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ABSTRACT

FORWARD AND INVERSE MODELING USING MESHLESS METHOD

FOR NDE APPLICATION

By

Xin Liu

Nondestructive Evaluation (NDE) methods are used extensively in industry in

inspecting and maintaining product quality. As new NDE sensors and systems are

developed for new applications, the availability of a theoretical mOdel that can

simulate the system performance is extremely important for understanding the

underlying physics and optimizing the system parameters. For most real world

problems, where analytical solutions are not available, various computational

methods have been developed. Among these, Finite Element Methods (FEM) are well

known and used extensively for computing static and quasi-static electromagnetic

fields associated with NDE applications. FEM offers a robust model, and the

simulation results using fast solvers are stable and accurate. One of its disadvantages

is the need for a computational mesh. Most of the test geometries in NDE are

complex and high dimensional, and mesh construction in FE models is an extremely

labor intensive and time consuming process. Furthermore, in electromagnetic

problems that involve geometrical discontinuities and propagating tight cracks, the

use of an underlying mesh creates difficulties in the treatment of discontinuities and

decreases the accuracy of simulation results.



A major contribution in this dissertation is the development of Element-Free

Galerkin (EFG) model, for NDE applications, which belongs to the newly developed

class of Meshless Methods that do not involve the use of a mesh for discretizing the

domain. Several improvements to the basic EFG model are proposed for

electromagnetic field computations. One, two, and three-dimensional (1D, 2D, and

3D) models for Poisson and diffusion equations, describing static or low frequency

quasi-static problems, are presented as examples to illustrate the validity of the EFG

method. The model is also applied to real world problems for electromagnetic field

calculations in aircraft skin inspection and the simulation results clearly demonstrate

the feasibility and advantage of the method.

The implementation of EFG method for solving the inverse problem is also

presented. The objective of the inverse problem is to estimate parameters

characterizing defect profile, including location, size, and shape, based on the NDE

measured signals. New formulations for model based inversion using EFG method as

forward model is developed in this dissertation. 1D parametric and 2D non-parametric

inversion techniques using State Space search and gradient-based search method are

presented along with preliminary results on simulated data. The major advantage of

EFG technique over FEM in inverse problem solutions is the elimination of

re-meshing in each iteration, which saves computational time while maintaining

accuracy of solutions.

The challenge of high dimensionality in 3D inverse problems is also addressed

by extending the iterative State Space search approach described for 2D problems.

Preliminary results validating these modifications are presented.
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CHAPTER 1. INTRODUCTION

1.1 Introduction to Nondestructive Testing

Nondestructive Testing (NDT) or Nondestructive Evaluation (NDE) methods are

widely used by a number of industries to control and maintain product quality,

prevent catastrophic failure and improve reliability. It can be defined as the

assessment of structural integrity of a material or component without any physical

damage it [1]. NDT/NDE plays a crucial role in assuring safety and reliability in the

operation of aircraft, gas pipeline, bridge, nuclear power plant etc.

These inspection procedures enable us to locate a flaw or defect and also provide

information about defect such as size, shape, and orientation. Furthermore, NDE can

also be used to characterize material properties. Some of the commonly used NDT

techniques include ultrasonic (UT) [2], radiographic [3], electromagnetic (ET), and

thermographic [4] etc.

The implementation ofNDT includes the major components as illustrated in Figure

1.1 [5]. An input transducer is used to inject energy (excitation source) into the test

specimen. The nature of the interaction between the energy and the test specimen is a

function of several variables, including the type of the energy, material properties,

defects, inhomogeneities and so on. The receiver transducer will capture the response

of the material-energy interaction and the resulting signal is processed, recognized

and analyzed to determine the existence and the properties of a defect in the test

specimen.

f



A number of energy sources including electromagnetic, ultrasonic and

thermographic have been extensively used in a variety of applications. Commonly

used electromagnetic techniques for NDT include magnetic flux leakage [6] and eddy

current methods [7]. Eddy current methods have been widely used to detect cracks,

seams, pits and other surface and subsurface flaws in conducting test specimen. This

dissertation mainly focuses on electromagnetic methods which are based on principles

of eddy current testing described in the next section.

Source

  
Signal/Image

Recognition

 

   

 

 

  

Input

nsducer   
Results ,

 

Measurement fig

Transducer
''''

  

 

 
Processing

  

Figure 1.1 A generic NDE system

1.2 Eddy Current Testing

Eddy current testing (ECT) is an electromagnetic technique and based on Michael

Faraday’s laws of electromagnetic induction discovered in 1831. A conventional eddy

current testing system is shown in Figure 1.2 [8]. It includes a coil or a set of coils



excited by a time varying current. The time varying magnetic field generated induces

eddy currents inside the conducting specimen (Faraday’s Law). The eddy current also

generates a magnetic field (Ampere’s Law) which opposes the field produced by the

source current (Lenz’s Law).

Source

 

(Q)

Conducting plate

 

 

 

Figure 1.2 System of eddy current testing

The existence of defects in the test specimen changes the eddy current distribution

which in turn alters the net magnetic flux linking the coil. Consequently the presence

of a defect is detected as a change of the probe coil impedance [8].

Eddy current techniques are widely used in the inspection of aircraft structures

composed of aluminum layers for detecting hidden cracks and corrosion. A major

limitation of eddy current inspection technique is it can detect only surface or near

surface defects because of the skin effect, which is related to the depth of penetration

of fields. It can be shown that the eddy current density is maximum on the surface and

decays with the depth inside the conducting plate. The amplitude of fields at a depth

x could be expressed as



x

Ax = Aoe 5

(1.1)

where A0 is the amplitude of field on the surface of an infinite conducting plate.

5 = /_1_

afar!

And 6 is the skin depth given by [9]

(1.2)

0' : the conductivity ofthe plate.

,u: the permeability of the plate.

f : the frequency of the excitation.

The eddy currents are affected by the test specimen and experimental operating

conditions. The test specimen parameters that vary with electrical conductivity,

magnetic permeability, thickness, shape etc. The experimental operation conditions

include the design of the excitation coil, operating frequency, lift-off and so on.

Several variations of the basic ECT have been developed in recent years. The newly

developed inspection methods based on ECT are Magneto Optic Imaging (M01) and

Giant Magneto-Resistance (GMR) sensor which essentially are sensors that can

measure the fields associated with induced currents. Details of these two techniques

are provided in the next chapter.



1.3 Forward and Inverse Problems

In NDE, forward and inverse problems are two essential areas of research. The

forward problem involves simulating the system performance given an excitation

source and predicting the measured signal on a flawed test specimen. In contrast, the

inverse problem involves estimating the defect parameters based on the information

in the measured signal [10], [11], [12].

A systems approach to illustrate both the forward and inverse problems is shown in

Figure 1.3 [13]. In Figure 1.3 (a), the input and the system transfer function are

known, and the output is to be determined, which is forward problem. In Figure 1.3

(b), the system and output are known, and the input is to be determined, which is the

problem of signal inversion. One approach is to assume a set of possible input

(defects) as a priori, and from the measured output, the true input signal (defect) is

estimated using a model based approach or other techniques such as maximum

posteriori probability estimation. In Figure 1.3 (c), the input and output are known,

but the system is to be determined, which is also an inverse problem also known as

system identification problem.
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Figure 1.3 The system approach to illustrate the forward and inverse problem

The mathematical term of well-posed problem starts from a definition given by

Hadamard [14] by the following three properties:

(a) Existence: there exists a globally-defined solution for all reasonable data.

(b) Uniqueness: the solution is unique.

(c) Continuity (stability): which means the solution depends continuously on the

given input data.

A problem which is not well-posed is defined to be ill-posed.

Generally, the well-posed forward problems will lead to the availability of a stable

accurate solution. While, the inverse problems are often ill-posed, which means the

measured signals lacks the continuous and reliable dependence on the defect profiles,

non-uniqueness is a major issue to be concerned, which means a measured signal can

correspond to more that one defect profiles. These challenges lead to the development

of various constrained techniques to find the optimal inverse solution from the set of



possible solutions. Both the details of the forward problem and inverse problem will

be described in the following chapters.

1.4 Need for Modeling

Research in both forward and inverse problem depends strongly on the

availability of a good forward model that can simulate the system performance.

Firstly, the model is useful in visualization the material-energy interaction which is

important for us to understand the underlying physical principles. Secondly, by

providing quantitative values of field distribution, a numerical model can be used to

adjust and improve the system parameters such as operating frequency, excitation

source, sensor, probe parameters and so on. Thirdly, when the measured signal is not

available or not adequate, the output of the forward model can be substituted for

training data in developing signal inversion schemes.

The main uses of computational models are summarized below:

1. Solve forward problem

2. Understand the underlying physics of material-energy interaction

3. Visualize fields, such as induced currents, reflected waves

4. Optimize the system design and operational parameters

5. Testbed for generating defect signatures

6. Model based probability of detection (POD) estimation

7. Model based inverse problem



All electromagnetic phenomena, including ECT, are best described using

Maxwell’s equations. The nature of NDE applications leads to problems with high

dimensionality, nonlinear material properties and complicated solution domain and

boundary. Often, these problems involve dynamic geometries and the solution may be

a function of time and position. These complications have led to development of

various types of models, which include analytical and numerical modeling.

Analytical modeling derived from Maxell’s equations played an important role

before the development of computers. Today, the computer aided analytical modeling

is also valuable for validation based on some assumptions for simplification. The

drawback is that analytical approaches can only handle simple domain geometries and

hence have limited applications.

In contrast, numerical modeling can simulate problems with complex geometries,

high dimensionality, nonlinear, anisotropic and inhomogeneous material properties.

Numerical models, by virtue of the massive time and memory resources of computers

are far more powerful than the analytical models.

Recently, the development and implementation of the numerical modeling have

become a major research focus in NDE [15]. Several numerical modeling methods

have been developed for solving different governing equations, such as Finite

Difference Method (FDM), Finite Element Method (FEM), Boundary Element

Methods (BEM), Boundary Integral Methods (BIM) and Volume Integral Methods

(VIM). Each method has its own advantages and limitations and is appropriate for

different kinds ofnumerical problems [7], [16], [17], [18].



FDM is the simplest numerical modeling method to solve partial differential

equations (PDE). The advantage is its relatively ease and simple form for replacing

the partial derivatives by appropriate difference formulation. It is widely applied for

direct current, quasi-static, transient fields, and linear problems. The limitation is that

FDM has poor convergence property for irregular geometries due to its regular

discretization. Also, it is rather difficult to model distributed parameters such as the

current densities, conductivities and permeability [18].

FEM evolved in the late 19503 as a numerical technique in structural analysis and

quickly developed as a major numerical modeling method in various engineering

fields to solve PDE [19], [20], [21]. Because of its accuracy and efficiency in

modeling, it was applied to electromagnetic NDE in late 19703, especially for direct

current, low frequency fields, and permanent magnet problems [7]. Compared with

FDM, FEM has many advantages including its ease to impose the essential boundary

conditions and model complex geometries. FEM can handle higher order

approximation and lead to faster convergence and better accuracy. FEM has already

been developed for various 2D and 3D eddy current NDE problems [8]. The

drawbacks of FEM include large computer resources needed, especially for nonlinear

and time-dependent problem. Also, it is not well suited for open region problems [16].

Differential equations are commonly used for describing low frequency

electromagnetic field problems, such as electrical machines and eddy current testing.

However, in the area of antennas and electromagnetic wave propagation, integral

equations [22], [25] are more commonly used. BEM and VIM methods are based on

the integral equations [16], [17].



BEM solves Maxwell’s equations by using the given boundary conditions to

discretize the surface in integral equations, rather than calculating all the values in

solution domain. In the post-processing, the integral equation is used again to

calculate the required physical quantity at any point in the solution domain. Hence

BEM is more efficient than other models with regard to computer resources and

ensures good accuracy of solutions. It can be used to solve the fields in linear

homogeneous problems when the Green’s function is available. The drawback is that

its global stiffness matrix is a full matrix in contrast to sparse banded matrix

encountered in FEM, and hence requires more computational time [16].

In the case of inhomogeneous and nonlinear problems, VIM is generally introduced

to discretize the volumetric domain before solution. In VIM, the field is determined at

a point by summing the effects of the sources at all points, convolved with the

Green’s frmction. The advantage is it only necessary to construct a mesh over the test

sample and solve for the currents in the test sample. But this method also require the

Green’s function for the problem to be available and its global stiffness matrix is a

full matrix instead ofbanded matrix in FEM, which requires more computational time

for solver [17].

1.5 Introduction to Meshless Methods

The traditional FEM is a well established technique that has been successfully

applied to ECT modeling. The fundamental idea in FEM is to approximate a

continuous function over the entire solution domain by piecewise continuous
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approximations, usually polynomials, over a set of sub-domains called finite elements

(FE). The interconnecting structure ofthe elements via nodes is called a finite element

mesh. The reliance of FEM on a mesh leads to some characteristic disadvantages.

Generation of a mesh for a complex 3D geometry is generally difficult and time

consuming [26]. For example, in electromagnetic problems that involve geometrical

discontinuities and propagating tight cracks, the use of a dense underlying mesh leads

to a high dimensional matrix equation and large computational error.

In recent years, an alternate numerical approach, known as meshless method [26]

has been developed that eliminates some of the disadvantages of FEM. In meshless

methods, the unknown function is approximated entirely in terms “local” functions

defined on a set of nodes. In this approach, elements and the usual relationship

between nodes and elements are not necessary to construct a discrete set of equations,

which obviates the need for generating a mesh in the solution domain. Consequently

meshless methods are especially useful in the problems with discontinuities or

propagating cracks.

The initial idea of meshless methods dates back to the smooth particle

hydrodynamics (SPH) method for modeling astrophysical phenomena [27] (Gingold

and Monaghan, 1977). The research into meshless methods has become very active

after the publication of the Diffuse Element Method [28] by Nayroles, Touzot &

Villon (1992). Several so-called meshless methods, including: Element Free Galerkin

(EFG) by Belytschko, Lu, and Gu (1994); Reproducing Kernel Particle Method

(EKPM) [29] by Liu, Chen, Uras, and Chang (1996); the Partition of Unity Finite

Element Method (PUFEM) [30] by Babuska and Melenk (1997); hp-cloud method

11



[31] by Duarte and Oden 1996; Natural Element Method (NEM) [32] by Sukumar,

Moran, and Belytschko (1998); Meshless Galerkin methods using Radial Basis

Functions (RBF) [33] by Wendland (1999) have also been reported in the literature.

The major differences in meshless methods come from the techniques used for

interpolation.

The principal attractive features of meshless methods for NDT are the possibility

of:

(i) Working with a cloud of points that describes the underlying structure

exactly instead of relying on a tessellation of the domain in forward

problems

(ii) Lack ofneed for remeshing in solving inverse problems or probe scanning

Element-Free Galerkin Method (EFG) is one kind of meshless methods, which

employs moving least square approximation with Galerkin formulation. The EFG

method is now widely applied to problems in fracture mechanics and

electromagnetics [26], [33].

1.6 Research Objectives

The major objective of this dissertation is the development of an efficient

numerical model based on the EFG method for solving the forward problem and a

scheme for model-based solution of the inverse problem. Although the EFG method

is shown to be convenient and robust in electromagnetic field calculations, the

theoretical basis is not completed developed. Some improvements to the basic EFG
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method are proposed and discussed for enhancing accuracy of solutions to forward

problems. Our preliminary 1D, 2D and 3D results of the improved EFG formulations

are shown to be promising. These improvements include:

1. Selection of weight function and the regularity of the influence radius of the

nodes [41]

2. Selection of orthogonal basis functions [42]

3. Effect of different formulations for applying boundary conditions and the

formulation of the penalty function [43]

4. Treatments of discontinuities in the interface with visibility criterion [34]

Using the forward EFG model, new approaches for solving inverse problems are

also developed in this dissertation. The major advantage of using EFG model in

inverse problems is that re-meshing at each iteration is eliminated resulting in reduced

computational time and increased accuracy of solutions.

The inversion schemes implemented in this work are:

1. 1D parametric inversion of tight cracks

2. 2D nonparametric inversion based on state space search

3. 2D nonparametric inversion based on gradient search

4. 3D nonparametric inversion based on modified state space search

The dissertation consists of the following chapters. Chapter 2 briefly introduces the

necessary electromagnetic theoretical background. Chapter 3 describes the

formulation and improvements of the forward EFG method in details. Chapter 4

shows results of 1D and 2D model validations of the EFG method in electromagnetic

modeling problems. Chapter 5 presents the 3D implementations of the EFG method in
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simulating M01 and GMR inspections. Chapter 6 includes the introduction of inverse

problems and the preliminary numerical results of the application of EFG method for

1D and 2D defect reconstruction. Chapter 7 presents the modifications for the 3D

inversion using state space search technique and preliminary results are included for

validating the approach. Chapter 8 covers the conclusions and future work.



CHAPTER 2. BASIC ELECTROMAGNETICS FOR EDDY

CURRENT MODELING

2.1 Introduction

A brief introduction to the basic electromagnetic background for the eddy current

NDE is presented in this chapter. Eddy current NDE phenomenon is governed by

Maxwell’s equations.

2.2 Maxwell’s Equation

All electromagnetic phenomena, including ECT, are best described using

Maxwell’s equations. The differential form of these equations is expressed as follows:

\7><E=-§E

at

(2.1)

VxH=J+Q

at

(2.2)

V-D=p

(2.3)

V-B=0
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(2.4)

along with the continuity equation derived from equation (2.2):

V-J+a—p=0

at

(2.5)

where the variables are:

E: electric field intensity (volt/meter)

H: magnetic field intensity (ampere/meter)

D: electric flux density (coulumn/meter3)

B: magnetic flux density (tesla)

J: electric current density (ampere/meter3)

p: electric charge density (coulomb/meter3)

2.3 Time-Harmonic Fields and Potential Functions

When the excitation energy (source) is varying sinusoidally with time and we are

interested in the steady state response, the solution can be considered in the frequency

domain and the Maxwell’s equations (2.1) and (2.2) can be rewritten in terms of the

excitation frequency:

V x E = —j(OB

(2.6)

VxH=J+ij

l6



(2.7)

The governing partial differential equation is usually solved in terms of potential

functions, which could be the magnetic vector potential and/or the electric scalar

potential introduced below:

2.3. 1 Magnetic Vector Potential

We define magnetic vector potential A as the following identity:

V - V x A E 0

(2.8)

From equation (2.4) and (2.8), B can be expressed as the curl of magnetic vector

potential A.

B=VxA

(2.9)

2.3.2 Electric Scalar Potential

The electric scalar potential V is defined by the identity:

VxVV=O

(2.10)

And from equation (2.1) and (2.9), we get:

V x (E + 91) = 0

at

(2.11)

When combining equation (2.10), we obtain:
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Ez—i’i—VV

at

(2.12)

By introducing the definition of the magnetic vector potential and electric scalar

potential, the governing equations, can be fully rewritten using an A-V formulation

and solved using numerical modeling methods.

2.4 Weak Form and Galerkin Method

The electromagnetic problems discussed in this dissertation are boundary-value

problems described by a governing differential equation in a solution domain Q:

Lu = f in Q

(2.13)

together with the homogeneous boundary conditions on the boundary S that encloses

the domain:

2:- = O on 81

(2.14)

u = 0 on 82

(2.15)

where L is a differential operator, f is the excitation source or force function, u is

the unknown quantity, and S =S1 USZ is the boundary of domain Q. In
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electromagnetics, the governing differential equations can range from simple Poission

equations to diffusion and scalar/vector wave equations.

Ideally, one desired to obtain an exact solution for the boundary-value problems,

while in most practical engineering applications, only approximate solution is

tractable. Generally, the approximate solution is defined by the expansion

[1 n

u (X) = ZVJ'CJ'

1' =1

(2.16)

where vj is the shape function defined over the entire domain, cj is the

coefficients to be determined, and n is the total number of discretization nodes. In

I: n

FEM and EFG, u is written as u = Zoiu, , where (I),- is shape function and u,-

i=1

h
is the nodal value. Substituting u for u in equation (2.13) will result in a nonzero

residual of the form

r = Luh — f at 0 in Q

h directly, the weak form seeks a solution that satisfies theInstead of solving for u

equation in an average sense, which is called a weak form. Therefore, the optimal

h
approximation for u is the one that reduces the residual r to the least value at all

points in domain Q. So a weighted residual form is considered as

Rl '-'-" JQWirdQ = O

(2.17)



where R, defines the weighted residual integrals and Wt is the weighting function.

In Galerkin method, the weighting functions are chosen to be the same as the shape

functions used in the approximation expansion. This usually leads to the most

accurate solution. Particularly, in FEM and EFG, the weighting function is w,- = (I),- .

So equation (2. 17) can be written as

n

R,- =[Q(<I>,- -LZ<I>,u,- —cI>,- -f)dn=o

i=1

(2.18)

Equation (2.18) can be expressed by the linear algebraic equation

[Gllul = [F]

(2.19)

with Gij=jn(<r>,.-Loj)dn and F,=[Q<I>,--fd§2. [G] is called the stiffness

matrix, [F] is the load (or source) vector.

For each local integral, the EFG method involves higher order terms than

conventional FEM, which thereby yields more accurate solution.
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CHAPTER 3. ELEMENT FREE GALERKIN METHOD

3.1 Introduction

In Element free Galerkin method, a set of nodes is used to construct the discrete

system of equations approximating the solution. However, in order to implement the

Galerkin procedure, it is necessary to compute the integrals over the solution domain;

this is done by defining the support of the basis functions using either a set of

quadrature points or a background mesh.

Consider u(x) is a continuous function to be approximated. The theoretical

foundation of the approximation in the EFG method is the moving least squares

(MLS) approximation, which relies on three components: (i) a weight function, (ii) a

polynomial basis, and (iii) a set of position-dependent coefficients. The weight

function is nonzero only over a small subdomain of a node, which is defined as the

domain of influence. The domain of influence plays an important role in the

performance ofEFG method in terms of accuracy of the solution.

In the following sections, we will present the basic formulation of EFG method

using MLS approximation. The modifications developed for efficient implementation

of boundary conditions and interface conditions, selection of weight function and use

ofhigher order orthogonal basis functions are discussed in detail.
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3.2 Moving Least Square Approximation

The MLS is a method to obtain a differentiable approximate function in the domain

using known function values at discrete points through a weighted least squares fit.

In MLS approximation, the interpolant uh (x) is given by [34]

u” (x) = ijeiajtx) = pT(x)a(x)

j=0

(3.1)

where m +1 is the number of terms in the basis function, pj (x) are monomial

basis functions, and a,- (x) are coefficients that depend on position x.

When x and .‘x' are not superposed, Lancaster and Salkauskas (1981) defined

the local approximation by:

h m r
u (xx) = meme) =p (Edam

.=0

(3.2)

where x is the approximation point, i is a particular node. For example, in two

dimensions, uh (x) can be expressed in terms of either a linear or a quadratic basis

as:

uh (x, y) = a0 (x, y) + all (x, y)x + 02 (x, y)y (linear basis)

(3.3)

h

u (x, y) = ao(x, y) + 01(x,y)x + 02(x. y)y +
2 2 (quadratic basis)

03(x, y)x + a4(x. y)x)2 + 05(x, y)y
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(3 .4)

The coefficients aJ- (x) are determined by minimizing the weighted error between

local approximation and the nodal values u -, i.e., by minimizing the following

quadratic form:

" h 2
J = zMx-xjxu (x,xJ-)—uj)

J'=1

= 2m—x,)[2p,(x,)a,(x)_u,]2.

j=l 1-0

(3.5)

Here w(x — xj) is a weight function with compact support, n is the number of

nodes in the neighborhood of x where the weight function does not vanish. In

matrix notation, Equation (3.5) can be rewritten as

J = (Pa — u)T W(x)(Pa — u)

(3.6)

where uT = (u1,u2,- --,u,,) are the unknowns

P = [pi(xj)]mxn ,

(3.7)

W(x) = diag[W(x " x1),W(x _ x2),“',W(x _ xn)]°

(3.8)

The minimization of J with respect to a(x) leads to

B(x)a(x) — C(x)u = 0 ,

(3.9)
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where

B(x) = PTW(x)P,

(3.10)

C(x) -.—. PTW(x).

(3.1 1)

It follows that

a(x) = B“1(x)C(x)u.

(3.12)

Substituting (3.12) into (3.2), and letting f = x , the MLS approximation can be

written as

u”(x) = Zoj(x)uj

j=1

(3.13)

where the shape functions (Dj are given by

m

<I>,-(x) = gnaw—Race».- = pTB“C,-

(3.14)

3.3 Boundary Conditions

In a numerical solution, it is necessary to choose a solution domain with a

surrounding boundary to simulate a particular problem. Therefore, it is essential for
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the numerical model to consider the physical processes in the boundary region. The

boundary conditions are very important for the existence and uniqueness of the

numerical solutions. Different boundary conditions may result in very different

simulation results. Improper sets of boundary conditions may introduce erroneous

influences on the simulation system, hence imposing the proper set of boundary

conditions is very important.

It should be noted that the shape function derived in equation (3.14) does not

satisfy the Kronecker delta criterion at nodal locations: i.e. (I)j(xk) at (SJ-k; therefore,

uh (xj) at uj , which means when the MLS approximation is evaluated at a particular

point in the space, the value obtained is not the actual value of the field being

approximated, although they are related. This makes it difficult to impose essential

boundary conditions in EFG. In order to address this, special techniques have been

applied such as Lagrange multipliers [34], modified variational principles [44], or

coupling with standard finite elements [45] at the boundary. Note that the

construction of the shape function is theoretically identical in both two and three

dimensions. Although all these techniques are workable, each technique has its own

advantages and limitations.

Generally, Dirichlet type boundary conditions can be imposed through the use of

Lagrange multipliers. Furthermore, it is the most accurate method for imposing

Dirichlet boundary conditions and useful in relatively small problems, such as 1D or

smaller 2D geometries, where the cost to solve the problem is not big. But it adds to

the complexity in that the resulting stiffness matrix will have an increased size and
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will no longer be positive definite or banded, which may lead to slower convergence.

The proofof this statement is shown in the following.

With Lagrange multipliers method for boundary condition, the original linear

algebraic equation (2.19) is changed to

G K a _ F

KT O ,1 _ q

with Gij=IQ(CDi-L(Dj)d(2, Kij=—[F<I>,.-der, u is the unknown, 2 is the

(3.15)

Lagrange multiplier, F,- =1ody- - fdQ, qk z—IrNk -uodF , and Nk is the shape

function associated with the Lagrange multipliers. While the original stiffness matrix

G is sparse, positive definite and banded, the new sub-matrix K is a full matrix

associated with the boundary elements. So the overall stiffness matrix is no longer

positive definite or banded, resulting in an increased number of unknowns and an

awkward structure for the iterative solver.

Modified variational principle method can result in a banded equation; it can also

reduce the number of unknowns and therefore reduce the computational costs, but it

sometimes yields unstable solutions as shown in [47].

In the coupled FEM-EFG [48] approach, the elements are placed around the

boundary of the domain as shown in Figure 3.1 [48]. The essential boundary

conditions are applied to FEM nodes. In the implementation of this method we use

frnite elements as background mesh to perform the quadrature of the weak form. In

this approach the FEM nodes adjacent to the essential boundaries are already
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available and easy to apply boundary condition. The limitation of the coupled

FEM-EFG approach is that the modified shape function has a discontinuity in the

derivative at the interface, which affects the accuracy.

EFG region

   
Boundary region

 

L I I T Essential boundary

Figure 3.1 EFG coupled with finite elements along essential boundaries

 

An alternate method based on the constrained variational principle is proposed in

this dissertation, which is the penalty function method originally by Suzhen Liu and

Qingxin Yang [43]. Consider the typical linear boundary value problem where the

linear algebraic equation using EFG method is obtained in the equation (2. 19)

[G][u] = [Fl

(3.16)

Each element in the final discrete equations with penalty boundary condition is

obtained as:

G,- = jeep, -L(Dj)d§2 mjroiojdr

(3.17)

F,- =[Qoi -fdQ+a[ruo<1>,-dl‘.

(3.18)
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where F is the associated boundary region, a is the penalty parameter, and uo is

the boundary value. With the penalty function method, the stiffiress matrix is positive

definite and banded which translates into a reduced matrix size of the problem.

The selection of penalty parameter has a great effect on the accuracy of solutions.

If a is too small, the boundary condition term is negligible and the boundary

condition is not imposed effectively; if a is too large, diagonal elements

corresponding to boundary nodes and some off diagonal elements associated with the

boundary nodes become very large making the stiffness matrix ill-conditioned and the

convergence slower. Although the penalty methods are very simple to implement, a

much be chosen appropriately. a is determined to lie typically in the range fi'om 105

to 1020. Detailed research was conducted on some test problems in the following

chapter.

3.4 Weight Function

The weight function plays an important role in the performance of EFG method in

terms of the accuracy of solutions, complexity of computation (coding) and rate of

convergence.

The selection of the weight function within the domain of influence is not

restrictive, but it must conform to the following conditions:

1. The weight function should be positive valued;

2. The weight function should be relatively large for the nodes xj close to J? ,
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and small for more distant nodes. In other words, it should be decrease in

magnitude with the distance from f to xj.

3. The weight function is continuous together with its derivatives up to the

desired degree.

In the numerical modeling, the solution domain is fully covered by the domains of

influence of all nodes. The shape of the domain of influence is arbitrary; a circular or

rectangular domain is typically used according to the domain geometry. Figure 3.2

shows two examples of the domain of influences.

 

(a) (b)

Figure 3.2 Domain of influence (a) circular; (b) square

In a 2D domain of influence, the weight Motion is derived and expressed at any

given point as [40]

w(x-xi) = w. -w. = wen-way),

(3.19)

where w(ri) , for i = x, y , are typically either Gaussians, exponentials or cubic

splines. These functions take the following form, respectively
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2
_( -1)

w(r) -{1 e r

0

i
Z—4r2 + 4r3

3

w(r)=(§-—4r+4r2——§r

o

 

4 3

for r S 1 (Gaussian),

for r > 1

for r .<_ 1 (Exponential),

for r > 1

for r S -1-

2

for; < r S 1 (Cubic splines),

forr>1

(3.20)

(3.21)

(3.22)

where ,8 = 0.5 yields best convergence for the exponential weight, and r;- , for

i = x, y , are calculated as

rJr =|x—xj|/dmx , ry =ly—yjl/dmy ,

(3.23)

(3.24)

Figure 3.3 shows one example ofweight function over a 1D domain of influence.
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Figure 3.3 The weight functions over 1D domain of influence

In the above equations, aimx is a scaling factor, (cx,cy) is the difference

between node xj and its nearest neighbor. It is important that dmax is carefirlly

chosen. If dmax is too small, then too few nodes are in the local domain of influence,

and the matrix B becomes singular; if dmax is too large, then too many nodes are

present in the local domain of influence, and the local character of approximation will

be affected, the accuracy will decrease and the calculation time will increase. In

general, the optimum choice of aimax is 1.4 to 3.5.

The continuity of the shape function is tightly related to the weight function. When

the weight function 1120;) and its (k — 1) derivatives are continuous, the shape

function (DJ-(x) and its (k — 1) derivatives are also continuous. In 3D, the

definition of weight function is a natural extension of that presented for 2D solution

domain.

In the previous work, uniformly distributed background nodes were used. Further

the symmetric weight function makes the domain of influence symmetric as well.

When modeling large solution domain, non—uniformly distributed nodes are used for

efficiency, so the domain of influence is asymmetric. Hence the asymmetric weight
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function should be modified and implemented accordingly so that it is continuous.

For example, when the cubic splines weight function is applied, it is itself continuous

. t d . . . . .

as well as Its 1S and 2H order derivatives, even when It IS asymmetric. In the case of

Gaussian and Exponential weight function, they are both higher order weight

functions and hence continuous as well. Figure 3.4 shows the asymmetry of the

domain of influence.

 

 

   

Figure 3.4 The asymmetry of the domain of influence

3.5 Discontinuities Approximation

In NDE applications the test geometry typically involves multiply connected

regions with each region characterized by its own material properties, such as

conductivity and permeability. This results in a discontinuity of the normal

component of current density at the interface boundaries which in turn implies that

the derivatives of the shape flmction or the shape function itself will be discontinuous

at the interface. Since continuity of shape functions is inherited from continuity of the
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weight function, it is necessary to introduce discontinuity into the weight function.

One technique used to realize this is by using the visibility criterion [40].

The visibility criterion is illustrated in Figure 3.5, for the rectangular domain. If

there is no material discontinuity, the domain of influence is the total area of the

square. However, in the presence of a discontinuity, the domain of influence of node

xj shrinks to the area covered by dashed horizontal line, and the weight function

vanishes outside of that area. This procedure directly results in the discontinuity of

weight function, which in turn introduces the discontinuity of shape function and its

derivatives.

 

Figure 3.5 Domain of influence of node adjacent to material discontinuity

(rectangular domain)

3.6 The Orthogonal Basis

From equation (3.14), we can see that the basis function is one factor in the overall

shape function and hence affects the accuracy of solution. In theory, increasing the
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order of basis functions improves the accuracy of solution. But in the EFG method it

is often seen that higher order (m 2 4) polynomial basis fimctions suffers from a lack

of convergence procedure because the associated shape function matrix becomes

ill-conditioned. The 1D proof of this statement is presented below.

In the EFG method, the shape function defined in equation (3.14) involves the

inversion of matrix B , which is defined in (3.10). Here W is the matrix of weight

function and P is the basis function coefficient vector.

 

B(x) = PTW(x)P

(3.25)

So B can be equivalently expressed as:

n T
B(x) = Zw(x —x,-)[1,x,-, ...... ,x}"] [l,x,-, ...... ,xfn].

i=1

(3.26)

Each element in matrix B is written in the form of an inner product:

" I
(p, (x), pk (x)) = Zw(x — xi)x,- x? , where l,k = 0,1, ......,m

i=1

(3.27)

So

<P1(x),P1(x)> (P1(x),Pm(x)>

B(x) = . . . . . . . .

(pm(x),p1(x)) (pm(x),pm(x))
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(3.28)

Rewrite the inner product in integral form, we get

n I k

(p1(x).pt(x)) = In2W(x - xi)x x,- dx

i =1

(3.29)

When L2 (a,b) space is unit of L2 (—1,1) space, which means the solution

domain is [-l, 1], then matrix B is Hilbert matrix, which is ill-conditioned and

difficult to invert numerically.

i 1 1/2 l/(m+l)-

1/2 1/3 1/(m+2)
B(x)=H=

  _l/(m+l) 1/(m+2) l/(2m+1)]

(3.30)

For the general L2 (a,b) space, the structure of matrix B is similar to Hilbert

matrix, which is ill-conditioned and hard to invert. This makes calculation of shape

function difficult. This is the reason that the higher order (m 2 4) polynomial basis

fImctions lead to lack of convergence in EFG procedure.

Choosing an orthogonal basis [42] can solve this problem. The definition of

orthogonal basis is shown below:

Vector p(x)=[p1(x),...,pJ-(x),...,p,,,(x)]T is an orthogonal basis, if the inner

product satisfies
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N
o 1 k

(Pl(x)apk(x))
=ZMx—xi)p,(xi

)pk(xi)={
( it )

  

 

 

 

H C, at O (l at k)

(3.31)

Therefore, its shape matrix becomes

“(pttx),pt(x>) ‘

B(x) =

_ (R... (x). 17.. (x))_

(3.32)

The recursive relationship of orthogonal basis is given by,

P107) =1

P2 (x) = (x _ a2)Pl(x)

Pk+l (x) = (x _ ak+l)Pk (x) - flkPk—l (x)

(3.33)

where k = 1,2,...,m. The parameters a , ,6 are Obtained as,

. _ (wk(x),pk(x))
ak+l _

i <pk(x)spk(x)>

flk = (pk(x):pk(x))

[ (Pk—1(x),pk—1(x)>

(3.34)

where k =0,1,...,m—1. Substituting equations (3.32)-(3.34) into (3.13), the shape

functions are then expressed as:
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"’-W(x xii)p,-(x)
 

 

 

 

 

 

 

(Di( )= ( )

x ,2—1 (pjtx>p,-(x>)p x

(3.35)

The partial differential form of the shape function is

d<D,-(x) _ imdfflpflxiWfl-x)

dx jh (pjtx) p,tx))

iwtx- x..)p,-(x) dp’”
+

H (mum-(x)?

0’ (x), -(x)

iwtx—xt)p,-(x.-)p,-(x) 00’ 2pr >

j=1 (p,-(x),p,-(x))2

(3.36)

And the partial differential of inner product form is

d<Pj(x):Pj(x)>_ N Zdw(x— x,)

d, ZMx——x.->[p(xt>F= d.—L»(a)?
i=1

(3.37)

These equations (3.31)—(3.37) indicate that the computations in EFG method

eliminate the need for inversion of the shape function matrix when the orthogonal

bases are used. This in turn makes the implementation of EFG method simpler [48],

increases the accuracy of the solution by allowing higher order bases and also

converges in fewer numbers of iterations.
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CHAPTER 4. FORWARD MODELVALIDATION

4.1 Introduction

In Chapter 3, the basic formulation of EFG method and modifications to improve

its performance have been proposed. The improved formulation will be validated by

static and quasi-static electromagnetic field computation via comparison against

analytical models and the conventional EFG. Results of performance of the forward

model on both 1D and 2D problems are presented in this chapter.

The implementation of static and low fiequency electromagnetic fields is the basis

of eddy current inspection of conducting test specimen. To simulate this underlying

physics of material-energy interaction, the fields are typically expressed in terms of

potentials and the governing equations which are Poisson or diffusion equations are

solved together with appropriate boundary and interface conditions. In the following,

we will analyze the application of the improved EFG formulation to the numerical

solution of these equations.

In general, consider a domain of interest denoted by (2 that is bounded

by S] USZ = 80 , where S] is the Dirichlet boundary and S2 is the Neumann

boundary.

38



4.2 1D Problem

A 1D electrostatic Poisson problem for the potential function u is described as

follows:

V2u=—x (Q:0<x<l)

u(0)=0 u'(l)=0

(4.1)

To obtain the discrete system equations, it is necessary to use a weak form of the

equilibrium equation and boundary conditions. Galerkin method is used for the choice

of test function and Lagrange multipliers are applied for incorporating boundary

conditions. The final discrete function can be obtained by substituting the trial

functions u(x) and test function into the weak form, yielding the system of linear

algebraic equations.

3
The exact solution is u(x) = éx—%x for comparison with the numerical

solutions.

Figure 4.1 shows the exact solution and the numerical solution using EFG method

with 1St and 2nd order polynomial basis. Although the solution with 2nd order

polynomial basis convergences, it starts to show some instability as explained in

Chapter 3, that the higher order polynomial basis produces numerical oscillations of

the solution.
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Figure 4.1 The comparison of exact and EFG solution with 1“, 2nd order

polynomial basis

Figire 4.2 shows the exact solution as well as the solution using EFG method with

d . . . .

3r order polynomial basrs. The numerical solutlon no longer converges. It means the

oscillations become more severe so that the numerical solution is invalid.
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Figure 4.2 The comparison of exact and EFG solution with 3rd order polynomial

basis

In Figure 4.3, the numerical solution using EFG method with orthogonal basis

function is presented. The order of the basis function varies from 1 to 4 and the

numerical solutions are seen to be stable and convergent, which demonstrates the

effectiveness of higher order orthogonal basis functions.
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Figure 4.3 The comparison of exact solution with various order orthogonal basis

4.3 2D Problem

The 2D eddy current modeling geometry is shown in Figure 4.4. Assume an

infinite-size 2D conducting plate with a tight (zero width) crack along y direction

(length = 1.0 cm) placed as shown. A time-varying harmonic current source is applied

using a thin foil in the x direction.
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Figure 4.4 Modeling geometry for 2D problem

The induced current will be strictly along - x direction in the absence of crack.

The induced currents will bend around the comers in the presenceof the crack. This

geometry is typically encountered in 2D eddy current problems. The plot of the

induced eddy current predicted by the model is shown in Figure 4.5.

Figure 4.5 (a) shows the induced eddy current with the crack obtained using 1St

order polynomial basis function and (b) shows the image obtained using 2nd order

polynomial basis function. Due to the complexity of the problem, the EFG model

usmg 2n order polynorrnal basrs functlon rs no longer convergent and solutlon 1s

incorrect.
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Figure 4.6 (a) shows the induced current plot using EFG method with 2nd order

orthogonal basis and (b) shows the difference compared with Figure 4.5 (a). It is clear

that the EFG model with 2nd order orthogonal basis function still converges and only
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Figure 4.6 Induced eddy current plot using EFG method by orthogonal basis

function (a) 2"‘1 order (b) comparison with Figure 4.5 (a)
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Figure 4.7 shows the iteration error in each step using 1St order polynomial basis

and 2nd order orthogonal basis. From the following figure, we can conclude that the

EFG model developed in this dissertation with orthogonal basis converges faster than

the one with conventional polynomial basis.
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Figure 4.7 The convergence rate using polynomial basis and orthogonal basis

For the 1D problem in section 4.2, the Lagrange Multipliers is used to impose the

essential boundary condition, because of the small size of the solution domain. In the

above 2D eddy current problem, the penalty method is used to impose the essential

boundary condition. The size of the discrete matrix is reduced while the accuracy is

retained.
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CHAPTER 5. FORWARD MODEL IMPLEMENTATION

5.1 Introduction

This chapter presents the application of the EFG method to electromagnetic field

computations in a 3D NDE test geometry. In quasi-static frequency range, the

governing equations can be simplified to a diffusion equation in terms of magnetic

vector potential and electric scalar potential. The numerical results are validated via

comparison against experimental data and results obtained using conventional FEM.

5.2 Mathematical Formulation

Let ()1 and 02 be partitions of the solution domain, where Q] denotes the

conducting region and 02 represents the surrounding free space. Let A be the

magnetic vector potential in both 91 and 02 , and V be the electric scalar

potential in (21. ,u and 0' are the permeability and conductivity of the media

respectively. Derived from Maxwell’s equations, the governing diffusion equation for

conventional eddy current problem in Cartesian coordinates can be written as [50]

inVxA+jcoaA+0VV=Js in Q

,u

(5.1)

V-(jaxrA+oVV)=0 in O,
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(5.2)

where JS is the assigned source current density.

To obtain the numerical solutions of equation (5.1) and (5.2), we first expand the

potentials (magnetic vector potential and electric scalar potential) as a linear

combination of shape functions associated with the nodes, we get:

A = guy-op, +ij<1>jay + Azjc1d,)

,-

(5.3)

,- ,-

(5.4)

where ij , A Azj are the three components of the magnetic vector potential at
yj’

A

node j; Vj is the scalar potential; (DJ- is the shape firnction, and 8,, fiy, az

are the Cartesian unit vectors.

Homogeneous Dirichlet boundary conditions are applied at external boundaries and

current continuity conditioan = 01—ij —VV)«r‘r = 0 is applied on interfaces to

obtain a unique solution. Because EFG shape function does not satisfy the Kronecker

delta property, essential boundary condition can not be imposed directly as is done in

FEM. As discussed earlier, the penalty method is used for this purpose.

To obtain a system of linear algebraic equations, the Galerkin method is used.

Substituting the above expansions (5 .3) and (5.4) into the governing equations (5 .1)

and (5.2), we get:
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3N

j=l

N 3N N

+Zflnarbi-V<Dde]VJ-+a2[[rk¢i-¢de]Aj+aZ[[rk<Di~¢de]Vj

j=l j=1 j=1

3N 3N’ -N
:12] 9J5-¢de+ajZ=l[Irkuo-¢jdr]+aj§:=l[]rkuo-(I)jdr]

(5.5)

3N N

Zl[Inja)oV(Di .OdeMj + ZIUQOVQ‘. .chdeF/j z 0

J: }=

(5.6)

In (5.5), a is the penalty parameter. Generally, the penalty parameter should be

carefully chosen so that 0.92 equals 104 or 105 times greater than S at the

boundary nodes in the equation (5.5).

Equations (5.5) and (5.6) can be written in matrix form as

GA = Q

(5.7)

where the matrix G is a complex and sparse matrix; A is the vector of unknowns;

four unknowns are at each node, including the electric scalar potential and the three

components of the magnetic vector potential; Q is the load vector incorporating the

current source.

Equation (5.7) is solved using (TF) QMR [53]. Only non—zero entries of G need

to be stored in the iterative solution procedure. Compared with Lagrange multipliers,

the matrix obtained using penalty function is of a reduced size and positive definite,

49



which makes the convergence faster.

The solution of (5.7) is then used to compute various measurable physical

quantities such as flux density B , and induced eddy current density in the area of

interest.

5.3 Magneto Optic Imaging Application

Magneto-optic imaging (MOI) is a relatively new sensor application of bubble

memory technology to NDT and produces easy-to-interpret, real-time analog images

[49]. In this technique, an induction foil is used induce eddy currents in the specimen

and a magneto-optic sensor is used to detect the magnetic flux density associated with

the induced currents. However, since the M01 data is binary, the information

provided is qualitative in nature. A theoretical model that can simulate the MOI

system can provide a more quantitative value of the magnetic fields and is hence

useful for the optimization of the magneto-optic (MO) sensor and system [51], [52].

A linear FE mode] utilizing the A — v formulation was initially developed for this

purpose. However the inclusion of infinitesimal air gaps between layers and the tight

crack makes mesh generation very cumbersome and decreases the accuracy of FEM

solutions. A more accurate EFG model is implemented and applied to MOI inspection

geometry.
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5.3.1 Introduction to M0! in Airframe Inspection Application

In aircraft industry, for the airframes to stay in service much longer than the

designed life, thousands of fasteners and bonded joints on the fuselage need to be

inspected. In order to cover the large inspection area, fast, accurate and cost effective

NDT inspection methods are clearly needed. Some of the challenges encountered in

ECT are:

(1) Detection of corrosions or cracks in the multi-layer structures

(2) Detection of cracks under the fastener (CUP)

(3) Detection of surface and subsurface defects close to edges

Conventional eddy current inspection method is time consuming due to the small

probe size and large inspection area. Furthermore, it requires well-trained operators

for data interpretation. Development of new techniques for rapid and accurate

inspection is of considerable interest to the aircraft industry. MOI provides analog

images that are fast and easy to interpret.

Briefly, in MO inspection, an induction foil is used to induce eddy currents in the

conducting sample. The magnetic fields associated with the induced eddy currents are

detected using a MO sensor. Polarized light passed through the MO sensor undergoes

a rotation of the plane of polarization in the presence of local magnetic fields. When

the reflected light is viewed through an analyzer, an analog image of local

magnetization is seen on a monitor. Figure 5 .1 (a) shows a schematic of the M01

device and Figure 5.1 (b) shows an experimental image. However the MO image is

binary because of the physical properties of the garnet film sensor and does not
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provide a quantitative value of the measured signal. A simulation model for M0

inspection of multilayer aircraft geometries for predicting the continuous valued

magnetic flux density that produces the observed experimental MO images has been

developed.

Light source Q

I

Polarizer

 

Bias coil

Sensor 4 Induction foil
Test sam 1e

1

 

(a)

 

(b)

Figure 5.1 (a) The schematic of the MOI system (b) an experimental image
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Figure 5.2 (a) shows a M01 308 system and (b) shows inspection being performed

using MOI system with ahead mounted display.

   

   

 

     

  
Personal

Video System

Low Frequency

Eddy-current

Attachment

 

 

(b)

Figure 5.2 (a) The M01 308 system (b) using of M01 system
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5.3.2 Modeling Geometry

A typical 3D MO inspection geometry used in both FEM and the EFG methods is

shown in Figure 5.3.
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, ,/ I I
all’ gap ’    
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Figure 5.3 M01 simulation geometry (both for FEM and EFG). (a) 3-D view, (b) 2-D

top view and (c) side view of the multilayer plate with a 6mm diameter fastener hole

The geometry consists of two layers of aluminum plates, of 3 mm total thickness

and of infinite width & length. An infinitesimally small air gap exists between the two

layers. An infinite inductive foil of 1 mm thickness, carrying a linear sinusoidal

excitation current density of amplitude 108 A/m 2 and frequency 3 kHz is placed
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above the conducting multilayer plate at a distance of 1mm. The solution region is of

dimensions [—12,12]mm x[—12,12]mm x [—8, 8] mm . A fastener hole of 6 mm

diameter is introduced extending through the two layers and a second layer tight crack

of 5 mm radial length is also included. The number of nodes used for discretization

using the EFG method is 18 x18 x 12 whereas that used in FEM is 28 x 28 x 24 and

the cross-section is illustrated in Figure 5.4.

Figure 5.4 2D cross-section view of (a) FEM mesh and (b) EFG discretization of the

solution domain
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Figure 5.4 continued
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The boundaries of the solution region are chosen in air and the imposed boundary

conditions are summarized in Table 1.

Table 1 Boundary conditions

 

Upper boundary Ax = Ay = A, = 0, V = 0

Lower boundary Ax = Ay = A2 = 0, V = 0

Left boundary Ax = 0, V ._. 0, Aya A2 are free

Right boundary Ax = 0, V = 0, Ay, A2 are free

Front boundary Ax = 0, V = 0, Ay, A2 are free

Rear boundary Ax = 0, V = 0, Ay, A2 are free
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5.3.3 Numerical Results I— Fastener hole without crack

Simulation results obtained using FEM and EFG for a defect free fastener hole are

shown in Figure 5.5. The normal component of the magnetic flux density 32 is plotted

at the MO sensor layer placed above the induction foil. A comparison of the

computational time and mesh parameters are summarized in Table 2. Figure 5.6

shows a comparison ofmodel predictions after thresholding and the experimental MO

 

 

 

 

 

   

image.

Table 2 Summary of simulation results

FEM EFG

Peak value of magnetic 34.223 35.927

flux density (Gauss)

Computation time (hours) 3 0.5

Number of nodes 28x28x24 = 18816 18x18x12 = 3888

Discretization complexity complex (non-uniform simple (uniformly

elements) distributed nodes)
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Figure 5.5 (a) 3D view, (b) 2D top view and (c) 2D side view of the normal

component of the magnetic flux density with FEM and (d), (e), (f) with EFG

   

 

    
(b) (C)
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Figure 5.5 continued
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(C)

Figure 5.6 Binary results obtained by thresholding simulation results in Figure 5.5.

(a) FEM (b) EFG and (c) experimental image

5.3.4 Numerical Resulm II - Fastener hole with 5 mm second layer tight crack

Simulation results obtained using FEM and EFG for a fastener hole with 5 mm

radial crack are shown in Figure 5.7. The normal component of the magnetic flux

density is plotted at the MO sensor layer placed above the induction foil. A

comparison of the computational time and mesh parameters are summarized in Table

3. Figure 5.8 shows a comparison of the model predictions afier thresholding.



Table 3 Summary of simulation results

 

 

 

 

 

   

FEM EFG

Peak value of magnetic 35.467 37.779

flux density (Gauss)

Computation time (hours) 3 0.5

Number ofnodes 28x28x24=18816 18x18x12=3888

Discretization complexity complex (non-uniform simple (uniformly

elements ) distributed nodes)
 

Figure 5.7 (a) 3D view, (b) 2D top view, and (c) 2D side view of the normal

component of the magnetic flux density with FEM and (d), (e), (f) with EFG
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Figure 5.7 continued

 

   

 

 
(d)
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Figure 5.7 continued
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(f)

 



  

  
      

(a) (b)

Figure 5.8 Binary results obtained by thresholding simulation results in Figure 5.7.

(a) FEM (b) EFG

5.3.5 Conclusion

The EFG method, gives us an efficient fi'amework for modeling airframe geometry

in its full complexity. A benefit of the EFG method is that it is inherently a high order

scheme, which makes it more accurate than the conventional linear FEM. Another

advantage of the EFG lies in its simplicity of domain discretization because it relies

on only a cloud of nodes and does not require an underlying tessellation to describe

the 3D domain. The infinitesimal air gaps between layers and the tight cracks are

modeled by a layer of nodes alone. Initial results indicate that MO images predicted

by the EFG model are much closer to the experimental images than those of the FE

model with the same number ofunknowns.



CHAPTER 6. INVERSE PROBLEM USING EFG

METHOD

6.1 Introduction

Inverse problem in NDE involves the estimation of true defect profile on the basis

of the information contained in a measured NDE probe signal. As mentioned in

chapter 1, inverse problems are generally ill-posed, and the full analytical solutions to

these problems are seldom possible. Therefore, practical solutions employing a

variety of constrained search techniques are used to find the optimal solution from the

set of possible solutions. These techniques range fiom simple calibration procedure to

pattern recognition algorithms such as neural networks. These approaches include

direct and iterative procedures.

In the following, several well-known methods to solve inverse problem are

reviewed:

Calibration methods [54] use calibration curves (or tables), which are obtained by

generating a set of signal parameters either from experiments or numerical models for

a variety of defect parameters to estimate (fit) a curve. The curve fitting technique can

use polynomial approximation or other functional approximation method. These

curves are then used to predict defect parameters for a given measured signal

parameter.

65



Pattern recognition algorithms using neural networks involve mapping the

measured signal directly to the defect profile [55]-[59]. In this case, signal inversion

is treated as a function approximation problem and the mapping from the measured

signal to the defect profile is learned by a neural network or other signal processing

algorithm using training data.

Model-based solution to inverse problems [60], [61] employs a forward model that

can predict the measured signal for a given defect profile in an iterative framework.

The iteration starts with an initial estimation of the defect profile represented by the

defect parameters, and forward problem is solved to determine the corresponding

signal. The cost function defining the error between the measured and predicted

signals is minimized iteratively by updating the defect profile. When the error is

below a pre-defined threshold, the iteration ends and the updated defect parameters

represent the desired solution.

Iterative methods generate accurate reconstruction solutions, however due to the

high-dimensional (2D or 3D) numerical models in each iteration; they are

computationally intensive and hence have limited practical applications. Previous

work using FE model based iterative techniques for inverting conventional eddy

current. data has been reported by Li [60].

In this dissertation, the model based NDT inverse problem that uses the EFG model

for simulating the physical process is proposed. The overall iterative approach using

the forward model is shown in Figure 6.1.
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Profile dIO) Fomard Model

by EFG Method

 

 

   

     
 Update Defect Desired Defect

Profile dl') Profile d

Figure 6.1 Schematic representation of the iterative approach of the inverse problem

From the above iteration loop, we can see that this approach consists of two parts:

the development of a forward model of the underlying physical processes, which has

been presented in previous chapters; and a scheme for updating of defect parameters

to derive the desired profile. The different updating schemes are described in this

chapter.

Three approaches are considered in this thesis.

1. Parametric calibration method for 1D problem

2. State space search method that can be used in 2D problem

3. Gradient based method using Adjoint equation for 2D problem

The formulation, implementation and preliminary results of each approach are

presented here.

6.2 1D Problems - Parametric Approach

The case of a 1D tight crack is considered in this section. The NDE inspection uses

a linear induction foil to induce eddy currents and the normal component of
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associated magnetic flux density is measured using a Giant magneto-resistance (GMR)

sensor. This approach is based on the generation of a calibration curve to characterize

a few crack parameters such as the length and orientation of the crack. The

performance of this procedure depends on (i) definition of defect parameters, (ii)

definition of the cost function and (iii) the defect parameter updating scheme.

6.2.1 Problem Statement and Inversion Scheme

The tight crack is characterized by the parameters r , z and 61 ; where r

corresponds to the radial distance of the crack center from the origin, 2 corresponds

to the length of the crack perpendicular to current direction and (9 corresponds to the

angle made by the crack with the linear current direction as shown in Figure 6.2. We

denote these independent variables by vector X :

X = {r, z, 0}

(6.1)

 

(0.0)

é—induced current    
Figure 6.2 Definition of the defect parameters for 1D crack
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Assuming a given initial value for X = {r,z, 6?}, the EFG model solves the forward

problem for simulating the underlying physical phenomenon and generating the GMR

signal. The desired solution is obtained by iteratively updating the parameters to

minimize the error between the given experimental input signal and forward model

prediction.

The EFG model uses the visibility criterion to model the crack. The update

equation and the node discretization of the defect greatly save the computational cost.

The cost function, chosen as the square of the error between the experimental

measurement and model predicted signals is given in equation (6.2).

N 2

F = 2' En "' an I

=1

(6.2)

where B" is the n -th point of the EFG predicted signal representing the magnitude

of the normal component of magnetic flux, an is the n -th point of the measured

(or simulated) signal and N is the number of data points in B and Bm. The

derivative of the cost function is approximated as:

dF _ F(X +AX)-F(X)

dX - AX

  

(6.3)
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6.2.2 Inversion Results and Discussion

The results of inversion are presented here using simulated data instead of

measured signal. The 2D geometry consisting of an infinite aluminum plate is excited

by an infinite induction foil carrying a 3 kHz sinusoidal current along the x—direction.

A database of . tight cracks, Xi = {H ,2i ,6?" ,i =1,2,3,...n} are simulated and the

predicted signals B,- are compared with the measured signal from a true defect Bmi

to get cost function values F,- corresponding to the i -th crack Xi. Figures 6.3 (a),

(b) and (0) show the normalized cost function versus the r , z and 6 parameters

independently. The x -axis indicates the difference between predicted and true

parameter values. When the x -axis is zero, the predicted defect parameter is exactly

equal to the true defect parameter value. These curves are used for estimating the

derivatives in equation (6.3).
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Figure 6.3 Cost function versus (a) r, (h) z and (c) 19
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Figure 6.3 continued

0.00 . . . 

0.05 A

0.04

0.03

C
o
s
t

0.02 '

0.01

   
0 0102030405060700090

eflmkm)

(C)

In order to test the inversion scheme, a straight tight crack of infinite depth, zero

width and length = 1.0 cm is introduced and the corresponding signal is used as the

measured data 3",. The true and predicted cracks using this inversion scheme are

shown in Figure 6.4. The regular grid of dots shows the nodes in the EFG model.

Figure 6.4 (a) shows the initial guess (dotted line), the true defect (solid line), and the

final prediction (dashed line) when the straight tight crack is along the direction

perpendicular to the linear current. Figure 6.4 (b) shows the corresponding results

when the crack is at an angle of 55 degrees with the current direction.
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Figure 6.4 Initial guess (dotted line), the true defect (solid line) and the prediction

(dashed line). (a) crack perpendicular to the current (b) crack at an angle of 55

degrees with the current direction



6.2.3 Conclusion

A simple parametric inversion approach for reconstruction of a tight crack has been

validated using EFG model. A calibration curve is applied to characterize the crack

location, length and orientation. For this simplified problem, a simple uniform

discretization in EFG model is sufficient. The inverse model is simple, fast and

efficient.

6.3 Inversion based on State Space Search Techniques for 2D Problem

A model based inversion using EFG model and state space search method is

presented in this section for 2D defect profile reconstruction. The iterative state space

search method using the tree structure is developed for implementing the defect

updating scheme. The inversion scheme is applied to characterize the cross-section of

the defect in terms ofboth width and depth.

The performance is again evaluated using simulated input signals.

The approach proposed in this section comprises three major parts:

(1) Problem representation — defines the problem geometry and introduces the

defect representation using state space

(2) Search procedure — uses the tree representation to search for the optimal

defect

(3) The dependence of results of cost function
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6.3.1 Problem Representation
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(b)

Figure 6.5 The EFG model Geometry (a) 3D View (b) cross-section view

The geometry for the inverse problem is shown in Figure 6.5. Figure 6.5 (a) shows

the 3D geometry of an infinite conducting plate with a defect. The time-varying

harmonic current in the y-direction is applied using a thin foil as the excitation source.

Since the geometry extends to infinity in the y—direction this can be simplified to a 2D

problem as shown in Figure 6.5 (b), which is the cross-section of the 3D geometry

and defect profile.
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In order to derive a state space [62]-[63] representation, the cross-section of the

defect is discretized in terms of M discrete cells along the length and N layers of

nodes along the depth into the test specimen. The state X is a MxN matrix with

element 1 or 0, which represents presents or absence of a defect respectively in each

cell. The set of all possible states (2MN) is the state space. Figure 6.6, shows three

example states/defect profiles, where (a) and (b) are the surface defects and (c) is a

sub-surface defect.

  

   
 

        

    
  

  

                 

  

(a) (b) (C)

Figure 6.6 Examples of States (Defects)

An initial state describes a possible defect from which the iterative search will start.

An objective state is a defect representation that minimizes the cost function.

The search procedure is performed layer by layer. The best defect profile at each

layer is obtained by minimizing the cost function, which is commonly defined as

N 2

F = XI Bn - 3m |

=1

(6.4)

where B" is the model prediction of imaginary part of the normal component of

magnetic flux, an is the corresponding experimental signal and N is the number

of data points in the signals. The cost function is computed for all the possible values
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for cells in the current layer and the state, corresponding to the lowest cost function is

selected in each layer.

6.3.2 Tree Structure

In order to derive the solution to the inverse problem, we search for a simple

best-fit defect state to minimize the difference between the signals corresponding to

true and reconstructed defects. The exhaustive search procedure is summarized using

a tree structure, which is shown in Figure 6.7.

The search is constrained by two assumptions, namely, (a) the defect grows

vertically downwards. (b) the defect grows narrower with depth.

An lnltlal node d( ) lS chosen as the 1mtral state In the tree structure. In each layer,

the nodes are expanded, and the cost function of each node is computed and the node

corresponding to the minimum cost function is selected and retained for expansion to

the next layer. In Figure 6.7, the node inside the square represents the selected

minimum cost nodes in each layer.

The tree expansion continues, until a leaf node is reached. The criterion to obtain

the leaf node is based on the calculation of the cost function. As the tree expanded to

a next layer, if the minimum cost function begins to increase, then the search stops,

and the selected node in the current layer corresponds to the global minimum cost

function and is labeled as the leaf node. Once a leaf node is obtained, the search

procedure stops and the solution state is reached. In Figure 6.7, the cost function of

the bottom layer gray node is seen to be greater than the minimum cost function of the
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parent node in the previous layer. The node inside the square is the desired defect

   

 

   

  

 

profile.

6(0) Cost Function CO

0

. . Minimal Cost Function C1<CO

O O

, Minimal Cost Function CZ<C1

. 0 Minimal Cost Function c3<c2

O 0

Minimal Cost Function C4>C3

Figure 6.7 the tree structure

6.3.3 The Search Procedure

The detailed search procedure is divided into the following steps:

1. Estimation of the initial state (1(0). — involves determining the defect location i.e.

whether the crack is on the top or bottom surface.

(a) Use simple peak detection algorithm to determine the defect location. The

peak-to-peak separation in the input signal is used to estimate the defect length in

the initial layer.
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Figure 6.8 (a) Input signal (b) initial guess of top surface defect (c) initial guess of

bottom surface defect
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Figure 6.8 continued

 

 

 

 

 

   
(C)

(b) In Figure 6.8, (a) represents the input signal, and the peak-to-peak separation of

the signal is from -3 mm to 3 mm, which means the defect length of the initial state is

-3 mm to 3 mm. The location of the defect of length 6 mm could be on the top or

bottom surface as shown in Figures (b) and (c). These two defect geometries are

simulated and the signals are generated. The cost functions are calculated and the

. . . 0

model wrth lower cost functlon ls chosen as d( ).

2. Profiling the defect depth

Perform exhaustive search in the each layer. Generate the possible allowed defect

shapes in current layer using the defect assumptions and estimate the defect boundary

corresponding to the minimum cost function. As shown in Figures 6.9 (a) through (I),

the possible defects are generated and modeled. Cost filnction associated with each

node is computed.
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Figure 6.9 Candidate defect shapes used in the search in layer 2
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3. Check for stopping criteria

If the minimum cost function in a layer is larger than the corresponding minimum

cost flmction in the layer above it the search stops. The geometry with the global

minimum cost function provides the desired defect profile or the solution to the

inverse problem.

6.3.4 Initial Results

The inversion strategy is implemented and the results corresponding to two defect

profiles are presented. Linear excitation current of 3 kHz frequency is applied along

the x-axis as shown in Figure 6.5 (a). The upper strip region is the current foil. The

lower strip region represents a section of the aluminum plate. The background dots

are the discretization nodes of the background mesh used in the EFG model. As

before the units are in ms.

The cost function is defined as in equation (6.4).

The measured signal shown in Figure 6.8 (a) is obtained for the true defect profile

in Figure 6.10 (a). The initial guess of a top surface defect is shown in (b) with cost

function 0.1708 and the initial guess of a bottom surface defect is shown in (c) with

d(0)
cost function 0.3198. This leads to the estimation of as a top surface defect. The

reconstructed defect profile is shown in Figure 6.10 ((1).

Similar results for bottom surface defect are shown in Figure 6.11. Figure 6.11 (a)

is the true defect profile. The initial guess of a top surface defect shown in (b) has cost

function 0.3766 and the initial guess of a bottom surface defect shown in (c) has cost
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function 0.1770, so that the initial defect profile is determined as a bottom surface

defect.

When the given input signal is noise free, the reconstructed defect profile is exactly

equal to the true profile.

Figure 6.10 (a) True defect profile and (b) initial guess of a top surface defect (c)

initial guess of a bottom surface defect (d) reconstructed results for top surface

defect
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Figure 6.10 continued
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Figure 6.11 (a) True defect profile and (b) initial guess of a top surface defect (c)

initial guess of a bottom surface defect (d) reconstructed result for bottom surface

defect
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Figure 6.11 continued

 

 

 

  
 

 

 

 

  
 

6.3.5 Choice ofCost Function

The objective of inverse problem is to estimate the “best” profile of the detected

defect, that minimizes the cost function. Hence different cost functions may lead to

different resultant profiles. Hence we need to choose cost function with care.



The cost function acts as the evaluation flmction to describe the error between the

model prediction and input signal, which is obtained from the true defect geometry.

The most commonly used cost function is based on the [Q norm defined as

2

F: an_an|

1
M
2

(6.5)

where B" is the model prediction of imaginary part of the normal component of

magnetic flux density, an is the corresponding measured signal and N is the

number of data points in the signals. The search algorithm developed in the above

section is implemented using the cost function defined in Equation (6.4). However

this definition does not yield the best results in all cases. An alternative cost function

that can be employed is the LC,o (or Chebychev) norm:

F = max(| Bn - an |),i =1,2,...K

(6.6)

This cost function is defined as the maximum difference between the input signal

and model prediction, among all the data points. The search algorithm is performed

with the new cost function. The results show that the new cost function yields more

accurate defect profiles than the previous cost function When the defect under

consideration is very deep.

Two true defect profiles of larger depth are shown in Figures. 6.12, where Figure

6.12 (a) is top surface defect and 6.12 (b) is bottom surface defect. The reconstructed

top surface defect profile obtained with the Q cost function in equation (6.5) is
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shown in Figure 6.13 (a), and the corresponding result obtained with the new LG,

cost function in equation (6.6) is shown in Figure 6.13 (b). When the given input

signal is noise free, the reconstructed defect profile is seen to be exactly the same as

the true profile using the new cost function. The old cost function does not converge

to the desired defect profile. Similar results for bottom layer defect are shown in

Figure 6.14 (a) and (b), with the old and new cost functions respectively. The

reconstructed defect profile gives the true profile using the new cost fimction.

 

 

 

 

 

(a) 

 

 

 

   
(b)

Figure 6.12 True defect profile (a) top surface (b) bottom surface
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Figure 6.13 Reconstructed top surface defect profiles (a) with old cost function (h)

with new cost function

03)
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Figure 6.14 Reconstructed bottom surface defect profiles (a) with old cost function

(h) with new cost function

6.3. 6 Conclusion

An inversion technique using a tree search algorithm is presented and validated for

a 2D eddy current problem with foil excitation. Both the surface and subsurface

defects are reconstructed using the state space search. The reconstructed defect is

shown to be dependent on the choice of cost function minimized.
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Implemented of the technique on experimental signals is currently underway. The

performance and robustness of the inversion technique will then be evaluated on field

signals from aircraft inspection.

6.4 Inversion based on Gradient Search using Adjoint Equation for 2D

Problem

This section presents a defect update approach that makes use of a gradient search

of the multi-dimensional error surface so that the reconstructed defect profile will

result in a signal that matches the given measured signal in the least squares sense. As

shown in section 6.3, currently, the performance is evaluated for the simulated input

signals.

In the gradient based minimization algorithm, the evaluation of the gradient is

essential. To evaluate the gradient of the objective function, each of the partial

derivatives must be evaluated appropriately. The commonly used methods solve the

governing equations each time to calculate each of the partial derivatives. This will

result in a long computational time. To solve this problem, an adjoint equation [64]

based method is proposed to find all the partial derivatives by solving the governing

equations only once. The method reduces the computational time significantly.

When the EFG method is used as forward model, when the defect is updating, the

background discretization nodes remain unchanged and only a few nodes to represent

the defect parameters need to be updated. This Will greatly speed up the forward

computation and reduce the time needed in iterative inversion.
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This method as well as its robustness is discussed in this section. Preliminary

results validating the approach are presented.

6.4.1 The Inversion Scheme in 2D

The overall iterative approach is the same as that shown in Figure 6.1. The

geometry for two-dimensional inverse problem is shown in Figure 6.5 along with the

x -, y -, z - directions. The defect is represented in terms of nodal coordinates which

determines the defect profile on the boundary.

The inverse problem solution is the profile that is obtained by minimizing the cost

function is defined as

N 2

F = XI Bn “an I

=1

(6.7)

where B" is the model prediction of imaginary part of the normal component of

magnetic flux, an is the corresponding input signal and N is the nmnber of data

points in the signals. The cost function is computed for each defect profiles and the

best defect profile is selected corresponding to the lowest cost function. The iteration

stops when the cost function is minimized and begins to increase.

A typical iteration scheme consists of four components:

1. a set of state variables (a ;

2. a set of defect parameters X ;

3. an objective function J((0, X);
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4. constraint equations F((0,X)=O.

In the above 2D problem, go represents the magnetic vector potential in the

forward model. The defect parameters X are the nodal coordinates defining the

defect profile. The objective function is the cost function F in equation (6.7).

The constraint equations is the governing partial differential equation in terms of

the parameter set X and unknown (0. The matrix equation obtained in the EFG

method is written as

F(¢,X)=K.¢—S=0

(6.8)

where matrix K is the stiffness matrix and S is the source vector.

So the problem can be stated as: iteratively solve the set of equations (6.8) for the

defect parameters X such that the objective function J((p, X) is minimized,

subject to the constraint equations F(g), X) = O.

The commonly used gradient search method is summarized as follows:

1. Assume an initial defect parameter set X(0)

2. Solve the constraint equation (6.8), and calculate the predicted signal B,- , for

i=1,2,. . ...M. Calculate the objective function fi'om equation (6.7).

3. Compute the gradient of the objective fimction VJ over X, and determine

éXm - an updating step.

4. Update the defect parameters X(n+1) = X(n) + 6X(").
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5. Repeat from step 2, until the cost function is minimized and the stopping criterion

is reached.

The details of step 3 are presented below:

Assume X=[x1,x2,......,xm]T and VJ=[fl- 3]— if6x1,6x2’......,axm

a .

Foreach xk,k=1,2,...... ,m 6J —Z.fl.._¢1.=[fl][a_¢]

’ExZ”ja¢j 6xk ago ax

(6.9)

61 w a1 61 T
where [—]=[—,——,......,—] ,and n is the number of the unknown (0.

6¢ a¢1 6¢2 a¢n

In equation (6.9), [age] can be easily obtained by differentiating equation (6.8),

x

which gives:

6o) 6K

K - — + — = O

[ ] [51k] [an ][¢]

(6.10)

We also need to compute [SE] , which is done using the adjoint equation [60]. A

(P

constrained cost function L(¢,X,A) is defined by (6.11) as

L(¢,X,A) = J(¢,X) - (F(¢.X),A)

(6.11)

where A is a set of Lagrangian multipliers. Differentiating equation (6.11) w.r.t. the

unknowns we get:
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-a—L—=O:>F(¢,X)=O

6A

(6.12)

fi=0=[ai].[A]=[fl]

6X 6X 5X

(6.13)

6_L_ r. _ a_Jaw—0:>[K] [ALB]

(6.14)

By substituting (6.13) and (6.14) into equation (6.9), the derivative can be obtained

as:

aJ 6o) 1‘ 6K
_= . K . _ =_ . __ .,xk [AF [ 1 [ax] [A] [6,] [.1

(6.15)

In the gradient search method,c$X(") = [fl 6.] if, so the updating isax] , 5;: ,...... , axm

performed using equation (6.15).

For simplification, we assume the Lagrange multiplier A is a constant number in

each iteration step. Hence equation (6.15) is rewritten as E- = -c - [6_K_] - [or] ,

axk ax]:

where c is a small constant number, chosen to be equal to 0.1.

6. 4.2 Results

The implementation of the above iteration procedure is presented here.
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The true defect profile in the aluminum sample (lower strip region) and the

excitation current foil (upper strip region) are shown in Figure 6.15 (a). The desired

defect is a rectangular defect with the width extending from -O.45 mm to 0.45 mm,

and with height 1.0 mm. The initial guess is a crack-free situation as shown in Figure

6.15 (b). The background nodes are the discretization nodes in the EFG method.
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(b)

Figure 6.15 (a) The desired defect profile. (b) the initial guess

The iteration steps are summarized below:

Determination of defect location and parameter X

(3) Assume the crack is surface-breaking (top surface).
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(b) The width of the defect on top surface is determined by the distance between two

peaks in the input signal, which is around -0.45 mm to 0.45 mm.

(c) We assume four nodal points to represents the defect profile. The defect parameter

X is defined as X = {x1,x2,x3,x4,21,22,23,z4}. For simplification of calculation,

the x-coordinates are fixed and equally spaced according to the width of the defect on

the surface. So the x-coordinates in this example are -O.45 mm, -O.15 mm, 0.15 mm,

and 0.45 mm. The z-coordinates are the variables that need to be optimized.

In Figure 6.16 (a), the four black points represents the position of the initial guess

of the defect parameter X .

11. Updating the z -coordinates

(d) From the simplified equation (6.15), 9;]. = _C,I:321g

k

].[¢] , the coordinates are

62k

updated as Z("+1) =Z(") + 6.] . Where the derivative of the matrix K is

621:")

 

, here we assume
 calculated numerically as [a—K] = K(zk + Azk ) - K(Zk)

62k (Zk+AZk)-Zk

A2,, = 0.001.

Figures 6.16 (b) to (k) show evolution of four point the defect profile in each

iteration.

111. Check for stopping criteria

(e) In each updating step, the cost function is calculated using equation (6.7). If the

cost function keeps decreasing, the searching procedure continues. When the cost
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function starts to increase, the iteration procedure stops and the optimum defect

profile is obtained corresponding to the minimum cost function.

In Figure 6.16 (l) the optimum defect profile is obtained corresponding to the

minimum cost function.

Figure 6.16 The updating status of the defect profile
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Figure 6.16 continued
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Figure 6.16 continued
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6.4.3 Effect ofNoise Level

The above initial results are obtained when the input signal is noise free. While in

realistic problems, the noise level cannot be neglected. The effect of noise on the

performance of the gradient search method is studied to test the robustness of the

inversion scheme. Random white noise varying from 5% to 30% of the peak signal

value was added to the model predicted signal and the corresponding reconstruction

defects were generated.

The true defect profile is shown in Figure 6.17.
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Figure 6.17 True defect

Figures 6.18 (a) to (f) show the signals corrupted with 5.0%, 10.0%, 15.0%, 20.0%,

25.0% and 30.0% random noise.
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Figure 6.18 The signal corrupted with (a) 5.0%. (b) 10.0%. (c) 15.0%. (d) 20.0%. (e)

25.0%. (i) 30.0% random noise
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Figure 6.18 continued
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Figure 6.18 continued
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Figures 6.19 (a) to (f) show the reconstructed defect profiles (dashed lines)

corresponding to the signals in Figure 6.18 which are corrupted with 5.0%, 10.0%,

15.0%, 20.0%, 25.0% and 30.0% random noise. The true defect is plotted in the same

figure (solid lines) for comparison.

Figure 6.19 (a) to (f) The reconstructed defect profile (dashed lines) when the signal

is corrupted with (a) 5.0%. (b) 10.0%. (c) 15.0%. (d) 20.0%. (c) 25.0%. (f) 30.0%

random noise
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 Figure 6.19 continued



Figure 6.19 continued

 

 

 

  

 

    

6.4.4 Conclusion

Model-based inversion technique using the EFG numerical forward model is

presented for a 2D problem. The updating scheme using gradient search in

conjunction with adjoint equation method is developed for the EFG model. In the

iteration procedure only the few coordinates that define the defect profile are updated

while the overall background nodes remain unchanged, which simplifies the solution

procedure and saves computational time. The gradient search method is a fast and

reliable and the results show its robustness in the presence of noise.
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CHAPTER 7. 3D INVERSE PROBLEM USING EFG

METHOD

7.1 Introduction

Chapter 6 discussed the development and implementation of several inversion

schemes for 1D and 2D defect characterization. However in practice, problems are

generally 3D in space, which means that the solution domain and defects are

represented in the x—, y-, and 2- directions. The high-dimensionality is a major

challenge for the inversion scheme [65]-[69]. The defect must be represented by 3D

defect parameters, for example, the length, width, and height, which will make the

defect reconstruction involve large number of unknowns and hence more complex.

The high-dimensional inverse problem is in general ill-posed, since the measured

signals lack the continuous and reliable dependence on the defect profiles and also the

results can be non-unique.

In this chapter, the three dimensional inverse problem is addressed by modifying

the 2D state space search method described in chapter 6. These modifications make it

possible for 3D defect reconstruction. Both surface and subsurface defect

reconstructions are presented for validation and discussion.
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7.2 Problem Statement

Figure 7.1 (a) shows the 3D geometry of an infinite single layer conducting plate

with a defect. The time-varying harmonic current in the y-direction is applied using a

thin foil as the excitation source. Figure 7.1 (b) is the 2D top view of the defect

profile, which is a rectangular shaped surface breaking defect. Figure 7.1 (c) is the

cross-section view of the defect profile. As defined before, a subsurface defect can

also be modeled when the defect initiates from the bottom layer of the plate.

 

 

 

  

 

 

 

 

     
 

   

(C)

Figure 7.1 The model geometry (a) 3D view, (b) 2D top view and (c) cross-section

view

The following parameters are used in the forward model:

(1) the thickness of the aluminum plate: 4 mm

(2) the profile of the ideal defect: 3 mm x 3 mm, with depth of 3 mm
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(3) the excitation current density: 108 A/m2

(4) the excitation current frequency: 3 kHz

(5) the solution domain: [—15,15]mm x[—15,15]mm x {—8, 8] mm

(6) the sensor thickness: 0.2 mm; liftoff: 0.5 mm

The EFG method is used as forward model to obtain the discrete solution domain.

7.3 3D State Space Representation

In order to reconstruct the 3D defect, the 3D state space representation should be

first developed. This section describes the three dimensional states based on the 2D

definition. The defect is discretized into L layers ofnodes along the depth into the test

specimen, which is in z - direction; and in each layer, the surface profile of the defect

is discretized in terms of MxN discrete cells in xy- plane. So a 3D state X is a

MxNxL matrix with element 1 or 0, representing absence or presence of a defect in

the corresponding cell, respectively.

The state space now consists of (ZMNL) possible states.

For simplification we consider a profile of the rectangular defect in Figure 7.1

represented by a 3x3 matrix in xy - plane, and 4 layers of nodes along the depth in

z -direction.

For the 3D defect reconstruction, instead of the line plot, the 2D image of the

normal component of magnetic flux density Bz , which is observed at sensor liftoff

0.5 mm, is used in calculating the cost function. Experimental measurements of the
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real, and imaginary values of 82 signals can be obtained from the GMR system. In

this thesis however, the input signal fi'om the true defect is simulated using the

forward EFG model.

The cost fimction is defined to search for the best defect profile, which is:

K1 K2

F: 2 Zlen_Bmmn '2

m=1n=l

(7.1)

where an is the model prediction of the normal component of magnetic flux,

Bmmn is the corresponding experimental signal and K1,K2 are the number of

signal points in the x- and y-direction in the raster scan. The cost function is

computed for all the possible states of all layers, and the defect corresponding to the

lowest cost function is selected as the objective defect.

7.4 Search Procedure

The search procedure is based on the same criterion as the tree search explained in

the Figure 6.7. Since the total number of state (2 ) is large, to avoid the tedious

exhaustive search, the search is constrained based on the following assumptions: (a)

the defect grows vertically downwards; (b) the surface defect profile is in a squared

region; (c) the defect grows narrower with depth.

The search procedure is performed layer by layer in z—direction; at each layer, the

3x3 node is expanded to generate the different profiles allowed by the assumption. In
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order to reduce expansion into all the 29 possible nodes a simplification is introduced

as illustrated in Figure 7.2.

 

 

        
(a) (b) (0)

Figure 7.2 3x3 state space in each layer with three sub-state space

In the first layer, the search starts from the “middle defec ” as shown in Figure 7.2

(a), which can be one of six possible defect profiles as shown in Figure 7.3 from (a) to

(f).The optimum defect profile is selected as the one that minimizes the cost fimction.

  

 

   

         

 
Figure 7.3 The candidate state space for sub-state in Figure 7.2 (a)
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Once the optimum defect from the “middle defect” is estimated, then connected

cells from the “left” and “right” defects corresponding to minimum cost function

value are added to grow the defect in the current layer. When the optimum defect

profile at the current layer is estimated, the search procedure is repeated with the cells

in the next layer, until we reach the global minimum cost function which corresponds

to the leaf node in the tree structure. The desired defect profile is reconstructed and

the search stops.

7.5 The Detailed Search Procedure

The detailed search procedure is divided into the following steps:

1. Estimation of the initial state (1(0) ;

This step involves determining whether defect location is on the top or bottom

surface.

In the case of the 2D defect a simple peak detection algorithm on the data

(imaginary part of El) is used to determine the defect location and the peak-to-peak

separation in the input signal is used to estimate the defect region in the initial layer.

In the 3D inversion scheme, the peak-to-peak separation in the imaginary part of Bz

is seen to vary with frequency whereas the real part is constant for both surface and

subsurface defects. Figure 7.4 (a) and Figure 7.4 (b) show the estimated defect region
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when the fi'equency is varied from 500 Hz to 5000 Hz for surface and subsurface

defects.
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The initial node for the tree search (top or bottom) was therefore determined using

real part of 82. When the operating frequency is 3000 Hz, the defect region of the

initial state is 3.4 mm x 3.4 mm for surface defect and. 3.6 mm x 3.6 mm for the

subsurface defect. Then the estimated defect region is divided into 3x3 state space in

equal size cells. Both the initial defects, (1(0) surface and d(0) subsurface are modeled,

the signals and corresponding cost functions are generated and node with lower cost

C1(0)
fimction chosen as determines if the defect to be reconstructed is top surface or

bottom surface defect.

2. Profiling the defect depth

Perform the search procedure in each layer. Generate the possible allowed defect

shapes in current layer (expand the tree node) using the defect assumptions and

compute the associated cost function using the forward model prediction and

measured signal. The defect boundary corresponding to the minimum cost function is

selected to be expanded in the next level.

3. Checking for stopping criteria

If the minimum cost function in a layer is larger than the corresponding minimum

cost function in the layer above it the search stops. The geometry with the global

minimum cost function provides the desired defect profile or is the solution to the

inverse problem.
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7.6 Initial Results

The inversion strategy is implemented on two defect profiles. First, the 3 x 3 x 3 mm

surface defect is assumed to be the true defect as shown in Figure 7.1, and the

operating frequency is 3000 Hz. The measured signal is obtained for the true defect

profile by simulating the EFG forward model and the corresponding real and

imaginary part of82 are shown in Figure 7.5.

 

(a) (b)

Figure 7.5 The ideal signal ofBz (a) real part (b) imaginary part

The real part of B, is used to estimate the defect boundary in the initial layer and

the imaginary part of B2 is used to calculate the cost function for minimization.
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Figure 7.7 Initial guess of a bottom surface defect (a) cross-section view (b) top view

Top surface defect - Using the peak-to-peak distance to estimate the initial state, a

top surface defect of size 3.4 mm x 3.4 mm and bottom surface defect, of size 3.6 mm

x 3.6 mm as shown in Figure 7.6 (a) and (b) and Fig. 7.7 (a) and (b) respectively were

simulated.

The cost function of top surface defect was 0.2569 whereas the cost function of the

bottom surface defect was 0.5251. This led d(o) to be a top surface defect.

119



120

 

 

a a e c '
e c e c c I a b a a i.. o e i a a o '
:

0.00.00.00.00.cocoooeoaaeootceoootoco4

0.5.0.0....tonne-COOIQOCoI-O~QOO00....

 
 
 
 
 
 
 

cocoon-cocoa.ooaooooeoolo-o

:‘o‘ooo'.-.-o' u e‘o once. a.

 
 Figure 7.8 The reconstructed defect profile from top to bottom layer

profiles fi'om top to bottom layers are shown in (a), (b), (c), and ((1), respectively.

The reconstructed 4-layer defect profile is shown in Figure 7.8 and the defect



Figure 7.8 continued
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The minimum cost function nodes in each layer and the associated cost flmctions

are plotted in Figure 7.9. The x-axis represents the all the intermediate nodes

obtained from considering “middle”, “left” and “right” states shown in Figure 7.2.
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Figure 7.9 The cost function vs. node

Similar results for bottom surface defect are obtained. The true defect is a 3 x 3 x 3

mm subsurface defect. The operating frequency is 3000 Hz. The initial defect profile

is determined as a bottom surface defect using a minimum of two cost functions

corresponding to top surface and bottom surface defects respectively. The defect size

corresponding to the initial node is node is 3.6 mm x 3.6 mm.

The reconstructed 4-layer defect profile is shown in Figure 7.10 and the defect

profiles from bottom to top layers are shown in (a), (b), (c), and ((1), respectively.
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Figure 7.10 The reconstructed defect profile from bottom to top layer 
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Figure 7.10 continued  

(d)

The minimum cost flmction nodes in each layer and the associated cost functions

are plotted in Figure 7.11. The x-axis represents the all the intermediate nodes

obtained from considering “middle”, “left” and “right” states shown in Figure 7.2.
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7.7 Conclusion

A 3D inversion scheme has been developed based on the state space search

algorithm. The detailed defect representation and search procedure are addressed with

initial validation results. Both the surface and subsurface defects can be reconstructed

with reasonable accuracy. This is the first time the three dimensional defect

reconstruction problem has been attempted that includes both surface and subsurface

defects. However, a lot of work remains to be done to optimize the parameters of

different steps involved in the overall procedure.
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CHAPTER 8. CONCLUSIONS AND FUTURE WORK

8.1 Original Contributions to the Field

An accurate and efficient numerical forward using the element free Galerkin

method has been developed, validated and applied to real 3D airframe geometry. The

forward mode] has been used to understand the underlying physics and visualize the

induced eddy currents in the case of different defect geometries. Development of

model based strategies for signal inversion to reconstruct the defect profile in

electromagnetic NDE is the primary objective of this dissertation.

The research carried out during the course of the dissertation has made the

following contributions to the field:

(1). The development and improvement of the Element-Free Galerkin (EFG) method

for electromagnetic field computations. The improvements include the asymmetric

domain of influence, the orthogonal basis function, and the Penalty boundary

condition. 1D, 2D, and 3D models for Poisson equation and diffusion equation,

describing static or low frequency quasi-static problems, have been presented as

examples to illustrate the validity and effectiveness of EFG method. This method is

shown to be better suited for modeling the complex solution domain compared with

the traditional mesh-based methods.

(2). The use ofEFG method in signal inversion has also been investigated and applied

to reconstructing various one and two dimensional defect profiles by means of
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parametric and non parametric inversion schemes. An iterative parametric algorithm

for one dimensional tight crack reconstruction was demonstrated. Two iterative

nonparametric algorithms are proposed, namely a state space search method and an

adjoint based gradient minimization method. These algorithms been validated and

perform with excellent accuracy in the prediction of the length and depth profile of

defects.

(3). The state space search method is modified and used in the three dimensional

defect reconstruction. These modified state space search scheme are fast and efficient

and avoid the tedious exhaustive search procedure without compromising the

performance. Both the surface and subsurface defects can be reconstructed with

acceptable accuracy.

8.2 Future Work

This dissertation addresses the inverse problem of predicting the defect profiles

using simulated signals using different approaches. However, the application to

inversion of experimental signals needs to be canied out.

Future work includes:

(1). Validation of the inversion schemes using the experimental Giant

Magneto-resistance data. Signal pre-processing may be needed before the data can be

used for inversion. Several experimental parameters need to be considered, such as

the GMR sensor bias, the effect of the scanning liftoff, the GMR sensor

characteristics to map the voltage signal back to the magnetic flux density fields.
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More rigorous study of the cost function must be carried out to control the accuracy

of the solution.

(2). Inverse algorithms in this work are developed for the case of a single defect. The

possibility of multiple defects in practice, which are close to each other, will be more

challenging and needs to be addressed. This is left as a future work to investigate the

physical interaction of fields due to multiple defects.

(3). The inversion scheme needs to be optimized in each stage to improve the

efficiency for online processing after the inspection is completed.
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