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ABSTRACT

RAPID NUMERICAL EVALUATION OF ULTRASOUND
PRESSURE INTEGRALS AND POTENTIAL INTEGRALS

By
Duo Chen

Analytical expressions are derived for fast calculations of time-harmonic and tran-
sient near field pressures generated by triangular pistons. These fast expressions re-
move singularities from the impulse response, thereby reducing the computation time
and the peak numerical error with a general formula that describes the nearfield pres-
sure produced by any triangular piston geometry. The time-domain expressions are
further accelerated by a time-space decomposition approach that analytically sepa-
rates the spatial and temporal components of the numerically computed transient
pressure. Analytical 2D integral expressions are derived for fast calculations of time-
harmonic and transient nearfield pressures generated by apodized rectangular pistons.
The 2D expressions eliminate the numerical singularities that are otherwise present
in numerical models of pressure fields generated by apodized rectangular pistons. A
simplified time space decomposition method is also described, and this method fur-
ther reduces the computation time for transient pressure fields. The results, compared
with the Rayleigh-Sommerfeld integral, the Field II program and the impulse response
method, indicate that the FNM achieves smallest errors for the same computation
time among those methods. A 1D FNM for calculating the pressure generated by a
polynomial apodized rectangular piston is also obtained. The fast method is based
on the instantaneous impulse response. A trigonometric transform of the integrand is
performed and the order of integration is exchanged to obtain the 1D integral for the
apodized FNM for both apodization functions. The time and error comparisons are

performed among the 1D polynomial apodized FNM, the 2D apodized FNM and the



Rayleigh-Sommerfeld integral. The results show that the 1D polynomial apodized
FNM has the fastest convergence. Analytical expressions are derived for fast cal-
culations of potential integrals. These potential integrals inculde uniformly excited
volume potential integrals, polynomial apodized surface integrals and polynomial
apodized volume potential integrals. The derivation starts with the fast near-field
method (FNM), which originates from ultrasound pressure calculations generated by
polygonal pistons. For potential integrals evaluated over a volume source, the volume
source is first subdivided into subdomains about the observation points. The total po-
tential is the summation of the potential over each submain which can be reduced to
1D integrals. Those calculation methods remove the singularities from the Rayleigh-
Sommerfeld integral by subtracting sigularities in the integrand and thus can achieve
rapid convergence. Simulations results are compared with the Rayleigh-Sommerfeld
integral and the singularity cancellation method evaluated on a 3D grid. The results
indicate that the 1D FNM expressions reduces the computation time or the number
of sample point needed significantly than the Rayleigh-Sommerfeld integral and the

singularity cancellation method for a given number signifcant digits.
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CHAPTER 1

Introduction

1.1 Ultrasound pressure calculations

As increasingly complex transducer geometries are adopted for emerging applications
of ultrasound imaging and therapy, new methods are needed for rapid calculations
of pressure fields produced by these transducers. Fast numerical simulations are es-
pecially important for simulations of phased array structures containing hundreds
or thousands of tranducers that generate pressure in large computational domains.
Simulation methods that either directly evaluate the impulse response (1, 2, 3, 4]
or subdivide each transducer into smaller elements and then superpose the pressure
[5, 6] provide a convenient model for these calculations, but in the nearfield region,
the convergence of these methods is relatively slow {7]. Furthermore, numerical im-
plementations of the impulse response for flat unfocused transducers encounter some
difficulties throughout the paraxial region [7, 8, 9].

Pressure fields from uniform planar sources can be calculated using several numer-
ical methods including the impulse response method [1, 2, 3|, the Field II program
(10, 11}, the Rayleigh-Sommerfeld integral [6], and the fast nearfield method (FNM)

(7, 8]. Among these methods, the FNM achieves the smallest error in the least time



(7, 8, 12]. The FNM for uniformly excited rectangular pistons (8] and circular pistons
(7] eliminates the 1/R singularity and therefore avoids problems with large errors in
the nearfield region. The FNM also converges rapidly in the nearfield, which has
been demonstrated for both time-harmonic and transient excitations [7, 8, 36]. For
uniform excitations, the FNM is ideal for nearfield pressure calculations and for ref-
erence calculations that evaluate the numerical errors associated with other methods
(13, 14].

Modeling the nearfield pressure generated by a spatially varying particle velocity
on the face of a rectangular piston is of practical importance for many acoustics
applications (15, 16], where accurate and fast computer simulations are required. Fast
ultrasound simulations are especially important for calculating pressure fields in large
computational domains, specifically steady-state HIFU simulations for ultrasound
therapy [17, 18] and transient calculations for ultrasound imaging [19, 20]. Individual
array elements are typically modeled as single baflled rectangular sources with uniform
surface particle velocities, but the particle velocity on the transducer face is in general
nonuniform. For example, Lin et. al. [21] shows that the surface particle velocity of
a fluid-loaded piezoelectric element on a phased array is nonuniform, and Borges et.
al [22] demonstrates that the surface velocity of a single array element is apodized

and delayed when matching layers are used.

1.2 Potential integrals

Numerical calculation of potential integrals involved in integral equations are of
great importance in scattering problems. The polynomial function is a very pop-
ular function to approximate the electric and magnetic currents. For example, three-
dimensional polynomials are adopted to approximate the entire-domain normalized

current density by Moraros and Popovic [23] as applied to the optimization of volume



potential integrals involved in the moment-method analysis of 3D dielectric scatters.
The commonly used Rao-Wilton-Glisson basis that is also a linear basis function
which is used to approximate both the magnetic and electric currents [24]. Po-
tential integrals are often singular and direct evaluation of potential integrals may
encounter numerical difficulties. To improve the accuracy of the potential integrals,
singularity subtraction methods [23, 25, 26, 27, 28] or singularity cancellation meth-
ods [30, 31, 32, 33] are often used to acheive better performance. Typically, those
methods manipulate the integrands to eliminate singularties and thus the number
of dimensions over which the integration is performed remains the same for both
methods. This approach is reasonable for general potential integrals; however, more
efficient expressions can be acheived when polynomial apodized potential integrals
are considered.

Potentials generated by uniformly excited plannar source and uniformly excited
plannar source are computed with both the Rayleigh-Sommerfeld integral [6] and the
fast nearfield method (FNM) (7, 8, 12]. The existing FNM achieves much better accu-
racy by eliminating the 1/R singularity in the Rayleigh-Sommerfeld integral and by
simplifying the multiple integral into a single integral. Since the numerical evaluation
of potential integrals with polynomial apodization are routinely evaluated, a similar

fast nearfield method is needed for those integrals to improve the performance.

1.3 Thesis Content

This dissertation investigates fast pressure calculation methods for planar pistons
and fast potential evaluation methods for potential integrals. Chapter 2 introduces
fast calculations for the time-harmonic and transient pressures generated by tran-
gular pistons. The transient calculations are further accelerated by the time-space

decomposition method. Analytically 2D integral expressions for fast calculations of



time-harmonic and transient nearfield pressures generated by apodized rectangular
pistons are derived in Chapter 3. As a special case of Chapter 3, fast caculations of
pressure generated by a polynomial apodized rectangular pistion are obtained based
on the instantaneous impulse response in Chapter 4. Chaper 5 introduces 1D fast
expressions for calculations of uniformly excited volume potential integrals that are
otherwise represented by a triple integral. Fast 1D calculation expressions for pres-
sures generated by surface integrals and volume integrals with polynomial apodization

are introduced in Chapters 6 and 7. Chapter 8 concludes the thesis.



CHAPTER 2

A Fast Nearfield Method for
Calculations of Time-harmonic and
Transient Pressures Produced by

Triangular Pistons

The substantial reduction in computation time demonstrated by the FNM for calcu-
lations of nearfield pressures generated by circular and rectangular pistons motivates
the derivation of similar integral expressions for triangular sources. After the impulse
response is obtained for right, acute, and obtuse triangular sources, general FNM
expressions for time-harmonic and transient inputs are then demonstrated for a tri-
angular source, and the time-space decomposition of the FNM integral is presented for
a transient excitation. Based on these expressions for the nearfield pressure generated
by a triangular source, computation times are evaluated for the same peak numerical
errors. For time-harmonic inputs applied to a triangular source, results show that
FNM calculations are several times faster than both exact and approximate impulse

response calculations, and for pulsed excitations, results demonstrate that FNM cal-



culations performed with time-space decomposition are also much faster than exact

and approximate impulse response calculations for triangular piston geometries.

2.1 Time-harmonic and Transient Nearfield Pres-

sure Calculations for Triangular Sources

2.1.1 Impulse response calculations for a triangular source

The geometry for a right triangular source with a right angle ZBCA at vertex C is
depicted in Figure 2.1a. For this right triangle and the triangles in Figures 2.1b and
2.1c, the impulse response is evaluated at a point directly over the vertex A (indi-
cated in bold in Figure 2.1), where the the orthogonal projection of the observation
point onto the source plane is exactly coincident with the vertex A, and the distance
from the observation point to the source plane along this orthogonal projection is
represented by the variable z. In Figure 2.1a, the acute angle ZCAB = tan_l(s/l)
defines the angular extent of sector FAB with radius \/m, which has an im-
pulse response of c¢/(2m) tan_l(s/l) for (z/c) <t < m/c The impulse
response for the right triangle AABC contained within the sector EAB is obtained
by subtracting the impulse response of the region ECB between the curved outer
edge of the sector and the near edge of the right triangle so that only the contri-
bution from the right triangle AABC remains. The impulse response of the region
ECB is ¢/(2m) cos™1 (l/\/;?—t2——z2) for \/m/c <t< \/z2—-+-12_-{-—s2/c, and

therefore the impulse response at an orthogonal distance z above the vertex A is

(
¢/(2r) tan"1(s/1) fort] <t <to

heione(2:t) =4 ¢/(2m {tan—l(s/l) — cos™ 1 _l—} forto <t<ts ,
right ) 22,2 2 3

0 otherwise

\

(2.1)



(c) Triangular source with obtuse ZBC A

Figure 2.1. Triangular source geometries defined for nearfield pressure calculations.
The nearfield pressure is evaluated above the vertex A (indicated in bold), and the
shape of the triangle (right, acute, or obtuse) is defined by the angle ZBCA. The
height of each triangle is indicated by [, and the bases of the individual right triangles
are indicated by s, s1, and s9. The acute triangle in b) is represented by the sum of
two right triangles, and the obtuse triangle in c) is defined as the difference between
two right triangles.



where the values of t1, to, and t3 are z/c, m /c, and m /c, respec-
tively.

For other triangular sources, the impulse response is readily constructed from the
sum or difference between two right triangles. Figure 2.1b contains an example of
a triangular source with an acute angle ZBCA at vertex C. The expression for
the impulse response evaluated at a point directly over the vertex A is obtained by
evaluating the sum of the contributions from the right triangles ZCDA and ZBDA,
each with a right angle at vertex D. The resulting impulse response above the vertex

A in Figure 2.1b is represented by

hsum(z;t) =
)

c/(2m) {tan"l(sl/l) + tan_1(32/l)} fort] <t <tg
2% {tan_l(sl/l) + tan_l(sz/l) —2cos™1 (l/\/ c2t2 — 22)} fortg <t <tg

H

c/(2m) {tan_l(sl/l) —cos™1 (l/\/ ct2 — zz)} fortg <t <ty

0 otherwise

\

(2.2)
where the values of 51 and s are selected such that s; > sg and the values of 1, tg,
t3 and t4 are z/c, \/27:1_2—/0, 22 4+124 3%/0, and /22 + 12 + s%/c, respectively.

Similarly, Figure 2.1c contains an example of a triangular source with an obtuse
angle ZBCA at vertex C, where the impulse response is again evaluated at a point
directly over the vertex A, but the impulse response is instead evaluated for the

difference between two right triangles. The impulse response for the triangle in Figure



2.1cis
(

c/(2m) {tan_l(sl/l) - tan_l(sz/l)} fort) <t <tg
hdiff(Z;t) =19 c/(2m) {tan (s1/1) — cos™ (l/ - 22)} fortg <t <t3 >
0 otherwise
\ (2.3)

where the values of 57 and s9 are selected such that s; > s9 and the values of 1, to,

and t3 are z/c, 22 +12 4 s%/c, and /22 + 12 + s%/c, respectively.

Time-harmonic impulse response calculations

The time-harmonic pressure generated by these triangular source geometries is pro-
portional to the Fourier transform of the impulse response. Therefore, the formula

for the time-harmonic pressure generated by the right triangle in Figure 2.1a is

e ke J N I
wpove J -15 —jkz _J -1 —
Pright(z;k)=%—-{Etan 173 Jk —Etan 176 jkV z¢+1e+s

V22112442
zé+1+s .
+/ —JkB o5~ 1 —l—dﬂ . (24)

e

V22412 /B2 - 22
The time-harmonic pressures produced the remaining triangles depicted in Fig-
ures 2.1b and 2.1c are obtained by adding and subtracting the contributions of two

right triangles, as for calculations of the impulse response in Eqs. 2.2 and 2.3, respec-

tively.

Transient impulse response calculations

Transient nearfield pressures are computed with the impulse response through the

convolution
p(z;t) = poo(t) ® h(z;t), (25)
where the time derivative of the particle velocity v(t) is evaluated analytically from

the excitation pulse v(t), and the convolution ® is evaluated with the fast Fourier



transform (FFT). In particular, the discrete Fourier transforms of ¥(t) and h(z,t) are
computed with the FFT, the results are multiplied, and the inverse FFT is applied to
the product. The forward and inverse FFT routines are computed with the Fastest

Fourier Transform in the West (FFTW) library (34].

Field I1

Field II is a software package [10] that computes the impulse response either by su-
perposing far field contributions from small rectangles or by evaluating expressions
similar to Egs. 2.1, 2.2, and 2.3. With both approaches, Field II modifies the impulse
response according to the area under the impulse response curve [11]. This modifica-
tion allows Field II to reduce the temporal sampling for impulse response calculations,
which are directly applicable to transient and steady-state nearfield pressure compu-

tations.

Smoothed impulse response

The Fourier transform of Eq. 2.5 is

P(z; w) = iwpgV (w)H(z,w). (2.6)
Normally, the excitation V' (w) is bandlimited, so the high-frequency components in
the Fourier transform H(z; w) of the impulse response are negligible. To exploit the
bandlimited characteristics of the excitation v(t), the formula for a smoothed impulse
response is given by [35]

A _ _
hsmooth(z; t) _ O(C(t + t/22)7)rtCAOt(c(t At/z))) (27)

where O(ct) is the area that formed by the intersection of the transducer and the

sphere with radius ct centered at the observation point, and At is the length of the

10



rectangular pulse that smooths the analytical impulse response. The constraint

1
fEmax < KZ (28)

insures proper smoothing, where fp., ... is the highest-frequency component of the
excitation pulse, and At = 0.02us in the simulations that follow. The result obtained
from Eq. 2.7 is then directly applied to calculations of the nearfield pressure for time-

harmonic and transient inputs.

2.1.2 The fast nearfield method for a triangular source

Integral expressions that describe the fast nearfield method (FNM) for a triangular
source excited by a time-harmonic input are obtained by replacing the inverse cosine
term with the integral form of the inverse tangent and then exchanging the order of
integration in the impulse response expressions for right, acute, and obtuse triangles.
The procedure is illustrated by:
V221124 52
zé+l%+s . I
/ ) e_]k'B cos™1 —df
Vzé+l B2 — 22
V2112442 2_,2_2
24+14+s . B4 —2z4—1
=/ e—]kﬁtan_l—dﬁ
V22412 !

[ A

s V22412452 —jkB l
_ /o o 5 dods. (2.9)

After defining a new variable of integration and subtracting the singularity at z = 0
from each integrand, the resulting FNM expression for a right triangle (Figure 2.1a),

the sum of two right triangles (Figure 2.1b) that share a common side of length [, and

11



the difference between two right triangles (Figure 2.1c) that share a common side of

length [ is

_ jwt rx l . D) -
Pk = Lo— [P (cohVottt st i) o, (210)

2r zo o 4+ 12
where | represents the height of the triangle, and zg and z represent the x-
coordinates of B and C, respectively. In Figures 2.1a, 2.1b, and 2.1¢c, the values
of (zg,z() are (s,0), (s1,—s9), and (s1,s9), respectively. Thus, a single FNM ex-
pression represents all three triangle geometries in Figure 2.1, whereas the impulse

response requires a separate expression for each triangle in Figure 2.1.

Transient FNM calculations

The inverse Fourier transform of Eq. 2.10 generates the FNM expression for the
transient response. The transient pressure generated by a triangular source above

the vertex A is represented by

plzty= £ [FB_ [v (t—%\/m)—v(t—z/c)] do, (2.11)

2m o 12 + 0?2
where the transient excitation is represented by v(t). By retaining the v(t —z/c) term

within the integral and subtracting the singularity, Eq. 2.11 maintains the rapid rate

of convergence achieved for time-harmonic calculations with Eq. 2.10.

Time-Space Decomposition

Transient FNM computations are accelerated by decoupling the temporal and spatial
dependence of Eq. 2.11. The time-space decomposition approach, demonstrated pre-
viously for a circular source [36], expands the delayed input pulse v(t — ) in terms of

temporal weighting functions g5 (t) and spatially-dependent terms fp(7) that depend

12



Table 2.1. Basis functions for time-space decomposition with a Hanning-weighted
pulse.
temporal basis functions gn/(t) spatial basis functions fn(7)

g1(t) = %sin(27rf0t) f1(7) = cos(27 fy7)
go(t) = —% cos(2m fot) fa(T) = sin(27 fyT)
g3(t) = —% cos (-2v7{7t-) sin(2w fot) | f3(7) = cos -2&7": cos(2m foT)
94(t) = %cos -2V71T7t cos(2m fot) | f4(7T) = co
_2&1’7_

-21;7{9- cos(2m fot) | fg(7) = sin -2{{;3'- sin(27 fo7)

s\ 97 sin(27 fo7)

o~

g5(t) = %sin sin(2m fot) | f5(r) = sin -2{{77- cos(2m foT)

96_(t) = %sin

o~

only on the coordinates of the observation point and the variable of integration o

through 7 = %v 22 + 02 +12. The decoupled input pulse is thus represented by

t—71 N
v(t — 1) = rect > fa(D)an(t), (2.12)
w n=1

where the time duration of the pulse is indicated by the parameter W. The decom-
posed pulse in Eq. 2.12 is then inserted into Eq. 2.11, and then time-dependent terms

are factored out of the integral. The result consists of N edge wave terms specified

by
_pc, [EB fnl(T) t—1
E, = 2”1‘/;30 ) +12rect W do (2.13)

and a direct wave term given by

B 1

pc
D=—-——v(t-2z/c) -5
2 ( /) o 02 +12

do. (2.14)

The temporal dependence of the edge wave integrand in Eq. 2.13 is eliminated when
the effect of the rect function is instead shifted to the limits of integration. This oper-
ation, which restricts the edge wave contributions by only considering those that have
reached the observation point without completely passing the observation point, com-
pletely removes all temporal variables from the integrand. As a result, calculations of
transient pressure fields are converted into the numerical evaluation and subsequent

superposition of IV spatial integrals that are weighted by analytical time-dependent

13



terms. Further reduction in the computation time is achieved by storing redundant

edge wave calculations from Eq. 2.13 in the matrix

Kn(i,j) = Z G fn T[am] (2.15)

In Eq. 2.15, wy, represents the weights and oy, represents the abscissas computed
for Gauss quadrature, the value of 7[om) is obtained from the relation 7[om] =
% 22 +‘772n + 12, and the indices z and j indicate the shortest and longest times
that correspond to the limits of integration. The values in Kn(%,j) are initialized
within the computation procedure only for the points that are needed, and then the
time-space decomposition calculations superpose the numerically computed results
of the spatial integrals with analytical time-dependent weighting factors to achieve

a significant reduction in computation time for transient pressure calculations in the

nearfield region.

2.1.3 Superposition calculations with impulse response and

FNM expressions

At observation points away from the normal that passes through a vertex of the tri-
angular source, impulse response and FNM calculations project the observation point
onto the source plane and then superpose the contributions from two or three triangles
as in Figure 2.2. The contributions from three triangles are either added, as shown
in Figure 2.2a for an observation point within the lateral extent of the source triangle
AABC, or added and subtracted as demonstrated in Figure 2.2b for an observation
point outside of the lateral extent of the source triangle. Whether a contribution is
added or subtracted depends on the location of the projected observation point in
the source plane relative to each side of the triangular source.

The FNM admits some additional simplifications for nearfield calculations of pres-

sures generated by the triangle AABC in Figure 2.2. If the three lines that are co-
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(b)

Figure 2.2. Superposition operations that calculate nearfield pressures generated by
an equilateral triangular source, where each side is four wavelengths long. The vertex
D (indicated in bold) is the projection of the observation point onto the source plane,
which partitions the radiating source into three triangles with sides (a;,b;,¢;). (a)
The field point is located inside of the equilateral triangular source. (b) The field
point is located outside of the equilateral triangular source.
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incident with the three sides of the source triangle AABC are defined in the general
form E;x + F,y +G; = 0, then the distances from the projected observation point to
each of the three sides are represented by ; = |E;z+ F;y+G;|/ Ez'2 + F 22. Likewise,
the sign of each contribution is defined as S; = (E;z+ F;y+G;)/|E;z + Fjy + G| for
coefficients E;, F;, and G; chosen such that S; is positive within the lateral extent
of the source AABC. Furthermore, the lower and upper limits of integration are
defined as (azz - bzz - 012) /(2¢;) and (a;r-2 + 012 - bzz) /(2c;), respectively. The resulting

nearfield pressure generated by AABC in Figure 2.2 is therefore represented by

—_ pc'uej wt

P(z,y,2; k) = o

i Eix+Fiy+Gi

i=1 \/Ez'2+Fi2
2,.2_ 32

aj+c;=br o [2.,2.2 :
_z_z_é__z_e jky/o%+2 +li —e"sz

x 1 do 2.16
/;12—52—02 o2+ l;-z (2.16)
C.

1
Calculations with Eq. 5.4 compute the values of c;, E;, F;, and G; only once for each

edge of AABC, whereas the values of a; and b; are calculated once for each (z,y)
pair. Unlike the expressions for the impulse response that change depending on the
spatial coordinate, Eq. 5.4 is a general formula that computes the nearfield pressure

with a single expression that is valid at all points in space.

2.1.4 Transient input waveform

Evaluations of the impulse response and the FNM with time-space decomposition are

performed for the Hanning-weighted pulse specified by
1
v(t) = 3 (1 = cos(2mt/W)]sin(2r ft)rect(t/W), (2.17)

where rect(t) = 1 if t € [0,1] and rect(t) = 0 otherwise. In the simulations that
follow, the input is a Hanning-weighted pulse with a center frequency fy = 2MHz

and a pulse duration W = 1.5us. Time-space decomposition performed on this pulse

16



with N = 6 yields the entries in Table 2.1, where the spatial edge wave integral
in Eq. 2.13 is evaluated once for each row entry applied to each edge of the source
triangle AABC in Figure 2.2, and then the results are weighted by the temporal basis

functions in Table 2.1.

2.1.5 Error calculations

For time-harmonic nearfield pressure calculations, the numerical error n(z, y, 2) is
defined as the normalized difference between the reference field and the computed

field according to

IP(I, yyz) - Pref(xr Y, Z)‘
maa:lPref(x,y,z)|

n(z,y,2) = (2.18)

where P, f(z, Yy, z) is the reference time-harmonic nearfield pressure. For transient
nearfield pressure calculations, the numerical error 7(z, y, z) between the computed

transient field and the reference transient field is defined by

lp(z, ¥, 25 t) = Pref(z, 9, 2 B
maxl‘,y,Z”pref(x) Y, 2 t)“

where || - || denotes the energy norm used with respect to time, and p,., f(x, Y, z; t)

T](I» Y, Z) = , (219)

is the reference transient pressure field as a function of time. The maximum error is
defined as pmar = maxg y 2 7(r, y, z), and this value is computed for both time-

harmonic and transient excitations.

2.2 Results

All simulation programs are written in C, then compiled and executed within a
Matlab-C language MEX interface. The simulations are performed on an eMachines

T3958 personal computer with a 2.93MHz Celeron D processor. The operating sys-
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Figure 2.3. Simulated time-harmonic pressure field in the z = 0 plane for an equilat-
eral triangular source with sides equal to 4 wavelengths. The reference field is gener-
ated by the impulse response method computed with 100,000-point Gauss quadrature.

tem on this computer is Fedora Core 3 Linux. All simulations are run sequentially

under similar operating conditions.

2.2.1 Time-harmonic nearfield pressure calculations
Reference pressure distribution

The reference pressure field is computed in Figure 2.3 for an equilateral triangular
source with sides equal to 4 wavelengths. In Figure 2.3, the acoustic field is evaluated
in the z = 0 plane defined in Figure 2.2. The reference nearfield pressure distributions

in Figure 2.3 are obtained when the impulse response is calculated for all triangles
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with 100,000-point Gauss quadrature. This pressure distribution is selected as the
reference because nearfield pressures computed with 100,000 abscissas produce nor-
malized errors that converge to 15 significant digits throughout the nearfield region,

which represents the smallest error achievable with double precision arithmetic.

FNM and impulse response calculations

The numerical errors and computation times for the fast nearfield method and the
impulse response method are shown in Figure 2.4. For the FNM, the exact impulse
response, and Field IT with ‘use_triangles,’ nearfield pressures are evaluated in an 81 by
101 point grid in the £ = 0 plane as shown in Figure 2.3. Field II with ‘use_rectangles’
and the smoothed impulse response require an offset due to a singularity on the piston
face and are therefore evaluated on a smaller 81 by 86 point grid. The FNM and the
exact impulse response are evaluated with Gauss quadrature, and all three integrals
corresponding to the three sides of the source triangles are evaluated with the same
number of abscissas. The remaining methods that approximate the uniformly sampled
impulse response (i.e., Field II and the smoothed impulse response) are evaluated
with the midpoint rule as described in the user’s guide on the Field II web site
(http://www.es.oersted.dtu.dk/staff/jaj/field/). Figure 2.4 shows that the error for
a given computation time is consistently smaller with the FNM, where smaller errors
are located nearer to the horizontal axis on the bottom of this log-log plot. Likewise,
the time required to achieve a given error is consistently smaller with the FNM, since
the FNM plot is consistently located to the left of the impulse response plot.
Comparisons between the impulse response and the FNM evaluated for the same
peak error are summarized in Table 2.2. For a 10% peak error, the FNM is 4.39 times
faster than the impulse response, and for a 1% peak error, the FNM is 3.44 times
faster than the impulse response for this grid and piston geometry. Even greater im-

provements are observed for smaller peak error values due to the rapid convergence

19



-
o
(<)

max

——FNM

0+ impulse response
=8= Field Il (use_triangles) ]
- A-Field Il (use_rectangles)

- e - smoothed impulse response

peak normalized error 1

-15

10

107 10° 10’ 10° 10°
computation time (seconds)

Figure 2.4. Peak normalized error for calculations of nearfield pressures generated
by the triangular source in Figure 2.2 plotted as a function of the computation time.
The results show that the FNM consistently achieves smaller errors in less time than
exact and approximate impulse response calculations for time-harmonic excitations.

of the FNM. Although these values change somewhat for different source and grid ge-
ometries, the FNM is consistently faster than the exact and the approximate impulse

response for nearfield calculations of time-harmonic pressures.

Field II calculations

The Field II simulation program [10] includes the ‘use_triangles’ option for calcula-
tions that model rectangular and triangular pistons as the superposition of triangular
sources. For calculations of time-harmonic pressures with the ‘use_triangles’ option

applied to the source geometry in Figure 2.2, Field II requires a temporal sampling
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frequency of fs = 16MHz to achieve a peak error of 10%. The computation time
for Field II with ‘use_triangles’ is 29.02 times slower than the FNM evaluated on the
same grid. For time-harmonic calculations, Field II with the ‘use_triangles’ option
requires a temporal sampling frequency of fs = 32MHz to achieve a peak error of
1%. This results in a computation time that is 26.43 times longer than that required
for the FNM evaluated on the same grid.

Field II also provides a ‘use_rectangles’ option that introduces a numerical singu-
larity on the piston surface, so the pressure is evaluated on a smaller 81 by 86 point
spatial grid that is offset from the piston face. Field II with ‘use_rectangles’ evaluated
on this reduced grid produces a 10% peak error in 0.8908 seconds, which is 9.5 times
slower than the FNM on the full 81 by 101 point grid. For a 1% peak error, Field II
with ‘use_rectangles’ computes the result on the restricted grid in 218.2492 seconds,

which is 1697 times slower than the FNM on the full grid.

Smoothed impulse response calculations

Time-harmonic calculations with the smoothed impulse response [35] evaluate the
pressure on a smaller 81 by 86 point spatial grid that is offset from the piston face. The
offset is required for smoothed impulse response calculations so that the singularity in
Eq. 2.7 at the piston face is avoided. For calculations of the time-harmonic pressure
generated by the triangular source depicted in Figure 2.2 and evaluated within an 81
by 86 point subset of the grid shown in Figure 2.3, the smoothed impulse calculation
converges to a peak error of 10% with a temporal sampling rate of fs = 32MHz.
This computation is completed in 1.0105 seconds, which is 10.74 times longer than
the time required for the corresponding FNM calculation evaluated on a larger 81
by 101 point spatial grid. Time-harmonic calculations with the smoothed impulse
response achieve a peak error of 1% for a temporal sampling rate of fs = 128MHz.

This computation is completed in 3.9983 seconds, which is 31.26 times longer than
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Figure 2.5. Simulated transient pressure field in the z = 0 plane for an equilateral tri-
angular source with sides equal to 4 wavelengths. For this calculation, the excitation
is the Hanning-weighted pulse in Eq. 2.17, and the transient pressure is evaluated at
85 time points in an 81 by 101 point grid. The result is plotted at 1.8125us after the
initiation of the input pulse.

time required to obtain the FNM result with 1% peak error in Table 2.2.

2.2.2 Transient nearfield pressure calculations
Reference pressure distribution

The reference nearfield pressure distribution for transient excitations is calculated
with impulse response waveforms that are sampled at fs = 524.288GHz, zero padded,
and convolved with FFTs. The resulting temporal variations in the nearfield pres-

sure, which are evaluated for an equilateral triangular piston with 4 wavelengths on
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Figure 2.6. The peak normalized error plotted as a function of the computation time
for the FNM/time-space decomposition method, the impulse response method, and
methods that approximate the impulse response. These errors and times are evaluated
for transient nearfield calculations of an equilateral triangular source with sides equal
to 4 wavelengths. The excitation for these calculations is a Hanning-weighted pulse
with a center frequency of 2MHz.

each side, are then downsampled and stored at fs = 16MHz. The reference field is

calculated for a sound speed of ¢ = 1.5mm/us on an 81 by 101 point spatial grid

evaluated at 85 time points, and the result at time ¢t = 1.8125us is shown in Figure

2.5. This error reference is accurate to 5 significant digits for calculations in the z = 0

plane.
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FNM and impulse response calculations

Figure 2.6 shows the numerical error plotted as a function of the computation time
for the FNM with time-space decomposition and calculations based on the impulse
response method. All methods, except for Field II with ‘use_rectangles’ and the
smoothed impulse response, are evaluated relative to an 81 by 101 spatial point by
85 time point reference transient pressure distribution. Field II with ‘use_rectangles’
and the smoothed impulse response are singular at the piston face, so a smaller 81
by 86 point spatial grid that incorporates an offset from the piston face is again
required for transient field computations. The input for the reference is generated
by a Hanning-weighted pulse with a center frequency of fj = 2MHz. The transient
nearfield pressures are compared for fs = 16MHz, which is the original sampling
rate for the FNM calculations and the resulting rate after downsampling for impulse
response calculations. Figure 2.6 shows that the FNM with time-space decomposition
is consistently faster than the impulse response and the methods that approximate
the impulse response. Similarly, Figure 2.6 indicates that the FNM with time-space
decomposition achieves much smaller numerical errors than the impulse response and
approximations to the impulse response.

Table 2.3 shows that the FNM with time-space decomposition achieves a 10% peak
error with 5 Gauss abscissas in 0.4867 seconds. To achieve a 1% peak error, the FNM
with time-space decomposition needs 9 Gauss abscissas and the computation time
is 0.6160 seconds. In contrast, the impulse response method achieves a peak error
of 10% with a sampling frequency of fs = 128MHz in 1.8911 seconds. To achieve
a peak error of 1%, the impulse response method requires a sampling frequency of
fs = 1GHz and a computation time of 23.5241 seconds. Thus, the reduction in the
computation time with time-space decomposition applied to the FNM relative to the
impulse response is a factor of 3.89 for a peak error of 10% and a factor of 38.19 for

a peak error of 1%.
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Field II calculations

The Field II result obtained with the ‘use_triangles’ option for the transient excitation
in Eq. 2.17 requires a sampling frequency of fs = 16MHz to achieve a peak error of
10%, and the computation time for this combination of parameters is 5.3317 seconds.
For a peak error of 1%, Field II with the ‘use_triangles’ option requires a sampling
frequency of fs = 64dMHz, and the computation time is 6.8078 seconds. Therefore,
the FNM with time-space decomposition is 10.95 times faster than Field II with
‘use_triangles’ for a peak error of 10% and 11.05 times faster for a peak error of 1%.

Transient Field II calculations that subdivide the aperture into small rectangular
sources with ‘use_rectangles’ reach a peak error of 10% with a temporal sampling
frequency of fs = 32MHz in 3.9926 seconds. Field II with ‘use_rectangles’ achieves
a peak error of 1% with a temporal sampling frequency of fs = 48MHz in 221.6569
seconds. Therefore, the FNM with time-space decomposition is 8.2 times faster than
Field II evaluated with subdivided rectangular sources for a 10% peak error and
359.81 times faster than Field II evaluated with subdivided rectangular sources for a

1% peak error.

Smoothed impulse response calculations

Transient calculations with the smoothed impulse response in Eq. 2.7 evaluate the
pressure at 85 time points on a smaller 81 by 86 point spatial grid that is offset from
the piston face. The offset is required in order to avoid the singularity in Eq. 2.7
on the piston face. For calculations of the time-harmonic pressure generated by the
triangular source depicted in Figure 2.2 and evaluated within an 81 by 86 point subset
of the grid shown in Figure 2.3, the smooth impulse calculation converges to a peak
error of 10% with a temporal sampling rate of fs = 32MHz. This computation is
completed in 1.0122 seconds, which is 2.08 times longer than the time required for the

corresponding FNM calculation evaluated on a larger 81 by 101 point spatial grid.
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Time-harmonic calculations with the smoothed impulse response achieve a peak error
of 1% for a temporal sampling rate of fs = 128MHz. This computation is completed
in 4.1261 seconds, which is 6.7 times longer than time required to obtain the FNM

result with 1% peak error in Table 2.2.

2.3 Discussion

2.3.1 Time and error calculations

While computer processor speed and memory has increased substantially in recent
decades, the size and complexity of ultrasound therapy and imaging simulations has
grown accordingly. Simulations of large ultrasound therapy arrays are now applied to
thousands of transducer elements and computational volumes spanning hundreds of
wavelengths in three dimensions, and simulations of diagnostic imaging arrays have
demonstrated a corresponding increase in the number of active elements and the
number of scatterers. As a result, large simulations of ultrasound phased arrays can
require 24 hours or longer on modern computers.

For these large simulations, the evaluation of computational time and numerical
error is essential. The computation time remains the primary bottleneck in these
time-consuming calculations, but fair comparisons of computation time also require
calculations of the numerical error. In recent years, evaluations of the numerical error
have been neglected due to the slow convergence of the impulse response and methods
that approximate the impulse response. Figures 2.4 and 2.6 demonstrate this slow
convergence, which is further emphasized by the time-harmonic reference field that
requires 100,000 Gauss abscissas for convergence to 15 significant digits and by the
transient reference field that requires a sampling frequency of fs =524.288GHz for
convergence to 5 significant digits.

The rapid convergence of the FNM demonstrated in Figures 2.4 and 2.6 suggests

26



that the FNM is ideal for calculating nearfield pressure reference fields. In Figure 2.4,
time-harmonic FNM calculations converge within 15 significant digits in less than
one-third of the time that the impulse response requires for convergence within 5
significant digits. Likewise, in Figure 2.6, transient FNM calculations with time-space
decomposition converges within 5 significant digits in less than one-fifth of the time
that the impulse response requires for convergence within 2 significant digits. In these
simulations of a triangular piston source excited by a pulse with a center frequency
of 2MHz, impulse response calculations require a sampling rate of 1GHz to achieve
only 2 significant digits of accuracy, whereas the FNM with time-space decomposition
requires only 9 Gauss abscissas applied to each integral and a sampling rate of 16MHz

to achieve 2 significant digits of accuracy throughout the nearfield region.

2.3.2 Advantages of the FNM for time-harmonic and tran-

sient calculations

The computational advantages of the FNM are obtained from several sources. First,
the FNM replaces time-consuming calculations of inverse trigonometric functions with
a ratio of polynomials in the integrand. This reduces the computation time without
increasing the numerical error. Second, the FNM reduces the numerical error by
subtracting a singularity in the integrand. This step, which reduces the numerical
error without significantly increasing the computation time, is particularly effective in
eliminating numerical problems that occur along the edge of the source and through-
out the paraxial region. Third, the FNM defines a single analytical expression that
describes the pressure throughout the nearfield region, whereas the impulse response
requires multiple expressions to define the field generated by a single source. Thus,
relative to calculations that employ exact or approximate calculations of the impulse
response, convergence is faster with the FNM, and the FNM expressions are easier to

evaluate.
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The advantage of the FNM with time-space decomposition is that an integral
expression with temporal and spatial dependencies is replaced with an equivalent
expression that instead evaluates NV spatial integrals for each edge of the triangular
source and weights the result of each integral with an analytical temporal term. This
results in greatly reduced overhead for transient nearfield calculations, considering
that the impulse response requires sampling rates of fs = 128MHz for a peak error
of 10% and fs = 1GHz for a peak error of 1% for the source geometry in Figure 2.2.
The FNM eliminates these high sampling rates, which therefore facilitates much more

efficient utilization of computer memory.

2.3.3 Field 11

The Field II calculations with ‘use_triangles’ are evaluated within the same 81 by
101 spatial grid defined previously for these nearfield calculations, whereas the same
calculations with subdivided rectangular subapertures (i.e., ‘use_rectangles’) are eval-
uated in an 81 by 86 spatial grid that includes an offset from the piston face. The
offset is required for these nearfield calculations, otherwise the error grows exces-
sively large on the piston face, which translates into much longer computation times
for 10% and 1% peak errors. This occurs because subdividing the aperture introduces
a numerical singularity on the piston face. Although Field II reduces the sampling
frequency relative to other impulse response calculations, the exact impulse response
consistently outperforms Field II for these time-harmonic nearfield calculations, and
the FNM evaluated with Gauss quadrature outperforms both of these by a wide mar-
gin. Furthermore, the FNM with time-space decomposition is also considerably faster
than Field II for transient nearfield calculations, and the FNM with time-space de-
composition, unlike Field II with ‘use_rectangles,” allows the computational grid to

extend up to the piston face.
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2.3.4 Smoothed impulse response

Unlike the FNM and the exact impulse response, the smoothed impulse response
requires an offset from the piston face for nearfield calculations. This offset is re-
quired because the denominator in Eq. 2.7 produces a numerical singularity on the
piston face. Despite evaluating the nearfield pressure on a smaller 81 by 86 point
spatial grid, the smoothed impulse response is slower than the FNM and the exact
impulse response for time-harmonic calculations, as demonstrated in Figure 2.4 and
Table 2.2. The exact impulse response is faster than the smoothed impulse response
for these time-harmonic calculations because the exact impulse response is evaluated
with Gauss quadrature, and Gauss quadrature generally converges much faster than
other numerical integration methods that uniformly sample the integrand. For tran-
sient calculations with both exact and approximate impulse response expressions,
uniform sampling is required for convolutions with the FFT. In these transient calcu-
lations, the smoothed impulse response gains some advantage over the exact impulse
response by evaluating the pressure at a smaller number of spatial grid points and by
reducing the problems with aliasing at higher frequencies. Nevertheless, as demon-
strated in Figures 2.4 and 4.3, the smoothed impulse response converges more slowly

than the FNM for time-harmonic and transient nearfield calculations.

2.4 Conclusion

A fast nearfield method is presented for numerical calculations of the pressure gen-
erated by a triangular source. For time-harmonic nearfield computations, the FNM
expression in Eq. 2.10 achieves smaller peak errors in less time than the exact im-
pulse response, the smoothed impulse response, and the Field II program. The results
show that the FNM is 4.39 times faster than the exact impulse response for a 10%

peak error, and the FNM is 3.44 times faster than the exact impulse response for
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a 1% peak error. The FNM is at least an order of magnitude faster than Field II
and the smoothed impulse response for time-harmonic calculations compared at 10%
and 1% peak error values. In transient nearfield computations, the FNM in Eq. 2.11
combined with time-space decomposition achieves a substantial reduction in the com-
putation time relative to exact and approximate impulse response calculations for a
given peak error value. Transient nearfield pressures are evaluated with a Hanning-
weighted broadband pulse, and the resulting transient calculation is transformed into
the superposition of six spatial integrals. The results demonstrate that the FNM with
time-space decomposition is 3.89 and 38.19 times faster than the impulse response for
peak errors of 10% and 1%, respectively, evaluated on an 81 by 101 spatial grid at 85
time points. Comparisons between smoothed impulse response results evaluated on
the smaller 81 by 86 point offset spatial grid and the FNM with time-space decompo-
sition evaluated on the larger 81 by 101 point spatial grid indicate that the FNM with
time-space decomposition is 2.08 times faster than the smoothed impulse response for
a 10% peak error and the FNM with time-space decomposition is 6.7 times faster for
a 1% peak error. Compared to the Field II program, the FNM is at least an order of
magnitude faster for 10% and 1% peak error values. The results also suggest that the
FNM, which eliminates the numerical problems that are encountered in exact and
approximate impulse response calculations, provides a superior reference for nearfield

pressure calculations evaluated with time-harmonic and transient inputs.
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Table 2.2. Number of Gauss abscissas, computation times, and computation times
relative to the FNM that describe the reduction in the computation time achieved
with the fast nearfield method relative to the impulse response and methods that
approximate the impulse response for peak errors of 10% and 1%. The FNM and
exact impulse response results are evaluated for time-harmonic calculations on a 81
by 101 point grid located in the x = 0 plane, and the Field II and smoothed impulse
response results are evaluated on an 81 by 86 point grid in the z = 0 plane that is
slightly offset from the transducer face. (a) For a 10% peak error and (b) for a 1%
peak error.
(a)

Time-Harmonic Nearfield Computations

10% peak error
impulse Field II smooth Field 11

FNM | response | ’use_triangles’ | imp. resp. | 'use_rectangles’

Parameters N=8 N=11 fs = 16MHz fs =32 fs = 32MHz

MH:z N=16x16
Time 0.0938s | 0.4112s 2.7212s 1.0051s 0.8908
Computation 1x 4.39x 29.02x 10.72x 9.5x
time relative
to the FNM

(b)

Time-Harmonic Nearfield Computations

1% peak error
impulse Field II smooth Field 11

FNM | response | 'use_triangles’ | imp. resp. | 'use_rectangles’

Parameters | N=11 N=12 fs=32MHz | fs =128 fs = 48MHz
MHz N=256x256

Time 0.1286s | 0.4419s 3.3993s 4.0130s 218.2492s
Computation 1x 3.44x 26.43 x 31.21x 1697.00 %
time relative

to the FNM
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Table 2.3. Comparisons of computation times, input parameters, and computation
times relative to the FNM that describe the reduction in the computation time
achieved with the FNM and time-space decomposition relative to the exact and ap-
proximate impulse response for specified maximum errors of 10% and 1%. For FNM,
impulse response, Field II calculations with ‘use_triangles’, and Field II calculations
with ’'use_rectangles’, these transient results are evaluated in an 81 by 101 spatial
point by 85 time point grid, and for the smoothed impulse response, the results are
valued at the same temporal points in a restricted 81 by 86 point spatial grid. (a)
For a 10% peak error and (b) for a 1% peak error.

(a)

Transient Nearfield Computations
10% peak error
impulse Field 11 smoothed Field 11
FNM | response | 'use_triangles’ | imp. resp. | 'use_rectangles’
Parameters N=5 | fs=128| fs=16MHz | fs=32 fs = 32MHz
MHz MHz N=16x16
Time 0.4867s | 1.8911s 5.3317s 1.0122s 3.9926s
Computation 1x 3.89x 10.95x 2.08x% 8.2x
time relative
to the FNM
(b)
Transient Nearfield Computations
1% peak error
impulse Field II smoothed Field II
FNM | response | 'use_triangles’ | imp. resp. | 'use_rectangles’
Parameters N=9 fs=1 | fs=64MHz | fs =128 fs = 48MHz
GHz MHz N=256x256
Time 0.6160s | 23.5241s 6.8078s 4.1261s 221.6569s
Computation 1x 38.19x 11.05x% 6.70x 359.81x
time relative
to the FNM
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CHAPTER 3

A 2D Fast Nearfield Method for

Apodized Rectangular Pistons

Although several methods, including the Rayleigh-Sommerfeld integral [6] and the
Field II program [10, 11], calculate the pressures generated by apodized rectangular
pistons, the numerical performance of these methods suffers in the nearfield region.
The numerical evaluation of the Rayleigh-Sommerfeld integral converges slowly in
the nearfield region because of the singularity introduced by the 1/R term, which
approaches infinity when R approaches zero. The Field II program subdivides a
rectangular piston into smaller rectangles and computes the pressure using the far
field approximation for the impulse response of the velocity potential, which also
contains a 1/R term. Thus, the Field II program generates relatively large errors
and converges slowly in the nearfield region, especially near the piston face. To
address this problem for circular pistons, the FNM has been recently extended to
include axisymmetric particle velocity distributions, and the resulting 2D integral
also demonstrates rapid convergence [37]. However, this apodized FNM expression is
specific to pistons with circular or cylindrical symmetry, and methods for modeling

apodized rectangular pistons are still needed.
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To improve the performance of nearfield calculations for apodized rectangular pis-
tons, an apodized FNM expression is derived from the FNM expression for uniformly
excited rectangular pistons. The derivation of the apodized FNM for rectangular pis-
tons begins by subdividing the piston into small uniformly excited subelements. The
total pressure is obtained by superposing by the pressure produced by all of the subele-
ments. After performing a summation variable exchange and integrating by parts,
the apodized FNM expression for rectangular pistons is obtained. Next, the apodized
FNM for transient pressure calculations is obtained by inverse Fourier transforming
the time-harmonic apodized FNM expression. The apodized FNM expression, the
Rayleigh-Sommerfeld integral, and the Field II program are then evaluated in the
nearfield of a square piston that extends 4 wavelengths in both directions. The re-
sults of time-harmonic and transient computations indicate that, when compared to
calculations performed with the Rayleigh-Sommerfeld integral and the Field II pro-
gram, 1) the apodized FNM achieves the smallest errors for a given amount of time,

and 2) the apodized FNM requires the least time to achieve a given error.

3.1 Existing calculation methods

3.1.1 The Rayleigh-Sommerfeld integral

The time-harmonic pressure generated by an apodized rectangular source is also com-

puted with the Rayleigh-Sommerfeld integral (6] via

prvoe](dt a b e—ij
pRaylezgh(xv y,ZJ») = T//f(%”)TdﬂdVy (31)
00

where w is the excitation frequency in radians per second, p is the density of
the medium, c¢ is the speed of sound, vg is the constant normal particle veloc-

ity evaluated on the surface of the rectangular source, k is the wavenumber, and
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R = \/ (z - ,u)2 +(y — v)2 + 22 is the distance between the source point (1,v, 0)
and the observation point (z, y, z). The transient pressure generated by an apodized
rectangular source with a temporal excitation component v(t) is given by the inverse

Fourier transform of Eq. (3.1), which yields

pRaylezgh(x y,zt) = //f( / )d dv, (3.2)

where 9(t) is the time derivative of the 1nput excitation pulse v(t).

3.1.2 The Field II program

The Field II program [10] is a software package that computes transient and steady-
state pressures generated by phased arrays and individual ultrasound transducers.
The Field II program with the use_rectangles option divides each piston source into
small rectangular elements and applies the far field approximation of the spatial
impulse response to each small rectangular element [11], where Field II specifies the
apodization at the center point of each small rectangular element. The accuracy of
the Field II program is dependent on two factors, namely the sampling frequency and
the number of small rectangular elements. With an increase in the sampling frequency
or the number of small rectangular elements, Field II achieves smaller errors, but the

computation time increases accordingly.

3.2 Fast nearfield method for apodized rectangu-
lar pistons

In the derivation that follows, each observation point is denoted by (z,y, z), and each
source point is denoted by (i, v,0). Figure 3.1 shows the coordinate system used in

the derivation and subsequent evaluations. The rectangular source is located in the
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Figure 3.1. Orientation of the computational grid relative to the rectangular source.
The rectangular source, which has width a and height b, lies in the z = 0 plane.
The dashed lines define the extent of the computational grid in the z = a/2 plane.
The extent of the computational grid is 2b by 0,9902/4/\ in the y and z directions,
respectively.
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z = 0 plane, and the origin of the coordinate system O coincides with the lower left
corner of the rectangular source. The apodization function of the source is given by
f(u,v), which is zero outside of the rectangular source. The width of the rectangular
source is a and the height is b.

The FNM expression for a rectangular piston that is excited uniformly is given by
McGough [8]. A more general unapodized FNM expression for a rectangular piston
is obtained from the expression in Chen and McGough [12] for a triangular piston.
Here, the FNM expression for the uniformly excited rectangular piston is denoted
by polu, v)(z,y, z; k), where the subscript '0/ indicates the uniform excitation and p
and v represent the width and height of the rectangular source, respectively. The

nearfield pressure for the uniformly excited piston is given by

ik ]a24 2,24 B2 .
jky/o%+2 +hi_e-]kz

02+h12

pevgelwt 4 7 e
PO[l‘aV](x;y,Z:k)=_“‘%—Z/hz dO', (33)

1=1n,
where o is an integration variable as defined in (8, 12]. The values of m; and n;,
which are functions of x and v, represent the upper limits and lower limits of the
integral, respectively. In Eq. (3.3), the values of (m;,n;) are (my,n1) = (mg,n9) =
(p—z, —x) and (m3,n3) = (my,nyq) = (v -y, —y), and the values of h; are h} =y,
hg =v -y, h3=1x,and hy = p—x for i = 1,2,3, and 4, respectively. According to

Eq. (3.3), there are two special cases, namely

pol0,v)(z,y, z; k) = 0 and pglu,0)(z,y, z; k) =0, (34)

where the subelement has zero width or height, respectively. These special cases are
utilized in the following derivation of the apodized FNM expression for a rectangular

source.
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Figure 3.2. The decomposition of an apodized rectangular source into smaller rectan-
gles, where each small rectangle is Ay wide and Av high. The apodization function
f(u,v) is defined as constant over each small rectangle.

3.2.1 Steady-state Apodized FNM Expression

The pressure field papod(x* Y, z; k) is obtained by subdividing the rectangular source
into N x N small rectangles, where the subscript apod indicates that the pressure
is computed with the apodization function f(u,v). One of these small rectangles is
depicted inside of the rectangular source in Figure 3.2. The values Ay = a/N and
Av = b/N denote the width and the height of each small rectangle in the x and y
directions, respectively, and S[i, j] represents the rectangle at the ith column and
jth row of the subdivision. The four coordinates of the vertices of S[i, j] are given
by ((i — 1)Ap, (j — 1)Au), ((Ap, (5 —1)Ap), (1Ap, jAp), and ((i — 1)Au, jAu)
for the lower left, lower right, upper right, and upper left coordinates, respectively.
The expression p[t, j] = p[iAp, jAV)(z,y, z) represents the pressure produced by the
uniformly excited rectangular source having width {Au and height jAv, where the

lower left corner is located at (0,0), and the aperture function over the rectangle
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S[i,j] is defined by q[i,j] = f(iAu, jAv). The total pressure papod(x,y,z;k) is

approximated by

papod(zvyv z k) = Z Z Q[irj](p[ivj]'*'p[i_ 17— 1] —p[iwj - 1]—p[i_17j])' (35)
i=1j=1

According to Eq. (3.4), p[{,0] =0, and p[0,]] = 0,1l =1, ---, N. By utilizing these

restrictions and rearranging Eq. (3.5),

papod(za Y,z I") =~

N-1N- L.
(qi + 1.7+ 1) —qlt +1,5]) — (qlz,7 + 1] — q[z, 7))
Z XZ: (q J q AI/JA;I, qli.j qli, j AUA#)

1=1

+2p[uv1( ot LNl )

Ap

N-1 . .
v 3 o) (IR AR Ay i Mgy o)
=1

is obtained. Letting N — oo such that Ay — 0 and Av — 0, Eq. (3.6) becomes

papod(l'w Y,z 'l‘) = papod] (1',.% z; k) + papod2(1",y:z; k)

+p(l])0d3(x7 Y,z k) + papod4(x’ Y, 25 k), (37)
where papodl 7,9, 2; k) fa fb %ﬂé-—po[u, v)(z,v, z; k)dudy,
adf(u,
papon(z’y’z'k = - —féupolﬂ,b](x v, k)dp,
b0
Papod3 (T, Y» 7 k) —f,ga—zpo[a v|(z,y, 2z k)d
and Pap0d4(x,y,z;k) = f(a,b)ppla,b](z,y, 2;k). Within these expressions,
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polw, v)(z,y,2; k) is the single integral from Eq. (3.3), so papodl(:r,y,z;k) is ac-
tually a triple integral, papodz(:c,y, z; k) and pap0d3(z,y,z; k) are double integrals
that admit further simplification, and pap0d4(x,y, z; k) is already simplified.

After substituting the uniformly excited fast nearfield method expression

polu, v)(z,y, z; k) from Eq. (3.3), Papodi (z,y,z;k) in Eq. (3.7) becomes

Jwt 52
0 pcvoe f(p,v)
Papodl (z,y,2:k) = Z / // ouov

1=1 nl

ik ] o242 12 .
. jky/0%+2 +hi_e_]kz

02+h12

The derivation of the first two triple integrals

—ZTab 9
L pcvoe]“’ 02 f
Papodl i=1,2(% ¥, 2, k) = uau
00

Xhi

dodudv. (3.8)

-z
ik ] o224 524 2 .
. jky/o%+2 +hi —-e—sz
xh; 573 dodudv (3.9
0%+ h;
is outlined here, where papodl(z,y,z;k) = Papodl =1y, 2 k) +

papodl,'i=2(xv Y, z; k) + papodl’i::}(:r’ Y,2; k) + papod]yi:zl(x’ Y,z k) Let 91,:]_’2(/1')

denote the integral

- ik Ja24 524 B2 .
H . jky/o“+2 +hz’ e—ikz
9i=1,2(n) = / h;

-

do, (3.10)

where h; = y and hg = v — y as indicated above. The function gi=172(p) is defined
in terms of a variable in the upper limit of the integral, so the derivative of 9i=1,2(”)

with respect to u is

8 2
, e—]k\/(p—:c)2+z2+hi _ k2
9,':1,2(/1) =h

(n—1)2 + h22 (3.1)
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After integrating by parts with respect to the variable p, Papodl i=1 o(7,y,2;k) is

rewritten as

o 9i=12W10

, b

t
o pcvpel” f(n,v)
papOdl,i=1,2(Iy Y, Z,k) = - o / [

(3.12)

o
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=
=
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T

/
According to Eq. (3.10), g;—1 2(0) = 0. Substituting the expression for g, _; o(1)

into Eq. (3.12) and performing an exchange of variables yields the following analyti-

cally equivalent expression for the first triple integral,

ab
v pJwit 9
_ /moe fla,v) Of(p,v)
Papod,i=1,2(%: ¥,z k) = / / ( £
00
e—jk\/(y—x)2+22+h22 _ o—jkz
xh; dudv. (3.13)

(u— )2 + h2
The simplification of the third and forth triple integrals

. p=Yabd
. peugel* 0 f(u,v)
papodl,i=3,4(1vy727k) = ——271_—-— —5;:6_1/_
-y 00
—jk\/02+z2+hlz B e_]l‘z
xhi dodudy (3.14
’ o2 + h2 )

in Eq. (3.8) is outlined in the following. Let g.i:3’4(u) denote the integral

v— —j 24,2, 52 .
y . JkyJo“+ze+hs _ e—jkz

g;—3 4(V) = h;
1 3,4( ) ) o2 4 h2
—~y 1

do, (3.15)
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where hg = z and hq = p1 — x as indicated above. The function g;_3 4(v) is defined
in terms of a variable in the upper limit of the integral, so the derivative of g; _3 4(v)

with respect to v is

C e—jk\/(u—y)2+22+hzz ke
. V) = .
9i=3,4 (v —y)% +h2

After integrating by parts with respect to the variable v, Papodl i=3 4(x,y,2;k) is

(3.16)

rewritten as

. a
Jwt 9

oy Pevoe f(p,v) b
Papod1,i=3,4(%:, 21 k) = ——= / [ o 9i=3.4)ly

0

Bf s
gﬂ )gz—l 2(I/)dl/ du. (3.17)
0
/
According to Eq. (3.10), gz-=3,4(0) = 0. Substituting the expression for g,_1 4)

into Eq. (3.12) and performing an exchange of variables yields the following analyti-

cally equivalent expression for the first triple integral,

b
()/(t?f p, b 3f(aA:V))

e—jk\/(u—y)2+z2+h12 _ iz

(v — )% + A2

pcvo eJwt

papodl,z'=3,4(1'vy7 z,k) =

O\.a

X h'i

dudy. (3.18)

By substituting pg(u, bl(z,y, 2; k) and pgla, v|(z,y, z; k) from Eq. (3.3) into
papon(:r, ¥,2;k) and pap0d3(x,y,z; k) and by using integration by parts,
papod2(x’ Y, 2; k) and papod3(mv Y, 2; k) are converted into the sum of two single in-
tegrals and two double integrals, while Papod4 (z,v, 2; k) is already a single integral.
After the four terms in Eq. (3.7) are added and common terms are canceled, the

complete FNM expression for an apodized rectangular piston is:
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2
ab —]k,/a2 +22+h2, ik

npJuwl _
_pevpe
papod(x,yyz; k) E 0 Z//Tllhlz 2 h2 d;l,dl/
=13 o 11
—jky/a2 +22+h2 :
pcvoeJ w t J 2 2i _ —Jjkz
T2zh2z do (3.19)
a? +h2
i= lnz 2
_of u

af (u,v
and Ty3 = T4 = —fg;'—),

the values of ay; are aj] = aj9 = 4 — r and aj3 = aj4 = v — y, and the values

where the values of Ty; are T = Tjg =

of hy; are hy) =y, hygo = v —y, h13 = z, and hjq = p — x. The values of Ty; are
T91 = Tog = f(0,b) and Tog = Toy = f(a,0), the values of ag; are ag] = a9 =
o —z and ag3 = a9y = 0 — y, the values of hy; are hg; =y, hog = b—y, hog =z,
and hogq = a — x, and the values of (m;,n;) are (m,ny) = (mg,n9) = (a, 0) and
(mg,n3) = (my,nyq) = (b, 0) for i = 1,2,3,4.

The apodized FNM expression in Eq. (3.19), which contains the summation of
four double integrals and four single integrals, describes the pressure generated by an
apodized piston for any boundary condition. The apodized FNM expression in Eq.
(3.19) admits further simplification if the apodization function is equal to zero on the

piston edge, where

£(0,v) =0, f(a,v) =0, f(1,0)=0, and f(,b) =0. (3.20)

The boundary conditions given by Eq. (3.20) are equivalent to setting all of the terms
Ty; equal to 0, so the single integrals with respect to o in Eq. (3.19) disappear. The
resulting apodized FNM expression is the summation of the four double integrals with
respect to p and v, so only the first line of Eq. (3.19) is needed when the boundary
values are all zero.

The FNM expression for the uniformly excited rectangular piston is also a special

case of the apodized FNM expression in Eq. (3.19). For the uniform case, the
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