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ABSTRACT

RAPID NUMERICAL EVALUATION OF ULTRASOUND

PRESSURE INTEGRALS AND POTENTIAL INTEGRALS

By

Duo Chen

Analytical expressions are derived for fast calculations of time-harmonic and tran-

sient near field pressures generated by triangular pistons. These fast expressions re-

move singularities from the impulse response, thereby reducing the computation time

and the peak numerical error with a general formula that describes the nearfield pres-

sure produced by any triangular piston geometry. The timedomain expressions are

further accelerated by a time-space decomposition approach that analytically sepa-

rates the spatial and temporal components of the numerically computed transient

pressure. Analytical 2D integral expressions are derived for fast calculations of time-

harmonic and transient nearfield pressures generated by apodized rectangular pistons.

The 2D expressions eliminate the numerical singularities that are otherwise present

in numerical models of pressure fields generated by apodized rectangular pistons. A

simplified time space decomposition method is also described, and this method fur-

ther reduces the computation time for transient pressure fields. The results, compared

with the Rayleigh-Sommerfeld integral, the Field II program and the impulse response

method, indicate that the FNM achieves smallest errors for the same computation

time among those methods. A 1D FNM for calculating the pressure generated by a

polynomial apodized rectangular piston is also obtained. The fast method is based

on the instantaneous impulse response. A trigonometric transform of the integrand is

performed and the order of integration is exchanged to obtain the 1D integral for the

apodized FNM for both apodization functions. The time and error comparisons are

performed among the 1D polynomial apodized FNM, the 2D apodized FNM and the



Rayleigh-Sommerfeld integral. The results show that the 1D polynomial apodized

FNM has the fastest convergence. Analytical expressions are derived for fast cal-

culations of potential integrals. These potential integrals inculde uniformly excited

volume potential integrals, polynomial apodized surface integrals and polynomial

apodized volume potential integrals. The derivation starts with the fast near—field

method (FNM), which originates from ultrasound pressure calculations generated by

polygonal pistons. For potential integrals evaluated over a volume source, the volume

source is first subdivided into subdomains about the observation points. The total po—

tential is the summation of the potential over each submain which can be reduced to

1D integrals. Those calculation methods remove the singularities from the Rayleigh-

Sommerfeld integral by subtracting sigularities in the integrand and thus can achieve

rapid convergence. Simulations results are compared with the Rayleigh-Sommerfeld

integral and the singularity cancellation method evaluated on a 3D grid. The results

indicate that the 1D FNM expressions reduces the computation time or the number

of sample point needed significantly than the Rayleigh-Sommerfeld integral and the

singularity cancellation method for a given number signifcant digits.
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CHAPTER 1

Introduction

1.1 Ultrasound pressure calculations

As increasingly complex transducer geometries are adopted for emerging applications

of ultrasound imaging and therapy, new methods are needed for rapid calculations

of pressure fields produced by these transducers. Fast numerical simulations are es-

pecially important for simulations of phased array structures containing hundreds

or thousands of tranducers that generate pressure in large computational domains.

Simulation methods that either directly evaluate the impulse response [1, 2, 3, 4]

or subdivide each transducer into smaller elements and then superpose the pressure

[5, 6] provide a convenient model for these calculations, but in the nearfield region,

the convergence of these methods is relatively slow [7] Furthermore, numerical im-

plementations of the impulse response for flat unfocused transducers encounter some

difficulties throughout the paraxial region [7, 8, 9].

Pressure fields from uniform planar sources can be calculated using several numer—

ical methods including the impulse response method [1, 2, 3], the Field 11 program

[10, 11], the Rayleigh-Sommerfeld integral [6], and the fast nearfield method (FNM)

[7, 8]. Among these methods, the FNM achieves the smallest error in the least time



[7, 8, 12]. The FNM for uniformly excited rectangular pistons [8] and circular pistons

[7] eliminates the 1/R singularity and therefore avoids problems with large errors in

the nearfield region. The FNM also converges rapidly in the nearfield, which has

been demonstrated for both time-harmonic and transient excitations [7, 8, 36]. For

uniform excitations, the FNM is ideal for nearfield pressure calculations and for ref-

erence calculations that evaluate the numerical errors associated with other methods

[13, 14].

Modeling the nearfield pressure generated by a spatially varying particle velocity

on the face of a rectangular piston is of practical importance for many acoustics

applications [15, 16], where accurate and fast computer simulations are required. Fast

ultrasound simulations are especially important for calculating pressure fields in large

computational domains, specifically steady-state HIFU simulations for ultrasound

therapy [17, 18] and transient calculations for ultrasound imaging [19, 20]. Individual

array elements are typically modeled as single baffled rectangular sources with uniform

surface particle velocities, but the particle velocity on the transducer face is in general

nonuniform. For example, Lin et. a1. [21] shows that the surface particle velocity of

a fluid-loaded piezoelectric element on a phased array is nonuniform, and Borges et.

al [22] demonstrates that the surface velocity of a single array element is apodized

and delayed when matching layers are used.

1.2 Potential integrals

Numerical calculation of potential integrals involved in integral equations are of

great importance in scattering problems. The polynomial function is a very pop-

ular function to approximate the electric and magnetic currents. For example, three—

dimensional polynomials are adopted to approximate the entire-domain normalized

current density by Moraros and Popovic [23] as applied to the optimization of volume



potential integrals involved in the moment-method analysis of 3D dielectric scatters.

The commonly used Rao-Wilton-Glisson basis that is also a linear basis function

which is used to approximate both the magnetic and electric currents [24]. P0-

tential integrals are often singular and direct evaluation of potential integrals may

encounter numerical difliculties. To improve the accuracy of the potential integrals,

singularity subtraction methods [23, 25, 26, 27, 28] or singularity cancellation meth-

ods [30, 31, 32, 33] are often used to acheive better performance. Typically, those

methods manipulate the integrands to eliminate singularties and thus the number

of dimensions over which the integration is performed remains the same for both

methods. This approach is reasonable for general potential integrals; however, more

efficient expressions can be acheived when polynomial apodized potential integrals

are considered.

Potentials generated by uniformly excited plannar source and uniformly excited

plannar source are computed with both the Rayleigh-Sommerfeld integral [6] and the

fast nearfield method (FNM) [7, 8, 12]. The existing FNM achieves much better accu-

racy by eliminating the 1/R singularity in the Rayleigh-Sommerfeld integral and by

simplifying the multiple integral into a single integral. Since the numerical evaluation

of potential integrals with polynomial apodization are routinely evaluated, a similar

fast nearfield method is needed for those integrals to improve the performance.

1 .3 Thesis Content

This dissertation investigates fast pressure calculation methods for planar pistons

and fast potential evaluation methods for potential integrals. Chapter 2 introduces

fast calculations for the time—harmonic and transient pressures generated by tran-

gular pistons. The transient calculations are further accelerated by the time-space

decomposition method. Analytically 2D integral expressions for fast calculations of



time-harmonic and transient nearfield pressures generated by apodized rectangular

pistons are derived in Chapter 3. As a special case of Chapter 3, fast caculations of

pressure generated by a polynomial apodized rectangular pistion are obtained based

on the instantaneous impulse response in Chapter 4. Chaper 5 introduces 1D fast

expressions for calculations of uniformly excited volume potential integrals that are

otherwise represented by a triple integral. Fast 1D calculation expressions for pres-

sures generated by surface integrals and volume integrals with polynomial apodization

are introduced in Chapters 6 and 7. Chapter 8 concludes the thesis.



CHAPTER 2

A Fast Nearfield Method for

Calculations of Time-harmonic and

Transient Pressures Produced by

Triangular Pistons

The substantial reduction in computation time demonstrated by the FNM for calcu-

lations of nearfield pressures generated by circular and rectangular pistons motivates

the derivation of similar integral expressions for triangular sources. After the impulse

response is obtained for right, acute, and obtuse triangular sources, general FNM

expressions for time-harmonic and transient inputs are then demonstrated for a tri-

angular source, and the time-space decomposition of the FNM integral is presented for

a transient excitation. Based on these expressions for the nearfield pressure generated

by a triangular source, computation times are evaluated for the same peak numerical

errors. For time-harmonic inputs applied to a triangular source, results show that

FNM calculations are several times faster than both exact and approximate impulse

response calculations, and for pulsed excitations, results demonstrate that FNM cal-



culations performed with time-space decomposition are also much faster than exact

and approximate impulse response calculations for triangular piston geometries.

2.1 Time-harmonic and Transient Nearfield Pres-

sure Calculations for Triangular Sources

2.1.1 Impulse response calculations for a triangular source

The geometry for a right triangular source with a right angle ABCA at vertex C is

depicted in Figure 2.1a. For this right triangle and the triangles in Figures 2.1b and

2.1c, the impulse response is evaluated at a point directly over the vertex A (indi-

cated in bold in Figure 2.1), where the the orthogonal projection of the observation

point onto the source plane is exactly coincident with the vertex A, and the distance

from the observation point to the source plane along this orthogonal projection is

represented by the variable 2. In Figure 2.1a, the acute angle [CAB = tan—1(s/l)

defines the angular extent of sector EAB with radius m, which has an im-

pulse response of c/(27r) tan-"1(s/l) for (23/0) S t S Wk. The impulse

response for the right triangle AABC contained within the sector EAB is obtained

by subtracting the impulse response of the region ECB between the curved outer

edge of the sector and the near edge of the right triangle so that only the contri-

bution from the right triangle AABC remains. The impulse response of the region

ECB is c/(27r)cos-1(l/m) for Wk S t S MR, and

therefore the impulse response at an orthogonal distance 2 above the vertex A is

c/(27r) tan—1(s/l) for t1 3 t 3 t2

h- (z;t)= c 27r {tan_1 s/l —cos—1—l———} fort gtgt ,
rzght /( l ( ) c2t2—z2 2 3

0 otherwise

(2.1)
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(c) Triangular source with obtuse ABCA

Figure 2.1. Triangular source geometries defined for nearfield pressure calculations.

The nearfield pressure is evaluated above the vertex A (indicated in bold), and the

shape of the triangle (right, acute, or obtuse) is defined by the angle ABCA. The

height of each triangle is indicated by l, and the bases of the individual right triangles

are indicated by s, 31, and 32. The acute triangle in b) is represented by the sum of

two right triangles, and the obtuse triangle in c) is defined as the difference between

two right triangles.



where the values of t1, t2, and 253 are z/c, Wk, andWk,respec-

tively.

For other triangular sources, the impulse response is readily constructed from the

sum or difference between two right triangles. Figure 2.1b contains an example of

a triangular source with an acute angle ABCA at vertex C. The expression for

the impulse response evaluated at a point directly over the vertex A is obtained by

evaluating the sum of the contributions from the right triangles ACDA and ABDA,

each with a right angle at vertex D. The resulting impulse response above the vertex

A in Figure 2.1b is represented by

hsum(z;t) =

c/(27r) {tan—1(sl/l) + tan—1(32/z)} for t1 3 t g t2

2% {tan—1(31/l) + tan—1(52/l) — 2cos—1 (l/m)} for t2 3 t 5 t3

c/(27r) {tan—1(sl/l) — cos-1 (HA-22:77)} for t3 _<_ t 3 t4

0 otherwise

3

(2.2)

where the values of 31 and 32 are selected such that .91 2 32 and the values of t1, t2,

t3 and t4 are z/c, Wk, 2:2 +12 + sg/c, and z2 + l2 + Sig/c, respectively.

Similarly, Figure 2.1c contains an example of a triangular source with an obtuse

angle ABCA at vertex C, where the impulse response is again evaluated at a point

directly over the vertex A, but the impulse response is instead evaluated for the

difference between two right triangles. The impulse response for the triangle in Figure



2.1c is

c/(27r) {tan—1(sl/l) — tan—1(32/l)} for t1 S t _<_ t2

hdz'ff(3;t) = c/(27r) {tan—1(sl/l) — cos‘1(l/\/c2t2 — 22)} for t2 3 t 3 t3 1

0 otherwise

(2.3)

where the values of 31 and .32 are selected such that 31 > 32 and the values of t1, t2,

and t3 are z/c, 22 + l2 + sg/c, and 22 + l2 + s%/c, respectively.

Time-harmonic impulse response calculations

The time-harmonic pressure generated by these triangular source geometries is pro-

portional to the Fourier transform of the impulse response. Therefore, the formula

for the time-harmonic pressure generated by the right triangle in Figure 2.1a is

,jwt - -. . . 2 2 2

cup 18 J — 3 — z .7 _ S _ ,/

Fright(zik)=—9
T{Etan 176 ‘7" —Etan l-l—e 3k 2 +l +3

,/ 2 2 2
2 +1 +3 . l

—'kfi —1
+//——— 6 J cos ———dfi . (2.4)

122-+12
,82—22

The time-harmonic pressures produced the remaining triangles depicted in Fig-

ures 2.1b and 2.1c are obtained by adding and subtracting the contributions of two

right triangles, as for calculations of the impulse response in Eqs. 2.2 and 2.3, respec-

tively.

Transient impulse response calculations

Transient nearfield pressures are computed with the impulse response through the

convolution

pa; t) = 90130) a he; a (2.5)

where the time derivative of the particle velocity t)(t) is evaluated analytically from

the excitation pulse v(t), and the convolution ® is evaluated with the fast Fourier



transform (FFT). In particular, the discrete Fourier transforms of 13(t) and h(z, t) are

computed with the FFT, the results are multiplied, and the inverse FFT is applied to

the product. The forward and inverse FFT routines are computed with the Fastest

Fourier Dansform in the West (FFTW) library [34].

Field II

Field II is a software package [10] that computes the impulse response either by su-

perposing far field contributions from small rectangles or by evaluating expressions

similar to Eqs. 2.1, 2.2, and 2.3. With both approaches, Field II modifies the impulse

response according to the area under the impulse response curve [11]. This modifica-

tion allows Field 11 to reduce the temporal sampling for impulse response calculations,

which are directly applicable to transient and steady—state nearfield pressure compu-

tations.

Smoothed impulse response

The Fourier transform of Eq. 2.5 is

P(z; w) = iwp0V(w)H(z,w). (2.6)

Normally, the excitation V(w) is bandlimited, so the high-frequency components in

the Fourier transform H(z; w) of the impulse response are negligible. To exploit the

bandlimited characteristics of the excitation v(t), the formula for a smoothed impulse

response is given by [35]

_ O(c(t + At/2)) —— O(c(t —- list/2))

”smooth“ 0 : 27rtcAt ’
 (2.7)

where 0(ct) is the area that formed by the intersection of the transducer and the

sphere with radius ct centered at the observation point, and At is the length of the

10



rectangular pulse that smooths the analytical impulse response. The constraint

1

fEmax < E (2.8)

insures proper smoothing, where fEmaa: is the highest-frequency component of the

excitation pulse, and At = 0.02113 in the simulations that follow. The result obtained

from Eq. 2.7 is then directly applied to calculations of the nearfield pressure for time-

harmonic and transient inputs.

2.1.2 The fast nearfield method for a triangular source

Integral expressions that describe the fast nearfield method (FNM) for a triangular

source excited by a time-harmonic input are obtained by replacing the inverse cosine

term with the integral form of the inverse tangent and then exchanging the order of

integration in the impulse response expressions for right, acute, and obtuse triangles.

The procedure is illustrated by:

,/ 2 2 2
Z +l +8 . l

/\/—2—2 e—lkflcos_1—————dfi

2 +1 32 —z2

2 2 2 2 2 2
\/z +l +3 ., ,6 —z —l

2/ e—Jkfltan_1\/
dfi

\/22+l2 l

Z22 ,/ 2
+l+82 / 5 —z2 2e—jkfia2

\/2+12

/3 Vz2+12+s2 jkfi [3 l ,6 ( )

e" d dad . 2.9

0 v 02+z2+l2 02 +12

After defining a new variable of integration and subtracting the singularity at z = 0

 

 

leadfi
 

 

from each integrand, the resulting FNM expression for a right triangle (Figure 2.1a),

the sum of two right triangles (Figure 2.1b) that share a common side of length l, and

11



the diflerence between two right triangles (Figure 2.1c) that share a common side of

length l is

 

_. jLUt I l ' ~ 2 2 2 ' 7

P(z;k) — —pC—”—e—/ B (49’ka" +3 +1 —e_-7k”) do, (2.10)
_ 27;- :1:C 02 + [2

where l represents the height of the triangle, and :1:B and 2:0 represent the x-

coordinates of B and C, respectively. In Figures 2.1a, 2.1b, and 2.10, the values

of (23,320) are (3,0), (31,—32), and (31,32), respectively. Thus, a single FNM ex-

pression represents all three triangle geometries in Figure 2.1, whereas the impulse

response requires a separate expression for each triangle in Figure 2.1.

'IYansient FNM calculations

The inverse Fourier transform of Eq. 2.10 generates the FNM expression for the

transient response. The transient pressure generated by a triangular source above

the vertex A is represented by

zzt =—— —— v t—— 2: +0 +l —vt—z c do, 2.11
p( .) 27r $0 [2+02 C ( /) ( l

where the transient excitation is represented by v(t). By retaining the v(t —- z/6) term

within the integral and subtracting the singularity, Eq. 2.11 maintains the rapid rate

of convergence achieved for time-harmonic calculations with Eq. 2.10.

Time-Space Decomposition

Transient FNM computations are accelerated by decoupling the temporal and spatial

dependence of Eq. 2.11. The time-space decomposition approach, demonstrated pre-

viously for a circular source [36], expands the delayed input pulse v(t - r) in terms of

temporal weighting functions 971(t) and spatially-dependent terms fn(r) that depend

12



Table 2.1. Basis functions for time-space decomposition with a Banning-weighted

 
 

pulse.

temporal basis functions 971(t) 1 spatial basis functions fn('r)

91m = %sin(27rf0t) m7) = cos(27rfOT)

g2(t) = —% cos(27rf0t) f2(7') = sin(27rfOT)

g3(t) = —% cos (2V?) sin(27rf0t) f3(T) = cos 2%; COS(27Tf0T)

g4(t) = $005 2g;- cos(27rf0t) f4(’r) = cos 2a;- sin(27rfOT)

g5(t) = %sin 2a;- sin(27rf0t) f5(T) = sin 2&7": COS(27Tf0T)

96(t) = ésin 2&5!- cos(27rf0t) f6(T) = srn 2V7?- sin(27rf07) 
only on the coordinates of the observation point and the variable of integration 0

through 7' = %\/ 22 + 02 + [2. The decoupled input pulse is thus represented by

N

m — T) = rect (ET—V1); fn(T)gn(t), (2.12)

where the time duration of the pulse is indicated by the parameter W. The decom-

posed pulse in Eq. 2.12 is then inserted into Eq. 2.11, and then time-dependent terms

are factored out of the integral. The result consists of N edge wave terms specified

by

_ pc IB M) t-7
E-n— 27ft IC 02+I2T€Ct W (10' (2.13)

and a direct wave term given by

at

D = —Ev(t — z/c)l/ B ——2——1—-—2-d0. (2.14)

27f $0 (7 +1

The temporal dependence of the edge wave integrand in Eq. 2.13 is eliminated when

the effect of the rect function is instead shifted to the limits of integration. This oper-

ation, which restricts the edge wave contributions by only considering those that have

reached the observation point without completely passing the observation point, com-

pletely removes all temporal variables from the integrand. As a result, calculations of

transient pressure fields are converted into the numerical evaluation and subsequent

superposition of N spatial integrals that are weighted by analytical timedependent

13



terms. Further reduction in the computation time is achieved by storing redundant

edge wave calculations from Eq. 2.13 in the matrix

n(ij)= Z,Umf_7_2___z(‘rl:m2l)_ (2.15)

In Eq. 2.15, tum represents the weights and am represents the abscissas computed

for Gauss quadrature, the value of T[0ml is obtained from the relation T[O’m] =

 

%(/22 + 072” + Z2, and the indices 2' and j indicate the shortest and longest times

that correspond to the limits of integration. The values in Kn(z', j) are initialized

within the computation procedure only for the points that are needed, and then the

time-space decomposition calculations superpose the numerically computed results

of the spatial integrals with analytical time-dependent weighting factors to achieve

a significant reduction in computation time for transient pressure calculations in the

nearfield region.

2.1.3 Superposition calculations with impulse response and

FNM expressions

At observation points away from the normal that passes through a vertex of the tri-

angular source, impulse response and FNM calculations project the observation point

onto the source plane and then superpose the contributions from two or three triangles

as in Figure 2.2. The contributions from three triangles are either added, as shown

in Figure 2.2a for an observation point within the lateral extent of the source triangle

AABC, or added and subtracted as demonstrated in Figure 2.2b for an observation

point outside of the lateral extent of the source triangle. Whether a contribution is

added or subtracted depends on the location of the projected observation point in

the source plane relative to each side of the triangular source.

The FNM admits some additional simplifications for nearfield calculations of pres-

sures generated by the triangle AABC' in Figure 2.2. If the three lines that are co—

14



 

  

 

   
(b)

Figure 2.2. Superposition operations that calculate nearfield pressures generated by

an equilateral triangular source, where each side is four wavelengths long. The vertex

D (indicated in bold) is the projection of the observation point onto the source plane,

which partitions the radiating source into three triangles with sides (ai,bz-,cz-). (a)

The field point is located inside of the equilateral triangular source. (b) The field

point is located outside of the equilateral triangular source.
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incident with the three sides of the source triangle AABC are defined in the general

form E51: + Fig + G,- = 0, then the distances from the projected observation point to

each of the three sides are represented by lz- = lEix+Fiy+Gi|/ E? + F22. Likewise,

the sign of each contribution is defined as S,- = (El-1: + Fiy +Gi)/|Ez-x + Fig + Gil for

coefficients Ei, F11 and G,- chosen such that 32' is positive within the lateral extent

of the source AABC. Furthermore, the lower and upper limits of integration are

defined as ((122 — b? - €22)/(2ci) and (az2 + c? — b?)/(2cz-), respectively. The resulting

nearfield pressure generated by AABC in Figure 2.2 is therefore represented by

_pwejwt

P(:v,y,2; k)= 27,
 

Z3: Eix+Fiy+Gi

i=1 ‘/Ez-2+Fz.2

2 2 2

a-+c——b- _--/———22 2 .
_1_2_CZ_T__L8 3k 0 +2 +lz'_e—sz

x 2 do 2.16

1.2-12.2 .2 +13 < >

Ci

 

Calculations with Eq. 5.4 compute the values of Ci, E2" F21 and C,- only once for each

edge of AABC, whereas the values of a,- and b,- are calculated once for each (x,y)

pair. Unlike the expressions for the impulse response that change depending on the

spatial coordinate, Eq. 5.4 is a general formula that computes the nearfield pressure

with a single expression that is valid at all points in space.

2.1.4 Transient input waveform

Evaluations of the impulse response and the FNM with time—space decomposition are

performed for the Hanning-weighted pulse specified by

1

v(t) = 2 [1 — cos(27rt/W)] sin(27rf0t)'rect(t/W), (2.17)

where rect(t) = 1 if t 6 [0,1] and rect(t) = 0 otherwise. In the simulations that

follow, the input is a Hanning-weighted pulse with a center frequency f0 = 2MHz

and a pulse duration W = 1.5113. Time-space decomposition performed on this pulse

16



with N = 6 yields the entries in Table 2.1, where the spatial edge wave integral

in Eq. 2.13 is evaluated once for each row entry applied to each edge of the source

triangle AABC in Figure 2.2, and then the results are weighted by the temporal basis

functions in Table 2.1.

2.1.5 Error calculations

For time-harmonic nearfield pressure calculations, the numerical error 17(23, y, z) is

defined as the normalized difference between the reference field and the computed

field according to

|P($vya Z) _' Pref(x1y7 Z)l

maxIPTef(a:,y, z)|

 

71(1“, 11, 2) = (2.18)

where Pref“, y, z) is the reference time-harmonic nearfield pressure. For transient

nearfield pressure calculations, the numerical error n(;r, y, 2) between the computed

transient field and the reference transient field is defined by

”PCT, 31, Z; t) ‘Preflx, y, 2; t)”

maxx,y,z ”Prefix, y, 2; 15)“

 

77(1) y) 2:) = , (2.19)

where H - M denotes the energy norm used with respect to time, and 127.8f(:1:, y, z; t)

is the reference transient pressure field as a function of time. The maximum error is

defined as 77mm: = max/33y; 77(513, y, z), and this value is computed for both time-

harmonic and transient excitations.

2.2 Results

All simulation programs are written in C, then compiled and executed within a

Matlab—C language MEX interface. The simulations are performed on an eMachines

T3958 personal computer with a 2.93MHZ Celeron D processor. The operating sys-
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Figure 2.3. Simulated time-harmonic pressure field in the x = 0 plane for an equilat-

eral triangular source with sides equal to 4 wavelengths. The reference field is gener-

ated by the impulse response method computed with 100,000-point Gauss quadrature.

tem on this computer is Fedora Core 3 Linux. All simulations are run sequentially

under similar operating conditions.

2.2.1 Time-harmonic nearfield pressure calculations

Reference pressure distribution

The reference pressure field is computed in Figure 2.3 for an equilateral triangular

source with sides equal to 4 wavelengths. In Figure 2.3, the acoustic field is evaluated

in the a: = 0 plane defined in Figure 2.2. The reference nearfield pressure distributions

in Figure 2.3 are obtained when the impulse response is calculated for all triangles
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with 100,000-point Gauss quadrature. This pressure distribution is selected as the

reference because nearfield pressures computed with 100,000 abscissas produce nor-

malized errors that converge to 15 significant digits throughout the nearfield region,

which represents the smallest error achievable with double precision arithmetic.

FNM and impulse response calculations

The numerical errors and computation times for the fast nearfield method and the

impulse response method are shown in Figure 2.4. For the FNM, the exact impulse

response, and Field II with ‘use_triangles,’ nearfield pressures are evaluated in an 81 by

101 point grid in the :c = 0 plane as shown in Figure 2.3. Field II with ‘useJectangles’

and the smoothed impulse response require an offset due to a singularity on the piston

face and are therefore evaluated on a smaller 81 by 86 point grid. The FNM and the

exact impulse response are evaluated with Gauss quadrature, and all three integrals

corresponding to the three sides of the source triangles are evaluated with the same

number of abscissas. The remaining methods that approximate the uniformly sampled

impulse response (i.e., Field II and the smoothed impulse response) are evaluated

with the midpoint rule as described in the user’s guide on the Field II web site

(http://www.es.oersted.dtu.dk/staff/jaj/field/). Figure 2.4 shows that the error for

a given computation time is consistently smaller with the FNM, where smaller errors

are located nearer to the horizontal axis on the bottom of this log-log plot. Likewise,

the time required to achieve a given error is consistently smaller with the FNM, since

the FNM plot is consistently located to the left of the impulse response plot.

Comparisons between the impulse response and the FNM evaluated for the same

peak error are summarized in Table 2.2. For a 10% peak error, the FNM is 4.39 times

faster than the impulse response, and for a 1% peak error, the FNM is 3.44 times

faster than the impulse response for this grid and piston geometry. Even greater im-

provements are observed for smaller peak error values due to the rapid convergence
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Figure 2.4. Peak normalized error for calculations of nearfield pressures generated

by the triangular source in Figure 2.2 plotted as a function of the computation time.

The results show that the FNM consistently achieves smaller errors in less time than

exact and approximate impulse response calculations for time-harmonic excitations.

of the FNM. Although these values change somewhat for different source and grid ge—

ometries, the FNM is consistently faster than the exact and the approximate impulse

response for nearfield calculations of time—harmonic pressures.

Field II calculations

The Field II simulation program [10] includes the ‘use_triangles’ option for calcula-

tions that model rectangular and triangular pistons as the superposition of triangular

sources. For calculations of time-harmonic pressures with the ‘use-triangles’ option

applied to the source geometry in Figure 2.2, Field II requires a temporal sampling
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frequency of f3 = 16MHz to achieve a peak error of 10%. The computation time

for Field II with ‘use.triangles’ is 29.02 times slower than the FNM evaluated on the

same grid. For time-harmonic calculations, Field 11 with the ‘use_triangles’ option

requires a temporal sampling frequency of f3 = 32MHz to achieve a peak error of

1%. This results in a computation time that is 26.43 times longer than that required

for the FNM evaluated on the same grid.

Field II also provides a ‘useJectangles’ option that introduces a numerical singu-

larity on the piston surface, so the pressure is evaluated on a smaller 81 by 86 point

spatial grid that is offset from the piston face. Field II with ‘useJectangles’ evaluated

on this reduced grid produces a 10% peak error in 0.8908 seconds, which is 9.5 times

slower than the FNM on the full 81 by 101 point grid. For a 1% peak error, Field II

with ‘useJectangles’ computes the result on the restricted grid in 218.2492 seconds,

which is 1697 times slower than the FNM on the full grid.

Smoothed impulse response calculations

Time-harmonic calculations with the smoothed impulse response [35] evaluate the

pressure on a smaller 81 by 86 point spatial grid that is offset from the piston face. The

offset is required for smoothed impulse response calculations so that the singularity in

Eq. 2.7 at the piston face is avoided. For calculations of the time-harmonic pressure

generated by the triangular source depicted in Figure 2.2 and evaluated within an 81

by 86 point subset of the grid shown in Figure 2.3, the smoothed impulse calculation

converges to a peak error of 10% with a temporal sampling rate of f3 = 32MHz.

This computation is completed in 1.0105 seconds, which is 10.74 times longer than

the time required for the corresponding FNM calculation evaluated on a larger 81

by 101 point spatial grid. Time-harmonic calculations with the smoothed impulse

response achieve a peak error of 1% for a temporal sampling rate of f3 = 128MHz.

This computation is completed in 3.9983 seconds, which is 31.26 times longer than
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Figure 2.5. Simulated transient pressure field in the a: = 0 plane for an equilateral tri-

angular source with sides equal to 4 wavelengths. For this calculation, the excitation

is the Hanning-weighted pulse in Eq. 2.17, and the transient pressure is evaluated at

85 time points in an 81 by 101 point grid. The result is plotted at 1.8125/18 after the

initiation of the input pulse.

time required to obtain the FNM result with 1% peak error in Table 2.2.

2.2.2 'D'ansient nearfield pressure calculations

Reference pressure distribution

The reference nearfield pressure distribution for transient excitations is calculated

with impulse response waveforms that are sampled at f3 = 524.288GHz, zero padded,

and convolved with FFTs. The resulting temporal variations in the nearfield pres-

sure, which are evaluated for an equilateral triangular piston with 4 wavelengths on
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Figure 2.6. The peak normalized error plotted as a function of the computation time

for the FNM/time-space decomposition method, the impulse response method, and

methods that approximate the impulse response. These errors and times are evaluated

for transient nearfield calculations of an equilateral triangular source with sides equal

to 4 wavelengths. The excitation for these calculations is a Hanning-weighted pulse

with a center frequency of 2MHz.

each side, are then downsampled and stored at f3 2: 16MHz. The reference field is

calculated for a sound speed of c = 1.5mm/us on an 81 by 101 point spatial grid

evaluated at 85 time points, and the result at time t = 1.8125113 is shown in Figure

2.5. This error reference is accurate to 5 significant digits for calculations in the a: = 0

plane.
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FNM and impulse response calculations

Figure 2.6 shows the numerical error plotted as a function of the computation time

for the FNM with time-space decomposition and calculations based on the impulse

response method. All methods, except for Field II with ‘useJectangles’ and the

smoothed impulse response, are evaluated relative to an 81 by 101 spatial point by

85 time point reference transient pressure distribution. Field II with ‘useJectangles’

and the smoothed impulse response are singular at the piston face, so a smaller 81

by 86 point spatial grid that incorporates an offset from the piston face is again

required for transient field computations. The input for the reference is generated

by a Hanning—weighted pulse with a center frequency of f0 = 2MHz. The transient

nearfield pressures are compared for f5 = 16MHz, which is the original sampling

rate for the FNM calculations and the resulting rate after downsampling for impulse

response calculations. Figure 2.6 shows that the FNM with time-space decomposition

is consistently faster than the impulse response and the methods that approximate

the impulse response. Similarly, Figure 2.6 indicates that the FNM with time-space

decomposition achieves much smaller numerical errors than the impulse response and

approximations to the impulse response.

Table 2.3 shows that the FNM with time-space decomposition achieves a 10% peak

error with 5 Gauss abscissas in 0.4867 seconds. To achieve a 1% peak error, the FNM

with time-space decomposition needs 9 Gauss abscissas and the computation time

is 0.6160 seconds. In contrast, the impulse response method achieves a peak error

of 10% with a sampling frequency of f3 = 128MHz in 1.8911 seconds. To achieve

a peak error of 1%, the impulse response method requires a sampling frequency of

f3 = IGHz and a computation time of 23.5241 seconds. Thus, the reduction in the

computation time with time-space decomposition applied to the FNM relative to the

impulse response is a factor of 3.89 for a peak error of 10% and a factor of 38.19 for

a peak error of 1%.
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Field II calculations

The Field 11 result obtained with the ‘use_triangles’ option for the transient excitation

in Eq. 2.17 requires a sampling frequency of f3 = 16MHz to achieve a peak error of

10%, and the computation time for this combination of parameters is 5.3317 seconds.

For a peak error of 1%, Field 11 with the ‘use_triangles’ option requires a sampling

frequency of f3 = 64MHz, and the computation time is 6.8078 seconds. Therefore,

the FNM with time-space decomposition is 10.95 times faster than Field 11 with

‘use_triangles’ for a peak error of 10% and 11.05 times faster for a peak error of 1%.

Transient Field 11 calculations that subdivide the aperture into small rectangular

sources with ‘useJectangles’ reach a peak error of 10% with a temporal sampling

frequency of f3 = 32MHz in 3.9926 seconds. Field II with ‘useJectangles’ achieves

a peak error of 1% with a temporal sampling frequency of f3 = 48MHz in 221.6569

seconds. Therefore, the FNM with time-space decomposition is 8.2 times faster than

Field II evaluated with subdivided rectangular sources for a 10% peak error and

359.81 times faster than Field II evaluated with subdivided rectangular sources for a

1% peak error.

Smoothed impulse response calculations

Transient calculations with the smoothed impulse response in Eq. 2.7 evaluate the

pressure at 85 time points on a smaller 81 by 86 point spatial grid that is offset from

the piston face. The offset is required in order to avoid the singularity in Eq. 2.7

on the piston face. For calculations of the time-harmonic pressure generated by the

triangular source depicted in Figure 2.2 and evaluated within an 81 by 86 point subset

of the grid shown in Figure 2.3, the smooth impulse calculation converges to a peak

error of 10% with a temporal sampling rate of f3 = 32MHz. This computation is

completed in 1.0122 seconds, which is 2.08 times longer than the time required for the

corresponding FNM calculation evaluated on a larger 81 by 101 point spatial grid.
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Time-harmonic calculations with the smoothed impulse response achieve a peak error

of 1% for a temporal sampling rate of f3 = 128MHz. This computation is completed

in 4.1261 seconds, which is 6.7 times longer than time required to obtain the FNM

result with 1% peak error in Table 2.2.

2.3 Discussion

2.3.1 Time and error calculations

W'hile computer processor speed and memory has increased substantially in recent

decades, the size and complexity of ultrasound therapy and imaging simulations has

grown accordingly. Simulations of large ultrasound therapy arrays are now applied to

thousands of transducer elements and computational volumes spanning hundreds of

wavelengths in three dimensions, and simulations of diagnostic imaging arrays have

demonstrated a corresponding increase in the number of active elements and the

number of scatterers. As a result, large simulations of ultrasound phased arrays can

require 24 hours or longer on modern computers.

For these large simulations, the evaluation of computational time and numerical

error is essential. The computation time remains the primary bottleneck in these

time-consuming calculations, but fair comparisons of computation time also require

calculations of the numerical error. In recent years, evaluations of the numerical error

have been neglected due to the slow convergence of the impulse response and methods

that approximate the impulse response. Figures 2.4 and 2.6 demonstrate this slow

convergence, which is further emphasized by the time-harmonic reference field that

requires 100,000 Gauss abscissas for convergence to 15 significant digits and by the

transient reference field that requires a sampling frequency of f3 =524.288GHz for

convergence to 5 significant digits.

The rapid convergence of the FNM demonstrated in Figures 2.4 and 2.6 suggests
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that the FNM is ideal for calculating nearfield pressure reference fields. In Figure 2.4,

time-harmonic FNM calculations converge within 15 significant digits in less than

one-third of the time that the impulse response requires for convergence within 5

significant digits. Likewise, in Figure 2.6, transient FNM calculations with time-space

decomposition converges within 5 significant digits in less than one-fifth of the time

that the impulse response requires for convergence within 2 significant digits. In these

simulations of a triangular piston source excited by a pulse with a center frequency

of 2MHz, impulse response calculations require a sampling rate of lGHz to achieve

only 2 significant digits of accuracy, whereas the FNM with time-space decomposition

requires only 9 Gauss abscissas applied to each integral and a sampling rate of 16MHz

to achieve 2 significant digits of accuracy throughout the nearfield region.

2.3.2 Advantages of the FNM for time-harmonic and tran-

sient calculations

The computational advantages of the FNM are obtained from several sources. First,

the FNM replaces time-consuming calculations of inverse trigonometric functions with

a ratio of polynomials in the integrand. This reduces the computation time without

increasing the numerical error. Second, the FNM reduces the numerical error by

subtracting a singularity in the integrand. This step, which reduces the numerical

error without significantly increasing the computation time, is particularly effective in

eliminating numerical problems that occur along the edge of the source and through-

out the paraxial region. Third, the FNM defines a single analytical expression that

describes the pressure throughout the nearfield region, whereas the impulse response

requires multiple expressions to define the field generated by a single source. Thus,

relative to calculations that employ exact or approximate calculations of the impulse

response, convergence is faster with the FNM, and the FNM expressions are easier to

evaluate.
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The advantage of the FNM with time—space decomposition is that an integral

expression with temporal and spatial dependencies is replaced with an equivalent

expression that instead evaluates N spatial integrals for each edge of the triangular

source and weights the result of each integral with an analytical temporal term. This

results in greatly reduced overhead for transient nearfield calculations, considering

that the impulse response requires sampling rates of f3 = 128MHz for a peak error

of 10% and f3 = 1GHz for a peak error of 1% for the source geometry in Figure 2.2.

The FNM eliminates these high sampling rates, which therefore facilitates much more

efficient utilization of computer memory.

2.3.3 Field II

The Field II calculations with ‘use_triang1es’ are evaluated within the same 81 by

101 spatial grid defined previously for these nearfield calculations, whereas the same

calculations with subdivided rectangular subapertures (i.e., ‘use.rectangles’) are eval-

uated in an 81 by 86 spatial grid that includes an offset from the piston face. The

offset is required for these nearfield calculations, otherwise the error grows exces-

sively large on the piston face, which translates into much longer computation times

for 10% and 1% peak errors. This occurs because subdividing the aperture introduces

a numerical singularity on the piston face. Although Field II reduces the sampling

frequency relative to other impulse response calculations, the exact impulse response

consistently outperforms Field 11 for these time-harmonic nearfield calculations, and

the FNM evaluated with Gauss quadrature outperforms both of these by a wide mar-

gin. Furthermore, the FNM with time-space decomposition is also considerably faster

than Field II for transient nearfield calculations, and the FNM with time-space de-

composition, unlike Field II with ‘useJectangles,’ allows the computational grid to

extend up to the piston face.
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2.3.4 Smoothed impulse response

Unlike the FNM and the exact impulse response, the smoothed impulse response

requires an offset from the piston face for nearfield calculations. This offset is re-

quired because the denominator in Eq. 2.7 produces a numerical singularity on the

piston face. Despite evaluating the nearfield pressure on a smaller 81 by 86 point

spatial grid, the smoothed impulse response is slower than the FNM and the exact

impulse response for time-harmonic calculations, as demonstrated in Figure 2.4 and

Table 2.2. The exact impulse response is faster than the smoothed impulse response

for these time-harmonic calculations because the exact impulse response is evaluated

with Gauss quadrature, and Gauss quadrature generally converges much faster than

other numerical integration methods that uniformly sample the integrand. For tran-

sient calculations with both exact and approximate impulse response expressions,

uniform sampling is required for convolutions with the FFT. In these transient calcu—

lations, the smoothed impulse response gains some advantage over the exact impulse

response by evaluating the pressure at a smaller number of spatial grid points and by

reducing the problems with aliasing at higher frequencies. Nevertheless, as demon-

strated in Figures 2.4 and 4.3, the smoothed impulse response converges more slowly

than the FNM for time-harmonic and transient nearfield calculations.

2.4 Conclusion

A fast nearfield method is presented for numerical calculations of the pressure gen-

erated by a triangular source. For time-harmonic nearfield computations, the FNM

expression in Eq. 2.10 achieves smaller peak errors in less time than the exact im—

pulse response, the smoothed impulse response, and the Field II program. The results

show that the FNM is 4.39 times faster than the exact impulse response for a 10%

peak error, and the FNM is 3.44 times faster than the exact impulse response for
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a 1% peak error. The FNM is at least an order of magnitude faster than Field II

and the smoothed impulse response for time-harmonic calculations compared at 10%

and 1% peak error values. In transient nearfield computations, the FNM in Eq. 2.11

combined with time-space decomposition achieves a substantial reduction in the com-

putation time relative to exact and approximate impulse response calculations for a

given peak error value. Transient nearfield pressures are evaluated with a Hanning-

weighted broadband pulse, and the resulting transient calculation is transformed into

the superposition of six spatial integrals. The results demonstrate that the FNM with

time-space decomposition is 3.89 and 38.19 times faster than the impulse response for

peak errors of 10% and 1%, respectively, evaluated on an 81 by 101 spatial grid at 85

time points. Comparisons between smoothed impulse response results evaluated on

the smaller 81 by 86 point offset spatial grid and the FNM with time-space decompo-

sition evaluated on the larger 81 by 101 point spatial grid indicate that the FNM with

time-space decomposition is 2.08 times faster than the smoothed impulse response for

a 10% peak error and the FNM with time-space decomposition is 6.7 times faster for

a 1% peak error. Compared to the Field II program, the FNM is at least an order of

magnitude faster for 10% and 1% peak error values. The results also suggest that the

FNM, which eliminates the numerical problems that are encountered in exact and

approximate impulse response calculations, provides a superior reference for nearfield

pressure calculations evaluated with time—harmonic and transient inputs.
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Table 2.2. Number of Gauss abscissas, computation times, and computation times

relative to the FNM that describe the reduction in the computation time achieved

with the fast nearfield method relative to the impulse response and methods that

approximate the impulse response for peak errors of 10% and 1%. The FNM and

exact impulse response results are evaluated for time-harmonic calculations on a 81

by 101 point grid located in the a: = 0 plane, and the Field II and smoothed impulse

response results are evaluated on an 81 by 86 point grid in the :1: = 0 plane that is

slightly offset from the transducer face. (a) For a 10% peak error and (b) for a 1%

peak error.

(a)

Time-Harmonic Nearfield Computations

 

 

10% peak error

impulse Field II smooth Field II

FNM response ’use_triangles’ imp. resp. ’useJectangles’

Parameters N=8 N=11 f3 = 16MHz f3 = 32 f3 = 32MHz

 

 

 

 

 

MHz N=16x 16

Time 0.09385 0.41125 2.72125 1.00515 0.8908

Computation 1x 4.39x 29.02x 10.72x 9.5x

time relative

to the FNM      
 

(b)

Time—Harmonic Nearfield Computations

 

 

1% peak error

impulse Field II smooth Field II

FNM response ’use_triangles’ imp. resp. ’useJectangles’

Parameters N211 N212 f3 = 32MHz f3 = 128 f3 = 48MHz

 

 

 

 

 

MHz N=256x 256

Time 0.12865 0.4419s 3.39935 4.01305 218.24925

Computation 1x 3.44 x 26.43x 31.21 x 1697.00x

time relative

to the FNM       
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Table 2.3. Comparisons of computation times, input parameters, and computation

times relative to the FNM that describe the reduction in the computation time

achieved with the FNM and time-space decomposition relative to the exact and ap-

proximate impulse response for specified maximum errors of 10% and 1%. For FNM,

impulse response, Field II calculations with ‘use_triangles’, and Field II calculations

with ’useJectangles’, these transient results are evaluated in an 81 by 101 spatial

point by 85 time point grid, and for the smoothed impulse response, the results are

valued at the same temporal points in a restricted 81 by 86 point spatial grid. (a)

For a 10% peak error and (b) for a 1% peak error.

(a)

 

 

 

 

 

 

 

      
 

 

 

 

 

 

 

 

      

Transient Nearfield Computations

10% peak error

impulse Field II smoothed Field II

FNM response ’use_triangles’ imp. resp. ’useJectangles’

Parameters N: f3 = 128 f3 = 16MHz f5 = 32 f3 = 32MHz

MHz MHz N=16x 16

Time 0.48675 1.89115 5.33175 1.01225 3.99265

Computation 1x 3.89x 10.95x 2.08x 8.2x

time relative

to the FNM

0))

Transient Nearfield Computations

1% peak error

impulse Field II smoothed Field II

FNM response ’use_triangles’ imp. resp. ’useJectangles’

Parameters N=9 f3 = 1 f3 = 64MHz f5 = 128 f3 = 48MHz

GHz MHz N=256x 256

Time 0.61605 23.52415 6.80785 4.12615 221.65695

Computation 1x 38.19x 11.05x 6.70x 359.81x

time relative

to the FNM
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CHAPTER 3

A 2D Fast Nearfield Method for

Apodized Rectangular Pistons

Although several methods, including the Rayleigh-Sommerfeld integral [6] and the

Field II program [10, 11], calculate the pressures generated by apodized rectangular

pistons, the numerical performance of these methods suffers in the nearfield region.

The numerical evaluation of the Rayleigh-Sommerfeld integral converges slowly in

the nearfield region because of the singularity introduced by the 1 /R term, which

approaches infinity when R approaches zero. The Field II program subdivides a

rectangular piston into smaller rectangles and computes the pressure using the far

field approximation for the impulse response of the velocity potential, which also

contains a l/R term. Thus, the Field II program generates relatively large errors

and converges slowly in the nearfield region, especially near the piston face. To

address this problem for circular pistons, the FNM has been recently extended to

include axisymmetric particle velocity distributions, and the resulting 2D integral

also demonstrates rapid convergence [37]. However, this apodized FNM expression is

specific to pistons with circular or cylindrical symmetry, and methods for modeling

apodized rectangular pistons are still needed.
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To improve the performance of nearfield calculations for apodized rectangular pis-

tons, an apodized FNM expression is derived from the FNM expression for uniformly

excited rectangular pistons. The derivation of the apodized FNM for rectangular pis-

tons begins by subdividing the piston into small uniformly excited subelements. The

total pressure is obtained by superposing by the pressure produced by all of the subele—

ments. After performing a summation variable exchange and integrating by parts,

the apodized FNM expression for rectangular pistons is obtained. Next, the apodized

FNM for transient pressure calculations is obtained by inverse Fourier transforming

the time-harmonic apodized FNM expression. The apodized FNM expression, the

Rayleigh-Sommerfeld integral, and the Field II program are then evaluated in the

nearfield of a square piston that extends 4 wavelengths in both directions. The re-

sults of time-harmonic and transient computations indicate that, when compared to

calculations performed with the Rayleigh-Sommerfeld integral and the Field II pro—

gram, 1) the apodized FNM achieves the smallest errors for a given amount of time,

and 2) the apodized FNM requires the least time to achieve a given error.

3.1 Existing calculation methods

3.1.1 The Rayleigh-Sommerfeld integral

The time-harmonic pressure generated by an apodized rectangular source is also com-

puted with the Rayleigh—Sommerfeld integral [6] via

:jw_P___v0€jwt a. b )3;ij

0 0

where w is the excitation frequency in radians per second, p is the density of

the medium, c is the speed of sound, v0 is the constant normal particle veloc-

ity evaluated on the surface of the rectangular source, k is the wavenumber, and
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R = \/(2: — p)2 + (y — u)2 + .22 is the distance between the source point (12,12, 0)

and the observation point (3:, y, z). The transient pressure generated by an apodized

rectangular source with a temporal excitation component v(t) is given by the inverse

Fourier transform of Eq. (3.1), which yields

R/C)

pRayleigh($ y,z t)—" “(:b/flflfl———-—-dudu, (3.2)

where 1'2(t) is the time derivative of the input excitation pulse v(t).

3.1.2 The Field II program

The Field II program [10] is a software package that computes transient and steady-

state pressures generated by phased arrays and individual ultrasound transducers.

The Field II program with the userrectangles option divides each piston source into

small rectangular elements and applies the far field approximation of the spatial

impulse response to each small rectangular element [11], where Field II specifias the

apodization at the center point of each small rectangular element. The accuracy of

the Field II program is dependent on two factors, namely the sampling frequency and

the number of small rectangular elements. With an increase in the sampling frequency

or the number of small rectangular elements, Field II achieves smaller errors, but the

computation time increases accordingly.

3.2 Fast nearfield method for apodized rectangu-

lar pistons

In the derivation that follows, each observation point is denoted by (13,31,21), and each

source point is denoted by (,1, 11,0). Figure 3.1 shows the coordinate system used in

the derivation and subsequent evaluations. The rectangular source is located in the
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Yil

 
2b  

 0.99112 /4/\ " 
Figure 3.1. Orientation of the computational grid relative to the rectangular source.

The rectangular source, which has width a and height b, lies in the z = 0 plane.

The dashed lines define the extent of the computational grid in the 1‘ = a/2 plane.

The extent of the computational grid is 2b by 0.99112 /4)\ in the y and 2 directions,

respectively.
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z = 0 plane, and the origin of the coordinate system 0 coincides with the lower left

corner of the rectangular source. The apodization function of the source is given by

f (p, V), which is zero outside of the rectangular source. The width of the rectangular

source is a and the height is b.

The FNM expression for a rectangular piston that is excited uniformly is given by

McGough [8]. A more general unapodized FNM expression for a rectangular piston

is obtained from the expression in Chen and McGough [12] for a triangular piston.

Here, the FNM expression for the uniformly excited rectangular piston is denoted

by p0[p, u](x, y, z; k), where the subscript ’0’ indicates the uniform excitation and p

and V represent the width and height of the rectangular source, respectively. The

nearfield pressure for the uniformly excited piston is given by

. m- _' /2 2 2 .
pcvoejwti/Z e ]k a +7: +hi_e-sz

h-

27T z 0'2 + h?

 

pol/1,140.11. 2; k) = do, (3.3)

1:17;,-

where or is an integration variable as defined in [8, 12]. The values of mi and ”2'1

which are functions of p and u, represent the upper limits and lower limits of the

integral, respectively. In Eq. (3.3), the values of (mi, 71,-) are (m1,n1) = (m2,n2) =

(,u—x, —:c) and (m3,~n3) = (7714,714) = (u —y, —y), and the values of h,- are h1 = g,

11.2 = u — y, h3 = :c, and I14 = ,u — :1: for i = 1,2, 3, and 4, respectively. According to

Eq. (3.3), there are two special cases, namely

pol0. 1/](Jc,y. z; k) = 0 and Polfl, 01(1“. 'y, z; k) = 0, (3-4)

where the subelement has zero width or height, respectively. These special cases are

utilized in the following derivation of the apodized FNM expression for a rectangular

source.
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Figure 3.2. The decomposition of an apodized rectangular source into smaller rectan-

gles, where each small rectangle is Au wide and AV high. The apodization function

f(n, V) is defined as constant over each small rectangle.

3.2.1 Steady-state Apodized FNM Expression

The pressure field pap0d(:c, y, z; k) is obtained by subdividing the rectangular source

into N x N small rectangles, where the subscript apod indicates that the pressure

is computed with the apodization function f (,u, V). One of these small rectangles is

depicted inside of the rectangular source in Figure 3.2. The values Au = a/N and

AV = b/N denote the width and the height of each small rectangle in the x and y

directions, respectively, and S[2 j] represents the rectangle at the ith column and

jth row of the subdivision. The four coordinates of the vertices of S[1, j] are given

by ((i-1)A#. (J' -1)A#), (mu, (3' -1)Au), (73AM, J'Au), and ((i-1)Au, J'Alu)

for the lower left, lower right, upper right, and upper left coordinates, respectively.

The expression p[i, j] = p[2’A]r, jAV] (1:, y, 2) represents the pressure produced by the

uniformly excited rectangular source having width iAu and height jAu, where the

lower left corner is located at (0,0), and the aperture function over the rectangle
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S[i,j] is defined by q[i,j] = f(z'A,u, jAu). The total pressure pap0d(x,y,z;k) is

approximated by

pap0d($,y,2;k) 2 Z Z qli.J'l(p[i.J'l+p[i-1,J'- 1] -p[i,J'-ll-pli-1.J'l). (35)

i=1j=1

According to Eq. (3.4), p[l,0] = 0, and p[0, l] = 0, l = 1, , N. By utilizing these

restrictions and rearranging Eq. (3.5),

papodtca ya 2; k) 2

N-1N— . .

qli+1 J'+ll-(1[i+1 J'l)-(q{i J+ll- (11ml)
;1 glpfi]j](( AVA/J, AVAp)

 

+2195 N]( q[’i+1,1:;]#- (Il'i,Nl)A#

 + j:11p[N,j](—Q[N’j +1] Q[N’j])Au+p[N,N]q[N,N] (3.6)
All

is obtained. Letting N —> 00 such that Au —> 0 and AV —* 0, Eq. (3.6) becomes

papodmv y’ 2:; k) = pap0d1($ay1 Z; k) + pap0d2(xa 3’: Z; k)

8

where papodfi:r 31,2 k) =fa fb iffy—>155. Vl(1‘.y, 2; k)dltdv,

a3

pap0d2($7yizik) : — f0P—féZ—ZPOl/J’abl(xayrzrk)dfly

3 .
pap0d3(x.y,2;k) = - 6’ Jégfllpolawl($.y,2;k)dm

and pap0d4(:r,y,z;k) = f(a,b)p0[a,b](:r,y,z;k). Within these expressions,
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p0[p,u](:1:,y,z;k) is the single integral from Eq. (3.3), so pap0d1(:r,y,z;k) is ac-

tually a triple integral, pap0d2(:r,y, z; k) and pap0d3(:r,y,z; k) are double integrals

that admit further simplification, and pap0d4(:c, y, z; k) is already simplified.

After substituting the uniformly excited fast nearfield method expression

POlI‘aVKxai/a Z; ’9) from Eq. (3.3), pap0d1(:r,y, z; k) in Eq. (3.7) becomes

jwtz 62(

, , _p__2__cvo: f(1W!).W) :43]f/—

 

 

i=1nZ-O

e—jk,/02+z2+h2_ e—jkz

x h. dadpdu. (3.8)

2 02 + I122

The derivation of the first two triple integrals

u—x a b
.k _pC’Uo:jwt 82““

pap0d1,i:1’2(xvyizi ): T—aau)

—:r 0 0

_' / 2 2 2 .
h e ]k 0' +2 +hi *e__szd d d (39)

x - a ,u u .

z 02 + h?

is outlined here, where pap0d1(x,y,z;k) = pap0d1,2-:1(:r,y,z;k) +

papod1,z'=2($? y, Z; k) + 19111901115239?)2 .z; k) + 19111902112243?!) Z; k)- Let 9i=1,2(#)

denote the integral

— 2( ) p/x, e—Jk,/02+22+hz. —e‘jkzd (3 0)

'2 u = 1' a. '1
g, 1’2 z 02+h22

—$

 

where h1 = y and h2 = V - y as indicated above. The function 9,21,2(u) is defined

in terms of a variable in the upper limit of the integral, so the derivative of 9,21,2(11)

with respect to ,u is

 

_-.. _ 2 2 2 .
I e J’W/(l‘ 33) +z +hz' _e—jkz

9i:1,2(l1) : hi
 

(,1 — 2:)2 + 1.22 (3'11)
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After integrating by parts with respect to the variable y, papodl i=1 2(rr,y, z; k) is

rewritten as

. b

pcvoejwt / [(3701.11)
pap0d1,i:1,2(xayv Z; k) = _ 27F all 9121,2(#)I8

0

“an > ,um
—/—8—V——gi:1’2(p)dfl du. (3.12)

0

I

According to Eq. (3.10), 9,21,2(0) = 0. Substituting the expression for 91:1 2(a)

into Eq. (3.12) and performing an exchange of variables yields the following analyti—

cally equivalent expression for the first triple integral,

 

b
, Jwt a a

_ ___P____Ct0€ f(aV)_f_(__u,1/)

pap0d1,i=1,2(xiy’z’k): O/a/ (—;— 69—1/—

0

2
he—jk)/(fl_)—:1:)2+z2+hi —e_]kz

 dydu. (3.13)

 

. u—y a b

- ( 'k) __ pcheJWt //32f(/1,V)

pap0d1,z=3,4 1r,y,~, _ 27,. @1611

—y 0 0

—jlc‘/02+zQ+hz2 _ 63—sz

xh- dad/Adz! 3-14z 02 + h2 ( )

in Eq. (3.8) is outlined in the following. Let 9,23,4(11) denote the integral

u— _- /2 2 2 .

9': V = h-
2 3,4( ) z 02+h2

_y z

 do, (3.15)
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where h3 = a: and h4 = p — :1: as indicated above. The function giz3,4(V) is defined

in terms of a variable in the upper limit of the integral, so the derivative of gi:3A(V)

with respect to V is

 

,- 2
I ( ) h e—]k\/(V—y)2+z2+hz. —e—jkz

51-: V = -

z 3’4 z (V-y)2+hz2

After integrating by parts with respect to the variable V, papod1 2:3 4(x,y, z; k) is

 (3.16)

rewritten as

- a

pcvoejwt / [Bfm V)

 

. . _ b

pap0d1,i:3,4(1,y,z,k) — -‘ 2” a“ 9i=3,4(V)l0

0

b0f< ) ’IM/
_/ Bu gi=172(l/)d1/ d,u. (3.17)

0

I

According to Eq. (3.10), 9,23,4(0) = 0. Substituting the expression for 92-:3 4(V)

into Eq. (3.12) and performing an exchange of variables yields the following analyti-

cally equivalent expression for the first triple integral,

 

bt a

_, _p___cv0e9'w an(rub) _Bfmm)
pap0d1,i=3,4(x’y’zik): //(5,u (9p

0 0

,- . 2

e‘Jk\/(V“y)2+z2+hi _ 8.3-]...

(V - y)2 + h?

By substituting Pol/1: b](:r:, y, z; k) and p0[a, V] (:13, y, z; k) from Eq. (3.3) into

 

 x h,- dudV. (3.18)

papod2($7y’ z; k) and pap0d3(x,y,z; k) and by using integration by parts,

papod2(x’ y, z; k) and papod3($’ y, z; k) are converted into the sum of two single in-

tegrals and two double integrals, while pap0d4 (:12, y, z; k) is already a single integral.

After the four terms in Eq. (3.7) are added and common terms are canceled, the

complete FNM expression for an apodized rectangular piston is:
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a b — k +z2+hfi -.J _

-k — pet—Li“; T h \/"12 e Md d
papodcrayaz) )‘—_ 12 1282 ’12,“. V

10 0 “12‘+ 12'

_ 2 .

_p_2__w0:jwt4 ejkf22+z +h2’b- e_]kz

Z [Tm-122,6 2 do (3.19)
. h2 .

izlnz- 022+ 22

where the values of Tli are T11 = T12 = _fléfigfll and T13 = T14 = —6f(i:’u ,

the values of ah- are 0‘11 = 0112 = p -— a: and a13 = 014 = V — y, and the values

of flu are hll = y, h12 = V - y, [113 = :12, and flu = u — :r. The values of T2,- are

T21 = T22 = f(a, b) and T23 = T24 = f(a,a), the values of 022- are 0121 = (122 =

a - :1: and 023 = (124 = a —— y, the values of h2z‘ are h21 = y, h22 = b - y, h23 2: 2:,

and h24 = a — :L', and the values of (mimi) are (m1,n1) = (m2,n2) = (a, 0) and

(m3,n3) = (m4,n4) = (b, O) for 2' = 1,2, 3, 4.

The apodized FNM expression in Eq. (3.19), which contains the summation of

four double integrals and four single integrals, describes the pressure generated by an

apodized piston for any boundary condition. The apodized FNM expression in Eq.

(3.19) admits further simplification if the apodization function is equal to zero on the

piston edge, where

f(0, V) = O, f(a,V) = 0, f(p,0) = 0, and f(p, b) = O. (3.20)

The boundary conditions given by Eq. (3.20) are equivalent to setting all of the terms

ng- equal to 0, so the single integrals with respect to a in Eq. (3.19) disappear. The

resulting apodized FNM expression is the summation of the four double integrals with

respect to p and V, so only the first line of Eq. (3.19) is needed when the boundary

values are all zero.)

The FNM expression for the uniformly excited rectangular piston is also a special

case of the apodized FNM expression in Eq. (3.19). For the uniform case, the
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apodization function is f (,u,V) = rect(p/a)rect(V/b) where rect(t) = 1 if t E (0, 1)

and rect(t) = 0 otherwise. The weak derivative of f01, V) is given by 8f(p, V)/8;» =

601) — 6(p — a) and 8f(,u, V)/8V = 6(V) — 6(V -— b). When this apodization function

is substituted into Eq. (3.19), all terms T2,- are equal to O, and the double integrals

reduce to a single integral, which is the same as po [(1, b] (:r, y, z; k) in Eq. (3.3).

3.2.2 Transient Apodized FNM Expression

The transient response for an apodized rectangular piston is obtained from the inverse

Fourier transform [37] of Eq. (3.19). Defining v(t) as the temporal component of the

transient normal particle velocity v(t) f(V, V), the transient pressure generated by an

apodized rectangular piston is represented by

 

 

 

 

a b

t _ pc 4 T -h .v(t— a¥i+z2+h%i/c)-v(t—z/c)d d

papodcrvyiz’ )— —'—7r 2 12 12 2 +h2 ,U. V

i=10 0 0‘12“ 12'

mi 2 2 2_E Z ['13-th“ — \/a22. +2 + 1%./c) —v(t — z/c)d0 (3 21)

Z Z 2 2 '

2“ 1:17;, “22' + ’2'

where the values of T123 012': h”, T2,, 022': and h22- are listed immediately after Eq.

(3.19) in the previous section. The expressions for the Rayleigh-Sommerfeld integral

in Eqs. (3.1) and (3.2) are analytically equivalent to the apodized FNM expressions

in Eqs. (3.19) and (3.21), but the numerical properties of the two methods differ as

demonstrated in the results shown below.

3.2.3 Apodization function

The apodization function selected for comparisons between the apodized FNM, the

Rayleigh-Sommerfeld integral, and the Field II program is the product of sinusoidal

functions given by
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Figure 3.3. The apodization function f(n, V) = sin(p7r/a) sin(V7r/b) evaluated on the

face of a 4A by 4A square piston. The maximum value of the apodization function is

achieved when p = 2A and V = 2A.

f(u, V) = sin(mr/a) sin(V7r/b). (3.22)

This function corresponds to the lowest order vibration mode of a rectangular mem-

brane with fixed edges [14, 38]. Eq. (3.22) is plotted for an apodized rectangular

source with each side equal to 4 wavelengths in Figure 3.3.

The apodized FNM equations of Eq. (3.19) and Eq. (3.21) admit additional sim-

plification when applied to the apodization function in Eq. (3.22). The apodization

function is the product of two sinusoidal functions, so the apodization function is

separable with respect to the variables y and V. After the derivative of the apodiza-

tion function with respect to p and V is substituted into Eqs (3.19) and (3.21), the
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first and third double integrals contain [(1)3 cos(V7r/b)dV and f6 cos(,uTr/a)dp terms,

respectively. These two integrals are exactly equal to 0, so the first and third double

integrals in Eq. (3.19) and Eq. (3.21) are equal to 0 for the apodization function

in Eq. (3.22) at any observation point. Thus, only the second and fourth double

integrals are needed. Furthermore, in Eq. (3.19) and Eq. (3.21), the second and

the fourth double integrals share several terms. Shared terms in the apodized FNM

equations are always computed once and stored for use in repeated calculations.

3.2.4 Input transient pulse

For transient calculations, the excitation pulse v(t) is specified by the Hanning-

weighted pulse

v(t) = a1 — cos(27rt/W)] sin(27rft)rect(t/W), (3.23)

where rect(t) = 1 if t E (0, 1) and rect(t) = 0 otherwise. In the transient simulations

that follow, the center frequency f0 and the pulse duration W are f0 = 1.5MHz and

W = 2.0115, respectively, for the Hanning-weighted pulse.

3.2.5 Time space decomposition

For transient calculations, most of the computation time is expended while evaluating

v(t - T) in Eq. (3.21) and 1)(t — T) in Eq. (3.2). These terms are calculated at each

time t. The variable T is a function of the observation coordinates only, so T represents

the contribution from the spatial variable. The function v(t — T) can be separated

according to the time space decomposition approach in Kelly and McGough [37]. This

expression is decoupled as

M

v(t — T) = rect (t L—VT) fm(T)gm(t), (3.24)

m=1
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where M=6 for transient FNM calculations with the Hanning—weighted pulse in Eq.

(3.23), W is the length of the pulse, and the fm(T) and gm(t) terms are given in

Table 3.1. The transient input to Eq. (3.2) is decoupled in the same manner, and

the corresponding fm(T) and gm(t) terms for i2(t — T) are given in Table 3.2 where

M = 10 for transient Rayleigh-Sommerfeld calculations with the Hanning-weighted

pulse. A simplified version of the time space decomposition algorithm is outlined

below.

1. Pre-compute and store gm(t) in advance for all values of t.

2. Evaluate T once for each spatial coordinate.

3. Compute the values of each fm (T) term immediately after T is calculated.

4. Calculate the value of v(t — T) according to Eq. (3.24).

By exploiting repeated calculations, this approach dramatically reduces the compu-

tation time without increasing the numerical error.

Table 3.]. Terms that define the time—space decomposition of the Banning-weighted

pulse v(t — T) for transient apodized FNM calculations.

temporal basis functions gm(t) spatial basis functions fm(T)
 

 

910:) = %sin(27rf0t)

92(t) = —% cos(27rf0t)

g3(t) = -% cos ($7?) sin(27rf0t)

g4(t) = %cos ($69 cos(27rf0t)

g5(t) = —% sin (2%?) sin(27rf0t)

96(t) = ésin (21551:) cos(21rf0t)

3.2.6 Error Calculations

 

f1 (T) = cos(21rf0T)

f2(T) = sin(27rfOT)

f3(T) = cos 2a;- cos(27rf0T)

f4(T) = cos 2a;- sin(27rf0T)

f5(T) = sin 21377- cos(27rf0T)

f6(T) = sin EZW- sin(27rf0T)

Two error metrics are used in this paper. One is the normalized error distribution

n(:r, y, z; k), which describes the absolute value of the pressure difference at each spa.

tial point for time—harmonic calculations. The other is the normalized root mean
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Table 3.2. Terms that define the time-space decomposition of the derivative of a

Hanning—weighted pulse iv(t —T) for transient calculations with the apodized Rayleigh-

Sommerfeld integral.

 

 

 

temporal basis functions gm(t) spatial basis functions fm(T)

91 (t) = 7Tf0 cos(27rf0t) f1 (T) = cos(27rf0T)

g2(t) = Trfo sin(27rf0t) f2 (T) = sin(27rf0T)

g3(t) = —7rf0 cos $6!- cos(27rf0t) f3(T) = cos 2131f; cos(27rf0T)

g4(t) = —1rf0 cos 2V? sin(27rf0t) f4(T) = cos 2VWVT' sin(27rf0T)

95(t) = —7rf0 sin 2&9!- cos(27rf0t) f5(T) = sin 26f;- cos(27rf0T)

96(t) = —7rf0 sin ‘21? sin(27rf0t) f6(T) = sin 217i;- sin(27rf0T)

V

g7(t = {£7 sin (%7{7£) sin(27rf0t) f7(T) 2: cos vafi: cos(27rf0T)

98(t) = -1711} sin (2V7?) cos(27rf0t) f8(7') = cos 2‘5?- sin(27rf0T)

27rT
99(t) = —% cos (2??) sin(27rf0t) f9(T) = sin W) cos(27rf0T)

910(t) = {£7 cos (Zr/76;) cos(27rf0t) f10(T) = sin (2V7?) sin(27rf0T) 
square error (NRMSE), which describes the overall error performance with a sin-

gle value. For computed pressure field p(z,y, z; k) and the reference pressure field

prefix, y, z; k), the normalized error distribution n(:r, y, z; k) for each spatial point in

time-harmonic calculations is given by

77(16, :1. z; k) = |P(:r, y, z; k) - Prefixn ,z; k)|/lpref(rr, y, z; k)|max(x,y,z)- (3-25)

The value of n(:r, y, z; k) is shown in each depiction of the error mesh. The normal-

ized root mean square error (NRMSE) across all spatial points for time-harmonic

calculations is

  

NRMSE = Z Ip(1‘,y,2,k)—pref($ay,zik)l2/ Z lpref(z7yizlk)|27

x,y,z 1:,y,z

(3.26)
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where 21mg,2 denotes summation over all of the spatial grid points. The NRMSE

for transient calculations is

  

NRMSE: Z 1111.31.21;t>-p,.ef(x.y,z;t)l2/ Z Ipref(:c,y,z;t)|2,

:c,y,z,t $,y,2,t

(3.27)

where me’zi denotes summation over all spatial and temporal grid points. The val-

ues of the NRMSE are tabulated for each method evaluated in the results section 3.3.

The reference fields prefer, y, z; k) and pref”, y, z; t) for time-harmonic calculations

and transient calculations, respectively, are calculated using the Rayleigh-Sommerfeld

integral.

For nearfield pressure calculations with the apodized FNM expressions and the

Rayleigh-Sommerfeld integral, the number of abscissas in the p and V directions are

the same for a square source. The NRMSE values for both methods are computed as

the number of abscissas ranges from 2 to 100. The number of abscissas for a given

NRMSE is determined by the smallest number of abscissas that has an NRMSE

smaller than the desired NRMSE value. For nearfield pressure calculations with the

Field 11 program, the sampling frequency f3 and the number of small rectangular

elements are the two factors that determine the value of the NRMSE. In these calcu-

lations, the sampling frequency is varied from 16MHz to 160MHz with a step size of

16MHz, and the number of small rectangular elements in each direction ranges from

10 to 60 with a step size of 5. The NRMSE for each combination of the sampling

frequency and the number of small rectangular elements is then computed. The sam-

pling frequency and the number of small rectangular elements for a given NRMSE

are determined by the combination that has the smallest computation time.
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3.3 Results

3.3.1 Time-harmonic pressure calculations

Reference pressure field

The reference pressure field in Figure 3.4 is computed for the apodization function

shown in Figure 3.3. In Figure 3.4, the acoustic field is evaluated in the a: = 2.0A

plane, where the grid in the :1: = 2.0A plane extends from —2/\ to 6A in the y direction,

and the grid spacing in the y-direction is 0.1A. The grid extends from 0.01a2/4A to

1.0a2/4A in the z direction with a spacing of 0.01a2/4A. The computational grid

in the z direction is shifted by 0.0102/4A relative to the source in the z = 0 plane

for all three methods in order to avoid the most severe singularities in this location.

Although the apodized FNM eliminates the worst singularities in the z = 0 plane, the

grid is nevertheless shifted slightly to reduce the problems that the Rayleigh integral

and the Field II program encounter on the piston face. The reference pressure field

shown in Figure 3.4 is obtained using the Rayleigh-Sommerfeld integral evaluated

with 100,000 Gauss abscissas in each direction, and the results are computed on an

81 x 100 spatial grid.

Error distributions

Figures 3.5 and 3.6 shows the normalized error distribution 17(x, y, z; k) between the

reference pressure field in Figure 3.4 and the simulated pressure field computed using

the apodized FNM expression, the apodized Rayleigh-Sommerfeld integral, and the

Field II program with the apodization function specified by Eq. 3.22. The region

near the piston face contains the largest errors for all three methods. The NRMSE

for the apodized FNM evaluated with N = 16 Gauss abscissas in each direction is

0.0005. The apodized Rayleigh-Sommerfeld integral evaluated with N = 16 Gauss

abscissas in each direction has an NRMSE of 0.0450. The Field II program computed
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Figure 3.4. Simulated reference pressure field generated by an apodized rectangular

source with each side equal to 4 wavelengths. The results are evaluated in the a: = 2.0A

plane for a time-harmonic excitation.

with a 48MHz sampling frequency and 30 subdivisions in each direction achieves an

NRMSE of 0.0808.

Time vs. error comparisons for a timebhmmonic input

Figure 3.7 shows the computation times and the error values for nearfield pressure

calculations with a time-harmonic input applied to the apodized FNM, the Rayleigh-

Sommerfeld integral, and the Field II program. In Figure 3.7, the apodized FNM

achieves the smallast errors for a given computation time, and the apodized FNM uses

the least amount of time for a given error value. Comparisons between the apodized
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Figure 3.5. The normalized error distribution 1)(:1:,y, z; k) describes the difference

between the reference pressure field and the computed pressure field for an apodized

4A by 4) source. The error distribution 7) is plotted for a) the apodized FNM evaluated

with 16-point Gauss quadrature in each direction, b) the apodized Rayleigh integral

evaluated with 16—point Gauss quadrature in each direction.
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Figure 3.6. The normalized error distribution r)(z,y,z; It) describes the difference

between the reference pressure field and the computed pressure field for an apodized

4A by 4). source. The error distribution 17 is plotted for the Field II program evaluated

with f3 = 48MHz and 30 subdivisions in each direction.

FNM, the Rayleigh integral, and the Field II program are summarized in Table 3.3. To

achieve an NRMSE of 0.1, the apodized FNM needs 6 abscissas in each direction, and

the computation time is 0.07 seconds. The apodized FNM achieves an NRMSE of 0.01

in 0.18 seconds with 10 abscissas in each direction. Likewise, to achieve an NRMSE

of 0.1, the Rayleigh-Sommerfeld integral needs 12 abscissas in each direction, and

the computation time is 0.29 seconds. The Rayleigh-Sommerfeld integral achieves

an NRMSE of 0.01 in 2.25 seconds with 34 abscissas in each direction. Instead

of evaluating an integral with a certain number of abscissas, the Field II program

subdivides the aperture into small rectangular sources and calculates the impulse
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Figure 3.7. Normalized root mean square error (NRMSE) plotted as a function of

the computation time for time-harmonic calculations with the apodized FNM, the

apodized Rayleigli-Sonunerfeld integral, and the Field 11 program. This figure demon-

strates that the apodized FNM achieves the smallest errors for a given computation

time, and the apodized FNM requires the smallest amount of time to achieve a given

error value.
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response at a specified sampling frequency. To achieve an NRMSE of 0.1, the Field

II program requires a temporal sampling frequency of 64MHz and 20 subdivisions

in each direction, and the result is obtained in 4.61 seconds. The Field II program

achieves an NRMSE of 0.01 with a temporal sampling frequency of 160MHz and

50 subdivisions in each direction. This calculation is completed in 27.91 seconds.

Thus, for an NRMSE of 0.1, the apodized FNM is 4.14 times faster than the Rayleigh

integral, and the apodized FNM is 59.43 times faster than the Field II program. For an

NRMSE of 0.01, the apodized FNM is 12.50 times faster than the Rayleigh integral,

and the apodized FNM is 155.06 times faster than the Field II program. These

results are specific to the grid and piston geometry in Figure 3.3 and the apodization

function in Eq. (3.22). Although the results vary somewhat for different parameter

combinations, the apodized FNM consistently achieves the best performance in time

vs. error comparisons. The apodized FNM is also an ideal reference for time-harmonic

calculations due to the rapid convergence of Eq. (3.19).

3.3.2 Transient field calculations

Reference pressure field

The reference transient field is computed using the transient Rayleigh-Sommerfeld

integral in Eq. (3.2), where the numerical integration is performed with 100,000

Gauss abscissas applied in both the height and width directions. The input pulse is

the Hanning—weighted pulse in Eq. (3.23) with center frequency f0 = 1.5MHz and

pulse length W = 2.0113. The speed of sound is c = 1.5mm/us, and the wavelength at

the center frequency is /\ = 1.0mm. The sampling frequency is 16MHz. The transient

field is evaluated in the :1: = 2.0A plane, where the computational grid extends from

—2)\ to 6A in the y direction and from 0.01a2/4/\ to 1.0a2/4A in the z direction as

shown in Figure 3.1. The reference transient field is calculated on an 81 x 100 spatial

grid evaluated at 192 time points. Figure 3.8 shows two transient plots of the reference
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Table 3.3. Simulation parameters for time—harmonic calculations that achieve nor-

malized root mean square error (NRMSE) values of 0.1 and 0.01. Parameters listed

include the number of Gauss abscissas or the corresponding Field II parameters, the

resulting computation time, and computation time relative to the apodized FNM for

the Rayleigh integral and the Field II program. (a) For a 0.1 NRMSE and (b) for a

0.01 NRMSE.

(a)

Time-Harmonic Calculations

 

 

 

 

 

 

 

0.1 NRMSE

Apodized FNM Rayleigh Field II

Simulation 6 x 6 12 x 12 f3 = 64MHz

Parameters abscissas abscissas 20 x 20 subdivisions

Time 0.073 0.293 4.613

Computation Time 1x 4.14 x 59.43 x

Relative to

Apodized FNM   
 

(b)

Time-Harmonic Calculations

 

 

 

 

 

 

 

  

0.01 NRMSE

Apodized FNM Rayleigh Field II

Simulation 10x10 34x34 f3 = 160MHz

Parameters abscissas abscissas 50x50 subdivisions

Time 0.183 2.253 27.91s

Computation Time 1x 12.50x 155.06x

Relative to

Apodized FNM    
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pressure evaluated at times t = 1.5625115 and t = 3.0625115.

Time vs. error comparisons for a Hanning-weighted input pulse

Figure 3.9 shows the computation times and the numerical errors for the transient

pressure field generated by the Hanning-weighted input pulse evaluated with the tran-

sient apodized FNM, the transient Rayleigh-Sommerfeld integral, and the Field II pro-

gram. For both the transient apodized FNM and the transient Rayleigh-Sommerfeld

integral, the simplified time space decomposition approach is applied as described in

Section 3.2.5. In Figure 3.9, the transient apodized FNM achieves the smallest errors

for a given computation time, and the transient apodized FNM requires the smallest

amount of time to achieve a given error. Comparisons between the transient apodized

FNM, the transient Rayleigh integral, and the Field II program are summarized in

Table 3.4. To achieve an NRMSE of 0.1 with the Hanning weighted pulse, the tran-

sient apodized FNM needs 8 abscissas in each direction, and the computation time

is 0.64 seconds. The transient apodized FNM achieves an NRMSE of 0.01 in 0.72

seconds with 10 abscissas applied in each direction. To achieve an NRMSE of 0.1 with

the Hanning weighted pulse, the transient Rayleigh-Sommerfeld integral needs 14 ab-

scissas in each direction, and the computation time is 1.48 seconds. The transient

Rayleigh-Sommerfeld integral achieves an NRMSE of 0.01 in 8.57 seconds with 34

abscissas in each direction. To achieve an NRMSE of 0.1 with the Hanning weighted

pulse, the Field II program requires a temporal sampling frequency of 64MHz and 20

subdivisions in each source direction, and the result is obtained in 4.68 seconds. The

Field II program achieves an NRMSE of 0.01 with a temporal sampling frequency

of 128MHz and 50 subdivisions of the source in each direction. This calculation is

completed in 24.04 seconds. Thus, for an NRMSE of 0.1, the transient apodized FNM

is 2.31 times faster than the transient Rayleigh integral, and the transient apodized

FNM is 4.66 times faster than the Field II program. For an NRMSE of 0.01, the
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Figure 3.8. Simulated reference transient field for an apodized square source excited

by the Hanning-weighted pulse in Eq. (3.23) with f0 = 1.5 MHz and W = 2.0/\. The

sides of the square source are equal to 4/\. The apodization function is given by Eq.

(3.22). The transient reference pressure, evaluated in the x = 2.0) plane, is computed

with 100,000 Gauss abscissas in each direction using the Rayleigh integral. Results

are plotted at a) t = 1.562511s and b) t = 3.0625113.
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Figure 3.9. Normalized root mean square error (NRMSE) plotted as a function of
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same computation time, the apodized FNM achieves the smallest errors, and for the

same error, the apodized FNM requires the least amount of time.
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transient apodized FNM is 11.90 times faster than the transient Rayleigh integral,

and the transient apodized FNM is 24.04 times faster than the Field 11 program.

Once again, these results are specific to the grid, apodization function, and piston

geometry utilized in this paper. Overall, the transient apodized FNM achieves the

best performance in time vs. error comparisons with the Hanning-weighted pulse.

3.4 Discussion

3.4.1 Large-scale computation

Despite the dramatic increase in processor speeds and computer memory in re-

cent decades, nearfield pressure calculations that numerically evaluate the Rayleigh-

Sommerfeld integral are still very slow. This is especially evident in calculations

performed on large grids, which take an hour or more on the fastest modern desk-

top computers. For example, more than one hour was needed in a recent paper to

compute the reference pressure field in the Fresnel zone for a single element using the

Rayleigh-Sommerfeld approach [14]. More recently, nearfield pressure calculations

with the Rayleigh-Sommerfeld approach for a single element required 117 hours [39]

per simulation to achieve a NRMSE of 10’7. Thus, even for simulations of single ele-

ments performed in the nearfield region, traditional computational methods perform

poorly, and faster methods such as the FNM are needed.

Computation times with the Rayleigh-Sommerfeld integral can also be excessively

long for phased array simulations. Extending the results shown in Tables 3.3 and

3.4 and Figures 3.7 and 3.9 to a linear phased array with 1024 rectangular elements

evaluated on a computational grid with 100 x 100 x 100 points in the x, y, and 2

directions, the Rayleigh-Sommerfeld integral will require about 10 hours for a 0.1

NRMSE and about 80 hours for a 0.01 NRMSE. For the same array evaluated on the

same grid, the FNM will require only 2.5 hours for a 0.1 NRMSE and 6.5 hours for
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Table 3.4. Simulation parameters for transient calculations that achieve normalized

root mean square error (NRMSE) values of 0.1 and 0.01. Parameters listed include

the number of Gauss abscissas or the corresponding Field 11 parameters, the resulting

computation time, and the computation time relative to the apodized FNM for the

Rayleigh integral and the Field II program. (a) For a 0.1 NRMSE and (b) for a 0.01

NRMSE.

(a)
 

 

 

 

 

 

 

   
 

 

 

 

 

 

 

 

   

Transient Calculations

0.1 NRMSE

Apodized FNM Rayleigh Field II

Simulation 8x8 14x14 f3 = 64MHz

Parameters abscissas abscissas 20x20 subdivisions

Time 0.643 1.483 2.983

Computation Time 1 x 2.31 x 4.66x

Relative to the

Apodized FNM

(b)

Transient Calculations

0.01 NRMSE

Apodized FNM Rayleigh Field 11

Simulation 10X 10 34x34 f3 = 128MHz

Parameters abscissas abscissas 50x50 subdivisions

Time 0.723 8.573 17.263

Computation Time 1x 11.90x 24.04x

Relative to the

Apodized FNM   
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a 0.01 NRMSE. Thus, for large—scale computations, the time savings achieved by the

apodized FNM is substantial. The apodized FNM is also an ideal reference for both

time-harmonic and transient calculations.

3.4.2 Time and error comparisons

In addition to the results presented shown in Tables 3.3 and 3.4 and Figures 3.7

and 3.9 that compare the Rayleigh-Sommerfeld integral and the apodized FNM, the

individual computation times and error values were also determined as a function of

the number of abscissas. Those results show that, for a given number of abscissas, the

apodized FNM achieves much smaller errors than the Rayleigh~Sommerfeld integral,

and the computation time of the apodized FNM is slightly less than that of the

Rayleigh integral for the same number of abscissas. Therefore, the rapid convergence

of the apodized FNM is responsible for the enhancement in performance relative to

other methods. However, fair comparisons of these methods require the evaluation

of both times and errors as shown in Tables 3.3 and 3.4 and Figures 3.7 and 3.9.

Otherwise, a method that generates large errors in a similar amount of time or a

method that requires much more time to achieve a similar error could be incorrectly

identified as having comparable performance. The method with superior performance

should consistently achieve the smallest error in the shortest time.

3.4.3 Apodization functions

Eq. (4.24) and Eq. (3.21) can be applied to a large class of apodization functions. The

only requirement for the apodization functions is that 8f(n, V)/3p and 6f(a, V)/8u

exist. Other approaches have different requirements. For example, Fresnel approxi—

mations have been obtained for several apodization functions including exponential,

sinusoidal, Gaussian, or error-function apodization functions [14]. One restriction

for these Fresnel approximations is that the surface velocity distribution should be
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separable such that f(pm) = fflp)fy(1/). The advantages of the apodized FNM

expressions in Eq. (4.24) and Eq. (3.21) are that: 1. separability of the apodization

function is not required, and 2. accurate results are obtained very close to the piston

face.

Pressures generated by a Gaussian apodization function [40, 41, 42], given by

f(p, V) = e-(”_u0)2/20"2‘e_(V_V0)2/203 Where #0, V0, 0“, and 0;; are constants,

were also evaluated with Eq. (4.24). When the Gaussian apodization function is

applied, the entire expressions in Eqs. (4.24) and (3.21) are needed because the

T2,- terms are nonzero in this case. Furthermore, the integration limits of the single

integrals are either (0, a) or (0, b), so the abscissas and weights computed for the

single integrals can also be used for the double integrals. The computation time

needed for all terms in Eqs. (4.24) and (3.21) is only slightly more than that needed

to evaluate only the double integrals, especially when the number of abscissas is larger

than 10 in one direction.

3.4.4 Time Space Decomposition

The expressions for the transient nearfield pressures are computed with the simpli-

fied time space decomposition approach outlined in section 3.2.5 for both the tran-

sient apodized FNM expression and the transient Rayleigh-Sommerfeld integral in

Eq. (3.21) and Eq. (3.2), respectively. The simplified time space decomposition

approach provides an important advantage in that, unlike the original time space de-

composition method described by Kelly and McGough [36], one dimensional and two

dimensional nearfield diffraction integrals are readily computed. The original time

space decomposition method of Kelly and McGough [36] stores a 3D K matrix that

captures the arrival and departure information for a finite duration pulse, where the

transient pressure propagation is described by a single integral FNM expression. Ex-

tending the original time space decomposition to handle transient calculations with
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the 2D apodized FNM expressions in Eq. (3.21) or the Rayleigh-Sommerfeld integral

in Eq. (3.2) involves replacing the three dimensional K matrix with a complicated

five dimensional K matrix. With the simplified time space decomposition approach,

no matrix storage is needed. Thus, the algorithm complexity and the memory us-

age are greatly reduced. The simplified time space decomposition in section 3.2.5 is

preferred for transient calculations with 2D integrals, where a significant reduction

in the computation time is achieved relative to other approaches without increasing

the numerical error. For transient calculations with 1D integrals, there is a trade-off

between the simplified time space decomposition and the original time space decom-

position method. The original time space decomposition requires more memory, is

more complicated to program, and is slightly faster, while the simplified time space

decomposition is much easier to program.



CHAPTER 4

A 1D Fast Nearfield Method for

Rectangular Pistons with

Polynomial Apodization

Pressure fields generated from apodized rectangular sources are readily calculated us-

ing the Rayleigh-Sommerfeld integral [6] and the analytically equivalent 2D apodized

FNM expression [43]. Both of these methods evaluate double integrals, which handle

various types of apodization functions. However, the numerical performance of those

methods are quite different. Numerical calculations of the Rayleigh-Sommerfeld in-

tegral converge very slowly in the nearfield region due to a 1 /R singularity. The

performance of the 2D apodized FNM is much better than the Rayleigh-Sommerfeld

integral in the nearfield since the singularities have been eliminated. Thus, the 2D

apodized FNM is a better choice if a general 2D apodization function is given. How-

ever, the computation time can be reduced further if the 2D FNM integral can be

converted into a 1D FNM integral. This is achieved with polynomial apodization

functions.

To improve the numerical performance of nearfield calculations with polynomial
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apodized rectangular pistons, a 1D polynomial apodized FNM expression is derived

from the instantaneous impulse response proposed by Scarano et al [44]. The deriva-

tion of the apodized FNM for rectangular pistons starts by convolving the instanta-

neous impulse response with the polynomial apodized particle velocity. Then, after

obtaining a double integral and specifying the particular polynomial apodization func-

tions, the inner integral can be integrated analytically, and the polynomial apodized

FNM is obtained. Two polynomial apodization functions are considered, where one

is a 1D quadratic polynomial and the other is the product of two 1D quadratic poly-

nomials. The results show that the convergence of the polynomial apodized FNM is

much better than the 2D apodized FNM and the Rayleigh-Sommerfeld integral for

both of these apodization functions.

4.1- Polynomial apodization derivation

4.1.1 Instantaneous Impulse Response

The instantaneous impulse response [44] is obtained at a fixed time t on a specific

plane where the value of z is a constant. The spatial particle velocity distribution

3(33, y) on the piston face is given by

s(:r, y) = u(:r)rect(:c/a)w(y)rect(y/b) (4.1)

where u(a:) and w(y) are the normal particle velocity distributions on the vibrating

surface along the x and y directions, rect(x) = 1 for [2:] S 1 and rect(x) = 0 for

|:c| > 1 and a and b are the width and height of the rectangular piston in the :1: and

y directions, respectively. The separable particle velocity distribution can also be

expressed by means of two-dimensional convolution as

8(17, y) = (11(I)I‘ect(1‘/ a')<5(y)) * *(w(y)rect(y/b)5(l*)) (4-2)
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The impulse response h(z; t) is given by

6(1‘ — 7‘0)

h(z; t) = %u(x)rect(x/a)6(y) * * w(y)rect(y/b)6(z) * a: r0

6

= 27141?ereCWB/a)(y)* *f(I 31) (43)

where r = V152 + 312, and To = V c2t2 — 2:2. The instantaneous impulse response for

y > b is given by [44]

0 r0<y—-b

C9K,€h%K—£—) y-bSr Sy+b

h(z;t)= E 1 2 (Hal 0 , (4-4)

7r29([6{1, £2))(rect(aT—il)

 

 

—,(g3 gummy—$12)] r0 2 y + b

_Owh/TQ-rz-y)
where 9((61,€2)::_f€12u<003-062)”? d6, $1 2 «7‘3 — (y — b)2,

 

$2 = \/""(2) - (y + (1)2151: max(:1: ‘ a, -131), 63 = max(:z: — a, —:1:2),

52 = min(:z: + (2,131), {4 = min(:1: + a, 1:2).

The apodized pressure based on these expressions is readily extended to all values

of 3].

4.1.2 Time-harmonic pressure calculations

The time-harmonic pressure generated by a polynomial apodized rectangular piston

is given by

+oo

P(:1:,y,z;k)=jwpejwt / e_JWTh(z;’r)dT (4.5)

—00
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where w is the excitation frequency in radians per second, p is the density of the

medium, h(z; t) is the instantaneous impulse response in Eq. (4.4) which accounts for

the apodization, k is the wavenumber, and t is the elapsed time. Distance parameters

are defined as (11: \/(x—a)2+(y-b)2+22, d2 = \/(x—a)2+(y+b)2+z2,

d3 = \/(:c+a)2+(y—b)2+z2, and d4 = \/(x+a)2+(y+b)2+z2, and then

  

  

h(z;t) in Eq. (4.4) is substituted into the pressure calculation expression in Eq.

(4.5). For :1: 2 a, the expression for the nearfield pressure is obtained,

6 3 "12' —jkfi "22'

P(:1:,y, z; k) = ? Z (112' e f(€7fi)d€d!87 (4-6)
7r ’ m . m .

2:1 12 22

where the values of qz- are qll = q12 = 1 and q13 = —1, the values of (mlz‘fllli)

are (m11,n11) = (d3,d4), (m12,n12) = (d1,d3), and (m13,n13) = (d2,d4), the

values of ("12237120 are (7n21,n21) = (:1: — a,:r + a), (m22,n22) = (:1: — man), and

(m23m23) = (I - 0,12), and f(€,fi) = Uf-T - {WM/T3 - $2 - IDA/32 - 22 - £2-

The inner integrals £7,322 f ((5 , fi)d§ in Eq. (4.6) can be represented as the sum of

 

two integrals,

712.,- 7122: 0

/ mmdg = / mm: + f(€,fi)d€- (4.7)
"122' 0 "122'

Using Eq. (4.7), the pressure expression for 2: 2 a and y 2 b in Eq. (4.6) forms six

double integrals which are given by

3 711' '. 712'

P($,y.z;k) = 56;; Z 011/ z fjwf Z f(€,5)d€dfi
i=1 77212“ 0

3 711' . 0

5; q1z‘ / if?“ f(£,fi)d€d/3 (4.8)
i=1 "‘12” "122'

And by combining the limits in the outer integral, Eq. (4.6) can be simplified as

713' _-,. 714'

P<x.y,z;k> = £21127: / 2e 43/0 WWW/3, (49)
23:1 m3i
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where the values of qz- are gm 2 q24 = —1 and q22 = q23 = 1, the values of

(manner) are (m3iin31) = ((11,612), (m32vn32) = (613,614), (m33m33) = ((11,013)

and (m34,n34) = (d2,d4), and the values of 17.4,- are 7241 = :1: - a, n42 = a: + a,

1143 = 1:1, and 1144 2 51:2, and f(§,fi) = u(:1: — £)w( r8 -— x2 — y)/\/fl2 — 22 — £2.

 

4.1.3 1D quadratic apodization

In the derivation of the FNM expressions for 1D quadratic apodization, the apodiza-

2
tion function u(:c) is a quadratic function with u(x) = p + qx + r1: , where p,

q, and r are constant coefficients and w(y) = 1. Then, u(:r - 5) is written as

u(:1:—-§) = A+B€+C§2, where A =p+qx+rx2, B = —(q+2rx), and C: r and

w( r8 - 2:2 — y)=1. The inner integral in Eq. (4.9) is computed as

£2 dg

/ “(5’3 ’ 0““— : Iterml + Iterm2 + Ite'rm3’ (4'10)

0 7.2 _ £2

0

where Iterml = (A + 2CT3) tan—1 (62/ V T8 _ 6%), 11:8er 2

— (B + %C€2) [Hg — €2,1term3 = By/fl2 — .22, and r0 = V52 - 22.

The first term

After substituting the first term from Eq. (4.10) into Eq. (4.9), the tan—1(-) term

is converted into an equivalent integral expression using the identity tan‘1(:z:) +

tan"1(1/:1:) = 7r/2. The tan—1(-) term then becomes

:r—a
1

\/fi2-22-($-a)2

tan
 

 

 

 

2—22— ,H, 2 _ a

g- /0\/fl ( ) a: do. (4.11)

(a: —a)2+02
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By substituting Eq. (4.11) into Eq. (4.9) and exchanging the order of integration,

the pressure calculation result for Iterml in Eq. (4.10) becomes

 

Pterm1($,y,2;k)2:2(13
1/"3/29w:2?sz , (4.12)

where the values of the q,- are q31 = q33 = 1 and q32 = q34 = —1, the values of 0,- are

01: J02+(x—a)2+22, 02 = \/02+(x+a)2+22, 03 = \/02+(y—b)2+22,

and a4 = \/02 + (y +b)2 + 22, the values of (mt-,ni) are (m1,n1) = (m2,n2) =

   

 

(y — b,y + b) and (m3,n3) = (m4,n4) = (a: — a,a: + a), and the values of h,- are

hl =x-a, h2=x+a, h3=y—b, and h4=y+b.

The four integrals in Eq. (4.12) are double integrals, but the inner integral with

respect to ,6 can be evaluated analytically. The resulting 1D integral for Eq. (4.12)

is given by

 

(-Ak2 C)h- _-k. _-k
PteTm1(:c,y,z;k) 2:2q3i/:i|:jk3(h2+02)2(6 .7 Uz—e J z)

 

+jC C }- _-- . _- ..

+2—19hi63-Jj2kaz-[pl2lz 2(01'8 Jkal—Ze 1164)] d0. (4.13)

z- +0

2

The second term

Substituting Iterm2 into each double integral in Eq. (4.9) and performing the change

 

the variable 0 = \/132 — 2:2 —— 6% produces the analytical expression given by

—jk0‘- 2
e 20

Pterm2<T y z; k) _‘78 i§:1:q2z/:z(_7—) d0

2

+11) (6-3-m3 _ e—jkdl) _ y_fb (e—jkca _ (M2)
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4 n- —jk0’z‘ 2

~22 Q2'ihz' / Z (:4) da, (414)
. m. 0'

2:1 1
z

where the values of the (122' are gm 2 q24 = —1 and (122 = q23 = 1.

The third term

After substituting Iterm3 into Eq. (4.9), the integrands of all four double inte-

grals are the same. The first and fourth double integrals can be combined to form

 

a new double integral with the integration limits from \/(:c — a)2 + (y - b)2 + 22

 

to \/(a: + (1)2 + (y + b)2 + 22 with the integrand —e‘jkflB £32 - 22, and the sec-

ond and third double integrals are combined into a double integral with the inte-

  

gration limits from \/(x — (1)2 + (y — b)2 + 22 to \/(x + a)2 + (y + b)2 + 22 for the

integrand e’jkfiBVfi2 — Z2, thus

Pterm3($v y, z; k) = 0. (4.15)

The final equation for the 1D quadratic apodization

The total pressure in Eq. (4.9) is the sum of three terms given by Eq. (4.13), Eq.

(4.14) and Eq. (4.15), where P(;r, y, z; k) = Pterm1($a y, z; k) + Pterm2(33v'ya z; k) +

Pterm3(xv y, z; k), which is

 

4 n- . 2
c z 3(Ak -C' h- _- . _-

P($,y’z;k) : 57.; Z q3'i/I [ ) 2 (e JkO'z _ 6 JkZ)

 

(32' —'k- C h' —'k- —'k
_ . J 0 _ l . .7 0 _ .7 Z

+2khze 2+k2h22+02 (ale 2 ze ) d0

2 n- —jk0" 2

c z e 20

i=1 "‘2' Z
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+§7cl3 (e—jkd3 _ e—jkdl) _ yjjfkb (e—jkd4 _ e—jkd2)]

4 n- —jk0’z' 2

——£ (12,12,- / z (g___0_) do. (4.16)
47r , m-

z=1 2 of

4.1.4 2D Quadratic apodization

In the derivation of the FNM expression for 2D quadratic apodization, the apodization

functions u(a:), w(y) are quadratic functions with u(:1:) = p1 +qla: +r1$2 and w(y) =

P2 + (1211 + 7‘2y2

resulting expressions for u(:r — 5) and w(‘ (7(2) — {2 — y) are

, where p1, ql, 7‘1, 192, qg, and Q are constant coefficients. The

11(11: — 5) = 141+ Blé + 0162

rah/1‘3 — £2 — y) = A2 + Bm/rg —§2 +C2(rg —§2)

Where A1 = P1 + (1193 + 7‘12, Bl = -(41 + 27130.01 = T1, A2 = 102 - (121/ + r2312,

32 = (p2 - q2y), 02 = 7‘2, and r0 = (M32 — 22.

The inner integral in Eq. (4.9) is computed as

52 urn/r3 - a?) - M

f “(33 - E) 2 2 = Iterml + Iterm2 + Iterm3

0 ‘/TO _g

where Iterml = §(C1C'2T3 + 401242712) + 4A1C2Tg + 8141/12) tan (7%) ,

r —5
0

1
Iterm2 = \(7'8 — {3862(4A1C2—CIC2T3+20102§%—4A2C'1)-VT?) —- 62(311‘12-1-

:1;3102(T(2) - £2» and Iterm3 = 1130182§3 + %BIBQ{% + A1326 .

 (4.17)

The first term

The Iterml is rewritten as
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T(,8) = t1fi4 + be? + (£3

where t1 = §0102, t2 = gay/12 + A102) — $010222 and t3 = $010254 —

$42142 + A102)22 + .4142.

Substituting the first term Iterml from Eq. (4.17) into Eq. (4.9) and transforming

tan—1(-) according to Eq. (4.11), the pressure calculation result for the first term

Ite'rml in Eq. (4.17) becomes

 

_' h

Pterm1—2D($ 31,2 k) - 2132/‘/(:T(fi ejkfldfi 2 2 d0 . (4.18)

2
hi + 0

where q31—— q33——- 1 and q32 = q34-_—

The inner integral in Eq. (4.18) is computed analytically

o . o .

/ e—Jkflrmw = e—Jkflulfi‘l + :25? + t3)dfi

02' ‘72"

1 _ - .

—_— fie 9W(T1 44 + T253 + T362 + T4fi + T5)|32.

where T, ___ 411:4, T2 : 4jk3t1, T3 = 12k2t1, T4 = 2jk3t2 — 243441, and T5 =

2t2k2 — t3k4 — 2441.

The first integral in Eq. (4.18) is given by

Pterml—2D($v y, Z; k) =

 

712‘

. 5 Z 932‘] [Tlhz' (02 + (12)8—jk01 + h(2le2 +T202' +T3)e—jkaz’

—]k 271' 2:1 ml-

e—jkai _ e—jkz

hzz+a2

02'8 —jk0i_ Ze—jkz

+11 T252 +T
1(2 4)2 U244}?

+ (T124 + z2T3 + T5)h,-  

(4.19)
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The second term

Substituting Iterm2 in Eq. (4.17) into each double integral in Eq. (4.9) and perform-

 

ing the change the variable a = \/B2 — 22 — 5% produces the analytical expression

given by

Pterm2—2D(Iv 3” Z; k) =

4 mi —jk0- 1 2 2
Z (121' m e 2 g0h.i(4A1C'2 -— 414201 + 010'th- — 01020 )

i=1

1 2 / 2 2 1 2 2 U
—a(BlA2+§BlC20 )+ a +hi(B1A2+§-(a +hz')) U—ida, (4.20)

where the values of the (122' are gm 2 gm = —1 and gm 2 q23 = 1.

The third term

Substituting Iterm3 in Eq. (4.17) into each double integral in Eq. (4.9) and perform—

 

ing the change the variable a = \/[32 -- 22 — 5% produces the analytical expression

given by

Pterm3—2D($’ y, Z; k) I

:31? (go B2h113+éBlBgf€+ A1B2h1) (‘3—jkd2 " e—jkdl)

+327 (£013.27)? + $131th? + AlBth') (e_jkd4 ‘ ‘3—jkd3)

1:1;013203 + %BIBZU2 + A1320) 0

 

n. .A (

+22-lz3q2i/ ze—JL’Ul 0- do. (4.21)

7nz- z
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The final equation for the 2D quadratic apodization

The total pressure in Eq. (4.9) is the sum of the three terms given by Eq. (4.19), Eq.

(4.20) and Eq. (4.21), thus

P2D(xay12; k) = Pterm1—2D(x7 ya Z; k)

+Pterm2—2D($w y, z; k) + Pterm3—2D(xiy’ Z; k)' (4°22)

4.1.5 The 2D apodized FNM

To obtain the formula for the 2D apodized FNM, origin of the coordinate system needs

to be shifted from the center of the source to the lower left corner of the rectangular

source. The observation point (331,311, 21) is then defined as

xl=x+a

31:2.

The time-harmonic pressure generated by an apodized rectangular source computed

with the 2D apodized FNM is now given by

- 2 2 2 .
2a2b e_]k\/ali+zl+h12 e-Jk21
 

 

jwt _

. _ _pcr_)__0:

Papod($1,yl,21,k) — Z/[Tlihlz‘e 02 +h2 dfldV

2:10 0 12' 12'

_ / 2 2 .

_p—2__a10:th4jk a2z+z1+h2i_ €_‘7 1921

Z /TQihgze 2 do (424)

a .+h2 -
i=1nz 22 22

where the values of le' are T11 = T12 2 _0f 1;,1/ and T13 = T14 = _0f ’Z’V ,

the values of ah- are 0‘11 = (112 = p — 2:1 and 0:13 2 0114 = 1/ — yl, and the values
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of h12’ are hll = y1,h12 = z/ — y1,h13 = 2:1, and h14 = p - $1. The values

of T22- are T21 = T22 = f(0,2b) and T23 = T24 = f(2a,0), the values of 022- are

0121 = 0122 = 0 - 2:1 and (123 = 0224 = a — yl, the values of h22’ are I221 = 3,11,

h22 = 2b — yl, I223 = x1, and hu 2 2a — 2:1, and the values of (ml-,ni) are

(m1,n1) = (7722,222) = (2a, 0) and (m3,n3) = (m4,n4) = (2b, 0) for 2' = 1,2,3,4.

4.1.6 The Rayleigh-Sommerfeld integral

The time-harmonic pressure generated by apodized rectangular source is also com-

puted with the Rayleigh—Sommerfeld integral [6] via

. 'wt 2a 2b _ 'kR

pr'voe] 6 J

PRayleighC‘lJ/lazvk) =T f(#,I/) R dpdu, (4.25)

0 0

 

 

where R = \/(a:1 — m2 +(y1 — V)2 + 2% is the distance between the observation

point (x1, y1, 21) and the source point (a, V, 0).

4.1.7 Error Calculations

Let P(:L', y, z; k) represent the computed pressure field, and let Pref(:r,y, z; k) repre-

sent the reference pressure field. The peak normalized error is given by

|P(.’L', 1 a 2:; k) _ Pref(xvyazi k)lmax(x_y,z)

 

777an = (4.26)

[13”?me y: 27; k)|max(;r,y,z)
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Table 4.1. Simulation parameters that achieve peak normalized error values of 10%,

1%, and 0.1% for the 1D quadratic apodization function 21(2) = 122 — 2:2. Parameters

listed include the number of Gauss abscissas, the computation time, and the compu-

tation time relative to the polynomial apodized FNM for the Rayleigh—Sommerfeld

integral.

Peak Normalized 10% 1% 0.1%

Error

 

 

FNM Rayleigh FNM Rayleigh FNM Rayleigh

Gauss abscissas 8 32 X 32 10 74 x 74 11 122 x122

Time (seconds) 0.0761 1.4147 0.0924 7.5038 0.0991 20.3334

Computation time 1x 18.58x 1x 81.17x 1x 205.11x

relative to the

 

 

 

polynomial

apodized FNM        
 

4.2 Results

4.2.1 1D quadratic apodization

Reference pressure field

Simulation are performed with a rectangular source, where each side is equal to 2a =4

wavelengths. The origin of the coordinate system is the center of the rectangular

source. The reference pressure field is computed for the apodization function u($) =

2:2 — a2 using the Rayleigh-Sommerfeld integral in Eq. (4.25) with 10,000 Gauss

abscissas in each direction. The reference pressure shown in Figure 4.1 is evaluated in

the y = 0 plane. The grid in the x direction extends from 0 to 4 wavelengths, and the

grid in the z direction is evaluated from 0.04 to 4 wavelengths. The sample spacing

in the x direction is 0.05 wavelengths and the sample spacing in the z direction is

0.04 wavelengths. The total number of grid points is 8100.
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Figure 4.1. Normalized simulated time-harmonic reference pressure field in the y = 0

plane for a rectangular source with each side equal to 4 wavelengths. The pressure

field is computed with 10, 000 Gauss abscissas in each direction using the Rayleigh-

Sommerfeld integral with the 1D quadratic apodization 22(1) = x2 — a

Error comparisons and computation times

The numerical errors and computation times for the polynomial apodized FNM and

the Rayleigh—Sommerfeld integral are given in Figure 4.2. Figure 4.2 (a) shows that

for a given number of Gauss abscissas in one direction, the polynomial apodized

FNM always achieves a smaller error than the Rayleigh-Sommerfeld integral. The

polynomial apodized FNM achieves a maximum error of 10_14 with less than 80

Gauss abscissas while the Rayleigh-Sommerfeld integral only achieves a maximum

error of 10_5 when 200 X 200 Gauss abscissas are applied. Figure 4.2 (b) shows the

computation times for the polynomial apodized FNM and the Rayleigh-Sommerfeld
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Figure 4.2. a) Maximum errors and b) computation times for the polynomial apodized

FNM and the Rayleigh-Sommerfeld integral.
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Figure 4.3. Time vs. error comparison between the polynomial apodized FNM

and the Rayleigh-Sommerfeld integral. For the same computation time, the polyno-

mial apodized FNM achieves smaller errors, and for the same error, the polynomial

apodized FNM requires less time.

integral as a function of N, the number of Gauss abscissas in each direction. in Figure

4.2 (b), the polynomial apodized FNM consistently requires less time for the same

value of N.

Figure 4.3 shows the computation times and the errors evaluated with the 1D

polynomial apodized FNM and the Rayleigh-Sommerfeld integral on the same plot.

In Figure 4.3, the polynomial apodized FNM achieves smaller errors for the same com-

putation time, and the apodized FNM uses less time to achieve the same error value.

Comparisons between the polynomial apodized FNM and Rayleigh-Sommerfeld inte—
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gral are summarized in Table 4.1. For 10% peak normalized error, the polynomial

apodized FNM is 18.58 times faster than the Rayleigh-Sommerfeld integral, for 1%

peak normalized error, the polynomial apodized FNM is 81.17 times faster than the

Rayleigh-Sommerfeld integral, and for 0.1% peak normalized error, the polynomial

apodized FNM is 205.11 times faster than the Rayleigh-Sommerfeld integral. These

values were obtained for the grid, quadratic apodization function, and piston geome—

try used here.

4.2.2 2D Apodization function

The pressure field is also evaluated for a square piston with an apodization function

22(1):, y) = (:2:2 - a2)(y2 — oz). The reference pressure is computed using the Rayleigh-

Sommerfeld integral in Eq. (4.25) with 10, 000 Gauss abscissas in each direction. The

reference pressure shown in Figure 4.1 is computed in the y = 0 plane. The grid in

the a: direction extends from 0 to 4 wavelengths, and the grid in the z direction is

evaluated from 0.04 to 4 wavelengths. The sample spacing in the a: direction is 0.05

wavelengths, and the sample spacing in the z direction is 0.04 wavelengths. The total

number of grid points is 8100.

Error comparisons and computation times

The numerical errors and computation times for the 1D polynomial apodized FNM,

2D apodized FNM, and the Rayleigh-Sommerfeld integral are given in Figure 4.5.

The apodization function is a 2D function given by u(a:,y) = ($2 — a2)(y2 — a2).

Figure 4.5 (a) shows that, for a given number of Gauss abscissas in one direction,

the computation time of 1D the polynomial apodized FNM is always smaller than

the 2D apodized FNM and the Rayleigh-Sommerfeld integral. The 1D polynomial

apodized FNM converges very rapidly, and an error of 10‘14 is achieved with less

than 80 Gauss abscissas. For the same piston and grid geometry, the 2D apodized
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Table 4.2. Simulation parameters that achieve peak normalized error values of 10%,

1%, and 0.1% for the 2D apodization function 22(23, y) = (x2 —a2)(y2 —a2), where a 2

2 wavelengths. Parameters listed include the number of Gauss abscissas, computation

time, and the ratio of the computation time relative to the polynomial apodized

FNM. (a) 10% peak normalized error, (b) 1% peak normalized error and (c) 0.1%

peak normalized error.

 

 

 

 

 

 

   
 

 

 

 

 

 

 

  
 

 

 

 

 

 

 

   

(a)

Peak normalized error 10%

1D FNM 2D FNM Rayleigh-Sommerfeld

Gauss abscissas 10 8x8 34x34

Time (seconds) 0.0816 0.1306 1.1828

Computation time relative to the 1 x 1.60x 14.49x

polynomial apodized FNM

0))

Peak normalized error 1%

1D FNM 2D FNM Rayleigh-Sommerfeld

Gauss abscissas 10 14 x14 78x78

Time (seconds) 0.0816 0.3708 6.1866

Computation time relative to the 1x 4.54x 75.78x

polynomial apodized FNM

(C)

Peak normalized error 0.1%

1D FNM 2D FNM Rayleigh-Sommerfeld

Gauss abscissas 12 28x28 126x126

Time (seconds) 0.0957 1.3986 16.3940

Computation time relative to the 1x 14.61x 171.25x

polynomial apodized FNM  
 

82

 

 

 



u
‘m “‘ ‘
“u \
‘\\\\

\\\l

‘\u
\\

\‘l‘\““‘\‘\
\\\\\“‘\\ ‘
\\\\“‘“\

\ u \
u“ \\\
u“ u u“ \

‘\\\:u““‘.\\u\\\\\\n\“‘\‘u
\ \\\“ u\ “u
“n“ “\\\u“ (m “\\\
\\\“ \\\ \\\ “u

u m

o
p
o
o

c
a
n
-
h
m
o
o
-
s

, I

\
\|“‘\\‘ \

m“ “\\\\‘\‘\‘\\‘\\““

\\\l‘\‘\\\\\“““‘\‘
““\‘-‘\‘u\\\\\\\\\

u\\\|u\\\‘“““‘ \
\ ‘uu\uuu\\‘“‘“\\\“

“\\\““““\\\\\\\‘\‘\“\‘\\\\\
|‘ \\\\\\\\\\u\ ‘ m ““\l ‘ “um“ ‘
l “um“ \\\uumumu

‘\\“‘“\\\\\\\\\\\\\umuum

\\ \
I“ m

\‘ u

\\““\\“‘|‘

n
o
r
m
a
l
i
z
e
d
p
r
e
s
s
u
r
e

2 
x (units of 7L) 5 0 2 (units of A)

Figure 4.4. Absolute value of the simulated time-harmonic reference pressure field

in the y = 0 plane for a square source with each side equal to 4 wavelengths. The

apodization function is a 2D function given by u(:r, y) = (x2 — a2)(y2 — (12), where

0 =2 wavelengths. The pressure field is computed with 10, 000 Gauss abscissas in

each direction using the Rayleigh-Sommerfeld integral.

FNM achieves an error of 10_6 with 100 X 100 Gauss abscissas, and the Rayleigh-

Sommerfeld integral acheives an error of 10‘5 when 200 X 200 Gauss abscissas are

applied.

Figure 4.2 shows the computation times and the errors evaluated with the 1D

polynomial apodized FNM, 2D apodized FNM and the Rayleigh-Sommerfeld integral

on the same plot. In Figure 4.2, the 1D polynomial apodized FNM converges to the

smallest errors in the least amount of time. Comparisons among the 1D polynomial

apodized FNM, the 2D apodized FNM and Rayleigh—Sommerfeld integral are sum—

marized in Table 4.2. For 10% peak normalized error, the 1D polynomial apodized
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Figure 4.5. a) Maximum errors and b) computation times plotted as a function of

the number of Gauss abscissas for a 2D apodization function with the 1D polynomial

apodized FNM, the 2D apodized FNM and the Rayleigh-Sommerfeld integral.
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Figure 4.6. Time vs. error comparison between the 1D polynomial apodized FNM,

2D apodized FNM and the Rayleigh—Sommerfeld integral. The polynomial apodized

FNM converges to smallest errors with least time.

FNM is 1.6 and 14.49 times faster than the 2D apodized FNM and the Rayleigh-

Sommerfeld integral, respectively. The 1D polynomial apodized FNM is 4.54 and

75.78 times faster than the 2D apodized FNM and the Rayleigh-Sommerfeld integral

for a 1% peak normalized error, respectively. For 0.1% peak normalized error, the

polynomial apodized FNM is 14.61 and 171.25 times faster than the 2D apodized

FNM and the Rayleigh-Sommerfeld integral for the grid, 2D apodization function,

and piston geometry used in this paper.
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4.3 Discussion

4.3.1 Advantages and disadvantages

The 1D polynomial apodized FNM successfully reduces the two-dimensional apodized

pressure calculation integral in Eq. (3.1) into a single integral in Eqs. (4.16) and

(4.22). As shown in Section 4.2, the performance of the 1D polynomial apodized FNM

outperforms the 2D apodized FNM and the Rayleigh-Sommefeld integral for peak

normalized errors of 10%, 1% and 0.1%. Furthermore, due to the rapid convergence

of this method, the 1D polynomial apodized FNM is an ideal method for reference

pressure field calculations.

The 1D polynomial apodized FNM equations in Eqs. (4.16) and (4.22) are applica-

ble to polynomials of order up to two. When the order of the polynomial apodization

function is increased, the polynomial apodized FNM formula needs to be rederived.

For 2D apodization functions, the current polynomial apodized FNM only handle

apodization functions that are separable in the spatial coordinates. For example,

the apodization function f(u, V) = V112 + V2 can not be evaluated with expressions

in Eqs. (4.16) and (4.22). For this apodization function, the 2D apodized FNM

expression is required.

4.3.2 Interpolation of the apodization function

The convergence of the 1D polynomial apodized FNM is very fast compared to the

2D apodized FNM and the Rayleigh-Sommerfeld integral. Though equations (4.16)

and (4.22) are specialized for the polynomial apodization functions, other apodiza-

tion functions can be approximated with polynomials. The most commonly used

apodization functions are sin(-), cos(-) and exp(-), which can all be approximated

using polynomials within a certain input range of parameters. For these apodiza-

tion functions, expressions for the 1D polynomial apodized FNM with higher order
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polynomial apodization functions are needed.

4.4 Conclusion

A 1D polynomial apodized fast nearfield method for calculating nearfield pressures

generated by a polynomial apodized rectangular piston is derived and evaluated.

The derivation is based on the instantaneous impulse response for rectangular piston

given by Scarano et al [44]. The 1D polynomial apodized FNM expressions for two

apodization function, u(:r) = 11:2 —a2 and u(:r, y) = (:1:2 —az)(y2 —a2), are given. The

results of the 1D polynomial apodized FNM are compared with the 2D apodized FNM

and the Rayleigh-Sommerfeld integral. The results show that the 1D polynomial FNM

achieves the best performance among all of the three methods for the same number

of Gauss abscissas. Thus, the 1D polynomial apodized FNM is an ideal method for

calculating nearfield pressure generated by a polynomial apodized rectangular source.
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CHAPTER 5

A Fast Nearfield Method for the

Numerical Evaluation of 3D

Potential Integrals

The evaluation of potential integrals over a volume domain are important calculations

in scattering problems. For example, Moraros and Popovic [23] optimize the volume

potential integrals involved in the moment-method analysis of 3D dielectric scatters.

The precorrected-FFT solution is proposed by Nie et. a1. [45] to solve the volume-

surface integral equation for scattering from conducting-dielectric objects. Potential

integrals are often singular and thus direct evaluation potential integrals may en-

counter numerical difficulties. For potential integrals with singularities, singularity

subtraction [23, 25, 26, 27, 28] or singularity cancellation methods [30, 31, 32, 33]

are often used. Both singularity subtraction methods and singularity cancellation

methods retain the same number of dimension over the integration as the original

potential integrals. Typically, those methods manipulate the integrands to eliminate

singularties and to achieve better performance. This approach is reasonable for gen-

eral potential integrals; however, when uniform potential integrals are considered,
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more efficient methods can further improve the numerical performance by reducing

the number of dimension over the integration.

Pressure fields from uniformly excited planar sources can be computed using both

the Rayleigh—Sommerfeld integral [6] and the fast nearfield method (FNM) [8, 12].

Those two methods are mathematically equivalent but the numerical performance

differs. Of these, the FNM achieves a smaller error in less time because the FNM

eliminates the 1 /R singularity in the Rayleigh-Sommerfeld integral by subtracting

the singularity in the integrand. The integrands of the potential integrals and the

pressure integrals are the same. For potentials from uniform planar sources, the FNM

can be directly applied. However, the FNM expressions for uniformly excited volume

sources are also needed.

To improve the performance of potential integral calculations for volume sources, a

single FNM integral is derived from the FNM expression for uniformly excited polyg-

onal pistons. The derivation begins after the relationship between FNM expressions

and potential integrals is established. Then, FNM expressions for potential integrals

are obtained for a polygonal source. The prism is subdivided into five subdomains,

and the total potential is obtained by superposing by the potential produced by all of

the subdomains. After substituting the FNM expression for polygonal source into the

potential integral for the subvolume, performing a change of variable and exchanging

the order of integration, a 1D FNM volume integral is obtained for a volume source

that is uniformly excited. The resulting 1D FNM expression for the potential and the

singularity cancellation method are then evaluated on six single observation points

and on a large 3D grid. The results indicate that, when compared to calculations

performed with the singularity cancellation method, the FNM requires fewer sample

points to achieve a given accuracy.
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5.1 FNM Calculations for Rectangular and Trian-

gular Sources

5.1.1 The potential integral

The time-harmonic pressure produced by a triangular transducer can be obtained

using the Rayleigh-Sommerfeld diffraction integral

, —jwt e—ijds

Pm, 2.2:): MW”: [[3 (5.1)

where s is area of the triangular source, to is the excitation frequency in radians per

  

second, p is the density of the medium, v0 is a constant normal velocity evaluated at

the surface of the triangular piston, k is the wavenumber, t is the elapsed time and

R is the distance from the source point to the observation point.

The potential integral considered is given by

<I>(a:,=y,z) [IA/(31:2RW (5-2)

where V is the integration domain over which the integral is evaluated. The potential

 

in Eq. (5.2) is normalized with respect to —voejwt. The integrands in Eq. (5.1) and

Eq. (5.2) are the same, but the former is evaluated over a surface and the latter is

evaluated over a volume. Thus, the FNM expression that is analytically equivalent

to Eq. (5.1) can also be extended to solve for the potential generated by a 3D source.

5.1.2 FNM calculations for a planar source

Let AABC denote a triangular source, and a, b, and c are the length of the corre-

sponding sides that are located oppsite angles A, B, and 0. According to the fast

near-field method (FNM) [12], the potential integral evaluated over this triangular

source at the observation point above the point A is given by
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=jOCee—jkflds =—1—z figzgai£_e—jkt/;Z¥§7IT§_ e—jkz

47rR 47rk a2—bi__—02 02 + l2

(5.3)

where (a2 — b2 —— 02)/(2c) and (a2 — b2 + 62)/(2C) are the lower and upper limits of

the integration, respectively, 2 is the the orthogonal distance between the observation

point and the source plane, and 1 represents the orthogonal distance between the

vertex A and the base of the triangle (i.e., the height of the triangle).

The FNM expression for a planar source at an observation point (x,y,z) is ob-

tained by first subdividing the planar source into several triangular subelements that

share the vertex D that is defined by the projection of the observation point onto

the planar source. Then, the pressure generated by each subelement is computed

using Eq. (5.3), and finally the total pressure generated by the planar source is the

summation of the pressure generated by each subelement

. N
J E,x+fiy+G,

¢@JyJ) —; 2:

i=1 j/E22+FZ.2

2 2 2

a-—b.+c. _. /_—_22 2 .
475—113 3k 0 +2 +hi—e—sz

x 2 do , 5.4

[12412—02 02+h;2 ( )

Ci

 

where Ez-x + Fiy + G,- = 0 describes the line that is coincident with each side of

the planar source, ai, bi, and c,- are the parameters defined by Figure 5.1, and h,- =

Ell-3+1?y+G

i¢éth

edge of the trianguar source. The sign of h,- is defined such that the superposition

z is the distance f1om the projection of the observation point D to the

of subelements correctly respresents the total potential generated by the flat planar

source. The parameter N describes the number of sides/vertexes in the flat planar

source where N = 3 for a triangular source and N = 4 a rectangular source.
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b)

Figure 5.1. Parameters defined for FNM calculations with a triangular source AABC.

The lengths ai, bi, and c,- are defined for three different triangles that share the vertex

D in each subfigure. a). The projection of the observation point D is located inside

of the triangular source. b). The projection of the observation point D is located

outside of the triangular source.
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a) Subtetrahedron. b) Subpyramid.

Figure 5.2. Subdividing a prism about an observation point to form subtetrahedrons

and subpyramids. (a). Subtetrahedron. (b). Subpyramid.

5.1.3 FNM calculations for a volume source

Three common examples of volume elements are tetrahedrons, bricks, and prisms.

In order to calculate the volume potential integral, the volume is subdivided with

respect to the observation point. For the volumes considered here, the domain can be

subdivided into subtetrahedrons and/or subpyramids according to whether the face

shape is a triangle or rectangle [31] as shown in Figure 5.2. Thus, efficient formulas

for the subtetrahedrons and subpyramids are obtained.

FNM for subvolumes

In order to utilize the FNM expression for a planar source, the subvolumes are sub-

divided into layers of triangles and quadrilaterals. The procedure for calculating

potential integrals for subvolumes is given by Khayat and Wilton [31] and is adapted

here for the fast nearfield method.

1. Subdivide the volume element about the observation point into subdomains

including subtetrahedrons and subpyramids.

2. For each subtetrahedron, choose the number of sample points along the height
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Figure 5.3. The geometric configuration indicating how the potential integral is eval—

uated for a subtetrahedron.

direction of the subtetrahedron. The cross—section at each sample point is a

planar element.

3. Find the vertices and the projection of the observation point for each planar

element.

4. Calculate each potential integral over the planar element using the fast nearfield

method (FNM).

5. Transform the observation point from the global coordinate system to the local

coordinate system.
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For potential calculations within subdomains, a local coordinate system is used as

shown in Figure 5.3 where the projection of the observation point onto the base

plane is the origin of the local coordinate system and the base plane is located in the

z = 0 plane of the local coordinate system. Let (x, y, z) denote the coordinates of

the observation point in the local coordinate system. The potential integration over

a subdomain V is given by

e—ij hv e—ij I

= d -<I>(,z:cy,)=///V47rR dV f0 //3 41rR dsz, (55)

where hv is the distance from the observation point to the base of the subtetrahedron

  

(i.e., hv is the height of the subtetrahedron). In the local coordinate system, hv = z,

where z is the local coordinate of the observation point. The inner integration over the

source plane 3 represents the potential produced by a triangular source distribution,

which is the shape of the subtetrahedronal cross-section. Figure 5.3 illustrates the

geometrical configuration of the potential calculations over the subtetrahedron. The

base plane is denoted as sb, where b indicates the base plane, and the plane with a

triangular cross-section is Sc at z = z’, where c represents the cross plane. The result

of the inner integral is given by [12]

 

2 _ I2 2_ _

eJkR or? eJk\/0 +(z z) +hCZ —e-3k(3_zl)
.//3 d8: 21hCi/l; do,

47TH 47rk 0'2 + h;

(5.6)

  

where the subscript c indicates that the parameters are all calculated in the sc plane,

h,- is the distance between the projection of the observation point on the sc plane and

each side of the source in the 3c plane, and lil and l2? are the corresponding limits

of integration. Since these parameters are related to the value of z’, the relationship

/

EQ__ l_'czl _l_ci2 : Z " Z (57)

hm: 11721 [M2 2
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is defined using the similar triangles in Figure 5.3. In Eq. 5.7, the subscript b indicates

the parameters that are all calculated in the 3b plane, and the subscript c indicates

the parameters that are calculated in the sc plane. Then, all terms containing the

subscript c are substituted for the terms containing the subscript b according to Eq.

(5.7), and then a change of variable according to the formula 0 = (z — z’)/z * Q is

performed, yielding

 

  

I
_-—__z 2 2 2 .

c_Jde [(222e _Z_— \/Q +2 +hbi —e"3k(z—Z,)d

[[9 8 47k2"“/1 Q'

(5.8)

Eq. (5.8) readily computes the potential generated by the cross-section Sc when the

position of the cross-section z’ is known. The parameters hi1 [2'11 and 1,-2 are computed

in the base plane and are the same for all cross-sections. Thus, the complexity

compared to Eq. (5.6) is greatly reduced. After substituting Eq. (5.8) into Eq. (5.5)

and exchanging the order of integration, Eq. (5.5) becomes

 

I

_, .z—z 2 2 2 ,

(5.9)

 

The inner integral (with respect to z’) is integrated analytically, so a single integral

for the potential is obtained, which is described by

lb22

2477/92 22%bl./lb1-1

<I>(:1:
 

 

 _'k 2 22 h2. ’.

2(8 3 \/Q + + bl—1)—(e‘JkZ—l)\/Q2+z2+hgi

2 2 2(Q +112b.)\/Q +22 +11%

 

 (162. (5.10)
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Eq. (5.10) and Eq. (5.5) are analytically equivalent, but the numerical performance

of each expression differs. Eq. (5.5) is a triple integral that includes a 1 /R singularity.

In Eq. (5.5), the total number of sample points is the multiplication of the number

of sample points in each direction, which is much larger than the number of sample

points required to evaluate the single integral in Eq. (5.10).

Volume FNM for the prism

To calculate the potential generated by a prism, the prism is subdivided about the

observation point to form five subvolumes including three subpyramids and two sub—

tetrahedrons. The potential of the prism is the superposition of the contributions

from the five subdomains. Let Amrz: + Bmy + sz + Dm = 0 denote the general

form of the plane that passes through each face of the prism, where <I>m is the result of

the potential integral over each subdomain, then the overall potential over the prism

(pprz'sm is given by

(I) . _ Z5: (Amx+Bmy+sz+Dm)
 5m. (5.11)

The term (Ama:+Bmy+sz+Dm)/|Am$+Bmy+sz+Dm| is the sign function,

which determines whether the contribution from a subdomain is positive or negative.

The values of Am, Bm, Cm and Dm are selected such that the contributions from

all the subdomains for an observation point inside the prism are all positive.

5.1.4 Error calculations

For potential field calculations, the numerical error 77(x, y, z) is defined as the nor-

malized difference between the reference field and the computed field according to

lq)(xi y: Z) _ (prefab 3’: Z“

ma$|¢reff$1y1zll
 

n(r,y12) = (5.12)
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Table 5.1. The geometry of the prism.

 

Vertex 1 2 3 4 5 6

(x, y, z) [m] (0,1,0) (0,0,0) (1,0,0) (0,1,1) (0,0,1) (1,0,1)

 
 

         

where (pref-(cc, y, z) is the reference potential and <I>(:1:,y, z) is the computed pressure

field. The maximum error 77mm: is defined as

77771011? = 1193):, 7](.’L‘, y) 3)) (513)

3 1

and the number of significant digits n is given as

5.2 Results

5.2.1 Comparisons of potential evaluated at single points

The shape of the prism is shown in Figure 5.4, and the coordinates of each vertex are

given in Table 5.1. This is the same prism used in thesingularity cancellation method

[31]. The wavelength is 10m. The observation points are located at (x, y, z) = (1 /3m,

1 /3m, d) where d = 0.5, 1.0, and 1.25 [m]. The reference potential given in Table

5.2 is calculated using the singularity cancellation method with 30, 30, and 30 Gauss

abscissas in the :12, y, and 2: directions, respectively. The reference potential is accurate

to 15 digits. The input parameters and the values for the reference potential are given

in Table 5.2.

The number of significant digits in each result is plotted as a function of the

number of sample points for the FNM and the singularity cancellation method in

Figure 5.5, which shows that the uniformly excited 1D FNM expression for the volume

integral converges much faster than the singularity cancellation method. For the point
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Figure 5.4. The prism geometry, where vertex B is coincident with the origin, and

vertices C, A, and E are located on the :13, y, and z axes, respectively.

(1 /3m, 1/3m, 0.5m), the the uniformly excited 1D FNM expression for the volume

integral uses 9, 9, 6, and 9 times fewer sample points than the singularity cancellation

method for answers accurate to 2, 3, 4, and 5 significant digits, respectively. For

the point (1/3m, 1/3m, 1.0m), the the uniformly excited 1D FNM expression for

the volume integral uses 6, 12, 27, and 15.75 times fewer sample points than the

singularity cancellation method for answers accurate to 2, 3, 4, and 5 significant

digits, respectively. For the point (1 /3m, 1/3m, 1.25m), the uniformly excited 1D

FNM expression for the volume integral uses 6, 5, 12, and 10.125 times fewer sample
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Table 5.2. Reference potential fields are evaluated at three points (:17, y, z) =

(1 /3m, 1/3m, d), where d = 0.5m, 1.0m and 1.25m. The reference fields are com-

puted using the singularity cancellation method with 30, 30, and 30 abscissas in the

:12, y, and 2 directions, respectively.

 

Abscissas Observation point Rea1{<I>} Imaginary{<l>}
 

x y z x y z

30 30 30 1/3 1/3 0.5 01101990007812 -0.0246818749055

30 30 30 1 /3 1/3 1.0 0.07701456144055 —0.02427846658870

30 30 30 1/3 1/3 1.5 0.04833922443213 -0.02377978649190

 

 

 

 

          

points than the singularity cancellation method for answers accurate to 2, 3, 4, and

5 significant digits, respectively.

Next, the potentials are compared for values computed with the FNM and the

singularity cancellation method where the observation points have small 2 values.

The observation points are located at (:13, y, z) = (1/3m, 1/3m, d), where d =

0.1m, 0.01m, and 0.0001m. The reference potentials at the three observation points

are given in Table 5.2.

The number of significant digits are plotted as a function of the number of sample

points for the FNM and the singularity cancellation method in Figure 5.6. The FNM

demonstrates similar performance to that demonstrated in Figure 5.5 for larger 2

values in terms of convergence for all three observation points with small 2 values. In

contrast, the singularity cancellation method converges much more slowly for smaller

2 values such as 2 :2 0.01m and z = 0.0001m. A comparison between Figure 5.6

and Figure 5.5 indicates that, as the z coordinate approaches zero, the uniformly

excited 1D FNM expression for the volume integral and the singularity cancellation

method converge more slowly. Table 5.5 summarizes the ratio of the number of

sample points required to achieve a given accuracy with the uniformly excited 1D

FNM expression for the volume integral and the singularity cancellation method for

three points (1:, y, z) = (1/3m, 1/3m, d), where d = 0.1m, 0.01m, and 0.0001m.
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Figure 5.5. The number of significant digits in the computed potential for a prism

plotted as a function of the number of sample points for three observation points

(:13, y, z) : (1/3111, 1/3m, d), where d = 0.5m, 1.0m, and 1.25m.
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Table 5.3. Simulation parameters that achieve between 2 to 5 significant digits with

the FNM and the singularity cancellation method for the potential evaluated on the

observation points (:13, y, z) 2 (1/3, 1/3, d), where d 2 0.5, 1.0, and 1.25 [m].

Parameters listed include the number of sample points for each observation point

and the ratios of the number of sample points required to achieve a specific accuracy

relative to the number required with the FNM. (a) Significant digits 2 and 3 and (b)

Significant digits 4 and 5.

(a)
 

 

 

 

 

 

 

 

 

  
 

 

 

 

 

 

 

 

 

  

Observations Significant digits 2 3

FNM Sigularity FNM Sigularity

cancellation cancellation

d 20.5 Sample points 36 324 54 324

Sample points 1x 9 x 1x 6 x

relative to FNM

(1 21.0 Sample points 36 216 36 432

Sample points 1x 6x 1 x 12 x

relative to FNM

d 21.25 Sample points 54 324 72 360

Sample points 1 X 6 x 1 x 5 x

relative to FNM

0))

Observations Significant digits 4 5

FNM Sigularity FNM Sigularity

cancellation cancellation

d 20.5 Sample points 90 54 108 972

Sample points 1x 6x 1x 9x

relative to FNM

d 21.0 Sample points 36 972 72 1134

Sample points 1x 27x 1x 15.75x

relative to FNM

d 21.25 Sample points 108 1296 144 1458

Sample points 1x 12 x 1x 10.125 x

relative to FNM     
 

 



Table 5.4. Reference potentials evaluated at three points (:r, y, z) 2

(1/3m, 1/3m, d), where d 2 0.1m, 0.01m, and 0.0001m. The reference potentials

are computed using the singularity cancellation method with 30, 30, and 30 abscissas

in the 2:, y and 2: directions, respectively.

 

Abscissas Observation point Re{<I>} Imag{<I>}
 

x y z x y z

30 30 30 1 /3 1 /3 0.1 -0.09045651713588 0.02442323471174

30 30 3O 1 /3 1 /3 0.01 -0.07858100147339 0.02429436586981

30 30 30 1/3 1 /3 0.0001 -0.07703049150655 0.02427862714031

 
 

 

 

          

For the point (1 /3m, 1/3m, 0.1m), the the uniformly excited 1D FNM expression

for the volume integral uses 6, 7.7, 6.3, and 7.38 times fewer sample points than the

singularity cancellation method to achieve 2, 3, 4, and 5 significant digits, respectively.

For the point (1 /3m, 1/3m,0.01m), the uniformly excited 1D FNM expression for

the volume integral uses 8, 10.8, 10.125, and 17.14 times fewer sample points than the

singularity cancellation method to achieve 2, 3, 4, and 5 significant digits, respectively.

For the point (1 /3m, 1/3m, 0.0001m), the uniformly excited 1D FNM expression

for the volume integral uses 12, 27, 25, and 10 times fewer sample points than the

singularity cancellation method to achieve 2, 3, 4, and 5 significant digits, respectively.

5.2.2 The potential evaluated on a 3D grid

In this section, the potential is evaluated on a 3D grid. The a: and y directions extend

from -0.5m to 1.5m with an interval of 0.02m, and the z direction extends from 0

to 1.5m with an interval of 0.03111. The reference is computed using the singularity

cancellation method evaluated with 1000 Gauss abscissas in each dimension. Figure

5.7 shows the number of sample points and the number of significant digits for the

uniformly excited 1D FNM expression for the volume integral and the singularity

cancellation method evaluated on a 3D grid. Table 5.6 summarizes the ratio of the

number of sample points required to achieve a given accuracy with the uniformly
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Figure 5.6. The number of significant digits in the calculated potential achieved for

the prism in Figure 5.4 plotted as a function of the number of sample points for

three observation points (3;, y, z) 2 (1/3m, 1/3m, d), where d 2 0.1m, 0.01m, and

0.0001m.
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Table 5.5. Simulation parameters that achieve between 2 to 5 significant digits with

the uniformly excited 1D FNM expression for the volume integral and the singularity

cancellation method for the potential evaluated at the observation points (:13, y, z) 2

(1/3m, 1/3m, d), where d 2 0.1m, 0.01m, and 0.0001m. Parameters listed include

the number of sample points required at each observation point and the number of

sample points required to achieve a specified error relative to the FNM. (a) Significant

digits 2 and 3. (b) Significant digits 4 and 5.

(a)
 

 

 

 

 

T
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Observations Significant digits 2 3

FNM Sigularity FNM Sigularity

cancellation cancellation

d 20.1 Sample points 72 432 126 972

Sample points 1x 6 x 1x 7.7x

relative to FNM

d 20.01 Sample points 54 432 90 972

Sample points 1x 8 x 1 x 10.8 x

relative to FNM

d 2 0.0001 Sample points 36 432 36 972

Sample points 1x 12 x 1x 27x

relative to FNM

0))

Observations Significant digits 4 5

FNM Sigularity FNM Sigularity

cancellation cancellation

d 20.1 Sample points 180 1134 234 1728

Sample points 1x 6.3x 1x 7.38x

relative to FNM

d 20.01 Sample points 144 1458 126 2160

Sample points 1 x 10.125 x 1x 17.14 x

relative to FNM

d 2 0.0001 Sample points 72 1080 108 1080

Sample points 1x 15x 1x 10x

relative to FNM
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Figure 5.7. The number of significant digits achieved in calculations of the potential

of the prism shown in Figure 5.4 plotted as a function of the number of sample points

evaluated over a 3D grid. The results show that the FNM is accurate to a large

number of significant digits than the singularity cancellation method for the same

number of sample points.

excited 1D FNM expression for the volume integral and the singularity cancellation

method on the 3D computational grid. For this computational grid, the uniformly

excited 1D FNM expression for the volume integral uses 3, 5, 7.2, 9.33 times fewer

sample points less than the singularity cancellation method for results accurate to 2,

3, 4, and 5 significant digits, respectively.
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Table 5.6. Simulation parameters that achieve between 2 and 5 significant digits with

the uniformly excited 1D FNM expression for the volume integral and the singularity

cancellation method for the potential evaluated on a 3D grid. Parameters listed

include the number of sample points for each observation point and the number of

sample points required to achieve a specified error relative to the uniformly excited 1D

FNM expression for the volume integral. (a) Significant digits 2 and 3. (b) Significant

digits 4 and 5.

(a) 

 

 

 

   
 

 

 

     

Significant digits 2 3

FNM Singularity FNM Singularity

cancellation cancellation

Sample points 72 216 108 540

Sample points relative to the FNM 1x 3x 1 x 5x

(b)

Significant digits 4 5

FNM Singularity FNM Singularity

cancellation cancellation

Sample points 180 1296 324 3024

Sample points relative to the FNM 1x 7.2 x 1 x 9.33x   

5.3 Discussion

5.3. 1 Other geometries

The potential integral in Eq. (5.1) is a triple integral, and the uniformly excited

1D FNM expression for the volume integral reduces this integral to a single integral

when the excitation is uniform. The single integral needs far fewer sample points

to converge than the triple integral that is evaluated for the singularity cancellation

method. Thus, the uniformly excited 1D FNM expression for the volume integral is an

ideal method for calculating the reference potential. The fast approach demonstrated

here can be easily extended to any volume source with polygonal faces. The potential

integrals over those domains are the sum of the contributions from each side of the

polygonal sources or each face of the volume sources. As seen in Eq. (5.4), the number
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of terms required for a triangular source is 3 and for a rectangular source is 4.

5.3.2 Sample point calculations

Both the singularity cancellation method and the uniformly excited 1D FNM expres-

sion for the volume integral subdivide the prism into five subdomains including two

subtetrahedrons and three subpyramids. Both methods evaluate three integrals for

each subtetrahedron and four integrals for each subpyramids. In sum, both methods

evaluate 18 integrals at each point for the prism shown in Figure 5.4. Each integral

in the singularity cancellation method is calculated with the same number of sample

points. If 113;, rig, and 11.2 denote the number of Gauss abscissas used for each integral

in the singularity cancellation method, then the number of sample points used for

each integral is 113 2 Tll'nynz. Thus, the total number of sample points for the sin—

gularity cancellation method is 18113. For the uniformly excited 1D FNM expression

for the volume integral, each integral is a single integral, and the lower and upper

limits are given by lbz'l and lbz'2 in Eq. (5.10). In each calculation, the integral is

further subdivided into the summation of two integrals if lbz’l and lbz'2 have opposite

signs, where the limits of the subintegrals are from 0 to [(712 and from lbz'l to 0. When

lbz’l and lb172 have the same sign, no subdivisions are needed. Thus, if the number of

abscissas for each integral in the uniformly excited 1D FNM expression for the volume

integral is n, then the total number of sample points for the uniformly excited 1D

FNM expression for the volume integral calculations performed at a point due to a

prism volume source is between 1811 and 3611.. Thus, the FNM calculations is C(11),

and the singularity cancellation method is 0(713) for calculations at a single point.

5.3.3 Future work

The FNM algorithm is capable of calculating the uniformly excited potential integral.

However, the FNM formulas have not yet been derived for non-uniform potential
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sources. This difficulty can in part addressed by applying the polynomial apodization

from Chapter 4 to the potential integrals. Thus, certain apodized potential integrals

can be solved. Meanwhile, a large variety of functions can be approximated very well

using polynomials.

5.4 Conclusion

A fast 1D integral for calculating uniformly excited 3D potential integrals is derived

and evaluated. The 1D integral is based on the FNM expressions that were derived

for acoustic radiation problems [8, 12]. The FNM subdivides the prism volume source

into five subdomains, and on each subdomain, the FNM eliminates the singularities

and reduces each triple integral into a single integral. The FNM expressions can be

extended to different volume sources which consist of polygons on each face. The

results are compared at single points and on a large three-dimensional grid. For the

six observation points evaluated here, the FNM reduces the number of sample points

by a factor of 5 to 27 relative to the singularity cancellation method, where the number

of significant digits ranges in each result from 2 to 5. The FNM reduces the number of

sample points by a factor of 3 to 9.33 relative to the singularity cancellation method

when evaluated on a 3D grid and the result is accurate between 2 and 5 significant

digits. Thus, the FNM is an ideal method for calculating uniformly excited potential

integrals.
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CHAPTER 6

A Fast Nearfield Method for

Numerical Evaluation of Surface

Integrals with Polynomial

Apodization

Numerical calculation of surface integrals involved in integral equations are very im-

portant in scattering problems. Polynomial functions which are popularly used to

approximate the electric and magnetic currents. For example, the most common

used Rao-Wilton-Glisson basis function is also a linear basis function [24]. Potential

integrals over a surface domain are often singular and direct evaluation of poten-

tial integrals may encounter numerical difficulties. Singularity subtraction methods

[23, 25, 26, 27, 28] or singularity cancellation methods [30, 31, 32, 33] are often used

to acheive better performance. Typically, those methods don’t diminish the number

of integraion of the potential integrals but manipulate the integrands to eliminate sin-

gularities instead. This approach is reasonable for general surface integrals, however,

more efficient expressions can be acheived when polynomial apodized surface integrals
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are considered. By ultilizing the fast nearfield method (FNIVI) [8, 12] for planar source

that is uniformly exicited, which is proved to achieve much better accuacy than the

Rayleigh-Sommerfeld integral, the 1D FNM expressions for the surface integrals with

polynomial apodization is obtained.

To improve the numerical performance of surface integral calculations with the

polynomial apodization, a single integral FNM expression is derived based on the

FNM expressions for a planar source that is uniformly excited. The FNM expres-

sions for planar sources with linear, quadratic, and cubic apodization functions are is

obtained by utilizing the two derivatives. After the 1D FNM integrals are obtained,

the 1D FNM integrals and the Rayleigh-Sommerfeld integral are both evaluated on a

2D grid. The results indicate that the 1D FNM expressions requires fewer abscissas

than the Rayleigh-Sommerfeld integral to achieves a given accuracy.

6.1 Method

The potential generated by a planar source that is uniformly excited is given by

e—ij

<I)(,:1:y,z)/2/e 47rR ds (6.1)

where R 2 \/(:17, — l‘)2 + (y, - y)2 + (z — z’)2 is the distance between the observa-

 

 

tion point (1:,y,z) and the point (:1:’,y’,z’) on the piston face and s is the area of

the planar source. The potential in Eq. (6.1) is normalized with respect to —v08jwt,

where 110 is the constant normal particle velocity evaluated on the source of the planar

source, a) is the excitation frequency in radians per second. Two derivatives can be

evaluated with respect to R,

0R _ (.1." -:1:) 81?. (y, — y)
___— d——2 , .2

81’ R an 63/ R (6)

 

Thus the following two equations are easily obtained,
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(.17, __ 3:)6—ij _ 188—.ij d (y! _ y)e—ij _ j 68—.ij

R ‘1. 6:1." an R' 7% 611’ (63)

The potential in Eq. (6.1) is rewritten as

ff:(ad—M (1%) e—ijd ’d" <64)
(Ham 2): 47er32]: L1(y’) 471R :1: y '

. . . _B yLC

where b 18 the her ht of the trian ular or the rectan ular source, L I 2g g g 21 1 4.2—2

  

and L1(y )=_BJ%’__1 for a triangle which is formed by the three lines y——— 0,

Alx+Bly+Cl 20 and A22+Bgy+02—— 0, and L2(y’)-— a and L1(y’) 2 0 for

a rectangle that has width a and height b.

6.1.1 Uniformly excited source

The FNM for the uniformly excited planar source is equivalent to the Rayleigh-

Sommerfeld integral given by the following expression,

—ijds

FNM

[[9647er

.2 .2— r—+ b2 .- 2 2 2 .
_Z_2_1_Z_e—_]k‘ a +2 H1 —e_9k3

:41ergag/2b? 62 022.12 do , (6.5)

__Z__2J.__Z_ Z

Ci

 

 

where 5,1,- 2 (Bic): + Fig + G,)/‘ / E? + F2'2 combines the Sign and the height terms

within a single expression, N 2 3 for the triangular source and N 2 4 for the

rectangular source. Calculations with Eq. 6.5 compute the values of C2“, E2“: F11 and

C,- only once for each edge of the planar source, whereas the values of a,- and b,- are

calculated once for each (:15, y) pair. Unlike the expressions for the impulse response

that change depending on the spatial coordinate, Eq. 6.5 is a general formula that

computes the nearfield pressure generated by any triangular source. The distance R
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is given by R 2 \/(:r' — 11:)2 + (y’ - y)2 + 22, where (1.", y’, 0) and (:13, y, 2) represent

the source point and the observation point, respectively. In the following derivation of

surface integrals with polynomial apodization, the following FNM expression is also

needed.

  
FNA/[2——

f/se‘1 =247rk2§S,-l,

x

a2—b2C:c2

2‘32

-'k (32 2 [2 .

e '7 +0 +1(jk‘/z2+02+122+1)—e-~7kz(jkz+1)

02+lz‘2

 dd, (6.6)

 
where N 2 3 for the triangular source and N 2 4 for the rectangular source.

6.1.2 Linear apodization

Let f (:13) represent an apodization function defined in the :1: direction and f(12’ ) 2 11:, .

I
First, f (1:, ) 2 :r’ is written as :1: 2 (1r, — 2:)+:1:. The potential for the linear apodized

triangular source is the sum of the following two integrals,

64ij I I

—ij —ij
I e C I I

2 — 2d ' . .7//S(:c 2:) 47rR dr:+//S:1: 471R drrdy (6)

The first of the two double integrals on the right hand side of Eq. (6.7) is reduced to

 

  

a single integral by

L2(y'). b .

——]kR —ij
I 8 _ /_ 6 1,1

[[805 :r) 47rR ds—/ (:1: :1:) 471R dxdy

0 L1(y’)
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is given by R = \/(£L, — :1:)2 + (y’ -— y)2 + 2:2, where (:c’,y’, 0) and (:1:, y, 2) represent

the source point and the observation point, respectively. In the following derivation of

surface integrals with polynomial apodization, the following FNM expression is also

needed.

02+624,2

FNMZ2/fseijCL9=4771111.21 Silt/2“,)Cficzx

Z

_‘k / 2 2 12 .

e ‘7 2 +0 +1 (jk(/22+02+122+1) —e_9kz(jkz+1)

2 2
0 +12

 

 dd, (6.6)

where N 2 3 for the triangular source and N 2 4 for the rectangular source.

6. 1.2 Linear apodization

Let f (:10) represent an apodization function defined in the :1: direction and f(:1:, ) 2 :1:, .

I
First, f(x,) 2 :1:, is written as :r 2 (:1:, - x) + :1:. The potential for the linear apodized

triangular source is the sum of the following two integrals,

I [J _// I —
3:,y,2)— a:

s

—ij —ij
I 8 6 I I

2 r— :1- . .[[901 :1:) 47rR d11y+//Sa: 471R dasdy (67)

The first of the two double integrals on the right hand side of Eq. (6.7) is reduced to

 

.7

R dx’dy’

  

a single integral by

L I)

e—ij b 2(9) e—th 1 1

/ (mi—:1:) 471R d8=/ (:1: —:1:)e4 Rdasdy

s

0
L1(y’)

  

113

 



b L2('.III) . +1,

' fl“? - . I: , I

= _L/ gig—T—dedyI2 L/e—Jlexl L2(y,)dyI

0 L1(y’) 0

  

 

+b

__J'_/(e-J'k\/(L2(y’)-:r)2+(y’—y)2+22_ —jk\/(L1(y’)-rc)2+(y’—y)2+z2)d.
k e y.

0

(6.8)

Denote Ml(u)2£f0u+be—JkR|:,:_iQE:,gdyI, thus

e—JkR

f/Scc’ — :1:) ds = Ml(1). (6.9)

The second of the two double integrals on the right hand side of Eq. (6.7) is also

reduced to a single integral easily by

 

e—ij

d 2 FNM .[[813 47rR S :1: (610)

Eqs. (6.9) and (6.10) are added together and, the pressure for the linear apodized

triangular source is given by

(1)1(23I,yI,zI) -_- Ml(1) + xFNM. (6.11)

6.1.3 Quadratic apodization

Let f(:1:) represent a quadratic apodization function defined in the 113 direction and

f (:rI ) 2 27,2. First, f(xI ) 2 (112’)2 is written as (33’)2 2 :cI(:rI — 2:) +£L'1'I . The pressure

for the quadratic apodized triangular source is the sum of the following two integrals,

@( I26 I
2(:rI ,I,y zI) ff(I) —————dx dyI

R I I
(12: dy . (6.12)

l

—ij —-J

_ ./ I_ e _I ,I I6
2//Sz(:1: :r)47TRd:Ldy+//S$334R  
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The first double integral on the right hand side of Eq. (6.12) is reduced to a single

integral by

 

b L2(y’) .1 b L2(y’) .

/ xI(a:I — x)e—]IRdedyI = _j_ / xI—ae—IdexIdyI

47rR 47rk 823’

0 L1(yI) 0 L1(yI)

_ +6 L( 6 L2(?/)

=_L ’e-ij‘CIr‘ZIy —ij I I
47rk/x :1:/2(yL1dyI_47rk/ 8 dx dy (6.13)

0 0 L1(y’)

Denote A12(u)2 ‘LEfO [iffy/I; ue’ijdedyI, thus

I

b L2(y ) _ij

/ / xI(:I:I — ”634m dedyI = Ml(a:I) — 1142(1) = M1(:rI) — FNM2. (6.14)

0 L1(y’)

The second of the two double integrals on the right hand side of Eq. (6.12) is reduced

 

to a single integral by applying the the result from Eq. (6.11)

i

0 L1

Eqs. (6.14) and (6.15) are added together, and the pressure for the quadratic apodized

L2(y’) k

I, xxI—RRdx’dy’= 23Ml(1)+a:2FNM. (6.15)

(y’)

triangular source is given by

(D2(:1:I,yI, zI) = Ml(:1:I) — FNM2 + 22611 (1) + xQFNM. (6.16)

6.1.4 Cubic apodization

Let f (:1:) represent an cubic apodization function defined in the a; direction and

f(:z:I) 2 (:L'I)3. First, f(:L'I) 2 (2’)3 is written as (:rI)3 2 xI2(:rI — :1:) + a:(a:I)2.
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The pressure for the cubic apodized triangular source is the sum of the following two

 

 

integrals,

— des

3I(:r ,yI, zI) 2//S(2:I),)3e J

47TR

b L2(yI) b L2('yI)

— / (xI)2(:1:I — :1:)e—ijded I + :1:] (xI)2£fi-R:d$Id I (6 17)

_ 47rR III 47rR y I I

0 L1(y’) O L1(y’)

The first double integral on the right hand side of Eq. (6.17) is denoted as

 

2L —ijl‘I=L2(yI)

47rk/ (xI28) ll‘I33I=L1(yI)

= Ml(:1:I2) — 21120!) (6.18)

where M2(:I: 2 47thf0 leL(2(I)? 2’e_ijd:z:IdyI and is rewritten as

b L2(yI) . b L2(yI)

AI2(I) 2 —j—k/ (.rI — 2:) e)ijdedyI-F+fi/ we__ijdedyI

0 0
L1(yI) L1(yI)

(1111(3) — 2.1/11(1)) + xii/12(1). (6.19)

P
P
M
-
l
b

The second double integral on the right hand side of Eq. (6.17) is also reduced to a

single integral by
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b L2(yI)

313/ xI2——RRId:1:Idy 223(Ml(:rI)—M2(1)+:1:M1(1)+x2FNM) (6.20)

0
L1('y’)

Combining Eqs. (6.18), (6.20) and (6.19), the pressure for the cubic apodized trian-

gular source is represented by

(p3(xI2 y” zI) = M1 (332)

—%(le(R) — 3:1:M2(1) + IMl (1r)+(1L‘2 - —)M1(1)+ x3FNM). (6.21)

6.1.5 Error calculations

The numerical error 77(36, y, z; k) is defined as the normalized difference between the

reference potential <I>ref(:1:, y, z; k) and the computed potential <I>(:z:, y, z; 16) according

to

I‘I>(I,y,z; k) -‘I’Tef(=r,y,2; k)|
 

"Mani/,2; k) = (6.22)

ma$|¢ref($1ya 2; k)|

The maximum error Tlmax is defined as

717an— 31:11ng 77(33 ya Z)- (623)

6.2 Results

The results are evaluated for a triangular source located in the z 2 0 plane, where

the positions of the three peaks are (0,4A,0), (—2A,0,0) and (2A,0,0). The refer-

ence potential is computed for the linear, quadratic, and cubic apodization functions
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Table 6.1. Simulation parameters that achieve 10%, 1% and 0.1% peak normalized

error in the potential obtained with the fast nearfield method and the Rayleigh-

Sommerfeld integral computed using linear apodization for a triangular source. Pa-

rameters listed include the number of Gauss abscissas, the computation time, and the

ratios of the computation times relative to the times obtained with the fast nearfield

method.

 

Linear Apodization
 

 

 
 

 

 

10% 1% 0.1%

FNM Rayleigh FNM Rayleigh FNM Rayleigh

Abscissas 12 42 x 42 14 99 x 99 15 190 x180

Time 0.14s 1.39s 0.16s 7.718 0.175 25.475

Computation 1 x 9.97x 1 x 46.85 x 1 x 145.82 x

Time relative

to the FNM           
f(1‘) described in the Section 6.1, namely f (:1:) 2 :1:, f(a:) 2 x2, and f(:1:) 2 11:3,

respectively. The potential is evaluated in the a: 2 1.0) plane, where the grid in

the a: 2 1.0A plane extends from -—2)\ to 6A in the y direction, and the grid spacing

in the y-direction is 0.08/\. The grid extends from 0.02A to 1.0A in the z direction

with a spacing of 0.02/\. The potential in the z direction is shifted by 0.02) relative

to the piston source in the z 2 0 plane for both the Rayleigh-Sommerfeld integral

and the fast nearfield method in order to avoid the most severe singularities in this

location for the Rayleigh-Sommerfeld integral. The reference potential is obtained

using the Rayleigh-Sommerfeld integral evaluated with 100,000 Gauss abscissas in

each direction, and the results are computed on a 50x101 spatial grid.

6.2.1 Linear apodization

The linear apodization function evaluated here is f(1:) 2 ac. The results for the fast

nearfield method and the Rayleigh-Sommerfeld integral are plotted in Figures 6.1

and 6.2. The numerical errors and the computation times are plotted in Figure 6.1 a)
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Table 6.2. Simulation parameters that achieve 10%, 1%, and 0.1% peak normal-

ized error in the potential obtained with the fast nearfield nearfield method and the

Rayleigh-Sommerfeld integral computed using quadratic apodization for a triangular

source. Parameters listed include the number of Gauss abscissas, the computation

time, and the ratios of the computation times relative to the times obtained with the

fast nearfield method.

 

Quadratic Apodization
 

 

 

 

 

10% 1% 0.1%

FNM Rayleigh FNM Rayleigh FNM Rayleigh

Abscissas 12 33 X 33 14 94 x 94 15 190 x 180

Time 0.173 0.883 0.223 7.403 0.213 25.963
 

Computation 1x 5.25x 1 x 34.01 x 1x 123.18x

time relative

to the FNM           
and Figure 6.1 b), respectively as a function of the number Gauss abscissas used in

one integration direction for the fast nearfield method and the Rayleigh-Sommerfeld

method. The time vs. error comparison is also plotted in Figure 6.2. Figures 6.1 and

6.2 show that the fast method converges much faster than the Rayleigh-Sommerfeld

integral for the linear apodization function evaluated here. For 10% peak normal-

ized error, the fast nearfield method is 9.97 times faster than Rayleigh-Sommerfeld

integral. For 1% peak normalized error, the fast nearfield method is 46.85 times

faster than Rayleigh-Sommerfeld integral. For 0.1% peak normalized error, the fast

nearfield method is 145.82 times faster than Rayleigh-Sommerfeld integral.

6.2.2 Quadratic apodization

The quadratic apodization function evaluated here is f (:1:) 2 $2. The results for the

fast nearfield method and the Rayleigh-Sommerfeld integral are plotted in Figures

6.3 and 6.4. The numerical errors and the computation times are plotted in Figure

6.3 a) and Figure 6.3 b), respectively, as a function of the number Gauss abscissas
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Figure 6.1. a) Maximum errors and b) computation times obtained with the fast

nearfield method and the Rayleigh—Sommerfeld integral for a triangular source with

linear apodization.
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Figure 6.2. Numerical errors plotted as a function of the computation time for a

triangular source with linear apodization. The results show that the fast nearfield

method achieves much better convergence performance than the Rayleigh—Sommerfeld

integral.

used in one integration direction for the fast method and the Rayleigh-Sommerfeld

integral. The time vs. error comparison is also plotted in Figure 6.4. Figures 6.3

and 6.4 show that the fast nearfield method converges much faster than the Rayleigh-

Sommerfeld integral for the quadratic apodization function evaluated here. For 10%

peak normalized error, the fast nearfied method is 5.25 times faster than Rayleigh-

Sommerfeld integral. For 1% peak normalized error, the fast nearfield method is 34.01

times faster than Rayleigh-Sommerfeld integral. For 0.1% peak normalized error, the

fast nearfield method is 123.18 times faster than Rayleigh-Sommerfeld integral.
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Figure 6.3. a) Maximum errors and b) computation times obtained with the fast

nearfield method and the Rayleigh—Sommerfeld integral for a triangular source with

quadratic apodization.
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Figure 6.4. Numerical errors plotted as a function of the computation time for a

triangular source with quadratic apodization. The results show that the fast nearfield

method achieves much better convergence than the Rayleigh-Sommerfeld integral.

6.2.3 Cubic apodization

The cubic apodization function evaluated here is f (1r) 2 1:3. The results for the

fast nearfield method and the Rayleigh—Sommerfeld integral are plotted in Figures

6.5 and 6.6. The numerical errors and the computation times are plotted in Fig-

ure 6.5 a) and Figure 6.5 b), respectively, as a function of the number Gauss

abscissas used in one integration direction for the fast nearfield method and the

Rayleigh—Sommerfeld integral. The time vs. error comparison is also plotted in Fig—

ure 6.6. Figures 6.5 and 6.6 ShOW that the fast nearfield method converges much

faster than the Rayleigh-Sommerfeld integral for cubic apodization function evalu-

ataed here. For 10% peak normalized error, the fast nearfield method is 5.22 timas
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Table 6.3. Simulation parameters that achieve 10%, 1% and 0.1% peak normalized

error in the potential obtained with the fast nearfield method and the Rayleigh—

Sommerfeld integral computed using cubic apodization for a triangular source. Pa-

rameters listed include the number of Gauss abscissas, the computation time, and the

ratios of the computation times relative to the times obtained with the fast nearfield

method.

 

Cubic Apodization
 

 

 

 

 

 

10% 1% 0.1%

FNM Rayleigh FNM Rayleigh FNM Rayleigh

Abscissas 12 33x33 13 ' 89x 89 15 190x 180

Time 0.403 2.073 0.433 14.943 0.503 55.253

Computation 1X 5.22x 1x 34.76x 1x 111.28x

time relative

to the FNM           
 

faster than Rayleigh-Sommerfeld integral. For 1% peak normalized error, the fast

nearfield method is 34.76 times faster than Rayleigh-Sommerfeld integral. For 0.1%

peak normalized error, the fast nearfield method is 111.28 times faster than Rayleigh-

Sommerfeld integral.

6.3 Discussions

6.3.1 Other Polygonal Sources

The fast nearfield method for poynomial apodized triangular source and rectangular

source are derived in this paper. The derivation process can be generalized to other

polygonal sources. The FNM for the uniformly excited polygonal source is readily

computed using Eq. (6.5) and Eq. (6.6), and the number of 1D integrals evaluated is

equal to the number of sides of the polygonal source. The computation of Eq. (??)

also needs to be adapted according to the specific polygonal source.
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Figure 6.5. a) Maximum errors and b) computation times obtained with the fast

nearfield method and the Rayleigh-Sommerfeld integral for a triangular source with

cubic apodization.
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Figure 6.6. Numerical errors plotted as a function of the computation time for a trian-

gular source with cubic apodization. The results show that the fast method achieves

much better convergence performance than the Rayleigh-Sommerfeld integral.

6.3.2 Higher order polynomials

In this paper, the FNM expressions for surface potential integrals with linear,

quadratic, and cubic polynomial apodization are derived. The FNM expressions of the

surface potential integrals with higher order polynomial apodization can be derived

using the same strategy. Many apodization functions, like 3in(), cos(), exp(), etc.,

can be approximated using higher order polynomials, thus potential integrals with

such apodizations can be approximated with higher order polynomials combined with

appropriate 1D FNM expressions. Since the FNM expressions converge very rapidly,

the accuracy of numerical evaluation of the potential integrals with general apodiza-

tion is mainly dependent on the accuracy of the approximation to the apodization
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function.

6.4 Conclusion

Single integral expressions for calculating the potential generated by polynomial

apodized planar sources are derived and evaluated. Starting from the FNM for

the uniformly excited planar source, three polynomial apodizations including lin-

ear, quadratic, and cubic apodizations are reduced to a 1D integral. Higher order

polynomials can be obtained using the same strategy. These fast expressions remove

the singularities that appear in the Rayleigh-Sommerfeld integral and thus achieve

very fast convergence with a very small number of Gauss abscissas. Simulation results

are compared between the fast nearfield method and the Rayleigh-Sommerfeld inte

gral. For a given peak normalized error, the fast nearfield method always converges

much faster than the Rayleigh-Sommerfeld integral when polynomial apodization is

evaluated with the appropriate 1D FNM expression.
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CHAPTER 7

A Fast Nearfield Method for

Numerical Evaluation of Volume

Integrals with Polynomial

Apodization

Numerical calculation of volume potential integrals involved in integral equations are

of great importance in scattering problems and the polynomial function is a very

popular function to approximate the electric and magnetic currents. For examples,

three-dimensional polynomials are adopted to approximate the entire-domain normal-

ized current density by Moraros and Popovic [23] when applied to optimize the volume

potential integrals involved in the moment-method analysis of 3D dielectric scatters.

Potential integrals over a volume domain are often singular and direct evaluation of

potential integrals may encounter numerical difficulties. Often, Singularity subtrac-

tion methods [23, 25, 26, 27, 28] or singularity cancellation methods [30, 31, 32, 33]

are used to improve the accuracy of the potential integrals. Those methods retain the

same number of dimensions over which the integration is performed. This approach
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is reasonable for general potential integrals, however, more efficient expressions can

be acheived when polynomial apodized volume potential integrals are considered.

Potentials generated by uniformly excited planar sources are computed with both

the Rayleigh-Sommerfeld integral [6] and the fast nearfield method (FNM) [8, 12].

The existing FNM achieves much higher accuracies by eliminating the 1 /R singularity

from the Rayleigh-Sommerfeld integral and by decreasing a 2D integral to a 1D inte-

gral. Numerical evaluation of potential integrals with polynomial apodization is an

important problem for scattering calculations, which motivates the derivatiaon of a

similar fast nearfield method to improve the numerical performance of those integrals.

A single FNM integral is derived based on the FNM exprassions for uniformly

excited and polynomial apodized polygonal sources in order to improve the perfor-

mance of potential integral calculations for volume sources with polynomial apodiza-

tion. The FNM expressions for uniformly excited sources are first reviewed, and then

the FNM expressions for the polynomial apodized planar source are obtained. The

volume source is then subdivided into five subdomains, and local coordinate system

is defined for calculations of the potential for a subdomain. The potential gener-

ated by the entire volume source is the superposition of the potentials evaluated over

each subdomain, where each contribution is represented by a single integral. Thus,

1D FNM expressions for a polynomial apodized volume source is obtained. The 1D

FNM expressions and the singularity cancellation method are evaluated on a 3D grid.

The results indicate that the FNM requires less time to achieve a given accuracy than

the singularity cancellation method for a polynomial apodized volume source.

7.1 Method

The volume integrals evaluated in this article are given by
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a) Subpyramid. b) Subtetrahedron.

Figure 7.1. Subdomains defined for a prism where the shared vertex is defined at the

observation point.

(7.1) 

f/f'
where V is the volume integration domain, ./\(rI)47rrepresents the apodization over

the integration domain, R is the distance between the observation point (x, y, z) and

the source point (2’, y’, 25’), and k is the wavenumber. The potential in Eq. (7.1) is

normalized with respect to —vOejIUt, where '00 is the constant normal particle velocity

evaluated on the volume source, 62 is the excitation frequency in radians per second.

Here, the special case A(rI) 2 xI is considered.

The volume is first subdivided about the observation point into subdomains. Fig-

ure (7.1) illustrates a subpyramid and a subtetrahedron for a prism.

The volume integral shown in Eq. (7.1) is first rewritten as

z>=///.,w' v-—-.// . 2”2...,vami?
(7.2)

   

Then, two derivatives are evaluated with respect to R,
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0R_(:rI-—a:) 8R_(yI—y).
 

  

 

 

_ _ __ _ 7.3

0:1:I R and By, R ( I

The following equations are then obtained,

(:1:I _ x)e_ij _ 188'.ij and (yI _ y)e-ij _ 1598—ij (7 4)

R _ k 8:13, R _ k 331’ E

The potential integral in Eq. (6.1) for a triangular base is rewritten as

3111— —C /B L (39/) —ij
<I>.(:1:y,z2)‘//A(I) d3 2/ 1 1/ 2 A(TI)?———d.rIdyI

e47rR 0 L1(yI) 47rR

o L3(:1:I) e_ij —C2/A2 L4(:1:I) e—ij

= A(rI)————dedyI + f / A(rI) dedyI,

[_01 /A1/() 47fR 0 0 47rR

(7.5)

Where L1(yI) = ('3in - C1)/A1,L2(1UI)= (-B2yI - C2l/A2, L3($I) = (—A1$I-

Cl)/Bl and L4(:rI) 2 (~A2xI — C2)/B2 for a triangular base which is formed by

the three lines 3; 2 0, A11: + Bly + Cl 2 0 and A22: + B2y + C2 2 0. The potential

integral in Eq. (6.1) for a rectangular base is rewritten as

—ij -ij

<I>,(:1: y,z) =//3A(I))8 (13 2L: [_bbAO: )e RdedyI, (7.6)

where the center of the rectangular source is the origin of the coordinate system, and

  

the width and height of a rectangular source is 2a, and 2b, respectively.

7.1.1 Uniformly excited planar source

The FNM for a planar source that is uniformly excited is equivalent to the Rayleigh-

Sommerfeld integral given by the following expression,

e—ij

VM 2Fl [[9 471R d3 
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Figure 7.2. Geometric parameters defined for the potential calculations in a tetrahe-

dral subdomain.

a2 62_ 2

+ b- e_- /2 2 2 .

=4Tk 2i 2_b2c:C2 02+? , .

Ci

 

where 521,- 2 (E11: + Fz-y + at” E? + F22 combines the sign and the height terms

within a single expression. The number of 1D integrals is given by N 2 3 for a

triangular source and N 2 4 for a rectangular source. Calculations with Eq. 7.7

compute the values of Ci, E11 F2" and C,- only once for each edge of the planr source,

whereas the values of az- and b,- are calculated once for each (2:, y) pair.
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The fast nearfield method expressions for the uniformly excited potential integrals

derived previously for a prism, denote by (Pu, are given by

  

<I> _/// e—ijdV- % (Amx+Bmy+sz+Dm)q) (78)

U V 47TR _1 lAm$+Bmy+CmZ+Dm| ”In, I

where M 2 5 is the number of faces that the volume has, Amx+Bmy+sz+Dm 2 0

denotes the general form of the plane that passes through each face of the prism, and

q’um is the potential generated by each subdomain. The expressions for (bum are

___1 N

<I> 2 —— h -

um 47rk2 2.22:] m

 __'k/ 2 2 ’22. _

162246 I Q +2 + m_1)_(e—sz_1)\[Q2+z2+h§,

[1611 (Q2 + ha.) Q2 + 2.2 + I232“

  dQ, (7.9)

for each subvolume, where hv 2 z is the distance from the observation point to the

base of the subdomain, and the parameters hM1lb11’Ibi2 are shown in Figure (7.2).

7.1.2 Linear apodization for a planar source

Linear apodization in the x direction

The potential integral for the apodization function f(:L'I ,yI ,zI) 2 mI applied to a

planar source is given by

—ij —ij —ij

I8 I I I e I I e I I
d = — , . ——//Sx 47rR dz y //S(:I: :1:) 47rR dzrdy+//Sx 47rR drcdy

. _ij

= LIT/E / 95537—116’111,’ +1rFNMu
S

  

m'form' (7'10)

For a triangular source, substituting Eq. (7.5) into Eq. (7.10) yields
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le—ij I
//8x 471'R——d3: dy 2:1:FNMuniform+

 

j f-CI/Bl —jk\/(L2(y’>—x>2+<y'—y)2+(z—z')2

47rk 0 e

 

—e_jk\/((((yL1,)(l—x)2+y“WZ)2 dy’ (7.11)

For a rectangular source, substituting Eq. (7.6) into Eq. (7.10) yields

I8"ij I j
82: 47fR—————d:cdyl =xFNMuniform+m

  

x [:(e-J'k\/(a-:v)2+(y’-:tI)2+(z-Z’)2 __ e-jk\/(a+w)2+(y’-y)2+(z-Z’)2)dyr.

(7.12)

Linear apodization in the y direction

The potential integral for the apodization function f(:z:',y’,z’) 2 y, applied to a

planar source is given by

—ij -—ij —ij

I6 I I I 6 I I e I I
d d' 2 . — d d d[[83, 4,, x y f/St mm, mdy+//Sy47rR x y

Be—ij I

24779j/fs—br—-——d:L‘ dy +yFNMum'form' (7.13)

   

For a triangular source, substitutinyg Eq. (7.5) into Eq. (7.13) yields

 

. 0

’8'.)de ’dz’ FNM j
3y 47TR I y :y uniform'i'm

"Cl/Al
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_,-.. I_ 2 I_ 2 ,_I2 _,- I_.2 .2 .,_.,/2
e liq/<2: 22) +<L3(a:) y) +<~ z) _e Jk\/($ 2) +y +<~ ~> d3,

 

+_J;_ -02/A2 e—jk\/<x'—x>2+<L4(x'>—y)2+<z—z’>2
47rk 0

 

_- I_ 2 2 ,_I2

-e “((93 5”) +3” +(“ z) (133’. (7.14)

For a rectangular source, substituting Eq. (7.6) into Eq. (7.13) yields

 ’eTijd ’d ’— FNM j
3y 47rR :r y —y uniform'i'm

 
 

[0 e-jk\/(x’—:r)2+(b—y)2+(z—z’)2__e—jkfis’—x)2+(b+y)2+(z—z’)2 (135'.

(7.15)

Linear apodization in the z direction

The potential integral for the apodization function f(3:, ,y’,z’) 2 z’ applied to a

planar source is given by

 

I€_ij I I I ,
Sz 47rR d1: dy 2:. FNjwuniform' (7.16)

7.1.3 Linear apodization for a subdomain

The apodization function is defined as f (23’ ,y’ ,z’ ) for a subdomain of the volume

source in the local coordinate system shown in Figure 7.2. The origin of the local

coordinate system is the projection of the observation point onto the base plane of

the subdomain. The base plane of the subdomain is either a triangular source which
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is formed by three lines 3) 2 0, A111: + Bly + Cl 2 0 and A23: + 82y + Cg 2 0 or a

rectangular source with the width and height 2a, and 2b, respectively.

Linear apodization in the x direction

Consider the apodization function f(:r’ ,y’ ,z’ ) 2 l" for a subdomain of the volume

source in the local coordinate system shown in Figure 7.2. The potential generated

by the subdomain is the linear superposition of the following two integrals,

’63—ij I e—ij e—ij

ff/Vx 47TH dV2/ffl/(3: —a:) 47rR dV+///Vz 417R (1V. (7.17)

The first volume integral on the right side of Eq. (7.17) is computed as

’ e_ijdV h” ’ {Maw 718///V($—x) 477R —/(; //3(2:—x) 47rR sz. (.)

For a triangular base plane, substituting Eq.(7.11) into Eq. (7.18), then exchanging

   

 

 

the order of integration and analytically evaluating the innermost integral gives

///V<w'—x>ii’;Rdv

’1 ' _ 7’ —C B -,z—z’ ~ z—z’

0 0

 

 

m: z

j _Cl/BI e“jk(R1+R2)

=_ jk(R1+R2) 2- 27

4m» 0 k2RgRg (8 (R2 Rll”)
 

e-jk(R1+R2)

_ .2 2 2
A R1122

 (eikngz — 79ij1sz + jR1R2k3(R28ij2 — Rleijl))dy’

(7.19)
 

 

where R2 2 \/(L2(y’) — :1:)2 + (y’ — y)2 + 2:2 and

R1 = \/(L1<y'> — a)? + (y' — y)? + 32
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For a rectangular base plane, substituting Eq.(7.15) into Eq. (7.18), then exchanging

the order of integration and analytically evaluating the innermost integral gives

///V<x'-x>::’:fdv

h - _ I b .‘ _ ’ - z—z’

"f ”(7171/ b<e“9kzzsz2—e-9k z Rb1>dy’>dz’
0 71' Z _

 

 

(ejk(R1+R2)(Rg _ 3%)3) 

_ j /b e-jk(R1+R2)

‘_ 2 2 2
47k —b k R1122

e-jk(Rl+R2)

2 2 2
k R1R2

 (eijQRgz -— eijl R¥z +jR1R2kz(R2eij2 — Rleij1))dy’

(7.20)

where R2 2 \/(a —— :1:)2 + (y’ - y)2 + 22 and R1 2 \/(a +1?)2 + (y’ - y)2 + 22.

  

The second volume integral on the right side of Eq. (7.17) is computed as

e—ij

ff/Vx R dV2xFNM. (7.21)

7.1.4 Linear apodization in the y direction

 

The apodization function is defined as f(x’, y’, 2’) 2 y, for a subdomain of the volume

source in the local coordinate system shown in Figure 7.2. The potential generated

by the subdomain is the linear superposition of the following two integrals,

,e—ij I e—ij e—ij

///Vy 47rR dV2///V(y —y) 42R dV+///Vy 47rR dV. (7.22)

For a triangular base plane, the first triple integral on the right hand side of Eq.

   

(7.22) is given by,
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ff/v9’ —>y>—ijdV= j f—CQWe—JMRfiRfl<eJk<R1+R2)(R%
—2R¥>z>

477R 47rk 0 k2R%R%

e-jk(Ri+R2)

2 2 2
k R1122

 (eij? R32 — eij1R%z + jR1R2k2(R2€ij2 — Rleij1))d:r’

 

j 0 e‘3k(R1+R3) jk(R1+R3) 2_ 2 '
2 2 6 (R3 31);.)

431/211 #3133

-jk(Rl+R3) - ,- ,- -
e k2R2R2 (63191321232: — eJkR1R2z + jR1R3kz(R3eJkR3 — 1216316121»de L;

1 3 S

(7.23)

where R2 2 \/(:1:’ - x)2 + (L4(:r’) — y)2 + Z2 , R1 2 \/(—:r’ - 2:)2 + y2 + Z2 and

R3 2 \/(:r’ - :1:)2 + (L3(:r’) - y)2 + 22.

For a rectangular base plane, the first triple integral on the right hand side of Eq.

 

 
 

 

 

(7.22) is given by

  

— kR - -'k R +R

[#wa _ye J dzv J [a e H 1 2ngij(R1+R2)(2 422))

47rR 47rk a k2R%R%

 (eijQRgz —~ eij1R%z + jR1R2k2(R2eij2 — Rleij1))d:r’,

(7.24)

where R2 2 \/(iL‘,—SE)2 +(b——y)2 +2:2 and R12 \/(:r’-—:r)2 +(b+y)2+22.

  

The second triple integral on the right hand side of Eq. (7.22) is equivalent to,

e—ij

[ffvy R dV2yFN.M. (7.25) 
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7.1.5 Linear apodization in the z direction

The apodization function is defined as f(113’, y’, z’) 2 z, for a subdomain of the volume

source in the local coordinate system shown in Figure 7.2. The potential is given by

_ij Z M

ff/vzleer dV:/z’//SC———4WRdsdz’. (7.26)

0

Substituting the FNM expression for the surface source into Eq. (7.26) and exchang-

 

ing the order of integration yields

M”3.2%
 

 

 

l ' ZZZ, 2 2 2 .

Z , j N m2]! 6_jk_ VQ +z +hb2— e_Jk(Z—Z,)d d I

=/zm. /“ Q2+h2. QZ
0 2:11 , b2

bzl

, _J

j N ’bz2 z , —2k-Z—22\/Q2+22+h2-_e-jk(z_z') ,

247%.: f2)!“ Q2+h2 dZdQ

”117771 0

 
z - —'k‘/ 2+z2+h2.

hb N (”2 22(1—jk\/Q2+z2+hl2n.—e 3 Q bl)

2 2 2 2
bz'izll k (Q +Z +hb7)

 
 

 

_ "k: _ —jkz

_(1 J k2 e )) dQ. (7.27)

Then, the 1D integral for the linear apodization in the z direction is obtained.

7.1.6 The prism geometry

The prism source evaluated here is shown in Figure 7.3, and the coordinates of each

vertex of the prism are given in Table 7.1.
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Table 7.1. Vertex locations defined for the prism source..

 

Vertex A B C D E F

(x, y, z) [m] (0,1,0) (0, 0,0) (1,0,0) (0,1,1) (0,0,1) (1,0,1)

 
 

         

7.1.7 Global and local systems

The global coordinate system is denoted by (:c,y,z), and the rotated coordinate

system is denoted by (X, Y, Z). The rotation is characterized by Euler angles using

the Z-X-Z convention, where

a is the angle between the x—axis and the intersection of the 3:3; and the XY coordinate

planes.

B is the angle between the z-axis and the Z—axis.

 

7 is the angle between the intersection of the 1133/ and the XY coordinate planes and

the X—axis.

The relationship between the global coordinates (:1:, y, z) and the rotated coordi-

nates (X, Y, Z) is given by

  

    

, -

X

Z

r- - r- 1

cosacos'y — cosfisinasirw sinacosv + cosflcosasin'y sinfisin'y x

= —cosasin7 —— cosfisinacosv cosficosacos'y — sinasiny sinficos'y y

sinflsina —sin,3cosa cosfi z
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Figure 7.3. The prism geometry, where vertex B is coincident with the origin, and

vertices C, A, and E are located on the :r, y, and z axes, respectively.

The plane defined by the vertices ADEB

The Euler angles for the plane defined by the vertices ADEB are (a, fin) =

(7r/2, 7r/2, 0). After rotating the global coordinate system :ryz according to the Euler

angles ((1, fl, '7), the origin of the rotated system X1Y1 Z1 is translated to the center

of the rectangle ADEB which is denoted by ($1,y1,z1). The values of (331,311, 21)

are given by 6 %, 0). Substituting the Euler angles into Eq. (7.28) yields
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Figure 7.4. The local coordinate system for the plane ADEB.

          

- 1 - - _ . _ - - _

X1 0 1 0 :1: x1 y —— %

Y1 = 0 0 1 y ‘ y1 = Z—% (7'29)

21 j 1 O 0 z 21 :1:

Rewriting Eq. (7.29) yields

' ' - T

£1? 21

y = XI + % . (7.30)

2: Y1 + 1

_ J 2 _    
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Figure 7.5. The local coordinate system for the plane ADFC.

The plane defined by the vertices ADFC

The Euler angles for the plane defined by the vertices ADFC is (013,7) =

(37r/4, 7r/2, 0). After rotating the global coordinate system xyz according to the Euler

angles (a, ,8, 7), the origin of the rotated system X2Y222 is translated to the center

of the rectangle ADFC which is denoted by ($2,312, 22). The values of (332,342, 22)

are given by (0, %, é). Substituting the Euler angles into Eq. (7.28) yields
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Rewrite Eq. (7.31) yields
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(7.31)

(7.32)

The Euler angles for the plane defined by the vertices BEFC is (a, fi, ’7) = (7r, 1r/2, 0).

After rotating the global coordinate system :cyz according to the Euler angles (0, fl, '7),

the origin of the rotated system X3Y3Z3 is translated to the center of the rectangle

BEFC which is denoted by ($3,y3,z3). The values of (x3,y3,z3) are given by

(—%, 1%, 0). Substituting the Euler angles into Eq. (7.28) yields

 _  d  
Rewriting Eq. (7.33) yields
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Figure 7.6. The local coordinate system for the plane BEFC.

7.1.8 Evaluating potential integrals generated by each sub-

domain

To calculate the potential integrals generated by the volume source shown in Figure

7.3, the volume is subdivided into five subdomains. The potential generated by the

prism , denoted by (Pa, is obtained by superposing the contributions generated by

each subdomain according to
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(Amx + Bmy + sz + Dm)a

lAmSL‘ + 87111] + CmZ + Dml

(735)

  

M
E

ij

Rdx’dy’dz——all/f

where M = 5 is the number of faces that the volume has, Amx+Bmy+sz+Dm = 0

m:l

denotes the general form of the plane that passes through each face of the prism, and

(Dam is the potential on each subdomain. The expressions of (Dam is

cram: ff] f(x’, Y’Jig—Z)————dX’,dY’dz’ (7.36)

for each subvolume, where f(XI , Y’, ZI) is the apodization function in the local coor-

dinate system, which can be obtained by substituting the expressions for the :1:], y’, z,

terms defined by Eqs. (7.30), (7.32), and (7.34).

7.1.9 Error calculations

For potential calculations, the numerical error 77(23, y, z; k) is defined as the nor-

malized difference between the reference potential (Dref(:c, y, z) and the computed

potential <I>(:1:, y, :5) according to

l¢<x7yv Z) _ (1)7-ef(1',y, Z)|

 

77(27, y, z; k) = (7-37)
max|¢ref(x,y,z; k)!

The maximum error Umax is defined as

7,777,017 : 11,1:ng 77(27, y: Z): (7'38)

and the number of significant digits n is given by

n = [0910(77ma1r) (7-39)
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Table 7.2. Simulation parameters that achieve between 2 and 5 significant digits using

the FNM and the singularity cancellation method to evaluate a potential integral with

linear apodization evaluated on a 3D grid. Parameters listed include the number of

significant digits achieved and the ratio of the computation time relative to the time

required for the FNM. (a) Significant digits 2 and 3. (b) Significant digits 4 and 5.

(a)
 

 

 

 

 

      
 

 

 

 
 

 

 

 

Significant digits 2 3

FNM Singularity FNM Singularity

cancellation cancellation

Time (seconds) 0.095 0.83 0.11 1.70

Computaton time relative to FNM 1x 8.74>< 1x 15.45x

(1))

Significant digits 4 5

FNM Singularity FNM Singularity

cancellation cancellation

Time (seconds) 0.16 4.96 0.25 8.69

Computation time relative to FNM 1x 31.00x 1x 34.76x      
 

7.2 Results

The potential integral with linear apodization is evaluated on a 3D grid. The x

and y directions extend from -0.5m to 1.5m with an interval of 0.02m, the z direction

extends from 0 to 1.5m with an interval of 0.03m. The reference potential is computed

using the singularity cancellation method evaluated with 1000 Gauss abscissas in each

direction. Figure 7.7 contains a plot of the number of significant digits achieved with

the FNM and the singularity cancellation method evaluated on a 3D grid as a function

of computation times. Table 7.2 summarizes the ratio of the computation times

obtained with the FNM and the singularity cancellation method when each achieves

between 2 and 5 significant digits on a 3D computational grid. For this computational

grid, the FNM is 8.74, 15.45, 31.00, 34.76 times faster than the singularity cancellation

method when each achieves 2, 3, 4, and 5 significant digits, respectively.
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Figure 7.7. The number of significant digits achieved in calculations 0d the potential

integrals linear apodization over the prism plotted as a function of computation time

for evaluations on a 3D grid. The results show that the FNM achieves a larger

number of significant digits than the singularity cancellation method for the same

computation time.

7.3 Discussion

7.3.1 Other volume sources

The potential integral with linear apodization in Eq. (7.1) is a triple integral and

the 1D FNM integral reduces this triple integral to the evaluation of a small number

of single integrals. The 1D FNM integral converges much faster than the singularity

cancellation method, and the 1D FNM integral needs much less computation time to

achieve a given accuracy than the singularity cancellation method. The fast nearfield

method calculations developed here are easily extended to any volume source with
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polygonal faces. First, the volume source is subdivided into subdomains, and the

number of subdomains is equal to the number of polygonal faces. Then, the potential

generated in each subdomain is computed in the local coordinate system, where the

Euler angle is first obtained for each of the base planes. The total potential generated

by the volume source is obtained by superposing the potentials produced by each of

the subdomains.

7.3.2 Higher order polynomials

The 1D FNM expressions for volume potentials with linear apodization are derived

here. The FNM expressions of the volume potential integrals with higher order poly-

nomial apodization can be derived using the same strategy. The Euler angle is first

obtained for each of the base planes, and the apodization function in the global co—

ordinate system is translated into the the function in the local coordinate system.

Then, after obtaining the fast nearfield method for each apodization in the local co-

ordinate system and superposing the contributions from each apodization function in

local coorinate system yields the total potential.

7.4 Conclusion

1D FNM expressions for calculating volume potentials with linear apodization are

derived and evaluated. The 1D FNM integral for a potential integral is first given,

and FNM expressions for a planar source with linear apodization is then derived. The

volume source is then subdivided into several subdomains including subpyramids

and subtetrahedrons. The potential generated by each subdomain is computed in

the local coordinate system and the total potential over the volume source is the

superposition of the potential generated by each subdomain. After the 1D FNM

expressions are obtained, the results obtained with the FNM are compared with the

149

 

 

 



singularity cancellation method on a large 3D observation grid. The results indicate

that, for the 3D grid used here, the FNM reduces the computation time by a factor

of 8.74 to 34.76 relative to the singularity cancellation method when each achieves

between 2 and 5 significant digits on a 3D grid. Thus, the FNM is an ideal method

for linear apodized potentials.
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CHAPTER 8

Conclusion

This thesis derives and evaluates fast expressions for calculating pressures gener-

ated by planar pistons and potentials generated by volume sources. The 1D fast

nearfield method (FNM) expressions are compared to several existing methods in-

cluding the implulse response method, the Rayleigh-Sommerfield integral, the Field

II program and the singularity cancellation method. Chapter 2 introduces 1D fast

nearfield method expressions for the time-harmonic and transient pressures generated

by triangular pistons. These fast nearfield method expressions remove singularities

from a 1D integral and therefore converge very quickly. The transient calculations

are further accelerated by time-space decomposition. The fast nearfield expressions

for a triangular source are compared with the impulse response method, the Field 11

program, and the smoothed impulse response. The comparison results indicate that

the fast nearfield method achieves smaller errors than the other three methods in less

time.

Analytical 2D integral expressions for fast calculations of time—harmonic and tran-

sient nearfield pressures generated by apodized rectangular pistons are given in Chap-

ter 3. A simplified time space decomposition method is also introduced to further

reduce the computation time for transient pressure fields. The results are compared
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with the Rayleigh-Sommerfeld integral and the Field II program to show that the 2D

FNM integral converges much faster than the Rayleigh-Sommerfeld integral and the

Field 11 program.

As a special case of Chapter 3, A fast nearfield method for calculating pressure

generated by a polynomial apodized rectangular pistion is obtained based on the in-

stantaneous impulse response in Chapter 4. Two kinds of apodization functions are

considered in the derivation process. A trigonometric transform of the integrand is

performed and the order of integration is exchanged to obtain the 1D fast nearfield

method expressions. The results show that the 1D polynomial apodized FNM con-

verge faster than the Rayleigh-Sommerfeld integral and the 2D apodized FNM.

Chaper 5 introduces a 1D fast nearfield method for the calculations of uniformly

excited volume potential integrals. The results are compared with the singularity

cancellation method at six different observation points and a volume grid, and the

results show that the fast nearfield method needs less sample points than the singu-

larity cancellation method to achieve a given number of significant digits. A 1D fast

nearfield method to calculate potentals generated by surface integrals and volume

integrals with polynomial apodization are introduced in Chapters 6 and 7. These

expressions remove the singularities from the Rayleigh—Sommerfeld method integral.

The results compared with the singularity cancellation method indicate that the 1D

fast nearfield method achieves much faster convergence with much less computation

time.
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