
 , i _._ —

PLACE IN RETURN BOX to remove this checkout from your record.

To AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

 

DATE DUE DATE DUE DATE DUE

 

 

 

 

 

 

 

 

 

      
5/08 KzlProleoc&Pres/CIRCIDateDue.hdd

 



DECIPHERING CIS-REGULATORY TRANSCRIPTIONAL GRAMMAR IN

DROSOPHILA MELANOGASTER BY MATHEMATICAL MODELS

By'

Ahmet Ay

A DISSERTATION

Submitted to

Michigan State University

in partially fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Mathematics

2009



ABSTRACT

DECIPHERING CIS-REGULATORY TRANSCRIPTIONAL GRAMMAR TN

DROSOPHILA MELANOGASTER BY MATHEMATICAL MODELS

By

Ahmet Ay

Transcriptional regulatory information, represented by patterns of protein binding

sites on DNA, comprises a key portion of genetic coding. Despite the abundance of

genomic sequences now available, identifying and characterizing this information

remains a major challenge. Minor changes in protein binding sites can have profound

effects on gene expression, and such changes have been shown to underlie key aspects of

disease and evolution. Thus, a key goal in contemporary genomics is to develop a global

understanding of the transcriptional regulatory code, allowing prediction of gene output

based on DNA sequence information. Recent studies have focused on endogenous

transcriptional regulatory sequences; however distinct enhancers differ in many features,

including transcription factor activity, spacing and cooperativity, making it difficult to

learn the effects of individual features and generalize them to other cis-regulatory

elements. We have pursued a unique “bottom up” approach to understand the mechanistic

processing of regulatory elements by the transcriptional machinery, using a well defined

and characterized set of repressors and activators in Drosophila blastoderrn embryos. The

study is concentrated on a set of proteins known as short-range repressors such as Giant,

Krfippel, Knirps and Snail, which play central roles in development.

We have generated a large quantitative data set using fluorescent Confocal Laser

Scanning Microscopy (CLSM) to determine the inputs (Giant, Krfippel and Knirps



protein levels) and outputs (lacZ mRNA levels) of the regulatory elements introduced

into Drosophila by transgenesis. In this study (Chapter 2) we present a semi-automatic

algorithm to process the image stacks from CLSM to correlate the protein levels of the

short-range repressors with lacZ mRNA produced by reporter genes using images of

Drosophila blastoderm embryos. We show that signals derived from CLSM are

proportional to actual mRNA levels. Our analysis reveals that a suggested parabolic form

of the background fluorescence in confocal images of early Drosophila embryos is

evident most prominently in flattened specimens, with intact embryos exhibiting a more

linear background. The data extraction described in this paper is primarily conceived for

analysis of synthetic reporter genes, but the techniques are generalizable for quantitative

analysis of other engineered or endogenous genes in embryos.

Using fractional occupancy based modeling on this data set (Chapter 3); we

identified quantitative values for parameters affecting transcriptional regulation in vivo,

and these parameters are used to build and test the model. We uncovered previously

unknown features that allow correct predictions of regulation by short-range repressors

on synthetic and endogenous elements. These features include a nonmonotonic distance

function for quenching, which implicates possible phasing effects, a modest contribution

for repressor—repressor cooperativity, and similarity in repression of disparate activators.

This work provides essential quantitative elements of a transcriptional grammar that will

allow extensive analysis of genomic information in Drosophila melanogaster and related

organisms. Extension of these predictive models should facilitate the development of

more sophisticated computational algorithms for the identification of cis-regulatory

elements and the prediction of the quantitative output from novel regulatory elements.
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Chapter I

INTRODUCTION

Recent improvements in experimental techniques in biological systems have lent

a new momentum to mathematical modeling in recent years. These changes have

impacted studies of gene regulation the essential biological process that comprises the

production of mRNA from the DNA and translation of mRNA into the protein. Gene

regulation is a highly regulated dynamic process in which subtle changes, such as an

increase or decrease of regulatory protein levels, can have profound effects. Such effects

are involved in many human diseases such as cancer, as well as population differences

and the evolution of morphological novelties. Despite an expanding knowledge based

knowledge base on the biochemistry of gene regulation in the last fifty years, we still lack

a quantitative understanding of this process. Mathematical models of the gene regulation

offer an alternative approach for understanding the rules of this fimdamental problem.

Most studies of gene regulation up to now have been experimental, constructing a

“parts list” for transcription rather than generating the whole picture. These studies have

provided an important but a qualitative picture of regulation instead of a physical and

mechanical view. Now large scale sources of biological information are being generated

providing a quantitative basis for systems biology studies. These include the complete

genome sequences for many organisms, identification of many molecular factors

involved in the regulatory processes inside the nucleus, expression levels for many genes

measured at different time points, and in vivo occupancy of the DNA by DNA binding

proteins such as transcription factors and chromatin modifiers. However, the quantitative

understanding about how gene regulation works is far from comprehensive since the



created data usually gives only a snapshot of the system and obtaining this quantitative

understanding with only experimentation is challenging. Mathematical modeling suggests

an alternative path for this key problem. Today, with advances in molecular biology,

genetic manipulation and the availability of complete genome sequences, development of

new models that incorporate detailed dynamics of sets of biochemical interactions is

possible.

Mathematical modeling has been used for understanding biological systems for

decades (Turing, 1952). Although, these early models were breakthrough for their time

and generally able to validate the experimental observations but could not provide any

new insights on how the system works beyond which the experimenters had already

proposed to be true. Recently the interest in this field exploded due to the new

experimental and computational power. The new experimental techniques as mentioned

above have provided a surge of biological data, which are difficult to understand without

quantitative analysis and the improvements in the computational power, which is due to

progresses in computational techniques and technology, enabled the calculations to be

done which was not possible before. These improvements made the use of diverse

mathematical modeling methods to different biological problems in particular gene

regulation possible.

Systems biology provides a fresh perspective on gene regulation in biological

studies and requires close collaborations between experimentalists and modelers. To

carry out effective studies, the researchers who are involved in these collaborative studies

in gene regulation need an understanding of both biological and mathematical fields.

Here by focusing on the models that have been developed for eukaryotic systems in



particular yeast and Drosophila, we introduce the most common modeling approaches

and their applications and focusing on goals, challenges and future directions. We also

discuss how understanding of modeling can facilitate the understanding of eukaryotic

transcription.

In modeling gene expression there are two general approaches. In the first

approach, using largely statistical treatments, expression levels for hundreds of genes are

analyzed. Here, gene expression levels under different experimental conditions or at

different time points are used to find groups of genes that function together, new motifs

for transcription factors or, to deduce regulatory relations between those genes. The

ultimate goal of this approach is to construct the regulatory network that underlies the

given data. Although this approach cannot explain the fine details of complex relations

between transcription factors, RNA polymerase and other regulatory proteins, it can be

very insightful on seeing the big picture, as it covers large fractions of genes in the

organism. The second approach, which ofien involves analytical methods, describes the

gene expression of a small number of genes, usually focusing on a detailed level of

transcription using mathematical models. The models might include terms relating to

binding of transcription factors and RNA polymerase to the DNA, cooperative and

inhibitive interactions between transcription factors, mRNA and protein degradation,

export to cytosol, and mRNA translation rate. For this approach we need an extensive

level of knowledge and some hypotheses to check the system. In this review we will

concentrate mainly on the second approach and discuss the use of major modeling

techniques of this approach on gene regulation with examples from eukaryotic systems.

We leave the discussion of the first approach to the other reviews in the field.



The models of the first approach such as graph based probabilistic models give a

simple view of gene regulation; transcription factors bind to their target genes, and once

bound, the factors can either stimulate or inhibit transcription. Those models could be

used for analyzing the gene expression data coming from hundreds of genes, suggesting

new regulatory relations that has not been discovered from experiments yet, finding

feedback regulations in the system and comparing gene regulatory networks of different

species, which might reveal conserved relations. However these models cannot be used

to decipher the fine details of the system such as enhancer architecture and network

dynamics. Neural, Boolean and Bayesian networks are examples of this approach and in

this review as mentioned above we will not concentrate on them (Heckerman 1998;

Friedman et a1, 2000; de Jong 2002). In this approach the gene expression levels,

regulatory factors like protein concentrations and experimental conditions might be used

as input to the model.

A variety of mathematical models have been applied for quantitative

understanding of gene regulation in eukaryotes, including thermodynamic models,

Boolean models, differential equation models, and stochastic models. Those models are

used to summarize the experimental data (Yuh et al, 2001), to infer new relations from

complex experimental data, guiding the researcher to new hypotheses to test (Jaeger et al,

2004) and to find properties of the system that are hard to measure experimentally and

can not be found without modeling (Fakhouri et al, 2009). These modeling approaches

could be primarily categorized into four ways: discrete vs. continuous and stochastic vs.

deterministic. In discrete models, time, state or space will assume a discrete set of values

and in continuous models continuous values. On the other hand, deterministic models



describe the system from only the available experimental data, but stochastic models use

probabilistic considerations to describe the system. All of these strategies have their

strong and weak points, which we will discuss in detail in the following sections. For

instance, a differential equation model, which is a continuous approach, serves as a good

approximation for the underlying biological system, however it usually cannot be solved

analytically, and numerical solutions are generally computationally expensive.

The choice of a model are usually depends on the system and problem under

consideration. Several criteria should be applied in selecting a modeling approach; the

model chosen should give new biological insights that could not be found with present

experimental techniques or clarify some of the known connections; it should not only

recapitulate what is already known. Although the aim of modeling is replicating the

physical interactions of molecules, the complexity of the biology or lack of data for most

processes obstructs us from doing that and cause most of the models in biology to be

phenomenological.

Mathematical models of gene regulation depend heavily on the availability of

good quality data, which until recently was largely available only in prokaryotic systems

and yeast. Some aspects of gene regulation learned from these systems are applicable to

more complex higher eukaryotic systems, but some features of gene regulation rules in

higher eukaryotes are unique to these systems, such as the extensive use of alternative

initiation sites and regulation at a distance. Drosophila has emerged as a model system

for understanding the gene regulation in higher eukaryotes due to its elegant genetics,

functional genomics (12 Drosophila genomes and genomes of other distant relatives are

annotated), wide spectrum of methods for manipulations of the transcription, ease and



affordability of experiments as compared to other multi-cellular eukaryotes, and well

established knowledge of the system due its long tradition. In addition, the results of the

Drosophila studies are transferable to other eukaryotes such as humans: of 287 known

human disease genes, 197 have homologs in Drosophila.

The Drosophila blastoderrn embryo provides an ideal setting for the analysis of

transcriptional enhancers; the cascade of maternally and zygotically supplied

transcription factors has been extensively investigated at a molecular level, and many

DNA regulatory elements have been identified and functionally dissected. In Drosophila,

genes with complex expression patterns are controlled by multiple enhancers, whose

modular function depends on the local action of repressor proteins (Small et al, 1993). As

a result of the availability of high quality data sets the blastodenn embryo has been used

for mathematical modeling of gene expression by several approaches, including reaction

diffusion, Boolean, and fractional occupancy modeling (Jaeger et al, 2006; Sénchez &

Thieffry, 2001; Segal et a1, 2008). Drosophila segmentation networks’ dependence on

transcription for regulating its gene expression, the availability of enormous experimental

knowledge on the system and available bioinformatics techniques for completing the

unknown parts of the system makes this system unique for modeling transcription in

higher eukaryotes.

In the following sections we will elucidate the applications of mentioned models

particularly to Drosophila melanogaster and yeast. Our analysis suggests that although

the mathematical models have been used to decipher gene regulation rules in higher

eukaryotes, successfully.

THERMODYNAMIC MODELS



A general feature of most transcriptional elements in prokaryotes and many

elements in eukaryotes is the activation or deactivation of a gene in response to binding

of sequence-specific transcription factors (TFs). That is the occupancy of a regulatory

element by TFs can provide a good proxy of the mRNA levels expressed by the

associated gene. Although this picture ignores additional processes such as chromatin

structure and modification, DNA methylation, and recruitment of general transcription

machinery, the application of so called thermodynamic models permit the modeling of

gene expression as a function of TF binding to promoter or distal enhancer elements. An

underlying assmnption for these models is that the level of gene expression is

proportional to the equilibrium probability that the gene will be in an “active” state that is

proportional to the number of activators, and inversely proportional to the number of

repressors bound to the gene. The models seek to predict how different combinations of

binding sites on a regulatory region function together to give diverse temporal and spatial

expression outputs. These models are based on simple biophysical descriptions of DNA-

protein interactions and statistical physics, and enumerate all possible ‘states’ of an

enhancer based on potential transcription factor-DNA interactions. The probability of a

gene firing is calculated as the fraction of the ‘successful’ states, i.e. those with

preponderance of activators bound (Bintu et al, 2005a; Janssens et al, 2006; Zinzen et al,

2006; Segal et al, 2008).

An important step in modeling transcriptional regulation by thermodynamic

models is connecting different states of enhancers to expression. All possible states of the

enhancer are listed, and then a statistical weight for each state is assigned. For a simple

case of one binding site, there will be just two states, bound and unbound. For an element



with four sites, there will be sixteen states etc. The statistical weight for a state is

calculated by using the concentration of transcription factors and binding affinity of these

factors to their binding sites on the DNA. Thus for abundant proteins binding to high

affinity sites, the weight will be much greater than cases where the TF is scarce or the

binding site is weak. After the weight for each state is calculated, the probability of each

state can be calculated by dividing the statistical weight of the state by the sum of the

statistical weight of all possible states. This calculation process can incorporate properties

known to affect transcription. For example, cooperative interactions between

transcription factors and inhibitory effects of repressors on activators can be explicitly

added to the model by assigning higher or lower weights. These cooperative and

inhibitory effects can furthermore be modeled to allow for distance effects. Competitive

binding can also be incorporated to disallow simultaneous occupation of the same

binding site by two different factors. Afier binding states and probabilities are defined,

the next step in thermodynamic modeling is calculating gene expression output from each

state. States with high activator occupancy are likely to induce high expression, while

repressor occupancy might result in low expression. As discussed below, one can model

gene expression output as proportional to the binding probability of the RNA polymerase

or weighted sum of the transcription factors (Bintu et al, 2005a, 2005b; Segal et al, 2008;

Fakhouri et al, 2009).

The theoretical underpinnings of thermodynamic modeling have been explored

first and foremost in prokaryotic systems. Because the regulatory regions are generally

small, binding to few TF, simple prokaryotic systems provide a tractable setting for

quantitative studies and fractional occupancy modeling. The lac operon in E. coli and the



lysis/lysogeny switch of phage lambda are two examples that have been treated (Von

Hippel et al, 1974; Ackers et al, 1982; Shea & Ackers 1985; Vilar & Leibler, 2003);

reviewed in Buchler et al (2003) and Bintu et al (2005a). Additional promoters and

configurations are considered in Bintu et al (2005a & 2005b). Zhou and Su generalized

the results of Bintu et al (2005a) to derive a single formula calculating transcriptional

probability for all simple regulatory configurations. The model is available as a Python

module, ‘tCal’, which allows the user to easily build and configure transcription models

of target genes.

The mechanisms of gene regulation found exclusively in higher eukaryotes

suggest that TF binding to these regulatory regions may invoke distinct activities not

captured by thermodynamic modeling of prokaryotic elements. However, a recent study

by showed that, using thermodynamic modeling, many eukaryotic transcriptional

responses can be executed by simple combinatorial logic. For example the Boolean AND

gate can be generated by two TFs if the binding energies and factor concentrations are

such that individual binding is weak, but joint binding is strong (Buchler et al, 2003).

Larger groups of binding sites can encode a whole repertoire of more complicated logical

functions. Their study showed that even in the absence of complex protein-protein

interactions, by only changing the arrangement of binding sites, cooperativity of

transcription factors and affinity of binding sites, complex interactions could be created

(Buchler et al, 2003). One possible limitation to implementing some schemes may be the

slow kinetics of assembling very large molecular complexes. Another prediction from

these studies was that some complex regulation requires looping between distant sites and

weak glue like interaction between proteins. The density of bacterial genome and lack of



chromatin boundaries may mitigate against extensive use of such long-range effects in

prokaryotes, whereas higher eukaryotes have mechanisms to prevent intergenic cross

talk.

Among all modeling approaches, thermodynamic models appear to provide the

highest potential to predict the output of different combinations of transcription factor

binding sites in eukaryotes. Recent studies involving yeast or Drosophz'la regulatory

elements illustrate the possibilities and limitations of this approach in higher eukaryotes

(Granek & Clark, 2005; Janssens et al, 2006; Zinzen et al, 2006; Segal et al, 2008 Gertz

& Cohen, 2009, Fakhouri et al, 2009). In these models, parameters include cooperativity

between proteins and the binding affinity of transcription factors to the DNA. Such

models do not explicitly model other events such as chromatin modifications, RNA

polymerase phosphorylation and promoter release however. The success of

thermodynamic models suggest that those events which are downstream of the primary

DNA and protein interactions might therefore play minor roles in the relationship

between enhancer architecture and gene expression. Below, we discuss recent uses of

thermodynamics models to study eukaryotic systems, and consider successes and

limitations of these approaches.

A simplest method for transcription factor target detection is looking for single

consensus binding sites in overrepresented binding sites to check whether they are

regulating a group of genes. Such an approach has problems: motifs not the same with

consensus sequence but close to it is not taken into account and often regulated genes

have more than one binding site for a given factor. Granek & Clarke 2005 used

thermodynamic modeling for detection of transcription factor targets in yeast genome by

10



using sequences, PWMs and concentration of transcription factors. They designed a

transcription factor target detection algorithm (GOMER) which is unique in its ability to

model competitive and cooperative interactions between transcription factors in

comparison to machine learning methods. They applied their algorithm to yeast, but

clearly it could be applied to other regulatory proteins. They used GOMER to identify

Fkh2p and Mcmlp targets in controlling the expression of a set of cell-cycle regulated

genes in yeast, and analyzed the role of cooperativity in this process. They also used the

model to investigate the role of competition between the transcription factors, th80p

and Sumlp, in distinguishing between mitotic and meiotic programs of gene regulation.

Another place they used their algorithm is predicting genome-wide binding of

transcription factors, they guessed where the protein Raplp is binding in the genome and

then used chip-array to compare this model’s prediction.

An alternative application of thermodynamic modeling in Saccharomyces

cerevisiae involved intensive investigation of a Cir-regulatory grammar applying to just

the specific activator and repressor proteins, which are known to co-regulate genes in that

organism. Cohen and colleagues constructed a set of over 2800 promoters containing

three or four binding sites for these proteins. Quantitative output of each promoter was

assayed by means of the fluorescent reporter, and the activities were fit by a

thermodynamic model (Shea & Ackers, 1985). Their model could describe cooperativity

between transcription factor binding sites, effects of weak binding sites, and the large

amounts of variation in the gene expression due to different promoter architectures

correctly. They used their model on the whole Saccharomyces cerevisiae genome to

predict novel targets for the transcription factors they used. For example they found new

11



targets of Migl transcription targets, which was not identified bioinformatically

previously due to their low binding affinity score.

At the other end of the spectrum, thermodynamic modeling has also been applied

to a single, complex regulatory region to discover the detailed functioning of the element.

Reinitz and colleagues modeled the activity of the promoter proximal 1.7 kb region the

Drosophila melanogaster of even-skipped (eve) gene, which is expressed in seven stripes

in the embryo. This region contains the modular enhancer directing blastoderrn

expression of stripe 2, as well as weak expression of stripe 7. After careful observation of

the expression directed by this fragment, the authors incorporated the spatial and

temporal expression levels of TFs regulating this gene into a thermodynamic model.

Using only experimentally determined binding sites they were unable to recreate the

expression patterns produced by reporter gene. However, when they included the likely

binding sites predicted by bioinformatics techniques the model was able to fit the data.

This study indicated that widely dispersed binding sites may operate together to generate

enhancer—like outputs, suggesting that not all developmental elements exist as compact

modules. Smaller segments of DNA may play necessary but not sufficient roles in driving

gene expression. They extended their analysis by testing in silico the effects of mutation

of specific binding sites or loss of specific transcription factors. The model was able to

reproduce the altered patterns induced by these mutations. One limitation to this model is

that it cannot be readily extended to other enhancer regions.

Segal and colleagues conducted a study that took advantage of high quality

quantitative data available in the Drosophila blastoderm embryo extending the approach

of Reinitz to 59 different enhancers. The model utilized spatial expression data for eight

12



transcription factors and expression of the target genes in mid-blastoderm embryos. Their

model incorporated parameters for concentration scaling, homotypic but not heterotypic

cooperative binding and expression contribution for each transcription factor. Unlike the

eve promoter study, this model made no attempt to incorporate the distance effect of

repressors, a critical feature of these proteins. Despite the simplifications of this model,

reasonable predictions are obtained for many of the enhancers. The study predicted that

weak binding sites make important contributions, as do homotypic interactions. This

study highlighted the possible importance of weak binding sites to enhancer activity;

these sites would provide a quantitatively significant level of activity and buffering

against loss of single binding sites. This idea has yet to be validated, however. The

contribution of homotypic cooperativity was also noted; this interaction provides sharper

patterns at lower input concentrations. Their model generally predicts the expression

patterns of the earlier expressed gap genes well, but is less successful with later

expression patterns of pair-rule genes, possibly because of heterotypic cooperative

interactions and distance-dependent quenching are not considered (Zinzen et al, 2006).

They used ROC curves for evaluating the ability of their model to predict the expression

patterns of modules that were not used as training data. Their analysis shows that their

model is not over fitting the data; when they randomly generate PSSMs, swap PSSMs,

permute the columns of PSSMs, they get worse results.

A distinct approach to thermodynamic modeling was taken by Papatsenko and

colleagues, who focused on gene regulatory rules relevant to neurogenic gene expression

in Drosophila melanogaster. The rho, vnd and W1 are mainly regulated by two

transcriptional activators Dorsal (DI) and Twist (Twi), and one repressor Snail (Sna).

13



Differences in the regulatory regions for these genes lead to slight differences in

expression patterns in dorsal and ventral regions. What was unique about this study is

that rather than basing their thermodynamic model on the actual DNA sequences, the

authors generated conceptual regulatory elements containing key core blocks of Dorsal-

Twist-Snail sites. Their model was able to reproduce the relative gene expressions for

rho, vnd and vn and suggested that the structural features such as cooperativity between

transcription factors and Dorsal-Twist-Snail (DTS) module numbers could explain the

expression differences. They concluded in their parameter comparisons that rho models

require 5-10 fold higher Dl-Twi cooperativity than vnd, as well as higher Twi-Twi

cooperativity, and vnd models require more DTS modules than rho as well as higher Sna-

Sna cooperativity. Phylogenetic comparisons were employed to validate these

conclusions. Comparing enhancer sequences from Drosophila species they noted that

spacing between factor binding sites is generally conserved, and the number of DTS

modules in vnd is always more than in rho so that features distinguishing vnd from rho

have been maintained. They extended their study on vnd, mutating Twist binding sites

and showing that their model can reproduce the experimental data. The actual function of

modeled DNA sequences is not directly tested; however, most of the results of this paper

were confirmed by earlier qualitative studies (Szymanski et al, 1995; Ip et al, 1992).

A combination approach was employed in a recent study that focused on

modeling synthetic elements in silico using actual in vivo quantitative data obtained for

each of the constructs (Fakhouri et al, 2009). Here 27 synthetic enhancers were devised

to test features affecting in early Drosophila embryos. Levels of reporter gene activity

were measured by confocal laser scanning imaging of over 900 embryos, and quantitative

14



differences resulting from minor changes in enhancer structure were noted. To obtain a

fine scale understanding of the systems, only specific features affecting repressors were

systematically explored. As explained above, earlier studies incorporating widely

disparate enhancer sequences may not produce sufficient data to identify important

features of enhancer organization, such understanding is critical to describe how

extensively reorganized enhancers maintain similar function in some instances, or show

quantitatively distinct outputs in other cases (Ludwig et al, 2005; Crocker et al, 2008).

Amosti and colleagues limited the number of features that differed between the relatively

small number of reporter genes, enabling a model with a tractable number of parameters

and robust estimation of these parameters. This study identified nonlinear quenching

effects of short range repressors, similar quenching of different activators, and modest

levels of cooperativity between short range repressors. Significantly, this type of

modeling provided insights that were not apparent from the analysis of individual

embryos. The study was extended to an endogenous enhancer, rho NEE, showing that

certain features derived from synthetic enhancers are directly applicable to real enhancers

and, highlighting several features of the architecture of this enhancer.

In considering these applications of thermodynamic models there are limitations

and challenges that face the modeler. Eukaryotic transcription could be divided into three

layers; binding of transcription factors, recruitment of cofactors and reduction of energy

barrier of transcription by cofactors. This process is represented by three steps in the

model of Janssens et al (2006): fractional occupancy of transcription factors and

correction of activator occupancies by short-range repressor quenching, recruitment of

cofactors (they use the adapter term in their study) and calculation of transcription rate by
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Arrhenius mechanism. In the first layer of their model transcription factors bind to the

DNA independently i.e. no cooperative binding, and occupancy of activators is corrected

by reduction due to short-range repressor quenching effects. In this step quality of

repressors is taken into account as free parameters, repressor quenching efficiency is

assumed to be decreasing monotonically; complete repression up to 50 bp, linear

decrease in repression 50 bp to 150 bp and complete loss of repression after 150 bp, and

repressors is assumed to be cooperating on quenching activators which is represented by

multiplication of their effects. The second layer of their model describes the cofactor

recruitment by transcription factors, which is only a crude simplification of the process,

where each activator has a constant potential to recruit cofactors. They also incorporated

direct repression (reduction of RNA polymerase binding due to repressors) in an earlier

version of their model in the second layer by decrease in cofactor levels; which is not

incorporated by any of the models we mention here. Another simplification taken by

them in this step is the assumption of activators recruit same cofactor, but biologically

each activator might be recruiting different cofactors. The third layer in their model

describes activation of transcription by Arrhenius mechanism in which cofactors lowers

the activation energy barrier. In this step due to Arrhenius mechanism formulation, model

gives cooperative effects between activators and nonlinear response to activation signal,

and an exponential increase as more cofactors are recruited. To solve the exponential

increase in transcription problem, a maximum threshold level is set, which does give a

limit on transcription but not in natural way like logistic functions. Zinzen et a1 (2006)

models only the first layer of transcription similar to Janssens et al (2006), and assumes

that transcription level is assumed to be linearly correlated to the level of active states; in
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his case the binding of activators but with at least one Dorsal activator and one Twist

activator bound but not Snail repressor. In contrast to Janssens et al (2006) they have

cooperative binding for transcription factors. Models of Granek & Clarke (2005) and

Gertz & Cohen (2009) are similar to Zinzen et a1 (2006)’s implementation with some

additional features such as weight functions for cooperativity. Segal et al (2008) modeled

the transcription in three layers in a similar fashion to Janssens et al (2006); occupancy of

transcription factors, summation of expression contributions of transcription factors and

calculation of transcription by a sigmoidal function. The first layer of the model is similar

to Janssens et al (2006) with the incorporation of homotypic cooperativity to occupancy

calculations. In the second layer he parameterized expression contributions of different

transcription factors, summed the expression contributions to get activation potential for

each state. In the third layer he got the total transcription level by summing up the

product of probability of seeing states and their expression contributions, which is

calculated by using sigmoidal function. Model used in Fakhouri et al (2009) has the same

set up with Segal et a1 (2008), but incorporates short-range repression and heterotypic

cooperativity.

The gene regulation mechanism for eukaryotes is still not completely known and

perhaps not all regulation mechanisms are found yet. Although we can incorporate all of

the features known about gene regulation to the models quantitatively, we generally don’t

have enough data to test them. Here we will mention a few of those properties, which

should be incorporated to the modeling as the data emerge. All the modeling attempts we

mention here are only crude approximations to the truth and one might wonder how
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realistic a model is, if it cannot mimic the complete picture of regulation. There are

several key points to be noted in that respect.

First, although thermodynamic models could be incorporated to differential

equation models, this incorporation is generally skipped and equilibrium assumption is

taken i.e. the probability of molecules binding to the DNA is its equilibrium probability.

Although the success of these models suggests that this is a reasonable simplification, it

is still unclear whether these systems come to equilibrium and if they come how they

manage that. ’

Second, currently most of the thermodynamic model applications could not take

into account many structural features of the DNA in a realistic manner, especially for

eukaryotic systems. For example effects of nucleosomes on transcription factor binding,

distances between transcription factors, orientation of binding sites, closeness to

transcription start site, chromatin modifications, DNA looing and so on. Although there

are not much data available to add three dimensional picture of the DNA into the model,

it is also not clear how most of these properties could be added. The simple cases of this

such as looping could be incorporated into the model possibly by modifying statistical

weights of states. Perhaps, the experiments in purified in vitro systems might be used for

directly measuring the quantitative effects of these components such as chromatin

modifiers and these effects could be incorporated to thermodynamic models also.

Third, although thermodynamic models is advantageous due to their rational and

careful quantization of gene expression under different combinatorial states of

transcriptional factors, they sometimes give up the dynamics of the system, and only

concentrate on a snapshot of the system. These models could still reveal some useful
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information about the system; however, we should note that steady state approach isn’t as

useful as the dynamic approach for modeling gene regulation due to the essence of

biology which changes in concentrations matter a lot.

Fourth, in spite of all modeling studies, understanding the functional

consequences of the changes in transcription are still a challenge. Although DNA based

models might be one of the key contributors for answering this question, a network view

of the system is needed for a clear explanation. The modeling attempts which help us to

understand the fundamental rules between TFs might be used for constructing those

network level models.

Fifth, eukaryotic enhancers in contrast to prokaryotes; might involve hundreds of

binding sites and for those binding sites we don’t know whether a certain binding site is

functional at a certain time or not. Generally it is assumed if the protein is present,

binding will occur and it would be functional, but clearly this is not the case for many

binding sites. The lack of knowledge in where the proteins are binding and if they are

binding are they functional is another key problem of modeling gene regulation,

especially in eukaryotes.

Sixth, proteins competitively bind to DNA if their binding sites are overlapping

and for some regulatory networks, competition is a key regulatory mechanism. Segal et al

(2008) argued that competition for binding is not a major factor in gap gene network

where, Zinzen et a1 (2008) argued the opposite in vNE genes. Although people use the

assumption of overlapping binding site for competitive binding, due to steric hindrance

constraints transcription factors with close binding sites might be also in competition for

binding. This entity is taken into account by Granek & Clarke (2005); their competition
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term incorporates all potential competitors binding at any window that affects binding of

another protein. They program also allows the use of user defined weight functions for

competitive binding.

Seventh, in thermodynamic modeling cooperativity is generally assumed at the

level of binding, however could be added for later steps of regulation also. It is generally

assumed that transcription factors bind to the DNA cooperatively, but neither proteins

which cooperate nor their mechanism are known. Lack og knowledge in the correct

cooperativity parameter values forces researchers to either estimate this parameter from

experimental data or to incorporate it to the model in a very simple way (Granek &

Clarke 2005; Zinzen et al, 2006; Segal et al, 2008; Fakhouri et al, 2009). Simplifying

assumptions taken include; cooperativity only occurs between neighboring and same type

of proteins (homotypic cooperativity), and it decreases by a distance dependent function,

such as normalized Gaussian function with mean 0 and standard deviation 50 (Zinzen et

al, 2006; Segal et al, 2008; Fakhouri et al, 2009). These assumptions definitely cannot

explain the complex cooperativity schemes. For example importance of heterotypic

cooperativity in gene regulation is shown previously by many experimental studies, so

although ignoring heterotypic cooperativity simplifies the calculations it is not

biologically reasonable (Zinzen et al, 2006; Segal et al, 2008). For example Granek &

Clarke (2005) showed that heterotypic cooperativity Fkh2p-Mcmlp dramatically

increased their models ability to explain the regulation of forkhead-regulated genes in

contrast to homotypic cooperativity Fkh2p-Fkh2p which had only little effect. Granek &

Clarke (2005) also incorporated user defined cooperativity weight functions to their
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model which makes it easier to explore more elaborate models of cooperativity; however

the choice of weight firnction for eukaryotes is not an easy task.

Eighth, actual concentration levels of the proteins are not known for most of the

transcription factors in eukaryotic systems. People generally use confocal microscopy

data, which measures relative levels of proteins and mRNAs, but levels of different

proteins and mRNAs cannot be compared due to differences in the antibodies used or

light wavelength (Janssens et al, 2006; Zinzen et al, 2006; Segal et al, 2008, Fakhouri et

al, 2009). Since the thermodynamic models heavily depend on concentration levels, this

lack of knowledge causes a key problem for thermodynamic models. A way to approach

this problem is assigning free parameters for sealing concentration levels, which could be

estimated by parameter estimation techniques (Segal et al, 2008; Fakhouri et al, 2009).

Although this approach is used frequently, its applicability is still questionable due to

lack of their validation. The improvements in confocal microscope technology will

definitely improve the quality of the data, and help us to solve this dilemma.

Ninth, although transcription shows sigmoidal pattern is an assumption used by

many researchers frequently, it is not proved to be true generally. For a correct modeling

of gene regulation, this behavior should be tested further by experiments which compare

different activator and repressor levels to transcription levels.

Tenth, some of the transcription factors function in context dependent manner in

their activity. For example Hb is known to be a repressor on MSE3 and believed to be an

activator on MSE2 due to bicoid presence, but the context dependency of this protein is

not taken into account in the recent studies; Hb is taken as an activator in Janssens et al
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(2006) and a repressor in Segal et al (2008). This property should also be incorporated to

the models as more experimental data becomes available.

Eleventh, transcriptional regulation could be changed either by changes on

regulatory regions or transcription factors. Since the effect of little changes on the

transcription factor might possibly affect many other transcription networks, evolution

generally takes the second option and does little changes on binding sites such as their

affinity, composition and arrangement when there is a need to change the transcription

level of a certain gene. This makes detection of binding sites a key starting point for

modeling transcription; however transcription factors can tolerate high sequence

variability, which gives a high flexibility to gene regulation and makes the detection of

binding sites a complicated task. The number of known binding sites experimentally is

limited and bioinformatics techniques do not guarantee detecting binding sites precisely,

but this makes the results of modeling studies prone to errors or over fitting. In Janssens

er al (2006), use of 17 experimentally detected binding sites were not enough to fit the

model to the gene expression data; they were only able to fit their model when 17

bioinformatically detected binding sites were added.

Twelve, although many modeling studies treat the relationship between the

transcription factor and its target binding site as something that either does or does not

exist, biophysically this does not make sense and a quantitative description which assigns

a wide range of affinities to the transcription factor and its target binding sites on the

DNA is needed. A theoretical outline for finding the relative binding affinities of binding

sites is described by Berg & Von Hippel (1987). Their outline describes an approximate

relationship between the Position Weight Matrix (PWM) score which is inferred from
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base frequencies in known binding sites and the relative affinity of the binding site

assuming additivity of the binding energy for each base pair. Although, if we mutate each

bp in binding site one by one and check binding levels we can actually find free energy

contributions for each bp, this is costly. Berg & von Hippel (1987) framework is thought

be a nice approximation due to the assumed connection between the information content

in the set of sequences and specificity of binding. This framework takes into account the

assumption that natural selection has given rise to a certain level of sequence specificity

for each TF and the sequences that give the same binding affinity are selected. From a

biophysical point of view this formalism is not satisfactory, evolutionary arguments

should not be invoked when the goal is to model the physical interactions between a

transcription factor and the DNA sequence. In addition, although the strength of TF-DNA

interaction varies with the local DNA sequence, it should not depend on the choice of a

background model representing the global characteristics of the DNA. Purely biophysical

approaches are needed to infer TF binding specificity; as an example, transcription factor

binding specificity could gain a lot from structural information on transcription factor-

DNA binding and this information might open up new possibilities for determining TF

sequence specificity.

Thirteenth, generally the binding affinity is taken care of by use of PWMs or

totally ignored and each binding site for a transcription factor is assumed to have the

same binding affinity. Both of these ways have problems; on one hand there is not

enough number of binding site data available for most of the transcription factors to

construct a nice and representative PWM, on the other hand assigning the same affinity

for each binding sites of a transcription factor is an oversimplification. In two recent
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studies a third approach is taken and binding affinities are optimized for each binding site

from the experimental data and they argued that this approach didn’t improve their results

significantly compared to the classical approaches mentioned above (Janssens et al, 2006;

Zinzen et al, 2006). Zinzen et al (2006) also argued that a wide range of binding affinity

values 7< log(Ka)< 11 could not account for the measured differences in the rho and

vnd expression patterns and they are not as important as cooperativity parameter for

thermodynamic models. The insensitivity of gene expression to changes in binding

affinity due to model is probably a weak point of thermodynamic models.

Despite all its shortcomings, thermodynamic models still stay as the most

promising model for deciphering gene regulation on DNA level. Although we don’t have

sufficient data for some of the gene regulation features mentioned here, mathematicians

should go forward and check the applicability of them on synthetic data and show new

ways to experimentalists to create reasonable data sets for deciphering gene regulation.

On the other hand, the incorporation of thermodynamic models to large gene regulatory

network studies will possibly increase their performances and this opportunity should be

also further investigated.

DIFFERENTIAL EQUATION MODELS

A dynamical system is a set of components that interact by explicit rules which

dictate how the states of the components in the system change. One example of dynamic

systems is regulatory networks in which the components are mRNAs and proteins, and

the state of these components is their concentration levels. The rules of this evolving

system of interacting molecules could be represented by differential equation models in

terms of the rate equations for expression of any variable in terms of the other variables.
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These models could incorporate parameters such as the degradation rates of mRNAs and

proteins, or the firing rate of promoters. lmportantly they could be used to reproduce

observed system behavior or perform in silico tests of the system parameters at levels

which are hard to get by experimentation, leading new hypotheses to check.

Differential equation models are based on the principal idea that there is a

sufficient number of components that we can consider them as continuous quantities

which are spatially homogeneously distributed. Although these assumptions are

oversimplifications of the real problem, and usually do not hold true for biological

systems-differential equation models still provide many usefirl insights about complex

regulatory networks.

In general terms a differential equation model can be simplified to—j—= fl.(x),

131' S n where x =(xl,x2,...,xn) is a vector of concentrations of mRNAs, proteins or

other related molecules and fis are rate equations, which express the changes due to

transcription, degradation, translation, etc. The selection of an fi is a critical step in

modeling and one should balance complexity with detail. Complex models are good to

explain the system, but they will contain many parameters, which might be hard to

measure experimentally or estimate computationally. Furthermore if necessary, fis might

be chosen to take into account the time-delays and uncertainty in the system.

Differential equation models can be divided into two main groups; Ordinary

Differential Equation (ODE) models and Partial Differential Equation (PDE) models.

ODE and PDE models depend on one or multiple variables respectively. For instance, for

temporal changes only we use ODE models, for both temporal and spatial changes, we
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use PDE models. In modeling gene regulation ODEs are the most common formalism.

They include time dependent variables such as protein and mRNA concentrations, and

constants for production and degradation rates for each variable in the system. Although

PDEs are more appropriate for modeling gene regulation, the requirement in

mathematical analysis and experimental data makes them less favorable.

ODEs are a well studied field of mathematics; the ODE theory is well established

and many numerical methods and software tools for solving ODEs are freely available

and easy to implement. Although, ODE models are generally hard to solve analytically,

i.e. finding formulas that express the solutions as explicit functions, approximations of

the solutions can be found by using numerical methods. Usually the spatial structure is

not taken into account in ODE models, when it plays an important role in the system,

however, an extra parameter is written into the model so that it could be taken into

account. In this case, we consider the spatial structure as a collection of homogeneous

compartments, between which information can be transferred. ODE models are

insufficient for modeling gene regulation if continuous aspects of the geometry of the

system are important or the homogeneity assumption is not acceptable to the system.

PDEs should be used for these cases.

PDEs, like ODEs are well studied analytically and numerically. Unfortunately, its

theory is more complicated and computations are more demanding. Finding analytical

solutions are much harder, therefore numerical simulations are the main analysis tool for

biological systems. Those models could take into account the spatial aspects of the

cellular processes if necessary (Eldar et al, 2002), however, spatial heterogeneity of the

systems is generally neglected. We will see the applications of a classical example of a
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PDE (the reaction diffusion equation) below, which describes the production, diffusion

and degradation of biological components.

Following standard methods of chemical reaction kinetics, one can obtain a set of

differential equations for any regulatory network, which could be solved numerically to a

high accuracy level using numerical methods such as Bulirsch—Stoer Method (Press et al,

1992). This standard modeling approach has been applied to many systems, ranging from

a few isolated components to entire cells. This modeling approach has been previously

applied in many prokaryotic regulatory networks such as lac operon of bacteria. The lac

operon consists of a number of genes and a small regulatory DNA region, which controls

the expression by binding to either repressor or RNA polymerase. The first mathematical

model to study lac operon regulation was given by Goodwin in 1965 and Griffith 1968.

However, the beauty of the problem attracted many other researchers in the past 50 years

(Nicolis & Prigogine, 1977; Santillan & Mackey 2001; Yildirim & Mackey 2003;

Mackey et al, 2004). For example, the model of Griffith takes into account activation of

the genes, transcription of mRNA, degradation of lactose, synthesis of beta galactosidase

and perrnease. Later, the Nicolis and Prigogine model added more details about the

system, including the action of the repressor, inducer and enzyme synthesis. Yildirim and

Mackey’s model added delays in the system, such as transcription initiation and

translation. One wonders whether all these attempts could be generalized to other DNA

regions or not?

Although differential equations have been used abundantly by modelers for many

biological systems such as population dynamics, embryo patterning, infection dynamics

and gene regulation, the framework they provide is largely unknown to biologists. Here
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we will briefly describe the use of differential equation models as a tool for describing

and making predictions about temporal and spatial changes in eukaryotic regulatory

networks, and discuss their strengths and weaknesses. Use of differential equation based

models in eukaryotic regulatory networks is relatively new; however, the accumulated

data on molecular biology such as the segmentation network in Drosophila makes the use

of these models a preferable choice (von Dassow et al, 2000; Gregor et al, 2005; Jaeger

et al, 2004). We will also present several recent applications of these models to facilitate

testing hypotheses about systems level properties of complex eukaryotic systems.

Barkai and colleagues studied the network of proteins that pattern the dorsal

region of the Drosophila embryo, which is initiated by the graded activation of the bone

morphogenetic protein (BMP) pathway (Eldar et al, 2002). Their results indicate that the

BMP activation gradient is robust to changes in gene dosage. However, the mechanism of

robustness is different than the general design of robust networks, which involve

feedback loops to buffer against perturbations in the system. Their modeling of the

system suggested the transport of the Scw and Dpp, BMP class ligands, into the dorsal

midline by Sog, a BMP inhibitor, as the key event in robustness. They validated this

result experimentally for Dpp.

Three reaction diffusion equations that form their model are written for the

system. Their model could account for the formation of the BMP-Sog complex, diffusion

of Sog, BMP and BMP-Sog, and allowed for the cleavage of Sog by Tld, both when Sog

is free and when Sog is associated with BMP. They carried out 66000 simulations to find

the robust networks where they changed parameters of their model such as the rate

constants and protein concentrations over four orders of magnitude and solved their
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model numerically. They generated and solved numerically three perturbed networks

representing heterozygous situations by reducing the gene dosages of sog, tld or the dpp

(or scw) by a factor of two and compared their output with the initial, nonperturbed

network. They found that only 198 out of 66000 networks are robust to twofold changes

in three genes, which showed a unique sharp concentration gradient that peaked in the

dorsal midline. Analysis of the parameters showed that the robust networks could have a

wide range of possibilities for most parameters. However, there are two restrictions on

the design of the network; cleavage of Sog by Tld is facilitated by the formation of the

complex Sog—BMP and the BMP—Sog is broadly diffirsible, while free BMP is not.

Maternal morphogen bicoid (Bed) of Drosophila diffuses along the anterior-

posterior axis of the embryo and forms a gradient in the early blastoderm stage of the

Drosophila embryo. This gradient helps the formation of anterior-posterior patterning,

which assigns different fates to nuclei depending on the level of Bed they are exposed to.

Gregor and colleagues wanted to understand how it is possible to get similar anterior-

posterior patterning within different Drosophila species with different sizes of embryos

(Gregor et a1, 2005). In order to see how diffusion works for Bcd they injected an inert,

fluorescently tagged molecule that mimicked the Bed at the anterior pole of the embryo

and measured the concentrations at different spatial points of the embryo over time. They

modeled this process by reaction diffusion model, which describes the change in protein

concentration pursuant to diffusion over space and time as well as decay due to protein

lifetime. In order to solve their model numerically over time, they discretized the embryo

into a three-dimensional grid. They fit the experimental data with their model for

different species and found species-specific diffusion constants. In species with different
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sized embryos the relative change in diffusion constants was minimal and also the

difference in developmental time scales of the species was small. These results led them

to hypothesize that the reason for the identical patterns over different Drosophila species

is due to species specific lifetime of Bed. However, this result has yet to be

experimentally verified.

Shape and stability of Bcd morphogen are always assumed to be the result of

localized production, diffusion and degradation. Recently, the diffusion rate of Bed

protein is reported but the rate of Bed production and degradation remains uncertain

(Gregor et a1, 2005). On the other hand, it has been shown by recent live-imaging

experiments that Bcd undergoes rapid nucleocytoplasmic shuttling and equilibrates

between the cytoplasmic and nuclear compartments (Gregor et al, 2007). However, the

equilibrium level changes in time due to the number of nuclei present to trap the Bed.

These recent observations led Shvartsman and colleagues to suggest a new differential

equation model to explain the exponential shape of Bed without degradation of Bed

protein; their model incorporates constant localized production at the anterior pole of the

embryo, diffusion and nucleocytoplasmic shuttling in the presence of the growing

number of nuclei instead of localized production, diffusion and degradation (features of

earlier reaction diffusion models) (Coppey et al, 2007). Their model predicts that nuclei

do not contribute significantly to the shape of the Bed gradient; the Bcd gradient

establishes before the nuclei migrate to the periphery of the embryo (blastoderm stage)

and remains stable during subsequent nuclear divisions, i.e. nuclei can be viewed as

essentially inert sensors of the pre—established concentration from earlier time points. The

existence of the stable dynamics of the profiles of nuclear Bed is a robust feature of the
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model; the parameters of the model do not have to be fine tuned. Another prediction of

the model is that local defects in nuclear density should generate only local defects in the

profile of nuclear Bcd. Although these predictions have not been tested yet, they could be

tested by careful measurement of Bed stability and analyzing mutants with late defects in

nuclear migration. Despite these nice predictions, their model cannot account for sealing

of the gradient with the size of the embryo similar to earlier reaction-diffusion models

(Gregory et al, 2005, 2007).

Anterior-posterior patterning in the early Drosophila embryo is one of the well

studied biological systems experimentally by many enhancer bashing and gene mutation

experiments. However, these studies are usually insufficient to get a complete picture of

this patterning process. To get the complete picture experimentally, we need to create an

in vitro system which reconstitutes the underlying gene network from well defined

ingredients. This reconstruction is almost impossible for right now, and for this reason

alternative approaches are needed. Therefore in recent years researchers have been trying

a new approach using mathematical modeling to recreate this network in silico and test

the hypothesis.

In several recent studies Reinitz and colleagues analyzed the Drosophila gap gene

regulatory circuit (one hour prior to cellularization in Drosophila) by using reaction-

diffusion models, which was used by the same group in an earlier study to analyze the

formation of stripes f expression of the pair-rule gene eve (Jaeger et al, 2004a; Jaeger et

al, 2004b; Reinitz & Sharp 1995). In their study they used spatial and temporal data of

wild type protein levels of the network, which constituted of the gap genes hunchback

(hb), Kruppel (Kr), knirps (kni) and giant (gt), maternal factors bicoid (bed) and caudal
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(cad) and the zygotic gene tailless (tll). Their model provides a way to use this data to

infer how concentrations of products of a given gene change with time and how these

changes are influenced by the activating or repressing effects of the products of other

genes. Their model is based on three main ideas; protein concentrations are taken as state

variables of the network, chemical reaction kinetics are given by coarse grained rate

equations for protein concentrations, and least squares fit is used to estimate the

parameters of the network. The optimized parameters suggested to them regulatory

relations in the network, which they compared to the literature and checked if their model

could successfully mimic the gap gene circuit and known mutations in the circuit. Their

model agreed with the earlier mutant and reporter studies, recommended that some of the

previously reported regulatory interactions are not necessary for getting the model to fit

and suggested some new regulatory interactions such as activation of Kr by Cad.

They show that their model could reproduce gap gene expression at high accuracy

and found the mechanisms previously inferred from qualitative studies of mutant gene

expression data (Jaeger et al, 2004a, 2004b). Their analysis argues that threshold

dependent interpretation of maternal morphogen concentrations is not sufficient to

explain shifts in gap domain boundary positions. They argue that maternal factors start

activation of gap genes but their fine detail will be determined by gap genes i.e.

positioning of gap gene boundaries and maintenance of gap gene expression depend

mostly on gap-gap talks rather than maternal activators (Jaeger et al, 2004a, 2004b).

Their model also suggested diffusion as a non critical mechanism for observing gap gene

shifis; if they don’t allow shifts in the gap gene networks, they still see the shifts in gap

gene expressions (Jaeger et al, 2004a).
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The model predicts that synthesis is confined to the anterior region of each

expression domain, which implies that there is an asymmetric distribution of gap gene

transcript in protein domains; transcript domains of Kr,'kni and gt are shifted anteriorly

with respect to their corresponding protein domains. They argue that these shifts are due

to protein synthesis domination anteriorly and protein decay domination posteriorly.

Shifts of anterior gap domains could be considered secondary effects of shifts of posterior

gap domains, i.e. shifts of anterior gap domain boundaries either follow the posterior

boundary shifts of more anterior gap genes or are due to sharpening of posterior

boundaries of anterior gt and hb (Jaeger et al, 2004a).

They predict activation of Kr by Cad and several other regulatory relations

(clarify evidence on the effects of Hb on Kr, Kr on kni, and Gt on kni) (Jaeger et al,

2004b). Unfortunately, most of the results from this study have not been validated yet. It

has also been noted that the model fails on null mutant experiments. They claim that this

failure is due to indeterminacy in quantitation of protein signal, or due to false early gap

gene regulation, which predicts high levels of gap genes that does not actually exist.

The periodic spatial pattern of segment polarity gene expression of Drosophila

melanogaster along the anterior-posterior axis of the embryo is maintained throughout

development, providing positional information for subsequent developmental events.

Segment polarity genes process and maintain their expression state through cross

regulatory interactions, which involves cell to cell interactions. Recently, von Dassow

and colleagues analyzed the segment polarity network by ODE models and checked

whether the known interactions in this network are enough to yield robustness (von

Dassow et al, 2000).
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They developed a logical network interpretation from experimental results for the

reactions between the segment polarity genes and their products, including Engrailed

(EN), Wingless (WG), Hedgehog (HH), Patched (PTC) and Cubitus interruptus (CID).

They used this logical network for designing an ODE model that encodes this logic in a

set of 13 nonlinear ordinary differential equations, which incorporates synthesis, decay,

heterodimerization, cleavage and cell-to-cell traffic. The model encoded 50 parameters

including binding rates, cooperativity coefficients and half lives of proteins and mRNAs

where the real values are usually unknown. In their study, they tried to find a set of

parameter values which the model exhibits the desired behavior of a segment polarity

network, given realistic initial conditions. Their model could not result in the

segmentation patterns observed with the known interactions among the segment polarity

genes and their products in the observed behavior of the embryo during and after the

segment polarity stage. Even after attempting a wide range of constrained parameters for

their model, they could not determine one parameter set that would maintain the initial

pattern of these genes’ expression stably over time.

They argued that the discrepancy seen is possibly due to lack of information about

the topology of the network rather than the parameters chosen. They redesigned the

protein-protein interaction network with some additional interactions, which was

suggested by their best approximate results; wg and en expresses alternately in every

other cell along lines of cells parallel to the anterior—posterior axis. They added two new

interactions, which are biologically reasonable to get the expected pattern; wg auto-

activation, and inhibition of en by Ci amino-terminal repressor fragment. The difference

between this new model and old model is the emergence of two positive feedback loops,
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one for en and one for wg. With these links installed there are many parameter sets that

enable the model to reproduce the target behavior, i.e. the segment polarity network is

robust to parameter variation. Their model also suggests that the segment polarity

network requires few absolute demands on initial conditions, and it seems likely that the

evolutionary process could replace those inputs relatively easily which aids in the use of

the same module in different organisms. They also showed that robustness property is not

an artifact of the network topology; they analyzed models that include additional links

and components and observed that as long as they keep the core topology the same

conclusions hold. Although the results of this model haven’t been experimentally

validated yet, the approach itself was extremely valuable in guiding new experiments.

There are a few points to be noted in differential equation based models. First,

three-dimensional structure of biological systems should be taken into account for

realistic modeling. Although reducing the dimension of the system might simplify

calculations and be a reasonable first approximation to the problem, models should be

extended as new data emerges. For example, Jaeger et al (2004a, 2004b) and Reinitz &

Sharp (1995) concentrated on a strip of cells from the middle of the Drosophila embryo

with the assumption that anterior-posterior and dorsal-ventral patterning networks are

independent in Drosophila melanogaster, but it is accepted that this assumption is not

entirely true. Recently, Fowlkes et al (2006) and Luengo-Hendriks et al (2006) noted the

importance of nuclear movements on gap gene regulation, which could also be taken into

account in a three dimensional treatment of the problem. They are producing three-

dimensional data on Drosophila segmentation genes, which the modeling approach taken

by Reinitz and colleagues could be applied to (Fowlkes et al, 2006; Luengo-Hendriks et
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al, 2006). Similarly, Coppey et a1 (2007) assumed in their model that nuclei are

uniformly distributed throughout the embryo which contradicts also to studies of Fowlkes

et al (2006) and Luengo-Hendriks et al (2006).

Second, although differential equation models are more suitable than other

modeling approaches like Boolean models for the dynamic nature of biological systems,

the quality and quantity of data needed to construct a differential equation model makes

them difficult to apply. If there is insufficient data or the data of poor quality, use of these

models might result in inaccurate predictions. However, the inaccuracy could be resolved

by increasing quality and quantity of the data, and the differential equation models could

be solved numerically to any desired precision. For example, although Reinitz et al

(2004a, 2004b) used the same modeling and optimization techniques with Reinitz et al

(1995), they had a lower degree of variation in the distribution of parameters and the

error levels in the gap gene expression patterns were reduced to less than 5% by the

increase in the data quality.

Third, although we assume that cells and cell compartments are homogeneous, in

reality cell compartments are highly heterogeneous and compartmentalized structures.

This leads to a situation where the discrete nature of the molecular components cannot be

ignored, resulting in the stochastic behavior of biological systems. Although, differential

equation models are appropriate for simulating systems which satisfy continuum

approximation, they fail to describe stochastic interactions. Approaches that model

stochastic effects between individual molecules offer better descriptions of system

behavior in such cases, such as the Gillespie algorithm (Gillespie et al, 1977).
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Fourth, differential equation models usually depend on lots of parameters that

quantify the interactions between molecules and finding these parameters experimentally

is not an easy task. Consequently, these models often become underdeterrnined and many

parameter values could work equally well. Therefore, producing quantitative predictions

for large biological systems by differential equations is not straightforward and this could

only be done for simple systems. On the other hand, the numerical techniques for solving

differential equations should be chosen carefully and the stability of the solutions should

also be checked. In a numerically stable algorithm, errors in the input lessen in

significance as the algorithm executes, having little effect on the final output, and in a

numerically unstable algorithm, errors in the input cause a considerably larger error in the

final output. Finally, due to high computational needs these models do not scale well to

complex regulatory networks with hundreds of interacting molecules. However, since

they protect the overall picture of the biological systems, as opposed to other modeling

approaches such as Boolean models, the disadvantages in computation are compensated

for by the accuracy of the results. This problem might be potentially solved by the

improvements in computational techniques and technology.

Fifth, discrete time scale could be added to the biological systems, if necessary,

by using difference equations, which is the discrete form of differential equations where

the value of one variable at a certain time depends on the value of that variable at a

former time. Difference equations are more realistic than differential equations clue to the

discrete nature of biology. Although the use of discrete time in modeling is correct for

ecology models in which new organisms are born in synchrony, it is less appropriate

when no natural time step exists, such as in transcription where transcription time varies
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across genes. On the other hand, the time delays in gene regulation due to involvement of

processes such as import and export to the nucleus or slowness of the processes such as

translation could be incorporated into the model using delay differential equations.

Sixth, there is very limited information about the actual in vivo processes, and for

this reason lots of assumptions are made about nonlinear biological processes such as

spatial organization of the system, interactions between molecules, and reaction rates. For

example, it is generally assumed that interactions among molecular species follow mass-

action kinetics, but mass-action kinetics may not be suitable for some reactions such as

conformational changes in large-scale macromolecular aggregates. On the other hand, in

these models the DNA level regulation of transcription is taken as a black box, and

usually approximated by a function of sigmoidal type, which may not be realistic since

every protein does not have to obey the same type of sigmoidal behavior; some proteins

may be extremely sensitive to increases in activation signal where others may not.

Seventh, it is believed that the regulatory networks are composed of modules,

which are assumed to be semi-independent in their behavior. For example, in a typical

Drosophila embryo it is assumed that the genetic regulatory networks are effectively

isolated from other developmental processes such as cell-cell interactions, morphogenetic

movements, and protein phosphorylation. Although differential equation models do a

pretty good job at describing the behavior of the modules, due to possible missing pieces

in the modules their use is limited; for example, changes in the modules such as addition

or subtraction of new proteins might have profound effects, which may not be pointed out

by differential equation models due to over fitting to the earlier description of the module

(von Dassow, 2000).
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Eighth, differential equation models usually ignore post-translational regulation

and take DNA level gene regulation as a black box. For this reason, these models can't

help us to understand the enhancer structure and organization, such as cooperative

binding, distances between transcription factors, orientation of transcription factors;

however, these models are useful for finding potential targets for DNA level studies.

Because of skipping DNA level regulation, the rules learned from one circuit is typically

not applicable to other circuits, since on the DNA level protein binding sites might be

reorganized and this reorganization might change the rules learned on protein level.

Although this is a weakness inherent in the studies that do not take into account the DNA

level information, it does not mean that this approach is useless-it might really help us to

see the bigger picture. However, if the rules on the DNA level are found they could be

connected to the protein level analysis and possibly used by other circuits.

Ninth, the fitness of differential equation models are measured by cost functions,

which compare the model’s predictions to experimental data and visual inspection. There

are two approaches to this problem; finding parameters of the system by an optimization

method which minimizes the cost function or taking a parameter range for parameters

and trying all possible values. Usually for parameter estimation global optimization

techniques are used, which are known to give multiple parameter sets that can satisfy the

system equally well due to their stochastic nature. For this reason interpretation of the

parameters is not easy and clearly the most important part of modeling. For example,

Reinitz and colleagues used Parallel Lam Simulated Annealing for estimating parameters,

which resulted in many gene circuits which they checked for defects and used the circuits

which do not have any observable defect for further analysis (Jaeger et al, 2004a, 2004b).
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Alternatively, Eldar et al (2002) choose 66000 different parameter combinations where

each parameter ranges over four orders, and they checked for the ones which give robust

pMad expression.

BOOLEAN MODELS

Biological processes often show switch-like behavior such as competence in

bacteria, apoptosis decision in cells and transcription of a gene. For this reason, Boolean

models which represent the regulatory relations as logic gates are one of the most studied

discrete approaches that could capture and describe this behavior. In this approach,

mRNAs and proteins in the network are assumed to be binary valued logical variables,

i.e. their states can be either on or off which is usually decided according to a threshold

value. The associations between the variables are described by Boolean or logical

functions, which provides a statement performing on the inputs, mRNAs or proteins that

have regulatory signal to the target, using the logic gates such as “and”, “or” and “not”,

and the output is on ( 1) or off (0). For instance a gene which is regulated by two

transcription factors; AND function implies that the gene is transcribed only if both

transcription factors are binding, OR function implies that the gene is transcribed even if

one of the transcription factors are binding, and NOT fimction implies that the gene is not

transcribed if both of the transcription factors are bound.

Boolean networks can be used for simulating dynamic behavior in biological

systems by applying the Boolean functions in discrete time steps, usually the time

interval that is larger or equal to the duration of all biological processes in the system.

The updates in the network, which could be synchronous or asynchronous, cause the

biological system to evolve from state to state, where a state of the biological system is a
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binary vector demonstration of the states of each variable (mRNA, protein, etc.) in the

system. In this approach each variable has two states-on (l) or off (0), and the dynamics

show how the variables change each others’ states over time. Due to the deterministic

nature of Boolean models, the initial state of the system completely determines the end

state of the system. If no difference occurs between transitions of states, then the system

is in a point attractor state (analogous to steady state in differential equations), and if

states of the system repeat periodically, then the system is in a cycling attractor state

(analogous to limit cycles in differential equations).

Boolean modeling could be used for any biological system, where interactions

between its elements are well described, to combine qualitative experimental

observations in a logical structure. Due to their simple nature, they circumvent the need

to know quantitative details about the reactions in the systems, which is not available for

many biological systems. This simplification creates an advantage for Boolean models

over other modeling approaches (such as differential equation models which usually

include many unknown parameters), they become mathematically more tractable which

makes them easy to analyze analytically and implement computationally. For example

analysis of the steady states or limit cycles of the Boolean model is much easier than

differential equation models. However, despite their simplicity, they could still provide

qualitative insights into the fundamental nature of the underlying system, such as the role

of feedback loops in the network’s behavior. Also, since they are easy to analyze and

implement, they could be extended to large scale biological systems with thousands of

players.
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Boolean network models could be used as an exploratory tool for systems where

the network structure is not clear. Many variants of the same network could be created,

and the simulations of the model could be compared to previous experimental findings

and the instincts of the modeler. As a result, Boolean models could be a way for the

modeler to understand the dynamics of the system and start modeling even without

knowing fine details of the system.

Biological networks are usually robust despite intrinsic and extrinsic noise, for

example protein and mRNA levels are noisy with varying activity, and dynamic.

However, by adding stochasticity to Boolean models they could be extended and used for

analyzing the conditions under which the biological network is robust. On the other hand,

use of coarse-grained Boolean models to capture dynamicity in the networks seems

unrealistic. Recently several studies used these models based on very simple Boolean

functions to fit sequences of gene expression patterns (Sanchez et al, 2001; Albert &

Othmer 2003). We will analyze these studies below for a further understanding of these

models.

Recently, Albert & Othmer (2003) have constructed and analyzed a Boolean

network model for segment polarity genes of Drosophila melanogaster. These genes

show stable expression patterns which supply the necessary information for the following

developmental processes. The expression of the segment polarity genes are refined and

sustained throughout a number of developmental stages by regulatory interactions

between the elements of the network, which constitute not only cellular interactions but

also intercellular interactions. As mentioned in the previous section, analysis of this

network by nonlinear differential equation models suggested that the steady-states of this
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network are not affected by choices in the kinetic parameters and determined mainly by

the type of regulatory interactions within elements of the network and topology of the

network. Albert & Othmer (2003) constructed a Boolean network model which

recapitulates the main conclusions of von Dassow et al (2000) and accurately predicts the

dynamics of this network. Their model is based on binary ON (1) and OFF (0)

representations of mRNA and protein levels in the network and the interactions between

elements of the network are defined by logical functions. The Boolean network is

updated every unit time step to create the next state of the network. They also changed

their one step model to a two-step model, where they assumed that proteins degrade in

two steps, but mRNAs degrade in one step. However this alteration in the network did

not change the main conclusions of the model.

The model’s performance is measured by its prediction of spatial and temporal

gene expression levels of the network, which are present (1) or absent (0), rather than

absolute continuous levels of mRNAs and proteins. In their model the following

assumptions were made: the effect of transcriptional activators and inhibitors is never

additive, but rather, inhibitors are dominant, transcription and translation are ON/OFF

functions of the state, if transcription/translation is ON, mRNAs/proteins are synthesized

in one time step, mRNAs decay in one time step if not transcribed, transcription factors

and proteins decay in one time step if their mRNA is not present. In their modeling they

take into account only 12 cells i.e. 3 parasegment primordia and impose periodic

boundary conditions. 4 cell per parasegment primordium are used since when expression

of segment polarity genes begins, a given gene is expressed every four cells. They did not

add the nodes such as F2 and smo to the modeling since these are not regulated by other
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nodes in the network. With all the elements they have, the total number of nodes becomes

180. They add more nodes which are composites of two or more, to make it easier to

implement. After this expansion, the number of nodes increases from 180 to 444, but this

simplifies the network topology representation. They have a different functional topology

of the network for each cell of parasegment since some proteins don't exist in that

particular cell or on the neighboring cells. This boolean model is calculated again and

again for different time points and different places. They used the patterns of segment

polarity genes formed before stage 8 as initial states and the final stable state is wild type

patterns maintained during stages 9-11. The modeling is done on only one parasegment,

for which we can find all possible steady states of this network. They iterate the

dynamical system defined by their Boolean model starting from the initial state described

above. They found that after only six time steps, the expression pattern stabilizes in a

time invariant spatial pattern.

They found 10 solutions of their model analytically which lead to six distinct

steady states. Three of those steady states are well known experimentally, corresponding

to wild type pattern and two mutant patterns with either no stripes or broadened stripes.

The existence of three additional states suggests that the network can produce some

patterns which are not needed for Drosophila melanogaster embryogenesis also. They

also identified the basin of attraction for each steady state by searching in the space of

potential initial conditions and observed that the network could correct itself for the

errors in the initial expression patterns. This property of error correcting is a significant

robustness property of the segment polarity network.

44



Their model gives several insights into the design of the segment polarity

network. First of all, it suggests that the Wingless gene is a key element in the network,

and its initiation in the right pattern at the right time is vital. On the other hand, non-

initiation of engrailed and hedgehog could be rescued by the interactions in the segment

polarity network. In their study in order to reduce the number of assumptions taken they

assumed that the interactions in the network follow a single time step. They extend this

by using the assumption that decay of proteins is slower (twice of mRNA decay time).

They make this change to the network to make it more realistic. The number of

intermediate steps decrease for the two step model. This assumption provides a more

realistic modeling of the decay of proteins without changing the conclusions of the

model. The model of Albert & Othmer could be improved by taking more realistic

assumptions such as taking different time intervals for the decay for mRNAs and proteins

or considering a two dimensional array of cells instead of one.

As mentioned above the gene networks of embryonic segmentation in Drosophila

have been modeled by differential equation models or Boolean models (von Dassow et

al, 2000; Sanchez & Thieffry, 2001; Albert & Othmer 2003; Jaeger et al, 2004). The first

modeling study which focused on the segment polarity gene network was done by von

Dassow et al (2000) as described in the differential equation modeling section, where

they developed a nonlinear differential equation model of the network. Their study

focused on five genes ci, en, hh, ptc and wg and their proteins. Their choice of network

topology failed to reproduce the wild type expression patterns of these genes, which they

extended by adding two more interactions. This extension resulted in a robust network

with respect to variations in the kinetic variables. The robustness of this network to
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changes in variables, suggested that the t0pology of the network and the regulatory

interactions within the network are essential for robustness. Based on this observation,

Albert & Othmer (2003) used a Boolean model to reproduce the main characteristics of

the segmentation polarity network. In their study they showed that the network topology

and signatures of interactions in the network, whether an interaction is activating or

inhibiting, is enough to reproduce the essential features of the segment polarity network

dynamics. We should note here that although, Albert & Othmer (2003) modeled the

segment polarity network with a simple Boolean model, other networks might require

more comprehensive models which incorporate features such as asynchronous updating.

Although both studies come to the same conclusion, the networks they employed

are slightly different. The difference between their choices of network topology is due to

two opposing observations on en inhibition; Aza-Blanc et a1 (1997) suggests that en

inhibition is due to CIR and Cadigan et al (1994) suggests that this inhibition might be

due to transcription factors encoded by sloppy paired gene. Hence, in Albert & Othmer

(2003) they added sloppy pair to get the asymmetrical en activation instead of taking en

inhibition by CIR. On the other hand, the level of importance given to inhibition by these

studies is different. In Von Dassow et a1 (2000) inhibitory effects only reduce the level of

activation; however in Albert & Othmer (2003) inhibitory effects are dominant. This

difference resulted in a large number of patterns with very broad en and wg stripes for

even wild type initial gene expression patterns in von Dassow et a1 (2000).

Sanchez & Thieffry (2001) used a Boolean approach, similar to their earlier study

on the dorso-ventral patterning (Sanchez er al, 1997) to model the gap gene network in

Drosophila melanogaster. Up until now the experimental studies, especially mutation
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analysis led the construction of a qualitative network, which determines the pattern

formation in Drosophila. This study extends these analyses with an addition to the

understanding of their dynamics and attractor states. Their model was able to simulate the

wild type, single and multiple mutant qualitative gap gene expression patterns and

describe the ways a gap gene regulatory network function to generate different patterns in

response to maternal factors; Bcd, Hb and Cad. Their modeling also sheds light on the

least number of functional levels associated with the maternal (Bch, Cad and Hb) and gap

genes (Gt, Hb, Kr and Kni), the most crucial interactions and regulatory circuits of the

gap gene network, the ordering of different regulatory interactions governed by each of

these products according to corresponding concentration scales and the importance of

gap-gap cross regulation in this network. For example, although cross-inhibition between

gap genes was suggested as a critical mechanism for creating gap gene expression

patterns, their network analysis suggested that cross inhibitory interactions between gt

and Kr constitutes a positive circuit which is critical for the whole gap gene network, but

not others (Rivera-Pomar & Jackle, 1996).

Their Boolean model takes the sum of the regulatory inputs to a target and

transforms it into logical parameters. How this transformation is done is a critical part of

the modeling. To select the specific values for parameters of the model, which takes care

of the transformation, they dynamically analyzed the gap gene system and accepted the

lowest parametric values that can generate the expression states compatible with known

wild type and mutant phenotypes. These parameters lead to the finding of the most

important cross regulatory interactions between the elements of the gap gene network. In

their Boolean modeling they also divided the embryo to four domains along the anterior-
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posterior axis, depending on the concentration levels of maternal morphogens (Bcd, Cad

and Hb) and assigned the logical variables (maternal and gap genes) to different

functional threshold levels. They assigned three functional thresholds for Bicoid (Bed)

and Hunchback (Hb), two for Caudal (Cad) and Kruppel (Kr), and one for Giant (Gt) and

Knirps (Kni). In addition to that, if necessary, they ordered different functional

interactions where distinct functional concentrations of the same regulatory product are

involved. For example they assumed that Cad will activate kni at the first threshold and gt

at the second threshold.

As discussed above in modeling dynamic biological processes differential

equation models are used not to lose the fine details of the system. Those models use

details of the system including production, diffusion and degradation rates of regulatory

factors to develop a model that can typically be usually solved in a computationally

expensive way.

However, in most of the biological systems we lack the good quality quantitative

information on the molecular interactions between genes and proteins. Modelers in order

to circumvent this problem use Boolean models instead of differential equation models.

The Boolean model of Sanchez & Thieffry (2001) and the differential equation model of

Jaeger et a1 (2004) on the gap gene network show two sides of the coin here. Although,

Sanchez & Thieffry (2001) and Jaeger et al (2004) accomplish a comparable level of

analysis for gap gene network, there are some key differences worth mentioning, which

we will discuss further below.

A repressive feedback loop between kni and hb is reported in Jaeger et al

(2004) as essential for the gap gene network, but not in Sanchez & Thieffry (2001)
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due to the fact that they did not take into consideration t1] and the posterior hb in

their analysis. On the other hand Sanchez & Thieffry (2001) suggest a dual role for

Hb in Kr regulation but Jaeger et al (2004) argues that the dual role of Hb is not

required for the proper expression of Kr. However this might be due to the fact that,

Jaeger et al (2004) takes the sum of the contributions from all the regulatory

proteins which possibly excludes all potential context sensitive interactions. Jaeger

et al (2004) suggests autoactivation as a critical component for sharpening gap

domain boundaries, however Sanchez & Thieffry (2001) could not find it.

The differences in their results might also be due to the minimalist approach

of the Boolean modeling. In logical analysis functional thresholds are assigned for

continuous protein concentrations, which results in four discrete regions of

functional borders for the gene expression domain along the anterior-posterior axis,

however these borders are crude and perhaps do not match well with real

expression borders. For this reason modeling boundary sharpening in detail similar

to Jaeger et al (2004) is not possible for Sanchez & Thieffry (2001).

Another difference between these two approaches is the fact that the

approach of Jaeger et al (2004) is computationally much more expensive than

Sanchez & Thieffry (2001) despite the fact that it is applied for modeling a one

dimensional strip of nuclei. On the other hand the success of Jaeger et al (2004)'s

parameter estimation technique, which is the core part of their study, depends

heavily on the very high quality of the data on gene expression levels. However this

is not possible at this time.
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Another application of a Boolean model is given by Yuh et' al (2001), where the

approach is used to understand the transcriptional regulation on the DNA level. In this

paper they analyzed the end016 gene of sea urchin in detail, which encodes a protein of

the embryonic and larval midgut. This enhancer is a relatively well studied i.e. regulatory

elements which control this gene spatially and temporally are known. The regulatory

organization of the endol6 gene has been created by many experimental studies which

launched the regulatory regions, their functions and interrelations between each other.

The end016 gene has a complex regulatory enhancer region, which helps it to react to

diverse spatial and temporal conditions in development. There are not many

developmentally regulated genes that have been analyzed in as much detail as end016.

Because of this detailed knowledge, the endol6 gene is usually used as an example to

show how developmental enhancers process regulatory information.

A small module (module A) in the regulatory region of the end016 gene has been

modeled by logic gates such as AND, OR, NOT to state the interactions between

regulatory regions (Yuh et al, 1998). Recently they extended their earlier study by

analysis of a nearby module (module B) and its interactions with module A. In this

enhancer, module A functions like a central processing unit, regulating the expression in

the early embryos and contributing to the expression in late embryos with module B.

There is a relatively large gap(~240 bp) between module A and module B. Either piece of

DNA, i.e., Module B or Module A, if associated with a reporter gene (they used Bp-

CAT) and injected into eggs, independently displays a specific and characteristic

transcriptional activity.
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In their study they used mutational analysis to set the logical model. However

using mutation data usually results in a recapitulation of what is known rather than new

findings. They used quantitative measurements of the kinetic outputs of various

embryonic expression constructs that had been introduced into fertilized eggs. In this way

they could recognize regulatory functions. In their Boolean model they incorporated the

repressive contributions from other modules (DC, E, and F) to module A, a module B to

module A regulatory connection (nine different sequence specific transcription factors

interact within Modules B and A), synergistic contributions of module A to module B

and a control switch between module A and module B. Using their Boolean model they

predicted that there is an internal switch in the endol6 enhancer region gene which

moves the control from module A to module B. They confirmed their prediction

experimentally and found the key players on module B which control this switch. In this

enhancer, module A starts the activity of the gene at earlier time points in development

(vegetal plate specification), however, once the gut differentiation starts module B takes

control and becomes the primary operating unit. Module B generates and transmits its

regulatory input to module A, and interacts with module A to amplify the expression of

endol6. In Yuh et a1 (2001) they showed by a quantitative kinetic experiment that the

expression of a construct including only module B was at all time points four to five

times lower than a construct with module A and B together. Their model now could

explain the control of expression changes in the endol6 gene throughout embryogenesis.

Their model not only allowed them to summarize the interactions but also provided many

testable predictions and predicted variations in the regulatory elements.
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One shortcoming of Boolean models is their inherent deterministic behavior

which may result in poor predictive power due to stochasticity in gene regulation and

noise in the experimental measurements. The noise in the biological data makes

application of Boolean models without probabilistic considerations impossible. One

possible approach to solve this problem is adding stochastic functions to parts of the

model where necessary.

Lack of knowledge in the network architecture is another problem for the

use of Boolean models. Although, Boolean models could be used for investigative

purposes, for biological systems with insufficient knowledge in system parameters,

their success might be heavily affected by network architecture. It has been

previously reported by the knock out experiments in the yeast network of Li et a]

(2004) that a single change in the network changes the dynamical trajectory with a

50% probability.

Sanchez & Thieffry (2001) and Yuh et al (2001) used analysis of mutation

experiments to construct their models. However, this approach is simple, crude and

likely to replicate the explanation of the data they are based on instead of suggesting

new ways to explain it. Possibly if a new interaction is suggested by experiments in

the system it will change the results of those types of studies. 0n the other hand the

models, not based on assumptions coming from experimental data such as Jaeger et

al (2004), have the chance to suggest new ways to explain the data.

The simplicity of Boolean models comes with a price; the accuracy in the system

will be lost. For example, a Boolean variable has only two possible states, which is not a

good simplification for many biological properties. If the system depends crucially on the
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fine details of the system such as reaction rates, timing of regulatory relations and

concentrations of mRNAs and proteins then these models will not do a satisfactory job at

describing the system. For example if a gene is negatively regulating its own production,

in Boolean modeling this would give a oscillatory behavior, but in reality such a process

will lead to steady state unless there is a significant time delay.

PARAMETER ESTIMATION

Most biological modeling problems reduce to an inverse problem, where the

certain parameters in the model should be estimated. However, inverse problems are not

easy to solve, it is usually a challenge to find a unique parameter set which satisfies all

the constraints of the system. On the other hand they are often computationally very

expensive. Nevertheless, there is no universal parameter estimation technique which

works well for all inverse problems; rather there are different parameter estimation

methods that are customized for different problem types. The choice of a suitable

parameter estimation technique and its validation is extremely important since this choice

determines whether the problem is solved fast or slow, or even solved at all. However,

this problem has not been treated in the biological modeling in particular transcriptional

modeling literature explicitly (Janssens et al, 2006; Zinzen et al, 2006; Segal et al, 2008).

To estimate the parameters, which fit the model to experimental data, we must

first identify an objective function. Objective function depends on variables of the model

and gives a quantitative measure of the performance of the model. Ofien sum of squares

of the residuals between the model’s prediction and experimental data is employed as the

objective function. The goal in parameter estimation is to find values of the parameters

that optimize the objective. Often the parameters are restricted, or constrained, in some
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way, usually expressed as equalities and inequalities. Parameter estimation algorithms

start with an initial guess and iteratively generate new estimates until they stop,

optimistically at a solution. How the iteration process works differentiate different

parameter estimation techniques and usually depends on the objective firnction and

constraints of the parameters. In biological models objective functions and the constraints

are often nonlinear, which might imply multimodality i.e. the objective function might

have many local and global optimums. The modelers are usually interested in finding the

global optimum solution among the set of all possible solutions, however this is not an

easy task.

Parameter fitting approaches could be divided into two main groups as local and

global parameter estimation techniques. Local estimation techniques include the

conjugate gradient method, Newton’s method, simplex methods, and the Nelder-Mead

method. Within all local techniques two groups are particularly important; gradient based

approaches such as Newton’s method and the Levenberg-Marquardt method and direct

search methods such as the Nelder-Mead method. Gradient based approaches require the

calculation of the objective function’s derivative or at least its approximation by a finite

difference method. On the other hand direct search methods circumvent the need for

gradient calculation, which makes them the choice for problems with discontinuous,

nondifferentiable or nonlinear objective functions. This method is based on a comparison

of the objective function at the vertices of a simplex, which is updated at each step.

Use of local parameter estimation techniques for searching global optimums of

biological models is troublesome; the search usually ends up in a local optimum rather

than global (Mendes & Kell, 1998). When prior knowledge about the parameters is
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available local techniques could be used, however for many biological problems this is

not the case. To overcome this problem, local parameter estimation techniques might be

used repeatedly with different initial starting points for parameters, however this

approach is not very efficient. Mendes (2001) noted that gradient methods could not find

the optimum parameter set from any random starting point for estimating 36 parameters

of a nonlinear biochemical dynamic model.

Global parameter estimation techniques include deterministic strategies such as

the branch and bound method, and interval optimization, and stochastic strategies such as

genetic algorithms, the simulated annealing and, evolutionary strategies. Deterministic

methods provide some guarantee of finding the global optimum, however finding the

global optimum is computationally very expensive. On the other hand stochastic models

are probabilistic approaches and give merely a weak guarantee on finding the global

optimum. However they can reach the vicinity of the real solution in a reasonable amount

of time.

Global parameter estimation techniques, especially stochastic strategies, are better

than their local counterparts in finding the global optimum of the system and have been

shown to be more suitable for biological systems (Mendes & Kell, 1998; Mendes 2001,

Moles et al, 2003). In a recent study, Banga and colleagues compared a balanced

selection of competitive parameter estimation algorithms, including several deterministic

and stochastic global parameter estimation techniques, for their efficiency and reliability.

They observed that the stochastic approach evolutionary strategy functioned best on their

continuous problem with a high number of unknowns (Moles er al, 2003). Slow

convergence is a problem for global methods, however many global methods have
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parallel versions, which shorten the time needed to finish the job. In a recent study,

Mendes & Kell (1998) considered the parameter estimation in the mechanism of

irreversible inhibition of HIV proteinase, which has 20 parameters to estimate. They

suggested that within all the methods they tried the simulated annealing algorithm

functioned the best; however the solution obtained by the Levenberg-Marquardt was

comparable and the algorithm was 750 fold faster. To overcome this problem, hybrid

models, which combine global and local techniques, have been used frequently (Gursky

et al, 2004).

In several recent studies, we have realized once more the necessity of a study

which compares the performance of parameter estimation techniques on gene regulation

models. In Reinitz & Sharp (1995), the lam simulated annealing method is used where

each parameter estimation took approximately 1 week of CPU time on a Sparc 2 and in

Jaeger et al (2004a, 2004b), a parallel lam simulated annealing method is used where

each parameter estimation took between 8-160 hours on ten 2.4GHz Pentium P4 Xeon

processors (Lam & Delosme, 1988). The same study is repeated with the same

conclusions by more efficient algorithms. Perkins et al (2006) used local search

procedures and particular characteristics of the gap gene system to estimate the

parameters in 1-2 days. Fomekong-Nanfack et al (2007) used the evolution strategy

approach (motivated by the earlier studies Moles et al (2003) and Runarsson & Yao

(2000)) and reduced the time needed 5-140 times compared to the parallel lam simulated

annealing method.

Parameter estimation techniques have been used in modeling extensively as

mentioned above, however there are not many studies in the literature which compare
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parameter estimation techniques in the field of modeling, particularly gene regulation

modeling. Mendes & Kell (1998) discussed the performance of the parameter estimation

techniques for finding global optimum in biochemical models and concluded that there is

no best algorithm which works well for all problems. In their study they recommended

the use of a set of diverse parameter estimation methods to attain the best possible

solution.

Modeling approaches will get more complicated soon to incorporate the new

genome scale data. To estimate the parameters of these models we need algorithms that

are robust (starting point independent), efficient (not require much computational power

and storage) and accurate (not sensitive to errors in the data). Although we cannot attain

all of these goals at the same time, it is our job to pick the best for our needs.

MODEL SELECTION

Quantitative analysis of biological systems relies on the iterative process of

integration of experimentation, data processing and modeling. New experiments and

model development continues until an agreement is reached between the experimental

data and model predictions. Modelers usually require plenty of good quality data for this

iterative process; however the data collection from biological systems is usually limited,

which makes the modeling extremely challenging. For example, in biological systems

data is usually collected at a certain temporal state, i.e. it is only a snapshot of a dynamic

system. Although there are some biological systems which are relatively better known,

such as anterior-posterior patterning in Drosophila, even the current information in these

systems is not sufficient to detail all the regulatory relations.
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The models which are restricted by the limited amount of data could generally

reproduce the experimental data, but not provide any new insights. Currently, there are

widespread studies that generate genome, transcriptome and proteome data, which will

end the data limitation problem. The new challenge would be how to merge these

different “omic” data types. Recently several studies showed the power of integrating

insights from different data sets such as transcriptome and genome sequence (Tavazoie et

al, 1999; Segal et al, 2004). For example Tavazoie et a1 1999 used gene expression data

from microarrays to cluster co-expressed genes and searched upstream regions of these

genes to identify common regulatory motifs. They applied this technique for identifying

novel regulatory networks in S. cerevisiae and were able to identify 18 motifs in the

upstream sequences of genes in 12 clusters that are overrepresented in their cluster and

absent in the others. However, such a study is difficult to extend to many biological

systems for now.

The noisy nature of biological data creates another challenge for modelers and

affects the success of the modeling efforts dramatically. Quantitative biological data is

usually noisy due to both inherent noisiness of the biological systems and the imprecision

of the data collection methods. Although the noise can be reduced by repetition of the

experiments and application of carefully chosen data processing steps, which estimate

and remove the noise from the data, it is not possible to eliminate the noise from the

biological data entirely. However, despite the noise, modeling such biological systems

might still provide some critical insights which might not be obtained without modeling.

Understanding the nature of noise in biological data sets is critical for the

selection of appropriate analysis instruments and modeling. The model chosen should be
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able to deal with noisy data. As mentioned above some modeling problems reduce to an

inverse problem i.e. identifying parameters of the model which fits the model to

experimental data. However, the noisy data makes this inverse problem ill-posed where

the solution lacks stability i.e. a few percent of noise can possibly lead to huge relative

errors in the parameters and unreliable solutions. This problem might be overcome partly

by approaches such as the Tikhonov regularization method.

A good model is consistent with the available data, reflects essential properties of

the system, helps answer specific questions about the system such as computing

properties difficult to measure, and guides the researcher to design new experiments.

Before we start modeling we should have a good grasp of the system, we should know

properties of the system such as major molecular components, their interactions, layers of

interactions, and the physical geometry of the system. Modeling is a simplification of

reality, and for this reason when we are modeling we should make a choice about the

level of detail we want in the model. A highly detailed model that may give a more

accurate representation of the system is not necessarily a good thing; the increase in

number of parameters boosts the possibility of overfitting to the data. After the level of

detail is decided, depending on the data available and questions we are interested in, we

can choose a model type. A biological system can be investigated with different

experimental methods and mathematical models. Although standardizing experimental

conditions and modeling approaches are necessary for integration of efforts of different

groups and comparability of results, it is hard to achieve. On the other hand, use of

diverse modeling approaches will promote creativity and possibly decode different

aspects of the problem. The choice of the model is largely dictated by the data available
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and questions that are addressed. The model should be appropriate for the problem we are

solving. All of the models mentioned above have both advantages and disadvantages. For

example, a transcriptional network can be modeled by a discrete approach dynamic

Boolean model, where the time is discrete, each node of the network (mRNA, protein or

other component) has few states and the regulatory interactions between nodes are

described by logical functions (Sanchez & Thieffry, 2001; Yuh et al, 2001). A

transcription network can also be modeled by a continuous approach where each node of

the network are continuous functions of time and the evolution of the nodes are modeled

by differential equations, usually with mass action kinetics (von Dassow et al, 2000;

Jaeger et al, 2004). Although differential equation models provide more detail than

Boolean models the latter are simpler to handle, easier to expand to larger biological

systems and are computationally efficient. However, Boolean models are time discrete

and can only provide qualitative results. On the other hand, both of these approaches take

the DNA level regulation as a black box and are not as useful as thermodynamic models

for explaining the enhancer architecture.

The era of systems biology has brought together people from different disciplines

for collaborative studies. For this reason, models proposed for biological problems should

be easy to understand by researchers from other disciplines for its diverse applications. A

model that is hard to code and implement may not be so useful since it is not easy for a

researcher without a quantitative background to imitate or use those models and codes.

However, a good model should not be computationally challenging and expensive.

Although, the improvements in the computing make the latter problem less significant, it
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is still a challenge. Although, these computational considerations don’t make a model

right or wrong; but rather affect its applicability and extendibility.
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ABSTRACT

Correlation of quantities of transcriptional activators and repressors with the

mRNA output of target genes is a central issue for modeling gene regulation. In

multicellular organisms, both spatial and temporal differences in gene expression must be

taken into account; this can be achieved by use of in situ hybridization followed by

Confocal Laser Scanning Microscopy (CLSM). Here we present a method to correlate the

protein levels of the short-range repressor Giant with lacZ mRNA produced by reporter

genes using images of Drosophila blastoderm embryos taken by CLSM. The image

stacks from CLSM are processed using a semi-automatic algorithm to produce

correlations between the repressor levels and lacZ mRNA reporter genes. We show that

signals derived from CLSM are proportional to actual mRNA levels. Our analysis reveals

that a suggested parabolic form of the background fluorescence in confocal images of

early Drosophila embryos is evident most prominently in flattened specimens, with intact

embryos exhibiting a more linear background. The data extraction described in this paper

is primarily conceived for analysis of synthetic reporter genes that are designed to

decipher cis-regulatory grammar, but the techniques are generalizable for quantitative

analysis of other engineered or endogenous genes in embryos.

INTRODUCTION

Complex patterns of gene expression underlie the development of multicellular

organisms, and capturing the spatial and temporal information of gene expression is

critical for modeling gene regulatory networks. Microarrays or qPCR reactions can

provide quantitative information, but these methods usually lack spatial information. On
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the other hand, fluorescent in situ hybridizations provide spatial information about gene

expression and have the possibility of providing quantitative information as well. Recent

studies have relied on such in situ techniques to quantitate the levels of nuclear proteins

in the Drosophila embryo for the purposes of modeling."2

Because of its extensively researched genetic network, the Drosophila embryo

provides one of the best characterized systems for modeling transcriptional regulation.

Transcription factors encoded by the maternal, gap and pair rule genes form a regulatory

network, whose interactions have been carefully described in molecular studies.3 A

comprehensive mathematical description of this system still eludes us, however, in recent

years several studies have modeled parts of this system.l’2’4’5 In most cases, confocal

images of early Drosophila embryos were used to provide data on levels of transcription

factors in the nucleus. One study reported a straightforward approach in which levels of

regulatory proteins in the nucleus were related to protein levels of downstream targets,

while other studies have focused on quantitative descriptions of mRNA levels in the

embryo."'8 A later study took a further step in correlating nuclear transcription factor

levels to mRNA levels of a target gene but did not fully explore parameters and methods

required for this analysis.4 Here, we report such a method that correlates the level of

transcription factor to level of reporter gene mRNA, as a basis for mathematical modeling

of gene regulatory elements.

Key to quantitative assessment of gene expression levels is information about the

proportionality of signal read out to the actual levels of mRNA and protein. This

relationship has been insufficiently tested; therefore we examine this issue using gene

dosage studies and independent mRNA measurements. Background (in this case,
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nonspecific fluorescence) is another central issue in many biological data analyses. A

simple approach is to apply uniform background subtraction from the data. It has been

previously noted that the background for fluorescently stained Drosophila embryos can

9 Our study suggests that fluorescencebe represented as a paraboloid function.

background from undistorted embryos is not very paraboloidal, but as samples are

flattened a paraboloidal background becomes more evident.

This methodology appears to provide the correct basis for quantitative modeling

approaches that utilize empirically established gene regulatory surfaces to facilitate

parameter fitting. Such quantitative approaches will provide the tools to discover

important regulatory information in genomic data sets, as well as lay a foundation for

design of engineered transcriptional elements.

MATERIALS AND METHODS

l. Immunofluorescent in situ hybridization:

Embryos were collected and fixed as previously described.'0 Immunofluorescent

in situ hybridization was done essentially as previously described with some

modifications.”"5 All washes were done in 1.0 ml. Fixed embryos stored at —20°C in

methanol were briefly washed six times with 100% ethanol, then with xylene for 1.0h.

About 50ul of embryos were transferred into individual microfuge tubes, washed four

times with methanol-phosphate buffer 0.1%-Tween80 ((PBT; 1.37M NaCl, 43 mM

NazHPO4, l4mM NaHzPO4),1:1, v/v ratio) and then with PBT four times, each for 3 min

with continuous rocking. Embryos were washed in PBT with hybridization solution (50%

formamide, 5X SSC (3M NaCl, 0.3M Na-citrate), 100ug/m1 sonicated salmon sperm
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DNA, 50pg/ml heparin, 0.1% Tween80 (1:1, v/v ratio) for 10 min, and then briefly in

100% hybridization solution for 2 min. New hybridization solution was added and the

tubes were placed for 1h in a water bath at 55 °C. Anti-sense RNA probes of digU labeled

lacZ were heated in 50 pl hybridization solution at 80°C for 3 min, directly placed on ice

for 1 min, then prehybridization solution was completely removed and the probe in 50p]

of hybridization solution was added to each tube, and tubes were incubated at 55°C for

18-20h. After incubation, lml of 55 °C hybridization solution was added to each tube and

all tubes were rocked at room temperature for 1min, hybridization solution was changed

and tubes were incubated for another 1h at 55 °C, followed by four washes with

hybridization solution for 15 min each at 55 °C and with hybridization solution and PBT

(1:1, v/v ratio) two times at room temperature for 15 min. Five more washes were done

with PBT for 10 min with rocking at room temperature. The embryos were washed with

a blocking solution 1.0% casein in maleic acid buffer (Western Blocking Reagent, Roche,

Indianapolis, IN) with PBT (1:1, v/v ratio). 0.5 ml PBT and blocking solution (1:1, v/v)

containing primary antibodies (2.2 pl of 1:250 dilution of mouse anti-DigU (Roche,

Indianapolis, IN) and 0.75 pl of 1:800 dilution of rabbit anti-Giant (antibodies are a gift

from Reinitz Lab”) was added and the tubes were rocked at 4 °C overnight. Tubes were

washed four times each with PBT for 15 min at room temperature. 0.4 ml of PBT and 0.5

% casein blocking reagent (1:1) containing 8.0 pl of secondary antibodies: goat anti-

mouse conjugated to Alexa 555 for detection of lacZ mRNA and chicken anti-rabbit

conjugated to Alexa 488 for detection of the Giant protein (Molecular Probes, Eugene,

OR ) preabsorbed against fixed yw embryos were added to each vial, and the tubes were

covered with aluminum foil to protect them from light and incubated overnight at 4 °C.
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Embryos were then washed with PBT four times at room temperature for 5 min with

rocking, washed in glycerol + PBT (7:3, vzv ratio) for 2h until the embryos settled to the

bottom of the tubes. The embryos were then resuspended in 0.4 ml glycerol + PBT (9:1

ratio) and 0.2 ml of Permafluor Mountant Medium 434990 (Thermo Electron

Corporation, Pittsburgh, PA), mounted labeled slides and covered with large rectangular

Corning cover slips (No. 1.5, 24x50mm). The slides were protected from light and stored

flat at room temperature until they were imaged.

Sequences for Reporter genes:

The reporter constructs analyzed here are synthetic, Twist and Dorsal activator

binding sites were previously characterized in lacZ reporter genes in the embryo. '3 High-

affinity Giant binding sites derived from the Kruppel promoter were previously

characterized. '4 The 25bp neutral spacer used lacks high affinity sites to blastoderm

transcriptional regulatory proteins. Two reporters are tested here, both containing a core

of two Twist sites 5’ of two Dorsal sites. A pair of Giant motifs is located either 31bp or

l3lbp 5’ of the activators. Binding sites are capitalized; Giant sites are italicized, Twist

sites are bold and Dorsal sites are underlined.

2gt.25.2T2D

5 ’-gaattcTA TGACGCAAGAatgcgactcgTATGACGCAAGAggatctggttagtaagctgtaaactggatc

 cCATATGttgagCATATGtctagaGGGAI I I ICCCAaatcgaGGGAAAACCCAAccgcg

g-3’

2gt.125.2T2D

5 ’ -gaattcTATGACGCAAGAatgcgactcgTATGACGCAAGAggatctggttagtaagctgtaaactggatct
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ggttagtaagctgtaaactggatctggttagtaagctgtaaactggatctggttagtaagctgtaaactggatctggttagtaagctg

taaactggatccCATATGttgagCATATGtctagaGGGA I 1'] I CCCAaatcgaGGGAAAACCC

AAccgcgg -3’

2. Confocal Laser Scanning Microscopy (CLSM):

An inverted CLSM (Olympus, Flowview FVlOOO) was used for capturing the

confocal fluorescent images. For each scan of mounted embryos, the same microscope

settings were employed to all images to simplify comparison of results. The argon laser

(488 nm) was set at 5.0% and helium-neon laser (543 nm) was set at 25%. Emitted

fluorescence from Alexa 488 and 555 was detected through a dichroic 405/488/543 and a

BP505-525 filter for the green channel and a BP560-620 filter for the red channel. The

pinhole was set to 105 pm (1.0 Airy unit), and the PMT detector, gain and offset were

680, 1.0% and 6% for both green and red channels. The PMT detector was adjusted in

cases where the embryos showed saturation of signal intensities. Embryos were imaged at

a scan speed 6.51 s/scan, line filter equal 2 line Kalman filter, and 1.73 pm-thick Z-

sections for a total of 21-30 slices. CLSM image data were stored as two separate stacks

and projections of images for each channel. The section dimensions were 333pm in

length and width and 1.73 pm in depth. Fluorescence pixels were recorded as 12-bit

images and stored as Tiff files.

3. Determining proportionality of fluorescence intensity:

To test whether immunofluorescent signals were proportional to the actual levels

of protein or mRNA, we varied gene dosage of lacZ reporter or the Giant repressor,

assuming that heterozygotes express at half the level of homozygotes. Male transgenic
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flies homozygous for a lacZ reporter gene regulated by the Giant repressor and Twist and

Dorsal activators were crossed with virgin yellow white females to produce heterozygous

embryos carrying a single copy of the lacZ gene. Homozygous lacZ reporter embryos

were also collected. Two to four hour old homozygous and heterozygous embryos were

dechorionated, fixed and analyzed for lacZ expression using immunofluorescent in situ

hybridization. For RTqPCR mRNA analysis, dechorionated embryos were frozen in

liquid nitrogen and stored at '80 °C until needed. For extraction of total RNA, frozen

embryos were dipped briefly in liquid nitrogen and macerated with a pestle in 500 pl of

TriaZol reagent from Invitrogen (Carlsbad, CA, USA) in a 1.5 ml microfuge tube. The

extraction and subsequent DNase (Roche, USA) treatment were performed according to

the manufacturer’s directions. To test for the presence of any DNA contamination,

standard PCR was performed using primers specific for lacZ gene. RNA was

spectrophotometrically quantified and equivalent amounts of RNA from each sample

were used for the reverse transcriptase reaction using the Superscript III enzyme. The

RTqPCR specific primer set for lacZ (F: 5’-CTGGGATCTGCCATTGTCAGA; R: 5’-

TGGTGTGGGCCATAATTCAATT) was designed using Primer Express Software (ABI

7500 Prism). RTqPCR normalization and analysis were done as previously described

previously.”"6 Primer sets of actin (F: 5’-CGCGGTTACTCTTTCACCA; R: 5’-

GCCATCTCCTGCTCAAAGTC) and 288 rRNA (F: 5’-GATGCCGCGCTAGTTACAT;

R: 5’-GCTGCTCAACCACTTACAACAC) were used for normalization.

For analysis of Giant protein levels, a gt’m stock was obtained from the

Bloomington Stock Center.17 gt’m virgins were out-crossed with wild type male flies to
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obtain male hemizygous th” mutant embryos, gt and heterozygous female embryos

and wild-type female embryos.

4. Image processing prior to lacZ mRNA and Giant repressor measurement:

In this study, Image J (rbs.info.nih.gov) and MATLAB softwares (MathWorks)

were used. lmageJ software was used to extract the fluorescent intensity levels of lacZ

and Giant from each confocal fluorescent image. Software implementing the algorithms

described below was written in MATLAB and is available upon request. Approximately

18-21 non-overlapping 1.73 pm depth optical sections were taken from each embryo,

providing a 1024x1024 pixel 12 bit image representing the top half of the embryo. The

slices were projected by taking maximum intensity for each pixel along the z-axis and the

images were converted to 8 bit images. For flatter embryos analyzed in a previous study,

the average of two adjacent sections was used but with our more three dimensional

imaging, this approach is not valid because for most sections a portion of the central part

of the embryo containing only yolk is included.6

To position images in a uniform horizontal manner, masks were used to rotate the

images as described in Janssens et‘ al.". A mask is created for the projected images by

using the threshold value that is taken from outside of the embryo. The convex hull of

the embryo boundary is taken, the inside of the convex hull is set to 255, and the outside

is set to 0. The rotated images were checked to compare the alignments of the two rotated

channels. Images were flipped upside-down or left-right to align unifome on the

anterior-posterior and dorsal-ventral axes. To remove extraneous portions of the image

outside the embryo, the rotated images were cropped to a minimal canvas size. The

images were not changed to a uniform size in order to avoid interpolation of the data,
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which might have varying effects for different embryos. Subsequent to these steps,

perimeter pixels of the embryo were found using the mask.

In the next step, embryo boundaries, lacZ mRNA data and Giant repressor protein

data were used to decide where to set boxes that are approximately the size of an average

“cell”. The embryos are at this point incompletely cellularized, but separate nuclei are

clearly discernible. Positioning of the boxes is explained in data collection section. The

Giant protein and lacZ mRNA levels were averaged inside those boxes and plotted in 2-

dimensional space.

5. Comparison of imaging to data from other databases:

A variety of methods have been applied to obtain spatially resolved mRNA and

protein information from Drosophila embryos. Our CLSM images of Giant were

obtained using antibody staining and one photon imaging, but embryos were not flattened

as in a previous study.l Alternatively, mRNA quantitation from non deformed embryos

has been acquired by two photon imaging.8 We compared qualitative features of our

Giant images with these data sets to see if general trends were consistent. As an example,

we observe in some of the images lower apparent levels of Giant protein in the ventral

and dorsal regions of the embryo. Giant images were accessed from two other databases:

the Berkeley Drosophila Transcription Network Project (BDTNP) and the Database of

Segmentation Gene Expression in Drosophila (FlyEx). mRNA levels in actual embryos

fiom the BDTNP and protein levels from an average virtual embryo image frOm the

FlyEx were used.‘"18 Overall relative differences in intensities between anterior and

posterior levels of Giant protein and mRNA were observed in all three data sets, as well

as the relative lower levels of Giant in ventral regions of the anterior stripe (data not
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shown). Despite differences in imaging, these methods appear to capture the same

essential features of this gene’s expression.

RESULTS

Background:

A critical issue in quantitative measurement of gene expression is background

subtraction. In a previous study, it was noted that the background coming from

nonspecific binding of a variety of primary and secondary antibodies to Drosophila

embryos can be approximated by a paraboloid.9 In that study, embryos were flattened (by

the weight of a coverslip and using reduced amounts of mounting solution) so that a

significant fraction of nuclei of the embryo could be captured in two 2pm sections. In our

system, we do not distort the embryo, thus we tested whether this parabolic background

relationship still applied. By assessing fluorescence in two different channels in embryos

lacking a lacZ reporter gene, as well as in portions of embryos devoid of Giant protein

(45-55% egg length) we found that the background often did not show a paraboloid shape

(Fig. II-IA, B). One evident difference between our methods and that described in

Myasnikova et al.9 is the degree of flatness of the embryos. We imaged embryos of

successively flatter proportions and analyzed background levels as a function of flatness

(Fig. II-lC-F). Embryo flatness was judged by the number of 1.73pm slices required to

reach the center of the embryo. Embryos that were flattened by a weighted coverslip had

radial thicknesses ranging from 14-23 pm, while rounder embryos had thicknesses of 24-

33pm. This level of flattening is not as pronounced as that described in Myasnikova et

al.9 where almost the entire upper half of the embryo can be scanned in two 2pm slices,

but a clear trend emerged. The background has a distinct tendency to be more
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paraboloidal with flatter embryos, perhaps because unique light scattering properties of

flat embryo sections contribute to a nonlinear background. Correlation between flatness

of the embryos and curvature of the background intensity is measured by Pearson

correlation coefficients. For lacZ images, the Pearson correlation coefficients between

flatness of the embryo and curvature of the background curve are -0.5 (p=0.006) (ventral-

dorsal) and -0.6 (p<0.001) (anterior-posterior). When this relationship is measured as the

correlation between embryo flatness and the natural log of the curvature, the correlation

coefficients are -0.6 (p<0.001) (ventral-dorsal) and -0.7 (p<0.001) (anterior-posterior).

The relationship between flatness of the embryo and curvature of the background curve

can be explained better with nonlinear functions. The main point here is that parabolic

background cannot be assumed without taking the geometry of embryo into account. We

also noted that for some embryos, inhomogeneously distributed background was evident

in both channels (488 nm and 555 nm), suggesting that specific structural features of

embryos can affect background (data not shown).

78



Figure II-l: Parabolic and nonparabolic background forms.

Representative parabolic (A) and flat (B) backgrounds. Data was taken from the middle

45-55% egg length of embryos . In general, we observed parabolic background for flatter

embryos. Embryo cross sectional radii were measured and classified as ‘flattened’ (14-23

pm) or ‘round’ (24—33 pm). Considerable variability in curvature was noted, but flatter

embryos tended to exhibit higher curvature overall. Data were obtained for Giant imaging

ventral-dorsal (C), anterior-posterior (D) and lacZ imaging ventral-dorsal (E), anterior-

posterior (F). Parabolicity of background is measured by curvature of the parabola fit to

curve, with apex generally at center of embryo cross section. For anterior-posterior Giant

background measurements, young gfm mutants expressing virtually no detectable Giant

protein were used. For lacZ background imaging embryos without the reporter gene were

utilized.
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Figure II-l: Continued.
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Fluorescent quantitation of mRNA and protein:

Quantitative measurements of transcription factor levels and mRNA inputs are

essential for modeling gene regulation, yet surprisingly few studies relying on CLSM

have independently tested whether the signals thus obtained exhibit strongly nonlinear

effects. A quantitative study of Drosophila mRNA levels made a single correlation

between knirps mRNA and Knirps protein obtained by CLSM as a test for

proportionality, while other studies have quantitated levels of GFP protein as a proxy for

18"9 We concluded that more rigorous independent measurementstranscript levels per cel

are essential for testing the validity of our quantitation. In the first case of mRNA

detection, we varied the gene dose of a lacZ reporter expressed in ventral regions of the

embryo and compared levels of mRNA by RTqPCR and CLSM. The RTqPCR results

showed that the relative amount of lacZ mRNA was 1.0 in heterozygotes compared to

1.92 in homozygotes (Fig. II-2A). In comparison, fluorescent intensities for lacZ

heterozygous compared to homozygous embryos were 1 to 1.85 (Fig. II-2B). This result

suggests that both methods are responding to estimated twofold differences in mRNA in

a similar manner, and that the fluorescent intensities do provide a reasonable proxy for

actual mRNA levels.

Regarding protein measurement, previous studies have analyzed relative

expression levels of a number of regulatory proteins in the Drosophila embryo by CLSM,

but to our knowledge the proportionality of these measurements to actual protein has not

been assessed.1 We tested the measurement of protein by comparing the values of Giant

expression in embryos derived from an outcross of thH heterozygotes to a wild type

strain (Fig. "-3). gt is located on chromosome 1, thus male hemizygotes carrying the
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Figure II-2: Proportionality of signal to mRNA levels

The average relative amounts of lacZ mRNA in heterozygous and homozygous

transgenic embryos were measured by RTqPCR analysis (A) and by immunofluorescent

in situ hybridization and confocal laser scanning microscopy (B). Quantitation of mRNA

levels by RTqPCR is representative of two biological assays; error bars indicate standard

deviation from five technical replicates. Fluorescent imaging of 39 embryos were

quantitated in (B).
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mutant allele would be expected to express the lowest levels of the protein, and female

heterozygotes would have intermediate levels. The allele used, thH, has been reported

to express low levels of protein and consistent with this observation, no mid-blastoderm

embryos entirely lacked Giant expression.

Embryos were stage matched to allow direct comparison of protein levels.

Embryos with apparently normal intensity of Giant signal were observed alongside of

age-matched embryos with very low Giant levels (Fig. lI-3A, B); those differences are

not likely to be merely a function of overall staining efficiency because background

levels were fairly constant and such large differences are not usually seen when imaging

wild-type embryos. When background subtracted, normalized levels of Giant were

plotted for a set of 22 images, a roughly ten-fold range of signal intensities were observed

(Fig. II-3C). The values did not fall into three obviously discrete clusters, corresponding

to hemizygous null, heterozygous, and wild-type backgrounds, but were rather

continuously distributed with some degree of over representation at higher and lower

values. This effect may be due to nonlinearity of the fluorescent readout, which would

produce some compression at one end of the spectrum, variability in detection or even

expression of Giant from embryo to embryo, or some combination of these effects. We

can conclude that this method does permit an apparent dynamic detection range of at least

ten fold sufficient to capture the total dynamic variation reported for Giant in the

blastoderm embryo but clearly a more detailed comparison of signal proportionality is

warranted.1 In light of our mRNA results, it appears that fluorescent detection can be an

appropriate proxy for in situ levels of biomolecules, but the proportionality of read out

must be established for each set of reagents.
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Figure II-3: Proportionality of signal to Giant protein levels

Embryos with apparently normal intensity of Giant (A) and low intensity of Giant (B)

were observed for age-matched embryos. Normalized levels of 22 background-subtracted

Giant images were plotted, and a roughly ten-fold range of signal intensities were

observed (C). Overlapping data points were separated into two columns for clarity for the

anterior and posterior stripe.
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Figure II-3: Continued.
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Figure II-3: Continued.
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Methods for Data Collection:

In order to understand the functional relationship between transcriptional activator

and repressor levels and mRNA output we need to create gene regulatory “maps” that

describe the quantitative relationship between these elements.” We created a series of

lacZ reporter genes regulated by the Giant transcriptional repressor and the Dorsal and

Twist activators. These reporter genes are active in ventral regions of the embryo, and

expression is interrupted in areas where Giant is expressed, depending on the

arrangement of the binding sites (Fig. II-4A, B). We directly measure levels of the Giant

repressor protein as an input value. The spatially and temporally varying levels of this

protein provide in each embryo an entire set of values relevant to a gene regulatory map.

Activator levels can be similarly measured, and in the case of Dorsal and Twist, these

activators vary along the dorsal to ventral axis.2 We focus on gene modules that test

varying features of repressor binding sites, while holding Dorsal and Twist sites constant.

Dynamic and spatially heterogeneous protein levels of transcriptional regulators make it

imperative that we compare lacZ levels with corresponding levels of regulatory factors in

nearby nuclei from which the mRNA originates.

Background:

Background intensity for the Giant channel is calculated by averaging the data

from the middle (SO-60% egg length) of the embryo along the ventral-dorsal axis. In

cases where the curve shows linear behavior, the average of this middle stripe can be

subtracted from the whole embryo, and if it shows parabolic behavior, then the

background can be calculated and subtracted as previously described.9 Background

91



intensity for the lacZ channel can be calculated similarly by using the dorsal parts of the

embryo, where no lacZ is present.

Binning:

A pixel by pixel comparison between Giant, found in the nucleus, and the lacZ mRNA

channel is not applicable because the mRNA accumulates in the spatially separated

cytoplasm. In addition, we observe that lacZ mRNA accumulates in a punctuate pattern

(a function of the specific reporter, as other mRNAs show a smoother, nonnuclear

pattern, data not shown). This problem can be solved by measuring the approximate size

of a “cell” in confocal images and covering the region of interest by boxes of the size of

an average cell size. A 10x10 pixel box is the average cell size for our images.

Relevant areas ofdata collection:

We then collect a series of data points representing the lacZ gene output in

regions with similar levels of activators but varying levels of Giant protein. When not

regulated by Giant, the lacZ expression pattern is almost constant from approximately 20-

80% egg length (anterior-posterior) in the ventral part of the embryo (Fig. II-4A). When

Giant is effective at repressing the lacZ reporter, gaps in this pattern are seen in anterior

and posterior regions (Fig. II-4B). It has been reported that twist mRNA levels are not

uniform from anterior to posterior“ but this variation does not seem to be reflected in the

output of our reporters, which are activated by Twist and Dorsal in a fairly uniform

pattern in the mid-blastoderm stage. For this reason, in the regions that are exactly

parallel to the ventral boundary, we assume that the combined activator effect is not

changing for our synthetic enhancer constructs. We therefore measure correlated lacZ
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Figure “-4: Sampling of integrated mRNA and Giant data

lacZ reporter constructs were introduced into Drosophila by gerrnline transformation and

mRNA detected by fluorescent imaging. Dorsal and Twist activators drive lacZ gene

expression in ventral regions (A). When regulated by Giant, gaps in this pattern are

evident (B). A sampling mesh is imposed upon the background subtracted image and

values for Giant and lacZ are collected (C, D). The mesh size here is exaggerated for

clarity. Sampling proceeds from anterior region of anterior stripe to posterior region of

posterior stripe.

93



 
94



and Giant levels in “slices” that track along the ventral aspect of the embryo (Fig. II-4C,

D). Curved slices, 10 pixels in width, are taken from ventral part of the embryo along

anterior to posterior, following the boundary of the embryo. Each slice is divided into

10x10 pixel boxes along anterior to posterior to derive mean values for lacZ and Giant.

To accommodate images of embryos that are rotated around the anterior-posterior

axis to different degrees, exposing more or less of the ventral surface where Dorsal/Twist

are active, we vary the number of slices applied to each embryo so that our lacZ mRNA

and Giant measurements reflect areas with nearly constant activator levels. To determine

the number of slices used, we measure lacZ levels in central regions (SO-60% egg length)

that are not subject to Giant regulation and extend slices from dorsal to ventral until

activator levels are determined to be limiting. This is accomplished by measuring lacZ

expression in the 50-60% egg length portion of the embryo and averaging along the

anterior-posterior axis, producing a plot that describes how lacZ is changing from ventral

to dorsal. This data has a peak value at the ventral side of the embryo and decreases from

ventral to dorsal. The slices start from the peak level of lacZ expression and end at 50%

of the maximal lacZ expression.

Because the ventral lacZ expression is also affected by vector-mediated activation

in anterior regions, as well as Torso-mediated regulation of Dorsal” in the poles, our

slices start from a position of half of the maximal Giant intensity on the anterior side of

the major anterior stripe, to half of the maximal Giant intensity of the posterior side of the

posterior Giant stripe. The selected region still includes most of the region of Giant

expression and removes portions of the data subject to extraneous influences (Fig. Il-4C,

1)).
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Normalization and regulatory plots:

The quantitation described above focuses on the lacZ levels as a function of the

Giant concentration (Fig. II-5). The Giant data is normalized by dividing the 2-4h old

embryo time interval studied here into eight segments as described in Jaeger et al. The

average levels of the protein in each interval are used to normalize the Giant signals. In

this way, comparisons of lacZ expression to relative Giant levels in a given embryo can

be combined with data from other embryos into larger data sets. Because Dorsal and

Twist activator proteins are relatively constant, each embryo can be normalized by

dividing by its maximum intensity value. These normalized expression levels of Giant

protein and lacZ mRNA are used to plot expression surfaces, showing the repressor

signal and activator signal versus output (Fig.II- 5). For the visualization shown here, the

data is presented as two dimensional plots, in which each box represents one slice from

the ventral region of the embryo. As expected, with increasing Giant levels or decreasing

activator levels, the lacZ signal is reduced. The resulting plot represents two dimensional

slices of a gene regulatory surface that is unique to the specific regulatory region of

interest.

Previous studies have demonstrated that the Giant protein can repress transgenes

regulated by Dorsal and Twist, but the characterization of this relationship has never gone

beyond a qualitative nature.” To characterize the quality of the data obtained from this

system and assess its utility for quantitative modeling we measured the correlation

between [Gt] and ln([lacZ]) using the Pearson correlation coefficient. For the

2gt.25.2T2D construct showing regulation by Giant, correlation coefficients for slice 1 to

96



Figure “-5: Gene regulatory representations from Giant regulated lacZ reporter

gene

To generate gene regulatory plots, data derived from slices (lacZ mRNA channel, A and

Giant protein channel, B) are plotted in a two dimensional space. Only two slices are

shown for clarity. The plots numbered 1-6, show how robust lacZ levels present in

ventral portions of the embryo are repressed in regions containing peak Giant levels such

as in plot 1-4. In more dorsally located regions (plot 5-6) limiting levels of activators

reduce lacZ expression regardless of Giant levels. The overlaid lines, obtained by fitting

the data with a rational function show the trend of the relation between levels of Giant

and lacZ.
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slice 6 are -0.74, -0.78, -0.82, -0.85, -0.65 and -0.67. The p-values for these correlation

levels are all less than 0.0001, indicating statistical significance.

DISCUSSION

We describe a method to correlate the transcription factors and mRNA output for

gene modeling purposes. We show that the levels of lacZ mRNA, and potentially the

transcriptional repressor protein Giant, are proportional to fluorescent intensities, a

critical basis for‘ quantitative modeling. Our analysis also reveals that a suggested

parabolic form of the background fluorescence in confocal images of early Drosophila

embryos is evident most prominently in flattened specimens, with intact embryos

exhibiting a more linear background. After appropriate background subtraction and

normalization, these data are amenable to representation of gene regulatory surfaces that

permit creation and validation of quantitative models of gene expression. In this way, we

have constructed the foundations for modeling a cis-regulatory ‘grammar’ that applies to

an important set of transcriptional regulators in the Dros0phila blastoderm embryo. More

generally, the image and data analysis techniques described in this paper can be

generalized to understand the quantitative function of endogenous genes or gene

networks in the Drosophila embryo or other well-characterized systems. Such an

approach may also prove useful for engineered transcriptional regulatory elements

employed for targeted expression of genes in therapeutic settings.
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ABSTRACT

Systems biology seeks a genomic-level interpretation of transcriptional regulatory

information represented by patterns of protein binding sites. Obtaining this information

without direct experimentation is challenging; minor alterations in binding sites can have

profound effects on gene expression, and underlie key aspects of disease and evolution.

Quantitative modeling offers an alternative path to develop a global understanding of the

transcriptional regulatory code. Recent studies have focused on endogenous regulatory

sequences; however distinct enhancers differ in many features, making it difficult to

generalize to other cis-regulatory elements. We applied a systematic approach to simpler

elements, and present here the first quantitative analysis of short-range transcriptional

repressors, which play central roles in metazoan development. Our fractional occupancy-

based modeling uncovered unexpected features of these proteins’ activity that allow

accurate predictions of regulation by the Giant, Knirps, Kruppel and Snail repressors,

including modeling of an endogenous enhancer. This study provides essential elements of

a transcriptional grammar that will allow extensive analysis of genomic information in

Drosophila melanogaster and related organisms.

INTRODUCTION

The rapid increase in sequenced genomes has provided an extensive “parts lists”

of organisms, however deeper understanding of genomic information that includes gene

regulatory functions is critical to understanding the dynamic activity of biological

systems. Subtle changes in regulatory elements are often involved in hereditary diseases,

population differences and the evolution of morphological novelties (Carroll et al, 2001).

Comparative studies have demonstrated that regulatory regions can retain function over
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large evolutionary distances, even though the DNA sequences are divergent and poorly

alignable (Ludwig & Kreitrnan, 1995; Hare et al, 2008). The flexibility in arrangement of

binding sites is not unlimited, however. For instance, the effectiveness of short-range

transcriptional repressors that play key roles in Drosophila development is strongly

influenced by activator-repressor distances (Gray et al, 1994; Amosti et al, 1996a;

Kulkarni & Amosti, 2005).

The Drosophila blastoderm embryo provides an ideal setting for the analysis of

transcriptional enhancers; the cascade of maternally and zygotically supplied

transcription factors has been extensively investigated at a molecular level, and many

DNA regulatory elements have been identified and functionally dissected. In this system,

genes with complex expression patterns are controlled by multiple enhancers, whose

modular function depends on the local action of repressor proteins (Small et al, 1993).

The blastoderm embryo has been used for quantitative analysis of gene expression by

reaction diffusion, Boolean, and fractional occupancy modeling (Jaeger et a1, 2006;

Sénchez & Thieffry, 2001; Segal et al, 2008). Fractional occupancy models draw from

simple biophysical principles and statistical physics to predict the overall readout of

endogenous enhancers (Bintu et al, 2005a, 2005b). In these models, parameters include

the binding affinity of transcription factors to the DNA and cooperativity between

proteins. Such models assume that gene regulation is dictated largely by the equilibrium

binding of transcription factors to the DNA, without explicitly modeling events such as

chromatin modifications and RNA polymerase phosphorylation.

Simple prokaryotic systems provide a tractable setting for quantitative studies,

and fractional occupancy models have been applied to the lac operon in E. coli and the
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lysis/lysogeny switch of phage lambda (Von Hippel et al, 1974; Ackers et al, 1982; Shea

& Ackers 1985, Vilar & Leibler, 2003). Use of these models in eukaryotes is more

problematic, given the higher degree of enhancer complexity in eukaryotic systems, but

Drosophila enhancers have been treated by fractional occupancy models that account for

factor spacing and recruitment of co-regulators (Janssens et al, 2006; Zinzen et al, 2006).

These models can reproduce the behavior of specific enhancers, but a major limitation of

fractional occupancy modeling of endogenous enhancers is that models of a single

regulatory region, may not generally apply to other elements. In studies of multiple

enhancers, the parameter estimation has been difficult, as the different architecture of

distinct enhancers, even those regulated by the same proteins, makes it difficult to know

which parameters (number of bindings sites, relative arrangements etc.) are key to

determining the particular activity of an enhancer (Segal et al, 2008). As we describe

here, a more systematic approach is necessary to parse the contributions of individual

physical features to enhancer activity.

One particular area that has been inadequately explored is the key role played by

repressor proteins. Giant, Knirps, and Kriippel are regionally deployed short-range

repressor proteins that bind to and control the patterning of pair-rule genes such as even-

skipped. Previous studies showed that precise positioning of short-range repressors on an

enhancer can be used to generate the appropriate expression pattern in a morphogenetic

field where the concentration of these repressors are used to set gene expression

thresholds (Hewitt et al, 1999; Clyde et al, 2003). Thus, the flexibility of enhancer

architecture incorporating these proteins is constrained by some distance limitations. Our

previous study demonstrated that activator-repressor stoichiometry and arrangement of
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binding sites also influence the overall readout of developmental enhancers (Kulkarni &

Amosti, 2005). To build tools able to accurately predict the function of novel enhancer

sequences, we recognized a need to quantitatively measure the specific contributions of

these factors to overall enhancer function. Here we describe the creation and quantitative

assessment of a well-defined set of transcriptional regulatory modules in the Drosophila

embryo, in which individual aspects relating to repressor-activator spacing, stoichiometry

and arrangement are systematically explored. Using quantitative data from these genes,

we apply a fractional occupancy approach to model the interaction of short-range

repressors with endogenous transcriptional activators. We show that this approach can

correctly decipher the transcriptional regulatory code of endogenous enhancers, pointing

the way to a general approach for unlocking the transcriptional regulatory information of

genomes.

MATERIALS AND METHODS

Reporter genes

The binding motifs for the Giant, Krfippel and Knirps short-range repressors and

the Twist and Dorsal activators used in this study were characterized in previous studies

(Szymanski & Levine, 1995; Hewitt et al, 1999; Kulkarni & Amosti, 2005).

Regulatory modules were constructed in pBluescript KS(+) using the EcoRI, BamHI,

XbaI and SacII restriction sites, amplified by PCR using T3 and T7 primers, and

amplicons were digested with EcoRI and SacII and subcloned into the compatible sites of

C4PLZ (Wharton & Crews, 1993). Gene 1 contains two Giant binding sites inserted
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between EcoRI and BamHI, two Twist sites inserted between BarnHI and XbaI, and two

Dorsal binding sites between XbaI and Sacll.

Gene 2 includes a 25bp spacer inserted between Giant and Twist sites using

BamHI. For genes 4, 6, 7 and 8, the same 25bp spacer was concatemerized and inserted

at BamHI. For genes 3 and 5, a 35bp or 60bp spacer was inserted at BamHI, between the

Giant and Twist binding sites. Gene 9 contains a single Giant binding site inserted

between EcoRI and BamHI. Gene 10 was constructed by digestion of the parent gene 1

pBluescript plasmid with EcoRI and insertion of the single Giant binding site, preserving

a single 5’ EcoRI site. For genes 12, 13, 14, 15 and 19 the same strategy was used to

insert an extra Giant binding site 3’ of the Dorsal sites using Sacll. For genes 13 and 15,

in which the binding sites are moved away from the basal promoter of lacZ reporter gene,

a 340bp spacer was amplified from the coding region of knirps gene and inserted into the

Spel of C4PLZ plasmid (Kulkarni & Amosti, 2005). A weaker Giant site was tested in

gene 20. The sequences for all oligos used are shown in Appendix A Table 111. All gene

cassettes were confirmed by sequencing, and at least 5 transgenic lines of each gene were

analyzed by in situ hybridization for lacZ expression pattern. Lines showing enhancer

trapping were not included in the analysis. Fixed embryos from two to three transgenic

lines of each gene were used for confocal laser scanning microscopy (CLSM).

Image processing

A five step procedure was applied to all embryo images as described in Ay et al

(2008), involving binary image generation, rotation, outlier removal, background

subtraction and normalization. Non-specific signals were not observed in Kruppel and
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Knirps channels, so no outlier removal was required for these channels. Background

intensity for the Giant channel was calculated by fitting a parabola along the dorsal-

ventral axis to the average of the data from the middle (SO—60% egg length) of the

embryo along the anterior-posterior axis, a region lacking any Giant expression.

Background intensity for the Krtippel and Knirps channels was calculated and removed

similar to Giant channel, by using the data from the middle (75—85% and 25—35% egg

length respectively) of the embryo along the ventral—dorsal axis.

The Giant channel was normalized so that embryos in the same age group with

similar rotations have the same total average signal in anterior and posterior stripes. The

lacZ channel was normalized using the average signal in a region bounded by the 50-60%

egg length (anterior-posterior axis) and the peak to 60% of the peak lacZ signal (dorsal-

ventral axis). Kriippel and Knirps channels were normalized similarly to the Giant

channel. We also tested normalization scheme for Giant levels that used the mean of the

peak 0.25% values set to 153 of 255 by linear transformation (The value 153 was chosen

empirically to minimize the number of saturated pixels). The former scheme was more

effective in normalizing Giant levels, but the [lacZ] vs. [Gt] plots were not significantly

altered, possibly due to the higher level of noise in the lacZ channel.

Data set

A total of 769 embryos bearing lacZ reporter gene constructs regulated by the

Giant repressor protein were analyzed and an additional 45 and 88 were analyzed for

genes regulated by Kruppel and Knirps respectively. Genes 6, 7, 8 and 18 were not used

in the quantitative modeling because no Giant repression was ever observed, and an
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ectopic modulation of the reporter gene by unknown factors in a fraction of the imaged

embryos made this data especially noisy. All primary data are available on our server at:

www.bch.msu.edu/faculty/arnosti.htm

Parameter estimation

There are two main groups of approaches for parameter fitting; local and global

parameter estimation techniques. Both groups might get stuck at local optima, but the

chance of finding the global optimum is greater with global parameter estimation

techniques. We compared three global techniques, namely evolutionary strategy

(Runarsson & Yao, 2005), genetic algorithm (The MathWorks, Inc.) and simulated

annealing (The MathWorks, Inc.) .These methods have been shown to be suitable for

parameter estimation in biological systems in several studies (Mendes & Kell, 1998;

Moles et al, 2003; Fomekong-Nanfack et al, 2007). We tested these estimation

techniques by running them on a synthetic data set produced by calculating our model

output for assigned parameters; such parameter estimation is a common technique for

validation (Appendix A Figures 1-4) (Moles et al, 2003). We further checked their

robustness on the synthetic data by introducing noise into the data. Strikingly different

results were obtained when these approaches were tested on the model. After 100

simulated runs, the genetic algorithm and simulated annealing techniques were unable to

accurately predict the correct parameters, even with no noise introduced into the data set

(Appendix A Figures 2-3). In contrast, the evolutionary strategy algorithm was able to

reproducibly predict the correct parameter set (Appendix A Figures 1 and 4). To

determine the robustness of the parameter estimation techniques to noise, the estimation
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algorithms were also run on the synthetic data with noise of normal distribution. Not

surprisingly, the variance for genetic algorithm and simulated annealing algorithm was

high at all levels of noise. Even at a noise level of 30%, the variation for the evolutionary

strategy approach was lower than the other two methods (Appendix A Figure 4). It is

possible that genetic algorithm or simulated annealing may be capable of producing

better results if implemented differently, however if the choice of parameter estimation is

not examined carefully, a broad range of values may be produced, leading to the

conclusion that there are no optimal values.

Schemes

Distinct forms of our model were implemented in which the quenching

parameters were grouped in different ‘bins’ of distances. For distances more than 81bp

quenching efficiencies of the repressors are taken as 0, motivated by our genes 6-8, which

shows no repression.

Schemes 1, 2 and 8: q1(6bp), q2(28—41bp), q3(50—56bp), q4(63—66bp), q5(78bp),

q6(6bp from 3' end of activators).

Schemes 3, 4 and 9: ql(6bp), q2(28—41bp), q3(50-53bp), q4(56—66bp), q5(78bp),

q6(6bp from 3' end of activators).

Schemes 5: ql(6bp), q2(28—3lbp), q3(4l—50bp), q4(53-—56bp), q5(63—66bp),

q6(78bp), q7(6bp from 3' end of activators).
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Schemes 6: q1(6bp), q2(28—3lbp), q3(4lbp), q4(50—56bp), q5(63—66bp), q6(78bp),

q7(6bp from 3' end of activators).

Schemes 7: ql(6bp), q2(28bp), (13(3lbp), q4(4lbp), q5(50bp), q6(53bp), q7(56bp),

q8(63bp), q9(66bp), q10(78bp), q11(6bp from 3' end of activators).

We also tried different expressions of cooperativity. In schemes 1, 3, 5, 6 and 7

only one parameter is used for Giant-Giant cooperativity. In schemes 2, 4, 8 and 9 two

parameters are used for Giant-Giant cooperativity, where the first parameter describes

cooperativity of Giant proteins with lObp distance and the second describes cooperativity

for 32bp distance. In schemes 2 and 4 we described the cooperativity of observing all

three Giant proteins on the DNA as the summation of the two cooperativity parameters,

and in schemes 8 and 9 as the multiplication of the two cooperativity parameters.

Derivation of the model for gene 1

We express efficiency of the activator group bound and not bound respectively

as EA and EN’ and efficiency of the Giant repressor as EGt' We represent the

efficiency vector that represents efficiency for each state of activator set and Giant

repressors as E, the state vector of activator set and Giant repressors as F , the

regulatory function that transforms each efficiency vector input to transcription level as

T , and total steady state transcription level as Ex. The probability of each state of those

proteins on the DNA can be calculated. Because the activator binding sites do not vary

within the genes tested here, the Dorsal and Twist activators are not parameterized, and

are considered as one group. We set SAlA] equal to 100 with the assumption that in the
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absence of Giant repressor protein, the activators are fully functional. A set of eight

equations describes all possible states of this gene. For simplification in the following

formulas,

_ 2
Z—(l+ SAIAI)(1+ZSR[GII+C(SRIth) ).

No activator and repressor bound: FN =%

. . SAIAI
Activator set rs bound: FA =T

SR[Gt|

 

Proximal Giant to the activator set is bound: FGt =

1

 

Distal Giant to the activator set is bound: FGt 2

. . . . . SAIAISRIGII
Activator set and proxrmal Grant to the actrvator set rs bound: FAGt = Z

1

 

. . . . . SAIAISRthl
Actrvator set and distal Grant to the activator set rs bound: F =

AGI2 Z

2
_ C(SRthl)

F _

thGt2 Z
Both Giant repressors are bound:

2

_ SAIAIC(SRIGII)

thGt2 Z

 
Activator set and both Giant repressors are bound: FA
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Then the states vector of one activator set and two repressors can be written as:

F=|F ,F ,F ,F ,F ,F ,F ,F ]

N A Gr1 Gt2 Ath AGt2 thGt2 .«thth2

In the expressions above we stated all the Boltzmann states of an enhancer with

one activator set and two repressor binding sites. We claim that the binding of the

repressors modulates the probability of states with activators and repressors

simultaneously bound by a quenching factor. For example binding of the activatorA and

repressor R simultaneously is reduced by a factor of (l—ql). We can modify the

1

probability of states, in the following way:

~

F = [FN’FA’F0:1 I(3:2 ’FAth (1“thAGt2 (1 "‘12”thGtz ’FAthGtza—qlxl "‘12”

Next we calculate the total efficiency of the enhancer when factors are bound on

the DNA. We model cooperativity between Giant sites, which might be for example due

to cooperative cofactor recruitment, with an additive function, so the total efficiency of

Giant repressors bound to the DNA at the same time is

_ Gt Gt Gt Gt . .

0,102 - W1 EGt] + w2 E012 where WI and w2 are the cooperatrvrty terms afterE

binding. The efficiency of one activator set and two repressors are expressed in the

following way; each term representing one state of the all possible states:
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,E ,E .E .E .E .E l
A th Gt2 Ath A012 thGt2 («thth2

_ Gt Gt

‘ IEN’EA’Eth ’EGt2 ’EA + Eth ’EA + 50:2 "’1 Eth + “’2 50:2:

Gt Gt

EA + ”’1 Eth + ”’2 EGtZ]

E=[EN,E

Expression contributions from each state are added to obtain the total expression:

EszFiT(Ei)

1'

Gt =0, EGt =0 andIf we set the following simple assumptions EN = 0, EA =10, E

1 2

T(x) = ——15-——x— the total expression of the enhancer with 1 activator set and 2 repressor

l+e _

binding sites can be written as:

‘

2
x z SAIAJ x 1+ (2-ql -qZ)SRIGt]+ C(l-ql)(1_q2)(5R[

0,D

”SAM! 1+25RthI+C(SR[
Gt])2

 

Expression functions (Ex) for all cases are shown in Appendix A Table 1. Further

details about the model are explained in the supplementary material (Appendix A).

Modeling endogenous enhancer sequences

We made the following assumptions to simplify the parameter estimation for

modeling of the rho NEE: ( 1) we model activity of the NEE in the mesoderrn, where

Dorsal and Twist levels are high, and Snail is present at uniform levels. We used values

for expression contribution of Dorsal and Twist as +5 each, and for Snail, -5. We also
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carried out parameter estimation with values of +3 or +7 for activators and -3 or -7 for

Snail, and obtained essentially equivalent results. (2) We set quenching parameters to

those obtained from our modeling, as shown in Figure III-4, on the reasonable

assumption that these are functionally equivalent among short-range repressors, (3) To

reduce the number of possible parameters, we only included cooperative interactions

between factors that are nearest neighbors, and are located within 25 bp of each other. (4)

We allow that the relative effectiveness of repression with four Snail sites might be

higher than that seen with one or two, and stipulate ranges of repression in which

parameter space is investigated (Figure 111-8). (5) We set ranges for cooperativity and

scaling factors from 1-100. (6) For each transcription factor, we took the score of the

strongest site among all those that bind that transcription factor as a free parameter and

constrain the other values by treating the PWM score as a free energy of binding (Storrno,

2000). We used PWMs created from FlyReg database by Daniel A. Pollard, which are

available at: htt://www.flyreg.org/. As an example, the two Twist sites differ considerably

in terms of their match to a consensus PWM, with Twist site #2 predicted to have a forty

seven-fold lower score than Twist site #1, although it still has a considerably higher score

than background sequences.

RESULTS

Gene modules

We set out to map regulatory surfaces of genes controlled by short-range

repressors; these surfaces show the functional relationship of activator/repressor input

and gene expression output (Figure III-l). Such regulatory surfaces reflect evolutionary
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forces that shape gene output, as demonstrated for the lac operon (Setty et al, 2003;

Mayo et al, 2006). The design of the enhancers responding to short-range repressors

accommodates sensitive distance and binding site parameters within a flexible design

framework (Clyde et al, 2003; Kulkarni & Amosti, 2005).

The output of a model of a particular configuration of transcription factor binding

sites should lead to a regulatory surface that allows mapping of known values of

regulatory factors, such as Dorsal and Twist activator protein levels, and Giant repressor

protein levels, through this surface to produce an expected regulatory outcome (Figure

III-1).

To carry out this scheme on a practical level, we created a series of genes to test

in a systematic fashion the effect of parameters affecting repression. The quantitative

measurement of these genes was used to create a database suitable for quantitative

modeling, identification of parameters related to repressor activity, and analysis of

endogenous regulatory elements (Figure III-1E). We used endogenous activators and

repressors that are active in the blastoderm embryo. A convenient juxtaposition of

anterior-posteriorly expressed repressor proteins Giant, Kriippel or Knirps are

superimposed on the patterns derived from activators working on the dorsal-ventral axis

to generate readouts as shown in Figure III-1. This design permits the simultaneous

monitoring of repressed and unrepressed states in a single embryo. Twenty-seven P-

element based genes d into the Drosophila gerrnline to produce stably integrated lacZ

reporters. We tested multiple lines for each; position effects had some effect on overall

expression levels, but not on relative repression effectiveness. As described below,

activator signals are normalized before parameter estimation and modeling, removing this
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Figure III-l: Transformation of DNA sequence and protein information by gene

modeling. (A) An enhancer with three repressors (red squares) and four activators (green

circles) is modeled, to generate the gene expression surface shown in (B). The axes

represent normalized activator, repressor and gene activity levels. (C) A Drosophila

embryo with Giant repressor (red stripes) and Dorsal activator (green) staining is shown.

Each embryo provides a diversity of potential inputs to the regulatory element: the white

arrow points to a region where activator levels are high and repressor levels are low. The

black arrow points to a region where both activator and repressor levels are low. The

white triangle points to a region where activator and repressor levels are both high, and

the black triangle points to a region where repressor levels are high and activator levels

are low. (D) Output of regulatory element shown in (A), which mirrors values from (C)

being mapped through surface shown in (B). (E) Formal scheme of data collection,

analysis and modeling.
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Figure III-1: Continued.
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potential source of variability. Based on previous studies, we knew that spacing between

activators and repressors would be a critical element to model, thus a series of genes (1-8,

Figure III-2) tested variable distances between Giant repressor binding sites and the

nearest Twist activator sites. As revealed by conventional in situ staining, repression

effectiveness was markedly attenuated by this increase in spacing. Genes for which the

most proximal binding site for Giant was located at least 81 bp from the nearest Twist

site failed to show any repression (genes 6-8, Figure III-2). A gene containing a single

Giant binding site adjacent to the Twist activators was weakly repressed, consistent with

earlier reports (Hewitt et al, 1999), and this repression was also found to be distance-

dependent (genes 9, 16).

Increasing the number of binding sites to three (genes 10, 17, 18) appeared to

generate an especially effective repression context, one that was similarly susceptible to

distance effects; at this level of resolution, it was not clear whether the distance function

is appreciably different with different numbers of repressors. We also tested the effect of

arranging the repressors in a distinct pattern so that some sites were located 3’ of the

activator cluster, adjacent to the Dorsal activator sites. In this way, we were able to test

whether overall stoichiometry of repressors to activators was the sole determinant of

repression effectiveness when binding sites are close to the activators. We noted that

different distributions of two or three sites appeared to yield similar results, whether all

sites were located 5’ of the activator cluster, proximal to the Twist activator sites, or with

some of the Giant repressor sites located 3’ of the activator cluster, adjacent to Dorsal

(genes 12, l4, 19). Insertion of a 340 bp neutral spacer sequence between the

transcription factor cluster and the basal promoter did not change the pattern of gene
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Figure III-2: Structures of genes assayed to determine context dependence of short-

range repressor activity, and representative in situ images showing lacZ activity. Mid

blastoderm embryos are oriented dorsal up, anterior to the left.
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Figure III-2: Continued.
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expression, suggesting that the repressor is not acting directly on the basal promoter in

this context (genes 12 vs. 13; 14 vs. 15). Most blastoderm enhancers characterized for

these regulatory proteins are located some distance from transcriptional start sites, thus

the distance independence of these modules mimics the activity of endogenous

enhancers. We furthermore tested the effect of increasing the number of activators

located in the vicinity of the repressors (genes 11, 27) and found that repression

effectiveness was little compromised in the case of Giant, but appeared to be attenuated

in the case of the weaker Knirps repression. Weaker binding sites for Giant produced

attenuated repression, as expected (gene 20). Finally, a series of genes with increasing

numbers of binding sites for Knirps and Kriippel allowed for direct comparison of

repressor effectiveness and effects of stoichiometry (genes 21-26); as noted for Giant,

more sites were generally more effective, but overall repression effectiveness of Knirps

was lower. This difference may be attributed to weaker binding sites, lower absolute

levels of the protein, or protein activity, as discussed below. The quantitative analysis of

these genes was followed by quantitative measurements, described below.

Image Processing and Data Analysis

To simplify modeling, we initially restricted our measurements to the regions of

the embryos containing peak levels of the Dorsal and Twist activators, which were

identified as ventral regions expressing >60% of peak lacZ levels. To identify gene

responses to varying repressor levels, we generated correlated Giant protein/lacZ mRNA

plots (Figure III-3). This step involved a series of image processing procedures, as

described in Ay et al (2008). We first identified and subtracted non specific signals
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(“outliers”) observed in the Giant channel, then identified and subtracted background

from each embryo. Background intensities for the lacZ and Giant channels were

subtracted using average values from regions lacking activators and repressors. Next, we

normalized the Giant channel for similarly aged and oriented embryos. The lacZ channel

was normalized using the average signal in a region defined by 50-60% egg length of the

embryo (anterior-posterior) and peak to 60% of the peak (dorsal-ventral).

Our data set comprises expression data from 20 lacZ reporter genes regulated by

Giant, 3 lacZ reporter genes regulated by Kruppel and 4 lacZ reporter gene constructs

regulated by Knirps. Over 900 blastoderm embryos were quantified to aid in

pararneterization of repressor and lacZ expression. Images were processed as described

above and [lacZ] vs. [repressor] (Giant, Kruppel or Knirps) plots were created. The

relative levels of gene expression as a function of repressor protein were plotted for

individual images and compiled into composite plots (Figure III-3) (Ay et al,2008).

These plots were used to infer cis-regulatory rules by fractional occupancy models as

described below.

Fractional Occupancy Modeling

Fractional occupancy models of transcriptional regulatory regions enumerate all

possible ‘states’ of an enhancer based on potential transcription factor-DNA interactions,

and then calculate the probability of a gene firing as the fraction of the ‘successful’ states,

i.e. those with activators bound, and without excessive interference by repressors (Bintu

et al, 2005a; Janssens et al, 2006; Zinzen et al, 2006; Segal et al, 2008). To capture the

key role of short-range repressors on activator elements, we used a modified fractional
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site occupancy model that explicitly accounts for distances between activators and short-

range repressors, as well as cooperativity and binding affinity of short-range repressors.

We allow for change in repression with distance but make no a priori assumptions about

how the repression efficiency changes.

For a general description of our model, we employ three parameter types: SR’ a

repressor scaling factor, indicating the potency of the repressor, C, representing

cooperativity between repressor proteins binding to sites that are close together, and q ,

representing the distance-dependent “quenching” efficiency of the short-range repressors.

In genes assayed here, the activator binding sites do not vary; therefore additional

parameters representing activator potency or binding cooperativity are not required. A

more sophisticated general model incorporating these features is described below for

endogenous sequences.

To apply this model to one of our genes, ZGt.2Tw.2Dl (gene 1), we express

normalized activator and Giant repressor concentrations respectively as [A] and [Gt],

activator and Giant repressor scaling factors as SA and SR (which represent binding

affinity and concentration scaling combined into one scaling factor) (1 S SA’ R S 100),

and cooperativity between Giant repressor proteins for binding to DNA as C

(0.1 S C S 100). Quenching, the distance-dependent repression efficiency, is represented

by ql and quor the two Giant repressors in this gene(0£ql,q2 SI). As derived in

Materials and Methods, the expression of this gene when fully bound by activators and

repressors will be:
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Figure III-3: Representative [lacZ] vs. [Gt] plots.

(A) Structures of three genes assayed (1, 9 and 10). (B-C) Representative embryos

imaged for Giant protein and lacZ reporter gene activity. (D) The data from multiple

confocal embryo images was processed and compiled to provide normalized reporter

gene [lacZ] vs. normalized repressor [Gt].
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Comparable expressions are generated for each of the genes (Appendix A Table 1).

Parameter Estimation

Parameter estimation is a critical step in implementation of modeling. Here we

infer relationships of regulatory factors from the transcriptional output of reporter genes,

which involves solving an inverse problem that may not have a unique solution. For this

reason, no parameter estimation technique works well for all problems, so the choice of

the parameter estimation technique is critical. In the transcriptional modeling literature,

however, this facet has not been explicitly treated by modelers, and the choice of the

parameter estimation technique is often not validated (Janssens et al, 2006; Zinzen et al,

2006; Segal et al, 2008). We tested three popular global parameter estimation techniques,

evolutionary strategy (Runarsson & Yao, 2005), genetic algorithm (The MathWorks,

Inc.) and simulated annealing (The MathWorks, Inc.) and found that for our model the

evolutionary strategy produced superior results as described in Appendix A Figures 1-4.

Testing/Implementing Nine Forms of the Model

To analyze the quantitative data obtained from the embryos, we built nine forms

of the model featuring increasing complexity in terms of number of parameters used; the

models differ in their treatment of cooperativity and quenching distance. In the simpler

case, a single parameter represents cooperativity between adjacent Giant repressor

binding sites, as well as the interaction of all three sites involved in genes 10, 17 and 18.
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Alternatively, we also employed a more complex treatment in which adjacent sites are fit

to Cl and sites separated by intervening Giant sites are fit to C2. Similarly, quenching

efficiency parameters of repressors can be defined either as unique parameters for each

distance or as parameters for a range of distances, as described in Materials and Methods.

We show a pictorial description of the parameter assignments for scheme 2, a

simpler form, in Table 111-1. Appendix A Table II provides a pictorial description of the

parameter assignments for all schemes.

We compared the nine schemes as explained in model validation section below.

As judged by the error comparison, schemes 1-4, 8 and 9 work better than schemes 5-7 in

this data set, probably due to the smaller number of parameters (Appendix A Figure 6).

Here for further analysis we showed the results of scheme 2. The results of the schemes

1, 3-6, 8 and 9 were comparable, suggesting that conclusions drawn from scheme 2 are

representative (Appendix A Figure 5).

Model Predictions

Previously identified qualitative relationships about quenching and

cooperativity/activity provide the backdrop for this work; the quantitative relationships

presented here constitute the heart of this study, obtained after modeling our quantitative

data set. It was striking that certain qualitative and quantitative insights became apparent

only after analysis of the complete data set; these were not relationships that would

necessarily be evident by inspection of individually stained embryos in Figure III-2. First,

our model predicts rather modest levels of Giant-Giant cooperativity, greater than simply

additive but lower than previous estimates (Figure III-4A) (Segal et al, 2008).
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Second, previous qualitative observations show that the effect of short-range

repressors decreases with distance, and is lost around 100-150bp. To our knowledge, our

study is the first that analyzes distance dependency of the short-range repressors

systematically. Short-range repressor quenching efficiency is represented by several

parameters in the model as described previously.

We noted a general decrease in quenching efficiency with distance, consistent

with previous qualitative observations, but at (52-55) bp, relative efficiency is predicted

to increase, before dropping off with greater distance (Figure III-4B). This trend was

evident for multiple formulations of the model (Appendix A Figure 5), and persisted

when we carried out parameter estimation with subsets of the data (see below), indicating

that the non-monotonic behavior reflects a real biochemical property of the Giant

repressor. The change in this monotonic behavior may be a reflection of specific phasing

effects, perhaps relating to nucleosomal structure. The non-monotonic decline in

repression effectiveness was an unexpected result of our modeling and contrary to the

simple step functions or linear functions used in previous modeling efforts (Janssens et

al, 2006; Zinzen et al, 2006). Note that the reduction in repression efficiency at ~30bp

does not imply that gene 3 (2Gt.35.2Tw.2Dl) should have weak repression, because this

gene has an additional more distal binding site that also contributes to activity through

quenching and cooperativity.

Third, the repressor quenching efficiency parameters are similar whether the

repressor was located adjacent to the Twist or to the Dorsal activator site, which suggests

that short-range repressors have similar effects on different activators (Figure 111-48).

The short-range repression mechanism appears to involve chromatin modification, which
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Figure III-4: Parameters found by the ES parameter estimation technique for

scheme 2 of the model.

(A) Root mean square error, E, is shown on the left, with corresponding scale shown on

the left axis. Repressor scaling factor R (referred to as SR in fractional occupancy model

in Materials and Methods) and cooperativity C are shown in the central and right portions

respectively, with scale shown on the right axis. (B) Quenching efficiency parameters are

shown for increasing distances of repressors located 5’ of the activators on the left.

Quenching efficiency levels relative to Twist proximal (T) sites and Dorsal proximal (D)

sites are shown in the right panel. A non-monotonic decrease in quenching efficiency for

increasing distances is observed.
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may allow for more promiscuous action on many types of transcription factors, rather

than a mechanism based on specific contacts between repressor and activator (Li Li,

unpublished data). This activator insensitivity is consistent with the action of short—range

repressors on a range of enhancers that bind diverse transcriptional enhancers (Gray et al,

1994; Kulkarni & Amosti, 2005). Parameters identified in this study are therefore likely

to be generally applicable to diverse settings.

We tested whether the nonlinear quenching is critical to obtaining reasonable

parameters by repeating our procedure with a constraint that required a monotonic

decrease for quenching efficiency. As shown in Figure III-5, this constraint produced

parameter sets that predicted repressor quenching efficiency would remain almost

constant between 6bp-77bp, which is not supported by this or previous studies. For

example, the 35bp increase in spacing between gene 2 and gene 5 has a measurable

effect. Therefore the non-monotonic decrease in quenching efficiency is likely to indicate

some actual biological property of the repressors and should be validated experimentally.

The recent fractional occupancy modeling of 44 endogenous Drosophila

enhancers identified potential cooperativity values that were somewhat greater than those

found here. We ran our parameter estimation algorithm with fixed Giant cooperativity

values found in Segal et al (2008) and estimated the remaining parameter values in our

model. We observed that although the main conclusions of our study did not change, the

overall fitting was slightly worse (Figure III-6). We extended this analysis by running our

parameter estimation algorithm with eight more choices of Giant cooperativity values.

Although we tested Giant cooperativity values ranging from 0 to 30, the root mean square
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Table III-l: Parameter descriptions for Scheme 2.

In the first column, 12 synthetic enhancers used for parameter estimation in this study are

listed. In the second column, parameter selections are shown. In the third column

structure of the synthetic enhancers are depicted.
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Figure III-5: Parameters for scheme 2 with the constraint that quenching efficiency

parameters decrease monotonically.

(A) Root mean square error E, repressor scaling factor R, and cooperativity C labeled as

in Figure 111-4. (E) Quenching efficiency parameters and relative quenching of Dorsal

and Twist sites. Under this constraint, the level of quenching efficiency changes very

little from 28-66bp, in contrast to observed trends (Figure III-2).
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Figure III-6: Parameters for scheme 2 with cooperativity parameters set to different

levels. (A, B) Parameters found in our study (circles) and parameters found by constraint

of cooperativity parameters to those from in Segal et al (2008) (diamonds). The increased

cooperativity value is compensated by a decreased repressor scaling factor R. (C) Root

mean square errors (RMSE) for cooperativity parameters (constrained to values between

0-30). Estimated cooperativity values from our model lie near the lowest point in this

curve.
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Figure III-6: Continued.
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errors between predicted and observed values did not change drastically, with minimum

at cooperativity value 3.

Model Validation

The analysis described above involved identifying parameters using all data

available. An important question is whether such values are “over fit”, and whether the

model and parameter estimation technique are robust, i.e. relatively insensitive to

contributions of individual portions of the data set. Robustness of the parameter

estimation technique was described above; here we

assess the model’s effectiveness at predicting subsets of the data. We tested whether

parameter estimation was markedly affected by removal of individual genes from the data

set (“leave-one-out” analysis) (Figure III-7A). We employed nine different forms of the

model to evaluate the effects including different assumptions of cooperativity and

quenching. We calculated the average of twelve leave-one-out prediction root mean

square errors for each scheme, and used these error values for comparison of schemes

(Pizarro et al, 2000). As judged by the error comparison, schemes 1-4, 8 and 9 work

better than schemes 5-7 in this data set, probably due to the smaller number of parameters

(Appendix A Figure 6). Leave-one-out analysis was extended by excluding nine separate,

specific groups of genes that share structural properties (Figure III-7B). The sets used for

this analysis are described in Table 111-2. The results of excluding individual genes or sets

of related genes suggest that genes that depend on fewer parameters, such as

th.2Tw.2Dl (gene 9), which has no contribution by repressor-repressor cooperativity,

may not be predicted well in our analysis. Thus, the contributions of certain classes of
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gene can be great. Parameters found by leave-one-out analysis did not change much, but

the parameters found by leaving out specific sets of genes changed depending on the

genes chosen (Figure III-7A and B). The predictions for genes 1, 10 and 12 by the

parameters estimated from set 8, which excludes genes 1, 10 and 12, are shown in Figure

III-7C. We conclude that the set of gene modules tested here adequately sample enhancer

design to identify critical elements for repressor activity in a robust manner.

Each embryo, with its thousands of imaged nuclei representing different

levels of transcription factors, provides a matrix of input and output values that

should in theory suffice to describe the response of a gene construct. However,

variations in embryo age, staining, and orientation necessitate multiple images for

each gene. We obtained between 30 and 53 good quality images for each gene used

in our parameter estimation. To test whether this data set is sufficient, or additional

individual images would significantly change the conclusions reached, we sampled

randomly 50% or 75% of the images from each reporter gene construct, and

repeated the parameter estimation. Reducing the data set by one quarter or even

one half does not change the value of estimated parameters drastically or the main

conclusions of the paper (Figure III-7D). This result suggests that our data set is

sufficiently complete, allowing us to draw significant conclusions. In contrast, as

shown above, decreasing the number of genes rather than just the number of images

obtained for each gene, can affect our results drastically (Figure III-7A and B).

Extension of the model to other repressors and endogenous regulatory elements
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Our modeling focused on repression mediated by Giant, which possesses

quenching properties similar to those of Snail, Kruppel, and Knirps (Gray et al, 1994;

Hewitt et al, 1999; Kulkarni & Arnosti 2005). To extend these findings to other short-

range repressors, Kruppel and Knirps were tested in parallel genes containing one, two,

or three binding sites (genes 21-26). As was evident from qualitative staining, both

proteins mediated repression, but Kruppel appeared to be a more effective repressor in

terms of completeness of reduction of lacZ activity. We measured Knirps or Kruppel

protein levels with antibodies as was done with Giant, and created [lacZ] vs. [repressor]

plots for parameter fitting. The limited number of genes tested for these factors did not

exhaustively explore possible architectural features, thus making it difficult to

differentiate effects of spacing, cooperativity, and relative activity. We judged distance

parameters most likely to be conserved between these different factors, based on

previously tested genes; therefore the modeling was carried out using quenching

parameters from Giant (Gray et al, 1994; Amosti et al, 1996a). Modeling was performed

to identify likely scaling factors and cooperativity constants. Using the same form of the

model used for Figure III-4, we found that cooperativity parameters were low (e.g.

Krtippel = 2; Knirps = 0.67), similar to those observed for Giant (Figure A-S; Table A-

V). The major difference between Krtippel and Knirps was the repressor scaling factor,

which was low in the case of Knirps (~l .4), and more robust for Krfippel (~30), similar to

that of Giant (~14). Differences in repression efficiency may be attributed to distinct

levels of cooperativity, but the model suggests that such homotypic interactions are of

minor importance. This prediction suggests that the higher effectiveness of Kriippel is

likely to due to greater potency of this protein on a molar basis, a more complete
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occupancy of the binding sites due to their higher affinity, or higher concentrations of the

repressor. Further analysis will be required to separate these effects.

Dorsal and Twist activators were studied previously in the context of the

rhomboid (rho) neuroectoderrnal enhancer (NEE), where their activity was used to

identify properties of short-range repressors, including Snail. This protein is required to

block expression of rho in the mesoderm, resulting in two lateral stripes of expression in

the presumptive neuroectoderrn of the blastoderm embryo (Figure III-8A). Four Snail

binding sites are located within the 330 bp minimal NEE enhancer, and loss of these sites

strongly attenuates repression, permitting expression in the mesoderm (Gray et al, 1994).

A single Snail site (#2) is sufficient to mediate repression, and similar repression is

effected by ectopic Snail, Kruppel, or Knirps sites introduced 5’ and 3’ of the Dorsal l

and 4 sites respectively, or even a single Snail site 3’ of the Dorsal 4 site (Figure III-8A)

(Gray et al, 1994; Amosti et al, 1996a).

As an extension of our analysis, we tested quenching parameters produced from

our model on this element, and carried out parameter estimation to determine values of

cooperativity and scaling factors. This modeling is more complex than that employed for

genes in Figure III-2, because we now consider scaling factors for each transcription

factor, not just for the repressor, and binding sites of different qualities are considered.

Position weight matrix (PWM) information was used to score Dorsal, Twist, and Snail

sites within the rho NEE. In addition, we consider cooperativity not just between

repressor sites, but also between activator sites, both of heterotypic (Dorsal-Twist) and

homotypic (Twist-Twist) nature. A further consideration is that information about these
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Table 111-2: Functionally grouped sets of gene constructs, used for leave-sets-out

analysis shown in Figure III-7B.

 

Set Excluded Genes

#

 

1 Genes with one or three Giant binding sites (9, 10, 12, 16 and

17)

 

2 Stoichiometry Genes (1, 9 and 10)

 

3 Genes with adjacent Giant binding sites in both 5’ and 3’ end of

activators (12, 14 and 19)

 

4 Genes with only one Giant binding site (9 and 16)

 

5 Genes with exactly three Giant binding sites (10, 12 and 17)

 

6 Genes with one Giant binding site at 5’ end of activators (9, 14,

16 and 19)

 

7 Genes with one Giant binding site adjacent to the 5’ end of

activators (9 and 14)

 

8 Genes with at least two Giant binding sites adjacent to the 5’ end

of activators (1, 10 and 12)

 

9 Genes with three Giant binding sites adjacent to the 5’ end of

activators (10 and 17)     
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Figure III-7: Validation of modeling by prediction of subsets of the data from

parameters derived from the remainder of the data.

(A) Leave-one-out analysis. Root mean square errors are calculated using parameters

found by 11 genes excepting the genes indicated, and all the genes. Relative RMSE

ratios, indicating greater errors for prediction of genes 2, 9 and 16, indicating their greater

contribution to the parameter constraints. (B) Leave-sets-out analysis for nine distinct sets

of genes defined by their shared properties (Table 111-2). Root mean square errors are

calculated using parameters found from the reduced set and the entire set. Relative RMSE

ratios, indicating greater errors for prediction of sets 1, 2 and 4, indicating their greater

contribution to the parameter constraints. (C) Predictions for leaving out set 8. Gene 1, 10

and 12 are predicted by using parameters found from other 9 genes. Points represent

average values for [lacZ] vs. [Gt] data which was divided into 20 bins. (D) Parameter

estimation results are shown for different amounts of data 50%, 75% and 100%. The data

is cut randomly from each gene at the same percentage.
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Figure III-7: Continued.
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Figure III-7: Continued.
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rho NEE variants is qualitative; a single Snail site can repress but may not be as effective

as four Snail binding sites.

Simultaneous parameter estimation was carried out using the forms of the rho

NEE shown in Figure III-8A. We estimated levels of mesodermal repression to be greater

than 90% for the endogenous gene, 70-90% for genes carrying one Snail #2 binding site

or two ectopic binding sites located 5’ and 3’ of the element, and 50-70% for one Snail

site located 3’ of Dorsal #4. Evolutionary strategy parameter estimation was performed

multiple times to identify parameters for cooperativity and scaling factors, as well as the

predicted effect on expression within ranges specified above. Several striking outcomes

were evident from this exercise; first, to find optimal values, the model consistently

predicts that the wild-type rho NEE, containing four Snail sites, will have output at the

lowest end of the allowed range, close to zero, while the internal Snail site #2, or the two

ectopic flanking Snail sites, generate values close to the'bottom of the allowed range, at

about 10% residual activity (Figure III-8A). The single ectopic Snail site 3’ of Dorsal #4

is predicted to mediate repression in the middle of the allowable range, about 40%

residual activity, consistent with published images (Gray et al, 1994). The scaling factor

for Dorsal (i.e. its overall activity) is considerably lower than that predicted for Twist,

while the scaling factor for Snail is similar to those of Kruppel and Giant (Figure III-8B).

Dorsal-Twist cooperativity values vary considerably, with DorsalZ—Twistl cooperativity

predicted to be lower than Twist2-Dorsal3, consistent with the closer spacing of the latter

two factors (Crocker et al, 2008). Twist-Twist cooperativity is also predicted to be high.

These relative differences in activator scaling factors and cooperativity values support

known features of the rho NEE; the low scaling factors for Dorsal sites are consistent
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Figure III-8: Extension of the model to endogenous regulatory elements.

(A) The rhomboid gene is expressed in the blastoderm embryo in two lateral stripes (one

shown in focal plane), under control of the Dorsal and Twist activators. Ventral

expression is inhibited by the Snail short-range repressor, which is expressed in the

presumptive mesoderm. The cis-regulatory modules used for analysis are shown.

Different forms of rhomboid NEE enhancer are depicted, with varying number and

arrangements of Snail short-range repressor binding sites. Dorsal and Twist activators are

shown by large and small green circles respectively, and Snail repressors are shown by

red squares. On the right are the predicted repression levels caused by Snail binding sites

shown in each module based on parameter estimation using this group of enhancers. (B)

Predicted parameters for sealing factors for each transcription factor and cooperativity.

Average and standard deviation for twenty estimation runs are shown.
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with the inability of individual Dorsal sites to mediate robust activation (Ip et al, 1992) ;

but in combination with Twist sites they add considerably to the output of the enhancer.

A single repressor binding site that is not close to most of the activator sites would in this

model still be able to impair enhancer function by initiating a chain-reaction collapse of

cooperative interactions. The native rho NEE does not appear to rely solely on this

mechanism, as most of the identified activator sites lie within a short distance of one of

the four Snail sites, suggesting a “belt-and-suspenders” redundant approach to repression.

It will be interesting to survey the entire set of enhancers targeted by short-range

repressors to determine if this feature is consistently observed in most elements.

DISCUSSION

In the last twenty years, essential features of the biochemistry of gene regulation

have come into focus, serving to highlight the considerable complexity and multifarious

activities of such cis-regulatory elements. We still lack a comprehensive picture of how a

transcriptional enhancer operates however. Quantitative models, based on aspects of the

system that are readily quantifiable, such as primary DNA structure of a regulatory

region, quantities of regulatory proteins, and transcript levels, appear to offer an

alternative route to learn about key features of regulatory systems. When combined with

biochemical and genomic information, such models may provide the “bridge” that will

allow deeper understanding of the function and evolution of cis regulatory elements,

which are the nexus of many biological processes.

In this study, by employing a reductionist analysis of short-range repression, we

sought to explore a relatively untouched, yet central aspect of gene regulation in
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Drosophila. Previous qualitative studies highlighted the extreme distance-dependence of

short-range repressors, and comparative analysis has shown many instances of

evolutionary plasticity of regulatory regions controlled by these proteins (Gray et al,

1994; Ludwig & Kreitman, 1995; Hewitt et al, 1999; Hare et al, 2008). Knowing that

transcription factors influence each other in a local fashion permitted the identification of

novel enhancers, based on the clustering of binding sites (Berman et al, 2002; Schroeder

et al, 2004). Yet these studies alone do not provide the basis for predicting evolutionary

changes that reshape transcriptional output, or predicting comparative activity of

enhancers controlled by similar groups of transcription factors. For example, the original

hypothesis that the affinity and or number of Bicoid binding sites dictates the output of

regulated genes has been replaced by an understanding that other, as-yet unknown

features, appear to play more decisive roles (Driever et al, 1989; Gao et al, 1996; Ochoa-

Espinosa et al, 2009).

Previous modeling studies focused on endogenous enhancers, which have

complex arrangements of transcription factor binding sites, thus even relatively subtle

changes made to these elements potentially influence a number of factors. This

complexity required an oversimplified treatment of quenching (arbitrary assumption of

linear decreases) and cooperativity (only homotypic interactions considered) (Janssens et

al, 2006; Segal et al, 2008). Alternatively, one study considered simplified regulatory

elements, but only modeled them in silico, without the experimental treatment we use

here (Zinzen et al, 2006). It is not clear that the earlier studies are sufficiently robust to

predict why extensively reshuffled enhancer sequences may retain similar function in

some instances, or show quantitatively distinct outputs in others (Ludwig et a1, 2005;

154

 



Crockcr et al, 2008). Our studies are by their design shaped to detect quantitative

differences resulting from minor differences in repressor-activator spacing, for example,

and should be useful for such evolutionary studies. We limited the number of features

that differed between elements, allowing modeling with a tractable number of

parameters. We utilized a common block of Dorsal and Twist activator sites, allowing us

to focus on changes made in the number and arrangement of repressor sites; clearly,

differences in affinity, number and arrangement of activator sites also play decisive roles

in dictating transcriptional output, thus future modeling efforts will need to integrate

these elements as well. The tight focus on short-range repressors with the analysis of a

relatively small number of reporter genes provided sufficient data for robust estimation of

key parameters (Figure III—7). From our comparison of repression by other short-range

repressors, it is likely that the analysis of Giant can guide studies of other similarly-acting

repressors, including Kriippel, Knirps and Snail (Figure III-8).

Relating to transcriptional grammar, our study uncovered specific quantitative

features that appear to apply to short-range repressors in a general context. We identified

a complex nonlinear quenching relationship that suggests that within the range of

activity, Giant, and probably other short-range repressors, have an optimum distance of

action that may reflect steric constraints (Figure III-4). Multiple formulations of the

model generated very similar predictions, suggesting that this nonlinear distance function

is a real feature of the system (Appendix A Figure III-5). Consistent with this notion, a

previous study of transcription factor binding sites in Drosophila enhancers discovered

an overall preference of Kruppel sites to be found 17 bp from Bicoid activator sites,
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which may be an indication that other short-range repressors also have preferred

distances for optimal activity (Makeev et a1, 2003).

The similar quenching efficiencies for repressors acting adjacent to Dorsal or

Twist activator sites was an additional significant finding (Figure III-4). The similar

effect on disparate activator proteins indicates that the effects of short-range repression

are general, and are likely to be translatable to distinct contexts. Previous empirical tests

had already pointed in this direction; for example, insertion of ectopic binding sites for

Knirps and Kruppel into rho NEE sequences is sufficient to induce repression, although

these proteins do not usually cross regulate (Gray et al, 1994; Amosti et al, 1996a). In

addition, systematic comparisons suggest that short-range repressors can counteract a

variety of transcriptional activation domains with similar efficiency, suggesting that

specific protein-protein contacts are not essential (Amosti et al, 1996b; Kulkarni &

Amosti 2005). This flexibility plays well into a computational understanding of

transcriptional information in the fly, because it is likely that the quantitative correlations

we observe in specific genes tested here are general properties of the repressors. The

application of our modeling to the rho NEE indicates that certain features can be directly

applied to more general contexts (Figure III—8).

In one area we found quantitative differences between parameters derived from

the synthetic gene modules and the endogenous regulatory regions. The importance of

homotypic cooperativity predicted for Snail sites in the context of the rho NEE was

overall much higher than that found for Giant, Kruppel and Knirps sites acting on the

synthetic gene constructs; this might be an example where the individual proteins do

exhibit different context dependencies perhaps because the proteins differ in level of
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“stickiness”. Alternatively, the distance between the Snail sites in question, 23 bp, might

facilitate cooperative interactions much more than the closely apposed spacing used in

our genes, where steric interference may play an opposing role.

In revisiting previous incarnations of the endogenous rho NEE, we highlighted

several features of the architecture of this regulatory region. This enhancer appears to be

“over-engineered” in terms of the use of Snail to mediate repression; based on previous

experiments, it appears that even a single Snail site is sufficient to mediate repression

(Gray et al, 1994). Consistent with this view, our short-range repressor parameters would

predict that for many values of the Snail repressor scaling factor, the enhancer should be

effectively inhibited by the set of endogenous binding sites (Figure III-8). How might we

understand this apparent redundancy? Such design may provide the correct dynamical

response, with a swift repression of rho at an early enough time where Snail levels are

still low, or it may ensure that gene output is robust to environmental and genetic noise.

To carry out this modeling, we made explicit assumptions about the relative repression

effectiveness of different configurations of this enhancer, containing one, two or four

Snail sites. These different thresholds of repression seem to be warranted, but it would be

clearly desirable to have quantitative values for the relative expression, similar to those

obtained for our synthetic gene modules, to better model the activity of these enhancers.

The rho NEE modeling also highlighted features of transcriptional activators.

Activator scaling factors for Dorsal were reproducibly lower than those of Twist, and this

was apparent for several different assumptions of expression level (Figure III-8 and data

not shown). The relative differences in contribution to activation can be explained by

examination of the structure of the enhancer; contribution by the low intrinsic values of
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Dorsal are amplified by strong cooperativity with Twist, setting up a chain of interacting

weak sites that together are highly active. Experimental evidence bears out these

conclusions; isolated Dorsal sites tested on reporter genes mediate relatively weak

activation, and a rho NEE lacking Twist sites, but containing four Dorsal sites, is

similarly compromised (Ip et al, 1992; Szymanski & Levine, 1995).

Our earlier study have suggested that many developmental enhancers, including

those regulated by short-range repressors, may possess a flexible “billboard” design, in

which individual factors or small groups of proteins would independently communicate

with the promoter region, so that the net output of an enhancer would reflect the

cumulative set of contacts over a short time period (Kulkarni & Amosti, 2003). Such a

view of enhancers would account for the evolutionary plasticity observed in regulatory

sequences. No DNA-scaffolded superstructure, reflecting the formation of a unique three

dimensional complex, would be necessary in this scenario. Yet our modeling suggests

that the rho NEE might involve communication between relatively distant binding sites,

through sets of cooperative interactions. In this case, it is possible that such distant

interactions might be compatible with a flexible structure, if many distinct configurations

of binding sites provide such a cooperative network. Current studies have indeed

highlighted potential frameworks involving Dorsal and interacting factors on same

classes of enhancer (Erives & Levine, 2004; Papatsenko & Levine, 2007). Application of

a transcriptional grammar integrating activities of activators and repressors is a critical

next step to illuminate enhancer design and evolution.
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Chapter 4

Conclusions and Future Directions

CONCLUSION

Analysis of gene networks and genomic cis-regulatory elements holds the key to

understanding how genomes encode the properties of organisms. However, despite

intensive research, our understanding of the design principles underlying complex genetic

switches is currently at a rudimentary level. In the last twenty years, essential features of

the biochemistry of gene regulation have come into focus. For the purposes of developing

a comprehensive picture of how a transcriptional enhancer operates, however, such

studies have served more to highlight the considerable complexity and multifarious

activities of such cis regulatory elements, rather than to provide a quantitative basis for

understanding their activity. Quantitative models, based on aspects of the system that are

readily quantifiable, such as primary DNA structure of a regulatory region, quantities of

regulatory proteins, and transcript levels, appear to offer an alternative route to learn

about key features of regulatory systems. When combined with biochemical and

genomic information, such models may provide the “bridge” that will allow deeper

understanding of the function and evolution of cis regulatory elements, which are the

nexus of many biological processes.

In this work, we describe studies including image processing, data analysis and

mathematical modeling that shed light on how transcriptional regulatory information

encoded within the cis-regulatory enhancer sequence is interpreted by the cellular

machinery. In the image processing and data analysis section (Chapter 2) we describe a

method to correlate the transcription factors and mRNA output for gene modeling
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purposes. We show that the levels of lacZ mRNA, and potentially the transcriptional

repressor protein Giant, are proportional to fluorescent intensities, a critical basis for

quantitative modeling. Our analysis also reveals that a suggested parabolic form of the

background fluorescence in confocal images of early Drosophila embryos is evident most

prominently in flattened specimens, with intact embryos exhibiting a more linear

background. After appropriate background subtraction and normalization, these data are

amenable to representation of gene regulatory surfaces that permit creation and validation

of quantitative models of gene expression. In this way, we have constructed the

foundations for modeling a cis-regulatory ‘grammar’ that applies to an important set of

transcriptional regulators in the Drosophila blastoderm embryo. More generally, the

image and data analysis techniques described in this study can be generalized to

understand the quantitative function of endogenous genes or gene networks in the

Drosophila embryo or other well-characterized systems. Such an approach may also

prove useful for engineered transcriptional regulatory elements employed for targeted

expression of genes in therapeutic settings.

In the mathematical modeling section (Chapter 3), by employing a reductionist

analysis of short-range repression, we sought to explore a relatively untouched, yet

central aspect of gene expression from Drosophila. Previous qualitative studies played a

key role in highlighting the extreme distance-dependence of such repressors, and

comparative analysis has shown many instances of evolutionary plasticity of regulatory

regions controlled by such repressors (Gray et al, 1994; Ludwig & Kreitman, 1995;

Hewitt et al, 1999; Hare et al, 2008). Knowing that transcription factors influence each

other in a local fashion permitted the identification of novel enhancers, based on the
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clustering of binding sites (Berrnan et al, 2002; Schroeder et al, 2004). Yet these studies

alone do not provide the basis for predicting evolutionary changes that reshape

transcriptional output, or predicting comparative activity of enhancers controlled by

similar groups of transcription factors. For example, the original hypothesis that the

affinity and or number of Bicoid binding sites dictates the output of regulated genes has

been replaced by an understanding that other, as-yet unknown features, appear to play

more decisive roles (Driever et al, 1989; Gao et al, 1996; Ochoa-Espinosa et al, 2009).

These previous studies largely relied on endogenous enhancers, which have

complex arrangements of transcription factor binding sites, thus even relatively discrete

changes made to these elements probably perturb a number of factors. Here, we limited

the number of features that differed between elements, allowing modeling with a

tractable number of parameters. We utilized a common block of Dorsal and Twist

activator sites, allowing us to focus on changes made in the number and arrangement of

repressor sites; clearly, differences in affinity, number and arrangement of activator sites

also play decisive roles in dictating transcriptional output, thus future modeling efforts

will need to integrate these elements as well. The tight focus on short-range repressors

with the analysis of a relatively small number of reporter constructs provided data in

depth sufficient to provide robust information on key parameters (Figure III-7). From our

comparison of repression by other short-range repressors, it is likely that the extensive

analysis of Giant provides good guidance for the activity of other similarly-acting

repressors; modeling of Kriippel, Knirps and Snail appear to be feasible on elements that

they are known to interact with (Figure III-8). To extend this type of analysis to other

transcription factors, it is likely that separate empirical studies will be essential to
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understand the basic elements of their context effects. In one case, the Hairy long-range

repressor exerts repressive influences over greater than one kilobase, suggesting that the

constraints on placement of Hairy binding sites on target genes may be quite relaxed

compared to those applicable to short-range repressors, an issue that warrants further

investigation (Barolo & Levine, 1997). Studies of this sort may not unlock a

comprehensive atlas of cis regulatory relationships for all transcription factors, but by

providing in-depth insights on a one-by-one (or a class-by-class) basis, important

advances are feasible relating to the activity and evolution of specific classes of genes.

To date, similar model gene studies have provided the basis of our qualitative, empirical

understanding of transcription, thus attacking a quantitative problem in a discrete fashion,

one group of factors at a time, has strong precedents.

Fractional occupancy modeling has been applied to understand Drosophila

transcriptional regulation in several other studies. Segal and colleagues combined

expression data from 44 characterized blastoderm enhancers and 8 trans-acting factors to

identify parameters describing cooperativity and factor activity (Segal et al, 2008). This

exercise was fairly successful, judged by the ability of the obtained parameters to predict

an additional set of 26 enhancers that were not included in the modeling. This form of the

model did not consider quenching distances, however, (contributions of activators and

repressors are merely summed, with no consideration for relative spacing). In light of the

extensive use of short-range repression in these enhancers, this simplification must be

considered a major shortcoming. The failure of this model to consider heterotypic

cooperativity is also likely to account for some of the limitations, as pointed out by these

researchers. Reinitz and colleagues focused in on a 1.7 kbp regulatory region driving
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expression of the even-skipped gene; by considering possible binding sites for Caudal not

included in original DNaseI footprinting studies, this model predicted specific features of

expression that were subsequently quantitatively validated (Janssens et al, 2006). It is

not clear how generally applicable to other enhancers the derived parameters were from

this model — quenching distances of short-range repressors are estimated to be 1 for

distances less than 50 bp with a linear decrease to 0 for distances between 50 bp and 150

bp, for example. In the former study, the modeling might suffer from simplification

required in considering a great number of enhancers that differ in a many different ways,

while in the latter study, a single complex element is target of focused studies, with the

possible limitation that any model would be liable to overfitting (although mutant forms

of the enhancer are also considered in the modeling). A third fractional occupancy

modeling study considered regulatory elements controlled by the same activators we

tested here, namely Dorsal and Twist (Zinzen et al, 2006). The overall objective of this

study was to understand the relative activity of enhancers of the neuroectoderrn that are

controlled by Dorsal, Twist and the Snail short-range repressor. In this model, parameters

for cooperativity, activity, and quenching were also considered, and a critical importance

of Dorsal-Twist cooperativity was identified, although not Twist-Twist cooperativity.

The quenching factor for Snail was again not explicitly measured, but was defined as a

simple stepwise function equal to 1 for distances less than 100 and 0 for distances greater

than 100 bp. A major difference between this study and those of Segal et al (2008) and

Janssens et al (2006) is that the modeling was conducted in silico on synthetic gene

modules with different configurations of binding sites, similar to our approach, however

the output of these gene modules was never empirically tested. The main conclusions
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from parameter estimation are therefore based on which sets of values might be likely to

provide informative results. Thus, our study provides a critical feedback between

experiment and quantitative modeling that is lacking in this earlier study. It is not clear

that the earlier studies are sufficiently robust to predict why extensively reshuffled

enhancer sequences from different retain similar function, or, in some cases, show

quantitatively distinct outputs (Ludwig et al, 2005; Crocker et al, 2008). Our studies are

by their design shaped to detect quantitative differences resulting from minor differences

in repressor-activator spacing, for example, and should be useful for such evolutionary

studies.

This study identified specific quantitative features that appear to apply to short-

range repressors in a general context. Our study identified a complex nonlinear

relationship that suggests that within the range of activity, Giant, and probably other

short-range repressors, have an optimum distance of action that may reflect steric

constraints (Figure III-4). Multiple formulations of the model generated very similar

predictions, suggesting that this nonlinear distance function is a real feature of the system

(Figure A-S). Consistent with this notion, a previous study of transcription factor binding

sites in Drosophila enhancers discovered an overall preference of Kruppel sites to be

found 17 bp from Bicoid activator sites, which may be an indication that other short-

range repressors also have preferred distances for optimal activity (Makeev et al, 2003).

Another significant finding was the similar quenching efficiencies for repressors

acting adjacent to Dorsal or Twist activator sites (Figure III-4). The similar effect on

disparate activator proteins indicates that the effects of short-range repression are general,

and are likely to be translatable to distinct contexts. Previous empirical tests had already
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pointed in this direction; for example, insertion of ectopic binding sites for gap gene

repressors Giant, Knirps and Kruppel into rhomboid NEE sequences is sufficient to

induce repression, although these proteins do not usually cross regulate (Gray et al, 1994;

Amosti et al, 1996a; Hewitt et al, 1999). In addition, systematic comparisons suggest

that short-range repressors can counteract a variety of transcriptional activation domains

with similar efficiency, suggesting that specific protein-protein contacts are not essential

(Amosti et al, 1996b; Kulkarni & Amosti 2005). The generality of repression suggests

that this class of transcription factor is able to be readily recruited to novel contexts, a

feature that may have played an instrumental role during the extensive remodeling of

transcriptional regulatory circuitry associated with the evolution of the derived syncytial

blastoderm of Drosophila. This flexibility plays well into a computational understanding

of transcriptional information in the fly, because it is likely that the quantitative

correlations we observe in specific genes tested here are general properties of the

repressors. The application of our modeling to the rho NEE indicates that certain

features can be directly applied to more general contexts (Figure 111-8). The prediction

that short-range repressors such as Snail and Giant will generally exhibit similar

efficiency acting on other activators, in other contexts, will be an important goal for

future application of this modeling.

In one area we found quantitative differences between parameters derived from

the synthetic gene modules and the endogenous regulatory regions. The importance of

homotypic cooperativity predicted for Snail sites in the context of the rho NEE was

overall much higher than that found for Giant, Kruppel and Knirps sites acting on the

synthetic gene constructs; this might be an example where the individual proteins do
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exhibit different context dependencies perhaps because the proteins differ in level of

“stickiness”. Alternatively, the distance between the Snail sites in question, 23 bp, might

facilitate cooperative interactions much more than the closely apposed spacing used in

our constructs, where steric interference may play an opposing role.

In revisiting previous incarnations of the endogenous rho NEE, we highlighted

several features of the architecture of this regulatory region. This enhancer appears to be

“over-engineered” in terms of the use of Snail to mediate repression; based on previous

mutagenesis experiments, it appears that even a single Snail site located within the central

enhancer would be sufficient to mediate repression (Gray et al, 1994). Consistent with

this view, our short-range repressor parameters would predict that for many values of the

Snail repressor scaling factor, the enhancer should be effectively inhibited by the set of

endogenous binding sites (Figure III-8). How might we understand this apparent

redundancy? Such design may provide the correct dynamical response, with a swift

repression of rho at an early enough time where Snail levels are still low, or it may ensure

that gene output is robust to environmental and genetic noise. We made explicit

assumptions about the relative repression effectiveness of different configurations of this

enhancer, containing one, two or four Snail sites. These different thresholds of repression

seem to be warranted, but it would be clearly desirable to have quantitative values for the

relative expression, similar to those obtained for our synthetic gene modules, to better

model the activity of these enhancers.

A second feature of this modeling provided an insight into transcriptional

activators that was not apparent from our synthetic modules, in which a single cluster of

Dorsal and Twist sites was used in different contexts. Activator scaling factors for
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Dorsal were reproducibly lower than those of Twist, and this was apparent for several

different assumptions of expression level (Figure 111-8 and data not shown). The relative

differences in contribution to activation can be rationalized by examination of the

structure of the enhancer; contribution by the low intrinsic values of Dorsal are amplified

by strong cooperativity with Twist, setting up a chain of interacting weak sites that

together are highly active. Interference of part of this chain of regulatory interactions by

Snail would be sufficient to bring the whole edifice crashing down. Experimental

evidence bears out these conclusions; isolated Dorsal sites tested on reporter genes

mediate relatively weak activation, and a rho NEE lacking Twist sites, but containing

four Dorsal sites, is similarly compromised. The relative constrained placement of short-

range transcriptional repressors in some contexts should contrast with the expected

relaxed constraints for long-range repressors, such as Hairy, that are able to mediate

repression from distal sites. We expect that evolutionary constraint of binding sites for

this latter type of transcriptional regulator should be much lower, a prediction that will

require better identification of physiologically active sites on endogenous target genes.

Our earlier study have suggested that many developmental enhancers, including

those regulated by short-range repressors, may possess a flexible “billboard” design, in

which individual factors or small groups of proteins would independently communicate

with the promoter region, so that the net output of an enhancer would reflect the

cumulative set of contacts over a short time period (Kulkarni & Amosti, 2003). Such a

view of enhancers would account for the evolutionary plasticity observed in regulatory

sequences. No DNA-scaffolded superstructure, reflecting the formation of a unique three

dimensional complex, would be necessary in this scenario. Yet our modeling suggests
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that the rho NEE might involve communication between relatively distant binding sites,

through sets of cooperative interactions. In this case, it is possible that such distant

interactions might be compatible with a flexible structure, if many distinct configurations

of binding sites provide such a cooperative network. Current studies have indeed

highlighted potential frameworks involving Dorsal and interacting factors on same

classes of enhancer (Erives & Levine, 2004; Papatsenko & Levine, 2007). Application of

a transcriptional grammar integrating activities of activators and repressors is a critical

next step to illuminate enhancer design and evolution.

FUTURE DIRECTIONS

Comparative sequence analysis, coupled with the development of algorithms to

search genomic databases, has provided important tools for the identification of gene

regulatory elements at a scale not previously possible, but this approach has been

partially successful at finding cis-regulatory motifs. In many cases, predicted regulatory

elements are non-functional possibly due to enhancer architecture, which are not taken

into account usually by the present techniques. It is necessary to factor in features of

enhancers such as binding site number, spacing, orientations and order, in order to

achieve better predictions in the interpretation of their biological function. Our study

(Chapter 3) takes a first step towards providing such a paradigm for early Drosophila

developmental enhancers that are regulated by the short-range transcriptional repressors.

Our findings on enhancer grammar might be incorporated to present bioinformatics

techniques, which employ information about putative binding sites and evolutionary

conservations, to survey genomic regions. Such incorporation might provide powerful
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predictive tools that will be useful for studies of population biology, such as those where

distinct gene expression profiles are linked to disease susceptibility and differences in

drug metabolism. A major goal now is to identify novel regulatory elements using all

sequenced Drosophila genomes and understand how evolutionary processes shape

endogenous enhancers, focusing on targets of short-range repressors that have not been

well characterized with respect to regulatory elements. Some candidates include A-P

patterning gene even-skipped and D-V patteming gene rhomboid, which show conserved

function in other Drosophila species with some small changes in enhancer structure.

Current approaches for identification of candidate regulatory modules include

computational methods that look for clusters of transcription factor binding sites and

phylogenetic comparisons that identify evolutionarily conserved sequences (Berman et al,

2002; Markstein and Levine, 2002; Markstein et al., 2002; Bergman and Kreitman,

2001). However these methods give large number of false-positive and false-negative

results for enhancer prediction, possibly due to degenerate nature of transcription-factor-

binding sites. Thus, in many cases where cis-regulatory modules predicted by

computational methods appear suitable, something in the arrangement of sites which has

shown to be critical in our study renders the cis-element non-functional. In order to

achieve better predictions and eliminate false-positive and false-negative results,

computational methods should include structural features such as parameters for spacing

and position of binding motifs within cis-elements in the search algorithms. For example,

suppose that a computational search for novel cis-elements based on clustering of binding

sites for transcription factors was used to identify enhancers by Giant. Given the relative

number, affinities, spacing and distribution of repressor and activator sites within the
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module we would be better able to predict the possibility of Giant regulating that element

and how strong that regulation would be. The neurectoderrn enhancers (NEEs) such as

rho, vnd and sog active in the mid-blastoderm Drosophila embryo provide an excellent

test case for this idea. These enhancers are not cross-regulated by Giant, Kriippel, or

Knirps, i.e. these short-range repressors’ binding sites located within the critical NEE

enhancers cannot be of functional importance, by this criterion. Furthermore, we can

model the expression driven by NEEs in terms of transcriptional inputs from the expected

regulators (D1, Twi, Sna) as well as the “inappropriate” repressors (Gt, Kr, Kni), and

examine the effect of each putative cross-regulating site. Such an analysis will reveal the

presence of any inappropriate sites that are allowed in the NEEs because they are located

outside of the zone of influence imposed by short-range repressors.

By combining quantitative methods to expression levels of the transcription

factors and a downstream target gene over space and time we can build a predictive

modeling tool that will allow us not only the identification of novel cis- elements that are

regulated by the same suite of transcription factors, in this case the short-range

repressors, but also to predict its expression pattern. Computational algorithms based on

binding site sequence data from transcription factor binding site databases, can be used to

scan the genome for clusters of short-range repressor binding sites together with binding

sites for other proteins that are known to work with them. Combining datasets from a

number of large-scale analyses might be used for prefiltering the set of putative

regulatory elements obtained. Bioinformatic predictions of binding sites might be used to

build a predicted picture of the configurations of these regulatory elements, and expected

output of the endogenous regions might be obtained by fractional occupancy modeling. A
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simplified example of how exactly such a predictive tool can be used is as follows: We

can identify the putative targets of short-range transcriptional repressors in the

Drosophila melanogaster genome and predict how these candidate genes will respond

over space and time. To understand the molecular function and design of these elements,

we can incorporate the identified parameters for short-range repression in the

bioinformatic analysis of known regulatory elements in D. melanogaster and in related

species, in particular the 12 sequenced fly genomes. For example, we can apply our tool

to anterior-posterior and dorsal-ventral patterning enhancers, for which no quantitative

modeling approach has adequately considered the special nature of short-range repressors

up until now. Such an analysis would be a test for the predicted parameters in our study,

by which we should be able to accurately predict expression levels. In addition, we can

make predictions about the effect of ectopic binding sites introduced artificially into

regulatory sequences; and directly validate these by measurement of transgenes. By these

analyses we might identify previously hidden features of such elements, such as possible

redundancy and extra regulatory sites not found in simple “promoter-bashing”

experiments.

Mathematical models such as Boolean models and differential equation models

have been used to understand the gap gene regulatory network in early Drosophila

melanogaster embryos as mentioned in the introduction (Sanchez et al, 2001; Jaeger et

al, 2004a; Jaeger et al, 2004b). These models were in agreement with the earlier mutant

and reporter studies. In addition, the differential equation model was also in agreement

with the available spatial and temporal data of protein levels. However, experimental

analysis of this regulatory cascade point to at least one additional level of complexity that
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needs to be included in such predictive models of gene regulatory networks, which is a

detailed understanding of the cis-regulatory substructure and its functional significance as

we have defined for the short range transcriptional repressors (Giant, Knirps and

Kruppel) in Chapter 3.
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APPENDIX A

Supplementary Material for Chapter III

Modeling:

Here we describe a general fractional site occupancy model and then explain how it is

applied in our case. Consider an enhancer, with two activator and two repressor binding

sites bound by activators A1 and A2, and repressors R1 and R2 respectively. In our case,

the repressors are short-range repressors. Simultaneous binding of the repressors and

activators may result in a partially active state of the enhancer.

Different bound state of the enhancer, for example, two activators and one repressor,

represent distinct states. The probability of each state of those proteins on the DNA is

described by the following parameters.

[A1] and [A2]: Concentration of activator 1 and 2 respectively,

[R1] and [R2]: Concentration of repressor 1 and 2 respectively,

K and KA : Binding affinity of activator 1 and 2 respectively,

“‘1 2

KR and KR : Binding affinity of repressor 1 and 2 respectively,

1 2

C?2 and Clrz: Cooperativity of activators and repressors for binding to the DNA

respectively.

A .

qR] : Quenching efficiency of repressor Ri on the activator Aj.

i

FX: Probability of having X case.

For simplification in the following formulas,
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Z: (1+KA][A1]+KA2[A2]+Ca12KA1[A]]KA2[A2])(1+KR1[R1]+KR2[R2]+

 

 

C{2KR1[R"‘1: [R2 1)

No activator and repressor bound to the DNA: FN =é—

KAI [All

Activator 1 is bound to the DNA: FA] = Z

K2421/12]

Activator 2 is bound to the DNA: FA2 =7—

[R11

Repressor 1 is bound to the DNA: FR = 1Z

1

[R21

Repressor 2 is bound to the DNA: F = —L——

R2 Z

C1612KAllAl 1KA2042]

Activator 1 and 2 are bound to the DNA: F

A1A2 = Z

 

A1 [A1 ]KR [R1]

Activator 1 and repressor 1 are bound to the DNA: F = l

AlRl Z

 

KllKlRl
_AIA1R22

Activator 1 and repressor 2 are bound to the DNA: F _- 

 

A1R2 Z

KA2 I A2 1KR [R] l

Activator 2 and repressor 1 are bound to the DNA: F = 1

f‘2R1 Z

K[121/‘2le [R21
2

Activator 2 and repressor 2 are bound to the DNA: F

A2R2= Z
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r

CIZKR[RllKRleZI
Repressor 1 and 2 are bound to the DNA: F

R1R2 Z

Activator l and 2, and repressor 1 are bound to the DNA:

CIZKAIIA'IJKAZIAZIKI?l [R

F _

A1A2R1 Z

Activator 1 and 2, and repressor 2 are bound to the DNA:

FC12K1A1A1RZIRIKA21A21K

A1A2R2 Z

Activator 1, repressor 1 and 2 are bound to the DNA:

KA11A11C1’2KR [R 1KR21R21

F

A1R1R2: Z

 

 

 

Activator 2, repressor 1 and 2 are bound to the DNA:

F KA21A21C1’2KR 1R1KR21R21

A2R1R2: Z

Activator 1 and 2 and repressor 1 and 2 are bound to the DNA:

Cla2A1A1KR21A21C12R1R1KR21R21

F

A1’12‘11’1232

Then the states vector of two activators and two repressors can be written in the

following way.

 

F—[F,,FF,,FF
, R,F ,F ,F .

N A1 ”‘2 R1 R2 A1A2F1A1RF1R2 A2R1 A2R2 R1R2

’ ’ ’ ’ ]

FA1A2R1FA1A2R2FA1R1R2FA2R1R2FA1A2R1R2
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In the expressions above we enumerate the Boltzmann states of an enhancer with two

activator and two repressor binding sites. We claim that the binding of the repressors

modulates the probability of states with activators and repressors simultaneously bound

by a quenching factor. For example, binding of the activator A}. and repressor Ri

A .

simultaneously is reduced by a factor of (l-qRJ ). We can modify the probability of

i

states, in the following way:

“FA: "1
=1FN[Hf/21,17 .1? .FR2r R2 .FRIRIU— q>Rl ’F:1R2(1_ qR21.11;,2R111— qRIZ.)

2

R2 ’11 R1
(1- q ).F —q )(1- 2).F (l- q )(l- 61

FAsz R2 R2Rafi/12R R1 an A22R R2 R2

A

2111 A2)
:1 ’1

F (1— )(l— q ),F (l-q -q -

AIRIRZ qu R2 A2R1R2 qu R2

A

A1111- ZAIXI— AZXI—qRZn
4R

FA1A2R1R2(1_ qR1 2 qu 2

A2)

With a description of states in hand, we calculate the total efficiency of the enhancer.

Let EA] and EA be efficiency of activators when they are bound to the DNA alone. We

2 _

can write the case of two activators bound to the DNA at the same time in the following

way. Here WI“ and w; are the weight constants.

E = waE +waE

“1’42 1"1 2A2
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LetE and ER be efficiency of activators when they are bound to the DNA alone. We

R1 2

can write the case of two repressors bound to the DNA at the same time in the following

way. Here wlr and w; are the weight constants.

E =w’E +w_"E

R1R2 1R1 2Rz

Then the overall efficiency vector of two activators and two repressors can be written in

the following way:

E=lE .E .E .E .E .E .E ,E .E .E .E .

N 11 A2 R2 1112 111 1R2 A211 A2112 .312
E .E ,E .E ‘ .E 1

A1A2R1 A1A2R2 A1R1R2 A2R1R2 A1A2R1R2

=[E,E,E,E,E,waE+waE,E+E,E+E,

”Al/‘2 11211221111112

E +E ,E +E ,w’E +w’E ,waE +waE +E ,
A2 Rl A2 R2 1 R1 2 R2 1 Al 2 A2 RI

a a r r r r
wE+wE+E,E+wE+wE,E+wE+wE,

1 A1 2 R2 1 R1 2 R2 A2 1 RI 2 R2

a a r r
w E +w E +w E +w E 1

1 A1 2 A2 1 Rl 2 R2

Then we can obtain the total expression level of the enhancer as the sum of the

expression contribution of each state.

~

Ex: 2Fi TREi)’ where T is a regulatory function used to calculate expression

i

contribution of each state. If we set the following simple assumptions EN = 0, EA1 = 10,
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1
E =10, w“ = 0.5, w“ = 0.5, E = 0, E = 0, and T(x)=—, the general

R2 1 2 R1 R2 1+.s-x

framework described above reduces to a form employed by Zinzen et al (2006) and total

expression of the enhancer with 2 activator and 2 repressor binding sites can be written

as:

Esz +F +F

R1 R2 #551111“qu11R“ ,R

A

A1 )+F (1— 2)+

A

A2R1 qu

FAsza—quRF AZRIU1:1)(lqR12)HRA1:2R2(l-q212)(1—q2:

FAIRIRza—qRI‘XI— qA‘z)+FRR1R<1qRIZ)(1—qA:)+

FA1A2R1R2(1"4211)(1-q:1)(1W212)(12A2)

)+

Cooperative Binding:

Incorporating cooperative binding for the general case is not a simple matter to

solve, since we might have all different cooperativity parameters for different protein

types. We can have simple assumptions like all neighboring activators (repressors) are

cooperating or all binding activators (repressors) are cooperating. The formulations of

these schemes for homotypic cooperativity are explained in Zinzen & Papatsenko (2007).

We can also assume that cooperative binding level changes by distance such as

proteins cooperate better if they are closer. This could be done by multiplying the

cooperativity parameter C by a distance dependent function as described in Segal et al

(2008), which used a Gaussian function with mean 0 and variance 50.
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Combining fractional occupancy to expression:

The modeling of an enhancer and its fractional occupancy must also consider how

those states ultimately affect transcription levels. If we assume that occupancy of the

enhancer by the activators is the only indication for transcription and there is no need to

specify different weights to different states we could use a simple linear

function T(x) = x (Zinzen & Papatsenko, 2007). However, numerous experimental

studies have demonstrated nonlinearity in gene activation, which probably reflects the

thresholds imposed by chromatin and inherent limits on transcriptional initiation rates.

Thus a nonlinear function of sigmoidal type T(x): ———15—7 can be used, as described

l+e —

in Segal et a1 (2008), where b represents basal expression level. We used

T(x) = ———l—; for our analysis on synthetic enhancers and rhomboid NEE.

l+e _

Binding affinity:

The set of synthetic gene modules used in this study did not explore the effects of

different qualities of binding sites to any extent, but for analysis of endogenous

regulatory regions, this consideration is paramount. In the rhomboid NEE study, for each

transcription factor, we took the score of the strongest site among all those that bind that

transcription factor as a free parameter and constrain the other values by treating the

PWM score as a free energy of binding (Stormo, 2000).

Parameter Estimation:
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To fit the model with the actual data we minimized the root mean square error

between the predicted and experimental data. Root mean square error is defined in the

n

following way: RMSE=(_1. 2 (y (j)— ye(j))2)l/2
, where n is the number of data

"j=1 P

points, yp is the model’s prediction and ye is the experimental data (e.g. Figure 3). The

fitting is done by optimizing the parameters that gives the minimum RMSE error. Global

parameter estimation algorithm, evolutionary strategy (ES) as described in Runarsson &

Yao (2005) is used for estimation. ES is a nature-inspired parameter estimation method

belonging to the class of evolutionary algorithms which uses mutation, and selection

applied to a population of individuals containing candidate solutions in order to evolve

iteratively better and better solutions. Three global parameter estimation techniques

(genetic algorithm (GA), simulated annealing (SA) and evolutionary strategy) were

checked for our model on synthetic data before we selected ES. The results of BS, GA

and SA are shown in the following figures (Figure A-1-3) on synthetic data. The

estimation is done for 9 different schemes and 100 runs and results are plotted. The ES

algorithm clearly functioned better than genetic algorithms and simulated annealing on

our model. For further testing of our parameter estimation algorithm, we added different

amounts of noise to the synthetic data (1% to 30%). Adding noise to the synthetic data

does not change the estimation results drastically (Figure A-4).

un



Figure A—l: One hundred parameter estimation runs are shown using the evolutionary

strategy parameter estimation method for all schemes (variant formulations of the model

employing different assumptions for cooperativity and quenching).
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Figure A-l: Continued.
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Figure A-l: Continued.
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Figure A-2: One hundred parameter estimation runs are shown using the genetic

algorithm method for all schemes.

192

 



0.8'

0.6

0.4

0.2

0.8

0.6

0.4

0.2

0.8}

0.61

0.4

0.2

.l

 

 

 

 

 

 

C1 02

’C1'ECé _

’I

01 c2

1 OO

’80

'60

'40

1720

1 00

8O

60

4O

2O

1 00

80

‘60

4O

'20

0

193

0.8-1 1

e
m
u
—
L
.
.
.

 

é

.1- .
0.41 751 g

0.2. I" M >6

0

20 40 60 80 Tw Dl

bp

.11 112. 1 1° .

I
}

0.4

0.2

O

T 7 ‘20" '40'V’60 730 ATV/MDT

bp

2:? l i H
0.4 " >5 .

0.2 . ' vi

20 40 60 80 Tw DI

bp

L'J

 

 



Figure A-2: Continued.
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Figure A-Z: Continued.
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Figure A-3: One hundred parameter estimation runs are shown using the simulated

annealing method for all schemes.
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Figure A-3: Continued.
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Figure A-3: Continued.

G

1.

0.81

0.6i

0.4:

o.2§

03

H

0.8;

0.6;

0.4.

0.2

0.8;

0.6

0.4

0.2;

 

 

 

m
_

 

 

 

c
m

(
1
O

V

{
I
T
'
I
I
I
I
O

‘
1
1
)
C
)

(
1
3
1
1
7

3
‘
3
1
:

'
1

C1 C2

:
1
1

-
m
m
u
o

:
3
r
:
:
c
m
.
»
:
a

V

C1 CZ

I
I
I
I
U
T
O
3

3
2
-
0

I
I
"
;
1
2
‘

1
h
r

-
.
.
L

V

m
m
:

)
3
;

‘
.
1
}

C1 C2

T
C
-

‘
’
1
-

R
A

0
1
.
1
1
4
)
H
I
K
W
X
I

:
0
!
P
D

‘-

V

'
E
~
.
D

I
‘1

C
Y
.

(
“
3

i
3
?

3
1
1
I
L
C
K

2
1
1
'

V

m
u
m
-
7

180

60

{40

920

1100

180

{so

:40

2o

g100

:80

:60

{40

.20

199

 

0.81

0.6 ‘

0.41

0.2

0.6;

0.4»

0.2'

‘
1
"

1

I
1
'
;

‘
k

.
_

)

m
a
n
:
”
3
3
)
;
“

 j

20 4o 60 80 Tw DI

bp

.3

20 4o 60 80 Tw DI

3

DP:

1

t

4

.

I

‘l

l

D

'
(
M
i
d
'

1

 

 
2o 40 60 80 Tw DI

bp

 



Figure A-4: Robustness of the evolutionary strategy parameter estimation technique on

synthetic data with added noise. (A) No noise, (B) 1% noise, (C) 3% noise, (D) 5% noise,

(E) 10% noise, (F) 20% noise and (G) 30% noise.
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Figure A-4: Continued.
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Figure A-4: Continued.
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Figure A-5: Results of parameter estimation for R, C,, C2 and quenching employing

different schemes. (A) scheme 1, (B) scheme 2, (C) scheme 3, (D) scheme 4, (E) scheme

5, (F) scheme 6, (G) scheme 7, (H) scheme 8 and (I) scheme 9.
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Figure A-5: Continued.
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Figure A-S: Continued.
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Figure A-6: Comparison of average error induced by leave-one-out analysis, employing

nine different formulations of the model. Lower error levels were noted with schemes 1-

4, 8 and 9.
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Table A-1: Ex functions for the synthetic enhancers of the model.
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Table A-II: Parameter assignments for all the genes and schemes. Capital qs represent

the quenching efficiency of repressors shown in the gene structure and lower case qs

represent the assigned parameters, which are grouped into different ‘bins’ of distances as

explained in Materials and Methods.
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Table A-III: Oligo and primer sequences used in this study.

 

DA782/783 (2

Twist)

5'-GATCCQAIAIQTTGAGQAIAT_GT

5'-CTAGACATATGCTCAACATATGG
 

 

DA784/785 (2 S'-CTAGAQ_QQAIIII_CQQAAATCGA

Dorsal) WCCGC

5’-GGTTGGGTTTTCCCTCGAT'I'I'GGGAAAATCC

CT

DA786/787 5’-GATCTGGTTAGTAAGCTGTAAACTG

(25bp spacer) 5'—GATCCAGTTTACAGCTTACTAACCA .
 

DA792/793 (2

Giant)

5'-AATTCLA_IGAQQ£AA§AATGCGACTCG

WC

5’-GATCCTCTTGCGTCATACGAGTCGCATTCTTG

CGTCATAG
 

 

 

 

 

  

DA1255/1256 5'-AATTCIAIGA§QQAA§AATGCGT

(1 Gt-EcoRl) 5’-AATTACGCATTCTTGCGTCATAG

DA1257/1258 5’-AATTCIAT_GA§_G_CAA§AG

(1gt- S'-GATCCTCTTGCGTCATAG

EcoRI/BamHD

DA(1259/1260) 5’-TGIAEA§§§AAQACCGC

(1 gt-Sacll) 5’-GGTCTTGCGTCATACAGA

DA1403/1404 5’-AATTA§ATAI!IQTTGAGQAIAIGTCTAGA

(2 Dl-ZTW) WTCGATTWG

5’AATTCGGGAAAACCCAAAATCGAGGGAT'I‘TTCC

CATCTAGACATATGCTCAACATATGT

DA1405/1406 5'-GATCTGGTTAGTAAGCTGTAAACTGGATCTGG

(SObp spacer) TTAGTAAGCTGTAAACTG 5'-GATCCAGTTTACAGCTTACTAACCAGATCCAGTTTACAGCTTACTAACCA
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Table A-III: Continued.

 

 

 

 

 

 

 

 

    

10. DA1407/1408 5'-TGGTTAGTAAGCTGTAAACTGGATCTGGTTAG

(50bp spacer/th) TAAGCTGTAAACTGWCCGC

S'-GGTCTTGCGTCATACAGTTTACAGCTTACTAA

CCAGATCCAGTTTACAGCTTACTAACCAGC

11. DA1337/1338 5’-AATTCWG

[1 Krueppel) 5'-GATCCGCTTAACCCGTTTTG

12. DA1339/1340 5’-MTTCWGACCC

(2 K1”) WC

5’-GATCCGCTTAACCCGTTTTGGGTCGCTTAACC

CGTTTTG

13. DA1341/1342 5’-AATTCAAAA§_QG§IIAAQ§GACCC

(3 Kr) WGACCCW

CG

5'-

GATCCGCTTAACCCGTTTTGGGTCGCTTAACCCG

TTTTGGGTCGCTTAACCCGTTTTG

14. DA1352/1353 5'-ACATACTAGTAACCGCTTTAGTCCCGCCAG

(Kni.340bp.SpeI. 5'-ACATACTAGTTGTGCACGGAGCTCCGCGAG

Spacer)

15. DA1833/1834 5'-GATCTGGTTAGTAAGCTGTG

(20bp 5’-GATCCACAGCTTACTAACCA

spacer.BamHl)

16. DA1835/1836 5’-GATCTGGTTAGTAAGCTGTAAACTCTGGTTAG

(35bp TAG

spacer.BamHl) 5’-GATCCTACTAACCAGAGTTTACAGCTTACTAA

CCA

17. DA1837/1838 5'-AATTCT1_;G_C_GA§§_CAI_CAATGCGT

(Gt.(at).EcoRl) 5’-AATTACGCATTGATGCGTCGCAAG

18. DA1839/1840 S'—AATTCTIQ§_GA§§§AICAATGCGACTCGT

(2Gt.(af).EcoRl/Ba WC

ml-ll) 5’-GATCCTGATGCGTCGCAACGAGTCGCATTGAT

GCGTCGCAAG
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Table A-IV: Robustness of Evolutionary Strategy (ES) parameter estimation. The

parameter estimation algorithms were run 100 times using the scheme 2 form of the

model on a synthetic data set with increasing amounts of noise. Parameter value

(Standard deviation). Results from parameter estimation using Genetic Algorithm (GA)

and Simulated Annealing (SA) are shown for comparison.

216

 

 



217

 

E
x
p
.

E
S
(
0
%
)

G
A

(
0
%
)

S
A
(
0
%
)

E
S
(
1
%
)

E
S
(
3
%
)

E
S
(
5
%
)

E
S
(
1
0
%
)

E
S
(
2
0
%
)

E
S
(
3
0
%
)
 

R
M
S
E

0 (
0
)

0
.
0
3
3

(
0
.
0
1
3
)

0
.
0
6
6

(
0
.
0
0
8
)

0
.
0
0
4

(
0
)

0
.
0
1
2

(
0
)

0
.
0
1
9

(
0
)

0
.
0
3
7

(
0
)

0
.
0
6
7

(
0
.
0
0
1
)

0
.
1
1
9

(
0
.
0
0
1
)
 

1
0

1
0

(
0
)

1
1
.
8
5
3

(
3
.
9
7
6
)

2
2
.
0
0
6

(
1
5
.
1
8
)

9
.
9
9
9

(
0
.
0
2
3
)

9
.
9
9
9

(
0
.
0
6
4
)

9
.
9
9
7

(
0
.
1
3
2
)

9
.
9
9
6

(
0
.
2
0
9
)

9
.
9
8
1

(
0
.
4
7
5
)

1
0
.
0
3
8

(
0
.
7
4
5
)
 

C
1

5 (
0
)

4
.
3
0
2

(
3
.
3
2
8
)

4
7
.
6
9
3

(
3
0
.
5
3
6
)

5
.
0
0
1

(
0
.
0
2
8
)

5
.
0
0
9

(
0
.
1
1
)

5
.
0
2
2

(
0
.
1
6
5
)

5
.
0
2
2

(
0
.
3
2
6
)

5
.
2
1

(
0
.
6
6
3
)

5
.
1
6
9

(
1
.
1
0
9
)
 

C
2

3 (
0
)

6
.
3
3
4

(
1
1
.
6
3
7
)

5
0
.
1
1
8

(
2
8
.
0
3
9
)

3
.
0
0
6

(
0
.
0
9
7
)

3
.
0
3

(
0
.
2
5
4
)

3
.
0
7

(
0
.
4
8
4
)

3
.
4
1
8

(
1
.
2
7
2
)

4
.
1

1

(
2
.
6
7
2
)

5
.
8
1

(
7
.
4
5
4
)
 

Q
1

0
.
9

0
.
9

(
0
)

0
.
8
9
7

(
0
.
0
6
1
)

.
8
1
2

(
0
.
0
8
6
)

0
.
8
9
9

(
0
.
0
0
1

)

0
.
8
9
9

(
0
.
0
0
1
)

0
.
9
0
0

(
0
.
0
0
2
)

0
.
8
9
9

(
0
.
0
0
6
)

0
.
9
0
2

(
0
.
0
1
1
)

0
.
8
9
9

(
0
.
0
1
6
)
 

0
2

0
.
8

0
.
8

(
0
)

0
.
8
1
2

(
0
.
0
6
2
)

0
.
7
4
5

(
0
.
0
7
7
)

0
.
8

(
0
)

0
.
7
9
9

(
0
.
0
0
1
)

0
.
7
9
9

(
0
.
0
0
2
)

0
.
8
0
0

(
0
.
0
0
4
)

0
.
7
9
9

(
0
.
0
0
8
)

0
.
7
9
9

(
0
.
0
1
3
)
 

Q
3

0
.
6

0
.
6

(
0
)

0
.
5
8

(
0
.
1
4
0
)

0
.
4
8
4

(
0
.
1
5
)

0
.
5
9
9

(
0
.
0
0
1
)

0
.
5
9
9

(
0
.
0
0
3
)

0
.
6

(
0
.
0
0
6
)

0
.
6

(
0
.
0
1
1
)

0
.
5
9
6

(
0
.
0
2
3
)

0
.
5
9
9

(
0
.
0
3
1
)
 

Q
4

0
.
4

0
.
4

(
0
)

0
.
4
2
5

(
0
.
0
6
9
)

0
.
3
7

(
0
.
0
6
6
)

0
.
3
9
9

(
0
.
0
0
1

)

0
.
3
9
9

(
0
.
0
0
2
)

0
.
3
9
9

(
0
.
0
0
6
)

0
.
4
0
2

(
0
.
0
1
)

0
.
4
0
3

(
0
.
0
2
8
)

0
.
4
0
1

(
0
.
0
3
5
)
 

0
5

0
.
2

0
.
2

(
0
)

0
.
2
3
8

(
0
.
1
8
1
)

0
.
2
7
3

(
0
.
1
8
3
)

0
.
2

(
0
.
0
0
2
)

0
.
2
0
0

(
0
.
0
0
6
)

0
.
1
9
9

(
0
.
0
1
)

0
.
1
9
9

(
0
.
0
2
1
)

0
.
1
9
8

(
0
.
0
4
4
)

0
.
1
9
3

(
0
.
0
6
2
)
  06  0.9  0

.
9

(
0
)

 0
.
8
3
5

(
0
.
1
0
4
)

 0
.
8
0
4

(
0
.
1
2
9
)

 0
.
9

(
0
.
0
0
1
)

 0
.
9
0
0

(
0
.
0
0
3
)

 0
.
9

(
0
.
0
0
5
)

 0
.
9

(
0
.
0
0
9
)

 0
.
9
0
1

(
0
.
0
2
1
)

 0
.
9
0
2

(
0
.
0
3
2
)
 

 



Table A-V: Extension of model to Knirps and Krfippel short-range repressors.

Parameter estimations were done 1000 times for each formulation of the model (schemes

1-9) to find the R (repressor scaling factor) and C (cooperativity) parameters for Knirps

and Kriippel, fixing quenching efficiency parameters to those of Giant. All schemes

generated similar cooperativity values for the two proteins, and dissimilar repressor

scaling factors. Parameter value (Standard deviation)
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