Ml l'lfl‘ H \ (WUNWWINthWlHLHlIN‘1‘ i W fi _I 014:- \‘N -|——| H U) 'UEL‘lI‘H l ’ .LIBRARY “ ’ Michigan State University x; N..—” "V 4...) _._._ This is to certify that the thesis entitled Performance of an Elite Strawberry Population Derived from VWd Gerrnplasm of Fragan'a chiloensis and F. virginiana presented by Travis Lyle Stegmeir has been accepted towards fulfillment of the requirements for the Master of degree in Plant Breeding and Genetics - Science Horticulture LEM 3 Major Professor’s Signature 5/ u / 01 Date MSU is an Affirmative Action/Equal Opportunity Employer PLACE IN RETURN BOX to remove this checkout from your record. To AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested. DATE DUE DATE DUE DATE DUE 5/08 K:IProj/Acc&Pres/ClRC/Dateom.indd PERFORMANCE OF AN ELITE STRAWBERRY POPULATION DERIVED FROM WILD GERMPLASM OF F ragaria chiloensis AND E virginiana By Travis Lyle Stegmeir A THESIS Submitted to Michigan State University In partial fulfillment of the requirements For the degree of MASTER OF SCIENCE Plant Breeding and Genetics - Horticulture 2009 ABSTRACT PERFORMANCE OF AN ELITE STRAWBERRY POPULATION DERIVED FROM WILD GERMPLASM OF F ragaria chiloensis AND F. virginiana By Travis Lyle Stegmeir F ragaria x ananassa Duchesne ex Rozier, or the cultivated strawberry, resulted fiom the accidental hybridization of two wild species, F. chiloensz's (L.) Miller and F. virginiana Miller. In an attempt to recreate the cultivated strawberry, elite clones of F. chiloensis and F. virginiana were crossed within species and then hybridized to produce 23 reconstructed populations. Of these populations, FVCll [(Frederick 9 x LH 50-4) x (Scotts Creek x 2 MAR 1A)] had unusually large fruit size and was selected for further analysis. In the summer of 2008, 78 individuals of this population were evaluated for their seasonal flowering patterns, inflorescence number, inflorescence height, crown production, flower number, fruit size, yield, internal color, soluble solids, fruit firmness and plant vigor. Progeny means were compared to those of the parental means and most traits exhibited transgressive segregation, most notably yield and fruit weight. Significant positive correlations were found between many of the production traits, although there were significant negative correlations between fi'uit firmness and flower nmnber per inflorescence, fi'uit firmness and soluble solids and yield per plant and soluble solids. Overall performance scores were assigned to each genotype by summing their relative performance for each trait in the population. Individuals were identified that combined high values for fruit weight and yield with higher than average values for fruit color, firmness and soluble solids. Use of this population in breeding programs could help expand the genetic base of the cultivated strawberry with limited linkage drag. ACKNOWLEDGEMENTS I would like to thank my major professor, Dr. Jim Hancock, for allowing himself to be talked in to taking me on as a graduate student. His guidance, sense of humor, and down- to-earth nature were much appreciated throughout my endeavors. I am very thankful for the opportunity he has given me not only in my research, but also in the experience with making crosses, and evaluating germplasm, my true passions. I would also like to thank my other committee members, Dr. Amy Iezzoni, and Dr. Dechun Wang, for their support and help both in and out of the classroom. I always felt like I could ask you questions weather they were related to my research or not, in order not only to finish my degree, but to become a better plant breeder. Emma Bradford also deserves acknowledgement for always being there for me both in an academic setting, as well as a friend. I could always rely on her for helpful advice, good laughs, and honest answers-not to mention a shared passion for plants. Pete Callow was also always there for me in the lab and in the field, as well as in the hallways. I could always count on him to make me laugh, or help me out in the lab with any information. Also special thanks to Dr. Ryan Warner for his input and contributions during the analysis of my data, and writing of my paper. I would also like to thank all of my friends here at MSU, Rachel Naegele, Cholani Weebadde, Veronica Vallejo, Audrey Sebolt, Suneth Sooriyapathirana, and all of the other great PBGB students. Most of all, I would like to thank my parents for their invaluable support throughout my academic career and my family for helping shape me into who I am today. ii TABLE OF CONTENTS LIST OF TABLES .................................................................................. vii LIST OF FIGURES ................................................................................... viii PERFORMANCE OF AN ELITE STRAWBERRY POPULATION DERIVED FROM WILD GERMPLASM OF Fragaria chiloensis AND F. virginiana. . . . . . . . . .....1 INTRODUCTION ..................................................................................... 2 MATERIALS AND METHODS ..................................................................... 4 RESULTS ............................................................................................... 7 DISCUSSION ............................................................................................. 8 APPENDIX ........................................................................................................................ 1 8 REFERENCES ......................................................................................... 26 iii Table 1: Table 2: Table 3: LIST OF TABLES T-test comparing remontant (RM) genotype and non-remontant (N RM) genotype means for the PVC]! population evaluated at Benton Harbor, MI. The t-values that were significant at the 0.05 level are bolded .................. 1 1 Correlation matrix for 13 vegetative, flowering and fruiting characteristics using a Pearson Correlation 2-tailed test for the FVCll population evaluated at Benton Harbor, MI. Correlations are significant when in bold at the 0.01 (**) and 0.05 C“) level ........................................................................ 18 Progeny performance scores for the FVCll population. Progeny performance scores were calculated by dividing each genotype’s mean value by the highest value found in each category, and then summing them across all categories. Genotypes were also evaluated as being remontant (RM), weakly remontant (WRM), or non-remontant (NRM). Original values were collected in 2008 at Benton Harbor, Appendix 1: A subset of the FVCll population including the F. virginiana and F. chiloensis parents, 4 genotypes classified as RM in 2007, and 4 genotypes classified as NRM in 2007, were screened for polymorphic banding using 168 different SSR markers. Polymorphisms were classified as present and readable (yes), absent or non-readable (no), or undefined because of poor developing or gel imperfections (unclear) ................................................................................ 21 iv Figure 1: Figure 2: Figure 3: LIST OF FIGURES Inflorescence characteristics of FVCll genotypes at Benton Harbor, MI including mean number of inflorescences per mother plant (A), number of inflorescences per daughter plant (B), number of flowers per inflorescence (C) and inflorescent height (D). Black bars denote progeny which were non- remontant, while white bars denote progeny which were remontant in 2008. Arrows show the values of the Fragaria virginiana (V IR) and F. chiloensis (CHI) parentle Plant characteristics of FVCll genotypes at Benton Harbor, MI including mean of crowns per mother plant (A), number of crowns per daughter plant (B), number of daughter plants per mother plant (C) and plant vigor (D). Black bars denote progeny which were non-remontant, while white bars denote progeny which were remontant in 2008. Arrows show the values of the Fragaria virginiana (V IR) and F. chiloensis (CHI) parents... .. . .......... ... 14 Fruit characteristics of F VCl 1 genotypes at Benton Harbor, MI including mean yield per plant (A), mean fruit weight (B), percent internal fruit color (C) soluble sugars (D), and fruit firmness (E). Black bars denote progeny which were non-remontant, while white bars denote progeny which were remontant in 2008. Arrows show the values of the Fragaria virginiana (V IR) and F. chiloensis (CHI) parents. . .. ............................................................................... 16 PERFORMANCE OF AN ELITE STRAWBERRY POPULATION DERIVED FROM WILD GERMPLASM OF Fragaria chiloensis AND F. virginiana Introduction The primary cultivated strawberry, F ragaria x ananassa Duchesne ex Rozier, is believed to have arisen from a chance hybridization between the two octoploid species F. chiloensis (L.) Miller and F. virginiana Miller in Europe around 250 years ago (Hancock, 1999). This hybridization combined the unique characteristics of both species including the larger, firmer fruit of F. chiloensis with the darker red, more aromatic fruit of F. virginiana. In a study done by Sjulin and Dale (1987) comparing the pedigrees of 134 North American strawberry cultivars, it was found that all North American cultivars were derived from only 53 founding clones. They later concluded that there were fewer than 17 cytoplasms represented in the same set of 134 cultivars (Dale and Sjulin, 1990). The fact that Fragaria x ananassa has a narrow germplasm base likely has breeding ramifications. The species tolerates inbreeding poorly (Shaw, 1991 and Niemirowicz- Szczytt, 1989) indicating that heterosis is important in the cultivated strawberry. A lack of genetic diversity also leaves concern for susceptibility to disease, abiotic and biotic stresses (Luby and Stahler, 1993). A narrow genetic base could inhibit cultivars from facing new environmental challenges, and also leaves less room for improvement due to restricted genetic diversity (Luby et. al., 1991). Because of the accidental nature of the original hybridization, it has been proposed that strawberry breeders should reconstitute F. x ananassa by intercrossing elite wild F. virginiana and F. chiloensis parents. This would increase the genetic base of F. x ananassa and introduce novel genetic diversity into the cultivated strawberry gene pool (Hancock et. al., 1993). There are, however, some potential problems with introgressing wild germplasm into F x ananassa, including the possibility of incorporating unfavorable alleles through linkage drag. It has also been suggested that by incorporating wild germplasm into a breeding program, several generations of improvement will be necessary to restore fruit quality to that of industry standard (Scott and Lawrence 1975), especially when utilizing the small, soft-fruited F. virginiana (Scott, 1959). Previous studies have found that at least three rounds of backcrossing back to F x ananassa were necessary to recover genotypes meeting commercial standards (Bringhurst and Voth, 1978, Scott and Lawrence 1975). Evaluations have been done on selected wild-collected clones of both species in multiple locations to identify the possible beneficial traits which could be incorporated into the cultivated strawberry, and thereby select elite germplasm (Hancock et. al., 2001a, Hancock et. al., 2001b). At least 8 wild clones have been introgressed into F. x ananassa since the 1920’s (Sjulin and Dale, 1987), bringing in such traits as day-neutrality, red stele and strawberry aphid resistance, drought and salinity tolerance and winter hardiness (Bringhurst and Voth, 1984; Galletta et. al., 1989; Barritt and Shanks, 1980; and Daubeny, 1990). Other promising traits which could be introgressed are a higher photosynthetic rate, lower requirements for fertilizer, heat tolerance, resistance to soil pathogens and vigor from F chiloensis, and resistance to soil pathogens, vigor and resistance to powdery mildew and scorch from F virginiana (Hancock et. al., 2002; Scott et. al., 1972; Bringhurst et. al., 1977; Hancock et. al., 2001b; and Cameron and Hartley, 1990) In a previous study (Hancock et al., in prep), elite selections of F. virginiana and F. chiloensis were intercrossed in 23 combinations and evaluated in the field in Michigan and Oregon. The most impressive family was F VCl 1 [(Frederick 9 x LH 50-4) x (Scotts Creek x 2 MAR 1A)] which had the best combination of fruit size, color and yield and was composed of four different subspecies - F virginiana ssp. virginiana from Ontario (Frederick 9, PI 612493), F. virginiana ssp. glauca from Montana (LH 50-4, PI 612495), F chiloensis ssp. chiloensis from Chile (2 MAR 1A, PI 602567) and F. chiloensis ssp. pacifica fi'om California (Scotts Creek, PI 612490). Herein, the population derived from this complex hybrid was more extensively studied for various horticultural traits including both plant and fi'uit characteristics. Materials and Methods In the fall of 2006, rooted runners from 78 genotypes of F VCl 1 were dug and transferred to East Lansing, MI from Corvallis, Oregon and Benton Harbor, Michigan where the original trials were conducted (Hancock et a], in prep). The genotypes were transplanted into a commercial potting mix in 4 x 4 x 6-inch pots and placed in an unheated greenhouse. In June of 2007, two to three replicates (runner plants) of each genotype were set in the field in Benton Harbor, MI in a Randomized Complete Block Design. Plants were set in rows at 1.2 m x 1.2 m spacing and all runners were trained by cross cultivation into a 1.2 x 1.2 m square. Genotypes were evaluated for their seasonal flowering patterns in 2007 and 2008 from mid-July to early September. Genotypes were considered remontant (RM) if they flowered both in the beginning of the season and alter July 21St when day length exceeded 13 hours. Waiting until this date allowed any flowers that had been initiated under shorter days to finish blooming before the data were collected (Hancock et. al., 2002). All other plants were considered to be non-remontant. We have chosen the term remontant rather than the more common classification of day-neutral, as evidence is accumulating that repeat flowering is more strongly regulated by temperature than photoperiod (Bradford et al, submitted). In early June 2008, data were taken on several reproductive and vegetative traits of each mother plant and three randomly selected daughter plants (when available) per plot. Three random inflorescences were selected per mother and daughter plants and their heights were measured from crown to tip, and their flower numbers were counted. The number of crowns was also counted on each mother plant and the three daughter plants, as well as the total number of plants within the block for each genotype. Overall plant vigor was estimated on a 1-7 (least to most vigorous) scale based on plot fill and individual plant vigor. During the fruiting season of 2008 (June 9 to July 17), the plots were assessed about every five days and the first five ripe fruit, and any additional ripe fruit, were harvested in each. The plots were picked again when another five fruit per block were ripe; however, this time, both the ripe and unripe fruit were picked. If a plot had fewer than five fruit, all those available were picked when ripe. Mean fruit weight was calculated for the first five ripe berries in each plot. Mean yield per plant, per plot was also determined by dividing the total weight of green and ripe fi'uit from each genotype by the total number of plants in each plot. Fruit firmness (g/mmz) was measured on five ripe fruit per plot (when available) using the compression test of BioWorks’ FirmTech 2 (Wamego, KS). Two ripe fruits from each replication were cut in half and percent internal color was estimated based on how deep the color penetrated the flesh. Soluble solids were taken by squeezing one drop of juice onto the handheld refractometer from the two fruits for two separate readings. Pearson correlation values were calculated for 13 plant, flower and fruit characteristics using mean genotype values. The analysis was run using SPSS version 16 (Chicago, IL). Correlation values were considered significant at a 0.05 level. T-tests were used to compare the average values of the remontant and non-remontant genotypes using the proc ttest in SAS 9.1.3 (Cary, NC). The overall performance of each genotype was rated by dividing the mean value of each genotype by the highest value of any genotype for fruit internal color, soluble solids, yield per plant, firmness, inflorescence height, plants per block, vigor, and fruit weight, to give a value less than or equal to l for each trait. The values for each genotype’s traits were then added to generate a total performance score. Results In 2007, 25 genotypes proved to be remontant, with 21 repeat-flowering in more than one replicate (strongly remontant) and another 4 repeat-flowering in just one replicate (weakly remontant). Twenty-nine genotypes were classified as remontant in 2008, with 21 being strong and 8 being weak. Neither of the parents was classified as remontant in 2007, and the F. virginiana parent performed as a weak remontant in 2008. Only four genotypes, FVC11-015, FVC11-021 F VC1 1-022 and FVC11-031, were deemed remontant in 2007 and not 2008, of which all were “weak” except for FVC11-031 which did not survive the winter. In 2008, 9 genotypes were rated remontant that were non- remontant in 2007, 5 “weak” ones (FVC11-043, FVC1 1-048, FVC11-055, FVC11-070 and FVC11-077), and 4 strong ones (FVC11-014, FVC11-035, FVC11-054 and FVC1 1- 066). The mean values of remontant and non-remontant genotypes were not significantly different (P < 0.05) for most traits, with the exception of yield per plant, daughter plants per mother, inflorescences per mother and vigor (Table 1). Many progeny displayed transgressive segregation, with their trait values being higher than their parental genotypes. For only two traits (soluble solids and plant vigor) were no transgressive segregates observed (Figuresl-3). Significant (P< 0.05) negative correlations were observed between fruit firmness and flowers per inflorescence, fruit firmness and soluble solids, yield per plant and soluble solids, yield per plant and daughter plants per mother, flower number per inflorescence and crown number per mother plant and flower number per inflorescence and inflorescence number per mother plant. All other significant correlations were positive (Table 2). Only internal fruit color was not significantly correlated with any of the other traits studied. A significant negative correlation (p = 0.029) was found between the heaviest fruit weight of each genotype and soluble solids, and between mean fruit weight and soluble solids at the p=0.07 level. The total performance values for each genotype studied in 2008 ranged from 3.38 to 5.90 (out of a possible 8) (Table 3). Values for the top 10 genotypes ranged from 5.34-5.90. The top 10 genotypes included three genotypes, FVC11-049, FVC11-057 and FVC11- 058, that were remontant in both 2007 and 2008, and one genotype, FVC11-055, that was weakly remontant in 2008. The rest of the top 10 genotypes were all non-remontant. Discussion The reconstruction of F. x ananassa by crossing elite genotypes of F. chiloensis and F. virginiana appears to be an effective strategy for strawberry improvement. While none of the examined FVC11 genotypes are of commercial quality, many have characteristics superior to their parents. In the relatively small FVC11 population, individuals were identified that have high levels for several horticulturally important traits which could be used as parents to broaden the genetic base of the cultivated strawberry. Superior individuals were identified that were both remontant and non-remontant. Shaw (1988) warns that care must be taken to not only consider size when utilizing wild germplasm to avoid narrowing the germplasm base for other important traits. Many of the FVC11 genotypes were superior for multiple traits. Where negative correlations were observed between characteristics such as between soluble solids and fruit weight and soluble solids and yield per plant, outliers could be found. For example, FVC11-049 had a 0.85 performance value for soluble solids and a 0.83 fruit weight value, while FVC11- 059 had a 0.74 soluble solids value and a 0.95 yield per plant value. In fact, FVC11-044 had values of 0.70 or higher for 7 of the 8 traits examined. The question remains as to whether intercrossing within reconstructed populations will yield new cultivars. While the fruit size in the best FVC11 genotypes is far superior to any wild germplasm, it is still not close to commercial size. The most rapid breeding progress may be made by backcrossing the best FVC11 genotypes to cultivars. However, too many generations of backcrossing runs the risk of losing much of the genetic variation and novel epistatic interactions contained in the genotypes of FVC11. After six generations, a backcrossing approach leaves on average only 1.56% of the wild species in the selected germplasm (Dale et. al., 1993). A large part of the genetic variance for fruit size is epistatic (Hancock et. al., 2008), so maximizing allelic diversity could increase the occurrence of larger fruit when utilizing wild germplasm. With proper assessments of wild germplasm for most horticulturally important traits, many beneficial traits can be introgressed with minimal amounts of linkage drag. With the use of genetic markers, these traits could be more easily followed in a breeding program. Because of this, several available SSR markers have been screened with a subset of this population to determine if they displayed polymorphisms, and therefore could be used, on futures studies with this population (see appendix 1). The FVC11 population presented here would be a great tool to breeders wishing to introduce novel genetic diversity into their breeding programs. We are currently expanding this population to increase the chances of acquiring genotypes with even more positive combinations of traits. 10 Table l. T-test comparing remontant RM) genotype and non-remontant (N RM) genotype means for the FVC11 population evaluated at Benton Harbor, MI. The t-values that were significant at the 0.05 level are bolded Trait NRM mean RM mean t-value lnflorescences per Mother 5.86 8.09 2.63 lnflorescences per Daughter 1.71 1.79 0.59 Flowers per Inflorescence 5.63 5.31 -1.21 Inflorescence Height (cm) 9.84 9.76 -0.13 Crowns per Mother 4.25 5.08 1.57 Crowns per Daughter 1.44 1.51 0.82 Daughters per Mother 9.39 6.87 -3.07 Vigor (1-7) 4.07 3.65 -2.35 Yield per Plant (9) 6.88 11.97 3.94 Fruit Weight (g) 21.74 22.63 0.70 lntemal Color (%) 57.75 54.73 0.60 Soluble Solids (brix) 8.58 8.58 0.04 Firmness (g/mmz) 153.51 152.5 -0.28 ll Figure l. Inflorescence characteristics of PVC 11 genotypes at Benton Harbor, MI including mean number of inflorescences per mother plant (A), number of inflorescences per daughter plant (B), number of flowers per inflorescence (C) and inflorescent height (D). Black bars denote progeny which were non-remontant, while white bars denote progeny which were remontant in 2008. Arrows show the values of the F ragaria virginiana (V IR) and F. chiloensis (CHI) parents A 16 VIR 14- -u l a) " \j o ..— ‘6 l C 10 5 ‘ o w l 8 -1 I . “a 8 3 l E .1 __- z 2 -1 - o .1 59 a? 05» 5,3 47V 9;." 01V ‘9’ .515 r» '4’ ~ Inflorescences per Mother Plant ,, B U) o 9: U o c w w '44 o H o .o E 5 z '1» e 'L 9' 9' b" 09 of? 09 ,9 45 ,5 ,9 ,9 .,.v 49 Inflorescences per Daughter Plant 12 Figure 1 continued. 20 U) 32’: 4.) O l: d) (D 1H 0 $4 g 2 25 U) 0) 0. >1 4.) 0 C2 0) 0 ‘H O H g 2 ~.6,’.o).q,.,"r ’ u-‘o-lo-Qr 9 9 1‘9. . . 9900495?” Inflorescence Height (cm) 13 Figure 2. Plant characteristics of FVC11 genotypes at Benton Harbor, MI including mean of crowns per mother plant (A), number of crowns per daughter plant (B), number of daughter plants per mother plant (C) and plant vigor (D). Black bars denote progeny which were non-remontant, while white bars denote progeny which were remontant in 2008. Arrows show the values of the Fragaria virginiana (V IR) and F. chiloensis (CHI) parents 25 A VIR \ [I U) 20 \l/ l a r .6.) 0 C1 0) L9 tl--l O H i Z 'v '1; 6y w 6y e- 4- e- 1’) 1‘) Q ,9 Crowns per Mother Number of Genotypes F, l . 11"? b: ht h bi Crowns per Daughter 14 Figure 2 continued. C 14 121 r—- l lei—Cinema in l ‘l ,_ l l o ‘ l _‘1 8:1ol ’ - ! J.) 2 m 81 0 1H o 6, u w F‘l g ‘4 ; l 1 2 fl 2‘ ‘ . . 0 .j 0[,9 “,9 .309 ~99 ~. 9 ., o ”,9 ”be {,9 ’99 o- '1; w 6 .‘r’ 5' 5' ‘5' 5" .V % g; {b .¢I a? 4? Daughter Plants per Mother Plant 16'3 14‘ CHI #1 0.121 1"" l j a l. 2; 1 1 c 101 . ' t m U 1 84 E l ‘3 n ma H 6 a [It i :1 0) m 3‘1] 4+ l l . E _- l W I 2‘ I ' ‘ l o- 9 h %» 'b A w, b x ‘6 0 ~5 - o o o h. ’4 $5 - b. 6. or» 4,51 9:5 ,9: ,5 . ,\. '1'" b. 5. I». I»: I». Ibo Ib- h. ho 6. 6" Plant Vigor (1-7) 15 Figure 3. Fruit characteristics of FVC11 genotypes at Benton Harbor, MI including mean yield per plant (A), mean fruit weight (B), percent internal fruit color (C) soluble sugars (D), and fruit firmness (E). Black bars denote progeny which were non-remontant, while white bars denote progeny which were remontant in 2008. Arrows show the values of the F ragaria virginiana (V IR) and F. chiloensis (CHI) parents. Number of Genotypes Yield per Plant (9) 14 W1 117 j 1 j Number of Genotypes ,. I it )~ I» , I» :5 :5 ,5 ,p . bf" 99‘ ...“ 9,9 2" 4’? 5° ’4" s a. '1. 1. '5'” a” Fruit Weight (g) 16 Figure 3 continued. C 20 18‘ 161 141 12‘ Number of Genotyes 8 . 9 9 9 9 9 9 to 9 9 :i" .69? .32" .3 .99 so" .9" .9" 9" .99 ‘43 . ’13,. “,6. 3b. ‘1’. &. 6",. b5. 6‘ . «4’. Internal Fruit Color (%) 20 18‘ i 16- i l 1 14-1 12-1 - 10« . l 3‘ ‘ l—l 1 aaavm ' l 1 I 1 ‘l excusaeoey f). b. b. ’1‘ . ’9. 6. q q. 0 ~> I I. u: I». e- ‘0' e- e9 «9 <51" 159’ 0r 9 Q‘? r» '9 Number of Genotypes Soluble Solids (brix) Number of Genotypes x c' 9r <5- 4; 9‘ 10‘ '5' or 9r ‘5 '3’ '3' '3’ '9'" '9" 4" ~'° 4‘ 4‘ '3’ Fruit Firmness (g/mm‘2) 17 $3 923. .Em: m3? 3 3 :3. «So m :3. 88s.: 3... mood- ..emm: wood- .wem. mmod mm mo an 3 End «5.96.05 ma ...: mm ...o S .6 mm ...o- Sod- mm to- mend em to «9.0m ..om w 6.: wood. mu rd wood. mod- «mod- 80.0. 39.0 3.8 .050: ..wwn. :3... mm ...o Sod- 3 Pd- mm _..o- v mo- 23*. 5.95 1:... .53. .8~. 83 mm 3 82. m S ..fim. as... .5... ham”. mm 2... mm mo- 2. to- K mo- ....3. 35852030on .93.. mood- .gmr Sod- ..~..m. ..Qaéwbgoc ..wew. ....3. ..mx. 82.. 25.5.3; :3». :23. 08.9. 5.8.62.8; ..hmv. wood- 8532320 Rad 55892320. l 52 goes 89> .28.: Sec. 8:82 8E3: .285 cameos :92 18 ton ”Bow :39} 3m .0501 E... EOE 90%on 3.826.“. 20:5 20:... 3:305 3:920 ...oc... Table 2. Correlation matrix for 13 vegetative, flowering and fruiting characteristics using a Pearson Correlation 2-tailed test for the FVC11 population evaluated at Benton Harbor, MI. Correlations are significant when in bold at the 0.01 C”) and 0.05 (*) level. Table 3. Progeny performance scores for the FVC11 population. Progeny performance scores were calculated by dividing each genotype’s mean value by the highest value found in each category, and then summing them across all categories. Genotypes were also evaluated as being remontant (RM), weakly remontant (WRM) or non-remontant (NRM). Original values were collected in 2008 at Benton Harbor, MI. intml. sol. yieldl inflor. plantsl fruit genoype color solids plant firmness height block vigr weight Total 2007 2008 FVC11-044 0.73 0.88 0.30 0.73 1.00 0.78 0.78 0.70 5.90 NRM NRM FVC1 1-046 0.88 0.65 0.43 0.89 0.70 0.51 0.83 0.83 5.73 NRM NRM FVC11-057 0.53 0.67 0.49 0.88 0.91 0.49 0.72 1.00 5.69 RM RM FVC11-055 0.60 0.68 0.44 0.86 0.80 0.65 0.83 0.79 5.67 NRM WRM FVC11-056 0.58 0.87 0.39 0.73 0.75 0.57 0.94 0.80 5.63 NRM NRM FVC11-049 0.91 0.85 0.47 0.67 0.49 0.65 0.67 0.83 5.55 RM RM FVC1 1-058 0.72 0.65 0.79 0.87 0.78 0.35 0.67 0.69 5.52 RM RM FVC11-076 0.83 0.70 0.15 0.73 0.77 0.76 0.83 0.70 5.47 NRM NRM FVC11—029 0.56 0.85 0.29 0.71 0.73 0.76 0.83 0.64 5.37 NRM NRM FVC11-036 0.65 0.92 0.11 0.96 0.66 0.73 0.89 0.41 5.34 NRM NRM FVC11-030 0.78 0.66 0.17 0.90 0.55 0.92 0.83 0.51 5.33 NRM NRM FVC11-043 0.82 0.80 0.27 0.82 0.62 0.57 0.89 0.51 5.31 NRM WRM FVC1 1-050 0.49 0.82 0.38 0.85 0.65 0.59 0.56 0.90 5.23 RM RM FVC11-054 0.69 0.77 0.24 0.92 0.56 0.57 0.89 0.57 5.21 NRM RM FVC1 1-038 0.77 0.75 0.37 0.79 0.60 0.52 0.83 0.56 5.20 RM WRM FVC11-034 0.58 0.85 0.10 0.68 0.67 0.83 0.89 0.58 5.18 NRM NRM FVC11-041 0.91 0.83 0.28 0.76 0.69 0.43 0.56 0.71 5.16 RM RM FVC11-072 1.00 0.78 0.16 0.85 0.43 0.84 0.67 0.41 5.14 NRM NRM FVC11-064 0.73 0.72 0.20 0.79 0.67 1.00 0.50 0.53 5.14 NRM NRM FVC11-077 0.43 0.92 0.21 0.76 0.58 0.89 0.83 0.52 5.13 NRM WRM FVC11-065 0.67 0.72 0.43 0.86 0.82 0.24 0.83 0.52 5.10 NRM NRM FVC11—053 0.65 0.76 0.34 1.00 0.55 0.49 0.67 0.61 5.06 NRM NRM FVC11-O75 0.52 0.82 0.20 0.83 0.51 0.83 0.67 0.68 5.05 RM RM FVC11-VIR 0.79 0.98 0.06 0.73 0.83 0.56 0.94 0.15 5.04 NRM WRM FVC11-059 0.57 0.74 0.95 0.80 0.59 0.13 0.67 0.55 5.00 RM RM FVC11-062 0.53 0.68 0.15 0.79 0.54 0.70 1.00 0.59 4.99 NRM NRM FVC11-042 0.81 0.87 0.25 0.82 0.75 0.35 0.72 0.41 4.98 NRM NRM FVC1 1-027 0.45 0.94 0.24 0.76 0.69 0.62 0.61 0.64 4.95 NRM NRM FVC11—018 0.79 0.71 0.31 0.75 0.56 0.60 0.72 0.50 4.94 NRM NRM FVC11-068 0.72 0.82 0.28 0.77 0.61 0.52 0.72 0.46 4.92 NRM NRM FVC11-026 0.74 0.74 0.20 0.75 0.61 0.54 0.67 0.66 4.91 NRM NRM FVC11-037 0.70 0.65 0.12 0.72 0.68 0.59 0.94 0.47 4.86 NRM NRM FVC11-004 0.83 0.65 0.21 0.93 0.83 0.35 0.72 0.34 4.86 NRM NRM FVC11-061 0.64 0.76 0.25 0.83 0.52 0.46 0.78 0.61 4.84 NRM NRM FVC11-060 0.60 0.73 0.12 0.86 0.64 0.65 0.83 0.33 4.77 NRM NRM FVC1 1-033 0.74 0.80 0.46 0.82 0.48 0.25 0.72 0.42 4.70 RM RM FVC11-067 0.67 0.89 0.40 0.67 0.62 0.29 0.61 0.55 4.70 NRM NRM l9 Table 3 continued. FVC11-073 FVC11-047 FVC11-070 FVC11-071 FVC11-052 FVC11-015 FVC11-003 FVC11-032 FVC11-028 FVC11-021 FVC11-069 FVC1 1-016 FVC11-074 FVC11-063 FVC11-008 FVC11-019 FVC11-045 FVC11-013 FVC11—01 1 FVC11-078 FVC11-014 FVC11-066 FVC11-012 FVC11-048 FVC11-006 FVC11-017 FVC11-022 FVC11-024 FVC11-020 FVC11-025 FVC11—005 FVC11-040 FVC11-CHI FVC11-035 FVCl1-023 FVC11-039 FVC11-002 FVC11-051 FVC11-001 FVC11-010 FVC11-007 FVC11-009 FVC11-031 0.63 0.58 0.67 0.84 0.77 0.56 0.96 0.79 0.73 0.64 0.56 0.49 0.83 0.78 0.70 0.77 0.70 0.72 0.55 0.59 0.69 0.84 0.67 0.79 0.83 0.63 0.42 0.52 0.73 0.64 0.60 0.52 0.22 0.68 0.63 0.41 0.60 0.63 0.63 0.58 0.84 0.75 0.73 0.71 0.99 0.77 0.75 0.83 0.99 0.81 0.45 0.85 0.89 0.75 0.69 0.61 0.67 0.87 0.76 0.71 0.69 0.78 0.77 0.66 0.90 0.89 0.72 0.47 0.76 0.85 0.58 0.72 0.73 1.00 0.74 0.66 0.54 0.77 0.87 0.73 0.61 0.72 0.16 0.15 0.49 0.04 0.12 0.31 0.17 0.42 0.14 0.36 0.25 0.18 0.22 0.15 1.00 0.21 0.02 0.23 0.43 0.16 0.18 0.22 0.27 0.19 0.20 0.27 0.29 0.25 0.11 0.20 0.62 0.12 0.03 0.14 0.19 0.25 0.30 0.07 0.06 0.08 0.07 0.80 0.74 0.81 0.72 0.87 0.91 0.82 0.76 0.71 0.91 0.85 0.69 0.78 0.77 0.76 0.66 0.63 0.75 0.80 0.91 0.84 0.75 0.65 0.70 0.90 0.86 0.77 0.85 0.77 0.89 0.83 0.71 0.82 0.83 0.98 0.69 0.71 0.80 0.82 0.81 0.66 0.58 0.39 0.56 0.76 0.55 0.60 0.38 0.54 0.41 0.40 0.47 0.45 0.43 0.38 0.44 0.51 0.57 0.58 0.51 0.46 0.48 0.32 0.54 0.55 0.38 0.36 0.39 0.37 0.35 0.40 0.48 0.47 0.40 0.42 0.39 0.54 0.39 0.23 0.36 0.43 0.37 0.60 0.70 0.14 0.48 0.46 0.33 0.41 0.14 0.54 0.30 0.24 0.41 0.30 0.56 0.03 0.43 0.65 0.24 0.14 0.49 0.40 0.21 0.25 0.22 0.16 0.21 0.37 0.22 0.37 0.33 0.06 0.52 0.52 0.25 0.16 0.32 0.06 0.17 0.22 0.16 0.16 0.67 0.67 0.83 0.67 0.75 0.67 0.50 0.50 0.50 0.50 0.83 0.83 0.56 0.61 0.25 0.56 0.67 0.56 0.61 0.56 0.50 0.50 0.67 0.44 0.44 0.67 0.58 0.56 0.50 0.56 0.28 0.50 0.50 0.39 0.39 0.33 0.44 0.50 0.39 0.50 0.33 0.49 0.67 0.40 0.1 1 0.28 0.42 0.45 0.35 0.62 0.85 0.35 0.38 0.42 0.32 0.45 0.41 0.07 0.34 0.41 0.30 0.28 0.45 0.37 0.28 0.25 0.32 0.71 0.40 0.22 0.23 0.22 0.22 0.29 0.26 0.25 0.47 0.27 0.21 0.25 0.25 0.22 4.68 4.62 4.62 4.61 4.57 4.56 4.54 4.49 4.47 4.43 4.40 4.32 4.30 4.26 4.24 4.22 4.1 6 4.1 8 4.16 4.1 6 4.1 4 4.09 4.08 4.07 4.05 4.02 4.01 3.92 3.90 3.84 3.82 3.80 3.78 3.72 3.64 3.55 3.54 3.48 3.45 3.43 3.38 0.00 0.00 NRM NRM NRM NRM NRM WRM NRM RM NRM NRM NRM NRM RM NRM NRM RM NRM NRM NRM RM NRM NRM NRM NRM RM NRM NRM NRM WRM NRM NRM NRM NRM RM NRM RM NRM NRM NRM NRM NRM NRM RM NRM NRM NRM NRM NRM NRM NRM RM NRM RM WRM NRM NRM NRM NRM NRM RM NRM NRM RM NRM NRM NRM NRM 20 APPENDIX Appendix 1. A subset of the FVC11 population including the F. virginiana and F. chiloensis parents, 4 genotypes classified as RM in 2007, and 4 genotypes classified as NRM in 2007, were screened for polymorphic banding using 168 different SSR markers. Polymorphisms were classified as present and readable (yes), absent or non-readable (no), or undefined because of poor developing or gel imperfections (unclear). £1199 Name Sequence Polymomhisms 655 ARSFLQ-U (M13) TGTAAAACGACGGCCAGTGCGAGGCGATCATGGAGAGA Yes 656 ARSFL9-L GCGTI'TCCTACGTCCCAATAAATC 657 ARSFL10—U (M13) TGTAAAACGACGGCCAGTGCGTCAGCCGTAGTGATGTAGCAG Yes 658 ARSFL10-L GCGCCAGCCCCTCAAATATC 659 ARSFL13—U (M13) TGTAAAACGACGGCCAGTGCGGGCAGCCTCCAGATCTCCTTA Unclear 660 ARSFL13—L GCGCCCCTATCTTCGACCAA 661 ARSFLZZ-MMQL TGTAAAACGACGGCCAGTGCGAACCCCATTAACAGCTTCA Yes 662 ARSFL22-L GCGATCAAATTCCCCTCTAACAAT 831 scmmm 3)-u TGTAAAACGACGGCCAGTCACGCTI’AAATAGGAG‘ITCG No 832 SCAR1-L GGGTGAAACTGA'ITI’CTTACC 833 SCAR2 (M13)-u TGTAAAACGACGGCCAGTGAAAAGTGAGGCGGA‘ITTCG Yes 834 SCAR2-L CTTGAATTGTCTCCATTCCC 943 008180021M13)-U TGTAAAACGACGGCCAGTCTAGTAGCTCCACGCCAAGC Yes 944 008180024- AATGTGTGGGAGAGGTGAGC 951 00817823(M13)-U TGTAAAACGACGGCCAGTCAAAGAGAGCAGAGGCCAAA Yes 952 00817823-L ACGTTGTACTTGGACCGGAG 955 00817853(M13)-U TGTAAAACGACGGCCAGTCCATI'CAAAACCTCCTC‘I'I'CC Unclear 956 008178534- AreccrccrrcercrcAcre 957 60817234(M13)-U TGTAAAACGACGGCCAGTGAACTCCC'ITTI’CTGGGTCC Undear 958 00817234-L CAATGAGTGGGAGAGGAAGG 969 CO379568(M13)-U TGTAAAACGACGGCCAGTGATTAGGGAGAGGCAACGTG Yes 970 003795684- GCTTCAAGCAAAATGCATCA 975 00816760(M13)-U TGTAAAACGACGGCCAGTCCCACAAAACCCTAAACCCT ”Near 976 00816760-L GTCGAAGAGATCGGAGCAAC 979 00816700(M13)-U TGTAAAACGACGGCCAGTTCCGAAAGCTCACGATTCTI’ Yes 980 00816700-I- GTGCAGAGAATGAGCAACGA 983 008173891M13l-U TGTAAAACGACGGCCAGTCGAAGCCCAGCATCTATCTC Yes 984 008173894- TATCACCTGCGTCTGATTCG 985 CO382125(M13)-U TGTAAAACGACGGCCAGTCCCCCTGAATI'TTGCAGATA Unciear 986 003821254- TCAGCTTCCAAGTCCCTCTC 987 00818147(M13)-U TGTAAAACGACGGCCAGTAGGCAAAACTCAACCACCAC Undear 988 008181474- TCGGAGTAATGCTI’CTGGGT 989 C0380455(M13)-U TGTAAAACGACGGCCAGTACGAGGGTCACGGCTACTAA No 990 C03804551 TGACCAATCCGAAAGAAATCA 21 991 CONSTANS(M1 3LU TGTAAAACGACGGCCAGTCCAAGAACACCGAAAAGGAA Unclear 992 CONSTANS-L TGATCCGCGGTCTAGTCTCT 1001 AP3(M13)-U TGTAAAACGACGGCCAGTCCAAGGAAGCAAACCAAGAA Unclear 1002 AP3cL CCTI’GGCATCACAGAGAACA 1007 c0817671(M13)-u TGTAAAACGACGGCCAGTGCCAAAATCACCTCTGCTTC Undear 1008 00817671-L CATTG‘ITGTTGGGAGCTGTG 1017 C0816733(M13)-U TGTAAAACGACGGCCAGTI’CCCAACACCTCACTTGTCC Yes 1018 COB16733-L ATTCAGCCAGGTCTGAGCAT 1023 C0817443(M13)-U TGTAAAACGACGGCCAGTTGTGTCTTCTCCGAAACTCG Yes 1024 C0817443-L AACTTCAAATCGTATGCGGC 1025 CO817535(M13)-U TGTAAAACGACGGCCAGTTTCCATGGCCTTGTTTTCTC Yes 1026 C0817535-L TTGACCACCTTCACCTCCTC 1045 00816667(M13)-u TGTAAAACGACGGCCAGTCATACAATGTTGCCCCTCCT Yes 1046 c0816667-1. CCAAACTGCCCTGATAGCAT 1047 c0816938(M13)-u TGTAAAACGACGGCCAGTCGAGGCCTTGTCTTCTI'TGT Yes 1048 COB16938-L GCGGAGGTAGCTGTTGTAGC 1053 COB18160(M13)-U TGTAAAACGACGGCCAGTGGAAACCCCAAAGTGGAGAT Yes 1054 C0818160—L GACGAGGCCATCTGAAACAT 1055 Al795160(M13)—U TGTAAAACGACGGCCAGTCCCCTATTCGACAACCAATG No 1056 AI795160-L AACATGATCACAAGGCCACA 1059 00378873(M13)-u TGTAAAACGACGGCCAGTGCATTGGCACCCGCTA No 1060 CO378873-L GCTTCAAGCAAAATGCATCA 1063 00379009911310 TGTAAAACGACGGCCAGTTGTGATI’GGGAGAGAGGAGG Yes 1064 003790094. CTGCCCCAAACTTGGTTI'TA 1073 CO380936a(M13)-U TGTAAAACGACGGCCAGTCATTCTGCTGCCTCATCTCA No 1074 CO380936a-L GACCTCTAACAAGCCCACCA 1075 00381075(M13)~U TGTAAAACGACGGCCAGTTCTGTCATTGCTCAACCTCG Yes 1076 CO381075-L CTGGGAGGGAAGACAGACAA 1079 CO381605(M13)-U TGTAAAACGACGGCCAGTCCACCCCTTTACCTTTCACA Yes 1080 00381605-L CAATTCCGAAGGCACAAC‘IT 1081 CO382036(M13)-U TGTAAAACGACGGCCAGTI'CTGATTGGGAGAGAGGAGG No 1082 CO382036-L GCTI'CAAGCAAAATGCATCA 1091 00818160a(M13)-u TGTAAAACGACGGCCAGTGGAAACCCCAAAGTGGAGAT Yes 1092 00818160a-L GACGAGGCCATCTGAAACAT 1093 Al795160a(M13)-U TGTAAAACGACGGCCAGTCCCCTATTCGACAACCAATG Unclear 1094 A1795160a-1. AACATGATCACAAGGCCACA 1097 00378873a(M13)-u TGTAAAACGACGGCCAGTGCATTGGCACCCGCTA Unclear 1098 CO378873a-L GCTTCAAGCAAAATGCATCA 1103 00817505(M13)-U TGTAAAACGACGGCCAGTTCCTGAAGCAACGATGACTG Yes 1104 00817505-L CACTTGCCGCAGAAGAAAA 1105 00817563(M13)-U TGTAAAACGACGGCCAGTGGGTTTCCAAGAAGACTCCC Yes 1106 00817561“- GGAGTAGCGGTTGTCGTTGT 1107 008177721M131-U TGTAAAACGACGGCCAGTTCACAACCGACGAGTTTCAG Yes 1108 00817772-L mcr'rCAcrecccrecrcr 1113 008180221M13)-U TGTAAAACGACGGCCAGTACCACAAAACCTCAACGTCC Yes 1114 00818022-L TI'CTGGCACATGTTGTTGGT 1119 C0378579(M13)-U TGTAAAACGACGGCCAGTCCCCTATTCGACAACCAATG Undo” 1120 00378579-L TGGCTACCAAAGAACACGAA 22 1129 CO378890(M1 3)-U TGTAAAACGACGGCCAGTTCGAGTTCTACGCTTGCTGA 1130 CO378890-l- TTCTCAGTCGTCAC‘ITI’CACC Yes 1131 CO379045(M13)-U TGTAAAACGACGGCCAGTCACGAGGCTGATTGGTGTAG No 1132 00379045-L CAATCCAACCCATTTTCCAC 1133 CO379079(M13)-U TGTAAAACGACGGCCAGTCCACCCCTTI’ACC‘ITI’CACA Yes 1134 00379079-L TGGACAACAGCAAGAGAAGG 1141 CO379548(M13)-U TGTAAAACGACGGCCAGTCTAGCAGC'ITTGGCTTITGG Yes 1142 00379548-L CAATCCAACCCAT'ITTCCAC 1147 003800971M13rU TGTAAAACGACGGCCAGTTGTGAAGTI’GTGTGGGCATT No 1148 00380097-L TAGCTGCTGCTGCTCTCTTG 1151 CO380164(M13)-U TGTAAAACGACGGCCAGTATGAAGCGCTCAAAGTCCAT Undear 1152 003801644- CAAACACACATGAAACGGCT 1165 003811341M13)-U TGTAAAACGACGGCCAGTGGCACACACAGCAGTTACCA Unclear 1166 00381134-L GATGATGATGTCGATGCAGG 1169 00381174(M13)-U TGTAAAACGACGGCCAGTCCACAAGAAAGGAGACGAGC Undear 1170 00381174-L TCAGGAGCATGAATCAATCG 1171 CO381214(M13)-U TGTAAAACGACGGCCAGTATGGCCCTAAATTCCGTCTI’ Yes 1172 003812144- AACATGTTGATCACGGCAAA 1179 00381360(M13)-U TGTAAAACGACGGCCAGTTCAGCTTCCCAATGACAACAi Una“, 1180 00381360-L ATAATCCAGGCACCCCACTI’ 1189 003819171M13)-U TGTAAAACGACGGCCAGTTGGTGTGATCAGTGATGGGT No 1190 003819174- GGACATGCCCTGCTGTTA‘IT 1193 00816689(M13)-U TGTAAAACGACGGCCAGTCCGACTTI'TACTGAAATGGGT Yes 1194 00816689-L GCCAGGAGAAAGCAGTGTTC 1197 c0816780(M13)-u TGTAAAACGACGGCCAGTGAAGACTCTGGC‘ITTGCAGC No 1198 C0816780-L GCGCTCGA'ITTCTTGTTCTT 1211 C0817054(M13)-U TGTAAAACGACGGCCAGTGGTGGCTACCCAAAAACAGA Yes 1212 00817054-L CTGGAGGAGCCAAGTTI'GAG 1219 C0817178(M13)-U TGTAAAACGACGGCCAGTGAGGCCTAGAATCAGTTI'CGC No 1220 00817178-L GAGGATGGAGACCCAACAGA 1221 COB17184(M13)-U TGTAAAACGACGGCCAGTCAAACCGCCATC‘ITCATCTT Undear 1222 C0817184-L GCCTCACTAGGCAGGAACAG 1231 00817343(M13)-u TGTAAAACGACGGCCAGTCCGTAACATCACCGTCAATG Undo” 1232 CO817343—L CCATATCCACCACCACTTCC 1235 COB17516(M13)—U TGTAAAACGACGGCCAGTACAACCAAAGCCTCCCTCTT No 1236 C0817516-L GAC'ITGGTCAGCTCCGAGAC 1239 c0817622(M13)-u TGTAAAACGACGGCCAGTTTCACCTTGCACAGTTCCTG Yes 1240 C0817622-L TACTAGGCGTGCTATCCAGC 1241 C0817658(M13)-U TGTAAAACGACGGCCAGTTGCTTGATGATGGAAATGGA Yes 1242 COB17658-L TGTCAGCAACAAGTATTI’CGG 1259 c0817919(M13)-u TGTAAAACGACGGCCAGTCAGAATCCACCGGCTI'ACAT Yes 1260 COB17919—L CGCTAGCTI'TTCTGCTCGAT 1261 commsmmyu TGTAAAACGACGGCCAGTCTGGACTAGCTCGCCAAAAC Yes 1262 c0818058-1. ACGCATTCCGATACAACCTC 1263 C08180flM13)-U TGTAAAACGACGGCCAGTACTI'CCCTTGGGATGGATI'C Unclear 1264 c0818090-1. TTTTCAAATCCCTI'I’GCACC 1265 c0818118(M13)-u TGTAAAACGACGGCCAGTCATCTCCACAAATCCTCTCCA Unclear 1268 00818118-L CGTGGCTAGAGTGCATGAGA 23 1275 CO3787083(M1 3)-U TGTAAAACGACGGCCAGTATTCGGCACGAGGGAGAT Unclear 1276 00378708a-L AGTTCTCCATCAGCAAGCGT 1279 CO378890a(M13)-U TGTAAAACGACGGCCAGTCGGCAAGTCTAGAAGACGCT N o 1280 0037889091 TCTCGATCAGCAAGCGTAGA 1283 00379203(M13)-U TGTAAAACGACGGCCAGTTCGCAAGATTCTGGACATCA N o 1284 00379203-L TCGATCGTTTCACATCCAAA 1295 ARSFL1-U (M13) TGTAAAACGACGGCCAGTGCGGACCCATAGCACACTGTI‘GAC Unclear 1296 ARSFL1-L GCGCCTTCCCTTGATACAACTI'AC 1297 ARSFLZ-U (M13) TGTAAAACGACGGCCAGTGCGAAGCGAAGCGGTGATG Unclear 1298 ARSFLZ-L GCGAACGTCGAGGAGCATTCTCAT 1299 ARSFL3-U (M13) TGTAAAACGACGGCCAGTGCGGGTGCTTAGGTTI'TCACAACT Unclear 1300 ARSFL3-L GCGCAAGTGGTATTTAAGGGTTAG 1301 ARSFL4—U (M13) TGTAAAACGACGGCCAGTGCGGTCGCA‘ITGAG‘ITGGAGGATA Yes 1302 ARSFL4-L GCGTAGCCAAACACCGATCTACC 1307 ARSFL11-U (M13) TGTAAAACGACGGCCAGTGCGAAGCATAACTGGCAGTATCTG Yes 1308 ARSFL11-L GCGGGCCTAGGTGATCTI’GGA 1311 ARSFL14-U (M13) TGTAAAACGACGGCCAGTGCGTTAAACGGAAACTTAGAGAGA Unclear 1312 ARSFL14-L GCGGAACGGCTCAAACATC 1313 ARSFL15—U (M13) TGTAAAACGACGGCCAGTGCGGGCTGTCCACACTCCTTI'CT Unclear 1314 ARSFL15-L GCGATGCGTAAGTCTCTI‘CAAATA 1317 ARSFL17-U (M13) TGTAAAACGACGGCCAGTGCGCATCACAATCGCCATAGAAAC Yes 1318 ARSFL17-l. GCGAACACGCCTTCAACAACCAC 1321 ARSFL19-U (M13) TGTAAAACGACGGCCAGTGCGAAACCGAAGAAGAACAAATGC Yes 1322 ARSFL19—L GCGGCCCAAACGGACAAGA 1325 ARSFL23-U (M13) TGTAAAACGACGGCCAGTGCGGCCGCTTGAAGAGGAG N o 1326 ARSFL23-L GCGTCCCCACTGTCAAGGTAAAGA 1331 ARSFL26-U (M13) TGTAAAACGACGGCCAGTGCGTGAGGTCCCTTAAGCACTAAA Yes 1332 ARSFL26-L GCGCAGGGTAACGAAACCTAAAA 1333 ARSFL27-U (M13) TGTAAAACGACGGCCAGTGCGAAGCCCAGACTCAATTACC N o 1334 ARSFL27-L GCGTACCCGCCA‘ITGTTAC 1337 ARSFL29-U4M13) TGTAAAACGACGGCCAGTGCGGGGGGATATI'GGTGGTGATG Unclear 1338 ARSFL29-L GCGCGGGTTTTCACGTAATTTCCT 1343 00380277a(M13)-U TGTAAAACGACGGCCAGTACGTCCGTAGGTCCTGTTGT N o 1344 CO380277a-L TCTITCCCAAAATGAGGACG 1345 CO380376(M13)—U TGTAAAACGACGGCCAGTTGATGATGATGAGGTCCCAG Unclear 1346 CO380376-L GGGTCGAATCAAACATGGTC 1349 CO380542(M13)-U TGTAAAACGACGGCCAGTGGAGGAAGGGTTTGAAGGAG Unclear 1350 CO380542-L GTTACGGGCAAGCACAAAAT 1351 C0380682(M13)-U TGTAAAACGACGGCCAGTI'TGCTTCAATTCTTGGACCC N o 1352 CO380682-L AGCTAGTATATCCCGGCGGT 1357 C0380995(M13)-U TGTAAAACGACGGCCAGTCATG'ITI’CTGCCATGTCACC N o 1358 C0380995-L CCATGTTATTGCCGTTTCCT 1363 CO38111§®13)-U TGTAAAACGACGGCCAGTAATCTGGTACTGGTGGGTGG N o 1364 00381118-L GATAAAGAGGGCAAGCAAACC 1367 C0381341(M13)-U TGTAAAACGACGGCCAGTACCAACCAAGGCATI’CACTC Yes 1 368 C0381 341 -L TGTTGACGAGATTGGGATCA 1369 C0381434(M13)-U TGTAAAACGACGGCCAGTGACAACGTGAAGGCCAAGAT Unclear 1370 C0381434-L ATGAAATTGAAACGCTI’GCC 24 1375 003817328(M1j)-U TGTAAAACGACGGCCAGTGAAGCAGCAGCAGCAGTAAA N o 1 376 00381 732a-L ACACCGAGGCAATACCAAAC 1 381 00381 823(M1 3)-U TGTAAAACGACGGCCAGTGAGGGTCTGGTGGTTTTGAA N o 1 362 00381 823-L AACACCGAGGCAATACCAAA 1383 00381897(M13)-U TGTAAAACGACGGCCAGTAGAGGCTGAGGATCATGGTG Unclear 1 384 00381 897—L GGCAAATACAATGCTAAACCA 1389 00382063(MQ)-U TGTAAAACGACGGCCAGTATI'GATGATGATGCCGTTGA Yes 1 390 00382063-L TGGTACCGAAATGCATTGAA 1395 00816672£VI13)-U TGTAAAACGACGGCCAGTAACCAGAAGCAGAGAAGCCA N o 1396 00816672-L CTTCTGTGGCAACAACCTCA 1399 CO816776(ML3}U TGTAAAACGACGGCCAGTCCTGGTCTCTCCTCCATCAG N o 1400 C081 6776-L GAAGGAAGAGGAAGTTGCCA 1401 00816795(M13)-U TGTAAAACGACGGCCAGTATTGAACAGCTCTGGCGAGT Yes 1402 00816795-L ATGTATACTCCCGCAGGTCG 1405 CO816809(M13)-U TGTAAAACGACGGCCAGTCCGTCGTI'TGTTTCTGGTCT N o 1406 00616809-L GCAGTGCA'ITGCAGAAGTGT 1411 00816864(M13)-U TGTAAAACGACGGCCAGTCACCCAAGGCTGAGAAGAAG N o 141 2 00816864-L ACCTGCTTGAGGACCTTGAA 1413 00816871(M13)-U TGTAAAACGACGGCCAGTAGGTTGGTGCTGAGTCTGCT N o 1414 00816871 -L GTCGAGATGCAACTGCAAGA 141 9 00816936(M1 3)-U TGTAAAACGACGGCCAG'ITTCTCTCCGATCTTCTCCGA Yes 1420 00816936-L CATCGACTGGCTTCTCCTTC 1425 00816959(M13)-U TGTAAAACGACGGCCAGTTCCACGCTCTTCTTGTTCCT Yes 1426 006169594. TCCAATGTCCTCCGTCTCTC 1433 0081 7004(M1 3)-U TGTAAAACGACGGCCAGTCGTCAGCCCTAAGAAGATGG Yes 1434 0081 7004-L ACGACCAATACAGACCAGGG 1441 0081 7063(M1 3)-U TGTAAAACGACGGCCAGTGAGGTTCATCAGAGGGCGT Yes 1442 00817063-L CMGGCAGTAAAGCTCCCAG 1455 00817098(M13)-U TGTAAAACGACGGCCAGTAACACCCAACAATCCAGCTC Yes 1456 00817098-L CACCCGGTTTATCAGCCTTA 1467 00817185LM13)-U TGTAAAACGACGGCCAGTCGCTAGCTTTTCTGCTCGAT Un dear 1468 00817185-L ACACTCCACCGGCTTACATC 1475 0081 7242(M1 3)-U TGTAAAACGACGGCCAGTAATCCCCAAATCCTCAAACC Yes 1476 00817242-L CTCCACGCTCTTCTTGTTCC 1485 00817364(M13)-U TGTAAAACGACGGCCAGTGCCTTCCCCTTC'ITCAAATC Yes 1486 00817364-L GTCCATI'TTCCAGTGGTGCT 1499 00817507(M13)-U TGTAAAACGACGGCCAGTAAGCTCCAGTTGCACCAGTT Yes 1 500 0081 7507-L CTTCTGTGGCAACAACCTCA 1501 00617509(M13)-U TGTAAAACGACGGCCAGTTCACCGTCCTCCTI'CTCAAC Un dear 1 502 0081 7509-L CGAAGAGGAAATTGAGCCAG 1505 00817538(MQ)-U TGTAAAACGACGGCCAGTAGGTTAGGGGCTGTGGTTCT Yes 1 506 0061 7538-L T'ITTGGACCCAAGGTGAAAC 1 507 0081 7548(M1 3)-U TGTAAAACGACGGCCAGTAGAGGATGGTGAGGCTGCTA N o 1 508 0081 7548-L CAGGTCGTGAAGAGATGCAA 1513 00817578(M13)-U TGTAAAACGACGGCCAGTGCAGCTAGCTTGAAGGATGG Unclear 1514 00817578-L GGCACTITCAGCAACAACAA 1 51 5 0081 761 0(M1 3)-U TGTAAAACGACGGCCAGTCAAGCTTCACCAACGACTGA N o 1 51 6 0081 761 O-L TGCAGAGTGATTTGGAGCAG 25 1517 00817641 (M1 3)-U TGTAAAACGACGGCCAGTGCCCAAGGCTGAGAAGAAG 1518 00817641-L CTTGCTGGAGATCCCAATGT No 1519 008177064M13)-u TGTAAAACGACGGCCAGTCCATGGACTTCTCCAAGAGC Unclear 1520 CO817706-L ACCTCCATATCAGTCGGCAC 1525 00817908(M13)-U TGTAAAACGACGGCCAGTAAGACCTTGACAACAAACGCT Yes 1526 00817908-L AACCTTCCCAGGTCCTCTGT 1533 C0818047(M13)-U TGTAAAACGACGGCCAGTAGAACCAGCCGGAAAGACTC No 1534 00818047-L CTTGCTGGAGATCCCAATGT 1545 ARSFL12(M13)—U TGTAAAACGACGGCCAGTGCGGAACCAAGCCAATAAGATG Undo” 1546 ARSFle-L GCGACCACGACAG'ITI‘CTCACTCT 1563 C0818048(M13)-U TGTAAAACGACGGCCAGTGGGGGAGAAGGACAAGACTC Undo” 1564 CO818048-L CGGAGCAGTAGCTGCCTTAG 1567 00818131(M13)-U TGTAAAACGACGGCCAGTCCTTCCTCCGAAACCCTACT Yes 1568 C0818131-L GGGCTCAGGTI'ATACGAGCA 1591 CO380466(M13)-U TGTAAAACGACGGCCAGTGATGGTGACGTG‘ITI'GATCG Unclear 1592 CO380466-L GCTGGAAAGCTCAAATAGGC 1599 C0381023(M13)-U TGTAAAACGACGGCCAGTTGAGGGAGAGGAGAGTGCAT Yes 1600 CO381023-L GGAGGAAAGTGAATTTGAAGC 1601 CO381173a(M13)-U TGTAAAACGACGGCCAGTACACTCCACCGGCWACATC Una“, 1602 C0381173a-L CGTGTGTGCATGATTGATGA 1605 C0381452(M13)-U TGTAAAACGACGGCCAGTGACCACCAGCATCGAAAAGT Undo“ 1606 C0381452-L AAAGTGCACCAACTGCTGTCT 1623 00816806(M13)-U TGTAAAACGACGGCCAGTCGAGGGAGAAACCCTAACCT Uncmr 1624 00616806-L GGACGATCCCTI'GTAGTGGA 1631 008171850(M13)-U TGTAAAACGACGGCCAGTTCATCCACTGGGAAGAAAGG Yes 1632 00817185b-L CATCAATCATGCACACACGA 1651 PSContig10410(M13)-U TGTAAAACGACGGCCAGTCCAAGATCCTTCA‘ITGGCTC No 1552 PSContig10410—L CCGTGGGGTCTI'GTI’TACTC 1633 PSContig1 1520a(M13)-U TGTAAAACGACGGCCAGTTCTGTCATI'GCTCAACCTCG Undo” 1634 PSContig115208-L AGCAGAAACCCAGAAAACCA 1635 PSContig11520b(M13)—U TGTAAAACGACGGCCAGTI'GGTFI'TCTGGGT'I’TCTGCT Undear 1685 PSContig115200—L ATTGCCATTTGCCAAAGAAG 1743 PSContigS3626(M13)-U TGTAAAACGACGGCCAGTTCCTI'GGAATTCACCGTCTC Yes 1744 PSConti953626-L CGGCGAATCGATTI’ACAGAT 1745 PSConti953620(M13)-U TGTAAAACGACGGCCAGTATTCACCGTCTCTCACCACC Yes 1746 PSConti953620-L CGGCGAATCGAWTACAGAT 1753 PSContigS467(M13)—U TGTAAAACGACGGCCAGTGCTI’CATGGCTI'CG'ITCTTC No 1754 PSContig6467-L GATCAGAC'ITTAGCGGCGAC 1303 PSConti9944(M13)-U TGTAAAACGACGGCCAGTTCGAATATTCCCTCCTTCCC Yes 1304 PSCODtiQQM-L CTI'GCCGAACTTCATGTTGA 1933 CX661047a(M13)-U TGTAAAACGACGGCCAGTGAAAAACGAAGCTCATCTGAA Yes 1934 CX661047a-L TCCGGTTGTACTTGTCCTCC 1945 CX661101(M13)-U TGTAAAACGACGGCCAGTTGGGT'ITCTG‘ITTGTCTCCC Una“, 1946 CX661101-L GGCCTAGTGGGTI'ACTGGGT 1963 CX661187(M13)-U TGTAAAACGACGGCCAGTTCCACAAGCCATCTCTCCTC Undo” 1964 CX661187-L TTGGAGAGATCGTAGGCGTI’ 1969 CX661225(M13)—U TGTAAAACGACGGCCAGTGCTCTCCTCCTCCGTCTCTT Yes 1970 CX661225-L GTTTAGC'ITCTCCGCTGACG 26 1 971 CX661 229(M1 3)—U TGTAAAACGACGGCCAGTCTTCAGCCTTTCCCCTCTTT Unclear 1 972 CX661 229—L GACTGTGTTTGGGCTGGAGT 1981 0X661264(M13kU TGTAAAACGACGGCCAGTGCTCTCAGATCCCTCTACCG Unclear 1982 0X661264-L AAT'ITGCAGCCATCAAGTCC 1983 0X66126flM13)‘U TGTAAAACGACGGCCAGTTTCCAGATCTTACCGAACCG Yes 1 984 0X661 2648-L AAAGCGTAGAGCAGCTGAGG 1987 0X661 272(M1 3)-U TGTAAAACGACGGCCAGTAATATTCTGATTCGCTCCGC Yes 1 988 CX661 272-L TCTI'GATGGGAGCTTCGAGT 1995 0X661292(M13)-U TGTAAAACGACGGCCAGTCCCAAATCTCAGAGAACCCA Yes 1996 0X661 292-L GTTGGCTGAGATGGTGGAGT 1999 0X661315(M13)-U TGTAAAACGACGGCCAGTGCCTCGAGAAGCCTCCTATI' Yes 2000 0X661 31 5-L GAAGCTTCTTCAGCACCACC 2007 0X661360(M13)-U TGTAAAACGACGGCCAGTACCTCTCTCTCCATTTCCCG Unclear 2008 0X661360-L AAACCTCCCAAAACCCCTAA 2023 0X661 393(M1 3)-U TGTAAAACGACGGCCAGTTACCACCAGTACCAGCAGCA Unclear 2024 0X661 393-L AGTGATGCAAATCTCCGACC 2039 CX661428a(M1 3)~U TGTAAAACGACGGCCAGTCAAAGGGTI’CATGACGGACT Unclear 2040 CX6614283-L CATGCTGWCTGCAACTCGT 2041 0X661428b(M13)-U TGTAAAACGACGGCCAGTGAAGACGGTGGATGAGGTGT Unclear 2042 CX661 428b—L CTGCTGAAACCCGAATCCTA 2043 0X661432(M13)-U TGTAAAACGACGGCCAGTACCCGGTI'CGGTTTTATTTC Unclear 2044 CX661432-L AACCCAAATCAGAATCGCTG 2055 0X661446(M1 31M TGTAAAACGACGGCCAGTTCCGTCAAGTTCAGTGCATC Unclear 2056 0X661446-L GGCAGCCTAATI'GAACCAAA 2059 CX661465(M13)—U TGTAAAACGACGGCCAGTTGATGCACCTCTCTGTCCAC N o 2060 CX661 465-L TGAAATI'GAAATI'GAGGGGG 2073 0X661492(M1 3)-U TGTAAAACGACGGCCAGTCCCCATAAAACATCACACATT Unclear 2074 0X661492-L CCTCTTGCTTCTTGGAATGC 2089 CX661 544(M1 3)-U TGTAAAACGACGGCCAGTGCTCCTCACAAAAGGAGTCG N o 2090 0X661 544~L GTGGCGTAAATCCTCATCGT 2097 0X661573(M13)-U TGTAAAACGACGGCCAGTAGGCTCACATGCTCACACTG Yes 2098 CX661573-L GMTTCGGAGAAGAAAGGGC 2105 CX661591(M13)~U TGTAAAACGACGGCCAGTCTCTCTCAAAGATGCCTCGAA Yes 2106 CX661591-L TTGAACAGCGAGAAGTGGTG 21 09 0X661 601 (M1 3)-U TGTAAAACGACGGO0AGTCCGCATOAATCCAAATOTCT N 0 2110 CX661601-L ATGAATCTGAGGCTCGCTGT 21 1 1 0X661603(M1 3)-U TGTAAAACGACGGCCAGTATCAACCACACCGCTACTCC Yes 21 1 2 0X661 603-L ATTTACGAAAATGCCATCGG 21 1 9 CX661 626(M1 3)-U TGTAAAACGACGGCCAGTCCCTCTCTACACACACAGCG Unclear 21 20 0X661 626-L AACGAGGTGGTGGAATCTTG 2123 0X661626b(M13)-U TGTAAAACGACGGCCAGTACAGAGCTGCGTAACCGACT Unclear 2124 CX6616260-L AACGAGGTGGTGGAATCTTG 2163 CX661 73mm 3)~U TGTAAAACGACGGCCAG'ITAGCTCTACACAGGTCCGCA Unclear 21 64 0X661 736-L TTGGG'ITFTCTAGTGGGACG 2169 0X661 746(M1 3)-U TGTAAAACGACGGCCAGTCGCTGACCCTGTTGTCACTA Unclear 21 70 CX661 746-L TTCAACCGGTTTCTCCTTTG 2173 0X661752(M13)-U TGTAAAACGACGGCCAGTACCTGACCTGACCAAACCAG Yes 2174 0X661752-L TGGGGATGAGGATGAGAGTC 27 2177 0X661761(M13)-U TGTAAAACGACGGCCAG'ITTAGCCACCTTCTCCACCAC Unclear 2178 CX661761-L TTGGGTTGGAA'ITI’GGAGAG 2179 CX661761a(M13)-U TGTAAAACGACGGCCAGTCCACCACGAAGCTCTCTCTC Yes 2180 CX661761a-L GGGACTCTCTGAAATGCCAA 2191 CX66178mM 3)-U TGTAAAACGACGGCCAGTACCCTCCTCCCACTCTCACT Yes 2192 CX661786-L ACTCGAATCTCGTCGTCGTC 2195 CX661792(M13)-U TGTAAAACGACGGCCAGTAATGCCACTCCGAAACTCAC Yes 2196 CX661792-L GGACTCC‘ITGACTCTGTCGC 2201 CX661803(M13)~U TGTAAAACGACGGCCAGTI’CGAAAACCCAGCTCAATTC Unclear 2202 CX661 803-L AGCATGTTGCTGTACATGGC 2233 CX661874(M13)-U TGTAAAACGACGGCCAGTAGAGCCATGGCAATCTCAAC Yes 2234 CX661 874-L GTGGAGGGGTTAAGGAAGGA 2235 CX661889(M13)-U TGTAAAACGACGGCCAGTGGAAGC'ITGGAAATCATGGA N 0 2236 CX661 889-L CTCTGCGAGAAACCACACAA 28 References Barritt, B.H. and C.H. Shanks Jr. 1980. Breeding Strawberries for Resistance to the Aphids Chaetosz'phonfiagaefolii and C. thomasi. HortScience 15(3):287-288. Bradford, E., J .F. Hancock and R.M. Warner. (submitted) Temperature Tolerance, Not Photoperiod Insensitivity, is the Primary Factor Controlling Repeat Flowering (Remontancy) in Strawberry. Journal of Experimental Botany. Bringhurst, R.S., J .F. Hancock and V. Voth. 1977. The Beach Strawberry, an Important Natural Resource. California Agriculture. Sept. pp 10. Bringhurst, RS. and V. Voth. 1978. Origin and evolutionary potentiality of the day- neutral trait in octoploid Fragaria. Genetics 90:510. Bringhurst, RS and V. Voth. 1984. Breeding Octoploid Strawberries. Iowa State Journal ofResearch. 58:371-381. Cameron J .S. and CA. Hartley. 1990. Gas Exchange Characteristics of Fragaria chiloensis Genotypes. HortScience 25(3):327-329. Dale, A. and T.M. Sjulin. 1990. Few Cytoplasms Contribute to North American Strawberry Cultivars. HortScience 25(11):1341-1342. Dale, A., H.A. Daubeny, M. Luffi'nan and J .A. Sullivan. 1993. Development of Fragaria Gerrnplasm in Canada. Acta Hort. 348:75-80. Daubeny, HA. 1990. Strawberry breeding in Canada. HortScience 25:893-894. Galletta, G.J., A.D. Draper and J .L. Maas. 1989. Combining Disease Resistance, Plant Adaptation and Fruit Quality in Breeding Short day and Day-Neutral Strawberries. Acta Hort. 285 :43-51. Hancock, J ., A. Dale, and J. Luby. 1993. Should we reconstruct the strawberry? Acta Hort. 348: 86-91. Hancock, J .F . 1999. Strawberries. CABI Publishing, Wallingford, U.K. Hancock, J .F ., P.W. Callow, A. Dale, J .J . Luby, C.E. Finn, S.C. Hokanson, and KB. Hummer. 2001a. From the Andes to the Rockies: native Strawberry Collection and Utilization. HortScience 36(2):221-225. Hancock, J .F., C.E. F inn, S.C. Hokanson, J .J. Luby, B.L. Goulart, K. Demchak, P.W. Callow, S. Serce, A.M.C. Schilder, and KB. Hummer. 2001b. A Multistate 29 Comparison of Native Octoploid Strawberries from North and South America. J. Amer. Soc. Hort. Sci. 126(5):579-586. Hancock, J .F., J .J . Luby, A. Dale, P.W. Callow, S. Serce, and A. El-Shiek. 2002. Utilizing wild F ragaria virginiana in strawberry cultivar development: Inheritance of photoperiod sensitivity, fi'uit size, gender, female fertility and disease resistance. Euphytica 126: 177-1 84. Hancock, J.F., T.M. Sjulin and GA. Lobos. 2008. Strawberries. p.393-437. In: J .F . Hancock (ed.). Temperate Fruit Crop Breeding. Springer Science+Business Media B.V. Hancock, J.F., C.E. Finn, J .J . Luby, A. Dale, P.W. Callow and S. Serce. (in prep) Reconstruction of the Strawberry, F ragaria x ananassa, Using Native Genotypes of F. virginiana and F. chiloensis: I. The First Round of Interspecific Crosses. Luby, J .J ., J .F . Hancock and J .C. Cameron. 1991. Expansion of the Strawberry Gerrnplasm Base in North America, p. 66-75. In: A. Dale and J. Luby (eds.). The Strawberry into the 21st Century. Timber Press, Portland, Ore. Luby, J .J . and M.M. Stahler. 1993. Collection and Evaluation of F ragaria virginiana in North America. Acta Hort. 345:49-53. Niemirowicz-Szczytt, K. 1989. Preliminary Studies on Inbreeding in Strawberry F ragaria x ananassa Duch.. Acta Horticulturae 265197-104 Scott, DH. 1959. Size, Firrnness and Time of Ripening of Fruit of Seedlings of Fragaria virginiana Duch. Crossed with cultivated strawberry varieties. Proc. Amer. Soc. Hort. Sci. 74:388-393. Scott, D.H., A.D. Draper and LW. Greeley. 1972. Interspecific Hybridization in Octoploid Strawberries. HortScience 7(4):382-384. Scott, DH. and F.J. Lawrence. 1975. Strawberries. Pp 71-97, in: Janick, J. and J.N. Moore, (eds.), Advances in Fruit Breeding. Purdue University Press, West Lafayette, IN. Shaw, D.V. 1988. Genotypic Variation and Genotypic Correlations for Sugars and Organic Acids of Strawberries. J. Amer. Soc. Hort. Sci. 113(5):770-774. Shaw, D.V. 1991. Recent Advances in the Genetics of Strawberry. Pp 76—83. In: A. Dale and J. Luby (eds). The Strawberry into the 2lst Century. Timber Press, Portland, Ore. Sjulin, T.M., and A. Dale. 1987. Genetic Diversity of North American Strawberry Cultivars. J. Amer. Soc. Hort. Sci. 112(2):375-385. 3O Ills 1293 03063 218 mlllll L" Y" ”M S" W.” M" " Ill, H llfl3 mll H”