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ABSTRACT

COMPARISON OF ABILITY ESTIMATION AND ITEM SELECTION

METHODS IN MULTIDIMENSIONAL COMPUTERIZED ADAPTIVE

TESTING

By

Qi Diao

The impetus of the study is the lack of guidance in the literature of multidimensional

computerized adaptive testing (MCAT) in terms of which item selection and ability

estimation methods to use and under what condition. This study did a comprehensive

comparison of ability estimation and item selection methods in MCAT. Two ability

estimation methods included maximum likelihood estimation and Bayesian estimation

method. The item selection methods can be divided into three categories, item

selection methods associated with maximum likelihood, item selection with Bayesian

with Fisher’s information, and item selection method with Kullback—Leibler

information. The comparison was made conditioning on such factors as test length,

use of priors, etc. Simulations were based on real data from 2005 Michigan

Educational Assessment Program. As the result of the study, recommendations were

made which method should be used under certain condition. It is believed that the

results of the study can help future researchers in selecting ability estimation and item

select methods when conducting their own research in MCAT and help the

construction of operational MCAT procedures.
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CHAPTER 1. INTRODUCTION

Computerized adaptive testing (CAT) has been widely used in many testing programs

(e.g. the Graduate Management Admission Test and the Armed Services Vocational

Aptitude Test Battery). It is based on the principle of selecting items to match the

current proficiency estimate of an examinee. Adaptive tests have many potential

advantages, such as improved measurement precision, reduced test time, and flexible

individual testing time. Ample research has been done on unidimensional CAT (e.g.,

van der Linden & Glas 2000; Wainer 2000; Bock & Mislevy 1988). However, only a

few studies have been done on multidimensional computerized adaptive testing

(MCAT) (e.g., Segall, 1996; Veldkamp & van der Linden, 2002, Reckase 2009). This

study will compare methods used in two important parts in adaptive testing: ability

estimation and item selection methods under different conditions. It is believed that

the results of the study can help future researchers in selecting ability estimation and

item select methods when conducting their own research in MCAT and help the

construction of operational MCAT procedures.

1.1 Multidimensional Item Response Model

A basic unidimensional model for dichotomously scored response is the three

parameter logistic (3PL) model (Bimbaum, 1968). In this model, the probability of

person ] With ability 6] answers item i correctly is:

 



aim]. —b:. )

 
e

P(Uij =I|9j,a;,bi, Ci)=ci+(1_ci)

1+e

aiwj—bi) ’ (1'1)

where a is the discrimination parameter; b is item difficulty parameter; and c is

pseudo guessing parameter. More detailed description of the parameters can be found

in McDonald (1999).

One basic assumption of any item response model is local independence. Local

independence means that given one examinee, his/her answer to one test item does

not influence the probability of his/her answer to another item except through

parameterO. Also, one examinee’s answer to one test item does not influence another

examinee’s answer. In unidimensional cases, the assumption is the same as:

n

P(U1= u], U2 = uz, Un = u” is) = r1 13(9)” (1 —P,-(0))""i, (1.2)

7 i=1

So the probability of an examinee getting a set of observed responses 14,, uz, ...,u,, is

only a function of item parameters and examinee’s ability parameterO.

However, if more than one ability dimensions are measured in the test, the

unidimensional models may not fit and multidimensional response models are needed

in order to satisfy the local independence assumption. The MIRT model used in this

study in a generalization of model (1.1) into multidimensional space:

_ el.7(ai9'j+di)

P(U1j=1I0j:ai’ CI: di)=ci+(1_ci) a (1'3)

1.7(ai0'j+dI-)

1+e

 



where 0 is a lxm vector of examinee j’s ability coordinates with m is the number of

dimensions in the coordinate space. a is lxm discrimination parameter. c and the

intercept term d are scalars.

In general, there are at least three motivations for developing MCAT. The first one is

the same as said above: for many operational tests, the unidimensional models may

not fit. Multidimensional response models are needed in order to satisfy the

assumption of local independence. The second motivation is that for testing for

diagnosic purposes we want to extract as much information as possible and for

correlated ability dimensions information fiom one dimension can help measure

ability in another dimension. The second motivation also leads to the third: efficiency.

Because we can use information from correlated abilities, multidimensional adaptive

testing can fiirther make the ability estimation process more efficient.

1.2 Components of a CAT Procedure

For any adaptive test, five key questions need to be answered: 1) which model to use;

2) how to select the first item; 3) how to update ability estimate after an examinee

gives the response; 4) how to select the next item; 5) how to end the test. So in order

to develop any adaptive test, ability estimation and item selection methods are very

fundamental. This research is targeted at investigating them in multidimensional

cases.

There has been some research done in unidimensional CAT to investigate the

properties of ability estimation and item selection methods (e.g. Weiss & McBride,

f



1984; van der Linden & Pashley, 2000). However, in the current literature on

multidimensional adaptive testing, most studies are done using a single ability

estimation and item selection method because they focus on other aspects of adaptive

testing (e.g. Li Ip & Pub, 2008). The only study that concentrated on a comparison of

different ability estimation and item selection methods for multidimensional adaptive

testing was Tam (1992). But that was before most currently used methods (e.g.

Segall, 1996; Veldkamp & van der Linden, 2002) were developed. Also, most of the

research done in multidimensional adaptive testing used two-dimensional cases, but

we believe for the purpose of multidimensional tests, at least three dimensions are

needed to give a rigorous evaluation of the procedures. Therefore, in order to have a

better understanding of MCAT, this study conducted a comparative study of ability

estimation and item selection methods in MCAT under different conditions.

The first attempt to extend unidimensional adaptive testing methods to

multidimensional cases was Bloxom and Vale (1987). As mentioned above, Tam

(1992) worked on comparing adaptive estimation for multidimensional tests and he

also developed an iterative maximum likelihood ability estimation procedure himself.

But all studies in those times were limited by computer power, which is not a problem

for the computers now. Several current studies have investigated ability estimation

methods and item selection methods. Segall (1996, 2000) applied maximum

likelihood estimation and item selection methods and Bayesian estimation and item

selection methods. Luecht (1996) examined the benefits of applying multidimensional

adaptive testing methods in a licensing/certification context. AnotherW

method, Kullback-Leibler Information, was first introduced to adaptive testing by



 

Chang & Ying (1996). Veldkamp & van der Linden (2002) further developed it for

the multidimensional case.

In this study, ability estimation methods: maximum likelihood (Segall 1996, 2000,

Reckase 2009) and Bayesian methods (Segall 1996, 2000) were investigated. Item

selection methods: maximizing Fisher’s information (Segall 1996, 2000, Mulder &

van der Linden, 2008), including D-optimality, A-optimality, and maximizing

Kullback-Leibler information (Veldkamp & van der Linden, 2002) were compared.

The objective of the study is to compare the above methods for various conditions,

such as test lengths and priors used.



CHAPTER 2. ABILITY ESTIMATION AND ITEM

SELECTION METHODS IN MCAT

2.1 Ability Estimation Methods

In this study, we assume the number of dimensions and the multidimensional

coordinate space has been determined. The item bank exists and all item parameters

a , c, d have been calculated. So the focus here is to administer the test and estimate

examinees’ ability parameters 0.

In any CAT procedure, an initial estimate of a person’s location in the coordinate

system 00 is specified, and then an item is selected and administered to the

examinee. Based on the examinee’s answer to the item, an updated location estimate

is calculated. Then another item is selected based on the updated location estimate,

this procedure is repeated until the end of the test. The final location estimate for this

examinee is given. In this section, two methods of how to estimate persons’ locations

in the coordinate system are shown. The two methods are maximum likelihood and

Bayesian methods. The algorithm of each method is briefly introduced.

2.1.1 Maximum Likelihood Method

Maximum likelihood method was first applied in MCAT by Segall (1996, 2000). It

begins with the likelihood function. Assumed n items have been administered, from



the local independence assumption, the likelihood of an examinee with ability

0 observes a vector ofresponses u is:

L(uw) = L(u ., uvn IO) = n 3(0)“‘Qi(0)1’“’ , (2.1), uv , ..

v1 2 iev

where Pi(0) is defined by (1.3), Qi(0)=l—P,-(0), and v is a vector containing the

identifiers of the administered items.

The maximum likelihood estimates are the solution to the set of m simultaneous

equations given by:

ilnL(u|0)-0 (2 2)

ao ’ '

This set of equations does not have a closed form solution, so Segall (1996, 2000)

suggested using an iterative numerical procedure, e.g. Newton-Raphson procedure, to

obtain the estimates. A more detailed description of the method can be found in

Segall (1996, 2000).

2.1.2 Bayesian Estimation Method

This Bayesian estimation method is introduced by Segall (1996). From Bayes

Theorem, the posterior density function of 0 is:

_ 1.52.
f(9 I I!) — L(u I 9) f(u) , (23)

where L(u | 0) is defined as in (2.1), f(0) is the prior distribution of 0 , and f(u)

is the marginal probability of n.

In most of the studies, we assume the prior distribution of 0 is multivariate normal

with mean u and variance covariance matrix (D:



f(0) = (an—"”2 H» r“2 expt—gte — u)'¢"' (0 - m]. (2.4)

There are two ways of obtaining the point estimates of ability: the mode of the

posterior distribution (MAP) or the mean of the posterior distribution (EAP). MAP is

used more often simply because it requires far less computation. But with the increase

of the computer power, EAP is also applicable.

MAP can be obtained from the solution to the system of equations:

—a-Inf(0|u)-0 (25)60 . .

The same as in the case of solving the equation (2.2), no explicit solution can be

found. So an iterative numerical procedure such as Newton-Raphson procedure must

be applied to find the solution.

EAP is calculation by:

6: 15(9 | u), (2.6)

where the expectation is taken according to the posterior distribution of 0. More

detailed description of this method can be found in Segall (1996, 2000).

2.1.3 Other Ability Estimation Methods

Bloxom and Vale (1987) developed Owen’s (1975) unidimensional sequential

updating procedure into a multivariate extension through a series of normal

approximations. Tam (1992) developed an iterative maximum likelihood ability

estimation method for the two dimensional normal ogive model. Some combinations

of maximum likelihood and Bayesian methods are proposed in Reckase (2009). One



example would be to use Bayesian ability estimation method at the beginning of the

test and when the ability location estimates become finite, maximum likelihood

method in 2.1.1 can be used.

2.2 Item Selection Methods

After each time the ability location estimates are updated, the next item needs to be

selected for the examinee. There are several methods for choosing the next item. All

of them are based on either maximizing or minimizing some criteria at the most

recently updated location estimates. The difference among all item selection methods

are the kind of criterion chosen. This section will describe several item selection

methods that can be found in the research literature.

2.2.1 Maximizing the Determinant of the Fisher Information Matrix

(D-optimality)

This method was proposed in MCAT setting in Segall (1996). For unidimensional

cases, the largest reduction in the sampling variance of E is achieved by selecting

the item with the largest information value. However, in MCAT, information is no

longer a scalar but a mxm matrix. It is defined that information based on previous

administered items and updated ability estimateé , {r-th, s-th} elements of the

information matrix is:

azlnL
_.____ , ‘ 2.7

66.09,] ( )
1,, (9, 6) = -E[



and the {r-th, s-th} elements of an item information matrix is defined:

613(0) x 68(9)

66, 665

Pi(°)Q.-(9)

 

 
Irs(0: ui): a (28)

This method selects the next item which can achieve the largest decrement in the

volume of the confidence ellipsoid. In order to realize that, a criterion of maximize:

arg max det(I(0, 0k_1)+I(0, uk )), (2.9)

is set where 0k_1 is the ability estimate update after k-l items have been

administered and kth item needs to be selected. More details about the method of

maximizing the determinant of Fisher information matrix is shown in Segall (1996,

2000)

2.2.2 Minimizing the Trace of Inverse of Fisher Information Matrix

(A-optimality)

Mulder & van der Linden (2008) introduce the method of minimizing the Fisher

information matrix as the standard for selecting the next item. Mulder & van der

Linden (2008) observed that in the optimal design literature, usage of determinant or

trace of an information matrix or a covariance matrix is the standard practice. While

using the determinant can select items that lead to the smallest generalized variance of

the ability estimators, using the trace may select a different set of items because it

only focuses on the variances of the ability estimators. But the results in Mulder &

van der Linden (2008) showed that the precision of using trace of the inverse of the

Fisher information matrix was comparable to using the determinant of the Fisher

10



information matrix in most cases. So this method is also included in this study. The

criterion for selection is:

arg mintrace(I(0,0k_1)+I(0,uk))_1 (2.10)

In Mulder & van der Linden (2008), a more detailed description of this criterion can

be found. A 3-dimensional case example was given in Mulder & van der Linden

(2008). Let eigenvalues of 1(0, 0k_1)+l(0, uk) be x1, x2, x3(x1, x2, x3 ¢ 0). It has:

trace((I(0, ék_,)+1(o, uk))-')=i+i+i

x1 x2 x3

det(I(0, ék_1)+ 1(9, uk )) = xlx2x3

So the criterion of A-optimality:

xle + XIX3 'I' XZX3

 

arg min trace(l(0, 0k—l ) + [(0, uk ))_l = arg min

xlx2x3

xlx2x3 detam, ék_1)+1(0, uk»
= arg max

= arg max 3

Zdet(l(0, ék_1)+l(9, “Ohm
[=1

  

xle + XIX3 + XZX3

A-optimality contains the criterion of D-optimality as an import part. So the behavior

of D-optimality and A-optimality should be similar.

2.2.3 Largest Decrement in the Volume of Bayesian Credibility Ellipsoid

Based on the criterion in section 2.2.1, Segall (1996) developed another criterion for

item selection. This Bayes Theorem based criterion selects the next item that leads to

the largest decrement in the volume .of the Bayesian credibility ellipsoid. When

Bayesian methods are used, prior information about the population ability distribution

is available. Then the criterion given in section 2.2.1 (Segall 1996) changes to:

II



arg max det(I(0, ék_l)+1(e, uk)+<1>“), (2.11)

and (I) is the same as defined in (2.4), which is the variance-covariance matrix of the

prior multivariate normal ability distribution. More details about the method of

maximizing the decrement in the volume of the Bayesian credibility ellipsoid is

shown in Segall (1996, 2000).

2.2.4 Maximizing the Kullback-Leibler Information

The information most used in CAT research is Fisher’s information. All the above

methods are based on Fisher’s information. Kullback-Leibler information was first

introduced for the unidimensional CAT by Chang and Ying (1996). Veldkamp and

van der Linden (2002) further generalized it to the multidimensional cases.

Kullback-Leibler information is suggested to perform better than Fisher information,

especially during the beginning stage of the test (Chang & Ying 1996).£Ws

319151anbetassajwlilselihmds maths-sam¢.paramcter--spaca~(LehInaaa§¢

W98);As suggested by Veldkamp and van der Linden (2002), it is desirable

to select the next item that yields a likelihood at the true ability value maximally from

those at any otherO.

For one single item 2', Kullback-Leibler information is defined as:

L(ui I 90)
K,(9, 90) = E[ln L(u, I0) I, (2.12)

where 00 is the true ability value ofthe examinee.

After administering n items, for a set ofresponse vector u, the measure is defined:

12



M]. (2.13)K,,(o, 90) = E[ln L(uIO)

Because 00 is unknown and 0 is unspecified, Veldkamp and van der Linden (2002)

based their item selection on the posterior expected Kullback—Leibler information that

the most recent updated ability estimate 0le after k-l items. So the criterion of

selecting the next item is to maximize:

K.B(é"*‘>= LIE-(0, (thaw->69. (2.14)

Chang and Ying (1996) and Veldkamp and van der Linden (2002) have more details

on the item selection method of maximizing Kullback-Leibler information.

2.2.5 Other Item Selection Methods

The above item selection methods are the most often used ones in the recent MCAT

studies. However, there are other item selection methods in MCAT. For example,

Mulder & van der Linden (2009) introduced three criteria for item selection based on

Kullback-Leibler Information: 1) posterior expected Kullback-Leibler Information; 2)

Kullback-Leibler distance between subsequent posteriors; 3) mutual information.

Details about those criteria can be found in Mulder & van der Linden (2009). Reckase

(2009) also proposed to select the next item that maximized the information in the

direction that had the least information. More details about this item selection method

can be found in Reckase (2009).
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CHAPTER 3. RESEARCH QUESTIONS AND METHODS

3.1 Research Questions

The goal of this research is to compare several ability estimation and item selection

methods. To compare the performance of the methods, the criterion is which of the

estimates yields values that are closer to the true value of the location for an examinee

after a fixed number of items have been administered. Mean bias and Root Mean

Squared Error (RMSE) were used as the standards to measure the precision of the

estimates. Even though computer power is not a problem nowadays, it would still be

interesting to compare the computation time of each method to find the balance

between computation time and the precision of the estimates.

For the research questions on ability estimation methods, first of all, as mentioned

above, one problem with maximum likelihood estimation (Segall 1996) is that it may

not converge at the beginning of the test. No research has shown how many items

need to be administered before the estimates converge and when the estimates are

near the true ability value. So the first research question is \what testlengglingerie/d

£0,116“? a converging results“ for maximum, likelihogifihflitY.QSLgngtionmetlE; The

trend for the mean biases and RMSEs will help to decide whether the estimation is

converging or not. Plots of successive estimates of the location as the test processes

will be drawn to determine whether the test is converging at certain number of items.

14



Both maximum likelihood (Segall 1996) and Bayesian methods (Segall 1996) are

used in MCAT research literature. So the second research question is which one of

them performs better and under what conditions. The performance of those two

methods was compared with different test lengths. The hypothesis is that when the

test length is short, Bayesian methods would outform the maximum likelihood

method. However, when the test length is long, those two methods should not differ

much.

Different priors for Bayesian method may be used, whether they are informative or

not so informative. The research question is whether priors have any impact on the

estimation results. Three priors were selected by this study: strong prior, relatively

relaxed prior, and true priors. We define true prior here as the prior with variance

covariance matrix from the whole examinee population. The hypothesis is that when

true priors are used, more accurate estimates are expected. Stronger priors’ estimates

are better than relatively relaxed priors for the students whose ability distribution

nearer to the prior but worse for the students whose ability distribution further away

fi'om the priors’. Argument for the usage of relatively relaxed priors is to be objective

in administration of the tests.
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Table 3.1 All conditions in comparing different ability estimation methods

 

Ability Estimation Methods Prior Test Length

 

MLE N/A short

long
 

 

Bayesian Strong prior short

long

Relatively relaxed prior short

long

True prior short

long

 

 

   
 

For research questions on item selection methods, the first one is to compare the

performance of D-optimality (maximizing the determinant (Segall 1996)) and

A-optimality (minimizing the trace (Mulder & van der Linden 2008)) when maximum

likelihood method is used. From the literature of Optimal design, those two methods

should be comparable. In this study, the two item selection methods were comparedat

the long test length and research hypothesis is their performance is comparable.

The second comparison of item selection methods is to compare the performance of

Bayesian method based on Fisher’s information (maximizing decrement in Bayesian)

with the one based on Kullback-Leibler information. The comparison is conditioning

on test length and we would also use plots of successive estimates to see how fast

each method converges.

All methods will also be compared with themselves conditioning on test length. The

results can provide evidence for each combination of ability update and item selection

method, when it converges to the true ability point in the dimension and has stable

and accurate estimates.
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Table 3.2 All conditions in comparing item selection methods

 

 

 

 

 

    

Item Selection Methods Abilitv Estimation method Test Length

D-optimality MLE long

A-optimality NILE long

Bayesian Volume Decrease Bayesian short

long

Kullback-Leibler Bayesian short

long
 

Note: Bayesian Volume Decrease refers to the item selection method of maximizing the

decrement in volume in Bayesian credibility ellipsoid described in section 2.2.3.

3.2 Research Methods

3.2.1 Real Data Used

In this study, item pool was simulated based on real data from Michigan Educational

Assessment Program (MEAP). Li (2006) used the data from 2005 MEAP

mathematics test for the 7th graders. This real data set included 8562 examinees and

50 multiple choice items. From the dimensionality analysis results of Li (2006), this

data set measured three ability dimensions: the first dimension measured ability to

abstract math concepts; the second dimension measured vocabulary and operations

ability; the third dimension measured problem solving ability. The estimated item

parameters from Li (2006) for all items are listed in table 3.
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Table 3.3 MIRT item parameters for Grade 7 Michigan Educational Assessment Program

(MEAP) Mathematics test from Li (2006).

Dimensi

on

 

1

l

l

l

1

1

1

1

1

l

l

1

1

1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3



Table 3.3 (Continue)

0.09 0.12

0.10 . 0.12

0.14 . -0.04

0.19 . 0.20

0.23 . 0.29

0.19 . 0.43

0.15 . 0.53

0.10 . 0.19

0.10 . -0.05

0.22 . 0.15

0.11 . 0.10 .

0.21 0.01 0.30 0.75

 

3

3

3

3

3

3

3

3

3

3

3

3

Note:

*. c is the pseudo guessing parameter specified in equation 1.3; a1, a2, a3 are

discrimination parameters for each of the three ability dimensions, where a=(a1, a2, a3),

a as in equation 1.3; mdiff is the difficulty parameter in MIRT with negative value

representing easy items. It is different from d as in equation 1.3. More details will be

given in the section 3.2.2.

**. The ‘items’ column contains a two-digit number for each item, representing the

position of the item in actual test administration. Abbreviations for content classifications

are listed at the number.

Also, Li’s study showed that the test had simple structure, which means each item

mainly loaded on one dimension. As shown in Table 3, the first 14 rows are the 14

items that mainly measure dimension 1, abstracting math concepts. From row 15 to

row 33 are items mainly measuring dimension 2, vocabulary and operations ability.

The last 17 rows represent 17 items that measure mainly dimension 3, problem

solving ability. More details about the dimensional structures of test items can be

found in Reckase (2009).

In Li (2006), all correlations among the three O-scales were about 0.5. To be more

specific, for all 8562 examinees, the variance-covariance matrix among dimensions is

as in Table 4. This was used as» the true prior in the simulationgfor Bayesian/abilig

estimatiqnaethod-



Table 3.4 Correlation coefficients among 3 dimensions on Grade 7 Michigan Education

Assessment Program (MEAP) Mathematics Test

 

Dimension 1 Dimension 2 Dimension 3
 

 

 

 

Dimension 1 1 0.5104 0.5117

Dimension 2 0.5104 1 0.5675

Dimension 3 0.5117 0.5675 1     

3.2.2 Simulation

The study was simulated based on compensatory MIRT model as in equation 3.1 with

all c parameters set as 0. In Li (2006), instead of generating a and d, other derived

MIRT statistics mdisci, mdiffi, and dCOSjk were generated first. Parameters a and d

were derived as the functions of those statistics. The relationship between them is

represented by equation 3.2 and 3.2.

e1.7(a,—9'j +di )

 
P(Uy' :lloj’ais Ci, (’1'): (3.1)

1+ e1.7(a,-0'j +di )

d,- = —mdiff,- x mdisci (3.2)

where mdifj} is the difficulty parameter, and mdisci is the discriminating power of

m

the item for the most discriminating combinations of dimensions, mdisci = ’2 aikz .

k=1

aik = dCOSjk X MdiSCi, (3.3)

where dcosjk is the directional cosine that reflects how well an item measures each

dimension.
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Based on Li (2006)’s item parameters, 300 items were generated with 100 items

mainly measuring each dimension. The item parameters were generated from

distributions derived from Li (2006) for mimicking Grade 7 Michigan Education

Assessment Program (MEAP) Mathematics test.

Table 3.5 Distributions for multidimensional item parameter generation mimicking Grade

7 Michigan Education Assessment Program (MEAP) Mathematics test. 100 items were

generated for each dimension.

A. mdiff: difficulty parameter (negative value represents easy item)

 

 

 

 

  

Distribution

Dimension 1 normal (mean=-O.8, var=0.6)

Dimension 2 normal (mean=0.37, var=0g)

Dimension 3 normal (mean=-0.39, var=0.4L
 

B. mdics: discriminating power of the items at direction of best measurement

 

Distribution
 

 lognormal (mean=1, var=0.03)
 

C. dcos: directional cosine determining the direction an item are measuring

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Distribution

Dimension 1 dcosl fi_ (d cos 22 + dcos32)

dcos2 beta (mean=0.0246, var=0.002)

dcos3 beta (mean=0. 1694, var=0.003)

Dimension 2 dcosl beta (mean=0.l366, var=0.005)

dcosz J1 —(d coslz + dcos32)

dcos3 beta (mean=0.0846, var=0.004)

Dimension 3 dcosl beta (mean=0.1 161, var=0.006)

dcos2 beta (mean=0.0507, var=0.002)

dcos3   \/1—(alcosl2 +dcoslz)
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Because the data set was three dimensional, 50 replications were simulated for each

combination of 6] =-l, 0, 1, 62 =-1, 0, 1 and 93 =-1, 0, 1. If Bayesian methods

were used, all interim ability estimates were MAP estimates and the final ability

estimates were EAP estimates. Mean bias and root mean squared errors (RMSE) were

used as measures of estimation precision. Mean biases and root mean squared errors

(RMSE) were calculated for each dimension. Euclidean distance was also calculated

as another index of the precision of the estimates. Euclidean distance in

three-dimensioanl space between the estimate and true location point was calculated

in as in equation 3.4.

 

D=\/(él‘61)2+(é2-62)2+(é3"93)2a (3.4)

where 0=(é1, 632, (93) is the current updated ability location point in the space, and

0 =(61 , 62, 63) is true ability location point.

For general maximum likelihood method, a limit of 13 was set in order to provide the

estimate updates when they were not converging. So whenever the estimates were

larger than 3, the value 3 was set to the estimates. If the estimates were smaller than

-3, the value -3 was set for the estimates.

Total of 13 conditions were simulated to make a comprehensive comparison of each

ability update and item selection method. Table 4 shows all the conditions.
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Table 3.6 All 11 simulated conditions. All simulations are for 27 true ability points, 50

replicates at each point.

 

 

 

 

 

 

 

 

 

 

 

 

 

AIM"?! Item Selection . Test
Estimation Methods Prior Len th

Methods g

NEE D-optimality N/A 20

50

A-optimality N/A 50

Bayesian Bayesian Volume Mean=0, var-cov=identity 20

Decrease matrix

50

Bayesian Volume Mean=0, var-cov=diag(9) 20

Decrease

50

Bayesian Volume Mean=0, var-cov=true 20

Decrease ability distribution 50

Kullback-Leibler Mean=0, var-cov=identity 20

matrix 50    
Note: Bayesian Volume Decrease here refers to the item selection method of maximizing

the decrement in volume in Bayesian credibility ellipsoid described in section 2.2.3.

The test length of 20 was chosen to represent short tests (e.g. Electronics Information

Test in ASVAB). The test length of 50 was chosen to represent long test (e.g. 2007

MEAP Mathematics Test). The test lengths of 20 and 50 were generated for each

condition (combination of an ability update and item selection method). For each

condition, 50 replicated were simulated for all 27 true ability points.

In order to answer the research question about the convergence problems of the

general maximum likelihood method, test lengths of 20 and test length of 50 for the

combination of MLE and D-optimality were simulated and compared. Estimates for
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each dimension were calculated and compared to the true values. Euclidean distance

was calculated and successive plot was draw to see the converging speed.

To compare the performance of maximum likelihood and Bayesian as the ability

estimation methods, the combination of D-optimality and maximum likelihood and

the combination of Fisher’s information and Bayesian were simulated at the test

lengths of 20 and 50. Their final estimates were compared to the true values. And

Euclidean distances were calculated and successive plots were draw to compare the

convergence rate.

When ability estimation method of maximum likelihood was used, item selection

methods of A-optimality and D-optimality were simulated and compared at the test

length of 50. They were compared in terms of convergence rate and accuracy of the

final estimates.

One of the research questions is to evaluate the impact of priors used when Bayesian

methods were used. Three priors were selected for the simulation. All of them were

multinormal distributions with mean 0. The first one was with identity matrix as the

variance covariance matrix. This represented a strong prior. The second one was with

diag(9), that is, all the diagonal elements were 9 and all the off-diagonal elements

were 0. This represented a relatively weak prior. The last one was with true ability

variance covariance matrix as specified as in Table 4, which was calculated from all

7th graders of 2005 MEAP test. Test lengths of 20 and 50 were simulated for each

prior. Their final estimation results were compared to measure the impact of the

priors.
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In order to compare the performance of item selection methods of Bayesian Volume

Decrease (short term used here for maximizing decrement volume in Bayesian) and

Kullback-Leibler information, test lengths of 20 and 50 were simulated and the final

estimates were compared. The prior used was multinormal with mean 0 and identity

matrix as the variance covariance matrix for both methods. Euclidean distance was

calculated and successive plots were draw to compare the convergence rate.

25
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CHAPTER 4. RESULTS AND DISCUSSIONS

In order to measure the impact of non-convergence problems at the beginning of the

test when maximum likelihood was used as the ability estimation method, the results

of test lengths of 20 and 50 were compared for D-optimality.

First, the comparison of biases and RMSEs are shown in Figure 4.1. When the test

was short (test length=20), the estimation was not stable: size for both the biases and

RMSEs was large. But when the test was longer (test length=50), the size for both the

biases and RMSEs became smaller. The estimates were more stable and accurate for

all three dimensions.
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Figure 4.1 Mean biases and RMSEs for maximum likelihood as the ability estimation

method and D-optimality as the item selection method, at test length =20 and at test
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B: RMSEs
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The same results can be found in calculating the Euclidean distance between the final

estimates and true ability location points for test lengths of 20 and 50. Euclidean

distance between the estimates and true ability location points were as specified as in

equation 3.4. For all 27 true ability points, both the means and the standard deviations

of the Euclidean distance of test length of 20 were larger than those of test length of

50. The estimates of test length of 20 were not stable, while at the test length of 50,

the estimates were more stable and accurate. The U-shape of means of the Euclidean

distance were observed, which showed that the estimation precision were more

accurate for examinees with location 0. However, for examinees whose positions in

the three dimensional space were away from the origin, the precision was not as good.

Means and standard deviations of the Euclidean distances were show in Figure 4.2 for

the combination ofmaximum likelihood and D-optimality.
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Figure 4.2 Mean and standard deviation of Euclidean distance for maximum likelihood as

the ability estimation method and D-optimality as the item selection method, at test

length =20 and at test length =50.
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From the results above, the estimates for maximum likelihood for short test (test

length=20) were not very reliable and accurate. The plot of successive estimates for

one examinee with true location point (1, 1, l) was drawn in Figure 4.3. The initial

estimate was (0, 0, 0) and the test length was 50. It showed that at the beginning of

the test, the estimates were not converging. They hit the ceiling we set i 3 when the

estimate was not converging. After several items, estimate converged and became

nearer and nearer to the true location point. The Euclidean distance at each estimate

updated point for this particular examinee was also drawn and showed in Figure 4.4.

The pattern was the same: at the beginning of the test, the estimation was not

converging and it took several items till it converged.

Figure 4.3 Successive progress plot of updated ability estimates and true location point

afier administering each item for maximum likelihood method and D-optimality. Initial

estimate (0, 0, 0). True location point (1, 1, 1). Test length=50.
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Figure 4.4 Euclidean distance of between updated ability estimates and true location

point after administering each item for maximum likelihood method and D-optimatlity.

Initial estimate (0, O, 0). True location point (1, 1, 1). Test length=50.
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Table 4.1 showed all the items this particular examinee took and his updated ability

estimates afier administering each item. It can be seen that after 7 items, location

estimates on all three dimensions converged and instead of assigning ceiling value 3

or flooring value -3, maximum likelihood estimates were set as the estimates. After

about 38 items being administered, this examinee’s location estimates were near the

true location point (1, l, 1). And it stayed around the true points afterwards.
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Table 4.1 Items administered, responses and updated ability estimates after each item for

one examinee. The combination was maximum likelihood and D-optimality. Initial

estimate was (0, 0, 0) and the true location was (1 , 1, 1).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Iltems Administeredl Item ID Response 6. 62 6’3

1 30 1 3.00 3.00 3.00

2 128 0 -0.72 3.00 3.00

3 178 1 0.74 3.00 3.00

4 152 0 0.60 1.13 3.00

5 28 0 0.89 0.37 3.00

6 143 0 0.39 0.42 3.00

7 114 1 0.67 0.47 3.00

8 162 0 0.65 0.74 1.69

9 296 0 0.73 0.82 0.97

10 220 0 0.81 0.83 0.37

11 68 1 0.74 1.32 0.30

12 201 1 0.70 1.26 0.61

13 141 1 0.83 1.24 0.60

14 64 0 0.86 1.03 0.62

15 236 1 0.85 1.00 0.75

16 183 1 0.97 1.00 0.75

17 242 0 0.98 1.02 0.64

18 115 1 1.09 1.02 0.63

19 132 0 1.02 1.03 0.64

20 214 0 1.02 1.05 0.53

21 235 1 1.02 1.03 0.58

22 56 1 1.02 1.07 0.58

23 123 1 1.09 1.08 0.58

24 144 0 1.05 1.07 0.58

25 213 1 1.05 1.06 0.62

26 251 1 1.04 1.04 0.67

27 197 1 1.11 1.05 0.66

28 137 0 1.08 1.04 0.67

29 256 1 1.08 1.03 0.69

30 164 1 1.11 1.02 0.69

31 217 1 1.11 1.03 0.71

32 276 1 1.10 1.02 0.76

33 250 1 1.10 1.00 0.82

34 218 0 1.10 1.01 0.78

35 124 0 1.09 1.01 0.78        
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Table 4.] (Continue)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        

36 267 1 1.08 1.02 0.81

37 285 1 1.08 1.01 0.87

38 239 1 1.07 0.99 0.92

39 270 1 1.07 0.97 0.97

40 157 0 1.02 0.98 0.97

41 126 1 1.03 0.98 0.97

42 215 1 1.03 0.97 1.01

43 196 0 1.01 0.95 1.01

44 57 1 1.01 0.96 1.01

45 272 0 1.01 0.97 0.99

46 36 1 1.01 0.98 0.99

47 109 1 1.04 0.98 0.99

48 174 0 1.03 0.97 0.99

49 289 0 1.03 0.97 0.98

50 184 0 1.00 0.97 0.98
 

When the combination of Bayesian ability estimation method and Bayesian volume

decrement item selection method was used, the comparison of test lengths of 20 and

50 was made for each prior to determine what test length was needed to have accurate

estimates. The first comparison was made when the prior is a multinormal distribution

with mean 0, and identity matrix as the variance-covariance matrix. This was used in

the study as an example of strong prior. Mean biases and RMSEs for each dimension

were compared for the test lengths of 20 and 50 and the results were shown in Figure

4.5. For all dimensions, the estimation precision at the test length of 50 was slightly

better than that of the test length of 20. However, the differences were small and at

the test length of 20, the estimation was already stable and near the true values. Both

the mean biases and RMSEs were small. When the test length increased to 50, the

biases and RMSEs became slightly smaller. But the difference was not as big as those
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in the combination methods when maximum likelihood method was used. Mean

biases and RMSEs are shown in Figure 4.5 for all three dimensions.

Figure 4.5 Mean biases and RMSEs for Bayesian as the ability estimation method and

maximizing decrement volume in Bayesian as the item selection method with prior

set as mean 0 and identity matrix as variance covariance matrix, at test length =20 and

at test length =50.
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B: RMSEs
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Dim3: Bayesian 8 Identity Prior
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The similar results can be found in calculating the Euclidean distance between final

estimates and true ability location points. Again, the Euclidean distances were

calculated according to equation 3.4. The mean and standard deviation of the

Euclidean distance for the test length of 20 were slightly larger than those of the test

length of 50. However, the differences were small. At the test length of 20, the final

estimates were already very near the true ability location points. Even though when

the test length increased to 50, the mean final estimates were nearer to the true ability

location points, the change was not big as for practical purposes. From Figure 4.6,

which showed the Euclidean distance, the difference between test lengths of 20 and

50 seemed to be larger than in Figure 4.5. But that was because the way Euclidean

distance was defined, it was the distance sum over all dimensions. The results showed

that the performance of the combination method of Bayesian as the ability update
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method and maximizing decrement volume in Bayesian as the item selection method

was already good with the test length of 20. Means and standard deviations of the

Euclidean distance were shown in Figure 4.6.

Figure 4.6 Mean and standard deviation of Euclidean distance of Bayesian as ability

estimation method and maximizing decrement volume in Bayesian as the item selection

method with prior set as mean 0 and identity matrix as variance covariance matrix, for

test length =20 and for test length =50.
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Euclidean Distance: Bayesian 8 ldentity Prior
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As in the results for maximum likelihood method, plot of successive estimates of the

combination of Bayesian and Bayesian volume decrement with identity matrix as

prior was shown in Figure 4.7 for one example of examinee with true location point

of (1, 1, 1) and initial estimate of (0, 0, 0). This figure showed there was no

non-converging issue with Bayesian method and the estimates quickly converged to

the true location. This was evidence why at the test length of 20, the estimate was

already accurate for this combination of method. Euclidean distance between the

estimates and true location (1, 1, 1) was calculated and shown in Figure 4.8. The

results corresponded to the results in Figure 4.7.
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Figure 4.7 Successive progress plot of updated ability estimates and true location point

after administering each item for Bayesian method with identity matrix. Initial estimate

(0, 0, 0). True location point (1, 1, 1). Test length=50.
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Figure 4.8 Euclidean distance of between updated ability estimates and true location

point after administering each item for Bayesian method with identity matrix. Initial

estimate (0, 0, 0). True location point (1, 1, 1). Test length=50.
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The study also compared the performance of different test lengths for the combination

of Bayesian as the ability estimation method and maximizing decrement volume in

Bayesian as the item selection method with mean 0, and prior set as diag (9). The

results were similar to the conditions that had identity matrix as the variance

covariance matrix prior. Both the mean biases and RMSEs showed evidence that the

estimation precision at the test length of 50 was slightly better than that of the test

length of 20. However, the differences were small and at the test length of 20, the

estimation was already stable and precise. Both the mean biases and RMSEs were

small. When the test length increased to 50, the biases and RMSEs became slightly

smaller. But the difference was not much. Mean biases and RMSEs for each

dimension were shown in Figure 4.9.
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Figure 4.9 Mean biases and RMSEs for Bayesian as the ability estimation method and

maximizing decrement volume in Bayesian as the item selection method with prior set as

mean 0 and diag (9) matrix as variance covariance matrix, at test length =20 and at test

length =50.

A: Biases

Dim1: Bayesian 8 Diag(9) Prior

 

 

  
 

 

 

   

Test Length 20 vs 50

Q .4

0 Test length = 20

u; _ A Test length = 50

O

3 Q
a o

“2 _
q

9 _

313-1-1-1-1-1-1-1-1-10000000001 1 1 1 1 1 1 1 1

9241—10001 1 1-1-1—10001 1141-1000 1 1 1

33:101-101-101-101-101-101-101-10 1-10 1

27 True Location Points

44

 



Dim2: Bayesian 8 Diag(9) Prior
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B: RMSEs
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Din13: Bayesian 8 Diag(9) Prior
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For this combination with diag(9) as prior variance covariance matrix, the Euclidean

distances for the test length of 20 were slightly larger than those of the test length of

50. However, the differences were small. At the test length of 20, the final estimates

were very near the true ability location points. When the test length increased to 50,

the mean final estimates were closer to the true ability location points. The change

was not much though. This corresponded to the result for the mean biases and RMSEs:

the performance of the combination method of Bayesian as the ability update method

and maximizing decrement volume in Bayesian, diag (9) prior as the item selection

method was already good with the test length of 20. Mean and standard deviation of

the Euclidean distance were shown in Figure 4.10.
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Figure 4.10 Mean and standard deviation of Euclidean distance of Bayesian as ability

estimation method and maximizing decrement volume in Bayesian as the item selection

method with prior set as mean 0 and diag (9) matrix as variance covariance matrix, at test

length =20 and at test length =50.
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Plot of successive estimates of one examinee with true location point (1, l, 1) and

initial estimate (0, 0, O) with this combination of diag(9) as the prior variance

covariance matrix is shown in Figure 4.11. Successive Euclidean distance between

the updated estimates and the true ability location (1 , 1, 1) was shown in Figure 4.12.

The same as in conditions with identity matrix as the prior variance covariance matrix,

the results showed that there was no non-convergence problems at the beginning of

the test and the estimates quickly moved from initial estimate to the true location

point.

Figure 4.11 Successive progress plot of updated ability estimates and true location point

after administering each item for Bayesian method with diag(9) variance covariance

matrix as prior. Initial estimate (0, O, 0). True location point (1, 1, 1). Test length=50.
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Figure 4.12 Euclidean distance of between updated ability estimates and true location

point after administering each item for Bayesian method with diag(9) variance covariance

matrix as prior. Initial estimate (0, 0, 0). True location point (1, l, 1). Test length=50.
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The third and final prior set in the study was true variance covariance matrix as the

prior’s variance covariance. Comparison between the test length of 20 and test length

of 50 was made to access the converging speed of the combination and whether the

estimates were accurate for a short test. For this combination, Bayesian was the

ability estimation method and maximizing decrement volume in Bayesian was the

item selection method with mean 0, and prior set as true variance covariance matrix.

The true variance covariance matrix was the correlation matrix calculated from all

8562 7th grade examinees of 2005 Michigan Education Assessment Program (MEAP)

Mathematics test. The true variance covariance matrix was given in Table 3.4. When

using true variance covariance matrix as the prior’s variance covariance matrix, both

the mean biases and RMSEs showed evidence that the estimation precision at the test
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length of 50 was slightly better than that of the test length of 20. It was the same as

for the conditions that had the identity matrix and diag (9) matrix as the variance

covariance matrix prior. However, the differences were small and at the test length of

20, the estimation was already stable and accurate. When the test length increased to

50, the biases and RMSEs became slightly smaller. But the difference was not big as

for practical purposes. Mean biases and RMSEs for each dimension were shown in

Figure 4.13 Mean biases and RMSEs for Bayesian as the ability estimation method and

maximizing decrement volume in Bayesian as the item selection method with prior set as

mean 0 and true variance covariance matrix as variance covariance matrix, at test length

=20 and at test length =50.
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B: RMSEs
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Dim3: Bayesian 8. True Prior
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For the combination with true variance covariance matrix as the prior variance

covariance matrix, the means and standard deviations of the Euclidean distance for

the test length of 20 were slightly bigger than those of the test length of 50. However,

the difference was small. At the test length of 20, the final estimates were already

very near the true ability location points. When the test length increased to 50, the

mean final estimates became closer to the true ability location points. The change was

not so big as for practical purposes. The performance of the combination method of

Bayesian as the ability update method and maximizing decrement volume in Bayesian,

with true variance covariance matrix as the item selection method was already good

with the test length of 20. Means and standard deviations of the Euclidean distance

were shown in Figure 4.14.
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Figure 4.14 Mean and standard deviation of Euclidean distance of Bayesian as ability

estimation method and maximizing decrement volume in Bayesian as the item selection

method with prior set as mean 0 and true variance covariance matrix as variance

covariance matrix, at test length =20 and at test length =50.
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Plot of successive estimates of one examinee with true location point (1, 1, 1) and

initial estimate (0, O, O) with this combination of true variance covariance as the prior

variance covariance matrix is shown in Figure 4.15. Successive Euclidean distance

between the updated estimates and the true ability location (1, 1, 1) are shown in

Figure 4.12. The same as in conditions with identity matrix as the prior variance

covariance matrix, the results show that there was no non-convergence problems at

the beginning of the test and the estimates moved quickly from initial estimate to the

true location point.

Figure 4.15 Successive progress plot of updated ability estimates and true location point

after administering each item for Bayesian method with true variance covariance matrix

as prior. Initial estimate (0, O, 0). True location point (1, 1, 1). Test length=50.
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Figure 4.16 Euclidean distance of between updated ability estimates and true location

point after administering each item for Bayesian method with true variance covariance

matrix as prior. Initial estimate (0, O, 0). True location point (1, l, 1). Test length=50.
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When Kullback-Leibler information was used instead of Fisher’s information, the

comparison between test length of 20 and test length of 50 was made to test the

performance conditioning on different test lengths for this combination. For this

Combination, Bayesian was the ability estimation method and maximizing

Kullback-Leibler information was the item selection method. The mean biases and

RMSEs showed evidence that the estimation precision at the test length of 50 was

better than that of the test length of 20. However, the differences were small and at

the test length of 20, the estimation was already stable and precise. When the test

length increased to 50, the biases and RMSEs became slightly smaller. But the

difference was not so big as for practical purposes. This result was similar to the
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combinations in which Bayesian was used as ability update method and Bayesian

volume decrement used as item selection method.

Figure 4.17 Mean biases and RMSEs for Bayesian as the ability estimation method and

Kullback-Leibler information as the item selection method, at test length =20 and at test

length =50.
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Dim2: Bayesian & KL
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B: RMSEs
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Dim3: Bayesian & KL
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For the combination of using Bayesian as the ability estimation method and

Kullback—Leibler information as the item selection method, the results were similar to

maximizing decrement volume in Bayesian. The means and standard deviations of the

Euclidean distance for the test length of 20 were slightly larger than those of the test

length of 50. However, the differences were not much. At the test length of 20, the

final estimates were very near to the true ability location points. When the test length

increased to 50, the mean final estimates were closer to the true ability location points

and the change was small. The performance of the combination method of Bayesian

as the ability update method and maximizing Kullback-Leibler as the item selection

method was already good with the test length of 20. Means and standard deviations of

the Euclidean distance are shown in Figure 4.18.

61



Figure 4.18 Mean and standard deviation of Euclidean distance of Bayesian as ability

estimation method and Kullback-Leibler information as the item selection method, at test

length =20 and at test length =50.
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Plot of successive estimates of one examinee with true location point (1, 1, 1) and

initial estimate (0, 0, 0) with maximizing Kullback-Leibler information is shown in

Figure 4.19. Successive Euclidean distance between the updated estimates and the

true ability location (1, 1, 1) are shown in Figure 4.20. The same as in conditions with

all other Bayesian methods, the results for Kullback-Leibler showed that there was no

non-convergence problems at the beginning of the test and the estimates quickly

moved from initial estimate to the true location point. The results also corresponded

to results from the analysis of mean biases and RMSEs that at the short test (test

length=20) the estimates were already accurate.

Figure 4.19 Successive progress plot of updated ability estimates and true location point

after administering each item for Kullback-Leibler. Initial estimate (0, 0, 0). True location

point (1, 1, 1). Test length=50.
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Figure 4.20 Euclidean distance of between updated ability estimates and true location

point after administering each item for Kullback-Leibler. Initial estimate (0, O, 0). True

location point (1, 1, 1). Test length=50.
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One of the research questions was to compare the performance of A-optimality with

D-optimality as the item selection method when maximum likelihood was used as the

ability estimation method. The hypothesis was that their performance was comparable.

Mathematical aspects of this comparability are given in the Chapter 5. Mean biases

and RMSEs of the final estimates of both methods were compared at the test length of

50 for each dimension. Means and standard deviations of Euclidean distance between

the final estimates and true ability location points were also compared.
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Figure 4.21 Mean biases and RMSEs for maximum likelihood as the ability estimation

method, with D-optimality and A-optimality at the item selection methods, test length

=50.
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B: RMSEs
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Dim3: D-optimality vs A-optimality
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The mean biases and RMSEs were very similar for D-optimality and A-optimality. It

showed that at the test length of 50, the two item selection methods were comparable,

which was the same as in the research hypothesis.
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Figure 4.22 Mean and standard deviation of Euclidean distance for the combination with

maximum likelihood as ability estimation method, comparison of D-optimality and

A-optimality as item selection methods.
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The results of the means and stande deviations of Euclidean distance between the

final estimates and true location points were measures of estimation precision over

dimensions. Figure 4.22 shows that over all three dimensions, the estimation precision

of D-optimality and A-optimality was similar.

For the research question on the evaluation of the impact of priors on the performance

of using Bayesian as the item selection method and maximizing decrement volume in

Bayesian as the item selection method, the comparisons were made for the test length

of 20 and test length of 50 and variance covariance were identity matrix, diag(9), and

true variance covariance matrix calculated from the population. Mean biases and

RMSEs are shown in Figure 4.23 for test length of 20 and in Figure 4.24 for the test

length of 50.
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Figure 4.23 Mean biases and RMSEs for Bayesian as the ability estimation method,

comparion of prior variance covariance matrix as: 1) identity matrix; 2) diag (9) and 3)

true variance covariance matrix. Test length=20.
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B: RMSEs
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Dims: Prior Identity vs diag(9) vs True
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At the test length of 20, if the value of true location points on the dimension on which

the biases were calculated was 0, the biases of all three priors were very close. When

the true value was either 1 or -1, among the three priors, the biases for the true

variance covariance matrix were the biggest. Prior variance covariance matrix as

identity matrix and diag(9) were comparable. However, overall, the biases for all

three priors on all three dimensions were very small and comparable, even though the

true variance covariance had the largest biases for true values away from 0. The

comparison from RMSEs showed that all three priors were comparable and there was

no big difference at the test length of 20.
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Figure 4.24 Mean biases and RMSEs for Bayesian as the ability estimation method,

comparion of prior variance covariance matrix as: 1) identity matrix; 2) diag (9) and 3)

true variance covariance matrix. Test length=50.
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Dim2: Prior Identity vs diag(9) vs True

Test Length=50
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B: RMSEs

Dim1: Prior Identity vs diag(9) vs True
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Dim3: Prior Identity vs diag(9) vs True
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Figure 4.24 was the comparison of mean biases and RMSEs for all three priors when

the test length was 50. It showed that at the test length of 50, both biases and RMSEs

were very small and estimates were very accurate for all three priors. Therefore, when

the test was long (test length=50), the impact of prior was small for the combination

of Bayesian as the ability estimation method and maximizing volume decrement in

Bayesian as the item selection method. This combination for all three prior, that is,

strong prior, relatively weak prior, and true prior, produced accurate estimates at the

end ofthe tests.

The above results were drawn for each dimension. An overall measure, Euclidean

distance was also calculated and shown in Figure 4.25. Mean and standard deviation

of Euclidean distance between the final estimates and true location points for both the
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test length of 20 and test length of 50 showed that the impact of priors was small and

all three priors were comparable.

Figure 4.25 Mean and standard deviation of Euclidean distance of Bayesian as the ability

estimation method, comparison among prior variance covariance matrix: 1) identity

matrix, 2) diag(9), and 3) true variance covariance matrix.
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Euclidean Distance of 3 Prior var-cov
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Euclidean Distance of 3 Prior var-cov

Identity vs diag(9) vs True
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Another research question was which ability estimation methods performed better,

maximum likelihood or Bayesian. In order to make the comparison, the combination

of maximum likelihood and D-optimality, and the combination Bayesian with

maximizing volume decrement in Bayesian with identity matrix as the prior were

compared at the test lengths of 20 and 50. The mean biases and RMSEs were

compared and the results at the test length of 20 are shown in Figure 4.26 and the

results at the test length of 50 are shown in Figure 4.27.
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Figure 4.26 Mean biases and RMSEs for comparison of maximum likelihood method and

Bayesian method. Test length=20.
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Dim3: MLE vs Bayesian
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At the test length of 20, it can be seen from Figure 4.26 that the mean biases of

maximum likelihood were much larger than those of Bayesian method. The
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comparison of RMSEs also confirmed that Bayesian ability estimation method

outperformed maximum likelihood at a short test (test length=20). Another interesting

thing that could be found in the above graph was that for the true ability values that

were negative, the mean biases for the maximum likelihood method were negatively

biases while for Bayesian method, they were positive. When the true ability values

were positive, the mean biases for the maximum likelihood method were positive and

for the Bayesian method, they were negative.

Figure 4.27 Mean biases and RMSEs for comparison of maximum likelihood method and

Bayesian method. Test length=50.
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Dim2: MLE vs Bayesian
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Dim3: MLE vs Bayesian
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The results from Figure 4.27 showed that at the test length of 50, the mean biases of

the maximum likelihood were still larger than those of Bayesian method. RMSES

were also larger for the maximum likelihood method than the Bayesian method.

Therefore, even for long test (test length=50), Bayesian ability estimation method still

outperformed the maximum likelihood ability estimation method.

The mean biases and RMSEs in Figure 4.26 and Figure 4.27 were measures for the

precision of each dimension. The study also used means and standard deviations of

the Euclidean distance between the final estimates and true location points as the

measure of overall precision. Figure 4.28 shows the results of the means and standard

deviations of the Euclidean distance for the comparison ofmaximum likelihood and

Bayesian ability estimation methods at both the test length of 20 and the test length of

50.
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Figure 4.28 Means and standard deviations of Euclidean distance, comparison of

maximum likelihood method and Bayesian method. Test length=20 and Test length=50.
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Test length=50

M
e
a
n

1
.
0

1
.
5

0
.
5

0
.
0

1
.
0

S
D

0
.
0

0
.
2

0
.
4

0
.
6

0
.
8

Euclidean Distance: MLE vs Bayesian

Test Length=50
 

 

O MLE

A Bayesian

   

A (>00 A o oA A A A 0A0 A A A

A AAA A AAA A A 58A°5 A
A A

   
61:11—111-111-100000000011 1 111111

62:111000111-11-10001 1 141100011 1

93:101-10 1-101-101-101-101-101—101—101

27 True Location Points

Euclidean Distance: MLE vs Bayesian

Test Length=w
 

 

° MLE

A Bayesian

   

A A 0 o
A

A A A A anAA

AA AAA A AA

   
61:1111-1111-1000000000111 11 111 1

6241—10001 1144-10001 1 1414000111

93110 140140 1-101-101-101-101-101—10 1

27 True Location Points

90



At the test length of 20, the mean Euclidean distances between the final estimates and

true ability points were much larger for maximum likelihood method than for

Bayesian ability estimation method. The standard deviations of the Euclidean distance

were also much larger for the maximum likelihood estimation method. So over all

three dimensions, the estimation precision for the maximum likelihood method was

not good. Bayesian estimation method outperformed it in a large degree at the short

test length (test length=20). When the test length increase to 50, the accuracy of both

methods became better and the gap of the precision between the two methods became

smaller. However, from the results of means and standard deviations of Euclidean

distance, the overall estimation accuracy was still better for Bayesian than maximum

likelihood estimation method. The results also showed that the final estimates for

Bayesian method were also more stable than maximum likelihood method.

The last research question was to compare the performance of volume decrement in

Bayesian with Fisher’s information and the performance of maximizing

Kullback-Leibler information. In order to make such comparison, both methods used

the prior with mean 0, and identity matrix as the variance covariance matrix. The

comparison was conditioning on test lengths. The mean biases and RMSEs for the

final estimates of each dimension were calculated and Figure 4.29 shows the

comparison at the test length of 20 and Figure 4.30 shows the comparison of the two

methods at the test length of 50.
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Figure 4.29 Mean biases and RMSEs of the comparison of Kullback-Leibler and Volume

decrement in Bayesian. Variance covariance of priors is identity matrix. Test length=20.
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B: RMSEs

Din3: KL vs Bayesian Volume Decrement
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Dim2: KL vs Bayesian Volume Decrement
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At the test length of 20, the mean biases were small for both the volume decrement in

Bayesian with Fisher’s information method and maximizing Kullback-Leibler

information item selection method. Those two methods produced accurate final
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estimates at the test length of 20. RMSEs were also small for both methods. So the

estimates of both methods were already stable at the test length of 20. From both the

mean biases and RMSEs, it can be seen that Kullback-Leilber information and

Bayesian method using Fisher’s information were comparable at the test length of 20.

Figure 4.30 Mean biases and RMSEs of the comparison of Kullback-Leibler and Volume

decrement in Bayesian. Variance covariance of priors is identity matrix. Test length=50.
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B: RMSEs
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Dim1: KL vs Bayesian Volume Decrement
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Dim3: KL vs Bayesian Volume Decrement
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When the test length increased to 50, from the results of mean biases and RMSEs,

the precision of the two methods: volume decrement in Bayesian using Fisher’s

information and maximizing Kullback-Leibler information, were good and those two

methods were comparable in terms of estimation accuracy and stability.

The overall measure, Euclidean distance was also calculated and shown in Figure

4.31. From the comparison of means and standard deviations of the Euclidean

distance, it can be seen that the performance of Kullback-Leibler information of the

volume decrement in Bayesian with Fisher’s information was comparable both at the

test lengths of 20 and 50.
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Figure 4.31 Means and standard deviations of Euclidean distance, comparison of

Kullback-Leibler information and volume decrement in Bayesian with Fisher’s

information.
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Euclidean Distance

Kullback-Leibler vs Bayesian Volume Decrement

Test Length=20
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Euclidean Distance

Kullback-Leibler vs Bayesian Volume Decrement
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As stated in the research questions, even though computation time was not as

important as before, it was so interesting to calculate the computation time for each

method to have a balance between estimation precision and computation time. For

each combination of ability estimation and item selection method, the computation

time was calculated at the examinee level using second as the unit for time. The times

shown in Table 4.2 are how many seconds were needed to administer test to one

examinee. In the simulation study, the examinees’ response time was set as 0. Except

for the item selection method using Kullback-Leibler information, the computation

time was around 2 seconds for the test length of 20 and around 9 seconds for the test

length of 50. When Kullback-Leibler information was used, the computation

increased about 10 times for both test lengths.
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Table 4.2 Computation time for each examinee (Unit: second)

 

 

 

 

 

 

      

Ability Item Selection Prior Test Test

Estimation Method Length=20 Length=50

Method

MLE D-optimality N/A 2.765 8.696

A-optimality N/A 1.889 6.580

Bayesian Bayesian Volume Identity 2.442 9.429

Decrement diag(9) 2.460 9.490

True 2.441 9.41 8

Bayesian Kullback-Leibler Identity 20.694 99.624
 

Note: All the integrating calculations were programmed in FORTRAN and all other

programming was done is R. All computation time was calculated on a PC with a 3.0

GHz AMD Athlon 64 Dual Core processor and 2.00 GB RAM.
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CHAPTER 5. CONCLUSION, RECOMMENDATION, AND

FUTURE RESEARCH DIRECTION

This study did a comprehensive comparison of ability estimation and item selection

methods in multidimensional computerized adaptive testing. Two ability estimation

methods included maximum likelihood estimation and Bayesian estimation method.

The item selection methods can be divided into three categories, item selection

methods associated with maximum likelihood, item selection with Bayesian with

Fisher’s information, and item selection method with Kullback-Leibler information.

D-optimality (maximizing the determinant of Fisher’s information) and A-optimality

(minimizing the trace of the inverse of Fisher’s information) were included for item

selection methods that were associated with maximum likelihood method. Three

priors of Bayesian method with maximizing the volume decrement with Fisher’s

information were selected to measure the impact of the priors in Bayesian. Different

test lengths were selected (test length=20 and test length=50). In total, 11

combinations of ability estimation and item selection methods were simulated and

compared in the study.

The initial estimate for all examinees was 0 and the mean of all priors was 0. This led

to one trend for all biases. For Bayesian estimation, all biases were “inward bias”.

Estimators of positive values of 0,- (i=1, 2, 3) were negatively biased and the

estimators of negative values were positively biased. In the opposite, when maximum

likelihood estimation was used, the biases were “outward bias”. Estimators of positive
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values of 6? were positively biases and the estimators of negative values were

negatively biases.

From the results of mean biases and RMSEs of final estimates for each dimension,

and means and standard deviations of Euclidean distance, it can be seen that

maximum likelihood ability estimation method did have non-convergence problems

at the beginning of the test and it affected the estimation precision of the method.

Plots of successive progress of updated estimates also supported this conclusion.

Therefore, it was recommended that a longer test should be used when maximum

likelihood ability estimation method was applied.

When Bayesian ability estimation method was applied, for all the combinations with

the item selection methods, the comparison of test lengths of 20 and 50 showed that

the precision difference was small. The final estimates were already stable and

accurate. Therefore, if Bayesian ability estimation method was used, a short test (test

length=20 or more) could be used.

The comparison of maximum likelihood and Bayesian ability estimation methods

showed that Bayesian ability estimation method outperformed maximum likelihood

method, especially for short test length. In general, Bayesian ability estimation was

recommended as the ability estimation method. But with Bayesian, the test designers

need to select the priors, which might not be as objective as the maximum likelihood

method. So all factors need to be taken into considerations when choosing the ability

estimation method. In theory, if the test length is very long (estimates for both

methods converged and were stable), the estimation of the two methods should be

comparable.
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The study also evaluated the impact of priors when Bayesian method was used. Three

priors: a strong prior, a relative weak prior, and a true prior calculated from the

population were compared. When the true ability value on the dimension was 0, all

three priors were comparable and the mean biases were small. When the true ability

value was negative or positive, and opposite to the research hypothesis, the true prior

did not perform as well as the other two priors. It was because mean of multinormal

distributions for all priors was 0, the priors pulled the estimates towards the mean 0.

With the true prior, the force of pulling was the strongest. So the biases were the

biggest. But for all three priors and conditioning on both short and long test lengths,

the performance of Bayesian estimation was good and the final estimates were stable

and accurate. More studies need to be done on how to utilize the collateral

information for priors to assist a better estimation with Bayesian method. Instead of

the population prior, as was used in the study, an individual prior may be used or

hierarchical models could be tested to see if that can lead to better final estimation.

All the priors used in study had the same values on the diagonal respectively. There

was more regular compared to cases like variances were quite different and

correlations more varied. More studies need to be done to investigate such priors to

assess the impact of items selection and ability estimation methods under such

conditions.

The Kullback-Leiber information was relatively new compared to the Fisher’s

information in multidimensional adaptive testing. The comparison of the two in the

study showed that the performance of the two was comparable for both the short and

long test lengths. However, the Kullback-Leiber information did cost much longer
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computation time than other methods. And if computation time is one of the concerns

for one test application, then volume decrement of Bayesian with Fisher’s information

was recommended rather than the Kullback-Leibler information. Also, the cases

studied here were three dimensional. With the increase of the dimensions, it was

expected that the computation time would also increase. Therefore, extra care should

be taken if higher dimensions were studied.

Multidimensional computerized adaptive testing is a relatively new area of research.

This study was a comparison of ability estimation and item selection methods to make

recommendation and guidance in terms of what ability estimation and item selection

methods to use when designing a multidimensional computerized adaptive testing.

The conclusions of this study were limited to the conditions of item pool, test lengths

and priors used. Also, during the work of this study, more and more ability estimation

and item selection methods are being developed. So in future, more research needs to

be done to compare the new methods with all the methods in this study. There are

also other issues in multidimensional CAT, such as how to select the first item and

how to end the test, which needs more research on.
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