 2.3 are shown in Table 2.3. The WNLS method resulted in

much better estimation than the NLS method for both cases. For example, corresponding

to the data of Figure 2.2, the error of estimated stiffness using the NLS method was about

15 percent whereas it was less than 3 percent when using the WNLS method.

2.3.2 Optimal number of fiber families

Experimental data from two rabbit basilar arteries (Baek et al., 2007a) and three mouse

carotid arteries (Dye et al., 2007) were used to investigate the optimal number of fiber families

for the proposed model. Figures 2.4(a) and 2.4(b) depict experimental data for these arteries

as well as the best-fit curves using the WNLS optimization with the 4-fiber-family model.

For all sets of data tested, residuals for the WNLS optimization reduced significantly up to
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Table 2.2: Averaged normalized error e at different noise levels using the NLS and WNLS
methods.

Noise level 0.005 0.008 0.01 0.02 0.03

eNLS 0.0093 0.018 0.03 0.07 0.12
eWNLS 0.009 0.01 0.0123 0.025 0.078

eNLS
eWNLS

1.033 1.8 2.44 2.8 1.54

Table 2.3: True and estimated linearized stiffness at Pi = 75mmHg and λz = 1.3 corre-
sponding to Figures 2.2 and 2.3 using the NLS and WNLS methods.

True stiffness(kPa) NLS stiffness(kPa) WNLS stiffness(kPa)

Fig. 2.2 1114 944 1085
Fig. 2.3 1580 1105 1381

3-fiber-family model (6 parameters), and then slightly decreased for further increase in the

number of fiber families (see e.g. Figures 2.4(c) and 2.4(d)). Interestingly, three different

criteria led to an identical optimal number of parameters for each mouse and rabbit data,

which were found to be 11 parameters (6 fiber families). Estimated parameters corresponding

to Figures 2.4(a) and 2.4(b) are listed in Table 2.1.

2.4 DISCUSSION

Parameter estimation using the NLS optimization has been widely used in characterizing

mechanical behavior of soft tissues from the experiments. In this study, we proposed an

improved parameter estimation technique considering the measurement errors in variables.

If the measurement errors in independent variables are negligible (i.e., Σϵ ∼ 0), then the

proposed method becomes identical to the conventional NLS method. However, in many
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Figure 2.4: Pressure-radius-axial stretch curves are plotted from fitting of the experimental
data for the mouse carotid artery (a) and rabbit basilar artery (b) using the WNLS opti-
mization. Circles show data points and solid lines show the estimated values. AICc and the
residual are plotted against the number of parameters; 4, 6, 8, 11, 14, 17 (or the number of
fiber families; 2, 3, 4, 6, 8, 10) for the mouse carotid (c) and rabbit basilar (d) arteries using
the WNLS optimization.
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studies (i.e., arterial inflation and extension tests) such measurement errors are not negligible.

For example, Saravanan et al. (2006) reported that when the deformation was approximated

by a linear polynomial using three markers, the error in the first invariant of the right Cauchy-

Green deformation tensor was ± 0.06, which is comparable with noise levels we considered

in this study. Although these problems can be treated as total least squares problems or

errors-in-variables models (Beck and Arnold, 1977; Huffel and Vandewalle, 1991), solving

a nonlinear problem with a large number of unknown variables is still very challenging.

Instead, we developed a WNLS technique based on accurate modeling of uncertainty given

by Eq. (2.14). It was shown that the WNLS optimization with a proper uncertainty model

improves the quality of parameter estimation significantly compared to the conventional NLS

optimization at all noise levels. Especially, for a collagenous tissue, ∂f/∂x is larger in the

high stretch region, so it produces a higher level of uncertainty propagation and, hence, the

estimation results are biased when the displacement measurement error is not considered

within a proper uncertainty model (Figure 2.3). The advantage of using the WNLS was

more pronounced at higher noise levels. The WNLS method provided a better fit in the high

stretch region and proved to be advantageous when estimating the linearized stiffness within

the physiological range.

In the current work, synthesized data was used along with Gaussian noises to evaluate the

WNLS optimization. In experiments, however, the measurement noise should be carefully

characterized. Furthermore, although the proposed WNLS optimization helps eliminate the

biased error due to the measurement errors, it is noteworthy that parameter estimation can

be limited by the model error induced by the chosen constitutive relation.

The presented constitutive model is similar to the one developed by Holzapfel et al. (2000)

and Holzapfel et al. (2004), but has been used in thin wall models (Baek et al., 2007a; Hu

et al., 2007; Masson et al., 2008). It has also been utilized in modeling of vascular adaptation

during progression of vascular diseases (Baek et al., 2006, 2007b). However, the vessel wall

presents more dispersed fiber orientation in the adventitia and intimal layers and the use of
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an orientation density function has been proposed (Lanir et al., 1996; Gasser et al., 2006).

The choice of the functional form of the constitutive relation may involve multiple factors

such as the anatomic location of the artery, available microstructural information, and the

specific application and, hence, it is beyond the scope of the present work. Instead, our

focus has been on the situation that one has a functional form of a constitutive relation and

needs to find optimal number of parameters and best parameters from experimental data.

The presented parameter estimation method is, however, general enough and can be utilized

with various models for vascular mechanics.

Three criteria were used to evaluate optimal number of parameters (fiber families) for the

chosen constitutive model of arteries. The best model between several competing models

is one that provides an adequate account of the data while using a minimum number of

parameters. Based on the available data and using three different criteria, we found that the

model with 11 parameters (6 fiber families) minimized our criteria.

In closing, the need for the optimal design of experiments and optimal sampling protocols

in vascular mechanics is emphasized (for example, see Lanir et al., 1996). In optimally

designed experiments, the effect of parameter changes is maximized with respect to the

noise and, hence, the estimation error variance can be reduced.
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Chapter 3

COMPARISON OF DIFFERENT CONSTITUTIVE MODELS

OF VASCULAR TISSUE MECHANICAL BEHAVIOR FROM

PARAMETER ESTIMATION PERSPECTIVE

3.1 Constitutive modeling of arterial wall

Due to large deformation of vascular tissue, constitutive modeling based on finite elasticity

has been extensively used to understand the mechanical behavior of healthy or diseased ar-

teries. Constitutive modeling of arteries requires estimation of constitutive parameters from

ex-vivo biaxial or inflation-extension experiments. In chapter 2, an aspect of the parame-

ter estimation in vascular mechanics was discussed with regard to the measurement error.

The form of the constitutive relation/model, assumed to describe the mechanical behavior

of the tissue, was considered to be known and fixed. Nonetheless mechanical behavior of

arteries may vary between species and even may be different within a subject depending on

the anatomical location (See Fig. 2.4a and b, for example). Thus the question remained

is which constitutive relation adequately describes the mechanical behavior arteries or even

whether one constitutive form is adequate to model all arteries. Variety of constitutive mod-

els, either phenomenological or microstructurally-motivated, has been suggested for arteries

in literature, some of which have been reviewed by Holzapfel et al. (2000). In this chapter,

given two sets of data mouse carotid and rabbit basilar arteries, we test different constitutive
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relations by comparing their parameter estimation results.

Briefly, fibers and ground substance (mainly elastin) are main constituents that deter-

mine the mechanical behavior of the vascular tissues (Holzapfel and Ogden, 2010; Humphrey,

2002). Under low loading condition, crimped collagen fibers contribute little to the mechani-

cal response while elastin is mainly responsible for the mechanical behavior. Arterial elastin

(and ground substance in general) has been generally assumed to be isotropic and modeled

as the neo-Hookian material (Gundiah et al., 2007). At higher loads the undulated fibers

begin to stretch out and contribute to the progressive stiffening of the tissue in the fiber

direction. That has motivated exponential forms of the strain energy function for collagen

with anisotropy effect (Fung, 1967; Holzapfel et al., 2000). An additive split for the strain

energy function is suggested as W = We+Wc, where We represents the strain energy due to

isotropic elastin (independent of fiber alignment) and Wc represents the anisotropic strain

energy due to collagen fibers (Holzapfel et al., 2000; Holzapfel and Ogden, 2010). Here we

consider different functional forms of the strain energies for isotropic and anisotropic parts in

contrast with the popular Holzapfel-type model. First we assume the anisotropy part as an

exponential form and use different models for isotropic part. Then we consider the isotropic

part as neo-Hookian and test different models for anisotropic part.

3.2 Holzapfel-type model

A multi-fiber family model, as introduced in chapter 2, has been suggested by Hu et al.

(2007) and Baek et al. (2007a) which is mainly inspired by Lanir (1983) and Holzapfel et al.

(2000). The strain energy function is rewritten as

Ŵ =
c

2
(I1 − 3) +

∑
k

c
(k)
1

4c
(k)
2

{
exp

(
c
(k)
2 (λ(k)

2
− 1)2

)
− 1

}
, (3.1)
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Figure 3.1: Pressure-radius data and the estimated values (left) with the corresponding
normalized residuals (right) for mouse carotid (top) and rabbit basilar (bottom) arteries
using Holzapfel-type model. Dots show the data points and solid lines show the estimated
values.

Accordingly, Fig. 3.1 shows the pressure-radius data and the estimated lines along with the

normalized residuals between data and estimated values (i.e., (Pest − Pdata)/Pnominal) for

mouse carotid and rabbit basilar arteries. Existing trends of variation in residuals around

the zero, underscores the signature behavior associated with the model used to fit both sets

of data. However, the model shows a better fit to basilar artery data in general.
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Figure 3.2: Pressure-radius data of mouse carotid artery and the estimated values (left)
with the corresponding normalized residuals (right) using Zulliger model. Dots show the
data points and solid lines show the estimated values.

3.3 Models for elastin contribution

3.3.1 Zulliger model

Zulliger et al. (2004a) proposed a modification to the strain energy function of elastin which

we combine with exponential part of the Holzapfel-type model as

Ŵ =
c

2
(I1 − 3)3/2 +

∑
k

c
(k)
1

4c
(k)
2

{
exp

(
c
(k)
2 (λ(k)

2
− 1)2

)
− 1

}
. (3.2)

Figure 3.2 show the data and fitted lines as well as the normalized residuals for carotid

artery. There is no improvement in terms of fitting and the trend in residuals with respect

to neo-Hookian form of strain energy for elastin.

3.3.2 Demiray model

Ogden and Saccomandi (2007) suggested the exponential model of isotropic part, proposed

by Demiray (1972) and Fung (1967), to be combined with anisotropic part of Holzapfel-type
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model as

Ŵ =
c

2b

{
exp
(
b(I1 − 3)

)
− 1
}
+
∑
k

c
(k)
1

4c
(k)
2

{
exp

(
c
(k)
2 (λ(k)

2
− 1)2

)
− 1

}
(3.3)
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Figure 3.3: Pressure-radius data and the estimated values (left) with the corresponding
normalized residuals (right) for mouse carotid (top) and rabbit basilar (bottom) arteries
using Demiray model. Dots show the data points and solid lines show the estimated values.
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3.4 Models for collagen contribution

3.4.1 Zulliger model

As described before, collagen fibers are originally undulated and under loading condition

more collagen fibers become straightened and engaged in carrying the increasing load (since

each collagen fiber is assumed to become straightened at a different stretch ratio). Based

on that Zulliger et al. (2004a) assumed a log-logistic probability distribution function for

engagement strain. Inspired by them, we consider

Ŵ =
c

2
(I1 − 3) +

∑
k

νkΨk(ϵk) (3.4)

where ϵk = λk − 1 and Ψk(ϵk) = ψf ∗ ρf =
∫∞
−∞ ψf (ϵk − x)ρf (x)dx. The distribution

function ρf and the strain energy of a single fiber ψf are given as

ρf (ϵk) =


0 for ϵ ≤ 0

ak
bk

(
ϵk
bk

)ak−1

[
1+

(
ϵk
bk

)ak]2 for ϵ>0
(3.5)

ψf (ϵk) =

 0 for ϵ ≤ 0

cf (ϵk − log(ϵk + 1)) for ϵ>0
(3.6)

where ak and bk are the parameters associated with kth fiber family (k = 1, ..., 4) and cf

is an intrinsic parameter for a single fiber. bk is a scaling parameter while ak defines the

shape of the distribution (Rezakhaniha et al., 2011). Figure 3.4 shows the fitting results and

the normalized residuals for both mouse carotid and rabbit basilar arteries. Apparently the

parameter estimation has not been improved using this model.

30



200 300 400
0

5

10

15

20

25

Radius (micron)

P
re

s
s
u

re
 (

k
P

a
)

 

 

200 300 400

−0.2

−0.1

0

0.1

0.2

Radius (micron)

N
o
rm
a
liz
e
d
 R
e
s
id
u
a
l

 

 

λ = 1.65
λ = 1.80
λ = 1.95

0.03 0.035 0.04 0.045
−2
0
2
4
6
8
10
12

Radius (cm)

P
re
s
s
u
re
 (
k
P
a
)

 

 

0.03 0.035 0.04 0.045

−0.25
−0.2
−0.15
−0.1
−0.05

0
0.05

Radius (cm)

N
o
rm
a
liz
e
d
 R
e
s
id
u
a
l

 

 

λ = 1.2
λ = 1.3
λ = 1.4

Figure 3.4: Pressure-radius data and the estimated values (left) with the corresponding
normalized residuals (right) for mouse carotid (top) and rabbit basilar (bottom) arteries
using Zulliger model. Dots show the data points and solid lines show the estimated values.

31



3.4.2 Lanir model

Again based on the idea of gradual engagement of collagen fibers, Lanir (1979) considered a

normal distribution for the fiber engagement and its load bearing capacity. He also considered

the engaged individual fibers to be linearly elastic. Similarly, we consider

Ŵ =
c

2
(I1 − 3) +

∑
k

νkΨk(ϵk), Ψk(ϵk) =

∫ λk

1.0
ψf (x)ρf (x)dx (3.7)

where ψf (x) = 1/2cf ((λk − x)/x)2 is the strain energy of the a single fiber and ρf is the

normal distribution defined as

ρf (x) = bkexp
(
− (x− ck)

2

2a2k

)
, where bk =

1

ak
√
2π
. (3.8)

Figure 3.5 depicts the fitting results and the normalized residuals for both mouse carotid

and rabbit basilar arteries.

3.5 Discussion

Concerning the difference between species, Holzapfel-type model showed relatively a better

fit to the basilar artery data (as well as lower residuals). This can be due to the simple

exponential trend observed for rabbit basilar artery whereas mouse carotid artery showed a

sigmoid-like trend emphasizing more contribution for elastin under low loads. Comparison

between different models did not show a clear advantage for other constitutive models over

the Holzapfel-type model in terms of parameter estimation. Holzapfel-type together with

Demiray-type showed the best results for the parameter estimation and fitting residuals. For

an ideal model, residuals should be oscillating around zero without any obvious signature

trend. Whereas the signature behavior can be obviously seen in residuals of all models used

in the study.

However, as mentioned earlier, Holzapfel-type model represents multiple fiber families of
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Figure 3.5: Pressure-radius data and the estimated values (left) with the corresponding
normalized residuals (right) for mouse carotid (top) and rabbit basilar (bottom) arteries
using Lanir model. Dots show the data points and solid lines show the estimated values.

collagen fibers along with elastin. This is favorable to be used in G&R models where arteries

are considered as a mixture of constituents which are produced and removed at their own

turnover rates.
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Chapter 4

ESTIMATION OF THE ARTERIAL WALL THICKNESS AND

ANISOTROPY FOR IMAGE-BASED MODELS OF ARTERIES

4.1 INTRODUCTION

Many of the computational models of vascular adaptation (Baek et al., 2006, 2007b; Figueroa

et al., 2009; Kroon and Holzapfel, 2009b; Watton and Hill, 2009) have been built upon

the theoretical framework of modeling tissue G&R presented by Humphrey and Rajagopal

(2002). They introduced a constrained mixture approach focusing on stress-mediated mass

production and removal in evolving stressed configurations. They also offered key remarks

that are central to guiding the later development of theories of soft tissue G&R. One of

their key remarks is “Normal growth and remodeling tends to be a stable dynamical process,

one that seeks to optimize structure and function with respect to yet unidentified parame-

ters. In comparison to processes during development, there appear to be genetic and perhaps

epigenetic constraints on this optimization process during maturity”. Furthermore, they

emphasized a need to identify both a set of optimization parameters and the associated con-

straints. Most of the previous computational simulations of vascular adaptation, however,

have been developed using idealized geometries for which the identification of homogeneous

parameters does not pose a problem.

This chapter addresses two technical challenges associated with patient-specific modeling
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of AAA evolution and proposes possible solutions. First, as stated earlier, theory of G&R

is based on a key assumption, the existence of mechanical homeostasis (Humphrey, 2008;

Kassab, 2008), whereas it is difficult to prescribe the in vivo parameters such that the

assumption of a homeostatic state is satisfied at every point in the vessel wall model. For an

idealized model, where the blood vessel is assumed to be an ideal thin hollow cylinder, the

in vivo material properties are typically assumed to be uniform over the domain. When a

medical image-based geometric model is used, however, it is not a trivial task to prescribe the

distribution of material and structural parameters such as thickness and fiber orientations.

Second, another difficulty associated with using an image-based model stems from the

fact that the in vivo image is obtained under the pressure and the stress-free configuration

is not available. Hence, it is difficult to maintain the original patient-specific model in

a computational simulation under the in vivo pressure. Inverse elastostatic methods have

been pursued to estimate the stress-free state from a pre-deformed in vivo geometry obtained

medical images (Lu et al., 2008; Zhou et al., 2010). Others have used a Lagrangian-Eulerian

formulation to obtain the meaningful prestressed state (Gee et al., 2010, 2009).

In this chapter, first, the constitutive parameters intrinsic to the material are estimated

by fitting the ex vivo biaxial mechanical test data of a healthy human aorta using the same

parameter estimation approach presented in chapter 2. Second, an optimization problem is

solved to estimate the distributions of the wall thickness and anisotropy such that home-

ostasis is maintained while the geometry deviates minimally from the in vivo configuration.

4.2 METHOD

4.2.1 Estimation of material constitutive parameters

As the first step, the constitutive parameters are estimated by fitting biaxial mechanical test

data of a healthy human aorta (Vande Geest et al., 2004, 2006). Here, the kinematics of the

biaxial test and the constitutive relations are briefly explained.
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Figure 4.1: Kinematics of the deformation associated with biaxial mechanical test and the
corresponding deformation gradients. λ1 and λ2 are stretches in circumferential and axial
directions during the biaxial test
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Figure 4.1 shows a schematic drawing for the kinematics of deformation related to a

biaxial test of a healthy aorta. The in vivo configuration of a healthy aorta is assumed

to be the prestressed reference configuration κR, whereas κI represents the intermediate

configuration of the square-cut sample under the traction-free condition. The deformation

gradient FR corresponds to the mapping from κR to κI . It is assumed that there is no

active tone presented during the biaxial test. The deformation gradient FI corresponds

to the mapping from κI to the deformed configuration during the biaxial test, resulting in

F = FIFR. Assuming incompressibility in an ideal geometry,

FR = diag

{
FR
1 , F

R
2 ,

1

FR
1 F

R
2

}

FI = diag

{
λ1, λ2,

1

λ1λ2

}
, (4.1)

where FR
1 , F

R
2 < 1.0 and λ1, λ2 > 1.0.

The arterial wall is assumed to be a mixture of constituents ‘i’ such as elastin (i = e),

multiple collagen families (i = 1, ..., k, ..., 4), and smooth muscle (i = m). The strain energy

of the mixture per unit reference area is w =
∑

iw
i = we +

∑
k w

k + wm + wm
act and the

membrane stress is given as (Baek et al., 2006; Humphrey, 2002)

T =
2

J
F
∂w

∂C
FT , (4.2)

where J is a determinant of the 2-D deformation gradient F and C = FTF. The stretches of

the smooth muscle (SM) and collagen fiber ‘k’ from their natural (stress-free) configuration

to the current configuration are given as

λkn = Gc
hλ

k (4.3)

λmn = Gm
h λ1, (4.4)
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where Gm
h and Gc

h are homeostatic stretches of SM and collagen. We define a new tensor

G̃e = diag

{
Ge
1, G

e
2,

1

Ge
1G

e
2

}
, (4.5)

which represents a mapping from the natural configuration of elastin to the reference con-

figuration such that,

Fe
n = FG̃e, Ce

n = Fe
n
TFe

n = [G̃e]TCG̃e. (4.6)

Strain energies of the constituents i per unit reference area, wi, are given as

we(Ce
n(t)) = Me c1

2

(
Ce
n[11] + Ce

n[22] +
1

Ce
n[11]

Ce
n[22]

− Ce
n[12]

2
− 3
)

(4.7)

wk(λkn) = Mk c2
4c3

{
exp
[
c3
(
(λkn)

2 − 1
)2]− 1

}
(4.8)

wm(λmn ) = Mm c4
4c5

{
exp
[
c5
(
(λmn )2 − 1

)2]− 1
}

(4.9)

wm
act = MmS

ρ

{
λ1 +

1

3

(λM − λ1)
3

(λM − λo)2

}
, (4.10)

where M i is the mass per unit reference area for the constituent i. Ce
n[11]

, Ce
n[22]

and Ce
n[12]

are components of Ce
n. λM and λo are stretches at which the SM contraction is maximum

and at which active force generation ceases, S is the stress at the maximum contraction of

SM.

Components of FR are obtained by considering stress as a function of deformation gra-

dient, i.e. T = T̂(F), and assuming that membrane stresses vanish at

F = FR such that

T̂(FR) = 0. (4.11)

Material parameters (summarized in Table 4.1) are determined in three different ways. The

first set of parameters, such as density (ρ), mass fraction of constituents (νi) and (λ0, λM ,

S), are prescribed from the literature (He and Roach, 1994; Holzapfel et al., 2002; Menashi
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Table 4.1: Summary of material parameters used in the optimization.

Elastin: c1 = 50.6 Nm/kg, Ge
1 = 1.22, Ge

2 = 1.23,

νe = 0.2.

Collagen: c2 = 3195 Nm/kg, c
(comp)
2 = 0.1c2, c3 = 25.0,

Gc
h = 1.034, σch = 143 kPa,

νk = [0.06, 0.06, 0.24, 0.24],

αk = [0◦, 90◦, 45◦, 135◦].

Smooth muscle: c4 = 16.45 Nm/kg, c5 = 14.14, Gm
h = 1.165,

νm = 0.2, σmh = 81 kPa, λM = 1.4,

λ0 = 0.8, S = 54 kPa.

Homeostatic cyclic stretch: λ
cyc
h = 1.02.

Density: ρ = 1050 kg/m3.

et al., 1987). The second set of parameters (c1, c2, c3, c4, c5, G
e
1, G

e
2, G

c
h, G

m
h ) are estimated

via the weighted nonlinear least squares optimization, proposed in chapter 2 using the biaxial

mechanical test data of healthy human aorta (Vande Geest et al., 2004, 2006). Figure 4.2

shows the biaxial data as well as the fitted values using the estimated parameters.

Although the existence of mechanical homeostasis in vasculature is generally accepted,

the theoretical formulation that describes vascular adaptations in response to diverse stimuli

is not completely established yet. Nevertheless, we utilize scalar measures of stress as the

intramural stress of constituents (Baek et al., 2006; Figueroa et al., 2009)

σk = ||(
∑
k

νkσk)nk||, σm = ||σmnm||, (4.12)

where σk and σm are the stresses of the kth collagen fiber and SM, respectively, and nk

and nm are unit vectors in the directions of the kth collagen fiber and SM. Then, using the

estimated parameters and assuming an idealized geometry, the target homeostatic values

(σmh , σch) are calculated.
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Figure 4.2: Stress versus stretch plots in both directions. Biaxial test data (empty mark-
ers) and fitted values (filled markers) using the estimated parameters. Different markers
correspond to a different ratios of tension applied simultaneously in both directions.

4.2.2 Inverse optimization problem statement

As the next step, the distributions of wall thickness and material anisotropy are estimated

using an inverse optimization method where both the deviation of geometry from the in vivo

configuration and the deviation of stress from the homeostatic value are minimized. Then,
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the objective function to minimize is,

W =

∫
Ω ||x(h, αk)−Ximage||2dA∫

Ω ||Ximage − X̄||2dA
+ ξ

∑
i

νi
∫
Ω(σ

i(h, αk)− σih)
2dA∫

Ω(σ
i
h)

2dA
(4.13)

where i = m, 1, ..., k and x is the FE solution for the nodal position vector (see chapter 6

for details of the image-based FE model of the pressurized artery). Ximage constitutes the

target geometry and is the nodal position vector of the FE mesh that is generated based on

the 3-D models of arteries. The geometric model of the artery is reconstructed from MRI

images of a normal aorta and the computational mesh is generated using triangular elements

(see Sheidaei et al. (2011)). X̄ is the geometric center of the artery and is used as a fixed

reference point for normalizing the first term. σi is a scalar measure of stress in the direction

of the constituent i obtained from the FE analysis. σih and νi are the homeostatic stress

and mass fraction assumed for the constituent i. (h, αk) are the unknown wall thickness

and anisotropy, i.e. orientation of the collagen fiber k. The deviation of stress for each

constituent is scaled by its mass fraction and integrated over the computational domain.

Therefore, constituents such as fiber families in helical directions will be given more weight

in minimizing the objective function (see Table 4.1). The objective function is composed

of two additive terms and a weight parameter ξ; first term is related to the deviation of

geometry (named “GD” hereafter) and the second term is related to the deviation of stress

(named “SD” hereafter). Since we are interested in minimizing both terms, each term

is normalized and a weight parameter ξ (or a Lagrange multiplier) is used to adjust the

minimization weight for each normalized term.

However, solving this optimization problem for the thickness and anisotropy at all nodal

points of the FE model is not practical, even if possible. Thickness and anisotropy distri-

butions can be approximated with a smaller (I) number of variables with associated base
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functions, independent from the FE mesh as

h(x, y, z) =
I∑

j=1

{βhj ϕj(x, y, z)} (x, y, z) ∈ Ω

αk(x, y, z) =
I∑

j=1

{βkj ψj(x, y, z)} (x, y, z) ∈ Ω, (4.14)

where (βhj , β
k
j ) are variables for thickness and anisotropy associated with the approximation

point j. ϕj(x, y, z) and ψj(x, y, z) are basis/approximation functions defined on the compu-

tational domain Ω. The objective function then can be rewritten with respect to the new

design variables as

W =

∫
Ω ||x(βhj , β

k
j )−Ximage||2dA∫

Ω ||Ximage − X̄||2dA
+ ξ

∑
i

νi
∫
Ω(σ

i(βhj , β
k
j )− σih)

2dA∫
Ω(σ

i
h)

2dA
. (4.15)

To facilitate the approximation in (4.14), the computational domain (the mid-surface of

the vessel wall) can be parameterized by two spatial variables (s, θ) where s and θ represent,

respectively, the longitudinal distance and azimuthal position on the arterial wall (explained

in next section). Then, equation (4.14) can be rewritten as

h(s, θ) =
I∑

j=1

{βhj ϕj(s, θ)}

αk(s, θ) =
I∑

j=1

{βkj ψj(s, θ)}. (4.16)

Towards solving the optimization problem (equation 4.15), we use initial values of (βhj ,

βkj ) that approximate a homogenous field of thickness and anisotropy (h0, α
k
0). That is, the
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initial values are obtained by solving the following sets of least-squares optimizations

Sh =

Ne∑
e=1

 I∑
j=1

βhj ϕj(se, θe)− h0

2

(4.17)

Sk =

Ne∑
e=1

 I∑
j=1

βkj ψj(se, θe)− αk0

2

, (4.18)

where Ne and I are the number of elements and approximation points, respectively.

4.2.3 Parameterizing the aortic wall surface with two variables

A point on the vessel wall can be parameterized by two variables, one that characterizes its

longitudinal position (s) and the other which characterizes its orientation (θ) with respect

to a reference direction. To do so, we need to approximate the centerline of the vessel

considering some of the points on the centerline as nodal points (Figure 4.3) and

X(s) =
∑
i

Φi(s)Xi, (4.19)

where Xi and Φi are the position vector and interpolation function corresponding to the

nodal point i on the centerline. X is the position vector of any point on the centerline as a

function of s. A fourth order interpolation function is assumed with the general form of

Φ(s) = c(s− a)2(s− b)2. (4.20)
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The interpolation functions associated with nodal points j = 1, ..., J can be defined as

Φ1(s) =
(s− L3)

2(s+ L3)
2

(L1 − L3)2(L1 + L3)2
L1 ≤ s < L3 (4.21)

Φ2(s) =
(s− L1)

2(s− L4)
2

(L2 − L1)2(L2 − L4)2
L1 ≤ s < L4 (4.22)

Φk(s) =
(s− Lk−2)

2(s− Lk+2)
2

(Lk − Lk−2)
2(Lk − Lk+2)

2
Lk−2 ≤ s < Lk+2 (4.23)

ΦJ−1(s) =
(s− LJ−3)

2(s− LJ )
2

(LJ−1 − LJ−3)
2(LJ−1 − LJ )

2
LJ−3 ≤ s < LJ (4.24)

ΦJ (s) =
(s− LJ−2)

2(s+ LJ−2)
2

(LJ − LJ−2)
2(LJ + LJ−2)

2
LJ−2 ≤ s < LJ (4.25)

where k = 3, ..., J − 2 and Lj is the value of s at the nodal point j (Figure 4.3). These

interpolation functions, however, do not satisfy the condition
∑J

j=1Φ
j(s) = 1. In order to

provide this condition, we need to normalize interpolation functions as

Φ̂i(s) =
Φi(s)∑J
j=1Φ

j(s)
. (4.26)

Now, using the interpolation in (4.19) we can find the parameter s associated with any point

on the artery, e.g. center point of a triangular element on the surface (Xc). That is, for a

given point on the aortic wall, the variable s is calculated by minimizing the distance from

the point on the wall to the centerline (||X(s)−Xc||). The function to be minimized is given

as

d(s) =
(∑

i

Φ̂i(s)xi − xc

)2
+
(∑

i

Φ̂i(s)yi − yc

)2
+
(∑

i

Φ̂i(s)zi − zc

)2
. (4.27)
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Minimizing d(s) with respect to s results in

∂d(s)

∂s
= 2

(∑
i

Φ̂i(s)xi − xc

)∑
i

Φ̂i
,sx

i

+ 2
(∑

i

Φ̂i(s)yi − yc

)∑
i

Φ̂i
,sy

i

+ 2
(∑

i

Φ̂i(s)zi − zc

)∑
i

Φ̂i
,sz

i = 0. (4.28)

Numerical solution of the nonlinear equation (4.28) is obtained using Newton-Raphson

method which also requires the second derivative of the function. The iterative scheme

for the Newton-Raphson is formulated as

sn+1 = sn −
∂d(s)
∂s |s=sn

∂2d(s)

∂s2
|s=sn

. (4.29)

This is repeated for any other point of interest on the wall in order to find the corresponding

value of s. If s0 is the solution associated with a center point of an element (Figure 4.3), the

vector v connecting the point on the centerline at s = s0 (X(s = s0)) and the center point

of the element is given as

v = Xc −
∑
i

Φ̂i(s0)X
i. (4.30)

The normalized vector n tangent to the centerline at s = s0 is then given by

n =

∂X(s)
∂s |s=s0

||∂X(s)
∂s |s=s0||

where
∂X(s)

∂s
=
∑
i

Φ̂i
,sX

i. (4.31)

The vector n is also a normal vector to the plan of cross section at s = s0. Projection of an

arbitrary vector a on the plan of cross section (Figure 4.3) can be assumed as the reference

direction

ap = a− (a · n)n. (4.32)
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The angle θ between ap and v characterizes the orientation associated with the current point

on the wall (i.e., Xc). Figure 4.4 illustrates the 3-D geometry of the model of aorta mapped

in 2-D plane of longitudinal (s) and azimuthal (θ) variables.

4.2.4 Global approximation approach

For approximations in equations (4.14), products of Legendre polynomials and periodic func-

tions, respectively, for longitudinal and azimuthal directions are used

h(s, θ) =

m=M−1,n=N−1∑
m,n=0

βhmnPm(s)Fn(θ) (4.33)

αk(s, θ) =

m=M−1,n=N−1∑
m,n=0

βkmnPm(s)Fn(θ), (4.34)

where M and N are, respectively, the total number of Legendre polynomials and periodic

functions (i.e. I = M × N). Pm(s) is a univariate Legendre polynomials of order m such

that P0(s) = 1, P1(s) = s and

Pm+1(s) = s

(
2m+ 1

m+ 1

)
Pm(s)−

(
m

m+ 1

)
Pm−1(s). (4.35)

Also, we consider F0(θ) = 1 and

F2n−1 = sin(nθ)

F2n = cos(nθ). (4.36)

4.2.5 Optimization algorithm

The Nelder-Mead Simplex method is employed for the optimization (Lagarias et al., 1998;

Nelder and Mead, 1965). As a direct search method, it does not require gradients of the

function, which is desirable in applications where the calculation of gradients of the function
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Figure 4.3: Geometry of an arbitrary model of the arterial wall with its centerline; Approx-
imation/nodal points with their associated length s = Lj (j = 1, ..., J). a is an arbitrary
vector used in order to find the orientation θ associated with a point (Xc) on the wall
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Figure 4.4: Geometry of the vessel wall parameterized with longitudinal and azimuthal (s
and θ) variables. Dots represent center points of all elements on the wall
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is computationally expensive. Another feature of the Nelder-Mead Simplex method is the

fast reduction in the objective function after the first few iterations (Wright, 1996). See

Appendix B for details of the algorithm used. A stopping criterion is chosen based on both

the relative size of the simplex and function values at vertices of the simplex as (Torczon,

1989):

1

∆
max
1≤j≤I

||vkj − vk0 || < δ (4.37)

W (vkI )−W (vk0 ) < ϵ , (4.38)

where vkj is the jth vertex of the simplex and a vector comprised of all optimization variables

at kth iteration. vk0 and vkI are the “best” and “worst” vertices of the simplex at kth iteration

and ∆ = max(1, ||vk0 ||).

4.3 RESULTS

As a parametric study, the effect of variation of the weight parameter ξ is first investigated.

Figure 4.5 shows the GD and SD corresponding to minimum values of the objective func-

tion obtained with different values of ξ and using two different combinations of Legendre

polynomials and periodic functions (M = 3, N = 3) and (M = 6, N = 5).

In both cases small values of ξ puts more weight on GD to minimize the objective function

and increasing ξ shifts the weight towards SD. The tradeoff choice according to both cases

appears to be ξ = 0.01 such that both parts can be minimized at the same time (Figure 4.5).

4.3.1 Finding the optimal distributions of thickness and anisotropy

In general higher number of approximating polynomials increases the flexibility for better

approximation but at the cost higher computational cost. Then we choose to use six Legendre

polynomials (M = 6) and 3 periodic functions (N = 3) for the approximation assuming
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Figure 4.6: Changes in the objective function and its associated compartments versus op-
timization iterations using 36 variables (18 variables for approximating thickness and 18
variables for approximating fiber orientation) considering ξ = 0.01
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Figure 4.7: Deviation of the geometry from the in vivo geometry without (a) and with (b)
optimized distributions of thickness and anisotropy (||x−Ximage||)

ξ = 0.01. This constitutes 18 variables (I = 18) for thickness and anisotropy, including a

total of 36 variables into the optimization process. Note that fibers oriented in circumferential

and axial directions are considered fixed and only helical fibers orientations are assumed to

be changing (α3 = α4). Least-squares estimation of variables associated with a homogenous

field of thickness and anisotropy (e.g., 0.8 mm for thickness and 50.0◦ for anisotropy) yielded

estimates such as βh00 = 0.8, βk00 = 50.0 and 0 for all other parameters. Figure 4.6 illustrates

the convergence history of the objective function as well as its compartments, GD and SD,

until the stopping criterion is met. A fast decrease in the objective function during the first

100 iterations is noticeable, which is accompanied by sharp decreases in GD and SD. The

appearance of the plateau regions is associated with the iterations during which searching

the space has not led to a new minimum.

For the sake of comparison, the distributions of thickness are prescribed using the same

method employed by Zeinali-Davarani et al. (2011) and the results were compared with

the current method. Figure 6.4 contrasts the deviation from the in vivo/image geometry

(||x − Ximage||) using both methods. A significant decrease in the maximum deviation

(about 70%) is achieved using the optimization approach.

The normalized deviation of stress from the homeostatic value ((σk − σkh)/σ
k
h) in the
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Figure 4.8: Deviation of the stress ((σk − σkh)/σ
k
h) from the target homeostatic stress in

a helical fiber (k = 3) without (a) and with (b) optimized distributions of thickness and
anisotropy

direction of helical fiber families (k = 3, 4) using both methods are shown in Figures 4.8 and

4.9. For fiber families of both helical directions, the maximum deviations of stress from the

homeostatic value are significantly decreased by 70% using the optimization method.

Figure 4.10 depicts the distributions of wall thickness and anisotropy obtained by the

optimization with ξ = 0.01,M = 6, and N = 3. The resulting spatial variation of anisotropy

is not large although thickness considerably varied especially on the convex and concave

regions with higher values on the concave side and lower values on the convex side.

4.4 DISCUSSION

The existence of the vascular mechanical homeostasis and the subsequent adaptation in

response to mechanical stimuli have been fundamental assumptions in mathematical models

of vascular G&R (Baek et al., 2006, 2007b; Figueroa et al., 2009; Kroon and Holzapfel, 2009b;

Watton and Hill, 2009). There has been a growing interest in using such models on a patient-

specific basis (Humphrey and Taylor, 2008; Taylor and Humphrey, 2009). Towards that

goal, image-based arterial geometries have been incorporated into stress-mediated vascular
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Figure 4.9: Deviation of the stress ((σk − σkh)/σ
k
h) from the target homeostatic stress in

a helical fiber (k = 4) without (a) and with (b) optimized distributions of thickness and
anisotropy
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Figure 4.10: Distributions of thickness (a) and anisotropy (b) obtained from the optimization
results using ξ = 0.01, M = 6, and N = 3
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adaptation models (Sheidaei et al., 2011; Zeinali-Davarani et al., 2011). Zeinali-Davarani

et al. (2011) utilized the G&R model itself as an optimization tool to drive the mechanical

state towards the target homeostatic value before the main G&R simulations begun. This

approach, however, alters the in vivo configuration even though it provides a desirable stress

distribution. Rather, the present study provides an optimization technique to minimize both

deviations from the homeostatic stress and the in vivo configuration simultaneously.

Numerous methods have been presented in order to compensate for the lack of information

about stress-free or load-free configurations in patient-specific modeling. Raghavan et al.

(2006) used an optimization technique as an approximate method to find the zero-pressure

geometry assuming consistency of displacement field patterns. Using an inverse elastostatic

method, Lu et al. (2007) were able to determine load-free configuration of an AAA as well as

accurate wall tension in a cerebral aneurysm (Lu et al., 2008). Recently, Zhou and Lu (2009)

used the same inverse technique to estimate the open configuration of vessels. In a different

approach, Gee et al. (2009, 2010) showed the utility of the “modified updated Lagrangian”

method in finding meaningful stress analysis results for complex shapes of aneurysms.

However, all of those studies assumed homogenous distributions of the wall thickness and

anisotropy whereas variation of these parameters can have a great impact on the stress/strain

distribution. Instead of finding the load-free configuration, the presented approach focused

on the in vivo configuration and its associated material and geometric parameters of arter-

ies using an inverse optimization method such that the homeostatic condition was restored

while the deviation of geometry from the original in vivo configuration was minimized. In

a somewhat similar approach, Kroon and Holzapfel (2008a) estimated the distribution of

elastic properties of an inhomogeneous and anisotropic membrane using an inverse optimiza-

tion method and applied the technique to find material properties of the cerebral aneurysm

(Kroon and Holzapfel, 2008b). They used an element partition method for the robust estima-

tion of properties over the domain. That is, they divided the domain into large sub-domains

and performed the optimization for each sub-domain with homogeneous properties. In the
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next levels of partitioning, they refined each sub-domain while repeating the estimation

process with updated initial values. Alternatively, in the current method, a global approxi-

mation scheme is used in order to reduce the number of unknown variables of optimization

and to facilitate estimation of the inhomogeneous properties in a global fashion. Increas-

ing the number of approximation variable theoretically improves the objective function even

more, but at the cost of more computation time. Deviation of stress from the homeostatic

value in both helical directions was dropped by more than 70%, whereas there was no sig-

nificant reduction in stress of axial and circumferential fibers (not shown), mainly because

of much lower mass fractions assumed in those directions (See equation 4.15). Results of

the AAA simulations using the optimal material parameters, wall thickness and anisotropy

were generally comparable with Zeinali-Davarani et al. (2011), but more advantageous as

the current method reduced the deviation of geometry from the in vivo configuration before

the G&R process initiated.

Direct validation of the optimal distributions of the wall thickness and fiber orientations

requires more experimental data using animal or human arteries. Nevertheless, the proposed

optimization technique provides a useful initialization step, indispensable to patient-specific

G&R simulations.

In closing, in this chapter a scalar measure of stress was used as a mechanical state

governing the mechanosensitive vascular adaptation (Baek et al., 2006). However, it is

still controversial what quantity is responsible for the mechanical homeostatic state (stress,

strain, material stiffness, or their combination?). Next chapter considers the proposed inverse

method to discriminate among different hypotheses of homeostasis.
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Chapter 5

TESTING DIFFERENT HYPOTHESES OF VASCULAR

HOMEOSTASIS USING IMAGE-BASED GEOMETRIC

MODELS AND AN INVERSE OPTIMIZATION METHOD

5.1 Introduction

In their seminal paper, Humphrey and Rajagopal (2002) introduced a new theoretical frame-

work, called a constrained mixture model for modeling growth and remodeling (G&R) of soft

tissues. They presented a modeling framework that utilizes ideas from classical mixture and

homogenization theories while avoiding the technical difficulties associated with mixture the-

ory. This allows the model to capture the complexity that occurs during soft tissue G&R such

as deposition of multiple structural components (e.g., fibrous collagen, elastin, and smooth

muscle cells) with different natural configurations and turnover rates, whereas the governing

equation can be solved as if the soft tissue were made of a single constituent. Often not men-

tioned, but another important contribution of their paper is the philosophy and guidance in

developing a model of G&R of biological tissues, summarized in six remarks in the paper.

Based on their pioneering work, during the past decade, many constrained mixture models

have been developed in the studies of vascular mechanics (Hansen et al., 2009; Gleason and

Humphrey, 2004a; Valent́ın et al., 2009a; Wan et al., 2010), progression of cardiovascular

diseases (Baek et al., 2006, 2007b; Figueroa et al., 2009; Gleason and Humphrey, 2004b;
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Sheidaei et al., 2011) and mechanosensitive cellular behavior (Humphrey et al., 2008; Hsu

et al., 2009).

While most studies after Humphrey and Rajagopal (2002) have focused on modeling the

evolution of biological or engineered tissues after the alteration of physiological and patholog-

ical conditions, in this paper we study one of the most fundamental, but often overshadowed,

assumption that soft tissue has an optimal structure during the maintenance or normal G&R

period. Humphrey and Rajagopal (2002) stated in Remark 2.3 that “Normal growth and

remodeling tends to be a stable dynamical process, one that seeks to optimize structure and

function with respect to yet unidentified parameters.” They further stated that “Although

one ultimately seeks parameters that govern the underlying mechanisms of mechanotrans-

duction, it will be sufficient for certain modeling purposes to identify parameters that simply

correlate well with the overall process.”

The question that has long been asked and is yet to be answered in biomechanics re-

search is what are the parameters that correlate well with the G&R process? Are they

stress, strain, or strain rate that cells respond to? Humphrey (2001) claimed that the ques-

tion may be ill-posed. Stress and strain are merely convenient mathematical concepts and

are not unique observable or physical quantities. He suggested, however, that “the concepts

of stress and strain will continue to be convenient metrics in both empirical correlations

and phenomenological constitutive relations that seek to relate certain cellular responses to

particular stimuli.” A practical question still remains as to what are the constitutive rela-

tions for such mechanical quantities, that best describe the maintenance of vascular tissues.

During the maintenance, the turnover of cells and extracellular matrix is balanced and un-

changed; hence, there is no net change in mass, structure, or the properties. Therefore, it is

plausible that we may find the right constitutive relation or at least discriminate between dif-

ferent constitutive relations by numerically investigating the consequence of the constitutive

relation in tissue structures and comparing the results with experimental studies. Stress and

strain are interrelated (Humphrey, 2001; Kassab, 2008), and using an idealized symmetric
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model, such as a straight tube, it may be difficult to distinguish the difference in optimal

structures obtained from different hypotheses.

In this chapter, it is proposed that in medical image-based models different hypotheses

for a mechanical homeostatic state may lead to distinct consequences with regard to the

distributions of wall thickness and anisotropy, giving us the opportunity to better understand

the governing rules of tissue adaptation. Toward this end, an inverse optimization method,

developed in the previous chapter is employed to estimate material and structural parameters

of image-based models of arteries corresponding to a given constitutive relation, the results

were compared with regard to multiple hypotheses of a homeostatic condition.

5.2 Hypotheses on vascular mechanical homeostasis

Vascular tissue tends to adapt in response to changes in its mechanical environment and a

variety of evidence offers diverse hypotheses on this homeostatic tendency. In response to a

sustained pressure increase, the thickness of the blood vessel increases, implying a tendency

toward uniformity of circumferential stress (Matsumoto and Hayashi, 1994; Wolinsky, 1971;

Xu et al., 2000). Blood vessel diameter increases in response to an increase in blood flow,

thereby normalizing the wall shear stress (Kamiya and Togawa, 1980; Langille et al., 1989).

Some studies underscore the importance of strain mechanosensitivity along the coronary

arterial tree (Guo and Kassab, 2004; Lu et al., 2001), whereas others indicate strain rate as

an important component of vascular homeostasis (McKnight and Frangos, 2003). Meanwhile,

the vascular system is under pulsatile forces and several observations emphasize the role of

pulsatility in vascular homeostasis (Cummins et al., 2007; Leung et al., 1976). In an in vivo

study, Eberth et al. (2009) observed a strong correlation between morphology and pulsatility

of pressure and flow rather than mean values, which is consistent with a study by Boutouyrie

et al. (1999).

Stress and strain are both tensorial quantities and previous studies have sought simpler
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scalar measures of mechanical stimuli for modeling vascular adaptation. For example, Baek

et al. (2006) utilized the magnitude of traction on the plane normal to the fiber direction as

a scalar measure of the fiber stress. In another stress-driven model, Hariton et al. (2007a)

and Driessen et al. (2008) used the normal component of traction on the plane normal to

the fiber direction as the remodeling stimulus. These models assumed that the mechanical

stimuli that vascular cells sense correlate with tension or shear on the fibrous tissue that

they reside on. The stretch of collagen fibers was also used by Watton and Hill (2009) as

the mechanical quantity governing the G&R. Nevertheless, these studies assumed that fibers

have the same mechanical properties and, hence, the uniform stretch of fibers means the

uniform tension.

In a more phenomenological study, Guo and Kassab (2004) examined the distributions

of circumferential stress and strain along the porcine aorta and the coronary arterial tree.

They found that the circumferential stretch ratio (from the zero-stress state to the loaded

state) is relatively uniform compared to the stress and suggested that the vascular system

closely regulates the degree of deformation. It is difficult, however, to explain how the

cells in vascular tissues can regulate the deformation given that cells do not experience

the zero-stress state of the blood vessel in vivo. Lillie and Gosline (2007) suggested that

the strain of elastin during the cardiac cycle is nearly constant along the porcine thoracic

aorta. Our recent study with the porcine thoracic aorta also showed that the cyclic strain

during the cardiac cycle is relatively uniform in the circumferential direction compared to

the circumferential component of stress (Kim and Baek, 2011).

In this chapter, the following three scalar measures are chosen to be associated with the

homeostatic state:

• Case 1: σk = ||σkn||

• Case 2: σk = n · σkn

• Case 3: λcyc = λ
sys
1 /λdias1 ,
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where σk and n are the partial stress and the unit vector representing the alignment of

the kth constituent. λ
sys
1 and λdias1 are circumferential stretches at systolic and diastolic

pressures. The distributions of thickness and fiber alignment are obtained by an inverse

optimization using the above three cases.

5.3 Constitutive relations and an inverse optimization

method

First, constitutive relations and material parameters of a healthy human artery are cho-

sen based on chapter 4. Then, the distributions of wall thickness and fiber alignment are

estimated using the inverse optimization integrated with the finite element model of two

different inflated blood vessels.

For Cases 1 and 2, the objective function is similar to chapter 4 as

W =

∫
Ω ||x(h, αk)−Ximage||2dA∫

Ω ||Ximage − X̄||2dA
+ ξ

∑
i

νi
∫
Ω(σ

i(h, αk)− σih)
2dA∫

Ω(σ
i
h)

2dA
, (5.1)

and the corresponding objective function to minimize in Case 3 is defined as

W =

∫
Ω ||x(h, αk)−Ximage||2dA∫

Ω ||Ximage − X̄||2dA
+ ξ

∫
Ω(λ

cyc(h, αk)− λ
cyc
h )2dA∫

Ω(λ
cyc
h )2dA

, (5.2)

where λcyc is the cyclic stretch in the circumferential direction. Thickness and anisotropy

distributions are then approximated, using the same technique in chapter 4

h(s, θ) =
I∑

j=1

{βhj ϕj(s, θ)}, αk(s, θ) =
I∑

j=1

{βkj ψj(s, θ)}, (5.3)
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Figure 5.1: Change in the objective function and its associated compartments versus opti-
mization iterations in Cases 1 and 2 using 60 variables (M = 6;N = 5;ξ = 0.01).

5.4 Results

Two 3-D geometric models, one from a healthy aorta and the other from a healthy internal

iliac artery, are used as computational domains. For simplicity, fibers oriented in circumfer-

ential and axial directions are considered fixed and only helical fiber orientations (α3, α4)

are considered as variables of anisotropy such that α3 = −α4.

Figure 5.1 illustrates the convergence history of the objective function and its compart-

ments, GD and SD, corresponding to Cases 1 and 2 for the aorta model. A sharp decrease

in GD and a similar reduction in SD are noticed for both stress hypotheses when the conver-

gence is achieved. Note that the small plateau regions are associated with the search periods

when a new minimum has not been reached yet. Figure 5.2 contrasts the corresponding op-
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timized distributions of wall thickness and anisotropy for the aorta model in Cases 1 and 2.

In both cases, the concave side is found to be relatively thicker than the convex side. Helical

fibers on the convex side tend to orient themselves more in the circumferential direction as

opposed to the concave side, even though the overall anisotropy variation is not as large

as the thickness variation. The similar convergence level for both hypotheses (Figure 5.1)

follows from the similar inhomogeneous distributions of thickness and anisotropy for both

cases. In spite of a similar trend of distribution, a larger circumferential anisotropy variation

is noticeable in Case 2 (Figure 5.2d).

An analogous comparison between Cases 1 and 2 has been made for the internal iliac

artery model (Figure 5.3). In both cases, relatively similar distributions of wall thickness

are observed. However, fiber orientations are distributed with more variability between

the two cases than for the aorta model. For the iliac artery model in Case 1, Figure 5.4

illustrates the geometric deviation from the in vivo configuration (||x−Ximage||) as well as

the normalized deviation of stress in a helical fiber from the homeostatic value ((σk−σkh)/σ
k
h)

when (M = 5;N = 3) (a, c) and (M = 6;N = 5) (b, d). As expected, the geometric deviation

is minimized (< 0.3 mm) in both conditions (Figure 5.4a,b).

The maximum deviation of fiber stress from the homeostatic value still seems to be

large (< 80%) although on average the deviation has been minimized (Figure 5.4c,d). Some

adaptive provisions in the optimization may be useful to reduce the localized high values

of deviations in future improvements of the proposed technique. Apparently, increasing the

number of approximation points (from I = 15 to I = 30) in the optimization results in

only a minor improvement in reducing the average deviations, while the maximum devia-

tions remains the same. That is, a further increase in approximation points may not be

computationally justifiable.

With regard to Case 3, Figure 5.5 shows the geometric deviation from the original in

vivo configuration (a), the normalized deviation of the circumferential cyclic stretch (b) as

well as the optimized distributions of wall thickness (c) and anisotropy (d) for the aorta
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Figure 5.2: Optimized distributions of thickness (a, b) and anisotropy (c, d) for the aorta
model obtained in Cases 1 and 2 (M = 6;N = 5;ξ = 0.01). Black arrows identify the
direction of one set of corresponding collagen fibers.
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Figure 5.3: Optimized distributions of thickness (a, b) and anisotropy (c, d) for the internal
iliac artery model obtained in Cases 1 and 2 (M = 5;N = 3;ξ = 0.1).
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Figure 5.4: Deviation of the geometry from the in vivo configuration (||x − Ximage||) and
deviation of stress in a helical fiber direction from the homeostatic value ((σk − σkh)/σ

k
h)

when (M = 5;N = 3) (a, c) and when (M = 6, N = 5) (b, d) for the iliac artery model.
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model. As required by the objective function, the geometric deviation from the image is

minimized (to a maximum value of 0.05 mm). Cyclic stretch is also homogenized toward

the target homeostatic value (i.e., 1.02) on most parts with the largest deviation on areas

close to the fixed boundaries (maximum normalized deviation of 1.5%). When compared

to Cases 1 and 2 (Figure 5.2), lower levels of thickness are predicted by the cyclic stretch

hypothesis (Figure 5.5c). More circumferential and less longitudinal variations of anisotropy

are noticeable in Case 3 (Figure 5.5), whereas anisotropy is more locally distributed in Cases

1 and 2. Convergence of the optimization is an issue when the cyclic stretch hypothesis is

applied to a more complex geometry such as the iliac artery model (not shown).

5.5 Discussion

In this chapter, a numerical optimization method was utilized to find the optimal distribu-

tions of structural parameters of healthy arteries based on different homeostatic assumptions

(i.e., uniform stress and cyclic stretch). It was found that for medical image-based mod-

els different homeostatic assumptions lead to different inhomogeneous distributions of wall

thickness and anisotropy. The potential application of the proposed optimization method to

arteries with higher levels of geometric complexity was also illustrated by using the internal

iliac artery model.

Different assumptions for stress homeostasis (Cases 1 and 2) led to homologous overall

distributions of thickness, but differing distributions of anisotropy for both arteries (Figures

5.2 and 5.3). Interestingly, the arterial wall on the concave regions was found to be thicker

than on the convex regions and the variation of anisotropy was small. Possible correlations

between the wall thickness and anisotropy variation and other geometric parameters such as

the surface curvature and tortuosity of the vessel wall can be examined in an independent

study by systemic application of the technique using multiple image-based arterial geome-

tries. Case 3 (stretch-based homeostasis) produced noticeably contrasting results with Cases
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Figure 5.5: Deviation of the geometry (a), cyclic stretch in circumferential direction (λc)(b)
and corresponding distributions of thickness (c) and anisotropy (d) for the aorta model
obtained in Case 3 (M = 6;N = 3;ξ = 0.01). Black arrows identify the direction of one set
of corresponding collagen fibers.
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1 and 2. Indeed, in Cases 3, the wall thickness was predicted to be in general smaller than in

Cases 1 and 2 (stress-based homeostasis), while a less longitudinal anisotropy variation was

observed (Figure 5.5). The assumption of a uniform cyclic stretch resulted in a remarkable

improvement for both terms of the objective function (Figure 5.5a,b), thereby revealing a

stronger potential for the cyclic stretch homeostatic assumption, which remains to be further

validated with experimental data.

Meanwhile, here, a constant proportion of the constituents as well as a uniform distri-

bution of the material parameters were assumed and the more attention was given to the

variation of structural parameters such as the wall thickness and fiber orientation. Some

studies, however, indicated non-uniform deformations of the arterial wall during the cardiac

cycle (Draney et al., 2004) and observed a circumferential variation of material properties

of the aortic wall. In a recent ex vivo inflation test of aorta Kim and Baek (2011) found

that the posterior region of the arterial wall is thinner, but stiffer than the anterior region.

This may be due to the influence of surrounding tissue as well as the local variation in the

content of each constituent. Our study excluded the effect of anatomical variation of bound-

ary condition due to the surrounding tissue which may have influenced our results. This

effect can be more pronounced when a complex in vivo geometry such as the internal iliac

artery (Figure 5.3) is involved. Also, the fixed boundary conditions considered at both ends

are inconsistent with the cyclic stretch homeostatic assumption, thereby resulting in large

deviations at both ends (Figure 5.5b).

Based on the preliminary results, the error or deviation of geometry relative to the image

geometry is less sensitive to the fiber orientations than the wall thickness. Removing the

condition α3 = −α4 (i.e., adding one more set of optimization variables) did not result in

more variability in optimal fiber orientations, whereas it doubled the computational cost.

Considering variable orientations for fibers in the axial and circumferential directions greatly

adds up to the numerical complexity of the optimization.

It is worth mentioning that the mechanical homeostasis of the normal tissue maintenance

69



may also change under various additional conditions, such as aging and vascular diseases.

The application of the current technique to diseased arteries will require more understanding

of tissue growth and remodeling under pathological conditions. Nevertheless, the current

method showed a distinguishing capability in terms of the optimal structure based on various

forms of constitutive relations and homeostatic assumptions. There is a clear need for more

experimental data in order to validate and exploit the current technique in understanding the

multifactorial process of vascular homeostasis and possible implementation in patient-specific

models of vascular diseases.
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Chapter 6

A FINITE ELEMENT MODEL OF STRESS-MEDIATED

VASCULAR ADAPTATION: APPLICATION TO ABDOMINAL

AORTIC ANEURYSMS

6.1 Introduction

FEM-based vascular G&R simulations typically utilize microstructural information of struc-

tural components (collagen, elastin, and smooth muscle) to define the mechanical state at

a given time (either stress or strain), which is iteratively fed back for calculating the evo-

lution of microstructural properties of the components due to mechano-sensitive cellular

activities. Humphrey and coworkers presented FEM models of stress-mediated G&R using a

constrained mixture approach and modeled intracranial aneurysms (Baek et al., 2005, 2006;

Figueroa et al., 2009). Hariton et al. (2007b) studied the stress-driven collagen fibers re-

modeling in a human carotid bifurcation. On the other hand, strain-mediated models of

vascular adaptation have also been developed and implemented to model cerebral and aortic

aneurysms (Watton et al., 2004; Kroon and Holzapfel, 2007, 2009a; Watton and Hill, 2009).

Driessen et al. (2004, 2008) investigated stretch-mediated remodeling of collagen fibers in

arterial tissues.

Elastin degradation and collagen turnover are main biomechanical processes in enlarge-

ment of aneurysms. Abdominal aortic aneurysms (AAAs) have been associated with a
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decrease in elastin content (Rizzo et al., 1989; He and Roach, 1994; Ghorpade and Bax-

ter, 1996; Powell, 2002) resulting from proteolytic activity. It has also been suggested that

stress(strain)-mediated collagen turnover plays an important role in aneurysm enlargement

and it may differ among individuals depending on physiological and pathological conditions

(Choke et al., 2005). Hence, both elastin degeneration and collagen turnover should be

considered in the computational models of AAAs development. Watton et al. (2004) and

Watton and Hill (2009) were the first to develop a mathematical model of the evolution of

an AAA by accounting for elastin degradation and collagen turnover. In their study, spatial

and temporal alterations of elastin concentration were prescribed and collagen remodeling

acted to maintain the strain in fibers to an equilibrium value.

Previous modeling of evolving vascular diseases have mainly focused on hypothesis-testing

with simple geometries, however, and there is a need to account for patient-specific anatom-

ical and physiological information in FEM simulations of vascular diseases (Taylor and

Humphrey, 2009). In this work, we extend the previous FEM model of stress-mediated

G&R developed by Baek et al. (2005, 2006) to incorporate a non-axisymmetric geometry

obtained from medical images. The computational method is, then, applied to model an

enlarging AAA assuming that an AAA grows by elastin degradation/damage and stress-

mediated collagen turnover governed by the local state of intramural stress. We contrast

stress distributions and expansion rates of the computationally grown AAAs for multiple

kinetic parameters and different spatial distribution of elastin damage.

Toward this end, we employ a theoretical model of arterial G&R based on a constrained

mixture approach and use a nonlinear FEM with linear triangular elements.
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6.2 Theoretical modeling of arterial G&R

6.2.1 Kinematics and important configurations

There are two very different timescales in arterial mechanics: a short-term timescale associ-

ated with pulsatile motion during the cardiac cycle (seconds) and a long-term timescale for

G&R (days to weeks or months). Following Figueroa et al. (2009), t denotes time associated

with the cardiac cycle, during which we assume no G&R, and s denotes time during G&R.

The configuration κt is the current configuration and x(t) denotes the position of a particle

in κt. Here we make a tacit assumption that there exist a stress-free configuration κsf of

the vessel wall which is fixed at a given s. The vector Xsf (s) denotes the position vector

of the particle in the stress-free configuration and Fsf (t) denotes the deformation gradient

corresponding to the mapping from Xsf (s) to x(t). In arterial mechanics, the effect of the

inertial forces in arterial wall motion are negligible (Humphrey and Na, 2002) and we define

the current (in vivo) configuration κs in the G&R timescale as the configuration κt under

the mean pressure during the cardiac cycle.

For modeling arterial G&R, it appears to be advantageous to introduce additional con-

figurations shown in Figure 6.1 (Baek et al., 2006; Figueroa et al., 2009). The configurations

κτ trace the in vivo configurations of body through time τ ∈ [0, s]. Particularly, the configu-

ration κ0 represents a loaded in vivo configuration of a healthy artery. We assume that each

constituent is pre-stretched when deposited into the tissue at time τ and the tensor Gi(τ)

represents the deposition stretch of constituent i. For computational purposes, we introduce

a configuration κR, called the (computational) reference configuration, that is a fixed con-

figuration. Although the configuration κR is fixed in space, we assume that particles can be

created or removed so that there is one-to-one mapping between κR and κs at time s. This

assumption also implies that the total mass in κR changes with time and becomes always

the same as the total mass in κs. The position of a given particle in κR is denoted by X and

the deformation gradient F(s) is given corresponding to the mapping from κR to κs. The
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stress-free configuration κsf evolves in the G&R time scale and P is the tensor representing

its evolution. Because the total mass is preserved in the mapping from κR to κs at time s,

the density with respect to the reference configuration, ρR(s), can be calculated by

ρR(s) = J(s)ρ(s), (6.1)

where J(s) = det [F(s)] and ρ(s) is the mass density in the current configuration at time s.

Let φi(s) denote the mass fraction of constituent i, i.e.,
∑

i φ
i(s) = 1. The mass density of

constituent i with respect to the reference configuration, ρiR(s), is defined as

ρiR(s) = φi(s)ρR(s). (6.2)

The deformation gradient for each constituent i at time t, relative to its natural config-

uration, Fi
n(τ)

(t), is given as (Baek et al., 2006)

Fi
n(τ)(t) = F(t)F−1(τ)Gi(τ), (6.3)

where F−1(τ)Gi(τ) is the tensor representing the pre-stretch of the constituent i that has

been produced at τ with respect to the reference configuration (see Figure 6.1). The defor-

mation gradient Fi
n(τ)

(t) can also be written as

Fi
n(τ)(t) = Fsf (t)P(s)F−1(τ)Gi(τ), (6.4)

where, now, P(s)F−1(τ)Gi(τ) represents the pre-stretch of the constituent i that has been

produced at τ with respect to κsf .
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Figure 6.1: Schematic view of configurations involved in the G&R simulation. A fixed
reference configuration is considered for the computation of deformation associated with
G&R time τ = [0, s]. It is chosen to coincide with the configuration of a healthy in vivo
artery at time τ = 0 (i.e., κ0). We imagine the existence of a stress-free configuration, κsf ,
associated with the current configuration κs.
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6.2.2 Stress response and constitutive assumptions

Consider an arterial wall tissue consisting of multiple structural components, e.g., elastin,

multiple collagen families, and smooth muscle (SM). Following previous convention, we use

the subscript ‘i’ to refer each constituent (e.g., elastin, collagen families, muscle) and the

superscript ‘k’ to the kth family of collagen fibers. Thus, i = e, 1, ..., k, ...,m where e denotes

elastin andm denotes SM. Although we adopt the G&R formulation based on the constrained

mixture approach (Humphrey and Rajagopal, 2002), following its later modification (Baek

et al., 2006; Figueroa et al., 2009) we take the point of view of a biological tissue comprising

multiple constituents as a single continuum, where the mass fraction of each constituent and

its pre-stretch are considered as attributes for a particle of the biological tissue. We assume

further that for a given time s the mechanical behavior of the artery can be characterized

by a hyperelastic model and we solve inflation problems with the principle of virtual work.

Hence, let the Cauchy stress be given by (Truesdell and Noll, 1965),

t(t) = 2ρ(t)Fsf (t)
∂Ψ(Csf (t))

∂Csf (t)
FT
sf (t), (6.5)

where Csf (t) = FT
sf (t)Fsf (t) and Ψ(Csf (t)) is the stored-energy function (per unit mass).

Since the stress-free configurations κsf change with G&R, we utilize a fixed computational

reference configuration κR. Thus, (6.5) can be rewritten with respect to κR, by using

F(t) = Fsf (t)P(s), (6.1), and the chain rule, as

t(t) =
2

J(t)
F(t)

∂{ρR(s)Ψ̂(C(t))}
∂C(t)

FT (t), (6.6)

where Ψ̂
(
C(t)

)
= Ψ̂

(
PT (s)Csf (t)P(s)

)
= Ψ(Csf (t)). For a membrane model, using J =

J2Dh/hR for the thickness h, the membrane stress T can be given as

T(t) =
2

J2D(t)
F2D(t)

∂MR(s)Ψ̃
(
C2D(t)

)
∂C2D(t)

FT
2D(t), (6.7)
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where the areal density MR(s) = hRρR(s) and Ψ̃
(
C2D(t)

)
= Ψ̂

(
C(t)

)
(e.g., see Holzapfel

et al. (2000) for two-dimensional formulation). For simplicity, we omit the subscript ‘2D’

and define wR(s) =MR(s)Ψ̃
(
C(t)

)
. Then (6.6) becomes

T(t) =
2

J(t)
F(t)

∂wR(C(t))

∂C(t)
FT (t). (6.8)

To simulate arterial G&R, we employ the stored energy equation wR(t; s), the stored energy

(per unit area) due to the deformation of x(t) at a given G&R time s, as (Figueroa et al.,

2009)

wR(t; s) =
∑
i

{
M i

R(0)Q
i(s)Ψi(Ci

n(0)(t)
)
+

∫ s

0
mi

R(τ)q
i(s, τ)Ψi(Ci

n(τ)(t)
)
dτ

}
, (6.9)

where Ψi
(
Ci
n(τ)

(t)
)
is the stored energy of constituent i that has been produced Ci

n(τ)
(t) =[

Fi
n(τ)

(t)
]T

Fi
n(τ)

(t), Qi(s) is the fraction of the constituent i that was present at time 0 and

still remains at time s (i.e., has not yet been removed), mi
R(τ) is the mass production rate

of the constituent i at time τ per unit reference area, and qi(s, τ) is its survival function,

that is, the fraction produced at time τ that remains at time s.

We employ constitutive relations for deposition tensors and stored energy functions for

constituents used by Baek et al. (2006, 2007b) and Figueroa et al. (2009). The mechanical

property and the “deposition stretch”, named Gc
h, of the newly synthesized collagen fibers

are assumed to be always the same. Let mk(τ) be the unit vector in the direction of the

kth collagen fiber produced at time τ . The angle between mk(τ) and the first principal

direction at time τ is denoted by αk(τ). We can find a unit vector Mk(τ) in the reference

configuration that corresponds to mk(τ), i.e.

Mk(τ) =
F−1(τ)mk(τ)

|F−1(τ)mk(τ)|
. (6.10)

If the angle between Mk(τ) and the first axis of the coordinate system is denoted by αkR(τ),
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the stretch (of the fiber produced at time τ) in the fiber direction from the reference to the

current configuration is given by

λk(t) =

√
F(t)Mk(τ) · F(t)Mk(τ) . (6.11)

The stretch of the kth fiber family from its natural to the current configuration can be, then,

calculated as (Baek et al., 2006)

λkn(τ)(t) = Gc
h
λk(t)

λk(τ)
, (6.12)

where λk(τ) is stretch of the unit vector in the kth fiber direction from the reference config-

uration to the configuration at time τ . A similar approach can be adopted for SM, which

are oriented primarily in the circumferential direction. Thus, the stretch of SM is given

by λm
n(τ)

(t) = Gm
h λ2(t)/λ2(τ), where G

m
h is the homeostatic stretch for the SM. The main

structure of cross-linked elastin is formed at early stages of development, thus it is difficult

to trace its production time and to specify F−1(τ) in (6.3). So we define a new tensor

G̃e = F−1(τ)Ge
h, which represents a mapping from the natural configuration of elastin to

the computational reference configuration. Then, Fe
n = F(t)G̃e and G̃e is postulated as

G̃e = diag

{
Ge
1, G

e
2,

1
Ge
1G

e
2

}
.

The stored energy functions for the elastin-dominated amorphous, collagen fiber families

(Ψk = Ψc) and passive SM are given as

Ψe(Ce
n(t)) =

c1
2

Ce
n[11] + Ce

n[22] +
1

Ce
n[11]

Ce
n[22]

− Ce
n[12]

2
− 3

 , (6.13)

Ψc(λkn(τ)(t)) =
c2
4c3

{
exp
[
c3
(
λkn(τ)(t)

2 − 1
)2]− 1

}
, (6.14)

Ψm(λmn(τ)(t)) =
c4
4c5

{
exp
[
c5
(
λmn(τ)(t)

2 − 1
)2]− 1

}
, (6.15)

where Ce
n[11]

, Ce
n[22]

and Ce
n[12]

are components ofCe
n =

[
Fe
n

]T
Fe
n. Although the constitutive
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form is the same for collagen fiber families and SM, SM is much more compliant than collagen

fiber families and has less contribution to the passive mechanical behavior of the wall (Burton,

1954). We use a potential function for the active tone of vascular SM as (Baek et al., 2007b;

Zulliger et al., 2004b)

Ψm
act(t) =

S

ρ

{
λ2(t) +

1

3

(
λM − λ2(t)

)3
(λM − λo)2

}
, (6.16)

where λM and λo are stretches at which the active force generation is maximum and zero, λ2

is the stretch in circumferential direction at time t, and S is the stress at the maximum con-

traction. Then, the total membrane strain energy becomes wR = wR(passive) +Mm
R (t)Ψm

act.

6.2.3 Stress-mediated G&R

In arteries, constituents can be continuously produced and removed and normal tissue main-

tains its mass and configuration by balanced turnover of constituents. The rates of produc-

tion and removal change from their balanced normal (basal) values in response to changes in

mechanical environment. Here, we assume that me
R(s) = 0 and the rates of mass production

for collagen fibers and SM are functions of a scalar measure of intermural stress, given by

(Baek et al., 2006)

mk
R(s) =

Mc
R(s)

Mc
R(0)

(
Kk
g (σ

k(s)− σch) +mk
basal

)
(6.17)

mm
R (s) =

Mm
R (s)

Mm
R (0)

(
Km
g (σm(s)− σmh ) +mm

basal

)
(6.18)

where Mc
R(0) and M

m
R (0) are the mass of collagen and SM per reference area of a healthy

artery at time 0, respectively. Ki
g (i = 1, 2, ..., k, ...,m) is a scalar parameter that controls

the stress-mediated growth, mi
basal is a basal rate of mass production for the constituent i,

and

σk(s) =
||Tc(s)mk(s)||

hc(s)
σm(s) =

||Tm(s)mm(s)||
hm(s)

. (6.19)
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where Tc(s) and Tm(s) are the Cauchy membrane stress contributed by collagen and SM

at time s (i.e. Tc(s) =
∑

k T
k(s)). hc(s) and hm(s) are contributions of collagen and SM

to the total thickness at time s. Also, let

qi(s, τ) =


exp

(
−

s∫
τ

kiq(τ̃)dτ̃

)
s− τ ≤ aimax

0 s− τ > aimax

, (6.20)

where kiq(τ̃) can be a function of circumferential stress, wall shear stress, or other state

variables. aimax is the maximum life span of the constituent i.

The new collagen is deposited with a preferred alignment. Following Baek et al. (2006),

we assume that the alignment of the newly produced collagen is influenced by the orientation

of the existing collagen and it consequently aligns along the direction of the existing collagen

family.

6.3 Computational considerations

6.3.1 Local Cartesian coordinate system

We assume that the wall is a thin membrane, with X = {X1, X2, X3} and x = {x1, x2, x3}

being the reference and current positions in the global Cartesian coordinate system with

base vectors {E1,E2,E3} (Figure 6.2). We use linear triangular elements for developing

a nonlinear FEM model of a non-axisymmetric cylindrical membrane and define a local

Cartesian coordinate system for each element in order to facilitate calculation of the local

deformation gradient and prescribe material anisotropy. The centroid of an element Xc =

{Xc
1, X

c
2, X

c
3} becomes the origin of the local Cartesian coordinate system and ‘element-

wise’ orthogonal surface coordinates ξ1 and ξ2 are allocated to any point on the element

with respect to the origin (Figure 6.2).
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Figure 6.2: Orthonormal base vectors for a global Cartesian coordinate system are
{E1,E2,E3}. Those for a local Cartesian coordinate system are Ee

1, E
e
2 (associated with ξ1,

ξ2), and Ee
3 = Ne at a point set to be the center point of a linear triangular element tangent

to the membrane at Xc. Ee
1 and Ee

2 are orthonormal bases on the tangent plane and Ne is
the outward unit normal vector.
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A linear triangular element has three nodal points {X(1),X(2),X(3)} in the reference and

{x(1),x(2),x(3)} in the current configurations and Xc
i = 1

3

∑
kX

(k)
i (i, k = 1, 2, 3). Now,

we introduce local bases Ee
1 and Ee

2 in the plane of a linear triangular element (i.e. tangent

plane) and Ee
3 ≡ Ne the outward normal to that plane (Figure 6.2). The base vector Ee

1

is set to a unit vector aligned toward the axial direction of a model of the artery (a unit

tangent vector to ξ1 at the element center point). The outward normal vector Ne is readily

obtained by cross product of vectors connecting nodal points. The base vector Ee
2 is then

calculated as Ee
2 = Ne × Ee

1. If X
e = {Xe

1 , X
e
2 , X

e
3} and xe = {xe1, x

e
2, x

e
3} are the reference

and current position vectors in the local Cartesian coordinate system, the two-dimensional

right Cauchy-Green deformation tensor is calculated by (Kyriacou et al., 1996; Park and

Youn, 1998)

C =
(∂xe
∂ξα

· ∂x
e

∂ξβ

)
Ee
α ⊗ Ee

β (6.21)

where α, β = 1, 2.

6.3.2 Finite element formulation

The weak form for the membrane can be obtained from the principle of virtual work (Kyri-

acou et al., 1996),

δI =

∫
S
δwdA−

∫
s
Pn · δxda = 0. (6.22)

In a FEM model, we seek an approximate solution to (6.22). Let a finite approximation of

the current position be

x = Φxp, xi = ΦiAx
p
A, (6.23)

where xp and Φ are the nodal vector for the current position and shape function matrix,

respectively. Then, the governing equation for an element can be obtained from (6.22) as

{
F
}e
P =

∫
Se

( ∂w

∂Cαβ

∂Cαβ

∂x
p
P

− P̃iΦiP

)
dA = 0, (6.24)
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where for a linear triangular element,

P̃i = P
ϵijk
(
x
(2)
j − x

(1)
j

)(
x
(3)
k − x

(1)
k

)
||ϵlmn

(
X

(2)
m −X

(1)
m
)(
X

(3)
n −X

(1)
n
)
||
. (6.25)

We use the Newton-Raphson method to solve (6.24) and the tangent matrix can be given by

[
K
]
PQ

=
[ ∂F
∂xp

]e
PQ

=

∫
Se

( ∂2w

∂Cαβ∂Cγω

∂Cαβ

∂x
p
P

∂Cγω

∂x
p
Q

+
∂w

∂Cαβ

∂2Cαβ

∂x
p
P ∂x

p
Q

− ΦiP P̃i,Q

)
dA (6.26)

Note that (i, j, k, l,m, n = 1, 2, 3), (α, β, γ, ω = 1, 2), and (A,B,M,P,Q = 1, 2, 3, ..., np),

where np is the number of nodes in an element multiplied by 3, i.e., np = 9.

Any point X = {X1, X2, X3} in the global Cartesian coordinate system can be trans-

formed to Xe = {Xe
1 , X

e
2 , X

e
3} in the local coordinate system using

Xe
i = Ee

i · (X−Xc) = Qij(Xj −Xc
j ) (6.27)

where Qij = Ee
i · Ej . We use linear triangular element which is flat and has 9 translational

degrees of freedom to discretize the domain (Flores and Onate, 2001). Now, we define linear

interpolation function for the triangular element with respect to ith nodal point as

ϕi(ξ1, ξ2) = aiξ1 + biξ2 + ci, (i = 1, 2, 3) (6.28)

where ai, bi, and ci are constants and
∑(all node)

i ϕi(ξ1, ξ2) = 1. The interpolation functions

have the following properties:

ϕi(X
e(j)
1 , X

e(j)
2 ) = δij , where X

e(j)
k = Ee

k · (X
(j) −Xc). (6.29)
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Thus, ai, bi, and ci can be obtained by solving (6.29), for example,


a1

b1

c1

 =


X

e(1)
1 X

e(1)
2 1

X
e(2)
1 X

e(2)
2 1

X
e(3)
1 X

e(3)
2 1


−1

1

0

0

 . (6.30)

It is convenient to define 9×1 vectors for the nodal points as

Xep = {Xe(1)
1 , X

e(1)
2 , X

e(1)
3 , X

e(2)
1 , X

e(2)
2 , X

e(2)
3 , X

e(3)
1 , X

e(3)
2 , X

e(3)
3 }T (6.31)

xep = {xe(1)1 , x
e(1)
2 , x

e(1)
3 , x

e(2)
1 , x

e(2)
2 , x

e(2)
3 , x

e(3)
1 , x

e(3)
2 , x

e(3)
3 }T (6.32)

Xp = {X(1)
1 , X

(1)
2 , X

(1)
3 , X

(2)
1 , X

(2)
2 , X

(2)
3 , X

(3)
1 , X

(3)
2 , X

(3)
3 }T (6.33)

xp = {x(1)1 , x
(1)
2 , x

(1)
3 , x

(2)
1 , x

(2)
2 , x

(2)
3 , x

(3)
1 , x

(3)
2 , x

(3)
3 }T (6.34)

Xc = {Xc
1, X

c
2, X

c
3, X

c
1, X

c
2, X

c
3, X

c
1, X

c
2, X

c
3}

T (6.35)

The coordinate transformation between global and local coordinates can be expressed by:

Xep = Q̃(Xp −Xc), xep = Q̃(xp −Xc) (6.36)

where a 9×9 matrix Q̃ is given by:

Q̃ =


Q 0 0

0 Q 0

0 0 Q

 . (6.37)

Note that the local position vectors of element nodes in the current configuration, xep, are

expressed with respect to the local coordinate system associated with that element in the

reference configuration. The position vector in the local coordinate system is

xe(ξ1, ξ2) = Φxep (6.38)
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where

Φ =


ϕ1 0 0 ϕ2 0 0 ϕ3 0 0

0 ϕ1 0 0 ϕ2 0 0 ϕ3 0

0 0 ϕ1 0 0 ϕ2 0 0 ϕ3

 .
and ϕ1, ϕ2, and ϕ3 are linear shape functions of ξ1 and ξ2 for the element. Using (6.36),

(6.38) can be rewritten as

xe = ΦQ̃(xp −Xc),
[
xei = ΦiAQ̃AB(x

p
B −Xc

B)
]

(6.39)

For convenience, let us define Φe as

Φe
iB = ΦiAQ̃AB . (6.40)

The components of the derivative of the local position vector with respect to the local

coordinate are

xei,α = ΦiA,αQ̃ABx
p
B , or xei,α = Φe

iA,αx
p
A (6.41)

Thus, components of the right Cauchy-Green tensor (6.21) can be obtained as

Cαβ = xei,αx
e
i,β = Φe

iA,αx
p
AΦ

e
iM,βx

p
M , (6.42)
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where the basis is Ee
α ⊗ Ee

β . Also each component in (6.26) can be obtained by

∂Cαβ

∂x
p
P

= xei,αΦ
e
iP,β + xei,βΦ

e
iP,α (6.43)

∂2Cαβ

∂x
p
P ∂x

p
Q

= Φe
iP,αΦ

e
iQ,β + Φe

iP,βΦ
e
iQ,α (6.44)

∂2w

∂Cαβ∂Cγω

∂Cαβ

∂x
p
P

∂Cγω

∂x
p
Q

=
∂2w

∂Cαβ∂Cγω
xei,βx

e
j,ωΦ

e
iP,αΦ

e
jQ,γ

+
∂2w

∂Cαβ∂Cγω
xei,βx

e
j,γΦ

e
iP,αΦ

e
jQ,ω

+
∂2w

∂Cαβ∂Cγω
xei,αx

e
j,ωΦ

e
iP,βΦ

e
jQ,γ

+
∂2w

∂Cαβ∂Cγω
xei,αx

e
j,γΦ

e
iP,βΦ

e
jQ,ω (6.45)

∂w

∂Cαβ

∂2Cαβ

∂x
p
P ∂x

p
Q

=
∂w

∂Cαβ

(
Φe
iP,αΦ

e
iQ,β + Φe

iP,βΦ
e
iQ,α

)
. (6.46)

For the linear triangle element, the following relation can be obtained:

P̃ =
P

|(X(2) −X(1))× (X(3) −X(1))|
(x(2) − x(1))× (x(3) − x(1)). (6.47)

∂P̃

∂xp
=

P

|(X(2) −X(1))× (X(3) −X(1))|
∂
{
(x(2) − x(1))× (x(3) − x(1))

}
∂xp

(6.48)

=
P

|(·)|


0 x

(2)
3 − x

(3)
3 x

(3)
2 − x

(2)
2

x
(3)
3 − x

(2)
3 0 x

(2)
1 − x

(3)
1

x
(2)
2 − x

(3)
2 x

(3)
1 − x

(2)
1 0

(6.49)

0 x
(3)
3 − x

(1)
3 x

(1)
2 − x

(3)
2 0 x

(1)
3 − x

(2)
3 x

(2)
2 − x

(1)
2

x
(1)
3 − x

(3)
3 0 x

(3)
1 − x

(1)
1 x

(2)
3 − x

(1)
3 0 x

(1)
1 − x

(2)
1

x
(3)
2 − x

(1)
2 x

(1)
1 − x

(3)
1 0 x

(1)
2 − x

(2)
2 x

(2)
1 − x

(1)
1 0

 .
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6.3.3 Numerical solutions

The spatial integration in (6.24) is approximated by using Gauss integration. At every Gauss

point, the temporal integrations in (6.22) are calculated by using the trapezoidal rule (Press

et al., 1992) over past times. Although the survival function (6.20) is given by an exponential

function, we define a maximum lifetime aimax and truncate the value if s− τ ≤ aimax. Thus,

the numerical integration can be done over the time interval [s−aimax, s] using fixed number

of discretization points. Equations (6.17), (6.18), and (6.24) are solved iteratively for the

nodal positions and rates of mass production at a given time s. Briefly, an initial guess of

mi
R(s) is made at each Gauss point based on the previous time step, and (6.24) is solved for

the current positions using the nonlinear FEM technique prescribed in the previous section.

Then, mi
R(s) is updated using the FEM solution along with (6.17) and (6.18). In this way,

rates of mass production and displacements at the current time s are updated iteratively

until solutions converge to the prescribed tolerance.

For testing the utility of the present work, we apply the computational model for sim-

ulation of an AAA. One Gauss point is used for the integration. It has been found that

the nonlinear FEM analysis does not always converge well with (6.26). To remedy this, we

modify the tangent matrix by

[
K
]
PQ

= ζ

∫
Se

( ∂2w

∂Cαβ∂Cγω

∂Cαβ

∂x
p
P

∂Cγω

∂x
p
Q

+
∂w

∂Cαβ

∂2Cαβ

∂x
p
P ∂x

p
Q

)
dA

−
∫
Se

ΦiP P̃i,QdA, (6.50)

where ζ = 2.0 shows a good convergence for all simulations in this work.
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6.4 Simulation of an AAA growth

6.4.1 A geometric model and mesh generation

A 3D computational geometry of a healthy aorta is reconstructed from magnetic resonance

(MR) images of a healthy subject using Simvascular (Cardiovascular lab, Stanford Univer-

sity). The computational domain is extended to the upper part of abdominal aorta (proximal

side) and iliac branches (distal side) for future use in hemodynamic simulations (Sheidaei

et al., 2011). For simulation of the aneurysm, we use only the central region of the geometric

model which is separately meshed with triangular elements (1584 elements) using Gambit

(Lebanon, NH, USA).

6.4.2 Initialization for G&R simulation

In normal physiological conditions, production and removal of each constituent are balanced

such that the vessel maintains its shape under a preferred homeostatic state. For an ide-

alized model of the blood vessel, the in vivo material properties are typically assumed to

be constant over the domain with parameter values estimated from experimental data while

the homeostatic assumption is imposed as a constraint (Baek et al., 2007b; Figueroa et al.,

2009; Valent́ın et al., 2009b). When medical image-based geometric models are used, how-

ever, it is not a trivial task to prescribe the distribution of material and geometric parameters

while maintaining the homeostatic mechanical state under physiological pressure. For an ap-

proximation, we first prescribe material constitutive parameters shown in Table 6.1. Other

parameters, c1, c2, and c4, are calculated inversely assuming that all constituents have the

same homeostatic stress value (i.e., σi = σh) in a healthy state. For that, four discrete

fiber families are assumed to be initially aligned in 0, 90, 45, and -45 (axial, circumferential,

and helical directions, respectively) and constant volume fractions for all constituents are
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Table 6.1: Constitutive and kinetic parameters for each constituents used in initialization
and G&R simulations.

Elastin: c1 = 112 Nm/kg, Ge
1 = 1.25, Ge

2 = 1.25

Collagen: c2 = 917 Nm/kg, c3 = 25, Gc
h = 1.07, kcq = 0.02

SM: c4 = 27 Nm/kg, c5 = 8.5, Gm
h = 1.2, kmq = 0.02,

S = 50 kPa, λM = 1.2, λ0 = 0.7

Others: ρ = 1050 kg/m3, σch = σmh = 135 kPa

prescribed. Then, using strain energy functions (6.13)-(6.16), c1, c2, and c4 are obtained by

c1 = σh

{
ρ
(
Ge
1
2 − (Ge

1G
e
2)

−2
)}−1

, (6.51)

c2 = σh

{
ρGc

h
2(Gc

h
2 − 1) exp

{
c3(G

c
h
2 − 1)2

} 4∑
k=1

Mk
R

Mc
R

sin2 αk

}−1

, (6.52)

c4 =
σh − S{1− (

λM−1
λM−λ0

)2}

ρGm
h
2(Gm

h
2 − 1) exp

{
c5(G

m
h
2 − 1)2

} . (6.53)

Regional wall thickness is initially approximated by estimating the cross sectional mean

radius and using the Laplace equation, σ = Pr/h. Then, using the G&R simulation, we let

the vessel wall adapt to an equilibrium state with a high value of stress-mediated parameters

(Kk
g = Km

g = 1). Deviation of stress in three families of collagen fibers (i.e., axial and helical

directions) from the desired homeostatic stress ((σk − σch)/σ
c
h) is plotted before and after

300 “days” of this initial simulation in Figure 6.3. Stress deviation of the fiber family along

the circumferential direction was less than the other fibers (not shown). Figures 6.4(a) and

(b), respectively, depict the displacement and the change in the geometry from the reference

configuration after 300 days of this initial simulation. The stress deviation of each fiber

family is reduced substantially after the initialization process while causing little change in

the geometry from its original/reference configuration (maximum displacement is about 1.5

mm).
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Figure 6.3: Deviation of the intramural stress from the homeostatic value ((σk − σch)/σ
c
h) in

axial and two helical fiber directions before (a, b, and c) and after (d, e, and f) 300 days of
the initial simulation.
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Figure 6.4: Magnitude of the displacement (mm) calculated from the reference configuration
after 300 days of the initial simulation (a) and the corresponding geometry before and after
300 days (b).

6.4.3 Simulation Cases

After initialization, an AAA is initiated by introducing damage to the aorta, where elastin

is degraded/removed from the blood vessel. The spatial and temporal function for elastin

damage is given as

D(X, s) =
(
1− 0.01s/T

)
f(X), (6.54)

where T is a time constant and f(X) defines the spatial distribution of damage. D(X, s) ∈

[0, 1] is the ratio of the degenerated elastin to the initial amount, where D(X, s) = 1 for

complete degradation. First, we assume a limiting case when T → 0+ such that D(X, s)

becomes only a spatial function, f(X). That is, the damage (elastin removal) is applied im-

mediately after the initial simulation for a homeostatic condition and the amount of damage

is kept constant during G&R. Four spatial functions are used for representing different cases

of elastin damage. The areal density of elastin after applying different damages is plotted

in Figure 6.5. Cases (1) and (2) correspond to damage shapes distributed to a relatively

large area on the concave and convex sides, respectively. Cases (3) and (4) correspond to

more localized damage shapes applied at multiple locations. Second, the ‘time dependent’

elastin degradation is investigated using (6.54) with a spatial function of Case (3) considering
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T = 10 × 365 (days). For final simulation, we assume ‘stretch-induced’ degradation, where

additional removal of elastin occurs during aneurysm growth due to stretch-induced damage.

Specifically, the function for elastin damage can be written as,

D(X, s) = f(X) + g
(
Ie1(X, s)

)[
1− f(X)

]
, (6.55)

where Ie1(X, s) is the first invariant of the Ce
n and

g(Ie1) =



1 (Ie1 − 3) ≥ 4.48

1− sin

(
π
(
7.48−Ie1

)
2×1.48

)
3 ≤ (Ie1 − 3) < 4.48

0 (Ie1 − 3) < 3

. (6.56)

It is believed that elastin plays an important role in controlling SM cells migration/proliferation

(Karnik et al., 2003; Li et al., 1998) as well as their phenotype modulation (Ailawadi et al.,

2009) by stabilizing extracellular matrix. The amount of SM in our model is changed pro-

portionally with the initial elastin degradation which reduces both passive and active con-

tributions of SM to the wall mechanical properties.

6.4.4 Results

Distribution of the maximum principal stress and the areal mass density of collagen at 50,

1200, and 2700 days of G&R for Case (3) are shown in Figure 6.6. The damage to elastin

introduced at s = 0 causes a sharp increase in stress at the location of the damage. Stress-

mediated collagen production increases the areal density of collagen as the lesion enlarged,

compensating the loss of elastin, and the value of the peak stress initially starts to decrease.

As the aneurysm enlarges further, however, the stress level is shown to increase again (see

Figure 6.6(c)). The shape of aneurysm and stress distributions resulted from Cases (1), (2),

and (4) are plotted at 50 and 2700 days of the G&R simulation in Figure 6.7. The simulation
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Figure 6.5: Areal mass density of elastin (kg/m2) for different simulation Cases (1)-(4).
Cases (1) and (2) correspond to different damages shapes distributed to relatively large area
which are applied at different locations (concave and convex sides) and Cases (3) and (4)
correspond to more localized damage shapes, but at multiple locations.
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suggests that the aneurysmal wall tends to enlarge more in the convex side of the vessel than

the concave side.

For example, Figure 6.7(d) shows a large amount of dilatation in the convex side even

with the initial damage introduced in the concave side. Different spacial functions for elastin

damage result in variety of shapes with different expansion rates although in all cases the

same kinetic parameter (Kg = 0.05) was used. Figure 6.8 plots expansion rates (maximum

diameter increase per unit time) for simulations with four different cases. Cases (1) and (2)

result in higher expansion rates compared to Cases (3) and (4), which might be due to the

wider area of the damage prescribed for Cases (1) and (2). The effect of kinetic parameter

(Kg=0.02, 0.05, and 0.1) on the expansion rate of the aneurysm is shown for Case (2) in

Figure 6.9. Apparently, simulation with Kg=0.02 results in an increase in the aneurysm

expansion rate, simulation with Kg = 0.05 causes a linear enlargement over time (constant

expansion rate), and a higher value of the kinetic parameter (Kg=0.1) even stabilizes the

aneurysm growth.

Figure 6.10 shows the areal density of elastin and the maximum principal stress for the

‘time dependent’ case at 50 and 2700 days of the G&R simulation. At 50 days, changes in

stress are small because of the small amount of elastin degradation (Figure 6.10(a)). The

stress increases gradually as the amount of elastin degradation increases and at 2700 days the

maximum principal stress reaches a similar value as in the Case (3) at 2700 days (see Figures

6.6(c) and 6.10(d)). For the last simulation, the damage shape is initially the same as in Case

(3) (Figure 6.11(a)) but elastin is degraded further with the ‘stretch-induced’ elastin damage.

The simulation shows that the affected area gradually increases with stretch-induced damage

(Figure 6.11(b)) and, hence, the principal stress increases to a level higher than Case (3) at

2700 days without the stretch-induced damage (see Figures 6.6(c) and 6.11(d)).
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Figure 6.6: Maximum principal stress distribution (kPa) for the simulation Case (3) at 50,
1200, and 2700 days after the initial damage (a, b, and c) and the corresponding areal mass
density of collagen (d, e, and f) (kg/m2).
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Figure 6.7: Maximum principal stress (kPa) for simulation Cases (1), (2), and (4) after 50
(a, b, and c) and 2700 (d, e, and f) days.
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Figure 6.8: Expansion rates of the lesion in simulation Cases (1)-(4) as the maximum diam-
eter of the lesion versus time and their best linear fit (Kg = 0.05).

6.5 Discussion

In this work, a FEM model of vascular adaptation is presented and applied to model the

enlargement of an AAA without considering thrombus formation. We use a membrane model

of arterial wall. Although a membrane model has some limitations, it is still preferable in

many G&R simulations (Gleason et al., 2004; Baek et al., 2006; Watton and Hill, 2009).

Watton and Hill (2009) suggested that the ratio of thickness of the wall to the diameter of the

aneurysm decreases as an AAA enlarges and also the remodeling process tends to naturally

maintain a uniform strain (or stress) field through the thickness. Hence, a membrane model

suits to model the deformation of the abdominal aorta and the development of an aneurysm

at physiological pressure. Moreover, a full 3D model of vascular adaptation needs more

information about the variation of constituent properties through the thickness and their

evolution during the vascular adaptation.

Following Watton et al. (2004) and Watton and Hill (2009), elastin degradation was as-

sumed to initiate our G&R simulations and a similar form was used for spatial and temporal
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Figure 6.9: Expansion rates of the lesion in simulation Case (2) with different values of the
kinetic parameter (Kg= 0.02, 0.05 and 0.1).
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Figure 6.10: Areal mass density of elastin (kg/m2) for the case of ‘time-dependent’ degra-
dation after 50 and 2700 days (a, b) and the corresponding maximum principal stress distri-
bution (c, d) (kPa).
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Figure 6.11: Areal mass density of elastin (kg/m2) for the case of ‘stretch-induced’ degra-
dation after 50 and 2700 days (a, b) and the corresponding maximum principal stress distri-
bution (c, d) (kPa).
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distribution of degradation. We considered, however, multiple spatial functions for elastin

degradation which resulted in variety of aneurysm shapes with different stress distributions

and growth rates indicating the potential clinical application of computational simulation

of G&R with realistic geometries. Consistent with Watton and Hill (2009), it appears that

collagen production tends to compensate for the loss of elastin. The computations suggest,

however, that as a lesion evolves into a more complex shape, stress may be elevated at a

location which was not necessarily a damage site (see Figure 6.6). In Cases 1 and 2, stress

initially increased at locations where damage was introduced. Later, in the course of en-

largement, the convex side of both aneurysms became the region of maximum stress leading

to more dilation on this side. The results suggest that the location and the geometry of

the lesion can influence AAA enlargement and rupture. For an AAA in vivo, however, the

effect of geometry may be through its influence on both hemodynamics (e.g., wall shear

stress; Hoi et al. (2004)) and wall stress distribution (Doyle et al., 2009; Vorp et al., 1998).

Asymmetric flow patterns have been associated with formation of aneurysm in lower limb

amputees via asymmetric distribution of wall shear stress (Vollmar et al., 1989; Paes et al.,

1990; Naschitz and Lenger, 2008). As expected, in our simulations, damage shapes which

were more dispersed resulted in more dilation than localized damage shapes (see Figure 6.7).

The ‘time dependent’ simulation for Case (3) did not result in a substantial difference in the

aneurysm shape, but different time constants showed significant effects on the expansion rate

(Figure 6.12). Although we used simple spatial and temporal functions for elastin degra-

dation, elastin degradation during AAA growth involves multiple biological and mechanical

parameters. It has been suggested that in AAAs, elastin degradation is due to the prote-

olytic activity which may have several causes including abnormal distribution of wall shear

stress (Miller, 2002; Hoshina et al., 2003; Sho et al., 2004), circumferential stress (Humphrey,

2002), influx of inflammatory cells (Choke et al., 2005; Pearce and Shively, 2006; Shimizu

et al., 2006; Middleton et al., 2007), and the formation of the intraluminal thrombus layer

(Vorp et al., 2001; Fontaine et al., 2002; Vorp and Vande Geest, 2005). In our following
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Figure 6.12: Expansion rates of the lesion in the ‘time dependent’ simulation case associated
with different time constants (T= 3, 6, 10, and 15 years).

study (Sheidaei et al., 2011) the current model is coupled with hemodynamic simulation in

an iterative manner and the effects of wall shear stress on the elastin degradation and, hence,

on the aneurysm growth are investigated.

In our final simulation, we assumed that further degradation of elastin is induced by the

stretch of elastin. Although it is not clear how much mechanical factors influence elastin

degradation during the aneurysmal growth, previous ex vivo studies show that arterial elastin

fails under uniaxial stretch (Gosline et al., 2002; Lillie and Gosline, 2007). Then, it might not

be unreasonable to hypothesize that the over-stretch of elastin accelerates elastin degrada-

tion. Previously, Wulandana and Robertson (2005) presented a model of a cerebral arterial

tissue that accounts for a stretch-dependent failure mechanism of elastin. Recently, Li and

Robertson (2009) have utilized a strain-induced damage model in a more structurally com-

plicated model for balloon angioplasty.

We assumed that the amount of SM reduced proportionally with the initial elastin dam-
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age in our model. The results do not indicate significant role of SM on AAA progression

possibly because we did not incorporate direct effects of SM loss on the extracellular matrix

turnover. However, there are increasing evidence on the critical role of vascular SM cells

in the aneurysm pathobiology through their activity and quantity (Curci, 2009). Vascular

SM cells are capable of producing high levels of matrix degrading enzymes in AAAs (Patel

et al., 1996; Crowther et al., 2000) as well as their inhibitors preventing the degeneration

(Allaire et al., 1998). Stretch/stress induced synthesis of extracellular matrix by SM cells

has also been documented (O’Callaghan and William, 2000; Sumpio et al., 1988). Appar-

ently, the imbalance between proteolytic and synthetic activities of SM cells contributes to

the structural deterioration of arterial wall. In addition, advanced stages of AAA have been

associated with marked apoptosis of SM cells (López-Candales et al., 1997; Zhang et al.,

2003; Thompson et al., 1997) which can exacerbate the weakening process. We need, how-

ever, more data to build a better model and predict the progressive weakening of the wall

structure and its failure.

The half-life of collagen in the arterial wall is reported to be 60-70 days in normal condi-

tions (Humphrey, 2002) which can be reduced to 17 days in pathological conditions (Nissen

et al., 1978). Watton and Hill (2009) showed that reducing the half-life time nonlinearly

increased the expansion rate. Our preliminary results also showed that expansion rate is

inversely related to half-life time. We chose the half-life time to be about 35 days in our

simulations. Our results demonstrated that the kinetic parameter, Kg, has a key effect

on the expansion rate (Figure 6.9) consistent with other studies (Baek et al., 2005, 2006).

Nonetheless, the collagen half-life as well as the kinetic parameters were assumed to be fixed

during the evolution of aneurysm in our model, whereas in an actual AAA, these param-

eters may change during aneurysm growth due to pathological changes. Dynamic changes

of turnover parameters are multifaceted and complex and, hence, more studies are required

to quantify these pathological changes in aneurysm growth. Also, individuals may have

different degrees of mechano-sensitivity and stress-mediated turnover of collagen depending
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of their physiological and pathological conditions. In fact, findings on the collagen content

variation during AAA growth are highly variable, e.g., decreased (Sumner et al., 1970), in-

creased (Ghorpade and Baxter, 1996), and no change (Rizzo et al., 1989). The simulation

showed that Kg = 0.05 provides almost linear growth for all damage shapes (Figure 6.8)

and, especially, for Cases (1) and (3), growth rates were within the range observed for small

aneurysms (Nevitt et al., 1989; Baxter et al., 2008). With Kg ≤ 0.05 the lesion enlarged

continuously implying that the stress-mediated collagen turnover was not enough to return

the stress back to the homeostatic level although it reduced the local damage-induced stress

(Figure 6.9).

Results from the current model represent the early stage of aneurysms. As AAAs grow,

other factors such as intraluminal thrombus and perivascular boundary conditions should

also be taken into account for the model. Intraluminal thrombus not only has a direct

mechanical effect (Wang et al., 2002) but also changes the chemomechanical environment

and influences the strength of the lesion and its progression (Vorp et al., 2001; Taylor and

Humphrey, 2009).

Remodeling of the constituents and the mechanism involved in their deposition can have

a great impact on the mechanical properties of the evolved tissue. Computational models

of collagen remodeling assumed that either the principal strains (Driessen et al., 2004, 2008;

Boerboom et al., 2003) or stresses (Hariton et al., 2007b; Baek et al., 2006) govern the

orientation of collagen fibers. With regard to AAA, marked increase of anisotropy was found

in the diseased tissue (Vande Geest et al., 2006) suggesting structural changes in aneurysm

formation. Watton et al. (2004) assumed fixed fiber directions for collagen fibers in their

AAA growth and remodeling simulations. In our model, collagen aligned towards existing

fiber directions. With newly deposited collagen during enlargement, anisotropy increased

in the circumferential direction, which is consistent with Vande Geest et al. (2006). In

addition, we chose the mechanical property of newly synthesized collagen fibers to be the

same (Gleason et al., 2004; Baek et al., 2006, 2007b; Humphrey, 1999). Elastin degradation
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alone does not conduce to rupture in normal vessels (Dobrin et al., 1984). Impaired collagen

networking and its microstructural defects have been associated with advanced AAAs despite

an increase in the collagen concentration (Lindeman et al., 2010). Therefore, in addition to

alteration of fiber distribution, it might also be desirable to account for changes of collagen

type, cross-linking and fiber thickness in the model (Driessen et al., 2008). A future extension

of the current model can be towards accounting for alteration of collagen structure during

the AAA progression and different mechanical properties of the newly synthesized collagen

fibers.

Prescribing the in vivo material and geometric parameters that satisfy the balance of

momentum and homeostatic conditions is a major challenge for patient-specific G&R simula-

tions. In the current work we approximated the thickness by the Laplace relation, σh = Pr/h

where r is the first principal radius of curvature. For a more complex geometry, however,

there is a need for developing numerical techniques to identify the spatial distribution of

parameters and integrating them with the developed vascular adaptation model.

Previous computational studies of vascular adaptation have considered mostly axisym-

metric and simple geometries, while clinical application of the G&R simulation demands

patient-specific anatomical information. Watton et al. (2004) simulated an asymmetric

aneurysm by assuming an axisymmetric degradation and considering an effective pressure

(instead of constant pressure) which resembles the contact with spine. Although varying the

effective pressure resulted in an asymmetric aneurysm growth, their initial configuration was

still axisymmetric. Recently, Kuhl et al. (2007) simulated stress-induced growth of a medical

image-based model of human aorta based on the concept of incompatible growth combined

with open system thermodynamics. They simulated the effect of balloon or stent exposure

in atherosclerotic patients by a high internal pressure locally applied to the wall. Their

work, however, was based on a single constituent approach and did not consider growth and

remodeling of multiple constituents. On the other hand, many studies have used patient-

specific geometries for estimating accurate stress levels and the rupture risk of aneurysms
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without a G&R mechanism (Raghavan and Vorp, 2000; Fillinger et al., 2002, 2003; Speel-

man et al., 2007). However, Vorp and Vande Geest (2005) suggested that “despite recent

reports, it should be noted that evaluation of rupture potential based on only one of these

parameters –stress or strength – is not sufficient because a region of the AAA wall that

is under elevated wall stress may also have a higher wall strength”. We submit that, by

coupling a G&R model with a patient-specific geometric model, a computational simulation

can provide information about both stress and structural strength during aneurysm growth

and, hence, better prediction of the rupture can be acquired. Therefore, the computational

model presented here will provide a useful foundation towards a patient-specific modeling of

AAAs.
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Chapter 7

MEDICAL IMAGE-BASED SIMULATION OF ABDOMINAL

AORTIC ANEURYSM GROWTH

7.1 A framework for modeling of AAA growth based

on medical images

Here we summarize our efforts in previous chapters and present a framework for simulation of

AAA enlargement with more simulation examples. Figure 7.1 illustrates a schematic diagram

of the steps taken. First, a 3-D computational geometry of a healthy aorta is constructed by

segmentation of medical images of a healthy aorta. For the aneurysm simulation, we use a

central region of the geometric model. Considering the vessel wall as a thin membrane, it is

convenient to parameterize the 3-D wall surface geometry with only two spatial parameters.

That is, any point on the wall surface can be characterized by its longitudinal position (l)

along the centerline of the artery as well as its azimuthal orientation (θ) with respect to a

reference direction (See the 2-D plot in Fig. 7.1 and chapter 4 for technical details).

Here, we employ the proposed inverse optimization (chapter 4) to estimate spatial dis-

tribution of geometric properties, e.g. wall thickness and anisotropy, such that a target

mechanical homeostasis is satisfied and the in-vivo geometry is maintained under in-vivo
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Figure 7.1: Schematic diagram of the steps taken for simulating AAAs using a medical
image-based geometry and material parameters of a healthy aorta as the initial state.

108



condition. The general form of the optimization objective function is given as

J =

∫
Ω
||u(h, αk)− uimage||2dA+ ξ

∫
Ω

∑
k

(
σk(h, αk)

σh
− 1

)2

dA (7.1)

where u is the FE solution for displacement field and uimage is the displacement field from

the biomedical image. That is uimage = 0 when the in vivo configuration obtained from the

medical image is assumed to be the reference configuration. σk is a scalar measure of stress

of the constituent k obtained from the FE analysis and σh is its homeostatic value. ξ adjusts

the minimization weight on each additive term in the objective function. (h, αk) are the

unknown wall thickness and the orientation of the major diagonal fiber family controlling

the tissue anisotropy, approximated by

h(l, θ) =
I∑

j=1

{βhj ϕj(l, θ)} (7.2)

αk(l, θ) =
I∑

j=1

{βkj ϕj(l, θ)}, (7.3)

where (βhj , β
k
j ) are unknown variables associated with their base functions, ϕj(l, θ), which are

defined on the 2-D computational domain. A direct search method (Nelder-Mead Simplex)

is used to estimate spatial distributions of thickness and collagen fiber orientation that

minimize the objective function (See chapter 4 for details).

Elastin has been widely observed to be deficient in ruptured and unruptured AAAs.

Even though the factors that trigger AAA G&R have not been completely identified yet,

elastin degeneration is considered the pathologic factor contributing to the growth of AAAs

in this study. Then, as in chapter 6, G&R simulations are triggered by inducing dam-

age/degradation to elastin with different spatial and temporal distributions as

R(X, t) = R(l, θ, t) = Rs(l, θ)Rt(t), (7.4)
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where the damage ratio, R ∈ [0, 1], is the ratio of the degenerated elastin mass to the initial

mass. Note that the spatial distribution, Rs, is defined on the mapped domain of (l, θ).

7.2 Simulation cases

In the first set of simulations, AAAs are initiated by inducing instantaneous damage to

elastin with different spatial shapes considering homogeneous distribution of kinetic param-

eters (Cases 1-6). Case 7 considers an instantaneous damage but with either homogeneous

or inhomogeneous distribution of Kg (= Ki
g). In Case 8, after a portion of elastin is instan-

taneously removed, further time dependent degradation (Rt) occurs while Kg is assumed to

depend on the local damage at the given time, i.e. R(l, θ, t) (See Fig. 7.2).
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Figure 7.2: Variation of damage ratio with respect to time (Rt vs. time) and variation
of the sensitivity parameter with respect to the local damage (Kg vs. R(l, θ, t)). Solid
line represents the time dependent damage ratio and dashed line represents the damage
dependent variation of Kg.
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7.3 Results

Figure 7.3 shows a set of distinct shapes of spatial damage (distributions of elastin areal mass

density) and the resulting AAAs with the corresponding von Mises stress distributions.

The time histories of the variations of the peak von Mises stress during enlargement of

5 aneurysms are plotted in Fig. 7.4a. Evidently, inducing damage is followed by a sharp

increase in the peak stress (on regions that match the degenerated regions) which, after

a time delay, begins to gradually diminish via stress-mediated collagen production. The
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Figure 7.3: left: Areal mass distributions (kg/m2) for elastin after introducing damage. right:
the resultant distributions of von Mises stress (kPa) due to G&R. The arrows indicate the
regions of elevated stress during AAA expansion.
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decline of peak stress is initially sharper but becomes slower during the AAA expansion.

In some cases the stress slightly increases again after some time (e.g. around 4 years) on

the regions where the degradation is not necessarily maximal (See regions specified by black

arrows in Fig. 7.3). The maximum diameter of aneurysms in all cases changes linearly over

time but at different rates depending on the damage shape (Fig. 7.4b).

Figures 7.5 and 7.6 compare spatial correlations between von Mises stress and both the

rate of mass production and the rate of nodal displacement for Cases 1 and 5. The maximum

rates of mass production and displacement gradually increase with aneurysm expansion while

the peak stress reduces. In general, the rate of mass production increases with the stress,

but regions of high stress correspond to a wider range of mass production and displacement

rates especially in advanced stages. Compared to the rate of mass production, the rate of

displacement (i.e., radial expansion) has a weaker correlation with wall stress.

In a different simulation case (Case 7), an aneurysm is generated with a homogeneous

(Fig. 7.7a) as well as inhomogeneous (Fig. 7.7b) distribution of the kinetic/sensitivity

parameter. Assuming lower value for the kinetic parameter (i.e. Kg = 0.02) on the region

where aneurysm sac forms leads to lower rates of the local mass production and further

enlargement. Insufficient local mass production leads to an increasing trend in the local wall

stress during enlargement (Fig. 7.7b).

Figure 7.8 shows the distributions of elastin and collagen areal mass density and the von

Mises stress for Case 8 where the elastin damage is time-dependent and Kg is assumed to be

damage-dependent (relations shown in Fig 7.2). Increasing degradation along with gradually

decreasing Kg accelerate the AAA enlargement and heightens wall stress (up to 450 kPa).

7.4 Discussion

Consistent with previous studies (Watton and Hill, 2009), collagen turnover showed to com-

pensate for the loss of elastin and tended to normalize wall stress via the stress-mediated
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time for different cases. Equations for best fit lines are shown (lines are not included in the
graph).
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Figure 7.5: Spatial relations between von Mises stress and both the rate of collagen mass pro-
duction as well as the rate of wall displacement for Cases 1 at different stages of growth. Wall
thickness distribution and collagen concentration are illustrated for each case corresponding
to 2700 days of G&R.
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Figure 7.6: Spatial relations between von Mises stress and both the rate of collagen mass pro-
duction as well as the rate of wall displacement for Cases 5 at different stages of growth. Wall
thickness distribution and collagen concentration are illustrated for each case corresponding
to 2700 days of G&R.
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Figure 7.7: Spatial relation between the rate of collagen mass production and von Mises
stress for Case 7 using a homogeneous distribution of kinetic parameters (a; Kg = 0.05) as
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Figure 7.8: Elastin (a) and collagen mass (b) areal density along with von Mises stress
(c) distributions for Case 8 after 7 years (2700 days) of G&R. Time history of maximum
diameter and peak von Mises stress is also shown (d).
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kinetics of G&R process. Nevertheless, assuming Kg = 0.05, the peak wall stress never re-

turned to the homeostatic value leading to continuous enlargement with a linear trend which

is typical of small AAAs (Fig. 7.4). The high stress regions in Cases 1 and 5 (Fig. 7.3) were

found to be consistent with other FE studies (Vorp et al., 1998; Scotti et al., 2005; Doyle

et al., 2010; Hua and Mower, 2001; Giannoglou et al., 2006), suggesting regions of inflections

as the high stress regions. We noticed a strong spatial correlation between the rate of colla-

gen production and wall stress in earlier stage of growth. Later, even though the peak wall

stress was reduced, collagen was produced at an increasing rate leading to high rates of wall

displacement (Figs. 7.5 and 7.6). This seems to be mainly because the rate of mass produc-

tion was assumed to be linearly related to the number of cells (depending on the collagen

mass) at a given time. Although there was a strong spatial correlation between damage

and the rate of mass production at all times (not shown), a weaker correlation was found

between the local damage and wall displacement in advanced AAAs (Fig. 7.9). In Case 1,

wall displacement was more global and not restricted to the damaged regions while in Case

3 the damaged regions were subject to high wall displacement (i.e., large radial expansion)

(Fig. 7.9). Interestingly, in Case 1, although the damage was uniformly distributed around

the circumference (Fig. 7.3), points on the convex side were subject to more displacement

than points on the concave side (See Figs. 7.3 and 7.9).

The time-dependent case was inspired by a possibility of increasing elastin degradation

due to exacerbated hemodynamic conditions in AAAs as the geometry evolves (Mohan et al.,

1999; Walpola et al., 1993). Sheidaei et al. (2011) demonstrated that low wall shear stress

may induce further degradation during aneurysm progression and accelerate the lesion ex-

pansion. In addition, the damage-induced weakening of the G&R sensitivity was introduced

because some studies have suggested an increase in apoptosis (Lopez-Candales et al., 1997;

Thompson et al., 1997) or phenotype modulation (Ailawadi et al., 2009) of SM cells dur-

ing the AAA enlargement. The imbalance between extracellular matrix synthesis (Sumpio

et al., 1988) and degradation (Crowther et al., 2000), mediated by altered SM cells can be
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the reason for progressive weakening and rupture of the wall. Recently, Maier et al. (2011)

have quantitatively found a spatial correlation between wall stress and the level of in vivo

tissue reactions which can indicate either synthetic or proteolytic activities in the arterial

wall tissue.

In this study, we were able to capture relatively complex 3-D shapes of AAAs by pre-

scribing distinct shapes for spatial damages. Even with a fixed spatial distribution of elastin

damage, we noticed that regions of elevated wall stress can change in the course of expansion

(Fig. 7.3). Interestingly, during the evolution of some AAA shapes, the peak wall stress lo-

cally increased again (Fig. 7.4). In Cases 1 and 5, the lesions were larger in diameter while in

Cases 3 and 6 the lesions developed higher wall stress after 2700 days (7 years), implying the

influence of aneurysm shape on the peak wall stress, beyond what the maximum diameter

criterion may solely suggest.

Together, these results emphasize the impact of geometrical complexities on complex

stress distributions during AAA expansion as suggested by Sacks et al. (1999). Other stud-

ies have sought correlations between wall stress and quantified AAA shapes, asymmetry,

tortuosity, as alternative indicators of rupture (Shum et al., 2011; Vorp et al., 1998; Geor-

gakarakos et al., 2010; Doyle et al., 2009; Giannoglou et al., 2006). Moreover, we found that

the regions of low wall thickness initially coincide with the damaged regions but they too

change as the lesions evolve. In some cases they may correspond to high stress regions (e.g.

Cases 1 and 5; Figs. 7.3 and 7.5 and 7.6) while in other cases there may be no correspondence

(other cases not shown). Coincidence of the low wall thickness and elevated wall stress could

be indicative of an impending rupture in advanced stages. As an advantage, current study is

capable of capturing morphological complexities during enlargement while at the same time

the evolution of wall properties during G&R is being reflected.

Aneurysms are often accompanied by bending of the proximal neck area which influences

the hemodynamics and possibly intraluminal thrombus formation (Biasetti et al., 2010).

Figure 7.10 depicts the axial stretch distributions for different simulation cases. Aneurysms
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Figure 7.10: Distributions of axial stretch for different aneurysms.

enlarge in both circumferential and axial directions and because of the fixed boundary con-

dition, axial stretch on the neck region reduces to values less than 1. Even if not the main

reason, this can be used as an indicator of where bending may occur in later stages (Jackson

et al., 2005). It is noteworthy that we have modeled the vessel wall as a membrane while

models that account for bending of the wall are necessary to study buckling of the vessel

walls.
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Chapter 8

CONCLUSION

From the practical point of view, we are ultimately interested to model AAA expansion from

an existing AAA, which is an intermediate stage of the disease. While the current model uses

the assumption of homeostatic condition for the healthy aorta to prescribe initial conditions

(e.g. thickness, fiber alignment, kinetic parameters) of the simulation, less information is

available for the spatial and temporal distribution of the parameters for a diseased artery.

Despite this challenge, we believe that the current model can be used for estimating the

material and kinetic parameters of an existing AAA and, hence, predicting patient-specific

AAA expansion if used in a broader framework. For example, using the same model but in

an inverse scheme, it seems feasible to regenerate a patient-specific AAA shape by estimating

spatio-temporal distributions of elastin degradation as well as the G&R sensitivity/kinetic

parameter. Cyclic strain quantified from medical images can also be incorporated into the

inverse scheme such that not only the AAA shape but also the local strain is predicted

more accurately. That requires further development of the model regarding the boundary

condition, e.g. the spine support, which as a growth barrier significantly changes the resulting

AAA shape and stress/strain distributions in the G&R model.

Lack of verification for the estimated distributions of the wall thickness and fiber orienta-

tion in healthy condition (prior to G&R) and during the AAA development is a limitation of

the current study. Recent advances in medical imaging and segmentation techniques make
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Figure 8.1: A comprehensive simulation framework aimed at patient-specific modeling of
AAA G&R.

it possible to quantify in-vivo wall thickness (Shum et al., 2010; Martufi et al., 2009) and

verify the patient-specific simulations of AAAs. Another limitation of the current model

is that the role of intraluminal thrombus layer (ILT) is overlooked. Thrombus has been

found to either protect the wall by reducing the wall stress (Inzoli et al., 1993; Thubrikar

et al., 2003; Wang et al., 2002) or compromise its integrity via biochemical environment

(Vorp et al., 2001; Fontaine et al., 2002). Figure 8.1 shows all the required elements of a

comprehensive patient-specific model of AAA G&R. This study basically covers the topics

in black and red boxes, but the focus has been mainly on identification of in-vivo properties.

The model of ILT and perivascular tissue are the steps needed to enhance the G&R simu-

lation which, on the other hand, has a strong coupling with hemodynamic simulation (blue

or green boxes). Hemodynamic simulations in evolving aneurysms have been performed in

collaborative studies either with rigid wall assumption (Sheidaei et al., 2011) or as fluid-solid

interaction framework (Figueroa et al., 2009).

In conclusion the current study is an important step toward patient-specific modeling of

AAAs. Apparently accurate estimation of rupture potential requires further developments

of the model as well as more detailed information about pathophysiology and biochemical

reaction involved.
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Appendix A

Equilibrium equations considered for inflation-extension test of

tubular vessels

We use a cylindrical coordinate system to model axial extension and inflation of a thin

artery. The positions of a particle can be expressed by cylindrical coordinates {R,Θ, Z}

and {r, θ, z} in the reference (unloaded) and current (loaded) configuration, respectively

(Humphrey, 2002). The motion due to the inflation and axial stretch is assumed as

r = r(R), θ = Θ, z = λzZ. (A.1)

The deformation gradient for the large deformation is

F =


∂r
∂R 0 0

0 r
R 0

0 0 λz

 (A.2)

We assume that the arterial wall material is incompressible, so that

∂r

∂R
=

R

rλz
. (A.3)
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Using the incompressibility, the inner diameter can be obtain as

ri =

√
r2o −

(R2
o −R2

i )

λz
(A.4)

where Ri, Ro and ro are the inner and outer diameter in the reference configuration and

outer diameter in the current configuration. For axisymmetric condition, the equations of

motion in the absence of body force and the force due to acceleration are reduced to

1

r

∂(rTrr)

∂r
+
∂Tzr
∂z

− Tθθ
r

= 0 (A.5)

∂Tzθ
∂z

+
1

r

∂(rTrθ)

∂r
+
Tθr
r

= 0 (A.6)

∂Tzz
∂z

+
1

r

∂(rTrz)

∂r
= 0. (A.7)

Furthermore, Trθ = Trz = 0 for the thin tube, and Tzθ = 0 for the absence of torsion. Then,

the remaining equation is

∂Trr
∂r

+
Trr − Tθθ

r
= 0 (A.8)

∂Tzz
∂z

= 0, (A.9)

where assuming incompressible material

Trr = −p+ T̂rr (A.10)

Tθθ = −p+ T̂θθ (A.11)

Tzz = −p+ T̂zz. (A.12)
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The internal pressure Pi is given for the inflated tube, and Trr(r = ri) = −Pi and Trr(r =

ro) = 0 where ri and ro are in and out radius for the tube. The integration of (A.8) gives

Trr(r) =

∫ ro

r

T̂rr − T̂θθ
ξ

dξ. (A.13)

Internal pressure Pi and the axial force Fz are given by integral forms as

Pi = −
∫ ro

ri

T̂rr − T̂θθ
r

dr (A.14)

Fz =

∫ ro

ri

(−p+ T̂zz)(2πr)dr − π(r2i − r2c )Pi. (A.15)

where rc is inner diameter of cannula. The Lagrange multiplier p can be solved using (A.10)

and (A.13), then (A.15) becomes

Fz = 2π

∫ ro

ri

(∫ ro

r

T̂rr − T̂θθ
ξ

dξ − T̂rr + T̂zz

)
rdr − π(r2i − r2c )Pi. (A.16)

Since, ∫ ro

ri

r

∫ ro

r

T̂rr − T̂θθ
ξ

dξdr =
r2i Pi
2

+

∫ ro

ri

r

2
(T̂rr − T̂θθ)dr (A.17)

The equation (A.16) results in

Fz = 2π

∫ ro

ri

(
T̂zz −

T̂θθ + T̂rr
2

)
rdr + πr2cPi. (A.18)

For a thin membrane, the integration
∫ ro
ri
f(r)dr can be approximated by f(rm)h where

rm = (ri + ro)/2 and h = ro − ri. Hence

Pi =
h(T̂θθ − T̂rr)

rm
(A.19)

Fz = 2πrmh(T̂zz − T̂rr)− π(r2m − r2c )Pi. (A.20)
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Considering T̂θθ = T̂rr + πr2mPi we also have

Fz = πrmh(2T̂zz − T̂rr − T̂θθ) + πr2cPi. (A.21)

The inner radius (A.4) can be rewritten as

ri =

√
r2o −

2RmH

λz
(A.22)

where Rm = (Ro +Ri)/2 and H = Ro −Ri.
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Appendix B

Nelder-Mead Simplex Algorithm

B.1 Introduction

Since its publication in 1965, the Nelder-Mead simplex algorithm (Nelder and Mead, 1965)

has been widely used for nonlinear unconstrained optimization. The Nelder-Mead, as di-

rect search method, attempts to minimize a scalar-valued nonlinear function of n variables

(f(x); x ∈ Rn) using only function calculation, without any derivative information. Each

iteration of the algorithm starts with a simplex, specified by its n+1 vertices and the associ-

ated function values. Four scalar parameters must be specified for the algorithm: coefficients

of reflection (ρ), expansion (µ), contraction (γ), and shrinkage (σ). The universal choices

for those parameters are (Lagarias et al., 1998):

ρ = 1, µ = 2, γ = 0.5 and σ = 0.5 (B.1)

B.2 Algorithm statement

At the beginning of the kth a simplex is given consisting of n + 1 vertices (points in Rn).

Then the following steps are taken (Lagarias et al., 1998):
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1. ORDER. Order the n+ 1 vertices, xk1 , ...,x
k
n+1, such that

fk1 ≤ fk2 ≤ ... ≤ fkn+1 where fki = f(xki ). (B.2)

2. REFLECT. Compute the reflection point as

xkr = x̂k + ρ(x̂k − xkn+1) where x̂k = Σn
i=1x

k
i /n. (B.3)

Evaluate fkr = f(xkr ). If f
k
1 ≤ fkr ≤ fkn , accept the reflected point and terminate iteration.

3. EXPAND. If fkr < fk1 , calculate the expansion point as

xke = x̂k + µ(xkr − x̂k). (B.4)

Evaluate fke = f(xke). If f
k
e < fkr , accept x

k
e and terminate the iteration. Otherwise, accept

xkr and terminate the iteration.

4. CONTRACT. If fkr ≥ fkn , perform a contraction as

a. OUTSIDE. If fkn ≤ fkr ≤ fkn+1, perform outside contraction as

xkc = x̂k + γ(xkr − x̂k). (B.5)

Evaluate fkc = f(xkc ). If fkc ≤ fkr , accept x
k
c and terminate the iteration. Otherwise, go to

step 5.

b. INSIDE. If fkr ≥ fkn+1, perform inside contraction as

xkcc = x̂k − γ(x̂k − xkn+1). (B.6)

Evaluate fkcc = f(xkcc). If f
k
cc ≤ fkn+1, accept xcc and terminate the iteration. Otherwise, go

to step 5.

3. SHRINK. Evaluate f at n points, vki = xk1 +σ(x
k
i −xk1), i = 2, ..., n+1. The unordered
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vertices for the simplex at the next iteration consist of xk1 , v
k
2 , ..., v

k
n+1.

B.3 Stopping criteria

A stopping criterion is chosen based on both the relative size of the simplex and function

values at vertices of the simplex as (Torczon, 1989):

1

∆
max

2≤j≤n+1
||xkj − xk1 || < δ (B.7)

f(xkn+1)− f(xk1) < ϵ , (B.8)

where xkj is the jth vertex of the simplex and a vector comprised of all optimization variables

at kth iteration. xk1 and xkn+1 are the “best” and “worst” vertices of the simplex at kth

iteration and ∆ = max(1, ||xk1 ||).
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