

LIBRARY Michigan State University

This is to certify that the thesis entitled

Performance of an Elite Strawberry Population Derived from Wild Germplasm of *Fragaria chiloensis* and *F. virginiana*

presented by

Travis Lyle Stegmeir

has been accepted towards fulfillment of the requirements for the

Master of Science	degree in	Plant Breeding and Genetics - Horticulture
	Janes F. Hans	nh forcer's Signature
	i Major Pro	ofessor's Signature
	5/	11/09
		Date

MSU is an Affirmative Action/Equal Opportunity Employer

PLACE IN RETURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE	DATE DUE	DATE DUE

	·	
	5/08 K://	Proj/Acc&Pres/CIRC/DateDue.inde

PERFORMANCE OF AN ELITE STRAWBERRY POPULATION DERIVED FROM WILD GERMPLASM OF Fragaria chiloensis AND F. virginiana

 $\mathbf{B}\mathbf{y}$

Travis Lyle Stegmeir

A THESIS

Submitted to
Michigan State University
In partial fulfillment of the requirements
For the degree of

MASTER OF SCIENCE

Plant Breeding and Genetics -Horticulture

2009

ABSTRACT

PERFORMANCE OF AN ELITE STRAWBERRY POPULATION DERIVED FROM WILD GERMPLASM OF Fragaria chiloensis AND F. virginiana

By

Travis Lyle Stegmeir

Fragaria x ananassa Duchesne ex Rozier, or the cultivated strawberry, resulted from the accidental hybridization of two wild species, F. chiloensis (L.) Miller and F. virginiana Miller. In an attempt to recreate the cultivated strawberry, elite clones of F. chiloensis and F. virginiana were crossed within species and then hybridized to produce 23 reconstructed populations. Of these populations, FVC11 [(Frederick 9 x LH 50-4) x (Scotts Creek x 2 MAR 1A)] had unusually large fruit size and was selected for further analysis. In the summer of 2008, 78 individuals of this population were evaluated for their seasonal flowering patterns, inflorescence number, inflorescence height, crown production, flower number, fruit size, yield, internal color, soluble solids, fruit firmness and plant vigor. Progeny means were compared to those of the parental means and most traits exhibited transgressive segregation, most notably yield and fruit weight. Significant positive correlations were found between many of the production traits, although there were significant negative correlations between fruit firmness and flower number per inflorescence, fruit firmness and soluble solids and yield per plant and soluble solids. Overall performance scores were assigned to each genotype by summing their relative performance for each trait in the population. Individuals were identified that combined high values for fruit weight and yield with higher than average values for fruit color, firmness and soluble solids. Use of this population in breeding programs could help expand the genetic base of the cultivated strawberry with limited linkage drag.

ACKNOWLEDGEMENTS

I would like to thank my major professor, Dr. Jim Hancock, for allowing himself to be talked in to taking me on as a graduate student. His guidance, sense of humor, and down-to-earth nature were much appreciated throughout my endeavors. I am very thankful for the opportunity he has given me not only in my research, but also in the experience with making crosses, and evaluating germplasm, my true passions.

I would also like to thank my other committee members, Dr. Amy Iezzoni, and Dr. Dechun Wang, for their support and help both in and out of the classroom. I always felt like I could ask you questions weather they were related to my research or not, in order not only to finish my degree, but to become a better plant breeder.

Emma Bradford also deserves acknowledgement for always being there for me both in an academic setting, as well as a friend. I could always rely on her for helpful advice, good laughs, and honest answers-not to mention a shared passion for plants.

Pete Callow was also always there for me in the lab and in the field, as well as in the hallways. I could always count on him to make me laugh, or help me out in the lab with any information.

Also special thanks to Dr. Ryan Warner for his input and contributions during the analysis of my data, and writing of my paper.

I would also like to thank all of my friends here at MSU, Rachel Naegele, Cholani Weebadde, Veronica Vallejo, Audrey Sebolt, Suneth Sooriyapathirana, and all of the other great PBGB students.

Most of all, I would like to thank my parents for their invaluable support throughout my academic career and my family for helping shape me into who I am today.

TABLE OF CONTENTS

LIST OF TABLES	vii
LIST OF FIGURES	viii
PERFORMANCE OF AN ELITE STRAWBERRY POPULATION DERIVI	ED
FROM WILD GERMPLASM OF Fragaria chiloensis AND F. virginiana	1
INTRODUCTION	2
MATERIALS AND METHODS	4
RESULTS	7
DISCUSSION	8
APPENDIX	18
REFERENCES	26

LIST OF TABLES

Table 1:	T-test comparing remontant (RM) genotype and non-remontant (NRM) genotype means for the FVC11 population evaluated at Benton Harbor, MI. The t-values that were significant at the 0.05 level are bolded
Table 2:	Correlation matrix for 13 vegetative, flowering and fruiting characteristics using a Pearson Correlation 2-tailed test for the FVC11 population evaluated at Benton Harbor, MI. Correlations are significant when in bold at the 0.01 (**) and 0.05 (*) level
Table 3:	Progeny performance scores for the FVC11 population. Progeny performance scores were calculated by dividing each genotype's mean value by the highest value found in each category, and then summing them across all categories. Genotypes were also evaluated as being remontant (RM), weakly remontant (WRM), or non-remontant (NRM). Original values were collected in 2008 at Benton Harbor, MI
Appendi	x 1: A subset of the FVC11 population including the F. virginiana and F. chiloensis parents, 4 genotypes classified as RM in 2007, and 4 genotypes classified as NRM in 2007, were screened for polymorphic banding using 168 different SSR markers. Polymorphisms were classified as present and readable (yes), absent or non-readable (no), or undefined because of poor developing or gel imperfections (unclear)

LIST OF FIGURES

Figure 1:	Inflorescence characteristics of FVC11 genotypes at Benton Harbor, MI including mean number of inflorescences per mother plant (A), number of inflorescences per daughter plant (B), number of flowers per inflorescence (C) and inflorescent height (D). Black bars denote progeny which were non-remontant, while white bars denote progeny which were remontant in 2008. Arrows show the values of the <i>Fragaria virginiana</i> (VIR) and <i>F. chiloensis</i> (CHI) parents.
Figure 2:	Plant characteristics of FVC11 genotypes at Benton Harbor, MI including mean of crowns per mother plant (A), number of crowns per daughter plant (B), number of daughter plants per mother plant (C) and plant vigor (D). Black bars denote progeny which were non-remontant, while white bars denote progeny which were remontant in 2008. Arrows show the values of the Fragaria virginiana (VIR) and F. chiloensis (CHI)
	parents14
Figure 3:	Fruit characteristics of FVC11 genotypes at Benton Harbor, MI including mean yield per plant (A), mean fruit weight (B), percent internal fruit color (C) soluble sugars (D), and fruit firmness (E). Black bars denote progeny which were non-remontant, while white bars denote progeny which were remontant in 2008. Arrows show the values of the <i>Fragaria virginiana</i> (VIR) and F. chiloensis (CHI) parents.

RFORMANCE OF AN ELITE STRAWBERRY POPULATION DERIVED FROM WILD GERMPLASM OF Fragaria chiloensis AND F. virginiana	D

Introduction

The primary cultivated strawberry, Fragaria x ananassa Duchesne ex Rozier, is believed to have arisen from a chance hybridization between the two octoploid species F. chiloensis (L.) Miller and F. virginiana Miller in Europe around 250 years ago (Hancock, 1999). This hybridization combined the unique characteristics of both species including the larger, firmer fruit of F. chiloensis with the darker red, more aromatic fruit of F. virginiana.

In a study done by Sjulin and Dale (1987) comparing the pedigrees of 134 North American strawberry cultivars, it was found that all North American cultivars were derived from only 53 founding clones. They later concluded that there were fewer than 17 cytoplasms represented in the same set of 134 cultivars (Dale and Sjulin, 1990).

The fact that *Fragaria* x *ananassa* has a narrow germplasm base likely has breeding ramifications. The species tolerates inbreeding poorly (Shaw, 1991 and Niemirowicz-Szczytt, 1989) indicating that heterosis is important in the cultivated strawberry. A lack of genetic diversity also leaves concern for susceptibility to disease, abiotic and biotic stresses (Luby and Stahler, 1993). A narrow genetic base could inhibit cultivars from facing new environmental challenges, and also leaves less room for improvement due to restricted genetic diversity (Luby et. al., 1991).

Because of the accidental nature of the original hybridization, it has been proposed that strawberry breeders should reconstitute F. x ananassa by intercrossing elite wild F.

virginiana and F. chiloensis parents. This would increase the genetic base of F. x ananassa and introduce novel genetic diversity into the cultivated strawberry gene pool (Hancock et. al., 1993). There are, however, some potential problems with introgressing wild germplasm into F. x ananassa, including the possibility of incorporating unfavorable alleles through linkage drag. It has also been suggested that by incorporating wild germplasm into a breeding program, several generations of improvement will be necessary to restore fruit quality to that of industry standard (Scott and Lawrence 1975), especially when utilizing the small, soft-fruited F. virginiana (Scott, 1959). Previous studies have found that at least three rounds of backcrossing back to F. x ananassa were necessary to recover genotypes meeting commercial standards (Bringhurst and Voth, 1978, Scott and Lawrence 1975).

Evaluations have been done on selected wild-collected clones of both species in multiple locations to identify the possible beneficial traits which could be incorporated into the cultivated strawberry, and thereby select elite germplasm (Hancock et. al., 2001a, Hancock et. al., 2001b). At least 8 wild clones have been introgressed into *F. x ananassa* since the 1920's (Sjulin and Dale, 1987), bringing in such traits as day-neutrality, red stele and strawberry aphid resistance, drought and salinity tolerance and winter hardiness (Bringhurst and Voth, 1984; Galletta et. al., 1989; Barritt and Shanks, 1980; and Daubeny, 1990). Other promising traits which could be introgressed are a higher photosynthetic rate, lower requirements for fertilizer, heat tolerance, resistance to soil pathogens and vigor from *F. chiloensis*, and resistance to soil pathogens, vigor and resistance to powdery mildew and scorch from *F. virginiana* (Hancock et. al., 2002; Scott

et. al., 1972; Bringhurst et. al., 1977; Hancock et. al., 2001b; and Cameron and Hartley, 1990).

In a previous study (Hancock et al., in prep), elite selections of *F. virginiana* and *F. chiloensis* were intercrossed in 23 combinations and evaluated in the field in Michigan and Oregon. The most impressive family was FVC11 [(Frederick 9 x LH 50-4) x (Scotts Creek x 2 MAR 1A)] which had the best combination of fruit size, color and yield and was composed of four different subspecies - *F. virginiana* ssp. *virginiana* from Ontario (Frederick 9, PI 612493), *F. virginiana* ssp. *glauca* from Montana (LH 50-4, PI 612495), *F. chiloensis* ssp. *chiloensis* from Chile (2 MAR 1A, PI 602567) and *F. chiloensis* ssp. *pacifica* from California (Scotts Creek, PI 612490). Herein, the population derived from this complex hybrid was more extensively studied for various horticultural traits including both plant and fruit characteristics.

Materials and Methods

In the fall of 2006, rooted runners from 78 genotypes of FVC11 were dug and transferred to East Lansing, MI from Corvallis, Oregon and Benton Harbor, Michigan where the original trials were conducted (Hancock et al, in prep). The genotypes were transplanted into a commercial potting mix in 4 x 4 x 6-inch pots and placed in an unheated greenhouse. In June of 2007, two to three replicates (runner plants) of each genotype were set in the field in Benton Harbor, MI in a Randomized Complete Block Design.

Plants were set in rows at 1.2 m x 1.2 m spacing and all runners were trained by cross cultivation into a 1.2 x 1.2 m square.

Genotypes were evaluated for their seasonal flowering patterns in 2007 and 2008 from mid-July to early September. Genotypes were considered remontant (RM) if they flowered both in the beginning of the season and after July 21st when day length exceeded 13 hours. Waiting until this date allowed any flowers that had been initiated under shorter days to finish blooming before the data were collected (Hancock et. al., 2002). All other plants were considered to be non-remontant. We have chosen the term remontant rather than the more common classification of day-neutral, as evidence is accumulating that repeat flowering is more strongly regulated by temperature than photoperiod (Bradford et al, submitted).

In early June 2008, data were taken on several reproductive and vegetative traits of each mother plant and three randomly selected daughter plants (when available) per plot. Three random inflorescences were selected per mother and daughter plants and their heights were measured from crown to tip, and their flower numbers were counted. The number of crowns was also counted on each mother plant and the three daughter plants, as well as the total number of plants within the block for each genotype. Overall plant vigor was estimated on a 1-7 (least to most vigorous) scale based on plot fill and individual plant vigor.

During the fruiting season of 2008 (June 9 to July 17), the plots were assessed about every five days and the first five ripe fruit, and any additional ripe fruit, were harvested in each. The plots were picked again when another five fruit per block were ripe; however, this time, both the ripe and unripe fruit were picked. If a plot had fewer than five fruit, all those available were picked when ripe. Mean fruit weight was calculated for the first five ripe berries in each plot. Mean yield per plant, per plot was also determined by dividing the total weight of green and ripe fruit from each genotype by the total number of plants in each plot.

Fruit firmness (g/mm²) was measured on five ripe fruit per plot (when available) using the compression test of BioWorks' FirmTech 2 (Wamego, KS). Two ripe fruits from each replication were cut in half and percent internal color was estimated based on how deep the color penetrated the flesh. Soluble solids were taken by squeezing one drop of juice onto the handheld refractometer from the two fruits for two separate readings.

Pearson correlation values were calculated for 13 plant, flower and fruit characteristics using mean genotype values. The analysis was run using SPSS version 16 (Chicago, IL). Correlation values were considered significant at a 0.05 level. T-tests were used to compare the average values of the remontant and non-remontant genotypes using the proc ttest in SAS 9.1.3 (Cary, NC).

The overall performance of each genotype was rated by dividing the mean value of each genotype by the highest value of any genotype for fruit internal color, soluble solids,

yield per plant, firmness, inflorescence height, plants per block, vigor, and fruit weight, to give a value less than or equal to 1 for each trait. The values for each genotype's traits were then added to generate a total performance score.

Results

In 2007, 25 genotypes proved to be remontant, with 21 repeat-flowering in more than one replicate (strongly remontant) and another 4 repeat-flowering in just one replicate (weakly remontant). Twenty-nine genotypes were classified as remontant in 2008, with 21 being strong and 8 being weak. Neither of the parents was classified as remontant in 2007, and the *F. virginiana* parent performed as a weak remontant in 2008. Only four genotypes, FVC11-015, FVC11-021 FVC11-022 and FVC11-031, were deemed remontant in 2007 and not 2008, of which all were "weak" except for FVC11-031 which did not survive the winter. In 2008, 9 genotypes were rated remontant that were non-remontant in 2007, 5 "weak" ones (FVC11-043, FVC11-048, FVC11-055, FVC11-070 and FVC11-077), and 4 strong ones (FVC11-014, FVC11-035, FVC11-054 and FVC11-066). The mean values of remontant and non-remontant genotypes were not significantly different (P < 0.05) for most traits, with the exception of yield per plant, daughter plants per mother, inflorescences per mother and vigor (Table 1).

Many progeny displayed transgressive segregation, with their trait values being higher than their parental genotypes. For only two traits (soluble solids and plant vigor) were no transgressive segregates observed (Figures 1-3). Significant (P< 0.05) negative

correlations were observed between fruit firmness and flowers per inflorescence, fruit firmness and soluble solids, yield per plant and soluble solids, yield per plant and daughter plants per mother, flower number per inflorescence and crown number per mother plant and flower number per inflorescence and inflorescence number per mother plant. All other significant correlations were positive (Table 2). Only internal fruit color was not significantly correlated with any of the other traits studied. A significant negative correlation (p = 0.029) was found between the heaviest fruit weight of each genotype and soluble solids, and between mean fruit weight and soluble solids at the p=0.07 level.

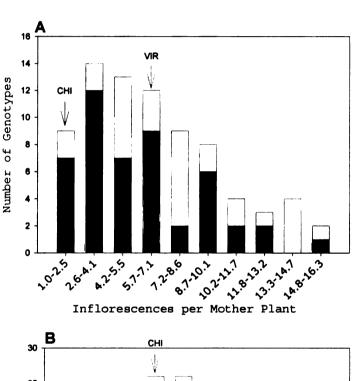
The total performance values for each genotype studied in 2008 ranged from 3.38 to 5.90 (out of a possible 8) (Table 3). Values for the top 10 genotypes ranged from 5.34-5.90. The top 10 genotypes included three genotypes, FVC11-049, FVC11-057 and FVC11-058, that were remontant in both 2007 and 2008, and one genotype, FVC11-055, that was weakly remontant in 2008. The rest of the top 10 genotypes were all non-remontant.

Discussion

The reconstruction of F. x ananassa by crossing elite genotypes of F. chiloensis and F. virginiana appears to be an effective strategy for strawberry improvement. While none of the examined FVC11 genotypes are of commercial quality, many have characteristics superior to their parents. In the relatively small FVC11 population, individuals were

identified that have high levels for several horticulturally important traits which could be used as parents to broaden the genetic base of the cultivated strawberry. Superior individuals were identified that were both remontant and non-remontant.

Shaw (1988) warns that care must be taken to not only consider size when utilizing wild germplasm to avoid narrowing the germplasm base for other important traits. Many of the FVC11 genotypes were superior for multiple traits. Where negative correlations were observed between characteristics such as between soluble solids and fruit weight and soluble solids and yield per plant, outliers could be found. For example, FVC11-049 had a 0.85 performance value for soluble solids and a 0.83 fruit weight value, while FVC11-059 had a 0.74 soluble solids value and a 0.95 yield per plant value. In fact, FVC11-044 had values of 0.70 or higher for 7 of the 8 traits examined.


The question remains as to whether intercrossing within reconstructed populations will yield new cultivars. While the fruit size in the best FVC11 genotypes is far superior to any wild germplasm, it is still not close to commercial size. The most rapid breeding progress may be made by backcrossing the best FVC11 genotypes to cultivars. However, too many generations of backcrossing runs the risk of losing much of the genetic variation and novel epistatic interactions contained in the genotypes of FVC11. After six generations, a backcrossing approach leaves on average only 1.56% of the wild species in the selected germplasm (Dale et. al., 1993). A large part of the genetic variance for fruit size is epistatic (Hancock et. al., 2008), so maximizing allelic diversity could increase the occurrence of larger fruit when utilizing wild germplasm.

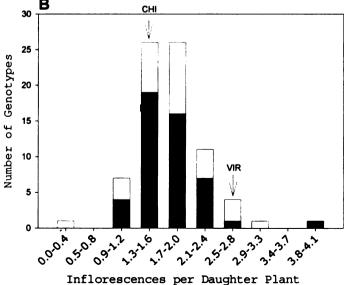

With proper assessments of wild germplasm for most horticulturally important traits, many beneficial traits can be introgressed with minimal amounts of linkage drag. With the use of genetic markers, these traits could be more easily followed in a breeding program. Because of this, several available SSR markers have been screened with a subset of this population to determine if they displayed polymorphisms, and therefore could be used, on futures studies with this population (see appendix 1). The FVC11 population presented here would be a great tool to breeders wishing to introduce novel genetic diversity into their breeding programs. We are currently expanding this population to increase the chances of acquiring genotypes with even more positive combinations of traits.

Table 1. T-test comparing remontant (RM) genotype and non-remontant (NRM) genotype means for the FVC11 population evaluated at Benton Harbor, MI. The t-values that were significant at the 0.05 level are bolded

Trait	NRM mean	RM mean	t-value
Inflorescences per Mother	5.86	8.09	2.63
Inflorescences per Daughter	1.71	1.79	0.59
Flowers per Inflorescence	5.63	5.31	-1.21
Inflorescence Height (cm)	9.84	9.76	-0.13
Crowns per Mother	4.25	5.08	1.57
Crowns per Daughter	1.44	1.51	0.82
Daughters per Mother	9.39	6.87	-3.07
Vigor (1-7)	4.07	3.65	-2.35
Yield per Plant (g)	6.88	11.97	3.94
Fruit Weight (g)	21.74	22.63	0.70
Internal Color (%)	57.75	54.73	0.60
Soluble Solids (brix)	8.58	8.58	0.04
Firmness (g/mm²)	153.51	152.5	-0.28

Figure 1. Inflorescence characteristics of FVC11 genotypes at Benton Harbor, MI including mean number of inflorescences per mother plant (A), number of inflorescences per daughter plant (B), number of flowers per inflorescence (C) and inflorescent height (D). Black bars denote progeny which were non-remontant, while white bars denote progeny which were remontant in 2008. Arrows show the values of the *Fragaria* virginiana (VIR) and F. chiloensis (CHI) parents

Figure 1 continued.

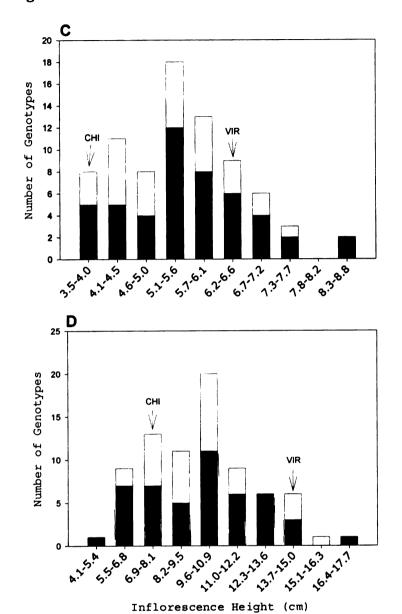


Figure 2. Plant characteristics of FVC11 genotypes at Benton Harbor, MI including mean of crowns per mother plant (A), number of crowns per daughter plant (B), number of daughter plants per mother plant (C) and plant vigor (D). Black bars denote progeny which were non-remontant, while white bars denote progeny which were remontant in 2008. Arrows show the values of the *Fragaria virginiana* (VIR) and *F. chiloensis* (CHI) parents

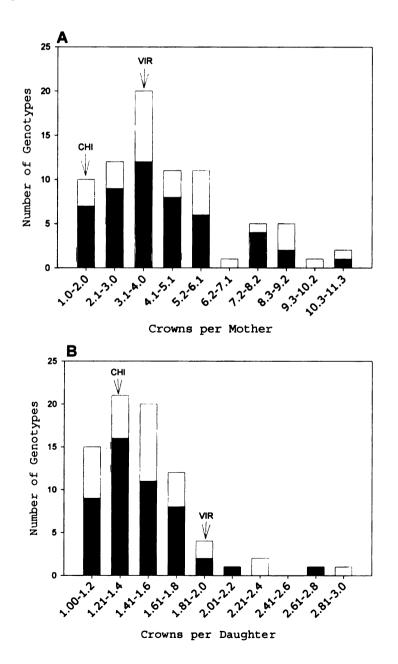
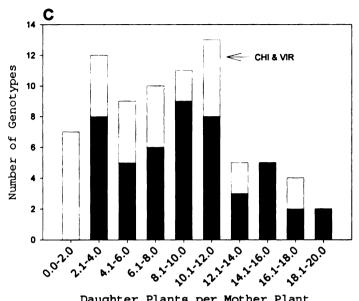



Figure 2 continued.

Daughter Plants per Mother Plant

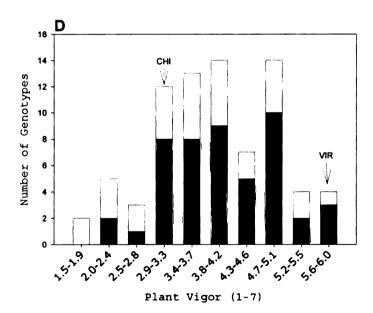


Figure 3. Fruit characteristics of FVC11 genotypes at Benton Harbor, MI including mean yield per plant (A), mean fruit weight (B), percent internal fruit color (C) soluble sugars (D), and fruit firmness (E). Black bars denote progeny which were non-remontant, while white bars denote progeny which were remontant in 2008. Arrows show the values of the Fragaria virginiana (VIR) and F. chiloensis (CHI) parents.

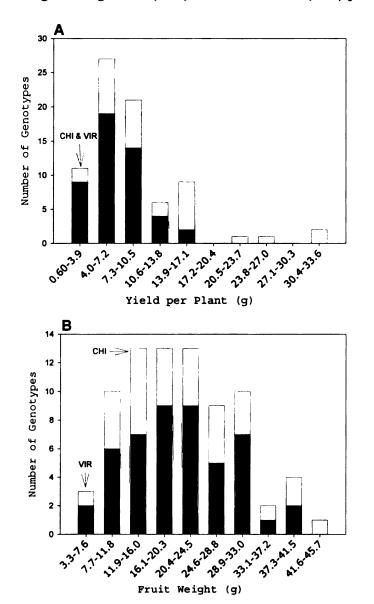
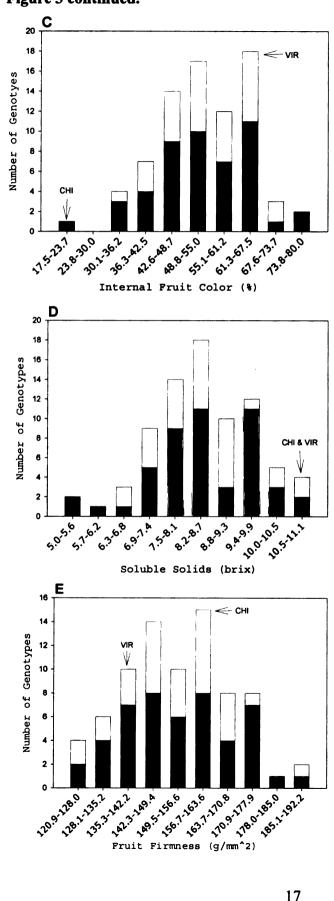



Figure 3 continued.

Table 2. Correlation matrix for 13 vegetative, flowering and fruiting characteristics using a Pearson Correlation 2-tailed test for the FVC11 population evaluated at Benton Harbor, MI. Correlations are significant when in bold at the 0.01 (**) and 0.05 (*) level.

	Inflor.	Crowns/ Crowns/	Crowns/	Inflor./	Inflor./	Flowers/	Flowers/ Daughters	Plant	Fruit	Internal	SO.	Yield
•	height	daughter	mother	daughter	mother	inflor.	Another	vigor	weight	color	Solids	plant
Inflor. height							ll					
Crowns/daughter	0.027											
Crowns/mother	-0.094	.427										
Inflor./daughter	-0.036	.693	.405									
Inflor./mother	-0.033	.315"	.914									
Flowers/Inflor.	.512"	-0.076	269	-0.002	256							
Daughters/mother	.384	-0.171	-0.141	-0.159	-0.152	.269						
Plant vigor	.573"	0.15	0.076	0.133	0.055	.289	.540					
Fruit weight	.425	-0.14	-0.128	-0.191	-0.081	0.166	.419°	.344				
internal color	0.084	-0.063	-0.022	-0.02	-0.098	0.179	-0.008	0.014	-0.088			
Sol. Solids	0.154	0.048	-0.123	-0.016	-0.186	0.101	0.158	0.172	-0.206	0.074		
Yield/plant	0.201	0.172	0.199	0.055	.264	-0.006	.336	-0.065	.410	-0.018	246	
Fruit firmness	-0.016	0.022	0.011	0.104	-0.028	-277	-0.078	0.062	0.067	-0.049	236	0.12

Table 3. Progeny performance scores for the FVC11 population. Progeny performance scores were calculated by dividing each genotype's mean value by the highest value found in each category, and then summing them across all categories. Genotypes were also evaluated as being remontant (RM), weakly remontant (WRM) or non-remontant (NRM). Original values were collected in 2008 at Benton Harbor, MI.

	intrnl.	sol.	yield/		inflor.	plants/		fruit			
genotype	color	solids	plant	firmness	height	block	vigor	weight	Total	2007	2008
FVC11-044	0.73	0.88	0.30	0.73	1.00	0.78	0.78	0.70	5.90	NRM	NRM
FVC11-046	0.88	0.65	0.43	0.89	0.70	0.51	0.83	0.83	5.73	NRM	NRM
FVC11-057	0.53	0.67	0.49	0.88	0.91	0.49	0.72	1.00	5.69	RM	RM
FVC11-055	0.60	0.68	0.44	0.86	0.80	0.65	0.83	0.79	5.67	NRM	WRM
FVC11-056	0.58	0.87	0.39	0.73	0.75	0.57	0.94	0.80	5.63	NRM	NRM
FVC11-049	0.91	0.85	0.47	0.67	0.49	0.65	0.67	0.83	5.55	RM	RM
FVC11-058	0.72	0.65	0.79	0.87	0.78	0.35	0.67	0.69	5.52	RM	RM
FVC11-076	0.83	0.70	0.15	0.73	0.77	0.76	0.83	0.70	5.47	NRM	NRM
FVC11-029	0.56	0.85	0.29	0.71	0.73	0.76	0.83	0.64	5.37	NRM	NRM
FVC11-036	0.65	0.92	0.11	0.96	0.66	0.73	0.89	0.41	5.34	NRM	NRM
FVC11-030	0.78	0.66	0.17	0.90	0.55	0.92	0.83	0.51	5.33	NRM	NRM
FVC11-043	0.82	0.80	0.27	0.82	0.62	0.57	0.89	0.51	5.31	NRM	WRM
FVC11-050	0.49	0.82	0.38	0.85	0.65	0.59	0.56	0.90	5.23	RM	RM
FVC11-054	0.69	0.77	0.24	0.92	0.56	0.57	0.89	0.57	5.21	NRM	RM
FVC11-038	0.77	0.75	0.37	0.79	0.60	0.52	0.83	0.56	5.20	RM	WRM
FVC11-034	0.58	0.85	0.10	0.68	0.67	0.83	0.89	0.58	5.18	NRM	NRM
FVC11-041	0.91	0.83	0.28	0.76	0.69	0.43	0.56	0.71	5.16	RM	RM
FVC11-072	1.00	0.78	0.16	0.85	0.43	0.84	0.67	0.41	5.14	NRM	NRM
FVC11-064	0.73	0.72	0.20	0.79	0.67	1.00	0.50	0.53	5.14	NRM	NRM
FVC11-077	0.43	0.92	0.21	0.76	0.58	0.89	0.83	0.52	5.13	NRM	WRM
FVC11-065	0.67	0.72	0.43	0.86	0.82	0.24	0.83	0.52	5.10	NRM	NRM
FVC11-053	0.65	0.76	0.34	1.00	0.55	0.49	0.67	0.61	5.06	NRM	NRM
FVC11-075	0.52	0.82	0.20	0.83	0.51	0.83	0.67	0.68	5.05	RM	RM
FVC11-VIR	0.79	0.98	0.06	0.73	0.83	0.56	0.94	0.15	5.04	NRM	WRM
FVC11-059	0.57	0.74	0.95	0.80	0.59	0.13	0.67	0.55	5.00	RM	RM
FVC11-062	0.53	0.68	0.15	0.79	0.54	0.70	1.00	0.59	4.99	NRM	NRM
FVC11-042	0.81	0.87	0.25	0.82	0.75	0.35	0.72	0.41	4.98	NRM	NRM
FVC11-027	0.45	0.94	0.24	0.76	0.69	0.62	0.61	0.64	4.95	NRM	NRM
FVC11-018	0.79	0.71	0.31	0.75	0.56	0.60	0.72	0.50	4.94	NRM	NRM
FVC11-068	0.72	0.82	0.28	0.77	0.61	0.52	0.72	0.46	4.92	NRM	NRM
FVC11-026	0.74	0.74	0.20	0.75	0.61	0.54	0.67	0.66	4.91	NRM	NRM
FVC11-037	0.70	0.65	0.12	0.72	0.68	0.59	0.94	0.47	4.86	NRM	NRM
FVC11-004	0.83	0.65	0.21	0.93	0.83	0.35	0.72	0.34	4.86	NRM	NRM
FVC11-061	0.64	0.76	0.25	0.83	0.52	0.46	0.78	0.61	4.84	NRM	NRM
FVC11-060	0.60	0.73	0.12	0.86	0.64	0.65	0.83	0.33	4.77	NRM	NRM
FVC11-033	0.74	0.80	0.46	0.82	0.48	0.25	0.72	0.42	4.70	RM	RM
FVC11-067	0.67	0.89	0.40	0.67	0.62	0.29	0.61	0.55	4.70	NRM	NRM

Table 3 continued.

D (044 070	امما	0.75	0.40	0.00	0.50	0.00	0.07	0.40	4.60	NDA	L NIDAA
FVC11-073	0.63	0.75	0.16	0.80	0.58	0.60	0.67	0.49	4.68	NRM	NRM
FVC11-047	0.58	0.73	0.15	0.74	0.39	0.70	0.67	0.67	4.62	NRM	NRM
FVC11-070	0.67	0.71	0.49	0.81	0.56	0.14	0.83	0.40	4.62	NRM	WRM
FVC11-071	0.84	0.99	0.04	0.72	0.76	0.48	0.67	0.11	4.61	NRM	NRM
FVC11-052	0.77	0.77	0.12	0.87	0.55	0.46	0.75	0.28	4.57	NRM	NRM
FVC11-015	0.56	0.75	0.31	0.91	0.60	0.33	0.67	0.42	4.56	WRM	NRM
FVC11-003	0.96	0.83	0.17	0.82	0.38	0.41	0.50	0.45	4.54	NRM	NRM
FVC11-032	0.79	0.99	0.42	0.76	0.54	0.14	0.50	0.35	4.49	RM	RM
FVC11-028	0.73	0.81	0.14	0.71	0.41	0.54	0.50	0.62	4.47	RM	RM
FVC11-021	0.64	0.45	0.36	0.91	0.40	0.30	0.50	0.85	4.43	WRM	NRM
FVC11-069	0.56	0.85	0.25	0.85	0.47	0.24	0.83	0.35	4.40	NRM	NRM
FVC11-016	0.49	0.89	0.18	0.69	0.45	0.41	0.83	0.38	4.32	NRM	NRM
FVC11-074	0.83	0.75	0.22	0.78	0.43	0.30	0.56	0.42	4.30	NRM	NRM
FVC11-063	0.78	0.69	0.15	0.77	0.38	0.56	0.61	0.32	4.26	NRM	NRM
FVC11-008	0.70	0.61	1.00	0.76	0.44	0.03	0.25	0.45	4.24	RM	WRM
FVC11-019	0.77	0.67	0.21	0.66	0.51	0.43	0.56	0.41	4.22	NRM	NRM
FVC11-045	0.70	0.87	0.02	0.63	0.57	0.65	0.67	0.07	4.18	NRM	NRM
FVC11-013	0.72	0.76	0.23	0.75	0.58	0.24	0.56	0.34	4.18	RM	RM
FVC11-011	0.55	0.71	0.43	0.80	0.51	0.14	0.61	0.41	4.16	RM	RM
FVC11-078	0.59	0.69	0.16	0.91	0.46	0.49	0.56	0.30	4.16	NRM	NRM
FVC11-014	0.69	0.78	0.18	0.84	0.48	0.40	0.50	0.28	4.14	NRM	RM
FVC11-066	0.84	0.77	0.22	0.75	0.32	0.21	0.50	0.45	4.09	NRM	RM
FVC11-012	0.67	0.66	0.27	0.65	0.54	0.25	0.67	0.37	4.08	RM	RM
FVC11-048	0.79	0.90	0.19	0.70	0.55	0.22	0.44	0.28	4.07	RM	WRM
FVC11-006	0.83	0.89	0.20	0.90	0.38	0.16	0.44	0.25	4.05	NRM	NRM
FVC11-017	0.63	0.72	0.27	0.86	0.36	0.21	0.67	0.32	4.02	NRM	NRM
FVC11-022	0.42	0.47	0.29	0.77	0.39	0.37	0.58	0.71	4.01	WRM	NRM
FVC11-024	0.52	0.76	0.25	0.85	0.37	0.22	0.56	0.40	3.92	NRM	NRM
FVC11-020	0.73	0.85	0.11	0.77	0.35	0.37	0.50	0.22	3.90	NRM	NRM
FVC11-025	0.64	0.58	0.20	0.89	0.40	0.33	0.56	0.23	3.84	RM	RM
FVC11-005	0.60	0.72	0.62	0.83	0.48	0.06	0.28	0.22	3.82	RM	RM
FVC11-040	0.52	0.73	0.12	0.71	0.47	0.52	0.50	0.22	3.80	NRM	NRM
FVC11-CHI	0.22	1.00	0.03	0.82	0.40	0.52	0.50	0.29	3.78	NRM	NRM
FVC11-035	0.68	0.74	0.14	0.83	0.42	0.25	0.39	0.26	3.72	NRM	RM
FVC11-023	0.63	0.66	0.19	0.98	0.39	0.16	0.39	0.25	3.64	WRM	WRM
FVC11-039	0.41	0.54	0.25	0.69	0.54	0.32	0.33	0.47	3.55	NRM	NRM
FVC11-002	0.60	0.77	0.30	0.71	0.39	0.06	0.44	0.27	3.54	RM	RM
FVC11-051	0.63	0.87	0.07	0.80	0.23	0.17	0.50	0.21	3.48	NRM	NRM
FVC11-001	0.63	0.73	0.06	0.82	0.36	0.22	0.39	0.25	3.45	NRM	NRM
FVC11-010	0.58	0.61	0.08	0.81	0.43	0.16	0.50	0.25	3.43	NRM	NRM
FVC11-007	0.84	0.72	0.07	0.66	0.37	0.16	0.33	0.22	3.38	RM	RM
FVC11-009	-	-	-	-	-	-	-	-	0.00	NRM	-
FVC11-031		-	-	-	-	-	-	-	0.00	RM	

APPENDIX

Appendix 1. A subset of the FVC11 population including the *F. virginiana* and *F. chiloensis* parents, 4 genotypes classified as RM in 2007, and 4 genotypes classified as NRM in 2007, were screened for polymorphic banding using 168 different SSR markers. Polymorphisms were classified as present and readable (yes), absent or non-readable (no), or undefined because of poor developing or gel imperfections (unclear).

Oligo	Name	Sequence	Polymorphisms
655	ARSFL9-U (M13)	TGTAAAACGACGGCCAGTGCGAGGCGATCATGGAGAGA	Yes
656	ARSFL9-L	GCGTTTCCTACGTCCCAATAAATC	163
657	ARSFL10-U (M13)	TGTAAAACGACGGCCAGTGCGTCAGCCGTAGTGATGTAGCAG	Yes
658	ARSFL10-L	GCGCCAGCCCTCAAATATC	165
659	ARSFL13-U (M13)	TGTAAAACGACGGCCAGTGCGGGCAGCCTCCAGATCTCCTTA	Unclear
660	ARSFL13-L	GCGCCCTATCTTCGACCAA	Oliobai
661	ARSFL22-U (M13)	TGTAAAACGACGGCCAGTGCGAACCCCATTAACAGCTTCA	Yes
662	ARSFL22-L	GCGATCAAATTCCCCTCTAACAAT	165
831	SCAR1 (M13)-U	TGTAAAACGACGGCCAGTCACGCTTAAATAGGAGTTCG	No
832	SCAR1-L	GGGTGAAACTGATTTCTTACC	NO
833	SCAR2 (M13)-U	TGTAAAACGACGGCCAGTGAAAAGTGAGGCGGATTTCG	Yes
834	SCAR2-L	CTTGAATTGTCTCCATTCCC	Tes
943	CO818002(M13)-U	TGTAAAACGACGGCCAGTCTAGTAGCTCCACGCCAAGC	Yes
944	CO818002-L	AATGTGTGGGAGAGGTGAGC	Tes
951	CO817823(M13)-U	TGTAAAACGACGGCCAGTCAAAGAGAGCCAGAGGCCAAA	Yes
952	CO817823-L	ACGTTGTACTTGGACCGGAG	Tes
955	CO817853(M13)-U	TGTAAAACGACGGCCAGTCCATTCAAAACCTCCTCTTCC	Unclear
956	CO817853-L	ATGGGTCCTTCGTCTGAGTG	Unclear
957	CO817234(M13)-U	TGTAAAACGACGGCCAGTGAACTCCCTTTTCTGGGTCC	Unclear
958	CO817234-L	CAATGAGTGGGAGGGAAGG	Olicieal
969	CO379568(M13)-U	TGTAAAACGACGGCCAGTGATTAGGGAGAGGCAACGTG	Yes
970	CO379568-L	GCTTCAAGCAAAATGCATCA	165
975	CO816760(M13)-U	TGTAAAACGACGGCCAGTCCCACAAAACCCTAAACCCT	Unclear
976	CO816760-L	GTCGAAGAGATCGGAGCAAC	Oncean
979	CO816700(M13)-U	TGTAAAACGACGGCCAGTTCCGAAAGCTCACGATTCTT	Yes
980	CO816700-L	GTGCAGAGAATGAGCAACGA	Tes
983	CO817389(M13)-U	TGTAAAACGACGGCCAGTCGAAGCCCAGCATCTATCTC	Vaa
984	CO817389-L	TATCACCTGCGTCTGATTCG	Yes
985	CO382125(M13)-U	TGTAAAACGACGGCCAGTCCCCCTGAATTTTGCAGATA	Hadaa
986	CO382125-L	TCAGCTTCCAAGTCCCTCTC	Unclear
987	CO818147(M13)-U	TGTAAAACGACGGCCAGTAGGCAAAACTCAACCACCAC	Unclass
988	CO818147-L	TCGGAGTAATGCTTCTGGGT	Unclear
989	CO380455(M13)-U	TGTAAAACGACGGCCAGTACGAGGGTCACGGCTACTAA	No
990	CO380455-L	TGACCAATCCGAAAGAAATCA] 140

			T
991	CONSTANS(M13)-U	TGTAAAACGACGGCCAGTCCAAGAACACCGAAAAGGAA	Unclear
992	CONSTANS-L	TGATCCGCGGTCTAGTCTCT	<u></u>
1001	AP3(M13)-U	TGTAAAACGACGGCCAGTCCAAGGAAGCAAACCAAGAA	Unclear
1002	AP3-L	CCTTGGCATCACAGAGAACA	
1007	CO817671(M13)-U	TGTAAAACGACGGCCAGTGCCAAAATCACCTCTGCTTC	Unclear
1008	CO817671-L	CATTGTTGGGAGCTGTG	<u> </u>
1017	CO816733(M13)-U	TGTAAAACGACGGCCAGTTCCCAACACCTCACTTGTCC	Yes
1018	CO816733-L	ATTCAGCCAGGTCTGAGCAT	
1023	CO817443(M13)-U	TGTAAAACGACGGCCAGTTGTGTCTTCTCCGAAACTCG	Yes
1024	CO817443-L	AACTTCAAATCGTATGCGGC	
1025	CO817535(M13)-U	TGTAAAACGACGGCCAGTTTCCATGGCCTTGTTTTCTC	Yes
1026	CO817535-L	TTGACCACCTTCACCTCCTC	
1045	CO816667(M13)-U	TGTAAAACGACGGCCAGTCATACAATGTTGCCCCTCCT	Yes
1046	CO816667-L	CCAAACTGCCCTGATAGCAT	163
1047	CO816938(M13)-U	TGTAAAACGACGGCCAGTCGAGGCCTTGTCTTCTTTGT	Yes
1048	CO816938-L	GCGGAGGTAGCTGTTGTAGC	163
1053	CO818160(M13)-U	TGTAAAACGACGGCCAGTGGAAACCCCAAAGTGGAGAT	Yes
1054	CO818160-L	GACGAGGCCATCTGAAACAT	1 63
1055	Al795160(M13)-U	TGTAAAACGACGGCCAGTCCCCTATTCGACAACCAATG	No
1056	Al795160-L	AACATGATCACAAGGCCACA	NO
1059	CO378873(M13)-U	TGTAAAACGACGGCCAGTGCATTGGCACCCGCTA	No
1060	CO378873-L	GCTTCAAGCAAAATGCATCA	No
1063	CO379009(M13)-U	TGTAAAACGACGGCCAGTTGTGATTGGGAGAGAGGAGG	V
1064	CO379009-L	CTGCCCAAACTTGGTTTTA	Yes
1073	CO380936a(M13)-U	TGTAAAACGACGGCCAGTCATTCTGCTGCCTCATCTCA	No
1074	CO380936a-L	GACCTCTAACAAGCCCACCA]
1075	CO381075(M13)-U	TGTAAAACGACGGCCAGTTCTGTCATTGCTCAACCTCG	Vac
1076	CO381075-L	CTGGGAGGGAAGACAGACAA	Yes
1079	CO381605(M13)-U	TGTAAAACGACGGCCAGTCCACCCCTTTACCTTTCACA	Vas
1080	CO381605-L	CAATTCCGAAGGCACAACTT	Yes
1081	CO382036(M13)-U	TGTAAAACGACGGCCAGTTCTGATTGGGAGAGAGAGAGG	
1082	CO382036-L	GCTTCAAGCAAAATGCATCA	No
1091	CO818160a(M13)-U	TGTAAAACGACGGCCAGTGGAAACCCCAAAGTGGAGAT	
1092	CO818160a-L	GACGAGGCCATCTGAAACAT	Yes
1093	Al795160a(M13)-U	TGTAAAACGACGGCCAGTCCCCTATTCGACAACCAATG	
1094	Al795160a-L	AACATGATCACAAGGCCACA	Unclear
1097	CO378873a(M13)-U	TGTAAAACGACGGCCAGTGCATTGGCACCCGCTA	
1098	CO378873a-L	GCTTCAAGCAAAATGCATCA	Unclear
1103	CO817505(M13)-U	TGTAAAACGACGGCCAGTTCCTGAAGCAACGATGACTG	
1104	CO817505-L	CACTTGCCGCAGAAGAAAA	Yes
1105	CO817563(M13)-U	TGTAAAACGACGGCCAGTGGGTTTCCAAGAAGACTCCC	
1106	CO817563-L	GGAGTAGCGGTTGTCGTTGT	Yes
1107	CO817772(M13)-U		
	CO817772-L	TTTCTCACTGCCCTCCTCT	Yes
1108	CO818022(M13)-U	TTTCTTCACTGCCCTGCTCT	1
	ļ	TGTAAAACGACGGCCAGTACCACAAAACCTCAACGTCC	Yes
1113	CO818022-I	TTCTCCCACATCTTCTTCCT	
1113 1114 1119	CO818022-L CO378579(M13)-U	TTCTGGCACATGTTGTTGGT TGTAAAACGACGGCCAGTCCCCTATTCGACAACCAATG	

1130 CO37888 1131 CO3790 1132 CO3790 1133 CO3790 1134 CO3790 1134 CO3790 1141 CO3795 1142 CO3800 1148 CO3800 1151 CO3801 1152 CO3801 1152 CO3811 1169 CO3811 1170 CO3811 1170 CO3812 1172 CO3812 1179 CO3813 1180 CO3813 1180 CO3813 1180 CO3813 1180 CO3813 1189 CO3819 1190 CO3819 1191 CO8166 1194 CO8166 1197 CO8167 1198 CO8167 1198 CO8170 1212 CO8171 1212 CO8171 1221 CO8171 1221 CO8171 1221 CO8171 1222 CO8171 1221 CO8173 1232 CO8175 1235 CO8175 1236 CO8175	45(M13)-U 45-L 79(M13)-U 79-L 48(M13)-U 48-L 97(M13)-U 97-L 64(M13)-U 34-L 74(M13)-U 74-L 14(M13)-U 14-L 60(M13)-U 60-L 17(M13)-U	TGTAAAACGACGGCCAGTTCGAGTTCTACGCTTGCTGA TTCTCAGTCGTCACTTTCACC TGTAAAACGACGGCCAGTCACGAGGCTGATTGGTGTAG CAATCCAACCCATTTTCCAC TGTAAAACGACGGCCAGTCCACCCCTTTACCTTTCACA TGGACAACAGCAAGAGAAGG TGTAAAACGACGGCCAGTCTAGCAGCTTTGGCTTTTGG CAATCCAACCCATTTTCCAC TGTAAAACGACGGCCAGTTGTGAAGTTGTGTGGGCATT TAGCTGCTGCTGCTCTCTTG TGTAAAACGACGGCCAGTATGAAGCGCTCAAAGTCCAT CAAACACACATGAAACGGCT TGTAAAACGACGGCCAGTTGGCACACACAGCAGTTACCA GATGATGATGTCGATGCAGG TGTAAAACGACGGCCAGTCCACAAGAAAGGAGAGCGGC TCAGGAGCATGAATCAATCG TGTAAAACGACGGCCAGTTCACCACAAGAAATCCGTCTT AACATGTTGATCACGGCAAA TGTAAAACGACGGCCAGTTCAGCTTCCCCAATGACAACA ATAATCCAGGCACCCCACTT TGTAAAACGACGGCCAGTTCAGCTTCCCCAATGACAACA ATAATCCAGGCACCCCACTT TGTAAAACGACGGCCAGTTCGTGTGTGATCAGTGATGGGT GGACATGCCCTGCTGTTATT TGTAAAACGACGGCCAGTCCGACTTTTACTGAAATGGGT	Yes No Yes Yes No Unclear Unclear Unclear Unclear No
1131 CO3790 1132 CO3790 1133 CO3790 1134 CO3790 1134 CO3795 1141 CO3795 1142 CO3795 1147 CO3800 1151 CO3801 1152 CO3801 1165 CO3811 1166 CO3811 1170 CO3812 1170 CO3812 1171 CO3812 1172 CO3812 1179 CO3813 1180 CO3813 1180 CO3819 1190 CO3819 1190 CO3819 1191 CO8166 1194 CO8166 1197 CO8167 1211 CO8170 1212 CO8170 1212 CO8171 1221 CO8173 1235 CO8175 1236 CO8175	45(M13)-U 45-L 79(M13)-U 79-L 48(M13)-U 48-L 97(M13)-U 97-L 64(M13)-U 34-L 74(M13)-U 74-L 14(M13)-U 14-L 60(M13)-U 60-L 17(M13)-U	TGTAAAACGACGGCCAGTCACGAGGCTGATTGGTGTAG CAATCCAACCCATTTTCCAC TGTAAAACGACGGCCAGTCCACCCCTTTACCTTTCACA TGGACAACAGCAAGAAGG TGTAAAACGACGGCCAGTCTAGCAGCTTTGGCTTTTGG CAATCCAACCCATTTTCCAC TGTAAAACGACGGCCAGTTGTGAAGTTGTGTGGGCATT TAGCTGCTGCTGCTCTCTTG TGTAAAACGACGGCCAGTAGAAGCGCTCAAAGTCCAT CAAACACACATGAAACGGCT TGTAAAACGACGGCCAGTGGCACACACAGCAGTTACCA GATGATGATGTCGATGCAGG TGTAAAACGACGGCCAGTCCACAAGAAAGGAGACGAGC TCAGGAGCATGAATCAATCG TGTAAAACGACGGCCAGTTAGCCCTAAATTCCGTCTT AACATGTTGATCACGGCAAA TGTAAAACGACGGCCAGTTCAGCTTCCCAATGACAACA ATAATCCAGGCACCCCACTT TGTAAAACGACGGCCAGTTCAGCTTCCCAATGACAACA ATAATCCAGGCACCCCACTT TGTAAAACGACGCCCAGTTTATT	No Yes Yes No Unclear Unclear Unclear Unclear No
1132 CO3790 1133 CO3790 1134 CO3790 1134 CO3790 1141 CO3795 1142 CO3800 1147 CO3800 1151 CO3801 1152 CO3801 1165 CO3811 1166 CO3811 1170 CO3811 1170 CO3812 1172 CO3812 1179 CO3813 1180 CO3813 1180 CO3813 1180 CO3819 1190 CO3819 1191 CO8166 1194 CO8166 1197 CO8167 1212 CO8170 1212 CO8170 1212 CO8171 1221 CO8171 1221 CO8171 1222 CO8171 1221 CO8173 1232 CO8175 1235 CO8175	45-L 79(M13)-U 79-L 48(M13)-U 48-L 97(M13)-U 97-L 64(M13)-U 64-L 34(M13)-U 34-L 74(M13)-U 74-L 14(M13)-U 14-L 60(M13)-U 60-L 17(M13)-U	CAATCCAACCCATTITCCAC TGTAAAACGACGGCCAGTCCACCCCTTTACCTTCACA TGGACAACAGCAAGAAGAGG TGTAAAACGACGGCCAGTCTAGCAGCTTTGGCTTTTGG CAATCCAACCCATTTTCCAC TGTAAAACGACGGCCAGTTGTGAAGTTGTGTGGGCATT TAGCTGCTGCTGCTCTCTTG TGTAAAACGACGGCCAGTTAGAAGCGCTCAAAGTCCAT CAACACACATGAAACGGCT TGTAAAACGACGGCCAGTGGCACACACACAGCAGTTACCA GATGATGATGTCGATGCAGG TGTAAAACGACGGCCAGTCCACAAGAAAGGAGACGAGC TCAGGAGCATGAATCAATCG TGTAAAACGACGGCCAGTATGGCCCTAAATTCCGTCTT AACATGTTGATCACGGCAAA TGTAAAACGACGGCCAGTTCAGCTTCCCAATGACAACA ATAATCCAGGCACCCCACTT TGTAAAACGACGGCCAGTTCAGCTTCCCAATGACAACA ATAATCCAGGCACCCCCACTT TGTAAAACGACGCCCAGTTGGTGTGATCAGTGATGGGT GGACATGCCCTGCTGTTATT	Yes Yes No Unclear Unclear Ves Unclear Yes Unclear
1133 CO3790 1134 CO3790 1141 CO3795 1142 CO3795 1147 CO3800 1148 CO3800 1151 CO3801 1152 CO3801 1165 CO3811 1166 CO3811 1170 CO3811 1170 CO3812 1172 CO3812 1172 CO3812 1179 CO3813 1180 CO3813 1180 CO3813 1180 CO3813 1189 CO3819 1190 CO3819 1190 CO3819 1191 CO8166 1194 CO8166 1197 CO8167 1212 CO8170 1212 CO8170 1212 CO8171 1220 CO8171 1221 CO8171 1221 CO8173 1232 CO8173 1235 CO8175 1236 CO8175	79(M13)-U 79-L 48(M13)-U 48-L 97(M13)-U 97-L 64(M13)-U 64-L 34(M13)-U 34-L 74(M13)-U 74-L 14(M13)-U 14-L 60(M13)-U 60-L 17(M13)-U	TGTAAAACGACGGCCAGTCCACCCCTTTACCTTTCACA TGGACAACAGCAAGAAGG TGTAAAACGACGGCCAGTCTAGCAGCTTTGGCTTTTGG CAATCCAACCCATTTTCCAC TGTAAAACGACGGCCAGTTGTGAAGTTGTGTGGGCATT TAGCTGCTGCTGCTCTCTTG TGTAAAACGACGGCCAGTATGAAGCGCTCAAAGTCCAT CAAACACACATGAAACGGCT TGTAAAACGACGGCCAGTGGCACACACAGCAGTTACCA GATGATGATGTCGATGCAGG TGTAAAACGACGGCCAGTCCACAAGAAAGGAGACGAGC TCAGGAGCATGAATCAATCG TGTAAAACGACGGCCAGTATGGCCCTAAATTCCGTCTT AACATGTTGATCACGGCAAA TGTAAAACGACGGCCAGTTCAGCTTCCCAATGACAACA ATAATCCAGGCACCCCACTT TGTAAAACGACGGCCAGTTGGTGTGATCAGTGATGGGT GGACATGCCCTGCTGTTATT	Yes Yes No Unclear Unclear Ves Unclear Yes Unclear
1134 CO3790 1141 CO3795 1142 CO3795 1147 CO3800 1148 CO3800 1151 CO3801 1152 CO3801 1165 CO3811 1166 CO3811 1170 CO3811 1170 CO3811 1171 CO3812 1172 CO3813 1180 CO3813 1180 CO3813 1180 CO3813 1180 CO3819 1190 CO3819 1191 CO8166 1194 CO8166 1197 CO8167 1212 CO8170 1212 CO8171 1212 CO8171 1220 CO8171 1221 CO8171 1221 CO8173 1232 CO8173 1235 CO8175 1236 CO8175	79-L 48(M13)-U 48-L 97(M13)-U 97-L 64(M13)-U 64-L 34(M13)-U 34-L 74(M13)-U 74-L 14(M13)-U 14-L 60(M13)-U 60-L 17(M13)-U	TGGACAACAGCAAGAGAAGG TGTAAAACGACGGCCAGTCTAGCAGCTTTGGCTTTTGG CAATCCAACCCATTTTCCAC TGTAAAACGACGGCCAGTTGTGAAGTTGTGTGGGCATT TAGCTGCTGCTGCTCTCTTG TGTAAAACGACGGCCAGTATGAAGCGCTCAAAGTCCAT CAAACACACATGAAACGGCT TGTAAAACGACGGCCAGTGGCACACACAGCAGTTACCA GATGATGATGTCGATGCAGG TGTAAAACGACGGCCAGTCCACAAGAAAGGAGACGAGC TCAGGAGCATGAATCAATCG TGTAAAACGACGGCCAGTATGGCCCTAAATTCCGTCTT AACATGTTGATCACGGCAAA TGTAAAACGACGGCCAGTTCAGCTTCCCAATGACAACA ATAATCCAGGCACCCCACTT TGTAAAACGACGGCCAGTTGGTGTGATCAGTGATGGGT GGACATGCCCTGCTGTTATT	Yes No Unclear Unclear Unclear Unclear Yes Unclear
1141 CO3795- 1142 CO3795- 1147 CO38000 1148 CO38000 1151 CO38010 1152 CO38010 1165 CO38111 1166 CO38111 1170 CO38111 1171 CO3812 1172 CO3812 1179 CO3813 1180 CO3813 1180 CO3819 1190 CO3819 1190 CO3819 1191 CO8166 1194 CO8166 1194 CO8166 1195 CO8170 1212 CO8170 1212 CO8170 1212 CO8171 1221 CO8171 1222 CO8171 1221 CO8173 1232 CO8173 1235 CO8175 1236 CO8175	48(M13)-U 48-L 97(M13)-U 97-L 64(M13)-U 64-L 34(M13)-U 34-L 74(M13)-U 74-L 14(M13)-U 14-L 60(M13)-U 60-L 17(M13)-U	TGTAAAACGACGGCCAGTCTAGCAGCTTTGGCTTTTGG CAATCCAACCCATTTTCCAC TGTAAAACGACGGCCAGTTGTGAAGTTGTGTGGGCATT TAGCTGCTGCTGCTCTCTTG TGTAAAACGACGGCCAGTATGAAGCGCTCAAAGTCCAT CAAACACACATGAAACGGCT TGTAAAACGACGGCCAGTGGCACACACAGCAGTTACCA GATGATGATGTCGATGCAGG TGTAAAACGACGGCCAGTCCACAAGAAAGGAGACGAGC TCAGGAGCATGAATCAATCG TGTAAAACGACGGCCAGTATGGCCCTAAATTCCGTCTT AACATGTTGATCACGGCAAA TGTAAAACGACGGCCAGTTCAGCTTCCCAATGACAACA ATAATCCAGGCACCCCACTT TGTAAAACGACGGCCAGTTGGTGTGATCAGTGATGGGT GGACATGCCCTGCTGTTATT	Yes No Unclear Unclear Unclear Unclear Yes Unclear
1142 CO3795- 1147 CO38000 1148 CO38000 1151 CO38010 1152 CO38010 1165 CO38111 1166 CO38111 1169 CO38111 1170 CO3812 1172 CO3812 1172 CO3812 1179 CO3813 1180 CO3813 1180 CO3819 1190 CO3819 1190 CO3819 1191 CO81660 1194 CO81660 1197 CO81670 1212 CO8170 1212 CO8170 1212 CO8171 1220 CO8171 1221 CO8171 1221 CO8171 1221 CO8173 1232 CO8173 1235 CO8175 1236 CO8175	48-L 97(M13)-U 97-L 64(M13)-U 64-L 34(M13)-U 34-L 74(M13)-U 74-L 14(M13)-U 14-L 60(M13)-U 60-L 17(M13)-U	CAATCCAACCCATTITCCAC TGTAAAACGACGGCCAGTTGTGAAGTTGTGGGCATT TAGCTGCTGCTGCTCTCTTG TGTAAAACGACGGCCAGTATGAAGCGCTCAAAGTCCAT CAAACACACATGAAACGGCT TGTAAAACGACGGCCAGTGGCACACACACAGCAGTTACCA GATGATGATGTCGATGCAGG TGTAAAACGACGGCCAGTCCACAAGAAAGGAGACGAGC TCAGGAGCATGAATCAATCG TGTAAAACGACGGCCAGTATGGCCCTAAATTCCGTCTT AACATGTTGATCACGGCAAA TGTAAAACGACGGCCAGTTCAGCTTCCCAATGACAACA ATAATCCAGGCACCCCACTT TGTAAAACGACGGCCAGTTGGTGTGATCAGTGATGGGT GGACATGCCCTGCTGTTATT	No Unclear Unclear Unclear Yes Unclear No
1147 CO38000 1148 CO38000 1151 CO38010 1152 CO38010 1152 CO38010 1165 CO38111 1166 CO38111 1169 CO38111 1170 CO38111 1171 CO3812 1172 CO3812 1179 CO38130 1180 CO38130 1180 CO38130 1180 CO38130 1180 CO3819 1190 CO3819 1191 CO81660 1194 CO81660 1197 CO81670 1212 CO81700 1212 CO81710 1212 CO81710 1212 CO81711 1220 CO81711 1221 CO81730 1231 CO81730 1232 CO81730 1235 CO81750	97(M13)-U 97-L 64(M13)-U 64-L 34(M13)-U 34-L 74(M13)-U 74-L 14(M13)-U 14-L 60(M13)-U 60-L 17(M13)-U	TGTAAAACGACGGCCAGTTGTGAAGTTGTGTGGGCATT TAGCTGCTGCTGCTCTCTTG TGTAAAACGACGGCCAGTATGAAGCGCTCAAAGTCCAT CAAACACACATGAAACGGCT TGTAAAACGACGGCCAGTGGCACACACAGCAGTTACCA GATGATGATGTCGATGCAGG TGTAAAACGACGGCCAGTCCACAAGAAAGGAGACGAGC TCAGGAGCATGAATCAATCG TGTAAAACGACGGCCAGTATGGCCCTAAATTCCGTCTT AACATGTTGATCACGGCAAA TGTAAAACGACGGCCAGTTCAGCTTCCCAATGACAACA ATAATCCAGGCACCCCACTT TGTAAAACGACGGCCAGTTGGTGTGATCAGTGATGGGT GGACATGCCCTGCTGTTATT	No Unclear Unclear Unclear Yes Unclear No
1148 CO38000 1151 CO38010 1152 CO38010 1152 CO38010 1165 CO38111 1166 CO38111 1169 CO38111 1170 CO3812 1172 CO3812 1179 CO3813 1180 CO3813 1180 CO3819 1190 CO3819 1190 CO3819 1191 CO8166 1194 CO8166 1194 CO8167 1212 CO8170 1212 CO8170 1212 CO8170 1212 CO8171 1220 CO8171 1221 CO8171 1221 CO8171 1221 CO8171 1221 CO8171 1222 CO8171 1231 CO8173 1232 CO8175 1236 CO8175	97-L 64(M13)-U 64-L 34(M13)-U 34-L 74(M13)-U 74-L 14(M13)-U 14-L 60(M13)-U 60-L 17(M13)-U	TAGCTGCTGCTCTCTTG TGTAAAACGACGGCCAGTATGAAGCGCTCAAAGTCCAT CAAACACACATGAAACGGCT TGTAAAACGACGGCCAGTGGCACACACACAGCAGTTACCA GATGATGATGTCGATGCAGG TGTAAAACGACGGCCAGTCCACAAGAAAGGAGACGAGC TCAGGAGCATGAATCAATCG TGTAAAACGACGGCCAGTATGGCCCTAAATTCCGTCTT AACATGTTGATCACGGCAAA TGTAAAACGACGGCCAGTTCAGCTTCCCAATGACAACA ATAATCCAGGCACCCCACTT TGTAAAACGACGGCCAGTTGGTGTGATCAGTGATGGGT GGACATGCCCTGCTGTTATT	Unclear Unclear Unclear Yes Unclear
1151 CO38010 1152 CO38010 1152 CO38010 1165 CO38111 1166 CO38111 1169 CO38111 1170 CO3812 1171 CO3812 1172 CO3812 1179 CO3813 1180 CO3813 1180 CO3813 1180 CO3819 1190 CO3819 1191 CO81660 1194 CO81660 1197 CO81670 1212 CO8170 1212 CO8170 1212 CO8170 1212 CO8171 1220 CO8171 1221 CO8171 1221 CO8173 1231 CO8173 1232 CO8173 1235 CO8175	64(M13)-U 64-L 34(M13)-U 34-L 74(M13)-U 74-L 14(M13)-U 14-L 60(M13)-U 60-L 17(M13)-U	TGTAAAACGACGGCCAGTATGAAGCGCTCAAAGTCCAT CAAACACACATGAAACGGCT TGTAAAACGACGGCCAGTGGCACACACACAGCAGTTACCA GATGATGATGTCGATGCAGG TGTAAAACGACGGCCAGTCCACAAGAAAGGAGACGAGC TCAGGAGCATGAATCAATCG TGTAAAACGACGGCCAGTATGGCCCTAAATTCCGTCTT AACATGTTGATCACGGCAAA TGTAAAACGACGGCCAGTTCAGCTTCCCAATGACAACA ATAATCCAGGCACCCCACTT TGTAAAACGACGGCCAGTTGGTGTGATCAGTGATGGGT GGACATGCCCTGCTGTTATT	Unclear Unclear Unclear Yes Unclear
1152 CO38010 1165 CO38111 1166 CO38111 1169 CO38111 1170 CO38111 1171 CO3812 1172 CO3812 1172 CO3813 1180 CO3813 1180 CO3819 1190 CO3819 1190 CO3819 1191 CO81666 1194 CO81666 1197 CO81676 1211 CO8170 1212 CO8170 1212 CO8171 1220 CO8171 1221 CO8171 1221 CO8171 1222 CO8171 1231 CO8173 1232 CO8175 1236 CO8175	64-L 34(M13)-U 34-L 74(M13)-U 74-L 14(M13)-U 14-L 60(M13)-U 60-L 17(M13)-U	CAAACACACATGAAACGGCT TGTAAAACGACGGCCAGTGGCACACACAGCAGTTACCA GATGATGATGTCGATGCAGG TGTAAAACGACGGCCAGTCCACAAGAAAGGAGACGAGC TCAGGAGCATGAATCAATCG TGTAAAACGACGGCCAGTATGGCCCTAAATTCCGTCTT AACATGTTGATCACGGCAAA TGTAAAACGACGGCCAGTTCAGCTTCCCAATGACAACA ATAATCCAGGCACCCCACTT TGTAAAACGACGGCCAGTTGGTGTGATCAGTGATGGGT GGACATGCCCTGCTGTTATT	Unclear Unclear Yes Unclear No
1165 CO3811: 1166 CO3811: 1169 CO3811: 1170 CO3811: 1171 CO3812: 1172 CO3812: 1179 CO3813: 1180 CO3813: 1180 CO3819: 1190 CO3819: 1190 CO3819: 1194 CO8166: 1194 CO8166: 1197 CO8167: 1212 CO8170: 1212 CO8170: 1212 CO8171: 1220 CO8171: 1221 CO8171: 1221 CO8173: 1231 CO8173: 1232 CO8175: 1236 CO8175:	34(M13)-U 34-L 74(M13)-U 74-L 14(M13)-U 14-L 60(M13)-U 60-L 17(M13)-U	TGTAAAACGACGGCCAGTGGCACACACAGCAGTTACCA GATGATGATGTCGATGCAGG TGTAAAACGACGGCCAGTCCACAAGAAAGGAGACGAGC TCAGGAGCATGAATCAATCG TGTAAAACGACGGCCAGTATGGCCCTAAATTCCGTCTT AACATGTTGATCACGGCAAA TGTAAAACGACGGCCAGTTCAGCTTCCCAATGACAACA ATAATCCAGGCACCCCACTT TGTAAAACGACGGCCAGTTGGTGTGATCAGTGATGGGT GGACATGCCCTGCTGTTATT	Unclear Unclear Yes Unclear No
1166 CO3811: 1169 CO3811: 1170 CO3811: 1171 CO3812: 1172 CO3812: 1179 CO3813: 1180 CO3813: 1180 CO3819: 1190 CO3819: 1191 CO8166: 1194 CO8166: 1194 CO8167: 1212 CO8170: 1212 CO8170: 1212 CO8171: 1220 CO8171: 1221 CO8171: 1221 CO8171: 1222 CO8171: 1231 CO8173: 1235 CO8175: 1236 CO8175:	34-L 74(M13)-U 74-L 14(M13)-U 14-L 60(M13)-U 60-L 17(M13)-U	GATGATGATGTCGATGCAGG TGTAAAACGACGGCCAGTCCACAAGAAAGGAGACGAGC TCAGGAGCATGAATCAATCG TGTAAAACGACGGCCAGTATGGCCCTAAATTCCGTCTT AACATGTTGATCACGGCAAA TGTAAAACGACGGCCAGTTCAGCTTCCCAATGACAACA ATAATCCAGGCACCCCACTT TGTAAAACGACGGCCAGTTGGTGTGATCAGTGATGGGT GGACATGCCCTGCTGTTATT	- Unclear - Yes - Unclear - No
1169 CO3811' 1170 CO3811' 1171 CO3812' 1172 CO3812' 1179 CO3813' 1180 CO3813' 1180 CO3819' 1190 CO3819' 1191 CO8166' 1194 CO8166' 1197 CO8167' 1212 CO8170' 1212 CO8170' 1212 CO8171' 1220 CO8171' 1221 CO8171' 1221 CO8171' 1222 CO8171' 1231 CO8173' 1232 CO8175' 1236 CO8175'	74(M13)-U 74-L 14(M13)-U 14-L 60(M13)-U 60-L 17(M13)-U	TGTAAAACGACGGCCAGTCCACAAGAAAGGAGACGAGC TCAGGAGCATGAATCAATCG TGTAAAACGACGGCCAGTATGGCCCTAAATTCCGTCTT AACATGTTGATCACGGCAAA TGTAAAACGACGGCCAGTTCAGCTTCCCAATGACAACA ATAATCCAGGCACCCCACTT TGTAAAACGACGGCCAGTTGGTGTGATCAGTGATGGGT GGACATGCCCTGCTGTTATT	- Unclear - Yes - Unclear - No
1170 CO3811 1171 CO3812 1172 CO3812 1179 CO3813 1180 CO3813 1189 CO3819 1190 CO3819 1191 CO8166 1194 CO8166 1197 CO8167 1198 CO8167 1211 CO8170 1212 CO8170 1212 CO8171 1220 CO8171 1221 CO8171 1221 CO8171 1222 CO8171 1231 CO8173 1232 CO8175 1236 CO8175	74-L 14(M13)-U 14-L 60(M13)-U 60-L 17(M13)-U	TCAGGAGCATGAATCAATCG TGTAAAACGACGGCCAGTATGGCCCTAAATTCCGTCTT AACATGTTGATCACGGCAAA TGTAAAACGACGGCCAGTTCAGCTTCCCAATGACAACA ATAATCCAGGCACCCCACTT TGTAAAACGACGGCCAGTTGGTGTGATCAGTGATGGGT GGACATGCCCTGCTGTTATT	Yes - Unclear - No
1170 CO3811 1171 CO3812 1172 CO3812 1179 CO3813 1180 CO3813 1189 CO3819 1190 CO3819 1191 CO8166 1194 CO8166 1194 CO8167 1198 CO8167 1211 CO8170 1212 CO8170 1212 CO8171 1220 CO8171 1221 CO8171 1221 CO8173 1231 CO8173 1232 CO8175 1236 CO8175	14(M13)-U 14-L 60(M13)-U 60-L 17(M13)-U	TCAGGAGCATGAATCAATCG TGTAAAACGACGGCCAGTATGGCCCTAAATTCCGTCTT AACATGTTGATCACGGCAAA TGTAAAACGACGGCCAGTTCAGCTTCCCAATGACAACA ATAATCCAGGCACCCCACTT TGTAAAACGACGGCCAGTTGGTGTGATCAGTGATGGGT GGACATGCCCTGCTGTTATT	Yes - Unclear - No
1171 CO3812 1172 CO3812 1179 CO3813 1180 CO3819 1189 CO3819 1190 CO3819 1191 CO8166 1194 CO8166 1197 CO8167 1212 CO8170 1212 CO8170 1212 CO8171 1220 CO8171 1221 CO8171 1221 CO8171 1221 CO8173 1231 CO8173 1232 CO8175 1236 CO8175	14-L 60(M13)-U 60-L 17(M13)-U	TGTAAAACGACGGCCAGTATGGCCCTAAATTCCGTCTT AACATGTTGATCACGGCAAA TGTAAAACGACGGCCAGTTCAGCTTCCCAATGACAACA ATAATCCAGGCACCCCACTT TGTAAAACGACGGCCAGTTGGTGTGATCAGTGATGGGT GGACATGCCCTGCTGTTATT	- Unclear - No
1172 CO3812 1179 CO3813 1180 CO3813 1180 CO3819 1190 CO3819 1193 CO8166 1194 CO8166 1197 CO8167 1211 CO8170 1212 CO8170 1212 CO8171 1220 CO8171 1221 CO8171 1221 CO8173 1231 CO8173 1232 CO8175 1236 CO8175	14-L 60(M13)-U 60-L 17(M13)-U	AACATGTTGATCACGGCAAA TGTAAAACGACGGCCAGTTCAGCTTCCCAATGACAACA ATAATCCAGGCACCCCACTT TGTAAAACGACGGCCAGTTGGTGTGATCAGTGATGGGT GGACATGCCCTGCTGTTATT	- Unclear - No
1179 CO3813 1180 CO3813 1189 CO3819 1190 CO3819 1193 CO8166 1194 CO8166 1197 CO8167 1198 CO8167 1211 CO8170 1212 CO8170 1219 CO8171 1220 CO8171 1221 CO8171 1222 CO8171 1231 CO8173 1232 CO8175 1236 CO8175	60-L 17(M13)-U	TGTAAAACGACGGCCAGTTCAGCTTCCCAATGACAACA ATAATCCAGGCACCCCACTT TGTAAAACGACGGCCAGTTGGTGTGATCAGTGATGGGT GGACATGCCCTGCTGTTATT	- No
1180 CO3813 1189 CO3819 1190 CO3819 1190 CO3819 1193 CO8166 1194 CO8166 1197 CO8167 1198 CO8167 1211 CO8170 1212 CO8170 1219 CO8171 1220 CO8171 1221 CO8171 1221 CO8171 1231 CO8173 1232 CO8175 1236 CO8175	17(M13)-U	ATAATCCAGGCACCCCACTT TGTAAAACGACGGCCAGTTGGTGTGATCAGTGATGGGT GGACATGCCCTGCTGTTATT	- No
1189 CO3819 1190 CO3819 1193 CO81666 1194 CO81667 1198 CO81676 1211 CO8170 1212 CO8170 1219 CO8171 1220 CO8171 1221 CO8171 1221 CO8171 1222 CO8171 1231 CO8173 1232 CO8175 1236 CO8175	` `	TGTAAAACGACGGCCAGTTGGTGTGATCAGTGATGGGT GGACATGCCCTGCTGTTATT	
1190 CO3819 1193 CO81666 1194 CO81666 1197 CO81676 1198 CO81676 1211 CO81706 1212 CO81706 1219 CO81711 1220 CO81711 1221 CO81716 1222 CO81716 1231 CO8173 1232 CO8175 1236 CO8175	17-L	GGACATGCCCTGCTGTTATT	
1193 CO81666 1194 CO81666 1197 CO81676 1198 CO81676 1211 CO81706 1212 CO81716 1220 CO81716 1221 CO81716 1222 CO81716 1231 CO8173 1232 CO8175 1236 CO8175			
1194 CO81666 1197 CO81676 1198 CO81676 1211 CO81706 1212 CO81706 1219 CO8171 1220 CO8171 1221 CO81716 1231 CO8173 1232 CO8173 1235 CO8175 1236 CO8175	89(M13)-U		· V
1197 CO81670 1198 CO81670 1211 CO81700 1212 CO81700 1219 CO81710 1220 CO81710 1221 CO81710 1222 CO81710 1231 CO81730 1232 CO81750 1235 CO81750	89-L	GCCAGGAGAAAGCAGTGTTC	Yes
1198 CO81670 1211 CO8170 1212 CO8170 1219 CO8171 1220 CO8171 1221 CO8171 1222 CO8171 1231 CO8173 1232 CO8175 1235 CO8175	80(M13)-U	TGTAAAACGACGGCCAGTGAAGACTCTGGCTTTGCAGC	Na
1211 CO81703 1212 CO81703 1219 CO81713 1220 CO81713 1221 CO81713 1222 CO81713 1231 CO8173 1232 CO8173 1235 CO8175 1236 CO8175		GCGCTCGATTTCTTGTTCTT	No
1212 CO8170 1219 CO8171 1220 CO8171 1221 CO8171 1222 CO8171 1231 CO8173 1232 CO8173 1235 CO8175 1236 CO8175	54(M13)-U	TGTAAAACGACGGCCAGTGGTGGCTACCCAAAAACAGA	
1219 CO8171 1220 CO8171 1221 CO8171 1222 CO8171 1231 CO8173 1232 CO8173 1235 CO8175 1236 CO8175		CTGGAGGAGCCAAGTTTGAG	Yes
1220 CO8171 1221 CO8171 1222 CO8171 1231 CO8173 1232 CO8173 1235 CO8175 1236 CO8175	· · · · · · · · · · · · · · · · · · ·	TGTAAAACGACGGCCAGTGAGGCCTAGAATCAGTTTCGC	
1221 CO81718 1222 CO81718 1231 CO8173 1232 CO8173 1235 CO8175 1236 CO8175		GAGGATGGAGACCCAACAGA	No
1222 CO81710 1231 CO8173 1232 CO8173 1235 CO8175 1236 CO8175	84(M13)-U	TGTAAAACGACGGCCAGTCAAACCGCCATCTTCATCTT	
1231 CO8173- 1232 CO8173- 1235 CO8175- 1236 CO8175		GCCTCACTAGGCAGGAACAG	Unclear
1232 CO8173 1235 CO8175 1236 CO8175		TGTAAAACGACGGCCAGTCCGTAACATCACCGTCAATG	
1235 CO8175 1236 CO8175		CCATATCCACCACCACTTCC	Unclear
1236 CO8175	16(M13)-U	TGTAAAACGACGGCCAGTACAACCAAAGCCTCCCTCTT	
		GACTTGGTCAGCTCCGAGAC	No
	22(M13)-U	TGTAAAACGACGCCAGTTTCACCTTGCACAGTTCCTG	
1240 CO8176		TACTAGGCGTGCTATCCAGC	Yes
		TGTAAAACGACGGCCAGTTGCTTGATGATGGAAATGGA	
1242 CO8176		TGTCAGCAACAAGTATTTCGG	Yes
	58(M13)-U	TGTAAAACGACGGCCAGTCAGAATCCACCGGCTTACAT	
1260 CO8179	58(M13)-U 58-L	CGCTAGCTTTTCTGCTCGAT	Yes
	58(M13)-U 58-L 19(M13)-U		
1262 CO8180	58(M13)-U 58-L 19(M13)-U 19-L	TGTAAAACGACGGCCAGTCTGGACTAGCTCGCCAAAAC	Yes
	58(M13)-U 58-L 19(M13)-U 19-L 58(M13)-U	TGTAAAACGACGGCCAGTCTGGACTAGCTCGCCAAAAC ACGCATTCCGATACAACCTC	
1264 CO81809	58(M13)-U 58-L 19(M13)-U 19-L 58(M13)-U	ACGCATTCCGATACAACCTC	
	58(M13)-U 58-L 19(M13)-U 19-L 58(M13)-U 58-L 90(M13)-U	ACGCATTCCGATACAACCTC TGTAAAACGACGGCCAGTACTTCCCTTGGGATGGATTC	Unclear
1266 CO8181	58(M13)-U 58-L 19(M13)-U 19-L 58(M13)-U 58-L 90(M13)-U	ACGCATTCCGATACAACCTC	Unclear

1275	CO378708a(M13)-U	TGTAAAACGACGGCCAGTATTCGGCACGAGGGAGAT	Unclear
1276	CO378708a-L	AGTTCTCCATCAGCAAGCGT	
1279	CO378890a(M13)-U	TGTAAAACGACGGCCAGTCGGCAAGTCTAGAAGACGCT	No
1280	CO378890a-L	TCTCGATCAGCAAGCGTAGA	
283	CO379203(M13)-U	TGTAAAACGACGGCCAGTTCGCAAGATTCTGGACATCA	No
284	CO379203-L	TCGATCGTTTCACATCCAAA	
1295	ARSFL1-U (M13)	TGTAAAACGACGGCCAGTGCGGACCCATAGCACACTGTTGAC	Unclear
1296	ARSFL1-L	GCGCCTTCCCTTGATACAACTTAC	
297	ARSFL2-U (M13)	TGTAAAACGACGGCCAGTGCGAAGCGAAGCGGTGATG	Unclear
298	ARSFL2-L	GCGAACGTCGAGGAGCATTCTCAT	
1299	ARSFL3-U (M13)	TGTAAAACGACGGCCAGTGCGGGTGCTTAGGTTTTCACAACT	Unclear
1300	ARSFL3-L	GCGCAAGTGGTATTTAAGGGTTAG	
1301	ARSFL4-U (M13)	TGTAAAACGACGGCCAGTGCGGTCGCATTGAGTTGGAGGATA	Yes
1302	ARSFL4-L	GCGTAGCCAAACACCGATCTACC	
1307	ARSFL11-U (M13)	TGTAAAACGACGGCCAGTGCGAAGCATAACTGGCAGTATCTG	Yes
1308	ARSFL11-L	GCGGCCTAGGTGATCTTGGA	
1311	ARSFL14-U (M13)	TGTAAAACGACGGCCAGTGCGTTAAACGGAAACTTAGAGAGA	Unclear
1312	ARSFL14-L	GCGGAACGCTCAAACATC	JIIOGai
1313	ARSFL15-U (M13)	TGTAAAACGACGGCCAGTGCGGGCTGTCCACACTCCTTTCT	Unclear
1314	ARSFL15-L	GCGATGCGTAAGTCTCTTCAAATA	
1317	ARSFL17-U (M13)	TGTAAAACGACGGCCAGTGCGCATCACAATCGCCATAGAAAC	Yes
1318	ARSFL17-L	GCGAACACGCCTTCAACAACCAC	163
1321	ARSFL19-U (M13)	TGTAAAACGACGGCCAGTGCGAAACCGAAGAAGAACAAATGC	Yes
1322	ARSFL19-L	GCGGCCCAAACGGACAAGA	169
1325	ARSFL23-U (M13)	TGTAAAACGACGGCCAGTGCGGCCGCTTGAAGAGGAG	No
1326	ARSFL23-L	GCGTCCCCACTGTCAAGGTAAAGA	140
1331	ARSFL26-U (M13)	TGTAAAACGACGGCCAGTGCGTGAGGTCCCTTAAGCACTAAA	Yes
1332	ARSFL26-L	GCGCAGGGTAACGAAACCTAAAA	165
1333	ARSFL27-U (M13)	TGTAAAACGACGGCCAGTGCGAAGCCCAGACTCAATTACC	Na
1334	ARSFL27-L	GCGTACCCGCCATTGTTAC	No
1337	ARSFL29-U (M13)	TGTAAAACGACGGCCAGTGCGGGGGGATATTGGTGGTGATG	Unalana
1338	ARSFL29-L	GCGCGGGTTTTCACGTAATTTCCT	Unclear
1343	CO380277a(M13)-U	TGTAAAACGACGGCCAGTACGTCCGTAGGTCCTGTTGT	A1.
1344	CO380277a-L	TCTTTCCCAAAATGAGGACG	No
1345	CO380376(M13)-U	TGTAAAACGACGGCCAGTTGATGATGATGAGGTCCCAG	111
1346	CO380376-L	GGGTCGAATCAAACATGGTC	Unclear
1349	CO380542(M13)-U	TGTAAAACGACGGCCAGTGGAGGAAGGGTTTGAAGGAG	11
1350	CO380542-L	GTTACGGGCAAGCACAAAAT	Unclear
1351	CO380682(M13)-U	TGTAAAACGACGGCCAGTTTGCTTCAATTCTTGGACCC	
1352	CO380682-L	AGCTAGTATATCCCGGCGGT	No
1357	CO380995(M13)-U	TGTAAAACGACGGCCAGTCATGTTTCTGCCATGTCACC	
1358	CO380995-L	CCATGTTATTGCCGTTTCCT	No
1363	CO381118(M13)-U	TGTAAAACGACGGCCAGTAATCTGGTACTGGTGGGTGG	
1364	CO381118-L	GATAAAGAGGGCAAGCAAACC	No
1367	CO381341(M13)-U	TGTAAAACGACGGCCAGTACCAACCAAGGCATTCACTC	
1368	CO381341-L	TGTTGACGAGATTGGGATCA	Yes
	00001041-L	TOTTOTOONONTOO	
1369	CO381434(M13)-U	TGTAAAACGACGGCCAGTGACAACGTGAAGGCCAAGAT	

	,	· · · · · · · · · · · · · · · · · · ·	
1375	CO381732a(M13)-U	TGTAAAACGACGGCCAGTGAAGCAGCAGCAGCAGTAAA	No
1376	CO381732a-L	ACACCGAGGCAATACCAAAC	
1381	CO381823(M13)-U	TGTAAAACGACGGCCAGTGAGGGTCTGGTGGTTTTGAA	- No - Unclear - Yes
1382	CO381823-L	AACACCGAGGCAATACCAAA	
1383	CO381897(M13)-U	TGTAAAACGACGGCCAGTAGAGGCTGAGGATCATGGTG	
1384	CO381897-L	GGCAAATACAATGCTAAACCA	
1389	CO382063(M13)-U	TGTAAAACGACGGCCAGTATTGATGATGATGCCGTTGA	
1390	CO382063-L	TGGTACCGAAATGCATTGAA	
1395	CO816672(M13)-U	TGTAAAACGACGGCCAGTAACCAGAAGCAGAAGCCA	No
1396	CO816672-L	CTTCTGTGGCAACAACCTCA	
1399	CO816776(M13)-U	TGTAAAACGACGGCCAGTCCTGGTCTCCCCCATCAG	No
1400	CO816776-L	GAAGGAAGAGGAAGTTGCCA	
1401	CO816795(M13)-U	TGTAAAACGACGGCCAGTATTGAACAGCTCTGGCGAGT	Yes
1402	CO816795-L	ATGTATACTCCCGCAGGTCG	
1405	CO816809(M13)-U	TGTAAAACGACGGCCAGTCCGTCGTTTGTTTCTGGTCT	No
1406	CO816809-L	GCAGTGCATTGCAGAAGTGT	140
1411	CO816864(M13)-U	TGTAAAACGACGGCCAGTCACCCAAGGCTGAGAAGAAG	No
1412	CO816864-L	ACCTGCTTGAGGACCTTGAA	140
1413	CO816871(M13)-U	TGTAAAACGACGGCCAGTAGGTTGGTGCTGAGTCTGCT	No
1414	CO816871-L	GTCGAGATGCAACTGCAAGA	140
1419	CO816936(M13)-U	TGTAAAACGACGGCCAGTTTCTCCCGATCTTCTCCGA	Yes
1420	CO816936-L	CATCGACTGGCTTCTCCTTC	163
1425	CO816959(M13)-U	TGTAAAACGACGGCCAGTTCCACGCTCTTCTTGTTCCT	Yes
1426	CO816959-L	TCCAATGTCCTCCGTCTCTC	163
1433	CO817004(M13)-U	TGTAAAACGACGGCCAGTCGTCAGCCCTAAGAAGATGG	Yes
1434	CO817004-L	ACGACCAATACAGACCAGGG	1 63
1441	CO817063(M13)-U	TGTAAAACGACGGCCAGTGAGGTTCATCAGAGGGCGT	Yes
1442	CO817063-L	CAAGGCAGTAAAGCTCCCAG	169
1455	CO817098(M13)-U	TGTAAAACGACGGCCAGTAACACCCCAACAATCCAGCTC	Yes
1456	CO817098-L	CACCCGGTTTATCAGCCTTA	1 65
1467	CO817185(M13)-U	TGTAAAACGACGGCCAGTCGCTAGCTTTTCTGCTCGAT	l la de se
1468	CO817185-L	ACACTCCACCGGCTTACATC	Unclear
1475	CO817242(M13)-U	TGTAAAACGACGGCCAGTAATCCCCAAATCCTCAAACC	V
1476	CO817242-L	CTCCACGCTCTTCTTGTTCC	Yes
1485	CO817364(M13)-U	TGTAAAACGACGGCCAGTGCCTTCCCCTTCTTCAAATC	V
1486	CO817364-L	GTCCATTTTCCAGTGGTGCT	Yes
1499	CO817507(M13)-U	TGTAAAACGACGGCCAGTAAGCTCCAGTTGCACCAGTT	V
1500	CO817507-L	CTTCTGTGGCAACAACCTCA	Yes
1501	CO817509(M13)-U	TGTAAAACGACGGCCAGTTCACCGTCCTCCTTCTCAAC	1.4
1502	CO817509-L	CGAAGAGAAATTGAGCCAG	Unclear
1505	CO817538(M13)-U	TGTAAAACGACGGCCAGTAGGTTAGGGGCTGTGGTTCT	
1506	CO817538-L	TTTTGGACCCAAGGTGAAAC	Yes
1507	CO817548(M13)-U	TGTAAAACGACGGCCAGTAGAGGATGGTGAGGCTGCTA	
1508	CO817548-L	CAGGTCGTGAAGAGATGCAA	No
1513	CO817578(M13)-U	TGTAAAACGACGGCCAGTGCAGCTAGCTTGAAGGATGG	
	CO817578-L	GGCACTTTCAGCAACAACAA	Unclear
151A		JUSTICI ICHOOF NOT	
1514 1515	CO817610(M13)-U	TGTAAAACGACGGCCAGTCAAGCTTCACCAACGACTGA	

1517	CO817641(M13)-U	TGTAAAACGACGGCCAGTGCCCAAGGCTGAGAAGAAG	No
1518	CO817641-L	CTTGCTGGAGATCCCAATGT	140
1519	CO817706(M13)-U	TGTAAAACGACGGCCAGTCCATGGACTTCTCCAAGAGC	Unclear
1520	CO817706-L	ACCTCCATATCAGTCGGCAC	
1525	CO817908(M13)-U	TGTAAAACGACGGCCAGTAAGACCTTGACAACAAACGCT	Yes
1526	CO817908-L	AACCTTCCCAGGTCCTCTGT	
1533	CO818047(M13)-U	TGTAAAACGACGGCCAGTAGAACCAGCCGGAAAGACTC	No
1534	CO818047-L	CTTGCTGGAGATCCCAATGT	
1545	ARSFL12(M13)-U	TGTAAAACGACGGCCAGTGCGGAACCAAGCCAATAAGATG	Unclear
1546	ARSFL12-L	GCGACCACGACAGTTTCTCACTCT	
1563	CO818048(M13)-U	TGTAAAACGACGGCCAGTGGGGGAGAAGGACAAGACTC	Unclear
1564	CO818048-L	CGGAGCAGTAGCTGCCTTAG	Oncean
1567	CO818131(M13)-U	TGTAAAACGACGGCCAGTCCTTCCTCCGAAACCCTACT	Yes
	CO818131-L	GGGCTCAGGTTATACGAGCA	res
	CO380466(M13)-U	TGTAAAACGACGGCCAGTGATGGTGACGTGTTTGATCG	l landano
	CO380466-L	GCTGGAAAGCTCAAATAGGC	Unclear
	CO381023(M13)-U	TGTAAAACGACGGCCAGTTGAGGGAGAGGAGAGTGCAT	W
	CO381023-L	GGAGGAAAGTGAATTTGAAGC	Yes
	CO381173a(M13)-U	TGTAAAACGACGGCCAGTACACTCCACCGGCTTACATC	
	CO381173a-L	CGTGTGTGCATGATTGATGA	Unclear
	CO381452(M13)-U	TGTAAAACGACGGCCAGTGACCACCAGCATCGAAAAGT	
	CO381452-L	AAAGTGCACCAACTGCTGTCT	Unclear
	CO816806(M13)-U	TGTAAAACGACGGCCAGTCGAGGGAGAAACCCTAACCT	
	CO816806-L	GGACGATCCCTTGTAGTGGA	Unclear
	CO817185b(M13)-U	TGTAAAACGACGGCCAGTTCATCCACTGGGAAGAAAGG	
	CO817185b-L	CATCAATCATGCACACACA	Yes
	PSContig10410(M13)-U	TGTAAAACGACGGCCAGTCCAAGATCCTTCATTGGCTC	
	PSContig10410-L	CCGTGGGGTCTTGTTTACTC	No
	PSContig11520a(M13)-U	TGTAAAACGACGGCCAGTTCTGTCATTGCTCAACCTCG	
	PSContig11520a-L	AGCAGAAACCCAGAAAACCA	Unclear
	PSContig11520b(M13)-U	TGTAAAACGACGGCCAGTTGGTTTTCTGGGTTTCTGCT	
.000	PSContig11520b-L	ATTGCCATTTGCCAAAGAAG	Unclear
	PSContig5362a(M13)-U	TGTAAAACGACGGCCAGTTCCTTGGAATTCACCGTCTC	
··· ·•	PSContig5362a-L	CGGCGAATCGATTTACAGAT	Yes
+ + + + + + + + + + + + + + + + + + + +	PSContig5362b(M13)-U	TGTAAAACGACGGCCAGTATTCACCGTCTCTCACCACC	
17.10	PSContig5362b-L	CGGCGAATCGATTTACAGAT	Yes
	PSContig6467(M13)-U	TGTAAAACGACGCCAGTGCTTCATGGCTTCGTTCTTC	
	PSContigG467-L	GATCAGACTTTAGCGGCGAC	No
	PSContig0407-L	TGTAAAACGACGGCCAGTTCGAATATTCCCTCCTTCCC	
1000	PSContig944(M13)-0	CTTGCCGAACTTCATGTTGA	Yes
	CX661047a(M13)-U	TGTAAAACGACGCCAGTGAAAAACGAAGCTCATCTGAA	Yes
	CX661047a-L	TCCGGTTGTACTTGTCCTCC	
	CX661101(M13)-U	TGTAAAACGACGGCCAGTTGGGTTTCTGTTTGTCTCCC	Unclear
	CX661101-L	GGCCTAGTGGGTTACTGGGT	
	CX661187(M13)-U	TGTAAAACGACGGCCAGTTCCACAAGCCATCTCTCCTC	Unclear
	CX661187-L	TTGGAGAGATCGTAGGCGTT	
1969	CX661225(M13)-U	TGTAAAACGACGGCCAGTGCTCTCCTCCTCCGTCTCTT	Yes
1970	CX661225-L	GTTTAGCTTCTCCGCTGACG	

4074	CV661220/M12\	TOTALANCOACCOCCACTOTTCACCCTTTCCCCTCTTT	
1971	CX661229(M13)-U CX661229-L	GACTGTGTTTGGGCTGGAGT	Unclear
1972			-
1981	CX661264(M13)-U	TGTAAAACGACGACCAGTGCTCTCAGATCCCTCTACCG	Unclear
1982	CX661264-L	AATTTGCAGCCATCAAGTCC	Yes Yes
1983	CX661264a(M13)-U	TGTAAAACGACGGCCAGTTTCCAGATCTTACCGAACCG	
1984	CX661264a-L	AAAGCGTAGAGCAGCTGAGG	
1987	CX661272(M13)-U	TGTAAAACGACGGCCAGTAATATTCTGATTCGCTCCGC	
1988	CX661272-L	TCTTGATGGGAGCTTCGAGT	
1995	CX661292(M13)-U	TGTAAAACGACGGCCAGTCCCAAATCTCAGAGAACCCA	Yes
1996	CX661292-L	GTTGGCTGAGATGGTGGAGT	
1999	CX661315(M13)-U	TGTAAAACGACGGCCAGTGCCTCGAGAAGCCTCCTATT	Yes
2000	CX661315-L	GAAGCTTCTTCAGCACCACC	
2007	CX661360(M13)-U	TGTAAAACGACGGCCAGTACCTCTCTCCCATTTCCCG	Unclear
2008	CX661360-L	AAACCTCCCAAAACCCCTAA	
2023	CX661393(M13)-U	TGTAAAACGACGGCCAGTTACCACCAGTACCAGCAGCA	Unclear
2024	CX661393-L	AGTGATGCAAATCTCCGACC	ļ
2039	CX661428a(M13)-U	TGTAAAACGACGGCCAGTCAAAGGGTTCATGACGGACT	Unclear
2040	CX661428a-L	CATGCTGTTCTGCAACTCGT	
2041	CX661428b(M13)-U	TGTAAAACGACGGCCAGTGAAGACGGTGGATGAGGTGT	Unclear
2042	CX661428b-L	CTGCTGAAACCCGAATCCTA	
2043	CX661432(M13)-U	TGTAAAACGACGGCCAGTACCCGGTTCGGTTTTATTTC	Unclear
2044	CX661432-L	AACCCAAATCAGAATCGCTG	
2055	CX661446(M13)-U	TGTAAAACGACGGCCAGTTCCGTCAAGTTCAGTGCATC	Unclear
2056	CX661446-L	GGCAGCCTAATTGAACCAAA	0.10.00.
2059	CX661465(M13)-U	TGTAAAACGACGGCCAGTTGATGCACCTCTCTGTCCAC	No
2060	CX661465-L	TGAAATTGAAATTGAGGGGG	
2073	CX661492(M13)-U	TGTAAAACGACGGCCAGTCCCCATAAAACATCACACATT	Unclear
2074	CX661492-L	CCTCTTGCTTCTTGGAATGC	Official
2089	CX661544(M13)-U	TGTAAAACGACGGCCAGTGCTCCTCACAAAAGGAGTCG	No
2090	CX661544-L	GTGGCGTAAATCCTCATCGT	140
2097	CX661573(M13)-U	TGTAAAACGACGGCCAGTAGGCTCACATGCTCACACTG	Yes
2098	CX661573-L	GAATTCGGAGAAGAAAGGGC	165
2105	CX661591(M13)-U	TGTAAAACGACGGCCAGTCTCTCTCAAAGATGCCTCGAA	V
2106	CX661591-L	TTGAACAGCGAGAAGTGGTG	Yes
2109	CX661601(M13)-U	TGTAAAACGACGGCCAGTCCGCATCAATCCAAATCTCT	A
2110	CX661601-L	ATGAATCTGAGGCTCGCTGT	No
2111	CX661603(M13)-U	TGTAAAACGACGGCCAGTATCAACCACACCGCTACTCC	
2112	CX661603-L	ATTTACGAAAATGCCATCGG	Yes
2119	CX661626(M13)-U	TGTAAAACGACGGCCAGTCCCTCTCTACACACACAGCG	1
2120	CX661626-L	AACGAGGTGGAATCTTG	Unclear
2123	CX661626b(M13)-U	TGTAAAACGACGGCCAGTACAGAGCTGCGTAACCGACT	
2123 2124	CX661626b-L	AACGAGGTGGAATCTTG	Unclear
2163	CX661736(M13)-U	TGTAAAACGACGGCCAGTTAGCTCTACACAGGTCCGCA	
2164	CX661736(M13)-0	TTGGGTTTTCTAGTGGGACG	Unclear
2169	CX661746(M13)-U	TGTAAACGACTTCTCCTTC	Unclear
2170	CX661746-L	TTCAACCGGTTTCTCCTTTG TGTAAAACGACGGCCAGTACCTGACCTG	
2173	CX661752(M13)-U		

2177	CX661761(M13)-U	TGTAAAACGACGGCCAGTTTAGCCACCTTCTCCACCAC	Unclear
2178	CX661761-L	TTGGGTTGGAATTTGGAGAG	
2179	CX661761a(M13)-U	TGTAAAACGACGGCCAGTCCACCACGAAGCTCTCTCTC	Yes
2180	CX661761a-L	GGGACTCTCTGAAATGCCAA	163
2191	CX661786(M13)-U	TGTAAAACGACGGCCAGTACCCTCCCCACTCTCACT	Yes
2192	CX661786-L	ACTCGAATCTCGTCGTC	163
2195	CX661792(M13)-U	TGTAAAACGACGGCCAGTAATGCCACTCCGAAACTCAC	Yes
2196	CX661792-L	GGACTCCTTGACTCTGTCGC	
2201	CX661803(M13)-U	TGTAAAACGACGGCCAGTTCGAAAACCCAGCTCAATTC	Unclear
2202	CX661803-L	AGCATGTTGCTGTACATGGC	- Unclear
2233	CX661874(M13)-U	TGTAAAACGACGGCCAGTAGAGCCATGGCAATCTCAAC	Yes
2234	CX661874-L	GTGGAGGGTTAAGGAAGGA	
2235	CX661889(M13)-U	TGTAAAACGACGGCCAGTGGAAGCTTGGAAATCATGGA	No
2236	CX661889-L	CTCTGCGAGAAACCACACAA] 100

References

- Barritt, B.H. and C.H. Shanks Jr. 1980. Breeding Strawberries for Resistance to the Aphids *Chaetosiphon fragaefolii* and *C. thomasi*. HortScience 15(3):287-288.
- Bradford, E., J.F. Hancock and R.M. Warner. (submitted) Temperature Tolerance, Not Photoperiod Insensitivity, is the Primary Factor Controlling Repeat Flowering (Remontancy) in Strawberry. Journal of Experimental Botany.
- Bringhurst, R.S., J.F. Hancock and V. Voth. 1977. The Beach Strawberry, an Important Natural Resource. California Agriculture. Sept. pp 10.
- Bringhurst, R.S. and V. Voth. 1978. Origin and evolutionary potentiality of the dayneutral trait in octoploid *Fragaria*. Genetics 90:510.
- Bringhurst, R.S. and V. Voth. 1984. Breeding Octoploid Strawberries. Iowa State Journal of Research. 58:371-381.
- Cameron J.S. and C.A. Hartley. 1990. Gas Exchange Characteristics of *Fragaria chiloensis* Genotypes. HortScience 25(3):327-329.
- Dale, A. and T.M. Sjulin. 1990. Few Cytoplasms Contribute to North American Strawberry Cultivars. HortScience 25(11):1341-1342.
- Dale, A., H.A. Daubeny, M. Luffman and J.A. Sullivan. 1993. Development of *Fragaria* Germplasm in Canada. Acta Hort. 348:75-80.
- Daubeny, H.A. 1990. Strawberry breeding in Canada. HortScience 25:893-894.
- Galletta, G.J., A.D. Draper and J.L. Maas. 1989. Combining Disease Resistance, Plant Adaptation and Fruit Quality in Breeding Short day and Day-Neutral Strawberries. Acta Hort. 285:43-51.
- Hancock, J., A. Dale, and J. Luby. 1993. Should we reconstruct the strawberry? Acta Hort. 348: 86-91.
- Hancock, J.F. 1999. Strawberries. CABI Publishing, Wallingford, U.K.
- Hancock, J.F., P.W. Callow, A. Dale, J.J. Luby, C.E. Finn, S.C. Hokanson, and K.E. Hummer. 2001a. From the Andes to the Rockies: native Strawberry Collection and Utilization. HortScience 36(2):221-225.
- Hancock, J.F., C.E. Finn, S.C. Hokanson, J.J. Luby, B.L. Goulart, K. Demchak, P.W. Callow, S. Serçe, A.M.C. Schilder, and K.E. Hummer. 2001b. A Multistate

- Comparison of Native Octoploid Strawberries from North and South America. J. Amer. Soc. Hort. Sci. 126(5):579-586.
- Hancock, J.F., J.J. Luby, A. Dale, P.W. Callow, S. Serçe, and A. El-Shiek. 2002. Utilizing wild *Fragaria virginiana* in strawberry cultivar development: Inheritance of photoperiod sensitivity, fruit size, gender, female fertility and disease resistance. Euphytica 126:177-184.
- Hancock, J.F., T.M. Sjulin and G.A. Lobos. 2008. Strawberries. p.393-437. In: J.F. Hancock (ed.). Temperate Fruit Crop Breeding. Springer Science+Business Media B.V.
- Hancock, J.F., C.E. Finn, J.J. Luby, A. Dale, P.W. Callow and S. Serçe. (in prep)
 Reconstruction of the Strawberry, *Fragaria x ananassa*, Using Native Genotypes of *F. virginiana* and *F. chiloensis*: I. The First Round of Interspecific Crosses.
- Luby, J.J., J.F. Hancock and J.C. Cameron. 1991. Expansion of the Strawberry Germplasm Base in North America, p. 66-75. In: A. Dale and J. Luby (eds.). The Strawberry into the 21st Century. Timber Press, Portland, Ore.
- Luby, J.J. and M.M. Stahler. 1993. Collection and Evaluation of *Fragaria virginiana* in North America. Acta Hort. 345:49-53.
- Niemirowicz-Szczytt, K. 1989. Preliminary Studies on Inbreeding in Strawberry *Fragaria* x *ananassa* Duch.. Acta Horticulturae 265:97-104
- Scott, D.H. 1959. Size, Firmness and Time of Ripening of Fruit of Seedlings of *Fragaria virginiana* Duch. Crossed with cultivated strawberry varieties. Proc. Amer. Soc. Hort. Sci. 74:388-393.
- Scott, D.H., A.D. Draper and L.W. Greeley. 1972. Interspecific Hybridization in Octoploid Strawberries. HortScience 7(4):382-384.
- Scott, D.H. and F.J. Lawrence. 1975. Strawberries. Pp 71-97, in: Janick, J. and J.N. Moore, (eds.), Advances in Fruit Breeding. Purdue University Press, West Lafayette, IN.
- Shaw, D.V. 1988. Genotypic Variation and Genotypic Correlations for Sugars and Organic Acids of Strawberries. J. Amer. Soc. Hort. Sci. 113(5):770-774.
- Shaw, D.V. 1991. Recent Advances in the Genetics of Strawberry. Pp 76-83. In: A. Dale and J. Luby (eds.). The Strawberry into the 21st Century. Timber Press, Portland, Ore.
- Sjulin, T.M., and A. Dale. 1987. Genetic Diversity of North American Strawberry Cultivars. J. Amer. Soc. Hort. Sci. 112(2):375-385.

