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ABSTRACT

NONLOCAL DIELECTRIC MODEL FOR INTERMOLECULAR INTERACTIONS
AT SECOND AND HIGHER-ORDERS

By
Anirban Mandal
The nonlocal dielectric function of a molecule determines the effective potential at a
certain point due to an applied external potential at a different point, within the molecule.
The effective potential at point ris determined by the nonlocal dielectric function

gy(r,r;o) within linear response and by the nonlocal dielectric function

£q (r,r,r";0,0') within nonlinear response to the lowest order. The nonlocal dielectric
functions &y (r,r’;») and £q (r,r,r";0,0') depend on the charge-density susceptibilities
x(r,r’;®) and Xq (r,r,r";0,0") of the molecule, respectively. This work shows that for a

group of interacting molecules with weak or negligible charge overlap, the nonlocal
dielectric model gives the interaction energies and forces at second and higher-orders, in
agreement with the results from quantum mechanical perturbation theory. The dielectric
model accounts for screening due to electronic charge redistribution in the interacting
molecules; it accounts for polarization and fluctuations in the charge densities that act as
sources of the external potentials. The model applies within the Born-Oppenheimer
approximation.

At second order, both two-body pairwise additive and three-body non-additive
induction energies appear. We prove that the two-body induction energy is determined
from changes in the static Coulomb interactions within each molecule, caused by a

neighboring molecule that acts as the dielectric medium, whereas the three-body



induction energy is determined by the changes in the static Coulomb interactions between
two molecules, due to the presence of a third molecules which acts as the dielectric
medium. Dispersion energy is pairwise additive at second order and results from changes
in the intramolecular exchange-correlation energy caused by the dielectric screening due
to a neighboring molecule. The interaction energies at second order include linear
screening only, while the induction and dispersion forces on nuclei result from both linear
and nonlinear screenings. We show that induction forces result from nonlinear screening
of the potential due to permanent charge distribution of the neighboring molecule and
linear screening of the potential due to induced polarization of the neighbor, while
dispersion forces result from nonlinear screening of the fluctuating charge distribution of
the neighboring molecule and linear screening of the dynamic reaction field from the
neighbor. The linear screening present in the dispersion force is described by transition
susceptibility of the molecule. Moreover, the dispersion force includes effects which
don’t have a dielectric interpretation.

At third and fourth order of molecular interactions, the induction and the
induction-dispersion energies show both linear and nonlinear screening, while the
dispersion energy includes linear screening only. Depending on the nature of interaction,
the induction energy can be classified into different categories, each category showing a
different screening effect. Screening in the dispersion energy can be described either by
the dielectric function of a single molecule, or by the dielectric functions of two or three

molecules.
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Chapter 1: Introduction

. . . . .
A nonlocal dielectric function, & (r,r’;0) characterizes the screening of an

applied scalar potential @y (r';®), due to electronic charge redistribution within a
molecule. Within linear response, the effective potential @efr(r;w) at a point r within a

molecule is related to an applied potential @y (r’;®) of frequency o by

Qeff = £0 [dr'ey) (1,1;0) pex (), (1.1)
where g is the permittivity of vacuum. Thus, &y (r,r’;0) is defined as the function

which acts as the integral kernel to determine the effective potential at point r, within

linear response, when an external potential e (r’;®) acts at point r’. The dielectric
function & (r,r’;) depends both on the response point r and on the point r’ at which

the external potential acts. In this work we show that a generalized dielectric model of
potential screening holds for two-body interactions (treated here through second order)
and for three- and four-body interactions (treated here through fourth order) of quantum
perturbation theory. For two or more interacting molecules, the source of the external
potential can be either the permanent charge distributions or the charge-density
fluctuations within the molecules. We prove that the interaction energies and the
interaction-induced forces on the nuclei of the molecules are accurately described within
the nonlocal dielectric model, where the interacting molecules behave as the dielectric
medium. In treating intermolecular interactions, we assume that the overlap between the
electronic charge clouds of the interacting molecules is weak or negligible. Once the

interaction energies are known, the interaction-induced forces on a particular nucleus are



obtained as the negative gradient of the interaction energy with respect to the coordinate
of the nucleus. Throughout the derivations, we work within the Born-Oppenheimer
approximation.

The nonlocal dielectric function €, (r,r’;») is related to the nonlocal charge-
density susceptibility2 x(r,r’;0) of the molecule. Using quantum perturbation theory,

Jenkins and Hunt' have proved that the nonlocal dielectric function and the nonlocal
charge-density susceptibility are related by
r-r’

g0y (1. r;0) = 3(r—r)+(47e0) | [drjr—r "1 0), (1.2)

within the Born-Oppenheimer approximation. The nonlocal charge-density susceptibility

in Eq. (1.2) is given by2

x(r,r;0) = ~[ (0| p(r) G(w) p(r")

0)+ (0

pr)G(-w)p(r) |0) 1. (1.3)

In Eq. (1.3),

0) denotes the ground state of the isolated molecule, p(r) is the charge-

density operator, G(w) is the resolvent operator,

G) = (1 - pg)(Ho-Eg-hw) 1 (1-p0), (1.4)

0 denotes the ground-state projection operator |0)(0|, Ho is the unperturbed
Hamiltonian of the molecule, and Eg is the unperturbed ground-state energy. For a
molecule with fixed nuclear positions, x(r,r’;») determines the change in the electronic

charge density Ap(r,®) within linear response to a frequency-dependent external

potential @ey (r,0), via

Ap(r,w) = Idr' x(r,r'’;m) @ex (r',0). (1.5)



The effective potential @eff (r;®) within the molecule is given by

Pefr (r,®) = Qex (T, co)+(4m:0)—1 ‘[dr'|r—r’|'_1 Ap(r',m), (1.6)
without restriction to linear response in calculating Ap(r,®). Thus, @eff(r,®) has a
source term containing the sum of the external charge density pey (r',®)that generates
@ex (r';0) and the change in the molecular charge density Ap(r,) induced by
Pex (r',0). Hence @efr(r,w) satisfies the Poisson equation by

V2 pefr (,®) = —[ pex (F, )+ Ap(r, )] / €. (1.7)
The linear response theory suffices to describe the intermolecular interactions at first

order. At second and higher orders, we must include nonlinear response of the molecule

to the applied potentials. Including the lowest-order nonlinear response to @ex (r',®), we

obtain
Ap(r,0) = Idr’ x(r,r';0) pex (r', ) + (1/2) fw do Idr’ dr"{(r,r',r";0-0',0")

XQPex (r,0—0") ey (r",0), (1.8)
where the quadratic charge-density susceptibility {(r,r’,r";0-o',0') satisfies the

relation

{r,r',r;0,0) = S',r"; o, m’)[<0 p(r) G(og) 0 (r") G(w) p(r")

+<o
+<0

o
Y

0>]. (1.9)

P G* (-0 p2(r) G* (~0g) p(r)

pr")G* (-0 p0(r) G(w) p(r)




The operator S(r',r";0,®') denotes the sum of the terms obtained by permuting the
charge-density operators p(r’) and p(r") together with their associated frequencies ®

and @' in the expression that follows S. In Eq. (1.9) and below, 05 = 0+ ®', and the

operator ﬁo(r) is defined by ﬁo(r) = f)o r)-(0

p(r)|0). We do not assume that

damping is negligible in general (particularly near resonance), but in cases where
damping is negligible, {(r,r’,r";0,0") is symmetric under permutation of all of the
variable pairs: (r,-05), (r',0), and (r’,0"). The method used by Orr and Ward® to
derive multipole polarizabilities yields Eq. (1.9), when applied to charge-density
operators: cf. Eq. (43b) of ref. 3. Eq. (1.9) is also consistent with the results for multipole
hyperpolarizabilities derived by Bishop, in Eq. (41) of ref. (4). From Eq. (1.8), a
quadratic dielectric function can be defined by

£0 sal(r,r’,r";m,m’) = (41t.¢;0)"1 Idr"’ |r—r"’|_1 (", r',r",o,o"). (1.10)

Thus, within nonlinear response to the lowest order, the effective potential within a

molecule is obtained as
Peff (r,0) = £Q fdr' eCI(r, r’;0) @ex (r', )
+(1/2)g Eo do’ jdr' dr’ azll (r,r,r';o-o,o')

XQex (0 —0)@ex (r",o). (1.11)
Within a nonlocal dielectric framework, Eq. (1.11) gives a complete description of the
interaction energies and the interaction-induced forces at first and second orders, and the

interaction energies at third and fourth orders, for three- and four-body systems.



Nonlocal response theory has been applied earlier to study the properties of polar

ﬂuids,5 to find expressions for the equilibrium dielectric constants of fluids consisting of
molecules possessing arbitrary polarizability densities,6 to perform calculations for
solvation of an ion in a cavity,7 to determine the inverse dielectric function of quantum
wells in terms of the random phase approximation,8 and to study the properties of small

conducting particles and thin films in an oscillating longitudinal electric field.” For

10-13

systems with full translational invariance the dielectric function depends only on the

distance between the response point and the point where the perturbation acts (r-r'),

while for molecules, the intramolecular dielectric functions depend both on r and r' due

to inhomogeneity within the molecules. Previously, systems with full translational

10-13 14,15

invariance or spatial periodicity have been described in terms of dielectric

theories, where the dielectric function depends on a single spatial variable.
Dielectric functions depending on a single spatial variable can be described either

by &(r—r') or by its spatial Fourier transform &(k). Dielectric models using the

function e(k,0) have been used to describe quantum many-body problems,|6 to

. . .. . . 17
characterize the behavior of quantum dots or quantum wires in microcavities, metal

clusters and colloidal aggregates,18 quantum dot crystals,19 localization of hydrated

20,21

electrons, hydration forces,22 dipole-dipole interactions near surfaces,23 and normal

mode coupling in semiconductor microcavities.”* Zaremba and Sturn® have calculated

e(k,o) of alkali metals at the level of the random phase approximation, using the soft x-

ray absorption spectra. A cluster expansion method has been used by Felderhof and



Cohen® to obtain the wave-vector-dependent effective dielectric tensor of a suspension

of spherical inclusions. They showed that in the cluster expansion, the terms
corresponding to the “overlapping” regions of the spherical inclusions lead to the

Clausius-Mossotti formula. Dielectric functions of the form g(k,®») have also been used

in linear response within the density functional theory.27 In liquids, the dielectric
. .. 2829 . . 30-37 . . .

friction and solvation dynamics depend on the dielectric function e(k,®), and

that affects the fluorescence spectra and rates of charge-transfer reactions’> " in liquids.

Dielectric functions of the form e(k,w®) have been used to study electron transfer,“‘“

4648 and polarization

charge-density fluctuations in translationally invariant systems,
e e .o 49

fluctuations in liquids.
Extension of the dielectric model to the intramolecular domain was suggested in

several early works. Theimer and Paul’® introduced the polarizability density of atoms in

the context of light scattering by monatomic gases. Quantum mechanical calculations of

that function were done for the hydrogen atom. Polarizability density was introduced by
Frisch and McKenna®' as a correction to the local polarization in the study of light
scattering by fluids. Oxtoby and Gelbart™? calculated the pair polarizability anisotropy of

interacting noble gas atoms using the polarizability density instead of point dipoles.

Application of a nonlocal dielectric model instead of a classical continuum dielectric
model to atomic interiors was suggested by Orttung and co-workers.” Dielectric effects
were used by Levine and Soven’* to calculate the optical polarizabilities and the

photoemission cross sections of nitrogen and acetylene using a time-dependent local-



55-58

density theory. In a few later works, single-point response functions have been used

where one of the two spatial variables r and r' is being integrated. Response functions

that depend both on r and r’ have been used in the study of light scattering by fluids.® ¢

5962 The Nonlocal dielectric model has been applied for theoretical calculations of

surface enhanced Raman scattering (SERS) from metallic nanoshells.® It has been found

that the nonlocal optical effects can be significant for molecules very close to the shells
and for shells of very small dimensions.
Dielectric models have a wide range of applications in the study of

conformational energetics and noncovalent bonding in proteins and biomolecules.** "

For proteins, no universal dielectric constant (or constants) exists because of the
inhomogeneities within the protein interiors. Typically, the dielectric function is
approximated as a constant or as a simple function of distance between a perturbing
charge and a response point. Early calculations on proteins77'79 in solutions used an
effective dielectric constant that represents the overall effect of the medium, i.e. water +

protein. However, it was shown®® that this model leads to erroneous results for the
interaction of an ion pair inside the protein.69 The dielectric constant of a protein depends

on the particular property used in its definition.% For a powder sample of protein, € can
pe po

be found by applying a weak electric field and using the Clausius-Mossotti equation. This

method has been applied in many physical measurements and the € has been found to be

81,82

quite low (about 2). At a microscopic level, € of a protein can be determined from

69,83,84

Coulomb’s law or from The Born formula of self energy.85 Simonson and co-

86 . . . . . N .
workers™ have investigated the microscopic mechanism of charge screening in proteins.



By introducing a fixed, perturbing point charge, they have calculated the Frohlich-
Kirkwood dielectric constants and the generalized susceptibilities of deca-alanine and

cytochrome c. Values of € depend on the particular kind of interaction inside the protein

and can range from € = 2,69 through 4< ¢ < 8 for dipole-charge interactions,m uptoe>20
. . 7175 87.88
for charge-charge interactions. Attempts have been made to calculate € at the

different sites of protein. However, the solvent reaction field effect was not considered in

any of those attempts. As a result, they all underestimate the value of €. The need for site-

86.89-93

dependent values of ¢ has also been noted in other works. More recently, Song has

used the effective polarizabilities of the individual amino acid residues to develop an

approximate site-dependent dielectric function for proteins.94 Spatial variation of the
dielectric function may influence electron or proton transfer, ligand binding,95 molecular

recognition,96 ion transport through channels,97 and conformational dynamics of

biomolecules.

The present work derives a dielectric screening model to treat the two- and three-
body intermolecular interaction energies at second order, three- and four-body interaction
energies at third and fourth orders, and the interaction-induced forces on nuclei at second
order. The screening is nonlocal, since it depends bothon rand r’.

For a pair of interacting molecules, the interaction energy at different orders of

perturbation theory can be obtained by solving the electronic Schrédinger equation

A

[ﬁg‘ +ﬁ0B +VAB 1lwvAB) = EAB|VAB), Where HOA is the unperturbed Hamiltonian of

molecule A, VAB s the interaction Hamiltonian, Ep is the energy of the A-B pair and

]\v AB> is the wavefunction of the interacting system. This particular separation of the



98-100

Hamiltonian is known as the polarization approximation. At first order, the

100,101

interaction energy for a pair of molecules is purely electrostatic and depends on the

permanent charge densities (and hence on the permanent moments) of the molecules. A

perturbation analysis for the first-order interaction energy AED of a pair of molecules A

and B with fixed nuclei and negligible charge overlap yields

AEM = (47(80)—1 jdrdr’pOA(r)pg(r’) 1, (1.12)

where pA (r) and pB(r') are the permanent charge distributions in molecule A and B
0 0

102.103

respectively. Following Longuet-Higgins, the charge-density operator f)A (r) for

molecule A can be defined as

pA@) = Yesr-r)+ Yzl s-R), (1.13)
j I

- where the sum over j is for all the electrons assigned to molecule A, with position

operators rj, and the sum over [ is for all the nuclei in A with charges Z' and positions R.

For a pair of molecules with fixed nuclear configurations and negligible charge overlap,

the first-order interaction energy can be expressed using a multipole expansionm4 in

terms of the charge q, permanent dipole py, permanent quadrupole ®g, and higher

moments of each molecule

(1_ A B A 5B

B A_ B <A _ A



(p(l)3 is the potential at the origin R? of molecule A due to the permanent, unperturbed

charge distribution in molecule B. S(I)Ba and S&Bm are the field and the field gradients at

R* respectively, due to the unperturbed charge distribution in B. The Einstein summation

convention over repeated Greek indices has been used in Eq. (1.14). Since the interaction
at first order depends on the unperturbed charge distributions (and hence on the
permanent moments) of the molecules, no screening effect is apparent in the first-order
interaction energy. The first-order force on a particular nucleus I in molecule A can be

obtained from Eq. (1.12) using an energy-based approach, employing the relation
FI(D - _vlAg(D), (1.15)

where V! denotes differentiation with respect to the coordinate of nucleus I, R.

Electrostatic forces on nuclei can also be derived using the Hellmann-Feynman

105,106

theorem and Sternheimer-type shielding tensors.'®” The forces on a nucleus in an

atom in presence of an external field have been related to the dipole shielding factors by
Epstein108 and Sambe,109 where the dipole shielding factor y has been defined asy=1 -
o, with o the fraction of the external field actually felt by the nucleus. For diatomic or
polyatomic molecules, the dipole shielding factor is a second-rank tensor represented by

YaB> and relates the effective field at the nucleus to the external field by”0

3(11 = (8qp —Yop)3p - Calculations on the dipole shielding factors have been done by

111-123

several groups. Yop Was related to a molecular property in the works of Lazzeretti

10



124,125 109
Sambe,

and Zanasi, and Epstein.I08 It was shown that yqg is related to the

derivative of the molecular dipole moment with respect to the nuclear coordinate by
I I
Z" (3qB - B) auB/aRa. (1.16)

Fowler and Buckingham'26 extended the shielding factor to include non-uniform applied

fields and non-linear terms. In terms of their formulation, the net electric field on nucleus

I in molecule A in presence of an external field is

35 = 3O+ (5gp —'y(IIB)SE +(1/2)) ugy S5 35+
+(1/3)[(3/2)(Rl13 -Ré")say +(3/2)(RY ~R{) 803 -RE ~RE) 8y

e
aBy ]SBY +(1/ 3)€a[378 SB 375 (1.17)

where we have kept only the terms which depend linearly and quadratically on the fields

and the field gradients. 3€is the external field with gradient 3'®, applied at R*. foﬁ is

the Sternheimer shielding tensor, vtllBY is the field-gradient shielding tensor, and (p by’

531[378 are the nonlinear shielding tensors. S&O)I is the field that acts on nucleus I in

absence of any external perturbation. Using an analogy with the expansion of the induced
dipole moment in powers the external fields and field gradients and the Hellmann-
Feynman theorem, they connected the higher-order nuclear shielding tensors to the
derivatives of molecular multipole moments and polarizabilities with respect to the

nuclear coordinates:

I I
z ¢;ﬁy = dupy /0RY, (1.18a)

11



7! [(3/2)Rl13 Say +(3/2)R} 845 ~RY gy +v‘llﬁy] - a@gY /aRL, (1.18b)

I
zlel s o = ompys /R, (1.18¢)

I

afy
a is the dipole polarizability and A is the dipole-quadrupole polarizability. However,
neither in their work nor in the work by Lazzeretti and Zanasi were the derivatives of the

molecular moments and the polarizabilities expressed in terms of molecular response

tensors. Derivatives of the molecular dipole moment and polarizability density with
respect to the nuclear coordinate were evaluated by Hunt,l27 and later generalized by

Hunt, Liang, Nimalakirthi, and Harris.'”® It was proved'”’ that the Sternheimer shielding

tensor is related to the nonlocal polarizability density a(r,r’) 127.128.60-62.6,129.130 by

y(IIB = -~ [drdr' Tyy RN ayp(r.r). (1.19)
Within the framework of the nonlocal polarizability density a(r,r’;0), the first-order

forces on nuclei were derived by Hunt and Liang.l3l Specifically they showed that

although the first-order interaction energy depends only on the permanent charge
distributions in the molecules, the first-order force on nucleus I in molecule A depends on
the electronic polarization induced in A by B:

-1

I . B, , ,
AR D = 7! [ar pB(r)RE ~ry) R -

+7! jdrTaB(RI,r)AP[;m)(r). (1.20)
APBA (1)(r) is the first-order polarization in A induced by the field from B and

Tap (RI,r) is the dipole propagator. APéA‘(l)(r) depends on the nonlocal polarizability

12



density of A. The results in their work were obtained using an equation derived by Hunt
which shows that the infinitesimal motion of a nucleus within a molecule changes the
Coulomb field, and the response of the electronic charge density to that change in the
field is determined by the same nonlocal polarizability density that determines the

induced polarization of a molecule in presence of a static external field. In a later work,

132

Liang and Hunt ™ showed that both the energy-based theory using Eq. (1.15) and the

electrostatic-force theory based on Hellmann-Feynman theorem and the shielding tensors
yield identical result for the first-order forces on the nuclei. In that work, they explicitly
connected the shielding tensors and the nonlocal polarizability densities. The first order

forces on nucleus I due to interaction with B were showed to be

A0 - 7 54 ~748) 305 +(1/ DB/ DR ~RE)8qy

+(3/D(RY -RM)8gp — (R ~RE) gy ”fIva ]38[337 +o, (121

where SOBB is the static external field at R” due to the permanent charge distribution in
B, and

V(IIB'Y = Idrdr'Taa(RI,r)%e(r’r')[(z’/2)(rﬂ —R[‘?)Sys

+(3/2)(ty ~R%")3pe — (1 —RE)3py 1. (1.22)

Thus the force obtained using the shielding-tensor approach was related to the force
derived using the nonlocal polarizability density. However, the polarizability-based
approach was not connected to a dielectric framework.

The intramolecular nonlocal dielectric model was first applied to intermolecular

interactions by Jenkins and Hunt.! In their work, it was shown that the force on nucleus I

13



in molecule A depends not on the “bare” Coulomb potential due to the unperturbed
charge distribution in B, but on an effective potential. The effective potential on nucleus I

is determined by the nonlocal dielectric function € (r,r’;0) of molecule A due to

redistribution of the electronic charge cloud within A. Using a susceptibility-based

approach, they proved that the first order force F'D on nucleus I is

FID = _Zleqa/ar Idr's;l’ A.T30005 (0] Rl (1.23)
where the notation [/0rf(r)] | r = Rl means that the derivative is first evaluated with

respect to the coordinate r and then r is set equal to R' .Thus, the first-order force on the

nucleus was connected to the nonlocal dielectric model.

At second order, the interaction energy consists of a sum of induction and

. . . . Q) . . -
dispersion terms. The induction term AEi 0 1 classical and appears from static, linear
response of one molecule to the potential from the unperturbed charge distribution of the

neighboring molecule. The dispersion term AEggp is purely quantum mechanical and

depends on correlations between the spontaneous charge-density fluctuations within the

133

interacting molecules. ~~ Both induction and dispersion energy are obtained from time-

independent perturbation theory with the second-order correction to the energy given by

@ __ A.B|;AB| A B\/ A B
AE §§<001V )mn><mn

\“/ABlvoB>/(Em+En-EO).

(1.24)
A B . . . 7AB -
m and n~ are the excited states in molecules A and B respectively, V is the

interaction Hamiltonian, and E,,, E,,, and E are the unperturbed energies of excited state

14



and ground state respectively. The sum of the terms from Eq. (1.24) with excited states
confined to either molecule A or B yields the induction energy, while the sum of the
terms with excited states on both molecules gives the dispersion energy.

The induction energy depends on the permanent charge distributions and the

molecular polarizabilities of the interacting molecules. In terms of the permanent

104
moments of the molecules,

(2) _ B B 5B B
AES —(1/2)aaB30 B (”3)""(1[3730(13037 (”6)Caﬁya Oup SOYS

B
(I/IS)EaB‘ySsOaSOByS (1/2)aaBSO SB (1/3)AaBySOa30By

~/6)cB A A _/15)ED

aByd S0ap S0y (1.25)

aByd e 30[3y5
where 3" is the gradient of the field-gradient, C is the quadrupole polarizability, and E is
the dipole-octopole polarizability.]o4 Within a nonlocal response model, the induction
energy is described by the nonlocal polarizability density and the static polarizations of
the molecules.*! The induction energy can also be expressed in terms of nonlocal
charge-density susceptibilities and the static external potentials from the unperturbed
charge distributions of the interacting molecules. We give a detailed description of that in
chapter 2. Since the induction energy depends not only on the permanent moments of the
interacting molecules, but also on the induced polarization in one molecule due to
permanent moments in the other, it is apparent that induction energy can be described in
terms of intramolecular screening. However, the induction energy has not been connected

to a dielectric screening model previously.
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The induction force at second order can be calculated using Eq. (1.15), where the
induction energy is given by Eq. (1.25) or in terms of the static polarizations and the
nonlocal polarizability densities of the interacting molecules. Within the nonlocal

polarizability density model, the second-order induction force on nucleus I in molecule A

depends on the derivatives of the static nonlocal polarizability density a(‘:‘B (r,r’;0) and

the field SOAQ (r) at B due to permanent moments of A. Unlike the first-order force which

depends on the permanent charge distribution in B and the first-order induced

polarization of A, induction force at second order depends on the first-order induced

polarization in B and the second-order induced polarization in AP
1(2) = [arZl T, ®RLr) [Apé“(z)(r)mpl?(l)(r)] (1.26)

where the second-order induced polarization is determined by the nonlocal

hyperpolarizability density,no 134 B (r,r',r";0,0). Induction force on nucleus I can

afy

also be determined using Sternheimer-type shielding tensors byl32

B

AE®) = 70 (8op -7 B)SRB+(1/3)ZI Ry

ind,a afy

+(1/3)Z! [(3/2)(11‘13 -Ré")&olY +(3/2) (R} -R§M)5ap

A 1,1 B
~(Ry~R5)3py ] s Rpy +(1/DZ ¢GBYSOBSOY

3B (1.27)

+(1/3)ZLe! 137830[3 o5+
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where SEB and S'IE'B v are the reaction field and its gradient from the first-order

polarization of B, induced by the unperturbed charge-distribution in A. Thus, the second-
order induction force on nucleus I depends on linear screening of the reaction field and its
gradients due to the first-order induced polarization of B and nonlinear screening of the
field and its gradients due to the unperturbed charge distribution in B. The two different

approaches used to calculate the induction force are connected to each other by Egs.

(1.19), (1.22), and the relations'>2 between the nonlinear shielding tensors ¢(£BY R 55378

and the nonlocal hyperpolarizability density,

¢éﬁy = Idr dr'dr’ Ta8 (RI , r) BSB’Y (r’ rl’ rn) ) (l '283)
éf["B‘Y = Idl" dr'dr” TO.S (RI , l') BeB(p (l’, rr, l")
x[(3/2)() ~R§ )85 +(3/2) (1§ ~RE)8yq

~(h -RE)By5 1. (1.28b)
Electrostatic force theory based on the Hellmann-Feynman theorem was also applied by
Nakatsuji and Koga]35 to calculate the forces on nuclei of interacting molecules. In their
work, the force on nucleus A in atom A was expressed in terms of the density matrices of
the atomic orbitals and the forces were categorized into three different classes: 1) the
atomic dipole (AD) force, which originates due to the attraction between nucleus A and
the polarized electron distribution within molecule A, 2) the exchange (EC) force, due to
the attraction between nucleus A and the electron distribution in the region between

atoms A and B, 3) the extended gross charge (EGC) force, caused by the interaction
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between nucleus A and the gross charge on atom B. At long range, only the atomic dipole
and the extended gross charge forces are significant. At first order the atomic dipole force
and the extended gross charge force correspond to the first-order forces on the nuclei

derived within the nonlocal polarizability density approach, where the AD force depends

on APA(I)(r) and the EGC force depends on pOB (r) . At second order, the AD force and

the EGC force are related to APAQ) (r) and APB(I)(r) , respectively.

The dispersion energy at second order arises due to the correlation between the

133.2,129,136

charge-density fluctuations in the interacting molecules. The spontaneous

quantum mechanical fluctuations in the charge density in one molecule create a field that
acts on the second molecule and induces a shift in the charge density. The induced shift
in the charge density in the second molecule causes a dynamic reaction field that acts
back on the first molecule and results in a net energy-shift. The induced shift in the
charge density is determined by the dynamic polarizability density o(r,r’;t) [or
a(r,r';0) in the frequency-dependent form] or by the dynamic charge-density

susceptibility x(r,r’; 7) and the charge-density fluctuations are correlated according to the

fluctuation-dissipation theorem."*’ Although the charge-density fluctuations and the

138

reaction field are time-dependent, the dispersion energy is time-independent. ™~ The

overall dispersion energy for a pair of interacting molecules A and B depends on the

nonlocal polarizability densities (or the charge-density susceptibilities) of the molecules

. . 129
at imaginary frequencies.

AESB® = _(n/2m) EO do [dr...dr" a(‘:‘ﬁ (r,r';i) Ty (r',r")
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xa%(r", r";i0) Tsg (1", 1). (1.29)

The dispersion energy can also be calculated from second-order perturbation theory (cf.
Eq. (1.24)). For example, Longuet-Higgins and Salem'® calculated the dispersion energy

for a pair of interacting molecules at long range, after applying the Unsold
approximation. They expressed the dispersion energy in terms of correlation functions of
the charge-density fluctuations. However, the dynamic natures of the correlation

functions were not considered explicitly. The dispersion energy in terms of the
frequency-dependent susceptibilities was first derived by McLachlan."® In his work the

interaction between two quantum-mechanical systems A and B was considered and the

interaction Hamiltonian was expressed in terms of fluctuations in the physical quantities
x; and y; , belonging to A and B respectively. The second-order dispersion energy was

given by

= - (h/2m) [ dEaik ()i (), (1.30)
where a;) (i€) and Bk (i) are the susceptibilities of A and B respectively and & denotes

the frequency. The susceptibilities given in McLachlan’s work depend on the transition
matrix elements of the current and charge-density four vectors, and thus include magnetic
contributions to the van der Waals interaction energy. McLachlan’s work was followed
by the work of Longuet-Higgins,140 where the fluctuations were specifically given in
terms of transition matrix elements of the charge-density operator and the second-order
dispersion energy was showed to be explicitly dependent on the susceptibilities of the

interacting molecules:

19



W =—(h/4n%) [dn [dry [drf [drs E"dg "('1';1"2_’:?'1;“‘2('1’3"@. (1.31)

a(n,r,i) and a(rf,r),if) are the susceptibilities of the first and the second molecule
respectively, at imaginary frequencies. a(r,rp,if) was described as “the mutual
susceptibility at imaginary frequency i of two points r; and r; of the first molecule,”
that measures the response of the electron density at r; due to an applied exponentially-
increasing potential at ry, with time dependence exp(&t). Thus, a(r,rp,i€) corresponds
to the charge-density susceptibility x(r,r’;i®) used in later works. The second-order
dispersion energy has been calculated by Langhoff,m who has employed the contour-

integration technique of Casimir and Polder'*? to separate the dispersion energy as

integrals over response functions of the interacting systems. Langhoff Fourier-
transformed the Coulomb potential to give the dispersion energy. Jacobi and Csanak'*

followed the same method used by Langhoff to evaluate the dipole-dipole interaction
term in the dispersion energy of two closed-shell atoms. Specifically in their work, the
dispersion energy was expressed in terms of the Born amplitude x,(q), which is the
Fourier transform of the transition density xp(rr). The Born amplitude was then

separated into radial and angular parts and the dipole-dipole interaction term was
evaluated in terms of the frequency-dependent polarizabilities. The dispersion energy can

also be calculated by expanding the Coulomb operator into the interactions between

multipole moments.'** However, this method has a disadvantage that the expansion
diverges asymptotically. Koide'*® has formulated a convergent expansion of the

Coulomb operator into interactions between spherical waves. The charge operators were
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transformed from configuration space to the wave vector space and the energy
denominators were separated using the contour-integration technique of Casimir and
Polder. The final form of the dispersion energy was obtained in terms of the frequency-
dependent polarizabilities of the interacting atoms in the wave vector space, the spherical

Bessel functions, and the Clebsch-Gordan coefficients. It was shown that in the limit r —
0, the dispersion energy goes to zero, while in the limit r — 00, it yields the well known

multipole expansion series. Derivations and calculations of the dispersion energy in terms

of approximate charge density susceptibilities have been given in Ref. 146 - 152.
Within the density functional theory (DFT),m"l54 dispersion energy is contained

within the exchange-correlation energy. Density functional theory has been employed to

155

calculate van der Waals interaction energies by Langreth and Perdew, ~~ Harris and

156

Griffin, — Gunnarsson and Lundqvist.157 Anderson et al. "*® evaluated the frequency-

dependent polarizabilities for different atoms and ions and the van der Waals Cg

constants for several atomic and molecular interactions by using a modified effective

density n.g, originally used by Rapcewicz and Ashcroft.'> Several research groups'®*"'%’

have used the method of a coupling constant A, that turns on the electron-electron
interactions. Kohn, Meir, and Makarov'®* (see also chapter 4) have employed DFT to

calculate van der Waals interaction energy between small and large intersystem distances.

They have approximated the density distribution n(r) by the local density approximation

154 165

(LDA) " or by the generalized gradient approximations (GGA). - The Coulomb
interaction energy was separated into short and long-range parts, and the long-range

contributions to the interaction energy were expressed using the adiabatic connection
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formula. Finally, the expression was transformed to the time domain and was applied to
the calculations of the asymptotic van der Waals interaction between H-He and He-He. In

their work, the van der Waals energy was obtained as

Eyqw = -Cg /RS, (1.32)
where
7z zz
xa xR (t2)
Cg = (3/ dty [ at : 1.33
6= 1r)£o 1E° 2 L+t (1.33)

%% is the z component of the density response to a perturbation in the z direction. A

seamless van der Waals density functional has been formulated and applied to the

interaction between two self-consistent jellium metal slabs by Dobson and co-workers.'®
In their work, the correlation energy (Ec) has been determined by the adiabatic
connection fluctuation-dissipation formula (ACFD), which relates Ec to the Kubo
density-density response function ), the electron-electron interaction Vcgy), and the
Kohn-Sham density-density response function ykg. xKs depends on the average
ground-state electron density. y)g is determined from ykg, the exchange-correlation
kernel fy¢ )5, and a modified electron-electron interaction AVCqy], by the Dyson-like

screening equation. A related derivation and calculation have been done in later work by

Dobson and Wang.m

For a detailed review of van der Waals studies using conventional
density functionals, we refer the reader to ref. 186. In more recent work, Hunt168 has

derived the electronic energy as a functional of the average electronic charge density and

the average of the gradient of the charge-density fluctuations with respect to an external
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potential. The functional is nonlocal. However, it is distinct from the other nonlocal

. . 163.164,170-181
functionals being used. 3

Jenkins and Hunt'®? have derived a model where the correlation between the
polarization fluctuations has been connected to a nonlocal dielectric function
gq(r,r;io). The nonlocal dielectric function eq(r,r’;0) determines the dielectric
displacement D(r,®) within a molecule, due to an applied external field E(r',0) at r'.
For a translationally invariant system, €4(r,r’;0) depends solely on r—r’, and hence
can be represented as the spatial Fourier transform €4 (k;®) . For these systems, g4 (k;®)
is connected to the potential screening function &y (k;®). On the intramolecular scale,

the two dielectric functions are quite different due to the inhomogeneity of the
intramolecular environment.

The dispersion force on nucleus I in molecule A can be calculated by taking the
negative gradient of the dispersion energy with respect to R' , the coordinate of nucleus I.

Within the nonlocal polarizability density model, the dispersion force on I depends on the

derivative of the dynamic nonlocal polarizability density of A and the derivative of the

correlation of the polarization fluctuations within A, with respect to R. The derivative of

the frequency-dependent nonlocal polarizability density with respect to R is related to

the frequency-dependent hyperpolarizability.]28 Thus, this component of the dispersion

force results from the interaction between the nucleus and the nonlinear polarization of A

induced by the polarization fluctuations in B. If we denote this component by AF;(%) ,

132
then
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a3 = 2L [ do [ar TR 1 4R Dr,0). (1.34)

Thus, the first component of the dispersion force resembles the first component of the
induction force from Eq. (1.26), with the difference that in the case of the induction force
the polarization in A is induced by the fields from the static polarizations in B, while for
dispersion force the polarization is induced by the fields from polarization fluctuations in
B. This part of the dispersion force also corresponds to the atomic dipole force in the
work by Nakatsuji and Koga,135 although the dispersion forces and dispersion induced
dipole were not considered explicitly in their work.

The second component of the dispersion force depends on the derivative of the
correlation between the polarization fluctuations within A with respect to R'. The

correlation between the polarization fluctuations at r and r’ depends on the imaginary

part of the nonlocal polarizability density by the fluctuation-dissipation theorem'’

1/2) <8Pé"(r, ®) SPé‘ ', o) +5ng‘ (', 0) 5P, w)>

= (h/27) a{;‘é (r,r';0) 8(0 + ") coth(hw/2kT). (1.35)

The infinitesimal shift of nucleus I within molecule A changes the static Coulomb field

that modifies the above correlation. This is similar to the field-induced fluctuation

183,184

correlations studied earlier. Due to the change of the nuclear Coulomb field, the

correlation depends on the imaginary part of the frequency-dependent hyperpolarizability

Aﬁ

density, BGB’Y

(r,r',r";®,0). Thus the magnitude of the correlation is changed. As pointed

out by Liang and Hunt,]32 the change in the static external field may also introduce new
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types of correlations in molecule A. In chapter 3 of this work, we show that the Coulomb
field from nucleus actually brings in new correlation within the molecule. One thing to
note here is that at second order, both the induction and the dispersion force depends on

interaction of nucleus I with the polarization induced in molecule A. Within the context
of dispersion force for interacting atoms, this is known as the Feynman’s “conjecture”.]05
Quoting from Feynrx;lan’s work on the electrostatic description of forces between
interacting atoms'os,

“It is not the interaction of these dipoles that leads to van der Waals’ force, but

rather the attraction of each nucleus for the distorted charge distribution of its own

electrons that gives the attractive 1/ R’ force.”

186
for the

Feynman’s conjecture was first proved by Hirschfelder and Eliason
special case of two hydrogen atoms, both in the 1s state. It was also addressed by
Nakatsuji and Koga135 in their work on electrostatic force theory. Hellmann-Feynman

forces on the nuclei of two interacting He atoms have been calculated in later work by

Allen and Tozer.'®” The first general proof of Feynman’s conjecture was given by

Hunt."® In that work it was shown that the dispersion force on nucleus I in molecule A

results from the interaction of I with the dispersion-induced change in the polarization of

A:

AR = 7! [ar AP () Tpe R 1), (1.36)

where AP(‘;‘ (r) depends on the nonlocal hyperpolarizability density of A and the nonlocal

polarizability density of B, at imaginary frequencies. In the later work by Liang and
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Hunt'? it was mentioned that the dispersion force on nucleus I depends entirely on the

hyperpolarizability of molecule A; and that it does contain a component that stems
directly from the polarization of B. In chapter 3, we prove that a part of the second
component of the dispersion force actually depends on the linear response of A to the

field from the induced polarization of B, as determined by the transition-

189.190 of A. Thus, this part of the dispersion force is similar to the second

polarizability
component of the induction force in Eq. (1.26).
For three or more interacting molecules, nonadditivity appears at second and

higher orders. At second order, nonadditivity appears only in the induction energy. At

third and higher orders, the intermolecular interactions consist of induction energy,

253,258,261-264

dispersion energy and induction-dispersion energy . All of the three types of

interactions show nonadditivities. The first calculation of the three-body interaction

energy was done by Axilrod and Teller' and by Muto,]92 who calculated the long-

range triple-dipole energy of three interacting atoms with spherical charge distributions

using third-order perturbation theory. The interaction energy was found to be
1+3cos(01)cos(62)cos(03)

AEppD = Co 33 3 (1.37)
) O P ¢
1223731

n2,1n3,13] are the sides and 01,0,,03 are the angles of the triangle formed by the

atoms, Cg = (9/16)Va3 , where V is the atomic ionization potential and a is the

polarizability. The triple-dipole interaction was first applied by Axilrod'”

to study the
preferred lattice structures of the rare gases. Long-range many-body interactions are more

dominant in condensed phases than in molecular clusters.'®* The importance of many
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body effects has been investigated in studies of the thermodynamic properties of

195,196 197-200
£

fluids calculations of third virial coefficients , and studies of molecular

193,201-205

crystal structures. Formisano et al.>% have related the small-k behavior of the

static structure factor S(k) in a noble gas fluid to the two (London)- and three (Axilrod-

Teller triple-dipole)-body potentials. More recently, Jakse and co-workers>"” have used a

potential energy function based on the two-body potential of Aziz and Slaman”?*?% and

the triple-dipole Axilrod-Teller potential to study the structural and thermodynamic

properties of liquid krypton. Evidence for many-body effects has been found in the

193,201,202,204.205

preferred structures and binding energieszlo of rare gas crystals. In recent

work, Donchev?'! has studied the role of dispersion forces for cubic lattices using a

coupled fluctuated dipole model (CFDM), where the particles have been treated as three-
dimensional harmonic oscillators, coupled by the dipole-dipole potential.

Deviations from pairwise properties have also been noted in studies of structure,

212-220

dynamics, light scattering, IR and far-IR absorption spectra of van der Waals

216-225 226-235 193,201-205

clusters, liquids, and solids. Computations and experiments on the

spectroscopic properties of van der Waals trimers have specially inspired research in the

field of many-body effects. Studies in this field include rotational spectra of ArzHF,236

6 237 238 9 240 241 242

ARDF,?¢ ARHCL?" Ar,DCL?® (HCN);,2® ArnHCN,* Ar,C0,2*' Ar0CS,

243 243

NesKr,”™ and NepXep. Far-IR intermolecular vibrations have been observed in

216 217 245

AHCLY'® Ar,DCL?" and in (H;0);.2'® Vibrations in the mid-IR in Ar,HF,?* DF;,

(HCN)3,246 and (H20)3247 also show nonadditive effects. The role of nonadditive effects

27



in the properties of water trimer and liquid water has been analyzed by Gregory and

Cla.t'y,248 and by Li et al.** Collision-induced absorption spectra of compressed gases
and liquids show evidence of nonadditive three-body dipoles,250 since the pairwise-
additive dipole is not sufficient to explain the observed intensities of the transitions.

Reddy, Xiang, and Varghesem detected an absorption between 12 300 and 12 700 em’!
for compressed H,. This absorption corresponds to the v =0 — 1 transition on all three of
the molecules in an Hy**H,*"Hy complex. This particular transition is known as a triple

transition®> and it is forbidden with pairwise additive dipoles.

Early theoretical studies of nonadditive interactions were done using the point-
multipole form. The Axilrod-Teller-Muto triple-dipole formulation was extended by
Stogryn253 to evaluate the three-body dispersion energy of molecules with arbitrary
symmetry. The energy denominator from third-order perturbation theory was separated
using Buckingham’s method of evaluating the second-order dispersion energy and the
dispersion energy was obtained in terms of the polarizability tensors, the mean

polarizabilities of the molecules, and the dipole propagators. The method was applied to
calculate the cohesive energies of molecular crystals. A similar method was used to
calculate the third virial coefficients of CO, and N,, where the spherically symmetric
component of the two-body potential was described by Lennard-Jones (12-6) or (18-6)

potentials. Martin®>*

derived the three-body dipole moment of three spherical atoms from
the fourth-order perturbed energy with the perturbing Hamiltonian expanded in terms of

the spherical multipole moments of the interacting atoms. For Hj, coefficients of the

leading terms were calculated by diagonalizing the unperturbed H-atom matrix with s, p,

28



and d basis sets. The numerical values of these coefficients were then estimated for Hej .

A similar method was followed by Gray and Lo>> to evaluate the long range part of the

three-body dipole moment of three interacting atoms and to estimate the density required

to observe the collision induced infrared absorption in rare gases experimentally. The

256,257

multipole-moment expansion method has been used by Bruch and co-workers to

study the three-body dipoles of interacting spherical atoms. In later work, Stogryn®® did
a systematic analysis of the third-order perturbation energy for a system of N asymmetric
molecules where the perturbing Hamiltonian was defined in terms of the multipole
moment tensors, as used earlier by Kielich.**® The overall third-order energy was
separated into induction, dispersion and induction-dispersion energies. The induction
energy was further separated into two components: one component (Wg) is linear in the
hyperpolarizability and the other one (Wj) is bilinear in the polarizabilities. The
dispersion energy was separated into three parts: One involves the polarizabilities of the
interacting molecules at imaginary frequencies (Wp), one (Wpga) contains the
polarizability of one molecule and the hyperpolarizability of the other, and the last part
(Wcep) extends to asymmetric molecules of the result found by Chan and Dalgarno.260

Nonadditivity of the induction energy at second order was derived

explicitly by Piecuch.”®' In his work, the Rayleigh-Schrddinger perturbation theory was

used to express the second-order correction to the energy in a system of N interacting

molecules. The pairwise nonadditive induction energy was obtained as
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where Stogryn’s notation>® has been used. i, j, k are the interacting molecules,

) and
|p) are respectively the unperturbed ground and excited states, and e (p i) =Ep, ~Eg_.

The interaction Hamiltonian Vij was then expressed in terms of the multipole expansion

using a spherical tensor technique, to obtain

N » ’ ”
_ li+1j _li_lj_l _Ij_lk_l
A= -41:. .Z Z CURER Ry
l,J,k:‘-} I,Ij Ij lk
(k1)) I; Ly Ly,
20+ 205\ (217 4 2 Y1/ If 1[‘ Lig
X 0 [7j, Lik» Likj 131 I lj
l ' "
L+l i+l Lig

D (] Dk (-] 173D (@]
x[[[Q; - D7 (0 )®Qy -D* (0 )]r, ®ay {Ijl5}-D/ (@)L,
3 5 0
SV, +1; Rip) ®Vpr 1, Rz Jo- (1.39)
R;; is the vector pointing from i to j and (Rij,f{ij) are the spherical components of R;; in
the global coordinate system fixed in space. Qli is the spherical multipole moment of i,

©;,®j,0K are the Euler angles describing orientations of local coordinate systems fixed

in molecules i, j, k with respect to the local coordinate system fixed in space. D/ (®) is
the matrix that represents a rotation ® in the (2j + 1)-dimensional irreducible

representation of the SO(3) group. a; denotes the irreducible spherical polarizability of
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atom j and Lj,Lj; are tensors which couple the molecular moments and the

polarizabilities. Eq.(1.39) gives the three-body induction energy at second order, where
the dependence on orientation is simplified as far as possible and the overall energy is
completely separated into the spherical multipole moments and irreducible spherical
polarizabilities of the isolated atoms.

In three successive later works, the same method was used by Piecuch to derive
. . . 262 . . . 263 . - . . 264
the induction energies,” ~ dispersion energies,” ~ and the isotropic interaction energies

at the first three orders of perturbation theory. In those works, the interaction energies at
first, second and third orders were explicitly derived in terms of the spherical tensor

formalism and the physical significance of the third-order interaction energies from
Stogryn’s work>>® were explained very clearly. The overall third-order interaction energy
was given by

g0 = 8)[318dQ 82ng E&3()1désp +E(3[)3cclzlsp +E'g3%dlsp (1.40)

where a is the polarizability tensor and B is the hyperpolarizability tensor. In Eq. (1.40) a
right Q denotes the field from the permanent multipole moment of one molecule and a
left Q denotes the permanent multipole moment of another molecule. The induction
energies were faﬁher separated into two-body, three-body and four-body interactions.
The induction and dispersion energies from Eq. (1.40) correspond to the interaction

.. , (3)md (3)1nd (3)dlsp
energies in Stogryn’s work by, Wp QBQQ Wap Q 2 Q’ Wp=Eggaa s

(3)disp -

wga =ERP and wep = ECS

a,Q
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A complete description of the three-body interactions must include short range

222-225
o

interactions. These interactions can be included either by ab initio calculations r

by using exchange-perturbation methods such as symmetry-adapted perturbation theory

265-271

(SAPT) or intermolecular perturbation theory/Moller-Plesset perturbation theory

272-275

(IMPT/MPPT). A symmetry-adapted Rayleigh-Schrodinger perturbation method

was used by Moszynski et al””" to calculate the nonadditive three-body interaction

energies of van der Waals trimers. The three-body terms from the polarization and

exchange effects were separated and the polarization terms were evaluated using the

linear and the quadratic polarization propaga’tors.276 The three-body polarization terms

were obtained as
. . 210 210 11,1

induction: E21 V(B - A0, B (A BB 0, E{l V(A « Bic e B);
dispersion: Eg';:;) (3,3); and induction-dispersion: Efﬁcll?cgl sp° Nonadditive effects have

been calculated by a IMPT/MPPT method developed by Chatasinki er al.>2"

Nonadditive dispersion interactions have been described within a reaction-field

2,277 201

approach by Linder and Hoernschemyer, and by Langbein.”" In their works, a

nonlocal response theory has been used to obtain the nonadditive dispersion energies in

278

terms of frequency-dependent polarizabilities or susceptibilities. Li and Hunt™"" have

used a nonlocal polarizability density model to evaluate the three-body polarizations and
three-body forces on nuclei of interacting molecules. The three-body polarizations and
forces were determined from the three-body interaction energies at the third order. The

overall third-order interaction energy was derived as a sum of three-body dispersion
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energy, three-body induction energy, and three-body induction-dispersion energy. The
induction energy was farther separated into hyperpolarization, static reaction field and
third-body reaction field. It was also shown that the energies obtained using the nonlocal

polarizability density method correspond the third-order interaction energies obtained by

261-264

Stogryn,258 Piecuch, and Moszynski et al”” In the present work, we have used the

nonlocal response model used by Li and Hunt to treat the three-body and four-body
interaction energies. However we have worked within a charge-density susceptibility

based model to connect the interaction energies explicitly to a nonlocal dielectric model.
In a later work, Li and Hunt*" evaluated the nonadditive three-body dipoles of ineft gas
trimers and HjHj-H; using the model based on nonlocal polarizability and
hyperpolarizability.

In chapter 2 of this work, we derive the two-body induction and dispersion
energies at second order within the nonlocal dielectric model. These interaction energies
have not been described previously in terms of intramolecular screening. Chapter 3
shows the dielectric screening present in the second-order induction and dispersion
forces. We also derive a new fluctuation-correlation and the physical origin of the terms
present in the second-order dispersion forces. In chapter 4 we extend the nonlocal
dielectric model to derive the three-body induction energy at second order. We prove that
at second order, the nonadditive three-body induction energy results from dielectric
screening, where a particular molecule acts as the nonlocal dielectric medium to screen
the electrostatic interaction between the other two molecules. Finally in chapter 5, we use
the nonlocal dielectric model to derive the nonadditive three-body and four-body

interactions and third and fourth orders. We specifically describe the induction energy at
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third order and the dispersion and induction-dispersion energies at third and fourth

orders. Chapter 6 includes a brief summary and conclusions.
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Chapter 2: Nonlocal dielectric functions on the nanoscale: Screening of two-body

induction and dispersion energies at second order

2.1 Dielectric screening and the induction energy

Within quantum perturbation theory for intermolecular interactions, the energy
changes due to static reaction fields determine the induction energy. The permanent
charge distribution of each molecule sets up a field that polarizes the neighboring
molecule; in turn, this produces a reaction field that acts back on the first molecule,

shifting its energy. Thus the induction energy depends on the static, nonlocal

polarizability densities a(‘:‘B (r,r’;0) and aEB (r,r’;0) of interacting molecules, as shown
in earlier work;131

AEjpg =-(1/2) jdrdr'a p(rr’ 0)30 (r)soB

—~(1/2) jdrdr B(n 0)30 (r)s T 2.1.1)

to second order in the intermolecular interaction. In Eq. (2.1.1), SOBa(r) denotes the a
component of the field acting on A due to the unperturbed, static charge distribution
pg (r) of molecule B, and similarly for Sg‘a (r). The Einstein convention of summation

over repeated Greek subscripts is followed in Eq. (2.1.1) and below. The result for

AE;pq includes higher-multipole polarization, as well as the dipole-induced dipole

interactions, because a(r,r’;®) is defined to allow for the distribution of polarization

within the molecule,
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a(r,r;0) = (0|P(r)G(w) P(r)|0)+(0|P(r) G(-o)P(r)|0). 2.1.2)
In Eq. (2.1.2), f’(r) is the polarization operator and G(w®) is the resolvent operator
defined in Eq. (1.4). The polarization operator l3(r) is related to the charge-density
operator p(r) by

V-P@r) = -p(r), (2.1.3)
and hence, from Egs. (1.3), (2.1.2), and (2.1.3),

VVia(r,rio) = - y(r,r;o). 2.14)
From Egs. (1.5) and (2.1.2) — (2.1.4), a(r,r’;») functions as an integral kernel, to give

the polarization P(r,®) at point r in a molecule by an applied field 3(r’;») acting at r'.

The field SOA (r) due to the unperturbed charge distribution pg‘ (r) of molecule
) ) . A _ A\ A —
A is related to the electrostatic potential ? (r,o=0) by 30 (r)——V(p0 (r,0=0).

Below, we use the notation (p(‘? (r) for the potential (p(‘? (r,o =0). Integration by parts in
Eq. (2.1.1) gives the induction energy in terms of the charge-density susceptibilities of A

and B, and the potentials (pg‘ (r) and (pg' ),
AEing =1/2 Jdrdr'y™ (r.r’; 0090 (1)05 ()

+1/2 [drdr' B, r;0)08 (N 0h (). 2.1.5)

With the potentials expressed in terms of the permanent charge densities of the two

molecules,

ABing =1/2(1+pAB) [drdey (er:0) [ @nsg)™ farjr—r ™ 0]
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x[(4neg) ! far (e~ pBem)1, 2.1.6)
where g AR interchanges the molecule labels A and B. From Eqgs. (1.2) and (2.1.6), with

a change of the labels on the integration variables, it follows that the induction energy is

accurately expressed in the dielectric model, by
E. _/24 —1 ddldﬁB -l L " _ r—lB ’
AEind =1/2(4me0)” (1+pAB){ [drdr'dr’pg (leg &, 5 (rr3 01" 1™ pg ()

~ fararpBo)e-r| By, 2.1.7)
where ey A(r, r";0) is the static, nonlocal dielectric function of molecule A. The first
term in Eq. (2.1.7) gives the static Coulomb energy of the unperturbed charge distribution

pg (r) of molecule B in presence of molecule A, which acts as a dielectric medium to

screen the interactions within molecule B. The screening is nonlocal, since 8;,1 A r’;0)
b4

depends on both r and r”. The second term in Eq. (2.1.7) is the single-molecule, static
Coulomb energy of the permanent charge distribution of molecule B in absence of A. The
operator AR generates the corresponding terms that depend on the static Coulomb
energy of A. Thus the induction energy depends on the difference between the
dielectrically screened and unscreened interactions of the permanent charge distributions

within each molecule.
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2.2 Dielectric screening and the dispersion energy

The dispersion energy AE{4 results from spontaneous, quantum-mechanical

fluctuations of the charge density in each of the interacting molecules; these give rise to
fluctuating fields acting on the neighboring molecules, polarizing it, and thus producing a
dynamic reaction field, which acts on the original field source, shifting its energy. To
derive the dispersion energy within the dielectric framework, we start from a standard

expression for AE4, which is obtained both from time-independent perturbation theory

and from reaction-field theory,z‘zm

AEq = —(h/ 21|:)_2 (411:80)_2 Eodco Idrdr' dr”dr” xA(r, r; im)]r’ -r" -1

-1

xxB (", r"iw) Ir"—r| (2.2.1)

From Eq. (2.1.4) and integration by parts, Eq. (2.2.1) is equivalent to an expression for

AE{ in terms of the nonlocal polarizability densities of A and B,|29
AEq = —(h/2m) Eo do Idr dr'dr"dr"a op (r,r’;io) TBY r',r"
xaB. (1", 1" 10) Ts o (1", 1) (2.2.2)
.YS s s 8(1 H > bl
where the tensor T(r,r’) is the dipole propagator,

Top(r.r) = (4neg) " vy Vg Jr—r| L. (2.2.3)

For molecules A and B interacting at long range, Eq. (2.2.2) reduces to the well-known

form, 188

AE4 = —(h/2m) Tgy (R) Tsq (R) E" dma(‘:‘ﬁ (ico)a%(im), (2.2.4)
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to leading order in R™', where R is the vector from A to B and R =|R|. However, Egs.

(2.2.1) and (2.2.2) also include the effects of higher-multipole fluctuation correlations
(beyond the dipole); so these equations give accurate results for the dispersion energies of
nonoverlapping molecules, when the molecules can not be adequately approximated as
point-polarizable multipoles — e.g. for large molecules in configurations such that typical
intramolecular distances may exceed the shortest intermolecular distances.

In order to show the connection to charge-density fluctuations at real frequencies
explicitly, we reverse the steps of the derivation by Linder and Rabenold (Ref. 2), Egs.

(61) — (\67). We assume that the temperature is sufficiently low that the susceptibility

densities xA (r,r’;im) and xB (r",r";iw) change little over an interval of Aw = 2mikT/A
on the imaginary axis; then the integral in Eq. (2.2.1) can be approximated by the discrete

sum,

’

AEq = ~KT(4neg) > Y [drde'dr"dr A (r,r's 2mink T/A) ' —r"
n=0

-1

Xy B (", K" 2mink T/m)jr"-r| 1, (2.2.5)
where the prime on the summation indicates that the n = 0 term is multiplied by 1/2.
Equivalently,

AE(q = (ih/4n)(4ne )_2 do |drdr'dr"dr" ¢ (r,r;0)r - 1" =1
d 0

< B (", r" o) |r" - r[ ! coth(hw/2KT), (2.2.6)

as shown by evaluating the frequency integral in Eq. (2.2.6) in the upper o half-plane,
around a closed contour C that runs along the real ® axis from o =— Wto o =—¢ (> 0),

clockwise around the small semicircle @ = € exp(i0) from 6 = n to 6 = 0, along the real
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axis from ® = € to ® = W, and then counterclockwise around the large semicircle ® = W

exp(if) from 6 = 0 to 6 = . In the limit as W — oo, the integral around the large

semicircle vanishes, since both xA (r,r’;0) and xB (r",r"; o) fall off as o 2 for large .

The poles of the susceptibilities are located in the lower complex half-plane, by causality.
Therefore, the only poles within the contour C are those of the hyperbolic cotangent
function, and Eq. (2.2.6) is equivalent to Eq. (2.2.5) by the residue theorem.

The susceptibilities have both real and imaginary parts, denoted by %' and y”,
x(r,r';0) = x(r,r;o)+iy"(rro). (2.2.7)
The real part y'(r,r’;®) is an even function of frequency, while the imaginary part

x"(r,r’;0) is odd in ®. Since coth(%w/2kT) is odd in ®, Eq. (2.2.6) is also equivalent to
AEq = —(h/4m)(4ng( )_2 (1+9AB) fw do Idr dr'dr”"dr” xA" (r,r';0) |r' - r"l_l

X xB (r",r"; o) Ir"' - r|_1 coth(Aw/2kT). (2.2.8)

As above, A permutes the labels A and B.

137,138,2

By the fluctuation-dissipation theorem, the imaginary part of the charge-

density susceptibility is related to the spectrum of charge-density fluctuations by

—(h/4m)x™ (r,r'; ) coth(ha/2KT)

— —t! 1 - A A (N}
= (1/2n) Eoood(t t") exp[—io(t t')]<8p (r,t)op " (r',t )>+ , 2.2.9)
where
<8pA(r,t)8pA(r’,t')> E<8pA(r,t)8pA(r',t')+8pA(r',t')8pA(r,t)>. (2.2.10)
+
Therefore,
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AEq = (1/8m)(4nz0) 2 (1+pAB) [ do [ardrdrde” [° d(t-t)expl-in(t-1)]

1 XB (rn, rm; (0) Irm _ rl—'l

x<8pA(r,t)8pA(r',t')> ="
+

—2 ’ » » ’ A A ’ ’
=(1/4)(4 1 drdr'dr'd d(t—t")(d ,1)0 R
(/4)(4ns0) 2 1+ pap) [drdr'arar” [ d-0)(sp* w05 . 0))

x lrr _ r»|—1 xB (rp’ rm; t't') —1 .

1| (2.2.11)
Next, we use the relation between y(r,r’;t-t") and e;,l (r,r’;t—t") in the time domain,

€0 8;,1 (r,rt-t)=3(r-r)o(t-t)+ (471:80)_1 Idr" |r - r"|_1 x(r",r';t-t)), (2.2.12)
along with the Born symmetry [xB(r, r';t—t') = xB(r', r;t—t')], to obtain

_ -1 7 3" ' A Ay
AEq = (1/4)(4ngg) (l+goAB)jdrdr dr fwd(t—t)<8p (r,t)dp (r,t)>+

xlrl_rn —1

€0 e;,lB (r,r";t-t")
~(1/4)(4neg) ! 1+ pap) [drdr <8pA (r,H)8p (', t')> r-r1. 22.13)
+

The first term shown explicitly in Eq. (2.2.13) gives the Coulomb energy associated with

interactions of the fluctuating charge densities 6pA (r,t) and 8pA (r',t), in the presence

of molecule B, which acts as a dielectric medium with the nonlocal screening function
e;l’B (r,r",t—t'), introduced by Jenkins and Hunt.! A charge-density fluctuation at r',t’
sets up a potential at r”,t' (in the Coulomb gauge, with retardation neglected). Molecule
B gives a screened potential at r,t, via e;,l,B(r,r",t—t’), and the screened potential

affects the energy of a charge-density fluctuation at r,t. The response is integrated over
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all “time lags” t—t’, but e;lB(r, r',t—t)=0 if t—t'<0, so the response is causal. The

second term in Eq. (2.2.13) gives the Coulomb energy of associated with the charge-
density fluctuations in molecule A, in the absence of molecule B. The operator pAB
generates the corresponding term, in which molecule A acts as a dielectric medium for
fluctuating charge interactions in B.

The Coulomb energy of interaction between the charge-density fluctuations in
the same molecule equals the intramolecular exchange-correlation energy in density
functional theory (after the self-energy has been removed). With Eq. (2.2.13), this implies
that — for molecules with weak or negligible charge overlap — the dispersion energy is
equal to the screening-induced change in the intramolecular exchange-correlation energy,

summed for the two molecules.

A different dielectric function £4(r,r’;im) at imaginary frequencies183 is directly
related to the correlation of the polarization fluctuations at r and r'. On intramolecular
scale, €4(r,r’;w)is distinct from e, (r,r’;®). Thus, €, (r,r’;i®) does not relate directly
to the charge density fluctuations. However, Eq. (2.2.13) proves that € (r,r’;t—t") and
hence &y (r,r’;0) is directly related to the screening of the correlations of the

intramolecular charge density fluctuations.

Since the correlations between the permanent charge density and the fluctuating
charge density vanish for each molecule, there is no net Coulomb energy associated with
the interactions between pg(r) and 8p(r’,t) . Hence, in the region of negligible overlap,
Egs. (2.1.7) and (2.2.13) give the energy to second order, in a dielectric framework; and

the results are consistent with quantum perturbation theory.
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Chapter 3: Dielectric screening of second-order induction and dispersion forces on

nuclei of interacting molecules

In this chapter, we express the second-order induction and dispersion forces on
the nuclei of interacting molecules within the dielectric framework. The force on nucleus

K in molecule A is determined by the negative gradient of the interaction energy of the
molecule with respect to the coordinate RX of nucleus K.

FK - —vKaE, G.1)
where VK denotes differentiation with respect to RK . In the following sections we use
Eq. (3.1) to derive the induction and dispersion forces on the nuclei. Throughout the
derivations, we use the Born-Oppenheimer approximation: The forces on the nuclei are

determined as functions of the nuclear coordinates, fixed within individual calculations

but not restricted to the equilibrium configuration.

3.1 Dielectric screening and the second-order induction forces on nuclei

The induction force F nd °0 nucleus K in molecule A is given by the derivative

of the induction energy with respect to coordinate RK  of nucleus K,

Fllrfd - _vK AEjnd - From Eq. (2.1.1) and the Born symmetry280 of the polarizability

density aﬁ‘ﬁ (r,r’;0) = aé‘ﬁ (r',r;0), we obtain

Fllrfd =1/2 [drdr'da B(rr .0)/oRK 30 (r)S oB(r
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+ jdrdr'aaB(r,r';O)asoAa(r)/aRK SOAB(r'). G.1.1)

The derivative of the polarizability density of molecule A with respect to the nuclear

coordinate depends on the nonlocal hyperpolarizability density p(r,r',r";»,0) of A,m’]28

aa(":B(r,r';m)/aR!Y( A Idr'BaABS(r,r',r";co,O)Ta.Y(r",RK), (.1.2)

where T(r",RK) is the dipole propagator defined in Eq. (2.2.3) and the

hyperpolarizability density is given by'**'**

Bafpy (F.F'r"0',0") = Spy (rr".0%,0) (0] Bu() () BY 6" 6 By )

0)

+ <o) P, (r") G (~0") f’é)(r”)G(—coc)f’a(r')

0)

+ <ol Py (") G* (~0") BY (1) G (@) By (1)

0).
(3.1.3)
The polarization operator f’(r) satisfies Eq. (2.1.3). In Eq. (3.1.3), the operator
SBY(r',r", o’,0") denotes the sum of terms obtained by permuting ﬁB(r') and f’y(r') ,
together with there associated frequencies ®' and ®” in the expression that follows the
operator, w5 =’ +", and 13&) (r) =Py (r)- <0| Py (r) I 0).

The derivative of the field due to molecule A, taken with respect to a nuclear

coordinate in molecule A, is given by

- ’ ’ 1_3 G
6364a(r)/6Rl13( = (4me() 1j.dr (g —1g)|r-r 6p8A(r)/6RII3(
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3
+ZK (4neg)~! vg (, -RX) r—RK’ : (.1.4)

and the derivative of the electronic charge density with respect to the position of nucleus
K depends on the charge-density susceptibility of molecule A,

-1 1

apgA(r)/aRK = 7K (4ne) far'y r,ryvk r'—RK}— (3.1.5)

Eq. (3.1.5) is equivalent (after integration by parts) to the relation derived by Hunt"'!

between the nonlocal polarizability density a(r,r’;0) and the change in the electronic
polarization when a nucleus shifts infinitesimally within a molecule.
Thus, from Egs. (3.1.1), (3.1.2), (3.1.4), and (3.1.5), we obtain

K

ndq = 1/2)Z5 [drdr deBg s (r.r, 10,0 3G )3, (1) Toa (", RY)

0p

+zZK (4ne) )_2 _[ drdr'dr"dr” a[]?y (r,r’;0) (1 — 1) Ir— r'|_3

-1
<A rm0) vk r"’—RK\ soAy(r')

-3
+zK (41&:0)_1 Idr dr’al?Y (r,r';0) 36‘7 ") VaK (B - Ré() r-RK l .

(3.1.6)

Next, we show that F-K

‘nd o in Eq. (3.1.6) is equivalent to the force on nucleus K

calculated with a dielectric screening model and the static — but perturbed — charge

distribution of molecule B.
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First we write Filed a from Eq. (3.1.6) in terms of APlBa(r,O), the induced

change in the static polarization of molecule B at first order, due to the field from the

permanent charge distribution of A. APlBa (r,0) is given by
APll’Ba(r, 0) = Idr' aaB (r,r’;0) Sgb(r'). (3.1.7)
Then from Egs. (2.2.3), (3.1.6), (3.1.7) and
KN oK
r"-R l =-Vq

K _1
v VA r"-R ' : (3.1.8)

we obtain

Fga = /228 (4ns0) ™" farde'dr" B 5 (r.6'7:0,0) 30533, &)

xV(I,( %

r"—RK}

-ZX (4neg) 2 [drdrdr” aPB (r,0) Vg r-r!

-1
<y, rm;0)vE r"—RK‘
-1

~ZK (4neg)! J'drAPPB(r,O)V§ r-RKl : (.1.9)

The potential acting on molecule A is the sum of the potential (pOB(r) due to the
unperturbed charge distribution of B and the potential A(pF’ (r) due to the change in the

charge density of B, caused by its interaction with A. From Eq. (3.1.9), the force Fllrfd a
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depends quadratically on (pOB (r), since Sg(r) = —V¢(])3(r). The potential A(p?(r, 0) due
to the first-order change in the polarization of B is given by

AgP(r,0) = (4neg) ! far Vo r—r|” APlBa(r’,O), (3.1.10)

since Ap? (r',0) is related to APIB (r',0) by the same relation that connects the

corresponding operators [Eq. (2.1.3)]. Then from Egs. (3.1.9), (3.1.10), and repeated use

of the divergence theorem, we obtain

1I§d o= 2)ZX (4meq)~! jdrdr dr"[Vp Vy V5 BByS("’r' £.0,0)]

-1
r"—RK‘

xop(r)op(r)Ve

-1
7K (ameg) ! fardr'y® e ri0) VS r—RK‘ ApP(r,0)

-7 v [apBRK,0)]. G.1.11)

The Born symmetry of xA (r,r’;0) with respect to an interchange of its arguments has
been used in deriving Eq. (3.1.11).
From Egs. (1.9) and (3.1.3), the B-hyperpolarizability density is related to the quadratic
charge-density susceptibility {(r,r’,r";0,0) by

VB V'y %3 Bpys(r; r,r") =-{(r,r',r"0,0). (3.1.12)

With this result and a relabeling of the variables of integration, Eq. (3.1.11) becomes

FK o =~/ 2ZK (dneg) ™! fardrdrmcA (' r7,r0,0)

, " m -1
x(pg(r)chB(r )8/ drg X" —r| _RK
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_zK (41::&:0)—1 Idr’ dr”x(r",x';0)0/ oy ]r' - r|—l A(p{')’ (r',0) K
r

~ZK vE [80BRK,0)). (3.1.13)
From Egs. (1.2), (1.10), and (3.1.13), the induction force on nucleus K in molecule A is

given by

K K I B,
Fndo =~ Z eoa/ara[jdr ey AT F;50) Ay (r,O)]‘rzRK

-(1/2) ZKSO 0/ 0oy [ Idr’ dr’ ec_l,l A (r,r',r",0,0)

x (pg'(r’;O)(pg(r';O)]‘ ‘- (3.1.14)

r=R
Eq. (3.1.14) shows that the induction force on a nucleus in molecule A results from
dielectric screening of the potential from molecules B; the first-order change in the
potential A(p{3 (r',0) is screened linearly within A, while the unperturbed potential is

. . K
screened quadratically to give Fin da-

As shown earlier by Jenkins and Hunt,' linear
screening within A of the unperturbed potential <p(])3(r’; 0) from B gives the force derived
from the electrostatic potential energy.

The effective potential (peAff (r,0) within A due to B is sum of terms of first and
second order in the A—B interaction, given by

Oflogr (1,0) = €0 [dr's]) 5 (r.F0) 00 (,0), (3.1.15)

and
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(p‘g" off (r,0) =¢g Idr' e;l, A (r,r'’;0) A(p{3 (r',0)
+(1/2)¢g J’dr'dr"e'l (r,r',r";0,0) 0B (', 0) 0B (r", 0) (3.1.16)
q’A 2% s Yy 0 ’ O ’ ’
respectively. From Egs. (3.1.14) and (3.1.16),

K K A
Fnda =2 0/0[97 o4 (r.0)]

. 3.1.17)
r =RK

Hence we conclude that the dielectric screening model gives the second-order induction
forces on each of the nuclei in a pair of interacting molecules, consistent with the results

from perturbation theory.
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3.2 Dielectric screening and the second order dispersion forces on nuclei

In this section, we derive the dispersion forces on the nuclei of interacting
molecules within the dielectric model. We explicitly show the new field-induced
fluctuation correlations which appear in the dispersion force and we explain the physical
origin of the terms present in the dispersion force using perturbation theory.

The dispersion force Fcll( on nucleus K (with charge ZK) in molecule A is

derived from the dispersion energy AEq: F(g( - vk AEq . From Eq. (2.2.8) for AE,,
Fé( =(h/ 4n)(4nao)_2 vK Eodco Idrdr'dr' dr”y ’(r,r';o))lr'—r"l"1
Br, » m, m -1
xx " (", r";0)[r" —r| " coth(hw/2kT)

+ (h/4m) (411:80)—2 vK f; do jdr dr'dr"dr” xA" r.r;o)r' -r" -1

X xB' ", r"; o))" - r|_1 coth(hw/2kT). 3.2.1)

Below, the first and the second terms in Eq. (3.2.1) are designated by Fcllil) and F§2) ,

. . . . e e e . 2,137
respectively, for convenience in the analysis. From fluctuation-dissipation theorem,

FCIi%l) = -(1/8n)(4me0) > Eod“) fardr'dr e K 4 A s 0)|e !

x fw d(t—t)exp[-io(t —t')]<8pB(r",t)8pB(r"’,t')>+ P-rl (322)

The derivative of the real part of xA (r,r';®) with respect to RX is connected to the real

part of quadratic charge-density susceptibility via the relation

ox™ (r,r;0)/ RK = —ZK (4ne()~]
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. . _ 3
x farlV ReCA(r,r',rw;m,O)(RK—rw)r'v—RK' . (323)

Eq. (3.2.3) follows from the contraction of Eq. (3.1.2) with V, VB' and integration by

parts. From Eqgs. (3.2.2) and (3.2.3), with 3¢(r,t) used to denote the potential acting on

A, due to the fluctuations SpB(r,t) in the charge density of molecule B (and neglecting

retardation effects),

F}l%l) = (1/8m) ZK (4neg)~] fwdm [ardr'dr" RecA(r,r',1";0,0)

-3
x(RK -r’) r”—RK}

X Eod(t—t') exp[-io (t —t')]<8<pB(r', £)8pB (r,t’)>+ : (3.2.4)

The quantum mechanical average of &pB(r',t) vanishes; however, the average of the

product 8(pB(r’,t) 8q>B(r,t') is nonvanishing, because the charge-density fluctuations that

give rise to the potentials are correlated.

The Fourier transform of the correlation function <8(pB (') &pB (r,t')> in Eq.
+

(3.24)is
SBI,ISB,N - d drsBr,sB, °r°n.
<(p (r',a")d¢ (rao)>+ Eo tﬁo t<(p (r',t)d0 (rt')>+exp(1a)t+1cot’)
(3.2.5)

Since <8(pB r'y) 8<pB (r,t')> is a function only of the time interval t—t’, after changing
+

the variables of integration in Eq. (3.2.5) to t—t’ and t', we obtain
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B ’ ’ B L4 — - ’ B ’ - ’ B I=
<8(p r,0)de " (r,o )>+ = fwd(t t) Eodt <8(p (r',t—t)o¢ " (r,t 0)>+
xexp[io' (t—-t)+i(0'+ 0")t']

- 21t<8<pB(r',(o')8(pB(r,t'=0)> (0 +0"). (3.2.6)
+

In Eq. (3.2.4), we express <8(pB(r',t) 8<pB(r,t')> as the inverse Fourier transform of its
+

Fourier transform, to obtain

F;((l) = (1/8m)(1/2m)* ZK (4neg)~! Eodm [drdrdr” ReCA (r,r',r";0,0)

3
«(RK —p) r”—RK‘

x fwd(t—t') exp[-iw(t-t")]

x foo do’ E; do” <8(pB (r,o) 8(pB(r, m">+ exp(-io't-in"t), 3.2.7)

which is identical to

Fcll<(1) = (1/8m)(1/2m)* ZK (4neg)~!
X Eooo do Eo do’ EOOO do” jdr dr'dr” Re CA (r,r',r';0,0)

-3
«(RK —¢) r"—RKl

X Eooo d(t-t)exp[-i(0+0")(t—t)]exp[-i (0 +®")t']

X <8(pB(r', ') S(pB(r, co")>+ (3.2.8)

Next, we evaluate the t—t’ integral:
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FK

d) ~ (1/8m)(1/2x) 7K (4,“:80)—1

x fw do Eo do’ Eooo do” I drdr'dr’ Re Z;A (r,r',r";0,0)

-3
><(RK -r") r"-RK‘

x8(w+ ') exp [—i (@ +o") t']<8(pB(r', ©) B (r, co')>+ . (3.2.9)

After evaluating the o’ integral, use Eq. (3.2.6) for <8(pB(r', -®) &pB(r, (o")> , to obtain
+

K
Faq

= (1/8m) ZK (4meg) !
X Eooo do Eo do’ Idr dr'dr” Re CA (r,r',r";»,0)

-3
«(RK —p) r'—RK\

xexp[-i (0" -w) t’]<8<pB (', —0) o3 (r, 1 =0)> 30" -w). (3.2.10)
+

Then we evaluate the ®" integral, which gives

F({((l) = (1/8m) ZK (4neg)~!
r3m A ',
X f:odco Idrdr dr" Re{ ™ (r,r',r";0,0)

-3
X (RK -r)ir'- RKI <8(pB(r', -0) 8(pB(r, t'= O)>

. (3.2.11)
+

The real part of the quadratic charge-density susceptibility, Re CA (r,r',r";®,0), has the

permutation symmetry,
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Re I;A (r,r',r";®,0) = Re (;A r,r,r',-o,on),
and it is even in ®; so
Re CA (r,r',r";0,0) = Re (;A r",r,r;o,-o).

Therefore

F}&l) = (1/8m) ZK (4neg)~!

x food(o Idrdr’dr" ReCA(r",r, r;o,-o)

-3
x (RK -r)r"- RK) <8(pB(r’, -®) 8(pB (r,t'= 0)> .

+

We insert an integration over ', using a delta function,

FK

Sy = (1/8m) ZK (4neg)!

X fw do J:O do’ Idr dr'dr” Re Z;A r",r,r;o,-0)d(o-o)

-3
x (RK -r)r'- rK ’ <8(pB(r', -®) &pB (r,t'= 0)>

n
From Eq. (3.2.6),
2 <8(pB(r', —)80B(r,t' =0)> (' — ) = <8(pB(r',—0)) soB(r, co')>
+
from which we obtain

FK

al) = 1/162%) Z¥ (4neg)~!

X fw do Eo do’ Idr dr'dr’ Re CA ", rr;o,-o0)
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(3.2.12)

(3.2.13)

(3.2.14)

(3.2.15)

(3.2.16)



«(RK | —RK ’_3 <8(pB(r, o)80B(r, —(o)>+ , (3.2.17)
or equivalently,
Fé%l) = (1/167%) ZK (4neg)!
X EZO do Eo do’ Idr dr'dr” Re CA ", rro,n)
(VK [p —RKI_3 )<8(pB(r, o) 80B(r, co)>+ . (3.2.18)
In a form that makes the dielectric screening interpretation clear,
Fé((l) =—(/ 167:2) zK gg V" Eodco Eodco' Idrdr' dr"e;ll, A ", rro,0)
x <8q>B(r, ®)SoB(r, m')>+ o _RK- (3.2.19)

Eq. (3.2.19) shows that the first term in the dispersion force on nucleus K in molecule A
results from the nonlinear dielectric screening of the correlated fluctuations in potential
due to molecule B. This component of the force is analogous to the component of
induction force that results from quadratic screening of the static potential due to
molecule B.

The remaining component of the dispersion force on a nucleus in molecule A is given by

the second term in Eq. (3.2.1), denoted by F‘ﬁz) , with
F‘Il((z) = (h/4m)(4me0) 2 V5 Eodm Idrdr'dr'dr"x (l',r';m)|r'—r"|_l

<12 (1,1 0)|r" 1|~ coth(heo/2KT). (3.2.20)
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In appendix A, we derive a relation that connects vK xA"(r, r’;o) to the imaginary part

of the quadratic charge-density susceptibility, CA"(r, r,r';o,0),

” _1 "
vE A (1 0) = (4neg) ! far* zK r”—RK' A r,re0),  (3221)

To show the dielectric screening present in FcIl%Z) , we take Eq. (3.2.21) and separate the

terms with n=j and n # ). We obtain

i -1
Fy) = (/1) 4m) (dmeg) ™ fardridrar™ar® 2K vK - RK|
x{2 2 (0lp(")]){ilp()[n)(n |5(r')|0)m3})5(mn0_m)
n=0 _];tO,J;tn

+2. 2 (0pm|){lpn|n)(n[5]|0)

n#0 j=0,j=n

x Re [(m}}) ~il';/2-0)"118(0ng - )

+2, 2 (o[pm[n)(nlpr]i)ilp

n#0 j=0,)#n

+2 2 (0fp)|n)(n|par)| ) (ilp

n=0 j=0,j=n

")|0) w;}) 3(wp0 — o)

(o)

x Re [(coj}) ~il'j/2-0) " 113(0no - 0)

=X X (0]pe|n){nlper)]i)ilp

n#0 j=0,j#n

XX (ol lmynlacen]i) ifoe)o)

n#0 j=0,j#n

")|0) m}}) d(wpp + )
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xRe[(co}}) +il/2+0) 1 ]8(ang + )

=33 (sl |n)(n)]0)wi dwno + )

n#0 j#0,j=n

Y3 Ol lseln) mlselo)

n#0 j#0,j#n

xRe[(m}}) +iT/2+0) 1 ]8(wpg + )

+ 3 (0] |n) (n]3(r)-poo )| n)(n] 5()] 0) @5o 8(eon0 ~ @)

nz0

+ 3" (0]p(r)|n){n|p(r')-poo(r)|n)(n|p(r")|0) co},lo 8(wp0 —®)
n=0

= > {0]p(r")|n)(n|p(r')-poo(r") |n)(n|p(r)|0) 03;110 8(wpo +0)
n=0

= > {0]p(r")|n)(n|p(r)-poo (r)|n){n|p(r")|0) o);llo 3(wp0 +0)

n#0

+ 2. (0B |n){n|p(r")-po0 (")) (n| ()] 0)

n=0
x Re[(0n0 -©) '] 8(wno - )

+ 3. (0]ote)[n) n] 3000 (")) (a0 0)

n#0
x Re[(@n0 —®)"1] 8(wn0 - ®)

- 3 (01506 m) 5" -po0 (e[ ) nl 3] 0)

n=0

x Re[(wp0 + co)'1 ] 3(wpo + )
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- 2. (0[p(x)[n)(n|(x")-p0o(r")|n){n[5(r)|0)

n=0
x Re[(@,0 +®)'] 8(w,0 +®)}

A
<jr =" B, iV, )Y 1| coth(he/2kT). (3.2.22)

The first eight terms in Eq. (3.2.22) can be described as correlation between the charge-
density fluctuations and the susceptibility fluctuations in molecule A. To show this

correlation explicitly, we define a transition susceptibility of molecule A,
xt‘?o(r, op;r’,wy) following first-order transition hyperpolarizability defined by Hanna,

Yuratich, and Cotter in Eq. (2.19) of Ref. (281). In particular, we need only the real part
of the transition susceptibility; assuming for simplicity that the states of A are real, we

have

Rexno(r,op;r,02) = (1/R) )" [(n p(r')|0) Re (wjo —il ; /2-0y) ")

j#20

P ) (j

+ (n[p(r)] ) (5|p()|0) Re (wjo ~iT'j /2~ wp) 1 ]. (3.223)
From the definition of the transition hyperpolarizability in Eq. (3.2.23), we introduce the

transition susceptibility of molecule A as

Xonr@ir,0 = 3 ({0l ) (315 n) e}
j#0,j#n

+(0p()]3)(j|p(r")|n) Re(wjo ~iTj/2-0) 1. (3.2.24)
Thus, the first eight terms in Eq. (3.2.22) give the correlation between a charge-density

fluctuation at r and a susceptibility fluctuation at r' (and vice versa), within molecule A.

To illustrate the quantum mechanical nature of this fluctuation, we consider the
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correlation between a susceptibility fluctuation at r with frequency —® and a charge-
density fluctuation at r’ with frequency w. In the limit T—0, the fluctuation-correlation
is given by

(1/2){ 8(r", 05, - 0)dp(r’, ) ),

~q1/ 2)< Sy(r", O3, —)op(r', @) +8p (', )8y (r,— w3r”, 0)> : (3.2.25)
Using the facts that
Sy (r,0:r",0) = Sx(r, - w;r",0), (3.2.26)
and
8T (r,0) = dp(r,~v), (3.227)
we obtain

(1/2){ dx(x",0;r,~w) 3p(r', ) ) N
= (1/2)[xon (", 0;r,—®) ppo (r)d(®ng + ®©) +pon (r) xno (r, ©;r",0)3(wpn +©)]
= (1/2)[xon (", 0;r,—®) ppo (r')d(wno + ®) +pon () xno (r, ©;r",0) §(w-0n0) ]

=(1/2)[xon (r",0;r,—o) Pno (r") d(wp0 +®)+pon (r) Xno (T, w; r’,0) d(wpo —w)].

(3.2.28)

From Eq. (3.2.28), we can describe the first eight terms in Fé%z) (which we denote as

Fcli((Z),l below, for convenience) as
i -1
Fiio)) = 1/9)ms0) ™ [ do fardrar"demdrar® 28 v8 - RK‘

x[{ 8x(r",0;r,—w) Sp(r', ») )‘:‘ +{ x(r",0;r', —©) 3p(r, w) )f_‘ ]
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. . -1
xlr—r"'l_l xB(r",r'v;(o) AV _

(3.2.29)

Eq. (3.2.29) can also be represented as

Fcliiz),l =(1/4) (4“«‘30)_3 Eodm’ Eod(o jdrdr’ dr"dr" drdr"Y

-1
xzK vk r"—RK’ 8w+ o)

x[{ &x(r",0;r, ") 3p(r', ©) )f +{ 3(r",0;r',0) Bp(r, ®) )f 1

. . -1
x]r—r”’|_1 xB(r‘",rw;m) AV _

(3.2.30)

Eq. (3.2.30) proves the fact that when a nucleus shifts in the molecule, the change in the
nuclear Coulomb field due to the position shift brings in new correlations within the
molecule. When nucleus K in molecule A shifts infinitesimally, it changes the static

Coulomb field, given by
3§(r") = (4meg) 1 ZR Typ (r’,RK)SRlI}( . (3.2.31)

Previously, Liang and Hunt'*? noted that the change in the nuclear Coulomb field may
introduce new types of fluctuation correlations in the molecules, as well as altering the
magnitude of the correlations. Eq. (3.2.29) establishes the fact that the shift in the
position of nucleus K does bring new fluctuation correlations within the molecule,
namely the correlation between charge-density fluctuation and susceptibility fluctuation.
In absence of any external field, the charge-density fluctuations are correlated by the
imaginary part of the charge-density susceptibility, x"(r,r’,®). The nuclear Coulomb

field alters that fluctuation, brings in new fluctuations, and also introduces a new
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correlation function, {"(r,r’,r";®,0). From Egs. (3.2.21), (3.2.22), and (3.2.30), we can

relate the correlation between the charge-density fluctuation and the susceptibility

fluctuation as
” . ’ ’ A ” . ’ A
(1/2)[{ 8x(r",0;r, ") Sp(r', @) ), +( 8x(r".0;r,0) 3p(r, @) )., ]

= (h/2m) C}A;' n O(r, r,r’;0,0)d(w+ w') coth(hw/2kT), (3.2.32)

where Cﬁ: n O(r, r',r";»,0) means that only the terms with j # n,0 of CA' (r,r',r";0,0)
determine the correlation.
Next, we show the dielectric screening present in Fé((z) 1 The spontaneous

charge-density fluctuation in molecule A gives rise to a perturbing potential that acts on

molecule B, shifting the charge density in B and therefore producing a fluctuating

reaction potential &pB(r, ®) that acts on A:

&pB (r,o) = (47‘(80)_2 Idr.' dr"dr”|r - r’|_1 xB ', r";o)r" - r"’|_1 8pA ", m).

(3.2.33)
Using Eq. (3.2.32), we can simplify Eq. (3.2.29) to
1
K -1 . v KoK | pK
Ry = /@)™ [ do [ dof fararZK vK -R ’
x8(w + co')< SxA (r",0;r,0") &pB (r, co)>
+
1
+(1/4) (4neg) L f;dm Eodm’ farar zK vK r"—RK}
xa(m+m')<sxA(r",o;r',m')&pB(r',m)> . (3.2.34)
+
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The fluctuations in the susceptibility SXA(r", 0;r,®) correspond to fluctuations in the
dielectric function 88;1 A(r",O; r,o), with the same relation as in Eq. (1.2); thus we
obtain

“1s@+)

F(Iliz),l —(1/4)d/or' Eodw Eodco' far zK -

XE() < 58;1’ A(r", O;r,0") 8(pB (r, o))>

+rl=RK

—(1/4)8/ o' j‘_’:dmzK <8(pB(r',m)> (3.2.35)

+rI=RK

Thus, F;%z) 1 in the second component of the dispersion force on a nucleus in molecule

A comes from the dielectrically screened dispersion potential, due to the change in the
charge density of B induced by the spontaneous fluctuations in A. In this case, the
average of the dispersion potential from molecule B vanishes; however, the fluctuations
in the dielectric screening function are correlated with the fluctuations that give rise to the
dispersion potential. Hence, the screened field vanishes, but the screening effect does not.

The remaining terms in the second component of the dispersion force can not be
described in the dielectric framework, because they do not stem from the field induced
fluctuation correlations described above. These remaining terms are not related to a

nonlocal response function of molecule A. In the next part we explain the physical origin

of all the terms present in F&Z) using time-dependent pérturbation theory. We use the

fact that a charge-density fluctuation in A at r’,t' creates a potential in B at r',t’,

which induces a shift in the charge density in B at r”,t. The induced shift in the charge
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density in B creates a reaction potential on A at r, t. This reaction potential acts as an
external time-dependent perturbation and perturbs the ground and the excited states of
molecule A. That results in field induced transitions and perturbed transition charge
density in molecule A. Below we show a systematic analysis of these effects and relate
them to the second component of the dispersion force.

The interaction between the charge-density of A, and the reaction potential from

B is given by the Hamiltonian
AD @) = farpr)-s0B (1), (3.2.36)

where p(r) denotes the charge-density operator for molecule A. Using standard time-
dependent perturbation theory, the ground and excited state wave functions of A to first

order in the applied potential are given by

|wi (1)) = |n)exp[-iop t]

+(1/ih) fwdt' Idr{Z(j|ﬁ(r)|n)&pB(r;t')exp[icojn t']} |j>exp[-i(oj t],
j

(3.237)

and

lyg (1)) =|0)exp[-iwgt]

p(r)|0)3pB (r;t)explijo ']} |j)expl-i w;t],

+(1/ih) fwdt' Jar (X3

J

(3.2.38)
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respectively. The average value of the charge density at r”,t between the perturbed
ground and excited states in molecule A is 3p(r",t) = (yf (t)|p(r")| wj(1))+cc, where cc
means the complex conjugate of the expression. From Eqgs. (3.2.37) and (3.2.38),

8p(r",t) = (0|p(r")|n)exp[iwgpy t]

+in [ ar Jar {2 (0l ) (ils@)]n)

J

x8(pB(r;t')exp[ic0jn t']}expl iu)oj t]

~iny [[_av far (3 (0]p0)]i)(ilp0)|n)
j

x 8B (1) expliwg; t' 1y expli wjn t]. (3.2.39)

In Eq. (3.2.39), the first term represents the unperturbed charge-density fluctuations

between the ground and the excited states at r”,t. The average of this unperturbed

fluctuation vanishes. The second and the third term are the transition charge densities

between the ground and the excited state, perturbed by the reaction potential. We call
these terms the “first-order transition charge density”, Spgln)(r", t) between the ground

state |0) and the excited state |n). Using Eq. (3.2.29) along with a Fourier transform of

the potential to the frequency domain, we obtain

50 "st) = (1/2im) [7 dor [ ar' far 3 (0]p0e)] i) (3[5r) )
i

x {&pB (r;o)exp[i(wjy +@)t']+ 8(pB* (r;®)exp{i(wjy —w)t']}exp[iwg; t]
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~@/2in) [P do [0 at' far 3 (0]p)]3)(l5e")|n)
j

x {Sch(r; w)exp[i(wpj + o) t']+ 8<pB*(r; w)exp{i(wgj - ) t'] yexp[i ®jn t]

= —(1/2h) Eodm jer(Olﬁ(r')m(jlﬁ(r)ln)

J

x{(®jn +(o)'l exp[imt]&pB(r;w)

+(o jn —o))'1 exp[-iot] &pB* (r;w)}expliogn t]

+/20) [°_do far ¥ (0[p00)3)(ilp")|n)

J

x {(o)oj + (x))'l exp[io t]8(pB(r; )

+(0gj-) ! expl-i01]565* (r;0) yexpliogy 1]
= 1721 [* do [7 do’ far Y (0[p(r")])(ilpr)|n)
j

x{((ojn +co)'1 exp[imt]&pB(r;(o)

+((ojn —03)'l exp[-imt]&pB*(r; @)}exp[ ie't 18(wgy — o)
+(1/2h) ﬁod(t) ‘[:.)do)' J-drz<0|ﬁ(r)h><.'l IS(I‘”) |n>
]

x{(wg; +(o)'1 exp[iot ]&pB(r; )

+ (‘”Oj - co)'1 exp[-iot] 8q>B* (r;o)}exp[ it ]d(wgy —0").

(3.2.40)
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The reaction potential &pB (r;o) acting at r in A is due to the shift in the charge density

in B induced by the charge-density fluctuations at r’ in A. So

8(p (r;0) = (411:80)_2 Idr dr” drlV r-r"” 1 B(r"’ iv, m) -r

x(n|p(r')|0)8(w-wpe) . (3.2.41)
From Egs. (3.2.40) and (3.2.41), the first order transition charge-density at r",t in

molecule A is given by

8p40 ("3 1) = —(1/2h) (4meg) [° do [7 dof fardr dr"driV

)(3[B(r) | n){ (0jn +0) Texp[i (@+) 1]8(0n0 - ©)8(won - ')

+(® in ~ (o)'lexp [i(0-")t]d(wpo + ©) d(wpy — ')}

’

xlr_rml—le " |v 0)) _r

(n]p()]0)

+(1/2h) (4megy )_2 E; do f; do’ Idr dr'dr” drlV

x 3 (0[5(r) |i)(j| Hr") [n){(woj +©) ! expli(w+w) 18(@ng - ©) 5wy - )
i

+Hwgj — (o)'lexp[i (0-o')t]d(wn +®) (oo —®')}

’

-r

-1
(n

Eq. (3.2.42) is obtained using the fact that the charge-density operator is not self-adjoint

<jr-r"| LB eV )Y )]0). (32.42)

in the frequency domain. Equivalently
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3008 (r°50) = ~(1/28) (4meg) 2 [ do [ do fardr’ e ar’¥

xZ<O|f)(r")|j)(j|f>(r)|n){((ojn +m)_1exp[i(m+m')t]8(mn0 -0)d(0+ o)
i

+(o in -~ (x))']exp[i (0-0")t]3(wpo + ©) d(0 - ')}

x|r-r"'|—l B r;m) -

’

er -r

(n|p(r)|0)
+(1/2h) (4megy) 2 J:odm f; do [drdr’ de” dr'Y

x (016 [5)(i] Ay [n){(wgj+0 ) expli( 0+0' ) ]8(@no - ©)8(w + o)

j
+0j — ) IExpli(0- ") t]8(0n) + ©) (0 - 0')}

. -1
x |r-r"'|_1 xB r",r'V;0) (n|p(r")|0). (3.2.43)

’

l'lv -r

Eq. (3.2.43) shows that although the reaction potential acting on A is time-dependent, the
perturbed first-order charge density in A is time-independent.
From Eq. (3.2.43), we collect the terms with j # n, 0. Then integrating over o’

and rearranging the terms, we obtain

o5 (") = ~[(1120) ey 2 [ doo [ardr dr”dr™

x 3 [HO0[pn)] i) (i|p)|n)wibh +(0]pr)|i)(i|p™)|n)
j0

j#0,n
x(@j0 ~ )1 }8(eang - o)

+{(0[pr")|3)(i[p)[n)wig + (0] j) (316" |n)
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+(0]p()]5) (i B | n) (@0 + ) }8(wng + )]

xlr_rm|‘-1 xB(rn, riv;m) riv -r

(n

p(r)|0)]. (3.2.44)

Interchanging r and r’ in the terms and adding them to the terms in Eq. (3.244) yield the

terms present in FK_ Thus, the first eight terms present in the second component of
d(2),1

the dispersion force arise due to the interaction of the first-order transition charge density

in A with nucleus K. The first order transition charge density at r" is induced by the

reaction potential 8(pB (r,t) and is determined by the transition susceptibility of A. From

Eq. (3.2.44), we can write F§2) 138

-1
Y 50", (3.2.45)

~(1/2)(4neg)~! [arrZK oK ‘RK —r
n=0

K _
Fio)1 =

One thing to note here (and also in the next sections) is that in Eq. (3.2.44), both terms
appear with the same sign, whereas in Eq. (3.2.22) they appear with opposite signs. This
apparent disagreement of sign is due to the fact that in the time-dependent perturbation
formulation, we are considering the charge density fluctuations in the limit of zero
temperature. At a finite temperature, we will have to consider the canonical distribution

of the eigenstates. We will solve discuss this later in this chapter.

Next, we explain the second set of four terms [we denote them by Fcll((Z) 2]in Eq.

(3.22.2). We use the same formulation as in the previous section, but here we only

consider the terms with j = n in the initial state and j = 0 in the final state (which are
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considered as secular terms in time-dependent perturbation theory). Integrating over ',

we obtain
30 (') = ~(1120)(4me0) 2 [*? do [drdr’ar”dr™ [(0]5(x") ) (n]p(r)| )

x{8(an0 — ) +8(n0 +©)}~(0]p(r") [ n){0]p(r)|0) o}

x{8(wpo —©) +8(wp +®)} ]jr- r"|_1 xB(r", riv;m) AV

(n]p(r)]0)

= —(1/2h)(4ne )2 Eo do jdr dr'dr” dri [(0]p(r")|n){n|p(r)-poo(r)|n)

x{8(0n —®) +8(wpp +©)}|r- r"’l_l xB ", rV;0)

<V~ (n|p(r)]0). (3.2.46)

Thus, Eq. (3.2.46) shows that the second set of four terms in Fcll((Z) are due to the

interaction between the first order transition charge-density and the nucleus, where the

first order transition charge-density is induced by the interaction between the reaction

potential and the difference in the permanent charge densities between excited state In)

and ground state. These four terms can not be explained within the dielectric framework,
because they do arise from the response of molecule A to the reaction potential from B.
In the next part of this section, we explain the last four terms in the second

component of dispersion force. The spontaneous charge-density fluctuation in molecule

A brings it from the ground state to the excited state |n). During the time interval t—t’,
molecule A remains in the excited electronic state |n) and that creates a change in the

potential at the nucleus due to the change in the average electronic charge density. When
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the reaction potential 8pB (r,t) acts back on molecule A, it brings A from exited state
|n) to the ground state. The first-order amplitude for this induced transition ]n) - |O)
together with the change in the potential at the nucleus determine the last four terms in

F§2)' The change in the potential at the nucleus during the time interval t—t' is given

by

-1
Ap®RE;t-1) = ~(dneg) ™! [arrZK lRK —r'|  [{n|par")|n)-(0|p(r")|0)].

(3.2.47)

From time-dependent perturbation theory, the first order amplitude for the transition
|n) —>|0) due to interaction with an external time-dependent Coulomb potential is given

by

p(r)|n) (won + @)

(1) _ _ ' 1em 10V
c|n>_)|0>(t)_ (1/2h) J:Od(o [drdrdr=dr™ ({0

x exp[i(0Qp + )t 1pex (r,®)+{0|p(r)|n){n|p(r")|0)(won - (o)'1
x expli(0gn — ©) t]Pex (T, ®)} . (3.2.48)
Using the reaction potential &pB(r, ®) in Eq. (3.2.48), we obtain

1 =20 [, Joa deae® (00 50

x (o + a))'1 exp[i(wgp + ) t]d(®po —®)

+(0[p()|n){n]p(r")| 0) (0gn - @) 8(wpe + o)}

iv -1
r - ’

x|r —r"[-l xB(r"', riv;a)) r
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= (1/2h) (4neg) 2 E;dm [ardrdr"dr™ {(0|p(r)|n) (n|p(r")|0) (pg — @) !

x8(wn0 — ) +(0[p(r)|n)(n| p(r")] 0) (ono + @) (g + )}

iv -1
r'-r

x|r - 'f"'l_1 B rV;0) ' (3.2.49)
Thus, from Egs. (3.2.47) and (3.2.49), the last four terms in Fcll<(2) are given by
K —_ enK.. )
Fi2)3 = (/DA (R™5t-1) 3 Clnos]0) O (3.2.50)

n=#0
These four terms are not connected to the dielectric model, since they do not originate
from the response of A to the perturbing potential.
Eqgs. (3.2.45), (3.2.46), and (3.2.50) show the physical significance of the second
component of dispersion force. We have proved the origin of the terms using perturbation
theory. Although the external perturbation is time-dependent, the dispersion force does

not show time-dependent behavior, which is the exact same result obtained using reaction

field theory.z'129

Finally in this chapter we discuss the apparent disagreement between the signs of
the terms from perturbation theory and the terms we obtain from the derivative of the
imaginary part of the charge-density susceptibility. The hyperbolic cotangent function in
the dispersion energy appears from the fact that when we consider the charge-density
fluctuations at a finite temperature T, we need to use the canonical distribution of the

138,282

molecular eigenstates. The ratio of the spectrum of the charge-density fluctuations

and the imaginary part of the charge-density susceptibility yields the hyperbolic

cotangent function in the dispersion energy. In the formulation described above, we have
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used zero-temperature fluctuations. In the limit T — 0, coth(kw/2kT) — [6(®)-6(-0)],
where 0(w)is the Heaviside step function.’® Thus in the limit T — 0, Eq. (3.2.22)

simplifies to

. -1
Fj%z) = (1:/}*12)(i‘z/41c)(41tz;0)—3 _[drdr'dr"dr"'drw zK r"—RK'
(XX (0lp]i)(ilB|n) (n]pr)|0) oy ono )
n=#0 _]?‘-'O,J;tn

+2. 2 (0lpm|i)ile]n)(n|Br)]0)

n=0 j#0,j#n

x Re [((03}) —iFj /2—0))_1]8((0“0 -m)

+3 Y {0[pm)|n)(n]pe)]i)ilp )o>m3})s(mn0_m)
n=0 j=0,j#n

+Y X (0]p)|n)(n[pe)]3){i|pe)|0)

n=0 j#0,j#n

x Re[(co}}) ~il/2-0)"18(0p0 —©)

-3 X (01p)]n)(nlpee)] ) (ilpr)|0) @i dwno + @)

n#0 j#0,j#n

=Y (0] n){(n|pe")|5)(j|p(r)|0)

n#0 j=0,j#n

xRe[(co}}) +il/2+0) 1 18(0ng + o)

=Y X (o) (lB) n) (n]p)|0) @l S(wno + )

n=0j=0,j#n

72 .



-2 2 {0lpnli)

n=0 j=0,j=n

)[n){n|p®)]0)

xRe[(m}}) +ij/2+0) 1 18(0n0 +©)

n)(n|p(r)-po(®)|n){n|3(r")|0) opp 8(wno - ®)

+ 2 (0lpr)

n=0

+ Y (0]p(r)|n)(n|(r")-poo (r')|n)(n|p(r")|0) ok 8(on0 - )
n=0

n)(n|p()-p0o(r")|n) (n|3(r)| 0) o 8(ewn0 +)

n=0

~ 3 (0]p(r")|n)(n](r)-poo (7)|n) (n|(r")| 0) s B0 + )

n=0

+ ¥ (0]o(e)|n)n 000 ) (nl5]0)

n#0
x Re[(@q0 - ©)"'] 8(wno - ©)

+ ¥ (0150 ) (n]o(e"-p00(e]m) (0306 0)

n#0
x Re[(0n0 —©)"'] 8(wn0 - )

= ¥ (0]p(e) ) {nl")-po0(e")]m) (a 5660}

n#0
x Re[(0n0 + co)'l ] 3(wpp +®)

= ¥ (0]3(e)n)(nl"-p00 (" ) nl 3] 0)

n=0

x Re[(wp0 + co)'1 ] 8(owp0 +®)
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-1
[6(0)-0(-w)]. (3.2.51)

xlr_rm‘—] xB(r"',riv,a)) riv -r

Since 6(w) vanishes for ® < 0, Eq. (3.2.51) yields exactly what we have obtained using

perturbation theory.

Thus, we can write the total dispersion force on nucleus K in molecule A as a

sum of four terms,

K_gK ,pK K K
Fg = d(1)+Fd(2),1+Fd(2),2+Fd(2),3’ (3.2.52)

Both F(ﬁl) and Fé((Z),l are described within the dielectric framework. F(ﬁ%l) results from

the nonlinear screening of the fluctuating potentials from B within A, while F§2)1

appear due to linear screening of the fluctuating potential from B, due to the
susceptibility fluctuations in A. F;%z) 2 and F(Ii((z) 3 do not have dielectric

interpretations, since they are not related to response functions of A and they do not show
any dielectric screening. All of the terms in dispersion force result from the interaction of
the nucleus with an induced shift in the electronic charge density (or change in the

average electronic charge density) of the same molecule. This is known as the Feynman’s
Conjecture about the origin of dispersion forces.'®® The first general proof of Feynman’s
Conjecture was given by Hunt,188 where the dispersion force was given as a function of

Imaginary frequencies. In this work, we have showed the general proof of Feynman’s

Conjecture in the real frequency domain.
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Chapter 4: Dielectric screening and the three-body nonadditive interactions at

second order

4.1 Dielectric screening of the three-body induction energy at second order

In this section we show that the nonlocal dielectric model can accurately describe
the three-body induction energy at second order of molecular interaction. In section 2.1,
we have showed that for a pair of interacting molecules, the two-body induction energy
results from changes in the static Coulomb interactions within each molecule, due to the
presence of the second molecule, which acts as the dielectric medium. In the present
chapter, we consider a group of three interacting molecules A--B--C with weak or
negligible charge overlap. We prove that At second order, the three-body induction
energy results from the change in the two-body induction energy of a pair of molecules,
due to the presence of a third molecule, which acts as a dielectric medium.

The interaction energy of two test charges is affected by the presence of a
dielectric medium. The shift in the interaction energy of two test charges in presence of a

linear dielectric medium characterized by the potential screening function &, (r,r’;0)is

given by

AE = [drdrdr” pip(’) _ far drr POPr) (4.1.1)
4mey (r,r;0)|r" 1| 4meq|r-r|

where the first term gives the screened interaction energy due to the presence of the
dielectric medium and the second term gives the direct, unscreened interaction energy of
the two test charges. We prove that Eq. (4.1.1) describes the second-order three-body

induction energy for a group of three interacting molecules, where the permanent charge
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distributions of two molecules act as the test charges and the third molecule acts as the
dielectric medium with the same nonlocal dielectric function given above.

For a group of interacting molecules A:-‘B:-C, the nonadditive three-body
induction energy results as follows: the permanent charge distribution of one molecule
sets up a potential that shifts the charge distribution of the second molecule; in turn, this
produces a potential that acts on the third molecule, creating a non-additive shift in the

energy. Thus the three-body induction energy depends on the static, nonlocal charge-

density susceptibilitiesxA(r,r';O), XB(r,r’;O), and xC(r,r';O)of the interacting

molecules:

AEZD) = fardrx™ (e r30)0f ()65 ()

+ Jardr B r; 005 (M0f @)
+ [drdry (r,r';O)(pOA(r)(pg(r’). (4.1.2)
Here and below, AEgl(n’n) denotes an energy shift in molecule X, of order m in the

interactions among n distinct molecules. In Eq. (4.1.2), (pg (r) denotes the static external

potential acting on A due to the permanent charge distributions in B (and similarly for B
and C). The first term in Eq. (4.1.2) can be interpreted as follows: the static external
potential from C acts at r’ in A, creating an induced shift in the charge density at r
within A. The induced shift in the charge density at r then interacts with the static
external potential from B at r, thus producing a net energy shift. Eq. (4.1.2) can be

written for more compactness as

AE%&” = (1+CABC) [drdr'x (r,r;0)95 (0§ (), (4.1.3)
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where the operator Copgc denotes cyclic permutation of the indices A, B, and C in the

expression that follows.
Expanding the potentials in terms of the permanent charge densities in Eq.
(4.1.3), we obtain

2,3)

AEi(nd = (1+CABC) (4meg) ™2 Idrdr’dr”dr"pg(r-)|r~_r|—1

oA w0 -r S ), (4.1.4)

where as usual, pg)( (r) is the permanent charge density at r in molecule X. From Eqgs.

(1.1) and (4.1.4), with a change in the labels of the integration variables, it follows that
the second-order three-body induction energy is accurately expressed within the dielectric

model by

AE§121<’13 ) - (1+CABC) (4ne )_1 Idr dr'dr” pg (r)[eg e;l, A(rr0)] r" - r'|_l pg )

~(4neg) ! fardr' pBo)fr-r oS ()
--(471:(»:())—l Idr dr’ pg ®)|r- r'l_l pg‘ r"

- ’ ! —1 !
—(4meq) 1 Idrdr p(l)\(r)lr—rl pg(r), (4.1.5)
where ey A (r,r’;0) is the static nonlocal dielectric function of A defined in Eq. (1.1).

The first term in Eq. (4.1.5) gives the screened interaction energy due to the Coulomb
interaction between the permanent charge distributions of two molecules, in presence of a

third molecule, which acts as the dielectric medium. For example, the first term in Eq.
(4.1.5) gives the static Coulomb energy of the interaction of pg (r)and pOC(r') in

presence of molecule A, which acts as the dielectric medium to screen the interaction
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between the unperturbed charge distributions of B and C. The screening is nonlocal,
since sclA(r,r"; 0) depends both onrandr”. The sum of the last three terms in Eq. (4.1.5)

gives the static Coulomb energy of the unscreened interactions between the unperturbed
charge distributions of the molecular pairs. Thus, the three-body induction energy at
second order depends on the difference between the dielectrically screened and
unscreened interactions between the unperturbed charge distributions in two molecules.
The results are in accordance with Eq. (4.1.1) for the interaction between test charges in
presence of a dielectric medium. A fundamental difference between the two-body
induction energy and the three-body induction energy at second order is that the two-
body induction energy results from screening of intramolecular interactions, while the

three-body induction energy results from screening of intermolecular interactions.

78



4.2 Dielectric screening of second-order three-body induction forces on nuclei of
interacting molecules
In this section, we prove that the dielectric screening model can also describe the
three-body induction forces at second order on nuclei of interacting molecules. Following

Eq. (3.1), the second-order three-body force on nucleus K in molecule A is given by

K(2,3) _ _gK Ap(2.3)
Fo ) =-v© Ay, (4.2.1)

where as usual, VK means derivative with respect to the coordinates of nucleus K.
Following an expression derived earlier by Li and Hunt, we can write the three-body
induction energy at second order as

gd” = ~(1+CaBC) [drdrays(r.r; 035, (r)30|3 (4.2.2)

where 3(])301 (r) denotes the a component of the field acting on A due to the unperturbed,
static charge distribution pg(r) of molecule B, and similarly for J I3(r) In Eq. (4.2.2)
a(‘:‘B(r,r';O) is the static nonlocal polarizability density of A, defined in Eq. (2.1.2).
Expanding Eq. (4.2.2) and using Eq. (4.2.1), we obtain

K(2 3) _
md

= [drdr’ o aB(r r;0)/oRK3B (3 3BT
+(1+ppC) [drdra® y(r.r' 10035 (r)/oRK SCB 4.2.3)

where the operator gpgc permutes the labels B and C in the expression that follows.
Using the relation between the derivative of the nonlocal polarizability density with

respect to RX and the nonlocal hyperpolarizability density from Eq. (3.1.2), the derivative
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of the field SOAa(r) with respect to R® from Eq. (3.1.4), and the relation between the
derivative of the permanent electronic charge density pgA (r) with respect to RX and the
nonlocal charge-density susceptibility xA (r,r’;0) from Eq. (3.1.5), we obtain

FK(2,3)

K23 _ 7K fardrar Bé\y 5 (£,F,%0,0) 3(1)33(,) 30Cy(r')T8a " .RK)

+(1+9BC) ZK (47t80)"2 I drdr'dr"dr” al?y (r,r';0) (13 —1)|r - r"|_3

-1
<y A0 vk r"'—-RK\ Sgy(r’)

+ (l + pBC ) ZK (41t80 )—1 jdr dr' agy (r, r,; O) SOC'Y (r')

-3
xV& (3 -RY) r—RKl : (4.2.4)

B

The first two terms in Eq. (4.2.4) yield the force on nucleus K due to its interaction with
the second-order three-body polarization of A. To show it explicitly, we note that the

component of the field at r in A due to the permanent charge density in B is related to the
potential at r by 3(])35 (r)=-Vg ¢(l)3(r) =-Vp (41&:0)"l _"dr"'|r—r"']_1 pg(r‘”) and the

charge density at r” in B is related to the polarization by Eq. (2.1.3). Thus, the first term

in Eq. (4.2.4) gives

ZX [drdr ar Bﬁ‘y 5 (1.1'.1":0,0) 336 ®3§ ()T (0, rK)
-zK J'dr dr'dr"dr"dr'Y ﬁa s (r,r',r";0,0)[ Tge(r, r”) Pg’; "]

x [Tm(r',riv)Pgn(riv)]Taa(r',RK) . (4.2.5)
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Using the relation between the charge-density susceptibility and the nonlocal
polarizability density from Eq. (2.1.4), the second term in Eq. (4.2.4) can be written as

(1+pBC) ZX (4neg) ™2 [drdrdr” dr"'al?y(r, " "3

<A, r0)vK

K|~

= (1+pBC) zK I drdr'dr"dr" driV [011‘?8 (r",r";0) Tsp ",r) oB

B.Y (rs r'; 0)

xTye (r'.rV)BS (V)] Toq . RK). 4.2.6)

Thus from Eq. (4.2.4), (4.2.5), and (4.2.6), the sum of the first two terms [denoted by

Filgd, a(l)] are given by
K23) _ K K _\pA2,3)
Fnd.a(l) = Z jdrTaB(R PR @27

in accordance with Eq. (58) in ref. (278) derived by Li and Hunt. The last term in Eq.

(4.2.4) [denoted by FX, o)) vields

K23)

ind,a(2) = (1+ppc)Z® IdrTaﬁ(RK,r)PB(l)(r) (4.2.8)

In the next part of this section, we connect the three-body induction force on

nucleus K to the dielectric model. First, we write the induction force from Eq. (4.2.4) in
terms of AP1Bq (r,0), the induced change in the static polarization of molecule B (at first
order), due to the permanent charge distribution of C (and similarly for C), given by

API (r) = jdr aop(r' 0)3 B (4.2.9)

Using Egs. (2.2.3), (4.2.4), (4.2.9) and (3.1.8), we obtain
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pK(23) _

indq ) = —Z" (4nzg) ™ [drdr drBg s (1,170,035, () 3G, ()

0B

-1
<Kyt r"—RKl

—[1+C(B—C)][ ZK (4neg) 2 jdrdr"dr"’APll?B(r) vplr-r|

-1
X XA ", r";0) VaK | RK l

+78 (amegy™! [ar APlBﬁ VK Vg

-1
r—RK’ 1. (4.2.10)

The operator C ( B — C) in Eq. (4.2.10) means replacing the molecular label B by C in
the expression that follows. The potential acting on molecule A is the sum of the potential
due to the unperturbed charge distributions of B and C, and the potential due to the shift
in the charge density of B, induced by the potential due to the unperturbed charge
distribution in C (and similarly the potential due to the shift in the charge density of C,
caused by the potential from B). Thus from Eq. (4.2.10), the three-body induction force

on nucleus K depends quadratically on the potentials from the permanent charge

distributions in B and C and linearly on the potential, A(plB (r), due to the first-order shift

in the charge distribution in B, Ap{3 (r") (and similarly for C). Using A(p?(r) from Eq.

(3.1.10) in Eq. (4.2.10) and by repeated use of divergence theorem, we obtain

K23 _ K

ind.a (41'£80)-l Idr dr’ dr"[VB V'Y V§ Bg‘y 5 (r,r',r";0,0)]

-1
<op )05 () VE - RK|
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1
~[1+C(B - O))[ZX dneg)~! [drdryArri0) v r—RK‘

xA(p?(r',O)
+ZR R (2P ®RE 011, @211

where we have used the Born symmetry of the charge-density susceptibility xA (r,r’;0)

with respect to an interchange of its arguments.

Next, we use the relation between the nonlocal hyperpolarizability density
Bé\% (r,r',r";0,0) and the quadratic charge-density susceptibility {(r,r’,r";0,0) from Eq.

(3.1.12) and a relabeling of the integration variables, to obtain

eK(23) _

ind.o _zK (41t80)—1 Idr dr'dr” CA (r,x',r";0,0)

x(p(])B(r)(pf):(r')a/61'Ol |r"'—r|_1 ‘ _RK

~[1+C(B - C)][ZK (4neg)~! [dr'ar"yA (", r:0)

x0/1g

r- RK‘ AL (r',0)

r = RK
-z vR [aeP (R, 0)]] (4.2.12)

Using Egs. (1.1), (1.10), and (4.2.12), the second-order three-body induction force on
nucleus K in molecule A is given by

FK(2 3) _

ind. o [1+C(B—>C)]ZK806/6ra[Idr A(r,r O)Aq)l (r, O)]

K
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_ZK g0 0/ oy Idr' dr” e:l, A(r, r,r";0,0)]

xoB(r,005 @01 .

(4.2.13)

Equation (30) shows that the second-order three-body induction force on a nucleus in

molecule A results from screening of the potentials from neighboring molecules B and C;

the first-order potential due to the induced shift in the charge density in B (or in C) is

screened linearly within A , while the unperturbed potentials from B and C are screened
quadratically.

At second order, the effective three-body potential within molecule A is given by

oo P (r,0) = [1+C(B > C)]eg [dr'e T (r:0) 808 (r,0)

+eg [drdregl(rr,r0,000,005@7,0). (4214

Thus, using Egs. (4.2.13) and (4.2.14), the second-order three-body induction force on

nucleus K is

K23) _ AQ23
Fnd = e,

ZKa/ar[(p

0] (4.2.15)

r=RK
Eqgs. (4.2.13) and (4.2.15) prove the fact that the three-body induction force on nucleus K

in molecule A at second order can be exactly described by the dielectric screening model.
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Chapter 5: Dielectric screening of three-body and four-body interactions at third

and fourth orders

In this chapter, we derive the three-body and four-body intermolecular interaction
energies at third and fourth order within the dielectric model. We show that the results are
in agreement with the results from quantum perturbation theory. In chapter 4, we have
showed that at second order, the three-body induction energy results from dielectric
screening of the Coulomb interactions between the permanent charge densities of two
molecules and the screening arises due to the presence of a third molecule which acts as
the dielectric medium. In the present chapter, we prove that at third order the induction
energy results from either intermolecular or intramolecular screening, depending on the
type of interaction. Moreover, nonlinearity appears in the induction energy at third order,
resulting quadratic response and nonlinear screening. At second order, the interaction
energies show linear screening only.

Nonadditivity in dispersion energy first appears at third order. In chapter 2, we
have proved that the second-order dispersion energy results due to the dielectric
screening of the intramolecular exchange-correlation energy. We show that at third and
fourth orders, the dispersion energy still appears due to screening-induced change in the
intramolecular exchange-correlation energy. However, at third and fourth order, the
dielectric medium consists of two and three molecules respectively and that brings many-
body effects in the screening function. We derive the many-body dielectric functions
from the many-body susceptibilities of the interacting molecules and we describe the

screening of the dispersion energy at third and fourth orders in terms of these dielectric
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functions. We also prove that the dispersion energy at third and fourth orders results from
screening of the dispersion energy at second and third orders respectively, and that
screening appears due to the presence of a third or a fourth molecule which acts as the
dielectric medium.

The third category of interaction that appears at third and fourth orders is the
induction-dispersion. It results form the perturbation of the dispersion energy by a static
external field. The external field perturbs the response function of the molecules and
brings in new type of fluctuation correlations. Dispersion energy shows linear screening
only, but the perturbation by an external field produces nonlinear response, and hence
nonlinear screening in the induction-dispersion energy. At third order, induction-
dispersion energy includes nonlinear screening only. At fourth order, both linear and
nonlinear screenings appear.

We prove that the screenings present in the interaction energies at third and
fourth order are described by the nonlocal dielectric functions introduced in chapters 2

and 3.
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5.1 Dielectric screening of the induction energy at third order

In this section, we show that at third order, the three- and four-body nonadditive
induction energies are described within the nonlocal dielectric model. We work within
the third order of perturbation theory and express the nonadditive induction energies in
terms of the static nonlocal charge-density susceptibilities of the interacting molecules.

Then we relate them to the nonlocal dielectric functions €, (r,r’;0) and £q (r,r',r";0,0)

introduced earlier, in order to show the dielectric screening.

Depending upon the type of interaction (and hence the molecular excitation
pattern), both linear and nonlinear responses contribute to the induction energy at third
order. In presence of a dielectric medium, the interaction energy of two test charges is
screened. The shift in the interaction energy caused by a nonlocal dielectric medium with
linear screening is described by Eq. (4.1.1) in the last chapter, and we have proved that
Eq. (4.1.1) accurately describes the dielectric screening in the induction energy at second
order. In the present section, we prove that the same equation still applies for the third-
order induction energy. However, at second order the interacting test charges correspond
only to the unperturbed, permanent charge distributions of the molecules. At third order,
p(r) in Eq. (4.1.1) can be either the permanent charge distribution of a molecule, or the
induced shift in the charge density of one molecule cause by the permanent charge
density of another molecule. Depending on whether the two interactingk charge
distributions are permanent or induced shifts caused by an applied potential, the
interaction can be categorized as a particular many-body type (i.e. three-body, four-body

etc.).
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Nonlinear screening appears at the third-order induction energy. In presence of a
nonlinear dielectric medium characterized by the quadratic dielectric function

gq(r, r’,r";0,0), the interaction energy of three charge distributions is given by

AE = (4meg) ™2 [drdr’ de"dr” dr®¥p(r)[ 4meq (r.r',r";0,0)] ]

I" _ rlv

x|r'—r"'|_1 p(r™) p(riv). (5.1.1D

At third order, the charge distributions in Eq. (5.1.1) correspond to the permanent charge
densities of the interacting molecules. Unlike the screening caused by the linear response
of the dielectric medium, nonlinear screening does not stem from the screening of a
lower-order interaction. This is because, at different orders of perturbation theory the
interactions arising purely due to the nonlinear response are characterized by response
functions of different orders and they can not be interrelated to each other.

From intermolecular perturbation theory, the third-order energy for a cluster of
molecules A--B-C---D of arbitrary symmetry, interacting at long range is given by

<0] \% |m><ml V0 n><n|\7 |O>

AE(3) ) i 5.1.2
mzat:OrEO (Em —E)(En —Eq) (5.12)

where |m> and ln) are the excited states of the molecules. Vis the interaction

Hamiltonian and for a pair of molecule A and B,

VAB = (aneg)! far ' p2r) pB () [r-r| 7. (5.13)
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In Eq. (5.1.2), the operator V" = V —(0|V|0). Following Li and Hunt, we separate the

third-order induction energy AESS()i into the hyperpolarization energy AE§13y)p , the static

reaction potential energy AE%), , and the third-body reaction potential energy AEgi) .

Hyperpolarization energy results from Eq. (5.1.2), with the excited states |m),
|n) confined to one molecule and m, n # 0. For molecule A, the three-body and four-

body hyperpolarization energies at third order are given by

AERSS) = (1/2) (1+ ppe) fdr dr’ dr¢A . 1,1750,0) 9 (1) 0§ () 06 )
+(1/2) (1+ppD) [dr dr' dr"¢A . r',r";0,0) 08 (1) 95 () 0 ")
+(1/2) (1+pcp) [dr dr’ dr" LA (r,1,17:0,0) 0§ (1) 0 () 00 ("),
(5.1.4)
and
AEI“:‘Y(S"‘) = [arar ar A e, r%0,0) 0B () 05 () 0D 7, (5.1.5)

respectively. In Egs. (5.1.4) and (5.1.5), CA (r,r',r";0,0) is the quadratic charge-density
susceptibility of molecule A. The operator ppgc permutes the labels B and C in the
expression that follows. The hyperpolarization energy of A in Egs. (5.1.4) and (5.1.5) can
be interpreted as due to reaction field effects, where the potentials from the permanent
charge distributions of two neighboring molecules create a nonlinear shift in the charge
density at r in A. The induced shift in the charge density interacts with the potential due

to the permanent charge distribution of the third molecule, thus resulting an overall
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energy shift of A. To connect the hyperpolarization energy to the dielectric model, we

expand the potentials in Egs. (5.1.4) and (5.1.5), and then use Eq. (1.10), to obtain

AEgg’?’) = (1/2) (1+ ppC) (4neg) 2 [drdrdr"dr"drpB ()

. =1 .
iV pOC V)

x[€Q eq—’lA (r,r',x";0,0)]|r' - l""|_l POC (r")

+(1/2) (l+pBD)(4nso)_2 Idrdr’dr" dr” dri B(r) [eoe A(r, r,r";0,0)]

. =1 .
’ M—l » n
x[r' —r"| p(]))(r W - p(l))(rw)

+(1/2) (1+ pcp) (4neg) ™2 [drdrdr” dre™dr™p$ (r) [ a;lA (r,r',r";0,0)]

x|r’ —r"’l_l p(]))(r"') r—rlV - p(]))(riv),
(5.1.6)
and
AEI':‘),(S’4) = (4ne( )_2 Idr dr'dr” dr” dri¥ pg (QIEN Sc—l,lA (r,r',r";0,0)]
e e oS- el -1 oP(elY).
(5.1.7)

If we define the two-body and the three-body effective potentials at r due to nonlinear
screening by (pg% (r) and (pg%(r) respectively, then

AEgg;) (2,AC) (r)

(1/2)[CB~C)] fdrpg @ e

+(1/D[CB-D)] [drof Mol )
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+1/2)[C(C-D)] [drpB e FH D), (5.1.8)
and
AEAY(S A = [arpBr)eGAP ). (5.1.9)
The effective potentials in Egs. (5.18) and (5.1.9) are given by
oA () = far'ar” lso¢ A(r r,1%,0,0)Jo§ ()05 ("), (5.1.10)
and
oGACD () = [arar[ege; A(r r,1%,0,0)]05 (F) oD ). (5.1.11)

The operator C (B — C) in Eq. (5.1.8) replaces the labels B by C in the expression that
follows it.

Egs. (5.1.6) — (5.1.9) prove that the hyperpolarization energy at third order is
accurately described within the dielectric framework, where one molecule acts as the
nonlinear dielectric medium to screen the interaction between the permanent charge
distributions of other two or three molecules. The results are consistent with Eq. (5.1.1).

The net three-body and four-body hyperpolarization energy at third is obtained by

summing the AE%S) and AE%S) for A, B, C, and D.

Static reaction-potential effects correspond to the dynamic effects in dispersion
interaction, with the difference that the reaction-potential is produced in response to the
permanent charge-density in this case, rather than the charge-density fluctuation. Static
reaction potential energy results from linear screening and is obtained from Eq. (5.1.2)

with m # 0 in one molecule and n # 0 in the other molecule. For molecule A,
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A(3 BD) A(3 CD)

+AEg

aESH), = AESEHBO) +AE{

srp,A

l xB (r', r.; 0)

= (1/2)(4neg )_3 [ Idr dr'dr" dr" drlV drV pA

. -1
x ]rﬂ _ rnl-l XC (rn’ r ; rlv _ rV pOA (rv )

+ Idr dr'dr" dr” drlY drY pé (r)|r- r'l—1 xB(r', r’;0)

-1
x|r" | -1 D(r r AV _,v pOA(rv)

+ Idr dr'dr”dr"drtY drY pé (r|r- r'l_l xC (r',r";0)

-1
<" —r" )P, Y| b, (5.1.12)
3,BC)
where each term accounts for two different polarization routes. For example, AE stp,A

accounts for the polarization routes A>B—>C—>A and A—>C—>B—>A. Summing

AEC)  from Eq. (5.1.12) with AESS), AES

srp A C(3 3 an s],)r[()3’3) gives the total

A(3 BC)

static reaction-potential energy AE%?) at third order. AEg can be viewed as the

induction energy of molecule B, in the presence of the unscreened external potential from
molecule A and the screening potential from the shift in the charge density induced in C
by A. Alternatively, it can be interpreted as the unscreened interaction between the first
order shifts in the charge densities of B and C, caused by the permanent charge

distribution in A. To show the dielectric screening present in the static reaction potential

energy, we take AEEI.S”BC) from Eq. (5.1.12), the second-order two-body induction
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energy of B from Eq. (2.1.5), and the relation between the nonlocal dielectric function

and the charge-density susceptibility from Eq. (1.2), to obtain

AE‘SA,.S”BC) = (1/2)(4me )2 Idr dr'dr” dr” drl¥ pOA (r)|r- r’|_1 xB (r',r";0)

. -1
rlv _ rm pOA (rnr)

x[eg & cr"r™)]
: v oA (v
~(1/2) [drdr'y® (3000 ()07 ()
=(1/2) (47[80)-2 Idrdr' dr" dr” drlV pg‘ (r)|r —r'|_1 xB(r', r’;0)

. -1
v, pOA ")

x[e0 ey cr"r™)]
—(1/2)(4meg )"2 Idr dr'dr’dr” ¢ (r,r’;0)
vl ph (). (5.1.13)

x|r-r" 1 pg‘ ")

The first term in Eq. (5.1.13) gives the screened induction energy of B due to its
interaction with A, in presence of C which acts as the dielectric medium. The second
term is the unscreened second-order induction energy of B. Eq. (5.1.13) proves that the
static reaction potential energy at third order results due to the difference between

dielectrically screened and unscreened second-order induction energy of a molecule.

Note that AE%;‘) = 0. Four-body terms in the static reaction potential first appear at the

fourth order of perturbation theory.
Third-body potential energy has terms with polarization routes that begin and end
at different molecules. At third-order, the third body potential energy shows both three-

body and four-body effects and is obtained from Eq. (5.1.2) with the same excitation
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pattern as in the case of static reaction potential energy. Thus, it includes linear screening
only. First we consider the third-body potential energy corresponding to the polarization

routes A—-B—C—B and B—C—B—A.

AEgg’p??ABC = (1/2)(4ne )"3 _[dr dr'dr’ dr" drt¥ drV pg (|r- r'|_1
. . -1
x XC (rf, rn; O) |rn _ rnl_l xB (l", er ;0) rlv _ rv p(? (rV) .
(5.1.14)
AE(3’3) can be described as the interaction between the permanent charge density of

tbp,ABC
B and the first-order shift in the charge density in B induced by A, in presence of C
which acts as the dielectric medium. The first-order shift in the charge density of B

induced by the potential due to the permanent charge distribution in A is given by
apB () = (neg) ! far Ber.r o)l ol (). (5.1.15)
From Egs. (5.1.14) and (5.1.15),

33 _ o i
AEgbp,)ABC = (1/2)(4neq) 2 fdrdr dr"dr pg(r) Ir—r| 1

o C, 0 - apB ™. (5.1.16)

Energy shift of B due to direct intramolecular interaction between its permanent charge

density and the first-order induced shift in the charge density is
AEB = (1/2) (4neg) ™! farar pOB(r)lr—r'l“1 Ap?(r') : (5.1.17)

From Egs. (5.1.16), (5.1.17), and (1.2), along with a change of the integration variables,

we obtain
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AEgngBC =(1/2) (47u~:0)_l J'dr dr'dr” pOB (r)[soa;,lc (r,x";0)]|r" —r'I—l Ap%3 (r)

~(1/2)(4neg) ! farar pBmlr -1 apB(r). (5.1.18)

The first term in Eq. (5.1.18) is the intramolecular interaction between the permanent
charge density of B at r and the first-order induced shift in the charge density at r', in
presence of molecule C which acts as a dielectric medium to screen the interaction. Thus,
within the dielectric model the three-body terms present in the third-body potential
energy depend on the difference between the dielectrically screened and the unscreened
Coulomb interactions between the permanent charge density and the first-order shift in
the charge density within a molecule. This result can be compared to the second-order
two-body induction energy described in chapter 2, where we showed that the two-body
induction energy at second-order depends on the difference between the screened and the
unscreened Coulomb interactions between the permanent charge densities within a
molecule. Thus, the three-body terms in the third-body potential energy show the similar
screening effect, but at the next order.

Finally in this section, we derive the four-body effects in the third-body potential
energy within the dielectric framework. Interactions present in the four-body terms in the
third-body potential energy at third order are purely intermolecular. For example, the

interaction energy associated with the polarization route B—D—C—A is given by

AEgls)i:%BD c = 1/ neg = Idr dr'dr"dr"dr" dr" pOA (x)|r- r’|_1 xC (r',r";0)

e A
<[P V0 Y| pBrY). (5.1.19)
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Eq. (5.1.19) can be viewed as the induction energy of C, in the direct potential from the
permanent charge density in A and the screening potential from the induced shift in the
charge density in D, caused by the potential from B. Alternatively, it can be described as
the energy due to the intermolecular interaction between the first-order shift in the charge
density of C induced by A, and the first-order shift in the charge density in D induced by

B. Note that this energy corresponds to the term ES)&ISS introduced by Piecuc:h,262 with

i #) # k. To connect AEgi;‘}BDC to the dielectric model, we take Eq. (5.1.19) along with

all the polarization routes with C and D in the excited states, the second-order three-body
induction energy of C from Eq. (4.1.2), and the relation between the nonlocal dielectric
function and the charge-density susceptibility from Eq. (1.2), to obtain

AE%;‘%BDC = (41&:0)"2 jdrdr'dr"dr"driv pg‘(r)lr —r|! 2C@",r";0)

xeoep@r 0l -r| pfa)

~(4neg) 2 Idr dr'dr"dr” pd (r) Ir— r”|-] 1€ (", r"0)

- pB ). (5.1.20)

In Eq. (5.1.20), the first term is the induction energy of C due its interaction with A and
B, in presence of D which acts as the dielectric medium to screen the interaction. The
second term is the unscreened three-body induction energy of C at second order. Thus,
the four-body effects in the third-body potential energy are obtained as the difference
between the screened and the unscreened second-order three-body induction energy. The

second-order three body induction energy itself results from screening of the Classical
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electrostatic interactions between two molecules. Hence, the four-body terms in the third-
body potential energy are described as the screening effects present in the same type of

interaction, but at the next higher order.
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5.2 Dielectric screening and the nonadditive dispersion energy

In this section, we derive the nonadditive dispersion energy within the dielectric
model. We focus on the dispersion energy of a particular moiecule and relate the change
in the correlation between the intramolecular charge density fluctuations of that molecule
with the nonlocal dielectric functions of other molecules. In section 5.2 A, we show the
screening present in the three-body dispersion energy. In section 5.2 B, we derive the
nonadditive four-body dispersion energy and show the screening present in the four-body
dispersion energy of a particular molecule. The direct effects of overlap damping are
included in the expression of the dispersion energy, but not modifications due to

exchange or orbital distortion.

5.2A Dielectric screening of nonadditive three-body dispersion energy at third

order
Previously, Li and Hunt*"® have developed a theory for the nonadditive three-

body dispersion energy, based on the correlations in the fluctuating polarization of
interacting molecules A, B, and C. The three-body dispersion energy derived in their

work is given by
AE83’3) = _h Eodu) Idr dr'dr”dr” driv drY Tr[T(rv,riv)mC (riv,r";i(o)
T
mw o B, 1 ' A V.:
xT(r",r)a= (", r;i0) T(r,r)a (r,r ;in)]. (5.2A.1)
In Eq. (5.2A.1), a(r,r’;io) denotes the nonlocal polarizability density generalized to

imaginary frequencies, and T(r,r’) is the dipole propagator defined in Eq. (2.2.3). Tr

means the trace of the expression that follows. The result in Eq. (5.2A.1) is derived after
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summing the three-body dispersion energies of A, B, and C, and using the Kramers-
Kronig relation between the real and the imaginary parts of the nonlocal polarizability
density.

In the present section we use a susceptibility based approach that we used in
section 2.2 to show the screening present in the intramolecular charge density
fluctuations due to the two-body dispersion interaction. Following the same approach that
we used in section 2.2, we show that the average energy shift of molecule A at third order
due to the correlation between the charge density fluctuations at points r andr’, in

presence of molecules B and C is given by

BEG D = —(h 4m)(4ne0)™> 1+ pC) [ do fardr dr”drdr ar¥y A 1 0)

. -1 . -1
% rv_rn"'l xB(rn,rm;m) rm_rlv XC(rw,rv;m) rv -r

xcoth(hw/2kT), (5.2A2)

where xA”(r, r’;o) is the imaginary part of the charge-density susceptibility of A,
defined in chapter 2. Charge-density fluctuations in A at time t’ induces a shift in the
charge density in B at time t" which eventually induces a shift in the charge density in C
at time t, thus creating a reaction potential on A at time t. Using the fluctuation-

dissipation theorem from Eq. (2.2.9), we obtain
AESCH) = 1/ 4)(4neg) 3 1+ ppc) [drdrdrmdrmar” dar” [ de-v)

-1
r-r¥

x Eod(t' —t') <8pA (r,0)dp2A (r, t')>

+
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. -
o CV, iVt e A Bam - = (5.243)

From Eq. (5.2A.3), the two-body dispersion energy of A from Eq. (2.2.11), and the
relation between the nonlocal dielectric function and the charge-density susceptibility in

the time domain from Eq. (2.2.12),

aE;C?) = (1/4)(4e0) 2 (1+ ppc) [drdr’dr”dr” ar® [ da-v) [° da-v)

. -1
x <8pA (r,t) BpA(r', t')> r-r"
+

€0 8;’1C (riv ,r"t—t")

x XB (rn, rn; tn _ tr) rn _ rll—l

—(1/4)(4n80)_2[l+C(B—+C)]Idrdr’dr"dr"’ Eoood(t—t’)

X <8pA (r,t) SpA (r, t')> - r"|_1 xB ", r"t-t)r" - r|_'l ,
+

(5.2A4)
where the operator C (B — C) replaces the label B by C in the expression that follows.
The first term in Eq. (5.2A.4) gives the screened two-body dispersion energy of A due to

interaction with B (or C), in presence of C (or B), which acts as the dielectric medium
with the nonlocal dielectric screening function eclc(riv,r'";t—t"). A charge density

fluctuation in A at r',t’ sets up a potential in B at r",t' (in the Coulomb gauge, with
retardation neglected) which induces a shift in the charge density in B at r”,t". The

reaction potential in A at r,t due to the shift in the charge density in B is screened by the

presence of C via its nonlocal dielectric function sclc(r'v,r”;t—t”), and the screened
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potential affects the two-body dispersion energy of A. The second term gives the second-
order two-body dispersion energy of A in presence of molecules B and C. Thus, the
three-body dispersion energy at third-order depends on the difference between the
dielectrically screened and the unscreened two-body dispersion energy at second order.

In an alternate way, we can describe the three-body dispersion energy of A in
terms of an effective, two-body susceptibility of B and C. Following Kohn, Meir, and

Makarov,'64 if the long-range interaction between B and C acts as a small perturbation,

this two-body susceptibility is given by

xBE(r.r';0) =1 fdn dry xB(r.n:0) xC(r,r50), (5:2A.5)

4ne [ -1
where A is a coupling constant that “turns on” the long-range interaction between B and
C. If B and C are non-interacting, the overall susceptibility is given by

x2C = Brmso) + xCprio). (5.24.6)

283

Previously, Li and Hunt™" have showed that for a pair of interacting centrosymmetric

linear molecules A and B, the overall polarizability in presence of an external field 3€is

given by
A, B
. € O(ug +kg) _ A , B ind
lim3~* >0 T = (laB +aaB +A(laB ’ (5.2A.7)
p

where a(‘% and aEB are the polarizabilities of the isolated molecules and Aag}f is the

collision-induced electronic polarizability of the pair. Using a self-consistent solution of a
set of equations that relate the induced dipole moment to the local field, they showed that,

at first order
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Aag};j = (1+ pAB ) ody Tys(R) a?B . (52A.8)

In Eq. (5.2A.8), a(‘:‘B is the dipole polarizability of molecule A, R is the vector from an

origin at the center of symmetry of molecule A to the origin at the center of molecule B,
TaB (R) is the dipole propagator given by, TaB R) = VaVB (R_l) ,and @ Ap permutes

the labels A and B in the expression that follows. The collision-induced electronic
polarizability defined in Eq. (5.2A.8) determines the first-order dipole-induced-dipole.
Here we use the same method to derive the two-body susceptibility for a pair of

interacting molecules A and B, in presence of a fluctuating external potential ey (r; @).

Within linear response, the shifts in charge densities of A and B are related to the applied

potential by the equations
ApA(r;a)) = Idr'xA(r,r’;m)waApp(r’;m). (5.2A.9)
ApB(r;co) = Idr'x (r, r’;m)(pgpp(r'; ). (5.2A.10)
The applied potential at A is related to the external potential @ex¢(r;®)and to the
potential due to the shift in the charge density of B, ApB (r;o) by

APB(r’;co)

A /
r,n) = r,o)+ |dr
Papp (1; ©) = Pext (r;0) I ameg lr _r

= Qext (r;0) + jdr' dr’ 1B (13 0) Qext (' ). (5.2A.11)

4neg r-r'|
The self-consistent solution of Egs. (5.2A.9) — (5.2A.11) yields

Ap™ (r;0) + ApB (r;0)
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= Idr' [ xA (r,r';o0)+ xB (r,r'; o) ]@ext (r'; )

+(1+pAB) Idr' dr"dr” " (r,r"; @) —l—xB (r",r'; ) pext (r'; ®).
4meqg|r” - r”|

(5.2A.12)
From Eq. (5.2A.12), the two-body part of the susceptibility of molecules A and B, within

linear response is given by

AxAB (r,r';0)=(1+pAB) Idr" dr" " (r,r"; 0) 2 xB ", r;o).

neq [r" —r”|

(5.2A.13)

From Egs. (5.2A.3) and (5.2A.13) the two-body susceptibility in the time domain is
mBCr.rit-1) = 1+ pap) [drdr” Eod(t" )y Bt - 1)

L Camrtotn. (5.2A.14)
4meq [r" —r"|
Using the two-body susceptibility from Eq. (5.2A.14) and a change in the integration

variables, the three-body dispersion energy of A from Eq. (5.2A.3) is written as

AELC?) = 1/ 4) (4meg) 2 [drdrdrdar” E:od(t—t’)<SpA(r,t)SpA(r',t') >+

1

-1 XBC (rn,rm;t _ tr)lrn _ rl— .

xlr—r"

(5.2A.15)

Finally, using Egs. (5.2A.15), (2.2.11), and (2.2.12), we obtain

AESEA) = (1/4) (4meq) ! fararar [° de- t')< 5pA (r, 0 8pA (1) >+

x\r'—r"

-1 €0 8;,1BC r",r;t-t)
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~(1/4)(4neg) ! jdrdr'< spP (r,1) apA(r',t')> r-r|. (52A.16)
+

The first term in Eq. (5.2A.16) gives the Coulomb energy associated with interactions

between the fluctuating charge densities 8pA (r,t)and 8pA (r',t) in presence of the pair
of molecules B and C, which together act as the dielectric medium with the nonlocal

screening function e;lBC(r", r;t—t). The second term is the Coulomb energy of direct

intramolecular interactions of the charge-density fluctuations in molecule A, in absence
of B and C. Thus, Eq. (5.2A.16) proves that the three-body dispersion energy of A results
from the difference between dielectrically screened and unscreened interactions between
its intramolecular charge-density fluctuations, where the dielectric screening is

characterized by a two-body screening function, defined in Eq. (5.2A.14).
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5.2B Dielectric screening of nonadditive four-body dispersion energy at fourth
order
In this section, we describe the nonadditive four-body dispersion energy at fourth

order within the nonlocal dielectric model. We consider the dispersion energy of

energy using the same susceptibility base approach that we used in chapter 2 and in the
previous section. In appendix B, we derive a new equation which gives the four-body

dispersion energy of the A---B--*C--D cluster at fourth order. We show that

AEdA(4,4) =_§ﬁ(4 _4E0d(o Idr drVi A(rr sio)|r' —r"|” -1 B(r r";io)
T

. -1
v iv rY -V

-1
x(r

X

vii

—r (5.2B.1)

» xD(rVi vii, iw)|r

In terms of real frequencies, the four-body dispersion energy of A is given by

AEdA(4,4) = _(h/4n) (47;50)_4 (1+pBCD) J'dr...drVii E:odco A (1 0)

lVV)

. -1
m_rlv x (r

1 xB(r', r";o)r

|V —pVi -1 xD(rVi vu,m)

X3 _1
vii —r‘ coth (i / 2KT).

(5.2B.2)

In Eq. (5.2B.2), the operator ggcp permutes the labels B, C, and D. Using the

fluctuation-dissipation theorem from Eq. (2.2.9),
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AES Y = (1/4)(4neg) ™ (1+oBCD) far...ar¥i 2 d-1) [ d(m-t

Eod(t <8p (r, t)8p r, t)>

Vll

-1
pVii

v xC(rv’rlv;tm ~t")

-r

xxP(r

. -1
v _ m xB(rm’ rﬁ; t" _tr)lrn_rll—'l ) (52B3)

From Egs. (5.2B.3), (2.2.12), and the three-body dispersion energy of A from Eq.

(5.2A.3), we show that

aEf4 = (1/4)(4meg) > (14 ppep ) [dr...ar¥ [ aa-0 [ aq-v)

E;d(t <8p (r, t)8p (r', t)>

Xg() 8;1D (rVi,rv;t -t") xC (r¥ ,riv;t‘” -t")

-1
Vi

iV_ m— XB(rn,ru;tn_tl)lrﬂ_rll-l

AQG3)
~AERED - (5.2B.4)

In Eq. (5.2B.4), the first term gives the screened three-body dispersion energy of A in
presence of molecule D (or B or C) which acts as the dielectric medium with the nonlocal

screening function ev’D(rv',rv;t—t"). The second term gives the unscreened three-

from Eq. (5.2B.4), the four-body dispersion energy of A depends on the difference
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between its dielectrically screened and unscreened three-body dispersion energies at third
order.

Finally in this section we show that the four-body dispersion interaction can also
be described as screening to the direct intramolecular interactions between fluctuating
charge densities, where the other three molecules~ provide the dielectric screening. To
show this screening effect, we derive a three-body susceptibility in terms of the nonlocal
charge density susceptibilities of three interacting molecules. Previously, Champagne, Li,
and Hunt®® have showed that for a cluster of non-overlapping, isotropic species A, B,
and C, interacting at long range, the nonadditive three-body polarizability at second order
is

805V = a™ B o€ 5pRC T (R, RP) Tgs RA,RE)

+(1/3)SABCC? oBaC Tyy5(RA,RB), (5.2B.5)

where the species centers are located at RA, RB, and R® respectively; Sapc denotes the

sum over all permutations of the labels A, B, and C in the expression that follows it; and

the propagators T, p...o (r,r")of arbitrary rank are given by

Typ.. 0 r) = Vo Vg Vg |r—r’|_l. In Eq. (5.2B.5), o is the dipole polarizability of

the isotropic species A, and the C tensor determines the quadrupole induced by a uniform
field gradient, within linear response. Here we derive the three-body susceptibility of
three molecules A, B, and C, interacting at long range, in presence of a fluctuating
external potential. Following Eq. (5.2A.9) — (5.2A.10), the shifts in the charge densities

of A, B, and C, within linear response is given by
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ApA (r;0)+ ApB (r;o)+ ApC (r;m)
= fdr' X (rrm) <paApp (r;m)+ Idr' B r.r;0) <P§pp (r';m)

+ [arxC o) oSp (rio). (5.2B.6)
The applied potential at A depends on the external potential and on the potentials due to
the shifts in the charge densities of B and C. Thus,

2pB(r';0) far A€ (1 0)

0app(ri) = exi(rio)+ Jar' L0

. 5.2B.7
4meq |r-r| ¢ )

The charge density shift of B, in turn, depends on the charge density shift of C (and vice

versa), which finally yields

A . _ . g 1 B, ", ",
Papp (1 ©) = Pext (r;m) + Idl‘ dr mx (r',r"; 0) @ext (r"; )

+ Idr' dr’ ———— xC (r',r"; 0) Pext (r"; ®)
4megr-r|
i 1
+(1+ ar'drlV —— B rr,o)———
( SOBC)I 41t80|r—l‘"|x ( )41u-:0|r"—r"|
xxC (", YV ;0) Qext (1Y 0) +... (5.2B.8)

Solution of Egs. (5.2B.6) and (5.2B.8) gives

ApA (r;o)+ ApB(r; o)+ ApC (r;o)
= Idr’ O (,r0)@ext (o) + I dr' = (r,r'; 0) @ext (r'; 0) + Idr’ % (1 0)Qext (r'; ©)
+ Idr' AXAB (r,r';0) pext (r'; o) + j dr’ AxBC (r,r'; ) Pext (r'; ®)

+ J'dr' AxCA (r,r'; 0) Pext (r'; ®)
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+ far axABC (', 0) gyt () +... (5.2B.9)

In Eq. (5.2B.9), AxAB (r,r’;0) denotes the two-body part of the susceptibility defined in

Eq. (5.2A.13), and AxABC (r,r’;o) is the three-body part of the susceptibility, given by

nlv )

AxABC (r,r’;0) = SABC Idr'...drv xA(r,r";(o) |x (r

4meq | -

1
iv_ v

X

Y rse), (5.2B.10)

dneq (r
In time domain, the three-body susceptibility is
ABC(r,rt-t) = sppc far.ar¥ [© dm-v) [° d-t)xA o re-e)

1 m lV _ tn)

- lV V ¢!
x47teo|r"—r [x P 0

- G
4ne( 'V -rY

(5.2B.11)
Using the definition of the three-body susceptibility in the time domain from Eq.
(5.2B.11) and a change in the integration variables, the four-body dispersion energy of A

in Eq. (5.2B.3) can be written as

AEdA(4’4) = (1/4)(4ngg )_2 Idr dr'dr"dr” E d(t-t") < SpA (r,t) 8pA (r',t") >+

’

x|r' - r”|_l xBCD (", r"t—t)|r" - r|_1 . (5.2B.12)

Thus, from Egs. (5.2B.12), (2.2.11), and (2.2.12), we obtain
AESY = 174y (aneg) ! [ardrar 2 da —t')< sp2 (r,1)8pPA (r', 1) >+

-1

xlr'—r

) 8;,1BCD r",r;t—t")
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~(1/4)(4neg)”! jdrdr'< 8p2 (r,0)5p™ (', 1) > r-r|! (52B.13)
+

Eq. (5.2B.13) proves that the four-body dispersion energy at fourth order results from the
screening of the intramolecular exchange-correlation energy, where the dielectric
screening depends on molecules B, C, and D which together act as the dielectric medium.

Thus, the many-body effects are contained within the nonlocal dielectric function.
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5.3 Dielectric screening and induction-dispersion energy at third and fourth
orders
In this section, we prove that the dielectric screening model also describes the
simultaneous induction-dispersion energy of a cluster of molecules. Simultaneous
induction-dispersion effects appear, because the permanent charge-density of one

molecule acts as the source of a static external potential ¢, that perturbs the two-body or

three-body dispersion interaction of two or three other molecules respectively: Each of
the two or three molecules in the cluster is hyperpolarized by the simultaneous action of
the static external potential and the fluctuating potentials from its partners. The static
external potential also alters the correlations of the spontaneous, quantum mechanical
fluctuations in the charge densities of the other interacting molecules. Within the
dielectric model, the induction-dispersion interaction can be interpreted as the
perturbation of the dielectric medium by the external potential. This perturbation brings

in nonlinear screenings into the dielectric medium, which are of secondary importance in

183,184

the case of pure dispersion interaction. Previously, Hunt and Bohr developed a

theory for the dispersion dipole of an A---B pair, based on the change in dispersion energy

due to a uniform, static external field' 3. Li and Hunt*"® applied the same analysis to the

dispersion energy of the A---B pair in presence of the static external field SOC due to the

permanent charge distribution of molecule C, after allowing for the nonuniformity of the
field. In the present work, we relate the three-body and four-body induction-dispersion
interactions to the dielectric model. We focus on the energy shift of a particular molecule

due to the correlation between its intramolecular charge density fluctuations in presence
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of the static external potential. We use the charge density susceptibility based reaction
potential approach that we used in the previous section, to describe the induction-
dispersion energy of the interacting molecules, where the overlap between the charge
distributions of the molecules is assumed to be weak or negligible.

In presence of the static external potential (p((): due to the permanent charge

distribution in molecule C, the two-body dispersion energy of molecule A is given by

AES®2) = 174y (ameg) 2 [ardrde” [° d(t- t')< sp™ (r,t)5pA (') >+

x|r' - r"|_1 xB(r", r"';(pg,t —t)|r" - r|_1 . (5.3.1)

In Eq. (5.3.1), xB (r', r";(pg,t—t') denotes the nonlocal charge density susceptibility of

molecule B in time domain in presence of the static external potential (pOC . If the external

potential is significantly small, x(p,t—t’) can be expanded in Taylor series,

XS 0) = 1t -1)+L(t 1,005 +..., (53.2)
where y(t—t')and {(t-t',0) denote the linear and the quadratic charge-density

susceptibilities respectively, in the absence of the perturbing potential. Substituting Eq.

(5.3.2) in Eq. (5.3.1), we obtain

AEL®) = (1/4)(4meq) 2 fardrdr [ de- t’)< 8p™ (r, 8™ (', 1) >+

x[r' —r" -1 xB(r',r";t-t') -1

r"—r

—2 iv ' A A P oot
1/4)(4 dr...d dit—-t){( o ,1)0 ,t
#0149 me0) 2 far..ar® [7 a-0)(3pA e 0mtr.0)
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e e s e-t, o) o (pOC(riv). (5.3.3)

The first term in Eq. (5.3.3) is the unperturbed two-body dispersion energy of A. The

second term gives the three-body induction-dispersion energy of A at third order.
Expanding the potential (pg (riv) in Eq. (5.3.3),

AG3) _

AELS) = (1/4) (4meg) ™ [dr...drY E:od(t—t’)<SpA(r,t)SpA(r',t') >+

-1
x|’ r] C eVt — t,0)r" -r|” -rY pOC(rv).

(5.3.4)
The energy in Eq. (5.3.4) can be interpreted as the hyperpolarization energy of B caused
by the fluctuating potentials from A and the static potential from C. The nonlinear shift in
the charge density of B caused by the potentials due to the charge density fluctuations in
A interacts with the static external potential from C, thus giving an overall energy shift.
Using Eq. (5.3.4) and the nonlinear dielectric function in the time domain, the three-body

induction-dispersion energy of A is given by

AEAG) = 174y (4meg) 2 [ar...ar” Eod(t—t')<8pA(r,t)5pA(l",t')>
+

x| =} [eoqu(r" Vst 0) ) - o pS V).

(5.3.5)
Thus from Eq. (5.3.5), the induction-dispersion energy of A is described within the
dielectric model as the energy shift due to the nonlinear interaction between the charge-
density fluctuations in A and the permanent charge distribution in C, in presence of B

which acts as the nonlinear dielectric medium. This interaction is analogous to the
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hyperpolarization energy described in section 5.1, with the difference that the
hyperpolarization energy appears due to the nonlinear interaction between permanent
charge distributions, while the induction-dispersion energy is due to the nonlinear
interaction between permanent charge distribution and charge-density fluctuations.

Following the same line of argument, we can relate the four-body induction-
dispersion energy of molecule A with the dielectric model. Here we consider the three-
body dispersion energy of A in presence of B and C, perturbed by the external potential
due to the permanent charge distribution of D. Expanding the charge density
susceptibilities of B and C in Taylor series with respect to the external potential and
kee;iing only the lowest order terms, the four-body induction-dispersion energy of A is
given by

A@4,4)

AELTY = (1/4) (4me0) 3 (14 ppc) [dr...drV [ da-v) [2 da@r-v)

=1
X< SpA (I", t) SpA (l", tr)> |rl _ rnl—l xB(rn, rm; t" — tr) r"— rlv
+

. . 1 .
CaV V-0 - eQ Y. (5.3.6)

Eq. (5.3.6) can be interpreted as the hyperpolarization energy of C (or B) caused by the
fluctuating potential from A, potential due to the shift in the charge density of B (or C)
caused by the fluctuating potential from A, and the static external potential due to the
unperturbed charge density in D. Using Eq. (5.36) and the relation between the quadratic

charge-density susceptibility and the nonlinear dielectric function, we obtain

A4.4) _

B = (174 (4meg) ™ (1+ ppc) [dr...drV? Eod(t—t') Eod(t"—t’)
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. -1
% < 8pA (r, t) SPA (rl’ tl)> lrr __rn|—1 XB(I", rn; t"— tr) r"— rlv
+

. . -1 .
x[aoe(—l,lc(rw,rv,rv';t—-t',O)]rv—r Y. (5.3.7)

Eq. (5.3.7) proves that the four-body induction-dispersion energy of A arises due to the
interaction between the charge density fluctuations at r and the reaction potential caused
by the shift in the charge density of B (or C), induced by the potential from the charge
density fluctuations in A atr’, in presence of C (or B) which acts as a nonlinear dielectric
medium, perturbed by the potential from the permanent charge density in D.

This interaction energy can also be explained as screening to the three-body
induction-dispersion energy of A defined in Eq. (5.3.5). To show this screening effect, we
consider the cluster of molecules A, B, and C, in presence of the external potential from
the permanent charge density of D, where the dispersion energy arises due to the charge

density fluctuations in A. The overall induction-dispersion energy of A in this case is

. 33 3,3
given by the sum of the three-body terms AE% A—)>B 5>A)D and AE% A—)>C —A)D’

and the four body terms from Eq. (5.3.7). Using the relation between the nonlocal
dielectric function and the charge-density susceptibility from Eq. (2.2.11), we can show
that

A(4,4)

AELTY) = (1/4) (4me) 2 (1+ ppc ) [dr...dr Eod(t ) Eod(t'—t')

x < 8pA (r,t) SpA (r',t) > Ir'—r" -1 [eo S_BI @, r"t" —t"]
+

. -1
o Ber)

x[gg Ea,lc ", rV,r¥;t-1",0)]
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- (1/4)(4e0) 2 [1+C (B~ C) [dr...dr™ Eod(t -t

r-r’

x< 8pA (r,t) 8pA (r',t") > -1 [eo Sc_llB ", r", riv;t -1',0)]
+ b

x[r" e[ DY) (5.3.8)

In Eq. (5.3.8), the first term gives the screened three-body induction-dispersion energy of
A. Here molecule B (or C) acts as the dielectric medium to screen the induction-
dispersion interaction, and the screening is linear. The second term gives the unscreened
three-body induction-dispersion energy of A. Thus, the induction-dispersion energy at
fourth order depends on the difference between the screened and the unscreened three-

body induction-dispersion energy.
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Chapter 6: Summary and conclusions

The present work proves that the intermolecular interactions at second, third and
fourth orders are accurately derived in terms of the nonlocal dielectric model, where the
overlap between the interacting molecules is weak or negligible. Within linear response,
the nonlocal dielectric function &y (r,r’;0) determines the effective potential at r, when
an external frequency-dependent potential ¢(r',w) acts at r'. A separate dielectric
function eq(r,r’;0) relates the dielectric displacement D(r,®) to the external field
E(r',w). For translationally invariant systems, the isotropic average of eq(r,r’;o)
reduces to &y (r,r’;). Within the intramolecular environment, g4(r,r’;0) and
gy (r,r’;o) are different. The nonlocal dielectric function ¢, (r,r’;0) is related to the
nonlocal charge-density susceptibility x(r,r’;®) by Eq. (1.2). yx(r,r’;®) determines the
induced shift in the charge density 8p(r,®) at point r in the molecule due to an applied
potential @(r',m) at r’. Molecular properties which are related to the charge-density

susceptibility are nonlocal polarizability density,m"88 infrared intensities,]27 the

Sternheimer electric field shielding tensor, 127 charge reorganization terms in vibrational

force constants,286 and the softness kernel of density functional theory.287'288

Dielectric response of translationally invariant systems or systems with spatial
periodicity can be described by a dielectric function which depends only on the distance
between the response point r and the point r' where the external perturbation acts. For

these systems a convenient choice is to use the dielectric function €(k,®), which is the

spatial Fourier transform of &(r-r',w). Dielectric functions of the form e(k,®) have
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been used in order to study quantum many-body problems, properties of quantum dots,

solvation dynamics and polarization fluctuations in liquids, and electron transfer.
Dielectric models have been applied to study interactions within proteins and

biomolecules. Models have been developed to probe the dielectric environment inside

protein molecules and these models have been used to interpret different experimental

observations such as determination of pK, shifts of inserted amino acid residues,289

dynamic shifts of the fluorescence, for the markers placed at various sites of protein,290

29

measurements of Stark effect on absorption bands of different chromophores, ! and

determination of the apparent basicities of the different charge states of protein.292

Inhomogeneities inside the protein molecules make it impossible to define a universal
dielectric constant (or constants) for proteins. The choice of the value of protein’s
dielectric constant depends on the particular property or interaction to be studied and the
model used to study those properties. To give a complete description of the dielectric
nature within the protein environment, it is necessary to develop a model in terms of the
site-dependent dielectric constants.

Extension of the dielectric model to describe interactions within the
intramolecular framework was suggested in several works. Early works on light
scattering by fluids and collisional polarizability anisotropy of interacting noble gas
atoms used a polarizability density instead of the point dipole approach. In later works on
light scattering by fluids, response functions were used that depend both on r and r'.
Importance of nonlocal response has been noted in recent works on surface enhanced

Raman scattering by metal nanoshells.
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Intermolecular interactions at first order are purely electrostatic in nature. Within
quantum perturbation theory, first-order intermolecular interactions are obtained as
Coulomb interactions between the unperturbed charge distributions or polarizations of the
molecules. When the molecules are far apart, the electrostatic interaction energy is
obtained as a sum of the interaction energy of permanent multipole moments of the
molecules, given by Eq. (1.14). For a pair of interacting molecules, the first-order force

on nucleus I in molecule A is calculated by taking the negative gradient of the first-order

interaction energy with respect to the coordinate R’ of nucleus I. Thus, it depends on the

derivative of the permanent charge distribution of A with respect to R'. When using a

multipole expansion, the first-order force is given in terms of the derivatives of the
permanent multipole moments of A. First-order forces on nuclei can also be calculated
using the electrostatic Hellmann-Feynman theorem and the Sternheimer-type shielding
tensors, where the force on nucleus I is obtained as sum of the interactions between the
charge on nucleus I and effective fields and field gradients at I due to molecule B, given
by Eq. (1.21). The effective field at I due to molecule B depends on the field from B due
to its permanent moments and the nuclear shielding tensors of 1. At first order, the
effective field and the field gradient originate due to linear screening of the external field
and the field gradient and are determined by the linear shielding tensors of nucleus I.

These linear shielding tensors are related to the derivatives of permanent multipole
moments of molecule A with respect to R' [Egs. (1.16), (1.18b)]. Physically, the

shielding appears due to the electronic screening of the external field. Within the nonlocal
polarizability density model the electronic screening is shown by the nonlocal

polarizability density a(r,r’;0), where the first-order force depends on the fields at I from
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the unperturbed charge distribution in B and the first-order induced shift in the

polarization of A [Eq. (1.20)] which is determined by a(r,r';0) of A and the field due to

unperturbed charge distribution in B. The Sternheimer-type shielding tensor Y‘Ilﬁ is

connected to the nonlocal polarizability density ayB(r, r’) by Eq. (1.19). The first-order

force on nucleus I in molecule A was first derived within the nonlocal dielectric model by
Jenkins and Hunt. A susceptibility-based approach was used to express the first-order
force on I in terms of the static nonlocal charge-density susceptibility of A and the
potential from the unperturbed charge-distribution in B. Using the relation between the
charge-density susceptibility and the nonlocal dielectric function from Eq. (1.2), the first-
order force was expressed [Eq. (1.23)] as interaction between nucleus I and the external
potential from B in presence of the intramolecular dielectric medium A which is

characterized by the nonlocal dielectric function ey, A (T, r’;0).

In chapter 2 of this work, we have proved that the induction and dispersion
energies at second order are derived within the nonlocal dielectric model. Using quantum
perturbation theory, the second-order induction energy is obtained from Eq. (1.24) with
the excited states confined to either molecule A or molecule B. At second order, the
induction energy depends on the static fields due to the permanent charge distributions of
the interacting molecules and the responses of the molecules to those static fields.
Induction energy is given within the nonlocal polarizability model by Eq. (2.1.1). When
the molecules are far apart, the induction energy can be written in terms of the permanent

moments and the multipole polarizabilities of the interacting molecules [Eq. (1.25)].

120



In section 2.1 of chapter 2, we derived the second-order induction energy in
terms of the static charge-density susceptibilities and the potentials due to the permanent
charge distributions of the interacting molecules [Eq. (2.15)]. In order to derive Eq.
(2.15), we expressed the fields in terms of the potentials and used the relationship
between the charge-density susceptibility and the nonlocal polarizability density from Eq.
(2.14). Then using the relation between the charge-density susceptibility and the nonlocal

dielectric function &,/(r,r’;0) in Eq. (1.1) we have proved that the induction energy at

second order results from the difference between the dielectrically screened and the
unscreened Coulomb energies due to the permanent charge distributions within a
molecule, where the second molecule acts as the nonlocal dielectric medium. The result
is given in Eq. (2.1.7), where the first and the second term give the screened and the
unscreened Coulomb interactions respectively, within a molecule. Thus, we conclude that
the two-body induction energy at second order is derived within the nonlocal dielectric
model as the difference between the dielectrically screened and the unscreened
intramolecular interactions between the unperturbed charge densities of the molecules.

In section 2.2, we have derived the second-order dispersion energy within the
dielectric framework. Dispersion energy results from the correlation between the charge-
density fluctuations or polarization fluctuations within a molecule. Using a reaction field
method, the dispersion energy is derived as an integral over frequency, where the
integrand is factored into the nonlocal polarizability densities of the molecules at
imaginary frequencies. This result is given in Eq. (1.29). Dispersion energy is also
obtained from the second-order perturbation theory using Eq. (1.24) with excitations

confined to both molecules. Second-order perturbation theory has been applied to
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calculate the dispersion energy in several works. Within the density functional theory,
dispersion energy is obtained as the exchange-correlation energy.

In the present work in section 2.2, we have expressed the dispersion energy in
Eq. (2.2.1) as an integral over frequencies with the integrand factored into the charge-
density susceptibilities of molecule A and B at imaginary frequencies. Then we have used
a contour-integration technique and the symmetries of the real and the imaginary parts of
the susceptibility to write the dispersion energy in terms of the charge-density
susceptibilities of the molecules at real frequencies [Eq. (2.2.8)]. Using the fluctuation-
dissipation theorem from Eq. (2.2.9), we have expressed the dispersion energy in the time
domain. Finally, from Eq. (2.2.9) and the relation between the charge-density
susceptibility and the nonlocal dielectric function in the time domain from Eq. (2.2.12),
we have derived the dispersion energy as the difference between the screened and the
unscreened Coulomb interactions between the charge-density fluctuations within the
molecules. The final result is given in Eq. (2.2.13). The first term in Eq. (2.2.13) is the
screened interaction between the charge-density fluctuations in A in presence of B, which
acts as the dielectric medium (and similarly for B). The second term gives the unscreened
interactions between the charge-density fluctuations within the molecules. Thus, we have
proved that the second-order dispersion energy results from the screening of the
intramolecular charge-density fluctuations.

Induction and dispersion forces on nuclei at second order are calculated by taking
the negative gradients of the second-order induction and dispersion energies with respect
to the nuclear coordinates. At second order, the induction force on nucleus I in molecule

A depends on the first-order and the second-order induced polarizations in A, as given in
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Eq. (1.26). The second-order polarization in A results from the nonlinear response of A to
the static fields from B and is determined by the nonlocal hyperpolarizability density

A
P ofy

(r,r',r";0,0) of A. The first-order polarization of A in Eq. (1.26) is induced by the
first-order polarization of B caused by the unperturbed polarization in A. Thus, the
second order induction force on I is related both to the linear and the nonlinear response
of A. It is important to note here that the induction force on nucleus I does not stem from
the interaction of I with the polarization of B, but from the interaction of I with the
polarizations induced in A. The induction force can also be described in terms of the
nuclear shielding tensors by Eq. (1.27). The terms which depend linearly on the reaction
field from B and its gradients, correspond to the first term of Eq. (1.26) [i.e. the first-
order induced polarization in A]. Terms depending quadratically on the reaction field and
its gradients are related to the second term of Eq. (1.26) [nonlinear polarization of A].
The nonlinear shielding tensors depend on the derivatives of the molecular polarizability
densities with respect to the nuclear coordinates [Egs. (1.18a), (1.18c)] and hence, on the
nonlocal hyperpolarizability densities [Eq. (1.28a) — (1.28b)]. Egs. (1.19), (1.22), (1.28a)
and (1.28b) connect the electrostatic and the second-order induction forces calculated
within the nonlocal polarizability density model to the forces calculated applying the
electrostatic Hellmann-Feynman theorem.

In section 3.1 of chapter 3, we have derived the second-order induction force on
nucleus K in molecule A in terms of the nonlocal dielectric model. We began the
derivation with the induction energy expressed in terms of the static polarizabilities of the
molecules and the fields from the unperturbed charge distributions in the molecules.

Within this approach, the second-order induction force on nucleus K depends on the
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derivatives of the nonlocal polarizability density M (r,r’;0) of A and the field 3(‘? (r) at

B, with respect to RX. The derivative of aA(r,r';O) with respect to R¥ depends on

BA (r,r’;0), the nonlocal hyperpolarizability density susceptibility of A [Eq. (3.1.2)]. The

field SOA(r) in molecule B depends both on the electronic and the nuclear charge

densities of A and the derivative of the electronic charge density with respect to RX is

related to the nonlocal charge-density susceptibility xA(r,r';O) of A., given by Eq.

(3.1.5). Thus, we have expressed the induction force on nucleus K in terms of the
nonlocal charge-density susceptibility and the nonlocal hyperpolarizability density of A.
Next, we have written the fields in terms of the potentials, used the potential from the
first-order shift in the polarization of B from Eq. (3.1.10), and used the relation between
the nonlocal hyperpolarizability density and the quadratic charge-density susceptibility

{(r,r',r";,0,0) from Eq. (3.1.12), to obtain the second-order induction force on K within

the susceptibility based approach in Eq. (3.1.13). Eq. (3.1.13) shows that the induction
force on K depends on the nonlinear screening of the potentials due to the unperturbed
charge distribution in B and linear screening of the potential from the first-order shift in
the charge distribution of B. This result is consistent with the induction force obtained
previously using the nonlocal polarizability density model and the nuclear shielding
tensors. In order to show the nonlinear screening in the induction force, we have used the
nonlinear dielectric function given in Eq. (1.10). Finally using the effective potentials in
A due to linear and nonlinear screenings we have expressed the induction force on K by

Eq. (3.1.17). Eq. (3.1.17) proves that the second-order induction force on nucleus K
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depends on the intramolecular screening of the external potential acting on A. This result
is similar to the first-order force derived by Jenkins and Hunt. The difference is that the
first-order force includes linear screening only, while the second-order induction force
results both from linear and nonlinear screenings within molecule A.

The dispersion force on nucleus K can be calculated the same way, by evaluating
the negative gradient of the second-order dispersion energy with respect to RX. Within

the real frequency domain, the dispersion force on K in molecule A contains two

different terms: one includes the derivative of the frequency-dependent polarizability

a(r,r’;®) of A with respect to RK, and the second one contains the derivative of the
correlation between the polarization fluctuations within A with respect to RX. The
derivative of a/* (r.,r';) with respect to R¥ depends on the nonlocal hyperpolarizability
density BA (r,r,r";»,0) of A. From the fluctuation-dissipation theorem, the correlation
between the polarization fluctuations is related to the imaginary part of the nonlocal

polarizability density, ot (r,r';»). Thus the derivative of the correlation is given by the

derivative of aA"(r,r';co) with respect to RK, which is related to the imaginary part of

the nonlocal hyperpolarizability density BA'(r,r',r";co,O). The first component of the

dispersion force resembles the first component of the induction force, with the difference
that in the case of later, the external fields are time dependent and the nonlocal

hyperpolarizability density depends on frequency. The second is quite different, since it

depends on the imaginary part of BA (r,r',r";»,0) and shows no linear screening like in

the case of the induction force. In earlier work, it was concluded that this part of
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dispersion force might depend on the polarization of B. Moreover, since the correlation
between the polarization fluctuations is affected by the change in the nuclear Coulomb
field, it was noted that this field might bring new correlations and could even change the
magnitude of the correlation function (field induced fluctuation correlations). However,
those new type of correlations were not derived explicitly.

In section 3.2, we have derived the second-order dispersion force within the
nonlocal dielectric model. The dispersion energy was written within the frequency
domain, where it depends on the real part of the charge-density susceptibility of one

molecule and the imaginary part of the charge-density susceptibility of the other [Eq.

(3.2.1)]. Using Eq. (3.2.1), the first part of the dispersion force (Fcliil)) on nucleus K has

been derived in terms of the real part of the quadratic charge-density susceptibility of A
and the correlation of the charge-density fluctuations in B. This part of the dispersion
force appears due to the nonlinear screening of the fluctuating potentials from molecule
B. Thus it is similar to the first part of the induction force. We have showed the nonlinear
screening present in the dispersion force using the frequency-dependent nonlinear

dielectric function of A [Eq. (3.2.19).

The second component of the dispersion force (F§2) ) depends on the derivative

of x"(r,r';0) with respect to R¥, and hence on (A" (r,r',r";0,0). We have expressed
F§<(2) explicitly by expanding (A" (r,r',r";0,0) in terms of the charge-density matrix

elements of the unperturbed eigenstates and the unperturbed Bohr frequencies. From that,
we have separated the terms with j = n and j # n. The terms with j # n have been written

in terms of the transition susceptibility of A. Then we have showed that this part of the

126



second order dispersion force [designated by Fcll%2) 1] actually results from the

correlation between the charge-density fluctuations and the susceptibility fluctuations
within molecule A. This result has been given in Eq. (3.2.30), which proves the fact that
when nucleus K shifts infinitesimally within molecule A, the change in the Coulomb
from K modifies the correlation of the charge-density fluctuations in A and actually
introduces new type of correlation, namely, the correlation between charge-density

fluctuations and susceptibility fluctuations. Finally, the dielectric screening present in

Fcll%Z),l has been given by Eq. (3.2.35), which shows that FcII%Z),l results from screening
of the fluctuating potential from B within A and the screening depends on the fluctuation
of the nonlocal dielectric function gy, A", 0;r,). Terms with j = n in Fcli((Z) were
separated into two sets. One set of terms where r” is directly connected to RK (denoted

by F(Il((z) 2) and the other set where either r or r' is directly connected to R¥ (denoted

by Fé%z) 3 )- We have used time-dependent perturbation theory to explain the physical

significance of all the terms present in Fcli%Z),l’ F(§<(2),2’ and Fcll((2),3' The external

potential in the perturbation Hamiltonian is the reaction potential from molecule B. Using

the first-order perturbed wave functions for the initial <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>