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organizational adoption of workflow technologies has reduced coordination costs while

automating and reifying business rules, both enabling and constraining organizational

actions. The assimilation of these workflow systems may fundamentally alter the

qualities of flexibility and rigidity in the performance of organizational routines,

consequently altering properties of organizational flexibility and adaptation.
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Chapter 1—Executive Summary

Title: Digitally-Enabled Organizational Routines at the Organization-

Environment Boundary: Buffering and the Role of Technology

This research seeks to answer two research questions:

Research Question I .' How does a business process at the organization-

environment boundary utilize various patterns ofaction to moderate the impact of

environmental variation on process outcomes?

Research Question 2: What is the impact ofinformation technology use on the

varietyfound within a digitally-enabled business process?

These research questions are viewed from a perspective that integrates theory from these

three traditions:

0 Systems theory and cybemetics advance the ideas of buffering environmental input at

the interface between organization and environment and the necessary regulation of

variety.

0 Organizational routines give a perspective from which to empirically study the

emergent patterns of action within a business process.

0 The appropriation and assimilation of information systems, focusing on the use of

technology within a business process allows the investigation of immediate

antecedents and consequences of information technology.

These perspectives are integrated into a general model describing the inputs to a process,

the activities that are undertaken within the process, and the outcomes of that process.

This model will be evaluated using two methods of analysis on data collected from an

invoice processing workflow system.



Viewing the sequences of action generated within the business process as a Markov

model allows familiar statistical techniques based on chi-square tests of homogeneity

to evaluate the impact of input variation on the process and its outcomes.

Alternatively, using sequential variety measures developed from string distance, the

input-process-outcome model can be evaluated through regression, path analysis, or

structured equation modeling.

Practically, the results of this research increase managerial understanding of the sources

and consequences of variety in their processes. Designers of information systems that

support business and organizational processes such as workflow, supply chain, or ERP

also benefit from a study of the impact of technology on these processes. The

methodologies employed in this work can be reapplied in other areas, allowing outcome-

based selection and retention of specific characteristics of business process performances.

Theoretically, this research enriches at least three traditions of scholarship:

Evaluation of costs and benefits of Information Technology. By studying the

immediate antecedents and consequences of digitally-enabled business process, we

gain a better understanding of how the use of technology can achieve economic and

organizational benefits and costs.

Consideration of variety in Organizational Routines. While there is an understanding

that routines necessarily exhibit variety in their execution, the drivers and

consequences of this essential variety are less understood. From some perspectives,

process variation is bad (control, audit, TQM), but from others, process variation is

good (service quality, responsiveness).



Extension of sequence methodology. Methodologically, I am applying sequence

methods developed in sociology, biology, information theory and social psychology.

This research represents both an application and extension of these methodologies,

and should result in novel insights and further research in other areas using these

techniques.

The main findings of this work are based on data from the processing of 2000 invoices in

one organization. In this particular workflow:

Support for buffering at the boundary has been obtained. Inputs have little

relationship to outcomes, but do impact how the process unfolds.

Automation shows a differential effect on two subprocesses of invoicing. In the data

entry phase, it is a substitute for process-based buffering, while in the approval phase,

automation is a complement.

Markov and string distance methods complement each other in that they study the

antecedents and outcomes from temporal structures differently.



Chapter 2—Introduction

“. . .we must accept the coexistence of mutually contradictory phenomenon without trying

to resolve the contradiction. . .new technologies will permit customized manufacture on a

mass basis. Rather than being limited by the paradox, they seem to embrace and

transcend it” (Davis, 1989).

Overview

Classically, organizational scholars describe mechanisms of insulating and

protecting the ‘technical core’ of an organization from environmental variety and

uncertainty by warehousing, demand leveling, and contingent action plans (Thompson,

1967). Boundary-spanning units of an organization experience the challenge of

absorbing, managing, and controlling environmental variety (Lynn, 2005; Meznar &

Nigh, 1995; Thompson, 1967; Yan & Louis, 1999). The rise of information technology

and innovative business models such as just-in-time inventory and custom manufacturing

make many traditional methods of insulation less useful.

Actions that are contingently performed based on context or stimulus allow

processes to embrace and absorb a given amount of variation, yet remain manageable and

achieve controlled outcomes (Ashby, 1956, 1968; Davis, 1989; March & Simon, 1958;

Simon, 1996). At the same time, the virtualization of workflow and the advent of inter-

organizational information systems have increased the technical structure that boundary-

spanning processes must operate within (Basu & Kumar, 2002; Chen, Chen, & Shao,

2003; Georgakopoulos, Hornick, & Sheth, 1995), challenging our understanding of

process variety and stability under these conditions.



I develop a worldview that integrates the open system perspective of the

organization with the necessary regulation of variety from the environment. I focus upon

contingently firing actions and the use of technology within business processes at the

boundary of the organization and environment. Viewing these business processes as

performative aspects of organizational routines (Feldman & Pentland, 2003) allows the

concept of sequential variety to describe the nature of the patterns of action that are

expressed (Pentland, 2003a, 2003b). Combining this perspective with cybernetic

homeostasis and the use of technology helps describe how a boundary business process

can absorb variable inputs from the environment, and explore the impact of technology

on the process and its outcomes.

The boundary process shown in Figure 1 is a regulator or mediator of variety,

represented by the relative sizes of arrows on the input and output sides of the routines.

Through the contingent expression of actions, boundary processes obtain a controlled and

managed flow of outputs despite the incursion of environmental variety without utilizing

traditional forms of buffering such as warehousing, demand leveling, quotas and

rationing. Technology and actions become the mechanism through which the buffering

of variety occurs.
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Figure l: Examining an organizational boundary unit and its routines more closely:

It can be seen how the business process absorbs variety through the impact of

organizational routines and technology only if we reject the ‘black box’ perspective

of organizational and business processes.

I examine actions performed within an information system poised at the

intersection of an organization and its environment. I use process data gleaned from a

workflow information system designed for the processing and decision-making

surrounding the invoice payment business process. This study gives a rare glimpse into

the antecedents and consequences of technology use at the business-process level, by

isolating the automational aspects of the system and studying their drivers and

consequences.

This dissertation represents an innovative study of the antecedents and

consequences of sequential variety. Workflow mining techniques give an unprecedented

view into the performative aspects of an organizational routine. The workflow system

structures and enables the type and sequence of activities that are performed, while

providing necessary data for research. This focus on the actual behaviors and use of

technology allows the novel use of sequential methods to study the drivers and

 

  



consequences of temporal action structures. This study represents a unique opportunity

to answer empirically the following research questions:

Research Question I .' How does a business process at the organization-

environment boundary utilize various patterns ofaction to moderate the impact of

environmental variation on process outcomes?

Research Question 2: What is the impact ofinformation technology use on the

varietyfound within a digitally-enabled business process?

Impact

This research is aimed at two main groups of scholars. First, given the rise of

interest by organizational scholars in agility, simultaneous exploration and exploration

(ambidexterity) and hypercompetitive environments, a reexamination of the classic ideas

of buffering and environmental adaptation is warranted. Second, as business processes

are increasingly virtualized and digitized, those who study the organizational impact of

information technology will have a keen interest in the outcomes of this dissertation and

resulting research. Methodologically, this dissertation uses novel methods to measure

and analyze sequential processes. Researchers involved in studying the sequential

structure of processes such as negotiation, organizational change, or auditing among

others benefit from the evaluation and extension of these methods. Table 1 shows these

scholarly contributions, along with connections to extant literature.



 

Contribution Reference
 

FOCUS 0” a technologically-enabled busrness (Kohli & Hoadley, 2006; Mukhopadhyay

process. and Its Immediate antecedents and et al 1997)

consequences

 

Isolation of the automation aspect of IT use (Mooney. Gurbaxani, & Kraemer, 1996)

 

Antecedents and consequences of

sequential variety of a work process (Pentland, 2003a, 2003b)

 

 
(van der Aalst et al., 2003; van der Aalst

& Weijters, 2004; van der Aalst,

Weijters, & Maruster, 2004)

Application of workflow mining to

organizational research questions    
Table 1: Summary of scholarly contributions

Similarly, there are two main groups of practitioners that benefit from this

research: managers and information systems professionals. As managers seek to improve

the performance of business processes in the face of environmental change and variety, a

better understanding of the antecedents and consequences of process variety may give

insight into their attempts to creatively control these processes. Managers, designers and

users of workflow technologies need to understand the complex impacts of technology

use on the structure and resilience of business processes. For example, real-time

workflow analysis systems that are organized around extracting and correlating patterns

of action with their antecedents and consequences are core to the development of a

‘digital dashboard’ for processes (Weske, van der Aalst, & Verbeek, 2004). In addition,

managers may need to be reminded of the inherent variety in performing a task in the

‘one best way’.

Research Design

The acquisition business process sits at the interface between an organization and

its vendors, and contains a subprocess of invoicing (Dunn, Cherrington, & Hollander,



2005). Processing invoices is a perfect setting to study the buffering of environmental

variety because of the conflicting pressures of institutional norms and rational

management against the flexibility necessary to meet the needs of the vendor and internal

constituencies. For example, managers require a process that is controlled and

manageable, but variations in the requirements of the vendors and contracts may reduce

both consistency and the ability to direct action from above (Baird & Wéisberg, 1982).

I use data extracted from an invoice processing system at a construction company

in Norway to evaluate the relationships between inputs, sequential variety, outcomes, and

technology. I obtain a log of all the actions and their parameters that take place within

the flow of work surrounding the invoice as it is scanned, entered in the system, and

approved. The event log is processed into a list of sequentially ordered actions,

associated with each invoice. These sequences form the basis of the analysis in this

dissertation, allowing the use of multiple complimentary methods to explore the research

questions.

Using a multi-method approach increases the amount of effort, but generates a

richer, more comprehensive picture of a phenomenon. The two methods I have chosen

have traditional uses in their respective areas (Abbott, 1990b, 1995; Sankoff& Kruskal,

1983), have been applied to workflow and business processes (Cook & Wolf, 1998; van

der Aalst, 2003; van der Aalst et al., 2003; van der Aalst & Weijters, 2004), yet remain

novel in application for the theoretic areas I am targeting. I first view the process as a

Markov chain of probabilistically determined actions. Then, I use string distance and

multidimensional scaling to understand the sequence of actions within the process and to

address the research questions.



The Markov approach views each set of processes as a matrix of transition

probabilities between actions (Gottman & Roy, 1990). The sequential structure is

determined by evaluating the information that a given action provides about future

actions within the sequence (Anderson & Goodman, 1957). Sequences are stratified by

the variables relating to inputs, outcomes and the use of automational technology. Log-

linear contingency table tests (chi-square) assess the impact of these variables on the

temporal structure of the process and the impact of changes in the process on outcomes

(Anderson & Goodman, 1957; Bishop, Fienberg, & Holland, 1975; Gottman & Roy,

1990)

For the second approach, the sequences are analyzed by using string-distance

techniques (Abbott, 1990b; Pentland, 2003b; Sankoff & Kruskal, 1983) and then scaled

for interpretation (Kruskal & Wish, 1978). The sequence is regarded as a string of

symbols, and the distance between these strings is computed by counting the number of

steps it takes to convert the first sequence into the second. The resulting distances are

then sealed using non-metric multidimensional scaling, visualized and then correlated

with variables of interest to explore their relationships (Kruskal & Wish, 1978). These

scaled distances are used to represent the process in a partial least squares analysis of the

relationships between inputs, the process, outcomes, and automation.

Results

Overall, I find support for the input-process-outcome model as buffering the rest

of the organization from the variety found in the inputs. Sequences are driven by inputs,

and are loosely linked to outcomes. This means that the process is absorbing some of the

variance introduced by the inputs. The two methods I use complement each other in that

10



they explore the relationships between antecedents and consequences of the temporal

structures expressed in the performance of an organizational routine

The Markov analysis indicates that vendor experience and invoice amount drive

heterogeneity in the process. When the sequences are stratified by these variables, the

resulting transition matrices indicate that there is a lack of similarity between groups of

similar inputs. Using this method, the entry and approval phases of the invoicing routine

show differences in their relationship to outcomes. When stratified by the length of time

between scanning and full approval, entry sequences are homogenous, but the approval

phase sequences were different from each other. The Markov analysis indicated

automation as a strong driver of heterogeneity for both the entry and approval phases.

For example, none of the transition matrices from four groups of sequences stratified by

automation were similar with each other.

While the scaled string-distance approach resulted in dimensions of the process

that were difficult to interpret, there was indication that the process was at least partially

driven by the input variables. There were marked differences in the patterns of

significance and magnitude of coefficients between the entry and approval phases of the

invoicing routine, and this was also seen in the partial least squares analysis on the full

model. The entry phase utilizes automation as a substitute for buffering through

contingent action, while the approval phase uses technology as an adjunct to process

buffering.

Outline of Chapters

The remainder of this dissertation is structured into the following chapters: In

chapter 3, I review the relevant literature and develop the theoretical model. I then
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describe the design of this research and the data that I have collected in chapter 4. This is

followed by chapters detailing the results of each of the two methods I use : Markov

(chapter 5) and string-distance (chapter 6). In chapter 7 I discuss the implications and

limitations of the results, and describe future avenues of inquiry.
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Chapter 3—Literature Review and Theory Development

Introduction

In this chapter I review the extant literature and describe and support my theory. I

begin with a brief orientation to the literature and motivation of my research questions.

Then, I discuss the specific relationships between technology use, environment, process,

and outcome, supporting these with examples from the literatures of organizational

theory and technology impact. I include a reinterpretation of a technology impact study

 

(Mukhopadhyay, Rajiv, & Srinivasan, 1997) to show how the proposed theory can be

applied to processes in other organizations such as the United States Postal Service.

Review of Literature

Modern organizations are challenged by conflicting pressures of flexibility and

stability as they moderate the flow of resources they use to add value to their outputs.

Business processes that exist on the boundary must perform much of this regulation, but

many strategies such as JIT inventory and mass customization preclude the use of classic

buffering techniques such as demand leveling and queuing. This leaves boundary

processes to contingently express different action plans or subroutines in an attempt to

reduce the variety present in organizational inputs. Viewing these business processes as

patterns of action, the perspective of organizational routines provides a structure to

explore the performative aspects of these processes as they respond to variant inputs and

moderate the variety to the rest of the organization.

While there have been several examples of empirical research into buffering

(Brown & Eisenhardt, 1997; Koberg, 1988), none focused specifically on sequential

variety (and performances of an organizational routine) as a measure of contingently
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driven actions from external stimuli. We know that buffering is a well-accepted feature

of successful open systems, and that theory predicts the use of contingent actions as

responding to the environment, but there have been few empirical studies (Culnan (1992)

as an exemplar) that explicitly study how organizations respond to stimuli at the level of

the business process. This leads to research question 1:

Research Question 1: How does a business process at the organization—

environment boundary utilize various patterns ofaction to moderate the impact of

environmental variation on process outcomes?

Understanding answers to this research question begin with our perspective of the

organization. As models of the organization evolved towards open system perspectives,

theorists recognized a need to include features of the environment that affect the internal

operation and management of the organization (Scott & Davis, 2007). Scott and Davis

(2007) define the open systems view of organizations as those that are “capable of self-

maintenance on the basis of throughput of resources from the environment”.

“That a system is open means, not simply that it engages in interchanges with the

environment, but this interchange is an essential factor underlying the system’s

viability” (Buckley, 1967), quoted in Scott & Davis (2007)

The first implication of the open system perspective is that there must be a

boundary between what we identify as the organization and what exists outside. Second,

this boundary acts as a buffer that protects the internal workings of the organization by

managing uncertainty and variant inputs from the environment. Third, principles of

cybernetic systems can be applied to an open system to give it life and allow the system

to learn and react to changes in the environment. Finally, locating the mechanisms of

buffering and applying principles of homeostasis at the boundary bring these features of

organizational theory down to the level of business processes.
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The Organization as an Open System

Figure 2 shows a representation of the open systems view of an organization. At

a lower level of analysis, this same figure also can characterize a model of a single

business process, as the conversion of inputs into outputs by the interaction of technology

and human action (Melao & Pidd, 2000). This is a simplification of the same worldview

model presented in the previous chapter.
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Figure 2: Melao and Pid (2000) show a general model of a business process that also

represents the open system view of the organization.

As the organization is opened to the wider environment, managers and workers

must deal with the set of events and attributes that is necessarily wider and more varied

than exists within the organization. At the same time, norms of rationality drive

managers to develop and utilize structures that work towards efficiency and effectiveness

in the conversion of inputs to outputs (Spender & Kessler, 1995; Thompson, 1967). This

tension complicates the manager’s ability to successfiilly reach expectations of

stakeholders in the face of changes in the environment. For example, large variations in
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demand for technical customer service over the phone make it difficult for managers to

achieve target hold times when new products are launched or during wide-spread

outages. It is this variation from the environment that creates uncertainty for managers.

Uncertainty creates a question for the organization to answer: How does the need

for optimization and control balance against the need for adaptation and flexibility within

organizational processes? This question is key to understanding the structures of

flexibility and stability in action, and the consequences of enabling and constraining

technologies. The conflict arises as uncertainty reduces the ability of the manager to

optimize, but the pressures of rationality and efficiency drive decisions and structure

towards those that reduce uncertainty and cognitive load (March & Simon, 1958;

Thompson, 1967; Weick, 1979). At the same time, continued performance in the face of

changing environments requires learning, change, and adaptation (March, 1991).

Boundaries and Buffering

The interaction between the organization and the surrounding environment

requires a boundary to organize and identify what is ‘inside’ and what is ‘outside’. As an

interface, this boundary is the location of interrelations to “other entities through

processes of resource (inputs) acquisition and product/service (output) disposal” (Yan &

Louis, 1999). The organizational interface or ‘skin’, serves not only as a demarcation or

identification, but also allows only those inputs that are desired to cross (Simon, 1996), in

effect, protecting and buffering the organization from the uncertainty and full variety of

the environment. This protection from the environment is what allows homeostatic

systems to exist.

16



Following Thompson (1967), Lynn (2005) defines buffering as “the regulation

and/or insulation of organizational processes, functions, or individuals from the effects of

environmental uncertainty or scarcity”. Koberg (1988) directly studies how two types of

organizations buffer their technical aspects of production from environmental

uncertainty. Koberg focused only on some of Thompson’s types of buffering, relating

them to items developed Khandwalla (1974). These were the degree to which units

“maintained buffer stocks and reserve supplies of essential material” of spare parts or

educational materials (Koberg, 1988).

Koberg (1988) also found that in school settings, decentralization was

significantly related to buffering, forecasting, and smoothing, indicating that these

techniques were taking place at a lower level than in oil companies, the other

organization type she studied. By moving the buffering techniques down to the work unit

that can best control uncertainty and requires the most uncertainty management, Koberg

suggests schools can succeed despite the lack of technical structure.

Ashby (1956, 1958, 1968) focuses on the cybernetic principles of homeostasis

when discussing the behavior of complex systems such as organizations or functional

areas within organizations. The law of requisite variety (Ashby, 1956, 1958, 1968) states

that the amount of environmental variety that can be dealt with by a system is directly

related to the amount of variety in its possible responses. This feature of homeostatic

systems applies at multiple levels including the organizational level and the business

process level, as an organization can be seen as a nested structure of these processes.

Thompson (1967, p 81) discusses how buffering techniques occur within

boundary spanning units but more recently, Yan and Louis (1999) describe how
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buffering, spanning, and uncertainty management techniques have been pushed down to

the work-unit level due to business process reengineering programs, the advent of cross-

functional teams, and the introduction of advanced information technologies. To move

our understanding beyond warehousing and queuing as buffering mechanisms, we must

examine the variety of specific action sequences that a process employs to buffer the

organization. A helpful perspective to observe and analyze repeating organizational

actions can be found in the concept of the organizational routine. This is considered in

the next section.

Patterns of Action

Causal research into organizational outcomes from processes typically has been

focused the variance properties of inputs and outputs, treating the generating process as a

‘black box’ (Melao & Pidd, 2000, 2008; Pentland, 2003b). This happens because the

process is often seen as fixed, as it is in many manufacturing contexts. In many cases,

this assumption of a fixed process should be challenged, as it precludes learning,

adaptation or variability from study. If we reject the ‘black box’ perspective, we must

adopt a view of organizational processes that focuses on the actions that take place, rather

than solely their inputs or outcomes. The organizational routines literature provides a

perfect perspective for the investigation of organizational actions.

Becker (2004) notes that organizational routines have been characterized as

patterns of action. He continues by describing how several authors have defined

organizational routine, concentrating on those that embrace a pattern focus. Feldman and

Pentland (2003) also discuss organizational routines as patterns of action, and like Winter
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(1964) and Koestler (1967), highlight its changeable nature. Table 2 lists these

 

 

definitions.

Winter (1964) “Pattern of behavior that is followed repeatedly but is subject to

Quoted in (Becker, 2004) change if conditions change"

Koestler (1967) “Flexible patterns offering a variety of alternative choices”

Quoted in (Becker, 2004)

 

Feldman and Pentland (2003) “Repetitive, recognizable patterns of interdependent actions,

carried out by multiple actors, but they cannot be understood as

static, unchanging objects.”

 

 
Cohen et al. (1996) “A routine is an executable capability for repeated performance

in some context that been learned by an organization in

response to selective pressures"  
Table 2: Definitions of organizational routines with ostensive and performative

aspects of the organizational routine

Feldman and Pentland further to develop the duality of organizational routines:

ostensive and performative aspects.

“Organizational routines consist of two aspects: the ostensive and the

performative. The ostensive aspect is the ideal or schematic form of a routine. It is

the abstract, generalized idea of the routine, or the routine in principle. The

performative aspect of the routine consists of specific actions, by specific people,

in specific places and times. It is the routine in practice. Both of these aspects are

necessary for an organizational routine to exist” (Feldman & Pentland, 2003).

The ostensive aspects are those understandings of an abstract nature that define

the identity of the routine, ofien including its purpose. The performative aspects of the

routine are what happens when the routine is ‘executed’. The performances are the

sequences of action, performed by various actors and locate them within time and place.

In this research, 1 am focusing exclusively on the performative aspects of the invoicing

routine. Even though the performative aspects of a routine are linked to the ostensive
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aspects and hence can be identified or named with a singular (the invoicing routine),

there is an essential variation in the execution routine due to the agency of its participants

(Feldman & Pentland, 2003).

This essential variation has been applied to organizational routines (Pentland,

2003a) and was developed from the concept of sequence variety (Abbott, 199%, 1995;

Abbott & Tsay, 2000). Sequential variety is the property of a set of action sequence or

performances to exhibit differences in their selection and order of tasks. While this

concept holds promise to help scholars understand flexibility in organizational routines

and processes, few studies of the antecedents and consequences of sequential variation

exist (Pentland, Haerem, & Hillison, 2007).

The tension between variation and stability in business processes is found within

organizational routines as well. To reduce coordination costs and allow for consistency

in outcomes, routines must be stable. At the same time, routines must allow for

contingent adaptation to immediate conditions and deal with participants and tools that

may vary in performance and ability. In this way, organizational routines face similar

tensions as business processes and organizations themselves in reliability of outcomes

and variability in action (Feldman, 2000; Feldman & Pentland, 2003; March, 1991;

Nelson & Winter, 1982; Pentland, 2003a; Weick, 1979, 1998). This ‘stability in action’

perspective represents an important connection between business process management

and organizational theory (Singh, Pentland, Yakura, & Hillison, 2009).

The Role of Technology

The impact of IT has often been studied from firm and industry levels, but

business-process level studies are less common (Wagner, Beimborn, Franke, & Weitzel,
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2006). Focusing on a specific business process and technology allows for a more

efficient study of the impact of information technology, as the impact of variance

introduced by exogenous or intervening factors is reduced. Kohli and Hoadley (2006)

also note the practical value of intermediate or process-level measurement, describing

how more detailed measurement allowed firms to better understand the consequences of

IT-driven business process reengineering projects. One of the reasons there are few

studies may be because of the complex interaction between technology and

organizational structure. This complexity is highlighted in the literature as technology is

seen as a simultaneous enactment and consequence of organizational structure

(Orlikowski, 1992).

Organizational processes become digitally-enabled through the use of

communication technologies such as the intemet, email, phone, fax, OCR, XML, or

coordination technologies such as workflow systems. By virtualizing the processes, these

technologies increase the ability of the organization to coordinate temporally and

spatially disparate actions within the business process, increasing the possible span and

scope of a digitally-enabled organizational routine, while also increasing the transparency

and managerial control that is possible over the routine (Overby, 2008). This tension

between enablement and constraint of organizational action is another recognition of

complexities to be found in the study of technology impact.

The balance of forces driving flexibility, stability, enablement, and control of

organizational routines is complicated by the introduction of information technologies.

Organizational technologies incorporate implicit models of work that structure future

performance and can reify business rules (van der Aalst et al., 2003). Business process
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reengineering perspectives typically focus on the technological imperative and the

enabling aspects of technological adoption and assimilation (Davenport & Short, 1990;

Hammer, 1990), while other perspectives focus on the constraints that technologies place

on organizational action (Benders, Batenburg, & van der Blonk, 2006; Gosain, 2004).

This divergence in the literature makes it difficult to predict the outcomes of technology

use, without empirical study. A focus on expressed patterns of action allows the

integration of both perspectives in the study of technology use.

Instead of focusing solely on the antecedents and consequences of organizational

IT use, this study sees the patterns of action and use of the information system as an

intermediate consequence between assimilation and impact. Given the centrality of

process variety to theories of organizational routines, learning and buffering, and the

complicated and contextualized fit-driven impact of information technologies, it becomes

vitally important for researchers to understand the micro-level consequences of IT use.

Locating this in a framework of input-process-outcome allows a much finer grained

understanding of what IT use really is, and allows research to explore consequences and

antecedents of use at the same time. This leads to the second research question:

Research Question 2: What is the impact ofinformation technology use on the

varietyfound within a digitally-enabled business process?

Theory and Model Development

In this section, I develop the general world view and theory of input-process-

output that guides my research. I begin with one of the archetypical process perspectives

given by Melao and Pid (2000), as shown in Figure 2. I then detail the support for my

propositions, continuing the literature review and discussing how the model should

operate in the context of workflow and invoice processing. 1 start with the model shown
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in Figure 3, and move left to right, then top to bottom in my discussion. Beginning with

the boundary of the organization and its business processes, I describe how inputs drive

contingent actions and the impact of these contingent actions on sequential variety. I

then discuss how various levels of sequential van'ety drive outputs. I conclude with an

exploration of how the environment affects technology use, and the impact of technology

on process variety and outcomes.
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Figure 3: Research Model—the proposed relationships between environmental

variation, sequential variety, and technology and outcomes from a business process.

Process Variety at the Boundary

Thompson (1967) lists several forms of buffering the organization from the

environment, such as queuing, warehousing, rationing, and demand leveling. While these

are appropriate for some manufacturing organizations, they are becoming less available

or appropriate for many organizations due to the rise ofjust-in-time supply chains,

custom manufacturing, lot sizes of one, and service provision. Lynn (2005) discusses the

ideal relationships between buffering, requisite actions, centralization, and uncertainty.

His conceptualization (p. 90) describes traditional forms of buffering as a way for

organizational systems to deal with variety in excess of the system’s ability to respond
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through action. In the context of this dissertation, queuing is appropriate for the system

to deal with a large influx of invoices at a given time, but demand leveling, rationing, and

forecasting seem to be less relevant. Along with Lynn’s (2005) decentralized manner of

dealing with uncertainty, Yan and Lewis (1999) note that many of the fiinctions

previously thought to occur at an organizational level have been pushed downward to the

level of the business process by advances in technology and changes in organizational

demographics and structure. For the workflow system under study, a perspective that

_ examines the contingent actions that are undertaken seems more appropriate as a

regulator of variety than Thompson’s (1967) traditional conception of buffering at the

organizational level.

March and Simon (1958, p. 45) recognized the inherent flexibility in routines

through the contingent use of subroutines, noting that even routines such as those

performed on manufacturing assembly lines may have “the character of a strategy rather

than a fixed program” (p.45). These subroutines or selected activities would be chosen

according to appropriate signals. Since the routines within a boundary unit would be

largely driven by stimuli from outside the organization, we should see variation in these

routines based on changes in these signals from the environment. The performances of

these routines, enacted in the boundary organizational unit, should achieve a variety equal

to those features in the environment important enough to warrant differences in execution

of the routine (Ashby, 1956, 1958, 1968). In this way the environment of a business

process or routine may introduce variation in the actions or their order within the process,

leading to the following proposition.

P1a: Higher levels ofenvironmental variation will be associated with higher

levels ofsequential variation within a business process.
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The Relationship between Process Variation and Outcomes

Theory that predicts the consequences of process variation also may indicate a

complex relationship with outcomes, given the diversity of ways variation is viewed in

literature (Pentland, 2003a, 2003b). It can be a harbinger of lower quality in

manufacturing contexts (Oakland, 1999) or an indicator of higher quality in service

provision (Leidner, 1993). The nature and results of this study gives some capability to

resolve these contradictions.

The processing of invoices may be more similar to services than to manufacturing

contexts, so variation in this process should be positively associated with outcomes

related to qualitative measures such as success, failure, or meeting a deadline. At the

same time, the institutional and legal norms such as accounting standards and internal

controls would tend to make extremely variant processes more costly (Dunn etal., 2005).

The balance between control and efficiency of a business process often determines its

performance, reliability, and cost.

There is a distinct difference here between predicted systemic and performance-

level effects. At the systemic level, more process variety indicates a greater ability for

the routine to deal with environmental variation. At the level of the individual

performance, I predict qualitative measures of outcome to be higher with more sequential

variety. These qualitative and systemic benefits from increased sequential variety might

come at a quantitative expense of increased processing time or cost. This is an interesting

implication of differing directions of effect based on the level ofanalysis. This leads to a

second proposition:
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P]b: Higher levels ofsequential variety will be weakly associated with a longer

completion time when measured at the level ofindividual sequences.

Technology Enablement and Constraint

At the operational level of business process, technologies typically are given,

often beyond the discretion of the individual actor, and yet there must be enough

flexibility to meet the needs of that particular business process or routine. An

information system has inputs that can be handled automatically because of their

formatting and qualities, but there may be inputs that fall outside of this specification that

call for special handling as exceptions. The quality and characteristics of inputs can

impact an organization’s ability to use technology in a business process (Mukhopadhyay

et al., 1997). Automated mail sorting technology can read the addresses on a variety of

machine written and bar-coded mail, but has difficulty reading hand-written addresses

and mail damaged by water. These must be hand-sorted because of the joint

characteristics of the input and the technology.

Culnan (1992) found a similar situation with mail handling at the US. Senate.

Form letters were devised for specific issues and constituencies, and it took many letters

regarding new issues to generate a new response format. The Senate used several

information systems to generate the form letters and also for other correspondence. After

the incoming mail was categorized, a combination of information systems and

organizational work was completed to respond to or ignore the various mail inputs.

In Culnan’s (1992) case, inputs that were common and recognized were able to be

processed by existing form letters within the system. If the letters were outside of this

specification, they were ignored, collected for future use, or handled as an exception.

The number of responses matched the different types of inputs that the joint features of
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the organization and technology allowed within the correspondence function. Senators

were protected from too much mail by a system that categorized similar inputs,

responded appropriately, and learned to add new responses as needed.

One implication of the cybernetic view of systems and information theory also

can bring understanding to this issue. The law of requisite variety requires variety in the

responses equal to that found in the environment of the system (Ashby, 1956, 1958,

1968). The information content found within the set of available responses is a function

of how many responses there are and how many types of signals from the environment

are needed to determine the correct response. Automational technologies, such as those

found in workflow software, use these signals to fire without decision-making by

humans.

To conserve human attention (Simon, 1973), the information system should

automate those tasks where the information needs for decision-making can be determined

in advance and match exactly the needed systemic response. This implies that those tasks

that should be automated are those that do not require additional information or decision-

making to direct the correct task. This set of actions must, by definition, be lower than is

possible in a human-automation hybrid system at a steady state, given that the amount of

variation in the environment and inputs is wider than can be predicted due to limits of

human prediction and cognition. This suggests another proposition:

P2a: Environmental variation decreases the use oftechnologyfor a given

business process.

As noted earlier in this chapter, the relationship of technology to sequential

variety is complex. Technology both enacts and is shaped by organizational structure

(Orlikowski, 1992). The classic tension between organizational flexibility and stability is
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complicated by the introduction of technologies that may fundamentally constrain and

enable organizational action. This is in addition to the impact this tension has on

organizational structure.

This complexity is also present in the literature, as different groups of scholars

highlight the equivocal nature of technology in how it impacts on organizational

processes. For example, Poole and Desanctis (1990) describe how an information system

can be subverted for purposes not in its spirit by users while Gosain (2004) highlights the

 

isomorphic pressures from the controlling aspects of an information system.

Business process reengineering perspectives typically focus on the technological

imperative (Orlikowski, 1995) and the enabling aspects of technological adoption and

assimilation (Davenport & Short, 1990; Hammer, 1990; Lee & Dale, 1998; O'Neill &

Sohal, 1999), while other perspectives focus on the constraints that technologies enact on

organizational action (Benders et al., 2006; Gosain, 2004). Typically, each perspective’s

core focus is on either enablement or control (Singh et al., 2009). This complicates our

ability to predict, and requires some additional context to understand how these effects

will impact this study. The design of features within a specific class of information

system can facilitate the development of a contextually relevant prediction. I discuss

these next.

Business processes that utilize workflow systems experience more structuring of

sequence and action because an implicit model of the process becomes the basis ofwork

design (Georgakopoulos et al., 1995; van der Aalst et al., 2003). While recent advances

have increased the flexibility in the handling of exceptional cases and variable processes

(Carlsen, 1997; Narendra, 2004), not all workflow systems are designed this way. In
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fact, managers may wish to specify the actual workflow pattern explicitly to exert control

over the process. Business rules may be implemented in the system by automating tasks

based on predetermined criteria. For example, an invoice may be automatically approved

if it is under a certain dollar amount, or invoices for specified vendors may be passed

directly to the required approver. These indicate that the use of technology would be

reflected in the patterns of action that are expressed, specifically as a reduction of process

variance. Thus, the following proposition:

P2b: Increased use oftechnology will be associated with lower sequential variety

for a given business process.

Brynjolfsson and Hitt (2000) implicitly recognize that it is the structures of use

that generate value, because achieving benefit from information technology requires

complimentary organizational action. Soh and Markus (1995) outline a process model of

IT business value creation, synthesized from integrating several extant research models.

Three overall information technology processes are distilled: IT conversion, IT use, and

competition (p. 37). The use process focuses on the connection between IT assets and IT

impacts, contingent on how the IT is used appropriately in context.

From the perspective of the business process, Mooney et al. (1996) describe three

main dimensions of IT business value, focusing on automational, informational, and

transformation aspects of the technology in use. Workflow systems may be installed as

part of a business process reengineering transformation, but once in place the effects are

mainly from the automation and informational features of the technology. This research

focuses primarily on the impact of automational features of a technology.

Studies have linked information system use with organizationally important

outcomes on revenue and mortality in a healthcare setting (Devaraj & Kohli, 2003) when
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studied at the level of the business process. Mukhopadhyay, Rajiv, and Srinivasan (1997)

also study the impact of IT use on a business process, finding that IT use increased the

throughput of mail, with appropriate inputs. All of these studies point to increased value

from IT use, contingent on context and appropriate inputs.

P2c: Technology use will be associated with lower cost, shorter completion times

for a given business process.

Application to Mail Handling

An empirical example of the theory 1 use can be found through a reinterpretation

of Mukhopadhyay et al. (1997). They examined the impact of a new mail reading and

sorting technology at a United States Post Office. This technology increased the speed of

sorting and reduced errors in almost all cases except mail that was wet or poorly hand-

addressed. The technology was unable to machine-read the address on mail with these

properties, and they had to be sorted by hand.

As a system, a different response was developed for each of the types of variant

inputs, as predicted by the law of requisite variety. Extending the example given by

Mukhopadhyay et al., we can gain insight through the impact of later events on the postal

system in the United States. In 2001, someone mailed anthrax spores to many people and

some became infected and died. The impact on the mail system was immediate and

widespread, as people were afraid to open mail; some mail sorting services were halted

while decontamination was completed by people in biohazard suits. In response, the US

mail service implemented testing for anthrax in mail at all processing centers (Klatell,

2006). Again, in terms of inputs, the anthrax contaminated mail was variant beyond the

system’s ability to handle them, and a new set of actions was implemented to allow the

system to operate safely to detect and quarantine contaminated mail.
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This scenario demonstrates the theory developed in this chapter. It is an example

of a system where the inputs drive the changes in process, resulting in improved

outcomes. In addition, the role of technology as one of the factors that both enables and

constrains actions is clear. In the next chapter, I describe the research design that will

validate a contextualized model derived from the theory seen in Figure 3.
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Chapter 4—Methodology and Research Design

Introduction

This chapter outlines the collection and processing of data, connecting the

theoretic model in the previous chapter to the context of invoice processing and to the

methods I use to evaluate the research questions (Figure 4). I seek to understand how

signals from the environment (inputs) drive heterogeneity in processes, and how this

affects outcomes from the process. Also, I want to discover how automation affects the

heterogeneity of the process and the impact of information technology use.

I conclude this chapter with an overview of each analysis performed in

subsequent chapters. One important methodological contribution of this work is the

development and evaluation of different measures of sequential variety in organizational

processes. Table 3 lists these in the order of their increasing inclusion of sequential

information. These have been utilized in a stream of related work with similar data, but

from a larger set of four organizations (Pentland, Haerem, & Hillison, 2009a, 2009b,

2009c,2009d)

Research Design

The research design calls for comparing variation in several sets of variables:

those related to environmental factors, the sequence of actions in the routine, the amount

of automation, and measures of outcome. The environment must be suitably defined and

measured; the routine must be situated in an organizational unit that acts as an interface

between the environment and the rest of the organization; and the outcome variables must

be measurable and linked to the specific behaviors found in the routine. To infer

causation, temporal precedence must be established, some form of mathematic
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relationship must be found, and this must be supported by a plausible story explaining the

relationships between the variables (Bollen, 1990; J. Cohen, Cohen, West, & Aiken,

2003; Kenny, 1979)

To explore the relationships between environment, process, outcomes, and

technology, I begin by using conditional probabilities of the events in the sequences,

treating the organizational routine as a Markov process that varies in response to

contextual variables (Gottman & Roy, 1990). This views the variety in the process as the

set of possible states and the transitions between these states (Ashby, 1976). For the

second analysis, 1 use optimal string matching techniques to calculate a distance of each

sequence from each of the others to create a distance matrix (Sankoff & Kruskal, 1983),

measuring the amount of sequential variety by analyzing each sequence of actions in

relation to the others (Pentland, 2003a, 2003b). Variety in this analysis seems closer to a

measure of dispersion around a set of modal sequences, and may be thought of as the

‘standard deviation’ of a set of sequences in some ways. As noted above, Table 3 shows

these methods and others in terms of increasing amounts of sequential information used.

 

 

 

    
 

    

  

   

0 Length of

---------------------------------------------------- Time to

........... 0 "”'*-~....Complete

; "
“

Dissimilarity 1a + Heterogeneity of Process 1b (+) I

0f Inputs Sequential Variety Outcomes

/

/ 2 H

/ 2., r. 10 v)

Invoice Amount Amount of

V d

vzgd: Count Automation 0 Actions undertaken by system/

Experience total actions in the sequence

Figure 4: Analysis model, showing contextualized variables and relationships

33



 

 

 

 

 

 

 

 

    

Strengths Weaknesses Citations

Lexicon Size Easy to obtain Very coarse measure (Pentland,

of variety 2003a, 2003b)

Lexicon Can discriminate No sequence (Pentland,

Distribution between processes information used 2003a, 2003b)

Entropy Uses relative No sequence (Ashby, 1956,

probability of information used 1958, 1968;

execution Shannon &

<5; Weaver, 1949)

a First Order Well established, Omits information (Ashby, 1976;

3, Markov used in variety of about longer Gottman & Roy,

,3 fields sequences 1990; Pentland,

8 2003a, 2003b)

.3 Higher Order Uses additional Math gets (Gottman &

2 Markov information about difficult...harderto Roy, 1990)

E longer sequences prove better fit than

go. lower order

g String Well established in May be less (Abbott, 1990b;

3 Distance a variety of fields appropriate for study Abbott &

g of organizational Hrycak, 1990;

~la Uses the entire processes Abbott & Tsay,

sequence of 2000; Pentland,

actions Conceptually, what 2003a, 2003b;

do insertions, Sankoff &

deletions and Kruskal, 1983)

substitutions mean

for organizational

processes? 

Table 3: Methods for measuring sequential variety

Research Site and Data Collection

The invoice processing routine lies at the interface between vendors and an

organization, making it a perfect opportunity to evaluate the antecedents and

consequences of process variance. Despite institutional and legal norms regarding the

form and general process that must be followed, there is a large amount of variability in

how organizations can make and document the decisions regarding payment of the

invoice (Dunn et al.. 2005).

 

This research uses data collected from an invoice processing workflow system in

use at a construction company in Norway. Invoices most commonly enter the system on
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paper or less often via an electronic portal. If the invoice is on paper, it is scanned and

optical character recognition is performed for initial data entry, while some information

must be entered manually. Invoices can be immediately sent to the financial system for

payment; others require multiple approvals, thus the number of approvals can be larger

than the number of invoices. Once the approvals are complete, the invoice is paid. An

overview of the invoice process as conceived by designers of the workflow system is

shown in Figure 5 (Compello Software, 2007). The data obtained from the invoice

processing system is not immediately ready for analysis, as a significant amount of

extraction, conversion and transformation is needed to obtain useful data.
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Figure 5: Flowchart of the invoice processing routine

Workflow mining techniques are utilized on the action logs that software provides

(Agrawal, Gunopulos, & Leymann, 1998; Agrawal & Srikant, 1995; van der Aalst et al.,

2003; van der Aalst & Weijters, 2004; van der Aalst, Weijters, & Maruster, 2004). The
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resulting data provide the input variables, sequential information, amount of automation,

and outcome variables for both the string-distance and Markov analyses. To obtain the

sequences, the event log was parsed, and each entry and approval sequence was extracted

and linked to the related invoice. An example event log is shown in Table 4, and

processed sequences are shown in Table 5.
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Invoice # Phase Action Code

202132 Entry Enter invoice no. 8

202132 Entry Enter invoice date 7

202132 Entry Enter due date 6

202132 Entry Enter amount 3

202132 Entry Enter currency 4

202132 Entry Enter document type 5

202132 Entry Enter vendor account 20

202132 Entry Enter period 10

202132 Entry Enter text 12

2021 32 Entry Approve 1

202132 Approval Enter period 10

202132 Approval Enter currency 4

202132 Approval Enter amount 3

2021 32 Approval Enter text 12

202132 Approval Distribute to approver 23

202132 Approval Distribute to approver 23

2021 32 Approval Notify 25

202132 Approval Enter account 2

202132 Approval Enter Tax-code 11

202132 Approval Enter value dim. 1 (DP) 13

2021 32 Approval Approve 1

2021 32 Approval Approve 1
  

Table 4: Example event log from workflow system

 

 

 

 

 

 

 

   

Identifier Phase Action Sequence

112568 Entry 8, 7, 6, 3, 4, 5, 20, 10, 12, 1, 9

112569 Entry 8, 7, 6, 3, 4, 5, 20, 10, 12, 1, 9

112573 Entry 8, 7, 6, 3, 4, 5, 20, 10, 12, 1

112568 Approval 10, 4, 3, 12, 23, 23, 25, 2, 11, 28, 16, 1, 13, 23, 27, 25, 15, 1

112572 Approval 10, 4, 13, 3, 12, 14, 23, 23,25, 2, 11, 23, 16, 25, 1, 1

112573 Approval 10, 4, 3, 12, 13, 14, 23, 23, 23, 23, 25, 2, 11, 15,25, 1, 1,23, 16, 1, 1

 

Table 5: Sequences extracted from the workflow event log
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I have data from the system’s first installation in 2001 through July 2007,

resulting in 58,000 invoice sequences that are available for analysis. A random sample of

2000 invoices from June 2005 through May 2006 was selected for further analysis in this

dissertation. I chose this time period to for two reasons: an attempt to avoid start—up

learning effects and to center the data on year end (December 31). Because the data

source was a construction company in Northern Europe, I expected strong seasonal

effects and wanted to minimize and control their impact while still allowing a large

sample. Centering the sample on year end allowed both the split-half and four-group

tests in the Markov analysis to help isolate seasonal effects from the systemic variation 1

was seeking. The number of invoices was set at 2000 because this was close to the

technical limitations of string-distance analysis.

Evaluation of the theoretical model presented in chapter 3 requires that the

concepts and relationships must be contextualized and operationalized, as presented in

Figure 4. Table 6 defines and outlines the variables for environment, technology use, and

outcomes specifically for the invoice process and research site. I discuss their

operationalization (Table 7) in the next section. Since I am interested in how ‘different’

each invoice process is from the others, scaling, clustering, or stratification techniques are

used on the set of environmental and outcome variables. Because I am utilizing multiple

analysis methods, I include heterogeneity of the process (Markov approach) and

sequential variety (string distance approach) as measures of the process itself.
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Variable Type Definition

 

Environment

How many times has this particular vendor provided an

invoice for payment? (total and incremental)

 

Invoice amount

 

Number of automated actions that were undertaken during

 

 

 

 

Technology Use this process

Markov method

Process

Scaled string distance

Length of time spent processing this invoice

Outcomes
  Number of people that ‘touched' the invoice

 

Table 6: Variables contextualized for the invoicing business process

Operationalized Variables

The relationship between characteristics of the invoice and characteristics of the

sequences was complex. For example, there was always one entry sequence per invoice,

but there could be many approval sequences. The variables that related to the invoice,

such as amount and length of time thus could be linked to sequences that also occurred on

other invoices. There were many invoices generating the same sequences, and also some

sequences appeared on multiple invoices. Table 7 shows how I operationalized the

variables, and where each contextualized variable shown in Table 6 fits into the analysis

model in Figure 4.
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Construct Variable Variable Name

 

Input

Invoice Amount—the log of the invoice

amount (per invoice)

LogAngmt

 

Vendor Count—how many times in total

did the vendor have invoices in the entire

data set (per invoice)

TotalVendorCount

 

Vendor Experience—how many times a

particular vendor had invoices prior to the

current invoice (per invoice)

VendorExperince

 

Automation

Number of actions undertaken by the

system divided by the total number of

actions within a sequence (per sequence)

AutoPCT

 

Outcome  Length of time between invoice scanning

and the completion of the workflow (per

invoice)  SC_to_AA
 

Table 7: Variables operationalized and linked to the analysis model

Invoices sometimes had several amounts that were entered on the system,

apparently to update the record as more information was obtained. I used the average of

these on each invoice to compute the variable “Invoice Amount”. This variable showed a

huge range (20 Norwegian kroner (NOK) to 1.5 million NOK), and was skewed left, so

the log 10 was taken to obtain a more normal distribution (LogAngmount).

I used two methods to explore the concept of vendor experience. First, I

examined the total number of times that particular vendor appears in all of the data I have

(1/1/2002 through 5/31/2006) for each invoice (TotalVendorCount). I also calculated the

number of times a particular vendor had appeared on a given invoice before the current

invoice (VendorExperience). This second method increases the count by 1 every time an

invoice from that vendor occurs. The first invoice from a vendor would have an

experience level of 1, the second 2 and so on. These are two similar yet different ways to
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measure the amount of experience the organization had processing invoices with a

particular vendor, and they do correlate highly (R2 = .987, p=0).

Automation was measured at the sequence level, as it was a property of the

sequence rather than the invoice. I calculated this variable by dividing the number of

automated actions by the total number of actions that comprised the sequence

(AutoPCT). This was a relative measure, and thus the percentage of automation can be

compared across sequences of different lengths.

Since every invoice in the sample was paid, there was no variance to explain by

using this as a measure of outcome. Also, there is an issue here, because ‘good’

performance of the invoicing process would only be known later, if a correct invoice was

not paid or a fraudulent invoice is paid. I chose to use the length of time it took for the

organization to approve the invoice as a proxy for how much organizational effort was

expended. The actual time used was the number of days it took from when the invoice

was scanned to when it was marked ‘all approved’ or ‘fully posted’ as noted on Figure 5.

 

 

 

 

 

 

N Min Max Mean Std. Deviation

Angmount 1990 20.66 1529886 20073.1 74779.704

LogAngmount 1990 1.31 6.18 3.6143 .73301

TotalVendorCount 1991 1 2392 516.57 658.595

VendorExperience 2000 0 21 17 416.56 552.989

SC_to_AA 1867 0 233 6.17 8.234        
Table 8: Descriptive information for invoice variables

Table 8 details some descriptive information for variables that relate to the

invoices, while Table 9 shows the information that is based on sequence such as the

automation percentage. There were 2000 invoices in the sample that generated 2000

entry sequences and 2852 approval sequences. The majority of the missing N comes
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from the outcome variable for the length of time for processing. In many of these cases

the final date for all-approved was not present, yet the invoice was marked paid. I am

assuming there was a problem converting or extracting the dates during the workflow

mining phase of the project that lead to this issue.

 

 

 

       

N Min Max Mean Std. Deviation

Entry 2000 0 1 .00 .4524 .23241

Approval 2852 0 0.78 .1493 . 14698

 

Table 9: Descriptive information automation percentage

Markov Transition Matrix Method

My first analysis views each sequence as a series of transitions between symbols,

based on knowledge of previous symbols in the sequence. In this case, the symbols

represent actions that take place within the sequence. 1 include an overview here but full

details and results can be found in chapter 5.

Gottman and Roy (1990) describe a technique using Markov transition matrices to

test the effects of contextual variables on the structure of sequences. First, the

appropriate model order will be determined by examining the inclusion of additional

actions in the sequence, using a nested calculation for entropy. A moving window of

varying sizes is passed through the sequence to calculate the amount of information that

is gained from knowledge of the differently sized subsequences. A likelihood ratio chi-

square test is then performed comparing the hypothesis that the order is r against the null

hypothesis that the order is r-l (Anderson & Goodman, 1957; Gottman & Roy, 1990, p.

62). This tells informs us about the number of subsequences appropriate for further

analysis.
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Once the order of the Markov process has been determined, the stability of the

conditional probabilities between sets of events is measured over time. An omnibus test

for stationarity is performed by splitting the sample in half, and a likelihood ratio chi-

square test is performed to test for equality of mean probabilities of transition for each

sample. Other tests can be performed by splitting the sample into relevant time periods,

chosen arbitrarily or as suggested by theory. Trend or cyclic effects can also be tested in

this way.

After an examination of temporal stability of the transition probabilities, I

investigate the impact of context variables. This is done by splitting the sequences into

sets based on these context variables, and testing for homogeneity on the resulting

matrices. I split the sample into four groups of similar sizes, stratified by each variable,

and test the four groups against each other for homogeneity. The results are detailed in

chapter 5.

String Distance Approach

The second analysis I perform uses relative distances between the sequences to

obtain a set of metric locations for each sequence in a scaled space. 1 detail the procedure

and the results of the analysis in chapter 6, but I provide a brief overview here.

First, I obtain a string distance (see Appendix 1) for every sequence as it

compares to every other sequence in the sample. I chose this distance measure because it

has been widely utilized in a variety of fields, and has been used by researchers in the

information technology (Sabherwal & Robey, 1993) and organizational routines

literatures (Pentland, 2003a, 2003b). String distance also known as Levenshtein distance,

has been utilized in sociology and other fields (Abbott, 1990b, 1995; Abbott & Hrycak,
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1990; Abbott & Tsay, 2000; Dijkstra, 2001; Dijkstra & Taris, 1995; Sankoff & Kruskal,

1983; van Driel & Oosterveld, 2001) to good result.

The resulting matrix lists each sequence on the column and row headings and the

distance between each sequence in the cells. These can be summed across, and a

measure of distance can be calculated for each sequence that indicates how different a

given sequence is from all of the others (Abbott & Hrycak, 1990; Sabherwal & Robey,

1993). On the other hand, the entire matrix of relational distances can be used as the

input to a multidimensional scaling algorithm. Given the ordinal nature of the data, non-

metric scaling is most appropriate. This technique extracts the underlying metric

relational structure between the sequences within the matrix, based on the structure of

their ordinal relationships (Kruskal & Wish, 1978). The extracted dimensions are then

examined and explored using multiple correlation and visualization techniques for

interpretation. For details and results, see chapter 6.
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Chapter 5—Markov Analysis and Findings

Introduction

This chapter describes the first analysis I used to evaluate the relationships

between inputs, the process, and outcomes, as well as the impact of technology. I find

support for the majority of the model, concluding that vendor experience and invoice

amount drive heterogeneity in the process. The entry and approval phases have different

relationships with outcomes. Entry processes are homogenous with respect to this

variable, but the approval-phase sequences were different when stratified along elapsed

time. For both phases, automation emerged as a strong driver of heterogeneity.

After performing the workflow mining discussed in the previous chapter, I

convert the sequences into matrices representing the counts of transitions between

temporally adjacent actions. An example of this is presented in Error! Reference

source not found., Table 32. These matrices are then analyzed by a class of discrete

statistics based on the expected and observed probabilities of these transitions,

mathematically similar to the analysis of contingency tables (Anderson, 1957; Chatfield

1973, Bishop, Feinberg, and Holland, 1975; Gottman and Roy, 1990).

Determining the Order of the Processes

Following Gottman and Roy (1990), the order of the Markov sequence must be

determined at the outset of the analysis. This helps the researcher understand the

temporal structure that is present in the set of sequences based on the conditional

probabilities of prior steps. According to the likelihood ratio tests suggested by Chatfield

(1973), both phases have a digram and trigram structure (Error! Reference source not

found., Table 33 and Table 34). This means that the information given by the previous
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symbol helps predict the current symbol for a digram structure, and the process is of first

order. A trigram structure includes information given by the previous two symbols to

predict the current symbol and that the process would also be of second order. This does

not mean that two or three symbols explain the actual temporal structure, but given the

data, those structures best predict the transitions between actions.

Higher-order (second order, third order, etc) Markov transition matrices are often .,;

‘sparse’, meaning that much of the matrix is 0 or of low observation. This can cause

problems for testing the stationarity of the sequence (Gottman and Roy, 1990; Capella

1980). I also examine the scree plots of 1:1,. (Error! Reference source not found.,

Figure 15 and Figure 16), and determine that the additional information from the trigram

structure may not be as great as indicated by the likelihood ratio tests (Chatfield 1973, p.

16-17). H, is the amount of information given by the sequence, based on a moving

window of size i. The scree plot shows that there is not much benefit from moving

beyond a trigram structure, but the digram structure still shows an improvement over no

temporal information. For mathematic efficiency, I chose to view the entry and approval

phase sequences as having digram structure and have first-order Markov properties for

the remainder of the analysis.

Examining Stationarity of the Process

1 test whether the processes are stable over time, to determine if the transition

probabilities change between time periods. The statistical test for this gives a binary

result: either the processes are similar (H0) or they are significantly different (Ha).

Gottman and Roy (1990) caution readers not to view this omnibus test as an evaluation of

the validity of future tests.
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I conclude that each set of sequences is not stable over time, according to the

omnibus test of stationarity, (Entry Phase p(LR = 2664.487, df =255) = 0, Approval

Phase p(LR = 5726.618, df =399) = 0; see Error! Reference source not found., Table

36) Given that the research site is a construction company, there may be a seasonal effect

on the processes. It also may be that some of the variables of interest in this study are

also moving with time (such as vendor experience), increasing the heterogeneity of the

processes along this dimension.

This represents an interesting implication for organizational theory.

Organizational routines are widely believed to be rigid and unchanging (M. D. Cohen,

2007), and singular in response to stimuli once search has been eliminated from the

process (March & Simon, 195 8). A competing perspective highlights organizational

routines as a generative structure (Howard-Grenville, 2005; Pentland & Rueter, 1994) -

one that generates performances that vary in response to learning (March, 1991; Nelson

& Winter, 1982), agency (Feldman, 2000), and is consistent with continuous

organizational change (Sorenson, 2003). In a related working paper, Pentland et al

(2009b) found this heterogeneity over time in three of four organizations from similar

data sets.

I also perform a follow-up test and split the sequences into 4 equal groups to see if

I could find some homogeneity over time at a smaller interval than 6 months, and to

explore the source of overall difference (Error! Reference source not found., Table 37).

For the entry phase, periods I and 2 were similar and 3 and 4 were similar, consistent

with the omnibus test above, and indicating that there was a natural split at the half-way

point of the sample, representing year end. The approval phase showed similarity
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between the first two periods, and these were distinct from the remaining periods.

Periods 3 and 4 were not alike, and distinctly different from 2 and 3. This supports

seasonality as a possible explanation for heterogeneity over time in the approval phase.

This finding also connects to the debate between the stable/changing perspectives

of organizational routines. As I consider further the groups of process executions (the

performative aspects of the organizational routines), I find that there is a natural variation

that is present. Also, one would expect that these variations might ‘average’ themselves

out over time, but this is evidence that organizational routines may change over time in a

drifting, endogenously changing fashion, rather than an externally driven selection and

retention manner. These ideas are developed further in a longitudinal analysis of the

performances at four sites in a working paper currently in development (Pentland et al.,

2009b)

Group Comparisons

Viewing the processes as sequence with Markov properties allows the comparison

of subgroups within the total set of sequences. In addition to time (stationarity), I also

evaluate the overall model of input-process-output. Gottman and Roy (1990) suggest

segmenting the sequences by variables of interest and deriving the Markov transition

matrices of the appropriate order for each segment. These matrices can then be tested

with the usual chi-square or likelihood ratio statistics used for contingency tables.

The group comparisons performed here are ones of similarity or differentiation:

are groups of processes stratified by a given variable alike or different? Table 10 shows

the specific hypotheses that are tested to evaluate the research model, and describes the

connections between constructs and variables. All the variables of interest were binned
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or stratified, with a fixed percentage of cases in each group (25% for four groups). For

example, the log of the invoice amounts was calculated for each invoice, and they were

ordered smallest to largest. The bottom 25% of the invoices were selected and assigned

to group 1. For the entry phase, this means approximately 500 sequences are in each

group. The approval phase has more than 500 because there can be many approvals per

invoice. The approval phase also did not have exactly the same number of sequences in

each group because every invoice did not have the same number of approvals.

The variables measuring input (invoice amount, vendor) and outcome (number of

days for the process) are linked to the invoice, while the measure for automation is linked

specifically to the sequence. In all cases, the entry and approval sequences are tested

separately, but the bins or strata for the variables derived from the invoice are linked to

all of the sequences for which that invoice generates. Table 10 on the next page

describes these variables, noting which research question and specific hypothesis will be

tested in this chapter.
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Construct Variable Specific Hypotheses
 

Invoice Amount—the log of the

invoice amount (per invoice)

H0: Invoices for large amounts will generate

similar sequences as those for small amounts

Ha: Invoices for large amounts will generate

different sequences as those for small

amounts
 

Vendor Count—how many

times in total did the vendor

have invoices in the entire data

set (per invoice)

H0: Invoices from common vendors will

generate similar sequences as those from

uncommon vendors

 

 

 

 

Input . . .

Ha. lnvorces from common vendors wrll

generate different sequences from uncommon

vendors

Vendor Experience—how many H0: Invoices from common vendors will

times a particular vendor had generate similar sequences as those from

invoices prior to the current uncommon vendors

invoice (per invoice)

Ha: Invoices from common vendors will

generate different sequences from uncommon

vendors

Number of actions undertaken H0: Highly automated sequences will be

by the system divided by the similar to those that are less automated

Automation total number of actions within a

sequence (per sequence) Ha: Highly automated sequences will be

different from those that are less automated

Length of time between invoice H0: Invoices that take longer to complete will

scanning and the completion of generate similar sequences to those that take

the workflow (per invoice) less time

Outcome   Ha: Invoices that take longer to complete will

generate different sequences to those that

take less time
 

Table 10: Constructs and variables used to segment sequences
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Does the Process Vary with Differential Inputs?

Some organizations have specialized plans in place for different vendors, while

others may set up contingent plans to respond to the levels of currency amounts for a

particular invoice. In addition, the organization may have routinized responses to

vendors it deals most with, so the amount of experience with a particular vendor may

affect the process as well.

 

 

 

 

 

 

 

 

 

Avg Min Max

Phase Group N Log Log Log

Amt Amt Amt

1 498 2.704 1.315 3.080

Entry 2 497 3.364 3.083 3.619

3 498 3.852 3.621 4.083

4 497 4.558 4.084 6.185

1 678 2.717 1.315 3.080

2 648 3.372 3.083 3.619

Approval

3 657 3.857 3.621 4.083

4 869 4.591 4.084 6.185       
 

Table 1]: Descriptive information for groups of invoice amount, stratified on the

log of the amount

First, I examine the impact of invoice total amount on the process (Table 12).

Given the large range of currency amounts (20NOK to 1,529,886NOK) and the skewness

of its distribution, the logic was taken of each amount, and this was used to stratify the

invoice (Table 11). Table 12 also shows the actual amounts that correspond to the

different groups. The likelihood ratio tests indicated that there was heterogeneity in the

four groups for both the entry phase and approval phases (Table 13).
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Phase Group Avflmt Min Amt Max Amt

1 605.95 20.67 1,201.00

2 2,460.49 1,211.07 4,162.67

Entry

3 7,451.68 4,176.00 12,095.47

4 69,838.89 12,128.75 1,529,886.00

1 613.97 20.67 1,201 .00

2 2,508.92 1,211.07 4,162.67

Approval

3 7,498.74 4,176.00 12,095.47

4 73,743.40 12,128.75 1,529,886.00
 

Table 12: Descriptive information for groups of invoice amount, stratified on the

log of the amount

For the entry phase, group 1’s (20NOK through 1200NOK) processes were

different from the remainder. Also, there were no discernable differences in the entry

processes that handled the larger invoice amounts (1,200kr thru 1,500,000kr). The

approval phase had a similar pattern, but a more complex result. The group with the

smallest invoices was different from the rest, but for groups 2, 3 and 4, there were

similarities but no transitivity. The conclusion is that the smallest invoices had patterns

of action distinct from the remaining groups, and there are some similarities among the

groups of sequences of the higher invoice amounts for both the entry and approval

phases.
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Phase Test LR Df p-value

Overall 1323.34 765 0.

1 v 2 668.39 255 0.

1 v 3 698.25 255 0.

Entry 1 v 4 859.75 255 0.

2 v 3 95.47 255 =1.

2 v 4 112.69 255 =1.

3V4 125.16 255 =1.

Overall 2015.69 1197 0.

1 v 2 543.05 399 0.

1 v 3 844.06 399 0.

Approval 1 v 4 1196.79 399 0.

2 v 3 233.26 399 =1.

2 v 4 468.96 399 0.009

3 v 4 395.2 399 0.544
 

Table 13: Group comparisons for invoice amount

I perform several procedures calculating and stratifying the sequences to explore

the concept of vendor experience. First, I examine the total number of times that

particular vendor appears in all of the data (1/1/2002 through 5/31/2006) for each invoice

(Table 14). I also calculate the number of times a particular vendor had appeared on a

given invoice before the current invoice (Table 15). This second method increases the

count by 1 every time an invoice from that vendor occurs. The first invoice from a

vendor would have an experience level of 1, the second 2 and so on. These are two

similar ways to measure the amount of experience the organization had processing

invoices with a particular vendor, and they correlate highly (R2 =.987).
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Avg of Total

Vendor

Phase Group N Count Min Max

1 515 26.074 1 66

Entry 2 485 142.054 68 247

3 533 468.407 250 763

4 458 1.520.766 772 2392

1 656 27.407 1 66

2 788 141.201 68 247

Approval

3 667 456.772 250 763

4 741 1,682.767 772 2392  
Table 14: Groups and descriptives for total vendor count

 

 

 

 

 

 

 

 

   

Avg of

Vendor

Phase Grorip N Experience MIn Max

1 502 15.787 0 42

Entry 2 498 100.325 43 187

3 502 330.711 188 546

4 498 1,223.329 547 2117

1 612 16.333 0 42

2 780 97.759 43 187

Approval

3 683 323.316 188 546

4 777 1.381.834 547 2117      
Table 15: Groups and descriptives for vendor experience

Taken together, these two related measures paint a similar overall picture that is

different in only a few details (Table 16). The overall tests show that the four groups are

heterogeneous in their processes, and for the most part are consistent across subgroup

tests. There is some indication that the membership of groups 2 and 3 were different

between the two variables for the approval phase. Together, these results suggest that the

experience an organization has with a vendor does impact the process for those invoices.

The organization has similar processes for invoices from uncommon vendors, and

different processes for common vendors, a finding that is consistent with the law of

requisite variety.
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Total it of Invoices Experience with Vendor

Phase Test LR df p-value LR df p-value

Overall 2215.45 765 0. 1878.10 765 0.

1 v 2 212-21 255 0.976 259.65 255 0.407

1 v 3 1083.81 255 0_ 332.15 255 0_

Entry 1 v 4 1119.26 255 0. 1095.83 255 o_

2 v 3 746.51 255 0, 425.17 255 o_

2 v 4 795.5 255 0_ 682.57 255 o,

3 v 4 378.92 255 0. 361.03 255 0_

Overall 3313.87 1197 0_ 3182.70 1197 0.

1 v 2 383-96 399 0.697 437.78 399 0.088

1 v 3 486.38 399 0.002 504.55 399 0.

Approval 1 v 4 1481.98 399 0, 1475.37 399 o.

2 v 3 485-69 399 0.002 387.19 399 0.655

2 v 4 1642.83 399 0_ 1517.57 399 o.

3 v 4 1382.16 399 0, 1266.63 399 o.      
Table 16: Group comparisons for total number of invoices for a vendor and the

vendor experience, for each invoice.

This analysis does not allow one to discern what exactly the differences between

sets of process executions are. The use of order statistics, introduced in the discussion

section, would allow the extraction of a ‘primal’ pattern of each set of invoices, and these

differences between common vendor patterns and singular vendor patterns could be

enumerated. This would be an interesting extension of this dissertation.

Are Processes that Have Different Outcomes Similar?

The next step was to determine whether processes that had similar outcomes were

generated by similar processes. I calculated the time that a particular invoice spent in

process within the workflow—from the time it was scanned to when it was flagged ‘all-

approved’. Some of the invoices had missing data for either the start or end date, and the

length of time for the process was incalculable. Table 17 shows these and the

characteristics of the groups stratified by process time.
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Avg of

Days of

Phase Group N Process Min Max

Missing 133

1 576 1.286 0 2

Entry 2 487 4.061 3 5

3 419 6.899 6

4 385 15.366 9 233

Missing 326

1 779 1.287 0 2

Approval 2 654 4.013 3 5

3 591 6.90 6 8

4 502 15.09 9 233       
 

Table 17: Descriptives for the length (in days) of the process

There was a marked difference in how the processes related to outcome between

the entry and approval phases (Table 18). When the entry phase processes were stratified

according to the length of time the invoice spent in the workflow, they were

homogeneous overall. The approval phase processes were different from each other,

even with the same categorization scheme as the entry phase processes. This may be

because much of the work that takes place during the time elapsed between scanning and

approval takes place during the approval phase. The entry phase would almost never take

more than one day on its own.
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Phase Test LR df p-value

Overall 686.71 765 0.98

1 v 2 168.19 255 1.

1 v 3 188.66 255 0.999

Entry 1 v 4 371.72 255 0.

2 v 3 134.92 255 1.

2 v 4 290.21 255 0.064

3 v 4 181.91 255 1.

Overall 2149.54 1197 0.

1 v 2 653.23 399 0.

1v3 1100.11 399 0.

Approval 1 v 4 1386.22 399 0.

2 v 3 264.61 399 1.

2 v 4 476.79 399 0.004

3 v 4 320.54 399 0.999        
Table 18: Comparing processes with similar outcomes

The subgroup tests suggest a much more complicated story. Even though the

sequences were similar overall, groups 1 and 4 were different enough in the entry phase

to become significant. The approval phase subtests shows a very interesting result, where

periods 2 and 3 were similar along with 3 and 4, yet period 2 was different from period 4.

I believe that transitivity may not apply to the tests of homogeneity for these processes, or

that 2 is ‘enough’ like 3 and 3 is ‘enough’ like 4 to pass the test, yet 2 and 4 are different

‘enough’ in transition probabilities to be significantly different when stratified by the

elapsed time of the process.

This brings to mind the paradox of the ‘ship of Theseus’, and is related to similar

discussions in philosophy of change and identity. In the legend, as pieces of the ship

wore out, they were replaced with new timber and planks to the point where none of the

original pieces were present in the ship. The question arises, is this still the ship of

Theseus? The transitivity between processes stratified by their outcome brings this to the

fore, even though time is not the dimension that change is measured against. At one
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level, it is all invoicing, and almost all the invoices are processed within 15 days of

scanning them. The Markov method allows me to discern when processes that I

‘identify’ as the same exhibit differences in their sequence and choice of actions, and

conclude that there are differences at a lower level of abstraction and higher level of

detail. Since the processing time of invoices may be variable of interest for managers

seeking to control costs, the issue of transitivity and the question of ‘same or different’

represent another significant contribution of this work.

Does the Process Vary with the Amount of Automation Present?

The amount of automation present in a given sequence is measured as the number

of actions undertaken by the workflow system in a sequence divided by the length of that

sequence. This measure is related to the sequence, rather than the invoice. Thus, a given

invoice may have an automation score for the entry phase, and several different scores for

each of the approval sequences that are present. Table 19 and Table 20 show these

groups and their characteristics, including the number of automated actions, the length of

sequences, and finally the ratio of automated actions to sequence length.

 

 

 

 

 

 

 

 

 

Avg Avg

Phase Group N Auto Mln Max Len th Min Max

Actions 9

1 551 1.89 0 2 10.26 9 14

Entry 2 469 3.64 3 5 10.15 9 20

3 596 5.52 5 6 10.14 10 14

4 384 8.20 6 10 10.12 9 13

1 620 0.29 0 3 1 1.22 2 45

2 924 1.53 1 4 13.63 7 31

Approval

3 607 2.17 1 4 13.44 6 27

4 701 4.74 1 13 15.21 4 37           
 

Table 19: Groups and descriptives for automation (automated actions, sequence

length).
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Phase Group N Aa‘ggofl‘ Min Max

1 551 18.43% 0.% 20.00%

Entry 2 469 35.92% 25.00% 40.00%

3 596 54.48% 41.67% 60.00%

4 384 81.06% 63.64% 100.00%

1 620 1.96% 0.% 7.41%

2 924 10.97% 7.69% 14.29%

Approval

3 607 16.14% 14.81% 18.18%

4 701 31.95% 18.75% 78.57%        
Table 20: Groups and descriptives for automation (automation percent).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Phase Test LR df p-value

Overall 11625.23 765 0.

1 v 2 3557.55 255 0.

1 v 3 5901.05 255 0.

Entry 1 v 4 3797.48 255 0.

2 v 3 1845.35 255 0.

2 v 4 2806.09 255 O.

3 v 4 2975.18 255 0.

Overall 5532.13 1197 0.

1v 2 1892.11 399 O.

1 v 3 2660.79 399 0.

Approval 1 v 4 3189.06 399 0.

2 v 3 770.61 399 0.

2 v 4 1452.01 399 O.

3 v 4 998.02 399 0.       
Table 21: Group comparisons for the amount of automation present within a

process

The results of the likelihood ratio tests indicate that for each phase, each of the

four stratified groups is different in their processes (Table 21). I explore this further by

examining histograms, and then use an alternate stratification process. Figures 6 and 7

show the average amount and distribution of automation percentage is very different

between phases.
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Figure 6: Distribution of automation for entry phase.
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Figure 7: Distribution of automation for approval phase
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The approval phase is marked by a smaller overall amount of automated actions

based on mode and mean. I also bin the approval phase into chunks that would separate

out the modal set from the grouping of processes at .55 automation and higher obtaining

similar results. Instead of stratifying based on quartiles, I perform a visual stratification

technique based on their distribution (figures 6 and 7). There were still four groups

(Error! Reference source not found., Table 35), but 1 capture modal areas together

instead of groups of equal size. As seen in Table 22, the results are qualitatively identical

to those in Table 21. Taken together, this gives strong evidence that processes that are

more highly automated have patterns of action that are distinct from those with less

automation.

The implication is that automation affects the temporal and task structure that

digitally-enabled organizational routines exhibit. This is consistent with the literature on

technology impact, but the analysis performed here represents a new way of looking at

technology and its effect on business processes. This allows a much finer grained

measure of technology use, in the percent of each execution that is automated. The use of

order statistics as an adjunct to this analysis could allow the extension of this and allow

further discovery.
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Phase Test LR df p-value

Overall 9150.95 765 0.

1 v 2 935.93 255 0.

1 v 3 2417.66 255 0.

Entry 1 v 4 2705.73 255 0.

2 v 3 3493.46 255 0.

2 v 4 4508.71 255 0.

3 v 4 2380.91 255 0.

Overall 7064.57 1197 0.

1 v 2 2354.58 399 0.

1 v 3 2863.56 399 0.

Approval 1 v 4 4276.91 399 0.

2 v 3 655.23 399 0.

2 v 4 1324.42 399 0.

3 v 4 1242.19 399 0.       
Table 22: Group comparisons for the amount of automation present within a

process, visual stratification process

Discussion

When a routine is viewed as a Markov process, there are several connections to

how organizational routines are theorized. The probabilities of transition between actions

within a sequence can be thought of as representing the dispositions or habitual nature of

routines (Pentland et al., 2009d). This makes the Markov approach especially useful to

study what the performances are, how many different types there are, and how changes

unfold. This perspective also fits with the theoretical concepts of patterns and essential

variety that are found in the performance of organizational routines.

Tests of homogeneity allow the researcher to discover how alike or different two

sets of performances are from each other, and may lead to changes in how we identify

routines as the same or different, or know if we have one routine or many. The discovery

of similarities and differences between performance sets that were not transitive was

unexpected. This may challenge how we think of the concept of routine identity.
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The concept of stationarity is similar to our understanding of how changes in

organizational routines can be seen in situ. Routines that exhibit change, even

incremental change, can be seen as alterations in the choice and temporal structure of

actions. The order of the process can be seen as the amount of temporal interdependence

between actions, but limitations from the sparseness of the transition matrix make this

difficult mathematically to apply to the data collected for this dissertation.

While the analysis employed here only allows the investigation into similarity or

difference as a binary decision, the overall research model was well supported (Table 23).

There are similarities between processes with similar inputs (no group 1 was statistically

similar to any group 4). For the approval phase, there are differences between processes

with differential outcomes. This makes sense, since the majority of the ‘work’ of

approving an invoice does not take place during the entry phase.

Automation seems to drive heterogeneity in the process, in that when the

processes were stratified by the percent of actions that were automated, no group was

similar in transitions to any other. On the other hand, this may be an indication of the

endogeneity of technology within the process—actions are automated with different

frequency because those tasks are easier or more difficult for the system to do them

without human interaction. In the next chapter, I complement this analysis with the

results from the string matching analysis.
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Research Question Variable Results
 

Does the process

vary with differential

inputs?

Invoice Amount—the log of the

invoice amount (per invoice)

Entry—Group 1 is different from

 groups 2, 3, 4

1

 

 

 

 

 

 

 

 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

2 3 4

,

2 o e

2 o o

A o o

A rov al—

1 2 3 4

1

2 e

I o e

4 0

Vendor Count—how many times Entry— Groups 1 and 2 are different _

in total did the vendor have from 3 and 4

invoices in the entire data set 7— 1 2 3 4

(per invoice) 1 o

2 o

A

Approv al—

1 2 3 4

1 o

2 o o

i o

1

Vendor Experience—how many Entry—

times a particular vendor had 1 2 3 4

invoices prior to the current 1 o

invoice (per invoice) ; o

z

Approv al—

1 2 3 4

1 o

2 o o

2 o

z

 

 

 

 

 

 

 

 

 

 

 

       
  Does the process

vary with the amount

of automation

present?  Number of actions undertaken by

the system divided by the total

number of actions within a

sequence (per sequence)

Entry—All strata are different

  Approval— All strata are different

 

Table 23: Summary of results—bullets indicate similarity, or an insignificant

statistical test
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Are processes that

have different

outcomes similar?

 

Length of time between invoice

scanning and the completion of

the workflow (per invoice)

 

 

 

 

 

 

 

 

 

 

 

 

Entry—

1 2 3 4

e e

I e e o

C o o o

l o o

Approv al—

1 2 3 4

1 o

1 o e

4 o      
 

Table 23 Continued
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Chapter 6—String Distance Analysis and Findings

Introduction

In this chapter, I describe the analysis utilizing string distance and

multidimensional scaling techniques to explore how inputs drive sequential variety and

its impact on outcomes. I also examine the impact of automation on the process. This

second method views each process execution as an ordered set of symbols, and calculates

distances between them based on the number of insertions, deletions and substitutions of

symbols that it takes to convert one sequence into another. I begin this chapter with a

description of how I prepared the data for analysis. Then, I discuss multidimensional

scaling as a way to extract the relationships between sequences, and then analyze these

relationships by using a partial least squares technique.

Overall, 1 find support for the research model, but there are also differences

between the entry and approval phases of the invoicing business process in the nature and

form of both buffering and automation. A key finding is the differing role of automation

between the entry and approval phases in that automation serves as a substitute for

action-based buffering in the entry phase, and a complement in the approval phase.

Using scaled string distance holds promise for empirically studying organizational

routines. With this data, the method correctly discriminates between types of sequences

from entry and approval, and extracts variables that describe facets of the process.

Despite the confirmatory nature of the research design, the application of MDS to

string distance in this dissertation represents an exploration. Given idiosyncrasies of the

data and the structure of the model, PLS was not the best choice for analysis. This data

will be reanalyzed using GLM, logit or probit to deal with problems of non-normality,
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identification and endogeneity. Initial work with these methods shows promise and may

lead to more robust findings than those presented here.

Model Variables

The invoice parameters are inputs to the invoice handling process, and the process

generates outputs and outcomes. 1 am using the invoice amount (LogAngmt) and the

experience that the organization has with the invoice vendor (TotalVendorCount,

VendorExperience) as the input variables. Because of the extremely skewed distribution

of invoice amount, I use the logo instead of the raw amount. As with the Markov

analyses, automation percent (AutomationPCT) is a ratio of the number of automated

actions within a sequence divided by the length of the sequence. Outcomes are defined

as the length of time spent processing from data entry to final approval (SC_to_AA). The

main difference in this analysis from the Markov analysis is in the way I represent the

sequence in the analysis, and the techniques I am using to model my theory.

Preparing the Data

As with the Markov analyses, I process the event log into a set of sequences

related to each invoice. This results in a list of entry sequences (one for every invoice)

and a list of approval sequences. 1 then remove the duplicate sequences from the set

leaving a list of sequence types for both entry and approval. This is done because the

multidimensional scaling algorithms I employ do not support having items with zero

distance in the matrix.

Then, I create an N by N matrix, N equaling the number of sequence types in the

set. Each cell in the matrix represents the number of insertions, deletions and

substitutions that at takes to convert one sequence into the other, or the string distance
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between each sequence. This measure, known also as a Levenshtein distance (Sankoff &

Kruskal, 1983), has been utilized in studies found in various literatures (Abbott, 1983,

1990b, 1995; Sabherwal & Robey, 1993). I chose this distance measure because it has

been used in the realm of information systems development (Sabherwal & Robey, 1993),

was suggested for use by social science researchers (Abbott, 1983, 1990a, 1995), and

specifically has been used to describe the concept of sequential variety in organizational

routines (Pentland, 2003a, 2003b). Another commonly used distance measure is cosine

angle distance, typically used for interpretation of search queries and AI language

processing, but this doesn’t have the rich theoretical connections of the Levenshtein

distance.

This matrix is considered a dissimilarity matrix, as a zero represents identity, and

higher numbers indicate sequences that are more dissimilar. These relationships between

sequences are ordinal, rather than metric, suggesting non—metric multidimensional scaling

should be utilized. (Kruskal & Wish, 1978).

Initial Exploration

Iperforrned several analyses with various scaling algorithms and techniques,

starting with the same initial dissimilarity matrix. I knew from the system and the data

that there were two phases of the invoice approval process. I decided to put both sets of

sequences into the same matrix and determine where the scaling would locate them. This

is shown in Figure 8.
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Figure 8: Entry (square) and approval (triangle) scaled in two dimensions.

For this application, two dimensions of scaled string distance clearly group all of

the entry sequences (square) together, and approval sequences (triangle) together in

another location. Even if it were not known that there were two groups of sequences, this

analysis would have indicated this heterogeneity. Different subroutines within an overall

routine are discerned, an important demonstration of this technique when applied to

performances of organizational routines. Also, note that the entry sequence cluster is
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much more compact than the approval sequence cluster. This is an indication that the

entry sequences are more homogenous than the approval sequences, and is consistent

with sequential variety measures for each group (Pentland. et al., 2009d).

Extracting Metric Relationships between Sequences

To perform multidimensional scaling, some choices are required by the

researcher, based on the purpose of the analysis and idiosyncrasies of the data. First, there

are several algorithms available to convert the dissimilarity matrix into a distance matrix.

Second, the number of dimensions that the underlying data will be projected onto must be

determined. Two criteria are suggested to help the researcher make these decisions, one

based on a fit measure, the other on the pragmatic use of the dimensional data.

~ 2

zi¢j[6(d,-j ’dijl

Xi¢jdijz

 

S= 

Equation 1: Stress

When the non-metric multidimensional scaling (NMDS) algorithm converges, it

gives a measure related to the fit of the solution called ‘stress’ (equation 1). A researcher

should seek to minimize the stress while preserving his or her ability to understand or use

the data in analysis. Stress, then is a measure of ‘badness of fit’(Kruskal & Carrol, 1969;

Kruskal & Wish, 1978). Two sets of visualization plots help make this decision, along

with the calculated value of stress. A Sheppard plot is used to graph ordination distances

against original dissimilarities, and also gives a goodness of fit measure (Oksanen,

2009b)
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Choosing a Distance Function

I decided to examine some other fields and how they utilize multidimensional

scaling. Vegetation ecology researchers use non-metric multidimensional scaling

techniques to understand the relationships between the ecological content of a given area

and variables such as altitude, orientation, rainfall, and soil composition. Researchers in

this field suggest that Euclidian and Jaccard distance functions tend to do the best job of

extracting meaningful dimensions from data similar to mine (Oksanen, 2009a). The

statistical package I used in the R program was developed specifically for vegetation

ecologists, but the MDS functions are generic and have been used by researchers in other

fields as well (Oksanen, 2009a).

 

N 2
djk : 'Zl(xij -xlk)

1:

Equation 2: Euclidian Distance Calculation

I evaluate a non-transformational conversion (raw), one based on Euclidian

distance (Equation 2) and one based on Jaccard distances (Appendix 3, Equation 5). The

raw distance matrix is simply the matrix of string distances between sequences. Figure 9

and Figure 10 show a scree plot of the stress for each of the distance functions, for

extracting dimensions 1 through 5. The shape of the curve is diagnostic, and should be

monotonically downward sloping. Figure 10 shows that the approval phase raw distance

data caused some difficulty for the MDS algorithm when moving from 2 to 3 dimensions.

In both the entry and approval phases, the Jaccard and Euclidian distance fimctions

performed better than the raw distance, and there was little difference between the

absolute stress levels for these two distance calculations.
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Error! Reference source not found. in Appendix 3 show the Sheppard plot for

the MDS projections of the Euclidian distance matrix and 1, 2, 3, 4, and 5 dimensions. 1

also evaluated the Sheppard plots of the Jaccard and raw matrix MDS solutions, but these

are not shown. Given the higher stress values for the raw matrix, and the lack of

significant difference between Jaccard and Euclidian for the scree plot and Sheppard

diagrams, I chose to use the Euclidian distance for the remainder of the analysis.
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Figure 9: Entry scree plot—Top line is raw, next line down is Jaccard, bottom line

is Euclidian. Stress is the y-axis, number of dimensions on the x-axis
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Figure 10: Approval scree plot—Top line is raw, next line down is Euclidian,

bottom line is Jaccard. Stress is the y-axis, number of dimensions on the x-axis

Determining the Appropriate Number of Dimensions

Examining a scree plot of the stress over multiple dimensions is also helpful in

deciding how many should be utilized. As seen in Figure 9, it appears that a two or three

dimension solution would be acceptable for the entry phase and the marginal benefit of

moving to four or more dimensions may be low. The approval phase scree plot (Figure

10) indicates that three or four dimensions may be needed to ensure a better fit of the data

with the projection.

In many cases, the guide for choosing dimensionality should be the pragmatically

driven by the interpretability of the solution (Kruskal & Wish, 1978). This involves

examining several projections and visualizing their locations in space, running multiple

regressions and evaluating how well the dimensions explain the data. The three-
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dimensional projections can be viewed two dimensions at a time, or visualized

interactively in a 3-d plot. Visualization beyond three dimensions is difficult.

Results

In the next section, I discuss the results of the analyses performed in this chapter.

I first qualitatively examine a list of sequences and the dimensions obtained from the

MDS algorithm. Then, I use multiple-regression to help interpret these dimensions in

relation to the other variables in my model. These regressions also can be used to

visualize how the MDS dimensions relate to the input, outcome, and automation

variables. Next, I employ these dimensions as formative measures of the process it in a

partial-least squares structure using smartPLS. Finally, I discuss the relationships

between inputs, process, outcome and automation based on this path analysis.

Interpreting the MDS Sequence Dimensions

To complement the Markov analysis, I attempt to discover which input variables

drive differences in the process. Kruskal and Wish (1978) suggest several techniques to

help the researcher understand what the variables from a specific MDS projection mean.

First, they suggest considering the dimensions and relate them to the original data. In my

case, this means qualitatively examining a list of sequences with each sequence’s scores

on each of the extracted dimensions. A variety of visualizations, including plotting the

points representing the sequences and coloring them in relation to other variables can also

be helpful. Finally, they suggest multiple-regression of projected MDS dimensions on

each variable of interest to evaluate the significance and explained variance of a given

solution to evaluate how they relate. Kruskal and Wish (1978) imply candidate

covariates should have as high an R2 as possible and indicate a .01 alpha level for testing
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regression significance. They give a rule of thumb at .7 for acceptable explained variance

(R2), but they note that this is not always possible in practice.

Qualitative Analysis of MDS Dimensions

1 place the sequences in a list with the related dimensions that are extracted for

each sequence. 1 evaluate sequence length, and I discover that there appear to be no

relationship for the entry phase, but v2 on the approval phase indicates a noisy

relationship with sequence length. 1 then sort the sequences by each dimension in order

to determine if I could discern any additional patterns. This was difficult in some cases,

because the underlying relationships may be at an angle to these listed dimensions. There

are an infinite number of unique projections that show the same structure from the MDS

algorithm, all rotations along some axis from each other. Table 24 indicates some of the

regularities that I was able to observe in these sequences, and what those action

sequences actually are.
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V1 High values seem to start with 5, 8, 7, 6 more often than lower values.

This is a sequence of activities “Enter document type”, “Enter invoicno",

“Enter invoicedate", “Enter duedate”.

Lower values did not seem to have a common pattern.

V2 Higher values seemed to start with 8,7,6,3,4 often with the action

Entry sequence: “Enter invoicno”, “Enter invoicedate”, “Enter duedate", “Enter

Phase

amount”, “Enter currency".

Lower values seemed to start with 5, 4, 20 and 5, 3, 4 often giving the

action sequence: “Enter document type", “Enter currency", “Enter vendor

account”, “Enter value dim. 7".

V3 I did not identify any regularities.

V1 Loosely affiliated with sequence length.

ldid not identify any differences between high and low values.

V2 Fairly good relationship with sequence length.

Approval Low values (< ~35) tended to start with 2, 11, 10, or an action sequence

Phase of “Enter account", “Enter Tax-code", “Enter period”.

Higher values (>-35 and < 40) were more likely to start 10, 4, 23 for an

action sequence of “Enter period", “Enter amount", “Enter account".

V3 I did not identify any regularities here.   
Table 24: Qualitative results from examining raw sequences and extracted

variables

Implications of Sample Size

In Table 25, I show the number of sequences, the number of sequence types, and

the number of invoices that are the basis for the number of sequences. 1 sampled 2000

invoices, but this leads to 2000 entry and 2853 approval sequences. Of these sequences,

there were 206 entry phase types and 929 approval phase types. There were some
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missing values in the outcome variable (SC_to_AA), so the number of valid N is smaller

than this number. Variables related to the invoice such as those related to inputs

(TotalVendorCount, VendorExperience, LogAngmount) and those related to outcomes

(SC_to_AA) are based on the invoice. The MDS variables locating the sequences by

their scaled string distance are based on the types of sequences. Automation is measured

separately for each sequence, so there are as many different values for this as there are

actual valid sequences.

 

 

 

Phase Invoice Number of Sequence Valid Automation

Data Sequences Types N Data

Entry 2000 2000 206 1869 1869

Approval 2000 2853 929 2528 2528

       
 

Table 25: Sample size and basis for samples and data

The total information (variance) that was available in the sample was less than the

total amount that was possible (e.g., 206 sequence types in 2000 sampled sequences).

Given the lexicon and length of sequences, the reduction in information content is quite

large. The total number of possible sequences in this system is truly infinite, because

there is no upper limit on the length of the sequence, and the lexicon is editable. When r-

square is calculated, it is the ratio of explained variance to the total variance (explained +

unexplained). I believe that the unexplained variance is inflated for one main reason:

redundancy of sequence types in my sample

I could at most find 2000 different entry sequences and 2853 approval sequences.

I actually found 206 different entry and 908 approval sequences. This means that the

MDS algorithm only had a small set of different string distances as compared to the

variance that could be observed. I believe this smaller set is the actual amount of

unexplained variance relating to the location of the sequences in space. I can only

77



explain at most the variance based on 206 sequences in the approval phase, even though

my N is based on a sample of 2000. Simply adjusting N to 206 or 929 will not solve the

problem, as I really do have samples of 2000 and 2853 for entry and approval

respectively. As I note in the discussion of this chapter, there is a calculable correction

for this, but this was not performed.

 

 

 

 

 

 

       
 

 

 

 

Std.

N Min Max Mean Deviation

Angmount 1990 20.66 1529886 20073.1 74779.704

LogAngmount 1990 1.31 6.18 3.6143 .73301

TotalVendorCount 1991 1 2392 516.57 658.595

VendorExperience 2000 0 21 17 416.56 552.989

SC_to_AA 1867 0 233 6.17 8.234

Table 26: Descriptive information for invoice variables

Std.

N Min Max Mean Deviation

Entry 2000 .00 1 .00 .4524 .23241

Approval 2852 0 0.78 .1493 .14698       
 

Table 27 Descriptive information for sequence variables

Using Multiple Regression to Understand MDS Dimensions

Tables 26 and 27 above show the descriptive information for the variables relating

inputs, outcomes, and automation. I evaluate each of the distance metrics for two and

three dimensional projections by performing a regression with the variable of interest as

dependent variable, and the MDS dimensions as independent variable. This was done for

both the entry phase and the approval phase. The coefficients can then be used to map a

line or ‘gradient’ upon the scatterplot of scaled sequences to show the direction that

variable moves within sequence space as a way to visualize these relationships. This is

seen in the Appendix 3, figures 18 through 21. Table 28, Table 29 and Table 30 show

regressions of each variable of interest upon the two and three-dimensional MDS
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Euclidian solution. Each table focuses on a separate set of variables relating to inputs,

automation, and outcome.

 

 

 

 

 

 

 

 
 

 

      

r- Adj. r-

Phase Variable Z.v1 Z.v2 Z.v3 Square Square

Vendor -0-096' 0.291 ‘ 0.089 0.088

E t Experience -0.022* 0299* -0.265* 0.159 0.157

n

ry Log 0086' -0.174' 0.034 0.033

, Amount 0087' -0.180* -0.054‘ 0.038 0.037

Envrronment

Vendor -0.090* -0.275' 0.090 0.089

Experience -0.093" -0.260' -0.079' 0.096 0.095

Approval

Log 0 0.006 0.071 0.005

Amount 0.002 0.094‘ -0.121* 0.019 0.018 
 

Table 28: Two and three dimensional standardized regressions on input variables,

entry and approval phase. * indicates significance at the .01 level

For entry phase, the two dimensional sequence space explains roughly 9% of the

variance in vendor experience, and this rises to 15.7% when the third extracted dimension

is included, as seen in Table 28. Similar results were initially seen for the approval

phase, adding a third dimension did not add much explanatory power over the two

dimensional solution. The log of the vendor amount was explained weakly by the

extracted variables for the entry phase, but the approval phase indicated a poor fit and

low explanation.

 

 

 

 

 

  
 

     

r- Adj. r-

Phase Variable Z.v1 Z.v2 Z.v3 Square Square

Entry SC_to_AA -0.265“ 0.155“ 0.068 0.067

-0.258* 0.154‘ -0.014 0.067 0.066

Outcome

Approval SC_to_AA -0.223* 0.118“ 0.054 0.053

-0.220" 0.109“ 0.054“ 0.056 0.055  
 

Table 29: Two and three dimensional standardized regressions on outcome

variables, entry and approval phase. * indicates significance at the .01 level

Table 29 interprets how well the extracted dimensions explain the outcome of the

process, the amount of time it takes from scanning to approval (SC_to_AA). There is a
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good pattern of significance overall, and the r-square indicates a weak relationship

between the process variables and outcomes. Interestingly, adding a third dimension to

the process added little explanatory power as evidenced by no significant increase in

adjusted r-square.

 

 

 

 

 

        

r- Adj. r-

Variable Phase Z.v1 Z.v2 Z.v3 Square Square

E t AutoPCT -0.270* 0.333“ 0.169 0.168

n r

. y -0.103" 0.365“ -O.645‘ 0.570 0.569

Automation

AutoPCT -0.197" -0.002 0.039 0.038

Approval

-0.194* -0.023" 0.109“ 0.051 0.050 
 

Table 30: Two and three dimensional standardized regressions on automation

variables, entry and approval phase. * indicates significance at the .01 level

Automation seems to be the variable (of those tested) that is best explained by the

location of sequences in multidimensional scaled space. The three-dimensional solutions

explain more variance in the amount of automation than does the two-dimensional

projection for the entry phase (Table 30). While an R2 of .569 does not meet Kruskal’s

rule of thumb of .7, this is the best result obtained, suggesting that the three-dimensional

projection of automation onto the scaled space best explains the variance in the process.

The same result was not seen for the approval phase where the amount of explained

variance was low, and did not improve much by including an additional dimension.

I summarize the differences in adjusted R2 due to the addition of the third

extracted dimension in Table 31 for all of the variables evaluated in Table 28, Table 29

and Table 30. Because there was at least some improvement in most cases, I decided to

use the three-dimensional scaling solution for visualization and path analysis.
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Variable Entry Approval

Vendor
. 0.069 0.006

Environment Experience

Log Amount 0.004 0.013

Outcome SC_to_AA -0.001 0.002

Technology Use AutoPCT 0.401 0.012     
 

Table 31: Improvement in explained variance (adjusted r-square) in 3-dimensional

solution over the 2-dimensional solution

Multiple Regression and Visualization

I examined visualizations of the projected dimensions, along with the regressions

of these dimensions on the other variables of interest. It is difficult to show a vector or

surface for how the variables relate to the ‘cloud’ of points representing the sequences, at

least on paper. Sometimes it is useful to look at pairs of dimensions at a time, but the

best way is through an interactive 3-dimensional graphing program. In Appendix 3,

Figures 18 through 23 show the 3-dimensional solutions, with a pair dimensions

represented in each graph. Each of these pictures shows a red circle that represents each

sequence in scaled string-distance space, as located by the MDS algorithm. Each line

represents the relation between the two MDS extracted dimensions for the sequence, and

input (TotalVendorCount, VendorExperience), outcome (SC_to_AA), and automation

(AutoPCT) variables.

For example, the entry phase graphs (Figure 18, Figure 19, Figure 20) show that

the MDS algorithm located each of the sequences according to their string distance in a

coordinate plain. Automation seems to have a nearly vertical slope in all three graphs,

indicating that it has a similar relationship in all three dimensional pairs. Total Vendor

Count seems to have a similar relation with V1, V3 as with V2, V3, but a different one
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with V1, V2. We can also see that these lines do not explain much of the variation in

these spaces. It would be difficult to imagine a good fit for any drawn line for the entry

phase sequences, but the approval phase seems to be linear at least across some of the

pairs of dimensions.

What do these Dimensions Mean?

The qualitative examination of sequences and the three dimensional solution

indicated some regularities in the way that the algorithm located the sequences, at least at

the extreme points on each dimension. Some of the variables, namely the third

dimension for the entry and approval might have a relationship that is difficult to discern,

or there might be no relationship at all. Other variables, specifically in the approval

phase, seemed to be associated with the length of the sequence. In some cases, I was able

to observe some patterns that were more common at one end of the dimension than

others, but 1 was still unable to understand what the dimensions mean. The scaled string

distance appeared to be identifying differences in the sequences, but the ordering of the

sequences themselves was difficult to interpret.

Exploring the relationships between the sequence dimensions and other variables

by using multiple regression and visualization suggests several things. First, the amount

of explanatory power of these dimensions may be lower than is advised by literature.

Some of this may be due to information requirements, an omitted variable, or as indicated

in many of the scatter plots, the lack of any linear relationship in the underlying data.

Second, automation appears to have the strongest relationship with the extracted

dimensions, especially for the Entry phase.
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Third, there may be divergence in how these relationships are expressed between

the entry and approval phases. There were differences in all parameters that the

regressions found with regard to the relationships with variables of interest. The amount

of explained variance, the pattern of significance, and most importantly the coefficients

of the variables indicate that the relationships between inputs, outcomes, and automation

may be different for the entry phase as compared to the approval phase. Next I test the

theory presented in chapter three by examining these relationships using path analysis.

Evaluating the Research Questions

In this section, I posit answers to my research questions, exploring the concepts of

buffering and the role of automation. I use the three-dimensional MDS solution, but

locate the extracted variables in a structural model that is run using partial least squares

analysis. This method allows me to include all of the variables of interest, and evaluate

each research question as a whole. This technique also allows the creation of constructs

to represent the concepts of environmental input, dimensions of the process, outcomes,

and automation. I first examine the input-process-outcome model, separately for the

entry and approval phases. Then I add automation, and discuss how the use of

technology changes the impact and nature of buffering.

This analysis is complicated by the fact that I have two processes or subroutines

that take place within the overall invoicing routine at the research site. For each model, I

have two sets of data for consideration. This is interesting, because it allows the model to

express different relationships between inputs, process, outcomes, and automation for the

entry phase and the approval phase. As noted in Figure 8, a MDS projection correctly
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clustered these subroutines as being different from each other, and the results from the

PLS analysis point to differences between their relationships in the model as well.

Construct Formation

In this analysis, I define the input construct as a linear combination of the log of

the average invoice amount, the total vendor count, and vendor experience. The process

construct is a combination of the three extracted variables relating each sequence in

scaled string distance space. The outcome is measured by a single variable, the length of

time from scanning to complete approval (SC_to_AA). l have included a covariance and

correlation matrix for all of these variables, with the measures for each process in

Appendix 3, Table 38 through Table 41.

Because of the way that these constructs are defined for this analysis, they are

considered formative. This means that each of the variables may tap into a different facet

of the construct, and that each construct may in fact be multidimensional (Petter, Straub,

& Rai, 2007). Reflective constructs are different in that each item for a construct is

expected to move with the other items for that construct: together they are one-

dimensional.

This means that the items that form my constructs need not correlate, and also that

they are not measured with error. For example, there was no instrument that measured

the amount of the invoice, so there is no way to introduce measurement error. Instead of

measurement error, formative constructs have an error term associated with the construct

itself that represents misfit of the items with the construct, miss-specified items and items

that may be missing from the construct (Diamantopoulos & Winklhofer, 2001; Jarvis,

Mackenzie, & Podsakoff, 2003; Peters & Saidin, 2000). The arrows in Figure 11 through
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Figure 14 point from the items towards the construct as is customary (Diamantopoulos &

Winklhofer, 2001; Jarvis et al., 2003; Peters & Saidin, 2000), and smartPLS deals with

them appropriately as formative.

Inputs, Process, Outcome: Buffering

Figure 11 shows the coefficients and R2 for the input-process—outcome buffering

model. The explained variance in the outcome variable is low, and the input and process

constructs do not load well from their components. The three internal paths are

significant, but overall this is not a great model. I also evaluated splitting the input

construct into Invoice Amount and Vendor Experience. This produced a better fit

(significant loadings) for the input construct, but the internal paths were insignificant.

For comparison to the approval phase, I decided to leave this model as it is presented

here.
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Figure 11: Coefficient and explained variance for input-process-outcome buffering

model, entry phase

The approval phase buffering model shows a number of improvements over the

entry phase model. First, the amount of explained variance in outcomes is approaching

practical significance, albeit at a small level. Interestingly, there is not much variance in
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the extracted process variables being explained here. The paths between input and

outcome, input and process, process and outcome are all significant.

The relative sizes of coefficients suggest a theoretically relevant story. The input-

process and process-outcome paths are almost double that of the direct path between

input and outcome. Comparing this model to the entry phase model, one can conclude

that the entry phase has little connection to outcomes to begin with, but the process is not

a core buffering mechanism. In the approval phase, the process appears to be a partial

mediator of the relationship between input and outcome, implying that the process

buffers the variance in the inputs from impacting the outcomes of the routine.
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Figure 12: Coefficient and explained variance for input-process-outcome buffering

model, approval phase

The Role of Automation and Information Technology Use

Now that the model evaluating how processes can buffer environmental variance

has been evaluated, I explore how automation fits into the picture. Figure 13 shows the

results of adding the percentage of automation within a process to the entry phase model.

Interestingly, the amount of explained variance in outcomes dropped, but this model

explains much more of the process. The pattern of construct loadings was superior as
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compared to the entry model without automation. When examining the coefficients of

the paths, we can see how automation may be a buffer within this routine, rather than the

process alone.

Inputs drive the amount of automation in a process, and automation strongly

drives the process, while the relationships of input—process and input-outcomes are very

weak. Given the size of process-outcome and automation-outcome relationships, we can

see that the process acts as a buffer most strongly through automation, not via the inputs.

This model does support buffering, but it highlights a very complex information system

impact through the use of automation features. The entry phase does loosely couple

inputs and outcomes, but it is through automation’s impact on the process, rather than

simple contingent actions acting as the mechanism. This indicates that buffering

mechanisms can use a combination of actions and technology, rather than solely on the

expression of actions.
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Figure 13: Coefficient and explained variance for input-process-outcome with

automation model, entry phase

The approval phase held additional surprises and implications from the addition

of automation. The outcome variance explained (R2) improved, indicating that

automation does add more information to the model. On the other hand, this model

explains less of the process variance. All paths were significant; construct loadings as

well as internal paths, indicating that this is may be a sufficiently acceptable model for

this data structure. This model is consistent with the approval buffering model without

automation, but in this phase of the invoicing routine, we find that inputs do affect

processes directly and through automation. Looking at the relative sizes of the path

coefficients, we see that the process emerges as a stronger buffer, in that the input-

outcome connection is less than half the size of the input-process and process-outcome

relationships.
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Interestingly, the size of the automation-outcome coefficient is smaller than the

input-outcome coefficient, but the connection between input and automation remains

high. This implies that the process acts as a buffer, but automation also has some

buffering content in how it affects the process. If one were simply studying the impact of

automation on outcomes, the results would completely miss its impact through the

process as a mediator. This highlights how innovative the methods are in this study, and

represents a new class of IT impacts that have not yet been investigated or theorized.
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Figure 14: Coefficient and explained variance for input-process-outcome with

automation model, approval phase

Comparing the effects of automation on the entry model to that obtained through

the approval model provide additional insights. It appears that the role of automation is

markedly different between the two phases of the invoice process. In the entry phase, the

process does mediate the variance between the inputs and outcomes, but only through the
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mechanisms of automation. In the approval phase, automation seems to be an adjunct or

secondary buffer, as the process does buffer independently of automation.

This indicates some of the complexities of understanding the impacts of

information technology use. In general, the entry phase has a higher mean automation,

but the distribution in the approval phase is much wider. Even though I have only one

measure of automation that is calculated the same between the subroutines, there is

heterogeneity in what automation means for each process. The task context is different,

but also the nature of use may be different between the two phases. For example, many

of the actions that are automated in the entry phase are data entry and forwarding. In the

approval phase, much of the automated tasks are notifications and forwarding for further

approval.

Discussion

The number of choices given to the researcher with this set of methods results in a

complex picture to interpret. While the dimensions extracted from the process were

difficult to interpret with the available variables through regression and visualization, the

path analysis was consistent with the Markov results. The low amount of explained

variance may be due to the information content in the sequences compared to the total

information available based on the lexicon and sequence length.

In 2000 sequences I could have at most 2000 different sequences, but there were

only 241 distinctly different ones. This means that the sample of sequences only has a

fraction of the information contained in the whole set of possibilities. This smaller set of

information is the only basis that the MDS algorithm can use to find differences and

variance between the sequences. Normal calculations of r-square use the explained
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variance divided by the total variance. I believe that the total variance I have in my case

is smaller than normally found, leading to a smaller SST and r-square being unnaturally

low. This is may be correctable statistically but is beyond the scope of my study.

Evaluating model quality is difficult in models including formative constructs,

because measures of internal consistency are only useful concepts when applied to

reflective constructs (Diamantopoulos & Winklhofer, 2001; Jarvis et al., 2003; Peters &

Saidin, 2000). Typically, one must use either a correlation to connecting reflective scales

or consider the relative sizes of coefficients and explained variance to ascertain the value

and quality of a given model. Given the low explained variance, and difficulty with

significance in some paths, it would be helpful for validation through other regression

techniques in addition to PLS. When my model was processed using seemingly unrelated

regression (SUR), similar results with significance and explained variance were obtained.

When my model was evaluated using three-stage least squares (3SLS), the model failed

because of endogeneity and identification issues.

The fact that all of the constructs in my model are formative has implications on

the quality of the model. This means that I have an identification problem, because there

is some indeterminacy between the error terms and the scale of measurement (Jarvis et

al., 2003). Possible solutions include setting one of the indicator paths to l or adding a

reflective construct to the model. The best time to solve this identification problem is at

the research design stage, before analysis has begun (Diamantopoulos & Winklhofer,

2001; Petter et al., 2007). Since I do not have the option of adding a new reflective

construct, my options may be limited with the current analysis, but a respecification of

the model or the use of a different regression technique may prove useful.
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There are significant issues with non-linearity and non-normality in the data. The

ultimate DV is not continuous; rather it is a count of the number of days it takes to

process an invoice. The nature of this variable may indicate that probit or logit analysis

with different distributional assumptions may be appropriate. The MDS dimensions may

exacerbate this issue, given that there are only 206 different values being applied to 2000

entry sequences.

An additional reason the explained variance is low is the likely omission of other

variables that may explain these relationships better. For example, I was unable to

categorize the vendors or their products, due to them being written in Norwegian. There

may also be organizationally relevant variables that the workflow system does not

capture. Despite these challenges, I believe that these analyses lead to some important

findings, and implications that can be generalized.

The results have implications for the concept of buffering. Given the differences

between the entry and approval phases in how the process protects outcomes from

environmental variety, this indicates that we may need to think a little differently about

how contingent actions act as a buffering mechanism within business processes. Rather

than seeing the business process as a whole, I find that buffering occurs differently in

subprocesses of the invoicing routine. This suggests that the environment may impinge

upon different sections of a routine, and create points of buffering sections within a given

sequence. Routines may have internal heterogeneity in how variety in a routine is

harnessed to buffer environmental variety. We may have to look deeper within the set of

sequences a routine generates to find sections that are buffers within the routine itself,

rather than looking at a whole routine as a buffering mechanism.
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The results also indicate some changes in how we view the concept of

information system use. We already know that there is heterogeneity in how individuals

and organizations use information technology, and this challenges our ability to study the

impact of IT in a generalizable way. This study shows that there is heterogeneity also

found within an organization as to how different subprocesses supported by information

technology have differential impacts of the use of IT, adding a layer of complexity to

studies of IT impact that have not previously been examined. For example, one impact of

IT on the entry process is that of a buffering mechanism that substitutes for contingent

actions. The approval process is a complement to contingent actions as a buffer. In this

way, information technology may impart a different class of impact from what has been

previously theorized and empirically tested.

The implication is that we can achieve different results from the application of

technology in different subsections of a business process. If technology use has a

negative impact on the front half of a process, but a positive impact on the back half of a

process, a study that looked at the immediate consequences may find no relationship,

when in fact there were two effects that cancel each other out. This highlights how

complex the relationship between IT use, processes, and outcomes may actually be, and

also some of the difficulties that researchers and managers have with evaluating the

impact of IT investment, adoption, assimilation, and even use.
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Chapter 7—Discussion and Limitations

Introduction

In this chapter I integrate the results with theory, and discuss implications of the

study on literature and practice. I then describe some limitations of the approach I

undertook, and close with some directions for future research, including a new research

design. Overall, this research is designed to be explanatory. I begin with theory, a set of

a priori assumptions about the world and adopt a confirmatory approach. The methods 1

used to evaluate the research questions within my theoretic framework, indicate a more

exploratory approach. While these methods have been applied in other areas relating to

processes and sequences, their application to workflow data to test theory has been

absent. There is a tension between exploration and explanation in this work that will be

resolved with future work and further study.

Theoretical Implications

In this section I connect the results of my work with the larger conversations

taking place in the literatures of organization theory, routines, business process

management, and information technology impact. I also explore extensions and

improvements to this research in the various areas that help us understand buffering,

process management, and the impact of information technology.

Organizational Theory

Organizational theorists have been interested in how the environment affects

organizational systems as soon as they perceived its open nature (Scott & Davis, 2007).

While there have been several empirical studies of Thompson’s (1967) theory of

buffering (Cooper & Smith, 1992; Koberg, 1988; Sorenson, 2003) and recent theoretical
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developments (Lynn, 2005; Yan & Louis, 1999), there have not been any studies of

buffering at the business process level. More importantly, none has embraced the

perspective that examines the actual actions that take place as a buffering mechanism.

The results of this dissertation confirm the buffering of environmental variety: Outcomes

are weakly related to inputs. Interestingly, inputs and automation drive changes in the

process that are transmitted to the outcomes.

This dissertation serves as an exemplar of applying the theory of organizational

routines to improve our understanding of organizational actions and structure. Empirical

studies of organizational routines are rare mainly because of the difficulty and cost of

obtaining and analyzing data tracking actual events relating to hundreds of process

executions (Pentland et al., 2009d). The work presented here significantly adds to the

literature on organizational routines in at least three ways.

First, the Markov approach gives a measure of the probabilistic relationship

between temporally connected actions in the routine. This connects to the

conceptualization of organizational routines as habits or ‘dispositions’ (Schulz, 2008),

and represents one of the methods we suggest to empirically compare routines (Pentland

et al., 2009a). Second, measures of sequential variety indicate the amount of variation in

the choice and order of actions within a sequence. If we look at this attribute of an

organizational routine over time, we can explore aspects of endogenous change within a

routine (Pentland et al., 2009b, 2009c), but also the effects of managerial intervention on

a process.

Third, organizational learning can have an equivocal effect on the variety in a

process. On one hand, as systems learn which sequences do not work or are undesirable,
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these sequences are pruned from the set of possibilities, leading to a reduction in

sequential variety. Conversely, the act of learning new ways of performing an

organizational routine would involve trials of candidate sequences, leading to an increase

of sequential variety. Sequential variety may represent the natural ‘repertoire’ of the

different ways an organizational routine can be performed under various stimuli or

conditions in addition to improvisation or errors.

Business Process Management

This work rejects the black—box approach to understanding and managing

business processes. While a few scholars in the field are beginning to understand the

implications this change in perspective (Melao & Pidd, 2000, 2008), it is definitely not

widespread. By understanding the actions that take place in-situ, and studying how

people and technology interact, scholars of business process management can connect to

other related literatures such as organizational routines and management. '

The synthesis of flexibility and stability represents an extension of the BPR/BPM

literatures, and can be found in areas such as lean and custom manufacturing, services,

and high-reliability organizations. Despite the rise of these innovative strategies, typical

literature in the management of business processes often begins with a perspective of

conformance and matching process executions to documented standards (Singh et al.,

2009). This dissertation begins with a different perspective: embracing variety in

execution to understand its antecedents and consequences. In this way, I seek to be one

of the bridges between the organizational routines literature and that relating to business

process management.

96



Another common feature of business process management research is the use of

‘typical’ rather than ‘actual’ representations of the process (Singh et al., 2009). This

means a focus on the abstract features of the usual process, or what steps should be

performed within the process, usually obtained through interviews. Research that uses

‘actual’ representations uses observational data in some way to discern what actions are

expressed within the business process. A highly prolific group of the BPM scholars

proposes the use of workflow mining to automatically extract and visualize patterns of a

process based on the action logs that are recorded by the workflow software (Agrawal et

al., 1998; Agrawal & Srikant, 1995; van der Aalst, Desel, & Oberweis, 2000; van der

Aalst, ter Hofstede, & Dumas, 2005; van der Aalst & van Dongen, 2002; van der Aalst et

al., 2003; van der Aalst & Weijters, 2004; van der Aalst et al., 2004). Van der Aalst and

his colleagues suggest the use of workflow mining in the investigation of organizationally

relevant research questions in addition to conformance and pattern extraction (van der

Aalst et al., 2003; van der Aalst & Weijters, 2004) and this dissertation answers their call.

The results of this dissertation point to the management of variety through

contingently expressed action as a method of protecting the core. While there has been a

widespread understanding of the systemic properties of buffering, there have not been

any examples of an empirical test that can be applied directly to a business process. The

sequential variety analysis supports sequential variety as an expression of contingently

expressed actions. Queuing models and other management science techniques represent

one method analyzing and designing business processes for buffering. This dissertation

demonstrates a different view of incorporating specific actions as the central feature of
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business process management and technology as a core feature of digitally enabled

routines.

IT Impact

Studying the immediate antecedents and consequences of technology situated in a

single business process allows the isolation of specific use effects. This explores the

moderation effect of the use construct, and complements the firm-level, organizational,

and behavioral impact literatures. The impact of IT can move beyond a study of

investment (Brynjolfsson & Hitt, 1995) or adoption (Venkatesh, Morris, Davis, & Davis,

2003), into research questions that relate to exactly how IT drives value. This can occur

by studying the enablement and constraint of organizational actions as a primary impact

of information technology.

The results of this dissertation point to automation as a discriminator among

patterns of action. From the Markov results, heterogeneity of the process was found

among groups of sequences that varied with the amount of automation expressed in the

performance. The sequential variety analysis confirmed this result and revealed

automation as a strong player in the buffering of environmental variety, beyond its impact

on the outcomes of the process. This was a surprising result, and points to a new finding

from the substitution of IT use for labor—buffering. We have known for some time that

IT is a substitute for other forms of input such as labor and ordinary capital (Dewan &

Min, 1997), but less was known about how it can substitute.

What is interesting here is that automational technologies are typically seen as a

substitute for human labor, when decision-making needs can be anticipated and relevant

stimuli identified. From the cybernetic world-view, a system exhibits a variety of
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responses that is equal to the variety in the inputs. When tasks are automated, the

decision-making as to which response is appropriate is designed into the system, such

that the match between stimuli and response is predetermined, and that the set of stimuli

and responses can be developed before the set of rules are ingrained into the system. In

most cases the set of automated responses to stimuli is much smaller than would be

possible if decisions were guided intelligently at the moment of execution. What I am

proposing from the findings in this dissertation is that automational technologies, despite

the reduction of flexibility as compared to a manual system, can still act to buffer a

process from variety in inputs. This can occur through several ways.

First, the tasks that are automated can be general purpose, where a given response

can respond appropriately to many different kinds of stimuli. This was observed in the

mail sorting example, where machines to sort the mail using OCR did not discriminate

between Helvetica, Arial, or Times Roman fonts, but the OCR applied equally to each.

Second, given the ability of the system to correctly discriminate between types of stimuli,

automation may allow a more consistent application of rules and lead to a more easily

manageable organizational system. These two features of automational aspects of an

organizational information system show how automation can be used to buffer and

protect the technical core of an organization. Taken together with the earlier observation

of the ability within sections of an organizational routine to act as a buffer, the impact of

automational IT can also be seen to act as a substitute buffer to process-based buffering.

Future research could explore other aspects of information technology impact such as

how the features of a given system support or improve inforrnating up, down or sideways.

It may be possible to examine the actions taking place within the current dataset to
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discern a typology of different actions that could be theoretically interesting. In general

terms, I see actions that are in the following categories: information processing, decision-

making, and coordination. There may be other, more theoretically driven categorization

schemes.

Methodological Implications

The methods used in this dissertation canbe used to understand organizational

behavior phenomena in many other areas. I use them as an attempt to synthesize a

middle path between qualitative and quantitative research of organizations. While

workflow mining doesn’t provide the richness and depth of understanding of causality in

organizational processes, it does allow the development of statistical conclusions that

focus on what really happens rather than mathematical relationships between numerical

proxies for actions. One way to describe this approach might be the “variance of

processes” or “process-oriented variance analysis”.

In most cases, research is either process—based or variance-based (Markus &

Robey, 1988). There have been some proponents of studying the properties of processes

(Monge, 1990) and also those who suggest different ways to study processes themselves

(Langley, I999; Sabherwal & Robey, 1995; van de Ven, Angle, & Poole, 1989; van de

Ven & Poole, 1990). It appears that these are competing perspectives, studying similar

phenomena from different directions. I view them as complementary and not mutually

exclusive within the same research plan. By associating different patterns of action

(representations of the process) with the variance of inputs and outputs, I am integrating

the quantitative strategy outlined by Langley (1999, p. 697) with the evaluation of

properties of processes over time proposed by Monge (1990).
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Practical Implications

In this section, I discuss how the results of this dissertation can help the practice

of management, information systems design, and information systems use. I also explore

implications for the education of managers and IS professionals.

Managerial Impacts

Managers, especially those of boundary business processes, must understand the

complex interaction of environment, process, and outcomes. Their ability to manage

uncertainty is challenged by the need for stability and control over the process. As they

seek creative ways to simultaneously improve quality and efficiency, a focus on the

specific causes of expressed patterns of action represents a different way to look at

managing processes than is currently taught in business schools today.

Focused on the black-box approach to managing processes, programs such as TQM

and six-sigma measure and statistically measure the outcomes from a process, with an

emphasis on control. Process standards such as ISO 9000 treat processes as fixed, and

deviation from documentation is considered a sign of poor process execution. As

business schools (and resulting managers) follow these programs, they forgo the

opportunity to dynamically monitor and adjust the processes themselves both in advance

and at the time of execution. The worldview described in this dissertation represents an

opportunity for managers to shift their thinking to new paradigms of managing processes.

This has an impact beyond traditional management perspectives and can be applied to

supply chain, remanufacturing, and service provision among other areas of managerial

practice.
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Without an understanding of the drivers and consequences of specific patterns being

expressed within processes, managers must continue to use the tools of statistical process

control such as TQM and six-sigma to achieve some measure of regulation. The

discovery of these drivers and outcomes within a business process represent a new mode

of management that was previously unavailable to be implemented. In addition, in areas

where statistical process control regimes are less useful such as service provision,

managing the sequence and choice of actions within the process holds special promise to

give new tools to the practice of management.

Also, this focus on the expression of specific actions increases the ability of managers

to discover and learn from their processes. In a world of information overload,

discerning patterns and their antecedents and consequence allows the manager to better

make sense of the organizational system. Organizational and individual learning can be

bolstered by the greater understanding and retention of process-based knowledge that is

typically tacit or hidden in the spatially and temporally diffirse business processes that are

typically executed in modern organizations.

Finally, managers can now more fully realize the benefits of continuous auditing and

assurance (Vasarhelyi & Halper, 1989). This requires at a minimum a good set of IT

controls, some form of real-time or near real-time monitoring capability, and the ability

of timely release of reports detailing the impact and performance of an assurance and

control regime (ISACA Standards Board, 2002). Much of this information becomes

available to managers through the use of workflow mining, related technologies as well

as managerial intervention (Alles, Brennan, Kogan, & Vasarhelyi, 2006).
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Impacts on Information System Design

Designers of information systems need to better understand the consequences of their

decisions. Given the tradeoffs between flexibility and control in the designed interactions

of users, and the natural tendency of users to innovate and utilize tools for unforeseen

proposes, the design of information systems is difficult. The perspective in this

dissertation, namely that of studying the actual paths of user behavior within the system,

allows IS designers to develop more flexible use-cases, and achieve synergy between

control and elasticity of the IS-enabled process.

There has been some research related to the design of web sites involving the

collection and interpretation of ‘clickstream’ data mined from logs of web servers

(Kosala & Blockeel, 2000). Typically, researchers have focused on discovering patterns

of user interaction to categorize users (Buchner, Baumgarten, Anand, Mulvenna, &

Hughes, 1999; Cooley, 2000; Cooley, Mobasher, & Srivastava, 1999), and improve the

user experience (El-Ramly, Stroulia, & Sorenson, 2002). In this literature, there has been

less interest in the management of the web usage process, but rather in the practical

aspects of design and development of usable systems. The research presented in this

dissertation represents a complimentary view to the models of web usage, as a process

that the user and their characteristics become inputs, and the outcomes can be measured

in terms of success, failure, effort expended or satisfaction.

This dissertation explores automation as the core feature within workflow systems.

Given that there were differential effects of technology use on the process, information

system designers may need to look closer to sections or subprocesses within a business

process for appropriate system designs. For example, processes should have automation
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and control where appropriate, yet have flexibility where it is needed within sections of

the process. There may be reasons to implement controls in the system to reflect physical

constraints, business rules, institutional and social norms, but these should only impact

the business process during specific times, places or within action sequences that are

expressed.

In general, this research supports the following principles of organizational and

information system design:

0 Automate where information needs are sufficient to determine the appropriate actions

without human decision-making (Ashby, 195 8, 1968; Cyert & March, 1963).

0 Make information available to support human decision-making and conserve the

scarce resource of attention (Simon, 1973).

0 Coordinate between individuals when resources (especially knowledge or

information) are interdependent (Crowston, 1997; Grant, 1996; Malone et al., 1999).

Workflow and other organizational technologies can be designed for monitoring and

control over a business process. If this perspective is followed too far, the reduction of

flexibility may cost more than the benefits that are enabled through the use of the system.

This understanding should be core to the design of information systems, especially ones

with organization-wide effects such as ERP and workflow systems. This is not a new

insight (Merton, 1936), and there are some scholars that see ERP as the new ‘iron cage’

(Gosain, 2004), but these ideas have not become widespread in ISD education.

Impact on Information System Users

Similarly, users of information systems must understand what they give up in

terms of flexibility when they adopt a particular information systems solution. While
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some vendors are starting to add exception handling and more flexibility to workflow, the

organizational costs of too much control over a process are less understood. There is a

suggestion here that standards such as ISO 9000 may have hidden costs beyond

documentation and certification through the restriction of flexibility in organizational

action.

Limitations

The main limitation to this study is the difficulty in interpreting and integrating

the analyses. The multiple analyses were qualitatively consistent, and yet highlighted

different perspectives of the performance of routines. While using contingency table tests

to compare the transition matrices is an effective way to explore the group membership of

various sets of sequences, the results of these tests give binary responses. There is no

measure of how different the sequences are from each other. From the scaled string

distance approach, there is a much better measure of sequence distance, but the extracted

dimensions are difficult to interpret. There is no measure of what the differences mean.

Additional analyses or extensions of these methods that can integrate perspectives and

give a more complete picture of the antecedents and consequences of sequential variety

must be performed across a variety of contexts.

Another limitation relates to the source and characteristics of the data. There may

be actions that are part of the invoicing entry and approval subroutines that occur outside

the purview of the workflow system. As with any observation of organizational actions,

research design choices, politics, cognitive limits to inspection, and many other factors

determine what is available for analysis by researchers. This does not invalidate the

findings of any study, but may limit the types of inferences and conclusions that are
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possible to be made from such analysis. I believe that additional data and analysis would

complement my findings, not contradict them.

I make no claims to understanding the intentions and feelings of participants, the

socio-political structure of the organization, or many other aspects of organizational

routines that have been theorized or shown to exist. I can make no use of the ostensive

aspects of organizational routines at my research site—but this does not affect my ability

to answer the research questions. This study focuses on the actual actions as recorded by

a workflow system—focusing on the technologically feasible and practically available

data for large-scale statistical analysis. I recognize that much of the rich detail that is the

hallmark of many studies of organizational routines such as those by Barley (1986; 1990)

and Pentland (1992; I999; Pentland & Rueter, 1994) is not present, but this research

represents a complementary rather than contradictory perspective.

Future Research

Given the theoretic, methodological, and practical impacts of this dissertation,

there are several natural paths to future research. Some of these could be completed by

utilizing the same or similar data, but there are implications beyond organizational

theory, business process management, and IT impact. The general form of the Input-

Process-Outcome model is easily applied to a number of areas. I realize now that I have

developed this worldview and applied it in previous research searching for disturbances

in the software development routines in open source software. It has extensions beyond

the management of processes, and could be used to study organizational behavior,

psychology, accounting (auditing), supply chain, even non—business fields like biology.
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Any field that takes a systemic view, and holds some process at the center of inquiry can

utilize this basic model.

I would be interested to extend the methods used in this dissertation to analyze

different business processes. I should be able to achieve the best connection between

inputs, processes and outcomes in some specific, targeted contexts within organizations.

Reverse supply chain analysis is the study of how businesses accept returns from

customers, and has received recent scholarly attention. I could investigate how the

characteristics of the customer and the product would drive how the business process

would handle each returned item.

Similarly, a remanufacturing business process would exhibit a variety of actions

depending on the qualities and characteristics of the input. Finally, the technical support

function may also change its process in response to the joint characteristics of the

problem, attitude of the customer, and training of the technician. To the extent that these

are digitally enabled through a technology that allows automatic logging and data

collection, they may be most appropriate to study buffering and the impact of technology

and add to my findings.

Studies could be conducted to better understand the connection of specific inputs

to specific patterns of action. One method that has been suggested is related to the

Markov approach, but utilizes order statistics (David & Nagaraja, 2004; Rényi, 1953).

This approach would model the most probable path through the actions to obtain a

‘primal’ routine or set of routines. The most probable initial transition becomes the start

of the chain, then the most probable transition given that particular starting point. In this

manner, a path through the transitions is drawn, based on the probabilities of each one.
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Then, the inputs associated with those performances that match exactly can be studied,

and the distance of other performances can be computed from the primal routine. This

extraction of a primal or modal sequence can be used to increase the power of the scaled

sequential variety approach in visualizing the distribution of the routine around this

centroid. Also, the use of order statistics integrated with string distance and

multidimensional scaling may allow the development of a method with the discriminating

power of the Markov approach and the visualization and interpretation potential of the

sequential variety approach.

There is more information within the workflow log related to the inputs that was

not utilized in this dissertation. I have used the vendors simply as a vehicle of

experience, but the nature or line of business for these vendors could be discerned and

associated with the processes. Also, I have information about the detail lines on the

invoice, such as the number and type of goods that were ordered. These, like the vendor

name, are in Norwegian, and would necessitate the use of a native speaker to translate

them, and they would then need to be categorized and coded. The use of semantic

models might be able to be used if translation is not an option, not focusing on the

meaning, but the connection of symbols to processes.

Another extension using the same data (and similar methods) would be to explore

the impact and interaction of the action network with the social network that completed

the work. In some ways, this would be just be adding a mode of connection between

social actors for every action. Both methods used in this dissertation could be applied to

this data. Three Markov matrices could be extracted: the action—action transitions, social-

social transitions and the action—social (role) transitions. The string—distance and MDS
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approach could be applied to the sequences of people, and also to sequences of people-

actions. Candidate research questions are easy to visualize. What has a stronger effect

on variation within the process? Is variation driven by changing actions, changing

people, or changing roles over time or various combinations thereof?

Finally, learning effects can be examined. Since I have data from the initial

installation of the software, I could examine how patterns of action change over time in

relation to efficiency. This examination of the learning curve could consider the

relationship between sequential variety and efficiency over time. The intuition is that

with experience, people tend to try things, and learn what not to do, leading to a drop in

sequential variety with experience. Interestingly, sequential variety seems to be

increasing over time, meaning that the repertoire of organizational routines may be

increasing with experience. This highlights the importance of understanding the impact

of sequential variety on learning and learning models both in theory and practice.

Another extension of this work into organizational learning allows a much more

micro focus on how individual ‘leamings’ are combined to form the traditional

logarithmic form of the learning curve. Because learning occurs at several levels of

analysis, from individual, to between individual to group and organization, it would be

interesting to map out what the experience curves are at each level, and how they interact

between levels to allow the organization to learn from its environment and prosper. Also,

economies of scope in learning can be explored, moving beyond the experience curve

(economies of scale) and examine the transference and retention of different types of

knowledge within the organization.
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I can envision an application of March’s (1991) learning model to the data.

Docking his environment-organization-outcome simulation model to the data in this

dissertation could be attempted. This would represent a contingent-fit approach to

learning, and would connect to related recent research such as that by (Miller, Zhao, &

Calantone, 2006). I can also envision the analysis of data obtained through experiments

similar to Cohen and Bacdayan (1994).

The methods I have utilized are not limited to creative uses with the current set of

data, as they can be applied to many various areas. Given the rise of organization-wide

information systems such as ERP, this may make much more process data available. If

the correct site could be found, I would like to apply these methods to the entire

organizational system, as the different business processes interact. This type of analysis

would be complex, and probably beyond the ability of personal computing technology to

implement, but it would allow the investigation of many interesting research questions.
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Appendix 1: String Matching Distance

adapted from (Pentland, 2003b; Pentland et al., 2009d)

This measure is defined as the average distance between each pair of observed

sequences. A standard technique for measuring the distance between two sequences that

may vary in length is called optimal string matching (Sankoff & Kruskal, 1983; Abbott &

Hrycak, 1990; Gribskov & Devereux 1992; Sabherwal & Robey, 1993). String matching

has been used extensively in molecular biology to compare protein sequences, such as

DNA. Abbott (1995) provides a review of applications in the social sciences.

The distance between two strings can be computed by counting up the number of

operations needed to transform one string into the other. The operations include

substituting one element for another, or inserting or deleting elements. Each operation has

a cost, and the distance between the strings is the total cost. In this paper, all of these

costs were set equal to one, but could be adjusted to account for similarity of actions, as

discussed below. The technique is called ‘optimal’ string matching because it finds the

lowest cost set of operations to accomplish the transformation, thus insuring that the

computed distances are unique and well-behaved (e.g., they obey the triangle inequality:

d(A,B) + d(B,C) >= d(A,C)). Distances computed in this way are called Levenshtein

distances (Sankoff & Kruskal, 1983).

Observations can be represented in an N x M array of events, where each row

corresponds to one iteration of the process, as seen in equation 3:
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e e e e e

Observed sequences = S = 21 22 23 24 2M (3)

  

where N = the number of observed sequences and M = number of events in the longest

sequence. Since the length of the observed sequences may vary, this array can have a

‘ragged’ edge (signified in equation 3 by ‘.’). This representation includes each

observation in its entirety.

To estimate the variation in a set of sequences like those in Equation 3, we can

compute the distance between each sequence and every other sequence. If the sequences

were all identical, then the distances would all be equal to zero. If the sequences

diverged from each other in a single element (e.g., ‘aaa’, ‘aba’), then the distances would

all be equal to one. As the differences between the sequences become more pronounced,

the distances increase. Thus, a convenient and meaningful measure of variety in a set of

sequences is simply the average of distances between all pairs of observations, shown in

Equation 4:

. _ 1 N N . . 4
Average distance _rz(_n:l—)72 Z Zd(r,j) ( )

i: 1 j =i

where N equals the number of observed sequences and d(i,j) equals the Levenshtein

distance between each sequence. The factor n(n-1)/2 is simply the number of pairs in a

set of n sequences. Alternatively, the entire matrix of relative distances between

sequences can be used as in this dissertation.
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Entry Phase p(LR = 1140.463, df =255) = 0

DP = (T —1)(s)'(s-1) (according to G+R)

T = 2 (segments)

3 = 16 (number of codes)

r = 1 (order of sequence)

DF = 240

DF = 255 (according to loglin in R)

The data are judged non-stationary for the entry phase.

Approval Phase p(LR = 5247.366, df =399) = 0

DP = (T —l)(s)'(s -1) (according to G+R)

T = 2 (segments)

8 = 20 (number of codes)

1' = 1 (order of sequence)

DF = 380

DF = 399 (according to loglin in R)

Table 36: Omnibus test of stationarity results

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Phase Test LR df p-value

Overall 3227.09 765 0.

1 v 2 214.66 255 0.969

1 v 3 1201.03 255 0.

Entry 1 v 4 1921.60 255 0.

2 v 3 1060.50 255 O.

2 v 4 1770.55 255 0.

3 v 4 228.23 255 0.885

Overall 6990.04 1197 0.

1 v 2 276.46 399 1

1 v 3 2568.14 399 0

Approval 1 v 4 3946.30 399 0.

2 v 3 2617.73 399 0.

2 v 4 4036.11 399 0

3 v 4 624.95 399 0      
 

Table 37 : Subsequent tests of homogeneity
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Appendix 3: String Distance Analysis

J 1‘3 '1 J
= m1nx--,x.

i=1 ’1 ’k

=A+B—2j

jk A+B—J

Equation 5: Jaccard distance calculation
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Figure 17: Entry and approval Sheppard Plots, 1 through 5 dimensions, continued

next two pages
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Figure 17 continued
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Figure 17 continued
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Figure 18: V1 and V2 of 3-d projection, entry phase showing lines representing the

regression coefficients of variables of interest
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Figure 20: V2 and V3 of 3-d projection, entry phase showing lines representing the

regression coefficients of variables of interest
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Figure 21: V1 and V2 of 3-d projection, approval phase showing lines representing

the regression coefficients of variables of interest
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Figure 22: V2 and V3 of 3-d projection, approval phase showing lines representing

the regression coefficients of variables of interest
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Figure 23: V1 and V2 of 3-d projection, approval phase showing lines representing

the regression coefficients of variables of interest
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Covariance Autgrggtron 11:19:11: SC_to_AA TotalVendorCount

AutomationPCT 0.054 16.052 45.418 87.547

LogAngmount 16.052 498009.694 467128.465 469830.676

SC_to_AA 45.418 467128.465 6217371.840 460210.856

TotalVendorCount 87.547 469830.676 460210.856 927401.005

V1 0294 2214.461 3025.708 1717.014

v2 0.547 91.851 -40.992 1477.257

V3 0656 195.146 -307.234 -503.161

VendorExperience 59.881 17399.337 22468.069 377922.924

v1 v2 v3 VendorExperience

AutomationPCT -0.294 0.547 —0.656 59.881

LogAngmount 2214.461 91.851 195.146 17399.337

SC_to_AA 3025.708 40.992 -307.234 22468.069

TotalVendorCount 1717.014 1477.257 -503.161 377922.924

v1 46.976 3.636 5.046 -167.441

v2 3.636 46.097 0.485 1099.693

v3 5.046 0.485 18.475 -627.847

VendorExperience -167.441 1099.693 -627.847 305797.254     
Table 38: Entry covariance matrix for input, process, outcome, and automation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

variables

Correlation AutomationPCT LogAngmount SC_to_AA TotalVendorCount

AutomationPCT 1.000 0.098 0.078 0.391

LogAngmount 0.098 1.000 0.265 0.691

SC_to_AA 0.078 0.265 1.000 0.192

TotalVendorCount 0. 391 0.691 0.192 1.000

v1 -0. 185 0.458 0.177 0.260

v2 0.346 0.019 -0.002 0.226

V3 0657 0.064 -0.029 -0.122

VendorExperience 0.466 0.045 0.016 0.710

v1 v2 v3 VendorExperience

AutomationPCT -0.185 0.346 -0.657 0.466

LogAngmount 0.458 0.019 0.064 0.045

SC_to_AA 0.177 -0.002 -0.029 0.016

TotalVendorCount 0.260 0.226 -0.122 0.710

v1 1.000 0.078 0.171 -0.044

v2 0.078 1.000 0.017 0.293

v3 0.171 0.017 1.000 -0.264

VendorExperience -0.044 0.293 -0.264 1 .000     
Table 39: Entry correlation matrix for input, process, outcome, and automation

variables
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Covariance Autgncfitron £93113 SC_to_AA TotalVendorCount

AutomationPCT 0.022 -0.031 81.303 51.141

LogAngmount -0.031 0.586 -483.426 -1 06.754

SC_to_AA 81.303 483.426 10137830000 184550.039

TotalVendorCount 51.141 -106.754 184550.000 557791.952

V1 0807 0.305 16120.020 -3054.643

v2 -0.068 0.976 9235.476 -3681.087

v3 0.201 -1.018 7180.519 -1269.223

VendorExperience 38.412 -78.109 139958.200 467752.043

v1 v2 v3 VendorExperience

AutomationPCT -0.807 -0.068 0.201 38.412

LogAngmount 0.305 0.976 -1.018 -78.109

SC_to_AA 16120.018 9235.476 7180.519 139958.226

TotalVendorCount -3054.643 -3681 .087 -1269.223 467752.043

v1 771.695 59.252 -3.384 -2170.481

v2 59.252 313.865 41.829 —3204.050

v3 -3.384 41.829 163.151 4020.560

VendorExperience -2170.481 -3204.050 -1020.560 401319.356      
 

Table 40: Approval covariance matrix for input, process, outcome, and automation

variables

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Correlation AutomationPCT LogAngmount SC_to_AA TotalVendorCount

AutomationPCT 1.000 -0.276 0.174 0.466

LogAngmount -0.276 1.000 -0. 198 -0.187

SC_to_AA 0.1 74 -0.198 1 .000 0.078

TotalVendorCount 0.466 -0.187 0. 078 1.000

V1 0198 0.014 0.182 0147

v2 -0.026 0.072 0.164 -0.278

v3 0.107 -0.104 0.177 -0.133

VendorExperience 0.413 -0.161 0.069 0.989

v1 v2 v3 VendorExperience

AutomationPCT -0.198 -0.026 0.107 0.413

LogAngmount 0.014 0.072 -0.104 -0.161

SC_to_AA 0.182 0.164 0.177 0.069

TotalVendorCount -0. 147 -0.278 -0.133 0.989

v1 1.000 0.120 -0.010 -0.123

v2 0.120 1.000 0.185 -0.285

v3 -0.010 0.185 1.000 —0.126

VendorExperience -0.123 -0.285 -0.126 1.000     
Table 41: Approval correlation matrix for input, process, outcome, and automation

variables
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