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ABSTRACT

DEVELOPING DEMOGRAPHIC MODELS TO INFORM SELECTION OF

ALLIARIA PETIOLATA (GARLIC MUSTARD) BIOLOGICAL CONTROL AGENTS

By

Jeffrey Adam Evans

Biological control is often considered a safe and effective method for controlling

invasive plant species. While methods are available for predicting biocontrol agent host

specificity, biocontrol practitioners currently lack effective tools for predicting agent

efficacy. Demographic models which account for spatial and temporal variation in

population dynamics promise to improve the predictability of weed biological control

programs, while lowering the risks they pose to non-target species. Alliaria petiolata

(garlic mustard) is an obligate biennial forb that is invasive in North American forests. I

analyzed sources of demographic variation in twelve unmanaged A. petiolata populations

in Michigan and Illinois, USA, and over three plant generations. These data were used to

parameterize matrix population models ofA. petiolata population dynamics, analyze A.

petiolata responses to simulated management, and inform the selection of effective

biological control agents for potential release in North America. Hierarchical, generalized

linear mixed models (GLMMs) were used to analyze the spatial and temporal structure of

variability in each demographic transition. The degree of variation observed in A.

petiolata demographic rates was greater than expected based on previous studies of this

species. This variation was highly structured in space and time and exhibited negative

density dependence and positive response to precipitation across most of the life cycle.

Estimates of the population growth rate (3») ranged from 0.48 to 5.88 across all sites and

years. Within sites 1. was temporally variable, ranging from 0.80 to 5.88 within one site.



A megamatrix model was used to summarize variation in growth within sites. Site growth

rates (AM) ranged from 0.83 to 3.54 (mean = 1.90). Sensitivity and elasticity analyses of

matrix population models indicated the importance of the seed bank to A. petiolata’s

success. Sensitivity and elasticity rankings varied with 9», indicating that the transitions

with the largest impacts on population growth differ for growing and declining

populations, and within populations during good and bad years, rendering management

options a moving target. Rosette survival (summer and winter) consistently emerged as

the transition with the greatest effects on it in populations with positive growth, as did

germination ofnew seeds and transitions affecting fecundity. This result is consistent

with past predictions that rosettes should be targeted by management. The model raises

the caveat that rosette survival is only a an effective target when growth is positive; its

proportional effect on it decreases as 9» decreases. These models predict a lower

probability of suppressing A. petiolara with biocontrol than past studies. The simulations

predict that Ceutorhynchus scrobicollis could control up to 5 of 12 populations if

introduced alone. Introducing a second species could extend control 9 populations,

although the probability of success is < 0.1 at 4 of these 9. Better data on the distribution

of agent impacts are necessary to refine predictions. Variance in survival was negatively

density dependent, even when mean survival was not. modeling residual variance in each

vital rate as a function of density, demographic variance and stochasticity themselves

become density dependent functions. This has potentially important consequences for

populations ofmanagement concern, as small populations may become more susceptible

to local extinctions. The predictive power of future weed management models may be

improved by incorporating density dependent demographic stochasticity in their designs.
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PREFACE

Invasive species constitute a significant threat to native biodiversity globally, and

managing them effectively is an increasing challenge. In some cases invasions are so

devastating that the only way to confront them is by literally clearing the earth and

starting over. During my first year of graduate school I visited Everglades National Park

and saw just that. Brazilian pepper tree (Schinus terebinthifolius) had invaded vast tracts

of fallow farmland that had been incorporated into the park in the 19708. As I drove into

the area, Brazilian pepper was practically the only plant visible - an impenetrable thicket

ofwaxy leaves dotted with bright red berries. The soil that supported them, I was told,

had been created to promote agriculture. Using heavy equipment, the limestone bedrock

had been macerated to a consistency fine enough that crops could be planted in it.

Because the soil had been so radically altered, when the fields were abandoned, they were

rapidly invaded by Brazilian pepper, which was able to out compete the marl prairie

wetland community native to the area. Three decades later, huge earth moving machines

were being used to scrape away the topsoil that had been disturbed during a century of

agricultural land use, revealing the limestone bedrock beneath. Where this had been done

rich, native vegetation returned to its natural place ofprominence within months, and the

Everglades were once again a river of grass.

Sometimes the best way to control invaders and protect native biodiversity is to

scour or scorch the earth. But this is rarely the case. Because plant invaders are more

often diffuse targets ofmanagement, standing intermixed with the very species we wish

vii



to preserve, a cautious, more delicate approach to controlling them is necessary. In some

cases, when an invasion is small, hand pulling or spot herbicide treatments can

effectively control a target weed, and quarantines can be used to stop its spread. But

when the target is widespread and well established a more autonomous approach is

necessary.

Enter biological control. Biological control, or biocontrol, is conceptually simple

if not elegant: Everyone has enemies. Use this to your advantage by letting your enemy’s

enemy do the dirty work. More technically, biological control is the practice of using the

natural enemies of a targeted pest species to suppress the pest population. In the case of

weedy invasive plants, herbivorous insects and occasionally plant pathogens are most I

frequently used as biocontrol agents. Although past biocontrol programs have been I

criticized for imprudently releasing agents that have harmed non-target - and even

threatened — species, the culture ofbiological control practitioners has changed. Great

lengths are now taken to reduce the risk of introducing biocontrol agents that feed on

non-target plant species. Extensive pre-release tests of agent feeding preferences and host

specificity typically take a decade or more to complete, and these still do not guarantee

that permits will be issued to make releases.

But what of the plant? Until recently, the target plant has been something of an

afterthought in the formulation ofnew biocontrol programs. Biocontrol systems have

historically been ‘designed’ (and I use the term rather loosely) by seeking to introduce as

many host specific biocontrol agent species as can be found until the target is suppressed.

This approach has resulted in a enormous investments oftime and money in the

development, testing, and ofrelease of biocontrol agents that ultimately have not
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controlled their targets, and that in some cases had wildly unexpected indirect effects on

other species and food webs. There must be a better way...

A more directed approach to finding ‘the right agent’, the one that ultimately does

the heavy lifting and suppresses the target, was proposed by Peter McEvoy and Eric

Coombs. The idea, again, is audaciously simple: Study the plant, determine its

vulnerabilities, and target them explicitly. Drawing from a growing number of studies on

invasive weed demography and conservation biology, they pr0posed that population

models could be developed for a target invasive species that would highlight the stage or

stages in its life history with the greatest effects on population growth. This stage is the

plant’s ‘Achilles’ heel’, and is where management should be directed. Knowing this

information up fi'ont, finding ‘the right agent’ would begin to look less like a lottery and

much more like a directed search. Demographic models, layered with the already

mandatory process of testing agent host specificity, could lead biocontrol researchers

more efficiently towards effective biocontrol solutions for invasive weeds. Perhaps more

importantly, by releasing fewer species ofbiocontrol agents, the risks to non-target

species posed by biological control programs could simultaneously be reduced.

Adam Davis was the first to apply McEvoy and Coombs’ proposal. Davis and his

coauthors used available data to build a mathematical model of the invasive weed

Alliaria petiolata (garlic mustard) and characterize its vulnerabilities. This model was

then used to make recommendations about how garlic mustard should be managed. My

dissertation work builds from Davis’ model with new studies and analyses of this same

species, garlic mustard. It examines the structure and scale of spatiotemporal variability
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in demographic rates and how this variability affects projections ofpopulation viability

and the effectiveness ofproposed management strategies.

One of the major themes in my dissertation research is variability. A number of

researchers have studied garlic mustard, and a number of these have developed models of

its population dynamics. Looking across these studies and at my own research, what is

really amazing is how incredibly different this one species can be. In some places 10% of

the seedlings survive. In others, 90% survive. In some places the population grows

explosively, while in others it barely persists from year to year. Within populations there

is also incredible variation in survival and growth from year to year as populations cycle

through phases ofboom and bust dynamics. In one ofmy garlic mustard study

populations a year oftremendous grth was followed by two years ofpopulation

decline. All of this suggests that to truly understand this plant, we can’t think of its

population biology as a static entity. It does not have one growth rate, nor does it have

one density dependent function. It is unlikely, too, that it has one optimal management

target. This picture only begins to come into focus after watching a dozen populations for

several years.

In the following chapters I will present my dissertation research on garlic

mustard. The central questions I address The first chapter contains background

information on garlic mustard biology, biological control, and some of the goals ofmy

research. Chapter two describes the statistical analysis of garlic mustard survival and

reproductive rates from the twelve study sites. In this chapter, I examine the spatial and

temporal scales of variability in demographic rates as well as their relationships to



population density and abiotic factors. Chapter three is a detailed critique of a recently

published modeling study of garlic mustard population dynamics by Pardini et al. which

also makes management recommendations. This is a necessary detour, as there were a

number of errors in this model’s construction and parameterization that led to issuing

incorrect management recommendations which some land managers have already begun

implementing. The fourth chapter presents a linear model of garlic mustard population

dynamics which incorporates annual variation in demographic rates within each site. The

model is used to estimate the probability of controlling garlic mustard by simulating the

effects of either single or multiple biocontrol agent species across a range of agent

efficacies. This is the main result of the study. Finally, chapter five contains a reanalysis

of the survival and fecundity data focused on density dependence of demographic

stochasticity. This analysis suggests an important relationship between population density

and the stochasticity of survival probability that should be explored further in future

statistical and population models.

I didn’t think I wanted to be a modeler when I started graduate school. Turns

out... I do. Who knew?
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Brian (lecturing to large crowd): You're ALL individuals!

The Crowd: Yes! We're all individuals!

Brian: You're all different!

The Crowd: Yes, we ARE all different!

Man in crowd: I'm not...

Life of Brian

Monty Python, 1979
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CHAPTER 1: DEVELOPING DEMOGRAPHIC MODELS TO INFORM SELECTION

OF ALLIARIA PETIOLATA (GARLIC MUSTARD) BIOLOGICAL CONTROL

AGENTS



INTRODUCTION

Biological invasions are a major contemporary management problem. Alliaria

petiolata (garlic mustard (M. Bieb.) Cavara and Grande) (Brassicaceae) is one of the

most damaging invasive weeds in North American forests. A native of Eurasia, its

substantial negative impacts on litter and nutrient cycling and its allelopathic and anti-

mycorrhizal effects can disrupt native forbs and tree regeneration (Blossey 1999,

Meekins and McCarthy 1999, Prati and Bossdorf 2004, Stinson et al. 2006).

Conventional strategies have failed to yield effective long term control of any but the

smallest A. petiolata infestations (Nuzzo 1991, 1994, 1996, Nuzzo et al. 1996), and a

search for biological control agents was initiated in 1998 (Blossey et al. 2001b).

Biological control is often considered an environmentally safe alternative to conventional

management. However, a growing awareness of the potential risks to non-target species

posed by some weed biocontrol agents (Louda et al. 1997, Callaway et al. 1999) has

prompted calls for increased rigor in new biocontrol programs (Simberloff and Stiling

1996, McEvoy and Coombs 2000, Louda et al. 2003a) with emphasis placed on a priori

selection ofhost specific agents that have strong, negative impacts on their intended

target plants (McEvoy and Coombs 2000, Pearson and Callaway 2003, Pearson and

Callaway 2004, Thomas et al. 2004). Matrix population models of target plants and

demographic analysis can improve both the safety and efficacy ofweed biocontrol (Shea

and Kelly 1998, McEvoy and Coombs 1999, Rees and Hill 2001). Using demogaphic

models to identify plant life-stages that are most likely to affect a population’s growth

rate if damaged, agent selection and testing can be restricted to species which affect those

optimal target life-stages (McEvoy and Coombs 1999). Additionally, models can suggest



whether single or multiple agents will be necessary to achieve suppression across the

target’s geographic range (Parker 2000). A preliminary model ofA. petiolata constructed

from published data (Davis et a1. 2006) suggests that overwintering rosettes should be

targeted initially. However, a more robust, spatially explicit data set is required to address

questions about the range of conditions under which single or multiple agent biological

control are projected to be successful. Developing safe, effective, and economical weed

control strategies will require a combination ofnew and established empirical and

theoretical ecologically based approaches. This has been the focus ofmy doctoral studies.

BIOLOGICAL CONTROL

“Biological control is the use of parasitoids, predators, pathogens, antagonists, or

competitor populations to suppress a pest population, making it less abundant and thus less

damaging than it would otherwise be.” (Van Driesche and Bellows I996)

The use of natural enemies to control targeted pest species dates back millennia,

but the use of scientifically rigorous testing to select biological control agents has a

relatively shorter history (Van Driesche and Bellows 1996). Early biological control

efforts were trial and error based and principally designed by intuition. However, as

. . . h

awareness and concern over Impacts to non-target organisms grew during the 20t

century, agent selection became a more focused process and began to address some of

these concerns.



Host Range Testing

Weed biological control in the United States has been regulated since 1957 by the

Technical Advisory Group for Biological Control Agents of Weeds (TAG), a multi-

agency federal panel headed by USDA-APHIS whose purpose is to advise on the practice

ofweed biological control “based on consideration of potential non-target impacts and

conflicts of interest” (USDA-APHIS 2006). The goal of agent testing is to predict which

non-target plant species an herbivore is likely to attack if released in a new environment

and is described by Van Driesche and Bellows (1996). The host specificity of candidate

biocontrol agents is evaluated using a centrifugal phylogenetic approach (Wapshere

1974, 1989). A list of test plants is assembled which includes close relatives of the target,

species likely to co-occur with it, and species of economic importance. There are three

stages of testing which are used to discern the agent’s physiological host range (i.e. what

it is capable of feeding and developing on in a contrived, no-choice situation) and its

ecological host range (i.e. what it is likely to feed and develop on under natural field

conditions) (Louda et al. 2005a): (1) in larval feeding trials, larvae of candidate species

are offered test plants tests under no choice conditions in confinement. Rejection by the

larva indicates that it is outside its host range. If it feeds on the plant, (2) a no-choice

adult oviposition trial is conducted in confinement. If eggs are not laid on the plant, it is

deemed not a host. If eggs are laid, (3) a multiple choice oviposition test is conducted in

field cages or in the open field. If eggs are not laid on the plant, it is not a potential host.

If they are laid under these more natural conditions, the non-target plant is within the

agent’s host range, and the agent may be rejected if there is reason to protect the non-

target plant from harm (Wapshere 1989 in Van Driesche and Bellows 1996).



Benefits of Biological Weed Control

Biological control of weeds has several potential advantages over conventional

control methods. Arguments in support of biocontrol include its (1) potential

effectiveness, (2) low resource input requirements, (3) self-perpetuation, (4) low output

ofpollutants, (5) reduced non-target impacts, and (6) overall compatibility with alternate

management strategies (McEvoy and Coombs 2000). Cost to benefit ratios for successful

biological control programs can be lower than 1:145 by some estimates (Hoddle 2004a)

and as low as 1:12,698 by others (Huffaker et al. (1976) in Gutierrez et al. 1999) with

gains increasing over time. The successfirl biological control of St. Johnswort

(Hypericum perforatum L.) (Louda et al. 1997, Whitten and Hoy 1999) and purple

loosestrife (Lythrum salicaria L.) (Blossey et al. 2001a, Landis et al. 2003) in North

America and prickly pear (Opuntia spp.) in Australia and the Caribbean (Bellows 1999)

are frequently cited as evidence ofweed biological control’s enormous potential.

Pitfalls of Biological Weed Control: Non-Target Impacts

Non-target impacts ofweed biological control programs have been documented

in many systems (e.g. Howarth 1991, Louda et al. 1997, Stiling and Simberloff 2000,

Louda and O'Brien 2002, Louda et al. 2003a, Pearson and Callaway 2003, Louda and

Stiling 2004), and have inspired discussion about the role biological control should play

in weed management (e.g. Simberloff and Stiling 1996, Pearson and Callaway 2003,

Hoddle 2004b, Louda and Stiling 2004, Pearson and Callaway 2004, Thomas et al. 2004).

The debate focuses on tradeoffs between potential gains from weed biological control



programs and losses incurred through direct and indirect non-target impacts and our

ability (or inability) to accurately forecast the outcomes of these biological control

programs. Decision makers evaluating whether to release new agents must strike a

balance between these. Ultimately, we are forced to weigh the unknown consequences of

introducing an organism into a novel environment against the consequences of either

using conventional control methods or of doing nothing at all.

Direct Non-Target Effects

Most documented cases of direct non-target impacts of weed biological controls

relate either to older weed-control efforts or reflect times when either host-specificity was

not considered important or when certain non-target plants were within the host range of

the proposed agent but were not considered valuable for conservation (e.g. Louda et al.

2005a). Such is the well-documented case of the weevil Rhinocyllus conicus

(ColeopterazCurculionidae) which was released to control invasive European thistles

(Carduus spp.), despite knowledge of its feeding and development on North American

Cirsium thistles from host specificity testing prior to release (Louda et al. 2003b, Rose et

al. 2005). At the time of its release in North America, it was believed that R. conicus’s

preference for Carduus spp. in host specificity trials would limit its impacts on native

thistles (Louda et a1. 1997). Additionally, most thistles, native or otherwise, were

generally considered rangeland weeds without conservation value. Non-target feeding

was reported almost immediately after the initial releases in 1969, and in 1993 the rare

Platte thistle (Cirsz'um canescens) was identified as a preferred host of R. conicus (Louda

et a1. 1997). Further interstate re-distribution ofR. conicus was prohibited effective in



2000 (Louda et al. 2003b). Preferential feeding by R. conicus on C. canescens has

resulted in a decrease in C. canescens fecundity and population growth rates and is

predicted to lead to global extinction of C. canescens (Rose et al. 2005). Demographic

modeling indicates that the federally threatened C. pitcheri, a sister species of C.

canescens will rapidly be driven extinct if R. conicus spreads into its habitat (Louda et al.

2005a).

The value of each weed biocontrol program varies regionally. Cactoblastis

cactorum, the same biocontrol agent touted as being enormously successful in the control

of Opuntia spp. in Australia and the Caribbean and the “poster child of biological

control” dispersed naturally from the Caribbean into Florida in the United States in 1989

(Stiling 2002) where it now threatens to drive the endangered native Florida semaphore

cactus 0. corallicola extinct (Louda and Stiling 2004). Although it had been considered

for intentional introduction into the United States on several occasions, introduction was

rejected out of concern for native Opuntia and commercial prickly pear production in

Mexico (Louda et al. 2003b). Because its introduction into North America was

unintentional, some (Hoddle 2004b) suggest that the threat it poses in North America

should not be considered a non-target effect of biological control. However, its deliberate

introduction into Caribbean islands set up the possibility for natural spread to the

mainland United States. This indicates shortsighted planning, as the potential for

redistribution could have been anticipated and considered before introductions were made

(Louda et al. 2003b).



Indirect Non-Target Effects

Indirect impacts on non-target species are more difficult to anticipate and quantify

than direct non-target impacts, and there are relatively fewer examples in the literature.

Conventional biological control theory, based on simple predator-prey interaction

models, postulates that biological control agents impose negative impacts on their target

hosts and thereby confer positive indirect effects on desirable native species. In turn,

reductions in the target host plant negatively impact the control agent and impose

regulation through negative feedbacks. This system is expected to work when control

agents are both highly host-specific and exert strong negative pressures on target

populations (Pearson and Callaway 2003).

The consequences of direct non-target feeding by biocontrol agents can be severe

(Louda et al. 1997, Stiling 2002), but these risks can be quantified a priori (Pemberton

2000). Thus, agent selection processes have increasingly emphasized host specificity

(McEvoy 1996). Host specific agents are presumed to have neutral effects on non-target

organisms. This assumption is used to justify the release ofmultiple host-specific agents

per target plant when the agents are believed to be host specific (Pearson and Callaway

2003). In this approach, agents are chosen without regard for their potential effectiveness,

and a “lottery” of chance is established in the new environment to determine which of the

agents will succeed in suppressing the target (McEvoy and Coombs 2000). As a result of

this approach, insect species introduced as biological control agents are now more

numerous than their invasive weed target species (McEvoy and Coombs 1999, McEvoy

and Coombs 2000). Despite this, the large majority of weed biological control agents

released do not control their target hosts (McEvoy and Coombs 1999, Denoth et al.



2002). A growing body of evidence suggests that indirect non-target effects can be

mediated by host specific biocontrol agents though “ecological replacement,

compensatory responses, and food-web subsidies” (Pearson and Callaway 2003). These

undesirable indirect effects are much more likely to occur when the introduced control

agents do become established in the introduced range but exert weak pressure on their

targets and fail to control them (Cory and Myers 2000, Pearson and Callaway 2003).

Pearson and Callaway (2003) describe the case of two gall flies, Urophora spp.,

introduced in the 19703 to control the non-native, invasive knapweeds Centaurea

maculosa and C. diffusa. The flies became established in North America and have

remained highly host specific. However, they have not controled Centaurea spp.

populations and subsequently have become highly abundant. Deer mice (Peromyscus

maniculatus) are generalist predators and have increased their overwintering survival

though feeding on the introduced gall fly larvae. Peromyscus maniculatus, in turn, has

become more abundant in this system and negatively impacts native plants and insects

though feeding, other small mammals through competition, and may increase predator

abundances. Irnportantly, as a vector of Hanta virus, P. maniculatus may negatively

impact human populations (Pearson and Callaway 2003).

IMPROVING WEED BIOLOGICAL CONTROL

The key to minimizing the risks of both direct and indirect non-target effects is to

select only highly host specific, highly effective agents and release the minimum number

of agent species necessary to suppress the target (Pearson and Callaway 2003).

Techniques for testing host specificity are relatively well defined, but quantitative



approaches for predicting biocontrol agent efficacy have not yet been used in selection of

agents prior to release. A flush of interest in developing new methods promises to

improve the success rate of biological control and decrease the risk and frequency of non-

target impacts (McEvoy and Coombs 1999, Briese 2006, Davis et al. 2006, Raghu and

van Klinken 2006, van Klinken and Raghu 2006).

The Use ofTransition Matrix Models

Matrix population models can be used to interpret a weed species’ population

dynamics and to guide the selection of new biological control agents (McEvoy and

Coombs 1999, Raghu and van Klinken 2006). Caswell (2001) describes their properties,

construction, and interpretation. In past studies, matrix models have been used to

interpret the mechanisms by which biocontrol has succeeded (McEvoy and Coombs

1999), failed (Shea and Kelly 1998, Parker 2000), or had variable outcomes in different

locations (Shea et al. 2005). Recently, attention has turned toward applying them to the

development ofnew biocontrol programs. While the details ofmodel construction will be

presented in Chapter 4, I will briefly describe some of the ways the model can be used.

A matrix model is an algebraic expression whose components describe the mean

probability of each individual in a population surviving from one life stage to the next

and its reproductive output at each stage in discrete time. These probabilities correspond

with transitions in the organism’s life cycle. The transitions are arranged into a matrix,

abbreviated A (‘the A matrix’) from which a number ofuseful population statistics can be

calculated. The most pertinent statistics to population management are the population

growth rate (it , lambda), and the sensitivities and elasticities of lambda to the matrix
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elements. The population growth rate, 1., is related to the intrinsic rate of increase r from

continuous models as 1. = er or r = In it (Caswell 2001). When it is equal to one, each

individual exactly replaces itself during its lifetime. Values of A greater or less than one

indicate expanding or declining populations, respectively. The goal ofbiological control

is to affect the survival probabilities of a weed such that 3. is driven below one. By

simulating the effects of biological control agents or other management on survival or

reproductive rates, the model can be used to assess the efficacy that management of a

particular stage in the plant’s life cycle would need to achieve to reduce it below 1.

The sensitivity of X to the each demographic rate is the local slope of it as

evaluated at a particular value of the demographic rate. It indicates how much 7. will

change in absolute terms if the transition is perturbed. Elasticities are calculated from the

sensitivities, but are scaled by the proportional contribution of each demographic

transition to X. The elasticity of each demographic rate is the proportional change in 7»

expected from a proportional perturbation of the demographic rate. It indicates how much

it will change in relative terms if the transition is perturbed. Transitions with large

elasticities and large sensitivities are predicted to have large impacts on population

growth and theoretically represent the optimal targets for management.

Elasticity analyses have been used previously to interpret the relative success of

established biological control programs. McEvoy and Coombs (1999) used a post hoc

elasticity analysis of a successful biocontrol program for tansy ragwort Seneciojacobaea

L. (Asteraceae) in Oregon. They attributed successful control of the target to just one of

the two agents released, deeming the other redundant and an unnecessary risk. Parker

(2000) similarly modeled patterns of demographic variation in invasive Scotch Broom
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Cytisus scoparius along North America’s west coast. She showed significant spatial

heterogeneity in C. scoparius demographic parameters, but elasticity analysis identified

no obviously vulnerable life stage. Her model predicted that nearly 100% and 70% of

seeds would have to be destroyed in prairie and urban populations, respectively, to reduce

3. to less than one, which the introduced biocontrol agents were incapable of achieving.

Shea and Kelly (1998) and Shea et al. (2005) used demographic models to interpret

differential outcomes of biological control agents released against Carduus nutans in

New Zealand and Australia. They found major life history differences between the two C.

nutans populations that drove differences in their elasticity structures. Dynamics ofNew

Zealand populations were driven by early life stages, whereas rosette longevity was more

important in Australian populations of C. nutans. Of three agents considered in their

analysis, none were able to control C. nutans alone in New Zealand, while in Australia

two were predicted to reduce it below one.

Most recently, Davis et al. (2006) used a matrix population model to make a

priori predictions about which stages in the A. petiolata life cycle would be most

susceptible to biological control agents and predicted the levels ofmortality that must be

induced by single or multiple hypothetical control agents at each life stage to reduce it

below one. Their model, parameterized with data from multiple published sources, makes

specific recommendations about which ofthe potential biocontrol agents being

considered for A. petiolata are most likely to be effective against North American

populations. Davis et al. (2006) found that the greatest elasticity corresponded to the

rosette to flowering transition followed by transitions affecting seed production.

Incorporating the range of impacts the potential agent species have on A. petiolata in
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laboratory studies, they concluded that multiple agent introductions would be necessary

to extend control ofA. petiolata to the greatest number of populations. The weevil

Ceutorhynchus scrobicollis, which disrupts the rosette to flowering transition by mining

in the overwintering rosettes and reduces fecundity by feeding on foliage, was

recommended as a priority agent to be released first. It is predicted to control all but the

most vigorous populations ofA. petiolata. For some populations, another supporting

agent that affects fecundity was recommended to be released with C. scrobicollis when

one becomes available. Post-release monitoring will allow biocontrol managers to

interpret which sites and conditions necessitate multiple agents. Taking this “plant first”

approach allows biocontrol practitioners to understand the target’s weaknesses and make

informed agent release decisions. By eliminating ineffective agents from consideration,

the risks of causing non-target impacts can be substantially reduced (McEvoy and

Coombs 1999). In combination with rigorous host-specificity testing, this technique has

the potential to transform the development ofnew biological control programs from the

traditional “lottery” approach of agent selection (McEvoy and Coombs 2000) into a

directed search for host-specific agents that affect particular life history stages or

transitions.

Demographic Variability

One strategy used to select effective biocontrol agents is to choose and introduce

agents which have been successful elsewhere (Harris 1991). In the case of Cactoblastis

cactorum, redistribution from Australia to the Caribbean resulted in control of the target

in the new location, although the non-target impacts of this choice were costly (Stiling
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2002). However, replicating a strategy that had been successful against Carduus nutans

in Australia failed in New Zealand (Shea et al. 2005). The relatively few demographic

studies of plants across spatial or temporal gradients have found significant variability in

demographic rates and statistics (e.g. Bierzychudek 1982, Bierzychudek 1999, Parker

2000). Horvitz and Schemske (1995) studied a tropical rainforest herb for five years in

four locations (n = 16 A matrices) and found variability in it, in the correlation structure

of demographic parameters, and in the sensitivity and elasticity structure of the

populations both in space and over time. The variation they observed in parameter

sensitivity and demography was not always correlated with variation of other elements in

the environment that the plant could profit from (c.g. presence/abundance of pollinators

during peak flowering). The uncoupled relationship between plant and environmental or

exogenous biotic factors means that variation in a species’ demography does not

guarantee changes in fitness. Rather, demographic variability presents fitness

opportunities or hazards only in concert with conditions that permit realization of a

change in fitness. This suggests that if the target species’ demography and sensitivity

structure vary spatiotemporally, what constitutes an optimal biocontrol strategy will be

conditional on the form and scale of demographic variability and the degree of

parallelism between plant and agent performance and demography across the range of

conditions. Shea et al’s (2005) findings reflect the importance of such variability for

biological control.

Horvitz and Schemske’s (1995) analysis took a factorial approach to

characterizing and interpreting the significance of space (plot) and time (year) in their

model. Another method developed by Horvitz and Schemske (1986), used by Pascarella
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and Horvitz (1998), considers the environment itself as a demographic entity with

properties that change over time, in which the study species has demographic rates that

vary as a function of the environmental state. They studied a tropical understory shrub

across a gradient of forest-canopy openness created by a hurricane and the response of

the shrub to the closure of the canOpy over time. The progressive closure of the canopy

was characterized by one set of transition matrices, and the plant’s performance under

each canopy condition was characterized by another. Each patch could transition between

any of seven canopy states, and each plant could transition between any of eight

developmental stages. They nested each of the 8x8 plant demographic matrixes within

each element of the 7x7 forest canopy matrices to create a 56x56 megamatrix which

encapsulated both the environmental dynamics of the system and the organismal

dynamics within each of the possible environmental states. Similar to Horvitz and

Schemske (1995), Pascarella and Horvitz (1998) observed differences between the

elasticity structures of their matrices when considered separately versus when considered

together in their megamatrix. Individually, the matrixes suggested a stable population

dominated by large individuals in closed canopy conditions, whereas the megamatrix

indicated a rapidly growing population whose spread was dependent on the existence of

open patches cleared by the hurricane.

Davis et al.’s (2006) model ofA. petiolata biological control was a critical first

step towards the incorporation of predictive ecological models into the decision making

process of invasive species managers. Their approach made use of available data on a

well studied target species and allowed rapid formulation ofmanagement

recommendations. However, the data used to parameterize their model were collected
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from disjunct natural and laboratory populations from Ontario to Kentucky over more

than two decades. These were then pooled to generate ranges across which the

demographic parameters were varied in the simulation analysis. This approach does not

account for the structured correlations between parameters that are shown to have been

important in other study systems. In cases where time is limited, generation of a

demographic model from multiple, unrelated existing data sources to guide selection of

effective agents is much preferred to the “lottery” approach of blindly releasing all

available agents (McEvoy and Coombs 2000). However, when it is possible to do so,

using data collected from distinct populations across the target plant’s spatial range and

over multiple generations or years will allow much more robust management conclusions

to be reached.

STUDY SPECIES

Distribution

Alliaria petiolata is a frequent component of temperate forest understory and edge

communities. It is native to Eurasia where it occurs from England east to Czechoslovakia

and fi'om Sweden and Germany south to Italy (Nuzzo 1993b, 2000). It has been

redistributed into Central Asia, New Zealand (Bangerter 1985) and much ofNorth

America (Nuzzo 2000, Welk et al. 2002). Alliaria petiolata was first collected in North

America on Long Island, New York, in 1868 (Nuzzo 1993a), where it was likely

introduced by immigrants from the old world. In North America, A. petiolata is most

abundant in New England and the Midwest with populations now present in at least 36

US. States and 4 Canadian Provinces (Nuzzo 2000, USDA-NRCS 2007) from the east
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coast to Alaska (The Nature Conservancy 2002, Ellen Anderson, USDA Forest Service

personal communication November, 2005). Climate based models of its potential North

American distribution project further range expansion in the future (Welk et al. 2002,

Peterson et al. 2003).

Life Cycle

Evans (2006) reviewed A. petiolata’s biology and life history. Alliaria petiolata is

a disturbance adapted species which profits from anthropogenic and natural disturbances

(Pyle 1995) and can tolerate harsh growing conditions such as lead contaminated soils

(Pichtel et al. 2000). Optimal photosynthetic rates are achieved under light conditions

typical of forest edges, although it can grow under conditions ranging from closed-

canopy forest shade to full sunlight (Dhillion and Anderson 1999, Meekins and

McCarthy 2000, Myers et al. 2005). In forest interiors A. petiolata often colonizes light

gaps where trees have fallen or been removed (Luken et al. 1997).

North American A. petiolata populations have an obligate biennial life cycle

(Cavers et a1. 1979) which can be decomposed into three basic developmental stages:

seeds, first year plants, and second year plants (henceforth “adults”). First year plants can

be further separated into seedlings and rosettes. Seedlings emerge from early spring

through early summer. Rosettes are distinguished from seedlings at some point during the

early summer as those first year plants that survived the germination period early in the

growing season and no longer bare cotyledons. Seeds and rosettes are the only stages

present in autumn and winter.
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Seeds ofA. petiolata require cold stratification to germinate. Dormancy for the

majority of seeds varies from one to two winters (Cavers et al. 1979, Roberts and

Boddrell 1983), although dormant seeds remain viable for nine years or more (Nuzzo and

Blossey, unpublished data, ongoing experiment). Germination begins and peaks in early

spring (Baskin and Baskin 1992) under high light, low competition conditions prior to

leaf-out of canopy trees and prior to germination ofmost native ground layer species

(Myers and Anderson 2003). Seedlings form a low, tight canopy over the forest floor

with population densities as high as 20,000/m2 (Trimbur 1973). Seedlings which survive

the summer overwinter as basal rosettes, bolt the following spring, and flower in early

summer (Cavers et al. 1979). High seedling mortality results in only 5-9% of seedlings

surviving to form rosettes and only 2-4% of rosettes survivors reaching reproductive age

(Cavers et al. 1979). Nuzzo (1993c) estimated 21.4% winter rosette survival resulting in

mean spring rosette densities of 39.9 (range = 4-102 rosettes/m2) with 9% of the variance

in overwintering surival attributable to fall rosette density. Mature adult plants reach

heights up to 1.8 m (Evans 2006).

Flowers are primarily self pollinating but are visited by generalist pollinators

including Diptera: Syrphidae, and Chironomidae or Ceratapogonidae (described only as

“midges” by Cavers et al. 1979) and Hymenoptera: Apidae, Andrenidae, Halictidae

(Cavers et al. 1979, Anderson et al. 1996, Cruden et al. 1996). Alliaria petiolata

reproduces exclusively by seed (Cavers et al. 1979). Seed production is variable among

individuals (Susko and Lovett-Doust 2000) and populations, with per capita fecundity

ranging up to 7900 seeds (Nuzzo 1993b). In dense stands, seed production per square

meter can exceed 100,000 (Cavers et al. 1979). I
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Several factors affect seed production in A. petiolata. Experiments by Susko and

Lovett-Doust (1999) showed that removal of 50-100% of cauline leaves (leaves along the

stem) from adult plants reduced seed production by 25-46%, and removal of 50-75% of

the root mass of adult plants decreased seed production by 8-13% and reduced the

proportion of seeds maturing by z 4%. Position of flowers within inflorescences and

plant size also affect seed production (Susko and Lovett-Doust 2000). In North America

plants senesce following seed production, although European A. petiolata can perenniate

by production of adventitious buds (Cavers et al. 1979). Dispersal of seeds is limited,

with the majority falling near the parent plant. Long distance dispersal is facilitated by

humans, deer, and mice that transport seeds in muddy footwear and hooves, in fur or

clothing, and automobile tires (Nuzzo 1993a). Seeds have limited ability to float but can

disperse along riparian corridors (Cavers et al. 1979, Nuzzo 1993a).

In newly established populations, first and second year plants are typically not

intermixed within localized patches, creating an effective alternation of generations. Over

time, the seed bank moderates this effect and first and second year plants are found in

unevenly mixed patches. Seedlings that germinate under cover of second year plants have

very high mortality which keeps the generations locally segregated in many areas

(Winterer et al. 2005). In areas where it is invasive, A. petiolata spreads in a moving front

as satellite populations ahead of the core establish and fill out, with a positive net rate of

spread in Illinois averaging 5.4 m/y (Nuzzo 1999). A study of seven invaded forests in

southern Michigan documented spatial expansion ofA. petiolata in 100% of sites over a

four year period (Evans 2006).
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Invasiveness ofAlIiaria petiolata

Release from pests or other natural enemies has been proposed as contributing to

the success of some invasive species (Williamson 1996). Damage from herbivore natural

enemies and plant pathogens are frequently found on North American A. petiolata.

However, they do not have significant impacts on its survival or reproduction, suggesting

that natural enemy release may play a role in A. petiolata’s invasiveness (Evans 2006).

Allelopathy has also recently been identified as contributing to increased invasive

ability in several plant species (Bais et al. 2003, Call and Nilsen 2003, Grant et al. 2003,

Weston and Duke 2003, Wolfe and Klironomos 2005). Vaughn and Berhow (1999)

extracted several phytotoxic substances from A. petiolata tissues that negatively impacted

the growth of forbs and grasses. They proposed that these compounds or their derivatives

might additionally inhibit the growth of arbuscular mycorrhizal fungi (AMF). Later

laboratory and field studies showed that AMF growth, abundance, and associations with

vascular plants were reduced or eliminated in seeds or soils treated with A. petiolata

extracts or in which A. petiolata had previously grown (Roberts and Anderson 2001 ,

Stinson et al. 2006). Prati and Bossdorf (2004) demonstrated direct allelopathic inhibition

of germination of a native North American forb grown in soils in which A. petiolata had

been grown, while a congereric forb native to Europe responded positively to the soil

treatment. Disruption ofAMF in natural communities could have significant

repercussions for regeneration of trees dependent on AMF associations (Stinson et al.

2006).
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CONTROL STRATEGIES

Conventional Control

Many conventional methods have been explored to control Alliaria petiolata. Use

of prescribed fire (Nuzzo 1991, Nuzzo et a1. 1996, Schwartz and Heim 1996, Luken and

Shea 2000), herbicide applications (Cavers et al. 1979 and references therein, Nuzzo

1991, 1994, 1996, 2000 and references therein, Carlson and Gorchov 2004), flooding

(Nuzzo 1999, Evans 2006), and mechanical removal (Nuzzo 1991) have resulted in

unsatisfactory control.

Biological Control

In 1998 a search for appropriate biological control organisms for A. petiolata was

launched in Delemont, Switzerland through the cooperative efforts of CABI Bioscience

in Switzerland, Cornell University, and the University of Minnesota (Hinz and Gerber

I998). Blossey et al. (2001b) and Hinz and Gerber (2005) have summarized the search

for biocontrol agents for A. petiolata. From an initial survey ofthe literature which

identified 69 species ofphytophagous insects and 17 fungi in Europe that are associated

with A. petiolata, four weevils belonging to the subfamily Ceutorhynchinae (Coleoptera:

Curculionidae) in the genus Ceutorhynchus are currently considered candidate agents.

Larval Ceutorhynchus alliariae Bristout and C. robertii Gyllenhal mine in stems

and leaf petioles ofA. petiolata from March to May and pupate in the soil. Adults emerge

later the same summer and feed on leaves ofA. petiolata. Adults overwinter in the litter

and soil, emerge early in the spring, and oviposit in A. petiolata stems and leaf petioles.

In field surveys in Europe, C. alliariae and C. robertii were found either separately or
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together in 81-100% ofA. petiolata plants dissected (Gerber et al. 2002, Gerber and Hinz

2005, Gerber et al. 2008a). Feeding damage from these species results in reduced

fecundity of adult A. petiolata plants.

Ceutorhynchus constrictus (Marsham) has the narrowest host range of the

candidate biocontrol agents tested to date (Hinz and Gerber 2005). Larvae feed on seeds

from May to July and then leave the host plant to pupate in the soil. Adults emerge the

following April to feed on leaves and mate. Each larva consumes and destroys up to three

A. petiolata seeds during its development.

Ceutorhynchus scrobicollis Nerensheimer & Wagner larvae feed in leaf petioles,

buds, and root crowns of overwintering A. petiolata rosettes. Larvae leave the plants to

pupate in the soil by late April. Adults emerge from May to June and aestivate during

summer. Females begin laying eggs in mid September and oviposit continually through

winter into spring. Individual females can produce viable eggs for at least three

consecutive years, although few survive that long and fecundity decreases with age. In

field surveys in Berlin, Germany, C. scrobicollis was found attacking 4-100% ofA.

petiolata plants collected and dissected (Gerber et al. 2002, Gerber and Hinz 2005).

Damage from C. scrobicollis leads to direct mortality in overwintering rosettes as well as

reduced fecundity in adult plants.

A petition to release C. scrobicollis in North America was declined by the TAG

in 2008 citing the need for host specificity testing on more plant species and testing of

more western North American species.
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SUMMARY

Alliaria petiolata is an invasive weed that has the potential to radically alter

native North America forest plant communities. Concerns about the safety and efficacy

ofbiological control programs require new predictive tools for ensuring that only the

most effective biocontrol agents are released in future programs. The A. petiolata

biocontrol program presents an excellent opportunity to develop and test such tools.

A preliminary plant-based model has been developed to evaluate which stages of

the A. petiolata life-cycle represent optimal targets for management efforts (Davis et al.

2006). However, is model did not account for spatiotemporal variation and covariation in

demographic parameters seen in other studies of this species. Such variation can

significantly affected population trajectories and dynamics (6.g. Horvitz and Schemske

1995, Pascarella and Horvitz 1998). Capturing variability in A. petiolata demographic

rates across its range and over multiple years could be critical to projecting the frequency

of conditions where single or multiple agent biocontrol are projected to succeed. The

linear models used in initial A. petiolata analyses (Davis et al. 2006) may not capture the

true dynamics ofnatural populations. Observations of early and late spring populations of

A. petiolata suggest that survival is density dependent.

Building from Davis et al.’s (2006) models, we need to ask targeted questions

about the dynamic interactions between A. petiolata and populations of the insect

herbivores that have been proposed as potential control agents. Understanding how

populations of the weed and control agent behave in the presence of one another and

ultimately in a spatial environment will be an important step towards projecting the long-

tenn outlook for A. petiolata biocontrol.
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CHAPTER 2: THE SCALE AND SOURCES OF DEMOGRAPHIC

VARIATION IN ALLIARIA PET[OLA TA

24



ABSTRACT

Variability in demographic rates among natural plant populations can have large

impacts on population structure and cause populations to exhibit subtle or radical

differences in behavior over time. As population modeling studies are increasingly called

upon to guide policy and management decisions, it is important that they accurately

represent the dynamics of their study systems. Quantifying the sources of variability

across the life history of an organism is the first step in this process. I studied the

demography of 12 natural populations of the invasive forb Alliaria petiolata (garlic

mustard) over three generations of its life cycle. Generalized linear models (GLMs) and

hierarchical, generalized linear mixed models (GLMMs) were used to analyze the spatial

and temporal scales of structured variability in each lower level demographic transition

and the intrinsic, edaphic, and climate-driven mechanisms which underlie them. I

developed statistical approaches to deal with common discontinuities, such as zero- and

one-inflation issues, that made conventional analyses problematic. Population density and

climate variables played important roles both in directly affecting morality and in

predicting the fates of individuals later in their life histories. Variation in germination and

survival rates was significantly structured across sites and years, but the distribution of

fecundity varied only across sites. Persistence of dormant seeds in the soil seed bank was

high, with a mean viability of 91 .9% after one year. Germination, seedling, and summer

rosette survival were influenced by negative density dependent feedbacks. Overall winter

rosette survival was not density dependent, although the probability of extremely high (1)

and low (0) winter survival was negatively density dependent. Fecundity was negatively

dependent on final flowering plant density during dry years, but positively dependent
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during wetter years. The frequency and amount of precipitation early in the life history

were associated with increased survival for the remainder of the life cycle, but increasing

summer precipitation and temperature negatively affected survival. The degree of

variation observed in A. petiolata demographic rates encompasses the results of almost

all previous studies of this species. This variation is highly structured in space and time in

response to biotic and abiotic conditions. Previous studies that have explored subsets of

A. petiolata's demographic parameter space may therefore be limited in the scope and

applicability of their predictions.
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INTRODUCTION

Spatiotemporal variation in demographic rates of plant populations arises through

a combination of stochastic effects, environmental drivers, and intrinsic factors. The

magnitude and form of this variation has important consequences for both local and

regional population and metapopulation dynamics, particularly with respect to extinction

probabilities. Incorporation of environmental and stochastic demographic variability and

population regulation can greatly improve the accuracy and predictive power of

population models which would otherwise behave asymptotically (e.g. exponentially). As

modeling studies are used more frequently to guide population management, it is

important that they accurately represent the behaviors of the populations they are meant

to simulate (McEvoy and Coombs 1999, Buckley et al. 2003a, b, Briese 2006, Davis et

al. 2006). A single plant species can vary in its life history and demography across its

range to the point where entirely different approaches could be necessary to successfully

manage it in different locations (Parker 2000, Shea et al. 2005). Accounting for variation

among populations becomes especially important for regionally to continentally applied

management such as weed biological control, which utilizes autonomously redistributing

herbivorous or pathogenic agents. Complex indirect non-target impacts can arise when

biocontrol agents spread to areas where they are not effective at controlling the target

species (Pearson and Callaway 2003, Pearson and Callaway 2005). Thus, quantifying

demographic variation among populations and incorporating it explicitly into new

management models presents an opportunity to improve the safety and efficacy of

management tools like biological control.
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Alliaria petiolata (garlic mustard, Brassicaceae [M. Bieb] Cavara and Grande) is

a broadly distributed, invasive weed in North America that is the target of active

management using various techniques. Numerous studies have quantified aspects of its

biology and ecology, but a comprehensive analysis of variation in its population structure

and dynamics across the landscape is incomplete. A promising initial evaluation of the

known variability in A. petiolata demography assembled from published sources

indicated a gradient of susceptibility to management at specific life history transitions

(Davis et al. 2006). In their study, Davis et al. evaluated the responses of simulated A.

petiolata populations to management of varying intensity that targeted single or multiple

demographic transitions simultaneously. Building from this, the next step towards

predicting the probability of successful A. petiolata management is to determine the

distribution of the species’ demographic rates among natural populations.

Individual A. petiolata survival and reproductive rates reported in the literature

each vary broadly when compared across multiples studies (Davis et al. 2006, Table 1,

and Pardini et al. 2009, Appendix A). For example, Cavers et al. (1979) measured the

annual survival probability of dormant seeds as 0.99 from 1975-1978 in southern Ontario,

Canada. . Thirty years later, Meekins and McCarthy (2002) reported values between

0.30-0.32 from 1996-1998 for the same parameter measured in Athens, Ohio. Variation

in seed survival of this magnitude could mean the difference between a successful

management program versus a failed one because of the resulting differences in longevity

of the seed bank. This is evident in the changing elasticity structures among populations

with different seed survival rates (see Davis et al. 2006, Figure 4A for an illustration).
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Results of previous A. petiolata studies have suggested two principal guiding

questions from which the experimental and analytical designs were crafted. First, I asked

whether the variation in each demographic transition is hierarchically structured in space

and/or time. In the example above, one would want to know whether the differences in

seed survival resulted from site effects, year effects, both, or if the variation was random.

Also, because A. petiolata growth and photosynthetic rates respond to light intensity

(Dhillion and Anderson 1999, Meekins and McCarthy 2000, Myers et al. 2005), I also

asked whether there were differences within sites between forest edge and forest interior

habitats, as such differences could explain possible variation in population dynamics

within each site. The answers to these questions will be used to determine the hierarchical

levels at which each demographic rate should be pooled for use in future simulations of

A. petiolata population dynamics.

Second, I asked whether the variability in survival and reproductive rates could be

explained by local variation in biotic and abiotic conditions like population density, soil

or climate properties. This second question seeks a mechanistic explanation of

demographic variablity. From this perspective, I would expect any site, year or other

categorical differences to be the net result of differences in the conditions that are

biologically meaningful to plant growth and survival. Addressing this question will allow

pararneterization of survival and reproductive functions which can be combined to build a

more generalized, dynamic model ofA. petiolata population growth.

In this study I quantified recruitment, survival, and reproduction of over 60,000 A.

petiolata individuals and seeds at 12 study sites in Michigan and Illinois from 2005

through 2008. I conducted two sets of analyses using generalized linear mixed models
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(GLMMs) and generalized linear models (GLMs) to address each of the questions posed

above. First I analyzed the spatial and temporal scales at which demographic rates varied

among populations and years. These analyses generated estimates of demographic

parameter distributions for use in predictive population models. Second, I parameterized

survival and reproduction models of each life history stage as a function of population

density and abiotic variables. These functions will be used in future discrete-time

dynamic models ofA. petiolata populations. Within each set of analyses I used multi-

model inference to rank and select the best supported model from a set of a priori

candidate models.

METHODS

Study Species

Alliaria petiolata is an understory forb native to western Eurasia. It has been

documented in North America since the 18603 (Nuzzo 1993b) and now occurs in at least

36 US. states and six Canadian provinces (USDA-NRCS 2007). A. petiolata is a shade

and cold tolerant herb (Anderson et al. 1996, Dhillion and Anderson 1999, Meekins and

McCarthy 2000, Myers and Anderson 2003, Myers et al. 2005). Dormant seeds can

remain viable in the soil seed bank for at least ten years (Nuzzo and Blossey, unpublished

data). Density dependence has been observed for survival and fecundity (Meekins and

McCarthy 2000, Winterer et al. 2005, Pardini et al. 2008, Pardini et al. 2009), but not in

germination or recruitment rates. Like other Brassicaceae, A. petiolata has complex

allelochemistry that negatively affects competitors through disruption of soil microbial

and fungal communities (Vaughn and Berhow 1999, Roberts and Anderson 2001, Prati
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and Bossdorf 2004, Stinson et al. 2006, Stinson et a1. 2007, Callaway et a1. 2008, Wolfe

et al. 2008). Few pathogens or herbivores cause significant damage to A. petiolata in its

invasive range (Renwick 2002, Evans 2006, Evans and Landis 2007, Keeler and Chew

2008), although Yates and Murphy (2008) recently found three naturalized herbivore

species that successfully develop on A. petiolata in southwestern Ontario, Canada. They

proposed that these species may merit further investigation as possible biological control

agents for A. petiolata.

The A. petiolata life cycle can be broken into four distinct life stages: seeds,

seedlings, rosettes, and flowering plants (Figure 2.2). Second year flowering plants are

fiequently referred to as “adults” in the A. petiolata literature. Seeds ofA. petiolata

germinate in early spring after a period of cold stratification (Baskin and Baskin 1992,

Raghu and Post 2008) and produce dense carpets of seedlings. In the North Central

region of the USA, surviving seedlings mature into low rosettes of petiolate leaves.

Rosettes grow through the summer and fall, holding most of their leaves through the

winter. Surviving rosettes bolt in late April or May the following year in southern

Michigan (mean height = 71 cm, data from Evans and Landis 2007) and flower from May

through June. Flowers are predominantly self pollinated (Durka et al. 2005). Seeds

develop in slender fruits (siliques) along the upper stem and are shed from August

through September after all flowering plants have senesced. Individual siliques contain

14.3 to 20.7 seeds on average (Evans and Landis 2007). Mean per capita fecundity

estimated in eight Michigan forests in a previous study ranged from 0 to 446 (mean =

207) (Davis et al. 2006). Dispersal of seeds is limited. Most fall beneath the parent plant,

although deer are believed to move seeds that get caught in their fur or hooves, and mice
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are thought to frequently cache them. Past studies have demonstrated large variation in all

A. petiolata vital rates .

Study Sites and Data Collection

Alliaria petiolata demographic rates were measured in 12 forested sites in

Michigan (7) and Illinois (5) from 2005 through 2008 (Figure 2.1, Table 2.1). Sites were

selected based on the presence of established, unmanaged A. petiolata populations and

accessibility. Seven demographic rates were quantified in the field. Four replicate

measures of each demographic rate of were taken at each site for each of three cohorts:

2005-2007, 2006-2008, and 2007-2009. Four groups of sampling quadrats were

established within each site: two near the forest edge and two in the interior. This allowed

comparisons between plants growing in different light environments within each site.

Sampling areas were spaced 20 to 150 m apart as space permitted within each site. Three

types ofpermanent quadrats were established within each sampling area to estimate rates

of 1) seed germination and seed survival, 2) seedling survival, and 3) rosette survival and

fecundity. A timeline illustrating how data were collected is shown in Table 2.2.

Germination and Seed Survival

I estimated germination rates in 20 x 20 x 2.5 cm deep wire screen trays buried at

the soil surface. Each June (2005, 2006, 2007), topsoil was collected from 3-5 cm depth

in an area fiee ofA. petiolata near each sampling area and distributed to each of four

screen trays. Two trays were then randomly selected to receive an addition of locally

collected A. petiolata seeds at rates estimated from mature plants in the rosette survival
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quadrats. The other two trays served as controls for background seed contamination in the

soil. Adult plants were cleared within 2 meters of the seed trays to prevent the

introduction of unrecorded seeds. The following year seedlings were counted

destructively as they emerged from February until germination was complete.

Germination rates ofnewly shed seeds (g1, Figure 2.2) were calculated as the total

number of seedlings in the seed addition trays minus the number of seedlings in the

control trays divided by the number of seeds added. One pulse tray and one control tray

were collected in June and the remaining seeds were elutriated, counted, and stained with

2,3,5-tetrazolium chloride (AOSA 2000) to determine viability (seed bank survival rate

SS). The second pair of trays was left out for a second winter. Germination rates of older

seeds from the seed bank were measured the following spring, two years after being sown

(g2, Figure 2.2), using the same technique.

Seedling Survival

Estimates of seedling survival to the rosette stage (3,) were made each spring

(2006, 2007, 2008) in 25 x 25 (Michigan sites) or 20 x 20 cm (Illinois sites) quadrats.

Seedling locations were marked on transparent plastic sheets laid over the quadrats every

one to three weeks. Seedling survival rate was estimated as the ratio of seedlings

surviving to the rosette stage in June to the peak number of seedlings observed on any

date in the spring. Second year rosettes were also marked, although they did not occur in

all seedling quadrats.
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Rosette Survival and Fecundity:

Whereas Davis et al. (2006) estimated survival of rosettes to the flowering stage

over a full year as s,f, I split the measurements of the transition into two periods to

provide greater temporal resolution (Figure 2.2). Summer (sum) and winter rosette

survival (s,,.,-,,) were measured in 50 x 50 (Michigan sites) and 40 x 40 cm (Illinois sites)

quadrats. New rosettes were marked in June (2005, 2006, 2007) on transparent plastic

sheets. Survivors were located during a fall survey in October or November and again the

following June. Summer and winter survival rates were estimated as the ratio of fall to

summer rosettes, and mature flowering plants to fall rosettes, respectively. Fecundity (I)

was estimated for each surviving mature plant by counting the number of siliques and

scaling by the number of seeds per fruit. This relationship was determined from a set of

destructively harvested test plants using a breakpoint linear regression to account for

nonlinearity in the ratio of seeds per fruit between large and small plants (Appendix

2.B.iv). Seed addition rates for the germination trays during the following year were

estimated from these plants as the density of seed rain (seeds m'z) produced by all

surviving plants.

Germination trays vandalized or disturbed by animals during the experiment

(21%) were not used in analyses ofg1, g2, or $5. All plant densities were converted to a

common scale of plants rn'2 for use as covariates in analyses of density dependence.
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Climate Data

Temperature and precipitation data were assembled from the National Climate

Data Center (NCDC) database (www.mcdcnoaagov) using the nearest available weather

station for each site. Missing observations were filled in using data from the next nearest

weather station. Observations from some stations that were difficult to reformat and

assimilate into the database as provided by NCDC were downloaded from a commercial

intemet website (www.wunderground.com) which makes the same data available in a

different format. Daily precipitation (mm), minimum and maximum temperatures (°C)

values were compiled for each site from January, 2004 through October, 2008. These

were then distilled into sets ofmonthly and seasonal summary statistics to be tested as

predictors ofA. petiolata vital rates.

Decisions about how to summarize the climate data were based on A. petiolata's

reported cold tolerance and early season growth (Anderson et al. 1996), and sensitivity to

dry summer conditions (Byers and Quinn 1998) and then refined through exploratory

graphical analysis. Abbreviations for climate statistics are italicized. Temperature data

were processed in five ways. 1) Because A. petiolata is capable ofphotosynthesizing

during winter when temperatures are above freezing, growing degree days were

calculated using a base temperature of 0°C (gdays). I hypothesized that A. petiolata vital

rates could be driven by threshold-based climate conditions. I calculated the number of

days per month with minimum temperatures: 2) below 0°C (cold days, cold), 3) below -

18°C (very cold days, vcold), and 4) above 0°C (warm days, warm), and 5) with

maximum temperatures above 34°C (hot days, hot). Threshold temperatures used for
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very cold and hot days were based on graphical analysis. Mean, minimum, and maximum

temperatures had weak or no associations with demographic rates.

Precipitation was compiled into three monthly statistics: 1) total monthly

precipitation (mm, prep), 2) the number of days with > 0 mm precipitation (rainy days,

rain), and 3) the number intervals between precipitation events during which the soil

could dry out (drying events, dry). The drying statistic complements the rainy days

statistic as a way of quantifying the fi'equency of precipitation events. For example, the

rainy days statistic might indicate that it rained 14 days in a given month but doesn't

convey any information about whether it rained for two weeks straight and then was dry

for two weeks, or if it rained every other day. Knowing additionally whether there was

one drying event versus 14, we can distinguish between these two patterns of

precipitation.

Seasonal climate statistics were calculated by splitting the “garlic mustard year”

into four stages based on A. petiolata phenology and summing monthly values within

each stage for each year: spring (Spring, January — March of seedling year, used with g],

s,), summer (Sum, May — September of seedling year, used with ssum), winter (Win,

October of seedling year— March of flowering year, used with swin), and flowering period

(fec, February — May of flowering year, used withf). The spring and summer stages were

split further for some analyses. January and February data were grouped, as this seemed

likely to be an important pre-germination time interval, and August and September

drying events, when drought stress seemed most likely to affect summer survival. Finally,

precipitation data from March were used in analyses of seedling survival, and May

precipitation and rainy days were used in summer survival analyses.
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Soil Data

Selected soil chemical and physical properties relevant to plant growth, including

gravimetric water content, particle size distribution, water holding capacity, organic

carbon, pH, P, K, Mg, Ca, and inorganic N were measured at the quadrat level for all

locations. Ten soil cores 1.9 cm in diameter were taken to a depth of 10 cm from the

perimeter of each adult census quadrat at the time of census in June 2007 and bulked to

form a composite sample. Gravimetric soil moisture was immediately determined on a 25

g subsample by oven drying at 65 °C to constant weight (Klute 1986). The remainder of

the composite sample was sent to A&L Great Lakes Laboratories in Fort Wayne, Indiana,

where all other soil analyses were performed. Particle size distribution was measured

using the hydrometer method (Gee and Bauder 1986). Soil water holding capacity was

measured at a matric potential of -1/3 bar (-33 kPa) using the pressure membrane method

(Klute 1986). This matric potential was chosen for measuring soil moisture retention as it

represents field capacity, the point at which all water drainage due to gravity has

occurred, after a soil has been fully saturated (Brady and Weil 1.996). Organic carbon was

measured by loss upon combustion (Nelson and Sommers 1994) and soil pH was

measured in aqueous solution with a hydrogen selective electrode (Thomas 1996).

Available P, K, Mg and Ca were measured using ICP (inductively coupled plasma

spectroscopy) methods (Soltanpour et al. 1996). Finally, inorganic N ions, including both

NO3-N and NH4-N, were measured using automated colorimetric procedures (Mulvaney

1996). The site mean value and standard error of each soil variable are included in

Appendix 2.A.
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Statistical Analysis

The data analysis addressed two principal goals. First, I wanted to determine the

spatiotemporal scales at which most variation occurred for each A. petiolata vital rate to

facilitate pooling of variables at the appropriate scales. For example, ifg1 varies

significantly at the site level but not across years, estimates of germination probability

can be drawn from a common distribution within each site. These parameter estimates

will be used to assemble a set ofA matrices for use in future projection models, loglinear

analyses, and Life Table Response Experiments (LTREs) to analyze how variation in

survival rates contributes to differences in population growth and possible responses to

management. Second, I wanted to explore mechanistic sources of variation in vital rates,

and thus constructed a separate set of environmental models which included climatic,

edaphic, and population density covariates

Hierarchical Mixed Model Analyses

I used fixed effects GLMs and GLMMs, which incorporate both fixed and

random effects, to evaluate how each lower level demographic rate varied across the

spatial and temporal structure of the sampling design. These are generalized forms of

familiar linear and linear mixed models which can accommodate data with non-normal

error distributions (Bolker et al. 2009). This is done via a link function that transforms the

predictor to meet the distributional assumptions made about the data. This allows a linear

model to then be fit. The link function used depends on the underlying distribution of the

data. Models ofg1, g2, sr, ssum, and swin were fit using a binomial error distribution and
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logit link. The natural logarithm of fruit production + 1, ln(f+1), was modeled with a

normal distribution and identity link using the mean siliques/plant as the response

variable weighted by the number of plants in the quadrat. Although I initially modeled

the raw fecundity observations at the plant level, residual diagnostics were unacceptable.

Distributions used to model 5, are described below. All analyses were conducted in the

GLIMMIX procedure in SAS version 9.2 (SAS Institute 2008) except where noted.

For each vital rate, a set of candidate models was developed that embodied

alternative hypotheses about which spatiotemporal levels of the data structure were

important. I then used a multi-model inferential approach based on maximum likelihood

to evaluate which models were best supported by the data (Bumham and Anderson

2002). Models ofswim f, g2, and s, were evaluated and ranked using AICc, an information

criterion corrected for small sample sizes (Anderson 2008). Models ofgl, 5,, and ssum

were overdispersed and were evaluated with Quasi-AICc (QAICc), which includes an

additional correction for overdispersion (Bolker et al. 2009). AICc and QAICc will both

be referred to as "AIC" in the main text for readability, but will be distinguished in the

tables and appendices where important. The model with the lowest AIC score (AICmin)

within a set of competing models is considered the best model, given the data. More

details about the model fitting and ranking process are provided in Appendix 2.B.i. An

explanation ofhow spuriously supported models with "pretending variables" (Anderson

2008) were identified is described in Appendix 2.B.ii.

For g1, g2, sr, ssum, swim and fl the full GLMM structure included fixed terms for

Site, Year, Site*Year interaction, and Location (edge vs. interior). Site was included as a
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fixed effect in this analysis because we are ultimately interested in making site-specific

predictions about A. petiolata population growth and its potential response to

management. Quadrats were modeled as random effects to account for correlations

between observations made within individual quadrats. Although year would ideally have

been modeled as random, there were not enough levels of the year variable (n=3) to test

the assumption that the levels of each random effect are normally distributed. Reduced

models included all factorial combinations of the fixed effects in the full model plus an

intercept-only model for a maximum of ten models per demographic rate.

The seed bank (SS) viability data had an inflated fi'equency of ones, i.e. 100%

viability. These properties made it difficult to fit a GLM or GLMM using a standard error

distribution. Instead, I used a two stage conditional modeling approach similar to that

described by Cunningham and Linenmayer (2005). The data were analyzed by first

modeling probability 7: of observing 100% seed viability in a sample with a binary GLM.

Second, I modeled the non-zero observations with a beta error distribution (see Appendix

2.B.iii for details). As Cunningham and Lindenmayer (2005) point out, this two step

method has an advantage over using zero-inflated or mixture distributions because the

component analyses are orthogonal and can be driven by independent processes. Because

a number of observations were discarded (described above) the 113 "good" observations

of s, were unbalanced with respect to sites and quadrats across years. Although there was

at least one empirical observation of5, per site per year, random quadrat effects and

edge/interior location effects were excluded to avoid overfitting.
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Environmental Models

The hierarchical analyses are useful for analyzing the structure of variability in

vital rates across sites and years. However, they are not mechanistic and therefore are

limited in how broadly their results can be generalized beyond the study system. I

constructed a second set of GLMs and GLMMs to explore how A. petiolata demographic

rates responded to differences in soil properties, climate variation, and population

density. Following the example of Buckley et al. (2003a), I used GLMMs to evaluate the

response of each lower level demographic transition in the A. petiolata life cycle to a set

of extrinsic and intrinsic variables. For each transition, a set of candidate models with

different combinations of fixed and random effects was defined a priori. Because of the

large number of possible explanatory variables and interactions, preliminary graphical

analysis of the data was necessary to reduce the number of variables included during the

model fitting process. Models were fit to the data in GLIMMIX and ranked using AICc

or QAICc when overdispersion was present. Extrinsic factors included as fixed effects in

models for each transition were combinations of climate statistics for time intervals

relevant to the transition and soil variables in each quadrat. If there were no strong a

priori hypotheses about specific soil variables, versions of full models with different

combinations of soil variables were fit and ranked using AIC. Soil variables from the best

supported models were included in the development of subsequent reduced models. In all

cases, the only soil variables retained in the final models were those which had a priori

support. Intrinsic effects included the natural logarithm ofA. petiolata population density

[ln(plants m-2)] at the start of the transition as well as observed A. petiolata densities and

survival rates from previous transitions. For example, both October rosette densities and
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June adult plant densities were included in analyses off. Quadrats were modeled as

random effects. Fecundity models were fit using a Poisson error distribution and survival

models were fit with binomial errors except as noted below.

The environmental models ofg1, s, and ssum were overdispersed and were ranked

using QAICc (Appendix 2.B.i). The significance of random quadrat effects was tested for

each model with a likelihood ratio test. The residual deviance explained by the full

GLMM was compared to the residual deviance of a reduced GLM with no random terms.

The drfference 1n devrance explained was compared to a mrxture ofx distributions With

1 degree of freedom using the covtest / glm option in GLIMMIX to test the null

hypothesis that the random effects did not improve the amount of deviance explained by

the model.

Winter survival had an extreme-value inflated distribution with a high proportion

ofboth zeros and ones (n = 37). This was accommodated by splitting the winter survival

analysis into a two step conditional process like the seed survival analysis. In the first

step, I estimated the probability of an observation being extreme versus not extreme as a

binary response to a set of predictor variables (model s,,.,-,,1). Second, if the observation

was extreme, I modeled the probability of it having 0 versus 100% survival as a binary

response (model swin2a). If the observation was not extreme (i.e. 0 < swm < I), it was

modeled with a binomial GLMM (model s,,,,-,,2b). Random quadrat effects did not

improve the fit of the binary models and were dropped from s,,,.,-,,l or s,,.,-,,2a. Note that

model swinl predicts the probability of an observation being extreme or not. This

determines whether to proceed to s,,,,-,,2a or Swian- Model swin2a predicts the probability
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of an extreme observation having a survival probability of either 0 or 1, conditional on

knowing that the observation is extreme. Model s,,,,-,,2b predicts quadrat mean survival

probabilities between 0 and l, conditional on knowing that the observation is not

extreme.

G; was not measured during the third and final season (spring 2009) but was

estimated by modeling the relationship between g1 and g2,and the seed bank size during

the first two years of the study and projecting forward (Appendix 2.B.v). Because the

model used pooled data, there are only site level estimates ofg2 during the third year.

Hierarchical models ofgg did not include the estimated rates from the third year. No

environmental analyses were run on g3.

RESULTS

Alliaria petiolata demographic rates were highly variable across the twelve sites

and over the three years of the study. For survival there were clear site by year interaction

effects, as the indicted by the changes in ranking of the 12 sites over the study period

(Figure 2.3). These interaction plots are also revealing of the relative contributions of site,

year, and site by year interactions in structuring the vital rates spatiotemporally. For

example, variation in germination ofnew seeds (g1) appears to have been dominated by

year effects, while the site by year interaction had much stronger effects on seedling

survival. These data agree with my general observation that summer survival and g1 were

highest during the first year of the study and then decreased during subsequent years,
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while patterns of variation in seedling survival over time was much less consistently

across sites.

The distributions of most transitions were heavily right skewed (Figure 2.4), with

high frequencies of zero % survival of summer (25 of 143 observations, mean ssum = 0.22

i 0.03) and winter (30 of 121, mean SW," = 0.33 i 0.03) rosettes. This contrasts with the

more uniform distribution of rosette survival (mean 5, = 0.49 i 0.04), with only four

observations of zero survival out of 144. Seed survival was high in contrast (100% 70 of

113 times, mean 5, = 0.92 i 0.02). Mean g1 (0.31 d: 0.03) and g2 (0.11 d: 0.03) were lower

than comparable mean rates compiled from the literature by Pardini et al. (2009), and are

closer to the means of rates assembled by Davis et al. (2006). Few other A. petiolata

studies have reported measures ofssum and s,,.,-,,. These are more commonly combined

multiplicatively into s,f, the probability of surviving from the rosette to the flowering

stage over a full year. The mean estimated s,f(0.1048) calculated from ssum and s,,.,-,, was

also considerably lower than others' estimates (mean of rates compiled in Davis et al.

2006 = 0.548).

Natural peak seedling densities in the study system ranged from 75-6025 m-2

(median : 877.5), and June rosette densities in the system ranged from 31 .25-3344 m-2

(median : 232). The high densities I observed occurred during the first year of the study,

reaching maxima (median) of 5696 (1096), 6025 (890), and 2650 (704) plants m.2 for

seedlings and 3344 (368), 1092 (210), and 976 (212.25) In.2 for rosettes in 2005-2007,

respectively.
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Hierarchical Mixed Model Analyses

Demographic rates ofA. petiolata were substantially differentiated among sites

and years. Likelihood based evaluations most strongly supported models ofg1, g2, Sr,

35”,", and swin, with terms for site, year, and site"‘year interactions (Table 2.3). This

indicates that sites differed in their responses to year effects for these parameters. For

each of these models except swim the second best supported model also included a term

for forest edge versus interior location. Each had a AAIC of approximately 3, but the

extra variable didn’t explain any additional variance in the response, evidenced by the

similarity of the ln(l) values for these models. The additional location term in these

models appears to be a “pretending variable” (Appendix 2.B.ii) and these models were

discarded from consideration. After dropping these models from consideration, the

remaining models in each of these sets had no support from the data.

The best supported model of fecundity included a significant fixed effect for site

only (F1 1,45 5.00, P < 0.0001 ). Estimated mean values forfare therefore statistically the

same for all years within each site. Models with terms for location also appeared to be

well supported as described above and were excluded from model weighting.

Seed viability in the seed bank was evaluated in two stages because of the high

proportion of ones in the data. In the first step, the data best supported the binomial GLM

with a fixed year effect only. The probability of a population having 100% viability was

lower in 2006 than in either 2005 or 2007 (ls-means difference ’110 = 3.17, P = 0.0020,

and 1110 = -3.32, P = 0.0012, respectively), while the probabilities were approximately
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equal in 2005 and 2007. Among the remaining observations with less than 100% seed

survival, variability in seed survival was randomly distributed among sites and years with

a mean viability of 0.7847 and beta distributed errors. Note that the second best model for

s, < 1 also appears to be a "pretending variable" model (Table 2.3). Combining the

probabilities from the two seed survival models yields predictions of s, = 0.9462, 0.8668,

and 0.9508 for all sites for the three consecutive years. Plots of the model conditional

predictions (i.e. including random effects) are shown in Figure 2.5.

Environmental Models:

Density dependent feedbacks and responses to climate and intrinsic factors from

previous life stages were common features in models ofmost demographic rates. In some

cases an earlier population density, climate or survival metric was predictive of a later

survival or reproductive outcome. This suggests that individual success, however

measured, is developed though a cumulative process that conditions individual plants

over their life time. For most A. petiolata demographic rates a single model clearly

received the greatest support from the data, indicated by the Akaike weights and AAIC

scores. The exception to this was s,,.,-,, 1 , for which the best model received 34% of the

Akaike weights. Because the next best model was only half as well supported, I chose the

top ranked model. The parameter estimates and their standard errors for the best

supported model of each demographic rate are presented in Table 2.4-Table 2.8. Also

shown are the type-3 F-tests of the null hypotheses that each parameter value is not

different fiom zero and the )(2 likelihood ratio tests of the random effects. In models that

46



included and retained random quadrat effects, the random effect is assumed to be

normally distributed with mean 0 and variance as estimated. Random quadrat effects

greatly improved the fit ofmodels ofg1, Sr, 55“,", s,,,;,,2b, andfbut were dropped from the

two binary models swinl and s,,,,-,,2a. The goodness of fit of each model to the data is

illustrated in Figure 2.6. This shows the observed and predicted values from each model

generated from the best linear unbiased predictors (BLUPs) which are based on the

parameter estimates for both the fixed and random effects. Interpreting how the

independent variables in each model affect the response can be challenging when there

are significant interaction terms and because the regression coefficients are in a

transformed data scale. Plots of the observed and predicted demographic rates versus the

independent variables help to illustrate these relationships (Appendix 2.C).

Germination

Germination probability of newly shed seed (g1) was most strongly influenced by

climate conditions in January and February, just prior to germination (Table 2.4). The

best model ofg1 was supported by 85.3% of the Akaike weights and was separated from

the next best model by AAIC of 3.7. Germination was reduced by the frequency of days

with measurable precipitation (rain) in January and February and increased by the

number ofwarm January and February days. There was an interaction between warm

days and soil water holding capacity that weakened the relationship between warm days

and W.H. C. as W.H.C. increased. Because of its correlation with gI, 2 was not modeled.
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Seedling Survival

Seedling survival was regulated by a combination of negative density dependent

mortality plus the additive and interactive effects of several climatic and edaphic factors

(Table 2.5). The best supported model ofs, received 95.8% of the Akaike weights, while

the next best model had a AAIC of 7.8 (Table 2.5). Seedling survival is negatively

dependent on March precipitation (prcpmm, mm), the natural logarithm of soil water

holding capacity (whc3bar), and the fiequency ofwarm days in January and February

(warmjf, tmin>0°C) but is positively dependent on total soil inorganic N. The frequencies

of hot days in summer (hotsum, tmax>34°C) and rainy days in autumn (rainfall) during the

year prior to germination affect s, through an interaction illustrated in Figure 2.7. Fall

rain has a negative effect on 5, following a summer with a high number of hot days, but

has a positive effect after a summerwith few hot days. Because survival rates are

bounded on the closed interval [0, 1], the relative magnitude of any single effect is

dependent on the combined magnitudes of all the other factors in the model, as is seen in

the effect of seedling density (Figure 2.7). Although only seedling plots in Michigan

contained both seedlings and second year rosettes, including these in the models with

additive or non-additive terms did not explain any additional variance in seedling

survival.

Summer Survival

The best model of summer rosette survival (ssum) was supported by 99.3% of the

Akaike weights, and was separated fi'om the next best model by a AAIC of 10.0. After
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accounting for the variability in survival due to other extrinsic factors in the model, the

strength of density dependent mortality during the summer (slope = -0.2951, Table 2.6)

was approximately equal to the rate in spring (slope = -0.2320, Table 2.5). During

summer, this translates to a decrease in survival probability from 1.0 to 0.427 (=e'0‘2951)

for each increase of 1 unit of the log of June rosette density, holding all other variables

constant at zero. The range of June density was ~ 4.6 from the most to the least dense

quadrat, in log transformed units. Density alone would be expected to reduce ssum from

1.0 to 0.257 (=e"2951*4'6), again holding other variables constant at zero. In nature the

variables do co-vary and are non-zero, so the strength of density dependence will again

be scaled by the contributions of other variables. Because of a positive correlation

between the quantity (prcpmay) and frequency (rainmay) of rain events (Pearson's r =

0.7699), increases in either variable positively affect 3mm. There were also negative

correlations between summer hot days hotsum and the number of drying events in August

and September dryas. This indicates s,.,,,,, was lower during cooler summers that

associated with more frequent late summer rain events. Although such strong correlations

among variables can indicate multicollinearity, models including the interaction between

these two variables were more strongly supported than models containing polynomial

functions of either individual variable and other simpler models. Summer heat and May

rain were positively correlated (Pearson's r = 0.5133), so it is possible that the positive

effect ofhot summer days is a time-lagged outcome of earlier conditioning from ample

spring rains. Summer survival responded positively to increasing percent sand in soils,
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which was generally higher in Michigan sites, but negatively to increasing soil N through

its interactions with spring rain (pGCMay).

Winter Survival

The three component sub-models of the conditional winter rosette survival

analysis predicted that: (1) the probability of having an extreme survival rate, either 0 or

100%, was negatively density dependent and also decreased with the frequency of

summer rainy days (Table 2.7, Model rm-nl ). (2) Among quadrats that did have extreme

values, the probability of having 100% survival (versus 0%) was greatest at very low

densities and was negatively dependent on summer growing degree days (Table 2.7,

Model r,,,,-,,2a). (3) Among quadrats that did not have extreme values (n = 84), there was a

positive correlation between summer and winter survival probabilities (Table 2.7, Model

rwm2b). Survival in these plots was also negatively dependent on the frequency of

summer rain, soil pH, and the frequency of very cold winter days, but was not density

dependent.

Fecundity

Mean quadrat per capita fecundity, modeled as the mean number of fruits

(siliques) per plant was predicted by two opposing density dependent functions, each

conditional on climate interactions (Table 2.8). First, adult plants were negatively

affected by the rosette density they experienced as rosettes during June of their first year.

The strength of this effect on fecundity was greatest during cool summers (low hot,,,m)
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but was tempered during hot summers (high hotsum). Second, both the frequency of rain

events during a plant's second spring until flowering (rain/rec) and the log of the final

density of adult plants were positively correlated with per capita fecundity.

DISCUSSION

Comparisons to Previous Studies

The magnitude of variation in A. petiolata demographic rates from this study was

much greater than expected. At the quadrat level, the range of values of each transition

observed in the study system in four years was inclusive of almost all A. petiolata

demographic rates published previously over a thirty year period that I am aware of

(Figure 2.4). The frequency distributions of most vital rates in my data parallel the

distributions of these published rates, evidenced by the correspondence between the

histograms and the clustering ofpublished rates in Figure 2.4. The means ofdemographic

rates in this study were not significantly different from those of the compiled published

rates based on overlapping 95% confidence intervals using site by year means. The

exceptions to this were geometric mean per capita fecundity (f) [mine: 52.643 (41.51,

66.75); published: 204.194 (93.17, 447.50)] and rosette to flowering survival (s,f) [mine:

0.09 (0.054, 0.126); published: 0.548 (0.443, 0.653)]. The means of each of these rates

were lower in my system. Reduced fecundity may have been related to the same

processes that lead to the low rosette survivorship I recorded. This is suggested by the

mutual dependency of summer survival and fecundity on both June rosette density and

hot summer days.
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Past studies have also found evidence of stage-specific density dependent

mortality and reproduction (Winterer et al. 2005, Pardini et al. 2008, Pardini et al. 2009)

or a lack thereof (Rebek and O'Neil 2006) as well as density dependent population

growth (Meekins and McCarthy 2000, but see Appendices D and E for a discussion of

their calculations, 2002). The range of first year rosette densities observed in June and in

October in this study was greater than those evaluated by most previous investigators

(Table 2.9). Meekins and McCarthy's (2002) first year rosette densities fell above the

center ofmy data range (June from their Figure 3), while Pardini et al.'s (2009) early May

rosette densities fell mostly below it (from their Figure 2A). Rebek and O'Neil's (2006)

fall October densities and Pardini et al.'s (2009) August rosette densities each

encompassed the center ofmy fall density range. While the Rebek and O'Neil

measurements are comparable to my fall rosette density, Pardini et al.'s August sample is

phenologically earlier than mine. What they measured as 31 from early April-mid May

gives a much more compressed seedling survival period than mine. Similarly, my

measure of summer rosette survival covered June-late October, while their s2 covered

early May-August. Finally, my winter survival measure ran from October-June, while

their S3 ran from August-May and included most of the mortality attributed to summer

losses. This may be why Pardini et al. found compelling evidence of strong "winter"

density dependent mortality while I did not. Rebek and O'Neil's finding of no density

dependent mortality from October-June concurs with my own.

Seedling densities in my study quadrats fell within the range of other published

accounts (Table 2.9). Winterer et al. (2005, J. Winterer personal communication)

recorded seedling densities within the range I observed. Seedling densities in quadrats
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used to estimate seedling survival by Pardini et al. (2009) were below this range. Their

empirical measure ofs, was based on the survival of469 marked individuals spread

across 40 1 m2 quadrats for an average density of 11.725 seedlings m'z. These estimates

and my own are all well below Trimbur's (1973) scaled estimate of 20,000 seedlings m'z.

The maximum seedling density recorded in my study system was 142 100 cm'2 (=14,200

me) at the Shiawassee site, but this was outside of the study quadrats (J. Evans, personal

observation).

Second year plants have been shown to negatively impact seedling survival

(Meekins and McCarthy 2002, Winterer et al. 2005). Although I saw this as well in

seedling survival environmental models that included a term for second year plant

density, these models were not strongly supported by the data. Other investigators have

shown that A. petiolata has a plastic response to variation in light availability but reaches

maximum photosynthetic rates under high light. (Dhillion and Anderson 1999, Meekins

and McCarthy 2000, Myers et al. 2005) but I found no differences in any demographic

rates between forest edge versus interior plots. It is possible that the light conditions at

the edge plots were more shaded than those studied by others, or that other unmeasured

differences between edge and interior locations offset the effects of light exposure.

The hierarchical analyses show that there is a significant amount of spatial and

temporal structure underlying this variation (Figure 2.3). I found significant site, year,

and site*year effects in all germination and survival transitions. Germination rates ofnew

seeds were highest during the first and third years of the study, and were generally

greatest in the southernmost and northernmost sites during all years. Seedling survival
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exhibited the most pronounced spatial structuring, increasing with latitude and from west

to east within each year. It is possible that this structure is partially driven by climate

related differences in germination phenology, which was up to several weeks later in the

more northern sites during some years. Experimental hierarchical models in which I first

adjusted survival rates to correct for phenological differences among sites produced the

same results (not shown), so I used the original data. The distributions of summer and

winter rosette survival were much more temporally than spatially structured. During the

first year, when summer survival was highest across most sites, it was greatest in the

southernmost Illinois sites and decreased northward. There was much less landscape-

scale spatial structure during the second and third summers, although most individual

sites maintained the same rank in summer survival that they. had the first year (Figure

2.3). In other words, the "best" sites for summer survival in a good year were still the

best, even when conditions were less favorable across the region. Similar maintenance of

site rank was seen across most sites in germination ofnew seeds and winter survival

probabilities. Winter rosette survival showed an almost opposite temporal pattern to

summer survival, increasing in the second year in most sites and then decreasing the next.

Per capita fecundity was very consistent within sites over time. Only the Homer Lake site

varied in fecundity over time, dropping during the second year and then increasing in the

third. Finally, seed bank persistence was relatively unstructured. It varied by year only in

the proportion ofquadrats with 100% seed viability, which was not spatially driven. The

differences in the spatiotemporal structures of these transitions may translate into

differences in their responses to management of specific life history stages and how

locally specialized management of different stages must be (see Chapter 4).
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Conclusions

These results suggest several important conclusions. First, A. petiolata does not

perform equally well at all times and locations. It has good years and bad years (or better

years), and these vary by site (Figure 2.3). Additionally, the magnitude and direction of

site and year effects differ across life history stages. Germination ofnew seeds, summer

survival, and winter survival of most sites closely tracked each other over time, indicating

the importance of regional influences on these demographic rates. In contrast, mean

seedling survival did not show such strong inter-site trends across years. Instead, seedling

survival variation was much more locally driven, as evidenced by the lack ofparallel

lines in the seedling plot in Figure 2.3.

From the perspective of a natural resource manager, this means that the target

plant is not likely to perform in the same way at all places and times and, thus, should not

be expected to respond to management identically at all locations. The consequences of

making this assumption have been demonstrated previously in other systems where

multiple populations of an invasive weed responded differently to a common

management effort (Shea et a1. 2005). In the case of weed management using classical

biological control, implementation of ineffective strategies is of particular concern

because herbivorous or pathogenic natural enemy species cannot be recalled once

released and can be damaging to non-target species (Pearson and Callaway 2003). It will

be important to determine whether differences among life history stages in the

spatiotemporal scales of variation in vital rates will translate into differences in

population dynamics at the same scales. If so, it could mean that life history stages like

55



seedling survival with stronger local structure would require more locally optimized

management plans. Transitions such as germination that are largely shaped by regional

effects may be better suited to implementation of a common management approach

across sites. Future models ofA. petiolata population dynamics will have to account for

these spatial and temporal sources of variation in vital rates by making site-specific

models that account for year to year differences in vital rates.

Second, the variation in vital rates is driven by a common set of underlying

mechanisms. Multiple competing environmental models were evaluated to identify the

mechanisms that are collectively quantified as categorical site and year effects in the

hierarchical models. For each demographic transition, a single explanatory model

emerged as the most probable. These models show that individual plants are affected by

both their immediate and past environments at each step through their life history. For

example, seedling survival is greater where there is higher soil N availability, but this

comes at the cost of lower summer rosette survival. Increased rain in May helps condition

rosettes to endure the hottest days of summer. However, plants that experienced high

densities and hot summer days during their first year on average produce fewer seeds

when they mature. Elements like soils and climate patterns and population densities

which feed fiom one life stage into the next are consistent within locations over time and

tie the individual life history stages together into coherent covariance signatures. Based

on this, it may be worth exploring the data structure further using structural equation

modeling or generalized linear latent and mixed models (GLLAMM) in the future

(Skrondal and Rabe-Hesketh 2004) The models as currently parameterized will form the

basis for exploring the consequences of site differences on projected population
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performance and can be used to predict how populations will respond to perturbations.

Further, because these models quantify the site in terms of continuous variables, it may

be possible to predict the performance ofpopulations at other locations for which the

relevant data are available.

Third, demographic rates of natural A. petiolata populations are more variable

than I expected. The existence of variability in A. petiolata vital rates documented here is

not surprising. What is noteworthy, though, is that nearly the entire range ofpreviously

known vital rates occurs in just a small subset ofA. petiolata's North American

distribution and over a relatively short timescale. Modeling studies based on a single site

or a single year of data are very likely to misrepresent the longer term dynamics of the

population. For example, mean seedling survival (s,.) at the Bob-Peoria site was measured

as 0.843, 0.149, and 0.094 over three consecutive years. No single rate characterizes s, at

the site, and it is unlikely that three rates are truly sufficient. Additionally, s, is linked

with other vital rates in the A. petiolata life cycle through density dependent functions

and dependence on common exogenous factors. Previous modeling studies of this

species have explored how population dynamics change across a range of parameter

values (Davis et al. 2006, Pardini et a1. 2009) but have been unable to account for the

covariances among parameters. These models likely capture a subset of the range of

population dynamics exhibited by natural A. petiolata populations. However, by holding

dynamic parameter values as fixed during simulations or breaking apart the correlations

among vital rates, they may misunderestimate (sensu George W. Bush, November 6,

2000) the complexity or elasticity structure of natural population dynamics (J. Evans,

unpublished).
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An important next step to interpreting the behavior ofA. petiolata populations

will be to compare a stochastic population model based on a fixed set of matrices for each

site and year with a dynamic model based on the intrinsic and environmental functions

parameterized here. These can then be used to assess the potential interactions between

the different A. petiolata populations and the suite of proposed management tactics.
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Tables: Chapter 2
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Table 2.1. Names and locations of study sites. Rainfall estimates represent mean values

summed from climatic data used in analyses. See methods section for details.

 

Latitude Annual

Rainfall (mm)

Site (Abbreviation) State Longitude Site Description

Bob-Peoria

Edward Lowe

Foundation

Farrndale

Healy Road

Holland State

Park

Homer Lake

Illini Plantations

Ives Road

Johnson Park

Rose Lake

Russ Forest

Shiawassee YMCA

(B)

(ELF)

(F)

(HR)

(HSP)

(HL)

(1?)

(IR)

(JP)

(RL)

(RF)

(SH)

IL

MI

IL

IL

MI

IL

IL

MI

M1

M1

M1

M1

40.72205

41.96451

40.67668

42.10862

42.77765

40.06325

40.07925

41.98147

42.92559

42.81234

42.01162

42.88546

60

-89.5055

-85.9962

-89.4878

-88.2148

-86.2025

-87.9787

-88.2107

-83.932

-85.7699

-84.4042

-85.9703

-84.0491

Hardwood

floodplain forest

Second growth

northern hardwood

forest along edge

of old field.

Hardwood

floodplain forest

Mesic second

growth hardwood

forest

Hardwood forest

in dunes along

Lake Michigan

shore

Upland second

growth hardwood

forest

Upland second

growth coniferous

forest

Hardwood forest

bordered by

restored tallgrass

prairie, descending

to hardwood

floodplain forest

Hardwood oak

forest in urban

park

Second growth

hardwood forest in

abandoned crop

field.

Old growth

oak/maple forest

Black locust

(Robim'a

pseudoaccacia)

and degraded pine

plantation

818

978

818

936

774

993

960

743

972

860

978

912



Table 2.2. Timeline ofAlliaria petiolata sampling for each demographic parameter. S, F,

W, and Sp indicate summer, fall, winter, and spring, respectively. Boxes enclose the time

interval over which a parameter was measured. The unshaded box indicates the summer

survival transition that was measured in the smaller seedling survival-sized quadrats in

Michigan for the 2005-2006 cohort. Germination data are not presented in Chapter 2.

 

  

 

 
 

2005 2006 2007 2008 2009

Cohort SpSFWSpSFWSpSFWSpSFWSpS

2005-2006

Germination y/g VA

Seedling Survival 7

Summer Survival

Winter Survival

Fecundity

2006-2007

Germination 7 fi 72

Seedling Survival %

    
Summer Survival

Winter Survival

Fecundity

2007-2008

Germination

Seedling Survival

Summer Survival

Winter Survival

Fecundity
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Table 2.3. Results of model selection for spatiotemporal differentiation ofA. petiolata

life history transitions. Details for eaCh transition include the error distribution (dist) used

in GLMs and GLLMs, the information criterion used for model weighting and selection

(ic), and the dispersion parameter (p used to calculate QAICc where applicable. Variables:

fixed effects (S=site, Y=year, L=location, I=intercept), Laplace approximated maximum

likelihood (ln(l)), number of observations (n), levels ofrandom quadrat effect (r), number

ofparameters including random effects (k), (Q)AIC: AICc or Quasi-AICc for

overdispersed models, delta (Q)AIC (Ai) , and Akaike weight (w,). Models with r=0 were

GLMs with fixed effects only. A maximum of 5 models are shown per vital rate. All

other models with Ai < 11 and w; > 0 are shown.
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Transition, Details Fixed Effects ln(l) n r k (Q)AICc At wi

germination 1 (g1) S, Y, S*Y -828.11 137 48 37 352.6 0 0.872

distinomial S, Y, S*Y, L -828.08 137 48 38 356.4 3.8 0.128

ic=QAICC Y 1228.26 137 48 4 379.4 26.8 <0.001

rp=6. 62 Y, L -l228.24 137 48 5 381.5 28.9 <0.001

seedling survival (5r) S, Y, S‘Y -513.48 144 48 37 526.6 0 0.820

dist=bin0mial S, Y, S"‘Y, L -512.68 144 48 38 529.7 3.0 0.180

ic=QAICc S, Y -886.93 144 48 15 769.8 243.1 <0.001

(p=2.41 S, Y, L -884.43 144 48 16 770.2 243.6 <0.001

summer srv_ (ssum) S, Y, S*Y -511.10 143 48 37 387.9 0 0.843

dist=binomial S, Y, S*Y, L -510.47 143 48 38 391.3 3.4 0.157

ic=QAICC Y -846.68 143 48 4 484.0 96.0 <0.001

(0:3.56 Y, L -846.39 143 48 5 485.9 98.0 <0.001

winter srv, (Swin) S, Y, S*Y -240.22 121 48 36 584.1 0 0.541

dist=binomial S, Y, S*Y, L -238.30 121 48 37 584.5 0.3 0.456

ic=AICC Y -294.28 121 48 4 596.9 12.8 0.001

Y, L -293.31 121 48 5 597.1 13.0 0.001

Fecundity Pooled S -81.37 93 48 13 193.3 0 0.946

dist=lognormal S Y -79.99 93 48 16 199.1 5.8 0.052

ic=AICC I Only -100.77 93 48 2 205.7 12.3 0.002

Y -99.61 93 48 5 209.9 16.6 <0.001

germination 2 (g2) s, Y, S*Y -253.91 82 45 25 581.0 0 0.852

dist=binomial S, Y, S*Y, L -253.51 82 45 26 584.5 3.5 0.148

ic=AICC Y -378.88 82 45 3 764.1 183.0 <0.001

Y, L -378.48 82 45 4 765.5 184.5 <0.001

seed srv' (SS) Ones Y '66.97 113 0 3 140.2 0 0.994

dist=bin0mia1 I Only -75.07 1 l3 0 1 152.2 12.0 0.002

ic=AICC S, Y -59.52 113 0 14 151.3 11.2 0.004

S -68.61 113 0 12 164.3 24.2 <0.001

seed SW, (ss) < 1 I Only 25.05 43 0 2 -45.8 0 0.849

dist=beta Y 25.66 43 0 4 42.3 3.5 0.145

ic=AICc s, Y 40.79 43 0 15 -33.8 12.0 0.002

s 36.85 43 0 13 -35.1 10.7 0.004

s, Y, S*Y 45.78 43 0 25 34.9 80.7 <0.001
 

63



Table 2.4. Best supported environmental model of germination ofnewly shed seeds after

one winter (g1). Parameter estimates from GLMM with binomial errors and logit link.

Model ranking was evaluated with QAICc. Akaike weight = 0.853, AQAICc of next best

model = 3.7. All climate data are from time periods which precede germination. Random

quadrat effect was evaluated with a likelihood ratio test by comparing the change in the -

21n(l) fi'om dropping quadrat from the model to a mixture of)(2 distributions in

GLIMMIX (SAS Institute 2008).

 

 

Parameter Symbol Test Estimate SE

Intercept ll NA -2.7391 0.3961

WHC3bar wch (F185 = 20.74, P< 0.0001) 0.0624 0.0137

Warm Days (Jan., Feb) wamyf (F1,85 = 647.31. P < 0-0001) 0.3534 0.0139

whc x warmjf vcoldth (F1,35 = 406.09, P < 0.0001) -0,00899 0,0004

Rainy Days (Jan., Feb.) rainy (1721,85 = 78-18. P < 0-0001) -0.03662 0.0041

Quadrat (random effect) eq (X =5442-66, 4f: 1, P < 0-0001) 0.9787 0.2116
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Table 2.5. Seedling Environmental Model: Parameter estimates from GLMM of seedling

survival from April until June of the first year with binomial errors and logit link. Model

ranking was evaluated with QAICc. Akaike weight = 0.958, AQAICc of next best model

= 7.8. Random quadrat effect was evaluated with a likelihood ratio test by comparing the

change in the -21n(l) from dropping quadrat from the model to a mixture of)(2

distributions in GLIMMIX (SAS Institute 2008).

 

 

Parameter Symbol Test Estimate SE

Intercept 11 NA 0.3937 0.8397

ln(Seedling Maximum Density) dsdl (v) (F1,89 = 14.74. P = 0.0002) -0.232 0.06043

Precipitation (March, mm) Pmar (F1,89 = 59.78. P < 0.0001) -0.01301 0.00168

Warm Days (Jan-Feb.) warmwm (F1,89 = 148-12, P < 0.0001) -O.1238 0.01018

Hot Days (Summer) hotsum (F1,89 = 241-14. P < 0.0001) 0.6021 0.03878

Rainy Days (Oct-Dec) rain/(,1; (F1 ’39 = 106.23, P < 0.0001) 0.09505 000922

hotsum x rainfall hsrf (F1 ,89 = 158-74. P < 0.0001) -0.01 661 0.00132

tN th (F1,89 = 31.46, P < 0.0001) 0.07959 0.01419

ln[W.H.C. (1/3 Bar)] whc3q (F1,89 = 21.31. P < 0.0001) -0.8123 0.176

Quadrat(random effect) eq a2 = 404.74,df= 1, P < 0.0001) 0.5760 0.1409
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Table 2.6. Summer Environmental Model (Ssum): Probability of a rosette surviving from

June to October. Summer survival GLMM with binomial errors and logit link. Akaike

weight = 0.993, AQAICc of next best model = 10.01. Random quadrat effect was

evaluated with a likelihood ratio test by comparing the change in the -21n(l) from

dropping quadrat from the model to a mixture of12 distributions in GLIMMIX (SAS

 

 

Institute 2008).

Parameter Symbol Test Estimate SE

Intercept u NA -2. 1092 1 .6265

(F135 = 15.7,

ln(June Rosette Density) dJune P = 0.0002) -0.2951 0.07447

(F135 = 21.61,

Rainy Days (May) minMay P < 0.0001) 0.2825 0.06078

(F135 = 92.34,

Precipitation (May, mm) pmay P < 0.0001) 0.09125 0.009496

(F1,85 = 99.24,

rainmay x pmay rmpm P < 0.0001) -0.00741 0.000744

(F135 = 24.94,

Soil % Sand sandq P < 0.0001) 0.1100 0.02203

(F1,85 = 5.2,

Rainy Days (Spring) rainspr P = 0.0251) 0.0837 0.03672

(F1935 = 14.6,

Sand x Rain (Spring) sandxrainspr P = 0.0003) -0.00182 0.000475

(F135 = 51.29,

Soil Total Inorganic N W P < 0.0001) -0.1814 0.02532

(17135 = 53.16,

rainmay x tN rmN P < 0.0001) 0.01072 0.00147

(F1 ,85 = 49.52,

Hot Days (Summer) h0tsum P < 0.0001) 0.2580 0.03667

4, (F135 = 199.02,

Drought Events (Aug.Sept.) drysum P < 0.0001) -0.5059 0.03586

(F135 = 31.42,

Hot Days x Drought Events hsd P < 0.0001) -0.02625 0.004683

((2 =425.52, df= 1,

Quadrat (random effect) eq P < 0.0001) 1.0298 0.2309
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Table 2.7. Winter Environmental Model (swin). Two-stage model of winter rosette

survival (swin). Model rwinl predicts the binary probability of observing an extreme

value (either 0 or 100% survival) versus any other intermediate value and determines

whether an observation proceeds to swin2a or swin2b. Higher predicted probabilities from

rwinl are more likely to have extreme values and are passed on to swin2a. Model sun-"2a

predicts the binary probability of observing 0% survival versus 100% survival,

conditional on knowledge that the outcome is one of these. Model run-”2b is a binomial

GLMM that predicts the survival probability of a quadrat that does not have an extreme

value. For the first two binary models, the response coded as the "even " whose

probability was modeled is indicated. Akaike weights = 0.343, 0.904, and 0.865 for the

three models, respectively. AAICc of next best models = 1.4, 5 .4, and 3.7, respectively.

 

 

 

 

Parameter Symbol Test Estimate SE

Model ’winl event = extreme

Intercept ll na 1 1.5502 3.0308

ln(Oct. Rosette Density) (10a (F1.118 = 28.9, p < 0000]) -2.5055 0.4661

Rainy Days (Summer) rainsum (Fl,118 = 395, p = 0,0492) -0.0775 0.0390

event = 100%

Model rwinZa

Intercept p na 19.1297 9.2316

ln(October Rosette Density) doc! (171.33 = 499, p = 0,0324) ~10.0220 4.4877

Growing Degree Days (Spring) gdspring (17133 = 4,34, 19 = 00350) -0.07713 0.03507

doct x gdsdl drsumfi) (F133 = 5.58, P = 0.0242) 093738 091582

Model ’wiu2b

Intercept 11 na 5.0221 3.7513

Summer Rosette Survival Ssum (19135 = 1719, p = 0,0002) 1.3694 0.3428

Rainy Days (Summer) rainsum (F135 = 9.00, p = 00050) 0.02786 0.06026

Soil pH qu (17135 = 923, p = ()0044) -0.3706 0.1298

Cold Days (Winter) caldwin (19135 = 5.07, p = 0.0307) —0.02085 0.009443

Quadrat (random effect) 9,, (x2 = 150.4, df= 1, p < 0.0001) 0.4366 0.1188
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Table 2.8. Fecundity Environmental Model (f). GLMM with Poisson distributed errors,

log link, and random quadrat effects. Model ranking was evaluated with AICc. Akaike

weight = 0.999, AAICc of next best model = 16.3. Random quadrat effect was evaluated

with a likelihood ratio test by comparing the change in the -21n(l) from dropping quadrat

from the model to a mixture of12 distributions in GLIMMIX (SAS Institute 2008).

 

 

Parameter Symbol Test Estimate SE

Intercept 11 NA 7.4679 1. 1246

ln(June Rosette Density) dJun6 (13139 = 0.23, p = 0.6350) -0.0497 0.1039

Hot Days (Summer) h0’sum (F1939 = 2556, P < 0000]) 0.4391 0.08685

dyune x hotsum dJunehotsum (F1339 = 20.61, P < 0.0001) ~0.0705 0.01553

Rainy Days (Fecundity) ram/ac (F139 = 21.72, P < 0000]) -0.1212 0.0260

ln(Flowing Adult Density) (if (1171,39 = 19.08, p < 0,0001) -1.6401 0.3754

dfx rainfec djrainfec (131.39 = 20.26, P < 0.0001) 09355 0007875

Quadrat (random effect) eq )6 .0301131-18’ df= 1’ P < 0.2701 0.07244
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Table 2.9. Comparison of plant densities used in four studies ofA. petiolata. Seedling,

Summer, and Winter refer to survival measurements. Plant minimum and maximum

. . . -2 . . .

densrtres have been converted to common units of plants m . Geometric mean densrtres

and 95% confidence intervals of the geometric mean are shown. The mean seedling

density from Pardini et al. (2009) is the arithmetic mean and is based on their report of

marking 469 seedlings across 40 1x1 m quadrats.
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Min Max

plants plants

_2 _2 Scale of

Transition Time Interval m m Mean (LCL UCL) Measurement Location Ref.

2

Seedling March-June 75 6025 806.9 (6937-9386) 0-04'0-0625‘“ IL&MI 1

2

Seedling April-May - - 11.725 1m MO 3

2

Seedling March-October 207 2058 - 0-1 m PA 2

2

Summer June-October 31.25 3344 253.4 (21802945) 0-163‘0-25’“ IL&MI 1

2

Summer May-August 4 235 - l m MO 3

2

Winter October-June 4 540 47.1(37.2-59.6) 0-16&0-25m IL&MI 1

a,b 2

Winter August-May l 278 6.0 (4.1-8.7) 1 111 MO 3

2

Winter October-June 4.47 108.2 - 1 m OH 4

2

Fecundity June 4 540 26.3 (21.1-32.9) 0-16&0-25m IL&MI 1

a 2

Fecundity June—July 1 50 4.4 (3.45.7) 1’“ MO 3

 

References cited are: 1) This study, 2) Winterer et al. (2005), 3) Pardini et al. (2009), and 4) Rebek and

O'Neil (2006).

a Means and confidence intervals from Pardini et al (2009) were obtained by extracting x and y pixel

coordinates fiom each data point in their printed figures 28 and 2C using photo editing software. Because

they reported sampling winter survival in 34 quadrats but only 18 points are visible in their Figure 23, I

«2

inferred that the remaining 16 quadrats had rosette densities of 1 plant m .

b It appears that Pardini et al. (2009) mistakenly reported that 1795 rosettes were used in calculating winter

survival. Data extracted from their figure 2B reveal that there were approximately 1340 rosettes used in this

calculation. This corresponds closely with the 1346 rosettes they report marking for measurements of

summer survival. Thus, I interpret that the number of plants indicated in the text for summer and winter

rosette survival must be reversed in the text on page 390 of their paper. See Chapter 3.
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Figures: Chapter 2
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Figure 2.1. Locations of seven A. petiolata study sites established in Michigan in 2004

and five sites established in Illinois in 2005. Site Key: 1) Shiawassee, 2) Rose Lake, 3)

Ives Road, 4) Johnson Park, 5) Holland State Park, 6) Edward Lowe Foundation, 7) Russ

Forest, 8) Healy Road, 9) Homer Lake, 10) Illini Plantations, 11) Farmdale, 12) Peoria.
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Figure 2.2. Schematic diagram ofA. petiolata life cycle. Arrows represent one-year

transitions from June to June and are comprised of multiple lower level demographic

transitions. These are abbreviated as follows: g1, germination ofnew seeds within one

year of seed set; g2, germination of dormant seeds from the soil seed bank; s, survival of

newly emerged rosettes to the rosette stage in June; ssum, summer survival ofnew rosettes

from June until late October; swim winter survival of rosettes to the flowering stage from

October until June; f, fecundity (seeds/plant); Ss, survival of dormant seeds in the soil

seed bank. Because seed survival (53) was measured over a full year but is used twice as

an 8 month, sub-annual transition, 3, is raised to the two-thirds power in the seed to

rosette and the flowering plant to rosette transitions to scale its affect.
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Figure 2.3. Observed mean A. petiolata demographic rates over the study period. Light

gray lines follow mean values within individual sites, averaged across quadrats. Heavy

black lines are mean values (iSEM) of these site means. Year indicates the year during

with each measurement was begun. For example, winter survival 2005 was measured

from fall of 2005 until June of 2006. The three years constitute the three “cohorts” of

plants as grouped in the study, i.e. 2006 germination 1 and 2005 summer survival are

grouped together. *Values of germination 2 from in 2009 are estimations (Appendix

2.B.v).
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Figure 2.4. Frequency distributions ofA. petiolata demographic rates from this study.

Data shown are raw quadrat level observations. Rosette to flowering plant survival (s,f) is

calculated as rsum*rw,-,, for comparison with previous studies that did not split summer

and winter survival. Letters beneath histograms show observations from previous studies.

References: a (Pardini et al. 2008); b (Pardini et a1. 2009); c (Anderson et al. 1996); d

(Meekins and McCarthy 2002); e (Drayton and Primack 1999);f(Nuzzo and Blossey

unpublished data); g (Baskin and Baskin 1992); and h (Cavers et al. 1979). Overlapping

observations are shown as: 1' (Anderson et a1. 1996, Meekins and McCarthy 2002);j

(Drayton and Primack 1999, Pardini et al. 2009, Nuzzo and Blossey unpublished data); k

(Cavers et al. 1979, Meekins and McCarthy 2002).
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Figure 2.5. Predicted versus observed values ofA. petiolata seed bank viability (SS),

germination after 1 winter (g1), seedling to rosette survival (Sr), summer (3mm) and winter

(Sm-n) rosette survival,per capita fecundity (I), and germination of dormant seeds from

the seed bank after two winters (g2). Fitted values are least squares means estimates for

each site by year combination predicted from the hierarchical GLMs and GLMMs.

Observed values are simple arithmetic means exceptf. Silique counts were first averaged

across plants within quadrats, then across quadrats for each site and year, and finally

scaled to show the estimated number of seeds per plant. Fittedf; values were modeled as

silique counts and then sealed to generate seed estimates. Only the first two years ofg2

are shown, because the third year was estimated from years one and two. Unadjusted R2

are shown because the site by years means are shown (marginal model predictions),

whereas the model was fit with random quadrat effects. All st and Adjusted R2 in this

and subsequent figures are calculated in the original data scale.
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Figure 2.6. Predicted versus observed values from environmental models. The five

scatterplots show the demographic rates generated from the BLUPs versus the observed

rates, overlaid with a 1:] reference line. The vertical axis of the box plot shows the

predicted probability of a winter rosette survival observation resulting in an extreme

value, either 0 or 100% survival, versus a non-extreme value from the rwml binary GLM

versus the actual outcome. Observed extreme values were coded as "Yes" and include all

observations that had either zero or 100% percent survival. Observations in the "No"

category had intermediate survival rates. A well fitting model should predict higher

probabilities for the "Yes" group and lower the probabilities for the "No" group. The

winter rosette survival plot shows the combined results of models rw,-,,2a and rwm2b. For

observed probabilities of 0 and 1 the predicted values represent the probability of an

observation being 1, versus the alternative of it being 0, conditional on knowing that the

outcome will be one of these two extreme values. The remaining points are predicted

survival probabilities as in the upper row of plots. Mean per capita fecundity was

estimated from the predicted and observed numbers of siliques using the breakpoint

regression function in Appendix 2.B.iv.
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Figure 2.7. Predicted seedling survival is conditioned by interactions among multiple

extrinsic and intrinsic factors. Here, the expected seedling survival probability is

calculated from the best supported seedling model across the observed range of fall rainy

days (rainfall), during the year before germination at the minimum (cool), mean (med),

and maximum (hot) number of observed hot days during the summer before germination.

The figure illustrates the interaction between population density, spring temperature

(hotsum), and fall rain at population densities of 500 (gray) and 5000 (black) seedlings m-

2. Mean observed values were used for all other variables. The change in slope from

negative to positive results from the interaction between rainfall and hot,,,,,,.
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APPENDIX 2.A: SOIL DATA
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Table 2.A.l Mean soil parameters i SEM. Site abbreviations in Table 2.1



APPENDIX 2.B: STATISTICAL MODEL FITTING NOTES
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2.B.i. Model Fitting

Maximum likelihood (ML) and the Laplace approximation of the maximum

likelihood were used to fit GLMs and GLMMs for model selection, respectively.

Akaike's Information Criterion with a correction factor for small sample bias (AICc) was

then used rank models by their relative support from the data as described by Anderson

(2008). AICc is based on Kullback-Leibler information and is an estimate of the distance,

in arbitrary units of "information", from a model to the full reality of the processes or

factors driving a system. Models which better describe the variation in the data have

lower AICc scores and are interpreted to more closely approximate reality. Competing

models of each vital rate were compared with AAIC (Ai), calculated for each model i as

the difference between its AICc and that of the best supported model. Thus, the best

supported model always has a A,- of 0. Models with A,- less than approximately 10 are

considered plausible alternatives to the best model (Anderson 2008). The Akaike weight

(w,-) is the probability that model i is actually the best model within the set. The wis are

estimated from the 13,8 and sum to 1 within each set of competing models.

Models ofswim f, g2, and SS were evaluated using AICc. Models ofg1, sr, and ssum

were overdispersed. In models with binomial errors the expected variance is a function of

the mean, )1, expressed as y(1-,u). Overdispersion occurs when the observed variance

exceeds this expectation. This can indicate that important covariates are missing from the

model, poor model specification, or an inappropriate error distribution (Crawley 2007).

Although overdispersion often has little effect on parameter estimates (e. g. slopes,

intercepts), it can cause underestimation of parameter standard errors (Joe and Zhu 2005)
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and thereby inflate the type I error rate. Selection among overdispersed models was based

on the Quasi-Akaike Information Criterion (QAICc), which is interpreted in the same

way as AICc but also includes a scale parameter in its calculation, 1], calculated as the

Pearson's ledf statistic (Bolker et al. 2009). For each overdispersed vital rate I] was

estimated from the fill] model and applied to the QAICc calculation of all reduced models

for model selection.

Overdispersed hierarchical models were then refit using pseudo quasi-likelihood

(PQL) estimation where possible. This allowed using an overdispersed quasibinomial

distribution by fitting multiplicative scale parameter 1] to the variance structure of the

overdispersed models using the random _residual_ statement in GLIMMIX. Parameter

estimates and standard errors for g1 and 3,. are derived from these re-fit PQL models. The

best supported hierarchical model of ssum, would not converge using PQL. Parameters for

ssum were estimated using the Laplace approximation and are uncorrected for

overdispersion. The standard errors for this model may be underestimations and should

be interpreted with caution.

The overdispersed environmental models ofg1, s, and ssum were fit and ranked

using QAICc scores calculated from the Laplace-approximated maximum likelihoods.

Although I then refit the best supported model for each vital rate with a quasibinomial

distribution that corrects for overdispersion, SAS can only fit this distribution using PQL,

which produces less accurate parameter estimates than the Laplace approximation. The

residual diagnostics of the quasibinomial environmental models were poor, and the fit of

the model predictions to the observed data was much worse than the overdispersed
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Laplace estimated models. All final environmental models therefore were fitted with the

Laplace approximation (= better parameter estimates) but were uncorrected for

overdispersion (= possible underestimation of parameter standard errors). Type-3 F-tests

for parameter estimates may have inflated risks of type-1 errors and should be interpreted

conservatively. The significance ofrandom quadrat effects was tested for each model

with a likelihood ratio test. The residual deviance explained by the full GLMM was

compared to the residual deviance of a reduced GLM with no random terms. The

difference in deviance explained was compared to a mixture ofX2 distributions with 1

degree of freedom using the covtest / glm option in GLIMMIX to test the null hypothesis

that the random effects did not improve the amount of deviance explained by the model.

2.B.ii. "Pretending variables"

Anderson (2008) describes a scenario that arises in model selection in which two

competing models spuriously appear to have nearly equal support from the data. In these

cases, the ln(l) scores of both models will be nearly identical, and the second model will

differ from the better supported model only by having one or more additional

independent variables that parameters do not explain any additional variance in the

response. Because AIC scores are based on the ln(l) scores plus a penalty for the number

ofparameters estimated, the difference in AIC between these two models will be equal to

the penalty imposed for the extra parameters. The Ai of the competing model may

suggest at first that it is a reasonable alternative to the reduced model. However, if the

AIC differ only by the penalty for fitting extra parameters but the ln(l) are equal, the extra

variables do not actually improve the model fit. Anderson (2008) refers to this as the
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"pretending variable" phenomenon, where a parameter with an effect size of zero is

"pretending" to improve model fit. Models with pretending variables are identified in the

text when they occur.

2.B.iii. Conditional Modeling of Seed Survival

Because the seed survival date contained a high proportion of ones, the data were

analyzed in two steps. First, the probability 7: of observing 100% seed viability in a

sample was modeled as a Bernoulli process: each quadrat-level estimate ofS3 with 100%

seed viability was coded as a one, and all other observation were coded as zeros. The

recoded binary data were then fit with a set of binary GLMs with different competing

fixed effects structures. Second, I modeled the subset of observations with values less

than one using a beta distribution. Thus the process for simulating 71 new observations is

to first generate a set of n random Bernoulli variables with probability 1! (determined in

the binary GLM) of success (i.e. having a 100% viability rate). If 8 random trials are

successes, then the remaining n - 8 trials have probabilities < 1 and are simulated from the

fitted beta distribution. Tests of this simulation process faithfully reproduce the observed

mixture distribution. This approach is similar to Cunningham and Lindenmayer's (2005)

solution for modeling zero-inflated distributions.
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2.B.iv. Fecundity estimation

Measuring per capita fecundity directly in the field was not feasible. Instead, I

nondestructively counted the number of siliques on each surviving mature plant in the

rosette quadrats. The number of siliques was then multiplied by the number of seeds per

silique to estimate total per capita seed production.

The number of seeds per silique increased with plant size. To estimate the shape

of this function, a set of 145 test plants was destructively harvested and the number of

siliques and seeds per plant were counted. Test plants were collected from seven field

sites in southern Michigan and Illinois in 2004 and 2005. Individual test plants ranged

from having 0-266 siliques and from 0-3864 seeds.

Three plants had zero siliques and hence had zero seeds. The 142 remaining

plants were analyzed to determine the relationship between total seeds per plant and total

siliques per plant. The number of seeds and siliques per plant were each loglo

transformed to stabilize the variance. Exploratory graphical analysis suggested a linear

relationship with a break in the slope close to ten siliques per plant. I created a program in

PROC NLMIXED in SAS version 9.2 (SAS Institute 2008) to fit a breakpoint linear

regression which estimated the location of the break in slope as well as the two slopes

and the intercept.

The fitted model had a maximum likelihood estimated breakpoint of 8 siliques per

plant (Table 2.B.1) and had an adjusted R2 of 0.975 (Figure 2.8.1). The estimated number

of seeds per plant, afier the back-transformation, in plants with 1-8 seeds is:
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loglO(SeedSsill'qllesSS 1 = 160 + fll X l0g10(~1"ilique~1‘)

= 0.5860 + 1.5022 x log10(siliques)

00.5860+l.5022Xlog10(siliques)

S€edssi1iques$8 = 1

where fig and ,8, are the slope and intercept estimates. Seeds in plants with more than 8

siliques are estimated as:

10g10 (seeds siliques >8 1: ((160 + fl] X10g10(break))+ 32 X

((log10(sill'ques )— loglo (break — 1))

= ((0.5860 +1.5022 xlog10(8))+ 1.027 x...

((10g10(3i1iqu65 1‘10g10(8 '11)

= (0.5860 +1.5022 x0.9031)+1.027 x...

(log10 (siliques )- 0.8451)

= 1.9426 +1.027 x (log10(siliques )- 0.8451)

_ 1.9426+1.027xlo sili ues 0.8451

seedssiliques >8 — 10 ( g10( q )_ )

where break is the estimated breakpoint, ,62 is the slope, intercept is the maximum value

predicted by the equation for smaller plants. Using this as the intercept in the second

equation and subtracting log10(break +1) from the silique count ensures that the two

functions transition smoothly into each other.

The Michigan plants used in this analysis were previously used to generate the

seed-silique function in Evans and Landis (2007). This re-analysis includes additional test

plants from Illinois and accounts for the nonlinearity between silique number and per

capita fecundity in small plants. Complete SAS code and data for the analysis is provided

below.
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data allo;

0 0 61 4

O 0 45 S

O 0 51 5

1 1 53 5

1 1 55 5

2 1 57 5

2 1 75 5

3 1 49 6

4 1 52 6

5 1 67 6

7 1 93 6

8 l 43 6

6 2 38 7

10 2 44 7

12 2 56 7

17 2 73 7

18 2 82 7

22 2 87 7

23 2 94 7

24 2 121 7

20 3 15 8

21 3 70 8

21 3 83 8

23 3 89 8

19 4 97 8

34 4 67 8

37 4 86 8

40 4 104 9

42 4 107 9

47 4 116 10

data allo; set allo;

logsil=loglO<siliques);

logseed=log10(seeds);

run;

title

input seeds siliques;

118

137

146

155

148

135

140

165

181

183

131

166

175

201

111

200

149

151

208

163

199

205

214

243

139

193

237

308

231

61

'Fit Breakpoint Regression';

* drop plants with zero siliques;

proc nlmixod

data=allo(where=(siliques>0)1;

* range of breakpoints to try;

parms break 2 to 200;

if siliques <= break then

* regression for smaller

plants;

eta = b01 + b1*logsil;

else

* regression for larger

plants;

eta = (b01 + b1*log10(break))+

b2*(logsil-loglO(break—1));

* fit model;

model logseed ~ normal(eta,V);

* generate fitted values;

predict eta out=pred;

cards;

10 181 18 656

10 201 18 786

10 138 19 869

10 222 19 816

10 270 20 817

11 281 20 850

11 264 21 661

11 296 21 891

11 309 21 874

11 257 22 811

12 357 25 1094

12 449 25 1031

12 328 25 839

12 368 26 1145

13 47 27 1339

13 346 27 1125

14 393 27 469

14 401 27 1527

14 341 30 1923

14 336 34 2091

15 373 35 2762

15 506 39 2724

16 598 41 3786

16 627 42 3718

17 565 43 3864

17 683 44 ;

17 772 45

17 663 46

17 685 46

18 623 48

run;

49

50

50

52

54

54

55

56

64

65

73

75

76

77

79

84

86

91

127

151

173

209

248

249

266

* backtransform predicted values;

* calculate residuals;

data pred; set pred;

backpred = 10**pred;

resid = pred-logseed;

run;

* plot results;

title 'Predicted and Observed

Values versus Siliques';

axisl order=(0 to 4500 by 500);

symboll color=b1ack height=2;

symb012 colorzred value=dot;

proc gplot data=pred;

plot seeds*siliques/

vaxis=axisl;

plot2 backpred*siliques /

vaxis=axisl;

run; quit;

title 'Residual Plot';

proc gplot data=pred;

plot resid*1ogseed;

run;qu1t;



2.B.v. Estimation of 2007 6‘2

Germination ofA. petiolata seeds from the soil seed bank (g2) after two winters of

dormancy was measured for the first two experimental cohorts (2005-2006, and 2006—

2007). No measurements ofg2 were made for the 2007-2008 cohort, which would have

been sown in 2007 and germinated in 2009. g2 for this third cohort was estimated from

the relationship between g1 and g2 in previous years. A generalized linear mixed model

was fit to the first two years of data as:

820.41) = gl(v+l) + see-0132042) + time ~N(0,62)

with binomially distributed errors, where y is the year that seeds were sown, g, is

the proportion of seeds that germinated after one winter, seedsz is the estimated number

of ungerminated seeds remaining in the soil in year y+1, estimated as the number of

seeds added in year y — the number of seeds that germinated in year y+ 1 , g2 is the

proportion ofseedsz that germinated in year y+2, and 65,-“, is the random error due to site.

Because a number of data points were suspected of being inaccurate (e.g. were

vandalized, damaged by animals, etc...) pooled parameter estimates were calculated from

the remaining good observations from each site within each year. This was done by

adding the number of individuals from all good quadrats at within a given time interval

and then calculating summary values from these. For example, if three of four g1 quadrats

were deemed useable, pooled g1 was calculated as the total number of seedling that

emerged from the three good quadrats divided by the total number of seeds added to the

three good quadrats. Using pooled values precludes analyses of density dependence, as
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different individual quadrats had different densities of seeds and seedlings. The primary

analyses ofg1 and g2 in this study were conducted on the raw, quadrat level data, not the

pooled values. Analyses ofg2 excluded the pooled values estimated here for 2009.

The fit of the model to the data is illustrated in Figure 2.B.2, and the parameter

estimates and model fit statistics are given in Table 2.B.2. One observation (Homer Lake

2006) was an outlier and was omitted from model pararneterization
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Table 2.B.1 Parameter estimates from breakpoint linear regression of log10(seeds/plant)

versus log10(si1iques/p1ant). The breakpoint is the number of [untransformed] siliques

above which the slope of the regression changes. The slope for plants with 1-8 siliques is

given byfi 1, while the slope for plants with more than 8 siliques is given by fig.

 

 

Parameter Estimate Standard Error DF t Value Pr > M

breakpoint 8 3.259 142 2.5 0.0

Intercept 0.586 0.052 142 1 1.3 <.0001

181 1.5022 0.090 142 16.7 <.0001

fiz 1.027 0.048 142 21.4 <.0001

V 0.03133 0.004 142 8.3 <.0001
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Table 2.B.2. Parameter estimates from generalized linear mixed model of germination

probability of dormant A. petiolata seeds with binomial errors and random site effects.

Type-3 F-tests of parameter significance and parameter standard errors are given.

 

 

Parameter Test Estimate SE

Intercept na 6.6141 0.5907

81 (F19 = 141 .37. P < 0.0001) -3.5725 0.3005

seedsz (F19 = 276.07, P < 0.0001) -1.3836 0.03327

Random Site Q2 = 363.54, 4f: 1, P < 0.0001) 1.0847 0.2381
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Figure 2.8.]. Number of seeds versus number of siliques in 142 A. petiolata test (black

dots) and fitted values from breakpoint regression (black line). Inset detail graph shows

the change in slope above the breakpoint value of 8 siliques per plant (vertical dashed

line).
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Figure 2.B.2. Fitted versus observed values of pooled A. petiolata germination rates from

dormant seed (g2) overlaid with 1:1 reference line. The first two years of data, which

were used to fit the model, are shown. This relationship was applied to the third year of

data to estimate the unknown values ofg; . Model was fit with binomially distributed

errors and g1 and seedsz as fixed effects plus random site effects.
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APPENDIX 2.C: ENVIRONMENTAL MODEL PREDICTIONS
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Figure 2.C.1. Observed A. petiolata demographic rates versus up to five independent
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were generated using the BLUPs, and thus include the random quadrat effects.

variables in Figure D1 from the best supported environmental models. Predicted values

Figure 2.C.2. Predicted A. petiolata demographic rates versus the same independent



APPENDIX 2.D: CORRECTIONS TO MEEKINS AND MCCARTHY (2002)

MATRIX MODEL
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The calculations ofA for A. petiolata in Meekins and McCarthy (2002) are

problematic for two reasons. First, the life history is incorrect. Seeds ofA. petiolata either

germinate in the spring after they were produced or after a more prolonged period of

dormancy in the seed bank as described by Meekins and McCarthy (2002) in their

introduction. Meekins and McCarthy’s model omits this first pathway, whereby seeds are

produced in June, germinate the following spring, and are rosettes by June. This life

history pathway should appear as a non-zero entry in the flowering plant (FP) to summer

rosette (RS) transition of their A matrix. An identical error was made in another earlier

study ofA. petiolata demography (Drayton and Primack 1999) and was later identified

and corrected by Rejmanek (2000).

The second problem pertains more generally to transition matrix models. All

upper level transitions in a matrix population model must represent equal-length time

intervals equal to the projection interval of the model (Caswell 2001). Meekins and

McCarthy’s (2002) model violates this assumption. For example, they show the seedling

to rosette transition taking as long as the seed to seed transition in their figure 7. It is

unclear from their methods what time interval the seed to seed transition represents (May

to October or October to May?). In recalculating ,1 from their data I assume that the seed

to seed transitions as given are correct and represent one full year of seed survival in the

seed bank. Lower level transitions of variable time-lengths can be combined

multiplicatively into equal length upper level transitions to meet the assumption of equal

time intervals.

I reanalyzed the data in Table 3 of Meekins and McCarthy (2002), combining

their mean lower-level transition estimates into a 3x3 annual projection matrix based on
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the life cycle in Figure l of Davis et al. (2006). Only one germination rate estimate was

provided in Meekins and McCarthy, whereas Davis et al. used different germination rates

for newly shed seeds and seeds that had been dormant in the seed bank. Here I assume

that both of these rates are the same. Additionally, the annual transitions from seed to

rosette and from flowering plant to seed in the corrected model include sub-annual seed

dormancy transitions. To account for this I use the square root of Meekins and

McCarthy’s annual seed to seed transition assuming that seed survival accounts for half

of the annual projection interval. Estimates of X in the original paper were 1.451, 1.375,

and 1.256 in their quadrats that had 16, 40, and 80 rosettes m'z, respectively, during the

first year of their study. Re-calculated values of l. are 2.14, 1.84, and 1.43.

A printout of a spreadsheet is provided in Appendix 2.EAppendix 2.E which

shows how Meekins and McCarthy’s transitions were combined for this re-analysis.

Estimates of K were calculated using the fiee PopTools plug-in for Excel (Hood 2006).
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APPENDIX 2.E: MEEKINS AND MCCARTHY (2002) CALCULATIONS
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Meekins and McCarthy Low Density Matrix

S SL RS RF 2R

S 0.301 0 0 0 0

SL 0.158 0 O 0 0

RS 0 0.935 0 0 0

RF 0 0 0.672 0 0

2R 0 0 0 0.787 0

PP 0 0 0 0 0.925

Meekins and McCarthy Medium Density Matrix

S SL RS RF 2R

S 0.31 l 0 0 0 0

SL 0.153 0 0 0 0

RS 0 0.972 0 0 0

RF 0 O 0.724 0 0

2R 0 0 0 0.802 0

FF 0 0 0 0 0.96

Meekins and McCarthy High Density Matrix

S SL RS RF 2R

S 0.316 0 0 0 0

SL 0.147 0 0 0 0

RS 0 0.958 0 O 0

RF 0 0 0.569 0 0

2R 0 0 0 0.663 0

FF 0 0 0 0 0.940

Meekins and Mchy Abbreviations

SeedsS

SL Seedlings March

RS Rosettes in June

RF Rosettes in October

2R Second Year Rosettes

Flowering

FP Plants

FP

102.14

O
O
O
O
O

FP

62.997
O
O
O
O
O

FP

58.766

O
O
O
O
O
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Adjusted Matrix

3 r p

3 0.253 0 25.88

r 0.081 0 8.27

p 0 0.489

Adjusted Matrix

3 r p

8 0.263 0 16.59

r 0.083 0 5.22

p 0 0.557

Adjusted Matrix

3 r p

s 0.27 0 15.8

r 0.079 0 4.65

p 0 0.355

Adjusted Matrix Abbreviations

8 Seeds in June

r Rosettes in June

p Flowering Plants in June
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CHAPTER 3: COMMENT ON “COMPLEX POPULATION DYNAMICS AND

CONTROL OF THE INVASIVE BIENNIAL ALLIARIA PET[OLA TA (GARLIC

MUSTARD)
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INTRODUCTION

Demographic models are powerfiil tools for understanding the dynamics of

natural populations. As analytical methods and computing power become more

accessible, population models are increasingly being used to guide or interpret the

development ofpopulation management plans. Recently, two studies of the invasive

weed Alliaria petiolata (garlic mustard, Brassicaceae [M. Bieb] Cavara and Grande) have

been published which did just that (Davis et al. 2006, Pardini et al. 2009). Each identified

optimal stages in the plant's life history to target with management actions, but they reach

contrasting conclusions. Pardini et al.'s (2009) stage-classified model, which included

density» dependent rosette mortality and fecundity, predicted that management ofnewly

recruited rosettes would have to reduce survival by 95% to be effective. The authors also

predicted that rosette management could be counterproductive and increase population

density if managers killed fewer than 95% of individuals. This result differs from the

elasticity analysis of Davis et al.'s (2006) linear, deterministic model, which indicated

that rosette survival was one of three lower level demographic transitions, along with

fecundity and seedling survival, that was likely to have the greatest effect on population

growth rate (,1). Several critical errors in the construction and parameterization of the

model by Pardini et al. (2009, henceforth PDCK after the authors' initials) result in

management recommendations are incorrect. Because the published recommendations

are potentially already being implemented by some natural resource managers (Adam

Davis, personal communication), it is important that these problems in the model be

corrected.
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The problems stem from omission of demographic transitions in the A. petiolata

life cycle, errors in the statistical estimation of parameters in two density dependent

functions, incorrect implementation of density dependent functions in the model, and

questionable interpretation of the model output itself. I will briefly discuss each of these

and show the effects of sequentially correcting them. A revised version of their model

based on information extracted from the published article makes different management

predictions than the original model. This new model indicates that any management that

decreases rosette or adult survival probability or decreases per capita fecundity will

reduce population sizes. Further, the reworked model predicts stable population dynamics

rather than the chaotic or cyclical dynamics predicted by the original model. Readers

should consult PDCK or Davis et al. (2006) for more background and details on model

specifics.

Study System

Alliaria petiolata is a biennial forb and a frequent invader of forested habitats in

North America. Its life history is well documented (e. g. Cavers et a1. 1979, Nuzzo 2000,

Rodgers et a1. 2008). The life cycle diagram in Figure 2.E.1 shows the life history stages

present at an annual census point in mid-June just prior to seed set. These are: dormant

seeds in the soil that are one or more years old (S), new rosettes which germinated several

months earlier in spring (R), and second year flowering plants referred to as "adults" (A).

The arrows represent transitions individuals can make over the course of one full year

and are comprised of one or more sub-annual transitions: per capita fecundity (f),

germination probabilities of new (g1) and dormant (g2) seeds, and seed (v), seedling (51),
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summer rosette (S2), and winter rosette (S3) survival probabilities. The parameters C] and

c2 are varied from between 0:1 to simulate the effects of management as a proportional

reduction in rosette or adult density. Notation alert: in this chapter I follow the

abbreviation scheme for demographic transitions from PDCK to facilitate direct

comparison with the original paper by PDCK.

Management Inference

Pardini et al.'s management conclusions were drawn from bifirrcation plots which

show the equilibrium sizes ofA. petiolata populations (vertical axis) across a range of

simulated management efficacy (horizontal axis). I have reproduced PDCK’s bifurcation

plots using Equation 5 from their paper as the starting point for the reanalysis. The

reproduced original result is shown without modification in Figure 2.E.2a, b. I then

incrementally modify the bifurcation plots as each successive correction is made to the

model. In each plot either 01 or C; is varied from 0:1 by 0.00] while the other is fixed at

1. Populations were projected for 2000 years and the first 500 years ofpopulation sizes

were discarded to eliminate transient dynamics. Population size (adults plus rosettes) was

then plotted against c1 or Q.

ANALYSES

Life History

In Figure 2.E.1 I show three corrections made to PDCK’s published life cycle

diagram. As presented in PDCK, the model applies a seed survival probability
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(abbreviated v in their paper) to newly produced seeds (Figure 1, PDCK) but not to older

seeds in the seed bank. The only source of seed loss from the population after the first

winter in PDCK’s A. petiolata life cycle is by germination, shown as the seed to seed

loop in the life cycle diagram (Figure 2.E. 1). This loop is parameterized in their model as

l-gz, where g2 is the probability of an older, dormant seed in the seed bank germinating

during any given year. This means that the number of seeds remaining in the soil every

year is the proportion that did not germinate. Seeds in the soil seed bank as modeled in

PDCK are therefore effectively immortal. However, seeds are lost from the seed bank to

mortality as well. Accounting for this requires modification oftwo transitions. First, it is

necessary to multiply the S to S transition by an annual seed survival probability,

abbreviated s, in Davis et al. (2006) and v in PDCK, to account for seed mortality or loss

from the seed bank by paths other than germination (Drayton and Primack 1999,

Rejmanek 2000, Meekins and McCarthy 2002, Davis et al. 2006). Second, the transition

fi'om dormant seeds in June of one year to rosettes in the next must also account for

losses via seed mortality prior to germination. This partial-year seed mortality over 8

months (2/3 of the 1 year model projection interval) is first scaled by raising it to the two-

thirds power (v2/3) and then multiplied by the existing S to R transition as v2/3gzsr.

Finally, because the losses from seed mortality during the P to R transition are only a

. . . . . 2/3

partial year lower-level transrtron, thrs parameter is also rescaled as v

PDCK’s model included seed mortality (v) in the A to S (013; matrix notation

refers to analogous transitions in Davis et al. 2006 and in Chapter 4) and A to R (a23)

transitions. Although Pardini et al. state that omitting seed mortality from the S to S
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transition ((11 1) changes the bifurcation result (i.e. the effect of simulated management)

only qualitatively (which is true), they also omitted it from the S to R (an) transition.

Adding full and partial year seed mortality to the base model as described above and

shown in Figure 2.E.1 changes the model predictions substantially (Figure 2.E.2c, d).

Unmanaged populations exhibit chaotic instead of cyclic dynamics. More importantly,

whereas PDCK concluded that proportionally raising rosette mortality between 0-95%

caused maximum population size to increase when v was omitted from several

transitions, restoring v to these transitions results in population suppression as rosette

mortality is increased to about 47.5%. Reducing per capita fecundity, which PDCK

describe as reducing adult plant density (discussed later), up to about 39% results in an

increase in population size relative to unmanaged populations. Thus, it is important that

seed bank mortality not be omitted from the model.

Parameterization of Density Dependent Functions

Summer Survival, s2: The function for density dependent summer rosette survival

(52) was estimated by PDCK using a multiple logistic regression (PDCK Equation 2) of

survival versus the sum of adult and rosette density (T=A+R) and the product of adult and

rosette densities (U=A *R). The authors developed this function by comparing regression

models with different combinations ofA, R, T, and U as predictors. Parameter

significance (i.e. P-value) was used to decide which parameters were retained in the final

model. The major issue with the statistical analysis using the above predictors is that it

ignores muticolinearity between U and T, which violates the assumption of independence
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among predictors in the multiple regression. Additionally, the inclusion of an interaction

term U without the main effects A and R can result in biased estimates of model

parameters. These specific issues set up a scenario that favors spuriously identifying

variables as important if P-values are used to select parameters. The resulting density

dependence function used in PDCK’s population model does not fit the data well and

predicts survival probabilities that do not make biological sense (Appendix 3.A, Figure

3.A.1). In the absence of adults, rosette survival probability asymptotically approaches

100% as rosette density increases. For example, this function predicts 100% rosette

survival probability (to within the machine precision limits ofmy computer) when rosette

density is 1000 m.2 and adult density is 1 m'z. This is incongruous with other estimates of

A. petiolata summer rosette survival rates between 10-40% (Anderson et a1. 1996, Byers

and Quinn 1998, Evans Chapter 4) The details of these issues are discussed at greater

length in Appendix 3.A and demonstrated in a MATLAB script (The MathWorks 2008)

in Appendix 3.F.

I re-parameterized the summer survival function by fitting a logistic regression of

survival probability to T and to loge( T+1). Data were obtained from Figure 2a in PDCK

by extracting x and y pixel coordinates from each data point in the published PDF graph

using photo editing sofiware. Because it was not possible to determine values ofR or A

from the graph, models including A, R, or U were not evaluated. The model which used

loge(T+1) as the covariate was better supported by the data (AAICc = 1.9), although not

overwhelmingly. While this function fits the data reasonably well (Appendix 3.A, Figure

3.A. l ), alternative functions should be re-fit using the complete dataset and evaluated
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using an information criterion such as AICc rather than parameter significance (Appendix

3.A). The re-fit function is:

1

32“) ' 1+e-(flOS+flls(At+Rt +1» (3")
 

where ,Bos and [913 are the summer intercept and slope, respectively, and the covariate is

the sum of rosette and adult densities at the beginning of summer in year t. Note that in

the back transformation of a logistic regression the negative of the exponentiated term

(the linear predictor) is taken (Neter et a1. 1996). It is not clear whether PDCK did this in

their original model ofs2 (Appendix 3.A). Parameters for the refit function are given in

Table 3.B.1 (Appendix 3.B).

Winter Survival, S3: The density dependent rosette survival function. was

estimated using a linear regression of loge(survival) on loge(R, + 1). The back

transformed survival rate at time t was estimated from rosette density as

53(1) = 8131”” logem’ +1) (32)

where flrw is a slope parameter estimate for winter survival.

There are two problems with this analysis. First, it appears that the authors may

have inadvertently dropped a number of observations of0% survival from their analysis

by using a log transformation of the survival response. In their Figure 2b, the only

observations with either 0% survival or 100% survival were those with only a single

rosette (singletons). Dropping all of the 0% observations by log transforming them

[loge(0) = ~00] leaves all remaining estimates of singleton survival as 100% (PDCK
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Figure 2b, inset). By excluding all of the observations with 0% survival from the

analysis, the survival probability of populations at very low densities will be

overestimated by the fitted regression model. Second, because PDCK did not estimate an

intercept in the model, fixing it at zero on the log-transformed scale, the intercept is fixed

at unity (S3 = 100% survival) on the back-transformed scale. Winter survival probability

therefore always goes to one as population size approaches zero because e'B loge (0+1) = l

for any B. This results in a deterministic overestimation ofA. petiolata's ability to persist

or invade when rare. While in the “real world” the survival probability of less than one

individual is meaningless, fractional individuals exist in the “model world” and model

predictions can be significantly impacted by this type of error.

Variance stabilizing transformations can be problematic when applied in models

used for making predictions, as demonstrated above, and the model-predictions do not

always make sense when back-transformed to the original data scale. For example a

linear model of arcsin-square root transformed proportion data could predict negative

values that cannot be back-transformed to proportions in a meaningful way. When the

goal of analysis is to interpret pattern, working in a transformed scale can be the most

straightforward option for meeting the assumption of normality in a linear model.

However, caution is required when the goal is to make predictions in the original data

scale. A better solution is to use a generalized linear model (GLM) or a generalized linear

mixed model (GLMM) with an embedded link firnction appropriate to the distribution of

the data (Bolker et a1. 2009).

I fit a logistic regression of winter survival probability versus loge(R, + 1) to data

obtained from Figures 2b and 2c using photo editing software (Appendix 3.C). This
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model is appropriate for survival data and fits the data satisfactorily (Figure 3.C.1).

Substituting the new density dependence functions for summer and winter rosette

survival changes the population dynamics. The bifurcation analysis of this corrected

model indicates a single stable equilibrium at any management efficacy (Figure 2.E.2e,f).

Any management which reduces either rosette survival or fecundity is predicted to reduce

population size. This is an important difference from PDCK’s prediction that populations

would exhibit cyclical or chaotic dynamics, or that management could cause an increase

in population size.

Implementation of Density Dependence

The two rosette density dependence fimctions (summer and winter) each reference

the same rosette density (R,) in their calculations. This is incorrect, as it is not how the

functions were parameterized. Calculation of the winter survival rate must be based on

the density of rosettes at the beginning of winter. This requires creating an intermediate

age class of winter rosettes, Rw, that is passed from the summer survival function to the

winter survival function. This change also requires distinguishing between management

of rosettes in summer versus winter. The new calculation ofAH 1, simulating reduction of

winter rosette survival (c2), is given in two equations:

 

1

RW = R

t t 1+ e‘IflsO +flail 10ge(At +Rt +1”

1

1+e—(flu0+1611!l loge(th +1)

(3.3a)

A,“ = (1— cz )Rw, (3.3b) 

With these changes incorporated, the strength of winter density dependent mortality is

decreased because summer mortality is accounted for, and the predicted population size
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at equilibrium is greater (Figure 2.E.2g, h). The model predicts that any management that

reduces rosette survival or fecundity will reduce population size.

Interpretation of Model Output

In the analyses ofA. petiolata’s response to management, PDCK refer to

management ofrosettes versus management of adults. They simulate these scenarios by

including an extra parameter in the model which proportionally reduces one of the

demographic rates. The equation set below is modified from PDCK equation 5 to include

all of the changes described in the previous sections and was used to produce Figure

 

 

2.E.2g and h:

St+1 = v(1 — g1)(1- coAte/jof’mf” + Siva - g2) (3.4a)

a,+1 = V” 3gp] (1 — c1)A,e'60f ”If/1‘ + V” 3g231S, (3.4b)

Rw’ 2 R’ 1 + e‘(160s+161s1108e(14t +121 +11) 9'4")

4+1 = (1 - c2)Rw, H e_(30W,[31W 10g, (Rw, +1) (3.4d)

where e'BOf +13If A’ is the density dependent fecundity function .

The effect on population dynamics ofmanaging a particular life history stage

depends on when the management is applied. I refer to C] as a simulation of managing

fecundity rather than adult density, as PDCK describe it, because it is only inserted in the

equation set where it affects the number of plants contributing new seeds to the rosette

stage and to the seed bank without affecting the relationship of adult density to other life
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history stages. In this respect, it is identical to the simulation of reducing per capita

fecundity in Davis et al.’s (2006) linear model ofA. petiolata.

Things are more complicated in a nonlinear model. To simulate the effect of

increasing adult mortality, one must be explicit about where and when the impacts of

reducing adult density occur. Adult management as modeled in PDCK is analogous to

hand pulling a fraction of the adult p0pulation as they senesce, just before seed dispersal.

Management could be applied at different times, though. For example, reduction of adult

plant density earlier in the spring could affect per capita fecundity as well as summer

rosette survival. To simulate this, adult density (A,) should be adjusted by (La) in the

density dependence functions for per capita fecundity in the A—+S and A—+R transitions,

and in the summer rosette survival function. Similarly, managing rosettes early in winter

could reduce the strength of density feedbacks on rosette survival. Making these changes

further alters the population dynamics of the model system by decreasing the

population’s responsiveness to rosette management (Appendix 3.D). The types of

management likely to be implemented should therefore be considered. The effects of

management timing relative to sub-annual transitions and subsequent impacts on density

dependent fimctions can then be explored by varying where the management parameters

are inserted into the equation set.

Finally, the effects of density dependent seedling mortality should also be

explored. PDCK cite the low survival rate of seedlings to justify not including density

dependent rosette mortality in their model. Alliaria petiolata seedling survival

probabilities are variable, though, ranging from 0.13 to 0.63 (Table l in Davis et al. 2006)

and higher (Chapter 2). Adding a density dependent seedling survival function to
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Equation set 3.4 has a large effect on the stable equilibrium population size as the

strength of the density feedback is increased (Appendix 3.E). More importantly, it greatly

changes how populations respond to management Appendix 3.E, Figure 3.E.2).

Conclusions

The study ofA. petiolata by Pardini et a1. (2009) presented a model of A.

petiolata population dynamics based on a study of a single cohort of plants in 40 1 m2

 
sampling quadrats at a single study site. The authors quantified density dependence in

summer and winter rosette survival and per capita fecundity, but did not to quantify

density dependent seedling survival, which may be important in this species given its

variable population density (Trimbur 1973, Nuzzo 2000, Evans Chapter 2, Chapter 5).

Using this model, the authors recommended that management ofA. petiolata should be

focused on reducing adult density. Because their model predicted that incomplete

removal of rosettes could cause increases in population size, PDCK also recommended

that management of rosettes should be avoided. Given the limited geographical and

temporal scope of the data, the numerous quantitative errors in formulating the model,

and the known spatiotemporal variability in A. petiolata demographic rates, the

management recommendations made by Pardini et a1. (2009) should not be applied at this

point or until the modeling framework is examined more thoroughly for the

inconsistencies reported here. The suggestion that rosette management could increase

population density is particularly concerning. This should include: 1) a recalculation of

the density dependence functions for winter and summer rosette survival using

appropriate statistical models and parameter selection tools, 2) consideration ofhow
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management might actually be implemented in the field and testing models which reflect

this, 3) experimentation with density dependent seedling survival, and 4) revisiting the

analyses of the sensitivity of population dynamics to variation in the lower level

demographic rates which was included in a supplement to the original paper. Because

some of the proposed management strategies for A. petiolata affect both rosette survival

and fecundity (Davis et a1. 2006), the authors should also look at the population responses

to combinatorial variation in simulated management these two demographic transitions.

In contrast to PDCK’s conclusions, the population dynamics ofA. petiolata

appear to be driven by stable equilibria in simulations ofboth unmanaged and managed

populations based in the final model parameterized from PDCK’s data (Figure 2.E.2g, h).

There is also compelling evidence for the importance ofmodeling seed bank mortality.

Most reconfigurations of the model predicted that management of either rosettes or adults

in the study population should be an effective strategy. However, it will be necessary to

think more carefully about how and where in the model to apply the simulated

management if the goal is to simulate ways that populations might be managed in the

field. While the predictions generated in this re-analysis represent an improvement over

the original model, they should not be taken as conclusive. More and better long term

empirical data are needed on the seed bank dynamics ofA. petiolata and density

feedbacks on seeding survival and other transitions. Because of the tremendous

spatiotemporal variability in A. petiolata demographic rates, more general management

recommendations will need to come from a larger set of demographic data that has

greater coverage in space and time. The results of Pardini et al., once the model is

corrected, should be expected as a subset of the many possible models ofA. petiolata.
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Figure 2.E.1. Life cycle diagram ofA. petiolata showing the upper level transitions

(arrows) and the lower level transitions which comprise them (equations). Symbols are

defined in the text. This version differs from Figure 2.2 in that it follows the notation of

Pardini et al. (2009) and includes parameters for simulation ofmanagement.
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Figure 2.E.2. Bifurcations ofA. petiolata populations with simulated management of

rosette survival (left hand panels) and simulated management ofper capita fecundity

(right hand panels) using equation set 4. In each case, the unmanaged population is

represented on the far left where additional mortality or reduction in fecundity is zero,

and the dashed reference line shows the maximum equilibrium size of the unmanaged

population. Points above this line indicate potential increases in population size relative

to the unmanaged case, while those below it indicate population decline. Individual

panels show (a,b) the original model as parameterized and published in Pardini et al.

(2009), (c,d) the effects of adding seed bank morality to the S to S and S to R transitions

and rescaling sub-annual seed mortality as described in the text, (ej), the result of

changing the function for winter rosette density dependence in a—d to a logistic curved

response, and (g,h) the result of correcting the sign of the summer rosette density

dependence function used in a-fl
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Figure 2.E.2 cont'd.
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APPENDIX 3.A: SUMMER DENSITY DEPENDENCE AND

MULTICOLLINEARITY
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3.A.i. Summer Density Dependence Function ($2)

The function for density dependent summer rosette survival (52) in Pardini et al.

(2009, henceforth abbreviated 'PDCK') does not fit the data which were used to

parameterize it, which are shown in Figure 2a of PDCK. The function is given in PDCK

Equation 2. Parameters were selected for inclusion in the model based on significance

(i.e. P—values). The authors may have been lead to conclude that this function fit their

data well based on its parameters’ P-values and its R2 value (0.79). Because the

distribution of plant densities used to parameterize the function were clustered, rather

than continuous (PDCK, Figure 2a), the function they used only intersects the two

clusters of data by chance (Figure 3.A. l , dashed line). If there had been more continuous

variation in A. petiolata rosette density, it is unlikely that this model would have garnered

much support via R2. The original function for summer survival in PDCK is given as:

1

_ 1+ eflo+fll(.4+R)+fl2(A*R)

 

52 (3.A.1)

where e is the base of the natural logarithm, ,80 is the intercept, £1 and ,82 are the slopes of

the covariates, and A and R are the densities of adults and rosettes, respectively, at the

beginning of summer. In PDCK, the sum A+R is abbreviated T, and the product A*R is

abbreviated U. These are expanded here for clarity.

Because the lower-order terms for A and R were dropped, predicted rosette

survival probability is symmetrical with respect to A and R. For example, this means that

s2 is the same whether there are 100 rosettes and 5 adults, or 5 rosettes and 100 adults. A

surface plot of the predicted rosette survival rates versus adult and rosette densities
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illustrates some of the problems with this function (Figure 3.A.2). When adult density is

zero, survival probability increases asymptotically, approaching 100% survival as rosette

density increases. This does not correspond with the data plotted in PDCK Figure 2a or

with the known biology ofA. petiolata. The symmetry of the function means that the

same is true when rosette density is extremely low and adult density is increased.

Survival only decreases when there are both rosettes and adults present, dropping most

rapidly when A = R. This apparent Allee effect that occurs at low densities or when the

ratio ofA:R is uneven occurs because the sign of coefficient for T is actually positive,

although it is shown as negative in PDCK Table 1. The reason for this and consequences

if this assumption is incorrect are explained below in the section on back transforming

logistic regressions.

There are two related statistical problems with this function. The first is the

inclusion of a term for the interaction U without its constituent lower-order effects A and

R. Used in this way, the interaction lacks biological meaning, although it has a large

effect on model predictions.

The additive term T implies that the linear effect of rosettes on survival is the

same as that of adults, and thus, that the slopes and intercepts of $2 with respect to A and

R are equal. If this is true, how do they interact? If there is a significant interaction

between A and R, the main effects for these lower—order terms should be retained in the

model even if they are not significant. Removing them from the regression can cause a

shifi in the function relative to the origin and alter its curvature. Depending on the signs

and magnitudes of the terms in the model, this will result in over or under estimation of

the intercept and of the remaining slope parameters. Unless there is compelling evidence
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to do otherwise, lower order terms should always be retained if they are included in

higher order terms (see chapter 12.3 in Draper and Smith 1998). Without them, the

interaction term lacks meaning, and the regression model predictions are likely to be

flawed.

3.A.ii. Multicollinearity and Parameter Bias

Second, the additive and multiplicative density terms T and U should not both be

included in the model. Given two random variables x and y, (x + y) and (x * y) will often

be strongly, positively correlated, even ifx and y are uncorrelated. If2 is a function of (x

+ y), it will spuriously appear to be a function of (x * y) as well. If2 is an additive

function ofx and y, it can also appear to be a function of (x*y) and/or (x+y), depending on

the signs, magnitudes, and correlations among x and y. When there is strong correlation

among predictor variables in a regression model, there can be multiple solutions to the

regression (parameter estimates) that fit equally well. In such cases where there is

multicolinearity among the predictors, the parameter estimates will not be unique, and

alternate solutions to the model will generate different, unrelated predictions. Neter et al.

(1996) discuss this issue with useful examples in Chapter 7.7 of their text. Model

selection based on variable significance (P-values) will not be able to distinguish

effectively among these models, because the parameter estimates will be significantly

different from zero, even though they are unrelated to the process driving variation in 2.

These issues are explored and illustrated more fully in a supplemental MATLAB

program (Appendix 3.F).
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The results of one simulation from Appendix 3.F illustrating the correlations

among x, y, and z, are shown in Figure 3.A.3 for those without access to MATLAB. In

this figure, x and y are randomly generated variables with means 3 and 5, respectively,

standard deviations of 1, and 100 ‘observations’ each. The random variable 2 is a linear

function ofx and y, calculated with Model Function A in Appendix 3.F as:

z=5+2x+6y+e 8~N(O,l) (3.A.2)

where a is added as random error. Three linear models were then fit to the data with

different combinations of parameters:

Ml z=fl0+fl1x+fl2y

M2 Z=fl0+flix+fl2y+fl3w

M3 2 =fl0+fl1(x+y)

M4 z=fl0+fl1xy

M5 Z=flo+.B1(x+y)+,32xy

Models were then compared using parameter significance as well as AICc. AlCc

is based on Kullback-Leibler information and is a relative measure of the distance, in

arbitrary units of ‘information’, from a given model to the full reality of the underlying

processes driving the variance in the data (Anderson 2008). The model with the lowest

AICc score is thus the closest to describing the truth among a set of competing models

and is considered the best model. AAICc is calculated as the difference between each

model’s AlCc and that of the best model (AAlchest = 0). The Akaike weight (w) for

each model is the probability that it is the best among a set of competing models, and is

calculated from the AAICc scores. Anderson (2008) offers a very user fiiendly

introduction to the subject which is more accessible than the more comprehensive volume

by Burnham and Anderson (2002). The simulation was run in MATLAB (The
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MathWorks 2008), and the analysis was conducted in PROC GLIMMIX in SAS (SAS

Institute 2008).

The results of this exercise, including parameter estimates, P-values, and

Akaike’s Information Criterion adjusted for sample size (AICc) are given in Table 3.A.l.

The analysis of the simulation highlights the potential pitfalls ofmodel selection based on

parameter significance alone. All parameters were highly significant (P < 0.0001) in all

models except for the interaction term in M2, which was correctly estimated as non-

significant. The interaction term was only identified as significant when the lower order

terms for x and y were dropped (M4, M5). Model selection based on parameter

significance can therefore easily lead to retention of spuriously significant terms. In

models where this happened (M3-M5), the parameter estimates were highly inaccurate.

The true intercept was 2. In M3, it was estimated as 9.5, in M4 it was estimated as 29.9,

and in M5, which has the same form as PDCK’s summer survival function, it was

estimated as -12.3. The other parameters in these models were not part of the process

underlying the variance in z and so have no ‘true’ values, although the estimates of these

parameters vary substantially across models. The parameter estimates in the true model,

Ml , were reasonably close to the true parameter values, as were those in M2.

Comparison ofmodels using AICc correctly ranked M1 as the best model, given

the data. As 90.4% of the Akaike weight was assigned to M1, there is a 90.4% probability

that M1 is the best model among the five. M2 was ranked second with 9.6% of the

Akaike weights. All other models had approximately 0% probability of being the best

model and thus are discarded as unlikely.
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In summary, when an interaction term is retained, its lower-order terms should

also be retained because the function can become shifted relative to the origin (Draper

and Smith 1998) and the remaining parameter estimates will likely be inaccurate if lower

order terms are dropped. If U is kept in the model, A and R should be kept as well, even if

they are not significant. Because of the high probability that U and T are strongly

correlated, if U is included in the model, T should not be. If T is included, it should be the

only covariate, as A, R, and U cannot be included with it. Model selection based on

parameter significance can be misleading and result in incorrect acceptance of an

inappropriate model. Model selection based on information theory represents a better

alternative. One very effective way of assessing whether a fitted model is appropriate or

not is to plot its predictions across a range of values and judge whether it reflects the

patterns in the data. If it does not, then the model likely mischaracterizes the underlying

processes.

Notes on Logistic Regression Back-Transformation

A logistic regression model linearizes the relationship between the independent

variables, which can be categorical or continuous, and the dependent response variable,

which is the probability of observing p “successes” (e. g. survivors) out ofq trials (e. g.

initial plants). The linearized form of the logistic model is

72'

loge[1—:—7;]= .30 + .lel + . . flux” (3.A.3)

where the right hand side of the equation is collectively called the linear predictor, x1,. ..

xn is the set of n predictor variables, [1b, B1,. .. A, are the estimated intercept and slope
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parameters, 7: is the response probability of interest, and the left hand side of the equation

is the logit of it (Neter et al. 1996). Solving Equation 3.A.3 for 7: in terms of the x,- by

taking the antilog ofboth sides allows predictions of survival probabilities to be made

from the fitted model if the x,- are known:

eflo+fl1x1+...flnxn

=1+efl0+fl1x1+...flnxn

__ 1

1+ e-(flo +161xr +---.ann)

7r (3.A.4a) 

 (3.A.4b)

These are equivalent expressions. PDCK used the form in Equation 3.A.4b in their

summer rosette density dependence function, reprinted here as Equation 3.A.1. Because

they do not indicate taking the negative of the exponentiated linear predictor, the

implication is that they either took the negative of the individual terms before presenting

them in Table 1 of their paper, or that they omitted this step. Assuming the former, this

means that the ‘true’ signs of all the coefficients for s2 are reversed from their signs on

the linear scale as printed in PDCK Table 1, the slope of T is positive, and the slope of U

is negative. This assumption was made in plotting Figure 3.A.2 and in reproducing the

original bifurcation plots shown in Figures 2a and 2b ofthe main paper (this paper). If

this assumption is wrong, failure to take the negative of the linear predictor in the back-

transformation would reverse the sign of the density dependent function for $2 and would

result in an additional set of problems. To visualize what this would do to the function,

stand on your head while looking at Figure 3.A.2.
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Table 3.A.1 Analysis of simulation results. A random variable 2 was created as a

function ofx and y using the formula 2 = 5 + 2x + 6y + random error. Z was modeled as a

function of five different combinations ofx and y. Ml represents the ‘true’ form of the

function used to generate 2. Parameter estimates from models without the main effects x

and y are poor, although they have significant P—values. AAICc values correctly identify

the M1 as the model with the greatest support from the data. M1 received > 90% of the

Akaike weights (w) indicate a 90.4% probability that it is the best supported model

among the five competing models.

 

 

 

 

 

 

Model Effect Estimate SE of t-Value P-value -2LL AlCc AAlCc w

Ml Intercept 5.701 0.582 97 9.80 <.0001 294.9 303.3 0.0 0.904

x 1.865 0.097 97 19.29 <.0001

y 5.934 0.095 97 62.18 <.0001

M2 Intercept 4.603 1.451 96 3.17 0.002 297.2 307.8 4.5 0.096

x 2.248 0.473 96 4.75 <.0001

y 6.151 0.280 96 22.00 <.0001

x *y 0076 0.092 96 -0.83 0.4105

M3 Intercept 9.557 1.860 98 5.14 <.0001 526.1 532.3 229.0 <0.001

x + y 3.928 0.229 98 17.18 <.0001

M4 Intercept 29.877 1.295 98 23.08 <.0001 603.4 609.6 306.3 <0.001

x ‘y 0.744 0.080 98 9.27 <.0001

M5 Intercept -12.331 1.952 97 -6.32 <.0001 424.7 433.1 129.8 <0.001

x + y 9.138 0.407 97 22.44 <.0001

x *y -1.326 0.098 97 -13.56 <.0001
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Figure 3.A.1. The function used to characterize density dependent mortality ofA.

petiolata in summer did not fit the data well. Data extracted from Pardini et a1. (2009) are

shown (dots) against the published logistic regression function evaluated at R = A across

the range of total plant density from the study (dashed line). Data extracted from Figure

2A in Pardini et al. using photo editing software were used to refit a new logistic

regression function of survival probability vs. loge(A + R), shown as a solid line. This

new function is used in the modified model in the main text. Because A and R could not

be extracted from the figure, lower-order terms and interactions could not be fit.
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Figure 3.A.2. Surface plot of the published function for density dependent summer

rosette survival (5;) from Pardini et al. (2009) evaluated at all combinations ofA = 0:200

and R = 0:200.
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Figure 3.A.3. A simulation illustrating how the sum (x + y) and product (x * y) of two

uncorrelated random variables can be highly correlated with each other. The variables x

and y are each comprised of 100 random draws from normal distributions with means 3

and 5, respectively, and standard deviations of 1. The variable 2 was calculated as 2 = 5 +

2x + 6y + random error. Correlation coefficients (r) are shown for each relationship.

Although z is only an additive function ofx and y, it appears to be strongly correlated

with both their sum and product. The simulated data plotted here were also used in the

example analysis presented in Table 3.A.1.
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APPENDIX 3.B: REFIT DENSITY DEPENDENCE EQUATIONS
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Table 3.B.l. Parameter estimates and fit statistics from refit summer (52) and winter (S3)

A. petiolata density dependence functions. Data were extracted from figures 2a and 2b of

Pardini et al. (2009) A. petiolata winter survival data.

 

 

 

Model Parameter Test Estimate SE

s; Intercept (t2; = 1.81, P = 0.0840) 3.5626 1.9682

loge(rosettes+l) (I22 = -2.28, P = 0.0325) -l.0850 0.4753

S3 Intercept 032 = 3.837, P < 0.0001) 1.1928 0.3108

log£.(rosettes+l) (I33 = -7.344, P < 0.0001) -0.4752 0.0647
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APPENDIX 3.C: WINTER DENSITY DEPENDENCE
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Extraction of winter rosette survival data

Several problems were noted in Pardini et al.’s (2009) function for density

dependent survival ofAlliaria petiolata rosette in winter (53). The most significant of

these was the omission of an intercept, which forces survival probability to 100% as

densities approach 0. Data to re-parameterize this survival function were obtained from

Figures 2b and 2c in PDCK by extracting x and y pixel coordinates from each data point

in the published PDF file using photo editing software. Because they reported sampling

winter survival in 34 quadrats but only 18 points are visible in their Figure 2b, it was

inferred that the remaining 16 quadrats had rosette densities of 1 plant m.2 and obscure

each other in the figure. The number of survivors in these 18 singleton quadrats was

obtained from the number of fecundity estimates made in plots with a single plant in their

figure 2c. None of the other non-singleton plots had survival rates low enough to leave

them as singletons the following spring. Thus, of these 18 singleton quadrats, 12 must

have had 100% survival and six had 0% survival. Data extracted from PDCK figure 2b

reveal that there were approximately 1340 rosettes used in this calculation. It seems that

PDCK mistakenly stated that 1795 rosettes were used in calculating winter survival

(PDCK, pg. 390). This corresponds closely with the 1346 rosettes they report marking for

measurements of summer survival. Thus, the number of plants indicated in the text for

summer and winter rosette survival must be reversed in the text on page 390 of their

paper.

Re-running PDCK’s linear regression of loge(survival probability) on loge(rosette

density+l) in SAS (SAS Institute 2008) using the extracted data reproduced their original

result very closely. This estimate ofB1,, was -0.2 804, compared with their estimate of -
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0.2890 (PDCK Table 1), and confirms that the data extraction was successful. As

expected, the six quadrats with 0% survival were dropped from the analysis by taking the

natural logarithm of 0, which is -00. Model fit to the untransformed data was good with

the 0% survival observations excluded (Adj. R2 = 0.86) but not when the dropped

observations were included (Adj. R2 = 0.09). Adding a small fraction (107) to

observations with 0% survival resulted in poor model fit (Adj. R2 = 0.018), and fitting an

intercept predicted survival probabilities greater than one.

A new logistic regression of survival probability as a function of loge(rosette

density +1) was fit to the extracted data in PROC GLIMMIX in SAS (SAS Institute

2008). The parameter estimates for the new function are presented in Table 3.8.1

(Appendix 3B). The refit winter survival function fits the data similarly across most of

the range ofobserved densities (Figure 3.C.1). The functions diverge most prominently at

low densities as they approach the y axis (Figure 3.C.1, detail). The original function

increases and intercepts the axis at 1, while the y intercept of the back-transformed refit

function is 0.767. Incorporating this new function for S3 into the population model further

changes the model’s management predictions.

143



Figure 3.C.1. Density dependence of winter rosette survival probability using data

extracted from Pardini et al. (2009). Pardini et a1. conducted a linear regression of

loge(winter survival) on loge(rosettes + 1) with the intercept fixed at 1. Thus the model

predicts that survival probability approaches 100% as population size approaches 0. An

alternative to this is a logistic regression of survival probability on loge(rosettes + 1). This

model has a lower y intercept and is less prone to overestimating survival of low density

populations. The inset detail shows the shapes of the two functions at the y intercept.
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APPENDIX 3.D: APPLY SEEDLING DENSITY DEPENDENT MORTALITY
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The implementation of simulated A. petiolata rosette and adult morality in Pardini

et al (2009) was limited to overall survival functions and was not incorporated into the

density dependence functions that comprised the upper level demographic rates. Here,

rosette and adult mortality are applied to simulate: 1) the effect of increasing rosette

mortality during the winter survival period and 2) increasing adult mortality early in the

spring. Equation set 3.4 in the main paper is used as the starting point. The new equation

 

 

set is:

Sz+1 = v(1— gr )0 - c1>/I.e”"f+fi““"t + Siva — g2) (3.D.1a)

R,+1 = v2 / 3glsl(l — cl)A,eflOf +13”’4‘ + 112/3gzslS, (3.D.1b)

RW’ 2 R’ 1 + e-(flos +flrs log:<<(1—c1 1A1 +Rr 1+1» (3'11”)

A1+1 = (1- C2 >sz H [wow/31w 110g8((,_c2)R,,.t +1) (3.D.1d)

where increasing the parameter c, reduces adults survival proportionally and c2 reduces

rosettes survival. In scenario 1, management of rosette density is simulated to occur early

enough in the winter that it decreases the negative feedback ofrosette density on the

remaining survivors. In scenario 2, management of adult density is simulated to occur

early enough in the spring that the negative effects of adults on rosette survival are

decreased, although not early enough to reduce per capita fecundity. To run scenario 1, C;

is varied from 0:1 and cl is fixed at 1 (Figure 3.D.1a). To explore the effects of rosette

management the reverse is done (Figure 3.D.1b).

The results of these simulations are qualitatively similar to the results of the model in the

main paper (Figure 2.E.2g, h). Comparison of the curvature of the equilibrium density

curve in Figure 3.D.1a with Figure 2.E.2g in the main text shows that the changes made
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in the density dependent functions here slow a population’s response to management.

This is evidenced by the increased curvature in Figure 3.D.la.
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Figure 3.D.] Bifurcations ofA. petiolata populations with (a) simulated management of

rosettes in early winter and (b) simulated management of adults in early spring using

equation set C. In each case, the unmanaged population is represented on the far left

where additional mortality is zero, and the dashed horizontal reference line shows the

maximum equilibrium size of the unmanaged population. As all point fall below this line,

any increase in morality results in decreased population size relative to the unmanaged
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APPENDIX 3.E: APPLICATION OF SEEDLING DENSITY DEPENDENCE
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Alliaria petiolata populations frequently reach high initial seedling densities

(Davis et al. 2006) and have variable seedling mortality rates (2006). To explore the

possible affects of density dependent seedling mortality on A. petiolata’s population

dynamics and response to management, a density dependent function for seedling

survival can be added to the model developed in Appendix 3.D of this paper. A sub-

annual seedling age class (Sdl) is created to which a logistic density dependent function

then applied to estimate the number of rosettes at time t+l (RM) that survive from the

seedling stage at time t. Note that the number of seedlings at time t is calculated from the

number of seeds germinating from the soil at time t and the number ofnew seeds

contributed from adult plants at time t, thus making the seedling stage temporally

intermediate to time t and time t+1:

 

 

+ A . .

s,+1 = v(l — g1)(l — cl)A,e'BOf fl‘f ’ + s,v(1— g2) (3.E.la)

Sdl, = v2/3glsl(l-cl)A,e'BOf+fl1fAt + v2/3g25, (3.E.lb)

1

R’ +1 = Sdl’ 1+ e-(fl05dl+flrsdl logetSdlz +1)) (3310)

1
= 3.E.1d

Rw‘ R’ 1+ e—(flOS +fl25(1—CI)AIRI +flzs(At (1-01)+Rz)) ( )

1

An = (1- 62)th (3.E.1e)
 

1 + e—(flOMH‘fllw l0ge(RWt (1‘03“)

By setting [305d] to 0.5, the maximum seedling survival rate is 0.6225 when the

strength of density dependence is zero. This is approximately equal to the highest rate

compiled from the literature by Davis et al. . As fllsdl is varied from 0: -1, the strength of

the density dependent feedback on seedling survival probability increases. In the absence

of management (fixing cl and c2 at 0) the maximtun density of the unmanaged population
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decreases sharply as ,Blsd/ increases, although the population dynamics remain stable

(Figure 3.E.l ).

To explore the effects of managing rosettes or adults across this range of

increasing seedling density dependence, c1 and C; were varied from 0:1 as 515d] was

varied from 0:-1 (Figure 3.E.2). The lines in Figure 3.E.2 were created by running a 2000

year simulation from Equation set F with each combination of c1 or C; as ,8] 5d; was varied

from 0 to l and discarding the first 500 years of population sizes to eliminate transient

dynamics. For each level of seedling density dependence (,81 5d,), the proportion of the

unmanaged population size from each simulation was calculated by dividing the

maximum population size at each value of along the x axis by the maximum population

size when x = 0. Hence, all lines cross they axis at 1. In each case, increasing the strength

of seedling density dependence (as 315,11 becomes more negative) reduces the

responsiveness of the population to management. At the strongest level of seedling

density dependence simulated (fllsd/ = -1), increasing rosette management actually causes

an increase in population size, whereas increasing adult management still suppresses

population size.

Seedling density could negatively affect the responsiveness of the population to

rosette management if it is strong enough. Dismissing its potential effects on population

dynamics an management may be unwarranted.
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Figure 3.E.l Bifurcation of unmanaged A. petiolata populations with varied strength of

seedling density dependence modeled from equation set F. Variability in the strength of

density dependence was expressed by changing the slope parameter in the logistic

function for seedling survival to the rosette stage (31 say) from 0 to -l. The case of no

density dependence is shown on the far left where 13m”: 0 and seedling survival

probability is fixed by the intercept parameter at 0.6225. The dashed horizontal reference

line shows the maximum equilibrium size of the population with no density dependence.
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Figure 3.E.2. Proportional change in A. petiolata equilibrium population densities across

a range ofvaried strength of seedling density dependence and simulated management of

rosettes (left) and simulated management of Adults (right). The lines show the proportion

of the unmanaged population size for a given strength of seedling density dependence as

the strength of rosette or adult management is increased. Strength of seedling density

dependence increases as values ofAM] become more negative (see Figure 3.E.1). For

example, when there is no seedling density dependence, (615,11 = 0, dotted line),

increasing rosette mortality causes an approximately linear proportional decrease in

maximum population size, relative to the size of an unmanaged population with no
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APPENDIX 3.F: MULTICOLLINEARITY SIMULATION:

MATLAB COMPUTER CODE
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% Appendix B from J. Evans: Response to Pardini et al. (2009)

% Multicollinearity Simulation

% Created with MATLAB 7.6.0.324a (RZOOBa)

% To run this program, open a new editor in MATLAB and paste the entire

% script below into it. Save the file as Wulticollinearity_Demo.m'.

% The product of two random variables, x and y, will be correlated even

% when x and y are independent. If 2 is an additive function of x and y

% (Model Function A below) or a linear function of the sum of x and y

% (x+y), (Model Function 8 below), 2 will also be strongly correlated with

% their product (x*y). This can lend false support to regression models

% with an interaction term for x*y if the additive terms for x and y are

% excluded.

%

°/o The simulations below illustrate this. First run the script with model

°/o function A. The figure will show the relationships among x, y, z, x+y,

% and x*y, including correlation coefficients. If the MATLAB statistics

°/o toolbox is installed, four linear regressions will be run relating z to

% different combinations of x and y. Because we know the relationship of z

% to x and y, we can judge which correlations are 'true' and which are

°/o spurious.

%

% When 2 is a linear function of x and y with no interaction (Model

% Function A), both (x+y) and (x*y) are spuriously picked up as significant

°/o predictors of 2 if the main effects of x and y are excluded from the

% model, as seen below in the output of regressions (m3) and (m4). If the

°/o main effects are retained (m5), the regression correctly identifies the

"/0 interaction term as non-significant. The same is true when 2 is a

°/o function of (x+y) (Model Function B).

%

°/o When there is a significant interaction between x and y, substituting the

% sum of x and y (x+y) for the two independent main effects of x and y

"/0 results in incorrect parameter estimation. Run Model Function C and

% compare the parameter estimates for the intercepts and interaction terms

°/o in regression analyses (m3), (m4) and (m5). When the regression includes

% both main effects and the interaction (m5), the parameter estimates are

% accurate, even thought the P-values for the main effects are not always

% significant. However, substituting (x+y) for the main effects results in

% underestimation of the interaction coefficient and gross underestimation

°/o of the intercept (m3). Excluding just the main effects x and y results in

°/o overestimation of the intercept and the interaction term (m4).

°/o

% This is true also when the main effects are small but the interaction is

% significant and is one of the principal reasons to not drop non-significant

% main effects. Run Model Function D. It is identical in form to C, but the

% slopes for the main effects of x and y are an order of magnitude smaller

% than in C. Compare the regression output from (m3), (m4) and (m5). In

"/0 (m5), when the main effects are retained, the parameter estimates are

% close to their 'true' values. In (m3), where the main effects are

% replaced with the sum of x and y, the parameter estimate for the

% interaction is reasonably close to its true value of 2, although

"/0 underestimated. The intercept is also underestimated and, because we know

"/0 that z is a function of x and y, not (x+y), the result of a highly

°/o significant fit of (m3) to the data is spurious, due to the correlation

°/o between (x+y) and (x*y). In (m4), where the main effects for x and y are

°/o dropped, both remaining coefficients are overestimated. However, without

°/o the main effects, the increase in 2 as either x or y is increased will be
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°/o an underestimate.

%

% Therefore, it is important to retain the main effects in the model, even

% though they could be non-significant. Information-theoretic statistics

°/o such as Akaike's Information Criteria (AICc) may provide clearer guidance

°/o for model selection than variable significance alone.

%

%

% Version Date 6/27/2009 Jeffrey Evans

%

%

°/oWWWWVVWWWWWV\/W\NWWVWWW

%% Begin Simulation

clear all; close all;

% The simplest way to run the code is to set 'modelFun' below and press F5.

"/0 Figure will be created, and regression output will appear in the command

°/o window if the statistics toolbox is installed.

% Model function A: z = 5 + 2x +6y;

% Model function B: 2 = 5 +3(x+y);

°/o Model function C: 2 = 5 + 2x + By + 2(x*y);

°/o Model function D: 2 = 5 + 0.2x + 0.6y + 2(x*y);

% Choose which model function to use by typing 'A', 'B','C', or 'D' between single quotes:

modelFun = 'b';

% Use a large sample size in simulation The sample size is set by

% changing the value of 'reps'.

reps = 100;

% generate two random, normally distrusted variables, x and y. x has a

% mean 3 and standard deviation of 1. y has a mean 5 and standard

% deviation of 1.

x = random('normal',3,1,reps,1);

y = random('normal',5,1,reps,1);

% Select among functional relationships between 2, x, and y The random

% number generation for each parameter simulates the effects of process

% error in the relationship of z to x and y.

if ~isempty(strmatch('A',modelFun))

z = 5 + 2.*x+6.*y + normmd(0,1,reps,1);

t = 'z = 5 + 2x +6y'; °/o title for figure

elseif ~isempty(strmatch('B',modelFun)) || ~isempty(strmatch('b',modelFun))

2 =5 4» 3.*(x+y) + normrnd(0,1,reps,1);

t = 'z = 5 +3(x+y)'; % title for figure

elseif strmatch('C',modelFun) % with significant interaction term

2 = 5 + 2.*x+ 6.*y + 2.*(x.*y) + normrnd(0,1,reps,1);

= 'z = 5 + 2x + 6y + 2(x*y)’; % title for figure

elseif strmatch('D',modelFun) % with small main effects and significant interaction term

2 = 5 + 0.2.*x + O.6.*y + 2.*(x.*y) + normrnd(0,1,reps,1);

t = 'z = 5 + 0.2x + 0.6y + 2(x*y)‘; % title for figure

end
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%% Create Scatterplots

% Set size and aspect ratio of figure. Defaults will be restored if entire

°/o code is run (by pressing F5) or when MATLAB is closed and restarted.

scrsz = (get(0,'ScreenSize'));

set(0,'DefaultFigurePosition',[50 50 scrsz(4)*.5 scrsz(4)*.75]);

figure(1);

% plot y vs. x

subplot(3,2,1);

plot(x,y,'ok')

set(gca,'FontName',Times')

xlabel('X',‘FontName','Times');ylabel('Y',‘FontName','Times');

text(0.1,0.9,['\rm\itr\rm = ' num2str(corr(x,y),'%3.2f\n')],...

'Units','Normalized',...

'EdgeColor',‘k','BackgroundColor','w',...

'FontName','Times') °/o overlay correlation coefficient

axis square

°/o plot x*y vs x+y

subplot(3,2,2);

plot(x+y,x.‘y,'ok');

set(gca,'FontName',"l’imes')

xlabel('X+Y','FontName',‘Times');ylabel('X*Y','FontName','Times');

text(0.1,0.9,['\rm\itr\rm = ' num2$tr(corr(x+y,x.*y),'%3.2f\n')],...

'Units','Normalized',...

'EdgeColor','k','BackgroundColor',‘w',...

'FontName','Times') °/o overlay correlation coefficient

axis square

°/o plot 2 vs. x

subplot(3,2,3);

plot(x,z,'ok');

set(gca,'FontName',"|’imes')

xlabel('X',‘FontName','Times');ylabel('Z','FontName','Times');

text(0.1,0.9,['\rm\itr\rm = ' num2str(corr(x,z),'%3.2f\n')],...

'Units','Normalized',...

'EdgeColor','k',‘BackgroundColor','w',...

'FontName','Times') % overlay correlation coefficient

axis square

% plot 2 vs. y

subplot(3,2,4);

plot(y,z,'ok');

set(gca,'FontName',Times')

xlabel('Y','FontName','Times');ylabel('Z','FontName','Times');

text(0.1,0.9,['\rm\itr\rm = ' num23tr(corr(y,z),'°/o3.2f\n')],...

'Units','Normalized',...

'EdgeColor’,'k',‘BackgroundColor','w',...

'FontName','Times') °/o overlay correlation coefficient

axis square

"/0 plot 2 vs. x+y

subplot(3,2,5);
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plot(x+y,z,'ok');

set(gca,'FontName‘,'Times')

xlabel('X+Y','FontName','Times');ylabel('Z','FontName','Times');

text(0.1,0.9,['\rm\itr\rm = ' num23tr(corr(x+y,z),'°/o3.2f\n')],...

'Units','Normalized',...

'EdgeColor','k','BackgroundColor','w',...

'FontName','Times') % overlay correlation coefficient

axis square

% plot 2 vs. x*y

subplot(3,2,6);

plot(x.'y,z,'ok');

set(gca,'FontName',"l'imes')

xlabel('X‘Y','FontName','Times');ylabel('Z','FontName','Times');

text(0.1,0.9,['\rm\itr\rm = ' num2$tr(corr(x.*y,z),'%3.2f\n')],...

'Units','Normalized',...

“EdgeColor','k','BackgroundColor','w',...

'FontName','Times') % overlay correlation coefficient

axis square

% Set title for figure. Code modified from 'suplabel' by Ben Barrowes °/o

°/o Copyright information at bottom of script.

h=axes('Units','Normal','Position',[.08 .08 .87 .87],'Visible','off');

set(get(h,‘Title'),'Visible',’on')

title(t,'FontSize',14);

t_ax=get(h,'Title');

set(t_ax,'VerticalAlignment',‘middle','FontName','Times')

°/oVWVWVV\N\/\NV\NVVVV\NV\NVVV\NV\N\NW

%% Compare Regressions

°/o Note: This section requires that the MATLAB statistics toolbox be

% installed.

% Run four linear regressions of 2 vs. different combinations of x and y.

% The four regression models are:

% (m1) 2 = b0 + b1x + b2y (m2) 2 = b0 + b1(x+y) (m3) 2 = b0 + b1(x+y) +

°/o b2(x*y) (m4) 2 = b0 + b2(x*y) (m5) 2 = b0 + b1x + b2y +b3(x*y)

% where b0 is the intercept and b1, b2, and D3 are slope estimates

°/o The regression parameter estimates and associated p-values will be output

% in the MATLAB command window.

[b1 dev stats1] = glmfit([x y],z,'normal');

[b2 dev statsZ] = glmfit([x+y],z,'normal'); °/o#ok<NBF1AK>

[b3 dev statsS] = glmfit([x+y x.*y],z,'normal');

[b4 dev stats4] = glmfit([x.*y],z,'normal'); %#ok<NBRAK>

[b5 dev stats5] = glmfit([x y x.*y],z,'normal');

OUt‘l = CG"(4,3);

outt {1 ,1 } ='Parameter';

out1 {2,1} ='lntercept'; out1{3,1} ='X'; out1{4,1} ='Y';
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out1{1,2} = 'Coefficient';

out1{2,2} = b1(1); out1{3,2} = b1(2); out1{4,2} = b1(3);

out1{1,3} = 'P-Value';

out1{2,3} = stats1.p(1); out1{3,3} = statst .p(2); outt {4,3} = statst .p(3);

disp('(m1): z = b0 + b1x + b2y'); diSp(out1)

out2 = cell(3,3);

out2{1,1} ='Parameter';

out2{2,1} ='lntercept'; out2{3,1} ='X+Y';

out2{1,2} = 'Coefficient';

out2{2,2} = b2(1); out2{3,2} = b2(2);

out2{1,3} = 'P-Value';

out2{2,3} = stat52.p(1); out2{3,3} = stat32.p(2);

disp('(m2): z = b0 + b1(x+y)'); disp(out2)

out3 = cell(4,3);

out3{1 ,1 } ='Parameter';

out3{2,1} ='lntercept'; out3{3,1} ='X+Y'; out3{4,1} ='X'Y';

out3{1,2} = 'Coefficient';

out3{2,2} = b3(1); out3{3,2} = b3(2); out3{4,2} = b3(3);

out3{1,3} = 'P-Value';

out3{2,3} = stats3.p(1); out3{3,3} = statsS.p(2); out3{4,3} = stats3.p(3);

disp(sprintf('M3 is analogous to the summer rosette\n survival function in Pardini et al. (2009)'));

disp('(m3): z = b0 + b1(x+y) + b2(x‘y)');disp(out3)

out4 = cell(3,3);

out4{1,1} ='Parameter'; out4{2,1} ='lntercept'; out4{3,1} ='X'Y';

out4{1,2} = 'Coefficient';

out4{2,2} = b4(1); out4{3,2} = b4(2);

out4{1,3} = 'P-Value';

out4{2,3} = stats4.p(1); out4{3,3} = stats4.p(2);

disp('(m4): z = b0 + b2(x'y)'); disp(out4)

out5 = cell(5,3);

out5{1,1} ='Parameter'; out5{2,1} ='lntercept'; out5{3,1} =‘X';

out5{4,1} ='Y';out5{5,1} ='X*Y'; out5{1,2} = 'Coefficient‘;

out5{2,2} = b5(1); out5{3,2} = b5(2); out5{4,2} = b5(3); out5{5,2} = b5(4);

out5{1,3} = 'P-Value';

out5{2,3} = statsS.p(1); out5{3,3} = stat55.p(2); out5{4,3} = stat35.p(3); out5{5,3} = stat35.p(4);

disp('(m5): z = b0 + b1x + b2y +b3(x*y)'); disp(outS)

% Restore default screen size settings

set(O,‘DefaultFigurePosition',scrsz);

°/o°/o Copyright lnforrnation for redistribution of 'suplabel' code

°/o Used to place equation on figure with subplots.

%

°/o Code available at Mathworks file exchange:

°/o http://www.mathworks.com/matlabcentraI/fiIeexchange/7772

%

% Copyright (c) 2004, Ben Barrowes All rights reserved.

%

% Redistribution and use in source and binary forms, with or without

% modification, are permitted provided that the following conditions are
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% met:

%

% ‘ Redistributions of source code must retain the above copyright

% notice, this list of conditions and the following disclaimer.

% * Redistributions in binary form must reproduce the above copyright

% notice, this list of conditions and the following disclaimer in the

°/o documentation and/or other materials provided with the distribution

%

°/o THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

”AS

% IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,

% THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

% PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR

°/o CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

°/o EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

% PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

% PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY

OF

% LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

% NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

°/o SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
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CHAPTER 4: THE PREDICTED RESPONSE OF ALLIARIA PET[OLATA TO

BIOLOGICAL CONTROL: LINEAR DETERMINISTIC DEMOGRAPHIC MODELS
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ABSTRACT

Temporal and spatial variation in the demographic rates of invasive weed species

can affect the outcome of management. When classical biological control is applied as a

management tool, the introduction of ineffective agents can increase the risk of impacts

to non-target species. Building from an earlier published model of the invasive weed

Alliaria petiolata (garlic mustard), I evaluated the sensitivities and elasticities of the

asymptotic population growth rate OI.) to both annual and sub-annual demographic

transition probabilities. The model was parameterized using data from twelve sites in

Michigan and Illinois, USA, and over three plant generations. Annual estimates of It

ranged from 0.48 to 5.88 across all sites and years. Population growth rates within sites

were highly variable, ranging from 0.80 to 5.88 within one site. I used a megamatrix

model to summarize variation in growth within sites. Site growth rates (KM) ranged from

0.83 to 3.54 with an arithmatic mean of 1.90. Sensitivities and elasticities varied with 1,

indicating that the transitions with the largest impacts on population growth differ for

growing and declining populations. This makes management options dependent on

population growth rate. Rosette survival (summer and winter) consistently emerged as the

transition with the greatest effects on A in populations with positive growth, as did

germination of new seeds and fecundity. This result is consistent with previous

predictions by Davis et al. (2006) that rosette survival should be targeted by management.

My model raises the caveat that rosette survival is only a target transition when growth is

positive; its proportional effect on it decreases as it decreases. I predict a lower

probability of successfully managing A. petiolata with biocontrol than Davis et al. My

simulations predict that the root-crown mining weevil Ceutorhynchus scrobicollis is
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likely to control up 5 of 12 populations, while introducing a second species could extend

control to as many 9 populations, although the probability of success is very low (< 0.1)

at 4 of these 9 sites. Better data on the distribution of agent impacts is necessary to refine

these predictions.
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INTRODUCTION

Demographic analyses are increasingly being used to interpret the ecology of

invasive plant species and to guide the development of population management plans

(e.g. Vitousek and Walker 1989, Byers and Quinn 1998, Shea and Kelly 1998, Parker

2000, Sakai et al. 2001, Buckley et al. 2003a, b, Koop and Horvitz 2005, Shea et al.

2005). McEvoy and Coombs (1999) proposed that demographic analyses of weed

populations could contribute especially to improving success rate ofweed biological

control and to reducing possible negative effects on native communities. Some ofthe

safety concerns about weed biocontrol relate to the common practice of releasing

multiple agent species per target as a means of finding one that successfully suppresses

the target (the "lottery model", McEvoy and Coombs 1999, McEvoy and Coombs 2000,

Denoth et al. 2002). There are two principal concerns with this approach. First, biocontrol

agent species which establish but do not suppress their hosts are more likely to become

abundant in the absence of negative feedbacks from their host plants. Indeed, the

establishment of one or more ineffective biocontrol agents is a common occurrence

(McEvoy and Coombs 1999, Denoth et al. 2002). This increases the risk of the agent

indirectly affecting non-target species at higher trophic levels by altering food web

structures (Pearson and Callaway 2003, Ortega et al. 2004, Pearson and Callaway 2005).

To minimize this risk, it is desirable to release the smallest number of agents necessary to

suppress the target weed. Second, testing the feeding preferences and host specificity of

agents that do not ultimately control the target is an unprofitable investment of monetary

resources and scientist time. Testing and introduction of each agent species cost $460,000
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US. dollars in 1997 (McFadyen 1998 $611,155 in 2009,

http://www.bls.gov/data/inflation_calculator.htm).

Using sensitivity and elasticity analyses of matrix population models, life history

transitions in the target species’ life cycle that have a large effect on the population

growth rate (,1) can be easily identified (Caswell 2001) before biocontrol agents are

released. This information can then be applied as a filter to the biocontrol agent selection

process. By increasing emphasis on species that disrupt these critical transitions,

biological control researchers can conduct a more directed search for agents that are most

likely to have a large impact on the target plant (McEvoy and Coombs 1999). This could

serve to reduce the total number biocontrol agent species introduced, thereby reducing

the risk of non-target impacts, as well as the costs of testing ineffective agents.

Davis et al. (2006) were the first to apply predictive plant demographic models to

the development of a new biocontrol program before the introduction of any biocontrol

agents. A biological control program for the invasive biennial forb Alliaria petiolata

(garlic mustard, Brassicaceae [M. Bieb] Cavara and Grande) has been in development

since 1998 (Blossey et al. 2001b) with efforts focused on testing the host specificity of

four European weevils in the genus Ceutorhynchus (Coleoptera: Curculionidae) that

affect A. petiolata at different stages in its life cycle. Davis et al. (2006) used a linear,

deterministic matrix population model ofA. petiolata to estimate the probability of

successfully controlling it with either one or two biocontrol agent species. Their model

was parameterized using the ranges of reported A. petiolata demographic rates from

multiple published sources. It generated predictions about the efficacy required of

biocontrol agents that attack different stages in the life cycle to suppress the target
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species, defined here as the reduction of It to 1.0 or less, This is the level at which

individuals exactly replace themselves. Comparing their model predictions to data on the

impacts of the candidate biocontrol agents from host specificity trials in Europe, Davis et

a1. concluded that the majority (72%) of simulated populations were likely to be

controlled effectively by a single agent that simultaneously reduces per capita

reproductive output of mature plants by 49% and survival of rosettes to the flowering

stage by 43%.

One other demographic model ofA. petiolata has been published which made

predictions about which life history stages should be targeted for management (Pardini et

al. 2009). Unfortunately, a number of biological and statistical problems in the

conception and implementation of this model as published render its predictions about A.

petiolata population dynamics and management questionable. An extensive discussion of

Pardini et al.’s model is presented in Chapter 3.

The approach used by Davis et al. (2006) considers the potential effects of

managing one or two life history transitions simultaneously. This is likely a reflection of

the kinds of impacts that would be seen if either one or two of the candidate biocontrol

agents were introduced and performed at its maximum possible efficacy. However, the

Davis model only considered the asymptotic dynamics of individual populations by

holding the transition probabilities within populations static through time. Although they

looked at the projected responses ofA. petiolata across a range of demographic rates,

their analysis did not account for the possibility that demographic rates vary through time

within populations. Because natural populations can be highly variable (in population

structure, dynamics, etc...) across locations and over time, it is important to consider how
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the variation in a population’s demographic rates over time will affect its long-term

response to perturbations (i.e. management). The transition matrices in Davis et al.’s

analysis were assembled by varying the demographic parameters individually using a

single natural population as a starting point. Because of this, the matrices they used do

not necessarily reflect the correlations among parameters likely to be found in natural

populations.

I have previously shown that A. petiolata demographic rates are highly variable

across its range within the North Central Region of the United States (2006, Chapter 2)

This variation is highly structured across populations and over multiple plant generations

as a function of population density, climate, and soil attributes. This finding suggested

that a static matrix modeling approach in which the transition probabilities are fixed

through time likely does not accurately represent A. petiolata's population dynamics. In

this paper, I build on the matrix models ofA. petiolata by Davis et al. (2006) and extend

them using data from multiple natural populations ofA. petiolata. My goal was to assess

variation in population growth rates and population structure ofA. petiolata across its

demographic parameter space. Here, I examine the effects of variation in the observed A.

petiolata demographic rates on estimated population growth rates (,1), the sensitivities and

elasticities of I. to variation in transition probabilities among the study populations, and

the projected response of populations to different combinations of simulated biological

control management. I do this using linear, deterministic matrix population models and

with “megamatrix” models (sensu Horvitz and Schemske 1986, Pascaraella and Horvitz,

1998) which account for temporal variation in vital rates within sites by cross-classifying

individuals by life stage and habitat condition.
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METHODS

Study System and Data Collection

Alliaria petiolata is a common invasive weed of forested ecosystems across

much ofNorth America (USDA-NRCS 2007). Its general biology and ecology are well

studied and have been summarized in several reviews (Cavers et al. 1979, Nuzzo 2000,

Rodgers et al. 2008). I will briefly review its biology as recorded in Michigan and

Illinois. All demographic statistics refer to data from Chapter 2 unless noted otherwise.

Seeds germinate in March or April in Michigan and Illinois producing dense carpets of

seedlings with densities (seedlings m'z) ranging 75—6025 (mean = 1171 , median = 878).

Seedling survival (annual proportion surviving in 0.16-0.25 m'2 plots) is variable (range

= 0-1, mean = 0.486) and negatively density dependent. Seedlings that survive form low

rosettes ofbasal leaves by June. Rosettes persist over the winter as green plants. All

surviving rosettes bolt and flower by May of their second year. Between 0 and 20%

(median = 1.5%) of seedlings that emerge in the spring survive to flower. The majority of

individuals self-pollinate (Durka et al. 2005). Seeds are produced in slender fruits

(siliques) along the upper stem. The number of seeds per silique increases nonlinearly

with plant size, reaching an asymptote of around 14 seeds per silique in large plants in

my system (see Appendix 2.B.iv). All second year plants senesce by August and set their

seeds over the summer as the siliques dry and become brittle. Individual plants produced

0-1705 (mean = 85.7 seeds plant-]) seeds (Chapter 2). Seeds require cold stratification to

germinate (Baskin and Baskin 1992, Anderson et al. 1996, Raghu and Post 2008).

Between 6.1-68.2% (mean =30.l%) of newly shed seeds germinate after one winter,
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although there is strong inter-annual variation in this rate. Seeds which do not germinate

can remain dormant for twelve or more years in the soil (Nuzzo and Blossey, unpublished

data). Annual seed survival probability is high (mean = 0.919), while germination

probabilities of dormant seeds after two winters ranged from 0.001-0.569 (mean = 0.110).

These each contribute to the longevity ofA. petiolata's seed bank.

The search for biocontrol agents for A. petiolata was initiated in 1998. From an

initial pool of over 70 phytophagous insects known to feed on A. petiolata in Europe,

four weevil species in the genus Ceutorhynchus were considered the most promising and

have been studied in feeding preference trials (Blossey et al. 2001b, Davis et al. 2006,

Gerber et al. 2007b, Gerber et al. 2007a, 2008a). The four weevils each complete their

life cycle on A. petiolata. All feed on A. petiolata foliage as adults and decrease fecundity

by reducing photosynthetic capacity. As larvae they affect A. petiolata at different stages.

The multivoltine root crown feeder C. scrobicollis aestivates during summer in Europe

and oviposits on rosette leaves from mid-September through April while mean

temperatures are above -5°C (Gerber et al. 2007a). Larvae hatch from eggs laid in buds,

leaves, and petioles and mine in the root crown over the winter. In spring, C. scrobicollis

larvae leave A. petiolata and pupate in the soil, emerging as adults in May-lune (Gerber

et al. 2007a). The univoltine stem-borers C. alliariae and C. robertii each oviposit on A.

petiolata in early spring (Gerber et al. 2008a). Larvae mine within stems and petioles

until late spring and pupate in the soil. Adults emerge in June and July, feed on A.

petiolata foliage, and overwinter in the litter. Finally, C. constrictus feed on developing

seeds in June and July as larvae. Each larva consumes 2-3 seeds on average before
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migrating to the soil to pupate (Gerber et al. 2008b). Ceutorhynchus constrictus

overwinter as pupae and emerge as adults in the spring.

Host specificity testing of C. scrobicollis and C. alliarz'ae are the closest to

completion and these species are the most likely of the four to be introduced first (Hinz

and Gerber 2005). The impacts of these two species varied across several feeding trials

conducted in greenhouse and common garden experiments from zero effect on seed

production by either agent (Gerber et al. 2007a, 2008a), zero effect on rosette survival by

C. alliariae (Gerber et al. 2007b) and 7% reduction of rosette survival by C. scrobicollis

(data from Hinz and Gerber 2001). By itself, C. scrobicollis has caused up to a 49%

reduction in fecundity and a 45% increase in rosette mortality (Gerber et al. 2002). The

combined action of the two agents caused up to 82% and 50% reductions in rosette

survival and fecundity, respectively (Gerber et al. 2002) Given the small sample sizes

used and wide range of impacts caused by these species in different experiments, it is

hard to know exactly what effects they might have on A. petiolata if released in North

America or what kinds of error terms to associate with their predicted efficacies. This

uncertainty makes demographic models potentially usefirl in estimating impacts by

allowing simulation of different scenarios.

Demographic Data

Plant demographic data were collected from 12 A. petiolata populations in

southern Michigan (n = 7) and Illinois (n = 5) between 2005 and 2008 (Table 2.1). Site

selection was based on accessibility and on the presence of established, unmanaged A.

petiolata populations. Demographic rates were measured during three sampling periods
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denoted here by the year in which the sampling period began (year = 2005, 2006, and

2007). Beginning in 2005, four replicate measures of each demographic rate were made

at each site during each sampling period. Four sampling areas were established within

each site (11 = 48 experimental units total): two at the forest edge and two in the forest

interior. Analysis of spatiotemporal variation in demographic rates indicated no

differences between edge and interior quadrats for any demographic rate, so all replicates

were treated equally Chapter 2.

Survival rates were recorded in three quadrats within each sampling area.

Seedling survival to the rosette stage (5,, seedling survival) was recorded in 20 x 20 cm

(IL) and 25 x 25 cm (MI) quadrats between late February and June of each year. Davis et

al. (2006) modeled rosette survival from June to June as a single survival parameter

abbreviated s,f. I split this transition into two lower-level demographic rates to improve

the temporal resolution of the analysis and model. Rosette survival from June to October

(ssum, summer survival) and from October to June the following year (swim winter

survival) were recorded in 40 x 40 cm (IL) and 50 x 50 cm (MI) quadrats. The positions

of individual rosettes within each quadrat were marked on transparent plastic data sheets

in June each year. Survivors were located in October and again the following June using

the transparency as a map. SSW, and s,,,.,-,, can be multiplied together to generate s,fin the

same temporal currency of Davis et al.’s parameter. Fecundity was estimated from all

survivors in the rosette quadrate in June of the second year by counting the number of

siliques per plant and scaling by the number of seeds per silique estimated from nearby

plants not included in the demographic censuses (Appendix 2.B.iv).
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Germination of one-year-old and two-year-old seeds and seed survival from June

to June were followed in 20 x 20 cm stainless steel wire mesh trays buried at the soil

surface. Each experimental seed tray was paired with a control tray that did not receive

seeds. This yielded estimates of the probability of germination ofnew seeds after one

winter (g1) and the probability of germination of older dormant seeds from the soil seed

bank (g2). The annual survival probability of dormant seeds (s,) was also measured fi'om

these seed trays. Greater detail on all sampling procedures can be found in Evans et al.

(unpublished manuscript). Mean values of each demographic rate were calculated within

each site during each year for use in the present analysis (n = 36 site x year mean rates).

Replicate measures of some demographic rates were lost to vandalism or animal

disturbance. In other cases, demographic rates could not be measured because there were

zero plants at the beginning of a transition interval (e.g. if all rosettes died in summer,

winter rosette survival could not be estimated). In each of these cases, the replicate was

omitted from the calculation of the mean transition rate.

Matrix Model Construction

Davis et al. (2006) described the construction of a matrix model for A. petiolata

which I reiterate here with some modifications and apply to the parameterized matrices

from the 12 study sites. The life cycle ofA. petiolata in the northern continental United

States is described in terms of the three life history stages present in mid-summer just

before seed set: dormant seeds in the soil seed bank (S), first year rosettes (R), and

flowering second-year plants (P) about to set seed (Figure 4.1). In this life cycle diagram,

each arrow represents a transition that an individual can make between two stage classes
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over the course of a full year (e. g. S—vR, R—->P). Following the terminology in Caswell

(2001), transitions which occur over one full projection interval of a model (one year, in

this model) are referred to as upper-level transitions. Transitions that do not occur in

North American A. petiolata populations were assumed to have zero probability of

occurring and are not represented in Figure 4.1. Newly shed seeds produced by flowering

plants in June of year 1 can either germinate after one winter and become rosettes in year

2 with some probability (P—->R transition) or they can remain dormant and enter the soil

seed bank in year 2 (P—->S). Note that the P—rR transition only occurs via seed

production. Flowering plants do not perenniate or become rosettes. Dormant seeds in the

seed bank in year 1 can either germinate in the spring to become rosettes in year 2 (S——>R)

or can remain dormant for another year (S—nS). There is no stasis in the rosette stage.

Because A. petiolata does not flower in the year that it germinates, rosettes in year 1

either transition to the flowering plant stage in year 2 (R—>P) or die.

The upper-level transitions are quantified as the products of sub-annual, lower-

level transitions. For A. petiolata, the five nonzero upper-level transitions are composed

from combinations of seven lower-level transitions which I measured in the field and

appear as the equations alongside each arrow. The lower-level demographic rates

quantify the probabilities associated with each lower level transition. Three changes were

made from the model in Davis et al. (2006). First, the R to P transition (s,fin Davis et al.)

was split into the lower-level transitions SSH," and SW, because summer and winter

survival were measured in separate quadrats in Michigan in 2005. Summer survival was

measured in the smaller seedling quadrats that year, and summer and winter survival was

measured in the larger rosette quadrats thereafter. Second, because seed survival (s,) was
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quantified in the field over a full year but is used twice as a sub-annual transition (P —>R,

S—->R), I scaled the observed value proportionally to account for s, over 8 months in these

transrtrons by raising 1t to the two-th1rds power as s,2 3. Thrrd, followrng Davrs et al., the

variables c1 and c2, which simulate rosette mortality and fecundity reduction, are shown

as (l-cn) to express them in terms of survival. The transition probabilities in the life cycle

diagram make up the entries in the projection matrix A. The A matrix has one row and

one column for each life history stage in the population (Figure 4.1). The 3 x 3 A matrix

for A. petiolata has rows 1, 2, and 3 and columns 1, 2, and 3 for seeds, rosettes, and

flowering plants, respectively. The individual elements in the A matrix are “the aij” (the

. . h . . .

entry in the It row and the11" column number) and represent probabrlrtres of an

individual in life stagej at time t transitioning to stage i at time t + l (Caswell 2001).

Thus a32 is the probability of individuals that are rosettes (stage 2) at time t surviving to

becoming flowering plants (stage 3) at time t + 1, while an corresponds with the

transition from flowering plants at time t to rosettes at time t + 1. One A matrix was

parameterized for each site during each year using the mean lower-level parameters,

yielding 3 matrices per site, for a total of 36 A matrices

The numbers of individuals in each stage class are tracked in a column vector, 11,

which has one row for every life history stage. The entries in rows 1-3 (n1, n2, and n3)

represent the numbers of seeds, rosettes, flowering plants, respectively, in the population

at a given time. Given a population vector n,, the population size can be projected
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forward to time t + 1 using matrix multiplication to multiply the transition matrix by the

population vector as

nz+1 = Asynt (4-1)

where n,+1 and n, are the population vector at times t + 1 and t, respectively, and A,y is

the projection matrix for site s in year y. The population growth rate (It) was calculated as

the dominant eigenvalue of the A matrix (Caswell 2001). When It > 1, the population size

increases, whereas I» < 1 indicates population decline. In terms of demography, the goal

ofA. petiolata management is to persistently drive I below 1. The sensitivities and

elasticities of It to perturbation of the ag- were used to analyze which transitions have the

greatest impact on It. The sensitivity of each matrix element is the partial first derivative

of X with respect to aij. The sensitivities are the local slope of k at a given value of aij

(Caswell 2001) and are compiled in the sensitivity matrix S as:

02

3a,]-

Elasticities of it to perturbation of the aij scale the sensitivities (sij) by their proportional

contributions to it. For each matrix A,y the elasticity matrix E contains the elasticities of

lambda to the aij. These are calculated as

-3192

where eij is the elasticity of It to a proportional change in matrix element of}, alt/(3a,)- is the

sensitivity of k to an additive perturbation of aij, calculated as the partial derivative of it
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with respect to aij, and the eij sum to 1 within each matrix E (Caswell 2001). Because

management ofA. petiolata is likely to be applied at the level of the lower-level

transitions, which are components of the of] (e. g. management of fecundity, management

of seedling survival, etc. . .), it is useful to analyze how 7» responds to perturbations of the

lower-level transitions. The sensitivities of it to the lower-level transitions are:

x ax ij Gal-j Bx '

and the elasticities of k to the lower-level transitions are:

x (M x 61 a "

E - J- (4.5)
x‘aax’r 1.]. 3a,,- ax

where Ex is the elasticity of it to a proportional perturbation of the lower level transition x

(Caswell 2001).

I used two previously described methods (Davis et al. 2006) to visualize the

potential impacts of the proposed biological control agents on A. petiolata. I first

calculated the sensitivity and elasticity of It to each of a) the five non-zero upper level

transitions (a1 1, (221, a32, a23, and a13,) and b) the seven lower-level transitions (ss, sr, g1,

g2, ssum, Swim andj) for each of the 36 A matrices. The sensitivity and elasticity of

lambda to each of these transitions was then plotted against the observed transition

values. For example, the elasticities (Ex) of It to each of the lower-level transitions were

plotted against g1 to show how the rankings of the Ex change as g1 changes. This is,

effectively, a set of empirical second derivatives of lambda with respect to each

transition. It illustrates how the response of lambda to a proportional perturbation in one
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of the lower-level transitions changes across the observed range of each transition. This is

used to interpret the relative potential magnitudes of the response of it to management of

each lower-level transition. Rankings of the sensitivities and elasticities were compared

among populations with low and high growth rates. Pearson correlation coefficients

between the elasticities and 1 were used in some cases to help elucidate these patterns.

The natural logarithm of It was used in these calculations to meet the assumption of

normality. Because lower-level elasticities do not sum to 1 as the upper-level statistics

do, they are not interpretable as proportional contributions to it in the same way (Caswell

2001)

In the second set of analyses, I used a megamatrix model (Pascarella and Horvitz

1998) for preliminary exploration of the effects of Markovian environmental variation on

projected biocontrol outcomes. Note that the megamatrix analysis with uncorrelated

environments is equivalent to a conventional analysis of the weighted mean matrix A

created from the means of the aij across the three years within a site (Tuljapurkar et al.

2003). I chose to pursue the megamatrix approach because it set up a flexible analytical

framework that can be adapted in future models as additional environmental data

becomes available, and because of difficulty in estimating appropriate weights associated

with the mean A matrix. In a megamatrix model, individual plants are cross-classified by

life stage and by the state of the environment, defined here by the three annual A matrices

within each site. The three annual A matrices parameterized for each site characterize a

portion of the local variability in A. petiolata demographic rates which is driven by a

combination of intrinsic and extrinsic biotic and abiotic factors (see Chapter 2). For the

purpose of this analysis I assume these are representative of the true variation in A for
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each site. For the megamatrix analysis, I create a 3 x 3 matrix P of environmental

transition probabilities with one row and one column for each of three environmental

states (A matrices) parameterized for each site. The P matrix characterizes how the

environment changes over time. Each entry pk] in P is the probability that the

environment in state I at time t will transition to state k at time t+l, where the time

interval t to t+1 is the same as the projection interval of the population matrix A and the

probabilities within each row of P sum to l. The m x n population projection matrix A is

combined multiplicatively with the p x q environmental transition matrix P to create the

mp x nq megamatrix M, whose entries quantify the probability that an individual in stage

j in environment I at time t transitions to stage i in environment k at time t+1. See

Pascarella and Horvitz (1998 Appendix B) for details on the parameterization of M. The

dominant eigenvalue of M, M4, is the asymptotic growth rate of the population as the

environment changes according to P. In the analysis presented here, I assumed that the

environments were uncorrelated, where the probabilities pk] in P were equal for all k,l and

generate a stochastic sequence of environments. The 3 x 3 environmental matrix is

"A A A-

P = % y3 % (4.6)

A A A-

and was used to generate the megamatrix M.

  

For each site I created zero growth isoclines (contours of k = 1) from the

megamatrix by calculating TM for all factorial combinations of c1 and (’2 between 0 to l
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in increments of 0.001, and then creating a contour plot ofM4 = 1 versus c1 and c2. These

were interpreted by overlaying them on plots showing the expected range ofbiocontrol

agent impacts on A. petiolata rosette survival and fecundity estimated from common

garden and greenhouse studies during agent host specificity testing (Gerber et al. 2007b,

Gerber et al. 2007a, 2008a, E. Gerber and H. Hinz, personal communication). Sites

whose zero growth isoclines intersected the plotted range ofbiocontrol impacts can

potentially be controlled. The empirical probability distributions of agent impacts on A.

petiolata are unknown. We only know that the range of impacts each agent has is from

zero to an observed maximum. The probability of successfully controlling A. petiolata at

each site was assessed from the plots assuming a uniform probability distribution for

agent impacts (i.e. an agent is equally likely to have any impact from zero up to its

maximum). For each site, the ranges of possible impacts from C. scrobicollis alone and

from C. scrobicollis with C. alliariae were each plotted as shaded rectangles, and the

zero grth isoclines were plotted over them. The probability of success was then

estimated as the proportion of the shaded area above the zero growth isocline.

I also considered the annual variation in the response to biocontrol, although

management recommendations are based on the megamatrix results. For each site I

created zero growth isoclines (contours of )t. = 1) from the three annual A matrices, and

varied rosette mortality and per capita fecundity to simulate the effects of the proposed

biocontrol agents. The annual zero growth isoclines were created by solving the

characteristic equation of each matrix for c1, the simulated reduction in per capita

fecundity, in terms of the observed demographic rates, It, and Cg, the simulated reduction

in per capita rosette survival:
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c1 = l3 — 55(1-gz)/12 +102(-ss(1-82)f9s2/3813r)+
(4.7)

2 / 3 2 / 3

k2 (fis glsrssumswin )+ CZ (135“ — gl )Ss gZSrSsumSwin )J

Equation 4.7 is based on Equation 4 in Davis et al. (2006) but incorporates changes in the

calculation of vital rates described above. Details on its derivation are available in the

Appendix in Davis et al. (2006). By setting 7» to 1 and varying c2 fiom 0 to l, I was able

to calculate combinations of c1 and c2 that correspond with stable population size and

plot zero growth isoclines for each annual matrix within each site.

RESULTS

Population growth rates

Years: There was considerable temporal variation in population growth rates (3.)

within each site. Over the three years of study, it varied among the twelve sites from 0.48

to 5.88 (Table 4.2). Some sites consistently had low annual population growth rates. Two

(HR, RL) never reached a It of 1. Five sites had positive growth during a single year only,

four during two years only, and just one site, HSP, had positive growth during all three

years. Within five sites (41%) l» was greatest during the first year of the study and

decreased in years two and three. Temporal variation in it across all sites is summarized

by comparing the column arithmatic means of the annual 7t estimates in Table 4.1 .

Overall, I» was greatest in 2005 and was nearly identical thereafter, dropping from 1.825

to 1.014 and 1.019 successively.

Sites: Spatial variation in 71. across sites is evaluated with TM, the megamatrix it for

each site (Table 4.2). Estimates of 1M ranged from 0.932 (HR) to 3.543 (B) and were
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frequently greater than even the highest annual it within a site Figure 4.2. For example,

the highest annual I. in the JP site was 1.595 (2006), while TM was 2.298. There were no

consistent geographic patterns in the spatial distribution of X within years, although the

two sites with the highest RM were both in southern Illinois. The overall mean of the12

TM estimates was 1.897, meaning that on average the A. petiolata study sites supported

rapid positive growth. This number is within the range ofpublished estimates of l. for A.

petiolata from previous studies which vary from 1.2 (V. Nuzzo and B. Blossey,

unpublished data in Davis et al. 2006) to 4.4 (Drayton and Primack 1999, Rejmanek

2000). Only one site had negative growth (HR). The two sites with the highest site mean

X, both in Illinois, each had a It > 5 during 2005 (Table 4.2), and in one of these sites (B)

it dropped to below 1 during the following two years.

Sensitivity and Elasticity Analyses

Upper-Level Transitions: Across the study populations, management which

reduces the transition of rosettes to the flowering stage (R—->P) is expected to cause the

greatest absolute reduction in It. The sensitivity of It to perturbation of the aij varied in

rank order among the 36 A matrices. These are shown in Figure 4.3 (upper panel) sorted

from left to right by S32, the sensitivity of k to an (R-+P). The population growth rate It

most frequently had the greatest sensitivity to perturbation of a32 (R—+P) followed by a21

(S—+R). This is a biologically intuitive result, as a32 is the proportion ofA. petiolata

individuals that survive to reproductive maturity. Raising a21 similarly increases the rate
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at which dormant seeds exit the seed bank to become rosettes and can progress toward

reproductive maturity. Sensitivity of It to on was only large when S32 was small. The

mean sensitivity to a32 was over twice that of (131 (5.7 vs. 2.4), and the sensitivities of it

to all other upper-level transitions were comparatively low.

In contrast, the elasticity (eij) of it to an (S—>S) was, on average, much greater

than the other elasticities. However, e11 was strongly, negatively correlated with logeot)

(log transformed to meet assumption of normality) across the 36 A matrices

(r = —0.9118); e11 was large almost exclusively among poorly performing populations

with A near or below 1. This occurred because 011 was largely-driven by seed survival

(s3), which had relatively little variation and was almost universally high, while there was

much more variation in the other a,-j and lower-level transitions (Table 4.1). The elasticity

of I» to al 1 becomes inflated when reductions in the other more variable transition

probabilities cause It to decrease. When this happens, a1 1/1», which is multiplied by the

sensitivity of 3. to all (511) to calculate e11 (Equation 4.3), becomes disproportionately

large and drives up e11. Thus, although a“ appears to rise in importance in a number of

cases, it does so somewhat passively by not changing in synch with other transitions and

only makes large contributions to it in populations where I. is already low (Figure 4.4,

left). Russ Forest (2007) is the most extreme example of this, where there was 100%

summer mortality in all quadrats which forced winter survival and fecundity to 0. The A

and E matrices for this site in 2007 were:
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"0.7688 0 0

  

A: 0.0388 0 0 (4.8)

_ 0 0 0‘

and

'1 0 0'

E: 0 0 0 (4.9)

_0 0 04  

Because the individuals transitioning to the rosette stage in (221 (S—+R) at time t have 0

survival probability thereafter (because a33, R—>P, = 0), a proportional change in on has

no effect on I». Only individuals in an (S—>S) contribute to the next time step, and k =

a] 1: 0.7688. This was not the most robust population.

After a1 1, a3; (R—rP) made the next largest contributions to it (Figure 4.3,

bottom). The elasticity of l. to a32 (e32) was positively correlated with logeot) (r =

0.8152) and was greater than all other elasticities in the populations and years with the

highest 7» (Figure 4.4, left). Based on this, the transition from rosettes to the flowering

stage is the most important management target among the fastest growing and most

problematic populations. Transition a23 (P—->R) caused the next largest proportional

response in 1 followed by 013 (P—)S) and 021, (S—rR), which had approximately equal eij

(Figure 4.3).
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Lower-Level Transitions: The population growth rate It had the greatest elasticity

to perturbation of dormant seed survival (SS) in most sites and most years (Figure 4.5).

Elasticities of l. to g1 and tof, 5,, s_,.,,,,,, and SW, were positively associated with increases

in each of those five lower-level demographic rates, and were most strongly correlated

with increasing swm and g1. The elasticities of I. to f, s,, ssum, and swim (abbreviated E4)

are shown with a single line (solid line, Figure 4.5) because their values are equal across

the range of the data. E4 exceeded E,1, at the higher levels of ssum, (dash-dot line, Figure

4.5). Seed survival (s5) had low variability (Table 4.1) and was only weakly correlated

with logeOt) (r = 0.2838), while ssum was positively correlated with logeOt) (r = 0.7059),

and s, and ssum were uncorrelated (r = 0.0256). This and the plot of the elasticities versus

A (lower right, Figure 4.5) suggest that this reversal in ranking parallels what was seen in

the upper-level elasticities (Figure 4.4, right). It results not from a tradeoff between s, and

sum, but rather from the response of l. to increasing Ssum as s, remains stable and large in

the background. The higher )1 becomes, the greater its proportional response is to

perturbation of all transitions except 5, and g3. The sensitivities of It to the lower level

transitions reveal that this is accompanied by a larger increase in the magnitude of 1’s

response to additive perturbation ofswim g1, and ssum (Figure 4.6). Thus, the more rapidly

A. petiolata grows, the more vulnerable it becomes [demographically] to management of

rosette survival and germination. Management should be preferentially directed at these

transitions.
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Zero Growth Isoclines

Alliaria petiolata showed a range of responses to the simulation ofmanagement

(Figure 4.7). In Figure 4.7, the larger shaded area represents the ranges of increased

rosette mortality (x-axis, 0-50%) and reduction of fecundity (y—axis, 0-82%) induced in

A. petiolata during several studies of the candidate biocontrol agents C. scrobicollis and

C. alliariae (Gerber et al. 2002, Gerber et al. 2007b, Gerber et al. 2007a, 2008a, E.

Gerber personal communication). The smaller shaded area shows the range of observed

impacts of C. scrobicollis, acting by itself, on fecundity (0-49%) and rosette survival (0-

45%) across all experiments. Zero growth isoclines which intersect the shaded area or fall

below the origin (and thus are not visible) indicate combinations ofA. petiolata

demographic rates and agent efficacy which suppress 1» below 1. Predicted management

outcomes are based on interpretation of the megamatrix zero grth isocline for each

site. Annual zero growth isoclines are shown in Appendix 4.B

Nine of the twelve (75%) A. petiolata study populations are potentially

controllable if C. scrobicollis and C. alliariae are released together. This assumes that

management efficacy is at the extreme high end of the expected range for both agents

(top right comer of shaded area, Figure 4.7). Ofthese eight sites, four have a predicted

probability ofbeing successfully controlled below 0.1 (Table 4.3). Fewer sites are

predicted to be controlled if the agents perform below this level. If C. scrobicollis is

released alone and performs at its maximum observed efficacy, A. petiolata could be

suppressed at up to five sites (41%; HR, F, SH, RL, and RF). One of the five sites (RL) is

predicted to have a 0.007 probability ofbeing successfully controlled. However, if C.

scrobicollis only reduces rosette survival by 7% (H1112 and Gerber 2001) and has no
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effect on fecundity (Gerber et al. 2007a), this number drops to one site (HR), which is not

an increase over the number of unmanaged sites with 71101 < 1.

The annual variation in demographic rates within each site caused considerable

differences in agent efficacy required to suppress growth during individual years..Annual

zero growth isoclines are shown in Appendix 4.B. At each site, at least one of the three

annual zero growth isoclines crossed the shaded agent-impacts area. In all sites except

HSP, which had positive grth each year, at least one isocline also falls below the

origin of the figure.

DISCUSSION

Improving the predictability of weed biological control remains a common goal of

weed scientists, biocontrol practitioners, and conservation managers (McEvoy and

Coombs 1999, Louda et al. 2003b, Pearson and Callaway 2003, Briese 2006, Davis et a1.

2006, Raghu and van Klinken 2006). Because biological control management ofA.

petiolata is a longer-term endeavor, management decisions should not be made based on

data from individual years. Four demographic models ofA. petiolata have been published

previously (Drayton and Primack 1999, but see Rejmanek 2000, Meekins and McCarthy

2002, but see Evans et al. unpublished manuscript Appendix D, Davis et al. 2006, Pardini

et al. 2009, but see Evans unpublished manuscript), two of which made specific

management recommendations. Of these four previous models, three had significant

errors that required later correction (hence the “but sees”). Drayton and Primack’s model

incorrectly characterized A. petiolata’s life history by omitting a23 (P—->R). Meekins and

McCarthy used sub-annual transitions as upper-level transitions, thus introducing errors
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in the model’s projection interval. Pardini et al.’s model incorporated errors from the

parameterization of several density dependent functions and omitted seed bank mortality

from two transitions (an and a21), which together sabotaged their management

recommendations.

Davis et al. explored a parameter space centered on the demographic rates of a

natural A. petiolata population (Meekins and McCarthy 2002) and made a number of

specific predictions about the expected variability of successful management. One of

their main conclusions was that the elasticity structure, at least in terms of relative

rankings of the elasticities, was fairly constant as each vital rate was sequentially varied

from 0 to 1 while the others were held fixed (Figure 3 in Davis et al. 2006). As they

acknowledge, this method did not account for correlations or covariance among the vital

rates likely to occur in natural populations. Because the matrices in my analysis were

parameterized from natural populations and were fixed, the analysis implicitly accounts

for these correlations and avoids having to make assumptions about the relationships

among the ag- (van Tienderen 1995).

In this study, I have shown that A. petiolata’s demographic parameter space is, in

fact, larger and more varied than what Davis et al. modeled or than previous reports in the

literature indicated. One ofmy most important findings is that, contrary to Davis et al.’s

conclusion, neither the magnitudes nor rankings of either the lower or upper level

elasticities are constant in space or time. We know that spatial variation in the importance

of individual life history pathways can drive significant differences in population

dynamics and response to management among isolated populations (Shea et al. 2005) and

even within populations (Parker 2000). I show here that temporal variation in life history
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within populations can also contribute significantly to variation in long-term population

performance. Alliaria petiolata populations fluctuate over time through periods of rapid

growth and expansion and periods of survival. As these fluctuations occur, the population

dynamics change from being driven primarily by growth and reproduction, to being

driven by the persistence of the seed bank. This is evidenced by the varying elasticity

structures within populations over time. When 3. was low, the survival of dormant seeds

in the seed bank (s5 and a1 1) had the largest proportional effect on growth, although the

absolute magnitude (sensitivity) of this effect was small relative to other transitions. In

contrast, when It was high, the transition from rosettes to flowering plants (a32) had the

largest proportional effect on I (Figure 4.5, bottom right panel). This effect was largely

dependent on variation in summer rosette survival, which was the largest demographic

bottleneck in the system. Other lower-level transitions with large proportional effects

when It was large were germination of new seeds, seedling survival, fecundity, and winter

survival. The sensitivity analysis highlights the importance of winter and summer rosette

management among populations where A is large. Collectively, the elasticity and

sensitivity analyses indicate that management which reduces the survival of rosettes to

the flowering stage (a23) or which reduces the transition from the flowering to rosette

stages (a32), either via reducing fecundity, seedling survival, or germination of new

seeds, will have the greatest impact on it during years with the highest growth rates.

The high variability in it both among and within populations could also have

significant consequences for the outcome ofbiological control. As a population

experiences a sequence of years with alternating positive and negative growth, the
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rankings and magnitudes of the elasticities and sensitivities can change. For example the

‘Bob’ site (Peoria) had a It of 5.78 in 2005 and 0.79 in 2006. In 2005,the lower level

elasticity of k to s, (ES._,.) was 0.29, while the elasticity to E4, which includes ssum and swim

was 0.4989. The following year, the rankings were reversed, and E5, was 0.9666 while E4

dropped to 0.0235. Practically speaking, this means that when a transition probability is

driven to a small value relative to other transitions, a proportional change in its value

would have to be very large to have a meaningful impact on It. This could help A.

petiolata buffer against biocontrol management of the transitions in E4 such as rosette

survival and fecundity if their effects on I consistently diminish when populations are

suppressed. If so, it would allow A. petiolata a means ofrecovering from biocontrol

suppression after its grth rate is initially reduced. This would be exacerbated if the

biocontrol agents’ efficiency is negatively dependent on A. petiolata density, for example

if they spend more time searching for the plant at low densities. This highlights one of the

limitations ofusing static, linear population models, as there are no built-in feedbacks of

density on the vital rates or the elasticity of 7t. to them. Future nonlinear models will need

to explore this possible feedback mechanism in greater detail.

The two candidate biocontrol agent species, C. scrobicollis and C. alliariae, are

well matched to A. petiolata in terms of affecting it at the appropriate life stages. Because

it can affect both rosette survival and fecundity simultaneously, the root mining weevil C.

scrobicollis has the potential to suppress A. petiolata in as many as five of the 12 study

populations (41%) if it performs at its maximum efficacy. Using the same basic approach

applied here, Davis et al. (2006) concluded that C. scrobicollis would control A. petiolata

in 13 of the 18 (72%) scenarios they modeled. They also concluded that introducing the
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weevil C. alliariae could broaden the impacts to include control A. petiolata in of 16 of

the 18 (88%) simulations. It is important to note that these numbers represent the best

possible outcome, given the models in Davis et al. and in this study, and assume that the

biocontrol agents perform at the maximum efficacy recorded from among at least four

different feeding and impacts trials. In reality, the impacts of either agent will likely be

lower than the maximum and, thus, those numbers are likely overly optimistic. Given

these caveats, both studies agree that C. scrobicollis is likely to suppress at least some A.

petiolata populations if released on its own. Davis et al. found that introducing a second

agent, C. alliariae, could extend control to an additional 16% of the scenarios modeled.

My analysis predicts potentially higher returns from the release of a second agent by

extending the possibility of control to an additional 33% of the study populations.

Whether either species is capable of consistently delivering a strong enough impact on

rosette mortality or reproduction to suppress populations remains unclear from currently

available data. Without knowing what the mean or distribution are of the agents’ impacts

below the reported maxima, it is not possible to assess the degree of uncertainty in the

probability of success. The estimated probabilities of successfully managing A. petiolata

presented here should be interpreted with this understanding. Better data on the

distributions of candidate agent impacts are needed from well replicated field trials and

should be sought. These should include information on insect demographic rates and

density dependence, as well as the insects’ demographic responses to A. petiolata

densities and environmental conditions. From these, a coupled plant-herbivore model

could be developed which links the demography ofA. petiolata with the biology of the

biocontrol agents. This would allow generation ofmuch more refined predictions.
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The lack of ability or desire to make these kinds of evaluations prior to releasing

biological control agents has been criticized as a major historical shortcoming ofweed

biocontrol programs. However, the last decade since McEvoy and Coombs (1999) has

seen the beginnings of a cultural shift in the philosophy of weed biocontrol. The number

of studies on agent impacts and target plant demography continues to grow, and

biological control is transforming into a more rigorous practice guided by scientific

principles and founded on ecological theory.
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Table 4.1. Mean observed A. petiolata demographic rates by site, calculated for each of

three years.

 

Site

B

State

IL

Year

2005

2006

2007

g1

0.682

0.239

0.070

82

0.049

0.031

0.071

Sr

0.843

0.149

0.094

Ssum

0.648

0.119

0.119

Swin

0.369

0.500

0.321

f

276.857

59.027

79.527

SS

0.823

0.806

0.975
 

ELF MI 2005

2006

2007

0.445

0.1 1 1

0.190

0.019

0.068

0.267

0.357

0.702

0.832

0.342

0.213

0.095

0.408

0.617

0.037

46.170

48.576

56.877

0.988

1.0

1.0
 

IL 2005

2006

2007

0.360

0.129

0.061

0.143

0.019

0.072

0.167

0.125

0.087

0.578

0.151

0.136

0.492

0.333

0.175

86.446

83.543

106.959

1.0

0.642

1.0
 

HL IL 2005

2006

2007

0.403

0.245

0.389

0.021

0.269

0.032

0.198

0.273

0.429

0.872

0.138

0.054

0.823

0.286

0.250

445.234

572.051

126.388

1.0

0.880

0.969
 

HR IL 2005

2006

2007

0.577

0.110

0.166

0.1 12

0.048

0.039

0.222

0.429

0.195

0.492

0.094

0.187

0.406

0.389

0.125

23.301

46.540

20.079

0.778

0.505

0.979
 

HSP MI 2005

2006

2007

0.529

0.106

0.238

0.021

0.161

0.266

0.528

0.935

0.685

0.216

0.073

0.311

0.185

0.403

0.325

59.891

105.165

122.102

1.0

0.975

0.979
 

IP IL 2005

2006

2007

0.546

0.395

0.480

0.075

0.367

0.288

0.128

0.205

0.403

0.447

0.267

0.085

0.308

0.146

0.806

108.276

71.698

124.029

0.839

0.894

1.0
 

IR MI 2005

2006

2007

0.421

0.273

0.41 1

0.001

0.047

0.207

0.273

0.798

0.388

0.393

0.048

0.081

0.352

0.370

0.156

44.425

310.587

217.960

0.875

0.882

0.867
 

JP MI 2005

2006

2007

0.661

0.177

0.660

0.062

0.144

0.440

0.606

0.617

0.523

0.309

0.357

0.1 11

0.350

0.552

0.092

68.905

63.669

56.877

1.0

0.983

1.0
 

RF

RL

SH

MI

MI

MI

2005

2006

2007

2005

2006

2007

2005

2006

2007

0.362

0.130

0.109

0.163

0.151

0.340

0.297

0.152

0.377

0.064

0.129

0.077

0.031

0.157

0.189

0.026

0.569

0.169

0.609

0.533

0.566

0.835

0.810

0.899

0.550

0.667

0.849

0.036

0.331

0.0

0.067

0.013

0.113

0.197

0.044

0.111
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0.421

0.0

0.161

0.333

0.152

0.569

0.298

0.365

140.325

63.173

0.0

15.849

152.414

20.079

22.737

5.717

34.090

0.900

0.859

0.833

1.0

0.969

1.0

0.977

0.907

1.0



Table 4.2. Annual estimates of I. for each site (Kym). These were summarized within

each site as the megamatrix 1t (TM), the population growth rate of the average population

within each site calculated from the megamatrix M with uncorrelated environments. The

mean grth rate across sites within each year and across all M4 is given in the bottom

row. The arithmetic mean TM is the average 1. across the study system.

 

 

 

 

 

Site State 12005 12006 12007 71M

B IL 5.883 0.798 0.927 3.543

ELF MI 1.097 1.212 0.793 1.586

F IL 1.453 0.642 0.945 1.120

HL IL 5.061 1.586 0.959 3.405

HR IL 0.855 0.530 0.945 0.832

HSP MI 1.014 1.184 1.856 2.082

IP IL 1.064 0.809 1.509 1.887

IR MI 0.880 1.207 0.922 2.370

JP MI 1.763 1.595 0.709 2.298

RF MI 0.862 1.212 0.769 1.285

RL MI 0.973 0.908 0.870 1.233

SH MI 0.995 0.483 1.029 1.123

Column Means: 1.825 1.014 1.019 1.897
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Table 4.3. The probability of successfully controlling A. petiolata at each site was

graphically estimated as the proportion of the two shaded areas above the zero growth

isoclines in Figure 4.7. The sizes of the shaded areas for C. scrobicollis alone (smaller

rectangle in Figure 4.7) and with C. alliariae (larger rectangle) were 13899 and 26082

pixels, respectively. This analysis assumes a uniform probability distribution for agent

 

  

 

 

 

 

impacts.

Shaded Pixels Above Isocline Probability of Control

C. alliariae + C. alliariae +

Site State C. scrobicollis C. scrobicollis C. scrobicollis C. scrobicollis

B IL 0 0 0 0

ELF MI 0 408 0 0.016

F IL 8074 20173 0.581 0.773

HL IL 0 0 0 0

HR IL 13 899 26082 1.000 1.000

HSP MI 0 0 0 0

IP IL 0 2327 0 0.089

IR MI 0 208 0 0.008

JP MI 0 103 0 0.004

RF MI 2469 13827 0.178 0.530

RL MI 98 8056 0.007 0.309

SH MI 8951 21050 0.644 0.807

Mean: 0.201 0.295
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A = 021 = SSZ/3g25, on = 0 on = (1- cl)fi32/3g1s,.

_a31 = 0 032 = (1-02)Ssum3win 033 = 0 A 

Figure 4.1. Alliaria petiolata life cycle diagram and corresponding projection matrix A.

Arrows represent one-year transitions from June of year t to June of year t+1 and are

comprised of sub-annual, lower level demographic transitions: per capita fecundity (f),

germination probabilities ofnew seeds within one year of seed set (g1) and of dormant

seeds from the soil seed bank (g2), and seedling (Sr), summer rosette (ssum), winter rosette

(swin), and dormant seed (5,) survival probabilities. Matrix rows correspond with the life

history stage individuals are transitioning from time t, where rows 1, 2, and 3 (from left)

are seeds, rosettes, and flowering plants. Columns indicate life history stages individuals

are transitioning to in time t+1. For example matrix element a3; represents the transition

from rosettes (column 2) to flowering plants (row 3) in matrix A. Following Davis et al.

(2006), the variables c1 and c2 simulate rosette mortality and fecundity reduction due to

biocontrol, and are shown as (l-cn) to express them in terms of survival.
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Figure 4.2. Frequency distribution ofA. petiolata megamatrix population growth rate

across all sites (n = 12). The black line indicates the mean value of1M across sites.
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Figure 4.3. Sensitivities (top) and elasticities (bottom) of )1 to perturbation ofA matrix

elements (1,}. Sensitivities from the combined 36 site by year matrices are sorted from left

to right by sensitivity matrix element S32 (R—rP), and elasticities are sorted by elasticity

matrix element e11 (S—>S). The sensitivities of l. to a23 and on are small and lie along the

horzontal axis. The elasticities of 11 to an and a2] are equal; the former obscures the latter

in the lower plot. NOTE: The dotted line (011) does not indicate a different density of

data points than the other four line styles and should not be interpreted differently. It is

used because the software which produced the graph (MATLAB) only prints four basic

line styles.
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Figure 4.4. Elasticities (eij) of k to A matrix elements an (S—>S) and an (R—vP) (left)

and to lower level transitions seed (SS) survival and E4 (right) versus the population

growth rate X. The elasticities of I. to f, Sr, 55",", and swm were identical and are

represented together with one line, labeled E4. E4 and e32 are equal as well. Among

populations with high growth rates, X has the greatest elasticity to a3; and E4. Logistic

regression lines are overlaid to show trends.
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Figure 4.5. Empirical second derivatives of A. Observed variation in elasticities of

Alliaria petiolata population growth versus observed variation in the lower demographic

transitions. In each panel the elasticities of )t. to each lower-level demographic rate from

the 36 site by year matrices is plotted against the observed value of the transition.

indicated on the horizontal axis. The eight panels show the same empirical data sorted

differently. The data are sorted from left to right by the transition labeled on the

horizontal axis. In the lower right panel the x axis is shown on a log scale, although the x

axis tick marks are back-transformed to the original scale. Contours were smoothed using

a LOESS smoother (Burkey 2009) to clarify the relationships among variables. This is

why the values in each panel appear different even though they show the same data. The

raw, unsmoothed plots are presented in Appendix A.
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Figure 4.6. Sensitivities of l to lower-level A. petiolata transitions x versus 7L for 36

individual site-years. As A increases, the rankings and magnitudes of the Sx change to

favor management of rosettes in winter or summer and germination ofnew seeds. The

vertical lines differentiate between expanding populations (right) and declining

populations (left). The seven sensitivity contours are split into two panels to improve

readability. LOWESS smoothing was applied to each line to for the same purpose.
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Figure 4.7. Zero growth isoclines (contours of X = 1, indicating stable A. petiolata

population size) for each study population assuming a random sequence of the three

environments (years) using a megamatrix model. The x and y axes in each plot represent

the efficacy of rosette or fecundity management simulated by increasing the variables c2

or cl, respectively, from 0 to l. The larger shaded area shows the observed range of seed

reduction and rosette mortality caused by the combined actions of the root and stem

mining weevils Ceutorhynchus scrobicollis and C. alliariae (see Table 2 in Davis et al.,

2006). The smaller rectangle within the shaded area indicates the range of observed

impacts of C. scrobicollis alone, where the upper right corner is the maximum observed

impact of C. scrobicollis. Contours which intersect the larger shaded area represent

populations which could theoretically be controlled by C. scrobicollis and C. alliariae

together at a given level of agent efficacy (6.g. [P would only be controlled if actual agent

efficacy is at the high end of the observed range). Contours which intersect the smaller

shaded area could theoretically be controlled by C. scrobicollis alone. The line from HR

does not appear in the plot because its XM < 1.Impacts of C. alliariae alone are not shown

because it has not been shown to reduce fecundity under realistic field conditions.
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APPENDIX 4.A: RAW ZERO GROWTH CONTOURS
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Figure 4.A.1 Empirical elasticity contours without smoothing function. Observed

variation in elasticities ofAlliaria petiolata population grth versus observed variation

in the lower demographic transitions. In each panel the elasticities of A. to each lower-

level demographic rate from the 36 site by year matrices is plotted against the observed

value of the transition indicated on the horizontal axis. The eight panels show the same

empirical data sorted differently. The data are sorted from left to right by the transition

labeled on the horizontal axis. In the lower right panel the x axis is shown on a log scale,

although the x axis tick marks are back-transformed to the original scale.
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APPENDIX 4.B: ANNUAL ZERO GROWTH CONTOURS
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Figure 4.B.l. Annual Zero growth isoclines (contours of k = l) for each site. The

megamatrix result used in the primary analysis is also shown. Within each site, at least

one of the three annual zero growth isoclines crossed the shaded agent-impacts area. In

all sites except HSP, which had positive growth each year, at least one isocline falls

below the origin of the figure.
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CHAPTER 5: DEMOGRAPHIC VARIANCE ACROSS GRADIENTS OF

POPULATION DENSITY IN ALLIARIA PET[OLA TA
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ABSTRACT

Demographic models of the invasive plant Alliaria petiolata (garlic mustard,

Brassicaceae) have been developed previously to inform the selection of effective

biological control agents. Understanding how density dependent feedbacks affect vital

rates and vary spatiotemporally among populations may further the refinement of these

model predictions and lend an important regional perspective to future management r

models. From 2004 to 2007, I studied the survival and reproduction ofA. petiolata in 13

natural populations in Illinois and Michigan, USA, across a natural density gradient

spanning over three orders of magnitude. Using mixed effects models I quantified the  
contributions of population density, region, cohort, and site effects to variability in

demographic rates. Seedling and summer survival and fecundity parameters varied

significantly between Michigan and Illinois and between cohorts, but winter survival did

not. In contrast to other studies ofA. petiolata, only mean seedling survival and fecundity

were negatively correlated with initial density, while summer and winter rosette mean

survival were not. Instead, I found that the residual variance in each analysis was

negatively dependent on population density, even when the mean response to density was

not significant. By explicitly modeling the residual variance in each vital rate as a

function ofplant density, I show that the demographic variance and stochasticity are

themselves density dependent functions; the maximum possible value of each

demographic rate decreases as density increases, but vital rates vary below these density

dependent upper bounds. Thus, survival and fecundity can be broadly distributed at low

densities but funnel into narrow distributions with lower maxima at high densities. The

scaling of demographic stochasticity with population density has potentially important
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consequences for populations of management concern, as small populations may become

more susceptible to local extinctions. The robustness ofpredictive weed management

models may therefore be improved by incorporating elements of environmental and

density dependent demographic stochasticity into their designs.
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INTRODUCTION

Density dependent processes and demographic variability are important in natural

populations (Horvitz and Schemske 1995, Turchin 1999). Failure to incorporate them

properly into predictive management models could lead to inaccurate characterization of

the demography of the study species. Density feedbacks can vary in importance (Elliott

and Hurley 1998) and even direction (Goldberg et al. 2001) among life history stages,

which suggests that linear population models may oversimplify complex biological

processes. Similarly, a single species can exhibit life history differences across its range,

in different habitats, or over time that could affect how it responds to management

(Parker 2000, Shea et al. 2005). For species with large geographic distributions, this

means either that different management approaches need to be implemented in different

areas, or that a single strategy must be applied which maximizes the outcome at the

greatest number of locations.

When biological control is considered for management of invasive weeds, this

latter, probabilistic approach may be the most appropriate option. Because herbivorous

insect agents with strong dispersal capabilities are not likely to stay where they are

locally released (Simberloff and Stiling 1996, Stiling et al. 2004, Louda et al. 2005b),

weed biocontrol management decisions should ideally be made on a scale equivalent to

the potential distribution of the proposed biocontrol agent(s) (Louda et al. 2003a).

Modeling a target species’ biology should ideally account for demographic variability

across the species’ range that could affect the outcome ofmanagement, including

possible variability in density dependence. The critical question then is how to best
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account for this variability and create a model of invasive species control that is robust in

its predictions across a wide range of environments.

I considered this problem in an ongoing study (Davis et al. 2006) of the invasive

weed Alliaria petiolata (garlic mustard, Brassicaceae [M. Bieb] Cavara and Grande) for

which biological control has not yet been implemented but is likely forthcoming (Gerber

et al. 2008b). This species has been the subject of several previous studies that quantified

various aspects of its demography (Cavers et al. 1979, Baskin and Baskin 1992,

Anderson et al. 1996, Drayton and Primack 1999) and indicated negative density

dependent feedbacks in survival and reproduction (Meekins and McCarthy 2000, Pardini

et al. 2009). Data from Meekins and McCarthy (2002) also shows density dependence of

A. petiolata population growth rates (,1), although the estimates of/l in the original paper

were calculated incorrectly (see Appendix 2.D). These studies provide valuable estimates

ofA. petiolata transition probabilities across a large geographical area in eastern North

America (Kentucky to Ontario), but none accounts for the variability in demographic

rates and population density feedbacks on vital rates at large spatial or temporal scales.

Here, I present a re-examination of density dependence in the A. petiolata

demographic data described in previous chapters. Using these data, I asked (1) if there

were differences in demographic rates between Michigan and Illinois populations, (2)

whether populations were variable from year to year, and (3) whether there were density

dependent feedbacks that contribute to this variability. I used mixed effects models to

explore the spatial and temporal variability in survival and reproduction and evaluate the

importance of density dependent feedbacks across the observed gradient of population

density measured in my study system. This study differs from the analysis in Chapter 2 in
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the way that residual variance was modeled and interpreted. While the generalized linear

models and generalized linear mixed models parameterized in Chapter 2 can be used to

predict survival rates, they have limited flexibility in the way they handle residual

variance and overdispersed data. The linear mixed models explored here offer a different

view of the data structure and highlight some of the most interesting aspects ofA.

petiolata’s demography.

METHODS

Sampling

Study site descriptions and sampling methods are presented in Chapters 2 and 4. Note

that as in previous chapters, demographic rates were grouped into “cohorts” for analysis

based on the June to June annual projection interval used in previous A. petiolata studies

(Davis et a1. 2006). This required grouping rosettes from one year in the same cohort as

seedlings that germinated the following year. For example rosette survival in the 2005-

2006 cohort was measured from June 2005 until June 2006 when those plants matured

and produced seeds. Seedling survival was measured during the spring of 2006.

Statistical Analyses

The main objective of this study was to evaluate the contributions of location,

time, and density to differences in demographic rates between A. petiolata populations. I

constructed linear mixed effects models with a 2 by 3 factorial fixed effects structure to

analyze the variability in seedling, summer, and winter survival and in per capita

fecundity. Fixed factors in the analyses included region (Illinois and Michigan), cohort
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(2005-2006, 2006-2007, 2007-2008), and initial A. petiolata density to test for density

dependence. Site nested within year was included as a random factor assuming that each

site is a random sample from the population of all possible study sites and therefore

contributes to the observed variation in the data. The nesting structure accounts for the

covariance of observations across sites within each year. To avoid introducing

multiplicative errors into the fecundity analysis, I modeled the number of siliques per

plant as the response rather than the estimated number of seeds per plant. However, seeds

per plant and siliques per plant are strongly correlated (Appendix 2.B.iv), so model

predictions will be applicable to seed production. In the three analyses of survival, each

observation was weighted by the number ofplants used in its calculation. For example, a

survival rate estimated from a sample of 100 plants would be more heavily weighted than

one estimated from 50 plants. Data used in the analysis of fecundity were not weighted

because these were exhaustive counts of the true number of siliques on each plant in each

sampling quadrat.

Maximum seedling density and June and fall rosette densities (plants m'z) were

used as density covariates in analyses of seedling, summer, and winter survival,

respectively. Fall rosette density was used as the covariate in the analysis of fecundity.

All survival probability response variables were arcsine square root transformed, and

silique counts used in the fecundity analysis were square root transformed to meet the

assumptions ofthe analyses.

Initial statistical analyses indicated that there was overdispersion in the survival

data (i.e. the residual variance was greater than expected under a binomial distribution,

where the variance is a function of the mean (LitteIl et al. 2006)) even after applying
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variance stabilizing transformations. The fecundity data were also overdispersed. Two

alternative structures for the residual variance were fitted in each analysis to correct for

this: the power ofmean (POM) fimction and an exponential fimction in which the

residual variance is a function of the density covariate. Denominator degrees of freedom

were approximated using the Satterthwaite method (Littell et al. 2006). Each analysis was

run with fixed effects only, fixed effects plus random site within year effects, and finally

with all fixed and random effects including the alternative residual variance structures.

The best-fit model was selected using the information-theoretic methods (Littell et al.

2006)

RESULTS

Alliaria petiolata initial population densities varied approximately lOO-fold for

each life stage. Maximum seedling densities ranged from 75 to 6025 plants m'2 (Figure

5.1). Summer and fall rosette densities used as covariates in the summer and winter

survival. analyses ranged from 31 to 3344 plants 111-2 and from 4 to 540 plants m'z,

respectively (Figure 5.1). Bayesian Information Criteria (BIC) (Littell et al. 2006)

indicated that, for each of the three survival transitions analyzed, the data best supported

the full model which included random effects terms and the variance modeled as a

function of density (Table 5.1). There was equivalent support for the POM and density

dependent variance functions in the fecundity analysis (ABIC = 0.4). For ease of

biological interpretation, I present the results of the density dependent variance model of

fecundity. Model fit statistics are presented in Table 5.2 including slope and variance

parameter estimates for covariates. Many of the highest starting densities in the summer
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survival analysis occurred in the smaller quadrats that were monitored through the

summer in Michigan during 2005. Re-running the model without these data points did not

change sign or significance of the density covariate (F1, 32 = 4.13, P = 0.0504) nor the

general conclusions about the exponential variance term; the results presented include

these data.

Fixed Effects

Mean seedling survival (F1, 37.3 = 43.05, P < 0.0001) varied between Michigan

and Illinois (Table 5.2), but not between cohorts. Summer survival varied both between

regions (F1, 349 = 5.32, P = 0.0272) and cohorts (F2, 32.7 = 18.0, P < 0.0001). The

region*cohort interaction in the summer survival analysis was significant as well (F2, 32.2

= 5.59, P = 0.0082), indicating that year to year differences in mean summer survival

were not consistent between Michigan and Illinois. Mean winter survival rates were not

significantly different between regions or cohort groups (Table 5.2), though mean

fecundity varied between regions (F1, 26.4 = 5.76, P = 0.0237).

Density dependent effects on survival were strongest early in the life cycle and for

seed production. Maximum seedling density negatively affected seedling survival (slope

= -0.00004, F1, 45,; = 8.88, P = 0.0046). The effect of rosette density on summer survival

was also negative (slope = -0.00002) but not significant (F1, 183 = 0.61, P = 0.4456), and

reversed to significantly positive (slope = 0.0006, F1, 424 = 6.61, P = 0.0137) in winter.

This reversal was driven by two influential experimental units (quadrats) with high
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leverage during the winter that had both high starting densities and high survival rates.

Dropping these data points from the analysis changed the sign of the slope to negative

(slope = -0.00018) but non significant (F1, 57.2 = 0.24, P = 0.6241). Because the

interpretation of the slope of the density covariate for winter rosette survival was entirely

dependent on these two observations, I chose to drop them from further analysis.

Fecundity responded negatively to initial A. petiolata density (slope = -0.0055, F1, 595,

P < 0.0001) and varied between regions as well (F1, 264 = 5.76, P = 0.0237), but not

between cohorts (F2, 259 = 0.85, P = 0.4378). Although the absolute values of the slope

estimates are small, the ranges of the dependent variables were also small relative to the

independent variables. Thus, shallow slopes such as these can be biologically meaningful.

All three-way interactions (region*cohort*density) were non-significant and were

dropped from the models.

Random Effects

The random effects of sites nested within cohorts were significant for all response

variables (Table 5.2), indicating that plants growing together at the same site likely

experienced more similar biotic and abiotic conditions than those growing at different

sites and in different years. This effect was least significant during the winter, suggesting

that winter survival is less dependent on local site conditions.

Perhaps more significantly, the residual variance in each vital rate decreased as a

function of initial density. The slope estimates for the variance terms were negative and

significant in all analyses: seedling survival (SIOpe = -0.0007, Z = -4.81, P < 0.0001),
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survival in summer (slope = 0001, Z = -2.84, P = 0.0045) and winter (slope = -0.0096, Z

= -6.1 l, P = < 0.0001), and fecundity (slope = -0.0049, Z = ~6.81, P < 0.0001). The

consequence of this is reflected in the decreasing ranges of the response variables with

increasing initial density. At low population densities, survival probability estimates in

each model ranged from 0 to 1, and fecundity ranged from 0 to over 120 siliques plant.l

(Figure 5.1). As the population density increased, the variation around the mean survival

probabilities and fecundity declined exponentially (Figure 5.2), such that at high plant

densities survival probabilities were rarely greater than 0.5, and fecundity rarely

exceeded 20 siliques plant-l. This pattern is evident in the data as the decreasing upper

boundaries and the more subtly increasing lower boundaries ofthe parameter space

across the gradient of increasing density in the raw data (Figure 5.1) and in the prediction

intervals generated from the parameterized models (Figure 5.2-5.5). Thus, although the

density covariate slopes ofthe summer and winter survival analyses were not different

fiom zero, survival rates did respond to initial plant density.

DISCUSSION

Population density is one of several important factors influencing the survival and.

reproduction ofA. petiolata across the 12 Illinois and Michigan study sites. These effects

appear to be at least partially seasonal. Negative density dependent feedbacks were

demonstrated in all transitions except winter using generalized linear mixed models with

additional covariates in Chapter 2. Using simpler linear mixed models of transformed

data here, the main effects ofpopulation density appear more variable. Negative density

dependent feedbacks were strongest during the spring recruitment phase (seedling to
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rosette). During this period, seedling populations reached high initial densities in some

locations and then thinned over the remainder of the plant’s life cycle until senescence in

the summer of the second year. It was only during this recruitment stage, when

population densities reached almost 7000 m'z, that there was a significant negative effect

of plant density on mean survival (Figure 5.2, Table 5.2). Though still negative, this

relationship weakened through the summer (Figure 5.3) and winter (Figure 5.4), when the

highest starting density was only 360 plants In.2 (Table 5.2). Winter rosette density had a

negative effect on seed production during the spring of the second year in A. petiolata’s

life cycle. This switching of the covariate slope from negative to zero may reflect the

importance of intraspecific competitive or interference interactions early in the life cycle

later becoming subordinate to abiotic or stochastic factors once self thinning of seedlings

has increased the spacing between individuals and reduced the likelihood of further

competitive interactions (Goldberg et al. 2001). Altemately, because fecundity was

density dependent as well, it could indicate that spring is a critical period in the life cycle

during which differences in resource availability or growing conditions have the potential

to interact with population density.

The failure to detect density dependence in summer and winter rosette survival

rates may be either exclusion of other important covariates or that natural population

densities were too low after thinning of seedlings in spring to have further effects (sensu

Smith et al. 2003). Biased selection of low density rosette populations could also obscure

density dependence, especially if its effects are subtle or absent at these low densities.

Quadrat placement was not biased against high densities. If it had been biased, I would

not have captured the exponentially declining variance of survival and fecundity as
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density increased. Thus, the data show that mean demographic rates are relatively

constant across the naturally occurring density gradient after recruitment with only the

variance exhibiting a strong negative density response.

The Importance of Variance

The slope of the density covariate in the fixed effects is an estimate of the

relationship between initial density and mean survival or reproductive rates. When this

slope is not significantly different from zero, the conventional interpretation is that the

response variable and covariate are unrelated. However, I find that population density is

strongly connected with the variance ofdemographic rates in A. petiolata, even when the

main effect of density is not significant. This was true of the density dependent models

presented in Chapter 2 as well, although it was not possible to explicitly account for the

density-variance relationship within the generalized linear modeling framework used

there. Modeling the variance as a random exponential function of the density covariate

reveals a decreasing upper bound to the distribution of lower level demographic rates as

density increases even in the absence of an overall mean trend. For example, the slope of

the summer survival density covariate was not significantly different from zero. Mean

summer survival was nearly the same in both the high and low density plots: the mean

summer survival rates of the lower and upper 50th percentiles of quadrats were 0.207 and

0.224, respectively. But summer survival in low density quadrats ranged from 0 to 1,

while there were no measurements ofsummer survival greater than 0.5 at densities above

~600 plants m.2 (Figure 5.1). Maximum survival probability is limited or capped at any

given density but can vary below that maximum. This limit decreases as density
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increases. Vital rates show a broad distribution in the range ofvalues they can attain at

low densities where abiotic and stochastic factors are likely most limiting and are

firnneled into a more restricted range of values as density increases and crowding and

competition dominate. Predicting population behaviors will therefore be less precise at

low densities.

Ecological data from natural populations are characteristically noisy. Unmeasured

factors such as habitat quality, microsite conditions, and environmental and demographic

stochasticity undoubtedly contribute to the observed variance in demographic rates.

Decoupling these from the effects of density requires controlled experiments. What

observational studies such as this one can provide are important estimates of the actual

distribution ofdemographic parameters among natural populations and over time. For

application to a regional management strategy like biological control, understanding this

variability in vital rates will be essential to determining what proportion of populations

across the landscape will respond to a given control strategy. Linking results from

observational studies of natural populations with experiments conducted under known

gradients may be usefirl for further partitioning the observed variance into density

dependent, environmental, and stochastic components.

My mixed model approach to estimating demographic rates in A. petiolata

suggests a significant negative feedback ofpopulation density on survival probability and

fecundity across multiple populations and corroborates findings of other studies of this

species (Meekins and McCarthy 2000, Smith et al. 2003, Winterer et al. 2005, Rebek and

O'Neil 2006). More interestingly, though, I did not see strong effects of plant density on

mean demographic rates after the recruitment phase. Rather, density dependence in this
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system was best characterized by the negative relationship between demographic

variance and population density for all demographic parameters. Density dependence is

an important factor structuring A. petiolata populations, but is only important relative to

other factors at high densities. The estimated ranges of demographic parameters changed

from spanning the entire range ofpossible values at low densities to having increasingly

restricted distributions at higher densities. Thus, the demographic rates in these models

effectively change from behaving like stochastic variables to behaving in a more

deterministic fashion with increasing density, and density dependence becomes the most

important factor limiting the response variable.

Demographic variability is predicted to be dependent on population size when

there is density dependence in survival and reproductive rates (Engen et al. 1998). This

has been observed empirically in a songbird population (Saether et al. 1998) as well as in

experimental populations ofDaphnia magna in which demographic stochasticity

appeared to have density dependent components (Drake 2005). Incorporating density

dependent demographic stochasticity into a stochastic population model greatly improved

Drake’s ability to accurately predict extinction rates ofthe experimental populations. This

suggests future models ofA. petiolata biocontrol that incorporate density dependent

stochasticity as well as site and regional demographic differences will provide more

accurate predictions of population responses to biocontrol. Graphical analysis ofthe data

shows strong density dependent mortality in some sites during certain years, but not

others. Density feedbacks are therefore important in this system, but might better be

thought of as effects that rise and fall in importance relative to other mortality factors

across space and time.
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It is uncertain exactly how these elements will interact in future A. petiolata

biocontrol models. There is a tension between the generally stabilizing effects of density

dependent survival and reproduction (e.g. Saether et al. 1998, Buckley et al. 2001) and

the destabilizing effects and increased extinction probabilities resulting from density I

dependent stochasticity (Drake 2005). Conceivably, these processes could interact to

enhance biocontrol effectiveness. An effective herbivore that reduces a vital rate such as

survival could increase the relative importance of stochasticity. Mortality induced in early

life history stages will truncate the distribution of population densities in later, non-

density dependent stages. By driving populations towards densities that are more

susceptible to demographic stochasticity, a biocontrol agent could thus increase a

population’s probability of stochastic extinction. Complex dynamics between herbivore

and plant densities could complicate this relationship.

Populations ofA. petiolata exhibit spatiotemporal variability in demographic

rates. Dynamic stochastic feedbacks on demographic rates clearly play an important role

in this variability and should not be overlooked. Because populations whose

demographics are dissimilar may not succumb a common control tactic (Parker 2000,

Shea et al. 2005), incorporating these estimates of the spatiotemporal variance and

density dependence of demographic rates and stochasticity in the A. petiolata system into

predictive management models could potentially indicate whether different management

strategies will be required in different areas. The role ofdemographic variance scaling

across population density gradients should be explored further in future models ofA.

petiolata population dynamics and biological control. The models presented here are

useful for interpreting patterns in these data. However, because the data were transformed
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before analysis, the models cannot be used in a predictive context. Doing so will require

development of new generalized linear mixed models that can accommodate modeling

the residual variance as a function of a covariate. .
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Table 5.1 Comparisons of fixed- and mixed effects models of density dependent survival

and fecundity in A. petiolata. Seedling survival was calculated as the number of rosettes

in June divided by the maximum number of seedlings observed during the spring

germination period. Summer and winter survival were calculated as the proportion of

rosettes surviving fi'om June to October and from October to the following June,

respectively. All models included fixed effects terms for initial A. petiolata density

(plants m'z), state, year, and state by year interactions. Mixed effects models also

included random effects terms for site within year. In the mixed models, the variance

structure was modeled normally, as an exponential function of the density covariate, and

using the power of the mean (POM) structure. AIC and BIC are the Akaike and Bayesian

Information Criterion, respectively. A AIC and A BIC indicate the difference in fit

between each model and the fit of the best fit model within each set of analyses. Table 5.1.
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Transition

Model, Covariance Structure likelihood AIC A AIC BIC A BIC

Seedling Survival Mixed, exp(seedlings) 35.4 41.4 0.0 46.2 0.0

Mixed, POM 50.1 56.1 14.7 60.8 14.6

Mixed, normal 54.0 58.0 16.6 61.1 14.9

Fixed, normal 80.1 82.2 40.9 85.1 38.9

Summer Survival Mixed, exp(June rosettes) 24.6 30.6 0.0 35.3 0.0

Mixed, POM 31.3 37.3 6.7 42.0 6.7

Mixed, normal 44.9 48.9 18.3 49.8 14.5

Fixed, normal 46.0 48.0 17.4 50.9 15.6

Winter Survival Mixed, exp(Oct. rosettes) 130.5 136.5 0.0 141.1 0.0

Mixed, normal 159.2 161.2 24.7 162.8 21.7

Fixed, normal 159.2 161.2 24.7 163.9 22.8

Fecundity Mixed, POM 2687.2 2693.2 0.0 2697.7 0.0

Mixed, exp(Oct. rosettes) 2687.5 2693.5 0.3 2698.1 0.4

Mixed, normal 2733.7 2737.7 44.5 2740.8 43.1

Fixed, normal 2815.7 2817.7 124.5 2822.4 124.7
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Table 5.2 Type III F-tests of fixed effects and estimates of covariance parameters fi'om

analyses of arcsine square root transformed seedling, summer, and winter survival

probabilities in A. petiolata. In each model, plant density (# m'z) is the number ofA.

petiolata plants at the start of the interval over which survival was measured, except for

seedling survival, where seedling density is the maximum density of seedlings observed

during the spring. The estimated density effects are slopes associated with each density

covariate. Random effects are indicated in italics and were evaluated with Z tests.

Congratulations! You’re almost done reading this thing. 1 will buy a beer for any

committee member who finds this text and mentions it at my defense.
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Transition Effect Estimate Num DF Den DF Test Statistic P

Seedling Survival Region 1 27.3 43.05 <.0001

Cohort 2 26.7 0.58 0.5664

Region*Cohort 2 27 1.76 0.1910

Maximum Seedling -0.00004 1 45.2 8.88 0.0046

Density

Site(C0hort) 0.0287 2.67 0.0038

exp(Seed/ing Density) -0.0007 —4.81 <.0001

Residual 0.0902 4. 8 8 <.0001

Summer Survival Region 1 34.9 5.32 0.0272

Cohort 2 32.7 18.03 <.0001

Region*Cohort 2 32.2 5.59 0.0082

Summer Density -0.00002 1 18.8 0.61 0.4456

Site(C0h0rt) 0.0198 2.46 0.0069

exp(Summer Density) -0.001 1 -2.84 0.0045

Residual 0.0634 5.24 <.0001

Winter Survival Region 1 46.9 0.03 0.8588

Cohort 2 49.7 1.25 0.2946

Region*Cohort 2 38 1.04 0.3628

Winter Density -0.00018 1 57.2 0.24 0.6241

Site(C0h0rt) 0.0175 1.7100 0.0435

exp(Winter Density) -0.0096 -6.1 100 <.0001

Residual 0.2904 5.4700 <.0001

Fecundity Region 1 26.4 5.76 0.0237

Cohort 2 25.9 0.85 0.4378

Region*Cohort 2 23.9 ' 0.18 0.8392

Winter Density -0.00551 1 595 44.89 <.0001

Site(Cohort) 0.4183 2.12 0.0172

axp(Winter Density) -0.0049 -6.81 <.0001

Residual 3.71 7.53 <.0001
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Figure 5.1 Untransformed survival and fecundity data plotted against plant density (A.

. -2 . . . . . .

petiolata plants m ) at the begrnnrng of the time interval over whrch survrval was

evaluated. Seedling density is the maximum density observed during the spring, summer

and winter starting rosette densities were measured in June and October, respectively.

Each survival parameter estimate shown is a quadrat mean value, calculated as the

proportion of plants marked at the beginning of the time interval that were still alive at

the end of the interval. Fecundity is plotted against the density of rosettes during the

previous October and is shown as the estimated number of seeds produced by each

individual plant within each quadrat rather than quadrat mean values. All plants in a

quadrat experience the same starting density and thus align in vertical bands by quadrat in

the figure. Note the differences in the x axes. The maximum plant density steadily

decreases as A. petiolata populations thin over the course of the growing season.
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Figure 5.2. Observed seedling survival data (dots) and initial seedling density (# m-Z)

showing mean predicted trend (solid line) and lower and upper 95% prediction intervals

(dashed lines) for each cohort in Illinois and Michigan based on model results. Dashed

lines show 5th and 95th percentiles of the distribution of survival rates based on simulated

observations generated from the statistical model which was parameterized from the data.

Each distribution is based on 100,000 simulated data sets. Trend lines have been

smoothed to illustrate the overall shape of the relationship between density and the

probability of survival. Analyses were performed on arcsin-square root transformed

survival probabilities and are shown back-transformed to the original scale. Predicted

survival rates with negative values were rounded to zero prior to back-transformation to

better illustrate the prediction intervals.
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Figure 5.3. Observed summer survival data (dots) and initial rosette density (# m'z) in

June showing mean predicted trend (solid line) and lower and upper 95% prediction

intervals (dashed lines) for each cohort in Illinois and Michigan based on model results.

See Figure 5.2 caption for more details. Note the scale of the X axis for Michigan 2005.
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Figure 5.4. Observed winter survival data (dots) and initial rosette density (# me) in fall

showing mean predicted trend (solid line) and lower and upper 95% prediction intervals

(dashed lines) for each cohort in Illinois and Michigan based on model results. See Figure

5.2 caption for more details.
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Figure 5.5. Observed fecundity data (dots, siliques plant'l) and initial rosette density (#

m'z) in fall showing mean predicted trend (solid line) and lower and upper 95%

prediction intervals (dashed lines) for each cohort in Illinois and Michigan based on

model results. Each distribution is based on 50,000 simulated data sets. See Figure 5.2

caption for more details.
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