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ABSTRACT

INVESTIGATING UNOBSERVED HETEROGENEITY USING ITEM RESPONSE

THEORY MIXTURE MODELS

By

Dipendra Raj Subedi

Many item response theory (IRT) scaling and scoring models assume that

examinee samples have comparable test-taking behaviors and comparable performance

among different subgroups (e.g., gender and ethnicity) or in difierent test-taking contexts

(e.g., geographic location or test—taking mode). However, in some situations the

aforementioned assumption of test-taking homogeneity may not hold and test-taking

heterogeneity is said to exist. When these sources ofheterogeneity are unobservable (e. g.,

when examinees have unexpected guessing behaviors), then IRT mixture modeling

(MixIRT) may be preferable to traditional IRT (i.e., two- and three-parameter logistic

models) modeling for adjusting the parameter estimation inaccuracies that might

otherwise occur in the presence ofunobserved heterogeneity.

Therefore, the goals of this study were to investigate: a) the estimation accuracy

ofMixIRT models when test-taking heterogeneity exists and b) the efficiency ofMixIRT

models in identifying subsets of examinees whose item responses do not fit the specified

IRT model. Additionally, given the difficulty in estimating MixIRT parameters, Bayesian

modeling with the Markov chain Monte Carlo method was used and the robustness of



MixIRT modeling was investigated through a simulation study. This simulation study

investigated several realistic testing factors that included test-taker sample size, test

length, and the proportion of test-taking heterogeneity in the form of examinee guessing

behavior. In other words, varying these testing factors allowed the evaluation of the

impact of test-taking heterogeneity on the accuracy ofparameter estimation. The results

ofthe simulation study showed that the MixIRT model provided more accurate parameter

estimates than traditional IRT models and was quite efficient in identifying subsets of

examinees that had anomalous test-taking behaviors. A real data example also

corroborated the simulation study results.
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CHAPTER 1

INTRODUCTION

1.1 Background

The K-12 test-based accountability system has gained increasing attention from

researchers, educators, and policy-makers since the implementation of the “No Child Left

Behind” legislation (NCLB, 2001). This legislation was designed to improve existing

educational practice and student academic achievement through improved teaching and

curriculum (Hamilton, Stecher, & Klein, 2002). This renewed attention to K-12 education

also led to increased interest in comparative and international assessments because ofthe

ever-widening subject matter knowledge gap between US students and their counterparts

in other industrialized countries. For example, results from the Third International

Mathematics and Science Survey showed that US fourth and eighth grade students had

comparatively lower mathematics and science achievement than many other developed

countries (Gonzales et a1., 2000; Lemke & Gonzales, 2006).

This increased focus on large scale assessment has also resulted in the added

scrutiny ofpsychometric modeling approaches. Specifically, the accuracy ofparameter

estimates when using traditional psychometric models has come into question because

they do not efficiently account for anomalous examinee behaviors such as cheating and

guessing. These undesirable examinee behaviors can lead to aberrant responses that can

occlude the accuracy of inferences drawn about student knowledge and academic skills.



1.2 Anomalous Examinee Test-taking Behavior

As noted previously, the accuracy ofpsychometric parameter estimates used in

large-scale assessments is fallible when examinees exhibit anomalous test-taking

behavior. Common anomalous behaviors include guessing, cheating and examinee

motivation. Cheating can be defined as any action that decreases the accuracy ofthe

intended inferences based on the examinee’s performance, thus threatening the validity of

the inference about the test taker (Cizek, 2001). Examinee motivation can be defined as

the degrees of effort test-taker expend particularly when given a low-stakes assessment

test. Several recent studies have investigated each of these testing phenomena. However,

this study focuses only on heterogeneity introduced by test-takers’ guessing behavior.

Guessing may occurs when test-takers run out oftime on the test, when they are

less motivated, or when they find test items difficult. Guessing behavior, however, varies

depending upon the nature ofthe test (low-stakes or high-stakes), item difficulty,

examinee ability, available time to complete the test, and cross-cultural differences

among examinees.

The validity ofthe inference made using scores is partially dependent on the

amount of effort put forth by the examinee while taking the test (Wise, 2006).

Furthermore, when adequate effort is not given by examinees, they tend to guess

randomly which makes it difficult to estimate the test taker’s true subject matter

proficiency (Budescu & Bar-Hillel, 1993).

Therefore, anomalous test-taking behavior is a concern and is particularly a

concern in low-stakes tests when examinees are more likely to have low motivation, and

to cheat or guess excessively. In low-stakes tests like the National Assessment of



Educational Progress, attempts to mitigate the negative consequences ofunusual

examinee behavior include the use of shorter tests with specialized data collection

designs like balanced incomplete blocking (Johnson, 1992). Even formula scoring does

not adequately deter guessing on tests (Frary, 1988).

It is also particularly important to identify and account for anomalous examined

behavior in the current NCLB era because examinee test scores are an integral aspect of

data-driven educational policy. For example, AYP decisions are based strongly on

examinee test scores and yet not many model-based or sample-specific adjustments are

made in the estimation ofpsychometric parameters.

1.3 Test-taking Heterogeneity

It is important to study the undesirable test-taking behaviors described previously

because they can have negative consequences on the interpretation and accuracy of

psychometric models. Particularly, the psychometric models used in low-stakes tests have

the underlying assumption that the same item parameters and ability distributions apply

to all examinees taking the test. This is known as the assumption oftest-taking

homogeneity (e.g., Baker & Kim, 2004; Bock & Zimowski, 1997; Lord, 1980). But as

noted previously, examinees often exhibit unconventional test-taking patterns such as

cheating, excessive guessing and low motivation.

When the aforementioned anomalous behaviors exist, test-taking heterogeneity is

said to exist and is often evidenced by sample variability that occurs among different

groups of test-takers. An example pertaining to this study would be guessers and non-

guessers. Similarly, test-taking behavior may be different for different groups of



examinees. For example, the Graduate Record Examinations’ (GRE) verbal assessment is

administered to native and non-native English speakers who have different English

proficiency which could impact their performance on the test and not allow the two

groups to be analyzed together.

In situations where the group-membership oftest-takers is not observable,

unobservable test-taking heterogeneity is said to exist. In contrast, if the source of

heterogeneity can be observed in the data (e.g., gender, ethnicity), observable

heterogeneity makes it convenient to stratify test-takers for any validation using multi-

group analyses (Muthén & Lehman, 1985).

Multi-group analyses are important in psychometrics and when test-taker

. characteristics are not observable, a set ofmodels called latent class models can be used

for multi-group analyses. In the case of low-stakes tests, a form of latent class models

called mixture models have been used recently by researchers for multi-group analyses

when test-taking heterogeneity is unobservable (Bock & Zimowski, 1997). As a result,

these mixture models were extended to models commonly used in low-stakes tests under

a framework which analyses the interaction between examinee ability and test items

called item response theory (Lord, 1980). IRT is the most common modeling approach

used in many tests like NAEP, TIMSS and PISA.

1.4 Traditional Item Response Theory Modeling

Traditional item response theory (IRT) modeling allows examinee performance

on each test item to be succinctly quantified across all examinees. The three assumptions

oftraditional IRT are: dimensionality, local independence, and the existence of a

monotonically increasing function (Hambleton, 1989). First, the dimensionality



assumption indicates that a test should measure only one ability, personality trait or

attitude -- called unidimensionality. When more than one ability is assumed to exist, these

IRT models are called multidimensional (Hambleton & Swaminathan, 1985; Reckase,

1997). Local independence implies that no item should provide clues to the answers of

other items in a test (Hambleton & Swaminathan, 1985). Finally, the assumption of a

monotonically increasing function relates the probability of success on an item to the

ability measured by the item.

A common traditional IRT model is the three-parameter logistic (3PL) model

which is represented mathematically as:

ediW-bi)

13(0) : Ci +(1— ci)1+eai(6_bi) 3

 

i = 1, 2,....,n (1.1)

where 13(6) is the probability that a given test-taker with ability 0 answer a random item

correctly. (I,- is the item discrimination, b,- is the item difficulty and C,- is the pseudo

guessing parameter (Hambleton & Swaminathan, 1985). Another common model called

the two-parameter logistic (2PL) model is obtained when 0 = 0 in Equation 1.1 and the

one-parameter logistic (lPL) model is obtained when 6 = 0 and a = 1.

Although these traditional IRT models are useful for quantifying examinee

ability, they are not able to account for unobservable test-taking heterogeneity, which

may result in parameter estimates that are inaccurate. As noted above, mixture models are

capable of accounting for unobservable heterogeneity and extensions of these models in

IRT framework have produced so-called mixture IRT models or MixIRT for short.



Therefore, MixIRT models provide greater flexibility in modeling complex item response

distributions (McLachlan & Peel, 2000). Hence, in the low-stakes testing context,

MixIRT models would be particularly useful and provide impetus for investigation of

their robustness in modeling anomalous test-taking behavior as described in the section

which follows.

1.5 Motivation

Given the psychometric modeling limitations of traditional IRT models in

accounting for test-taking heterogeneity, it is important to investigate the efficiency and

accuracy ofMixIRT models in estimating parameters. Moreover, the estimation of latent

distributions (e.g., Mislevy, 1984) is an important area ofpsychometric research because

even the most intuitively appealing and creative models are not useful unless the

parameters in the model can be estimated accurately. Specifically, modeling unobserved

test-taking heterogeneity such as aberrant item responses is crucial because ignoring it

can lead to biased parameter estimates and may yield inflated measurement and test

reliability (Lord & Novick, 1968; Muthén, 1989). Furthermore, the inaccurate estimation

of examinee latent traits can have consequential impacts such as false interpretation of

student ability, and erroneous measurement of school and teacher effectiveness (Ansari,

Jedidi, & Dube, 2002).

Given the limitations of IRT modeling articulated above, specifically in the

modeling of guessing, the 3-PL model -- a commonly used model -- is unlikely to suffice

for psychometric modeling in large-scale assessments. This is because it restricts the

guessing parameter to be item dependent. Most importantly, the 3PL model is incapable

of identifying whether individual test—takers actually guess, but rather it models guessing



over the entire sample and hence results in inadequate modeling of guessing. Therefore, a

subsidiary motivation of this study is to explicate the implications of inaccurately

modeling guessing or random response behavior when this phenomenon is not modeled

at the person level, but rather at the item level as is in current IRT modeling practice.

Moreover, the MixIRT approach taken in this study is more appropriate than IRT for

providing evidence of the impact of guessing on individual test items and has the

secondary advantage ofpossibly identifying students with low motivation.

1.6 Purpose

Mixture model parameters are estimated using either frequentist or Bayesian

approaches. As described in Chapter Two, several practical problems arise in the

fiequentist approach to mixture model parameter estimation (Friihwirth-Schnatter, 2006).

On the other hand, Bayesian estimation methods can handle high-dimensional problems

and allow exploration of the distributions ofparameters, regardless of the distributional

forms of the likelihood functions or parameters. In addition, model complexity increases

with the increase in number ofparameters to be estimated, such as a mixture model,

particularly with a large number ofmixture components.

Therefore, this study focused on using a Bayesian approach to parameter

estimation in mixture IRT models, with specific emphasis on item parameter estimation,

test-taker cluster identification, and proficiency level classification. These issues are of

increased interest among researchers, policymakers, and educators in the current era of

test-based accountability systems. In particular, this study compared the performance of

Bayesian mixture IRT modeling to common IRT models in estimating person and item

parameters, and identifying aberrant responses and low—motivation test-takers.



The remainder of the dissertation is divided into four chapters. Chapter Two

reviews the literature that lays out the important empirical and theoretical foundation for

this dissertation. The third chapter presents the methodology and the research design,

implementation of Bayesian estimation methods, and mixture model analysis. The results

from both simulation and empirical data analysis are presented in Chapter Four. Finally,

Chapter Five provides discussion, limitations, suggestions for further research, and

summary ofresults and conclusions.



CHAPTER 2

LITERATURE REVIEW

As noted in the previous chapter, the purpose of this study is to investigate and

illustrate the efficacy ofusing mixture models and a Bayesian approach in estimating

item parameters and test-taker ability under the IRT framework. Therefore, the purpose

of this chapter is to introduce important Bayesian and mixture modeling concepts that are

pertinent to this study. In the sections which follow, descriptions of mixture

distributions, mixture model parameter estimation, Bayesian statistical modeling, prior

research on psychometric applications ofmixture models, and the modeling of guessing

behaviors in tests, are provided.

2.1 Modeling Sources of Unobserved Heterogeneity

The latent structure model (Goodman, 1974; Lazersfeld & Henry, 1968) is used to

explain underlying, unobservable or latent categorical relationships, and offers an

efficient way ofuncovering distinct sub-populations, incorporating correlated non-

normally distributed outcomes, and classifying individuals into classes. That is, these

models can serve as possible elucidations of the observed relationships among a set of

manifest variables (Goodman, 1974). Depending upon the nature of variables used in

these latent structure models, various types ofmodels can be defined under this

framework. Specifically, mixture modeling is categorized as a subset of latent structure

models when latent variables that represent subpopulations are used for modeling

9



population membership. Mixture models in the context of IRT are presented next.

2.2 Mixture Distributions and Mixture IRT Models

Mixture distributions are comprised of a finite or infinite number of components,

possibly of different distributional types, that can describe different features of data. A

mixture model is a flexible tool for modeling complex data through an appropriate choice

of data components to accurately represent the data’s true characteristics (McLachlan &

Peel, 2000). As a result, mixture models are a valuable tool for analyzing a wide variety

of latent trait phenomena.

Mathematically, a mixture model can be represented by the observation of n

independent random variables X], x2, . . .,x,, , from a k-component mixture density as

denoted by Equation 2.1:

k

1’09):an fj(xl.), 1:1, ....,n (2.1)

j=1

where 71'1- >0,j=1, ...,k; 7T] '1' ------- + 77k =1 and f3(x), 1 Sj 5k, are the component

densities of the mixture and 71'1, . . . , 7t], are the mixing proportions. These proportions

allowed us to estimate the size of subgroups in the sample.

Mixture IRT (MixIRT) models are a combination ofLCA and IRT models

(Asparouhov & Muthén, 2008). Their development has been motivated primarily by

diverse phenomena that are encountered when modeling data from populations that are

potentially non-homogeneous (von Davier & Rost, 2007) such as heterogeneous

10



population of guessers. LCA is a statistical method used to identify homogeneous groups,

or classes, from categorical multivariate data. In addition, MixIRT models are useful in

testing for the population invariance of item parameters and ability distribution.

Basically, these models are based on the assumption that the population under

investigation is composed oftwo or more latent subpopulations dictated by different

degrees of latent traits, each ofwhich responds differentially to psychological tasks and

stimuli (Draney, Wilson, Gluck, & Spiel, 2008). One of the most general MixIRT models

is the mixed Rasch model (Rost, 1990) in which each examinee is parameterized both by

a class membership parameter (g =1, ....G) and a within-class ability parameter (6g). The

probability of a correct response (U) to the item is represented mathematically as:

(61 -b.)

 

e g 1g

P<U=llg.6g)= 6 b (2.2)
1+e(g_ jg)

The psychometric applications ofmixture modeling, particularly those relevant to

this study, are briefly reviewed in the next section.

2.3 Psychometric Applications of Mixture Modeling

While mixture modeling has been used to detect guessers in large scale

assessment, it has also been used in various psychometric applications. One of the earliest

applications of mixture modeling in psychometrics is the HYBRID model (Yamarnoto,

1989), which was used to detect randomly guessed item responses. Mislevy and Verhelst

(1990) described a family ofmultiple-strategy IRT models that apply when each subject

belongs to one of a number ofexhaustive and mutually exclusive classes that correspond

ll



to item-solving strategies. Other applications ofmixture modeling include modeling item

response times with a two-state mixture model (Schnipke & Scrams, 1997) that identified

guessers. Furthermore, De Ayala, Kim, Stapleton, and Dayton (2002), Cohen and Bolt

(2005) and Samuelsen (2005) used the mixture model approach in differential item

functioning analysis.

Recent research in multivariate and mixture distribution Rasch models are

presented in von Davier and Carstensen (2007), which focused on an extension of the

Rasch model in which certain homogeneity assumptions have been relaxed on both item

and population levels. Furthermore, some applications of these extensions in educational

onpsychological contexts are provided.

To identify individual guessers from item response data, Yarnamoto (1989, 1995)

used the HYBRID model (Yarnarnoto, 1987). It was mainly focussed on estimating the

effect of test length and time on parameter estimation. Similarly, Wise and DeMars

(2006) used the effort-moderated IRT model, which in the presence of guessers

performed better than the standard 3PL model in terms ofmodel fit, accuracy of item

parameter and test information estimation, and the degree of convergence validity in

proficiency estimation.

Recently, Yang (2007) reviewed the methods of identifying guessers and

proposed approaches for modeling response times based on the two-state mixture model.

A majority of these methods used item response time; hence their scope is limited to

computer-based or computer-adaptive testing. Additionally, data on item response time is

not available in most large scale assessments and any paper-based assessment. The

aforementioned models and modeling approach provided motivation for the simulation
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study described herein where estimation of the probability of guessing is based entirely

on item response patterns and not on response time, similar to a recent study by Cao and

Stokes (2008). Parameter estimation is an important issue, which is described next.

2.4 Mixture IRT Model Parameter Estimation

Estimation ofperson and item parameters is an important problem encountered in

applications of item response theory (Hulin, Lissak, & Drasgow, 1982). Parameter

estimation is an important issue because even complex models are not useful unless their

parameters can be estimated accurately. For example, in this study, it is very important to

classify accurately examinees into guessers and non-guessers. Originally, Pearson (1894)

used the methods ofmoment to estimate mixture model parameters. Later, Rao (1948)

introduced the maximum likelihood estimation approach to estimate the mixture model

parameters. Rao’s approach follows the frequentist paradigm, but an alternative Bayesian

approach was introduced by Lavine and West (1992). An overview ofboth frequentist

and Bayesian approaches is provided next.

2. 4.1 FrequentistApproach to Parameter Estimation

The Expectation-Maximization (EM) algorithm has been typically used in the

estimation ofmixture distributions. The EM algorithm was introduced for general latent

variable models by Dempster, Laird, & Rubin (1977). Redner and Walker (1984)

provides an excellent review ofmaximum likelihood estimation for finite mixture

models, whereas the monograph ofMcLachlan and Peel (2000) gives full details for a

wide range of finite mixture models.
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Despite having the advantage of conceptual and computational simplicity,

application of the EM approach is difficult when estimating complex models, especially

when mathematical derivations are intractable. Several practical problems arise in the

likelihood-based approach to mixture model parameter estimation (Friihwirth-Schnatter,

2006). First, it may be difficult to find the global maximum ofthe likelihood numerically.

Second, the likelihood function ofmixture models is unbounded and can have many

spurious local modes (Kiefer & Wolfowitz, 1956). Similarly, the sample size has to be

very large to apply the asymptotic theory ofmaximum likelihood for mixture models

(McLachlan & Peel, 2000). Bayesian techniques, such as Markov chain Monte Carlo

(MCMC), which are described next, have become an alternative to address such

problems.

2.4.2 Bayesian Approach

Bayesian statistics attempts to formalize and quantify researchers’ prior

assumptions concerning their research questions. Its main components include a prior

distribution, posterior distribution, and likelihood distribution (or function). In the

formulation of Bayesian inference, y denotes the observed data, 6 denotes model

parameters and missing data, and P(6Ly) denotes probability statements conditioned on

observed data. The foundation of Bayesian inference is to set up ajointprobability

distribution P(6,y) over all random quantities (Wilks, Richardson, & Spiegelhalter,

1996). For this purpose, we begin with a model providing a joint probability distribution

P(6,y), which can be expressed as a product of a prior distribution p(6) and the likelihood

distribution, p(y|6) as follows.
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P(t9,y)°0 19(6) xp(y l 9) (2.3)

The prior distribution usually incorporates expert opinions or prior knowledge.

Additionally, prior distribution parameters are called hyper-parameters when they are not

fixed at specific numeric values.

When observed data, y, are available, Bayes theorem is used to determine the

distribution of 0 conditional on y:

17(6’, y) = p(0)xMy | 6’)

p(y) jpt6)xp(y l 6W

00 p(6’)x 120 l 9) (2.4)

P(9|y) =
 

This is called the posterior distribution of 0, which is the focus of Bayesian inference.

The posterior distributions in simple terms represent the relationship between observed

data and prior assumptions (Gill, 2002). A researcher typically uses a likelihood function

to quantify purported knowledge concerning the observed data, whereas a probability

distribution is placed on prior assumptions to quantify them.

Conjugacy occurs when the posterior distribution follows the same parametric

form as the prior distribution. In such cases, inferences may be drawn about one or only a

few parameters at a time, and only the marginal posterior distribution needs to be

computed for specific parameters of interest. The marginal posterior distribution is

obtained by first deriving the joint posterior distribution of all unknowns and then

integrating over the unknowns that are not of interest.
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2. 4.2 Markov chain Monte Carlo Algorithm

Bayesian modeling has appealed to many researchers and practitioners in recent

years as a result of development of fast computers along with the availability ofpowerful

computational tools such as Markov chain Monte Carlo (MCMC) algorithms. As

mentioned in the previous section, in some situations MCMC is the only means of

estimating a model’s parameters when required integrals and/or derivatives may not have

closed form solutions. MCMC—based estimation offers several other benefits. First,

obtaining ability estimates for examinees who answer all questions right or all questions

wrong is no longer a problem as it would be with the EM algorithm in the fi'equentist

paradigm. Finite posterior ability estimates can be computed with the help of appropriate

priors. Also, likelihoods that are not statistically identifiable can be combined with priors

to produce unique posterior distributions (Johnson & Albert, 1999). Additionally, MCMC

estimation can also handle several likelihoods in a single analysis. For example, Patz &

Junker (1999a) incorporated both dichotomous and polytomous items in the same

analysis.

The difficulty of incorporating uncertainty into item parameter estimates has long

been a concern with frequentist methods such as the E—M algorithm. Patz and Junker

(1999a) noted how the Bayesian approach outlined by Tsutakawa and Soltys (1988)

incorporated parameter estimation uncertainty into the standard errors ofthe estimate. In

the context of large scale assessment, particularly in low stakes tests, the matrix of

response patterns becomes increasingly sparse as test length increases. Bayesian methods

can handle missing data relatively easily within the parameter estimation scheme (Maier,

2002; Patz & Junker, 1999a, 1999b).
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The MCMC approach (e.g., Gelfand & Smith, 1990; Gilks, Richardson, &

Spiegelhalter, 1996) simulates random samples from the multivariate posterior

distribution so that features of the theoretical distribution can be estimated by

corresponding features of the resultant random sample (Patz & Junker, 1999b). Based on

the original work of Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller (1953),

MCMC methods were generalized by Hastings (1970), as the Metropolis-Hastings

algorithm. MCMC estimation methods can be thought of as Monte Carlo integration

using Markov Chains (Gilks et al., 1996). The key is to create a Markov process whose

stationary distribution is the specified targetposterior distribution P(l9|y) and run the

simulation long enough that the distribution of the current draws achieves stationary. The

posterior distribution is summarized by computing statistics based on these draws.

Using previous approaches (Hastings, 1970; Metropolis et al., 1953), Geman and

Geman (1984) employed a version ofMCMC called Gibbs sampling in physics. Gelfand

and Smith (1990) and Gelfand et a1. (1990) later introduced this technique to the

statistical commrmity as a tool for fitting statistical models.

The general procedure for sampling from the P(l91y) is as follows.

0 Using a starting point, run independent parallel sequence of an iterative

simulation, such as Gibbs sampler or the Metropolis-Hastings algorithm.

0 Run the iterative simulation until it reaches the convergence.

0 Discard the beginning of the sequence (also known as bum-in period) to eliminate

draws that were taken before convergence was achieved.
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0 Finally, summarize inference about the posterior distribution by treating the set of

all iterates from the simulated sequences after bum-in as an identically distributed

sample from the target distribution.

Congdon (2005) provides a lucid explanation of the Gibbs sampler both

theoretically and mathematically. In order to express the Gibbs sampler in simple terms,

let us consider 0 = (6 , ..... , 6d ) with the corresponding univariate conditional

distributions off}, . . . .fd. The distributionsf1, .. . )2 are called the full conditional

distributions. Similarly, suppose that we can simulate from these full conditional

distributions.

9,. |9,,...,a_,,e,+,,...ed ~fi.(r9,.|191,...,6’i_1,61,.+1,....r9d) (2.6)

where i=1, ..... ,d. An iteration of the Gibbs sampler consists of (1 updates of vectors in

iteration t, where each update adjusts one component of 9 conditioning on the other (d-

1) components. At each iteration t, an ordering of the d subvectors of (9 is chosen and, in

g t . . . . . . .
turn, each 1' rs sampled fiom the conditional drstrrbutron given all the other

components of 9. Thus each subvector 6i is updated conditional on the latest values of 6

for the other components, which are the iteration t values for the components already

updated and the iteration t-I values for the others.
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The Gibbs Sampler Algorithm can be summarized by the following expression

(Congdon, 2005).

1. 61(t+1) ~ f1(91 162m: ..... ’6d(t))

2. 92ml) "’ f2(62 |61(’+1),613(t), ----- ’6d(t))

1 t1 t1 t t

3.93"“~jg(e,|6,‘+),62‘+),64", .....pd“)

t l t l l ld. 6d( + ) .... fd (6d 191( + )’92(t+ ), ....... 96d—1(t+ ))

Casella and George (1992) defined Gibbs sampling as a “technique for generating

random variables from a ...distribution directly, without having to calculate the density”

(p. 167). A more technical overview ofthe Gibbs sampler is provided in Casella and

George (1992).

2.4.2.3 Bayesian Estimation in IRT and Mixture IRT Models

Baker and Kim (2004) provided a thorough review ofprior research on Bayesian

estimation for different pararneterizations ofitem response theory models. In the IRT

framework, Gibbs sampling was first used by Albert (1992), which approach was

extended for use with numerous IRT models such as those that analyze testlets (Bradlow,

Wainer, & Wang, 1999; Wainer, Bradlow, & Du, 2000), multilevel IRT model (Fox &

Glas, 2001), multidimensional models (Béguin & Glas, 2001), and the graded response

model (Johnson, 1997). As reflected by the wide use of the Gibbs sampler, Bayesian

parameter estimation offers an attractive methodology for experimentation with new and

potentially complex IRT models (Kim & Bolt, 2007). In the context of the mixture IRT

model, a common MCMC strategy is to sample a class membership parameter for each
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examinee along with a continuous latent ability parameter. Practical implementation of

MCMC and the Gibbs sample exist in the WinBUGS (Lunn, Thomas, Best, &

Spiegelhalter, 2000) software package which is described next.

2.4.2.4 WinBUGS and Sampling Methods in WinBUGS

As noted above, WinBUGS (Lunn et al., 2000) is a software package that uses

Markov chain Monte Carlo (MCMC) methods to facilitate Bayesian analysis for a wide

variety of applications. The material presented in this section draws significantly from

Lunn et a1. (2000), Spiegelhalter et a1. (2003) and Cowles (2004). One ofthe most

attractive features ofthe WinBUGS is that it is relatively easy to use because it

automatically implements numerical sampling and has customized output analysis

features that are adequate for most MCMC analytical purposes. On the other hand, as

general-purpose software, WinBUGS is not optimized for specific models. Therefore, the

time required for completing computations can be rather long and increases for larger

datasets and more complex models. For this reason it is generally not practical to use

WinBUGS in large scale assessment.

WinBUGS employs different sampling for different types ofmodels. Generally,

in simple cases, a conjugate prior distribution is used with a standard likelihood to yield a

posterior distribution from which the parameters in the model can be directly sampled.

When it is not possible to get the samples directly fiOm the posterior distribution, as in

more complex models, some forms of Gibbs sampling and Metropolis-Hastings sampling

are used to sample from the posterior distribution.
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As mentioned earlier, Gibbs sampling algorithms are used to construct the

transition kernels for its Markov chain samplers. Every iteration of a Gibbs sampler

involves drawing a new value for each parameter from its full conditional distribution.

WinBUGS chooses a method to draw samples during the compilation phase.

Consequently, different forms of sampling will be implemented for different parameter

types. More information about WinBUGS and its sampling methods can be found in the

WinBUGS user manual (Spiegelhalter et al., 2003). It should be noted that the selection

ofthese methods occurs through a process internal to WinBUGS, and is not required to

be specified by the user.

2.5 Research Questions

As mentioned in the first chapter, a primary goal of this dissertation was to

explore the existence and impact of limitation of commonly used IRT models,

particularly their inability to account for the test-taking heterogeneity that might exists in

the testing population. Furthermore, inaccuracies in psychometric modeling could have

an additional impact on the accurate implementation of educational policies which in turn

have consequences for schools, students, parents, and society in general. Therefore, to

evaluate the precision ofMixIRT models in accurately estimating sample heterogeneity,

this study examined different examinee test-taking behaviors using both simulation and

empirical analysis. Specifically, this dissertation investigated the following research

questions.

0 How accurate are the parameter estimates for mixture IRT model when the

number of items, the number of examinees, and the proportion ofunobserved
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test-taking heterogeneity (as represented by % of examinees guessing) are

varied?

0 How comparable is the precision ofparameter estimation in the mixture IRT

model to the estimation from the two-parameter logistic (2PL) model and the

three-parameter logistic (3PL) model?

0 How accurately does Bayesian mixture modeling identify a cluster of

examinees who are likely to be guessers in a large-scale assessment?

0 What is the impact of excluding item responses identified by mixture IRT

mOdeling as coming from guessers in proficiency level classification?

The next chapter provides an overview of the methodology and the

parameterization ofmodels used in this study which evaluate how varying degrees of

test-taking heterogeneity influence the parameter estimation. A subsequent section

describes the simulation study design, simulation of data, data analysis and criteria used

in parameter recovery. Finally, the mixture IRT model analysis is presented with a real

data example.
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CHAPTER 3

METHODOLOGY

The primary goal of this research was to evaluate the precision ofmixture IRT

(MixIRT) models in accurately estimating the differential performance of distinct groups

in a sample (i.e., sample heterogeneity). In this study, a MixIRT model was used to

investigate different examinee test-taking behaviors through a simulation study that

varied (a) sample size, (b) test length, and (c) proportion ofguessing examinees. These

simulation factors are representative of realistic testing situations and allow an evaluation

ofhow varying degrees of test-taking heterogeneity influence parameter estimation.

The remainder of the chapter is divided into the several sections. The first section

provides an overview of the methodology and the parameterization ofmodels used in the

simulation study. A subsequent section describes the simulation study design, simulation

of data, data analysis and criteria used in a parameter recovery study (i.e., bias, root mean

squared error, correlation). The final section discusses a real data example.

3.1 Models

The MixIRT model is the basic theoretical framework of this study. In general,

MixIRT models stipulate that different parameter values may apply for different latent

classes of examinees in a population. In effect, different IRT models hold true for each of

the latent classes. In this thesis, the MixIRT model is formulated from two latent classes

where one latent class belongs to the responses following the specified IRT model and
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another latent class comprises item responses from the examinees engaged in guessing

behaviors.

This study used two types of MixIRT models to characterize various guessing

strategies encountered in a typical large scale assessment. In both models, one latent class

was the set of responses which followed a two-parameter logistic model. The second

latent class represented item responses from examinees using guessing strategies. Two

MixIRT models differed on how they incorporated the guessing behaviors. The first

model used was the MixIRT model with completely random guessing behavior, labeled

hereafter as MixIRT-R. The second model was a MixIRT model comprised ofresponses

fi'om examinees engaged in ability-based guessing behavior, labeled hereafter as

MixIRT-A. It should be noted that unless otherwise specified, the label MixIRT model is

used to refer to both ofthese models. What follows is a description of the two MixIRT

models used.

3.1.1 Model I: Mixture IRTmodel with completely random guessing behavior

0141'.leT-R)

The MixIRT model with completely random guessing behavior (MixIRT-R)

basically represents a stochastic statistical mixture. Its purpose is to identify

probabilistically the random responders from legitimate 2-PL responders. The

development of MixIRT-R model is related to the idea ofthe HYBRID model

(Yamamoto, 1989) and the effort moderated IRT model (Wise & DeMars, 2006), where

the classification of examinee into guessers and non-guessers is based on probability

estimation from the examinee item responses. In addition to some parameterization

differences in the model presented below with earlier studies, this study utilized a
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different estimation method, i.e. Bayesian estimation. The mathematical representation of

MixIRT-R model includes two classes, one of which belongs to a 2-PL model and

another belongs to a random guessing class. Accordingly, the probability of answering an

item1 correctly by an examinee i is given by:

1 exp[a (9- ’17-)1
PX.. . .,b.,t9. =1— .*———— . J ' 1 . 

where, nALT represents the number ofoptions in a multiple choice item and g,-

represents the group membership (e.g., guesser or non-guesser). The symbols (1j , bj

and 9,- represent item discrimination, item difficulty, and ability parameters and have the

same interpretation as the 3PL parameters of Equation 1.1 in Chapter One. Also, g,- =

(0,1) with g = 0 as random guessing group (guessers) and g = l as 2PL (non-guessers).

These parameters can be estimated using the WinBUGS software programs as explained

in the next section.

3. 1.2 Specification ofthe MixIRT-R Model in WinBUGS

The parameterization of MixIRT-R model specified in Equation 3.1 is similar to

that of the [RT model described in Chapter One. However, there are two additional

parameters to be estimated. The first one is gi which corresponds to the categorical

representation of group identification. The hyperparameter of this distribution is

parameterized by a Dirichlet distribution which is a conjugate prior for estimating the
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proportion of examinees that are likely to be guessers and non-guessers. Refer to the

Appendix A.l for the WinBUGS code used to implement this model.

3.1.2.1 Specification ofmodel parameter priors

Specification of a prior distribution is one of the most important methodological

as well as practical problems in Bayesian inference. Often researchers want “the data to

dominate” when there is no prior information and thus attempt to use vague prior

distributions (Lambert, Sutton, Burton, Abrams, & Jones, 2005). The vague prior is a

term used in Bayesian statistics to refer to a prior when the analyst does not have any

information about the value ofthe unknown parameter.

In a simulation study ofthe impact ofvague prior distributions in MCMC using

WinBUGS in an IRT model, Lambert et al. (2005) found fewer problems with location

parameters (i.e., item difficulty parameters), but found major problems with scale

parameters (i.e., item discrimination parameters). This study will use informative priors

on the discrimination parameters ( aj ) since the existence of the joint posterior

distribution is not guaranteed when an improper prior is used (Albert & Ghosh, 2000;

Bazan, Branco, & Bolfarine, 2006). It should be noted that this limitation should not be

attributed to the Bayesian estimation methods so much as to the modeling flexibility of

WinBUGS and obtaining the convergence. However, a vague prior is used for item

difficulty parameter as used in earlier studies (e.g., Albert & Ghosh, 2000; Sahu, 2002).

Ability parameters (0) and item difficulty parameters (b) were each assigned a

two-stage normal prior as:
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r9,~N(O,t'6), i=1, ..... ,n,

bj~N(O,rb), j=1, ..... ,J. (3.2)

where both 79 and Tb follow the conjugate inverse gamma prior,

76 ~ IG(a9afl6)9

Tb ... IG(ab, flb). (3.3)

where a9 9 .83 9 ab 9 and '6b are hyperparameters.

These distributional specifications are chosen based on earlier studies in IRT parameter

estimation (e.g.,Cao & Stokes, 2008; Hambleton & Swaminathan, 1985; Kim & Cohen,

1998; Patz & Junker, 1999a, 1999b; Sahu, 2002)

3.1.3 Model 2: Mixture IRTmodel with ability-based guessing (MixIRT-A)

IRT models that handle ability-based guessing are getting increased interest

recently (e.g., Cao & Stokes, 2008; Martin, Pino, & De Boeck, 2006). The motivation for

this modeling approach is largely based on the assumption that the success of guessing is

related to ability. The MixIRT model with ability-based guessing (MixIRT-A) basically

represents another variant of a stochastic statistical mixture. The fundamental assumption

of this model is that both guessers and non-guessers take the test, but interact differently

with items that are harder for the examinee. Specifically, some examinees utilize their

full potential (thoughtful response) to only the relatively easy items and tend to guess

answers to test items that are difficult for them.
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Based on the theory of test-taking motivation, such as one illustrated by Wise and

DeMars (2005), the MixIRT-A model assumes that the amount of effort put forth by an

examinee decreases as the task becomes increasingly difficult. In other words, a guesser

is more likely to guess on items that are difficult, where that difficulty threshold is related

to the exarninee’s own ability parameter. Cao and Stokes (2008) recently used this model

to describe partial guessing behaviors, which was labeled as the “..Difficulty-Based

Guessing Model”. The probability of a correct response for an examinee i to test itemj in

this model is given by:

poi, =116..a,,b,..c,,6.>

= exp[aj(6i —bj)—ni1(bj ‘(62' +6») (“liar —bj)_cj)]

1+explaj(6.—b,-)—n.1(bj—(6.-+5.-»(a,-(e —b,.)—c,-)]
 (3.4)

where 77 i =1 if examinee i is a guesser and 0 otherwise. 5,- is a parameter that measures

the difficulty threshold for a guesser to guess. In other words, sOme examinees may use

their full potential or even try illuminating one or two choices before making their guess.

Others may not use their full potential, thus guessing on those items that are difficult for

them. The indicator function, represented as I(. . .), in Equation 3.4 above becomes 1 only

if the difficulty parameter ofitemj is larger than the ability of examinee i with some

degree of adjustments controlled by the threshold parameter 5, . The current study

allowed 5,- varying among examinees because different examinees have a different

threshold in terms of their tendency to guess.
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The priors for 6i a aj 9 bj 9 79 9 Tb are the same as those used in the Model 1

above. Appendix A.2 provides the WinBUGS code used to implement MixIRT-A model.

The prior for 771’ is similar to those used for gi in MixIRT-R, which corresponds to

categorical representation of group identification. The hyperparameter ofthis distribution

is parameterized by a Dirichlet distribution which is a conjugate prior for estimating the

probability that a particular examinee is likely to be a guesser.

3.2 Simulation Study

Typically a simulation study is used to evaluate the performance of a particular

model or method in precisely estimating the model parameters. Accurate estimation of

item parameters is important in any psychometric applications such as test equating, item

banking, etc. The overarching goal of this study was to evaluate the performance of the

MixIRT model in precisely estimating sample heterogeneity, and to study how different

testing characteristics influence the estimation ofmodel parameters. Therefore, a

simulation study was most appropriate to address these goals. In addition, a simulation

study allowed exploration ofthe impact of guessing behavior on parameter estimation.

Hence, in order to evaluate the extent to which the MixIRT model can precisely

recover the item parameters using Bayesian estimation, a parameter recovery study was

conducted. The precision ofparameter estimation was evaluated in terms ofbias, RMSE,

and correlation between estimated and simulated parameters. As mentioned earlier, the

proposed method provides better item parameter recovery when it produces small bias,

small RMSE, and high correlation between estimated and simulated parameters.
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3.2.1 Simulation Factors or Study Design

As mentioned earlier, a simulation study allows the evaluation ofhow different

testing characteristics influence the estimation ofmixture model parameters. In the

context of this study, it is possible to explore the impact ofunobserved test-taking

heterogeneity (guessing proportion) on parameter estimation. Typical test characteristics,

which are encountered in applied testing situations, include sample size, test length, and

proportion of guessing. Taking this into account, this study used the factors listed in the

Table 3.1, which are commonly used in parameter recovery studies (e.g., Goldman &

Raju, 1986; Hulin et al., 1982; Kim & Cohen, 1998).

Table 3.1 Summary of Parameter Recovery Study Factors

 

 

Factors Levels

Sample Size 500, 2000

Test Length 25, 50

proportion of “guessing” 0%, 5%, 10%

Estimation model MixIRT, 2PL, 3PL

 

This simulation study used a MixIRT model with simulated random guessing

behavior as labeled as MixIRT-R model above. The estimation from 0% guessing serves

as a baseline. This study investigated the impact of different guessing proportion (5% and

10%) on parameter estimation. The guessing preportion represents the percentage of

examinees who are a guesser in a test. The two-parameter logistic (2PL) model was used

for generating data. The performance ofMixIRT-R and 2PL model was compared with
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3PL model because 3PL is commonly used in practice for parameter estimation when

guessing behavior is suspected in multiple choice items.

Each condition in this study was replicated 15 times. Although this may appear to

be too few replications from a fiequentist perspective, this is actually more than the

number ofreplications used in Bayesian IRT-based simulation studies. This reduction in

replications is partly a result ofthe computational intensity ofWinBUGS software which

can take upto 6 hours to run 25,000 iterations for the item responses with 2000 examinees

and 50 items. Examples from the literature have used only five (e.g., Bolt & Lall, 2003)

or ten replications (Cao & Stokes, 2008). The general procedures employed to simulate

item and ability parameters, and simulation of item responses are presented next.

3.2.2 Generation ofSimulated Parameters and Item Responses

The simulation ofparameters and item responses was based on typical methods

found in IRT literature (Hulin et al., 1982; Kim & Cohen, 1998). Ability parameters were

assumed to follow a normal distribution; thus ability parameters were randomly sampled

from a standard normal distribution (mean=0, standard deviation=l). Similarly, item

discrimination parameters were assumed to follow a lognormal distribution. Thus,

discrimination parameters were randomly sampled from a lognorrnal distribution [611' ~

lognorrnal (0,0.3)]. The item difficulty parameters were also assumed to follow a normal

distribution. Therefore, difficulty parameters were randomly sampled from a normal

distribution with mean of O and standard deviation of 0.7. The standard deviation was

reduced to slightly less than 1 to avoid too easy or too difficult items.
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The a and b parameters were randomly paired with each other. Thus, any nonzero

correlations among the item parameters were attributable to chance. These item

parameters may be thought of as simulating an idealistic scenario or one that a

psychometrician using the 2PL model would hope to obtain.

The probability of a correct response to itemj by simulated examinee i was then

computed using the two-parameter logistic IRT model (Bimbaum, 1968). A response

vector of dichotomous item scores for each examinee was obtained by generating, for

each item, a uniform random number (ranging between 0 and l) and comparing the value

with the probability of an examinee of that ability level passing the item. If the computed

probability exceeded the random number, then the item score was scored as correct (1);

otherwise, it was scored as incorrect (0).

In order to simulate the guessers, the item responses from a randomly selected 5%

or 10% of total examinees were modified in such a way that their response patterns

mimicked guessing behavior. The original data with no guessing (labeled as 0%

proportion of guessing) served as baseline data for comparative purposes. The estimation

ofmodified item responses allowed evaluation of the impact of guessing on parameter

estimation. Thus, it also showed how 2PL and 3PL models could not account for test-

taking heterogeneity.

3.2.3 Parameter Estimation

The item responses simulated or modified above were used as data for item and

ability parameter estimation. The primary methodological objective of this study was to

compare the estimation from various IRT models (MixIRT, 2PL, 3PL) when model

parameters were estimated using computer software WinBUGS. In this program, the
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estimations were carried out under Bayesian framework, using sampling procedures such

as MCMC and the Gibbs Sampler.

3.2.3.1 Convergence Assessment and Sensitivity Analysis

Evaluating chain convergence is a critical issue in monitoring the simulated states

of the Markov chain (Cowles & Carlin, 1996; Kim & Cohen, 1998). In order to view the

sampled observations as a sample from the posterior distribution ofthe model

parameters, the sequence of states for the Markov chain should theoretically converge to

a stationary distribution. The rate at which this convergence occurs can vary depending

on several factors, such as correlations between adjacent states, the sampling algorithm

used, and identification problems with the model.

A critical issue for MCMC methods, including Gibbs sampling, is to determine

when one can cease sampling and use the results to estimate characteristics ofthe

distributions ofparameters of interest (Kim & Cohen, 1998). In this context, the values

for the unknown quantities generated by the Gibbs sampler can be graphically and

statistically summarized to evaluate for mixing and convergence. Cowles and Carlin

(1996) presented a comparative review of convergence diagnostics for MCMC algorithm.

The most popular and useful method was that proposed by Gelman and Rubin (1992).

This diagnostic measure is implemented in WinBUGS as the Brooks, Gelman, and Rubin

(BGR) plot. In this study, five diagnostic measures were used to evaluate the sampler

performance: (i) Brooks, Gelman, and Rubin (BGR) diagnostic plots; (ii) Monte Carlo

errors; (iii) history plots; (iv) autocorrelation plots; and (v) density plots.
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The Gelman-Rubin convergence statistic R compares the ratio of the pooled chain

variance to the within chain variance (Gelman & Rubin, 1992). Once convergence is

reached, R converges to 1. WinBUGS plots 3 items; where the Gelman-Rubin statistic is

plotted in red, which is preferred to converge to 1. In blue, the average width of the 80%

intervals within each individual chain and the width of the 80% interval ofthe pooled

runs is plotted in green. The blue and green lines should stabilize to some number though

it is not necessarily required to be 1.

Monte Carlo error (MC error) is a measure like the standard error of the mean but

adjusted for autocorrelation. Generally, autocorrelations for the MCMC sequence that

decay slowly as a function of lag imply poor mixing of the MCMC series and could

indicate a high-degree of correlations between the parameters or lack of identification of

the model. Finally, history and density plots are also useful to monitor the convergence of

estimates.

Analysis to evaluate the sensitivity to the initial values and the mixing and

convergence of the Gibbs sampler was carried out. The reasonable convergence was

reached in each condition by running 3 chains of 25,000 iterations with the first 10,000

discarded as bum-in. For additional replications, however, a single chain of 25,000

iterations was run with the first 10,000 iterations discarded as bum-in period. The

estimate of each parameter was based on final 15,000 iterations.

3.2.4 Evaluation Criteria andAnalysis ofSimulated Data

Three commonly used summary statistics were used as evaluation criteria: bias,

Root Mean Squared Error (RMSE), and correlation. Before computing the bias and
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RMSE, the estimated parameters were transformed to the same scale as the true

parameters. RMSE is the square root ofthe average of the squared differences between

true and estimated parameters across all the items for item parameters and across all the

subjects for the ability parameter. For example, in case of item parameter recovery, the

RMSE and Bias for each parameter 1] = a, b are expressed as:

 

 

2

J R fi.r—77.

RMSE: ZZ( JJ*RJ) (3.5)

j=lr=l

 

Bias = ii (fijr — ”j ) (3.6)

>

where 77j is the true value and 771', is the corresponding estimate. J is the total number

of items, and R is the number ofreplications. It should be noted that for ease of

interpretation, the results for all J items were combined across the R replications for each

simulation condition. Thus, the bias and RMSE presented in the results section are

basically the averages ofthose values across each simulation condition.

Bias index does not indicate in an absolute sense the degree of estimation

accuracy. In bias, equal positive and negative errors are cancelled with each other

producing a zero bias just as would perfect estimation. The bias then suggests whether

there is a systematic tendency to overestimate or underestimate a parameter. A positive

bias implies parameter overestimation and a negative bias implies parameter

underestimation.
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The correlation between simulated and estimated parameters was also used as an

evaluation criterion because that reflects how well the estimated parameters are

correlated with the simulated parameters. The Pearson correlation between estimated and

simulated parameter values is given by:

J __

"=1

r = J (3.7)

J _ J

2(fij—fi)2 EVE—732

j=l j=l

 

 

This study also used classification accuracy as additional criteria to evaluate how

well the MixIRT model classified examinees into a model generated class. For example,

to evaluate how well the MixIRT model identified the examinees likely to be in the

guessers class, the classification accuracy can be expressed in percentage as:

 

Classification Accuracy : Number of guessersrdentzfied correctly X 100 (3.8)

Actual number of guessers

Since the group membership was modeled as a categorical variable, the median

was computed for the estimate. The classification accuracy was computed separately for

each group (non-guessers and guessers). Because the sample size was different for

different groups, weighted classification accuracy was also computed by averaging the

classification accuracy values after weighting by sample size.

3.2.5 Simulation Study using Mixture IRTModel with Ability-based Guessing

Although a large part of the simulation study carried out in this dissertation was

described in Section 3.2, the assumption in which guessing was defined might not be
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realistic in all practical testing situations. Thus, the goal ofthis second simulation study

was to use a MixIRT-A model that modeled a different guessing strategy. Specifically,

this model accounted for ability-based guessing, as specified as MixIRT-A earlier. Once

again, the objective was to show how the simplicity ofthe 2PL model failed to account

for the heterogeneity in testing populations, and to show how Mixture IRT model can

account for such heterogeneity. This simulation study, however, simplified the study

design by considering only the simulation condition in which the estimation model is

varied for a specific test length and sample size. Specifically, the estimation from the 2PL

model was compared with the MixIRT-A model for a test of 40 items administered to

1000 examinees. The next chapter provides a summary of simulated item parameters and

the results fiom this analysis.

3.3 Empirical Data Analysis

This study used the data from a large scale assessment obtained from a statewide

mathematics assessment administered to Fall 2006 Grade 8 students in a Midwestern

state. The data was obtained from over 100,000 students. Although the original test also

comprised of some constructed response items, this study used the item responses from

54 multiple-choice items only. Due to the longer computational time required for running

MCMC analysis in WinBUGS, samples of 1000 randomly selected test-takers were used.

These moderate sized samples were used to carry out empirical analysis. The primary

objective of this analysis was to demonstrate an application of.the MixIRT model (both

MixIRT-R and MixIRT-A) using real data.
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3.3.1 Analysis ofEmpiricalData

The empirical data analysis started with selecting random samples from the

statewide assessment mentioned above. First, two samples of size 1000 were selected

randonrly. Then, WinBUGS was used to estimate model parameters (item and ability)

and the group membership of the examinees. In order to demonstrate the application of

the MixIRT model in identifying the guessers and showing the impact of guessing on

parameter estimation, this study estimated the ability parameters with or without guessers

in the sample. The calibration was performed twice. First, the model estimated the ability

parameters and identified the examinees likely to be from a guesser class. Then, the

model was rerun with those guessers removed. It is important to clarify how an examinee

was classified as a guesser in this study. As noted earlier, the probability of an examinee

likely to be a guesser was estimated fiom the item response pattern of the exarrrinee. This

probability was actually based on the average over a large number ofMCMC iterations.

If the probability was equal to or greater than 0.5, the examinee was classified as a

guesser.

The changes in ability parameter estimation were evaluated in terms of

proficiency level classification and the difference between the distribution of ability

parameters. The percentage of proficient students is a conceptually simple score-

reporting metric that became widely used for school accountability decisions under the

NCLB Act. In this accountability framework, students are generally classified into four or

five different levels based on their performance in a statewide assessment. In most states,

there are four proficiency levels: Advanced, Proficient, Basic, and Below Basic. This

study also used the same convention to represent the proficiency levels. Based on the
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ability estimates from a MixIRT model, the distribution of examinees into particular

proficiency levels was made as realistic as possible by deriving three cut-scores on the 0-

scale that provided the same percentage of examinees into each level reported by this

assessment. Evaluation of results from this perspective have potential to provide some

policy implications ofthe findings.

This study used the two independent sample Kolmogorov-Smimov test

(Kolrnogorov, 1933; Smirnov, 1939) to evaluate whether the difference in distribution of

0 from the two samples was statistically significant. This nonparametric statistical test is

often referred to as distribution free method as it does not rely on assumptions that the

data are drawn from a given probability distribution. Specifically, the Kolmogorov-

Smirnov test evaluates whether the shapes ofthe distributions of the two groups are

comparable.

In order to test the statistical significance of the differences between proficiency

levels classified by two samples, a chi-square test was performed. Pearson’s chi-square is

the most widely used chi-square test, in which the chi-square statistic is calculated by the

difference between each observed and theoretical frequency of each possible outcome. Its

formula is given in Equation 3.9 .

 

2 n Oi-Ei2Z =Z( E ) (3.9)

i=1 'l

2

where Z is the test statistic that asymptotically approaches a chi-square distribution.

0,- is an observed fi'equency; Ei is an expected frequency under the null hypothesis; It

is the number ofpossible outcomes for each event. Pearson’s chi-square statistic is used
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to test whether or not an observed frequency distribution differs from a theoretical

distribution.

The next chapter provides the results obtained from the simulation study under

both guessing models (MixIRT-R and MixIRT-A models described in this chapter). It

also outlines the results from the analysis of empirical data from a statewide large scale

assessment.
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CHAPTER 4

RESULTS

This chapter presents findings from the simulation and real data analyses. Recall

that the primary goal of this study was to explore the feasibility ofusing mixture IRT

(MixIRT) models to estimate the differential performance of examinees in different latent

classes in a sample i.e., sample heterogeneity. To accomplish this goal, a series of

simulation factors were investigated in fully crossed designs, including two sample sizes

(500 and 2000 simulees), two test lengths (25 and 50 items), and three proportions of

guessing (0%, 5%, 10%). The estimation ofmodel parameters (item and ability) was

compared among three models: MixIRT, 2PL, and 3PL.

This chapter is comprised of five sections. The first section summarizes the

descriptive statistics of simulated item parameters. The second section presents the

convergence of the estimates in WinBUGS because using MCMC sampling to do

statistical inference requires convergence ofthe MCMC chain to its stationary

distribution. In the third section, the results obtained fiom the simulation study under the

random guessing model, described as MixIRT-R in Chapter Three, are presented. The

fourth section summarizes the results from a simulation study under the ability-based

guessing model, described as MixIRT-A in Chapter Three. The final section outlines

results fi'om the analysis of empirical data.
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4.1 Descriptive Statistics of Simulated Item Parameters

Table 4.1 presents descriptive statistics of the simulated item parameters for both

test lengths. Given that these item parameters were randomly selected from specific

distributions, the two tests were slightly different in difficulty levels, with the longer test

(n=50) being slightly easier than the shorter test (n=25). Since this occurred by a chance

due to the difference in test lengths, it should not impact the interpretation ofthe results.

The discrimination parameters ranged from 0.588 to 1.758 for the shorter test, and

from 0.687 to 1.749 for the longer test. The difficulty parameters ranged fiom -l .896 to

2.086 for the shorter test, and from -2.108 to 2.152 for the longer test. These item

parameters are similar to those found in many practical assessments and previous studies.

To generalize the results from a simulation study to the practical setting, simulated

parameters should be as realistic as possible. Therefore, extreme values of a- and b-

pararneters were avoided in the simulation. A complete list of item parameters is listed in

Appendix C] for test length of 25, and in Appendix C.2 for test length of 50.

Table 4.1 Descriptive Statistics for the Simulated Item Parameters

 

Test Item Standard

 

 

Length Parameter Mean Deviation Maxrmtun Mrmmum

25 a 1.030 0.313 1.758 0.588

b -0.120 0.903 2.086 -1.896

50 a 1.076 0.243 1.749 0.687

b -0.266 0.797 2.152 -2.108
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4.2 Evaluation of Parameter Estimate Convergence

Using MCMC sampling to do statistical inference requires convergence of the

MCMC chain to its stationary distribution. Five diagnostic measures, as described in

Chapter Three, were used to evaluate convergence: (i) Brooks, Gelman, and Rubin

(BGR) diagnostic plots; (ii) Monte Carlo errors; (iii) history plots; (iv) autocorrelation

plots; and (v) density plots. It should be noted that no diagnostics can prove convergence,

but these multiple criteria provide the indication that convergence might have occurred.

These criteria may help in evaluating MCMC convergence to ensure that the samples are

fairly representative of the underlying stationary distribution of the Markov chain.

Figure 4.1 presents BGR diagnostic plots, history plots, autocorrelation plots, and

density plots for discrimination parameter of a randomly-selected item estimated using

the MixIRT-R model. This item has true discrimination parameter of 1.757 and the

estimated parameter of 1.818. Similar plots for estimation of difficulty parameter of a

randomly selected item and plots for estimation of ability parameters for a randomly

selected examinee are given in Appendix B. These plots were chosen from the dataset in

which the guessing percentage was 10% for a sample size of 500 and a test length of 25.

This condition was chosen here because a small sample size and a short test generally

yielded poor parameter recovery and sometimes produced chains that had difficulty in

arriving at convergence. Evaluation of convergence from this condition may capture the

representative findings from this study.
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(From Top: BGR plot, History plot, Autocorrelation plot, Density plot)



BGR Plots

The BGR plot shown in Figure 4.1 indicates that the Gelman-Rubin statistic,

which is plotted in red, has converged to 1. The average width ofthe 80% intervals

within each individual chain is plotted in blue and the width of the 80% interval ofthe

pooled runs is plotted in green. Both blue and green lines are stabilized to some number

indicating adequate convergence of the chains. It is important to note that the colors

shown in BGR plot might be difficult to distinguish in gray scale prints.

Monte Carlo error

Monte Carlo error facilitates the evaluation of convergence by suggesting that

how long the simulation should be run to ensure adequate convergence. Table 4.2

presents the descriptive statistics of the MixIRT estimate for randomly selected item

responses. For convenience of illustration, only results for the first five items and the first

five examinees are shown.

As a rule ofthumb, the simulation should be run until the Monte Carlo error for

each parameter of interest is less than about 5% of the sample standard deviation

(Spiegelhalter et al., 2003). From the Table 4.2, it is clear that the Monte Carlo error is

less than 1/20th of the standard deviation of the estimate indicating adequate convergence.

History Plots

The history plots in Figure 4.1 suggest convergence has been achieved since three

chains essentially overlapped each other and could not be easily differentiated.

Furthermore, the convergence seems have been reached well before the bum-in period of

10000 used in this study.
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Table 4.2 Descriptive Statistics of MixIRT Estimates for Selected Parameters

 

 

Node Mean [fetifafildg MC Error

a, 0.9335 0.1462 0.0020

61; 1.0500 0.1536 0.0023

a3 0.9025 0.1463 0.0018

04 1.1600 0.1711 0.0035

a5 1.5760 0.2484 0.0052

b1 0.2472 0.1262 0.0021

b; 0.1520 0.1164 0.0020

b3 0.2184 0.1295 0.0021

1)., -1.1760 0.1808 0.0047

b5 —1.7730 0.2218 0.0063

6, 1.8550 0.5176 0.0041

6 2 0.5016 0.3885 0.0035

6’ 3 0.8399 0.4132 0.0036

64 -0.5894 0.3922 0.0041

6 5 0.2236 0.3801 0.0032

 

Autocorrelation Plots

As shown in Figure 4.1, autocorrelations for the MCMC sequence decayed

rapidly as a function of lag, which indicates that there was good mixing of the MCMC

series. This shows a lack of correlations between the parameters and indicates

satisfactory convergence.

Density Plots

The density plots of Figure 4.1 also suggested the convergence of estimates

because the density resembled the appropriate distribution for discrimination parameter.
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Thus, after evaluating all the diagnostic measures, adequate convergence was achieved.

The additional plots given in the appendix also suggested the adequate convergence.

4.3 Results of MixIRT-R Model Simulation Analyses

4. 3. I Resultsfrom the Parameter Recovery Study

Recall that the parameter estimate was evaluated by comparing the estimated

model parameters (i.e., discrimination, difficulty, and ability parameters) to the true

(simulated) parameters. As mentioned earlier, this study used bias, RMSE, and

correlation between estimated and simulated parameters as evaluation criteria. The results

are presented both numerically and graphically.

Table 4.3 below summarizes the bias and RMSE ofitem difficulty parameter (b)

estimates that were described in Equation 3.6 and Equation 3.5 respectively. Similarly,

Table 4.4 summarizes the bias and RMSE ofitem discrimination parameter (a) estimates.

The Bias and RMSE values for b and a parameters are also plotted separately for test

lengths of25 and 50. Only selected plots are presented here, and the remaining plots can

be found in Appendix D.

Figure 4.2 shows average bias for recovery of item difficulty parameters when

test length is 25, whereas Figure 4.3 shows average bias for recovery of item difficulty

parameters when test length is 50. The plots corresponding to RMSE values for recovery

of item discrimination parameters are shown in Figure 4.4 and Figure 4.5 for test lengths

of25 and 50 respectively. It should be noted that the labels on the x-axis reflect guessing

proportion and sample size. For example, 10P500 indicates a sample size of 500 simulees

when the percentage of simulees that were guessing was 10%.
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It can be noticed in Figure 4.4, that when a 2PL model was used with test length

of 25 and sample size of 500, the RMSE increased from 0.129 to 0.152 when the

percentage of guessers increased fi'om 0% to 5%. The RMSE increased further to a value

of 0.192 when the simulated proportion of examinee guessing increased to 10%.

Similarly, the RMSE increased from 0.130 to 0.146 for a 5% guessing percentage and to

0.174 for 10% guessing. Both bias and RMSE values were generally lower with the

MixIRT-R model than with the 2PL model. However, both bias and RMSE tended to

increase for both models when the percentage of guessers increased to either 5% or 10%.

One ofthe primary objectives in varying study factors like test lengh and sample

size was to evaluate their capacity to recover stipulated item and person parameters.

These results show that smaller bias and RMSE were produced by larger sample sizes.

The only exception to this sample size finding occurred with the use of the 2PL model for

a 50-item test when there were 2000 simulees. For example, in a condition with a 25-item

test and 5% guessing percentage, the RMSE value dropped from 0.152 to 0.110 with the

2PL model when sample size was increased fi'om 500 to 2000. Additionally, the RMSE

value dropped from 0.141 to 0.080 in MixIRT-R model estimation when sample size was

increased fi'om 500 to 2000. No clear pattern of results existed for bias when test length

was increased from 25 to 50.
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Table 4.3 Bias and RMSE of Item Difficulty Parameter Estimates

 

 

 

 

 

 

 

 

 

 

 

0% Guessing 5% Guessing 10% Guessing

IRT Number Sample Proportion Proportion Proportion

Model Of Items Size BIAS RMSE BIAS RMSE BIAS RMSE

Mean Mean Mean Mean Mean Mean

2PL 25 500 0.004 0.129 0.058 0.152 0.096 0.192

25 2000 -0.002 0.069 0.061 0.110 0.103 0.159

50 500 0.005 0.127 0.056 0.146 0.088 0.174

50 2000 0.006 0.062 0.063 0.104 0.245 0.252

MixIRT 25 500 -0.012 0.130 -0.036 0.141 -0.058 0.156

25 2000 —0.008 0.069 -0.030 0.080 0.007 0.156

50 500 -0.001 0.128 -0.016 0.134 -0.024 0.137

50 2000 0.004 0.061 -0.014 0.065 0.019 0.070

Table 4.4 Bias and RMSE of Item Discrimination Parameter Estimates

0% Guessing 5% Guessing 10% Guessing

IRT Number Sample Proportion Proportion Proportion

Model of Items Size BIAS RMSE BIAS RMSE BIAS RMSE

Mean Mean Mean Mean Mean Mean

2PL 25 500 0.021 0.144 0.045 0.160 0.080 0.202

25 2000 0.031 0.079 0.065 0.1 15 0.097 0.170

50 500 0.032 0.135 0.054 0.163 0.090 0.202

50 2000 0.038 0.077 0.074 0.116 0.105 0.168

MixIRT 25 500 0.016 0.144 0.015 0.143 0.020 0.151

25 2000 0.029 0.079 0.035 0.085 0.095 0.178

50 500 0.031 0.135 0.028 0.141 0.039 0.147

50 2000 0.037 0.077 0.042 0.081 0.042 0.086
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Table 4.5 summarizes the average correlations between true (simulated) and

estimated item parameters. These values are presented graphically in Figures 4.6 and 4.7

for discrimination parameters and in Figures 4.8 and 4.9 for difficulty parameters.

Clearly, larger correlations were associated with larger sample sizes for both 2PL and

MixIRT-R models. The impact of guessing was strong in the recovery ofa parameters for

the 2PL model. For example, correlations between true and estimated a parameters

dropped from 0.877 to 0.807 when the proportion of guessers increased from 5% to 10%

with the 2PL model as shown in Table 4.5. The correlations were similar (about 0.9) for

both the 2PL and the MixIRT-R model when no guessers were included in the sample for

the condition with the sample size of 500 and test length of 25.

Table 4.5 Correlations between True and Estimated Item Parameters

 

 

 

 

0% Guessing 5% Guessing 10% Guessing

IRT Number Sample Proportion Proportion Proportion

Model of Items Size _

raa’ rbb’ raa’ rbb’ raa’ rbb’

2PL 25 500 0.909 0.989 0.877 0.985 0.807 0.976

25 2000 0.972 0.997 0.932 0.993 0.839 0.978

50 500 0.866 0.985 0.779 0.982 0.665 0.974

50 2000 0.965 0.997 0.907 0.992 0.770 0.979

MixIRT 25 500 0.909 0.989 0.906 0.988 0.902 0.987

25 2000 0.971 0.997 0.967 0.996 0.956 0.994

50 500 0.867 0.985 0.852 0.984 0.842 0.984

50 2000 0.964 0.997 0.961 0.996 0.956 0.996

 

Note: rag, is the correlation between true (a) and estimated (a ’) parameters

rbb’ is the correlation between true (b) and estimated (b ’) parameters
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Figure 4.6 25-item test average correlations between true and estimated a-parameters
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Figure 4.8 25-item test average correlations between true and estimated b-parameters
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The results pertaining to the recovery of item parameters are also displayed using

scatterplots in Figures 4.10 to 4.13. The results presented in these figures include

recovery ofboth 2PL and MixIRT-R models when the percentage of guesser in the

sample was 10%. Figures 4.10 and 4.11 are the scatterplots of true and estimated

parameters for the conditions of sample size (N) of 500 and test length (n) of 25 for 2PL

and MixIRT-R models respectively. Similarly, Figures 4.12 and 4.13 represent the

scatterplots for sample size of2000 and test length of 50 for 2PL and MixIRT-R models

respectively.

In a scatterplot, each dot represents the estimated value of a particular parameter

for the given value of true parameter. Ideally, for a perfect recovery all dots should fall

over the line passing through the origin. Clearly, consistent with the findings presented

earlier, the recovery ofdifficulty parameters (b) was better than that ofthe discrimination

parameters (a) in both models. The recovery ofboth parameters was better in the

MixIRT-R model than in the 2PL model.

The results regarding the recovery of ability (6) parameters are summarized

numerically in Tables 4.6 and 4.7, and graphically in Figures 4.14 and 4.15. Only sample

plots are included in this chapter. The results in these tables were similar for both the 2PL

and the MixIRT-R models, but more clearly distinct for the 3PL model. The findings

indicate that guessing did not have a meaningful impact on correlations between

estimated and simulated parameter estimates. Specially, correlations between estimated

and simulated 6 parameters were at least 0.9.
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and test length of 25 and 10% proportion of guessers
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Table 4.6 Bias and RMSE ofAbility Parameter Estimates for all Simulation Conditions

 

 

 

 

 

 

0% Guessing 5% Guessing 10% Guessing

IRT Number Sample Proportion Proportion Proportion

Model of Items Size BIAS RMSE BIAS RMSE BIAS RMSE

Mean Mean Mean Mean Mean Mean

2PL 25 500 —0.004 0.402 —0.058 0.404 -0.096 0.414

25 2000 0.002 0.404 -0.06l 0.408 -0.103 0.417

50 500 -0.005 0.290 -0.056 0.296 -0.088 0.307

50 2000 -0.006 0.292 -0.063 0.297 0.01 1 0.304

3PL 25 500 -0.315 0.508 -0.315 0.506 -0.316 0.506

25 2000 -0.212 0.451 -0.229 0.458 -0.242 0.468

50 500 -0.294 0.41 1 -0.297 0.41 1 -0.295 0.409

50 2000 -0.214 0.358 -0.222 0.356 0.000 0.307

MixIRT 25 500 0.012 A 0.404 0.036 0.417 0.058 0.429

25 2000 0.008 0.404 0.030 0.415 -0.007 0.439

50 500 0.001 0.291 0.016 0.303 0.024 0.312

50 2000 -0.004 0.293 0.014 0.306 0.000 0.316
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Table 4.7 Correlations between Simulated and Estimated Ability Parameters for all

Simulated Conditions

 

 

 

 

 

0% Guessing 5% Guessing 10% Guessing

IRT NUIDbCI' 0f Sample Proportion Proportion Proportion

Model Items Size

roo’ 700’ 1’00:

2PL 25 500 0.910 0.910 0.909

25 2000 0.913 0.913 0.912

50 500 0.955 0.954 0.953

50 2000 0.955 0.955 0.952

3PL 25 500 0.909 0.909 0.908

25 2000 0.912 0.912 0.911

50 500 0.953 0.953 0.953

50 2000 0.954 0.955 0.953

MixIRT 25 500 0.909 0.898 0.889

25 2000 0.913 0.906 0.902

50 500 0.954 0.948 0.943

50 2000 0.955 0.949 0.945
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Figure 4.14 25-item test average RMSE results for ability parameter estimates
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Figure 4.15 50-item test average RMSE results for ability parameter estimates
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4.3.2 Classification Accuracy ofthe MixIRT-R Model

As noted previously, one ofthe purposes ofthis study was to investigate the

accuracy with which Bayesian estimation of the MixIRT model can correctly identify

guessers in a sample. Specifically, the goal was to evaluate the accuracy of classifying

examinees into guesser and non-guesser groups. This research purpose can be addressed

only through a simulation study because in real assessment it is impossible to make such

a conclusion. Therefore, using estimates from the parameter recovery study described

earlier, classification accuracy is ascertained by the extent to which simulees are correctly

categorized as guessers or non-guessers.

Table 4.8 provides results ofweighted and unweighted classification accuracy for

different guessing proportions when using the MixIRT-R model. Overall, the

classification accuracy was over 98% for the non-guessing group and approximately 90%

for the guessing group. The weighted classification accuracy, computed by weighting the

results by the associated sample size, was 97.20% when sample size was 500 and the

guessing proportion was 10%. This accuracy increased to 98.06% when sample size

increased fi'om 500 to 2000 simulees. Similarly, when the proportion of guessing was

5%, the weighted classification accuracies were 96.92% and 98.00% for sample size of

500 and 2000 respectively. Interestingly, both classification accuracy and weighted

classification accuracy were 100% when no guessers were present (labeled as 0%).
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Table 4.8 Classification Accuracy in MixIRT-R Model

 

 

 

 

' 13*

Proportion Sample True Class Averaged Classification “gerghftied .

of guessing size (Group*) Estimate Accuracy % C assr catron

Guesser % Accuracy %

500 NG 1.22 98.78 97.20

G 83.00 83.00

10%

2000 NG 1.27 98.73 98 .06

G 85.20 85.20

500 NG 0.76 99.24 96.92

G 76.00 76.00

5%

2000 NG 0.96 99.04 98.00

G 78.20 78.20

500 NG 0 100 100

G NA NA

0%

2000 NG 0 100 100

G NA NA

 

*NG = Non-guessers, G = Guessers

** Weighted by sample size

4.4 Results from Simulation Analyses using MixIRT-A Model

As noted previously, the guessing factor may not be easy to model in practice, and

hence the only way to illustrate it is through a simulation study. The goal of this second

simulation study was to use a MixIRT model to incorporate a different guessing

strategies (i.e., the assumption of ability-based guessing), that can be modeled using

MixIRT-A of Chapter 3. Therefore, the second simulation study showed how the 2PL

model is limited in its parameter estimation accuracy because it cannot account for

sample heterogeneity. However, this simulation design was simplified by considering
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only conditions in which the estimation model was varied for a specific test length and

sample size. Specifically, estimation results using the 2PL and MixIRT-A models for 40-

item tests administered to 1000 examinees were compared.

Table 4.9 summarizes descriptive statistics of simulated item parameters used in

second simulation study. The a parameters ranged from 0.633 to 1.897 with mean of

1.015 and standard deviation of 0.274. The b parameters ranged from -2.274 to 1.945

with mean of 0.093 and standard deviation of 0.855. A complete list of item parameters

are listed in Appendix C-3.

Table 4.9 Descriptive Statistics of Simulated Item Parameters in MixIRT-A Model

 

Item Standard

 

Parameter Mean Deviation Maxrrnum M um

(I 1.015 0.274 1.897 0.633

b 0.093 0.855 1.945 -2.274

 

The same five diagnostic measures used in the first simulation study were used to

evaluate the convergence ofthe estimates. The recovery of item and ability parameters

was evaluated using RMSE and correlations between estimated and simulated

parameters. The results from this simulation study are presented in Tables 4.10 to 4.14

and Figures 4.16 to 4.18.
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Table 4.10. RMSE of Discrimination and Difficulty Parameter Estimates using MixIRT-

A Model

 

 

 

 

No Guessers Guessers

IRT MOdCl a b a b

Mean Mean Mean Mean

2PL 0.100 0.096 0.187 0.199

MixIRT 0.102 0.097 0.133 0.084

 

 

RMSE for discrimination parameter estimates
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Figure 4.16 RMSE of discrimination parameter estimates in MixIRT-A model

The recovery of discrimination and difficulty parameters indicates that both the

2PL and MixIRT-A models produced comparable results when no guessers were present,

i.e. no heterogeneity existed. However, when some simulees were simulated as guessing

on items that were likely to be difficult for their given ability level, the MixIRT-A model

outperformed the 2PL model. This was reflected by smaller RMSE and larger

correlations between estimated and simulated item parameters. Recovery of difficulty
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parameters was better than that of discrimination parameters, and guessing had a large

impact on the discrimination parameter estimates. For example, in the presence of

guessing, the correlation between estimated and simulated discrimination parameter

dropped from 0.949 to 0.705 in the 2PL model. However, guessing did not have much

impact on the recovery of difficulty parameters. The correlations between true and

estimated parameter remained fairly high with values greater than 0.98 in both models.

 

RMSE for difficulty parameter estimates
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Figure 4.17 RMSE of difficulty parameter estimates in MixIRT-A model

Table 4.11 Correlation of Discrimination and Difficulty Parameter Estimates using

MixIRT-A Model

 

No Guessers Guessers

 

IRT Model
 

raa’ rbb’ raa’ rbb’

2PL 0.949 0.993 0.705 0.988

MixIRT 0.948 0.994 0.886 0.995
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The recovery of ability parameters was also evaluated in terms ofRMSE and

correlations. Table 4.12 and Figure 4.14 show the recovery of ability parameter estimates.

In the case of the 2PL model, RMSE increased from 0.325 to 0.411 in presence of

guessing. However, the increase in RMSE for the MixIRT-A model was small and

increased from 0.326 to 0.343. When guessing was allowed, the correlation decreased

from 0.942 to 0.917 in the 2PL model and from 0.942 to 0.929 in the MixIRT-A model.

Table 4.12. RMSE of Ability Parameter Estimates in MixIRT-A Model

 

 

 

No Guessers Guessers

IRT Model

Mean RMSE Mean RMSE

2PL 0.325 0.411

MixIRT 0.326 0.343
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Figure 4.18 RMSE of ability parameter estimates in MixIRT-A model
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Table 4.13 Correlation of Ability Parameter Estimates in MixIRT-A Model

 

 

IRT Model No Guessers Guessers

2PL 0.942 0.917

MixIRT 0.942 0.929

 

As mentioned earlier, classification accuracy is an important criterion for

evaluating the degree to which the proposed MixIRT-A model accurately classifies

examinees into their true (simulated) class or group. Table 4.14 provides weighted and

unweighted classification accuracy results for the MixIRT-A model. The results indicate

that this model correctly identified 63.12% of guessers. This indicates a lack ofpower in

identifying the guessers. Also, misclassifications occurred from using this model. For the

non-guesser class, 7.52% were incorrectly classified as guessers. Similarly, even for a

sample with no guessers, the model incorrectly classified 3% ofthe examinees as

guessers.

Table 4.14 Classification Accuracy ofMixIRT-A Model

 

 

' **

True Class Average Classification Weighted.

(Group*) N Estimated Accuracy % Classrficatron

Guesser % Accuracy %

Guessing NG 748 7.52 92.48

Allowed G 252 63.12 63.12 85.08

NO: NG 1000 3.00 97.00 97.00

Guessmg G 0 NA NA

 

*NG=Non-guessers, G=Guessers

** Weighted by sample size

69



4.5 Results from Empirical Data Analysis

To address the fourth research question for which the goal was to investigate the

impact of excluding aberrant item responses (from guessers) in proficiency level

classification, real data from a statewide mathematics assessment was used. Since

guessing behavior can only occur on multiple-choice items, the analyses were conducted

on examinee responses to 54 multiple choice items. Because of extensive MCMC

computational time, only two randomly selected samples of size 1000 were used in a

cross-validation. The first sample is referred as a training sample and the second sample

is referred as a validation sample. First, the results based on the random guessing model

(MixIRT-R) are presented in section 4.5.1. However, the analysis was also carried out

using the MixIRT model with ability-based guessing (MixIRT-A) so as to compare the

classification of simulees into guessers and non-guessers. These results are presented in

section 4.5.2.

4. 5.1 Results Based on the Random Guessing Model

Tables 4.15 and 4.16 present sample WinBUGS output, particularly highlighting

the estimates of class membership. The node in this table refers to the variable monitored

in WinBUGS. In this output, Pl[l] and Pl[2] refer to classes or categories corresponding

to guesser and non-guesser respectively. Interestingly, the estimates were similar for both

samples, showing that about four to five percent of examinees were likely to belong to a

guesser class in this particular assessment. The observation of 95% credible interval

around the estimate and MC error being less than 1/20th ofthe standard deviation

indicates that these estimates are fairly precise.
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Table 4.15 MixIRT-R Estimates for Training Sample

 

Node Mean Standard Deviation MC error* 2.50% Median 97.50%

 

Pl[l] 0.044 0.008 <0.001 0.029 0.044 0.062

Pl[2] 0.956 0.008 <0.000 0.938 0.956 0.971

 

*MC error: Monte carlo error

Table 4.16 MixIRT-R Estimates for Validation Sample

 

Node Mean Statdt’d MC error 2.50% Median 97.50%
Devratron
 

Pl[l] 0.050 0.009 < 0.001 0.034 0.050 0.068

Pl[2] 0.950 0.009 < 0.001 0.932 0.950 0.966

 

The estimates of guessing probability for each examinee also produced very similar

results for both samples. Based on group membership estimate for each examinee, the

numbers ofguesser identified by the MixIRT-R model were 40 and 41 in training and

validation samples respectively.

Three 6 scale cut-scores were used for categorizing examinees into four

proficiency levels based on values of -1.08, -0.53, and 0.39. As mentioned in the previous

chapter, these cut-scores were chosen in such a way that the proportion of examinees into

each proficiency levels in the current sample matched with that obtained from the actual

statewide assessment. Therefore, in order to evaluate the impact ofremoving guessers

from parameter estimation, the guessers identified by the MixIRT-R model were

removed fiom the sample and the model parameters were estimated again. The results

presented below are summarized for the same number of examinees, i.e. only non-

guessers before and after removing guessers from the calibration.
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Table 4.17 Distribution of Proficiency levels in Original and Modified Training Sample

 

Original proficiency level Modified proficiency level

 

 

 

Frequency Percent Frequency Percent

Advanced 280 29.17 281 29.27

Basic 243 25.31 234 24.38

Below Basic 64 6.67 78 8.13

Total 960 100 960 100

 

A closer look to these results does not indicate any noticeable differences in proficiency

levels between the proportion of examinees before and after removing the guessers

identified by the MixIRT-R model. For example, the percentage of examinees that were

classified as proficient (proficient or advanced) changed slightly fiom 68.02 to 67.50.

Table 4.18 summarizes the distribution ofproficiency levels for validation

sample. The results from this sample were fairly similar to those obtained for training

sample. There was a small difference between original and modified examinee

classification as proficient (proficient or advanced) as indicated by changes in

proficiency level from 68.20% to 68.30%.

Table 4.18 Distribution ofProficiency levels in Original and Modified Validation Sample

 

Original proficiency level Modified proficiency level
 

 

 

Frequency Percent Frequency Percent

Advanced 281 29.30 283 29.51

Proficient 373 38.89 372 38.79

Below Basic 65 6.78 93 9.70

Total 959 100 959 100
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Testing statistical significance ofthese differences would provide usefirl

information for evaluating the meaningfulness of sample differences. As noted in Chapter

3, one way of comparing ability parameter frequency distributions was to use the

Kolmogorov-Smimov test. In addition to this test, a chi-square test was performed in

order to test the statistical significance ofthe differences between proficiency levels

classified by two samples. Table 4.19 provides Kohnogorov-Smimov test results.

Table 4.19 Test Statistics from Two-sample Kolmogorov-Smimov Test

 

Training sample Validation sample

 

 

0-Distributions 0-Distributions

Most Kolmogorov-Smimov Z i 0.456 0.708

Extreme . .

Differences Asymp. Srg. (2-tarled) 0.985 0.698

 

Kolmogorov-Smimov test results from Table 4.19 suggest that the difference between

two distributions is not statistically significant. Similarly, the results from the chi-square

test suggest that the difference for original and modified proficiency levels is not

significant for training sample (x2=1.60, df=3, p=0.66). The chi-square test also suggested

no significant difference for validation sample (f=6.83, df=3, p=0.08).

In an attempt to map the characteristics of the examinees classified into the

guesser class from this analysis, no specific conclusions could be made in terms of

gender and ethnicity. The only variable that seemed related with guessing was economic

disadvantage(ED), a measure of socio-economic status, operationalized byflee or

reduced lunch. That is, ED=1 were more likely to be classified as guessers than ED=0.
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4. 5.2. Results Based on the Ability-based Guessing Model

The results based on the MixIRT-A are presented for both training and validation

samples. This model identified that 7% of examinees were guessers for training sample,

and 10% ofthe examinees were guessers for validation sample. Interestingly, among

those 70 examinees for training sample and 100 examinees for validation sample that

were classified as guessers by this model, 36 for training sample and 37 for validation

sample were also classified as guessers by the previous model (MixIRT-R). This result is

presented in Figure 4.19.

MixIRT-R M‘XIRT'R

)
MixIRT-A

Training sample MIXIRT-A Validation sample

Figure 4.19 Number of examinees identified as guessers in training and validation sample

Table 4.20 presents the distribution ofproficiency levels in the original and the

modified training sample. Interestingly, the proficiency level for those who were

proficient (proficient or advanced) has decreased from 68.17 (original sample) to 63.87

(modified sample). This shows a large change in the proficiency level.
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Table 4.20 Distribution of Proficiency levels in Original and Modified Training Sample

 

Original proficiency level Modified proficiency level
 

 

 

Frequency Percent Frequency Percent

Advanced 262 28.17 240 25.81

Proficient 372 40.00 354 38.06

Basic 233 25.05 240 25.81

Below Basic 63 6.77 96 10.32

Total 930 100 930 100
 

Table 4.21 presents the distribution ofproficiency levels in original and modified

sample for validation sample. Interestingly, the proficiency level for those who were

proficient (proficient or advanced) has decreased from 68.11 (original sample) to 61.56

(modified sample). This also shows a large change in the proficiency level.

Table 4.21 Distribution of Proficiency levels in Original and Modified Validation Sample

 

 

 

 

Original proficiency level Modified proficiency level

Frequency Percent Frequency Percent

Advanced 259 28.78 215 23.89

Basic 226 25.11 253 28.1]

Below Basic 61 6.78 93 10.33

Total 900 100 900 100

 

Table 4.22 Test statistics from Two-sample Kolmogorov-Smimov Test

 

Training sample Validation sample

0-Distributions 0-Distributions

 

13er Kolmogorov-Smimov Z 1.322 1.721

Differences Asymp. Srg. (2-tarled) 0.061 0.005
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The statistical test of differences between two distributions in original and

modified sample suggested mixed findings for statistical significance at the a-level of

0.05. For the training sample, the Kolmogorov-Smimov Z shows non-significant

(Z=l .322, p=0.06l). However, for the validation sample, it shows a significant difference

as indicated Z value of 1.72 (p < 0.05).

In the chi-square test, the differences in proficiency levels (cell frequencies)

between original and modified sample were statistically significant for both training and

validation samples. For example, the chi-square test statistics of x2=8.363, df=3, p=0.039

indicate the statistically significant difference between cell fi'equencies for training

sample and 38:12.58, df=3, p=0.006 indicate the statistically significant difference

between cell frequencies for validation sample.

The next chapter provides discussion and conclusions for this study. It

summarizes the results, interprets those findings, and lists some implications of those

results.
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CHAPTER 5

DISCUSSION AND CONCLUSIONS

The primary goal of this study was to explore the effectiveness of mixture IRT

(MixIRT) models in estimating the differential performance of latent classes in a sample

(i.e., sample heterogeneity). The variables (e.g, guessers or non-guessers) used for

classifying examinees are referred to as sources of heterogeneity. When test-taking

heterogeneity sources are unobservable (e.g., examinees’ tendency to guess), and if their

group membership has to be inferred from the data, unobserved test-taking heterogeneity

is said to exist.

Therefore, in this study, the MixIRT model was used to investigate different

examinee test-taking behaviors through a simulation study that varied (a) sample size, (b)

test length, and (c) proportion of guessing. These factors were selected because these

were thought to be useful in many testing applications like item pool design or IRT-based

test bank development and pre-equating where precision ofparameter estimation is

paramount. Furthermore, varying these factors allowed the extent to which differing

degrees oftest-taking heterogeneity influence model parameter estimation to be studied,

particularly for different test lengths and sample sizes.

Given that MixIRT models are an extension of [RT models, their parameter

estimation is complicated by the intractability ofmathematical forms when trying to use

fi'equentist techniques. Therefore, Bayesian estimation was used instead because it can

handle high-dimensional problems and the distributions of parameters, can be explained
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regardless ofthe forms ofthe distributions ofthe likelihood and the parameters. Through

a simulation study, the precision ofparameter estimation was evaluated in the MixIRT

model for various realistic testing factors. As mentioned in Chapter Three, this study used

two forms ofMixIRT model to incorporate different guessing strategies, viz. MixIRT-R

and MixIRT-A.

Considering the extensive computational time required for the MCMC procedures

of Bayesian methods that were used, only two levels of test length and sample size were

considered. Since the impact ofunobserved test-taking heterogeneity, represented in this

study as a proportion of guessers, on model parameter estimation was the primary factor

of interest, the proportion of guessers per sample was varied. Two percentages of

guessing were used to represent 5% and 10% ofthe total examinees as guessers. The data

with no guessers, represented as 0% guessingproportion, was used as a baseline to

compare the results.

Another purpose of this study was to compare the parameter estimation accuracy

of the MixIRT model to two commonly used IRT models: the 2PL and 3PL models. A

parameter recovery study was used for conducting the aforementioned comparison. This

comparison was carried out by varying the three estimation models (i.e., 2PL, 3PL, and

MixIRT) for all the study factors in a fully crossed design. The precision of parameter

recovery was evaluated based on three commonly used evaluation criteria: bias, RMSE,

and Pearson correlation. The interpretations ofthe results were based on both numeric

and graphic representations.

The study’s third objective was to evaluate the accuracy ofMixIRT Bayesian

estimation in identifying guessers when there were guessers in a sample. For this
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purpose, the MixIRT model estimated the probability that each examinee belonged to

latent classes of either guessers or non-guessers. And the model’s classification accuracy,

which indicates the extent to which simulees are correctly categorized as guessers or non-

guessers, was evaluated. As noted earlier, the probability of an examinee likely to be a

guesser was estimated from the item response pattern of the examinee and the probability

was actually based on the average over a large number ofMCMC iteration. In this study,

the examinee was classified as a guesser if that probability was equal to or greater than

0.5.

The study’s final purpose was to investigate the impact of excluding aberrant

guessing responses in examinee proficiency level classification. In other words, the

ability continuum was divided into four different levels so that the impact could be

studied in terms ofproficiency classification. For proficiency classification, real data was

used as a firrther illustration of the MixIRT model’s usefulness. This goal has potential

for contributing to the better understanding of issues pertaining to cut-scores variation

and its policy implications.

It is important to clarify that this study does not suggest guessing is a bad thing

from a student’s perspective, especially in circumstances such as when there is no penalty

for guessing and when examinees run out of time. However, from the measurement or

psychometric point ofview, guessing introduces construct-irrelevant variance, which is a

major concern in validity studies. Therefore, the objective of this study was to document

the impact of guessing on parameter estimation thereby influencing proficiency level

classification. In simple terms, the practical example illustrated in this dissertation was

similar to using a correction for guessing to get the corrected distribution. Therefore, the
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goal was to illustrate how the proposed mixture modeling approach has potential to

address this very important issue encountered in many large scale assessments.

5.1 Interpretations of the Results

5. 1.1 Resultsfrom Parameter Recovery Study

As noted previously, one of this study’s major goals was to evaluate the accuracy

ofparameter estimates by comparing them to true (simulated) parameters. The results

presented both numerically in Tables 4.3 and 4.4 and graphically in Figures 4.2 to 4.5

show that both bias and RMSE values for discrimination and difficulty parameters are

generally lower in MixIRT-R model estimation as compared to those obtained from the

2PL model.

When no guessers were present in the sample, the bias and RMSE values were

similar in both MixIRT-R and 2PL models. The lower values ofthese indices show that

parameters are estimated reasonably well when no aberrant responses are present in the

data. However, bias and RMSE values tended to be higher for both models when the

proportion of guessers in the sample increased to 5% and 10%. This suggests that even in

presence of 10% guessers in the sample, the aberrant responses have a huge impact on

precision of item parameter estimation. Since commonly used IRT models (e.g., lPL,

2PL, 3PL) are not designed to handle the test-taking heterogeneity, alternate modeling

approaches are necessary. A mixture model provides such avenues by allowing different

latent classes to have their own set ofmodel parameters.

One ofthe primary objectives ofvarying study factors like test lengh and sample

size was to evaluate their capacity to recover stipulated item and person parameters. No

clear interpretation could be drawn from the available evidence about the impact of test
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length on bias and RMSE. Moreover, as other studies have also shown, the larger sample

size resulted in smaller bias and RMSE. This was, however, not the case for the 2PL

model when test length was 50 and the sample size was 2000. These findings play an

important role in judging the quality of IRT-based test banks and pre-equating used in

large scale assessments.

The average correlations between true (simulated) and estimated item parameters,

presented in Table 4.5 and Figures 4.6 to 4.9 show the recovery of item discrimination

and item difficulty parameters. Stronger correlations were associated with larger sample

sizes for both 2PL and MixIRT-R models. This finding was also consistent with the

literature on IRT parameter recovery.

The impact of guessing was profound in recovery of item discrimination

parameters for the 2PL model. For example, the correlation between true and estimated a

parameters decreased from 0.877 to 0.807 with the use of2PL model when the proportion

of guessers increased from 5% to 10%. The correlations were similar for both 2PL and

MixIRT-R models when no guessers were included in the sample. This suggests that

when unobserved test-taking heterogeneity is absent (i.e., no guessers are present in the

sample), it may not be necessary to use the complex models like the MixIRT.

Nevertheless, this situation may not be practical in most situations as guessing is widely

known to occur in many large scale assessments. .

Overall, difficulty parameters had better recovery than discrimination parameters.

This is consistent with the findings from earlier research, which showed that

discrimination parameters are usually more poorly estimated than the difficulty

parameters.
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Person parameter recovery results are summarized in Tables 4.6 and 4.7. Sample

plots of the parameter recovery results are also presented in Figures 4.14 and 4.15. The

2PL and MixIRT-R bias and RMSE values were similar, suggesting that ability

parameter recovery was fairly similar for both models. However, among the three models

compared in this study, the 3PL model performed the worst as indicated by large bias and

large RMSE. One possible reason for this poor performance could be a result of the types

of guessing behavior introduced in this simulation. That is, guessing is defined as

examinee behavior and estimated as a person parameter using a probabilistic model.

Generally, in the IRT framework, studies that use the 3PL model simulate data by

associating guessing as a parameter associated with the items indicated by the c

parameter. In addition, c-parameters are often recovered very poorly flVIartin et al., 2006;

Pelton, 2002), because these are generally estimated as lower asymptotes based on fewer

number of examinees. In this study, the model fit index Deviance Information Criteria

(Spiegelhalter, Best, Carlin, & van der Linde, 2002) showed that the fit of2PL model

was better than that of 3PL model even when 10% guessing proportion was present.

Finally, the true (simulated) parameters were generated based on the 2PL model and

introduction ofguessers might have noticeable impact that could not be captured by the

3PL model.

Furthermore, based on the correlations between estimated and simulated ability

parameters, the results were fairly similar in all three models and the magnitude of

correlation was generally strong. This indicates that the influence ofunobserved test-

taking heterogeneity was more noticeable in item parameter estimation than the person

parameter estimation. This finding suggests that the proposed mixture modeling approach
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is more appropriate in applications where precise estimation ofitem parameter is

paramount, such as pre-equating and IRT-based item banking or item pool.

5.1.2 Results on Classification Accuracy

To investigate the accuracy of Bayesian MixIRT model estimation in correctly

classifying guessers, this study evaluated the results based on an index called the

classification accuracy. Table 4.8 shows the classification accuracy when using the

MixIRT model. The classification accuracy was over 98% for the membership to the non-

guesser group and approximately 90% for the membership to the guesser group. In terms

ofweighted classification accuracy, the MixIRT model performed better in classifying

examinees into the group where they belonged. This was reflected by the accuracy of

96.92% or higher in all simulated conditions. The classification accuracy was 100% for

the conditions when there were no guessers in the sample. This finding suggests that the

MixIRT models can be used even in absence ofunobserved test-taking heterogeneity.

However, due to the complexity ofthe mixture models and the costs associated

estimating a large number ofparameters, there is no advantage ofusing the MixIRT

model when no guessers are present.

5. 1.3 Resultsfrom Empirical Study

Finally, results from the real data example are presented in Tables 4.11 and 4.12.

The MixIRT-R model identified that nearly 5% of examinees were likely to be guessers

in this sample. The precision of these estimates are reflected in a 95% credible interval
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around the estimate and the fact that MC error is less than 1/20‘“ of the standard

deviation.

The impact of excluding guessers in parameter estimation was also expressed in

terms of classification into proficiency levels. As mentioned in Chapter 3, this study used

four proficiency levels: Advanced, Proficient, Basic, and Below Basic, which are

commonly used in current test-based accountability system under NCLB. To evaluate the

degree to which the proficiency level classifications differ between the two samples, with

or without the guessers, a chi-square test was performed to compare whether the

proportions of student in proficiency levels are different between two samples. In

addition, the distributions oftwo ability (0) estimates using a two-sample Kolmogorov-

Smimov test show that the differences were not statistically significant for both samples.

This suggests that the specified MixIRT model did not find guessing as a potential cause

of observed difference in proficiency classification for this assessment. Furthermore, the

influence of a small proportion of guessers in the sample, i.e., less than 5%, did not have

much influence on parameter estimation and decisions regarding proficiency level

classification. It might be possible that, for an assessment where more examinees are

engaged in guessing, the impact on parameter estimation, as well as proficiency level

classification, could be noticeable.

The impact of guessing was noticeable in analysis using the MixIRT-A model.

This model identified 7% of examinees as guessers in the training sample, and 10% in the

validation sample. Interestingly, among those 70 examinees for training sample and 100

examinees for validation sample that were classified as guessers by this model, 36 and 37

for training and validation samples were also classified as guessers by the previous

84



model, i.e. MixIRT-R. This shows that the two models are related. Naturally, the ability-

based guessing model is expected to identify more guessers than the random-guessing

model.

As earlier the impact of excluding guessers from the sample was evaluated by

finding the differences in proficiency level and ability distribution of examinees before

and after removing the guessers from the calibration. Interestingly, the proficiency level

for those who were proficient (proficient or advanced) was changed from the original to

the modified sample for both training and validation samples. For example, the percent of

proficient was changed from 68.17 to 63.87 in training sample showing a noticeable

impact ofremoving guessers from the calibration. Similarly for validation sample, Table

4.21 showed that the proficiency level for those who were proficient (proficient or

advanced) had changed from original to modified sample. The changes in proficiency

level from 68.11% to 61.56% also indicate a noticeable impact on proficiency level

classification.

In terms of inferential statistics, the statistical test of differences between the two

distributions in the original and modified samples had mixed findings at a statistical

significance at alpha level of 0.05. In other words, the Kolmogorov-Smirnov Z shows

non-significant result for the training sample but shows a significant difference for the

validation sample. For the chi-square test, the differences in proficiency levels between

the original and modified samples were statistically significant for both samples. This

may have a large ramification from a policy perspective because even a few percent

changes in proficiency level receive attention by teachers, school administrators, and

policy makers. In this context, it may be prudent to decide to locate the appropriate cut-
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score on the continuum where few examinees are situated so that a change in the cut-

score would result in unnoticeable changes in proficiency classification. The change in

students’ proficiency estimates are also of interest to a wider audience that includes

parents, teachers, school administrators, educational researchers, and policy makers. This

puts unique responsibilities on educational researchers and psychometricians to answer

the question ofwhether the changes in student’s proficiency estimates are associated with

actual improvement in their ability or due to a measurement or scaling issues.

5.2 Study Limitations

Like any simulation study, there are also questions regarding the generalizability

of findings to real testing situations. Utmost care was taken to ensure that the simulated

conditions match with practical settings. However, due to limited flexibility ofmodeling

in the program used for MCMC sampling in this study, i.e. WinBUGS, it was not

possible to take full advantage of Bayesian inference. For example, a user has limited

control over sampling procedures implemented in WinBUGS. The DIC value was not

possible to compute for the mixture model in order to compare the model fit statistics.

Therefore, the model fit evaluation ofthe mixture model was limited to a likelihood ratio

test.

The findings documented in this study were based on 15 replications. This may

also raise a question about the generalizability of the findings. However, this decision

was made due to the slow performance ofWinBUGS. It should be noted that parameter

estimation using Gibbs sampling requires a substantial amount oftime, especially when it

is estimated using WinBUGS. In this study, the required computing time for each dataset
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varied anywhere from 1 hour to 6 hours ofcomputer time (with Intel Centrino Duo

processor 1.66GHz, 2 GB RAM) depending upon the sample size and test length.

Therefore, this study used a limited number of levels within each ofthe simulated factors.

The MCMC estimation were performed using WinBUGS. Therefore, it should be

noted that the results obtained may not just be due to the theoretical differences between

models and study factors, but may also be related to how the software implements the

MCMC methods. In other words, use of alternative software or methods of estimation

could potentially lead to different results. Thus, comparing the results obtained from the

Bayesian estimation method implemented in WinBUGS with other programs such as

BILOG-MG (Zimowski, Muraki, Mislevy, & Bock, 2003) or Mplus (Muthén & Muthén,

1998-2007) may provide an additional perspective on this issue.

In a real-data application, this study classified the examinees into latent classes of

guessers and non-guessers based on the probability of each examinees being classified

into each class. The recommendation ofthis study to delete the guessers from the

calibration to improve the parameter estimation may not always be realistic in many large

scale assessments (e.g., state large scale assessment) because states are required to report

the scores for each examinee.

5.3 Implications

There are several possible implications of this dissertation. First, this dissertation

explored the effectiveness ofusing MixIRT models to estimate the differential

performance of latent classes in a sample i.e., sample heterogeneity. By studying the

impact ofvarious study factors like sample size, test length, and proportion ofguessing
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on parameter recovery, it provides useful information for various testing applications like

item pool design or IRT-based test bank development and pre-equating. This study also

provides some direction on identifying aberrant item responses in any large scale

assessment and mapping the profile of guessers.

This study focused on an important issue ofpsychometrics, i.e. parameter

estimation. Ifparameters are not well estimated, the proportion in Adequate Yearly

Progress (AYP) category will not be accurately reported. This study has the potential to

increase our understanding of challenges and conditions in the modeling of complex

behavioral phenomenon, such as test-taking behaviors. Furtherrnore, illustrative use of

WinBUGS may encourage researchers and practitioners to utilize Bayesian methods for

investigations of alternate modeling strategies when their data do not fit a single IRT

model. Finally, this dissertation also provided a substantive and policy-relevant

illustration of ignoring test-taking heterogeneity, especially by showing how simplistic

applications of2PL and 3PL models could adversely impact not only the examinees but

also schools, teachers, policymakers.

5.4 Future Directions

There are several possible future directions for this study. First, a future study

could model complex guessing strategies by taking interaction of ability, item difficulty,

and item location into account. Although the 3PL model performed less well than the 2PL

in this study potentially due to the guessing simulation favoring the 2PL, in practical

situations, we may not know which model would perform better. Therefore, a

comparative study of the 2PL and 3PL using real data may provide some useful findings.
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Similarly, the estimations from this study could be compared with those from other

estimation programs, such as BILOG-MG (Zimowski et al., 2003), Mplus (Muthén &

Muthén, 1998-2007), and mdltrn (von Davier, 2005). Although BILOG-MG is not

intended to model unobserved test-taking heterogeneity, the recovery ofparameter could

still be compared especially for the sample with no-guesser (0% proportion of guesser in

this study) and the sample after removing guessers. Also, comparing the MixIRT model

parameter estimation from WinBUGS with that from M-Plus or mdltrn might provide an

additional perspective on the direction that could be undertaken if the MixIRT model

approach has to be realized in the practical situations.

In terms ofhandling the number of classes in the mixture model, the present

study was limited to two latent classes. Future studies could also explore such

investigation using more than two classes. The complexity ofmixture modeling is further

increased by simulating the mixtures of one-parameter and 2-parameter IRT models, or

even mixtures ofunidimensional and multidimensional IRT models. Such mixture IRT

modeling has potential to provide useful information for applications such as sub-score

reporting and cognitive diagnostic modeling. Future studies could investigate the

practicality of estimating such complex models in the mixture IRT framework.

As indicated in several earlier studies using WinBUGS, use oflow level

programming languages such as FORTRAN or C++ to implement Gibbs sampling may

provide more flexibility in addition to reduced computational time. Some ofthe limited

flexibility ofmodeling in this study should not be attributed to the Bayesian estimation so

much as to the estimation tool used in this study, i.e. WinBUGS. Therefore, we may gain
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some modeling and computational efficiency while moving in the direction ofusing a

low level programming language.

5.5 Summary of the Findings and Conclusions

In summary, this study shows that the MixIRT model can precisely recover the

model parameter. It also found that ignored unobserved test-taking heterogeneity, like the

presence of guessers in a sample in this study, had a noticeable impact on the precision of

recovery ofboth item and ability parameters. The item parameters were estimated more

precisely in MixIRT as compared to 2PL model. Finally, the mixture IRT model classified

examinees into guessers and non-guessers reasonably well. The impact of guessing on

ability estimation was not severe when the percentage of guessers was low, i.e. less than

5%. However, when the proportion of guesser was higher, say 7% to 10%, the impact was

noticeable as indicated by significant changes in examinees classified into proficiency

levels.

This study investigated an important psychometric issue in large scale assessment,

such as modeling unobserved test-taking heterogeneity, using IRT mixture model. It

identified the guessers by estimating the probability based on response pattern of

examinees. This study also documented the impact of excluding the guessers from the

calibration to improve the parameter estimation, which has a large impact on improving

the quality of IRT-based item banking and the inferences drawn from the tests assembled

using the item pool. Since states are required to report the scores for each examinee, the

recommendation suggested by the results of this study to delete the guessers from the

calibration to improve the parameter estimation may not always be practical in many
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large scale assessments. However, this study suggests that the proposed mixture

modeling approach can be applied in many large scale assessment such as IRT-based _

item banking to improve the quality ofpre-equating and any inferences drawn from the

item parameter estimation.

This dissertation explored a psychometric perspective of modeling guessing as a

person characteristic rather than associating it with the item property as is commonly

done with the three-parameter logistic model. Finally, use of real data and illustration of

the MixIRT model’s usefulness in documenting the changes in proficiency level

classifications has potential for improving the understanding of issues pertaining to cut-

scores variation and its policy implications.
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APPENDIX A

 

# Mixture IRT model

 

model

{

for (i in 1:N) {

for (j in lzJ) {

Plisj] <- (Z-Glil)/5 + (G[i]-1) * 1/ (1+eXp(-(a[il*(thetalil-bliDD) ;

glidl ~ dbemmlisjl) ;

G[i] ~dcat(PI[]);

pgli] <- equals(G[il,1);

#probability ofbeing in a guesser class

# priors

PI[1:2] ~ ddirch(alpha[]);

for (j in 1:1) {

a[i] ~ dnorm(1,2) I(0,); #Truncated Normal

# a[i] ~ dlnonn(0,2); #Log Normal

b[j]~ dnorm(0, 1) ;

}

for (i in 1:N) {

theta[i] ~dnorm(0, taut) ; #prior for ability parameter

}

taut ~dgamma(0.01,0.01);
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Appendix A.2 WinBUGS code for Model 2 (MixIRT model with ability based guessing)

model

{

for (i in 1:N) # N is the number of examinees

{

for (j in 1:J) # J is the number of items

{

logit(P[i.i]) <- (aljl*(thetalil-bljl)1-(alphalil-1)*stepfbljl-fl16ta[il-delta[il)*(afil*(thetalil-

bfi])+1.4);

check[i,j] <- (alpha[i]-1) * step(b[j]-theta[i]-delta[il);

# 1.4 value is given instead of estimating c, because logit (-l .4) = 0.20

# step function (b[j]-theta[i]-delta[i]) =1 if an itemj is difficult for an examinee i with

threshold delta

# alpha estimates the group membership

rliaj] ~ dbem(P[iJl) ;

:umcheckfi] <- surn(check[i,1:J]);

check2[i] <- sumcheck[i];

alpha[i] ~dcat(PI[]); # group membership is categorical

#priors

for (j in 1:J) {

b[j]~ dnorm(0, 1) ; # Normal prior for difficulty parameter

a[j] ~ dnorm(1,2) I(0,); # Truncated normal for discrimination parameter

for (i in 1:N) {

theta[i] ~dnorm(0, taut) ; #prior for ability parameter

delta[i] ~ dnorm(0,10); #tlrreshold for different degree of guessing

}

taut ~dgarnma(0.01,0.01); # hyper-parameter for precision

Pl[l] ~ dbeta(l,l);

Pl[2] <- 1.0- Pl[l];
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APPENDD( B

FIGURES FOR EVALUATING CONVERGENCE OF THE MCMC METHODS

Figure 8.1 Convergence Diagnostic Plots for a difficulty parameter of a randomly

selected item [True b =2. 08, Estimated b =2.125]

Figure B.1a BGR plot for difficulty parameter estimate
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Figure B. lb. History plot for difficulty parameter estimate
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Figure B. 1 c. Autocorrelation plot for difficulty parameter estimate
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Figure B.1d. Density plot for difficulty parameter estimate
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Figure 32 Convergence Diagnostic Plots for an ability parameter of a randomly selected

person [True theta=1.365, Estimated=0. 862]

Figure B.2a BGR plot for ability parameter estimate
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Figure B.2b. History plot for ability parameter estimate
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Figure B.2c. Autocorrelation plot for ability parameter estimate
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Appendix C. ADDITIONAL TABLES

Table C.1 Simulated Item Parameters (Test Length=25)

 

Item Discrimination Difficulty

 

Number (a) (b)

l 0.98 0.17

2 1.22 0.15

3 0.97 0.23

4 1.17 -1.22

5 1.48 -1.90

6 0.99 -1.63

7 1.08 0.98

8 1.64 -0.29

9 0.85 -0.51

10 1.08 -0.18

1 l 1.49 0.14

12 0.78 0.72

13 0.75 -0.98

14 0.69 0.10

15 0.79 0.65

16 0.99 —0.85

17 0.59 -l .61

18 0.63 0.19

19 0.68 0.12

20 0.94 2.09

21 1.35 -0.04

22 0.99 -0.01

23 0.87 -0.41

24 0.98 0.97

25 1.76 0.09
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Table C.2 Simulated Item Parameters (Test Length=50)

 

 

Item Discrimination Difficulty Item Discrimination Difficulty

Number (3) (b) Number (a) (b)

1 0.70 0.53 26 1.19 0.19

2 1.17 -l.ll 27 1.15 -0.28

3 0.72 -l .04 28 1.28 0.71

4 0.85 -0.48 29 1.37 1.26

5 0.96 -1.19 A 30 1.01 -0.89

6 1.06 0.45 31 0.92 -0.02

7 0.98 -0.22 32 1.06 -0.89

8 1.54 -l .03 33 1.28 0.60

9 1.50 -0.71 34 1.36 0.40

10 1.17 -0.79 35 0.87 -0.41

1 l 1.02 —0.06 36 1.26 —0.45

12 0.82 -l .93 37 0.96 -0.60

13 0.89 -0.56 38 0.92 0.74

14 0.70 -1.11 39 1.14 -0.20

15 0.91 0.26 40 1.26 -0.12

16 0.89 0.48 41 0.87 -1.01

17 1.55 0.12 42 0.69 0.25

18 1.21 —0.08 43 0.99 2.15

19 1.02 -2.11 44 1.15 0.23

20 0.93 0.02 45 1.02 -1.14

21 1.02 —0.70 46 1.48 0.20

22 1.21 -0.21 47 0.92 -1.15

23 1.75 -0.26 48 1.22 0.12

24 1.09 -0.93 49 0.82 —1.35

25 1.24 0.46 50 0.73 0.58
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Table 03 Simulated Item Parameters (Test Length=40)

 

 

Item Discrimination Difficulty Item Discrimination Difficulty

Number (a) (b) Number (a) (b)

1 0.853 0.575 21 1.298 0.694

2 1.176 -0.226 22 0.785 1.945

3 1.227 -1.140 23 0.798 0.088

4 1.175 0.369 24 0.800 0.021

5 0.858 0.873 25 0.911 0.776

6 0.673 -0.835 26 0.633 -0.004

7 0.833 -2.274 27 1.281 1.128

8 0.844 0.797 28 0.832 1.406

9 1.026 0.061 29 1.334 0.708

10 1.231 -1.493 30 1.807 0.913

11 1.897 -0.491 31 1.093 0.323

12 0.999 0.935 32 0.889 0.153

13 0.974 -0.460 33 1.189 -0.555

14 0.926 -0.212 34 0.710 0.009

15 0.769 0.004 35 1.019 -0.884

16 1.135 -0.032 36 1.004 1.526

17 0.961 -0.404 37 0.951 -0.132

18 1.176 -0.926 38 0.814 —0.586

19 1.300 0.568 39 0.743 -0.793

20 0.687 0.583 40 0.985 0.715
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Appendix D. ADDITIONAL PLOTS

Figure D.l Convergence Diagnostic Plots for a discrimination parameter of a randomly

selected item [True a =0. 966, Estimated (1 =1.008]
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Figure D.2 Convergence Diagnostic Plots for a difficulty parameter estimate of a

randomly selected item [True b =0.22 78, Estimated b =0.4627]
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Figure D.3 Convergence Diagnostic Plots for an ability parameter estimate of a randomly

selected examinee [True 6:2. 545, Estimated 19:2. 13 7]
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