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ABSTRACT

MECHANICAL MODELING AND SIMULATION OF POROUS POLYMER

NETWORKS: LOAD INDUCED LOSS OF SATURATION IN ISOTROPIC

ELASTOMERS AND PRESSURE DRIVEN SEEPAGE IN DIRECTIONALLY

REINFORCED ELASTOMERS

By

HUA DENG

Elastomeric gels are high molecular weight crosslinked polymer networks immersed

in a low molecular weight liquid medium. In the liquid environment, they could un-

dergo a large deformation associated with swelling or shrinking in response to environ-

mental stimuli, such as change in temperature, chemistry of the liquid bath, and light

exposure. This valuable property makes them useful in a wide range of applications in

drug delivery, surgical dressings, artificial tissue, and control material in engineering,

which motivate the desire to better understand their underlying mechanical response.

In gels the polymer and liquid components mix in definite proportions as de-

termined primarily by entropic and enthalpic effects. Mechanical loading can also

alter the mixture proportions by absorbing or driving out the liquid. Gel swelling in

the absence of mechanical loading is often described by a generalized Flory-Huggins

equation, which accounts for the effects between such a treatment and the broader

hyperelstic theory which accounts for the effect of mechanical loading. In this study

we consider loadings that can lead to both fluid gain (swelling increase) and fluid loss

(swelling reduction). For loadings that give fluid gain, we then consider a situation

in which the amount of available fluid is limited. In this case, increased loading may

reach a point at which no additional fluid is available for uptake into the gel system.

This results in a transition of the gel from a state of liquid saturation to a state

in which it is no longer saturated. This transition is first considered in the context

of homogeneous deformation where an appropriate hyperelastic analysis shows that



the transition from saturation to nonsaturation gives rise to an abrupt mechanical

stiffening. Then two kinds of inhomogeneous deformation problems are investigated,

including everting an axially loaded tube and twisting a hollow tube that originally

swells freely in the liquid bath. Various boundary displacements and traction condi-

tions are applied so as to study how these alter the original fluid distribution. It is

found that certain boundary conditions generate an overall volume increase after free

swelling, which results in a stiffer mechanical response after loss of saturation.

These static problems describe equilibrium situations in which both the fluid com-

ponent and the polymer matrix component of the system are at rest. However, a more

complicate phenomenon - which attracts abundant research interests - fluid diffusion

through polymer networks requires further study of the relative motion between the

fluid and the polymer network. A mixture theory is then invoked to specifically deal

with separate mechanical balance principles for each component. Pressure driven

fluid seepage problems for both isotropic and anisotropic (fiber reinforced) gels are

discussed based on this framework.
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Chapter 1

Introduction

By a gel we mean a system of crosslinked polymer chains mixed together with

a low molecular weight liquid. In the liquid environment, gels could undergo a large

deformation associated with swelling or shrinking. Their wide applications in drug

delivery [1,2], surgical dressings [3], artificial tissue [4] (skin, articular cartilage, etc.)

and control material (micro-control [5], smart materials, etc.) in engineering motivate

the desire to better understand their underlying mechanical response. Depending on

the nature of the elastomer and fluid, a variety of ambient conditions, such as tem-

perature [6,7], pH of the liquid bath [8,9], and light exposure [10, 11], could possibly

determine the amount of liquid that is absorbed into or expelled out of the gel. This

is typically coupled with the mechanical deformation of the polymer network. Ther-

modynamical and mechanical balance principles describe these processes, in which

case a central issue is the development of a modeling framework that is sufficiently

general to accommodate these effects upon specification of appropriate constitutive

relations. One possible framework is that of small deformation; such theories describe

swelling by allowing for parametric dependence of constitutive parameters (e.g. elastic

constants, osmotic pressure) on the underlying electrochemistry (e.g. concentrations,

charge density) [12]. Such linear descriptions are useful for describing mechanical



behavior in fixed ranges wherein issues of large strain, instability, and transition from

saturation to unsaturation do not arise. However, in certain situations such phenom-

ena cannot be avoided, or will even be exploited, in which case it is necessary to

consider a finite strain description.

1.1 Background

Gels are high molecular weight crosslinked polymer networks immersed in a low

molecular weight liquid. When water is the liquid, then these are typically referred

to as hydrogels. The liquid can also be organic in nature as for example discussed

in Chapter 7 of TIeloar’s well known treatise The Physics of Rubber Elasticity [13].

Although hydrogels would generally be much softer than a rubbery material infused

with an organic liquid, both are regarded as gels for the purpose of this thesis, and

we shall use the term gel throughout in this broad sense.

Some of the earliest experiments on the stress-stretch behavior of swollen gels

were performed by Gee [14]. Simple uniaxial tension tests were made on a range of

vulcanized rubbers at various degrees of swelling. The experimental results depart

greatly from those predicted by the standard large strain theories of rubber elasticity.

These classical theories are associated with a Gaussian statistical mechanics treatment

of the polymer chains. Similar tests can also be found in [15] and [16].

McKenna et al. [17] carried out torsional and uniaxial compression tests on both

dry and swollen cylindrical rubbers. They concluded that the dry-state elastic free

energy function could also describe the elastic behavior of swollen gels for non-highly

cross—linked rubbers. This implies that the presence of liquid molecules does not affect

the elastic component of the free energy function. Their experiments are claimed to be

consistent with the Frenkel-Flory-Rehner assumption that the total energy of swollen

networks is comprised of the free energy of mixing and the elastic free energy.



There are also many models [12,18] that treat equilibrium mechanical behavior

of gels in the setting of the classical small strain tensor 8 = %(Vu + VuT) (where u

is the displacement vector) within the theory of linear elasticity. These include the

small strain linear theory of poroelasticity [19]. They are not useful for our purposes

and will be omitted from what follows. Instead, it is necessary to use large strain

elasticity theory.

A separate, and complicating issue is the internal flow of fluid in gels so as to

achieve equilibrium if the system is not initially in equilibrium. The diffusion of fluid

through polymer networks has been investigated a great deal [20—23]. One of the

most frequently referred to modern set of experiments on this can be found in [24],

where Paul and Ebra-Lima measured the non-linear diffusion of twelve organic liquids

through a swollen gel membrane. The diffusion was induced by the pressure difference

across the membrane. The diffusion coefficients and also the material parameters

of both the fluid and the hyperelastic rubber material were determined from their

experimental results. These material constants were then widely adopted in later

modeling frameworks.

One of the earliest continuum theories that can be used to describe the large

strain behavior of incompressible hyperelastic materials was presented by Mooney [25]

and Rivlin [26]. This apples to rubber-like materials but does not, in its original

presentation, account for gel mixtures where the interaction of the elastomer and

liquid is present. Their basic theory involves an energy argument that the elastic free

energy (D depends only on the three principal stretches A1, A2 and A3. In current

notation, their model is equivalent to the expression

«p = a (21,22, A3) = g [(1 — g) (A? + A3 + A3 — 3) +6 ($3 + Agra + A32? - 3)]

(1.1)

where p > 0 is the shear modulus for infinitesimal strains and C (obeying 0 g C S 1) is

u



the Mooney-ijlin adjustable parameter. Because this model is for an incompressible

hyperelastic material, implying volume preservation during mechanical deformation,

it leads to a constraint condition A1A2A3 = 1 on the three stretches In the case

associated with C = 0, eq. (1.1) retrieves the neo-Hookean strain energy function.

,u

<1>=<I>(A1,,\2,A3)= E (A§+A§+/\§—3), (1.2)

which arises from a Gaussian statistical treatment of polymer chain entropy.

One of the basic issues for the mechanical behavior of gels is how much they

swell depending on their liquid environment. In the absence of load this is called free

swelling. For a given value of free swelling, the question arises as to how an addi-

tional applied load on the swollen gel further deforms the gel. Various hyperelastic

models have been used for this purpose. In other words, these models seek to predict

how stresses applied to a swollen gel cause additional stretch beyond that associated

with free swelling. The more chemistry oriented literature often accomplished this

by balancing the elastic free energy (as a function of the stretches) with the work

done by the principal stresses 0‘1, 02 and 03. This then gives the relation between

the principal stresses and the principal stretches. In addition to the Mooney-ijlin

material mentioned above, some of the other energy functions that have been used for

this purpose include the constrained chain model [27,28], localization model [29,30],

liquid-like model [31,32], and eight-chain model [33]. Han et al. [34] compared these

models and concluded that the constrained chain model fits experimental data [35—38]

best for both dry and swollen states, whereas the eight-chain model of Arruda and

Boyce shows less agreement with the experimental data. However, later Arruda and

Boyce [39] questioned the calculation executed by Han et al. [34] and put forward

their eight-chain non-Gaussian Model in order to account for the same trends as

in the experimental data for large stretches. On this basis, they then proposed a



hybrid model that suitably combines the Flory-Erman constrained chain model (so

as to capture the main features of stress-strain behavior for small strains) and the

Arruda-Boyce eight-chain model (which was developed to describe the large strain

behavior well). The strain energy density function of this hybrid model gives rise to

the following stress-strain relationship for uniaxial loading:

1

2 ‘3
Nke n _ V Ac 1 1 l

VET-£1: 1 J’T/zn— (A2 — X) + ENJkez/p (A1A2 — Azx)

(1.3)

Here up is the volume fraction of the polymer relative to the dry state and represents

the degree of swelling, N is the number of chains in the polymer per unit unswollen

volume, NJ is the junction density, k is Boltzmann’s constant, 9 is absolute temper-

ature, n is the number of links in the chain, Ac = [(A2 + 2/A)/3]1/3, £—1( ) is the

inverse Langevin function, and A1, A2 are both functions of A and up. These are too

complicated to be discussed in detail here and the reader is referred to [39] for more

information.

In summary, the treatments described above in [27—34] seek to use the theory of

hyperelasticity to model gels after free swelling has occurred. They account for the

strain energy function of hyperelastic materials and give a reasonable linear approxi-

mation to the neo-Hookean model. The main distinction between different models lies

in the modification of the strain energy function for moderate and large deformation.

In order for a model to also determine the amount of swelling, it is necessary to

connect the mechanical response to the interaction between the polymer network and

the liquid which together make up the gel. The attempt to make this connection was

made over half a century ago. The swelling of the gels depends upon the interaction

between the solid elastomer and the surrounding liquid. One of the earliest exper-

imental measurements on this interaction goes back to [40], where Gee and Treolar

gave a thermodynamic description of the rubber-benzene mixture system by measur-
T



ing the vapor pressures. A statistical mechanical theory of the equilibrium degree of

swelling was presented by Flory [41] and Huggins [42,43] separately. Based on this

theory, the free energy of mixing H is

H = M[(u-1 — 1)ln(1 — u) + X(1— 11)], (1.4)

where M and X are material parameters, and V is the volume fraction of the elastomer

in the mixture. They seek to determine the free swelling ratio 1/1/ by an energy

argument that seeks to account for: (1) the mixing entropy of elastomer and liquid; (2)

mixing enthalpy of elastomer and liquid; and (3) strain energy of the elastomer. If a

system is originally in non-equilibrium, then it is assumed that internal fluid diffusion

will occur until equilibrium is achieved. This diffusion process can be described by a

mixture theory approach. For now we restrict attention to equilibrium configurations

once any fluid redistribution is complete.

On the basis of Flory-Huggins theory, Tfeloar [44] more formally introduced an

extra term that explicitly accounts the work due to tractions when load is applied.

By this treatment, the swelling equilibrium associated with homogeneous deformation

under simple loading conditions could be determined. Treloar [45] later considered

the problem of a cylinder subjected to combined axial extension and torsion about

the axis. For large deformation the radial distribution of the stress, strain, and the

amount of swelling are obtained by numerical analysis. It is found that the gel volume

decreases with the torsion.

Wineman and Rajagopal and co—workers constructed a continuum mechanical

treatment incorporating finite strain on the basis of mixture theory, as discussed in a

series of papers [46—48]. In [48] they consider a static problem where a relative rotation

was applied to the two lateral surfaces of a swollen hollow cylinder. Their main

purpose was to find the fluid redistribution with various twist moments. However,

1'



they limited attention to boundary conditions that did not allow for volume change

after swelling. In an even earlier paper [49], Wineman, Rajagopal, and co-workers

consider a torsion problem that does treat load dependent volume change using a full

mixture theory formulation. As in [45], they find that torsion causes volume decrease;

this corresponds to the expelling of fluid.

In this work, I have examined similar static boundary value problems with dif-

ferent loading conditions. Both volume decrease and volume increase associated with

the applied load can be obtained. The latter case corresponds to fluid absorption.

For these static problems it is not necessary to involve mixture theory and so are

similar to the classical approach of Tmloar [45]. For the case of fluid absorption, it

may further be the case that insufficient fluid is present to attain a saturated state.

In this case, the associated transition from saturation to unsaturation is considered.

In particular, it will be indicated how the overall mechanical response becomes stiffer

if this transition takes place will be indicated.

These are not the only continuum models that have been developed to treat the

swelling behavior of gels. Instead of introducing the mixing free energy, Marra and

Ramesh and collaborators [50,51] introduce an evolution internal variable a, which is

defined as the volume ratio of the interstitial fluid in the current state to that in the

reference state. It is assumed that this internal variable acts as the only independent

variable of the specified free energy function. To describe the volume change (called

actuation in their article) they consider the total free energy function as the sum of

elastic energy and an additional energy term due to the effects of free actuation, which

means uniform expansion or contraction of the polymer in the fluid. This corresponds

to the statement, in current notion

W : ©(11712) + g(I3,Ct), (15)

 



where W represents the total free energy and <I> can be regarded as some elastic energy

that is appropriate for an incompressible material. This (I) is typically taken to be

in the neo-Hookean, Mooney-Rivlin or even the more general Ogden [52] form. The

function g in (1.5) is claimed to account for the effects of free actuation. The three

invariants and the material parameters in <I> and g are all assumed to be functions

of a. Then an evolution law for the internal variable a is developed. Uniaxial and

equibiaxial loading tests were performed. Experimental data are obtained and used

in fitting the material parameters in Ogden energy function. These parameters are

then substituted into a finite element model. It was then claimed that the numerical

results show good agreement with the data.

Certain hydrogels exhibit phase changes of various kinds such as an abrupt vol-

ume increase when either the temperature or chemistry of the liquid is changed. These

are sometimes called stimulus-repsonse hydrogels. Dolbow et al. [53—55] presented a

continuum model for volume transitions in hydrogels that exhibit a sudden collapse in

volume at a specific temperature. Their model includes a sharp-interface separating

swollen and collapsed phases. With obeying the deformational and diffusion poten-

tial coherence across the interface, a set of equations of force balance and chemical

potential balance were derived in the domain of each phase and on the interface as

well.

Another aspect of interests in the swelling behavior of gels is the study of fluid

diffusion through hyperelastic material. A variety of theoretical treatments [56, 57]

have been developed to model the mechanical and thermodynamical behaviors of such

diffusion process. A common-used biphasic theory called the theory of porus media

(TPM), involving the mixture theory and volume fractions, is applicable to such non—

linear diffusion problems. One of the earliest presentations of this treatment can

be found in the work of Bowen [58]. His framework, which involves partial stresses

for the solid and fluid phases, makes use of mass balances, momentum balances, an



energy balance law and the Clausius-Duhem inequality.

Many material models generalizations were then subsequently embedded into this

binary mixture theory, such as a viscoelastic model [59] and an elasto-viscoplastic

model [60, 61]. Different numerical methods based on finite element analysis have

also been developed and used to study the phenomenon of consolidation in the porous

media, including Galerkin finite element method and least—square mixed finite element

method [62], [63]. Within this framework, Markert [64] has presented a 3—D finite

element analysis on the nonlinear fluid flow through a porous polyurethane form.

Ehlers et al. [65,66] followed a related energy and entropy balance treatment

and used it to simulate the elastic deformation of liquid saturated porous solids. In

particular these works introduce the idea of a fully compact material meaning that

all the internal pores have been closed, squeezing out all the fluid. Their energy

functions are designed to give this full compaction only in the limit as appropriate

normal stress components trend to negative infinity.

The compressibility condition on the solid and the fluid phase of the mixture

is always an important fact to be considered in TPM. Palomar and Doblare [67]

utilized an Augmented Lagrangian formulation to enforce the incompressibility con-

dition on both the solid and fluid phase based on a fibre-reinforced porohyperelastic

model. Diebels extended the mixture theory and applied it to both incompressible

and compressible binary systems [68].

Specifically, [61, 67, 69] deal with material anisotropy. The numerical examples

in [67] show how the additional stiffness due to the fiber reinforcing causes the fibrous

materials to exhibit less deformation under the same amount of extensile load. Among

the more interesting results obtained in [67] is the demonstration that the introduction

of fiber network leads to a higher relative fluid diffusion velocity as well as a higher

pore pressure in an unconfined compression simulation.

Under the TPM framework, Markert et al. [70] derived a set of full contact

 



boundary conditions at the interface of two saturated porous media with the assump-

tion that there is no dissipative effects at the interface. These conditions include the

solid velocity continuity condition, the normal seepage velocity continuity condition,

the pore-fluid pressure jump condition and the solid effective normal stress jump

condition. The latter two conditions have the property that if two identical porous

bodies are put in contact with each other then both the pore pressure and the solid

effective normal stress are continuous. However if the two contacting porous bodies

have different solid-fluid phase ratio at the interface, then the pore pressure and the

solid effective normal stress exhibit a jump and mixture theory arguments are used

to obtain detailed expressions for these jump (see equation (47) and (48) of [70]).

However none of the works [56—70] obviously takes into account the interacting

behavior between the fluid and the solid skeleton. To also connect the mechanical

response to the interaction between the polymer network and the interstitial fluid,

Rajagopal, Wineman and collaborators (Rajagopal et al. [46], Gandhi et a1. [47] and

references therein) introduced a Flory-Huggins type term in the free energy expression

so as to account for the interacting continua in the diffusion problems. Pressure-

induced diffusion through spherical and cylindrical geometries were studied in [46,47].

Diffusion through a porous swollen layer with lateral stretch and shear deformation

was also considered in [47]. In particular these works provide numerical solutions to

boundary value problems with one lateral surface held fixed while only the pressure

was specified on the other surface.

These treatments also pointed out some controversies with respect to specify-

ing the tractions on the solid and fluid boundaries. In an alternative but related

variational treatment, Back and Srinivasa [71] extremize the Helmholtz potential of

the system containing the swollen solid and the fluid over all admissible system con-

figurations. This variational procedure involves the mass conservation equations for

both the solid/fluid mixture phase and the surrounding pure fluid phase. This results
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in a set of governing equations and boundary conditions. Energy dissipation is also

considered in [71] to account for frictional effects as the fluid diffuses through the

elastomer.

Other means for arriving at this framework are also possible. This includes that

given recently in [72] and [73]. In partcular, the treatment in [72] introduces the the

liquid phase concentration as an independent variable prior to the requirement that

the liquid component fraction in the gel be given by 1 — V. The equivalent of this

constraint is enforced by a Lagrange multiplier in [72]. The condition for free swelling

is then found to be given by a requirement that the chemical potential for the pure

liquid, say ”liq: is equal to an appropriate variation of the gel’s total free energy with

respect to a change in concentration.

1.2 Objectives and Scope

The main purpose of this research is to model the mechanical deformation and

also the redistribution of the concentration of fluid throughout the system in response

to changes in load or displacement at the system boundary. In so doing, it distin-

guishes between saturated and nonsaturated gels. Numerical analysis is introduced

to obtain the equilibrium deformation of the polymer network, from which the redis-

tribution of the concentration of fluid is derived. This is based on the assumption of

volume additivity that the volume of the mixture is the sum of that of the elastomer

(solid phase) and that of the interistic fluid (fluid phase).

In particular, even though both the polymer matrix component and the fluid

component of the gel system are regarded as individually incompressible when iso—

lated from the other component, the overall gel system, as long as it is saturated,

is then described in terms of a hyperelastic framework in which the gel is nomi-

nally compressible. This is because a fixed amount of polymer component can be

11

T



regarded as defining a gel patch (or gel “element”). The amount of fluid component

within such a gel element can change, giving rise to a change in the volume of the

gel element. In other words, redistribution of the fluid component with respect to

the matrix component generates a local volume change. This is in keeping with the

TIeloar’s treatment. He writes in [13] that if a rubber that is incompressible in the

absence of a liquid swelling agent is subsequently swollen, then

“ the swollen rubber in continuous equilibrium with a surrounding

liquid may be regarded, from the purely formal standpoint, as having

mechanical properties equivalent to those of a compressible material. ”

In particular, since the rubber that is referred to in the above quote is regarded as

being in contact with a liquid bath, the situation refers to a state of liquid saturation.

Thus the saturated equilibrium response is described by a single stored energy density

function W. The present work has taken the Frenkel-Flory-Rehner assumption that

total energy of the gel is comprised of elastic free energy and mixing free energy, which

are additive. The choice of the specific form of elastic free energy is not the central

problem in this work, therefore the specific Mooney-Rivlin model will be adopted

for modeling isotropic gels. The Flory-Huggins equation (1.4) will be used for the

mixing free energy. Then the total free energy W for a swollen gel depends only on

the deformation gradient F through the principal stretches A1, A2, A3, or equivalently

the three invariants 11, 12, I3 of the left Cauchy-Green deformation tensor B, namely

FFT. By virtue of (1.1) and (1.4), this becomes

W = <I>(A1, A2, A3) + H(V). (1.6)

The saturated Cauchy stress tensor then follows from this stored energy density as

12

 



in compressible hyperelasticity

a = ——FT. (1.7)

The local volume change in the deformation then directly correlates to the local

change in fluid content.

If, however, the amount of liquid is limited, and in particular assume that all

the liquid is imbibed at some point in the loading process, the system then becomes

nonsaturated. A constant reaction stress —pI is generated so as to enforce the global

constraint that the overall volume of the gel remains fixed at the instant when the

transition from a saturated state to a nonsaturated state occurs. This gives the

nonsaturated Cauchy stress tensor

= ————FT — pI. (1.8)

Thus (1.7) and (1.8) give the relation between stress and deformation for homo-

geneous deformation (F independent of location). For nonhomogeneous deformation

without any body forces the stress field must satisfy

div 0 = 0. (1.9)

These equations are usually nonlinear and hard to obtain analytical solutions. There-

fore it is necessary to invoke numerical routines in order to obtain simulated results.

The above hyperelastic framework could describe equilibrium situations in which

both the fluid component and the polymer matrix component of the system are at

rest. In particular, each material point in the gel is regarded as a two component

mixture of polymer matrix and interpenetrating liquid. For a sort of more complicate

problems where there is relative motion between the fluid and matrix components, so
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it is necessary to invoke the broader continuum mechanical framework that specifically

deals with separate mechanical balance principles for each component. This broader

framework is known by a number of names, including: large deformation mixture

theory, the theory of interacting continua, and the large deformation biphasic theory.

To this end, the process of fluid diffusion through hyperelastic media is investigated

in this work, where a major focus is on time dependent swelling as liquid diffuses

within the elastomeric matrix.

The structure of this work is outlined as follows. The hyperelastic theory for the

static mechanical response of swollen gels is developed in Chapter 2. The discussion

of the stress-strain swelling response under homogeneous deformation is discussed in

Chapter 3. Boundary value problem of an everted tube subject to an axial load is

considered in Chapter 4. The inhomogeneous deformation response of the axially

loaded tube is compared to the homogeneous deformation response of the axially

loaded tube when it is not everted. Chapter 5 deals with a boundary value problem of

a hollow tube with a relative twist at its lateral surfaces. Different radial displacement

and traction boundary conditions are considered along with the prescribed twist. In

Chapter 6, certain flow problems where fluid exhibits both steady-state and non-

steady-state seepage through the hyperelastic gel are studied. These seepage problems

consider the possibility of pressure driven fluid diffusion through a fiber reinforced

gel, such that the isotropic diffusion problem is retrieved as a special case.

For the equilibrium mechanical response discussed in Chapter 2 through Chapter

5, it is a main object to investigate the effects of fluid saturation and loss of saturation

in the system on the polymer network deformation as well as fluid redistribution

under certain mechanical loadings with different boundary conditions. While as for

fluid seepage problems it is assumed that there is always enough fluid flowing through

the polymer network so that there is no necessity to consider the loss of saturation

at all.
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Chapter 2

Modeling of the Swelling Behavior

of Elastomeric Gels

2.1 The Flory-Huggins Equation for the Determi-

nation of Free Swelling

The most basic description of large strain effects in elastomeric gels concerns the

determination of the amount of fluid that perfuses a polymer matrix when it is placed

in a liquid bath. Let V denote the volume fraction of polymer matrix so that 1—V is the

volume fraction of the fluid component. A standard development proceeds by taking

molecular chain arguments for configurational entropy of crosslinked macromolecules

within a liquid bath, and coupling these to a phenomenological description of enthalpy

of mixing [13,44]. The requirement of a stationary free energy then leads to the

 

equation

M 1 1 2 1/3 — 0 21n —st +st+Xst + [1V3 — (.)

C v 1 \_ _,

dilution crosslinking

for the free-swelling value of V which, as indicated above, will be denoted by Vf3. Here

M > 0, X and p > O are constitutive parameters that may vary with temperature,

pH, fluid chemistry, and other environmental factors. As indicated in (2.1), two

separate effects can be identified, that associated with dilution and that associated

with crosslinking. In the absence of crosslinking, the equation reduces to that for
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the effect of dilution alone, and this is the equation that is usually referred to as

the Flory-Huggins equation [13]. The dilution term itself models the two effects of

mixing entropy and mixing enthalpy. The term containing X models the latter and is

positive for the standard case wherein polymer-polymer and liquid—liquid grouping is

favored over polymer-liquid grouping. In particular, larger X favors polymer-polymer

aggregation so that st increases with x. The remaining part of the dilution term

models the entropy contribution of polymer-liquid mixing to the free energy. In

particular, the parameter M is identified as the product of the ideal gas constant and

the absolute temperature divided by the molar volume of the liquid.

The utility of a theory that delivers (2.1) is due in no small part to the fact that

(2.1) has a unique solution st that takes values on the physically relevant interval

0 < st < 1. This solution is here referred to as the free swelling polymer volume

fmction. It is completely determined by X and the ratio )u/M. Thus one may then

write st = st(X, u/M). Increasing either X or u/M favors a more tightly bound

gel and so increases Vf3(X,p/M).

The connection between free swelling and hyperelasticity follows by introduc-

ing the deformation mapping that takes the polymer component from its original

unswollen location X to its stressed, swollen location y. Let J = detF where

F = 6y/6X is the deformation gradient of the mapping y(X). Correspondence

between J and V is immediate if both the polymer component and the fluid compo-

nent are individually incompressible since simple mixing then gives the identification

J = 1/V. Thus J is the volumetric swelling of the gel as measured with respect to

the polymer component before liquid was present. It is therefore required that

J 2 1. (2.2)

Historically, the original development leading to (2.1) employed a notion of physical
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variations. In particular, rather than using physical arguments to obtain an explicit

energy to minimize, the original papers of Flory and 'Ifeloar employ an argument

which requires that there is no change in the free energy of the system in the event

that a single fluid particle is transferred between the gel and the pure liquid which

surrounds the gel. Although the free swelling volume fraction appears in (2.1), the

original arguments leading to this equation actually depend more on the concept of

occupied volume rather than the related concept of volume fraction. The connection

between occupied volume and volume fraction then follows from J = 1/V. The

argument involving fluid particle transfer can thus be viewed as a variation with

respect to J. Accordingly, the energy that is formally minimized can be found by

substituting st —> 1/J in (2.1), integrating the resulting expression with respect to

J, and, if desired, returning to the original volume fraction variable via J —+ 1/Vf3.

This gives, to within an integration constant, an energy expression with the following

terms

1 3p —2/3
—MXst +M(l—j;;—l)ln(1-st)+ —2—'st

effects of mixing entropy

\

effeCtS 0f mixing enthalpy effects of network elasticity

(2.3)

Hence (2.1) is equivalent to determining the free-swelling value of J as the root of

gag-(HM) + mm) = 0, (2.4)

with

H(J) = M((J — 1)ln(1 —- J—1)+ x(1- J—1)), (2.5)

and

\IJ(J) = 37“.!2/3. (2.6)

Here H + \II is the overall free energy, the former accounting for polymer-fluid inter-
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action (mixing entropy and mixing enthalpy), the latter accounting for elastomeric

deformation of the crosslinking network. The limiting case 11 —+ 0 corresponds to the

absence of crosslinking and hence no elastic effect. Equation (2.4) then reduces to

h(J) = 0 where we have introduced the notation

h(J) E —. (2.7)

It is to be remarked that (2.2) and (2.4) can be regarded as a general framework, which

retrieves the well known equation (2.1) once the specific mathematical forms (2.5) and

(2.6) are invoked. Thus statements involving the functions H and \Il need not be tied

to (2.5) and (2.6) unless specifically indicated. Similarly, (2.7) is a definition for h

that is not tied to any constitutive form. For the specific constitutive function (2.5),

h is given by

h(J) = M[1n (1 — J‘l) + J‘1 + XJ—2]. (2.8)

The basic behavior of this framework with the usual forms (2.5) and (2.6) is sensitive

to whether X < 1/2 or X > 1 /2 as described next.

If (2.5) and (2.6) hold and X > 0.5 then there is a unique value of J > 1

that causes h to vanish. This value of J corresponds to free swelling in the ab-

sence of crosslinking and we denote this value by Jncl where the subscript refers to

nogrosslinking. Thus h(Jncl) = 0 and Jncl = 1/VfS(X,0). Moreover h(J) < 0 for

1 < J < Jnd and h(J) > 0 for J > Jncl- Consequently Jnd provides a local minima

of H. One also finds that Jnd < 2X/(2X — 1) and that Jncl —> 00 as X —> 0.5.

If (2.5) and (2.6) hold and X < 0.5 then there are no solutions to h(J) = 0

because h(J) < 0 for all J > 1. Hence for X < 0.5 the infimum of H is achieved as

J —+ 00. Since h(J) —> 0 as J —» 00 it is convenient to formally define Jnd E 00

for X < 0.5. The derivative h' (J) > 0 for all J > 1. These qualitative features are
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Figure 2.1: The constitutive function h(J) in (2.8) for various x. Vaues of J giving

h(J) = 0 model gel dilation on the basis of mixing entropy and mixing enthalpy, but

do not account for the elastic effect of polymer crosslinking.



summarized in Figure 2.1.

Accounting for elastic interconnection (u > 0), equations (2.4) — (2.6) become

h(J) + uJT1/3 = 0. In conjunction with (2.8) this recovers (2.1) for the free swelling

value st E l/st. There is a unique finite st solution to (2.4) ~ (2.6) for all X

whenever p > 0, which is formally given by st = l/Vf3(X,p./M). This solution

obeys the inequality Jf3 < Jncl as would be expected since the crosslinking inhibits

swelling. Euther h(J) +11JT1/3 is respectively positive or negative as J is respectively

greater than or less than Jfs' Figure 2.2 indicates these relations.
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Figure 2.2: The constitutive expression h(J) + ,uJ-l/3 for various X when )u =

0.01M. The new term uJ‘1/3 describes the effect of crosslinks. Values of J giving

h(J) + uJT1/3 = 0 describe free swelling.

A simple interpretation concerns polymer that has some original volume, say

Vpoly! when free of liquid. Placing this nominally dry polymer into a liquid bath

causes it to swell by uptake of fluid. The resulting gel occupies new volume JVpoly

where J minimizes the free energy H(J) + \II(J). For the energy forms (2.5) and

(2.6) this free energy involves the three previously mentioned effects, one of which

favors swelling (the configurational entropy), one of which opposes it (crosslinking),
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and one of which could go either way (mixing enthalpy) although it opposes swelling

in the standard case X > 0. In all cases, crosslinking (u > 0) ensures that the swollen

volume remains finite. If crosslinks are not present (,u = 0) then the mixing enthalpy

must sufficiently favor same phase agglomeration (X > 0.5) for the swollen volume to

remain finite. However if crosslinking is not present and the mixture enthalpy is not

sufficiently conducive to this same phase agglomeration (p. = 0 and X < 0.5) then

J —+ 00 and the polymer goes into solution, dispersing itself throughout the fluid

bath.

Implicit in the above discussion is a requirement that sufficient liquid is available

for saturation of polymer with the liquid. This requires that

JVpoly S Vpoly + Vliq’ (2.9)

where Vliq is the original fluid volume prior to introduction of polymer. If (2.9)

holds then the gel swells to its energetically favored saturation value. However if J

as determined on the basis of (2.4) is larger than that permitted by (2.9) then the

swelling is limited by the availability of fluid to the value

.12: E 1 + Vliq/Vpoly (2.10)

which is less than the free swelling value Jfs determined on the basis of (2.4). The

gel is then no longer saturated. In what follows the use of a subscript * or a su-

perscript * will denote a value that demarcates a transition between saturation and

nonsaturation.
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2.2 Hyperelastic Constitutive Theory

In free swelling, the deformation gradient of the mapping y(X) is F = JX31

where I is the identity tensor. In order to treat more general deformations due to

the effect of mechanical loading, we now consider a hyperelastic framework. Let

B = FFT and C = FTF and let 11, 12 and 13 be the associated principal scalar

invariants

11 = TraceB, 12 = 12 — Trace B2 , I = detB = J2.
1 3

[
\
D
I
H

The overall stored energy density will be expressed as the sum of elastic free energy

of the polymer network CI) and a mixing free energy H

W(F) = <1>(11,12,J)+ H(J). (2.11)

The mixing energy H is the same as that discussed in the previous section and its

derivative will continue to be denoted by h (viz. equation (2.7)). The specific Flory-

Huggins form (2.5) for H will be used in the examples that follow.

2.2. 1 Free Swelling

In the absence of mechanical loading, the associated free swelling is determined

by minimizing W in the class of simple volumetric expansions F = J1/31 so that

I1 = 3J2/3 and 12 = 3J4/3. Thus J is determined on the basis of

d 2/3 4/3 _
dJ (<I>(3J ,3J ,J) + H(J)) _ o. (2.12)

Comparison with (2.4) indicates that correspondence with the free swelling frame—
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work described in the previous section will follow provided that

<I>(3J2/3, 3J4/3, J) = \1/(J) + constant.

Correspondence with the particular Flory-Huggins form (2.6) will obtain if

<I>(3J2/3, 3J4/3, J) = z—lzflfl/3 + constant.

In what follows we shall use the Mooney-Rivlin form for the elastic energy (I) of the

polymer network

¢=¢(11712)=§[(1—€)(11‘3)+5(12-3)]a (035$ 1). (2.13)

The case C = 0 gives the neo—Hookean specialization. For any C obeying 0 S C S l in

(2.13), one finds that

<I>(3J2/3, 3J4/3, J) = %&((1—C)J2/3 + CJ4/3 — 1)

so that the special neo-Hookean case of C = 0 retrieves the original equation (2.1)

upon taking J = Jfs = 1 /Vf3. For the more general Mooney-Rivlin form with C > 0

equation (2.1) is augmented so as to contain an additional term and so becomes

1 3 —1 3

M[ln (1 — st) + st + Xufs] + u[(1 — {)l/fé + 2CV 8/ ] = 0. (2.14)

Introduce the free swelling stretch ratio

(2 J1/3 ____ V—1/3
3 f3 , (2.15)

where Vf3 is the root of (2.14). This root now depends upon C in addition to X and
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u/M. As such, the free swelling behavior under (2.14) is not as simply described as .

was the case for (2.1). Some indication of the effect of the new constitutive parameter

C upon st can be obtained by taking representative values for X and u/M. To this

end we follow [48] where the equivalent of a neo—Hookean (I) is considered for the

modeling of a vulcanized rubber in contact with toluene as considered by Paul and

Ebra—Lima in [24]. The following values are taken in [48]: M = 2.379 X 108dyne/cm2,

X = 0.425 and u = 2.375 x106dyne/cm2. Note for these values that the dimensionless

parameter M = M/[J = 100.17 x 100. The value of the free swelling stretch ratio C

as a function of C for various M and X are shown in Figure 2.3. The dotted curves in

Figure 2.3(a) and Figure 2.3(b) are respectively associated with the above parameters

M = 100 and X = 0.425.

2.2.2 Saturated Stress and Nonsaturated Stress

Let T and a give the first Piola—Kirchhoff and Cauchy stress tensors, respectively.

They are connected by

a' = grr‘T. (2.16)

Mechanical equilibrium is governed by the usual equations

DivT = 0 on Ox, 4: diva = 0 on Sly, (2.17)

where 9X and fly denote the gel domain in the reference and deformed configuration,

respectively. We continue to let Vpoly and Vlz'q be the volume of polymer and fluid

respectively. In particular

Vpoly = / dVX. (2.18)

Qx

After mixing the local gel volume is J so that the overall gel volume is
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Figure 2.3: The free swelling stretch ratio C as given by (2.14) and (2.15) is a function

of M, X and C. The dependence of C on C is shown for various M and various X
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V E J dVX. (2.19)

9x

The maximum overall gel volume is Vpoly + Vliq corresponding to uptake of all fluid

into the gel. So long as this does not occur the gel is able to saturate. The system is

not saturated only if V = Vpoly + Vh-q. Together this gives the global constraint

(J —- 1) de 3 V1,, (2.20)

9x

If the system is saturated then the first Piola—Kirchhoff stress tensor is given by

T = 6W/8F and the saturated Cauchy stress tensor is

2 84>
=_ _ T

0' JFBCF +h(J)I, (saturated), (2.21)

where the first term on the right hand side follows exactly as from conventional

hyperelasticity and the second term on the right hand side follows upon recalling

that aJ/aF = JF-T.

If, however, the material is not saturated, then a constant reaction stress —pI is

generated so as to enforce the constraint (2.20). This gives the nonsaturated Cauchy

stress tensor

0 = %F3%FT + h(J)I — [21, (not saturated). (2.22)

Thus, as in incompressible hyperelasticity, there is a pressure contribution to the

Cauchy stress tensor that is not determined by the deformation.

Here, however, it is important to emphasize that the constraint (2.20) is a global

one. This is in contrast to the situation in conventional incompressible hyperelas-

ticity in which the constraint detF = 1 is a local one. The pointwise constraint in

incompressible hyperelastic gives rise to a reactive pressure that can vary spatially. In
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contrast, the pressure p in (2.22) takes the same value at every point in the nonsatu-

rated gel. In particular, since p in (2.22) is constant, a condition of spatially varying

J does not generally permit the last two terms in (2.22) to be consolidated into a

single term with redefined p.

Evaluating (NI/BC in terms of the dependence on 11,12, J gives

_ 26¢ 2 2 so 64> 64>
0—-751—2B +J(a—Il +116_I2)B+ (a—j‘l' h(J))I, (saturated), (2.23)

while the nonsaturated Cauchy stress tensor becomes

__ 2 04> 2 04> 84> 6CD

a— J012B +J(6—1—1+116—12)B+(E—J+h(J)-pl), (notsaturated).-

(2.24)

For the uniform expansion F = J1/31, the saturated Cauchy stress (2.23) is a multiple

of the identity tensor, say a = —;13(J)I. Here p(J) gives the mechanical pressure

associated with a given value of J and hence a given local fluid concentration within

the gel. The condition 13(st) = 0 recovers the free swelling condition (2.12).

A simple but fundamental application of (2.23) is to determine the infinitesimal

shear modulus G and bulk modulus K for a saturated gel. First consider a simple

shearing deformation after free swelling: y1 = CX1 + rtCXg, y2 = CX2, y3 = CX3,

where K. is the amount of shear. For this deformation, the shear stress 012 for a

saturated gel is obtained from (2.23) in the form

28<I> 0(1)

012=G(n)n, C(K.)=—(59—1—1 + 2C——(91.2 (2.25)

The infinitesimal shear modulus for a saturated gel is therefore given by

1 66> 84>
0(0) = 2 (Ea—11 + (8—12) (2.26)

 11=3C2Jz=3C4J=C3
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Another important elastic parameter for saturated gel is the infinitesimal bulk mod-

ulus K. Consider a uniform compression: y = ,BCX, where 8 is the compression

stretch after free swelling. The associated uniform compression stress a derived from

(2.23) is

2 8<I> 8<I> 8<I>

a = 3287++454— + '67 + h(J). (2.27)

By definition bulk modulus is given by

K=—V—a—0—=—-83C3V 80 880

av (la—(3353(4)) = 755- (2-28)

Incorporating (2.23) into (2.28), and assuming that 11, 12, and J are mutually inde-

pendent in the expression of (I) (which is not unusual), the infinitesimal bulk modulus

for the saturated gel is then given by

264 4464 C3[a2__<1>++d_h_(J)]

 

41—1 ‘ 324611 316J2 (U

2 (2.29)

56ct

"K's—12771“ 612
2:11—342,12:—,34413:43
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Chapter 3

Homogeneous Deformation

In this chapter we consider the homogeneous deformation response using the

constitutive forms (2.13) and (2.5) in (2.11). Since J is a constant for homogeneous

deformation, condition (2.20) reduces to the same condition as in free swelling, namely

(2.9). This in turn is equivalent to the condition J S J... where J... is defined in (2.10).

The Cauchy stress tensor then follows from (2.23) and (2.24) as

_ It] 2
a _ j (1 — 4 +C11)B — CB ] + h(J)I, (1 g J < J...), (3.1)

0’:

K
i
l
t

[(1 — t + 41013 — 4132] + (W...) — ml, (J = A) (3.2)

Since the term (h(J...) — p) in (3.2) involves constant h(J...) and an arbitrary constant

p, it follows that h(J...) can be absorbed into p. However in later chapters, when

nonhomogeneous deformation is considered, it will be necessary to retain h(J) in the

nonsaturated Cauchy stress tensor.

We now consider in turn: equibiaxial loading, uniaxial loading, and equitriaxial

loading. Each is referred to a coordinate system with mutually orthogonal unit vectors

e1, 62, e3.
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3.1 Equibiaxial Stress

This is the specialization 0’ = 0(e1 8) el + e2 <8 e2) and we restrict attention to

deformations that preserve the loading symmetry so that F = A(e1 (8) el + e2 ® e2) +

(J/A2)e3 ® e3. For a saturated material it follows from (3.1) that

p [2; +C (g (A2 — 1) + 1%)] + h(J) = a, (saturated), (3.3)

and

[1 [Ai4 + C (3‘14 (2A2 — 1))] + h(J) = 0, (saturated). (3.4)

The second equation provides the relation between J and A whereupon the first

equation provides a in terms of either A or J. The graph of stress vs. stretch passes

through the point (A,o) = (C, 0) which corresponds to the state of free swelling.

Recalling the requirement that J 2 1 consider the limit J —> 1 in (3.3) and (3.4). For

h in (3.4) given by (2.8) this limit gives

[—;(1£_51n(1-J—1)]—1/4, itog4<1,

A ~
(3.5)

(-3411. (1 — J-1)]'1/2, if€= 1,

so that, in all cases, J —-> 1 as A —-> 0. According to (3.3) this requires a —+ —00 as

follows:

-u(1-€)A_4, ifo s 4 < 1,

0 ~ h(J) ~ Mln (1 — J—l) ~ (3.6)

—2,uA_2, ifC = 1.

Thus the limit a —> —oo forces all of the liquid out of the gel, and in this limit A —+ 0.
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Returning to the overall stress behavior, we find for M = 10011 and X = 0.425

that J is monotone in A for all 0 S C S 1. The graph of 0 vs. A is also found to be

monotone for these parameters (Figure 3.1). Thus increasing stretch corresponds to

both increasing stress and increasing fluid content. This situation holds so long as

J < J*.

A transition from a state of saturation to a state of nonsaturation occurs when

a:

eqbi’ and a unlque value of stress,J = J... This occurs at a unique value of A, say A

say oqu. For A Z qubi the value of J remains fixed at J... and the relation between

stress and stretch is now determined on the basis of (3.2). This gives F = A(e1 <81

él + e2 (8) e2) + (J*/A2)e3 8) e3 and

2 4

a = p [(1 —— C) (3— - 3%) + C (%_ —- 3%)] , (not saturated). (3.7)

It is to be remarked that the nonsaturated response does not depend upon h(J).

The solid curve in Figure 3.2 shows the saturated backbone curve 0' vs. A for

C = 0. The transition stretch qubz. can take on any value as determined by J..., and

three values of )‘qui are taken as examples. At each such Aquz. there is a transition

from saturated to nonsaturated response, and the associated nonsaturated response

curve that branches off of the backbone curve does so in a continuous but nonsmooth

fashion. The nonsaturated response involves an abrupt stiffening as evidenced by

the greater slope of the nonsaturated curve at the branch point. To be specific,

suppose A Z Aquz. so that the gel is not saturated because insufficient liquid is

available. Consider the difference in the value of stress for the nonsaturated response

and the value of stress for a hypothetical saturated response had sufficient liquid been
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Figure 3.1: Stress-stretch behavior and volume-stretch behavior for equibiaxial load-

ing of a saturated gel with M = 100 and X = 0.425 showing the effect of different
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Figure 3.2: Stress-stretch behavior for equibiaxial loading with M = 100, x = 0.425,

and 5:0. Three nonsaturated response curves are depicted. Each nonsaturated

response branches off of the saturated response “backbone curve”.

available. This difference is

anon - 0m = [#(1- MG; —- 9] + [Egg-9t! — m]

+[ta4(71; _. 9] + [gt] — M],

where J in the above expression is the saturation value. Since J > L: if /\ > A211”.

(3.8)

it follows that each of the four separate bracketted terms in the above expression is

positive after loss of saturation. One therefore formally verifies that anon > Usat if

A > A:qbi' In addition, by differentiating the expression in (3.8) with respect to A and

then evaluating the result at A = qubi and J = J*, one obtains the slope difference

at the location where a nonsaturated response curve branches off of the saturation
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response curve. This calculation gives

d
2 4

d—X (Unon’asat) (AZAak = #[(1—€)(i2_+;11)+€(3_3+11§)]lAzqumglA=Azq

eqbz' bi

(3.9)

Noting that the bracketted term in the above expression is positive, it follows that

the sign of the above expression is determined by the sign of the derivative dJ/dA.

Since, as remarked above, J increases with A it follows that the slope difference is

strictly positive, thus quantifying the abrupt stiffening.

Returning to Figure 3.2 it is observed that two of the three nonsaturated response

curves depicted in this figure involve values of A that give (7qu > 0. For these two

J* there is sufficient liquid for free swelling and the resulting loss of saturation occurs

once 0 increases to (7qu > 0. The third nonsaturated response curve depicted in

Figure 3.2 involves a value Jag that gives (7qu < 0. In this case there is insufficient

liquid for free swelling to proceed to its saturated value. Thus the value a = 0 occurs

on a nonsaturated response curve. A biaxial compressive stress will, in this case, give

a response that proceeds down the nonsaturated curve until it joins the saturated

backbone curve. The resulting transition from nonsaturated to saturated response

now involves an abrupt softening in the Cauchy stress response.

3.2 Uniaxial Stress

This is the specialization a' = ael 63> el and we again restrict attention to defor-

mations that preserve the loading symmetry so that F = Ael (8') el + \/ J/A(e2 (8) e2 +

93 8) e3). For a saturated gel it follows from (3.1) that

2

,u [(1 — 0% + 2§A] + h(J) = a, (saturated), (3.10)
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and

u[(1-—§)31\-+ {(A + 31-15)] + h(J) = 0, (saturated). (3.11)

The latter provides the kinematic relation between J and A (Figure 3.3(b)) while the

former then gives the relation between uniaxial stress a and stretch ratio A (Figure

3.3(a)). The graph of stress vs. stretch again passes through the free swelling point

(A,o) = (C,0). The predicted behavior associated with the possibility of squeezing

out all of the liquid in uniaxial stress again requires the consideration of J —+ 1. For

h given by (2.8) it is again found that A —» O as J —» 1. In particular, one finds that

A ~ 0([1n((J — 1)-1)]-1/2) if 0 < 5 g 1, while A ~ 0([ln ((J — 1)-1)]-1) if g = o.

In all cases or —+ —-00 as A —+ 0. As regards the overall stress behavior, we find that a

is monotonically increasing with A when M = 100p and X = 0.425 for all 0 S 5 S 1.

For E = 0 it is found that the volume increases monotonically with axial stretch

(viz. Figure 3.3(b)). Thus, as in the case of equibiaxial stress, there will be a loss of

saturation when J = J... The stress vs. stretch response must then be determined

using (3.2). This gives

A2 1 J*
a = ”(7; — -/\-) (l — g + £7), (not saturated). (3.12)

Even though we are currently considering the case g = 0 we have, for the sake of later

discussion, given the more general expression in the above equation. Returning again

to the case g = 0, the associated nonsaturated response curve can again be regarded

as branching off of the backbone saturated response curve. As shown in Figure 3.4,

each nonsaturated response curve is well separated from the backbone curve. Indeed

as A ——> 00 the .5 = O specialization of (3.10) and (3.11) give

1

J ~ (MG — x))1/2A1/2 + -3—- + 0(AFI/2), (6 = 0, saturated),

(3.13)
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Figure 3.3: Stress-stretch behavior and volume-stretch behavior for uniaxial loading

of a saturated gel with M = 100 and x = 0.425 showing the effect of different 5.
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and

  #1 3/2 _ 2M 1/2 _
0 ~ _ 1 2A _ _ 2A + 0(A ), (E — 0, saturated).

(Mg ‘20) / 3M(1 2x)

(3.14)

Specifically, the Cauchy stress for the saturated gel is 0(A3/2) as A —> 00. In contrast,

(3.12) indicates that the Cauchy stress for the nonsaturated gel is 0(A2), which

accounts for the increasing separation between the response curves in Figure 3.4.

It is useful to note that the separation between the saturated and nonsaturated

stress response for the € 2 O gel is not present in the corresponding first Piola-

Kirchhoff stress. Recalling (2.16) it follows that this stress is T = Tel <8) e1 with

T == 0.]/A. It then follows from (3.10) and (3.11) that the large stretch Piola—Kirchhoff

stress response of the saturated 6 = 0 gel is

)1/2A_3/2 + 00—2), (g = 0, saturated). (3-15)TWA-#096 -x)

Turning to the first Piola—Kirchhoff stress response of a g = 0 gel that is not saturated,

it is immediate from (3.12) that

Jar
A2 , (5 = 0, not saturated). (3.16)T=,uA——/1

Thus the saturated and nonsaturated Piola-Kirchhoff stress response have the same

leading order behavior as A —> 00. Moreover, the separation between the saturated

and nonsaturated Piola-Kirchhoff stress response curves is 0(A“3/2) as the stretch

increases, and hence vanishingly small. Since first Piola—Kirchhoff stress directly scales

with applied load in a standard testing device, it follows that such a testing device may

have difficulty distinguishing between saturated response and nonsaturated response.

The situation is even more complicated for O < E S 1 since we find for this case

that J exhibits a local maximum, say Jmax, at a finite value of uniaxial stretch.
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and 6=0. Three nonsaturated response curves are depicted.
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If Jmag; < J... then there is always sufficient liquid for the gel to remain saturated.

However if Jmaz > J... then the saturation value of J will be greater than J... on a finite

*

interval of stretch, say Aum—A < A < A* -B where the endpoint values A*
uni- uni——A ’

AZm-_B correspond to J = J... in uniaxial loading. On this interval the nonsaturated

response is given by (3.12). The nonsaturated response curve therefore branches off

of the backbone curve at Aim;A and rejoins the backbone curve at )‘ikmi—B' This

is shown in Figure 3.5, where it is to be remarked that the separation between the

g = 1 saturated and nonsaturated stress response is difficult to distinguish (unlike

the 5 = 0 case shown in Figure 3.4).

By a development parallel to that giving (3.8) one may show that any nonsat-

urated uniaxial response curve is above the backbone saturated uniaxial response

curve. The change in slope where a nonsaturated response curve connects to a satu-

rated response curve can also be found by the type of development that led to (3.9)

for the equibiaxial case. The corresponding result for uniaxial stress is

$9110" ’030t)l,\=i*:“l(1_§)_:+12ll,\=.\*n.d,\l,\.—_A;m' (3‘17)
uni

The Sign of this expression is again determined by the derivative term dJ/dA. This

derivative is positive at A*um._—A and negative at A*um._8‘ Thus, under increasing

stretch, an abrupt stiffening occurs in the Cauchy stress for both the loss of saturation

transition at A*m_—A and for the regain of saturation transition at Aum._B'

3.3 Experimental Validation

In this section, we refer to R. Monroe’s experimental data obtained by uniaxial

stretch tests on hydrogels [74] in order to validate hyperelastic constitutive models

of the type presented here. Monroe constructed a uniaxial load frame that performs
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individual or coupled experiments of stretching and swelling. The results shows the

monotone stress stretch behavior of hydrogel in the uniaxial loading tests (Figure

3.6(a)). Monroe found that the hydrogel volume increases with the applied load until

it achieves maximum swelling (Figure 3.6(b)). After that, further increase loading was

found to make the hydrogel shrink. This non-monotone volume change behavior is

consistent with the prediction of our hyperelastic constitutive model (c. f. Figure 3.3)

with a selected combination of material constants (0 < 6 S 1, M = 100, x = 0.425).

One of the main goals in [74] is to determine the material parameters from

both saturated and unsaturated testing, and then fit the stress-stretch constitutive

equations that are derived from the same free energy function as in (2.11). However,

to fit best with the experimental data, instead of using the form of (2.13), Monroe [74]

chose an alternative free energy model (Ogden Model) for the elastic free energy (I):

N p- a a a

<I>AAA= JAiAiAi- .1(1.2.3) ;Qi(1+2+3 3) (38)

where Iii and a,- are material parameters obtained from fitting data.

In this work we use the Mooney-Rivlin form for the convenience of numerical

calculation, but it is the general approach to introduce different material models as

well as material parameters to make the theoretical prediction in consistent with the

realistic mechanical behavior of hydrogels that are composed of different polymers

and solvents.

3.4 Equitriaxial Stress

This is the specialization a' = 01 with F = J1/31. The relation between a and

J then follows from (3.1) and (2.8) as

a = .1[(1 — g)J‘1/3 + 2§J1/3] + M[J_1 + XJ_2 +ln(1— J—1)]. (3.19)
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Figure 3.6: Stress-stretch behavior and volume-stress behavior for uniaxial testing of

a saturated gel as given by R. Monroe in [74].
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Thus (3.19) with a = 0 and J = 1/1/f3 retrieves (2.14). As one would anticipate,

a > 0 implies J > 1 /1/f3 and vice-versa. Consider again M = 100 and X = 0.425.

The graph of 0 vs. A = J1/3 is then found to be monotonically increasing provided

5 > 0.038. However if 6 < 0.038 we find that the graph of 0 vs. A exhibits a stress

maximum (Figure 3.7). For 0 < § < 0.038 the stress maximum is followed by stress

minimum, after which the stress is once again monotonically increasing. For 6 = 0

the stress is monotonically decreasing to zero as A —+ 00.

Similar behavior occurs for values of M = M/u and X that are close to (M, X) =

(100, 0.425). Specifically, it is found that the graph of 0 vs. A = J1/3 is monotonically

increasing for all A only if g is greater than a critical value €cr2't- This critical value

varies with both M and X (see Figure 3.8). For certain values of M and X it is

found that €crit = 1 meaning that there always exists a local maximum in the stress

response for equitriaxial loading. This occurs for example if M = 100 and X 2 0.752

as can be seen from Figure 3.8(b).

As is well known in hyperelasticity in general, nonmonotone stress response be-

havior of the type encountered here when M = 100, X = 0.425, and 0 S 5 < 0.038 is

implicated in various loss of stability phenomena. Such issues are beyond the scope of

this dissertation. In contrast, for M = 100, X = 0.425, and f > 0.038 no such issues

arise. Then, J increases with a and loss of saturation occurs at the constraining value

J = J... when a = agqm. s ”((1 —§)J,._ 1/3+2§J3/3]+M[J:1+XJ;2+1n(1—J;1)].

For a Z azqtm. no additional expansion is possible, and the deformation gradient is

therefore stalled at F = Ji/3I. The reactive pressure —p in (3.2) then renders the

equitriaxial stress 0 as formally indeterminant for J = J... (see dashed curves in Figure

3.9).
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are monotonic. For 0 < E < 0.038 the graphs are decreasing on a finite interval in 5.
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3.5 Some Energy Considerations

We close this section on homogeneous deformation with some remarks upon

the energetic aspects of saturated response vs. nonsaturated response. A standard

expectation would be that a saturated response would minimize an appropriate energy

with respect to all nonsaturated responses, since the former is able to take on any

value of J. We consider this issue in the context of uniaxial response, since that case

offered the intriguing behavior such that, for certain 5, there could be a load induced

loss-of—saturation followed later by a load induced regain-of-saturation. Following the

previous development in Section 4.2, we again restrict attention to deformations that

preserve uniaxial symmetry and we also assume that there is sufficient liquid for a

saturated free swelling.

Consider a unit cube that is oriented with respect to (e1, e2, 93) prior to swelling

and prior to the application of load. After free swelling, let the two sides with normal

e1 be subject to a uniform normal traction with resultant normal force P and let

the four remaining sides be traction free. The cube is deformed into a rectangular

parallelepiped with stretch ratios A1 = A and A2 = A3 = m. One may distinguish

between either a hard loading device or a soft loading device. In the hard device, A

is regarded as given. For the soft loading device, P is regarded as given.

The energy to be minimized for the hard device is simply the stored energy

density as given by the integral of W(F) over the reference configuration. Since the

reference configuration is the unit cube, it follows from (2.11) that

Ehmd = EhardO‘i J) E 00.2 + 2J/A, 2AJ + J2/A2, J) + H(J). (3.20)

For (I) given by (2.13) the expression for Ehard is

2

Emma, J) = §[(1—g)(12 + 3; —- 3) + 5(2JA + $ — 3)] + H(J). (3.21)
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For the hard device, one minimizes EhardO‘v J) with respect to J at fixed A. Formally,

the first step in the minimization involves seeking solutions to

3 _

37Ehard : 01 (3-22)

which gives an equation for J provided that J obeys J S J... Notice that (3.22) with

(3.21) retrieves (3.11).

The soft device energy expression differs from the hard device expression by

subtracting the work that is done on the gel by the loading device. This represents

the change in potential energy of a conservative loading device so that the system

under consideration involves both gel and loading device. The work of the load P on

the unit cube is P(A — 1) so that

Esoft = Esoft(’\v J1 P) E E'hard(’\a J) — P(A — 1)- (323)

For the soft device, one minimizes E30ft(A, J, P) with respect to both J and A at

fixed P. Formally, the first step in the minimization involvas seeking solutions to

(9 6

WEsoffio, and aEsoft=0 (3.24)

Using E30ft = Ehard — P(A — 1) it follows that (3.24) is equivalent to

a - 3 -

57Ehard = 01 and aEhard " P = 0' (3’25)

Since P = 0A2A3 = 0.]/A one verifies for (I) given by the Mooney-Rivlin form (2.13)

that (3.25) is the same as (3.10) and (3.11).

Thus both the hard and soft device analysis retrieves the saturation relation

(3.11) between A and J for uniaxial stress. This is a standard type of argument
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in hyperelasticity, although in the present context of a saturated gel it permits the

determination of the fluid fraction (1 — 1/J). In addition, the soft device analysis

gives the load that is necessary to support this deformation. These relations hold so

long as J S J... If, however, the solution to the above equations require that J > J...

then the minimization is found to be given by taking J = J.... In this case the gel is

not saturated. Viewed in this fashion, the nonsaturated minimization occurs on the

boundary of the minimization domain. It follows that a nonsaturated solution can

never provide a lower minimum than that of the saturated solution, since the saturated

minimization is able to explore a larger space of J values. Such considerations arise

generally if a hyperlastic material is composed of a mixture of substances where one

or more of them (here the liquid) is in limited supply.

For specified A, let the solution to (3.22) be J = Jsat(A). Figure 3.10(a) displays

Ehard(A,Jsat(A)) vs. A for the standard constitutive forms (2.5) and (2.13) with

5 = 1. This is the hard device energy associated with liquid saturation in uniaxial

stress. This panel also displays the nonsaturated hard device energies Ehard(’\1 J...)

that are associated with the transitions previously displayed in Figure 3.5. The

nonsaturated gels involve more energy than the saturated gel, although it is a small

effect in the figures. The saturated hard device energy EhardO‘a Jsat(A)) takes on its

smallest value at A = C which corresponds to free swelling.

In this context it is instructive to consider the graph of uniaxial load P as a func-

tion of A for both saturated and nonsaturated response, again using the constitutive

forms (2.5) and (2.13). The relation between P and A for saturated response follows

from (3.10) and (3.11) using P = aJ/A. The graph of this relation now supplies

a backbone curve. The corresponding relation between P and A for nonsaturated

response follows from (3.12) using P = OJ... /A. Since the reference area of the unit

cube is unity, it follows that the load P is simply the first Piola—Kirchhoff stress T,

which we recall appeared previously in (3.15) and (3.16) for the case of the 5 = 0 gel.
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Figure 3.10: Comparison of a saturated and a nonsaturated gel under uniaxial load.

On the left is a comparison of the hard device energy expression. On the right is the

resultant force as a. function of stretch. As in Figure 3.5 the constitutive parameters

are given by M = 100, X = 0.425 and 5 = 1. The transitions are taken to occur at
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For general 5 it follows on the basis of the above considerations that

P... — 3... =.L(J—J*)[(1—€)$+€(Jj\%l- —1)]. (326)

Here J = J(A) follows from (3.11), and so is given by the function J = Jsat(A) as

defined above.

Consider again the case that is associated with Figure 3.10 in which the nonsat-

a:

urated response is confined to the interval A;m-_A S A g A;111—B where Auni—A

and Aim;B depend upon J.... The graph of the P vs. A saturated backbone curve is

depicted in Figure 3.10(b) along with the nonsaturated P vs. A curves on the finite

intervals of nonsaturation. The nonsaturated curves depart and rejoin the backbone

*

uni—B' It is noted however that there is an intermediatecurve at )‘fini—A and A

value of A at which each nonsaturated curve crosses the backbone saturation curve.

The nonsaturated response is first above the saturated response and then below the

saturated response. It follows from (3.26) that the crossing value of A is a root to

(1— 5)/A2 + 5((J... + J)/A3 — 1) = 0. This crossing value of A depends on J... and we

find that it occurs before the value of A that gives Jmax for saturated response.

Here it is useful to note that the ordinary derivative of EhardO‘, Jsat(A) with

respect to A gives, after use of the chain rule and application of both results from

(3.25), that

P = diAEhardo‘i J3at(A)), (saturated). (3.27)

The corresponding result for the nonsaturated force-stretch response at any fixed

value J... is given by

P = deEhardmv J...), (not saturated). (3.28)
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Combining (3.27) and (3.28) gives a generalization of (3.26) in the form

(I — _ _

Prion - sat : a (Ehard(’\v 11*) _ Ehard(A: Jsat(/\)))- (329)

We may use (3.29) to show that the crossing exhibited in Figure 3.10(b) is not

tied to the particular constitutive forms (2.5) and (2.13). Consider any H(J) and

<I>(Il,12,J) such that the saturated uniaxial response gives a local maximum in

the relation between J and A. In such a case, if J... as given in (2.10) is some-

what less than the maximum value of J, then there will be an interval of nonsat-

uration which will again be denoted by Azm;A S A S Afmi—B’ In particular,

Jsat(A;m-_A) = Jsat(A;m-_B) = J... Integration of (3.29) now gives

 

Aflni—B A*

(Pnon — sat) d’\ = (EhardO‘: J*) _ Ehard(’\1jsat(’\)) Aunt—B = 0 _ 0 = 0'

* uni—A

uni—A

(3.30)

It thus follows that there is zero net area between the saturated force curve and each

nonsaturated force curve on the finite interval of nonsaturation. Thus crossing of the

saturated and nonsaturated force-stretch response curves must occur within the finite

interval of nonsaturation.

3.6 Summary

In this chapter, we discuss homogeneous deformation of swollen elastomeric gels

based on the hyperelastic constitutive theory described in Chapter 2. To do this,

we distinguish between the liquid saturation and the situation of loss of liquid satu-

ration. Equibiaxial loading, uniaxial loading, and equitriaxial loading problems are

then considered in turn.
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o For equibiaxial loading, it is found that for M = 100p and X = 0.425 that the

both 0‘ and J is monotone in A for all 0 S 5 S 1. Thus increasing stretch leads to

both increasing stress and fluid absorption as long as the gel is saturated. When

a transition from saturation to loss of saturation occurs, the gel’s overall volume

is then fixed (J = J...). Further increasing stress could continue monotonically

increase the equibiaxial stretch but resulting in a stiffer response than in the

saturated case. It is also found by analytical derivations that for the possibility

of squeezing all of the fluid out of the gel (J = 1), the equibiaxial stretch A has

to approach 0 and the corresponding stress much be negative infinite.

o For uniaxial loading, it is found that a is monotonically increasing with A when

M = 100p and X = 0.425 for all 0 S 5 S 1. The volume also increases

monotonically with axial stretch for 5 = 0. However for the cases with 0 <

5 S 1 we find that the volume change ratio J exhibits a local maximum at

a finite value of uniaxial stretch. Corresponding experimental results are also

compared and qualitative consistence is obtained with the theoretical prediction

in this work. The non-monotone behavior could result in a phenomenon of the

nonsaturation bifurcation where the nonsaturated response curve first branches

off of the saturated curve and later rejoins it. Analytical derivatives again shows

that for all casesa——> —00 and A—->0as J-—* 1.

o For equitriaxial loading (J = A3), the stress is found to be monotonically in-

creasing if 5 > 5a.“, and exhibits a stress maximum if 5 < 56”}. This critical

value varies with both material parameters M and x. The bifurcation of stress

stretch curves is also discussed but it is trivial since no further equitriaxial

stretch is possible as the gel’s overall volume is fixed (J = A3 = J...).

o The attempt of explaining the load induced loss-of-saturation followed later

by a load induced regain-of-saturation in the case of uniaxial loading from the
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energetic viewpoint is made. The energy-stretch relation is consistent with the

stress-stretch relation previously obtained.
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Chapter 4

Eversion of a Swollen Cylindrical

Tube

The eversion problem of a hyperelastic tube was first presented by Rivlin [75]

for what is now known as the Mooney-Rivlin constitutive law. It was found that,

in general, zero-traction boundary conditions could not be achieved pointwise at the

two ends, for the assumed cylindrical deformation. This motivated Rivlin to employ

zero end resultant load conditions instead. Varga [76] gave experimental examples

for the eversion of different cylinders. Results showed that the the everted tube is

approximately cylindrical in the region away from the two ends.

Haughton and Orr studied the eversion of both incompressible [77] and compress-

ible [78—80] hyperelastic cylinders. The existence and uniqueness of the solutions to

such problems were discussed for the materials with a class of free-energy functions

proposed by Ogden [52]. In [78], an exact solution that satisfied zero—traction point-

wise boundary conditions both at the lateral surfaces and the two ends was obtained

for a particular compressible hyperelastic material. The specified strain-energy func-

tion led to a 1-D second order ordinary differential equation that could be solved

analytically. The analytical solution also shows an interesting result that the ratio

of the inner and outer deformed radii is equal to the ratio of the undeformed radii.

Several other material models including the class of ’Varga’ materials were considered

for this eversion problem in which case only numerical solutions could be obtained.
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For the more general material models associated with the so-called semi-linear

strain—energy function there exists an analytical solution to the equilibrium equation

of cylindrical deformation. Specially, a new way of producing the analytical solutions

to this eversion problem was presented in [79]. This is involved replacing a number in

the equilibrium equation of the deformation r(R) by a constant parameter in order

to generalize the equation involving r(R). Then by working backwards, a class of

energy functions that would generate analytical solutions was obtained.

Furthermore, Chen and Haughton [80] studied the eversion problem for com-

pressible cylinders with the following boundary conditions: free traction at the two

ends and outer surface; either a zero traction (cavity remains open) or displacement

(closed cavity) boundary condition is specified at inner surface. They proved math-

ematically in [80] that exact solutions to the equilibrium equation with cylindrical

eversion deformation exist if two conditions are satisfied, namely: (1) the cavity re-

mains open during the eversion; (2) the strain-energy function of the hyperelastic

material can be written as the sum of three minor functions each of which depends

only on one of the three principal stretches.

4.1 The Inhomogeneous Deformation of an Everted

Tube under Axial Load

In this Chapter, we consider the inhomogeneous deformation of an everted tube

under axial load based on the hyperelastic continuum theory described in Chapter

2. For inhomogeneous deformation, the spatially varying stress field must satisfy the

equations of equilibrium (2.17). For the constitutive forms (2.5) and (2.13) the Cauchy

stress tensor is given by either (2.23) or (2.24) depending on whether the material is

saturated or not saturated. The only difference between these two formulae is due to

the presence of p in the nonsaturated Cauchy stress (2.24). Recalling that this p does

not vary with location, it follows that div( -pI) = —Vp = 0. Thus the equilibrium
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equations diva = O are the same whether the gel is saturated or not saturated.

The distinction in mechanical response is due to the requirement (2.20) which causes

the gel to obey the constraint V = Vpoly + Vliq (viz. (2.18), (2.19)) when it is no

longer saturated. In the formal mathematical procedure, this constraint is met by

the presence of p in the boundary conditions. These issues will be demonstrated for

the inhomogeneous deformation of an everted tube subject to axial load. We shall

continue to use the Flory-Huggins constitutive form (2.5) for H and the Mooney-

Rivlin constitutive form (2.13) for (I).

4.1.1 Formulation of the Everted Tube Problem

Consider a hollow circular cylinder using polar coordinates in the reference con-

figuration Slx with

RingRo, 0S9<27r, OSZSL, (R0>R,->0). (4.1)

Let it then be immersed in the fluid. In the absence of external tractions the gel

undergoes free swelling. Provided that sufficient liquid is available for saturation, the

deformation of the freely swollen gel cylinder is described in polar coordinates (7°, 6, 2)

as

f=CR 0:9, zzgz am

Here 5 is again the free swelling stretch ratio as defined in (2.15).

Next, the swollen cylinder is everted (turned inside-out). The resulting defor-

mation is described with respect to polar coordinates (130,2) obeying r,- S r S r0,

0 S 0 < 27r by

rsz) 0=a z=-Afi, dz>m. as)

The value A; is the mechanical stretch ratio in the axial direction, and will be called
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mechanical stretch for short.

Combining (4.2) and (4.3) gives the transformation from the unswollen state

(R, 9, Z) to the swollen everted state (7‘, 6, z):

r = f(CR) = r02). 0 = a = e. z = —A.z. (4.4)

with

riSrSro, 0S0<27r, —lSzS0, (4.5)

where A; = AZC > 0 and l = AZL. The presence of the minus sign in the expression

for z in (4.3) gives rise to the eversion, and we seek solutions such that f’ < 0 so that

r' < 0. In particular, it follows that

r(R,) = r0, r(R0) = ri. (4.6)

For now, A; is regarded as a free parameter. It will ultimately be associated with the

axial load on the ends 2 = —l and z = 0.

The deformation gradient tensor associated with the mapping (4.4) is F = r’er ®

9R + (r/R)e0 <8) e9 — Azez (2) e2 where er, e9, ez and eR, e9, e2 are respectively the

cylindrical polar unit basis vectors in the deformed and reference configurations, and

r’ = dr/dR. It then follows that

11 = .12 + (32,-)2 + 13, 12 = (iffy + (r'Az)2 + (%,\z)2, J = -:;%Az.

(4.7)

For the constitutive relations (2.13) and (2.5) it follows from (2.23) that, for saturated

response, there are no shear stresses and that the normal stresses are given by

R

[1.1.2:] [<1 - 5) +41%)? 4193141 M [1...]; ”(ng +1“ (1+ 12'»
(4.8)

   

Orr:—
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  009 = —AzR————,[(1—5)+5A2+5r'2]+M[A::,+x(R—§—7J)2+ln (1+A:T,)], (4.9)

_#R)\z
  

0” = [(1 _ 0+8” ”(5)0 +MlA:"7:7 +X(A:.~')2 +1“ (1+ 1%)]

(4.10)

For nonsaturated response a common constant p is to be subtracted from these normal

stress expressions.

With the above stresses, the equilibrium equations associated with the t9 and 2

directions are satisfied identically. The equilibrium equation associated with the r

direction is

[<1 -€> 4.52.521 +1415: ...._..2... l}

-%[<1-€>+e%l [1”- (32] =0-
(4.11)

  

53-12-21.    

The lateral surfaces of the everted tube are taken to be free of external tractions so

that

arr(r,-) = 0, 0'1‘1‘(T0) = 0. (4.12)

Rearrangement of (4.11) yields a second order ODE for r(R) in the form

25%[32—(r’R—r)+ [0-0+ {flue—551+ (7V1?)F(R.~.~ A.)

21" [(1—5)+5(—2+A2)]+ Afz—F (R,,rr’, Az)

 

II

T =—

(4.13)
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where the function F(R, r, r' , A z) is defined by

 F(R,r,r',AZ) = — —

1J2 [(1_§)+§(§2+A3)] M 1 2X

J . (7..—

and J is given by (4.7)3. Thus (4.13) with (4.12) provides an apparently well posed

problem for r(R). The solution describes an everted cylinder of saturated material

so long as the condition (2.20) is met. The solution is dependent upon constitutive

parameters: u, M, X, 5, and upon the stretch parameter A3.

The solution to this problem will generally give a radially varying an. In partic-

ular, a condition of 022 being identically zero is not anticipated for any combination

of parameters. This is connected to the observed behavior in eversion type defor-

mations on rubbery materials mentioned at the beginning of this chapter. Namely,

some flaring out of the top and bottom of an everted cylinder are observed in the

absence of any tractions on the top and bottom surfaces. Thus the observed traction

free deformations are not in accord with the simple eversion deformation (4.3). This

suggests that tractions on the top and bottom surface caps would be necessary to

sustain the simple eversion deformation. The deformation constructed on the basis

of (4.13) with (4.12) is consistent with these expectations.

The normal stress 022 generates an overall axial force on the everted cylinder.

Normalizing this axial force by the original surface area of the caps gives

27r T0

—-—— razzdr. (4.15)

W(Rg - R12) Ti

Pcap E

It is to be noted that r,- and r0 defined in (4.6) are unknown before the solution is

obtained. For fixed material parameters, Pcap will depend upon Az. The force-stretch

relation Pcap vs. Az is analogous to the homogeneous deformation relation in uniaxial

stress between P and A discussed in Chapter 3. Recall that this is given in general by
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(3.27), where the specialization to the Mooney-Rivlin constitutive form uses (3.21). In

particular, one may then compare the relation between P and A obtained from (3.27)

with (3.21), to the relation between Pcap and AZ obtained on the basis of (4.15)

after the solution of (4.12) and (4.13). The former gives the force-stretch relation

for the cylinder before it is everted so long as it remains saturated. The latter gives

the force-stretch relation for the cylinder after it is everted so long as it too remains

saturated.

4.2 Numerical Results for a Saturated System

We have integrated the differential equation (4.13) after suitable nondimension-

alization by means of a fourth order Runge-Kutta method using the same material

parameters: X = 0.425, M = M/u = 100 that were employed in the homogeneous

deformation study. A shooting procedure was used to meet the two point boundary

conditions. The unswollen configuration was taken to involve Ro/Rz- = 2. Calcula-

tions were performed for different values of 5 and hence different values of the free

swelling stretch 5. For each such 5, the problem was solved numerically for a sequence

of AZ, which it is recalled is the mechanical portion of the mechanical stretch ratio

that appears in (4.3).

Radial deformation of the everted cylinder is shown in Figure 4.1 (a) and (c) for

the respective cases 5 = O and 5 = 1. Here the horizontal axis represents dimen-

sionless radial coordinates R E R/R.,- in the reference configuration while the vertical

axis gives the dimensionless radial coordinates 1“ E r/(CRi) in the deformed config-

uration. As A; increases, it is found that both the deformed inner and outer radii

decrease, which is consistent with the expectation of a transverse contraction under

axial extension. Figure 4.1 (b) and ((1) shows the radial variation of J (normalized

by 53) which gives the gel’s local volume change and hence the amount of fluid ab-
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sorbed into the cylinder. It is to be noticed in panels (b) and (d) that the horizontal

axis represents the deformed radial coordinate F and so the curves start and end at

different locations on the horizontal axis. For each value of mechanical stretch Az,

the volume change is relatively greater near the outer periphery, indicating that the

volume fraction of liquid increases with radius in the everted cylinder.

Graphs of the normal stresses are displayed in Figure 4.2 for both 5 = 0 and

5 = 1 at a variety of mechanical stretches A3. Note that arr < 0 in the interior of the

everted cylinder. The hoop stress 066 is found to be compressive in the inner portion

of the cylinder and tensile in the outer portion (which is broadly consistent with the

notion that the liquid is “squeezed” toward the outer portion). The axial stress azz

also exhibits radial variation and correlates with stretch Az in the anticipated fashion.

The qualitative form for all of the curves is shown to be quite sensitive to the value

of 5.

The relation between A2 and Pam as defined in (4.15) is shown by the solid

curves in Figure 4.3(a) and Figure 4.3(c) for 5 = 0 and 5 = 1, respectively. These

are compared with the uniaxial loading (without eversion) as represented by the

dashed curves in the same panels. For the neo—Hookean type gel (5 = 0), the everted

cylinder undergoes greater elongation at a given load than does the uneverted cylinder.

However, the opposite occurs for 5 = 1. Panels (b) and (d) of Figure 4.3 show how the

total cylinder volume varies with mechanical stretch, again for the respective cases

5 = 0 and 5 = 1. Specifically, the total volume as given by (2.19) is normalized by

the free swelling volume (solid curve), and compared to the normalized volume of

the uneverted cylinder (dashed curve). The total volume of the uneverted cylinder is

determined by the value of J in the homogeneous deformation for uniaxial stress. This

value of J was previously displayed (vs. overall stretch) in Figure 3.3(b) using the

now standard constitutive parameters M = 100 and X = 0.425. Recall for uniaxial

stress that the relation between J and stretch was not monotonic for 5 > 0. Thus
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(c) 1‘ versus R for 5 = 1

Figure 4.1: Radial deformation (7" = r/(CR,)) and local volume change ratio as a

function of radial position. As in previous figures, M = 100 and X = 0.425. The

cylinder geometry is such that R, = 2R,-.
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Figure 4.2: Radial distribution of normal stresses for the everted cylinder with R0 =

2R,- using the same material parameters as in Figure 4.1.

the dashed curve in Figure 4.3(d) is not monotonic. It is to be observed from panel

(b) of Figure 4.3 that the everted cylinder for 5 = 0 preserves the monotonic relation

between volume and stretch that was found in the uneverted cylinder. Similarly,

panel ((1) of Figure 4.3 shows that the everted cylinder for 5 = 1 gives a relation

between volume and stretch that is not monotonic as was the case for the uneverted

cylinder with 5 = 1. It is also interesting to note for both 5 = 0 and 5 = 1 that the

total volume of the everted cylinder is less than that of an uneverted cylinder at the

same value of stretch. Thus for both 5 = 0 and 5 = 1 the everted cylinder holds less

fluid than the corresponding uneverted cylinder.

The form of the volume vs. stretch curves in panels (b) and (d) of Figure 4.3

have immediate consequences as regards the possibility of loss of saturation. The

results mirror the corresponding results for the uneverted cylinder, since the everted

and uneverted curves in each panel display the same qualitative form. In general, the
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Figure 4.3: Resultant axial force as a function of mechanical stretch and total volume

as a function of mechanical stretch for both the everted cylinder and the uneverted

cylinder using the same material parameters as in Figure 4.1. For the everted cylinder,

the reference geometry is again such that R0 = 2R4.
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saturated solution holds provided that

«Azurg — r?) 3 «L023 — R?) + vhq, (4.16)

where it is recalled that A2 = 5‘25. We now consider differences that occur for the

respective cases 5 = 0 and 5 = 1 which stem from the different qualitative forms of

the curves in panels (b) and (d) of Figure 4.3.

Consider first the material with 5 = 0. The monotone curve for the everted cylin-

der in Figure 4.3b then indicates that an everted cylinder of the 5 = 0 material will be

saturated if ;\z is less than a critical value. Conversely, the everted cylinder will not

be saturated if 3‘; exceeds the critical value. The critical value of mechanical stretch

is dependent upon the amount of available fluid, and can be directly determined with

the aid of Figure 4.3(b). It is to be noted from this figure that, for a given amount of

fluid, the transition value of mechanical stretch for the everted cylinder exceeds the

transition mechanical stretch value for the uneverted cylinder.

Consider now the material with 5 = 1. Then the graphs of volume vs. stretch

for both the everted cylinder and the uneverted cylinder each have a local maximum.

Consequences for the uneverted cylinder were discussed in Section 1 and similar con-

siderations apply to the everted cylinder. Thus the everted cylinder will be saturated

for all values of stretch if the amount of available fluid exceeds that associated with

the value of the local maximum. If less than this amount of fluid is available, then

there will be an interval of stretch for which the everted cylinder is not saturated. It

is to be noted from Figure 4.3(d) that the value of the local maximum for the unev-

erted cylinder gives V > st where st is the free swelling volume of the cylinder

before eversion. Conversely, the value of the local maximum for the everted cylinder

gives V < st. Consider therefore two identical cylinders, each of which is removed

from its liquid bath after free swelling so that the amount of fluid is fixed at the free

 

1See the paragraph between equations (3.16) and (3.17).
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swelling value. Let one of the two cylinders now suffer an eversion. This everted

cylinder will remain saturated for any value of axial stretch. In comparison, the un-

everted cylinder will immediately lose saturation if it is stretched a small amount.

However, if the stretch of the uneverted cylinder becomes sufficiently large, then it

too will regain saturation.

The above interpretation for a 5 = 1 gel is a consequence of the inequality

V < st holding for all values of stretch in the everted cylinder. More generally,

for 5 > O we find that the graph of stretch vs. overall volume continues to exhibit

a local maximum. However, as shown in Figure 4.4(a), the value of V at the local

maximum is found to be greater than the free swelling volume provided that this

positive 5 is sufliciently small. For these materials it follows that a quantity of liquid

just sufficient for free swelling gives rise to an everted cylinder that loses saturation

on a finite interval of stretch. The relation between force and mechanical stretch for

a saturated everted cylinder using the same values of 5 as in panel (a) of Fig. 4.4

is shown in panel (b) of this same figure. These serve as backbone curves for any

nonsaturated response. In order to display force vs. stretch curves associated with

loss of saturation it is necessary to solve the boundary value problem for an everted

cylinder that is not saturated. We consider this issue in the next section.

4.3 The Everted Cylinder that is Not Saturated

We now consider the consequences of a limited fluid supply for the eversion defor-

mation. Specifically, if the total volume of a saturated, everted cylinder is calculated

to be greater than Vpoly + Vh-q then there is insufficient fluid for the cylinder to be

saturated. The resulting nonsaturated solution obeys

liq
V

Mr?) —- r?) = (R3 — R?) + '5’ (4.17)
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Figure 4.4: Total volume after eversion as a function of mechanical stretch, and

resultant force as a function of mechanical stretch, for various values of 5, again using

M = 100, x = 0.425 and R0 = 2a,.
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where it is recalled A2 = ;\z5. As discussed previously, the stress equations of equi-

librium are unchanged from that for a saturated system. Thus the displacement field

r(R) is still subject to (4.13) where F is given by (4.14). The normal stresses are

modified by subtracting the common constant p from the saturated stress relations as

previously given in (48)-(4.10). Eliminating this constant between the two conditions

in (4.12) now gives

  

 

_Rz'7"z" _ 3 2 2 — -Rz' Ra 2 Hi _
Azm [(1 a) + £( 12,-) + gig] + M[1213-71 + fibrin!) + 1n (1 + —Azr,-r,-')] _

R070, 7'_0 2 2 - ‘R0 R0 2 R0
_ A270 [(1 — E) + €(R0) + éAz] + M[—Az7‘o’rol 'l' X(W) +111 (1 + —AZT'0(’I‘0’)]),

4.18

where Ti, = 7" (12,) and ro’ = r’(Ro). The second order ODE (4.13) is to be solved

subject to (4.17) and (4.18), after which 19 is obtained from (4.12).

For values Vh-q that cause the saturated solution condition (4.16) to be violated,

we have solved (4.13) using a double shooting method so as to meet both (4.17) and

(4.18). The solutions are dependent upon the mechanical stretch 3‘3 and the value

of Vh-q/rrL appearing in (4.17). Each such Vim/«L determines the range of 5.; for

which there is loss of saturation. As discussed in the previous section, the range of

nonsaturated 5‘; can be unbounded (as in the 5 = 0 example of Figure 4.3) or can be

confined to a finite interval (as in the 5 = 1 example of Figure 4.3).

Consider the material parameters associated with the 5 = 0 saturated solution

fields that were previously displayed in Figure 4.1 and Figure 4.2. The relation

between total volume and mechanical stretch for this material was displayed in panel

(b) of Figure 4.3. Since this relation is monotonically increasing, it follows that loss

of saturation could occur for any value of stretch. Following previous convention, this

transition value of stretch will be denoted )1: and the nonsaturated solution therefore

applies for 5.2 2 3;. Figure 4.5 displays the nonsaturated solution fields associated

7O



with this same material for the particular value of Vh-q that gives A: = 2.0. Thus

for this qu the curves in Figure 4.1 and Figure 4.2 corresponding to ;\z S 5‘: = 2.0

would continue to apply. However there would now be insufficient fluid to saturate

the everted cylinder when 5‘; > 2.0 and so the ;\z = 4.0 curves in Figure 4.1 and

Figure 4.2 would no longer apply. Instead, the solution fields for X2 = 4.0 are as

depicted in Figure 4.5. The solution fields for the nonsaturated everted cylinder

for other values of mechanical stretch 5‘; > x); are also shown in Figure 4.5. The

nonsaturated solution is identical to the saturated solution at the transition stretch

51; as is verified by comparison of the curves for 5‘; = 2.0 in Figures 4.1, 4.2 and 4.5.

As the mechanical stretch increases, comparison of Figure 4.2 and Figure 4.5 reveals

similar qualitative trends in the nature of the stress fields after loss of saturation.

In contrast, comparison of Figure 4.1 and Figure 4.5 shows qualitative differences in

the J field after loss of saturation. Specifically, the saturated solution gives values

of J that increase at each point in the everted cylinder. Hence all locations absorb

additional fluid as )1; increases so long as the gel is saturated. However, upon loss

of saturation, it is found that the value of J now decreases on the outer portion of

the cylinder (while continuing to increase in the inner portion of the cylinder). This

is shown in detail in the first panel of Figure 4.6. Thus, after loss of saturation, the

fixed amount of fluid within the cylinder exhibits a quasi-static migration from the

outer portion of the everted cylinder to the inner portion of the everted cylinder under

increasing mechanical stretch :\z.

In a similar fashion Figure 4.7 exhibits nonsaturated solution fields for the 5 = 1

material whose saturated solution fields were previously exhibited in Figure 4.1 and

Figure 4.2. The relation between overall volume and mechanical stretch for this

material is displayed in panel ((1) of Figure 4.3. Since this relation exhibits a local

maximum it follows that loss of saturation occurs on a finite interval of stretch. Again,

following previous convention, we denote the endpoints of this interval by X:_A and
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Figure 4.5: Deformation and stress fields associated with loss of saturation for an

everted cylinder with R0 2 2B,. The material parameters are M = 100, X = 0.425,

and 5 = 0. Loss of saturation is taken to occur at x); = 2.0. Thus the curves for

:\z = 2.0 are the same as the corresponding curves for 5 = 0 that were displayed in

Figures 4.1 and 4.2. For 3.3 > 2.0 the curves in this figure differ from corresponding

curves for a saturated gel.
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Figure 4.6: Local volume change J versus 5‘; for an everted cylinder with R0 = 2R,-

and material parameters M = 100, x = 0.425 and either 5 = 0 or 5 = 1. On the left,

5 = 0 and the loss of saturation corresponds to that depicted in Figure 4.5. After loss

of saturation, increasing stretch redistributes the finite amount of fluid from the outer

region to the inner region. On the right, 5 = 1 and the loss of saturation corresponds

to that depicted in Figure 4.7. For the nonsaturated cylinder, increasing stretch now

redistributes the finite amount of fluid from the inner region to the outer region.
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32—3 For the purposes of Figure 4.7, we take A};A = 0.8 which in turn makes

A:_B = 1.993. Once again, the fixed amount of fluid redistributes itself in a quasi-

static fashion as 3.2 varies in the interval A2;A S 5.2 _<_ 51:;B' In particular, as AZ

increases through this interval we find that fluid migrates from the inner portion of

the everted cylinder to the outer portion. This is shown in detail in the second panel

of Figure 4.6. For this material, after a return to saturation at X:_B, any further

increase in mechanical stretch gives a loss in overall volume, indicating that increasing

mechanical stretch now expels fluid from the everted cylinder.

Recall for the fluid saturated everted cylinder that the relation between axial

force and axial stretch was given previously in Figure 4.3 for both the 5 = 0 material

(panel a) and the 5 = 1 material (panel c). Loss of saturation causes the response

to depart away from this backbone response. The question therefore arises as to

whether this departure takes place in a manner that is similar to that which occurs in

the homogeneous deformation of uniaxial stress. Recall for the homogeneous defor-

mation of uniaxial stress that the departure of the nonsaturated axial force response

from the saturated backbone response was displayed in Figure 3.10(b) for the 5 = 1

material. The conspicuous feature of Figure 3.10(b) was that the nonsaturated axial

load response for the 5 = 1 material was first above, and then below, the saturated

axial load response. We find that similar qualitative behavior occurs for the 5 = 1

material as the everted cylinder is mechanically stretched. This is shown in Figure

4.8 where the difference between satuated and nonsaturated response is shown not

only for the case in which X:_A = 0.8, but also for two other cases corresponding to

A:_A = 0.9 and A:——A = 1.0.
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4.4 Summary

The problem of everting a swollen tube subject to axial loading is studied in this

chapter. The inhomogeneous deformation response of the axial loaded everted tube is

compared to the homogeneous deformation response of the axially loaded tube when

it is not everted. Both systems can transition from saturation to nonsaturation.

c As AZ increases, it is found that both the deformed inner and outer radii de-

crease, which is consistent with the expectation of a transverse contraction under

axial extension. For each value of 31;, the volume change is relatively greater

near the outer region, indicating that the volume fraction of liquid increases

with radius in the everted cylinder.

0 The overall volume is calculated for the everted tube, and compared with those

for an uneverted tube. It is observed that the everted cylinder for 5 = 0 pre-

serves the monotonic relation between volume and stretch that was found in

the uneverted cylinder, and similarly the everted cylinder for 5 = 1 gives a

relation between volume and stretch that is not monotonic as was the case for

the uneverted cylinder with 5 = 1. More generally, we found that the graph of

overall volume vs. stretch exhibits a local maximum as long as 5 > 0.

o The transition to loss of saturation is also considered for the axial loaded everted

tube. For 5 = 0 it is found that after loss of saturation the fixed amount of

fluid within the cylinder exhibits a quasi-static migration from the outer portion

of the everted cylinder to the inner portion as the axial stretch increases. For

5 = 1, since the volume-stretch relation exhibits a local maximum it follows that

loss of saturation occurs on a finite interval of stretch. As ;\z increses through

this interval we find that fluid migrates from the inner portion of the everted

cylinder to the outer portion.

79



Chapter 5

Twisting of a Cylindrical Tube

In this chapter we discuss the absorption and redistribution of fluid in hypere-

lastic gels due to twisting; and in particular distinguish between saturated and un-

saturated gel systems. To this end we consider a boundary value problem of radial

displacement combined with azimuthal shear for an annular cylinder consisting of

a fluid infused hyperelastic media. The effect of either boundary displacements or

boundary tractions is considered so as to study how this alters the uniform fluid dis-

tribution when the hollow cylinder is in contact with a fluid bath at both inner and

outer radii. Certain aspects of this problem were previously considered by Rajagopal

and Wineman [48] for the case in which the overall volume is held fixed. Here we con-

sider certain generalizations in which the lateral surfaces may undergo both prescribed

radial displacement and prescribed relative twist. In particular these generalization

permit volume change so as to allow for the consideration of both saturated states

and unsaturated states.

In order to compare with the numerical results in [48] it is convenient that the

elastic energy (I) is chosen to have the same form as in [48]:

<I>(11,12) = 5‘22 [11 — 3 + a(12 — 3)], (5.1)
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where he, > 0 and a 2 0 are material parameters. The case associated with a = 0

corresponds to 5 = 0 and a = 2110 in (2.13), whereas the case associated with a = 1

in (5.1) can be retrieved by setting 5 2 1/2 and [1 = 2110 in (2.13).

5.1 Twisting of a Saturated Tube

Consider a hollow circular cylinder of the gel described in the previous section.

Employ polar coordinates (R, 9,Z) in the reference configuration such that R,- ;<_

R g Ro,0 S 6 < 27r,0 3 Z s L with R,- > 0. This cylinder is immersed in a

liquid bath and, following Rajagopal and Wineman [48], let the coordinates (1", 6, 2)

describe the mapping associated with this free swelling:

f = (R, 0 = 9, :2 = (Z, (5.2)

where C = J}:3 is the free swelling stretch ratio. For H given in (2.5) and (I) in

(5.1), the free swelling volume change Jf3 is determined by (2.4). Wineman and

Rajagopal [48] using (5.1) for various 0 take

M = 2.379E7 dyne/cmz, pa = 2.375E6 dyne/cmz, x = 0.425 (5.3)

for a vulcanized rubber—toluene mixture. Figure 5.1 shows the the free swelling volume

change Jf3 and the free swelling stretch 5 as a function of a for the parameter values

in (5.3).

In what follows it is assumed that there is always sufficient liquid available to

support free swelling. In view of the conditions (2.18) - (2.20), this is a requirement

that

V1,, > (st — 1)V,,0,y = (<3 — 1)7r(123 — 12,2)L,

and the volume of the freely swollen cylinder is st = Jfszoly = (37r(R3 — R22)L.

81



 

 

   

2.

 C   
1
 

0 02 0.4006 0.8 1

Figure 5.1: Free swelling volume change Jfs and stretch 5 for different a on the basis

of (2.3) and (5.1) using (5.3).
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Now consider loading of the swollen cylinder. Following Wineman and Rajagopal

[48] attention is restricted to axially symmetric deformations that are described in

polar coordinates (7', 0, z) obeying r 2 O, O S 9 < 271' by

T = f(r), 0 = 5+ 5(f), z = X22. (54)

Combining (5.2) and (5.4) gives the deformation from the unswollen state with coor-

dinates (R, 6, Z) to the swollen loaded state with coordinates (r, 0, 2) as follows:

7' = f((R) = r(R), 6 = (i + 3((R) = e + g(R), z = AZZ, (5.5)

with AZ = izc.

The deformation gradient tensor for (5.5) is given by F = r’er 8) eR + (rg’)e9 <8)

9R + (r/R)eg (8) e9 + Azez <8) eZ where er,eg, e; and eR, e9, e2 are the cylindrical

polar unit basis vectors in the deformed and reference configurations, and 1" = dr/dR,

g’ = dg/dR. It then follows that

,
I

we, I. = (yaw/152+(gizizwmt J -—- T552-

(5.6)

2,2 7"

I:
17" R+(7‘9') +(

These expressions for 11, I2 and 13 match those given in (23) of [48] once allowance

is made for the slightly different notations used here.

For the remainder of this section it is assumed, unless stated to the contrary,

that the cylinder is saturated. It follows from (2.21) that the shear stresses on and

092 vanish. For constitutive functions given by (2.3) and (5.1) the other stresses are

Ritz RAz 2 1%

7'7" +X(rr’) +ln(1— rr’ )j’

(5.7)

given by

   
Rr 7' 2
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(5.8)

R 2 2

ozZ = Ila—72‘ [1 + ar'2 + a (rg’) + a (%) J

2

+M [Inf +x (RA?) +ln(1— 1262)],
7‘?“ rr 1'1"

(5.9)

R9’ 2
07.0 = [la—[C (1 + (1)12).

(5.10)

With the above stresses, the equilibrium equation (2.17)2 in the z direction is satisfied

automatically, while the equilibrium equations in the r and 0 directions give

2
RA; + X RA; +1n 1_ RAZ

7‘7" rr’ 7‘7"

<1 mg) [7, — (9)2 — at] = .,
(5.11)

   

(1 RT" 7‘ 2 2

87-{110—7 [1+a(§) +01%] +M

  

 

II I I
— _ -

5.12

where g” = d2g/dR2. It is to be remarked that one could obtain equations identical

to (5.11) and (5.12) using the framework in [48]. Namely, substitution from (25) -
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(29) of [48] into (30) and (31) of [48] can be shown to result in (5.11) and (5.12) as

given above once allowance is made for the different notation.

We comment that, in contrast to [48], the methodology used here does not invoke

the mixture theory framework which, among other things, introduces separate mass

densities for the intermingled fluid and solid components as well as an interactive body

force when there is relative motion between these components. We do not require use

of this more general framework because the equilibrium problems under consideration

here always involve a stationary fluid component so that there is no relative motion

between the liquid and polymer components within the gel. If we further consider

time varying boundary conditions in this context, then the solutions that we obtain

describe a family of equilibrium solutions. In this case the fluid redistributes itself

in a quasi-static manner. This is the sense in which the term redistribution is used

in [48] and is also the sense in which the term is used here. As discussed recently

by Back and Srinivasa in [71], the slow diffusion of a fluid through a swelling (and

saturated) solid is also amenable to such a treatment. In fact a specific form of the

governing equation is given in (42) of [71] as

61$
div (8—FFT + 211) = 0, (5.13)

where 1,5 is the specific Helmholtz free energy and is akin to

E = W + .uliq(J _1)+ “poly (5-14)

in the present treatment. Here W is again given by (2.11) and “liq and “poly are

positive materials constants that correspond to the chemical potential of fluid and

polymer components, respectively. However the free energy 1; in [71] is defined per
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unit current volume so that the connection to our E is that

113 = E/J (5.15)

whereupon

at} _ 16E 1 _T

55 — 755 7 7’”

by virtue of BJ/BF = JF_T. Hence it follows that

811; T ~_13E

F +1/2I—J6F
T _ .

whereupon (5.13) is identical with (2.17)2 since [1),-q is constant.

5.2 Twist at Constant Overall Volume

We first consider the type of boundary value problem studied by Wineman and

Rajagopal in [48], which is stated as follows: the hollow tube after free swelling is

held fixed at its inner radius, i.e. 7'(R,;) = (R,- and g(R,') = 0, while the outer radius

is then rotated through a twist angle «p = g(Ro) while maintaining the same radius

7‘(R0) 2 CR0. The governing equations are given by (5.11) and (5.12). Note that the

latter of these is, in its original stress formulation,

£1312. + 20_T9 = 0, (5.16)

dr 7"

which in turn can be immediately integrated to

T

are : 27TT2 ’

(5.17)
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where T is the constant of integration. Since 27rR220r9| R1 = 277R30T9|Ro = T it

follows that T is the associated twisting moment, or torque, on the lateral surfaces.

A useful nondimensionalized torque T* is defined by the relation

,, T
= —————. 5.18

The boundary conditions are now taken to match those in equations (34) and (35)

of [48] meaning: (A) there is no additional radial displacement of the lateral surfaces,

i. e.

7132') = CR1: r(Ra) = CR0; (5-19)

(B) that the inner surface is rigidly clamped, i. e. g(R,) = 0; and (C) that the

outer surface is twisted by an an amount #1, i.e. g(Ro) = 11;. In fact, as regards the

boundary conditions on g(R), it is only the relative twist that matters, i.e.

g(Ro) - 90%) = 1P, (520)

since the addition of an arbitrary constant to the function g(R) merely represents

a rigid body rotation about the z-axis. An alternative to specifying 1/1 is to specify

the twisting moment T. In either case, the torque-twist relation (T vs. 7,11) is then a

characteristic feature of the macroscopic response.

Finally, in keeping with [48], we specify that the height of the cylinder is kept

fixed at the free swelling value f = 5L. Thus the axial stretch AZ is the same as the

free swelling stretch 5 so that 51z = 1 in (5.4). This will in general require a resultant

axial force at the caps z = O and z = f given by

7‘0

P = 277/ ozz(r)7‘dr. (5.21)

T
i
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It is to be remarked that an alternative problem is to find AZ, the value of the

mechanical stretch ratio, so as to give a zero resultant force at the two caps. We,

however, do not consider this possibility here.

With the inner and outer radius fixed at their free swelling values and the height

of the cylinder unchanged, the overall volume of the gel remains the same as that of the

free swelling state. This therefore results in no net intake or exit of fluid. Rajagopal

and Wineman observe this in their remarks regarding impermeable barriers at r, and

r0 before equation (18) of [48].

With the material parameters (5.3), in a cylinder with R0 = 2R,-, we used a

shooting method to obtain 7'(R) and g(R) obeying field equations (5.11) and (5.12)

and boundary conditions (5.19) and (5.20). The numerical results for the fluid redis-

tribution, interpreted in terms of the gel’s local volume change J — 1, were found to

exactly match those given by Wineman and Rajagopal in [48]. Among the main fea-

tures obtained by Rajagopal and Wineman [48], and confirmed here, are those shown

in Figure 5.2 where we have introduced the dimensionless radial position R = R/R1.

Figure 5.2a and Figure 5.2c show the radial variation of J/Jf3 for a = 0 and a = 1

respectively. This ratio decreases near the inner radius and increases near the outer

radius, which means that fluid redistributes itself from the inner region to the outer

region of the cylinder. The rotation of the cylinder is shown in Figure 5.2b and Fig—

ure 5.2d taking g(R)) = O. The angle of rotation increases rapidly near the inner

radius and gradually near the outer radius. The other figures in [48] can be similarly

reproduced including Figure 3 and Figure 7 of [48] which give the ratio of the current

liquid density in the gel to the free swelling liquid density. This ratio is denoted by

pf/pgat in [48], and the formal connection to our notation follows with the aid of
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equation (24) in [48] as

pf/pfa. = <1— J‘H/u — 5.1). (5.22)

(density ratio from [48])

The normal stress distribution on(r) is not displayed in [48] and so, in particular,

the boundary tractions orr(r,-) and orr(r0) needed to sustain this deformation were

not given there. In Figure 5.3 we show the arr stress distribution. For a non-zero

twist angle 11) we find that or,- is monotonically increasing such that Urr('ri) < 0 and

(rm-(7‘0) > 0. Thus the trend in an- is similar to the trend in J. More generally,

graphs of the other normal stresses 096(R) and 022(R) are shown in Figure 5.4.

5.3 Twist Induced Fluid Desorption

It follows from Figure 5.3 that if r,- is held fixed and a twist angle a is imposed

at 7' = r0 then, for To to be kept at its free swelling value, it is necessary to supply

a tensile normal stress arr at r = 1'0. If such a normal traction is not present, then

one would anticipate a lesser value of re on the basis of a tensile traction having been

released. This motivates the consideration of a modified boundary value problem in

which the inner radius is fixed and twist is again applied at the outer radius, but the

outer radius is now taken to be free of normal traction. Thus boundary conditions

(5.19) are replaced by

7'(R,-) = CR1, 01-7-(7'0) = O. (5.23)

Quantities associated with the solution of this problem are shown in Figure 5.3 where

(a)-(h) graph the same quantities that were previously shown in Figures 1-8 of [48]

respectively so as to show the effect of the outer surface being free of normal traction.

In particular (b) and (f) of Figure 5.3 confirm that 7'(Ro) < 5R0 indicating that the

overall volume has indeed decreased from its free swelling value. It is to be remarked
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Figure 5.2: J normalized by the free swelling value Jf3 = (3 as a function of R =

R/R, (panels (a) and (c)); and the twist g = 9 — 9 as a function of R (panels (b)

and (d)), for boundary conditions given by (5.19) and (5.20) with Ro/R, = 2. The

problem is equivalent to that presented in [48] and panels (a), (b), (0) correspond

respectively to Figures 1, 4, 5 in [48].
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Figure 5.3: Normal stress or,» for the same problem as described in Figure 5.2.

91



 

 

   

   
 

 

 

     
  

(b) 022 vs. R for a = 0

92



 
 

   

 

   
 
 

   

  
   
1 L5 2

R

(d) 0;; vs. R for (1 =1

Figure 5.4: Normal stresses 099 and on for the same problem as described in Figure

5.2.
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that an overall volume decrease was also found to be the case in the torsion problems

discussed in [49] and [45].
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Figure 56(8) and Figure 5.6(c) show the decrease in V/st as 11” increases for the

two cases a = 0 and a = 1. The dashed horizontal line in these figures corresponds

to the volume of the unswollen polymer. It is to be noted that this horizontal line is

consistent with it being the asymptotic limit of the upper curve in the event that all

of the fluid is expelled as 1/1 —» 00. Figure 5.6(b) and 5.6(d) give the corresponding
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Figure 5.5: Panels (a) - (h) correspond to figures 1 - 8 of [48] provided that the

boundary condition 7'0 = 5R0 is replaced by the boundary condition orr(ro) = 0.

This is the problem considered in Section 5.3. Here the effect of increasing the nondi-

mensionalized moment T* is to drive out the previously imbibed fluid. The ratio

p/pgat is a formal calculation based on (5.22).
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arr stress distribution.

5.4 Twist Induced Fluid Absorption

We now consider what can be viewed as the converse to the problem considered

in the previous section. That is r0 is now held at the free swelling value and the

twist applied at r = r,- such that the inner surface is free of normal traction. Thus

boundary conditions (5.19) are to be replaced by

Orr-(Ti) = 0, 7"(R0) = CRO. (5.24)

Results associated with the solution to this problem are shown in Figure 5.4. In

particular, panels (a) - (g) of Figure 5.4 show the effect of the modified boundary

conditions (5.24) as they compare both to the case with boundary conditions (5.19)

as shown in Figures 1-7 of [48], and to the case with boundary conditions (5.23) as

shown in panels (a)-(g) of Figure 5.3.

Under boundary conditions (5.24) one finds that increasing 6 tends to cause

additional fluid uptake as shown by the decrease in r,- = r(R,-) in Panels (b) and (f)

of Figure 5.4. As in the previous cases, twist also causes fluid to redistribute from

the inner to the outer portion of the tube. The reader may have observed that we do

not yet give the torque vs. twist relation, i.e. the equivalent of Figure 8 of [48], and

hence the equivalent of panel (h) of Figure 5.3. A detailed discussion of the torque

vs. twist relation will be given shortly.

Figure 5.8(a) and 5.8(c) show the increase in V/st as 11) increases. Also Figures

5.8(b) and 5.8(d) give the arr stress distribution. It is to be noted that on- is no

longer monotonic in R for sufficiently large T*. In Figure 5.4 and Figure 5.8, for the

case a = 1, we use the same values T* = 1, 2,3,4 as in Figure 5.3, but we do not use

T* = 5. For a = 0 we must employ the very much lower values T* = 0.2, 0.4, 0.6, 0.8.
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Figure 5.6: Additional graphs for the boundary value problem described in Figure

5.3. The dashed lines in panels (a) and (c) give the baseline associated with a pure

polymer (no liquid) by showing the volume ratio Vpoly/st = Jfll.
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This is the problem considered in Section 5.4. The effect of increasing T* is now to

cause more liquid to enter into the system. The ratio pf/p}:at is a formal calculation

based on (5.22).
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The reason for this will be discussed shortly. In addition, since fluid must pass from

the exterior liquid into the gel mixture, there is the possibility that the mixture could

become nonsaturated if there is insuflicient fluid in the bath to provide for the swelling

volume increase.
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5.4.1 A Prescribed Inward Displacement of the Inner Radius

Before considering the possibility of a loss of saturation, we return to the issue of

why the maximum value of T* considered in Figure 5.8(b) is T* = 0.8 for a = 0 and,

similarly, why the maximum value of T* in Figure 5.8(d) is T* = 4.0 for a = 1. Let

us first consider the case a = 0. In this case our numerical method is unable to obtain

solutions if the twisting moment T" is too large. To explore this phenomenon consider

yet another boundary value problem where the boundary condition arr(r,-) = O is

replaced by a condition of prescribed displacement at the inner radius. Thus boundary

condition (5.19) is now replaced by

r02.) = 6412.. r02.) = 4a.. (5.25)

where 6 = r,- / (CR,) is prescribed. Thus boundary condition (5.19) is the special case

for which 6 = 1. Our interest is in the case 0 < 6 < 1 so that the inner radius

displaces inward meaning that fluid is drawn into the cylinder.

It is also convenient to specify the torque T* in place of the twisting angle 11).

Figure 5.9(a) shows graphs of arr(r,-) vs. 6 at various fixed values of torque T*. For

6 = 1 we recover the result that T* 7E 0 implies arr(r,-) < 0. It is found that the

value of 01-1- at the inner radius is increasing as 6 decreasas from 6 = 1. A solution for

the problem characterized by the previous boundary condition (5.24) corresponds to

the locations where the curve in Figure 5.9(a) crosses the line orr(r,-) = 0. We find

that such a crossing takes place only if T* is sufficiently small, namely if T* < 0.937.

However it is found that if T* > 0.937 then such a crossing does not occur because

the curve of arr(r,-) vs. 6 is first increasing and then decreasing (as 6 decreases from

one) in a way that keeps the maximum value of 0'7")"(Ti) < 0. This is shown in Figure

5.9(a) where the T* = 1 curve remains below the arr(r,-) = 0 axis. Thus T* = 0.937

is a critical value of twisting moment beyond which we do not satisfy the condition
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orr(r,-) = O for any 6 and hence do not obtain solutions for the previous boundary

conditions (5.24). Note from Figure 5.9(c) that if T* = 0.937 then the graph of

arr(r,-) vs. 6 will have a single tangential intersection with the line (rm-(ri) = 0.

Furthermore the graphs in Figure 5.9(c) show that if T* is slightly less than the

critical value 0.937 then the curves in Figure 5.9 intersect the Urr(7‘i) = 0 axis in two

locations, indicating the existence of two solutions to the problem with the previous

boundary condition (5.24). Here we remark that the graphs displayed in Figure 5.4

for T* = 0.2, 0.4, 0.6, 0.8 are associated with the intersection that is closest to 6 = 1.

For example, the T* = 0.8 graphs in Figure 5.4 (a) - (d) are associated with point A

on Fig 5.9(c). We shall refer to these as standard solutions for boundary conditions

(5.24).

A similar situation obtains when 0: > 0 in that there is still a critical value

of the twisting moment at which the graph of arr(r,-) vs. 6 has a single tangential

intersection the horizontal line arm-(ri) = O. The critical twisting moment T* varies

with a. For 01 = 1 the critical twisting moment is T* = 4.041, which is why we

cannot take T* = 5 in Figure 5.4 when a = 1.

5.4.2 Further Consideration of the Problem with Boundary

Condition (5.24)

It follows that, in general, solutions to the problem with boundary conditions

(5.24) do not exist if T* exceeds its critical value. Conversely, if T* is less than its

critical value, then more than one solution may exist for the given T*. In addition,

for any solution to the problem with boundary conditions (5.24), one may calculate

6 2 72/ (CR1) and so identify the solution with a solution that employs boundary

conditions (5.25). In this way we have identified the standard solutions discussed in

Section 3.3.1 with special values of 6. Namely, these are the values of 6 for which

the intersection of the line 07.7.(ri) = 0 with a graph from Figure 5.9 occurs closer to
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T* = 0.8; bottom curve for T* = 1.0, and with additional curves for T* increments

of 0.01 in between.
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6 = 1 than any other intersection.

We now turn our attention to the other values of 6 at which (rm-(n) = 0 when

there are multiple such intersections. For example, location B in panel (c) of Figure

5.9 corresponds to this solution for the case T* = 0.8 when a = 0. This also pro—

vides a solution to the boundary value problem with boundary conditions (5.24) and

corresponds to a smaller value of 6 and a larger value of «I; then that of the stan-

dard solution. We shall call these post-maximum solutions for reasons that will soon

be apparent. These post-maximum solutions are increasingly difficult to calculate

numerically as we encounter certain numerical instabilities as 6 gets small.

For a = 0 it is found that the post-maximum solutions can be calculated rela-

tively easily for 6 > 0.3. However for 6 < 0.3 they are highly sensitive to the initial

guess used in the iteration procedure. Furthermore for 6 less than about 0.15 we

cannot easily find an initial guess providing a converging solution. Indeed the min—

imum value of 6 for which we can find a converging solution is also dependent on

the value of T*. The curve of T* vs. ’l/J is shown in Figure 5.10(a). The absence of

solutions for T* greater than the critical value causes the graph of T* vs. a to exhibit

a local maximum at the critical value of T*. The end of the curve in Figure 5.10(a)

at «p = 1.7 represents the limit of computable solutions by our numerical method.

The ratio V/st is displayed in Figure 5.10(b) with the same range of 1/2 as in Figure

5.10(a).

A similar maximum twisting moment condition has been implicated in boundary

value problems in nonlinear elasticity for azimuthal shearing deformations of a form

similar to (5.5), but without a notion of swelling, when subject to boundary conditions

of fixed radial displacement in place of the boundary conditions considered here.

In [81] a phase plane analysis of the governing ordinary differential equations for

such a boundary value problem, using a compressible hyperelastic Blatz-Ko material

model, is found to generate a limiting moment condition for the construction of certain
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Figure 5.10: (a) Torque vs. twist relation with oz = 0 for the boundary conditions

(5.24). Here T* = 0.937, 11) = 0.90 corresponds to the local maximum. Also T* =

0.377, 1,0 = 1.70 is the effective limit of our numerical calculation and corresponds to

6 = 0.15. (b) Volume ratio V/st versus twist angle 1,0 for the same problem.

smooth deformation solutions. In [82] the numerical treatment of such a boundary

value problem for a broader class of Blatz-Ko models gives rise to numerical difficulties

if the applied twisting moment becomes too large, which is also suggestive of an

underlying maximum moment condition.

Figure 5.11 shows the numerical results corresponding to these post—maximum

solutions. The behavior of the curves in Figure 5.11 is similar to those shown in

panels (a)-(d) of Figure 5.4. Thus, at least with respect to these graphs, the post-

maximum solutions are not strongly distinguished from the standard solutions. Fluid

redistributes from the inner portion of the tube to the outer portion of the tube as T*

decreases. This, however, still corresponds to increasing a. In view of the decreasing

graph of torque vs. twist for the post-maximum solutions, one would also expect basic
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differences with respect to any consideration of energetic stability (viz., eg., [83]).

5.5 Fluid Uptake Leading to Loss of Saturation

In the boundary value problem with condition (5.24) we have found that the

overall volume increases with increasing 1/2. All such volume increase is associated

with uptake of liquid, and it has so far been assumed that there is always enough

liquid available to support this volume increase. In other words, the analysis of

Section 3.3 is predicated on the assumption that there is sufficient liquid to keep the

system in a saturated state. We now consider the situation in which the amount of

liquid is limited, and in particular assume that all the liquid is imbibed at some point

in the loading procass. The instant at which this occurs corresponds to a transition

from a saturated state to a nonsaturated state. Under further increase in 1/2 the

system remains nonsaturated and the overall cylinder volume remains fixed at the

value V = Vpoly + Vliq-

Since V = 7rCL(rg - r?) and Vpoly = 1rL(Rg — R3), the constraint (2.20) can be

written

«(L03 — r3) = «L023 — R?) + mg. (5.26)

In addition, (5.24) gives r0 = CR0 whereupon it follows that the constraint is equiv-

alent to a requirement that

 

1 W t
r,- = \/(2Rg — 5023 — R22) — fl 2 Tz(ncmsa ). (5.27)

There will then also be a loss-of-saturation value of twist 1,!)(1’03) and a loss-of-

saturation value of moment T*(LOS).

In view of the additional specification of r,- in (5.27) the boundary conditions
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(5.24) are, after loss of saturation, replaced by

arm-(n) = 0. NR.) = rlnmatl, rate) = (BO. (528)

In contrast to the boundary conditions for the saturated cylinder, in which (5.24)

specified exactly one condition at both the inner and outer radii, now two conditions

are specified at the inner radius while one condition remains at the outer radius. It

is however possible to meet all of the conditions (5.28) because the uniform pressure

p in (2.22) is now added to all the normal stresses in (5.7) - (5.9). Note that this

constant term is differentiated out of the equilibrium equations and so (5.11) and

(5.12) remain as governing equations. These governing equations can now be solved

subject to (5.20) and to the second two conditions in (5.28). This would seem to be a

well posed problem, at least in terms of the number of boundary conditions that are

employed. Indeed it is similar to the problem associated with boundary conditions

(5.19) and to the problem associated with boundary conditions (5.25). After such a

solution is obtained, the value of p may then be selected so as to satisfy the remaining

condition orr(r,-) = 0 in (5.28).

As an example take a = 0 and suppose that the transition from a saturated

condition to a nonsaturated condition takes place when T* = 0.6. There is both a

standard saturated solution and a post-maximum saturated solution associated with

T* = 0.6. The former is with 1/) = 0.418 and 6 = 0.946; the latter is with 1,6 = 1.412

and 6 = 0.302. These correspond to different amounts of available liquid. Specifically,

loss of saturation occurs for the regular solution at T* = 0.6 if Vlz‘q = 40.469LRg. Loss

of saturation occurs for the post-maximum solution at T* = 0.6 if Vqu = 53.371LR‘E.

Alternatively stated, let us consider R0 = 2R,- and a = 0 for the two cases Vliq =

40.469LRS’ and Vliq = 53.371LRg. Then the boundary value problem with boundary

conditions (5.20) and (5.24) causes complete fluid absorption under increasing :6 for
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(nonsat)

i
the case Vqu = 40.469LR? when 21) = 0.418, in which case r = 0.946(Ri; and

causes complete fluid absorption for the case Vlz'q = 53.371LR? when w = 1.412, in

(nonsat)

i
which case r = 0.302CR,-. The two values of Viz-q are here specially chosen to

give the same value T* = T*(LOS) = 0.6. Thus the two cases correspond respectively

to a standard saturated solution transitioning to a nonsaturated solution and to a

post-maximum saturated solution transitioning to a nonsaturated solution, both for

the same value T*.

The boundary value problem for each of the two cases with T* (L05) = 0.6 is

solved numerically by the methodology outlined above. Since the boundary condition

arr (7‘2“) = 0 is met by the freedom to choose 19, the solution method is the same as

that in which the radial displacement is specified at both R,- and R0.

Figure 5.12 shows the mechanical behavior of the nonsaturated states associated

with the transition taking place at the standard solution discussed above, i.e. Vlz'q =

40.469LR9, T* = 0.6, w = 0.418. Panels (a) - (d) of Figure 5.12 should be compared

with panels (a) - (d) of Figure 5.4 since Figure 5.4 shows the mechanical behavior

for the same system prior to the loss of saturation. In particular the graphs for

the transition value T* = 0.6 are the same for both figures. In the context of this

example, the T* = 0.6 curve in Figure 5.4 should now be disregarded since there is

now insufficient fluid for a saturated solution when T* = 0.6. In a similar fashion,

panel (e) of Figure 5.12, which gives arr(r), should be compared to panel (b) of

Figure 5.8. As T* increases one again finds that fluid redistributes from the inner

portion to the outer portion (panels (a) and (c)). Unlike the saturated solutions prior

to transition, now both r,- and r0 remain fixed as T* increases (panel (b)). Also, the

twist angle a continues to increase with T* (panel (d)).

Figure 5.13 show the mechanical behavior of the nonsaturated states associated

with the transition taking place at the post-maximum solution discussed above, i.e.

V“, = 53.371LR§, T* = 0.6, w = 1.412, 6 = 0302. Hence the T* = 0.6 curves in
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Figure 5.12: Mechanical behavior for the nonsaturated solutions when loss of sat-

uration takes place at a standard solution with T* = 0.6. Here a = 0 and

Vlz'q = 40.469LRg. The solid curve in each panel corresponds to the instant of

transition while the other curves correspond to increasing T*. The values of 1,!) asso-

ciated with T* 2 0.60, 0.80, 1.00, 1.20, 1.40 are 111 20.418, 0.562, 0.708, 0.858, 1.011

respectively.
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panels (a) - (d) are identical to those displayed in panels (a) - (d) of Figure 5.11. The

curves in Figure 5.11 give the behavior prior to the loss of saturation. The overall

behavior displayed by the curves in Figure 5.13 are similar to those in Figure 5.12.

In particular 1,!) increases with T* after loss of saturation. Thus the negative slope

of the torque-twist graph for the post-maximum solutions prior to loss of saturation

immediately changes to a positive slope torque-twist response after loss of saturation.

Figure 5.14 shows the nonsaturated torque-twist response curve corresponding to

each of the two transitions for T* = 0.6. These curves are connected to the previously

displayed response curve of Figure 5.10. In each case, loss of saturation is associated

with an abrupt stiffening of this macroscopic response. In particular, when loss of

saturation occurs at the post-maximum solution, the torque - twist response is once

again monotonically increasing.

As an additional comparison consider again the same standard solution transition

state as that in Figure 5.12, namely the case with Vh-q = 40.469LRS’, so that transition

occurs at T* = 0.6, 21) = 0.418 with 6 = 0.946. Specially, for this Vh-q = 40.469LR;3

consider the three twist values 11) = 0.220, 0.418, 0.620. Figure 5.15 compares

the associated sequence of mechanical response curves for the saturated, transition

and nonsaturated states that correspond respectively to 1,!) = 022,212 = 0418,11) =

0.62. In addition, this figure also shows the saturated response when 11; = 0.62

(which can only occur for a larger value of Vlz‘q)- A comparison of the saturated and

nonsaturated response for 2/1 = 0.62 makes evident the continuous volume increase

and inner diameter reduction for the saturated case. In contrast, once the system

is nonsaturated the value of Ti remains fixed (panel (b)) and the overall volume is

unchanged. In particular, the curves in panel (a) for w = 0.418 and for 1,0 = 0.62 after

loss of saturation cross over each other so as to permit J to integrate up to the same

value. Also, for r > r,, the stress Urr is everywhere greater for the nonsaturated case

with «p = 0.62 than it is for the saturated case with this same 1/1.
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Figure 5.13: Mechanical behavior for nonsaturated solutions when loss of saturation

takes place at the post-maximum solution with T* = 0.6. Here a = 0 and qu =

53.371LRE’. The solid curve in each panel corresponds to the instant of transition

while the other curves correspond to increasing T*. The values of 1]) associated with

T” = 0.60, 0.80, 1.00, 1.20, 1.40 are 111 = 1.412, 2.053, 2.800, 3.632, 4.533 respectively.

112



 

T
*

0.5-

  
 

%051153258654

Figure 5.14: Saturated and nonsaturated torque—twist response for a = 0. Two

examples are shown, each corresponding to T* = 0.6. The square markers on the

nonsaturated curves represent computational points and the intervening dots are to

guide the eye. The transition on the left occurs at a standard solution (corresponding

to the solutions displayed in Figure 5.12). The transition on the right occurs at a

post-maximum solution (corresponding to the solutions displayed in Figure 5.13).
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corresponds to a nonsaturated state. For comparison, the response for a hypothetical

11) = 0.62 saturated state is also shown.
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In a similar fashion, Figure 5.16 provides the same type of comparison as in Figure

5.15 for the case in which loss of saturation occurrs at a post-maximum saturated

state. Here it is to be noted for w = 1.6 that the saturated case is more depleted of

fluid near r = r,- than is the nonsaturated case. In addition the a" profile for the

w = 1.6 nonsaturated case is no longer everywhere above the «p = 1.6 profile for the

saturated case. The exceptional regions where this ordering in arr ceases to hold is

again confined to a zone near r = 7’1-

5.6 Summary

In this chapter, the problem of twisting a swollen tube is formulated based on

the theoretical model described in Chapter 2. We started by replicating Wineman

and Rajagopal’s work [48] where they consider the problem of a volume preserved

swollen cylinder under twisting in a saturated state. We obtained the exact same

graphs as in [48]. Then more generally we consider different boundary conditions that

do not necessarily conserve the total amount of liquid in the cylinder, we discover

additional interesting effects when there is relative twist 1/J 7t 0 between the inner

and outer radii. Replacing the condition that the outer radius maintains its free

swelling value by a condition of zero normal traction causes this outer radius to

displace inward, thus decreasing the overall volume. This requires fluid to exit the

system. Conversely, replacing the condition that the inner radius maintains its free

swelling value by a condition of zero normal traction causes this inner radius to

displace inward, thus increasing the overall volume. This requires fluid to enter the

system. In all cases we find for w aé 0 that the fluid concertration in the cylinder is an

increasing function of the radius. As was the case in [48], the amount of redistribution

increases with |1/)| for the broader class of problems considered here. In addition, for

the problem characterized by the zero normal traction condition at the inner radius,
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Figure 5.16: Saturated, transition and nonsaturated states associated with loss of

saturation taking place from a post-maximum solution when 111 = 1.41. Thus 11) = 1.60

corresponds to a nonsaturated state. For comparison, the response for a hypothetical

1,6 = 1.60 saturated state is also shown.
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we find that the relation between the twist angle 1,0 and the twisting moment T may

lose monotonicity so that there is a maximum twisting moment that can be sustained

under such circumstances.

Furthermore, for those situations that give rise to fluid uptake, we consider the

consequences if, at some point in the process, all of the fluid is drawn into the system

so that no additional uptake is possible. Then the transition from the saturated state

to nonsaturated state occurs. The overall volume of the cylinder cannot change once

the system loses saturation. The result shows that the now fixed amount of fluid

continues to redistribute as 111 changes. It is also found that the relation between the

twist angle 11) and the twisting moment T abruptly stiffens after loss of saturation.

117

 



Chapter 6

Seepage Through a Fiber

Reinforced Hyperelastic Layer

The effect of a fluid solvent on the swelling of a rubbery polymer is of longstand-

ing interest [44]. In particular, extensive experiments have been performed on the

pressure-induced diffusion of fluid through polymer networks [20—23, 84,85]. One of

the heavily referred set of pressure-induced diffusion experiments was conducted by

Paul and Ebra-Lima [24]. They recorded the nonlinear relation between the fluid

flux and the pressure difference driving the solvent through a highly swollen poly-

mer membrane layer. They also presented a combined thermodynamic and diffusion

theory for this pressure—induced transport. In addition, uniaxial stretch experiments

were made on the gum rubber material immersed in twelve different organic solvents

that were tested in the diffusion experiments. The elastic and thermodynamic con-

stitutive parameters were determined from these tests by using the Flory-Huggins

theory. These parameters were then used widely in later works that seek to model

such pressure-induced diffusive transport [46—49]. It is to be remarked that although

we use the term ”diffusion transport” here, other intellectual traditions may prefer

the term ”seepage”. Here we use there terms interchangeably.

A broader continuum mechanical framework can be invoked to deal with sepa-

rate mechanical balance principles for both solid and fluid component. This broader

framework is known by a number of names, including: large deformation mixture
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theory, the theory of interacting continua, and the large deformation biphasic theory.

Examples of mixture theory type treatments applied to problems involving these sys-

tems include [47, 71, 86], where a major focus is on time dependent swelling as liquid

diffuses within the elastomeric matrix.

In this chapter we consider similar seepage problems for both isotropic and

anisotropic (fiber reinforced) gels. In particular we shall use a framework recently

considered by Pence [87] that provides for consistency with equilibrium problems in-

volving solvent redistribution such as considered earlier in this thesis and also by

other researchers.

6.1 A Biphasic Mixture Theory

6.1.1 Kinematics and Notation

Following Shi et al. [46], we let Xf and X3 denote reference positions for fluid

and particles respectively in the reference state prior to mixing. Positions of these

particles at time t are determined by the respective functions xf(Xf , t) and x3 (X3, t)

(Figure 6.1). We then let x denote a location in the current configuration at time

t, it is assumed that each such spatial location is occupied by both fluid and solid

particles.

The fluid and solid velocity field are then given by

f a
f=__aX s=__X 61

v at xf’ v 61 X3' (')

The deformation gradient tensor associated with the motion of the solid constituent

is given by

3

(9x
F=aX3. (6.2)
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Figure 6.1: Mapping of fluid and solid particles

J = detF, (6.3)

then J is the ratio of the current volume occupied by a collection of solid particles to

the volume that these same particles occupy in the reference configuration. Let pf

denote the fluid density in the overall mixture, i.e., the mass of the fluid constituent

per unit mixture volume in the current configuration. Conversely, let pg denote the

f
fluid density in the reference state. This p0 is a constant, whereas pf is a function of

x and t. The fluid density is then subject to the mass conservation equation:

iap—f+V-(pfvf)=0. (6.4)

at .

The solid densities p3 in the current configuration and pa in the reference configuration

are defined in a similar fashion. Then the mass conservation of the solid phase is

expressed as

I
s_ .9

p — JPO' (6.5)

The assumption that the volume of the mixture is the sum of volume of fluid
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and solid constituents prior to mixing gives

_ . (6.6)

P0

By substituting from (6.5) into (6.6) one obtains

pf = (1 — :1?) pg. (6.7)

Since the total mass is the sum of the fluid and solid mass, the overall density p is

given by

1 1

p=pf+ps=7p8+(1-j)pg- (6.8)

The seepage velocity w is the velocity of the fluid with respect to the solid, i.e.,

w = vf — vs. (6.9)

The final kinematic quantities to be introduced are the velocity gradient tensors

associated with the respective motion of the fluid and solid constituents, namely,

Lf=V®vf, L3=V®v3. (6.10)

6.1.2 Fluid and Solid Partial Stresses Under Volume Con-

straint

In the absence of external body forces, and neglecting inertial effects, the equi-

librium equations of the solid and fluid phase are given by

V~03+b=0, Voaf—br—O, (6.11)

121

 



where as, of and b are, respectively, the solid partial stress, the fluid partial stress

and the possible dissipative interactive force between the solid and fluid phase. The

tot
total stress a = 0'3 + of therefore obeys

v - at“ = 0. (6.12)

Let \Ilcur = \Ilcur(F) be the Helmholtz free energy of the mixture per unit mass in

the current configuration. Based on a mixture theory treatment involving the first

and second thermodynamic laws (details can be found in [87]), the fluid and solid

partial stresses and the interactive force with the constraint of volume preservation

(6.6) are given by

 b = pfaq'm :VF — p—lvpf + 13 (6.13)
6F f

P0

as = page—EFT — 111 + 63, of = —£f-p11 + (if. (6.14)

6F J 25

Equation (6.11) are standard in the theory of interacting continua [48] whereas equa-

tions (6.13) and (6.14) generalize the isotropic theory equations (9), (10) and (11)

of [48]. Here 191 is a Lagrange multiplier which arises due to the volume constraint

(6.6). The tensors 63 and &f are possible dissipative stresses and f) is a possible

dissipative interactive force. These are required to obey

asstzo, aszfzo, B-wzo. (6.15)

It follows from (6.11)2, (6.13) and (6.14)2 that

f

Vpl = waved... + £9 (v . 6f + 13) . (6.16)
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Eliminating p1 in (6.13) and (6.14) with the use of (6.7) and (6.11) gives

(J —1)v- (amix + (73) = v - sf — .113, (6.17)

where 0'77”.“c is defined by

' \I/

Exactly the same as in (2.11), let W be the Helmholtz free energy of the mixture

per unit volume of the solid in its reference state. Therefore W is related to \I/cur,

the Helmholtz energy per unit mixture mass in the current configuration, by

 

p3 1 1 3 W

W=PJ‘I’cur=P—g‘pcur fi’ ‘I’cur=—J'W=—p—S = f.

p ppo 125+ (J —1)p0

(6.19)

It then follows that (6.18) is alternatively expressed as

l 8W T
mm: _ _

_. J 8F F . (6.20)

If {73, &f and f) all vanish, we then obtain from (6.17) the equilibrium equation

V - 0mm = 0. (6.21)

To also account for the dissipative affects we will use (6.17) with &f = 6'3 = 0 but

b aé 0 as the governing equation for the fluid seepage problems that will be introduced

in the next section.

6.1.3 Boundary Conditions

The boundary of the mixture can admit a variety of situations including: (a)

contact with the pure fluid phase, (b) contact with a rigid support structure that
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strictly isolates the mixture from any pure fluid phase, and (c) contact with a porous

rigid support that permits interaction with a pure fluid phase on the other side of the

support. To specify appropriate boundary conditions, let n be the directional normal

vector to the mixture external surface, let Pf be the pressure of any pure fluid phase

that is adjacent to the mixture and let t be the traction provided by any solid support

structure. In particular, the traction t may or may not permit interaction with the

pure fluid. Certainly one boundary condition is

totn = ttot’
a' where ttOt = t — an. (6.22)

Note that t = 0 for situation (a) given above, whereas Pf = 0 for situation (b) given

above. For situation (c) given above both t and Pf would typically be nonzero. In

general (6.22) does not provide enough boundary conditions to solve all boundary

value problems of interest. Thus more boundary conditions are usually required.

There is some controversy as to what these additional boundary conditions should

be [88]. Here we briefly discuss two proposals for the additional boundary conditions,

one is called the traction splitting boundary conditions, the other is based on an

argument involving chemical potentials. After this brief discussion we will adopt the

chemical potential boundary condition in what follows.

The first proposal is the traction splitting condition. As originally stated in

[89] (see page 36-37), the traction splitting treatment states that the partial surface

tractions associated with the solid and fluid, respectively, are proportional to their

local volume fractions. In our notation this would be expressed as

f f 51/3 3 1f ___ 5V ttot = p_ttot = _ 1 tot s = ttot : P_ttot = _ttot

” ” 6V pf 1 J t ’ a “ 6V p3 J ’
0

(6.23)

where n is again the unit normal vector. However later (see page 42 of [89]) it is
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argued that the porous solid support structure has “little effect on the flow of the

fluid constituent” and this is used in [89] to restrict the splitting in (6.23)1 to only

the fluid pressure. Letting Pf be the fluid pressure this gives an addition boundary

condition in the form of = — (1 - §) Pf.

The second, and alternative, proposal for boundary conditions appropriate to a

mixture of the type considered here consisting of an incompressible solid and incom-

pressible fluid is often called the chemical potential continuity boundary condition.

This type of treatment can be found in [71] and [90] where the chemical potential

continuity boundary conditions are obtained through a variational approach of ex-

tremizing the overall free emery of the system. In the present notation, this boundary

condition is stated in the following equations (see (39), (40) and (22) in [71])

812 T ~
[EFF +(1p-p6K)I[n=t—an, and K=Kf, (6.24)

where

l

Kf E 27 (Pf + #lz’q) . (6.25)

0

Here 16 is the system Helmholtz free energy per unit current volume, K = K(x) is

the chemical potential of the mixture, Pf is the fluid pressure at the boundary as

given earlier in connection with (6.22), Kf is the chemical potential of the fluid, and

”fig is a constant that gives the Helmholtz free energy per unit current volume of the

pure fluid phase. It is to be clarified that 16 is defined as Helmholtz free energy per

unit current volume of the system, while \Ilcur in (6.13) and (6.14) is defined as the

free energy per unit current mass of the mixture, which does not take into account

the free energy of each phase ”pole and ”liq‘ By this we mean

.. 1 l
'l/J : p‘I’C’uT "l' (I. - j) “liq ‘1'“ jflpoly. (6.26)
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Comparing the system free energy 16 with the system free energy E per unit

reference volume as defined in (5.14) it follows that

~ 1 1 1 1

15 = 71E = 7W + (1— j) #liq + jlupoly' (6.27)

It then follows from (6.24) with the use of (6.27) that

l 3W T

(j—aFF + #liq) n = t + Mllqn, (6.28)

which immediately leads to

a ' n = t (6.29)

by the definition of am” in (6.20).

For our purposes in what follows we note that (6.17) with &f = 6’3 = 0 gives

V - am“ + —b = 0. (6.30)

In addition, following Parasad and Rajagopal [88] the dissipative interactive force 6

will eventually be taken to be proportional to the seepage velocity w by virtue of the

following form

A a 1 n—l

= ._ __ . 1b J (J _ 1) w, (6 3 )

where a > 0 is a material diffusive constant, and n > 0.

6.2 Free Swelling of a Fiber Reinforced Hypere-

lastic Layer

We consider a fiber reinforced gel consisting of an anisotropic hyperelastic solid

that is immersed in solvent. Prior to immersion the solid is taken to be in the form
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of a layer that is reinforced with parallel straight fibers making an angle (2 with the

layer’8 thickness direction((Figure 6. 2). The layer’s initial thickness is H. Let (X, Y,

ZZZZZZZZZZZZZZ/i‘? Step1 ///////////////1‘}

Coordinate

Transformation

(Relabeling)

 

Free swelling that

preserves the

fiber direction

Step 2

 

 

Coordinate A

3; Transformation 9': 8

(Rotation) 7’)

it

Figure 6.2: Free swelling of a fiber reinforced layer

Z) denote the position of particles in the reference configuration. Let M denote the

unit vector of the fiber reinforcing direction in the reference configuration and assume

that the fibers in the reference configuration lie in the (X, Z)-plane. Thus we take

MzcosSleX+sinQeZ. (6.32)

We assume that the fibers are at their natural length in this reference configuration.

Now let the reinforced layer be immersed in a fluid environment and swell freely to

an equilibrated state with (it, 17, :2) describing position in the swollen configuration.

We wish to describe the resulting free swelling in a manner such that the (X, Y)-
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plane has the same orientation as the (it, m-plane. To describe this homogeneous

deformation it is convenient to decompose the free swelling into three steps (Figure

6.2). The first step is a coordinate relabeling transformation that transforms the (X,

Y, Z) coordinates to (s, 17, c) by a rotation through angle (2 about the Y axis. This

aligns the 5 axis with the fiber direction. The mapping function and its gradient are

  

given by

€=XcosQ+ZsinQ cos!) 0 sinQ

n = Y , F1 = 0 1 0 . (step1)-

<=—XsinQ+Zcosf2 —sinfl 0 cosfl

’ (6.33)

The second step is a free swelling that preserves the coordinate directions (a, r), c).

Let A1 be the stretch ratio along the direction of the fibers while the stretches in all

the transverse directions are the same and so denoted by A2. This gives

  

83 = 2118 A1 0 0

6 = /\2€ 0 0 A2

The third step is a coordinate rotation transformation that rotates the coordinates

(5‘, 1), c“) to (is, 37, 2) by an as yet unspecified angle -w about the 7‘) axis

  

izécosw—é‘sinw cosw 0 —sinw

’9 = 71 2 F3 = 0 1 0 , (step 3).

2=ésinw+<fcosw sinw 0 cosw

’ (6.35)

Therefore the deformation gradient F associated with the mapping from the reference

configuration (X, Y, Z) to the free swelling configuration (:3, g), 2) is given by

128



A1 cochosw + A2 sianinw 0 A1 sichosw — A2costinw

  

F = F3F2F1 = 0 A2 0 ’

A1 costinw — Agsinflcosw 0 A1 sianinw + A2 cochosw

(6.36)

and so

i" = (A1 cochosw + A2 sianinw) X + (A1 sichosw — A2 costinw) Z,

= A2Y, (6.37)

2 = (A1 costinw — A2 sichosw)X + (A1 sianinw + A2cochosw) Z.

The left and right Cauchy-Green deformation tensor that follows from (6.36) is

  

given as

A2 cos2 w + A2 sin2 w 0 (A? — Ag) sinw cosw

B = FFT = 0 Ag 0 (6.38)

(A? — Ag) sinwcosw 0 A2 sin2 w + A2 cos2 w

and

A12cos2 Q + A% sin2 0 0 (A? — Ag) sin 9 cos 9

C = FTF = 0 Ag 0 . (6.39)

_(A112 — Ag) sin 0 cos 9 0 A? sin2 0 + Ag cos2 9—  

Thus 11—_ tr(B)= A2 + 2A2, 12: % [tr(B)2 — tr(B2)] = 2A§A§ + X21 and J =

fl“ = detF = A93.

The angle w is now chosen so as to satisfy

A1 costinw — A2 sichosw = 0 z)» w = arctan (3:2 tan 9). (6.40)

1
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With this choice of w the planes Z = constant remain at their original orientation

after free swelling. It then follows from (6.37) that

A Q A ' Q1cos + 25m
  

 

  

  

x = A2 2 A2 2

1+X§tan0 1+chot Q

+ A1 8:19 _ A2 c359 Z,

A A

1 t 252 1 t2Q\/ + A? an \/ + Sgco

3; : )‘2Ya
(6.41)

2 = A1 st + A2 0080
  
  

A2 A2

1+—§cot2n 1+—§tan2a

"2 A1

The requirement (6.40) is simply one specification of the rigid body rotation

associated with a free swelling homogeneous deformation. For our purpose it is the

particular rigid body rotation that corresponds to the boundary value problem of

interest in this study. This is because it preserves the orientation of the planes

Z = O which will be a fixed boundary in what follows. Note also for the special case

A1 = A2 = A that (6.41) simplifies as expected to the equi-axial free swelling 3“: = AX,

3) = AY, 2 = AZ.

6.3 Constitutive Theory

The free energy function W will be taken as the sum of the three terms. These

are: an isotropic elastic energy <I>(Il,12) due to the deformation of the matrix in

which the fibers are embedded, the mixing energy H(J) due to the mixing entropy

and mixing enthalpy, and an extra term 7(1)fib(14) due to the stretching of the fiber
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reinforcement. This gives

W = 9(11,12)+ H(J) + 7q>fib(14)- (55-42)

We take the Mooney-Rivlin model (2.13) for the elastic energy term <I> and the Flory-

Huggins form (2.5) for the mixing energy term H. For the last term of (6.42), 'y > 0 is

a material modulus and I4 2 FM - FM is the square of the fiber stretch as discussed

in [91]. On the basis of models in [91] and [92], the fiber energy <I>fib(14) in (6.42)

will be taken as

(172604) = $414 - 1)2- (6-43)

We first consider the homogeneous deformation for free swelling with F given by

(6.36). Then (6.21) is automatically satisfied and it follows from (6.29) with t = O

for all possible orientations n that 0min: must vanish identically. It thus follows from

(6.20) and (6.42) that

 

2 84> 2 6(1) 66» dH d<I>f.-b
——— —— — FM FM: 0. .44
JaIQB +J2(61—1+ 11612) 3+ dJI+2J 414 ® (6 )

Expanding the above equations gives

,u (1 — g) (A2 cos2w + A3361? 6))

+115 [A3 31112 w + A2A§ (51624; + 2cos2 w)] + Jh(J) + 27 (A2 — 1) A1 cos2 w-_ o,

,u (1 —§+5A§) (A2 —A3) +27(A21’- 1) A2 = 0,

p [1 — 6 +5 (A22+ A2)] A2 + Jh.(J) = o, (6.45)

11(1—5) (A2sin2w + A22cos2 6))

+p§ [A2c032w+A¥Ag(coszw+2sin2w)] +Jh(J)+2'y(A2—1)A25in2w=0.
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It can be shown that if (6.45)2 and (6.45)3 hold, then (6.45)1 and (6.45)4 are

automatically satisfied. The free swelling principal stretches A1 and A2 are now

determined from (6.45)2 and (6.45)3. Note that (6.45)2 and (6.45)3 are independent

of w. This is as expected since one may verify that (6.45)2 and (6.45) 3 follow from a

principal frame analysis of (6.44) by taking F = A21 + (A1 - A2) M (8) M.

The stretches A1, A2 and the corresponding values of J are plotted in Figure 6.3

for various values of '7. The special free swelling case for which '7 = 0 means that

there is no fiber effect so that A1 = A2 and J = A? Note if 'y > 0 then A2 > A1

since the additional resistance of the fibers causes less extension in the fiber direction

under free swelling. Note that the orientation of the fibers w after the free swelling as

given by (6.38) is dependent upon the reinforcement coefficient 7 since 7 determines

the difference between the fiber stretch A1 and the stretch A2 that is orthogonal to

the fibers. In particular, since A2 > A1, it follows from (6.40) that w 2 9 (w > 9

if 0 < 9 < 7r/2) and also that the difference between w and 9 increases with 7 (see

Figure 6.4).

6.4 Steady State Diffusion through a Fiber Rein-

forced Layer

Now we consider pressure—driven diffusion of fluid through such a swollen fiber

reinforced layer. The bottom of the layer is taken to be fixed to a rigid porous

plate that is attached to the gel after free swelling (Figure 6.5). Let (x, y, 2) denote

coordinates in the deformed configuration. The pressure driven diffusion is anticipated

to cause either a compaction or an expansion in the layer, and the presence of the fibers

is anticipated to cause a further shearing deformation. Based on (6.41) the overall

deformation from the original reference state to the deformed state is therefore taken
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Figure 6.3: Stretch ratios of free swelling with fibers versus 7 for 5 = O, 5 = 0.5 and

5 = 1(M/p = 100, x = 0.425)

to be

:1: = :3: + 3(2) = A1X + f(Z), (6.46)

Z=Mfl=gwl (6%)

where

A1 = A1 cos 9 cosw + A2 sin Q sin a). (6.49)

Here the two expressions that multiply Z in (6.41)1 and (6.41)3 have been absorbed

into the functions f(Z) and g(Z) respectively. Note that Q is the original fiber

orientation and so known at the outset while A1 and A2 are regarded as known from

the free swelling analysis (e.g. from Figure 6.3). Thus a) is known in terms of this

parameter from (6.40) after which A1 follows from (6.49). Note also that certain
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Figure 6.4: The variation of the change in orientation angle 11) — Q (in radians) with

é = 0 and M/y = 100, x = 0.425.
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care must be taken with (6.46) since (6.37) shows that f(Z) 74 3(3) since, instead,

f(Z) = (A1 sichosw — A2 costinw)Z + 3(2).

 

 

 

 

   

Z Z = H

Y //

\

X Z = 0 fibers

(3.) Original reference configuration (prior to immersion in solvent)
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x 1 ' 1 i 1 r l l g l l I l l 1

(b) Depiction of the praesure part of the boundary conditions with respect to

the free swelling configuration

Figure 6.5: Representation of a pressure differential that will cause diffusional fluid

seepage through a fiber reinforced layer

We first consider a steady-state diffusion in which case the solid particlas are not

in motion (v3 = 0). The fluid motion is assumed to be confined in the z direction,

meaning

vi = f(z)ez. (6.50)

Therefore the seepage velocity w = vf.

The deformation gradient tensor F and left Cauchy-Green deformation tensor B

associated with the mapping (6.46)—(6.48) from the reference configuration (X, Y, Z)

to the swollen configuration (x, y, 2) associated with the steady state diffusion are
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then given by

A1 0 f’ A? + f’2 o f’g’

F = 0 A2 0 , B = 0 A? 0 , (6-51)

0 0 g, f/g/ 0 9/2

    

where f’ = df/dZ, g' = dg/dZ. Thus 11: A? +A§ + f'2 +g'2,12 = [fig + Agf’2 +

(A? + A?) 9'2 and J = AlAgg’.

It follows from (6.44) with (2.13), (2.5) and (6.43) that the hyperelastic stresses

are

= %{[l +< (a - 1)] (r2 a?) we} +m
+ 277(1’3‘2'1) (14) (A? cos2 9 + f'2 sin2 Q + Alf, Sin 29) ,

03;,” = gA? [1+ g (A? — 1 + f'2 + g’2)] + h(J),

' It 27 .
03;,” = 7 [1 + g (A? + A? — 1)] 9’2 + h(J) + 7(1)}ib(14)g’2 Sin? 0, (6.52)

0g”: = 0%” = ~3— [1+ 6 (Ag - 1)] f’g’ + 3741), ib(14)g'sinQ (A1 ms!) + f, sin 9) ,

012,53 = 0373...”: = 0,

where h(J) = dH(J)/dJ and (1)/jib (I4) = d<I>fib(I4)/d14 = 14 — 1.

It is to be remarked here that the assumption upon the fluid diffusion direction

in (6.50) can now be verified by the use of (6.16) with &f = 0 by making use of the

fact that p1 and \Ilcm- are independent of planar coordinates a; and y. Namely, since

p1 and \Ilcur in (6.16) vary only in the z-direction, it may then be concluded that the

vector b must be in the z-direction. Therefore it must then follow from (6.31) that

w is similarly aligned in the z-direction.

In view of (6.52) the governing equation (6.30) is automatically satisfied in the
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y direction, whereas the governing equations in the a: and 2 directions give

d .

Egg” 2 0, (6.53)

and

d - avf

Eagzm +W= 0. (6.54)

It is remarked here that the derivatives d/dz in the Eulerian system are eventu-

ally transformed into derivatives in Lagrangian system d/dZ through the connection

d/dZ = d/dz - dz/dZ = g' - d/dz.

The fluid velocity is now determined by the mass conservation equation (6.4).

For steady-state flow, the integral form of (6.4) in the z direction immediately gives

f

f_i=£flLv _pf 1—1/J’ (6.55)

where q is an as yet unknown constant which can in turn be related to the fluid mass

flux.

We now turn to consider the boundary conditions. At the bottom (Z = O), the

solid deformation is constrained, leading to

f®=m mm

g®=0 (Mfl

Based on (6.29), the boundary conditions for this steady-state flow problem are

0323(0) = To, 033117?) = 0, (6-58)

where T0 is the traction reaction due to the support provided by the rigid porous
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plate. It follows from the equilibrium equation (6.12) and the boundary condition

(6.22) that

To = PH — P0. (6.59)

At the top there is no support structure so that t = 0, hence requiring in addition

to (6.58)2 that 0%i$(H) = o and 0%”(H) = o. The first of these, aggxw) = 0, is

automatic by (6.52). It is also to be remarked that (6.59) shows that the boundary

conditions (6.58) are only dependent on the pressure difference PH — P0. Thus the

fluid flow is only affected by the pressure difference PH — P0 rather than the specific

values of fluid pressure PH on the upstream side or PO on the downstream side.

In order to study the problem in more detail we shall temporarily imagine a

broader class of boundary conditions at Z = H than that given by the above condition

0%i3(H) = 0. Narnely we consider either specifying the shear displacement fit with

associated boundary condition

f(H) = fh (5-60)

or else we may specify the shear traction 1'3 with associated boundary condition

agixw) = ts, (6.61)

In particular, (6.61) with 7'3 = 0 recovers the boundary condition of physical interest

for a free surface

ag'gmw) = o. (6.62)

In principle, (6.53) with (6.52) provides an ordinary differential equation involv-

ing f’(Z), g'(Z), f”(Z) and g”(Z). Substituting from (6.55) into (6.54) and again

using (6.52) provides another such second-order ordinary differential equation for

f(Z) and 9(2). This second ordinary differential equation also contains the as yet

unknown constant q from (6.55). Thus for a well-posed problem we anticipate the
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need for five boundary conditions. There are indeed 5 boundary conditions, namely

four from (6.56)-(6.58) and one from either (6.60) or (6.61). Therefore this seems to

be a well-posed boundary value problem at least from a mathematical point of view.

Hence it should be possible to set up a numerical routine to solve this problem.

An interesting aspect to this problem is that in the absence of fiber reinforcing

('7 = 0) the solution will involve f = 0. This can be seen by solving (6.53) with

boundary condition (6.56). This f = 0 solution also corresponds to the type of

situation considered by previous researchers in [46] and [71].

6.4.1 Numerical Analysis

We take the following nondimensional forms

__Z -_f __9 __7 —_M

Z-Htf—Htg—H,7—#,AL—H, mm)

and
_

f/__d£_fl__l I=i€=£=g1

_dZ dZ ’ dZ dZ ’ (6.64)

”=£1f_’=i=ifn ”=19:_ d9, _1-”
 

fi—Hfl—fiw

With the use of (6.52)3, (6.52)4 and (6.55), the governing equations (6.53) and (6.54)

become two nondimensional second order ordinary differential equations, which are

too long to be displayed here and so given in Appendix A.

A 4-th order Runge-Kutta Scheme and a shooting method are adopted to solve

these two nondimensional governing equations. In particular it is most eflicient to

assign the constant q and to calculate PH -- P0. Some of the material parameters

are obtained from Paul and Ebra—Lima [24]: [.l. = 2.375 x 106 dyne/cmz, X = 0.425,

M = 100p, p5 = 0.869 g/cm3. The initial thickness of the slab is taken to be the

same as that of the experiments described in [24], namely H = 0.0265 cm.

First we consider the case where there are no fibers (7 = 0) and hence no shear
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displacement (f(Z) ;—= 0). This case corresponds to the experiments conducted in [24].

Since f is formally eliminated in this case, the three relevant boundary conditions are

then given by

9(0) = 0, a$i$<m = PH — Po, oé’é’WH) = 0. (6.65)

Numerical solutions associated with the above boundary conditions are shown in

Figure 6.6a and compared with the experimental data in [24]. Thus the shooting

involves matching to the value 027;”(H) = 0. In this case, since f’ = 0 and 'y = 0 in

(6.52)4, it follows that 0727;,“ = 0 everywhere for this solution.

The values 6 = 0, n = 5, a = 1.556 x 1019 gm/cc - day give a good fit to the

experimental data from [24] (solid curve in Figure 6.6(a)). For the sake of comparison

these values of n and a are then used to obtain the the flux-pressure curve associated

with 6 = 1 (dashed line in Figure 6.6(a)). This comparison shows that the 5 = 1

model predicts far less mass flux at any fixed pressure difference than does the é = 0

neo-Hookean model for the same n and a. The variation of the nondimensional normal

displacement (z — 2)/H along the plate thickness is also shown in Figure 6.7(a) for

E = 0 at the pressure difference PH — P0 = 200psi.

Conversely for .5 = 1 we find that the values of n = 16, a = 3.014 x 1020 gym/cc.

day give a good fit to the same set of experimental data (solid curve in Figure 6.6(b)).

These values of n and a are then used to obtain the flux-pressure curve associated

with 5 = 0 (dashed curve in Figure 6.6(b)). This shows that the E = 0 model predicts

much greater mass flux at any fixed pressure difference than the model of 5 = 1.

The nondimensional normal displacement (z - 2)/H along the thickness direction is

depicted in Figure 6.7(b) for the case where g = 1 and PH — P0 = 200psi.

Figure 6.7 for both 5 = 0 and E = 1 shows that the isotropic layer is contracted in

the thickness direction from its free swelling value. The maximum normal displace-
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ment associated with the fluid diffusion (which occurs at the upstream boundary

Z = H) with various pressure difference PH — P0 is shown in Figure 6.8 for both

5 = 0 (with n = 5, a = 1.556 x 1019 gm/cc - day) and for 5 = 1 (with n = 16,

a = 3.014 x 1020 gm/cc - day).

 

  
 

’0'250 260 460

PH — P0

Figure 6.8: The normal displacement of the free surface vs. pressure difference for

the material parameters in Figure 6.7(a) with 5 = 0 and Figure 6.7(b) with 5 = 1

6.4.2 Boundary Value Problems

Now we begin to study the effect of fiber reinforcement. This in turn requires

the consideration of the shear displacement f(Z) in the :r-direction. The constitutive

model requires specification of f2 and 7. In what follows we take Q = 1r/4 and consider

the effects of various 7. In the numerical analysis that follows, the material parameter

5 is taken to be 0. Accordingly we will choose the corresponding values of n = 5,

a = 1.556 x 1019 gm/cc . day.
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Lateral constraint boundary condition at Z = H

First we discuss the cases in which there is a fiber effect (7 ¢ 0) but with the

surface Z = H held fixed in the lateral direction after free swelling. Define

A2 ’1/2 A2 *1/2

P(Z) = A1 sin!) (1 + —?- tan2 a) — A2 cos 12 (1+ —% cot2 {2) Z

*1 )‘2

(6.66)

so that it follows from (6.41) that P(Z) is the pure free swelling shear displacement

that is associated with the fiber reinforcement. The boundary conditions that we first

wish to consider are given by

M) = 0, 9(0) = 0, 0313(0) = PH — Po.
. (6.67)

f(H) — P(H) = 0, 02;.”(H) = 0.

The fourth order Runge-Kutta scheme with the shooting method is again employed

to solve this boundary value problem. The flux-pressure difference relation obtained

from this procedure is depicted in Figure 6.9(a). It shows that if the fiber reinforcing

parameter 7 is increased then a larger pressure difference is required to sustain the

same amount of fluid flux. The shear stress 0%” at the top surface Z = H that is

necessary to maintain this deformation is then plotted in Figure 6.9(b).

We now turn to consider the fiber deformation, and begin by recalling that the

fibers remains straight lines after free swelling since free swelling is a homogeneous

deformation. However, with the pressure difference and fluid flow, the deformation is

no longer homogeneous and so the fibers now become curved (see Figure 6.10). Their

deformed geometry and slope are shown in Figure 6.11.
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Figure 6.9: Variation of the fluid flux q/pg and the required reactive shear stress

mix

ozx
(H) with pressure difference PH — P0 for various fiber reinforcement coefficients

7 with 5 = 0, n = 5, a = 1.556 x 1019 gm/cc- day when the boundary conditions are

given by (6.67).
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Figure 6.10: The fibers become curved in the inhomogeneous deformation associated

with pressure driven fluid seepage as depicted in panel (c). This is a schematic

representation.

No shear traction boundary condition at Z = H

In the second case, we consider a free surface boundary condition at the t0p of

the layer Z = H. Then the corresponding boundary conditions are

f(0) = 0, 9(0) = 0, 02’2“”(0) = PH - P0,
. (6.68)

077115111): 0, 0229mm = o

The relation between the flux and the pressure difference as determined from numer-

ical solution of this boundary value problem is depicted in Figure 6.12(a). Again, the

numerical results show that stiffer fibers tend to decrease the fluid flux for the same

pressure difference. The additional lateral displacement at the top surface Z = H

after free swelling f(H) — P(H) is also plotted in Figure 6.12(b).

This then motivates us to study the effect of the initial fiber orientation on the

shear displacement of the free surface. To consider this effect, we first keep the fiber

reinforcing coefficient at 7y = 2.0 and vary the pressure differences PH —- P0 (Figure

6.13(a)). The results show that the maximum shearing displacement of the free

surface occurs at fiber orientation angle 0 > 1r/4. If PH — P0 is small then the angle

9 associated with this maximum is very near 7r/4. As PH — P0 increases the angle

0 that locates the maximum also increases. In the other way, we could instead keep
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Figure 6.11: The fiber geometry at various seepage rates with 7 = 2.0, 5 = 0, n = 5

and a = 1.556 x 1019 gm/cc - day when the boundary conditions are given by (6.67).

(23f denotes the projected distance onto x-axis between an arbitrary point on the

fiber and the tip (2:0) of the same fiber.)

148



 

  

N
#

C
D

t
v

.

\

s
s

\

\

\

12

*7
z (,0

3

—7
2 (,2

s
10

___
7 2

0.5

N.

....
... 7

:
1.
0

g
8 ....

.7 Z
2.0

‘ ,,
,,

\\
\

"'
ZI
N.
A:
T____

0

T
”

..
..
..
..
..
..
.

3

"""

To

"Ii
-,3

...

Q

\
D"

><

3
Lu    O . .

0 200 400

Pressure Difference PH — Po (psi)

(a) Fluid flux q/pg versus pressure difference PH — P0

  

   

 

0.15
.

*7 = 0.0

—7 = 0.2

_ "-7 = 0.5
‘‘‘‘

i 0.1 ....... 5: ,0 ,,,,,.________

A -----— = 2.0 ................

E

7
{,3

..........
.

L]. 005
’Zfiiiili;""

E
if";

f: C

-0.05
  
 

0 200 400

Pressure Difference PH — Pn (psi)

(b) (f(H) — F(H))/H versus pressure difference PH — P0
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with pressure difference PH — P0 for various fiber reinforcement coefficients 7 with

5 = 0, n = 5, a = 1.556 x 1019 gm/cc - day when the boundary conditions are given

by (6.68).
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PH — P0 fixed (at 200psi in Figure 6.13(b)) and vary the fiber reinforcing coefficient

7. It is again found that the maximum shear occurs at an angle Q greater than 1r/4.

However it is now found that this angle is close to 77/4 when 7 is large. The angle

increases further beyond 7r/4 as 7 decreases.

Define

2 " 1/2 2 — 1/2

T(Z) = A1(1+%cot29) sinQ+A2 (1+§%tan2 Q) 0039 Z,

2 1 (6.69)

where T(Z) is the normal displacement caused by the free swelling deformation (6.41).

Then the dependence of the normal displacement on original fiber orientation for

different pressure difference is shown in Figure 6.14(a) and for different 7 is shown in

Figure 6.14(b).

Again in this case, the fibers become curved and their deformed geometry is

shown in Figure 6.15. In particular, comparing Figure 6.11(a) to Figure 6.l5(a)

shows that the traction free boundary condition gives rise to more overall shortening

of the layer in the z-direction for the same amount of fluid seepage. A corresponding

conclusion holds if the pressure difference is kept fixed.

6.5 General Formulation for Non Steady State Dif-

fusion

In this section, we discuss the time dependent fluid seepage problem in which

case the fluid velocity changes with time. The various field variables are now functions

of (z, t). In particular we consider the following initial-boundary value problem. We

start with a steady state flow problem as described in Section 6.4 with an initial

upstream pressure PH’ an initial downstream pressure P6, and hence an initial fluid

pressure difference PI —PI . We then suddenly change the upstream and downstream
H 0
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Figure 6.13: The shear displacements as a function of the initial fiber orientation

under a free surface traction boundary condition at Z = H.
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Figure 6.14: The normal displacements as a function of initial fiber orientations with

a free surface traction boundary condition at Z = H.
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Figure 6.15: The fiber geometry at various seepage rates with 7 = 2.0, 5 = 0, n = 5

and a = 1.556 x 1019 gm/cc - day when the boundary conditions are given by (6.68).

The common slope value at Z = H in (b) is a direct consequence of the boundary

conditions (6.68)4 and (6.68)5.
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pressures to PH and P67 so that the pressure difference abruptly becomes P15 — P5.

The evolution of the solid deformation as well as the fluid flux is of interest. As

t —> 00 one would anticipate that the solution to this problem would approach the

steady state diffusion associated with PH — P6".

The boundary condition for t > 0 follow again from (6.58) and (6.59) as

mist: __ F F mix _
0’22 (0,t)—PH—PO , Uzz (H,t)—0. (6.70)

Note that it makes no difference whether the pressure change AP = (P5 — Pg.) —

(PH — Pg) occurs all on the upstream side (Z = H), all on the downstream side

(Z = 0), or in some combination.

Now the solid velocity v3 is no longer zero but v3 = vgéx + vgéz instead.

Similarly the fluid velocity vf = vgcféx + vzéz We now recall that the dissipative

interactive force 5 as well as seepage velocity w only has the component in the z

direction (see the discussion after (6.52)). Since w = vf—v3 = (v; —f)éx+(v£—g)éz

it follows that v; — f = 0. Here we denote

6 Z,t 6 Z,t

The mass balance equation (6.4) no longer gives the steady state condition (6.55) but

5% (1 _ f) + 5‘: [(1 — f) 61:] = 0. (6.72)

The stress equilibrium equations now become

instead now gives

52657;.” = 0, (6.73)
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and

a mix Muir-.51) _
82:0“ + (J ‘1)" — 0. (6.74)

For the convenience of the numerical scheme it is necessary to transform the Eu-

lerian partial derivatives into Lagrangian partial derivatives in the following analysis.

For an arbitrary variable cp = <p(z, t) = 1p[z(Z, t), t], its Lagrangian partial derivatives

could be determined from their Eulerian forms with the use of chain rule:

 

    

 

     

  

ggzziv 2.53:2 :52; +323912,0. (g(Z,t)=%a@[ ).

Therefore it follows that

%.=S_§JZ%T> (6.75)

and

 

 

where the second equality of (6.76) has made use of (6.75).

6.5. 1 Isotropic Layer

In this section, we consider the transient diffusion problem described in Section

6.5 for the special case in which the layer is isotropic (7 = 0). Thus A1 = A2 =

A = A1 and there is again no shear displacement, i.e., f(Z) 5 0. Thus the stress

equilibrium equation (6.73) in the 117-direction is trivial. Making use of (6.75) to

evaluate 8022235/82: it is found that the governing equation (6. 74) in the z--direction
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gives

 

A4 A2 1 n

1+ {(212 — 1) + —h’(A29’> g” + a ( ) (v! — 1119’: o, (6.77)
u u A

where h’(J) = dh/dJ.

Using (6.75) and (6.76) to express (6.72) in terms of Lagrangian partial deriva-

tives, and then eliminating 72'; between that result and (6.72) gives a partial differ-

ential equation for g(Z, t) that is third order in space and first order in time. This

equation is of the form

1

CF2(9’)9”2, (6.78)
.I 1 I III

=—F
g c 1(g)g +

where F1(g') and F2 (9’) are both unit free functions of the single field variable g’, and

C = 01A4/[1. Note that C has units of sec/cm2. These functions are given in Appendix

B The most obvious boundary condition is given by the fixed displacement boundary

condition g(O, t) E 0 at the downstream location Z = 0. It is also possible to obtain

boundary values for g’(0, t) and g’(H, t). These are found by solving equation (6.70)

using (6.52) with 7 = 0 and J = Azg’. This is done numerically and does not present

any special difficulty. It is also necessary to assign an initial condition for g(Z, 0) for

0 < Z < H. This is given by the steady state solution associated with the pressure

difference P}! — POI. With respect to the (z, t) domain there is now a discontinuity

in 9’(Z, t) at the corner (Z, t) = (0,0) because t11_nq)g’(0, t) comes from the boundary

condition while 2111110 g’(Z, 0) comes from the initial condition. Note also that no such

discontinuity in 9' (Z, t) occurs at the corner (Z, t) = (H, 0).

We partition the space domain by using a mesh Z0,...,ZI and time domain using

a mesh t0,....,tN. In particular, at each time step there are I — 1 internal nodes

(i = 1, 2, ..., I — 1) since i = 0 and i = I are boundary nodes. We assume a uniform

partition both in space and in time, so the difference between two consecutive space
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Figure 6.16: An explicit forward time-stepping scheme

points will be AZ and between two consecutive time points will be At. The points

g(Z,-,tn) =9? (i=0,1,2,...,I, n=0,1,2,...N)

will represent the numerical approximation of g(Z, t). Using the initial and boundary

condition the numerical solution may proceed by an explicit forward time-stepping

scheme using a 6 node stencil to discretize (6.78) as shown in Figure 6.16. In particular

suppose the stencil involves two nodes (i, n + 1), (i + 1, n + 1) on the time step 71. + 1

and four nodes (i — 1,n), (i,n), (i + 1,71), (2' + 2,71.) on the time step 72.. These six

nodes comprises a stencil, whose ”center” is at (i + %, n + %) as represented by the

stars in Figure 6.16. The discrete form of (6.78) on the basis of this stencil is now

written as

:left =

i+%,n+%

[
I
]

”'9?“ 1 (6.79)
i+2,n+2

with
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1 n+1 1 .+1

:left = H(gz'fi ‘ 9&1) ‘ Em? ‘ 9?)

i+%,n+% AZ

:Tight 2 F1 9ft+1 ‘ 9? 92n+2 " 392n+1 + 39f - gen—1 (6 80)

245.1%? AZ C(AZ)3 ‘

1 9"“ - g" 1 2
Z Z

+ 'C-F2 (T) [W(gan _ 910+1 — 9? + 9:11) ~

Assume that numerical values have been obtained for g(Z, t) at time step 71 and

observe that gg'H is known from the boundary condition. It is then desired to obtain

numerical values for g(Z, t) at time step 71 + 1 by using the explicit scheme (6.79) for

i=0, 1, 2, ..., I-1. It is to be noted that the use of (6.79) for both i = 0 and i = I — 1

requires the consideration of a virtual node as shown by the dashed triangles in Figure

6.16. The values 9’11 and g?+1 of these two virtual nodes are determined from the

known boundary values g’(0, t) and g’(H, t) through

I 1 n n I _ 1 n

g (0.t) = $7191 -9_1). and 9 (Hi) — 55-2-6?“ -91_1)- (6-81)

Numerical solution of the partial differential equation (6.78) is then obtained

through the forward time stepping scheme (6.79). In particular, at the end of time

step 71. the values of g? are known for i = 0, 1, 2, ..., I. The values 931 and g?+1 then

follow from (6.81). The value gg+1 is also known from the boundary condition. Then

(6.79) fori = 0,1,2, ..., I—1 gives I equations for the I unknowns 9271—51 (i = 1, 2, ..., I).

These equations are easily solved in a sequential manner since the only unknown in

(6.79) for i = 0 is 9’1“”1, the only new unknown in (6.79) for i = 1 is then 93+1, etc.

Figure 6.17 shows the results of such a numerical calculation. The initial pressure

difference in this example is PH — P6 = 50psi. The pressure difference is then

suddenly changed to P}; — POP = 200psi. The approach to the steady state solution
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Figure 6.17: Change in compaction during transient diffusion in the absence of fibers

(7 = 0) for a material with 5 = 0, M/a = 100. In this simulation the steady state

seepage with PH -— P0 = 50psi is abruptly altered to PH — P0 = 200psi.
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is evident.

Base on the results in Figure 6.17, the profile of fluid density ratio pf could be

determined as in Figure 6.18. In this case pf = (1 — J_1) pf = (1— A—2g’_1)p5.

 

Initial Steady State PI}; — Pop 2 50 psi

0.8-

   

 

  

Final Steady State

P}; — Pop 2 200 psi _

t/(CHz) = 5 x 10‘8,2 x 10‘7,

5 x 10-7, 1 x 10-6, 5 x 10-6. 
.1

 
0 0.2 014 06 0.8 1

Z/H

Figure 6.18: The variation of pf/pg along the thickness for the simulation considered

in Figure 6.17.

The variation of normal stresses egg”: and egg,“ along the thickness direction is

shown in (Figure 6.19). Note here the symmetry gives 0%” = 05,7393.

The total mass of fluid per unit current cross-section area within the layer 2 can

also be obtained by 2 = fg‘ pfdz = [3" pfg’dZ = fol pfg'HdZ (Figure 6.20). The

numerical routine shows good convergence of the function g to its large time steady

state value.

The example connected to Figure 6.17 — Figure 6.20 concerns the transition from

one steady state flow to another steady state flow. Alternatively, one can begin with

an initial state that involves free swelling and hence no flow by virtue of PH — P0 = 0.

Then by abruptly raising the value of PH — P0 one obtains a transient flow condition
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Figure 6.19: The variation of normal stresses along the thickness direction for the

simulation considered in Figure 6.17.
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Figure 6.20: The amount of fluid in the layer changes with time: from its initial
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state value (where PH — P0 = 200psi).
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that will approach a steady state for large time. Figure 6.21 shows this phenomena

in a manner similar to Figure 6.20 for a variety of P11; — POF values.

1.4
 

    

  

  

  

 

Steady {State Value for free I

swelling (P11; — Pf = 0)

1.35 ........ Steady State Value for P5 — Po“ = 50 psi
 

 

A Steady State Value for P5 — Pf = 100 psi
m 1 3 ......... .7
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Q.
V
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1 2 ,_..............
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1'1550 0:4 0:8 1:2 1:6 2
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Figure 6.21: The change of interstitial fluid amount with time for various pressure

difference. Free swelling state (PH — P0 = 0) is abruptly altered when PH — P0 is

suddenly changed to 50psi, 100psi, 200psi, 300psi, and 400psi, respectively.

6.5.2 Fiber Reinforced Layer

Now we consider the transient diffusion problem for a fiber reinforced layer. As

in the previous section, we suddenly increase the pressure difference from P}! — P6

to P5 — P6? and analyze the evolution of the solid deformation and the fluid flux.

The stress equilibrium equations are the same as in (6.73) and (6.74). The fluid

mass balance equation is again given by (6.72). By substituting from (6.74) into

(6.72), the evolution equation regarding the time derivative of g(Z, t) is obtained as

follows:

, 1

g’ = 51730“, f”, f”’,g’,g”,g”’), (6.82)
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where C' = aA¥/\%/p, and F3 is a complicated function of f’, f”, f’”,g’,g” and 9’”

that is too cumbersome to display here. It is given in Appendix C. This equation is

the generalization of the previous equation (6.78) to the case of fiber reinforcement.

It is immediate that one set of boundary conditions is

f(0,t) = 0, and g(O, t) = 0. (6.83)

The remaining traction boundary conditions are as follows. First condition (6.70)

continues to hold, namely

 

agixm, t) = pg — POF, 633w, t) = o. (6.84) 1

The remaining traction boundary conditions follow from the requirement that a“ (H, t) =

0 which, in conjunction with (6.53), gives

agi$(0,t) = 0, agi$(H,t) = 0. (6.85)

In fact (6.53) gives the immediate first integral

”g(Z, t) = 0. (6.86)

Note also that by using (6.52) it follows that (6.84)1 and (6.85)1 provide two equa-

tions for f’(0, t) and g’(0, t). Similarly (6.84)2 and (6.85)2 provide two equations for

f’ (H, t) and g’(H, t). These equations can be solved numerically for constant values

f’(0,t), g’(0, t), f’(H, t) and g’(H, t) prior to the consideration of the time-stepping

numerical routine.

For 0 < Z < H, initial values of f(Z, t) and g(Z, t) are given by the steady state

solution to the problem with fiber reinforcement. With these boundary and initial
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conditions, we may proceed with the numerical iteration by using the same forward

time stepping scheme as in Figure 6.16. Observe that the only time derivatives that

appear in the formulation are 9 and g’, and these time derivatives only appear in

equation (6.82). Therefore, we obtain nodal values gy‘fl for i = 1, 2, ..., I — 1, I when

we move from time step ii to time step n + 1. It is then necessary to use (6.86) to

solve for fin+1 for i = 1,2, ...,I — 1,] from these gzm—l. Similar virtual nodes for

i = —1 and i = I + 1 are then created in the time-stepping stencil scheme. Namely,

the values of fill”, 9711-1, fill—11 and 95111 will be introduced to complete the scheme

with the use of the boundary values of f’(0,t), f’(H, t), g'(0, t) and g'(H, t) as in

(6.81).

Numerical approximation of the profiles of f(Z, t) and g(Z, t) is shown in Figure

6.22. The parameters are chosen as follows: 5 = 0, the fiber reinforcement coeflicient

7) = 1.0 and the original orientation angle of the fibers 9 = 1r/4. Recalling the

definitions in (6.66) and (6.69), the function P(Z) and T(Z) represent, respectively,

the pure shear and normal deformation caused by the fiber-reinforced free swelling.

Figure 6.22(a) and Figure 6.22(b) then depict the evolution of f(Z) — P(Z) (shear

displacement due to pure pressure difference) and 9(2) — T(Z) (contraction due to

pure pressure difference), respectively.

Comparison of Figure 6.22 with Figure 6.17 indicates that the presence of fibers

causes the time for the system to achieve its final steady state to increase by nearly

two orders of magnitude over that of the isotropic case. The shear displacement and

the normal contraction for the fiber-reinforced transient diffusion process with an

increased fiber coefficient 7) = 10 is shown in Figure 6.23. The overall way in which

the transient deformation approaches the steady state deformation is found to be

relatively insensitive to the the initial fiber orientation Q as seen in Figures 6.24 and

6.25.
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6.6 Summary

In this chapter, We study the pressure driven fluid diffusion through a hyperelas-

tic porous layer. Both steady state and transient diffusion cases are considered with

particular interests in the effects of fiber reinforcement on the diffusion process.

0 It is found that the original fiber orientation angle 0 is changed to to during the

homogeneous deformation of free swelling. This angle change w—Q is monotonic

with the fiber reinforcing coefficient '7 for a certain angle 9 (0 < 9 < 7r/2). For

a fixed fiber reinforcing coeflicient 7, the angle change exhibits a maximum

value (greater than 7r/4 if '7 > 0) for different values of Q.

o For steady state pressure driven fluid seepage in the absence of fiber reinforcing

it is found that the model (6.52) with g = 0 providas a good match to experi-

mental curve in [24] by taking n = 5 and a = 1.556 x lolggm/cc - day. These

values are then used in the fiber reinforced model (7 aé 0).

o For steady state pressure driven fluid seepage in the fiber reinforced material,

the resulting nonhomogeneous deformation causes the fibers to be curved. Both

lateral constraint boundary condition and no shear traction boundary condition

at the surface Z = H are considered. In the first case, it is found as predicted

that a) both flux and the shearing stress at Z = H increases monotonically

with the pressure difference; b) the fiber reinforcement causes more fluid flux

and greater shearing stress at Z = H with a given pressure difference; 0) the

fibers get further curved as 7 increases. In the second case, it is again found that

a) both flux and the shearing displacement at Z = H increases monotonically

with the pressure difference; b) the fiber reinforcement causes more fluid flux

and greater shearing displacement at Z = H with a certain pressure difference;

c) the fibers get further curved as 77 increases but with a common slope at

Z = H. The effects of both pressure difference PH — P0 and 5' on the shearing
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displacement at Z = H are studied.

0 Transient diffusion process is studied in the problem where a abrupt pressure

difference change is applied. Numerical solutions are obtained by using an

explicit forward time-stepping scheme. It has shown that the presence of fibers

causes the time for the system to achieve its final steady state to increase by

nearly two orders of magnitude over that of the isotropic case.
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Chapter 7

Conclusion

In this dissertation, we focused on theoretical modeling and numerical simula-

tion on the mechanical response of swollen elastomeric gels. To do this, we first

introduce a hyperelastic constitutive theory involving the generalized Flory-Huggins

framework. We then consider the static equilibrium response including homogeneous

and inhomogeneous deformation induced by different mechanical loading conditions.

In particular we consider the equilibrium states in which these mechanical loadings

can lead to both fluid loss (swelling reduction) and fluid gain (swelling increase). For

loadings that give fluid gain, we consider the transition from the state of liquid sat-

uration to that of nonsaturation at a particular point on the quasi-static load path.

Numerical simulations are introduced to solve the stress equilibrium equations. In

what follows list the major numerical results.

0 In Chapter 3, the homogeneous deformation is first discussed. It is found that

both the stress and the overall volume of the gel are monotone with the stretch

for equibiaxial loading, while the volume change exhibits a local maximum at

a certain uniaxial stretch for the case E = 1. For equitriaxial loading, the

stress is found to be monotonically increasing if g is greater than a critical value

Ecrita and exhibits a stress maximum if 5 < gem. In all cases, nonsaturated
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bifurcation always leads to a stiffer response.

In Chapter 4, the inhomogeneous deformation of everting a swollen tube subject

to axial loading is studies. Numerical results show that the deformed inner and

outer radii decrease as the axial stretch increases. The overall volume of the

tube is monotone in the axial stretch if é = 0 but exhibits a local maximum as

long as is > 0. The transition to a nonsaturated state preserves the overall gel

volume but alters the distribution of the fluid content within the gel. For the

cases 5 = 0 and 5 = 1 this results in opposite directions of the fluid quasi-static

migration in the everted cylinder.

In Chapter 5, the problem of twisting a swollen tube is considered. Two sorts

of boundary value problems leading to the change in the overall gel volume are

solved. Either the inner or outer surface is fixed radially while let the other

lateral surface be free of normal traction. The case where the inner surface is

free of normal traction gives rise to fluid uptake, which makes the transition to

a nonsaturated state possible. The result show that relation between the twist

angle and the twist moment abruptly stiffers after loss of saturation.

As the second part of this work, the pressure driven fluid diffusion through a

fiber reinforced hyperelastic media is investigated in Chapter 6. To study the relative

motion between the fluid and polymer matrix, we invoke a large deformation bipha-

sic mixture theory that specially deals with separate mechanical balance principles

for each . Both steady-state and non-steady—state diffusion processes are considered.

Numerical analysis involving a forward time—stepping scheme is utilized in order to

obtain time dependent swelling behavior of elastomeric matrix as well as the redistri-

bution of the fluid concentration during diffusion. Numerical simulation shows: a) the

fiber orientation angle is changed during the homogeneous of free swelling; b) steady

state seepage causes the original straight fibers to be curved; c) fiber reinforcement

175



causes more flux and greater deformation of the polymer network; d) the study of

transient diffusion process shows that the presence of fibers causes the convergence

time to increase greatly over that of the isotropic case.

There are several potential directions to expand this work. Firstly, the current

numerical simulations take the values of the material parameters M, x, and ,u directly

from the experimental data in [24] for the specific combination of toluene and vul-

canized rubber. In order to compare with other experimental data on different gels,

adjustment might be made according to the corresponding materials. Furthermore,

this work takes Mooney-Rivlin elastic energy function for the elastic deformation of

the polymer network, and Flory-Huggins’ theory to interpret the mixing entropic and

enthalpic effects between the elastomer and the liquid. However, we are also able to

embed more general material models into the current framework.

Another possible improvement is to consider more complicate geometries, and

also other constitutive models involving viscoelastic behaviors, which many sorts of

polymers bear. To do this, finite element methods might be adopted to solve the

more complicate time and loading rate dependent equations.
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Appendix A

Nondimensional Form of

Governing Equations of Steady

State Diffusion Problem

By introducing the nondimentionized process in (6.63) and (6.64), the stress

equilibrium equations (6.53) and (6.53) then become

T10“, i’)f” + F202 i’)g7’ = 0 (Al)

and

aqH A%/\§§'2

73(f’,§')97’ + f4(f’.§’)f” +
=

Mp5 (4M2? "1)"+1

 0, (A2)

where f1(f’,§') = 1+§()\%-1)

+ 2’7 [sin4 {2(3f’2 + (7'2) + 3A? sin2 9 sin 2Qf_’ + sin2 9 (3A? cos2 (2 —1)],

1326’, g’) = 25' (A? sin 20 + 25in2 Qf’) sin2 Qg’,

fsa‘as’) = 1 +6 (A? + A; — 1) + Aiigh’mliis’w

+ 2’? [sin4 {2(f’2 + 3572) + A? sin 29 sin2 Qf’ + sin2 Q (A? cos2 {2 — 1)],

$407, 6’) = 27 (A? sin 29 + 2sin2 of) sin2 96', and h’(J) = dh(J)/dJ.
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Appendix B

Functions F1(g') and F2(g’)

= [A +Bhl()\29I)](Azgl _1)n+1

F1(g,) 9,2
 (13.1)

, Bh”(A2g’)A2(,\Zg’ — 1)("+1> + (n + 1)[A + Bh’(A2g’)](A29’ — 1m?

F2(g ) = 9’2

A + Bh’(/\Zg’)]()\2g’ — 1)n+1

9’3 ’

 

_21 

(B.2)

where A =1+£(2)\2 — 1) and B = All/[1.
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Appendix C

Function F3(f,, f”, fl”,g,,g”,g,”)

F3(f', f”, f’", 9', g”, 9'”) = WAA + BB) + 00 * DD * 9”

_ n+1

+1—2—
9

(0.1)
(DDIQII +DDgIII),

where

_ n III__ _ n+1 II

AA=(n+1)(J 1) AME/929 (J 1) 9 (23in2nf’+A1sin2o)sin2nf”,

_ n+1

BB = £J_;),_ Sin? 9 [2 31112 9f”2 + (2 sin2 Qf’ + A1 sin 29)f”'],

CC _ (n+1)(J-1)nA1/\2g”g’—2(J-1)n+lgll
_

9/3
,

DD = 1 + g(A’f + Ag — 1) + A§A§h’(.z)

 

 

+ 2i‘ysin2 Q[sin2 (2(f’2 + 39'2) + A? cos2 Q — 1 + A1 sin2f2f’],

DD’ = A§A3h"(.1)g” + 47 [ sin4 9(f’f” + 3g’g”) + A1 sin 29 sin2 of”],

J = AlAgg’ and h”(J) = d2h(J)/dJ2.
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