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ABSTRACT

MECHANICAL MODELING AND SIMULATION OF POROUS POLYMER
NETWORKS: LOAD INDUCED LOSS OF SATURATION IN ISOTROPIC
ELASTOMERS AND PRESSURE DRIVEN SEEPAGE IN DIRECTIONALLY
REINFORCED ELASTOMERS

By
HUA DENG

Elastomeric gels are high molecular weight crosslinked polymer networks immersed
in a low molecular weight liquid medium. In the liquid environment, they could un-
dergo a large deformation associated with swelling or shrinking in response to environ-
mental stimuli, such as change in temperature, chemistry of the liquid bath, and light
exposure. This valuable property makes them useful in a wide range of applications in
drug delivery, surgical dressings, artificial tissue, and control material in engineering,
which motivate the desire to better understand their underlying mechanical response.

In gels the polymer and liquid components mix in definite proportions as de-
termined primarily by entropic and enthalpic effects. Mechanical loading can also
alter the mixture proportions by absorbing or driving out the liquid. Gel swelling in
the absence of mechanical loading is often described by a generalized Flory-Huggins
equation, which accounts for the effects between such a treatment and the broader
hyperelstic theory which accounts for the effect of mechanical loading. In this study
we consider loadings that can lead to both fluid gain (swelling increase) and fluid loss
(swelling reduction). For loadings that give fluid gain, we then consider a situation
in which the amount of available fluid is limited. In this case, increased loading may
reach a point at which no additional fluid is available for uptake into the gel system.
This results in a transition of the gel from a state of liquid saturation to a state
in which it is no longer saturated. This transition is first considered in the context

of homogeneous deformation where an appropriate hyperelastic analysis shows that



the transition from saturation to nonsaturation gives rise to an abrupt mechanical
stiffening. Then two kinds of inhomogeneous deformation problems are investigated,
including everting an axially loaded tube and twisting a hollow tube that originally
swells freely in the liquid bath. Various boundary displacements and traction condi-
tions are applied so as to study how these alter the original fluid distribution. It is
found that certain boundary conditions generate an overall volume increase after free
swelling, which results in a stiffer mechanical response after loss of saturation.
These static problems describe equilibrium situations in which both the fluid com-
ponent and the polymer matrix component of the system are at rest. However, a more
complicate phenomenon - which attracts abundant research interests - fluid diffusion
through polymer networks requires further study of the relative motion between the
fluid and the polymer network. A mixture theory is then invoked to specifically deal
with separate mechanical balance principles for each component. Pressure driven
fluid seepage problems for both isotropic and anisotropic (fiber reinforced) gels are

discussed based on this framework.
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Chapter 1

Introduction

By a gel we mean a system of crosslinked polymer chains mixed together with
a low molecular weight liquid. In the liquid environment, gels could undergo a large
deformation associated with swelling or shrinking. Their wide applications in drug
delivery [1,2], surgical dressings (3], artificial tissue [4] (skin, articular cartilage, etc.)
and control material (micro-control [5], smart materials, etc.) in engineering motivate
the desire to better understand their underlying mechanical response. Depending on
the nature of the elastomer and fluid, a variety of ambient conditions, such as tem-
perature [6,7], pH of the liquid bath [8,9], and light exposure [10,11], could possibly
determine the amount of liquid that is absorbed into or expelled out of the gel. This
is typically coupled with the mechanical deformation of the polymer network. Ther-
modynamical and mechanical balance principles describe these processes, in which
case a central issue is the development of a modeling framework that is sufficiently
general to accommodate these effects upon specification of appropriate constitutive
relations. One possible framework is that of small deformation; such theories describe
swelling by allowing for parametric dependence of constitutive parameters (e.g. elastic
constants, osmotic pressure) on the underlying electrochemistry (e.g. concentrations,

charge density) [12]. Such linear descriptions are useful for describing mechanical



behavior in fixed ranges wherein issues of large strain, instability, and transition from
saturation to unsaturation do not arise. However, in certain situations such phenom-
ena cannot be avoided, or will even be exploited, in which case it is necessary to

consider a finite strain description.

1.1 Background

Gels are high molecular weight crosslinked polymer networks immersed in a low
molecular weight liquid. When water is the liquid, then these are typically referred
to as hydrogels. The liquid can also be organic in nature as for example discussed
in Chapter 7 of Treloar’s well known treatise The Physics of Rubber Elasticity [13].
Although hydrogels would generally be much softer than a rubbery material infused
with an organic liquid, both are regarded as gels for the purpose of this thesis, and
we shall use the term gel throughout in this broad sense.

Some of the earliest experiments on the stress-stretch behavior of swollen gels
were performed by Gee [14]. Simple uniaxial tension tests were made on a range of
vulcanized rubbers at various degrees of swelling. The experimental results depart
greatly from those predicted by the standard large strain theories of rubber elasticity.
These classical theories are associated with a Gaussian statistical mechanics treatment
of the polymer chains. Similar tests can also be found in [15] and [16].

McKenna et al. [17] carried out torsional and uniaxial compression tests on both
dry and swollen cylindrical rubbers. They concluded that the dry-state elastic free
energy function could also describe the elastic behavior of swollen gels for non-highly
cross-linked rubbers. This implies that the presence of liquid molecules does not affect
the elastic component of the free energy function. Their experiments are claimed to be
consistent with the Frenkel-Flory-Rehner assumption that the total energy of swollen

networks is comprised of the free energy of mixing and the elastic free energy.



There are also many models [12,18] that treat equilibrium mechanical behavior
of gels in the setting of the classical small strain tensor € = %(Vu + VuT) (where u
is the displacement vector) within the theory of linear elasticity. These include the
small strain linear theory of poroelasticity [19]. They are not useful for our purposes
and will be omitted from what follows. Instead, it is necessary to use large strain
elasticity theory.

A separate, and complicating issue is the internal flow of fluid in gels so as to
achieve equilibrium if the system is not initially in equilibrium. The diffusion of fluid
through polymer networks has been investigated a great deal [20-23]. One of the
most frequently referred to modern set of experiments on this can be found in [24],
where Paul and Ebra-Lima measured the non-linear diffusion of twelve organic liquids
through a swollen gel membrane. The diffusion was induced by the pressure difference
across the membrane. The diffusion coefficients and also the material parameters
of both the fluid and the hypefelastic rubber material were determined from their
experimental results. These material constants were then widely adopted in later
modeling frameworks.

One of the earliest continuum theories that can be used to describe the large
strain behavior of incompressible hyperelastic materials was presented by Mooney [25]
and Rivlin [26]. This apples to rubber-like materials but does not, in its original
presentation, account for gel mixtures where the interaction of the elastomer and
liquid is present. Their basic theory involves an energy argument that the elastic free
energy ® depends only on the three principal stretches A\;, Ao and A3. In current

notation, their model is equivalent to the expression

® = (A1, Ao, \g) = [(1 —o) (M +23+23-3) +¢ (W23 +2333 + 313 - 3)]

(1.1)

where pu > 0 is the shear modulus for infinitesimal strains and £ (obeying 0 < £ < 1) is

N|®



the Mooney-Rivlin adjustable parameter. Because this model is for an incompressible
hyperelastic material, implying volume preservation during mechanical deformation,
it leads to a constraint condition A;ApA3 = 1 on the three stretches. In the case

associated with £ = 0, eq. (1.1) retrieves the neo-Hookean strain energy function
b
<1>=<1>(A1,A2,,\3)=5(A§+,\§+A§—3), (1.2)

which arises from a Gaussian statistical treatment of polymer chain entropy.

One of the basic issues for the mechanical behavior of gels is how much they
swell depending on their liquid environment. In the absence of load this is called free
swelling. For a given value of free swelling, the question arises as to how an addi-
tional applied load on the swollen gel further deforms the gel. Various hyperelastic
models have been used for this purpose. In other words, these models seek to predict
how stresses applied to a swollen gel cause additional stretch beyond that associated
with free swelling. The more chemistry oriented literature often accomplished this
by balancing the elastic free energy (as a function of the stretches) with the work
done by the principal stresses o1, 09 and o03. This then gives the relation between
the principal stresses and the principal stretches. In addition to the Mooney-Rivlin
material mentioned above, some of the other energy functions that have been used for
this purpose include the constrained chain model [27, 28], localization model (29, 30),
liquid-like model [31,32], and eight-chain model [33]. Han et al. [34] compared these
models and concluded that the constrained chain model fits experimental data [35-38]
best for both dry and swollen states, whereas the eight-chain model of Arruda and
Boyce shows less agreement with the experimental data. However, later Arruda and
Boyce [39] questioned the calculation executed by Han et al. [34] and put forward
their eight-chain non-Gaussian Model in order to account for the same trends as

in the experimental data for large stretches. On this basis, they then proposed a



hybrid model that suitably combines the Flory-Erman constrained chain model (so
as to capture the main features of stress-strain behavior for small strains) and the
Arruda-Boyce eight-chain model (which was developed to describe the large strain
behavior well). The strain energy density function of this hybrid model gives rise to

the following stress-strain relationship for uniaxial loading:

1
2 —3
Nk© n .1 vp °Ac 1 1 1
VET'\/(—C_[: 1 pT (/\2 - X) + ENJkellp (Al/\2 - A2x)

(1.3)
Here vp is the volume fraction of the polymer relative to the dry state and represents
the degree of swelling, N is the number of chains in the polymer per unit unswollen
volume, N is the junction density, k is Boltzmann’s constant, © is absolute temper-
ature, n is the number of links in the chain, Ac = [(A2 + 2/)\)/3]1/3, L£71( ) is the
inverse Langevin function, and Ay, Ag are both functions of A and vp. These are too
complicated to be discussed in detail here and the reader is referred to [39] for more
information.

In summary, the treatments described above in [27-34] seek to use the theory of
hyperelasticity to model gels after free swelling has occurred. They account for the
strain energy function of hyperelastic materials and give a reasonable linear approxi-
mation to the neo-Hookean model. The main distinction between different models lies
in the modification of the strain energy function for moderate and large deformation.

In order for a model to also determine the amount of swelling, it is necessary to
connect the mechanical response to the interaction between the polymer network and
the liquid which together make up the gel. The attempt to make this connection was
made over half a century ago. The swelling of the gels depends upon the interaction
between the solid elastomer and the surrounding liquid. One of the earliest exper-
imental measurements on this interaction goes back to [40], where Gee and Treolar

gave a thermodynamic description of the rubber-benzene mixture system by measur-
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ing the vapor pressures. A statistical mechanical theory of the equilibrium degree of
swelling was presented by Flory [41] and Huggins [42,43] separately. Based on this

theory, the free energy of mixing H is
H=M[v 1 -1)in(1-v)+x1-"v), (1.4)

where M and yx are material parameters, and v is the volume fraction of the elastomer
in the mixture. They seek to determine the free swelling ratio 1/v by an energy
argument that seeks to account for: (1) the mixing entropy of elastomer and liquid; (2)
mixing enthalpy of elastomer and liquid; and (3) strain energy of the elastomer. If a
system is originally in non-equilibrium, then it is assumed that internal fluid diffusion
will occur until equilibrium is achieved. This diffusion process can be described by a
mixture theory approach. For now we restrict attention to equilibrium configurations
once any fluid redistribution is complete.

On the basis of Flory-Huggins theory, Treloar [44] more formally introduced an
extra term that explicitly accounts the work due to tractions when load is applied.
By this treatment, the swelling equilibrium associated with homogeneous deformation
under simple loading conditions could be determined. Treloar [45] later considered
the problem of a cylinder subjected to combined axial extension and torsion about
the axis. For large deformation the radial distribution of the stress, strain, and the
amount of swelling are obtained by numerical analysis. It is found that the gel volume
decreases with the torsion.

Wineman and Rajagopal and co-workers constructed a continuum mechanical
treatment incorporating finite strain on the basis of mixture theory, as discussed in a
series of papers [46—48]. In [48] they consider a static problem where a relative rotation
was applied to the two lateral surfaces of a swollen hollow cylinder. Their main

purpose was to find the fluid redistribution with various twist moments. However,
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they limited attention to boundary conditions that did not allow for volume change
after swelling. In an even earlier paper [49], Wineman, Rajagopal, and co-workers
consider a torsion problem that does treat load dependent volume change using a full
mixture theory formulation. As in [45], they find that torsion causes volume decrease;
this corresponds to the expelling of fluid.

In this work, I have examined similar static boundary value problems with dif-
ferent loading conditions. Both volume decrease and volume increase associated with
the applied load can be obtained. The latter case corresponds to fluid absorption.
For these static problems it is not necessary to involve mixture theory and so are
similar to the classical approach of Treloar [45]. For the case of fluid absorption, it
may further be the case that insufficient fluid is present to attain a saturated state.
In this case, the associated transition from saturation to unsaturation is considered.
In particular, it will be indicated how the overall mechanical response becomes stiffer
if this transition takes place will be indicated.

These are not the only continuum models that have been developed to treat the
swelling behavior of gels. Instead of introducing the mixing free energy, Marra and
Ramesh and collaborators [50,51] introduce an evolution internal variable a, which is
defined as the volume ratio of the interstitial fluid in the current state to that in the
reference state. It is assumed that this internal variable acts as the only independent
variable of the specified free energy function. To describe the volume change (called
actuation in their article) they consider the total free energy function as the sum of
elastic energy and an additional energy term due to the effects of free actuation, which
means uniform expansion or contraction of the polymer in the fluid. This corresponds

to the statement, in current notion

W =®(1,1) + g(I3,a), (1.5)
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where W represents the total free energy and ® can be regarded as some elastic energy
that is appropriate for an incompressible material. This & is typically taken to be
in the neo-Hookean, Mooney-Rivlin or even the more general Ogden [52] form. The
function g in (1.5) is claimed to account for the effects of free actuation. The three
invariants and the material parameters in ® and g are all assumed to be functions
of a. Then an evolution law for the internal variable « is developed. Uniaxial and
equibiaxial loading tests were performed. Experimental data are obtained and used
in fitting the material parameters in Ogden energy function. These parameters are
then substituted into a finite element model. It was then claimed that the numerical
results show good agreement with the data.

Certain hydrogels exhibit phase changes of various kinds such as an abrupt vol-
ume increase when either the temperature or chemistry of the liquid is changed. These
are sometimes called stimulus-repsonse hydrogels. Dolbow et al. [53-55] presented a
continuum model for volume transitions in hydrogels that exhibit a sudden collapse in
volume at a specific temperature. Their model includes a sharp-interface separating
swollen and collapsed phases. With obeying the deformational and diffusion poten-
tial coherence across the interface, a set of equations of force balance and chemical
potential balance were derived in the domain of each phase and on the interface as
well.

Another aspect of interests in the swelling behavior of gels is the study of fluid
diffusion through hyperelastic material. A variety of theoretical treatments [56, 57
have been developed to model the mechanical and thermodynamical behaviors of such
diffusion process. A common-used biphasic theory called the theory of porus media
(TPM), involving the mixture theory and volume fractions, is applicable to such non-
linear diffusion problems. One of the earliest presentations of this treatment can
be found in the work of Bowen [58]. His framework, which involves partial stresses

for the solid and fluid phases, makes use of mass balances, momentum balances, an



energy balance law and the Clausius-Duhem inequality.

Many material models generalizations were then subsequently embedded into this
binary mixture theory, such as a viscoelastic model [59] and an elasto-viscoplastic
model [60,61]. Different numerical methods based on finite element analysis have
also been developed and used to study the phenomenon of consolidation in the porous
media, including Galerkin finite element method and least-square mixed finite element
method [62], [63]. Within this framework, Markert [64] has presented a 3-D finite
element analysis on the nonlinear fluid flow through a porous polyurethane form.

Ehlers et al. [65,66] followed a related energy and entropy balance treatment
and used it to simulate the elastic deformation of liquid saturated porous solids. In
particular these works introduce the idea of a fully compact material meaning that
all the internal pores have been closed, squeezing out all the fluid. Their energy
functions are designed to give this full compaction only in the limit as appropriate
normal stress components trend to negative infinity.

The compressibility condition on the solid and the fluid phase of the mixture
is always an important fact to be considered in TPM. Palomar and Doblare [67]
utilized an Augmented Lagrangian formulation to enforce the incompressibility con-
dition on both the solid and fluid phase based on a fibre-reinforced porohyperelastic
model. Diebels extended the mixture theory and applied it to both incompressible
and compressible binary systems [68].

Specifically, [61,67,69] deal with material anisotropy. The numerical examples
in [67] show how the additional stiffness due to the fiber reinforcing causes the fibrous
materials to exhibit less deformation under the same amount of extensile load. Among
the more interesting results obtained in [67] is the demonstration that the introduction
of fiber network leads to a higher relative fluid diffusion velocity as well as a higher
pore pressure in an unconfined compression simulation.

Under the TPM framework, Markert et al. [70] derived a set of full contact



boundary conditions at the interface of two saturated porous media with the assump-
tion that there is no dissipative effects at the interface. These conditions include the
solid velocity continuity condition, the normal seepage velocity continuity condition,
the pore-fluid pressure jump condition and the solid effective normal stress jump
condition. The latter two conditions have the property that if two identical porous
bodies are put in contact with each other then both the pore pressure and the solid
effective normal stress are continuous. However if the two contacting porous bodies
have different solid-fluid phase ratio at the interface, then the pore pressure and the
solid effective normal stress exhibit a jump and mixture theory arguments are used
to obtain detailed expressions for these jump (see equation (47) and (48) of [70]).

However none of the works [56-70] obviously takes into account the interacting
behavior between the fluid and the solid skeleton. To also connect the mechanical
response to the interaction between the polymer network and the interstitial fluid,
Rajagopal, Wineman and collaborators (Rajagopal et al. [46], Gandhi et al. [47] and
references therein) introduced a Flory-Huggins type term in the free energy expression
so as to account for the interacting continua in the diffusion problems. Pressure-
induced diffusion through spherical and cylindrical geometries were studied in [46,47).
Diffusion through a porous swollen layer with lateral stretch and shear deformation
was also considered in [47]. In particular these works provide numerical solutions to
boundary value problems with one lateral surface held fixed while only the pressure
was specified on the other surface.

These treatments also pointed out some controversies with respect to specify-
ing the tractions on the solid and fluid boundaries. In an alternative but related
variational treatment, Baek and Srinivasa [71] extremize the Helmholtz potential of
the system containing the swollen solid and the fluid over all admissible system con-
figurations. This variational procedure involves the mass conservation equations for

both the solid/fluid mixture phase and the surrounding pure fluid phase. This results
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in a set of governing equations and boundary conditions. Energy dissipation is also
considered in (71] to account for frictional effects as the fluid diffuses through the
elastomer.

Other means for arriving at this framework are also possible. This includes that
given recently in [72] and [73]. In partcular, the treatment in [72] introduces the the
liquid phase concentration as an independent variable prior to the requirement that
the liquid component fraction in the gel be given by 1 — v. The equivalent of this
constraint is enforced by a Lagrange multiplier in [72]. The condition for free swelling
is then found to be given by a requirement that the chemical potential for the pure
liquid, say Plig is equal to an appropriate variation of the gel’s total free energy with

respect to a change in concentration.

1.2 Objectives and Scope

The main purpose of this research is to model the mechanical deformati_on and
also the redistribution of the concentration of fluid throughout the system in response
to changes in load or displacement at the system boundary. In so doing, it distin-
guishes between saturated and nonsaturated gels. Numerical analysis is introduced
to obtain the equilibrium deformation of the polymer network, from which the redis-
tribution of the concentration of fluid is derived. This is based on the assumption of
volume additivity that the volume of the mixture is the sum of that of the elastomer
(solid phase) and that of the interistic fluid (fluid phase).

In particular, even though both the polymer matrix component and the fluid
component of the gel system are regarded as individually incompressible when iso-
lated from the other component, the overall gel system, as long as it is saturated,
is then described in terms of a hyperelastic framework in which the gel is nomi-

nally compressible. This is because a fixed amount of polymer component can be
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regarded as defining a gel patch (or gel “element”). The amount of fluid component
within such a gel element can change, giving rise to a change in the volume of the
gel element. In other words, redistribution of the fluid component with respect to
the matrix component generates a local volume change. This is in keeping with the
Treloar’s treatment. He writes in [13] that if a rubber that is incompressible in the

absence of a liquid swelling agent is subsequently swollen, then

“ ... the swollen rubber in continuous equilibrium with a surrounding
liquid may be regarded, from the purely formal standpoint, as having

mechanical properties equivalent to those of a compressible material. ”

In particular, since the rubber that is referred to in the above quote is regarded as
being in contact with a liquid bath, the situation refers to a state of liquid saturation.
Thus the saturated equilibrium response is described by a single stored energy density
function W. The present work has taken the Frenkel-Flory-Rehner assumption that
total energy of the gel is comprised of elastic free energy and mixing free energy, which
are additive. The choice of the specific form of elastic free energy is not the central
problem in this work, therefore the specific Mooney-Rivlin model will be adopted
for modeling isotropic gels. The Flory-Huggins equation (1.4) will be used for the
mixing free energy. Then the total free energy W for a swollen gel depends only on
the deformation gradient F through the principal stretches A1, A9, A3, or equivalently
the three invariants Iy, I, I3 of the left Cauchy-Green deformation tensor B, namely
FFT. By virtue of (1.1) and (1.4), this becomes

W = ®(A1, A9, A3) + H(v). (1.6)

The saturated Cauchy stress tensor then follows from this stored energy density as
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in compressible hyperelasticity
o=—-—FT. (1.7)

The local volume change in the deformation then directly correlates to the local
change in fluid content.

If, however, the amount of liquid is limited, and in particular assume that all
the liquid is imbibed at some point in the loading process, the system then becomes
nonsaturated. A constant reaction stress —pl is generated so as to enforce the global
constraint that the overall volume of the gel remains fixed at the instant when the
transition from a saturated state to a nonsaturated state occurs. This gives the

nonsaturated Cauchy stress tensor
=>2FT 1 (1.8)

Thus (1.7) and (1.8) give the relation between stress and deformation for homo-
geneous deformation (F independent of location). For nonhomogeneous deformation

without any body forces the stress field must satisfy
dive =0. (1.9)

These equations are usually nonlinear and hard to obtain analytical solutions. There-
fore it is necessary to invoke numerical routines in order to obtain simulated results.

The above hyperelastic framework could describe equilibrium situations in which
both the fluid component and the polymer matrix component of the system are at
rest. In particular, each material point in the gel is regarded as a two component
mixture of polymer matrix and interpenetrating liquid. For a sort of more complicate

problems where there is relative motion between the fluid and matrix components, so
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it is necessary to invoke the broader continuum mechanical framework that specifically
deals with separate mechanical balance principles for each component. This broader
framework is known by a number of names, including: large deformation mixture
theory, the theory of interacting continua, and the large deformation biphasic theory.
To this end, the process of fluid diffusion through hyperelastic media is investigated
in this work, where a major focus is on time dependent swelling as liquid diffuses
within the elastomeric matrix.

The structure of this work is outlined as follows. The hyperelastic theory for the
static mechanical response of swollen gels is developed in Chapter 2. The discussion
of the stress-strain swelling response under homogeneous deformation is discussed in
Chapter 3. Boundary value problem of an everted tube subject to an axial load is
considered in Chapter 4. The inhomogeneous deformation response of the axially
loaded tube is compared to the homogeneous deformation response of the axially
loaded tube when it is not everted. Chapter 5 deals with a boundary value problem of
a hollow tube with a relative twist at its lateral surfaces. Different radial displacement
and traction boundary conditions are considered along with the prescribed twist. In
Chapter 6, certain flow problems where fluid exhibits both steady-state and non-
steady-state seepage through the hyperelastic gel are studied. These seepage problems
consider the possibility of pressure driven fluid diffusion through a fiber reinforced
gel, such that the isotropic diffusion problem is retrieved as a special case.

For the equilibrium mechanical r&spbnse discussed in Chapter 2 through Chapter
5, it is a main object to investigate the effects of fluid saturation and loss of saturation
in the system on the polymer network deformation as well as fluid redistribution
under certain mechanical loadings with different boundary conditions. While as for
fluid seepage problems it is assumed that there is always enough fluid flowing through
the polymer network so that there is no necessity to consider the loss of saturation

at all.
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Chapter 2

Modeling of the Swelling Behavior
of Elastomeric Gels

2.1 The Flory-Huggins Equation for the Determi-
nation of Free Swelling

The most basic description of large strain effects in elastomeric gels concerns the
determination of the amount of fluid that perfuses a polymer matrix when it is placed
in a liquid bath. Let v denote the volume fraction of polymer matrix so that 1—v is the
volume fraction of the fluid component. A standard development proceeds by taking
molecular chain arguments for configurational entropy of crosslinked macromolecules
within a liquid bath, and coupling these to a phenomenological description of enthalpy

of mixing [13,44]. The requirement of a stationary free energy then leads to the

equation
1/3
M[ln (1 -st) +uf3+xu%s] + v £ =0 (2.1)
~ ¢ - N’
dilution crosslinking

for the free-swelling value of v which, as indicated above, will be denoted by v fs- Here
M > 0, x and p > 0 are constitutive parameters that may vary with temperature,
pH, fluid chemistry, and other environmental factors. As indicated in (2.1), two
separate effects can be identified, that associated with dilution and that associated

with crosslinking. In the absence of crosslinking, the equation reduces to that for
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the effect of dilution alone, and this is the equation that is usually referred to as
the Flory-Huggins equation [13]. The dilution term itself models the two effects of
mixing entropy and mixing enthalpy. The term containing x models the latter and is
positive for the standard case wherein polymer-polymer and liquid-liquid grouping is
favored over polymer-liquid grouping. In particular, larger x favors polymer-polymer
aggregation so that Vg increases with x. The remaining part of the dilution term
models the entropy contribution of polymer-liquid mixing to the free energy. In
particular, the parameter M is identified as the product of the ideal gas constant and
the absolute temperature divided by the molar volume of the liquid.

The utility of a theory that delivers (2.1) is due in no small part to the fact that
(2.1) has a unique solution Vfs that takes values on the physically relevant interval
0 <vpe <L This solution is here referred to as the free swelling polymer volume
fraction. It is completely determined by x and the ratio /M. Thus one may then
write vg, = ﬁfs(x, w1/M). Increasing either x or u/M favors a more tightly bound
gel and so increases 9 £,4(x, p/M).

The connection between free swelling and hyperelasticity follows by introduc-
ing the deformation mapping that takes the polymer component from its original
unswollen location X to its stressed, swollen location y. Let J = detF where
F = 0y/0X is the deformation gradient of the mapping y(X). Correspondence
between J and v is immediate if both the polymer component and the fluid compo-
nent are individually incompressible since simple mixing then gives the identification
J = 1/v. Thus J is the volumetric swelling of the gel as measured with respect to

the polymer component before liquid was present. It is therefore required that
J>1. (2.2)

Historically, the original development leading to (2.1) employed a notion of physical
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variations. In particular, rather than using physical arguments to obtain an explicit
energy to minimize, the original papers of Flory and Treloar employ an argument
which requires that there is no change in the free energy of the system in the event
that a single fluid particle is transferred between the gel and the pure liquid which
surrounds the gel. Although the free swelling volume fraction appears in (2.1), the
original arguments leading to this equation actually depend more on the concept of
occupied volume rather than the related concept of volume fraction. The connection
between occupied volume and volume fraction then follows from J = 1/v. The
argument involving fluid particle transfer can thus be viewed as a variation with
respect to J. Accordingly, the energy that is formally minimized can be found by
substituting vgg — 1 /J in (2.1), integrating the resulting expression with respect to
J, and, if desired, returning to the original volume fraction variable via J — 1 /st-
This gives, to within an integration constant, an energy expression with the following

terms

1 3u -2/3
—.MXst +M(V—fs—1>ln(l-—1/fs)+ 71/‘,-3

effects of mi;(ing entropy

~

effects of mixing enthalpy effects of network elasticity

(2.3)

Hence (2.1) is equivalent to determining the free-swelling value of J as the root of

Edj(H(J) + \I/(J)) =0, (2.4)

with
H(J) = M((J —Dn(l —J Y +x(1 - J"l)), (2.5)

and
U(J) = 37”J2/ 3, (2.6)

Here H + VU is the overall free energy, the former accounting for polymer-fluid inter-
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action (mixing entropy and mixing enthalpy), the latter accounting for elastomeric
deformation of the crosslinking network. The limiting case u — 0 corresponds to the
absence of crosslinking and hence no elastic effect. Equation (2.4) then reduces to

h(J) = 0 where we have introduced the notation

h(J) = == (2.7)

It is to be remarked that (2.2) and (2.4) can be regarded as a general framework, which
retrieves the well known equation (2.1) once the specific mathematical forms (2.5) and
(2.6) are invoked. Thus statements involving the functions H and ¥ need not be tied
to (2.5) and (2.6) unless specifically indicated. Similarly, (2.7) is a definition for h
that is not tied to any constitutive form. For the specific constitutive function (2.5),
h is given by

h(J) = M[In (1 - J_l) +J 1y XJ—2]. (2.8)

The basic behavior of this framework with the usual forms (2.5) and (2.6) is sensitive
to whether x < 1/2 or x > 1/2 as described next.

If (2.5) and (2.6) hold and x > 0.5 then there is a unique value of J > 1
that causes h to vanish. This value of J corresponds to free swelling in the ab-
sence of crosslinking and we denote this value by J,,.; where the subscript refers to
nocrosslinking. Thus h(Jpey) = 0 and Jy, ) = 1/054(x,0). Moreover h(J) < 0 for
1< J < Jyy and h(J) > 0 for J > J,, . Consequently J,,.; provides a local minima
of H. One also finds that J,,; < 2x/(2x — 1) and that J,,; — oo as x — 0.5.

If (2.5) and (2.6) hold and x < 0.5 then there are no solutions to h(J) = 0
because h(J) < 0 for all J > 1. Hence for x < 0.5 the infimum of H is achieved as
J — oo. Since h(J) — 0 as J — oo it is convenient to formally define J,,; = oo

for x < 0.5. The derivative h’(J) > 0 for all J > 1. These qualitative features are
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Figure 2.1: The constitutive function A(J) in (2.8) for various x. Vaues of J giving
h(J) = 0 model gel dilation on the basis of mixing entropy and mixing enthalpy, but
do not account for the elastic effect of polymer crosslinking.



summarized in Figure 2.1.

Accounting for elastic interconnection (1 > 0), equations (2.4) ~ (2.6) become
h(J) +;¢J_1/3 = 0. In conjunction with (2.8) this recovers (2.1) for the free swelling
value Jgg = l/ufs. There is a unique finite Js solution to (2.4) - (2.6) for all x
whenever p > 0, which is formally given by Jgs = 1/0¢4(x,1/M). This solution
obeys the inequality J 'fs < Jncl as would be expected since the crosslinking inhibits
swelling. Further h(J)+pJ ™ 1345 respectively positive or negative as J is respectively

greater than or less than J. fs- Figure 2.2 indicates these relations.
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Figure 2.2: The constitutive expression A(J) + uJ~1/3 for various x when pu =
0.01M. The new term uJ“I/B describes the effect of crosslinks. Values of J giving
h(J) + uJ~1/3 = 0 describe free swelling.

A simple interpretation concerns polymer that has some original volume, say
Vpoly, when free of liquid. Placing this nominally dry polymer into a liquid bath
causes it to swell by uptake of fluid. The resulting gel occupies new volume J Vpoly
where J minimizes the free energy H(J) + ¥(J). For the energy forms (2.5) and
(2.6) this free energy involves the three previously mentioned effects, one of which

favors swelling (the configurational entropy), one of which opposes it (crosslinking),
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and one of which could go either way (mixing enthalpy) although it opposes swelling
in the standard case x > 0. In all cases, crosslinking (1 > 0) ensures that the swollen
volume remains finite. If crosslinks are not present (u = 0) then the mixing enthalpy
must sufficiently favor same phase agglomeration (x > 0.5) for the swollen volume to
remain finite. However if crosslinking is not present and the mixture enthalpy is not
sufficiently conducive to this same phase agglomeration (1 = 0 and x < 0.5) then
J — oo and the polymer goes into solution, dispersing itself throughout the fluid
bath.

Implicit in the above discussion is a requirement that sufficient liquid is available
for saturation of polymer with the liquid. This requires that

TVaoly < Violy + Viig: (2.9)

where V};, is the original fluid volume prior to introduction of polymer. If (2.9)
holds then the gel swells to its energetically favored saturation value. However if J
as determined on the basis of (2.4) is larger than that permitted by (2.9) then the

swelling is limited by the availability of fluid to the value
Je =1+ Viig/Vpoly (2.10)

which is less than the free swelling value J¢; determined on the basis of (2.4). The
gel is then no longer saturated. In what follows the use of a subscript » or a su-
perscript * will denote a value that demarcates a transition between saturation and

nonsaturation.
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2.2 Hyperelastic Constitutive Theory

In free swelling, the deformation gradient of the mapping y(X) is F = J}é 3I
where I is the identity tensor. In order to treat more general deformations due to
the effect of mechanical loading, we now consider a hyperelastic framework. Let

B = FFT and C = FTF and let I}, I; and I3 be the associated principal scalar

invariants

Iy = TraceB, I = =(I? — Trace(B%)), I3 =detB = J2.
2 i 3

[ SRR

The overall stored energy density will be expressed as the sum of elastic free energy

of the polymer network ® and a mixing free energy H
W(F) = ®(I,12,J) + H(J). (2.11)

The mixing energy H is the same as that discussed in the previous section and its
derivative will continue to be denoted by h (viz. equation (2.7)). The specific Flory-
Huggins form (2.5) for H will be used in the examples that follow.

2.2.1 Free Swelling

In the absence of mechanical loading, the associated free swelling is determined
by minimizing W in the class of simple volumetric expansions F = J 1/31 so that

L = 3J2/3 and I, = 3J4/3. Thus J is determined on the basis of
4 (p(32/3,354/3 _
= (<1>(3J ,3J4/3, ) + H(J)) =0. (2.12)

Comparison with (2.4) indicates that correspondence with the free swelling frame-
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work described in the previous section will follow provided that
<I>(3J2/3, 3J4/3, J) = ¥(J) + constant.
Correspondence with the particular Flory-Huggins form (2.6) will obtain if
<I>(3J2/3,3J4/3, J) = :-;2&]2/3 + constant.

In what follows we shall use the Mooney-Rivlin form for the elastic energy ® of the

polymer network

<I>=<I>(11,Iz)=§[(1—£)(11—3)+5(12—3)], (0<g<). (2.13)

The case £ = 0 gives the neo-Hookean specialization. For any £ obeying 0 < £ <1in

(2.13), one finds that
®(3J2/3,344/3, 1) = %‘i((l —€)J23 4 eJ4/3 — 1)

so that the special neo-Hookean case of £ = 0 retrieves the original equation (2.1)
upon taking J = J fs=1 / Vg For the more general Mooney-Rivlin form with £ > 0

equation (2.1) is augmented so as to contain an additional term and so becomes

1/3 -1/3
M[ln (1- st) trps+ xu?-s] + ,u[(l - {)ufé + 28y, / ] =0. (2.14)
Introduce the free swelling stretch ratio
1/3 -1/3
CEJﬁ =st/ , (2.15)

where v is the root of (2.14). This root now depends upon £ in addition to x and
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/M. As such, the free swelling behavior under (2.14) is not as simply described as
was the case for (2.1). Some indication of the effect of the new constitutive parameter
& upon Vfg can be obtained by taking representative values for x and u/M. To this
end we follow [48] where the equivalent of a neo-Hookean & is considered for the
modeling of a vulcanized rubber in contact with toluene as considered by Paul and
Ebra-Lima in [24]. The following values are taken in [48]: M = 2.379 x 108dyne/cm?,
x = 0.425 and p = 2.375x 106dyne /cm2. Note for these values that the dimensionless
parameter M = M/p = 100.17 = 100. The value of the free swelling stretch ratio ¢
as a function of £ for various M and x are shown in Figure 2.3. The dotted curves in
Figure 2.3(a) and Figure 2.3(b) are respectively associated with the above parameters

M =100 and x = 0.425.

2.2.2 Saturated Stress and Nonsaturated Stress

Let T and o give the first Piola-Kirchhoff and Cauchy stress tensors, respectively.
They are connected by

o= %TFT. (2.16)

Mechanical equilibrium is governed by the usual equations
DivT =0 on Qx, & dive =0 on (y, (2.17)

where Qx and {2y denote the gel domain in the reference and deformed configuration,
respectively. We continue to let V},,;,, and Vj;, be the volume of polymer and fluid

respectively. In particular

Violy = / dvx. (2.18)
Qx

After mixing the local gel volume is J so that the overall gel volume is
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(b) x = 0.425 and M varying from 20 to 1000

Figure 2.3: The free swelling stretch ratio ( as given by (2.14) and (2.15) is a function
of M, x and €. The dependence of ¢ on £ is shown for various M and various x
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V= Jdvx. (2.19)
Qx

The maximum overall gel volume is Vj,,,

into the gel. So long as this does not occur the gel is able to saturate. The system is

+ Vjig corresponding to uptake of all fluid

not saturated only if V =V,

poly + Viiq- Together this gives the global constraint

/ (J = 1)dVx < Vg (2.20)
Qx

If the system is saturated then the first Piola-Kirchhoff stress tensor is given by
T = OW/OF and the saturated Cauchy stress tensor is
2_ 0%

_ fp0F LT
o= JFacF + h(J)I, (saturated), (2.21)

where the first term on the right hand side follows exactly as from conventional
hyperelasticity and the second term on the right hand side follows upon recalling
that 8J/0F = JF T,

If, however, the material is not saturated, then a constant reaction stress —pl is
generated so as to enforce the constraint (2.20). This gives the nonsaturated Cauchy

stress tensor

o= %Fg—zFT + h(J)I — pI, (not saturated). (2.22)

Thus, as in incompressible hyperelasticity, there is a pressure contribution to the
Cauchy stress tensor that is not determined by the deformation.

Here, however, it is important to emphasize that the constraint (2.20) is a global
one. This is in contrast to the situation in conventional incompressible hyperelas-
ticity in which the constraint detF = 1 is a local one. The pointwise constraint in

incompressible hyperelastic gives rise to a reactive pressure that can vary spatially. In
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contrast, the pressure p in (2.22) takes the same value at every point in the nonsatu-
rated gel. In particular, since p in (2.22) is constant, a condition of spatially varying
J does not generally permit the last two terms in (2.22) to be consolidated into a
single term with redefined p.

Evaluating 0¥ /0C in terms of the dependence on Iy, Io, J gives

_ 200 _o 2( 09 od oP
¢7__‘]612]‘)’ t3 (311+1161 )B+(0J+h(‘])) (saturated), (2.23)

while the nonsaturated Cauchy stress tensor becomes

__20%p2 0% 0P d
7= J@IgB + J(aj +]131 )B+ (8] +h(J) - ) ) (not saturated).

(2.24)
For the uniform expansion F = J 1/ 31, the saturated Cauchy stress (2.23) is a multiple
of the identity tensor, say o = —p(J)I. Here p(J) gives the mechanical pressure
associated with a given value of J and hence a given local fluid concentration within
the gel. The condition p(Jfs) = 0 recovers the free swelling condition (2.12).

A simple but fundamental application of (2.23) is to determine the infinitesimal
shear modulus G and bulk modulus K for a saturated gel. First consider a simple
shearing deformation after free swelling: y; = (X; + k(X2, yo = (X2, y3 = (X3,
where k is the amount of shear. For this deformation, the shear stress o1o for a

saturated gel is obtained from (2.23) in the form

o192 = G(K)k, G(k) = 8(1) + Caq) (2.25)

The infinitesimal shear modulus for a saturated gel is therefore given by

G(0) = 2 (la—q’ + ca—°> (2.26)

¢on 0l

1;=3¢2,I5=3¢4,J=¢3
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Another important elastic parameter for saturated gel is the infinitesimal bulk mod-
ulus K. Consider a uniform compression: y = 8¢X, where § is the compression
stretch after free swelling. The associated uniform compression stress o derived from
(2.23) is

2 8% 0> 8%
o= gear t 4865E + g7 + ) (2.27)

0ly  0J
By definition bulk modulus is given by

K=-_v9 _ 53<3v06L_ __Bo

v =~ Vo5~ s0m -

Incorporating (2.23) into (2.28), and assuming that I;, Is, and J are mutually inde-
pendent in the expression of & (which is not unusual), the infinitesimal bulk modulus

for the saturated gel is then given by

200 4000 3[a2q> dh(J)l

g1 3C0I] 3 I 8J2 " T dJ
R 0 (2.29)
d 5520
-4(5—17 —16¢ 2 :
1 2 11 =3¢2,15=3¢4,13=¢3
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Chapter 3

Homogeneous Deformation

In this chapter we consider the homogeneous deformation response using the
constitutive forms (2.13) and (2.5) in (2.11). Since J is a constant for homogeneous
deformation, condition (2.20) reduces to the same condition as in free swelling, namely
(2.9). This in turn is equivalent to the condition J < Jx where Jx is defined in (2.10).

The Cauchy stress tensor then follows from (2.23) and (2.24) as

o =

SRS

[(1 —£+£0L)B - 532] +h(J)I, A<JI<Jdy),  (31)

o =L](1-¢+en)B-¢B? + (h(4) - D)L, T=n). (32

Since the term (h(J«) —p) in (3.2) involves constant h(Jx) and an arbitrary constant
p, it follows that h(Jx) can be absorbed into p. However in later chapters, when
nonhomogeneous deformation is considered, it will be necessary to retain h(J) in the
nonsaturated Cauchy stress tensor.

We now consider in turn: equibiaxial loading, uniaxial loading, and equitriaxial

loading. Each is referred to a coordinate system with mutually orthogonal unit vectors

e, €9, e3.
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3.1 Equibiaxial Stress

This is the specialization o = o(e; ® ] + €3 ® e3) and we restrict attention to
deformations that preserve the loading symmetry so that F = A(e; ®e] + e ®e3) +

(J/X2)e3 ® e3. For a saturated material it follows from (3.1) that

7 [,\_JZ +¢ (g (/\2 - 1) + )‘—‘]2)] + h(J) = o, (saturated), (3.3)
and
p [)\14 +£ (:\JZ (2/\2 - 1))] + h(J) =0, (saturated). (3.4)

The second equation provides the relation between J and A whereupon the first
equation provides ¢ in terms of either A or J. The graph of stress vs. stretch passes
through the point (A,0) = ({,0) which corresponds to the state of free swelling.
Recalling the requirement that J > 1 consider the limit J — 1 in (3.3) and (3.4). For
h in (3.4) given by (2.8) this limit gives

e e
A~ (3.5)

gm0 e

so that, in all cases, J — 1 as A — 0. According to (3.3) this requires 0 — —o00 as
follows:

(

—u(l-EX™4, ifo<eg<l,

o~h(J)~Min(1—J71) ~ (3.6)

—2uA"2, if&=1.
\

Thus the limit ¢ — —oo forces all of the liquid out of the gel, and in this limit A — 0.
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Returning to the overall stress behavior, we find for M = 100 and x = 0.425
that J is monotone in A for all 0 < € < 1. The graph of o vs. A is also found to be
monotone for these parameters (Figure 3.1). Thus increasing stretch corresponds to
both increasing stress and increasing fluid content. This situation holds so long as
J < Js.

A transition from a state of saturation to a state of nonsaturation occurs when

*

J = Jx. This occurs at a unique value of A, say A qbi?

and a unique value of stress,
say a: abi- For A > /\Z qbi the value of J remains fixed at J« and the relation between
stress and stretch is now determined on the basis of (3.2). This gives F = /\(el ®

&) + ey ® eg) + (Jx/A2)e3 ® e3 and

2 4
o=pu [(1 -£) (3— - {%) +¢§ (%— - {%)] , (not saturated).  (3.7)

It is to be remarked that the nonsaturated response does not depend upon h(J).
The solid curve in Figure 3.2 shows the saturated backbone curve o vs. A for
& = 0. The transition stretch /\;‘ qbi €20 take on any value as determined by Jx, and
three values of A\ gbi &€ taken as examples. At each such A7 qbi there is a transition
from saturated to nonsaturated response, and the associated nonsaturated response
curve that branches off of the backbone curve does so in a continuous but nonsmooth
fashion. The nonsaturated response involves an abrupt stiffening as evidenced by
the greater slope of the nonsaturated curve at the branch point. To be specific,
suppose A > /\Z qbi SO that the gel is not saturated because insufficient liquid is
available. Consider the difference in the value of stress for the nonsaturated response

and the value of stress for a hypothetical saturated response had sufficient liquid been
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(a) o/p versus X for equibiaxial loading
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8.5 1 15 § 25 3 35

(b) J versus \ for equibiaxial loading
Figure 3.1: Stress-stretch behavior and volume-stretch behavior for equibiaxial load-

ing of a saturated gel with M = 100 and x = 0.425 showing the effect of different
&
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Figure 3.2: Stress-stretch behavior for equibiaxial loading with M = 100, x = 0.425,
and é=0. Three nonsaturated response curves are depicted. Each nonsaturated
response branches off of the saturated response “backbone curve”.

available. This difference is

onon = osat = w1 = 035 - 3)] + [0 - )]

%7 n
¥ [““4(% - %)] +A[:‘—§u _ J,,)] oY

where J in the above expression is the saturation value. Since J > Ji if A > A; qbi
it follows that each of the four separate bracketted terms in the above expression is
positive after loss of saturation. One therefore formally verifies that onon > 04t if
A> ’\qui' In addition, by differentiating the expression in (3.8) with respect to A and
then evaluating the result at X = /\: qbi and J = J, one obtains the slope difference

at the location where a nonsaturated response curve branches off of the saturation
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response curve. This calculation gives

d a2 X dJ
X (onon—0sat) ’A:A;qbz. = ul1-9 (J_EJFX‘I) i (J_g+X5)] l,\z,\;qbi?ﬁ I,\=A;qbi'

(3.9)
Noting that the bracketted term in the above expression is positive, it follows that
the sign of the above expression is determined by the sign of the derivative dJ/dA.
Since, as remarked above, J increases with A it follows that the slope difference is
strictly positive, thus quantifying the abrupt stiffening.

Returning to Figure 3.2 it is observed that two of the three nonsaturated response
curves depicted in this figure involve values of Ji that give a;qb'i > 0. For these two
Jx there is sufficient liquid for free swelling and the resulting loss of saturation occurs
once o increases to o; gbi > 0. The third nonsaturated response curve depicted in
Figure 3.2 involves a value Jx that gives 0‘; qbi < 0. In this case there is insufficient
liquid for free swelling to proceed to its saturated value. Thus the value o = 0 occurs
on a nonsaturated response curve. A biaxial compressive stress will, in this case, give
a response that proceeds down the nonsaturated curve until it joins the saturated
backbone curve. The resulting transition from nonsaturated to saturated response

now involves an abrupt softening in the Cauchy stress response.

3.2 Uniaxial Stress

This is the specialization & = ce] ® e] and we again restrict attention to defor-
mations that preserve the loading symmetry so that F = Ae; ® €1 ++1/J/A(ea ®eq +

e3 ® e3). For a saturated gel it follows from (3.1) that

22
p[(l - {)7 + 25/\] + h(J) =0, (saturated), (3.10)

34



and

I [(1 - 5)% +E(A+ /\iz)] + h(J) =0, (saturated). (3.11)

The latter provides the kinematic relation between J and A (Figure 3.3(b)) while the
former then gives the relation between uniaxial stress o and stretch ratio A (Figure
3.3(a)). The graph of stress vs. stretch again passes through the free swelling point
(A, 0) = (¢,0). The predicted behavior associated with the possibility of squeezing
out all of the liquid in uniaxial stress again requires the consideration of J — 1. For
h given by (2.8) it is again found that A — 0 as J — 1. In particular, one finds that
A~O(In((J=1)"YH]"Y2)if 0 < £ <1, while A ~ O([In (J — 1)~ )"y if ¢ = 0.
In all cases 0 — —o0o0 as A — 0. As regards the overall stress behavior, we find that o
is monotonically increasing with A when M = 100x and x = 0.425 for all 0 < ¢ < 1.

For ¢ = 0 it is found that the volume increases monotonically with axial stretch
(viz. Figure 3.3(b)). Thus, as in the case of equibiaxial stress, there will be a loss of
saturation when J = Jx. The stress vs. stretch response must then be determined
using (3.2). This gives

A2

o= ;/.(J—* - X) (1-¢+ 51;-), (not saturated). (3.12)

Even though we are currently considering the case £ = 0 we have, for the sake of later
discussion, given the more general expression in the above equation. Returning again
to the case £ = 0, the associated nonsaturated response curve can again be regarded
as branching off of the backbone saturated response curve. As shown in Figure 3.4,
each nonsaturated response curve is well separated from the backbone curve. Indeed

as A — oo the £ = 0 specialization of (3.10) and (3.11) give

g~ (B3 -0) 2 L

+ O(/\—l/2), (£ =0, saturated),
(3.13)
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Figure 3.3: Stress-stretch behavior and volume-stretch behavior for uniaxial loading
of a saturated gel with M = 100 and y = 0.425 showing the effect of different &.
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and

~ a 32 ___ 2 1/2 _
o )1/2)\ (1 = 2X)2/\ + O(AY4), (€ =0, saturated).

(3.14)
Specifically, the Cauchy stress for the saturated gel is O()\3/ 2) as A — oo. In contrast,
(3.12) indicates that the Cauchy stress for the nonsaturated gel is O(\2), which
accounts for the increasing separation between the response curves in Figure 3.4.

It is useful to note that the separation between the saturated and nonsaturated
stress response for the £ = 0 gel is not present in the corresponding first Piola-
Kirchhoff stress. Recalling (2.16) it follows that this stress is T = Te; ® e; with
T = oJ/A. 1t then follows from (3.10) and (3.11) that the large stretch Piola-Kirchhoff

stress response of the saturated £ = 0 gel is
-1 1/2, _3/9 -2
T~ pl— u(M(g - x)) A +O0(A7%), (=0, saturated). (3.15)

Turning to the first Piola-Kirchhoff stress response of a £ = 0 gel that is not saturated,
it is immediate from (3.12) that

Jx

3 (€ =0, not saturated). (<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>