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ABSTRACT

CHARACTERIZATION OF THE FREMYELLA DIPLOSIPHON PHOTORECEPTOR
RcaE AND ITS ROLE IN COMPLEMENTARY CHROMATIC ADAPTATION

By
Juliana Rose Bordowitz

Frempyella diplosiphon is a freshwater filamentous cyanobacterium that possesses
the ability to sense and adapt to changes in ambient light. In a process called
complementary chromatic adaptation (CCA), which is predominantly responsive to red
light (RL) and green light (GL), the cyanobacterium enhances its photosynthesis by
altering the phycobiliprotein composition of its light-harvesting antennae. RcaE, a
phytochrome-class photoreceptor, is required for CCA to occur (Kehoe and Grossman,
1996, Science, 273:1409-12). In addition to the pigmentation phenotype associated with
CCA, early micrograph studies showed that wild-type (WT) F. diplosiphon displays
different cell morphologies under GL and RL conditions (Bennett and Bogorad, 1973, J
Cell Biol, 58:419-35).

Microscopic and biochemical analyses confirmed that WT F. diplosiphon strains
maintain distinct RL and GL morphologies. Further, analyses of an RcaE null mutant
strain (FdBk14) showed that RcaE regulates filament length and cell shape in response to
RL and GL. Light-shifting experiments demonstrated that RcaE regulation of light-
dependent morphology is photoreversible. Lysozyme-sensitivity experiments with WT
and FdBk14 strains established a light-dependent alteration in cell wall integrity
associated with the observed morphology differences, thus establishing that RcaE-
regulated changes in cellular morphology are correlated with modifications of cell wall

structure or composition. Identification and mRNA expression analyses of the cell-



shape-determining mre genes from F. diplosiphon demonstrated that mre expression is
RcaE-regulated. RT-PCR analyses showed that the expression of mre genes was down-
regulated in the FdBk14 strain, indicating that RcaE controls expression of the gene
encoding bacterial actin MreB, a cytoskeletal component involved in the regulation of
cell shape in many prokaryotic systems.

Sequence analysis of RcaE indicates similarity to plant phytochromes in its N-
terminus, as well as to two-component histidine kinases in its C-terminus (Kehoe and
Grossman, 1996). In addition, RcaE contains conserved GAF, PAS and Hbox domains
which have been associated with chromophore attachment, signal sensing, and phospho-
transfer, respectively (Kehoe and Gutu, 2006, Annu Rev Plant Biol, 57:127-50). To
determine the role of these domains in RcaE’s regulation of CCA, a mutational analysis
approach was taken. Mutation of residues within the GAF domain resulted in defects in
both pigmentation and cellular morphology. Mutating a cluster of conserved residues
within the PAS domain showed that this domain was essential for GL-regulated cellular
morphology. Further, mutating a conserved histidine within the Hbox domain confirmed
that this residue contributes to the in vivo biochemical activity of RcaE, as both
pigmentation and morphology were affected. These studies established that the GAF,
PAS and Hbox domains all contribute to the regulation of CCA. Therefore, the analyses
in this dissertation work have contributed significantly towards understanding the
molecular basis of the photoregulation of cellular morphology in F. diplosiphon, as well
as advanced our knowledge of the biochemical mechanisms utilized by RcaE in its

regulation of CCA.
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CHAPTER ONE

Introduction/Literature Review



1.1 Importance of Photoperception

Sensing light is one of the most indispensable abilities for organisms that depend
on light for photosynthesis. Hence, the developmental changes that occur upon light
perception are amongst the most important adaptive responses that photosynthetic
organisms possess. It is critical that such organisms maintain a way to perceive light, in
order to maximize its utilization for their survival. Not only does light provide energy
derived from photosynthesis, but it also acts as signals which are important input factors
in adaptive mechanisms required for survival.

For example, plants have highly developed mechanisms which allow them to
monitor and perceive different wavelengths, quality, and periodicity of light (reviewed in
Franklin and Whitelam, 2004; Matthews, 2006). The ability to do so allows these sessile
organisms to adapt to a given environment, and proceed with their growth and
developmental processes. This ability is a biological process known as
photomorphogenesis and enables photosynthetic organisms to respond and adapt in order
to optimally thrive in changing environmental light conditions. Like plants,
photosynthetic cyanobacteria also possess the ability to alter their growth in response to
changes in their light environment. One particular process is called complementary
chromatic adaptation (CCA), and the model organism in which it is studied (Fremyella

diplosiphon), was the major focus of this work.

1.2 Fremyella diplosiphon and Complementary Chromatic Adaptation
Fremyella diplosiphon is a freshwater, filamentous cyanobacterium (also referred

to as Calothrix sp. strain PCC 7601). F. diplosiphon possesses the ability to sense and



acclimate to changes in its ambient light environment via a process called CCA (Tandeau
de Marsac, 1977). This process, which is predominantly responsive to red light (RL) and
green light (GL), is the most well-studied photomorphogenic process in cyanobacteria.
During CCA, a cyanobacterium enhances its photosynthesis by altering the
phycobiliprotein composition of its light-harvesting antennae in order to efficiently utilize
the light in its environment.

In F. diplosiphon, the light-harvesting complex is the phycobilisome (PBS),

which is composed primarily of three phycobiliproteins: allophycocyanin (AP; Appax of

650 nm), phycoerythrin (PE; A3 of 560 nm), and phycocyanin (PC; Apax of 620 nm)

(reviewed in Tandeau de Marsac 1983; Stowe-Evans and Kehoe, 2004). AP and several
associated linker proteins make up the core of the structure, while PE and PCi (inducible
PC) are contained within the light-harvesting rods (Figure 1.1A). Immediately proximal
to the AP core proteins is a set of constitutive PC proteins (PCc), which like AP, do not
change accumulation during CCA. When wild-type (WT) F. diplosiphon cells are grown
under RL conditions, the rods of PBSs accumulate PCi (hereafter PC), the RL-induced
phycobiliprotein, yielding a blue-green color phenotype (Figure 1.1B and C, left), and a
more rounded cellular morphology (Figure 1.1D, left; Bennett and Bogorad, 1973).
Under GL conditions, the rods of the PBSs accumulate PE, the GL-induced
phycobiliprotein, yielding a red color phenotype (Figure 1.1B and C, right), with an
elongated, brick-like cellular morphology (Figure 1.1D, right; Bennett and Bogorad,
1973). CCA allows for this RL-GL reversible responsiveness (Tandeau de Marsac 1977;

Stowe-Evans and Kehoe, 2004).



D.

Figure 1.1. Characteristics of Complementary Chromatic Adaptation in WT
Fremyella diplosiphon. ~A. PBS composition under RL (left) and GL (right)
conditions. The PBS core is comprised of AP, and associated linker proteins. The
inner rods of the PBS are comprised of PCc. Under RL conditions the outer PBS rods
accumulate the RL-inducible PBP PCi, while under GL conditions they accumulate
the GL-inducible PBP PE. B. Whole-cell absorbance spectral scans illustrating the
maximum absorbance peaks of PBP accumulation under RL (left) and GL (right)
conditions. C. Cellular pigmentation response to RL (left) and GL (right). Under RL
conditions, cells are green, while under GL conditions cells are brick-red. D.
Morphological response to RL (left) and GL (right), adapted from Bennett and
Bogorad, 1973. Cells grown in RL are more rounded and compact, while cells grown
in GL are more elongated and brick-like in shape.



1.3 Phytochrome-like Photoreceptor RcaE

In a screen for CCA pigmentation mutants, a strain designated FdBk14 was
isolated, which exhibits a black phenotype under both RL and GL conditions (Kehoe and
Grossman, 1996). The terminology used for describing color mutants in this organism is
based first on the name (Fd, Fremyella diplosiphon), second on the exhibited color of the
mutant, (Bk, Black), and finally on isolate number (14, isolate #14). This black mutant
accumulates both PE and PC, regardless of the light conditions under which it is grown
(Kehoe and Grossman, 1996; Terauchi ef al., 2004). Using a genetic complementation
approach, a gene was identified that is required for the RL-GL responsiveness and named
rcaE, regulator of chromatic adaptation; the black phenotype resulted from an insertional
mutation within the rcaE gene (Kehoe and Grossman, 1996).

Sequence analysis of the RcaE protein revealed similarities with plant
phytochrome photoreceptors in its N-terminus, as well as with two-component histidine
kinases in its C-terminus (Figure 1.2; Kehoe and Grossman, 1996). Further, protein
families database (Pfam; Bateman et al., 2004) analysis confirmed the presence of
additional conserved domains which are associated with chromophore attachment, signal
sensing, and protein-protein interactions (Kehoe and Gutu, 2006) and will be discussed in

more detail in section 1.8.

1.4 Phytochromes
Photoreceptors are light-sensitive proteins which are involved in the sensing of
and responses to light. One of the most well studied families of photoreceptors is the

phytochrome family (phys). Classically, phys are red/far-red reversible photoreceptors in



photosensory output/kinase

Figure 1.2. Depiction of RcaE: A Phytochrome-related Photoreceptor. Sequence
analysis of RcaE shows N-terminal similarity to the photosensory regions of
phytochromes, whereas the C-terminal end shows similarity to bacterial
output/kinase domains. Further Pfam analyses of this 655 amino acid protein, with a
predicted molecular weight of 74 kDa, confirms the presence of distinct conserved
domains. GAF: chromophore-binding domain present in phytochromes (Pfam
PF01590). PAS: domain involved in signaling proteins; signal sensor domain (Pfam
PF00989). H-box: motif found in the histidine kinase domain; phospho-acceptor

site (Pfam PF00512)



higher plants that are involved in light perception and photomorphogenic responses
(reviewed in Chen et al., 2004; Schepens et al., 2004; Rockwell et al., 2006). These
light-dependent responses span the entire life cycle of the plant and range from seed
germination, to seedling development and flowering, and finally senescence (reviewed in
Franklin et al., 2005; Matthews, 2006).

Originally, phys were thought to be present in only plants and algae; however,
during studies on CCA in cyanobacteria, Kehoe and Grossman (1996) discovered the first
prokaryotic phytochrome-like protein, RcaE, in F. diplosiphon. This discovery motivated
the search for similar proteins throughout sequenced organisms and it is now known that
they exist not only in plants and cyanobacteria, but in bacteria and fungi as well (Karniol
et al., 2005; Lariguet and Dunand, 2005; Montgomery and Lagarias, 2002).

Because of the prevalence of phys in plants, bacteria, and fungi, it has been
proposed that higher plant phys evolved from a cyanobacterial precursor, the progenitor
of chloroplasts in plants. Overall sequence conservation amongst the phylogenetic classes
of phys strongly indicates a conserved function (Vierstra, 2003; Montgomery and
Lagarias, 2002). More distinctly, the presence of phy-like proteins in photosynthetic
prokaryotes and their sequence similarity to plant phys indicates that the mechanisms of

light perception and signal output may be similar.

1.5 Phytochrome Signaling
Phy structure and function have been the topic of many reviews (Franklin et al.,
2005; Matthews, 2006; Rockwell et al., 2006). Of particular interest is the existence of

multiple copies of phys in some species, including higher plants. The prevalence of phy



gene families indicates strong functional importance; multiple gene copies most often
indicate critical functions. For example, the model organism Arabidopsis thaliana has
five phys, phyA-phyE, which have been shown to have unique as well as redundant roles
in plant growth and development (reviewed in Schepens et al., 2004; Franklin and
Whitelam, 2004; Matthews, 2006). However, the existence of a gene family makes
studies to determine distinct phy function somewhat difficult.

The phy apoprotein (non-chromophorylated) is encoded by nuclear gene(s) (e.g.,
A. thaliana PHYA-PHYE), the translated messenger RNA is then exported to the cytosol,
the apoprotein is transcribed and then assembles with the light-absorbing, plastid
synthesized linear tetrapyrrole (bilin) to become a functional phy (holoprotein). The phy
apoprotein requires the covalent attachment of a linear tetrapyrrole prosthetic group in
order to become photoactive and maintain photochemical function (Hanzawa et al., 2002
and Gyula ez al., 2003). Traditionally, phys exist in two photo-interconvertible forms:
the inactive red-light absorbing (Pr) and the active far-red-light absorbing (Pfr). When
the inactive Pr form absorbs red light, the chromophore undergoes a conformational
change and the molecule converts to the active Pfr isoform. This phenomenon is a
photoreversible process; the ability of the bilin chromophore to undergo
photoisomerization is what allows holophytochromes to absorb different light
wavelengths and thus differ in the response to red light and far-red light (reviewed in
Chen et al., 2004 and Rockwell et al., 2006).

Although decades of research have gone into understanding how plant phys
function, the complete signaling mechanism still remains unclear. Sequence comparisons

strongly indicate that they may act as light-regulated kinases, based on the large



conservation of histidine-kinase related domains (Chen et a/, 2004, and Karniol et al.,
2005). Additionally, identification of phy interacting factors (PIFs) and insight into their
roles as transcriptional regulators (reviewed in Gyula et al., 2003), has helped strengthen
the postulated serine/threonine kinase activity of phys. More specifically, the
identification and characterization of phy-dependent phosphorylation of PIF3 (Al-Sady e¢
al., 2006), and phytochrome kinase substrate 1 (PKS1; Fankhauser et al., 1999) indicates
the requirement for phosphotransfer to occur in order to elicit the phy-mediated
photomorphogenic responses. Despite the unknowns, it is clear that upon
photoconversion of phys and translocation into the plant nucleus, their associated signal
transduction cascades are activated.

Studies with cyanobacteria and other prokaryotic systems have begun to aid in the
understanding of how light-regulated signaling in these organisms might occur. For
example, the study of CCA in F. diplosiphon has provided a model system for such
mechanisms, since a phenotype is easily observed, and genes can be easily assessed via
genetic manipulation. Understanding how CCA is regulated in F. diplosiphon will allow
the function of the proteins involved in signaling to be assessed. Hence, continuation of
the prokaryotic research will undoubtedly yield valuable information that could increase
our understanding of the signaling mechanisms utilized by phytochrome-class

photoreceptors in general.

1.6 Two-Component Systems
Bacteria often utilize two-component systems (TCS) to adapt to changes in their
environment. Typically, each TCS is composed of a signal sensor, most often a histidine

kinase (HK), and a signal transmitter, i.e. a response regulator (RR) that transmits the



signal and often results in transcriptional regulation. These systems work via a
phosphoryl transfer cascade that is tightly regulated by specific domains and/or residues
within these domains (see Figure 1.3). The organization and function of domains in these
proteins will be addressed in the following sections.

1.6.1 Histidine Kinases

Each prototypical HK contains specific conserved domains/motifs that function in
signal sensing, molecule dimerization, and histidine kinase activity. All of these
activities are crucial for the function of the sensor molecule in order to relay the signal to
the RR. Typically the N-terminal portion of the HK contains the input domain (sensor
domain) which controls the activity of the transmitter domain. The sensor domain is the
portion of the molecule which senses the environmental stimuli. The C-terminal
transmitter module contains specific motifs including a dimerization domain (Dim), a
histidine-containing phosphotransfer domain (Hpt), and a kinase/phosphatase ATP
binding domain (reviewed in Parkinson and Kofoid, 1992; Chieri Tomomori and Ikura,
2003).

The Hpt domain of HKs contain a conserved His residue, which is phosphorylated
by the ATP binding domain. The kinase/phosphatase domain is the core domain of HKs.
This domain is multifunctional because it is responsible for autophosphorylation of HK

dimers, and for phosphorylation/dephosphorylation of the conserved Asp residue in the
downstream RR. This feature is what allows many HKs to act as bi-functional
enzymes—i.e., it allows HKs to act as both a kinase and a phosphatase. To facilitate the
activity of this domain along with the Hpt domain, the Dim domain brings these other

domains together in close proximity, which enables multiple reactions during the signal
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Figure 1.3. Simplified Model of a Two-Component System. Bacterial two-
component systems are comprised of a sensor molecule (left) and a response
regulator (right). The input domain of the sensor molecule senses the
environmental stimuli, which triggers the transmitter domain to utilize ATP and
auto-phosphorylate at the conserved His residue (H), in turn activating phosphoryl
transfer (arrows with circled P) to the response regulator. The conserved Asp
residue (D) in the receiver domain accepts the transferred phosphate, allowing the
output domain to activate a response. N and C indicate amino- and carboxy-
terminal ends, respectively. Figure adapted from Parkinson and Kofoid, 1992.
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relay to occur simultaneously (reviewed in Chieri Tomomori and Ikura, 2003).

While HKs and TCS are most prevalent in bacteria (Parkinson and Kofoid, 1992),
hybrid HKs in eukaryotes and the discovery of similar, yet more complex molecules and
related signaling systems (e.g. phytochrome signaling) have begun to be identified in
many bacteria as well as higher organisms (Vierstra, 2003). By applying what has been
discovered in bacterial systems, such complex systems may begin to be elucidated. For
example, the discovery of conserved motifs in the C-terminal histidine kinase domain of
RcaE suggests that RcaE likely functions in a TCS in order to initiate expression of the
genes responsible for CCA (Kehoe and Grossman, 1997).

1.6.2 Response Regulators

The second part of TCS is the signal transmitters—i.e., RRs. Typically RRs are
comprised of a receiver domain and an output domain (see Figure 1.3). The receiver
domain contains the conserved aspartate residue (D), which is required for accepting the
phosphate transferred from a cognate HK (reviewed in Parkinson and Kofoid, 1992;
Chieri Tomomori and Ikura, 2003). The RR output domain (e.g. DNA binding domain),
is responsible for initiating the downstream response, which may result in transcriptional
regulation (reviewed in Parkinson and Kofoid, 1992). In fact, most RRs that contain
DNA-binding domains are characterized as DNA-binding transcription factors (Parkinson
and Kofoid, 1992).

Although the domain architecture of RRs can vary (Parkinson and Kofoid, 1992),
the conserved aspartate residue must be present in order to receive the phosphate from the
HK, and thus be part of a TCS. Evaluation of the variation in RRs domain architecture

(as well as HKs) has revealed recognizable systems that have more complex signal relays
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which incorporate these kinds of molecules (reviewed in Vierstra, 2003). For example,
the F. diplosiphon RRs RcaF and RcaC in the CCA signaling pathway have very

different domain architecture (see section 1.7.1).

1.7 The RcaE-Mediated CCA Signaling Pathway
1.7.1 A Complex Phosphorelay Cascade

The current proposed model for RcaE signaling in CCA has arisen from the
identification of RcaE as well as downstream RR components (Kehoe and Grossman,
1996; Kehoe and Grossman, 1997; Chiang et al., 1992). The pathway is a complex
phosphorelay system, based on the presence of two RR components. The two RRs that
have been identified in this signaling pathway have been well characterized. The first
RR, RcaF, is directly downstream of RcaE, both in the F. diplosiphon genome as well as
in the proposed signaling pathway (Kehoe and Grossman, 1997). RcaF was identified in
an attempt to isolate and characterize CCA signaling components. In this screen,
pigmentation mutants were identified that exhibited insertional mutagenesis in the gene
rcaF (Kehoe and Grossman, 1997). Further analyses of the mutants obtained in this
study revealed that mutations in both the C-terminal portion of RcaE (the HK portion) as
well as the receiver domain of RcaF resulted in the inability to maintain CCA (i.e., red
phenotype under RL). Because of the similarity of RcaF to the SpoOF and CheY RRs,
and the fact that it does not contain an output domain, its role was proposed to be purely
for phospho-acceptance from RcaE and thus phospho-transfer to the cognate RR RcaC

(Kehoe and Grossman, 1997).
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The more canonical RR in this pathway, RcaC, was originally identified and
characterized for its ability to complement previously isolated FdR mutants (Chiang et
al., 1992). Sequence analysis indicated that RcaC is a protein analogous to those
involved in bacterial two-component systems. RcaC contains two receiver domains
which each contain conserved aspartate residues. In between the receiver domains,
resides a prototypical histidine phosphate transfer (HPt) domain, which is flanked by a
DNA-binding domain (Chiang et al., 1992; Kehoe and Grossman, 1997).

Mutational analyses of the conserved aspartate residues revealed that these
residues are indeed required for proper CCA regulation (Li and Kehoe, 2005). This work,
along with the identification of RcaF (Kehoe and Grossman, 1997), suggests that a
phosphorylation event is required for RL-induced gene regulation, while likely a de-
phosphorylation event occurs during GL-induced gene regulation. In addition, the newly
characterized DNA-binding domain has been shown to be involved in the down-stream
transcriptional regulation of light-regulated operons (Li et al., 2008).

1.7.2 Transcriptional Regulation of PBP Operons

The regulation of CCA in F. diplosiphon has been shown to occur largely by the
transcription of the operons which encode components of the PBPs. These operons lie
downstream of RcaE and RRs RcaF and RcaC in the signaling pathway. Detailed
analyses of transcript regulation have shown that under GL conditions, transcription of
cpeBA (which encodes PE) and cpeCDE (which encodes the PE linkers) is activated, but
remains inactive under RL conditions. Further, under RL conditions, transcription of
cpcB2A2H2ID?2 (referred to as cpcB2A2), which encodes the RL-inducible PC and

associated linkers (H212D?2) is activated, but remains inactive under GL conditions
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Figure 1.4. Simplified Model for CCA Signaling Pathway. RcaE is involved in a
complex phosphorelay system with RcaF, a CheY-related RR lacking an output
domain, and RcaC, a complex RR with a DNA-binding domain. Under RL
conditions (red arrows), RcaE is proposed to act as a kinase, resulting in the
phosphorylation of RcaF and RcaC, thus leading to the induction of the PCi
operon cpcB2A2, encoding the PC and PC linkers, and repression of the cpeCDE
and cpeBA operons, encoding the PE linkers and PE, respectively. Under GL
conditions (green arrows), RcaE is proposed to act as a phosphatase that
dephosphorylates RcaF and results in the induction of the PE operons (cpeCDE
and cpeBA).



(Conley et al., 1985; Oelmiiller et al., 1985; Federspiel and Grossman, 1990).
Additionally, transcriptional activators RcaA, RcaB and CpeR have also been identified
and characterized. These regulators are required for the expression of the cpeBA operon

(Sobczyk et al., 1993; Cobley et al., 2002; Sieb and Kehoe, 2002).

1.7.3 The CCA Signaling Model

Based on the previously described molecular and genetic characterizations of
RcaF and RcaC, as well as the detailed transcriptional profiling of the light-inducible
operons described above, a current model exists to explain the CCA signaling mechanism
(reviewed in Kehoe and Gutu, 2006; Montgomery, 2008). In RL conditions (indicated by
the red arrows in Figure 1.4), RcaE is thought to act as a kinase, utilizing ATP, and
transferring a phosphate to RcaF, which is then transferred to RcaC. This cascade
activates transcription of the cpcB2A42 operon, encoding the PC proteins and associated
1inkers, while repressing the cpeCDE and cpeBA operons. Under GL conditions
(indicated by the green arrows in Figure 1.4), RcaE is thought to function as a
Phosphatase, removing a phosphate from RcaF, thereby maintaining RcaC in an
un phosphorylated state, activating expression of the cpeCDE and cpeBA operons and

allowing transcription of the PE linkers and proteins respectively (recently reviewed in

M o nitgomery, 2008).
1.8 "Ihe Biochemical Role(s) of ReaE in CCA Signaling

Although much has been done in terms of the identification and molecular

characterization of the CCA signaling pathway, the biochemical role of RcaE itself
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remains to be elucidated. Detailed analyses of the conserved domains within RcaE may

provide insight into its role as a photoreceptor for this signaling pathway. The conserved

domains of RcaE and their potential functions will be discussed below.

1.8.1 GAF Domains

One of the conserved domains identified in the N-terminal region of RcaE is a

GAF domain (Pfam PF 01590; reviewed in Kehoe and Gutu, 2006). These domains are

defined as such because of their presence in cGMP-specific and —stimulated

phosphodiesterases, Anabena adenylate cyclases and in E. coli FhlA (Bakal and Davies,

2000). GAF domains are found in phytochromes and contain conserved cysteine residues

required for chromophore attachment (Montgomery and Lagarias, 2002). Sequence

analysis and alignment reveal that GAF domains occur in the chromophore-binding

domains of phytochromes, and that specific residues in these domains are highly
conserved (Figure 1.5). This conservation suggests an important role for these residues
in chromophore attachment and/or the photochemical activity attributed to chromophore
< onfiguration.
Mutation studies of the conserved cysteine residue C198 within the RcaE GAF

d o main (Figure 1.5, box #1) have implicated its importance in chromophore attachment
("I"erauchi et al., 2004). However, a C198A variant, which was hypothesized to lack light-
Se€m sing capability, fully complements the FdBk14 mutant in RL but not in GL (Terauchi
€Z cz/.,2004). This suggests that in RL RcaE function is dependent upon associated
Proteins, or that there is another intramolecular chromophore attachment site that

fun ctions for RL sensing.
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Further, mutations of residues in GAF domains of proteins from Calothrix,
Anabaena, Arabidopsis, and Synechocystis have indicated their importance for
chromophore-binding specificity (Hanzawa et al., 2002; Quest and Gartner, 2004) and
chromophore conformation (Fischer and Lugarias, 2004; Fischer et al., 2005). As
discussed in section 1.5, the ability of the chromophore to undergo photoisomerization is
what allows it to absorb different wavelengths of light, and elicit photomorphogenic
responses. Therefore, mutating residues in the GAF domain is likely to affect the
function of a phy, if not the function of the chromophore itself. For example, a mutation

of a conserved tyrosine (Y; Figure 1.5, box #2) to a histidine (H) in the GAF domain of
the Synechocystis (Syn) photoreceptor Cphl inhibits the photoisomerization process
(Fischer and Lagarias, 2004).

The conformation of the mutated Cphl chromophore is “locked” in the Pr form,
disabling the conversion to the Pfr form upon absorption of red light and yielding a
fluorescent molecule (Fischer and Lagarias, 2004). Since this tyrosine residue is highly
comnserved, the same group tested whether the photochemical function was conserved in
Phytochromes of Arabidopsis, Synechocystis, and Pseudomonas aeruginosa by producing
the same mutations in each organism. Based on a fluorescence phenotype, which results
from the inability to convert to the Pfr form, they discovered that indeed the function of
thee tyrosine residue was conserved between plants and cyanobacteria. In a saturated

Mutational analysis of this tyrosine residue in Syn Cphl, all amino acid substitutions
resulted in reduced photoconversion (Fischer et al., 2005).
These results show that this tyrosine residue regulates the conformation of the

chromophore. Thus, the photochemistry of these plant and cyanobacterial bilin molecules
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is essential to the signaling initiated by light perception. Interestingly, this tyrosine
residue is also conserved in RcaE’s GAF domain (Figure 1.5, box #2). To date, the
function of this residue has yet to be addressed, however, based on the results from
Fischer et al., 2005, it is highly likely that the function is also conserved.
1.8.2 PAS Domains
Another conserved domain identified in the photosensory region of RcaE is a PAS
domain (Pfam PF 00989; Kehoe and Gutu, 2006). PAS domains were originally
identified because of the presence of repetitive sequences in the Drosophila PER (period
clock protein), the mouse ARNT (aryl hydrocarbon receptor nuclear transporter), and the
Drosophila SIM (single-minded protein) proteins (Zhulin et al., 1997). It is now
recognized that PAS proteins are found throughout all kingdoms of life and function in
signal sensing, ligand binding, and protein-protein interactions (Bakal and Davies, 2000;
Ponting and Aravind, 1997; Taylor and Zhulin, 1992). Furthermore, recent structural
analysis suggests that PAS domains are similar to GAF domains and may have similar
functions (Wagner et al., 2005).

Since PAS domains are typically involved in signal sensing and protein-protein
interactions, it is possible that this region of RcaE could be involved in sensing the signal
that initiates the CCA signaling cascade. The PAS domain could also be a potential site
for additional chromophore attachment or binding of an associated protein(s). This is not
an uncommon occurrence, for example, the PYP bacterial blue-light photoreceptor is a

P AS protein which has a 4-hydroxycinnamyl chromophore attached to it (Pellequer ef al.,

1998; reviewed in Taylor and Zhulin, 1999).
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1.8.3 Hbox Domains
The conserved domain identified in the C-terminal output/kinase region of RcaE

is an Hbox domain (Pfam PF 00512; Kehoe and Gutu, 2006). These domains are motifs
which are conserved in kinase domains of HKs. As discussed in section 1.6.1, the
conserved histidine residue functions as the phospho-acceptor site during phosphorelay

cascades. It is also the site for autophosphorylation in HK dimers, which is important for

signal activation.
Various studies have shown that mutation of the conserved histidine in HKs
inhibits response to stimuli, thus disrupting the signaling cascade (reviewed in Vierstra,
2003). Since RcaE contains a conserved histidine residue in this domain (H430), it is
likely that it could be crucial to RcaE activity and, in turn, CCA signaling. Interestingly,
recent studies on light-regulated changes in RcaC abundance have indicated that
functional RcaE is required, and more specifically, its HK domain as well as the

conserved H430 residue (Li and Kehoe, 2008). However, the role of this particular

residue in RcaE’s regulation of CCA has yet to be fully determined.

1.9 Research Aims
In addition to the pigmentation phenotype associated with CCA and the signaling

COmponents, early micrograph studies showed that WT F. diplosiphon displays different

ce1l morphologies under GL and RL conditions (Bennett and Bogorad, 1973). Under RL
Conditions the cells are small and round and the filaments are short in length. Under GL
Conditions the cells have a brick-like shape, and the filaments are longer (revisit Figure

1.1D). Studies to compare the difference between the rcaE null mutant, FdBk14, in both
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light conditions with WT cells would provide insight into RcaE’s role in the regulation of
cell and filament morphology. Microarray studies with wild type cells have implicated
RcaE in the control of the expression of genes other than phycobiliprotein-encoding
genes, providing support that phycobiliprotein accumulation is not the only pathway
affected (Stowe-Evans and Kehoe, 2004). Therefore, an aim of the research presented in
this dissertation is to elucidate the role of RcaE in the control of F. diplosiphon cellular
morphology. This is the focus of chapters 2 and 3.
Since RcaE is one of the major factors in the CCA signaling pathway and has yet
to be fully characterized, elucidating the physiological and biochemical fuﬁction of this
protein will provide insight into the molecular mechanisms which are involved in the
biliprotein-regulated photomorphogenesis in photosynthetic organisms. The FdBk14
mutant displays an observable CCA pigmentation defect (revisit section 1.3); the ability
to utilize genetic complementation in F. diplosiphon allows in vivo characterization of
such color mutants. Therefore, an additional aim of the research presented in chapter 4 of
this dissertation is to determine the roles of the previously mentioned conserved domains
identified in RcaE in its biochemical activity, by using mutation and complementation
analyses, which will be discussed in more detail below.

Since the photochemistry of some phytochromes has been linked to specific
Conserved residues in the GAF domain, this domain serves as a candidate for identifying
residue(s) with a similar function in RcaE. Mutational analysis of a conserved tyrosine
residue in GAF domains has implicated its importance for the photochemical process of

the Synechocystis Cphl phytochrome, as well as the Arabidopsis PhyA and PhyB

phytochromes (Fischer and Lagarias, 2004; Fischer et al., 2005). As discussed in
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sections 1.5 and 1.8.1, this residue is essential for the proper configuration of the
chromophore during photoconversion. Studying mutations of this residue in RcaE (see
chapter 4) will aid in characterizing the photochemistry of the photoreceptor during CCA,
and further solidify the hypothesis that this function is evolutionarily conserved.

The kinase activity of RcaE has yet to be thoroughly studied, although apoRcaE
exhibits some kinase activity (Montgomery, unpublished). Therefore it is necessary to
further establish the activity of the wild type protein. Additionally, mutational analysis of
residues, particularly the conserved histidine (H430) in the H-box domain will allow the
biochemical function of RcaE to be assessed in vivo. Since the H-box domain is located
in the conserved histidine kinase portion of RcaE, characterization of mutant(s) in this
domain (see chapter 4) will elucidate the phosphorylation event needed to initiate CCA.

It is predicted that the PAS region of RcaE is involved in sensing the signal that
initiates the light-signaling cascade. It could also be a potential site for chromophore
attachment or binding of associated protein(s). Mutational analysis of this conserved
domain will determine if it is involved in light sensing. It is also likely that the PAS
domain of RcaE could be a sensor for other environmental signals such as oxygen levels
(Taylor and Zhulin, 1999). Hence, mutating the PAS domain may disrupt its ability to
bind ligands or signal molecules which allow RcaE to sense such environmental changes;
the mutation(s) would therefore alter the output. Thus, characterization of this domain
(see chapter 4) could suggest a possible link between the CCA signaling cascade and
other cellular responses to external stimuli.

The aims described above offer a detailed approach to understanding how RcaE

regulates CCA. Utilizing a mutational analysis approach will allow the working model

23



for RcaE signaling to be tested. Characterizing the light-regulated biochemical function
of this photoreceptor will aid in understanding how related photosynthetic organisms
sense and respond to their light environments. Finally, by characterizing the cellular
morphology of the FdBk14 mutant as well as the RcaE mutant variants, novel roles may
be discovered which could implicate RcaE’s involvement in cross talk with non-

photosynthetic signaling pathways.
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CHAPTER TWO

RcaE Regulates Cell and Filament Morphology

This chapter contains previously published work:
Bordowitz, J.R and Montgomery, B.L. (2008) Photoregulation of Cellular

Morphology during Complementary Chromatic Adaptation Requires Sensor-Kinase-
Class Protein RcaE in Fremyella diplosiphon. J. Bacteriol. 2008 190: 4069-4074.
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2.1 Introduction

Complementary chromatic adaptation (CCA) is a light-dependent acclimation
process used by some cyanobacteria that results in optimal growth and development in
response to changes in the ambient light environment (reviewed by Kehoe and Gutu,
2006). This process is most readily identified by cells changing in color from brick red to
blue-green due to variations in the prevalence of green or red wavelengths in ambient
light, respectively. These pigmentation changes result from reconfiguration of the light-
harvesting complexes and allow cyanobacteria to finely-tune light absorption to the
predominant wavelengths of ambient light and thereby maximize photosynthesis
(Campbell, 1996). CCA has been most extensively characterized in the cyanobacterium
Fremyella diplosiphon (also called Calothrix sp. PCC 7601).

The pigmentation changes that are characteristic of CCA are controlled by the
phytochrome-related photoreceptor RcaE in F. diplosiphon (Kehoe and Grossman, 1997,
Terauchi et al., 2004). RcaE is a sensor-kinase-class protein that contains an N-terminus
related to the chromophore-binding domain of phytochromes and a C-terminal histidine
kinase domain (Herdman et al., 2000; Kehoe and Grossman, 1996). Higher plant
phytochromes are red/far-red reversible photoreceptors that control numerous aspects of
light-dependent growth and development, including seed germination, flowering, and
senescence (reviewed by Chen et al., 2004; Wang 2005). RcaE has been shown to exist
as a chromophorylated biliprotein that is required for responsiveness to green light (GL)
and red light (RL) (Kehoe and Grossman, 1996; Terauchi et al., 2004). RcaF and RcaC
are response regulators that are proposed to act downstream of RcaE; together these three

components are predicted to form a complex phosphorelay that regulates the
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transcriptional changes necessary for altered pigmentation during CCA (Kehoe and
Grossman, 1997; Kehoe and Gutu, 2006).

The characterized CCA response in F. diplosiphon consists of changes in cell and
filament morphologies, in addition to the readily observable pigmentation changes that
arise in varying light conditions (Bennett and Bogorad, 1973). RL-grown vegetative cells
of the F. diplosiphon UTEX481 wild-type (WT) strain are smaller and more rounded in
shape than the longer, cylindrical vegetative cells that are observed under green-enriched
fluorescent illumination (Bennett and Bogorad, 1973). UTEX481 WT filaments are
shorter in RL than in green-enriched fluorescent light: filaments grown in green-enriched
fluorescent light were ~9.2 times longer than and contained about 4 times as many cells
as RL-grown cells (Bennett and Bogorad, 1973). Light-dependent filament length
changes in F. diplosiphon slightly precede the changes observed in the levels of
phycobiliproteins — e.g., in response to RL illumination, the lengths of filaments
previously adapted to green-enriched light decreased just prior to a measurable decrease
in GL-inducible PE content and an inverse increase in RL-inducible PC content (Bennett
and Bogorad, 1973).

The regulation of light-dependent hormogonia differentiation, a distinct
photomorphogenic response in F. diplosiphon, has been shown to occur via a regulatory
process different from the photoregulation of phycobiliprotein levels that is characteristic
of CCA in this organism (Damerval et al., 1991). The differentiation of hormogonia and
heterocysts has been attributed to differential excitation of the photosystems by GL and
RL, which differs from their effect on CCA (Campbell, 1996). This study investigates

whether the CCA-associated changes in vegetative cell and filament morphologies are
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controlled by the Rca system or a distinct photoregulatory system. This work examines
the molecular basis of the observed light-dependent morphological changes through

microscopic and biochemical analyses of WT and RcaE-deficient F. diplosiphon strains.

2.2 Methods
2.2.1 Strains and culture conditions

The wild-type F. diplosiphon used in these experiments refers to the shortened-
filament strain (SF33) of F. diplosiphon (Cobley et al., 1993). FdBk14, an rcaE null
mutant was previously described (Kehoe and Grossman, 1996). The strains were grown

in BG-11 (Fluka; Sigma-Aldrich) with 20 mM HEPES, pH 8.0, (hereafter BG-

11/HEPES) at 28°C, shaking at 175 rpm either with or without 20 pg mL'l Kanamycin

(Kanjg). Broad-band monochromatic red light (RL) illumination was provided by CVG

Sleeved Rosco Red 24 (General Electric F20T12/R24) fluorescent tubes and green light
(GL) illumination by CVG Sleeved Rosco Green 89 (General Electric F20T12/G78)
fluorescent tubes (Standard Electric Co.). Light intensities were measured using a LI-

250A Light Meter (LI-COR, Lincoln, NE) equipped with a Quantum sensor (LI-COR).
To determine cell culture densities, absorbance at 750 nm (A750) was measured using a

SpectraMax M2 microplate reader (Molecular Devices, Sunnyvale, CA).

2.2.2 Plasmids and Transformations

Shuttle vector pPL2.7 (Chiang et al., 1992b) was converted to Gateway®-ready

vector pPL2.7GWC as follows: pPL2.7 was digested with Hpal and treated with calf
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intestinal alkaline phosphatase. The linearized pPL2.7 vector was then ligated with

Gateway® conversion reading frame cassette A (Invitrogen Corporation, Carlsbad, CA).
The primers 5° FLRcaE-GWC
(5’GGGGACAAGTTTGTACAAAAAAGCAGGCTATGAGGGATTTTGGACGCTG
AGTG) and 3’ FLRcaE-GWC
(5’GGGGACCACTTTGTACAAGAAAGCTGGGTTCATTGGATATTGGCGTACT
CAAGQG) with introduced attB1 and attB2 sites (underlined) respectively, were used to

amplify rcaE with its native promoter by PCR. The PCR product was recombined into
pDONR™/Zeo (Invitrogen) using the BP Clonase™ II enzyme (Invitrogen) according to

the manufacturer’s instructions. Following selection of transformants in the presence of

zeocin and verification of rcaF sequence, the construct was recombined with
pPL2.7GWC using the LR Clonase™ II enzyme (Invitrogen) according to the

manufacturer’s instructions to produce pPL2.7GWC-natRcaE.

Shuttle vector pPL2.7 (Chiang et al., 1992b) was used as a vector only control in

. . ® . . .
these experiments, since the Gateway converted version (described above) contains a

ccdB suicide cassette, which does not allow for Kan selection of transformants (see
Appendix Al). RcaE constructs were transformed into FdBk14 cells via electroporation

as described (Kehoe and Grossman, 1998) with the following exceptions: after

. . -2 -1
transformation, 50 mL cultures were recovered in constant RL (~60 pmol m ~ s ) for 2-3

weeks during Kan selection. After the recovery period, 10 mL of each culture were sub-

cultured into flasks containing 40 mL of fresh BG-11/HEPES media supplemented with
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Kany for RL and GL growth. RL-grown cultures were maintained at 19-20 pmol m’s

l, while the GL-grown cultures were maintained at 9-10 pmol m'2 s'l.

2.2.3 Spectral Analysis

Complementation of mutant strains was observed spectrophotometrically as

previously described (Terauchi et al., 2004). At an Aggg ~0.10 whole-cell absorbance

spectra from 400 nm to 750 nm were obtained in a SpectraMax M2 microplate.

2.2.4 Chl a and phycobiliprotein quantification

Chlorophyll a (chl a) and phycobiliproteins were extracted and analyzed as
previously described (Kahn et al., 1997; Tandeau de Marsac and Houmard, 1988), with
the following exceptions: During incubation in extraction buffers, samples were gently
shaken on a platform rotator. For spectral analysis, supernatants (200 uL) were loaded in
triplicates into a flat-bottom 96-well plate (Corning Plastics, Corning, NY) and
absorbance values read using a SpectraMax M2 microplate reader. Absorbance values
were used to calculate concentrations using previously determined equations (Tandeau de
Marsac and Houmard, 1988; see below). The levels of phycobiliproteins are reported as
the grand average of three independent experiments and normalized to their respective
levels of chl a. Standard deviations of the ratios are reported.

EQUATIONS
Chl a= ((Ages x 13.9 x (weight/0.8)/1 .5))/1000

PC=((Ag20— (0.7 x Ags50))/7.38

34



AP= ((Agso— (0.19 x Ag20))/5.65

PE=  ((Asgs— (2.8 x PC) - (1.34 x AP))/12.7

Standard Deviations (with Ratio: R=X/Y):
2 2
SD = SDX N SDY
avgX avgY

Where: SD is standard deviation

avg is average (mean)
X is PE, PC or AP

YisChla

2.2.5 Protein extraction and immunoblot analyses

Soluble protein extracts were obtained from 20-30 mL cultures of F. diplosiphon

grown in RL or GL to an A75q of ~1.0 as previously described (Balabas et al., 2003).

Total protein concentrations were determined spectrophotometrically in a flat-bottom 96-

well plate (Coming Plastics, Corning, NY) using the microtiter plate procedure of the

Bio-Rad Protein Assay Kit according to the manufacturer’s instructions (Bio-Rad,

Hercules, CA) and a SpectraMax M2 microplate reader. Clarified lysates were then

concentrated using chloroform/methanol precipitation and resuspended in 250 mM Tris-

HCI pH 6.8, 15% glycerol (v/v), 5.6 % SDS, 0.005% 2-mercaptoethanol, 0.0025 %

bromophenol blue (1X SDS-PAGE sample buffer). Concentrated protein samples were

run on a 4-12.5% SDS-PAGE gel (Laemmli, 1970) and transferred to Immobilon-P

PDVF membrane (Millipore, Billerica, MA).
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After transfer, membrane blots were blocked in 10 mM Tris pH 7.5, 150 mM

NaCl, 0.05% Tween-20, 3% BSA for 1 hour at room temperature. Membranes were then

incubated with an anti-RcaE antibody (Terauchi ef al., 2004) overnight at 4°C with

gentle shaking. Membranes were then probed with an HRP-conjugated anti-rabbit
secondary antibody according to the manufacturer’s instructions (Pierce Biotechnology,

Inc., Rockford, IL). Antibody was detected using ECL Advance chemiluminescent

substrate from Amersham (Piscataway, NJ), SuperSignal® West Dura Extended Duration

chemiluminescent substrate from Pierce (Rockford, IL), or SuperSignal® West Pico

chemiluminescent substrate from Pierce (Rockford, IL), as indicated, on a Kodak Image
Station 2000MM Multimodal Imaging System (Eastman Kodak Company, Rochester,

NY) using a black excitation filter and an open emission filter at 0% bulb intensity.

2.2.6 Microscopy
Slides of immobilized F. diplosiphon cells were prepared according to a
procedure adapted from Reize and Melkonian, 1989. Cells at a final OD of ~ 0.1 in 1.2%

UltraPure™ L.M.P agarose (Invitrogen) in BG-11/HEPES were pipetted into a vacuum

lubricant-enclosed square onto 1.0-mm thick 3”x 1'% Propper bev-l-edge® pre-cleaned
twin-frost® microslides (Long Island City, NY). A 24 x 50 mm coverslip (Comning,

Lowell, MA) was placed over the suspension and slides were fixed at 4°C prior to

imaging. The immobilized live cells were visualized with an inverted Axiovert 200 Zeiss

LSM 510 Meta confocal laser scanning microscope (CLSM: Carl Zeiss Microlmaging,
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Thormmwood, NY) using differential interference contrast (DIC) optics and fluorescence
excitation/emission filters. A 40x/1.3NA oil immersion Plan-Neofluar objective lens or
63x/1.4NA oil immersion Plan-Apo objective lens was used for imaging as indicated.
DIC imaging was performed using the 488-nm laser. Population scanning was done via
Z-series at 5-um intervals to optimize for large data pools. Filament length and cell size
measurements were made by utilizing the calibrated measurement tools of the Zeiss LSM
Image Browser (LSMib). Filament lengths were graphed into 10 um intervals,
displaying a non-Gaussian distribution (Figure 2.3). Data were subjected to two-tailed
Mann-Whitney U-tests in order to determine statistical significance.

Initial phycobiliprotein autofluorescence was detected using settings adapted from
previously published methods (Sinha et a/, 2002). After spectral imaging of WT GL- and
RL-grown cells to further refine the parameters for detection of autofluorescence
(Appendix A2), autofluorescence was collected using a 543-nm laser for excitation and
emission collected using a 560- to 615-BP filter and 640- to 753-nm Meta detector for
GL-grown cells and with a 615-nm LP filter for RL-grown cells. Images were acquired

from the CLSM microscope using the LSM FCS Zeiss 510 Meta AIM imaging software.

2.2.7 Light Shifting Experiments

Light shifting experiments consisted of transferring GL-grown cells to RL growth
conditions and vice versa. Prior to shifting, the cultures were normalized to A75¢ ~ 0.1

and allowed to recover in broad-band GL or RL for ~5 hrs. One set of flasks was kept in
constant light conditions as a control, while another set was shifted to the opposite

condition. Cell samples were collected and prepared for DIC imaging 24 hrs post shift,
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Figure 2.1. Range of filament lengths of F. diplosiphon strains
grown under broad-band GL or RL. Percentage of GL- and RL-
grown filaments measuring the indicated length (um) for each
strain. UTEX481 (A), SF33 (B), Fdbkl4 (C), FdBkl4
transformed with: pPL2.7RcaE (D), and pPL2.7 (E). Number of
filaments counted for each strain is as indicated in Table 2.2
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using confocal microscopy as described above. Cultures were returned to their original
light conditions 48 hrs after the initial shift, and cells were imaged 24 hrs later. Samples
were also collected for whole-cell spectral scans at each time point. All sample

collection was done under illumination identical to that of the final growth condition.

2.3 Results
2.3.1 Characterization of the light-dependent cell and filament morphologies of wild-
type and RcaE-deficient cells

Cell cultures were grown under green- and red-enriched fluorescent illumination
in order to reexamine cell and filament morphologies previously reported for F.
diplosiphon UTEX481 WT cells (Bennett and Bogorad, 1973) and to determine these
properties for SF33 cells. SF33 is a shortened-filament mutant strain derived from
UTEX481 WT (Cobley et al., 1993). The shortened-filament phenotype results in the
formation of colonies when SF33 is grown on plates, which facilitates genetic
manipulation of the strain. SF33 is a hormogonium- and heterocyst-deficient strain
(Herdman et al., 2000). However, SF33 shows normal CCA regulation of PBP gene
expression (Cobley et al., 1993). Thus, this strain was used for comparative studies of
the photoregulation of vegetative cellular morphology in F. diplosiphon. Transmitted
light, DIC, and PBS autofluorescent images were gathered to assess cell size and shape,

filament length, and the number of cells per filament.
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Figure 2.2. Cell Morphologies of the WT and SF33 F. diplosiphon strains in GE-WL
and RE-WL. Representative optical slices from a Z-series of DIC images of WL-adapted
filaments of UTEX481 (A and B) and SF33 (C and D) were captured at a 40X oil
immersion lens objective. Bars, 10 pm.

0
N
=
[
=
=)

SF33

Filament length No. of cells/filament  No. of examined filaments
Strain (um) under: under: grown under:
GE-WL  RE-WL GE-WL RE-WL GE-WL RE-WL
UTEX481** 2129 53.4 17 5 20 23
SF33** 52.4 233 12 5 26 27

Table 2.1. Median filament lengths and numbers of cells of F. diplosiphon strains under
GE-WL or RE-WL. ** P <0.001; two-tailed Mann-Whitney U test. The probability
score indicates that the difference in filament length between GE-WL- and RE-WL-
grown cultures was highly statistically significant. GE-WL was from PL/AQ wide-
spectrum fluorescent bulbs. RE-WL was from Gro-Lux fluorescent bulbs.
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Observed cell shapes for UTEX481 were analogous to those previously reported:
under green-enriched white light (GE-WL) growth conditions, cells were elongated in
shape, whereas red-enriched white light (RE-WL) exposure resulted in round cells
(Figure 2.2A and B; Bennett and Bogorad, 1973). The median filament length was 212.9
pm (17 cells/filament) and 52.4 pm (12 cells/filament) for UTEX481 and SF33 under
GE-WL, respectively (Table 2.1). The length of individual UTEX481 cells under these
conditions was very similar to that previously reported, whereas the filament length was
about half that described (Bennett and Bogorad, 1973). Under RE-WL, UTEX481
filaments had a median length of 52.4 um, a length nearly identical to that reported by
Bennett and Bogorad (1973); while SF33 filaments were 23.3 um (Table 2.1). Both
strains exhibited significantly longer filaments under green-enriched growth as compared
to red-enriched growth.

Having established the response of the cells under green- and red-enriched
fluorescent illumination, cells were then grown under broad-band GL or RL, which have
been identified as the colors that result in maximal CCA, to get more insight specifically
into the impact of these colors of light on the full CCA response in F. diplosiphon. As
noted for GE-WL, GL-grown UTEX481 cells were elongated and brick-like in shape,
whereas RL-grown cells were rounded in shape (Figure 2.3A and B). However, RL-
grown UTEX481 cells were not as round or as vacuolated as those grown under RE-WL
(compare Figures 2.2B and 2.3B; Bennett and Bogorad,1973). The filaments of
UTEX481 cultures grown under GL were significantly longer than the filaments of

cultures grown under RL, i.e. 130 pm vs. 94.5 pm (Table 2.2).
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Similar to UTEX481, a significant difference in SF33 cell shape and filament
length between GE-WL and RE-WL conditions was observed (Figure 2.2C and D; Table
2.1). The difference in cell shape, however, was less obvious for broad-band GL vs. RL
growth. SF33 cells were approximately the same length in GL as they were in
RL, though cell shape was slightly more rounded under RL conditions (compare Figures
2.3C and D). The major observed difference was the impact of GE-WL vs. broad-band
GL on SF33 cell shape, which could be a fluence effect or may be due to the impact of
additional wavelengths of light present in the GE-WL. GL-grown SF33 filaments were
significantly longer than RL-grown filaments. In GL, the median length of SF33
filaments was 32.9 um, with 7 cells per filament, whereas RL-grown filaments had a
median length of 26.9 pm, with § cells per filament (Table 2.2). Notably, broad-band
light conditions yielded considerably shorter filaments than green- or red-enriched light,
particularly under GL.

In comparison to the UTEX481 and SF33 morphologies described above, the
FdBk14 mutant strain displayed markedly different and novel filament and cell
morphologies. The filaments tended to be longer and less rigid in structure than those of
the parental SF33 strain (Figures 2.3E and F; Table 2.2). The filaments curled in the
focal plane and were composed of round, bubble-like cells in both RL and GL conditions.
The number of cells per filament for FdBk14 cultures was nearly identical under both
light conditions and there was no statistically significant difference between the median

filament lengths under GL and RL (Table 2.2).
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2.3.2 RcakE regulates cellular morphology in F. diplosiphon during CCA

To determine whether the discernible difference in shape between SF33 and
RcaE-deficient FdBk14 cells correlated with RcaE activity, rcaE under control of its
native promoter was introduced into the FdBk14 cell line and the impact of RcaE
accumulation on cell size, shape, and filament morphology was assessed. Whole-cell
spectral analyses show that complementation of the FdBk14 cell line with RcaE restores
light-dependent PBP absorption peaks seen in both UTEX481 and SF33 (compare
Figures 2.4D to B and C), while the FdBk14/pPL2.7 vector only control (Figure 2.4E)
resembles the FdBk14 mutant scan. Immunoblot analyses demonstrated accumulation of
RcaE in the complemented cells (Figure 2.5, lower panel).

Recovery of light-dependent PBP accumulation in the FdBk14/pPL2.7GWRcaE
transformants indicated that the RcaE accumulating in these cells was functional: grown
under RL these cells exhibited low PE/PC ratios, whereas under GL they had high PE/PC
ratios, similar to SF33 cells grown in identical conditions (Figure 2.5, upper panel). The
accumulation of this functional RcaE also was correlated with complementation of the
rounded cell shape phenotype of the RcaE-null mutant (Figure 2.2G and 2.2H). Although
the levels of RcaE detected for UTEX481 and SF33 cells are noticeably different, the
levels of RcaE accumulating in these célls did not seem to be correlated with differences
in the cells’ ability to regulate PE/PC ratios in response to light.

Whereas this observation does not preclude the differences in RcaE accumulation
being associated with different cellular shape phenotypes, it is unlikely for this to be the

case given the major phenotypic differences observed between GL-grown UTEX481 and
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Figure 2.3. Morphological diffe between F. diplosiphon strains in broad-band GL
and RL. Representative optical slices from a Z-series of DIC images of GL- and RL-
adapted filaments of UTEX481 (A and B), SF33 (C and D), FdBk14 (E and F),
FdBk14/pPL2.7GWRcaE (G and H), and FdBk14/pPL2.7 (I and J) were captured at a
40X oil immersion lens objective. Bars, 10 um.

Filament length No. of cells/filament  No. of examined filaments
Strain (pm) under: under: grown under:

GL RL GL RL GL RL
UTEX481* 1304 94.6 10 8 105 101
SF33* 320 26.9 7 S 119 104
FdBk14 379 443 8 ) 105 111
FdBk14/pPL2.7GWRcaE** 30.0 221 7 4 9 118
FdBk14/pPL2.7 23.0 30.1 4 4 84 114

Table 2.2. Median filament lengths and numbers of cells of F. diplosiphon strains
under broad-band GL or RL. *, P <0.05, and **, P <0.001; two-tailed Mann-Whitney U
test. The probability scores indicate that the differences in filament length between GL-
and RL-grown cultures were statistically significant and highly statistically significant,
respectively.
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Figure 2.4. Complementary chromatic adaptation in wild type F. diplosiphon
strains, FdBk14, and FdBk14 transformants. Whole cell absorbance spectra of
GL- and RL- grown cells: UTEX481 (A), SF33 (B), FdBk14 (C), FdBkl14
transformed with: pPL2.7RcaE (D), and pPL2.7 (E). The scan shown for each
strain is representative of three or more independent transformations. Cultures
were grown in RL or GL, as indicated by line color. Black arrows, PE
absorption maxima, grey arrows, PC absorption maxima.
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Figure 2.5. Phycobiliprotein ratios and immunoblot analysis of RcaE
accumulation in WT and SF33 strains, the FdBk14 mutant, and FdBk14
transformants. Upper panel, PE/PC ratios for F. diplosiphon strains. The colors of
the bars indicate the colors of the illumination under which the cells were grown,
and the bars represent the averages (+ standard deviations) of results from three
independent experiments. Lower panel, immunoblot results for RcaE accumulation
in WT cells and FdBk14 cells either untransformed or transformed with pPL2.7 or
pPL2.7GWRcaE during growth in GL or RL. A molecular mass marker is

indicated to the left.
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SF33 cells. In these strains, the levels of RcaE were much more similar, as was the size
and shape of RL-grown UTEX481 and SF33 cells, which had a much greater difference
in the levels of RcaE accumulation. Notably, the shape of complemented cells was
similar to the cell phenotype observed for SF33 cells. GL-grown cells were more
cylindrical, whereas RL-grown cells were more rounded in shape, also analogous to those
shapes observed for UTEX481.

GL-grown FdBk14/pPL2.7GW