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ABSTRACT

THE NEURODEVELOPMENTAL EFFECTS OF CHRONIC MODERATE
PRENATAL CAFFEINE EXPOSURE IN RATS

By

Deborah Elizabeth Soellner

Caffeine is the most widely used psychostimulant in the world. Although women
are currently advised to reduce caffeine intake throughout pregnancy, it is estimated that
70-95% of pregnant women continue to consume the drug. The widespread use of
caffeine is of concern because it crosses both the placental and blood brain barriers to
accumulate in the developing brain. Furthermore, the half-life of caffeine is greatly
prolonged in the developing fetus, being twenty fold that of an adult. Caffeine is an
adenosine receptor antagonist and adenosine is a well-known critical neuromodulator
during brain development. Adenosine functions to reduce neuronal activity thus
providing protection against excitotoxicity. When adenosine receptors are inhibited by
caffeine, there is an overall increase in glutamate neurotransmission particularly in brain
regions with an abundance of A1 adenosine receptors such as the hippocampus.
Glutamate receptors play a role in numerous developmental processes including activity-
dependent migration, synapse formation, and synaptic plasticity. Therefore, increased
glutamate neurotransmission in the developing brain as a result of prenatal caffeine
exposure could have numerous neurodevelopmental consequences. In order to elucidate
the effects of prenatal caffeine exposure, pregnant rats were exposed to chronic moderate

doses of caffeine (75, 150, or 300 mg/L) ad libitum in their drinking water throughout



gestation. Moderate doses and oral administration were chosen to maintain human
relevance of the studies.

The objectives of this dissertation were to determine whether caffeine and its
primary metabolites accumulate in the fetal brain and the effects of prenatal exposure to
these drugs on hippocampal glutamate receptor expression, glutamate-mediated calcium
transients, learning and memory behaviors, and anatomy. The findings presented in this
dissertation show that chronic prenatal exposure to moderate doses of caffeine results in
an accumulation of caffeine and its primary metabolites in the fetal brain. Prenatal
caffeine exposure also alters protein expression of the NR1, NR2A, and NR2B subunits
of the NMDA receptor and reduces glutamate-induced peak calcium transients in
caffeine-exposed hippocampal neurons. Further, caffeine-exposed offspring show
impaired learning and memory behavior in both the novel object recognition task and
radial arm maze, but not in the Morris water maze. Lastly, prenatal caffeine exposure
results in a significant increase in total hippocampal volume in caffeine-exposed juvenile
rats, however this effect does not persist into adulthood. In summary, the studies in this
dissertation present novel findings of cellular, behavioral, and anatomical

neurodevelopmental effects following moderate exposure to prenatal caffeine.
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Chapter 1. Introduction and Specific Aims

A. Caffeine Consumption, Metabolism, and Distribution

Caffeine is the most widely consumed psychoactive drug in the world due to its
presence in coffee, tea, chocolate, soft drinks and numerous medications. The caffeine
content in food and beverages varies considerably, depending on the food or beverage
and its method of preparation. For instance, an 8 oz. cup of coffee contains
approximatély 40-160 mg caffeine depending on whether it is prepared by brew or drip.
A single cup of tea contains approximately 30-70 mg depending on the type of tea leave
used. Soft drinks contain between 30-45 mg caffeine per 8 oz. The daily intake of
caffeine in the United States is estimated to be 4.0 mg/kg in a 70 kg person
(approximately 280 mg/day) (Barone & Roberts, 1996).

Once consumed, caffeine is rapidly absorbed by the stomach and intestines to
reach the blood (Fredholm er al., 1999). Caffeine’s hydrophobic chemical composition
allows it to cross all biological membranes, including the blood brain barrier, to be
distributed throughout the body (McCall ef al., 1982). Peak plasma concentrations are
reached within 15-120 minutes of intake, with consumption of a single cup of coffee
resulting in plasma concentrations of 1-10 pM caffeine (or 0.25-2 mg/L) (Fredholm et
al., 1999). Excessive consumption of caffeine can produce toxic effects. In rats, caffeine
is toxic at doses greater than 200 mg/kg, resulting in seizures, which may lead to death
(Bonati et al., 1984-1985). In humans and animals, the effects of caffeine are biphasic.
At low doses, such as those commonly consumed in a few cups of coffee, caffeine

produces stimulatory effects such as increased locomotor activity, enhanced attention,



and reduced fatigue. However, at high doses, caffeine leads to reduced locomotor
activity, inability to concentrate, increased anxiety, and other negative side effects.
Caffeine is a methylxanthine that is metabolized by the cytochrome P-450
enzyme CYP1A2 in the liver to three primary dimethylxanthines: theophylline,
theobromine, and paraxanthine. These metabolites, like caffeine, are pharmacologically
active within the body and brain. The metabolism of caffeine is similar in humans and
rodents, however the primary metabolites differ. For instance, in humans the primary
metabolite of caffeine is paraxanthine (Nehlig & Derby, 1994), whereas in rats, the
primary metabolite of caffeine is theobromine although the levels of each metabolite have
been found to be comparable (Eteng et al., 1997). The half-life of caffeine is
approximately 2-4 hours in the adult human and 1-2 hours in the adult rat (Bonati ef al.,
1984-1985). In the adult rat, the half-life of each metabolite is approximately 5-6 hours
for theobromine, 4-5 hours for theophylline, and 1-2 hours for paraxanthine. For
humans, the half-life of each metabolite is approximately double the half-life in rats. The
half-life of caffeine and its metabolites can be prolonged by various factors including
pregnancy and the use of oral contraceptives. During the third trimester of pregnancy, the
half-life of caffeine is increased to 10-20 hours (Aldridge ef al., 1981). The use of
caffeine during pregnancy is also of concern because it is estimated that the half-life of
caffeine in a newborn ranges from 50 to 100 hours with a more prolonged half-life in the
fetus (Arnaud, 1993). The slower clearance of caffeine in the newborn and fetus is due to
a deficiency in cytochrome P-450 activity (Aranda er al., 1979a). Cytochrome P-450
enzymes develop during early postnatal life and clearance of caffeine does not attain

adult rates until 6 months of age (Aranda et al., 1979a: Parsons & Neims, 1981).



The psychostimulatory effects of caffeine are a result of its actions within the
central nervous system. Caffeine enters the brain by both passive diffusion as well as a
carrier-mediated adenine transport system (McCall ef al., 1982). Caffeine enters the
brain more rapidly than its metabolites due to its increased lipid solubility and decreased
plasma protein binding. In adult rats, a single oral dose of 5 or 25 mg/kg results in
caffeine levels that exceed metabolite levels in both the brain and plasma (Wilkinson &
Pollard, 1993). However, each metabolite attained measurable levels within the plasma
after 5 min and within the brain by 30-60 minutes. In mice, brain levels of caffeine
exceeded levels of each metabolite as quickly as 15 minutes following exposure (Shi &
Daly, 1999). Therefore, caffeine enters the brain rapidly to produce its effects, but is
more quickly metabolized allowing its active metabolites to then exert their effects within

the nervous system.

B. Actions of Caffeine and its Metabolites

Caffeine is known to have multiple dose-dependent biological actions. The four
best characterized effects of caffeine are 1) inhibition of cyclic nucleotide
phosphodiesterase activity leading to reduced cyclic AMP degradation, 2) ryanodine
receptor mediated stimulation of intracellular calcium release, 3) antagonism of
GABA(A) receptors, and 4) antagonism of adenosine receptors (Daly, 2007). At the
concentrations attained following normal consumption of caffeine, it is unlikely that
caffeine has any effects through the first three mechanisms (Figure 1-1). For instance, it
has been shown that caffeine and theophylline are relatively weak phosphodiesterase

inhibitors and levels of these compounds must reach concentrations of 500 uM and 100



uM, respectively, in order to exert inhibitory effects (Daly, 2000). Caffeine increases the
sensitivity of ryanodine receptors to intracellular calcium causing opening of calcium
release channels (Daly, 2000), however millimolar concentrations of caffeine must be
used in order to elicit ryanodine receptor mediated intracellular calcium release
(McPherson et al., 1991). Similar to the ryanodine receptor, caffeine influences
GABA(A) receptors only at extremely high doses. Caffeine inhibits the binding of both
GABA and the benzodiazepine diazepam to GABA(A) receptors (Marangos ef al., 1979).
However, the affinity of caffeine for GABA receptors is low and it is estimated that
concentrations needed to effectively block these receptors would have to be
approximately 40 times greater than concentrations acquired following normal coffee
consumption (Fredholm ef al., 1999). Further, caffeine may act primarily on glycine
receptors. Caffeine significantly inhibits glycine receptors at concentrations of 500 uM,

~whcreas concentrations of 4mM are needed to produce similar inhibition of GABA
receptors (Daly, 2007). Although not well studied, millimolar concentrations of caffeine
may also have direct effects on numerous ion channels, including voltage sensitive L-
type calcium channels, potassium channels, and sodium channels (Daly, 2000). Given
the millimolar concentrations required for caffeine activate these mechanisms, the

primary effects of caffeine within the nervous system are likely mediated through

antagonism of adenosine receptors.
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Figure 1-1. Caffeine elicits differential concentration-dependent effects within the brain.
After consumption of a single cup of coffee, the concentrations of caffeine attained are
likely acting exclusively at the A1 and A2A adenosine receptors. Supraphysiological
concentrations of caffeine, which approach toxic levels, are needed to induce inhibition
of phosphodiesterase activity, blockade of GABA(A) receptors, and activation of
intracellular calcium release. Reproduced from Fredholm et al., 1999.



C. Adenosine and its Receptors

The main target of caffeine and its metabolites is antagonism of adenosine
receptors. Four heptahelical G-protein-coupled adenosine receptors have been classified
and named the A1, A2A, A2B, and A3 receptors (Fredholm et al., 2000). Although
adenosine is not classified as a neurotransmitter, it has considerable neuromodulatory
effects, including general inhibition of neuronal activity (Fisone et al., 2004). Adenosine
is found ubiquitously throughout the brain and is synthesized both intracellularly and
extracellularly. Adenosine can be formed via two main pathways. The first pathway
involves the breakdown of adenine nucleotides, such as ATP. When this occurs, ATP is
dephosphorylated to produce AMP, which then forms adenosine (Fredholm e al., 1999;
Fisone et al., 2004). Thus, adenosine levels produced via this pathway are highly
dependent on the utilization of ATP. A second pathway involves the hydrolysis of S-
adenosyl-homocysteine, although this pathway is not thought to be the primary pathway
involved in adenosine formation (Fisone et al., 2004; Fredholm e al., 2005). Levels of
intracellular adenosine are in the 25-250 nM range and increase with cellular activity,
oxygen utilization, and neurotransmitter release (Fredholm, 2007). Adenosine is broken
down by adenosine kinase and adenosine deaminase (Fredholm, 2007). Adenosine
kinase functions to regulate physiological levels of adenosine and is the primary enzyme
responsible for maintaining low levels of intracellular adenosine (Fredholm et al., 2005).
Adenosine deaminase functions to reduce supraphysiological levels of adenosine
produced during pathological conditions such as hypoxia or ischemia. During these
conditions, adenosine levels rise rapidly due to the massive release of ATP, which is

rapidly converted to adenosine (Fredholm, 2007). Because adenosine generally functions



within the brain to reduce the level of neuronal activity, it plays a prominent role in
protecting the brain from excitotoxic cell death caused by hypoxia, seizures, and
inflammation (Fredholm, 2007).

Of the four adenosine receptors, the Al and A2A adenosine receptors bind
caffeine with the highest affinity. These receptors are primary receptors antagonized by
caffeine and therefore are responsible for caffeine’s effects within the nervous system
(Fredholm et al., 1999). The A2B receptor, although blocked by caffeine, is only
functionally active when endogenous adenosine reaches extremely high levels. These
levels are generally only attained during pathological conditions, such as hypoxia-
ischemia, and thus caffeine has little effect at these receptors during normal
circumstances (Fredholm, 2007). Further, caffeine has been shown to have little action at
A3 receptors (Fredholm et al., 1999). Theophylline, paraxanthine, and theobromine also
target the A1 and A2A adenosine receptors. Theophylline and paraxanthine are more
potent than caffeine at non-selectively inhibiting both the A1 and A2A adenosine
receptors (Shi & Daly, 1999). Theobromine has a lower affinity than caffeine at both A1
and A2A receptors, but it is selective for the A1 receptor (Shi & Daly, 1999). Therefore,
to understand the effects of caffeine in the brain, the combined actions of caffeine and its
metabolites must be considered since they all exert effects on adenosine receptor

function.

D. Developmental Expression of A1 and A2A Receptors
The A1 and A2A receptors are both expressed during gestational development. In

the developing rat brain, the Al receptor is one of the earliest receptors expressed



(Rivkees et al., 2001) with mRNA detectable by gestational day 14 and adult patterns of
distribution established by gestational day 20 (Weaver, 1996). By gestational day 14,
functional binding of the A1 receptor can be detected in low levels throughout the brain
using radioligand binding with the A1 receptor antagonist DPCPX (Rivkees, 1995). A2A
receptors are also present prenatally (Svenningsson et al., 1999) with mRNA expression
detectable in the striatum by gestational day 14 in rats (Weaver, 1993). In humans,
adenosine receptors are believed to be the earliest receptor system developed (Herlenius
& Lagercrantz, 2001) and as a result may be susceptible to the effects of prenatal caffeine
exposure. Developmentally, adenosine plays a key role in the inhibition of neuronal
activity (Fisone et al., 2004), formation of axons (Turner et al., 2002), and

neuroprotection (Rivkees et al., 2001).

E. Al and A2A Adenosine Receptors

The A1 and A2A adenosine receptors are G-protein-coupled and are characterized
by their differential effects on adenylyl cyclase, with A1 receptors being inhibitory and
A2A receptors being stimulatory to adenylyl cyclase (Londos & Wolff, 1977). The Al

receptors are linked to both Gi and Go proteins, whereas A2A receptors are linked to Gs

and Gg|f proteins. Al receptor expression is highest in the cortex, hippocampus and

cerebellum, although the receptor is ubiquitously expressed throughout the brain. In each
region, A1 receptors are primarily located on presynaptic nerve terminals (Fredholm &
Dunwiddie, 1988). Activation of Gi protein-coupled A1 receptors leads to inhibition of
adenylyl cyclase activity, decreases in cAMP concentrations, and consequently inhibition

of N, P, and Q-type voltage gated calcium channels (Fredholm er al., 2000). Activation



of Go-protein-coupled A1 receptors leads to an activation of G-protein-dependent inward
rectifying potassium channels causing neuronal hyperpolarization (Figure 1-2; Schubert
et al., 1997). These two actions 1) activation of potassium channels and 2) inhibition of
calcium channels, allows adenosine via the A1 receptor to inhibit neuronal activity and
diminish transmitter release, providing protection against excitotoxicity (Schubert et al.,
1997). In the hippocampus, adenosine acting at the Al receptor can decrease presynaptic
calcium influx via the N, P, and Q-type voltage gated calcium channels. This decrease in
calcium influx leads to an inhibition of synaptic transmission at mossy fibre synapses
(Gundlfinger et al., 2007).

A2A receptors play a stimulatory rather than inhibitory role. Thus, activation of
Gs-protein-coupled A2A receptors leads to stimulation of adenylyl cyclase and activation
of L-type calcium channels (Fredholm et al., 2003). A2A receptor expression is highest
in dopamine-containing regions of the brain, such as the striatum, nucleus accumbens,
and olfactory tubercle (Fredholm et al., 2007). In the striatum, A2A receptors are located
postsynaptically on GABAergic medium spiny neurons. Adenosine increases adenylyl
cyclase activity, which results in increased activity of GABAergic medium spiny
neurons, which project to the basal ganglia. Increased activity of the GABAergic
neurons results in greater inhibition of cells in the basal ganglia, which reduces overall
motor activity (Figure 1-3). Recently, it has been found that A1 and A2A receptors are
sometimes co-expressed. For instance, these receptors have been shown to form
heteromers in glutamatergic nerve terminals in the striatum (Ciruela et al., 2006).

Current understanding of the neuromodulatory actions of adenosine may be broadened if



it is found that the A1 and A2A receptors produce opposing actions within the same
regions of the brain.

A1 receptor mediated inhibition of calcium channels and activation of potassium
channels results in decreased transmitter release. Al receptor activation decreases
transmission of almost every major neurotransmitter within the brain, including
glutamate, GABA, dopamine, and serotonin (Dunwiddie & Masino, 2001).
Glutamatergic transmission is the most effected in that adenosine is able to almost
completely abolish release of glutamate. For instance, in hypothalamic cultures, in the
absence of glutamate transmission, adenosine has little effect on intracellular calcium,
however when glutamate transmission is not blocked, adenosine can decrease glutamate
transmission resulting in decreased postsynaptic calcium influx (Obrietan ef al., 1995).
These results suggest that the effects of adenosine at the A1 receptor are glutamate
dependent.

Understanding the actions of adenosine at the A1 and A2A receptors makes it
possible to understand how antagonism of these receptors by caffeine produces its
stimulatory effects. Antagonism of A1 receptors by caffeine reduces the inhibition of
adenylyl cyclase, which leads to an increase in neurotransmitter release and an overall
increase in neuronal excitability (Figure 1-2). Increased activity of neurons in the cortex
and hippocampus is thought to mediate the ability of caffeine to increase attention and
information processing. Antagonism of A2A receptors leads to a reduction in adenylyl
cyclase activity, which in turn reduces the activity of the GABAergic medium spiny

neurons projecting to the basal ganglia. This allows neurons in the basal ganglia to
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become more active and is believed to account for the ability of caffeine to increase
locomotor activity (Figure 1-3).

Recently, it has been shown that caffeine acts via A1 receptors on cortical nerve
terminals to enhance glutamate transmission (Wang, 2007). Application of caffeine (3
uM) or the A1 receptor antagonist DPCPX facilitates glutamate release. However, when
both antagonists were applied at the same time, there was no additional facilitation of
glutamate release suggesting a common mechanism of action (Wang, 2007). Further, Al
receptors play an important role in limiting excitotoxicity following seizures or hypoxic
conditions, with antagonism of these receptors exacerbating damage (Fredholm, 2007).

Although both the A1 and A2A receptors are present and affected by caffeine, the
primary focus of the studies presented in this dissertation will be on the A1 receptor due
to its widespread distribution throughout the brain and its interactions with glutamate
neurotransmission. The A1 receptor is the most abundant of the four adenosine receptors
within the brain and is distributed throughout the brain and spinal cord, with the highest
levels of expression in the hippocampus, cerebellum, and cerebral cortex (Fastbom er al.,
1986; Jarvis et al., 1987, Weaver, 1996; Svenningsson et al., 1997, Dunwiddie &
Masino, 2001). Although A2A receptors are also expressed in the hippocampus, their
most prominent levels of expression are in dopamine rich brain regions such as the
striatum (Svenningsson ef al., 1999). The role of the A2A receptors in the hippocampus
has begun to be understood through the use of knockout animals. Currently, it is
hypothesized that the actions of the A2A receptor in the hippocampus are the result of its
ability to modulate the A1 receptor (Johansson et al., 2001). Thus, the role of the A2A

receptors in the hippocampus will be discussed further with regards to its effects on Al
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receptor function. Currently, the cellular consequences of blocking the regulatory
functions of either adenosine receptor during development are unknown, however

receptor knockout studies have provided some insight.
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Figure 1-2. The actions of (A) adenosine and (B) caffeine at the A1 receptor. (A) When
adenosine binds the A1 receptor (1) it decreases adenylyl cyclase activity (AC) and
cAMP formation (2). Adenosine also reduces calcium entry via voltage-gated calcium

h: Is (3) and i p ium efflux via pc i h ls, which results in
hyperpolarization of neuron and decreased neurotransmitter release (5). (B) When
caffeine antagonizes the A1 receptor (1), adenosine can no longer inhibit adenylyl
cyclase activity resulting in an increase in both adenylyl cyclase activity and cAMP
formation (2). Further, voltage-gated calcium channels are open which allows calcium
entry (3) and potassium channels are blocked (4). The accumulation of positive calcium
and potassium ions within the neuron allows the cell to be more easily depolarized,
thereby increasing neurotransmitter release (5).
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Figure 1-3. The actions of adenosine and caffeine at the A2A receptor located
postsynaptically on striatal GABAergic interneurons. Adenosine normally binds to the
A2A receptor to stimulate adenylyl cyclase (AC) activity, which increases GABAergic
output and results in decreased motor activity. When caffeine blocks adenosine from
binding to the A2A receptor, adenylyl cylcase activity is decreased resulting in decreased
GABAergic output to the basal ganglia which increases overall motor activity. SN=
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F. Al and A2A Receptor Knockout and Transgenic Studies

| The developmental effects of chronic antagonism of adenosine receptors by
caffeine may be similar to the lack of functional A1 and A2A receptors in knockout
studies. Knockout studies have provided valuable insight into the neuromodulatory roles
of adenosine and have been instrumental in understanding how caffeine is acting at each
receptor to produce its effects. Importantly, these studies have shown that adenosine
receptors play a significant role in numerous behaviors, including learning and memory.

A1 receptor knockout mice (A1R-/-) do not exhibit birth defects or decreased
birth weights, but do differ at the cellular level when compared to wildtype mice (A1R
+/+) (Johansson et al., 2001). In hippocampal slices from A1R-/- mice, application of
adenosine does not inhibit glutamate transmission or induce potassium mediated
postsynaptic hyperpolarization as it does in wildtype mice (Masino et al., 2002). Fast
excitatory postsynaptic potentials (fEPSPs) are increased in hippocampal slices in AIR
wildtype mice after the application of A1R antagonists, however this effect is abolished
in AIR knockout mice (Johansson et al., 2001). Together, these results show that
adenosine does indeed act at the A1 receptor to modulate glutamatergic
neurotransmission. Further, A1R knockout mice lack paired pulse facilitation in
hippocampal slices but do not show any differences in long-term potentiation (LTP) or
long-term depression (LTD) when compared to wildtype mice (Gimenez-Llort et al.,
2005). |

Behaviorally, A1 receptor knockout animals have similar performance to wildtype
animals in sensorimotor reflex tests, including tests of grasping ability, visual placing,

and locomotor activity (Johansson et al., 2001). However, A1R knockout mice show
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impairments in anxiety and habituation tests. AIR knockout and A1R heterozygous mice
show increased measures of anxiety, with knockout mice entering less and spending less
total time in the lighted area during dark-light testing (Johansson et al., 2001). Similar
results were found using an elevated plus maze to test anxiety (Gimenez-Llort et al.,
2002). In a six-arm radial tunnel maze, A1R knockout mice habituated significantly less
to the maze, and exhibited greater total activity and arm explorations than wildtype mice
(Gimenez-Llort et al., 2005). However, in open-field testing A1R knockout mice show
decreased exploratory behavior (Gimenez-Llort et al., 2002). Strikingly, A1R knockout
mice do not show any deficits in various paradigms of the water maze, indicating no
differences in spatial or working memory in these mice (Gimenez-Llort et al., 2005).

Genetic manipulation of the A2A receptor also results in changes in learning <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>