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ABSTRACT

DEVELOPING DEMOGRAPHIC MODELS TO INFORM SELECTION OF
ALLIARIA PETIOLATA (GARLIC MUSTARD) BIOLOGICAL CONTROL AGENTS

By
Jeffrey Adam Evans
Biological control is often considered a safe and effective method for controlling
invasive plant species. While methods are available for predicting biocontrol agent host
specificity, biocontrol practitioners currently lack effective tools for predicting agent
efficacy. Demographic models which account for spatial and temporal variation in
population dynamics promise to improve the predictability of weed biological control
programs, while lowering the risks they pose to non-target species. Alliaria petiolata
(garlic mustard) is an obligate biennial forb that is invasive in North American forests. I
analyzed sources of demographic variation in twelve unmanaged A. petiolata populations
in Michigan and Illinois, USA, and over three plant generations. These data were used to
parameterize matrix population models of 4. petiolata population dynamics, analyze A.
petiolata responses to simulated management, and inform the selection of effective
biological control agents for potential release in North America. Hierarchical, generalized
linear mixed models (GLMMs) were used to analyze the spatial and temporal structure of
variability in each demographic transition. The degree of variation observed in 4.
petiolata demographic rates was greater than expected based on previous studies of this
species. This variation was highly structured in space and time and exhibited negative
density dependence and positive response to precipitation across most of the life cycle.
Estimates of the population growth rate () ranged from 0.48 to 5.88 across all sites and

years. Within sites A was temporally variable, ranging from 0.80 to 5.88 within one site.



A megamatrix model was used to summarize variation in growth within sites. Site growth

rates (Ay) ranged from 0.83 to 3.54 (mean = 1.90). Sensitivity and elasticity analyses of

matrix population models indicated the importance of the seed bank to A4. petiolata’s
success. Sensitivity and elasticity rankings varied with A, indicating that the transitions
with the largest impacts on population growth differ for growing and declining
populations, and within populations during good and bad years, rendering management
options a moving target. Rosette survival (summer and winter) consistently emerged as
the transition with the greatest effects on A in populations with positive growth, as did
germination of new seeds and transitions affecting fecundity. This result is consistent
with past predictions that rosettes should be targeted by management. The model raises
the caveat that rosette survival is only a an effective target when growth is positive; its
proportional effect on A decreases as A decreases. These models predict a lower
probability of suppressing A. petiola.ta with biocontrol than past studies. The simulations
predict that Ceutorhynchus scrobicollis could control up to 5 of 12 populations if
introduced alone. Introducing a second species could extend control 9 populations,
although the probability of success is < 0.1 at 4 of these 9. Better data on the distribution
of agent impacts are necessary to refine predictions. Variance in survival was negatively
density dependent, even when mean survival was not. modeling residual variance in each
vital rate as a function of density, demographic variance and stochasticity themselves
become density dependent functions. This has potentially important consequences for
populations of management concern, as small populations may become more susceptible
to local extinctions. The predictive power of future weed management models may be

improved by incorporating density dependent demographic stochasticity in their designs.
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PREFACE

Invasive species constitute a significant threat to native biodiversity globally, and
managing them effectively is an increasing challenge. In some cases invasions are so
devastating that the only way to confront them is by literally clearing the earth and
starting over. During my first year of graduate school I visited Everglades National Park
and saw just that. Brazilian pepper tree (Schinus terebinthifolius) had invaded vast tracts
of fallow farmland that had been incorporated into the park in the 1970s. As I drove into
the area, Brazilian pepper was practically the only plant visible — an impenetrable thicket
of waxy leaves dotted with bright red berries. The soil that supported them, I was told,
had been created to promote agriculture. Using heavy equipment, the limestone bedrock
had been macerated to a consistency fine enough that crops could be planted in it.
Because the soil had been so radically altered, when the fields were abandoned, they were
rapidly invaded by Brazilian pepper, which was able to out compete the marl prairie
wetland community native to the area. Three decades later, huge earth moving machines
were being used to scrape away the topsoil that had been disturbed during a century of
agricultural land use, revealing the limestone bedrock beneath. Where this had been done
rich, native vegetation returned to its natural place of prominence within months, and the
Everglades were once again a river of grass.

Sometimes the best way to control invaders and protect native biodiversity is to
scour or scorch the earth. But this is rarely the case. Because plant invaders are more

often diffuse targets of management, standing intermixed with the very species we wish
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to preserve, a cautious, more delicate approach to controlling them is necessary. In some
cases, when an invasion is small, hand pulling or spot herbicide treatments can
effectively control a target weed, and quarantines can be used to stop its spread. But
when the target is widespread and well established a more autonomous approach is
necessary.

Enter biological control. Biological control, or biocontrol, is conceptually simple
if not elegant: Everyone has enemies. Use this to your advantage by letting your enemy’s
enemy do the dirty work. More technically, biological control is the practice of using the
natural enemies of a targetéd pest species to suppress the pest population. In the case of
weedy invasive plants, herbivorous insects and occasionally plant pathogens are most |
frequently used as biocontrol agents. Although past biocontrol programs have been
criticized for imprudently releasing agents that have harmed non-target - and even
threatened — species, the culture of biological control practitioners has changed. Great
lengths are now taken to reduce the risk of introducing biocontrol agents that feed on
non-target plant species. Extensive pre-release tests of agent feeding preferences and host
specificity typically take a decade or more to complete, and these still do not guarantee
that permits will be issued to make releases.

But what of the plant? Until recently, the target plant has been something of an
afterthought in the formulation of new biocontrol programs. Biocontrol systems have
historically been ‘designed’ (and I use the term rather loosely) by seeking to introduce as
many host specific biocontrol agent species as can be found until the target is suppressed.
This approach has resulted in a enormous investments of time and money in the

development, testing, and of release of biocontrol agents that ultimately have not
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controlled their targets, and that in some cases had vﬁ'ldly unexpected indirect effects on
other species and food webs. There must be a better way...

A more directed approach to finding ‘the right agent’, the one that ultimately does
the heavy lifting and suppresses the target, was proposed by Peter McEvoy and Eric
Coombs. The idea, again, is audaciously simple: Study the plant, determine its
vulnerabilities, and target them explicitly. Drawing from a growing number of studies on
invasive weed demography and conservation biology, they proposed that population
models could be developed for a target invasive species that would highlight the stage or
stages in its life history with the greatest effects on population growth. This stage is the
plant’s ‘Achilles’ heel’, and is where management should be directed. Knowing this
information up front, finding ‘the right agent’ would begin to look less like a lottery and
much more like a directed search. Demographic models, layered with the already
mandatory process of testing agent host specificity, could lead biocontrol researchers
more efficiently towards effective biocontrol solutions for invasive weeds. Perhaps more
importantly, by releasing fewer species of biocontrol agents, the risks to non-target

species posed by biological control programs could simultaneously be reduced.

Adam Davis was the first to apply McEvoy and Coombs’ proposal. Davis and his
coauthors used available data to build a mathematical model of the invasive weed
Alliaria petiolata (garlic mustard) and characterize its vulnerabilities. This model was
then used to make recommendations about how garlic mustard should be managed. My
dissertation work builds from Davis’ model with new studies and analyses of this same

species, garlic mustard. It examines the structure and scale of spatiotemporal variability
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in demographic rates and how this variability affects projections of population viability
and the effectiveness of proposed management strategies.

One of the major themes in my dissertation research is variability. A number of
researchers have studied garlic mustard, and a number of these have developed models of
its population dynamics. Looking across these studies and at my own research, what is
really amazing is how incredibly different this one species can be. In some places 10% of
the seedlings survive. In others, 90% survive. In some places the population grows
explosively, while in others it barely persists from year to year. Within populations there
is also incredible variation in survival and growth from year to year as populations cycle
through phases of boom and bust dynamics. In one of my garlic mustard study
populations a year of tremendous growth was followed by two years of population
decline. All of this suggests that to truly understand this plant, we can’t think of its
population biology as a static entity. It does not have one growth rate, nor does it have
one density dependent function. It is unlikely, too, that it has one optimal management
target. This picture only begins to come into focus after watching a dozen populations for

several years.

In the following chapters I will present my dissertation research on garlic
mustard. The central questions I address The first chapter contains background
information on garlic mustard biology, biological control, and some of the goals of my
research. Chapter two describes the statistical analysis of garlic mustard survival and
reproductive rates from the twelve study sites. In this chapter, I examine the spatial and

temporal scales of variability in demographic rates as well as their relationships to



population density and abiotic factors. Chapter three is a detailed critique of a recently
published modeling study of garlic mustard population dynamics by Pardini et al. which
also makes management recommendations. This is a necessary detour, as there were a
number of errors in this model’s construction and parameterization that led to issuing
incorrect management recommendations which some land managers have already begun
implementing. The fourth chapter presents a linear model of garlic mustard population
dynamics which incorporates annual variation in demographic rates within each site. The
model is used to estimate the probability of controlling garlic mustard by simulating the
effects of either single or multiple biocontrol agent species across a range of agent
efficacies. This is the main result of the study. Finally, chapter five contains a reanalysis
of the survival and fecundity data focused on density dependence of demographic
stochasticity. This analysis suggests an important relationship between population density
and the stochasticity of survival probability that should be explored further in future

statistical and population models.

I didn’t think I wanted to be a modeler when I started graduate school. Turns

out... [ do. Who knew?

Xi



TABLE OF CONTENTS

LIST OF TABLES ...t eeteitteetecteteteiesttste e sestesseesaessessesssesassaessesnesssennsenseessanes XV
LIST OF FIGURES........coo ettt ra s e e sae e sa e s e e ssn e ne s nnae Xviii
Chapter 1 : Developing Demographic Models to Inform Selection of Alliaria petiolata
(Garlic Mustard) Biological Control AZEnts...........cccevvvreerreeererrerceeserserssessessesaressessessseseenns 1
INTOAUCHION ...ttt et ettt et e v e s e et e e e e sss e b aesbessassseensesnsennsenn 2
Bi010gical Control.........cc.coieiiriiiieieririecert ettt r e e e ba s e e e e s e e s eeraens 3
HoOSt RANGE TESHING .......coveiiiiieiiiiieicctcctettetceer ettt ettt e ssesesnens 4
Benefits of Biological Weed COntrol............c.cceueeeeinreninenieninenieieeeeseeneeseeresessesnens 5
Pitfalls of Biological Weed Control: Non-Target Impacts..........ccccoceeceerrveerenierivennns 5
Direct Non-Target Effects.........cocceoverirnieerinveenenrenienenstencnreseesieesseseeseeesaesveeseens 6
Indirect Non-Target Effects ........ccceceiiiienninnininiiceennccceeteeiereseeee e 8
Improving Weed Biological Control.............cceeriereriiinienienneriecieceeseessvesee e seeessesnens 9
The Use of Transition Matrix Models..........ccovvvrvrivinineninnnineneneneneeentesenene 10
Demographic Variability..........ccceceeirvenveninienineneecenenesreseeseessessessesessessessessessesses 13
StUAY SPECIES ...ttt ettt ettt et e sa e b sae e st s e e e e saeenesnaas 16
DISIIDULION. ....cvieeiiteiieierreeee ettt este e e e s e e te s e s e e sae s sessaensestasseanssesasnsesnsanns 16
Life CYCLE..urinriereiiictentenee sttt ettt et srr et e s e e s seessaa s s e e s sae e s e e sanasssesssnessanene 17
Invasiveness of Alliaria petiolata ....................ccoevveveevieineesieienrenreneeieeesreeessennes 20
CONLIO] SILALEGIES ...cuveverrerrenrerierreeterteneesteseseesteseestessesseesseessassaessasssessasssssssessassnenns 21
Conventional CoONtrol...........cceoirviiriiniiiiieeiertereeee et see st ess st e reeseessesaessnenns 21
Bi0logical CONLIOL........cooiiiiiieriiteeeeeeree et sae e e e saa e s e e sane s sanaenae s 21
SUINMATY ...eeiiiiiiiiiieiteeceete ettt et s st e e s e se e e seseeseaeeesseesesesseneesesatesssneesansneanns 23
Chapter 2 : The Scale and Sources of Demographic Variation in Alliaria petiolata........ 24
ADSETACE ....c.eveeeieiiteceerteseeseesereesaesaeestesseestessesstessessessassanssnesasessansanssesssaeseesnssssesssesssasn 25
INrOQUCHION ...ttt ettt ettt et ae st e st et se e et emees 27
MELHOMAS ...ttt et s et e st e s e st e s st e snn e s nenennes 30
StUAY SPECIES ....cneenrienieeirieieeeeieee ettt e s s ee st e sr et e b s b e s e ssa e sabens 30
Study Sites and Data ColleCtion...........cccevvevieeirsieneniinnennininictiecreecnrenceneenee 32
Germination and Seed Survival..........c.cocuevereinnnenninenier e 32
Seedling SUrvival ........coceoieiiineninereceeee e 33
Rosette Survival and Fecundity: ..........cocceoeriiniencennirnenieneeiceeeneee e cneenens 34
ClmAte Data........coooviiiieeeiiiecterieesreecteese e ssreeseeesan e st e e ssessse st e bessacssaesateesasssnns e 35
SO DALA.....cecureeieiceiiiecircte et e st e st e st e s e e sae s st s see s nesne e e s s e bs s eabesane 37
StatistiCal ANALYSIS .......cevvererreeriereereereerenenerestertitesttre st bes s ssere s rs e res 38
Hierarchical Mixed Model Analyses..........ccccoeeueeueeuinininnenniinenniiiniinicsenieennens 38
Environmental Models.........cceeveerercceenerninniniinniieinicnnieecne e nesnas 41
RESULILS c..eeeieeeeecceeriectee et e et st et e st e e e st e b e saesbsesbs e bt s bt e esbbesabesanbesabsesbasesnsans 43
Hierarchical Mixed Model Analyses...........ccccoceviivininniiniiniicieneeieneeieceeneeiens 45
Environmental Models: .........ccocueeeernrninininiecincrcscnicne e 46
GEIMNUNALION........eeiveireceeeeeeie e etee et eseesaeeste s e et e et ess e satsrnesa e e tasssessbesassssesaeasnans 47
Seedling SUIVIVAL .......cc.ceeueiereriiireccieieenteee ettt n e 48

Xii



SUMMET SUIVIVAL ...ouvvvieiiiiiiieeeeeeccieeeeeesesreeeeeseseesssnsesesssssssessensesessssassssssssnnnsnnes 48

WINEET SUMVIVAL...cviiiiiiiiiiceternecet ettt ssesae st e s e s ra s s e s astesranns 50
FECUNAILY ...ttt sttt sbe s 50
DISCUSSION «....eouiveietreeteiteteestees et e st ste st et seste s esestsssssassasaasaesasssssensessessesessessessersessenes 51
Comparisons to Previous Studies...........cocueverrieveininenenienierenreceeser e s seeeseennes 51
CONCIUSIONS ...ttt ettt sttt sba st e n st e s aansanes 55
Tables: ChapLer 2 ......cc.ccivivieiicieietetcestetetete sttt reste e ebee e e s e sae e esnensesseessensesanen 59
Figures: Chapter 2 .......coueeievieieiririeenentnistsse ettt et e ste s e s e saesaassasssesaessesnnensassnns 71
Appendix 2.A : SOI Data........ccceeurerrenrrenrenrenenenesteeniestesestssessesssseesssasssssessessassessens 83
Appendix 2.B : Statistical Model Fitting NOtes .........ccccueverrecienrerveeneeneneeieeseereesaensens 85
2.B.1. MOdE] FIttINg.....coeeeieeeieireeeneneetetese et nessses e ssessesanesaesaessessssssessasssessans 86
2.B.ii. "Pretending variables" ...........cccovireiiiininneniee et ae s 88
2.B.iii. Conditional Modeling of Seed Survival..........c.ccccooovrvircrrceerceeeiececeeeee 89
2.B.iv. Fecundity €StmMation .........cccceeeerueerienrieieeseesieeienteestesisecseessnesseesseesssesseesees 90
2.B.v. Estimation 0f 2007 G2.........cccceveruerireirneireneeeeenenstestiseessessssssessesssssessassas 93
Appendix 2.C : Environmental Model Predictions ..........ccoceeerverveeeneinennercenseeneene 99
Appendix 2.D : Corrections to Meekins and McCarthy (2002) Matrix Model.......... 102
Appendix 2.E : Meekins and McCarthy (2002) Calculations..........cccceeveeeveevecreernnnn. 105
ADPPENAIX 2.E......oiiiiiiee ettt st ettt ettt see et et saa e et sae s 106
Chapter 3 : Comment on “Complex Population Dynamics and Control of the Invasive
Biennial Alliaria petiolata (Garlic Mustard)...........ccccecueverrrenrecrensenserseenensenseesesseeseesenns 107
INEPOQUCLION ...ttt b b st et s e sse b see e aenens 108
StUAY SYSIEIM....cueriiriiienieieirerctetsest et s st ese e saesae e s e s sessassassessassassanean 109
Management INErENCE..........ccuecievienieiiiceneciree ettt b b enees 110
ADALYSES ...ecveineerrerrrenreetrerreeeeeestestessesasssessessesstestssseseessessesaassesseestassesstesaessassassaasnans 110
Life HISEOTY ..ttt et eaeee et et ssesaa e e sae st et a st ase s 110
Parameterization of Density Dependent Functions..........c..ccccceeveeiviiininiicniicniicnnncnn. 112
Implementation of Density Dependence..........cccocevereeveenieneenenieeneineneeceeseseenaenn 116
Interpretation of Model QUtpUL .........ccocuevueeiererirecircerceeeeee e 117
CONCIUSIONS .....eeneereeeenerienteseeeeeeeeeesree st et s e st s ssesnesatsseesee st e st esneseatessesnsennens 119
Figures: Chapter 3 ...ttt eas 121
Appendix 3.A : Summer Density Dependence and multicollinearity......................... 126
3.A.i. Summer Density Dependence Function (52) ......cc.ceeeveeeveeccneiinvcnicnniincnnens 127
3.A.ii. Multicollinearity and Parameter Bias.........cc.ccocceeceeiininveninnniincnnnicniennnns 129
Appendix 3.B : Refit density dependence equations...........ccceeveverireiiiniicnncinennens 139
Appendix 3.C : Winter Density Dependence.............cocevcerinenniiniineiniiiinniininniincinens 141
Appendix 3.D : Apply Seedling Density Dependent Mortality ...........coccovvuvieiniinnnns 145
Appendix 3.E : Application of Seedling density dependence..........c.ccoccvuvvvvvineiennnnns 149
Appendix 3.F : Multicollinearity Simulation: MATLAB Computer Code................ 154
Chapter 4 : The Predicted Response of Alliaria petiolata to Biological Control: Linear
Deterministic Demographic Models ..........ocoeeueiiinuiciinininiininininininieccene e 161
ADSETACE ..eeeeiceeireeerceiestee e et st e et st e se s ee st s ae e e b st e st e b s s b e b e et s e b e e b e e b e e na s 162
INtOAUCHION ...ttt bbb bn e s 164
MEROMAS ...t b ra s 168
Study System and Data Collection..........ccceereeerereeiineeininiininiiiiccncee e 168



Demographic Data...........ccecirveeiivneiniinininineniesieiereese sttt ee et sne e e e rans 170

Matrix Model CONStIUCLION........cccceieuiririeeertereertestestesteseeeesteste e res e eesae e e e saessenns 172
RESUILS ..ottt ae s e s e e s e s st e s e et e e e b e e s assseseenneensanns 180
Population rowth rates.........c..cocceerererenienireeeececet ettt eaens 180
Sensitivity and Elasticity ANalySeS ........cccccvierieererieenrerieenenireirsenreereessessesseessaens 181
Zero Growth ISOCHNES .......ccicviveeieiirieieenecte ettt ste e esae s st aesesaaaas 185
DISCUSSION ...couuvieniieteereeiersreenieesteesreeereesseeateesaeesseessnesssasstesssesssssssaesssessanessaesssnessssassans 186
Tables: Chapter 4 ..........ooo oottt ettt sae s e s s bessre s s e s e e srasnens 192
Figures: Chapter 4 ........coiiiiieeiiiiciicttecencee et se e eessaessseesaessss s s resssneesraasanas 196
Appendix 4.A : Raw Zero Growth Contours ............cccceeererieeinrenieeneeseneeeeesenenen 207
Appendix 4.B : Annual Zero Growth Contours............ccoceecerveenuiereerrernensesseecseeseennens 210
Chapter 5 : Demographic Variance Across Gradients of Population Density in Alliaria
PEUOIALA. .......ooeeeeeeeeeeeeeerieeeeeeeeteet e ssesstee st e s saessae e st aessassseesateessassaessseessneessesnssassseesssaans 213
ADSETACE ...ttt et st sae st s et et se e e e e e et e be e eae e nans 214
INrOAUCHION ...ttt e st b e e essa e aesse e saa e saeeaanns 216
MEROMAS ..ottt ettt et e a e e e sse st et e saasseasseanasenaan 218
SAMPLING....eeorriireiiiieiinieerterteriree st eereresre e e srese e seseessaesssesssessssassnesssnsssaesssesssnsssnsans 218
Statistical ANALYSES .........ceccererrernrieirrieninieriesieeseeseestessestesreetesssessessssssesssesssasssens 218
RESUILS ...ttt sttt ettt e ste s e e e sae e e e sae s e e s e e e assn e besaessaessnsssannnasn 220
FIX€A EFfECLS ..ooueineiieieieeeecetec ettt se et et see e naes 221
RaNdom EffECtS.....cceivueririiiiiireeceeteerceeee et 222
DISCUSSION .....oveereeeereeenertesentitesrtestesresstessessesstessesstesesstsssessesssesstessesssesnsensesssessseesnes 223
The Importance of Variance.............ccouevueieiriiniienienieneieeeeteecsee et 225
Tables: Chapter 5 ..ot saees 230
Figures: Chapter S .......oooiiiiiiiiiitcctceerte et seesteesne st et e st e s seessae e ne s sesesrasane 235
LAterature Cited ........cocoeeiueiiiiiiieiieeeecee ettt ettt e e s s e st e e s st e s e 246

Xiv



LIST OF TABLES

Table 2.1. Names and locations of study sites. Rainfall estimates represent mean values
summed from climatic data used in analyses. See methods section for details. ............... 60

Table 2.2. Timeline of Alliaria petiolata sampling for each demographic parameter. S, F,
W, and Sp indicate summer, fall, winter, and spring, respectively. Boxes enclose the time
interval over which a parameter was measured. The unshaded box indicates the summer
survival transition that was measured in the smaller seedling survival-sized quadrats in
Michigan for the 2005-2006 cohort. Germination data are not presented in Chapter 2. ..61

Table 2.3. Results of model selection for spatiotemporal differentiation of 4. petiolata
life history transitions. Details for each transition include the error distribution (dist) used
in GLMs and GLLMs, the information criterion used for model weighting and selection
(ic), and the dispersion parameter ¢ used to calculate QAICc where applicable. Variables:
fixed effects (S=site, Y=year, L=location, I=intercept), Laplace approximated maximum
likelihood (In(/)), number of observations (n), levels of random quadrat effect (), number
of parameters including random effects (k), (Q)AIC: AICc or Quasi-AICc for

overdispersed models, delta (Q)AIC (Ai) , and Akaike weight (w;). Models with r=0 were
GLMs with fixed effects only. A maximum of 5 models are shown per vital rate. All

other models with Ai < 11 and w; > 0 are ShOWN. ......ccceevureeieereeicerennecreeienareeereseeenns 62

Table 2.4. Best supported environmental model of germination of newly shed seeds after

one winter (g;). Parameter estimates from GLMM with binomial errors and logit link.
Model ranking was evaluated with QAICc. Akaike weight = 0.853, AQAICc of next best
model = 3.7. All climate data are from time periods which precede germination. Random
quadrat effect was evaluated with a likelihood ratio test by comparing the change in the -

2In(/) from dropping quadrat from the model to a mixture of )(2 distributions in
GLIMMIX (SAS INStitute 2008)......ccceevrrerrerermeerreirreerssessesesesssstseesesseseesessossesassessssneesess 64

Table 2.5. Seedling Environmental Model: Parameter estimates from GLMM of seedling
survival from April until June of the first year with binomial errors and logit link. Model
ranking was evaluated with QAICc. Akaike weight = 0.958, AQAICc of next best model
= 7.8. Random quadrat effect was evaluated with a likelihood ratio test by comparing the
change in the -2In(/) from dropping quadrat from the model to a mixture of )(2
distributions in GLIMMIX (SAS Institute 2008)........cccccoceeeirererrienreecierneninneeiseesnees 65

Table 2.6. Summer Environmental Model (s;.m): Probability of a rosette surviving from
June to October. Summer survival GLMM with binomial errors and logit link. Akaike
weight = 0.993, AQAICc of next best model = 10.01. Random quadrat effect was
evaluated with a likelihood ratio test by comparing the change in the -2In(/) from
dropping quadrat from the model to a mixture of o distributions in GLIMMIX (SAS
INSHEULE 2008). ....eeveeereeerrerteeieeirerteesreeraersressressae et esnsaesesessesssesssessstesssssasnessssessssssrsnssnes 66

XV



Table 2.7. Winter Environmental Model (sy,;,). Two-stage model of winter rosette
survival (swin). Model »,,,1 predicts the binary probability of observing an extreme value
(either 0 or 100% survival) versus any other intermediate value and determines whether
an observation proceeds to s,;,2a or s,,;,2b. Higher predicted probabilities from r,,;,1 are

more likely to have extreme values and are passed on to s,,;,2a. Model s,,;,2a predicts the
binary probability of observing 0% survival versus 100% survival, conditional on

knowledge that the outcome is one of these. Model r,;,2b is a binomial GLMM that
predicts the survival probability of a quadrat that does not have an extreme value. For the
first two binary models, the response coded as the "event" whose probability was
modeled is indicated. Akaike weights = 0.343, 0.904, and 0.865 for the three models,
respectively. AAICc of next best models = 1.4, 5.4, and 3.7, respectively....................... 67

Table 2.8. Fecundity Environmental Model (f). GLMM with Poisson distributed errors,
log link, and random quadrat effects. Model ranking was evaluated with AICc. Akaike
weight = 0.999, AAICc of next best model = 16.3. Random quadrat effect was evaluated
with a likelihood ratio test by comparing the change in the -2In(/) from dropping quadrat

from the model to a mixture of 12 distributions in GLIMMIX (SAS Institute 2008)........ 68

Table 2.9. Comparison of plant densities used in four studies of A. petiolata. Seedling,
Summer, and Winter refer to survival measurements. Plant minimum and maximum

densities have been converted to common units of plants m~. Geometric mean densities
and 95% confidence intervals of the geometric mean are shown. The mean seedling
density from Pardini et al. (2009) is the arithmetic mean and is based on their report of
marking 469 seedlings across 40 1x1 m quadrats. ........c.ccecceveeeerirnsinniinnnnienncnreeneeeeene 69

Table 2.A.1 Mean soil parameters + SEM. Site abbreviations in Table 2.1 ..................... 84

Table 2.B.1 Parameter estimates from breakpoint linear regression of logjo(seeds/plant)
versus log;o(siliques/plant). The breakpoint is the number of [untransformed] siliques
above which the slope of the regression changes. The slope for plants with 1-8 siliques is

given by 1, while the slope for plants with more than 8 siliques is given by f;. ............ 95

Table 2.B.2. Parameter estimates from generalized linear mixed model of germination
probability of dormant A. petiolata seeds with binomial errors and random site effects.
Type-3 F-tests of parameter significance and parameter standard errors are given.......... 96

Table 3.A.1 Analysis of simulation results. A random variable z was created as a function
of x and y using the formula z = 5 + 2x + 6y + random error. Z was modeled as a function
of five different combinations of x and y. M1 represents the ‘true’ form of the function
used to generate z. Parameter estimates from models without the main effects x and y are
poor, although they have significant P-values. AAICc values correctly identify the M1 as
the model with the greatest support from the data. M1 received > 90% of the Akaike
weights (w) indicate a 90.4% probability that it is the best supported model among the
five competing MOdELS. .........ccoverieririncneniiiitii et 134

XVi



Table 3.B.1. Parameter estimates and fit statistics from refit summer (s;) and winter (s3)

A. petiolata density dependence functions. Data were extracted from figures 2a and 2b of
Pardini et al. (2009) A. petiolata winter survival data. ...........cceeerverrerreerrecreenreeneervennen. 140

Table 4.1. Mean observed A. petiolata demographic rates by site, calculated for each of
tHIEE YEATS. ..ccueieiiiiiiiriecieictertete et et see e saeesessesaeseasaessensesaeseasnesaessessessassansassesssensensesns 193

Table 4.2. Annual estimates of A for each site (Ayes). These were summarized within

each site as the megamatrix A (Ap), the population growth rate of the average population
within each site calculated from the megamatrix M with uncorrelated environments. The

mean growth rate across sites within each year and across all Ay is given in the bottom
row. The arithmetic mean Ay is the average A across the study system. ........................ 194

Table 4.3. The probability of successfully controlling 4. petiolata at each site was
graphically estimated as the proportion of the two shaded areas above the zero growth
isoclines in Figure 4.7. The sizes of the shaded areas for C. scrobicollis alone (smaller
rectangle in Figure 4.7) and with C. alliariae (larger rectangle) were 13899 and 26082
pixels, respectively. This analysis assumes a uniform probability distribution for agent
IIMPACES. ...vviriiiiiriniiiiiniitcit sttt s st as st et s s s et s s bt e e s b e as b s e b et et sstsacs 195

Table 5.1 Comparisons of fixed- and mixed effects models of density dependent survival
and fecundity in A4. petiolata. Seedling survival was calculated as the number of rosettes
in June divided by the maximum number of seedlings observed during the spring
germination period. Summer and winter survival were calculated as the proportion of
rosettes surviving from June to October and from October to the following June,
respectively. All models included fixed effects terms for initial A. petiolata density

(plants m ), state, year, and state by year interactions. Mixed effects models also
included random effects terms for site within year. In the mixed models, the variance
structure was modeled normally, as an exponential function of the density covariate, and
using the power of the mean (POM) structure. AIC and BIC are the Akaike and Bayesian
Information Criterion, respectively. A AIC and A BIC indicate the difference in fit
between each model and the fit of the best fit model within each set of analyses. Table
70 OO OO OSSOSO 231

Table 5.2 Type III F-tests of fixed effects and estimates of covariance parameters from
analyses of arcsine square root transformed seedling, summer, and winter survival

probabilities in A. petiolata. In each model, plant density (# m'z) is the number of A.
petiolata plants at the start of the interval over which survival was measured, except for
seedling survival, where seedling density is the maximum density of seedlings observed
during the spring. The estimated density effects are slopes associated with each density
covariate. Random effects are indicated in italics and were evaluated with Z tests.
Congratulations! You’re almost done reading this thing.. ........ccccovueeeiiiinininnnininnnn 233

xvii



LIST OF FIGURES

Figure 2.1. Locations of seven A. petiolata study sites established in Michigan in 2004
and five sites established in Illinois in 2005. Site Key: 1) Shiawassee, 2) Rose Lake, 3)
Ives Road, 4) Johnson Park, 5) Holland State Park, 6) Edward Lowe Foundation, 7) Russ
Forest, 8) Healy Road, 9) Homer Lake, 10) Illini Plantations, 11) Farmdale, 12) Peoria.72

Figure 2.2. Schematic diagram of A. petiolata life cycle. Arrows represent one-year
transitions from June to June and are comprised of multiple lower level demographic

transitions. These are abbreviated as follows: g, germination of new seeds within one
year of seed set; g, germination of dormant seeds from the soil seed bank; s, survival of

newly emerged rosettes to the rosette stage in June; sy,,,,, summer survival of new rosettes
from June until late October; s,.,, winter survival of rosettes to the flowering stage from

October until June; f, fecundity (seeds/plant); s, survival of dormant seeds in the soil
seed bank. Because seed survival (s5) was measured over a full year but is used twice as

an 8 month, sub-annual transition, s is raised to the two-thirds power in the seed to
rosette and the flowering plant to rosette transitions to scale its affect..............ccccceueu.ee... 73

Figure 2.3. Observed mean A. petiolata demographic rates over the study period. Light
gray lines follow mean values within individual sites, averaged across quadrats. Heavy
black lines are mean values (+tSEM) of these site means. Year indicates the year during
with each measurement was begun. For example, winter survival 2005 was measured
from fall of 2005 until June of 2006. The three years constitute the three “cohorts” of
plants as grouped in the study, i.e. 2006 germination 1 and 2005 summer survival are
grouped together. *Values of germination 2 from in 2009 are estimations (Appendix
2BV e s st st st sttt a e sttt s e e et s R e s Rt ebb e b s 74

Figure 2.4. Frequency distributions of A. petiolata demographic rates from this study.
Data shown are raw quadrat level observations. Rosette to flowering plant survival (s,) is
calculated as rg,m*rywin for comparison with previous studies that did not split summer
and winter survival. Letters beneath histograms show observations from previous studies.
References: a (Pardini et al. 2008); b (Pardini et al. 2009); ¢ (Anderson et al. 1996); d
(Meekins and McCarthy 2002); e (Drayton and Primack 1999); f (Nuzzo and Blossey
unpublished data); g (Baskin and Baskin 1992); and & (Cavers et al. 1979). Overlapping
observations are shown as: i (Anderson et al. 1996, Meekins and McCarthy 2002); j
(Drayton and Primack 1999, Pardini et al. 2009, Nuzzo and Blossey unpublished data); k
(Cavers et al. 1979, Meekins and McCarthy 2002)..........cccoceeuruiruninnsiisinisisiesnesenensennens 76

Figure 2.5. Predicted versus observed values of A. petiolata seed bank viability (s;),
germination after 1 winter (g;), seedling to rosette survival (s,), summer (ss,) and winter
(Swin) TOSEtte survival, per capita fecundity (f), and germination of dormant seeds from

XViil



the seed bank after two winters (g2). Fitted values are least squares means estimates for
each site by year combination predicted from the hierarchical GLMs and GLMMs.
Observed values are simple arithmetic means except f. Silique counts were first averaged
across plants within quadrats, then across quadrats for each site and year, and finally
scaled to show the estimated number of seeds per plant. Fitted f, values were modeled as

silique counts and then scaled to generate seed estimates. Only the first two years of g»
are shown, because the third year was estimated from years one and two. Unadjusted R
are shown because the site by years means are shown (marginal model predictions),

whereas the model was fit with random quadrat effects. All R’s and Adjusted R’ in this
and subsequent figures are calculated in the original data scale............ccccceveerererververenene 78

Figure 2.6. Predicted versus observed values from environmental models. The five
scatterplots show the demographic rates generated from the BLUPs versus the observed
rates, overlaid with a 1:1 reference line. The vertical axis of the box plot shows the
predicted probability of a winter rosette survival observation resulting in an extreme

value, either 0 or 100% survival, versus a non-extreme value from the r,,;,1 binary GLM
versus the actual outcome. Observed extreme values were coded as "Yes" and include all
observations that had either zero or 100% percent survival. Observations in the "No"
category had intermediate survival rates. A well fitting model should predict higher
probabilities for the "Yes" group and lower the probabilities for the "No" group. The
winter rosette survival plot shows the combined results of models r,,;,2a and r,,;,2b. For
observed probabilities of 0 and 1 the predicted values represent the probability of an
observation being 1, versus the alternative of it being 0, conditional on knowing that the
outcome will be one of these two extreme values. The remaining points are predicted
survival probabilities as in the upper row of plots. Mean per capita fecundity was
estimated from the predicted and observed numbers of siliques using the breakpoint
regression function in Appendix 2.B.iv. ... 80

Figure 2.7. Predicted seedling survival is conditioned by interactions among multiple
extrinsic and intrinsic factors. Here, the expected seedling survival probability is
calculated from the best supported seedling model across the observed range of fall rainy
days (raing,), during the year before germination at the minimum (cool), mean (med.),
and maximum (hot) number of observed hot days during the summer before germination.
The figure illustrates the interaction between population density, spring temperature
(hots,m), and fall rain at population densities of 500 (gray) and 5000 (black) seedlings m
2. Mean observed values were used for all other variables. The change in slope from

negative to positive results from the interaction between raing, and hotgm. ..c.ovevenence.. 82

Figure 2.B.1. Number of seeds versus number of siliques in 142 A4. petiolata test (black
dots) and fitted values from breakpoint regression (black line). Inset detail graph shows
the change in slope above the breakpoint value of 8 siliques per plant (vertical dashed
JINE)..neeeeeeeeiecesie et aeses e ser s s s s s s s s s R e sttt ne s atne st ae bt an 97

Figure 2.B.2. Fitted versus observed values of pooled A. petiolata germination rates from
dormant seed (g;) overlaid with 1:1 reference line. The first two years of data, which

Xix



were used to fit the model, are shown. This relationship was applied to the third year of
data to estimate the unknown values of g,. Model was fit with binomially distributed
errors and g and seeds; as fixed effects plus random site effects. .........cccoeeerveervecrnennenee. 98

Figure 2.C.1. Observed A. petiolata demographic rates versus up to five independent
variables from the best supported environmental models.............ccceeveerreeeereevieecreennenns 100

Figure 2.C.2. Predicted A. petiolata demographic rates versus the same independent
variables in Figure D1 from the best supported environmental models. Predicted values
were generated using the BLUPs, and thus include the random quadrat effects. ........... 101

Figure 2.E.1. Life cycle diagram of A. petiolata showing the upper level transitions
(arrows) and the lower level transitions which comprise them (equations). Symbols are
defined in the text. This version differs from Figure 2.2 in that it follows the notation of
Pardini et al. (2009) and includes parameters for simulation of management................ 122

Figure 2.E.2. Bifurcations of A. petiolata populations with simulated management of
rosette survival (left hand panels) and simulated management of per capita fecundity
(right hand panels) using equation set 4. In each case, the unmanaged population is
represented on the far left where additional mortality or reduction in fecundity is zero,
and the dashed reference line shows the maximum equilibrium size of the unmanaged
population. Points above this line indicate potential increases in population size relative
to the unmanaged case, while those below it indicate population decline. Individual
panels show (a,b) the original model as parameterized and published in Pardini et al.
(2009), (c,d) the effects of adding seed bank morality to the S to S and S to R transitions
and rescaling sub-annual seed mortality as described in the text, (e/f), the result of
changing the function for winter rosette density dependence in a-d to a logistic curved
response, and (g,h) the result of correcting the sign of the summer rosette density
dependence function USEd iN @-f.........cccceiemirieinininerentereeseeiesie et se e 123

Figure 3.A.1. The function used to characterize density dependent mortality of A.
petiolata in summer did not fit the data well. Data extracted from Pardini et al. (2009) are
shown (dots) against the published logistic regression function evaluated at R = 4 across
the range of total plant density from the study (dashed line). Data extracted from Figure
2A in Pardini et al. using photo editing software were used to refit a new logistic
regression function of survival probability vs. log.(4 + R), shown as a solid line. This
new function is used in the modified model in the main text. Because 4 and R could not
be extracted from the figure, lower-order terms and interactions could not be fit.......... 135

Figure 3.A.2. Surface plot of the published function for density dependent summer

rosette survival (s;) from Pardini et al. (2009) evaluated at all combinations of 4 = 0:200
ANA R = 0:200. ....oooueeereeeeeeirreceeeeereereessecaesaeseeeseessessesssessesssessasssossassassssssssssssentessesssesnes 136

Figure 3.A.3. A simulation illustrating how the sum (x + y) and product (x * y) of two

uncorrelated random variables can be highly correlated with each other. The variables x
and y are each comprised of 100 random draws from normal distributions with means 3

XX



and S, respectively, and standard deviations of 1. The variable z was calculated as z =5 +
2x + 6y + random error. Correlation coefficients (r) are shown for each relationship.
Although z is only an additive function of x and y, it appears to be strongly correlated
with both their sum and product. The simulated data plotted here were also used in the
example analysis presented in Table 3.A. 1. ....ccoiiiiviciivencneniccee e cee e eaee 137

Figure 3.C.1. Density dependence of winter rosette survival probability using data
extracted from Pardini et al. (2009). Pardini et al. conducted a linear regression of
log.(winter survival) on log.(rosettes + 1) with the intercept fixed at 1. Thus the model
predicts that survival probability approaches 100% as population size approaches 0. An

alternative to this is a logistic regression of survival probability on log.(rosettes + 1). This
model has a lower y intercept and is less prone to overestimating survival of low density
populations. The inset detail shows the shapes of the two functions at the y intercept. . 144

Figure 3.D.1 Bifurcations of A. petiolata populations with (a) simulated management of
rosettes in early winter and (b) simulated management of adults in early spring using
equation set C. In each case, the unmanaged population is represented on the far left
where additional mortality is zero, and the dashed horizontal reference line shows the
maximum equilibrium size of the unmanaged population. As all point fall below this line,
any increase in morality results in decreased population size relative to the unmanaged
L0 LN 148

Figure 3.E.1 Bifurcation of unmanaged A4. petiolata populations with varied strength of
seedling density dependence modeled from equation set F. Variability in the strength of
density dependence was expressed by changing the slope parameter in the logistic

function for seedling survival to the rosette stage (B154/) from 0 to -1. The case of no

density dependence is shown on the far left where 5y = O and seedling survival
probability is fixed by the intercept parameter at 0.6225. The dashed horizontal reference
line shows the maximum equilibrium size of the population with no density dependence.
......................................................................................................................................... 152

Figure 3.E.2. Proportional change in A. petiolata equilibrium population densities across
a range of varied strength of seedling density dependence and simulated management of
rosettes (left) and simulated management of Adults (right). The lines show the proportion
of the unmanaged population size for a given strength of seedling density dependence as
the strength of rosette or adult management is increased. Strength of seedling density

dependence increases as values of f;;4 become more negative (see Figure 3.E.1). For

example, when there is no seedling density dependence, (Bi541 = 0, dotted line),
increasing rosette mortality causes an approximately linear proportional decrease in
maximum population size, relative to the size of an unmanaged population with no
density dEPEndEnCe. .........ccceurveerereererereericntitieie e e e s baaas 153

Figure 4.1. Alliaria petiolata life cycle diagram and corresponding projection matrix A.
Arrows represent one-year transitions from June of year ¢ to June of year ++1 and are
comprised of sub-annual, lower level demographic transitions: per capita fecundity (f),

germination probabilities of new seeds within one year of seed set (g1) and of dormant

Xxi



seeds from the soil seed bank (g3), and seedling (s,), summer rosette (ss,m), winter rosette

(Swin), and dormant seed (s;) survival probabilities. Matrix rows correspond with the life
history stage individuals are transitioning from time ¢, where rows 1, 2, and 3 (from left)
are seeds, rosettes, and flowering plants. Columns indicate life history stages individuals

are transitioning to in time 7+1. For example matrix element a3, represents the transition
from rosettes (column 2) to flowering plants (row 3) in matrix A. Following Davis et al.

(2006), the variables c¢; and c; simulate rosette mortality and fecundity reduction due to
biocontrol, and are shown as (1-c,,) to express them in terms of survival. ..................... 197

Figure 4.2. Frequency distribution of A. petiolata megamatrix population growth rate
across all sites (n = 12). The black line indicates the mean value of Ay across sites. .... 198

Figure 4.3. Sensitivities (top) and elasticities (bottom) of A to perturbation of A matrix
elements a;;. Sensitivities from the combined 36 site by year matrices are sorted from left
to right by sensitivity matrix element 533 (R—P), and elasticities are sorted by elasticity
matrix element e1] (S—S). The sensitivities of A to a23 and a3 are small and lie along the
horzontal axis. The elasticities of A to a;3 and a3 are equal; the former obscures the latter

in the lower plot. NOTE: The dotted line (a;;) does not indicate a different density of

data points than the other four line styles and should not be interpreted differently. It is
used because the software which produced the graph (MATLAB) only prints four basic
JINE SEYLES. ...ttt sttt st see st et et e e e e e e s se s st esasses e as e esesntesnessessansessasneen 199

Figure 4.4. Elasticities (e;;) of A to A matrix elements a; (S—S5) and a3; (R—P) (left) and
to lower level transitions seed (ss) survival and E4 (right) versus the population growth
rate A. The elasticities of A to f, s,, Ssum, and s,;, were identical and are represented
together with one line, labeled E4. E4 and e3; are equal as well. Among populations with

high growth rates, A has the greatest elasticity to a3, and E4. Logistic regression lines are
overlaid to ShOW trENS. .......ccecveverieniriniireretetee et st sse s 201

Figure 4.5. Empirical second derivatives of A. Observed variation in elasticities of
Alliaria petiolata population growth versus observed variation in the lower demographic
transitions. In each panel the elasticities of A to each lower-level demographic rate from
the 36 site by year matrices is plotted against the observed value of the transition
indicated on the horizontal axis. The eight panels show the same empirical data sorted
differently. The data are sorted from left to right by the transition labeled on the
horizontal axis. In the lower right panel the x axis is shown on a log scale, although the x
axis tick marks are back-transformed to the original scale. Contours were smoothed using
a LOESS smoother (Burkey 2009) to clarify the relationships among variables. This is
why the values in each panel appear different even though they show the same data. The
raw, unsmoothed plots are presented in Appendix A.........ccoccoivimiiiiininininentenneieenene. 202

Figure 4.6. Sensitivities of A to lower-level 4. petiolata transitions x versus A for 36
individual site-years. As A increases, the rankings and magnitudes of the S, change to

xxii



favor management of rosettes in winter or summer and germination of new seeds. The
vertical lines differentiate between expanding populations (right) and declining
populations (left). The seven sensitivity contours are split into two panels to improve
readability. LOWESS smoothing was applied to each line to for the same purpose...... 204

Figure 4.7. Zero growth isoclines (contours of A = 1, indicating stable A. petiolata
population size) for each study population assuming a random sequence of the three
environments (years) using a megamatrix model. The x and y axes in each plot represent

the efficacy of rosette or fecundity management simulated by increasing the variables c;

or cy, respectively, from 0 to 1. The larger shaded area shows the observed range of seed
reduction and rosette mortality caused by the combined actions of the root and stem
mining weevils Ceutorhynchus scrobicollis and C. alliariae (see Table 2 in Davis et al.,
2006). The smaller rectangle within the shaded area indicates the range of observed
impacts of C. scrobicollis alone, where the upper right comer is the maximum observed
impact of C. scrobicollis. Contours which intersect the larger shaded area represent
populations which could theoretically be controlled by C. scrobicollis and C. alliariae
together at a given level of agent efficacy (e.g. IP would only be controlled if actual agent
efficacy is at the high end of the observed range). Contours which intersect the smaller
shaded area could theoretically be controlled by C. scrobicollis alone. The line from HR

does not appear in the plot because its A\ < 1.Impacts of C. alliariae alone are not shown
because it has not been shown to reduce fecundity under realistic field conditions....... 205

Figure 4.A.1 Empirical elasticity contours without smoothing function. Observed
variation in elasticities of Alliaria petiolata population growth versus observed variation
in the lower demographic transitions. In each panel the elasticities of A to each lower-
level demographic rate from the 36 site by year matrices is plotted against the observed
value of the transition indicated on the horizontal axis. The eight panels show the same
empirical data sorted differently. The data are sorted from left to right by the transition
labeled on the horizontal axis. In the lower right panel the x axis is shown on a log scale,
although the x axis tick marks are back-transformed to the original scale. .................... 208

Figure 4.B.1. Annual Zero growth isoclines (contours of A = 1) for each site. The
megamatrix result used in the primary analysis is also shown. Within each site, at least
one of the three annual zero growth isoclines crossed the shaded agent-impacts area. In
all sites except HSP, which had positive growth each year, at least one isocline falls
below the origin of the fIgure. ........cceeiveirenieniinininic e 211

Figure 5.1 Untransformed survival and fecundity data plotted against plant density (4.

petiolata plants m'z) at the beginning of the time interval over which survival was
evaluated. Seedling density is the maximum density observed during the spring, summer
and winter starting rosette densities were measured in June and October, respectively.
Each survival parameter estimate shown is a quadrat mean value, calculated as the
proportion of plants marked at the beginning of the time interval that were still alive at
the end of the interval. Fecundity is plotted against the density of rosettes during the
previous October and is shown as the estimated number of seeds produced by each
individual plant within each quadrat rather than quadrat mean values. All plants in a

XX1il



quadrat experience the same starting density and thus align in vertical bands by quadrat in
the figure. Note the differences in the x axes. The maximum plant density steadily
decreases as A. petiolata populations thin over the course of the growing season.......... 236

Figure 5.2. Observed seedling survival data (dots) and initial seedling density (# m?)
showing mean predicted trend (solid line) and lower and upper 95% prediction intervals
(dashed lines) for each cohort in Illinois and Michigan based on model results. Dashed

lines show 5" and 95" percentiles of the distribution of survival rates based on simulated
observations generated from the statistical model which was parameterized from the data.
Each distribution is based on 100,000 simulated data sets. Trend lines have been
smoothed to illustrate the overall shape of the relationship between density and the
probability of survival. Analyses were performed on arcsin-square root transformed
survival probabilities and are shown back-transformed to the original scale. Predicted
survival rates with negative values were rounded to zero prior to back-transformation to
better illustrate the prediction intervals............ccooeeciiirierienienininieeree s eaens 238

Figure 5.3. Observed summer survival data (dots) and initial rosette density (# m'z) in
June showing mean predicted trend (solid line) and lower and upper 95% prediction
intervals (dashed lines) for each cohort in Illinois and Michigan based on model results.
See Figure 5.2 caption for more details. Note the scale of the X axis for Michigan 2005.

Figure 5.4. Observed winter survival data (dots) and initial rosette density (# m'z) in fall
showing mean predicted trend (solid line) and lower and upper 95% prediction intervals
(dashed lines) for each cohort in Illinois and Michigan based on model results. See Figure
5.2 caption for more details...........ccceveerienrenieniinnineenteirenereeseeses s sressre s e e sressressaesaeee 242

Figure 5.5. Observed fecundity data (dots, siliques plant'l) and initial rosette density (

# m'z) in fall showing mean predicted trend (solid line) and lower and upper 95%
prediction intervals (dashed lines) for each cohort in Illinois and Michigan based on
model results. Each distribution is based on 50,000 simulated data sets. See Figure 5.2
caption for MOre details. .......cccceevveeneriinieririerrrrccresr e 244

XX1V



Brian (lecturing to large crowd): You're ALL individuals!
The Crowd: Yes! We're all individuals!

Brian: You're all different!

The Crowd: Yes, we ARE all different!

Man in crowd: I'm not...

Life of Brian

Monty Python, 1979
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CHAPTER 1: DEVELOPING DEMOGRAPHIC MODELS TO INFORM SELECTION
OF ALLIARIA PETIOLATA (GARLIC MUSTARD) BIOLOGICAL CONTROL

AGENTS



INTRODUCTION

Biological invasions are a major contemporary management problem. Alliaria
petiolata (garlic mustard (M. Bieb.) Cavara and Grande) (Brassicaceae) is one of the
most damaging invasive weeds in North American forests. A native of Eurasia, its
substantial negative impacts on litter and nutrient cycling and its allelopathic and anti-
mycorrhizal effects can disrupt native forbs and tree regeneration (Blossey 1999,
Meekins and McCarthy 1999, Prati and Bossdorf 2004, Stinson et al. 2006).
Conventional strategies have failed to yield effective long term control of any but the
smallest A. petiolata infestations (Nuzzo 1991, 1994, 1996, Nuzzo et al. 1996), and a
search for biological control agents was initiated in 1998 (Blossey et al. 2001b).
Biological control is often considered an environmentally safe alternative to conventional
management. However, a growing awareness of the potential risks to non-target species
posed by some weed biocontrol agents (Louda et al. 1997, Callaway et al. 1999) has
prompted calls for increased rigor in new biocontrol programs (Simberloff and Stiling
1996, McEvoy and Coombs 2000, Louda et al. 2003a) with emphasis placed on a priori
selection of host specific agents that have strong, negative impacts on their intended
target plants (McEvoy and Coombs 2000, Pearson and Callaway 2003, Pearson and
Callaway 2004, Thomas et al. 2004). Matrix population models of target plants and
demographic analysis can improve both the safety and efficacy of weed biocontrol (Shea
and Kelly 1998, McEvoy and Coombs 1999, Rees and Hill 2001). Using demographic
models to identify plant life-stages that are most likely to affect a population’s growth
rate if damaged, agent selection and testing can be restricted to species which affect those

optimal target life-stages (McEvoy and Coombs 1999). Additionally, models can suggest



whether single or multiple agents will be necessary to achieve suppression across the
target’s geographic range (Parker 2000). A preliminary model of A. petiolata constructed
from published data (Davis et al. 2006) suggests that overwintering rosettes should be
targeted initially. However, a more robust, spatially explicit data set is required to address
questions about the range of conditions under which single or multiple agent biological
control are projected to be successful. Developing safe, effective, and economical weed
control strategies will require a combination of new and established empirical and

theoretical ecologically based approaches. This has been the focus of my doctoral studies.

BIOLOGICAL CONTROL

“Biological control is the use of parasitoids, predators, pathogens, antagonists, or
competitor populations to suppress a pest population, making it less abundant and thus less

damaging than it would otherwise be.” (Van Driesche and Bellows 1996)

The use of natural enemies to control targeted pest species dates back millennia,
but the use of scientifically rigorous testing to select biological control agents has a
relatively shorter history (Van Driesche and Bellows 1996). Early biological control

efforts were trial and error based and principally designed by intuition. However, as
. . . h
awareness and concern over impacts to non-target organisms grew during the 20'

century, agent selection became a more focused process and began to address some of

these concerns.



Host Range Testing

Weed biological control in the United States has been regulated since 1957 by the
Technical Advisory Group for Biological Control Agents of Weeds (TAG), a multi-
agency federal panel headed by USDA-APHIS whose purpose is to advise on the practice
of weed biological control “based on consideration of potential non-target impacts and
conflicts of interest” (USDA-APHIS 2006). The goal of agent testing is to predict which
non-target plant species an herbivore is likely to attack if released in a new environment
and is described by Van Driesche and Bellows (1996). The host specificity of candidate
biocontrol agents is evaluated using a centrifugal phylogenetic approach (Wapshere
1974, 1989). A list of test plants is assembled which includes close relatives of the target,
species likely to co-occur with it, and species of economic importance. There are three
stages of testing which are used to discern the agent’s physiological host range (i.e. what
it is capable of feeding and developing on in a contrived, no-choice situation) and its
ecological host range (i.e. what it is likely to feed and develop on under natural field
conditions) (Louda et al. 2005a): (1) in larval feeding trials, larvae of candidate species
are offered test plants tests under no choice conditions in confinement. Rejection by the
larva indicates that it is outside its host range. If it feeds on the plant, (2) a no-choice
adult oviposition trial is conducted in confinement. If eggs are not laid on the plant, it is
deemed not a host. If eggs are laid, (3) a multiple choice oviposition test is conducted in
field cages or in the open field. If eggs are not laid on the plant, it is not a potential host.
If they are laid under these more natural conditions, the non-target plant is within the
agent’s host range, and the agent may be rejected if there is reason to protect the non-

target plant from harm (Wapshere 1989 in Van Driesche and Bellows 1996).



Benefits of Biological Weed Control

Biological control of weeds has several potential advantages over conventional
control methods. Arguments in support of biocontrol include its (1) potential
effectiveness, (2) low resource input requirements, (3) self-perpetuation, (4) low output
of pollutants, (5) reduced non-target impacts, and (6) overall compatibility with alternate
management strategies (McEvoy and Coombs 2000). Cost to benefit ratios for successful
biological control programs can be lower than 1:145 by some estimates (Hoddle 2004a)
and as low as 1:12,698 by others (Huffaker et al. (1976) in Gutierrez et al. 1999) with
gains increasing over time. The successful biological control of St. Johnswort
(Hypericum perforatum L.) (Louda et al. 1997, Whitten and Hoy 1999) and purple
loosestrife (Lythrum salicaria L.) (Blossey et al. 2001a, Landis et al. 2003) in North
America and prickly pear (Opuntia spp.) in Australia and the Caribbean (Bellows 1999)

are frequently cited as evidence of weed biological control’s enormous potential.

Pitfalls of Biological Weed Control: Non-Target Impacts

Non-target impacts of weed biological control programs have been documented
in many systems (e.g. Howarth 1991, Louda et al. 1997, Stiling and Simberloff 2000,
Louda and O'Brien 2002, Louda et al. 2003a, Pearson and Callaway 2003, Louda and
Stiling 2004), and have inspired discussion about the role biological control should play
in weed management (e.g. Simberloff and Stiling 1996, Pearson and Callaway 2003,
Hoddle 2004b, Louda and Stiling 2004, Pearson and Callaway 2004, Thomas et al. 2004).

The debate focuses on tradeoffs between potential gains from weed biological control



programs and losses incurred through direct and indirect non-target impacts and our
ability (or inability) to accurately forecast the outcomes of these biological control
programs. Decision makers evaluating whether to release new agents must strike a
balance between these. Ultimately, we are forced to weigh the unknown consequences of
introducing an organism into a novel environment against the consequences of either

using conventional control methods or of doing nothing at all.

Direct Non-Target Effects

Most documented cases of direct non-target impacts of weed biological controls
relate either to older weed-control efforts or reflect times when either host-specificity was
not considered important or when certain non-target plants were within the host range of
the proposed agent but were not considered valuable for conservation (e.g. Louda et al.
2005a). Such is the well-documented case of the weevil Rhinocyllus conicus
(Coleoptera:Curculionidae) which was released to control invasive European thistles
(Carduus spp.), despite knowledge of its feeding and development on North American
Cirsium thistles from host specificity testing prior to release (Louda et al. 2003b, Rose et
al. 2005). At the time of its release in North America, it was believed that R. conicus’s
preference for Carduus spp. in host specificity trials would limit its impacts on native
thistles (Louda et al. 1997). Additionally, most thistles, native or otherwise, were
generally considered rangeland weeds without conservation value. Non-target feeding
was reported almost immediately after the initial releases in 1969, and in 1993 the rare
Platte thistle (Cirsium canescens) was identified as a preferred host of R. conicus (Louda

et al. 1997). Further interstate re-distribution of R. conicus was prohibited effective in



2000 (Louda et al. 2003b). Preferential feeding by R. conicus on C. canescens has
resulted in a decrease in C. canescens fecundity and population growth rates and is
predicted to lead to global extinction of C. canescens (Rose et al. 2005). Demographic
modeling indicates that the federally threatened C. pitcheri, a sister species of C.
canescens will rapidly be driven extinct if R. conicus spreads into its habitat (Louda et al.
2005a).

The value of each weed biocontrol program varies regionally. Cactoblastis
cactorum, the same biocontrol agent touted as being enormously successful in the control
of Opuntia spp. in Australia and the Caribbean and the “poster child of biological
control” dispersed naturally from the Caribbean into Florida in the United States in 1989
(Stiling 2002) where it now threatens to drive the endangered native Florida semaphore
cactus O. corallicola extinct (Louda and Stiling 2004). Although it had been considered
for intentional introduction into the United States on several occasions, introduction was
rejected out of concern for native Opuntia and commercial prickly pear production in
Mexico (Louda et al. 2003b). Because its introduction into North America was
unintentional, some (Hoddle 2004b) suggest that the threat it poses in North America
should not be considered a non-target effect of biological control. However, its deliberate
introduction into Caribbean islands set up the possibility for natural spread to the
mainland United States. This indicates shortsighted planning, as the potential for
redistribution could have been anticipated and considered before introductions were made

(Louda et al. 2003b).



Indirect Non-Target Effects

Indirect impacts on non-target species are more difficult to anticipate and quantify
than direct non-target impacts, and there are relatively fewer examples in the literature.
Conventional biological control theory, based on simple predator-prey interaction
models, postulates that biological control agents impose negative impacts on their target
hosts and thereby confer positive indirect effects on desirable native species. In turn,
reductions in the target host plant negatively impact the control agent and impose
regulation through negative feedbacks. This system is expected to work when control
agents are both highly host-specific and exert strong negative pressures on target
populations (Pearson and Callaway 2003).

The consequences of direct non-target feeding by biocontrol agents can be severe
(Louda et al. 1997, Stiling 2002), but these risks can be quantified a priori (Pemberton
2000). Thus, agent selection processes have increasingly emphasized host specificity
(McEvoy 1996). Host specific agents are presumed to have neutral effects on non-target
organisms. This assumption is used to justify the release of multiple host-specific agents
per target plant when the agents are believed to be host specific (Pearson and Callaway
2003). In this approach, agents are chosen without regard for their potential effectiveness,
and a “lottery” of chance is established in the new environment to determine which of the
agents will succeed in suppressing the target (McEvoy and Coombs 2000). As a result of
this approach, insect species introduced as biological control agents are now more
numerous than their invasive weed target species (McEvoy and Coombs 1999, McEvoy
and Coombs 2000). Despite this, the large majority of weed biological control agents

released do not control their target hosts (McEvoy and Coombs 1999, Denoth et al.



2002). A growing body of evidence suggests that indirect non-target effects can be
mediated by host specific biocontrol agents though “ecological replacement,
compensatory responses, and food-web subsidies” (Pearson and Callaway 2003). These
undesirable indirect effects are much more likely to occur when the introduced control
agents do become established in the introduced range but exert weak pressure on their
targets and fail to control them (Cory and Myers 2000, Pearson and Callaway 2003).
Pearson and Callaway (2003) describe the case of two gall flies, Urophora spp.,
introduced in the 1970s to control the non-native, invasive knapweeds Centaurea
maculosa and C. diffusa. The flies became established in North America and have
remained highly host specific. However, they have not controled Centaurea spp.
populations and subsequently have become highly abundant. Deer mice (Peromyscus
maniculatus) are generalist predators and have increased their overwintering survival
though feeding on the introduced gall fly larvae. Peromyscus maniculatus, in turn, has
become more abundant in this system and negatively impacts native plants and insects
though feeding, other small mammals through competition, and may increase predator
abundances. Importantly, as a vector of Hanta virus, P. maniculatus may negatively

impact human populations (Pearson and Callaway 2003).

IMPROVING WEED BIOLOGICAL CONTROL

The key to minimizing the risks of both direct and indirect non-target effects is to
select only highly host specific, highly effective agents and release the minimum number
of agent species necessary to suppress the target (Pearson and Callaway 2003).

Techniques for testing host specificity are relatively well defined, but quantitative



approaches for predicting biocontrol agent efficacy have not yet been used in selection of
agents prior to release. A flush of interest in developing new methods promises to
improve the success rate of biological control and decrease the risk and frequency of non-
target impacts (McEvoy and Coombs 1999, Briese 2006, Davis et al. 2006, Raghu and

van Klinken 2006, van Klinken and Raghu 2006).

The Use of Transition Matrix Models

Matrix population models can be used to interpret a weed species’ population
dynamics and to guide the selection of new biological control agents (McEvoy and
Coombs 1999, Raghu and van Klinken 2006). Caswell (2001) describes their properties,
construction, and interpretation. In past studies, matrix models have been used to
interpret the mechanisms by which biocontrol has succeeded (McEvoy and Coombs
1999), failed (Shea and Kelly 1998, Parker 2000), or had variable outcomes in different
locations (Shea et al. 2005). Recently, attention has turned toward applying them to the
development of new biocontrol programs. While the details of model construction will be
presented in Chapter 4, I will briefly describe some of the ways the model can be used.

A matrix model is an algebraic expression whose components describe the mean
probability of each individual in a population surviving from one life stage to the next
and its reproductive output at each stage in discrete time. These probabilities correspond
with transitions in the organism’s life cycle. The transitions are arranged into a matrix,
abbreviated A (‘the A matrix’) from which a number of useful population statistics can be
calculated. The most pertinent statistics to population management are the population

growth rate (A , lambda), and the sensitivities and elasticities of lambda to the matrix
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elements. The population growth rate, A, is related to the intrinsic rate of increase » from

continuous models as A = ¢ or r = In A (Caswell 2001). When A is equal to one, each

individual exactly replaces itself during its lifetime. Values of A greater or less than one
indicate expanding or declining populations, respectively. The goal of biological control
is to affect the survival probabilities of a weed such that A is driven below one. By
simulating the effects of biological control agents or other management on survival or
reproductive rates, the model can be used to assess the efficacy that management of a
particular stage in the plant’s life cycle would need to achieve to reduce A below 1.

The sensitivity of A to the each demographic rate is the local slope of A as
evaluated at a particular value of the demographic rate. It indicates how much A will
change in absolute terms if the transition is perturbed. Elasticities are calculated from the
sensitivities, but are scaled by the proportional contribution of each demographic
transition to A. The elasticity of each demographic rate is the proportional change in A
expected from a proportional perturbation of the demographic rate. It indicates how much
A will change in relative terms if the transition is perturbed. Transitions with large
elasticities and large sensitivities are predicted to have large impacts on population
growth and theoretically represent the optimal targets for management.

Elasticity analyses have been used previously to interpret the relative success of
established biological control programs. McEvoy and Coombs (1999) used a post hoc
elasticity analysis of a successful biocontrol program for tansy ragwort Senecio jacobaea
L. (Asteraceae) in Oregon. They attributed successful control of the target to just one of
the two agents released, deeming the other redundant and an unnecessary risk. Parker

(2000) similarly modeled patterns of demographic variation in invasive Scotch Broom
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Cytisus scoparius along North America’s west coast. She showed significant spatial
heterogeneity in C. scoparius demographic parameters, but elasticity analysis identified
no obviously vulnerable life stage. Her model predicted that nearly 100% and 70% of
seeds would have to be destroyed in prairie and urban populations, respectively, to reduce
A to less than one, which the introduced biocontrol agents were incapable of achieving.
Shea and Kelly (1998) and Shea et al. (2005) used demographic models to interpret
differential outcomes of biological control agents released against Carduus nutans in
New Zealand and Australia. They found major life history differences between the two C.
nutans populations that drove differences in their elasticity structures. Dynamics of New
Zealand populations were driven by early life stages, whereas rosette longevity was more
important in Australian populations of C. nutans. Of three agents considered in their
analysis, none were able to control C. nutans alone in New Zealand, while in Australia
two were predicted to reduce A below one.

Most recently, Davis et al. (2006) used a matrix population model to make a
priori predictions about which stages in the A. petiolata life cycle would be most
susceptible to biological control agents and predicted the levels of mortality that must be
induced by single or multiple hypothetical control agents at each life stage to reduce A
below one. Their model, parameterized with data from multiple published sources, makes
specific recommendations about which of the potential biocontrol agents being
considered for 4. petiolata are most likely to be effective against North American
populations. Davis et al. (2006) found that the greatest elasticity corresponded to the
rosette to flowering transition followed by transitions affecting seed production.

Incorporating the range of impacts the potential agent species have on 4. petiolata in

12



laboratory studies, they concluded that multiple agent introductions would be necessary
to extend control of A. petiolata to the greatest number of populations. The weevil
Ceutorhynchus scrobicollis, which disrupts the rosette to flowering transition by mining
in the overwintering rosettes and reduces fecundity by feeding on foliage, was
recommended as a priority agent to be released first. It is predicted to control all but the
most vigorous populations of A. petiolata. For some populations, another supporting
agent that affects fecundity was recommended to be released with C. scrobicollis when
one becomes available. Post-release monitoring will allow biocontrol managers to
interpret which sites and conditions necessitate multiple agents. Taking this “plant first”
approach allows biocontrol practitioners to understand the target’s weaknesses and make
informed agent release decisions. By eliminating ineffective agents from consideration,
the risks of causing non-target impacts can be substantially reduced (McEvoy and
Coombs 1999). In combination with rigorous host-specificity testing, this technique has
the potential to transform the development of new biological control programs from the
traditional “lottery” approach of agent selection (McEvoy and Coombs 2000) into a
directed search for host-specific agents that affect particular life history stages or

transitions.

Demographic Variability

One strategy used to select effective biocontrol agents is to choose and introduce
agents which have been successful elsewhere (Harris 1991). In the case of Cactoblastis
cactorum, redistribution from Australia to the Caribbean resulted in control of the target

in the new location, although the non-target impacts of this choice were costly (Stiling
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2002). However, replicating a strategy that had been successful against Carduus nutans
in Australia failed in New Zealand (Shea et al. 2005). The relatively few demographic
studies of plants across spatial or temporal gradients have found significant variability in
demographic rates and statistics (e.g. Bierzychudek 1982, Bierzychudek 1999, Parker
2000). Horvitz and Schemske (1995) studied a tropical rainforest herb for five years in
four locations (n = 16 A matrices) and found variability in A, in the correlation structure
of demographic parameters, and in the sensitivity and elasticity structure of the
populations both in space and over time. The variation they observed in parameter
sensitivity and demography was not always correlated with variation of other elements in
the environment that the plant could profit from (e.g. presence/abundance of pollinators
during peak flowering). The uncoupled relationship between plant and environmental or
exogenous biotic factors means that variation in a species’ demography does not
guarantee changes in fitness. Rather, demographic variability presents fitness
opportunities or hazards only in concert with conditions that permit realization of a
change in fitness. This suggests that if the target species’ demography and sensitivity
structure vary spatiotemporally, what constitutes an optimal biocontrol strategy will be
conditional on the form and scale of demographic variability and the degree of
parallelism between plant and agent performance and demography across the range of
conditions. Shea et al’s (2005) findings reflect the importance of such variability for
biological control.

Horvitz and Schemske’s (1995) analysis took a factorial approach to
characterizing and interpreting the significance of space (plot) and time (year) in their

model. Another method developed by Horvitz and Schemske (1986), used by Pascarella
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and Horvitz (1998), considers the environment itself as a demographic entity with
properties that change over time, in which the study species has demographic rates that
vary as a function of the environmental state. They studied a tropical understory shrub
across a gradient of forest-canopy openness created by a hurricane and the response of
the shrub to the closure of the canopy over time. The progressive closure of the canopy
was characterized by one set of transition matrices, and the plant’s performance under
each canopy condition was characterized by another. Each patch could transition between
any of seven canopy states, and each plant could transition between any of eight
developmental stages. They nested each of the 8x8 plant demographic matrixes within
each element of the 7x7 forest canopy matrices to create a 56x56 megamatrix which
encapsulated both the environmental dynamics of the system and the organismal
dynamics within each of the possible environmental states. Similar to Horvitz and
Schemske (1995), Pascarella and Horvitz (1998) observed differences between the
elasticity structures of their matrices when considered separately versus when considered
together in their megamatrix. Individually, the matrixes suggested a stable population
dominated by large individuals in closed canopy conditions, whereas the megamatrix
indicated a rapidly growing population whose spread was dependent on the existence of
open patches cleared by the hurricane.

Davis et al.’s (2006) model of A. petiolata biological control was a critical first
step towards the incorporation of predictive ecological models into the decision making
process of invasive species managers. Their approach made use of available data on a
well studied target species and allowed rapid formulation of management

recommendations. However, the data used to parameterize their model were collected
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from disjunct natural and laboratory populations from Ontario to Kentucky over more
than two decades. These were then pooled to generate ranges across which the
demographic parameters were varied in the simulation analysis. This approach does not
account for the structured correlations between parameters that are shown to have been
important in other study systems. In cases where time is limited, generation of a
demographic model from multiple, unrelated existing data sources to guide selection of
effective agents is much preferred to the “lottery” approach of blindly releasing all
available agents (McEvoy and Coombs 2000). However, when it is possible to do so,
using data collected from distinct populations across the target plant’s spatial range and
over multiple generations or years will allow much more robust management conclusions

to be reached.

STUDY SPECIES
Distribution

Alliaria petiolata is a frequent component of temperate forest understory and edge
communities. It is native to Eurasia where it occurs from England east to Czechoslovakia
and from Sweden and Germany south to Italy (Nuzzo 1993b, 2000). It has been
redistributed into Central Asia, New Zealand (Bangerter 1985) and much of North
America (Nuzzo 2000, Welk et al. 2002). Alliaria petiolata was first collected in North
America on Long Island, New York, in 1868 (Nuzzo 1993a), where it was likely
introduced by immigrants from the old world. In North America, 4. petiolata is most
abundant in New England and the Midwest with populations now present in at least 36

U.S. States and 4 Canadian Provinces (Nuzzo 2000, USDA-NRCS 2007) from the east
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coast to Alaska (The Nature Conservancy 2002, Ellen Anderson, USDA Forest Service
personal communication November, 2005). Climate based models of its potential North
American distribution project further range expansion in the future (Welk et al. 2002,

Peterson et al. 2003).

Life Cycle

Evans (2006) reviewed A. petiolata’s biology and life history. Alliaria petiolata is
a disturbance adapted species which profits from anthropogenic and natural disturbances
(Pyle 1995) and can tolerate harsh growing conditions such as lead contaminated soils
(Pichtel et al. 2000). Optimal photosynthetic rates are achieved under light conditions
typical of forest edges, although it can grow under conditions ranging from closed-
canopy forest shade to full sunlight (Dhillion and Anderson 1999, Meekins and
McCarthy 2000, Myers et al. 2005). In forest interiors A. petiolata often colonizes light
gaps where trees have fallen or been removed (Luken et al. 1997).

North American 4. petiolata populations have an obligate biennial life cycle
(Cavers et al. 1979) which can be decomposed into three basic developmental stages:
seeds, first year plants, and second year plants (henceforth “adults™). First year plants can
be further separated into seedlings and rosettes. Seedlings emerge from early spring
through early summer. Rosettes are distinguished from seedlings at some point during the
early summer as those first year plants that survived the germination period early in the
growing season and no longer bare cotyledons. Seeds and rosettes are the only stages

present in autumn and winter.
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Seeds of A. petiolata require cold stratification to germinate. Dormancy for the
majority of seeds varies from one to two winters (Cavers et al. 1979, Roberts and
Boddrell 1983), although dormant seeds remain viable for nine years or more (Nuzzo and
Blossey, unpublished data, ongoing experiment). Germination begins and peaks in early
spring (Baskin and Baskin 1992) under high light, low competition conditions prior to
leaf-out of canopy trees and prior to germination of most native ground layer species

(Myers and Anderson 2003). Seedlings form a low, tight canopy over the forest floor

with population densities as high as 20,000/m2 (Trimbur 1973). Seedlings which survive

the summer overwinter as basal rosettes, bolt the following spring, and flower in early
summer (Cavers et al. 1979). High seedling mortality results in only 5-9% of seedlings
surviving to form rosettes and only 2-4% of rosettes survivors reaching reproductive age

(Cavers et al. 1979). Nuzzo (1993c) estimated 21.4% winter rosette survival resulting in

mean spring rosette densities of 39.9 (range = 4-102 rosettes/mz) with 9% of the variance

in overwintering surival attributable to fall rosette density. Mature adult plants reach
heights up to 1.8 m (Evans 2006).

Flowers are primarily self pollinating but are visited by generalist pollinators
including Diptera: Syrphidae, and Chironomidae or Ceratapogonidae (described only as
“midges” by Cavers et al. 1979) and Hymenoptera: Apidae, Andrenidae, Halictidae
(Cavers et al. 1979, Anderson et al. 1996, Cruden et al. 1996). Alliaria petiolata
reproduces exclusively by seed (Cavers et al. 1979). Seed production is variable among
individuals (Susko and Lovett-Doust 2000) and populations, with per capita fecundity
ranging up to 7900 seeds (Nuzzo 1993b). In dense stands, seed production per square

meter can exceed 100,000 (Cavers et al. 1979).
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Several factors affect seed production in A. petiolata. Experiments by Susko and
Lovett-Doust (1999) showed that removal of 50-100% of cauline leaves (leaves along the
stem) from adult plants reduced seed production by 25-46%, and removal of 50-75% of
the root mass of adult plants decreased seed production by 8-13% and reduced the
proportion of seeds maturing by ~ 4%. Position of flowers within inflorescences and
plant size also affect seed production (Susko and Lovett-Doust 2000). In North America
plants senesce following seed production, although European A. petiolata can perenniate
by production of adventitious buds (Cavers et al. 1979). Dispersal of seeds is limited,
with the majority falling near the parent plant. Long distance dispersal is facilitated by
humans, deer, and mice that transport seeds in muddy footwear and hooves, in fur or
clothing, and automobile tires (Nuzzo 1993a). Seeds have limited ability to float but can
disperse along riparian corridors (Cavers et al. 1979, Nuzzo 1993a).

In newly established populations, first and second year plants are typically not
intermixed within localized patches, creating an effective alternation of generations. Over
time, the seed bank moderates this effect and first and second year plants are found in
unevenly mixed patches. Seedlings that germinate under cover of second year plants have
very high mortality which keeps the generations locally segregated in many areas
(Winterer et al. 2005). In areas where it is invasive, A. petiolata spreads in a moving front
as satellite populations ahead of the core establish and fill out, with a positive net rate of
spread in Illinois averaging 5.4 m/y (Nuzzo 1999). A study of seven invaded forests in
southern Michigan documented spatial expansion of A. petiolata in 100% of sites over a

four year period (Evans 2006).
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Invasiveness of Alliaria petiolata

Release from pests or other natural enemies has been proposed as contributing to
the success of some invasive species (Williamson 1996). Damage from herbivore natural
enemies and plant pathogens are frequently found on North American A. petiolata.
However, they do not have significant impacts on its survival or reproduction, suggesting
that natural enemy release may play a role in 4. petiolata’s invasiveness (Evans 2006).

Allelopathy has also recently been identified as contributing to increased invasive
ability in several plant species (Bais et al. 2003, Call and Nilsen 2003, Grant et al. 2003,
Weston and Duke 2003, Wolfe and Klironomos 2005). Vaughn and Berhow (1999)
extracted several phytotoxic substances from A. petiolata tissues that negatively impacted
the growth of forbs and grasses. They proposed that these compounds or their derivatives
might additionally inhibit the growth of arbuscular mycorrhizal fungi (AMF). Later
laboratory and field studies showed that AMF growth, abundance, and associations with
vascular plants were reduced or eliminated in seeds or soils treated with A. petiolata
extracts or in which A. petiolata had previously grown (Roberts and Anderson 2001,
Stinson et al. 2006). Prati and Bossdorf (2004) demonstrated direct allelopathic inhibition
of germination of a native North American forb grown in soils in which A. petiolata had
been grown, while a congereric forb native to Europe responded positively to the soil
treatment. Disruption of AMF in natural communities could have significant
repercussions for regeneration of trees dependent on AMF associations (Stinson et al.

2006).
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CONTROL STRATEGIES
Conventional Control

Many conventional methods have been explored to control Alliaria petiolata. Use
of prescribed fire (Nuzzo 1991, Nuzzo et al. 1996, Schwartz and Heim 1996, Luken and
Shea 2000), herbicide applications (Cavers et al. 1979 and references therein, Nuzzo
1991, 1994, 1996, 2000 and references therein, Carlson and Gorchov 2004), flooding
(Nuzzo 1999, Evans 2006), and mechanical removal (Nuzzo 1991) have resulted in

unsatisfactory control.

Biological Control

In 1998 a search for appropriate biological control organisms for 4. petiolata was
launched in Delemont, Switzerland through the cooperative efforts of CABI Bioscience
in Switzerland, Cornell University, and the University of Minnesota (Hinz and Gerber
1998). Blossey et al. (2001b) and Hinz and Gerber (2005) have summarized the search
for biocontrol agents for A. petiolata. From an initial survey of the literature which
identified 69 species of phytophagous insects and 17 fungi in Europe that are associated
with A. petiolata, four weevils belonging to the subfamily Ceutorhynchinae (Coleoptera:
Curculionidae) in the genus Ceutorhynchus are currently considered candidate agents.

Larval Ceutorhynchus alliariae Bristout and C. robertii Gyllenhal mine in stems
and leaf petioles of 4. petiolata from March to May and pupate in the soil. Adults emerge
later the same summer and feed on leaves of A. petiolata. Adults overwinter in the litter
and soil, emerge early in the spring, and oviposit in 4. petiolata stems and leaf petioles.

In field surveys in Europe, C. alliariae and C. robertii were found either separately or
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together in 81-100% of A. petiolata plants dissected (Gerber et al. 2002, Gerber and Hinz
2005, Gerber et al. 2008a). Feeding damage from these species results in reduced
fecundity of adult A. petiolata plants.

Ceutorhynchus constrictus (Marsham) has the narrowest host range of the
candidate biocontrol agents tested to date (Hinz and Gerber 2005). Larvae feed on seeds
from May to Juiy and then leave the host plant to pupate in the soil. Adults emerge the
following April to feed on leaves and mate. Each larva consumes and destroys up to three
A. petiolata seeds during its development.

Ceutorhynchus scrobicollis Nerensheimer & Wagner larvae feed in leaf petioles,
buds, and root crowns of overwintering 4. petiolata rosettes. Larvae leave the plants to
pupate in the soil by late April. Adults emerge from May to June and aestivate during
summer. Females begin laying eggs in mid September and oviposit continually through
winter into spring. Individual females can produce viable eggs for at least three
consecutive years, although few survive that long and fecundity decreases with age. In
field surveys in Berlin, Germany, C. scrobicollis was found attacking 4-100% of A.
petiolata plants collected and dissected (Gerber et al. 2002, Gerber and Hinz 2005).
Damage from C. scrobicollis leads to direct mortality in overwintering rosettes as well as
reduced fecundity in adult plants.

A petition to release C. scrobicollis in North America was declined by the TAG
in 2008 citing the need for host specificity testing on more plant species and testing of

more western North American species.
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SUMMARY

Alliaria petiolata is an invasive weed that has the potential to radically alter
native North America forest plant communities. Concerns about the safety and efficacy
of biological control programs require new predictive tools for ensuring that only the
most effective biocontrol agents are released in future programs. The A. petiolata
biocontrol program presents an excellent opportunity to develop and test such tools.

A preliminary plant-based model has been developed to evaluate which stages of
the A. petiolata life-cycle represent optimal targets for management efforts (Davis et al.
2006). However, is model did not account for spatiotemporal variation and covariation in
demographic parameters seen in other studies of this species. Such variation can
significantly affected population trajectories and dynamics (e.g. Horvitz and Schemske
1995, Pascarella and Horvitz 1998). Capturing variability in A. petiolata demographic
rates across its range and over multiple years could be critical to projecting the frequency
of conditions where single or multiple agent biocontrol are projected to succeed. The
linear models used in initial 4. petiolata analyses (Davis et al. 2006) may not capture the
true dynamics of natural populations. Observations of early and late spring populations of
A. petiolata suggest that survival is density dependent.

Building from Davis et al.’s (2006) models, we need to ask targeted questions
about the dynamic interactions between A. petiolata and populations of the insect
herbivores that have been proposed as potential control agents. Understanding how
populations of the weed and control agent behave in the presence of one another and
ultimately in a spatial environment will be an important step towards projecting the long-

term outlook for A. petiolata biocontrol.
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CHAPTER 2: THE SCALE AND SOURCES OF DEMOGRAPHIC

VARIATION IN ALLIARIA PETIOLATA
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ABSTRACT

Variability in demographic rates among natural plant populations can have large
impacts on population structure and cause populations to exhibit subtle or radical
differences in behavior over time. As population modeling studies are increasingly called
upon to guide policy and management decisions, it is important that they accurately
represent the dynamics of their study systems. Quantifying the sources of variability
across the life history of an organism is the first step in this process. I studied the
demography of 12 natural populations of the invasive forb Alliaria petiolata (garlic
mustard) over three generations of its life cycle. Generalized linear models (GLMs) and
hierarchical, generalized linear mixed models (GLMMs) were used to analyze the spatial
and temporal scales of structured variability in each lower level demographic transition
and the intrinsic, edaphic, and climate-driven mechanisms which underlie them. I
developed statistical approaches to deal with common discontinuities, such as zero- and
one-inflation issues, that made conventional analyses problematic. Population density and
climate variables played important roles both in directly affecting morality and in
predicting the fates of individuals later in their life histories. Variation in germination and
survival rates was significantly structured across sites and years, but the distribution of
fecundity varied only across sites. Persistence of dormant seeds in the soil seed bank was
high, with a mean viability of 91.9% after one year. Germination, seedling, and summer
rosette survival were influenced by negative density dependent feedbacks. Overall winter
rosette survival was not density dependent, although the probability of extremely high (1)
and low (0) winter survival was negatively density dependent. Fecundity was negatively

dependent on final flowering plant density during dry years, but positively dependent
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during wetter years. The frequency and amount of precipitation early in the life history
were associated with increased survival for the remainder of the life cycle, but increasing
summer precipitation and temperature negatively affected survival. The degree of
variation observed in A. petiolata demographic rates encompasses the results of almost
all previous studies of this species. This variation is highly structured in space and time in
response to biotic and abiotic conditions. Previous studies that have explored subsets of
A. petiolata's demographic parameter space may therefore be limited in the scope and

applicability of their predictions.

26



INTRODUCTION

Spatiotemporal variation in demographic rates of plant populations arises through
a combination of stochastic effects, environmental drivers, and intrinsic factors. The
magnitude and form of this variation has important consequences for both local and
regional population and metapopulation dynamics, particularly with respect to extinction
probabilities. Incorporation of environmental and stochastic demographic variability and
population regulation can greatly improve the accuracy and predictive power of
population models which would otherwise behave asymptotically (e.g. exponentially). As
modeling studies are used more frequently to guide population management, it is
important that they accurately represent the behaviors of the populations they are meant
to simulate (McEvoy and Coombs 1999, Buckley et al. 2003a, b, Briese 2006, Davis et
al. 2006). A single plant species can vary in its life history and demography across its
range to the point where entirely different approaches could be necessary to successfully
manage it in different locations (Parker 2000, Shea et al. 2005). Accounting for variation
among populations becomes especially important for regionally to continentally applied
management such as weed biological control, which utilizes autonomously redistributing
herbivorous or pathogenic agents. Complex indirect non-target impacts can arise when
biocontrol agents spread to areas where they are not effective at controlling the target
species (Pearson and Callaway 2003, Pearson and Callaway 2005). Thus, quantifying
demographic variation among populations and incorporating it explicitly into new
management models presents an opportunity to improve the safety and efficacy of

management tools like biological control.
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Alliaria petiolata (garlic mustard, Brassicaceae [M. Bieb] Cavara and Grande) is
a broadly distributed, invasive weed in North America that is the target of active
management using various techniques. Numerous studies have quantified aspects of its
biology and ecology, but a comprehensive analysis of variation in its population structure
and dynamics across the landscape is incomplete. A promising initial evaluation of the
known variability in 4. petiolata demography assembled from published sources
indicated a gradient of susceptibility to management at specific life history transitions
(Davis et al. 2006). In their study, Davis et al. evaluated the responses of simulated A.
petiolata populations to management of varying intensity that targeted single or multiple
demographic transitions simultaneously. Building from this, the next step towards
predicting the probability of successful A. petiolata management is to determine the
distribution of the species’ demographic rates among natural populations.

Individual 4. petiolata survival and reproductive rates reported in the literature
each vary broadly when compared across multiples studies (Davis et al. 2006, Table 1,
and Pardini et al. 2009, Appendix A). For example, Cavers et al. (1979) measured the
annual survival probability of dormant seeds as 0.99 from 1975-1978 in southern Ontario,
Canada. . Thirty years later, Meekins and McCarthy (2002) reported values between
0.30-0.32 from 1996-1998 for the same parameter measured in Athens, Ohio. Variation
in seed survival of this magnitude could mean the difference between a successful
management program versus a failed one because of the resulting differences in longevity
of the seed bank. This is evident in the changing elasticity structures among populations

with different seed survival rates (see Davis et al. 2006, Figure 4A for an illustration).
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Results of previous 4. petiolata studies have suggested two principal guiding
questions from which the experimental and analytical designs were crafted. First, I asked
whether the variation in each demographic transition is hierarchically structured in space
and/or time. In the example above, one would want to know whether the differences in
seed survival resulted from site effects, year effects, both, or if the variation was random.
Also, because A. petiolata growth and photosynthetic rates respond to light intensity
(Dhillion and Anderson 1999, Meekins and McCarthy 2000, Myers et al. 2005), I also
asked whether there were differences within sites between forest edge and forest interior
habitats, as such differences could explain possible variation in populétion dynamics
within each site. The answers to these questions will be used to determine the hierarchical
levels at which each demographic rate should be pooled for use in future simulations of
A. petiolata population dynamics.

Second, I asked whether the variability in survival and reproductive rates could be
explained by local variation in biotic and abiotic conditions like population density, soil
or climate properties. This second question seeks a mechanistic explanation of
demographic variablity. From this perspective, I would expect any site, year or other
categorical differences to be the net result of differences in the conditions that are
biologically meaningful to plant growth and survival. Addressing this question will allow
parameterization of survival and reproductive functions which can be combined to build a
more generalized, dynamic model of 4. petiolata population growth.

In this study I quantified recruitment, survival, and reproduction of over 60,000 4.
petiolata individuals and seeds at 12 study sites in Michigan and Illinois from 2005

through 2008. I conducted two sets of analyses using generalized linear mixed models
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(GLMMs) and generalized linear models (GLMs) to address each of the questions posed
above. First I analyzed the spatial and temporal scales at which demographic rates varied
among populations and years. These analyses generated estimates of demographic
parameter distributions for use in predictive population models. Second, I parameterized
survival and reproduction models of each life history stage as a function of population
density and abiotic variables. These functions will be used in future discrete-time
dynamic models of A. petiolata populations. Within each set of analyses I used multi-
model inference to rank and select the best supported model from a set of a priori

candidate models.

METHODS
Study Species

Alliaria petiolata is an understory forb native to western Eurasia. It has been
documented in North America since the 1860s (Nuzzo 1993b) and now occurs in at least
36 U.S. states and six Canadian provinces (USDA-NRCS 2007). 4. petiolata is a shade
and cold tolerant herb (Anderson et al. 1996, Dhillion and Anderson 1999, Meekins and
McCarthy 2000, Myers and Anderson 2003, Myers et al. 2005). Dormant seeds can
remain viable in the soil seed bank for at least ten years (Nuzzo and Blossey, unpublished
data). Density dependence has been observed for survival and fecundity (Meekins and
McCarthy 2000, Winterer et al. 2005, Pardini et al. 2008, Pardini et al. 2009), but not in
germination or recruitment rates. Like other Brassicaceae, A. petiolata has complex
allelochemistry that negatively affects competitors through disruption of soil microbial

and fungal communities (Vaughn and Berhow 1999, Roberts and Anderson 2001, Prati
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and Bossdorf 2004, Stinson et al. 2006, Stinson et al. 2007, Callaway et al. 2008, Wolfe
et al. 2008). Few pathogens or herbivores cause significant damage to 4. petiolata in its
invasive range (Renwick 2002, Evans 2006, Evans and Landis 2007, Keeler and Chew
2008), although Yates and Murphy (2008) recently found three naturalized herbivore
species that successfully develop on A. petiolata in southwestern Ontario, Canada. They
proposed that these species may merit further investigation as possible biological control
agents for A. petiolata.

The A. petiolata life cycle can be broken into four distinct life stages: seeds,
seedlings, rosettes, and flowering plants (Figure 2.2). Second year flowering plants are
frequently referred to as “adults” in the A. petiolata literature. Seeds of A. petiolata
germinate in early spring after a period of cold stratification (Baskin and Baskin 1992,
Raghu and Post 2008) and produce dense carpets of seedlings. In the North Central
region of the USA, surviving seedlings mature into low rosettes of petiolate leaves.
Rosettes grow through the summer and fall, holding most of their leaves through the
winter. Surviving rosettes bolt in late April or May the following year in southern
Michigan (mean height = 71 c¢m, data from Evans and Landis 2007) and flower from May
through June. Flowers are predominantly self pollinated (Durka et al. 2005). Seeds
develop in slender fruits (siliques) along the upper stem and are shed from August
through September after all flowering plants have senesced. Individual siliques contain
14.3 to 20.7 seeds on average (Evans and Landis 2007). Mean per capita fecundity
estimated in eight Michigan forests in a previous study ranged from 0 to 446 (mean =
207) (Davis et al. 2006). Dispersal of seeds is limited. Most fall beneath the parent plant,

although deer are believed to move seeds that get caught in their fur or hooves, and mice
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are thought to frequently cache them. Past studies have demonstrated large variation in all

A. petiolata vital rates .

Study Sites and Data Collection

Alliaria petiolata demographic rates were measured in 12 forested sites in
Michigan (7) and Illinois (5) from 2005 through 2008 (Figure 2.1, Table 2.1). Sites were
selected based on the presence of established, unmanaged A. petiolata populations and
accessibility. Seven demographic rates were quantified in the field. Four replicate
measures of each demographic rate of were taken at each site for each of three cohorts:
2005-2007, 2006-2008, and 2007-2009. Four groups of sampling quadrats were
established within each site: two near the forest edge and two in the interior. This allowed
comparisons between plants growing in different light environments within each site.
Sampling areas were spaced 20 to 150 m apart as space permitted within each site. Three
types of permanent quadrats were established within each sampling area to estimate rates
of 1) seed germination and seed survival, 2) seedling survival, and 3) rosette survival and

fecundity. A timeline illustrating how data were collected is shown in Table 2.2.

Germination and Seed Survival

I estimated germination rates in 20 x 20 x 2.5 cm deep wire screen trays buried at
the soil surface. Each June (2005, 2006, 2007), topsoil was collected from 3-5 cm depth
in an area free of 4. petiolata near each sampling area and distributed to each of four
screen trays. Two trays were then randomly selected to receive an addition of locally

collected A. petiolata seeds at rates estimated from mature plants in the rosette survival
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quadrats. The other two trays served as controls for background seed contamination in the
soil. Adult plants were cleared within 2 meters of the seed trays to prevent the
introduction of unrecorded seeds. The following year seedlings were counted
destructively as they emerged from February until germination was complete.

Germination rates of newly shed seeds (g1, Figure 2.2) were calculated as the total

number of seedlings in the seed addition trays minus the number of seedlings in the
control trays divided by the number of seeds added. One pulse tray and one control tray
were collected in June and the remaining seeds were elutriated, counted, and stained with

2,3,5-tetrazolium chloride (AOSA 2000) to determine viability (seed bank survival rate

ss). The second pair of trays was left out for a second winter. Germination rates of older

seeds from the seed bank were measured the following spring, two years after being sown

(g2, Figure 2.2), using the same technique.

Seedling Survival
Estimates of seedling survival to the rosette stage (s,) were made each spring

(2006, 2007, 2008) in 25 x 25 (Michigan sites) or 20 x 20 cm (Illinois sites) quadrats.
Seedling locations were marked on transparent plastic sheets laid over the quadrats every
one to three weeks. Seedling survival rate was estimated as the ratio of seedlings
surviving to the rosette stage in June to the peak number of seedlings observed on any
date in the spring. Second year rosettes were also marked, although they did not occur in

all seedling quadrats.
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Rosette Survival and Fecundity:

Whereas Davis et al. (2006) estimated survival of rosettes to the flowering stage

over a full year as s,y I split the measurements of the transition into two periods to
provide greater temporal resolution (Figure 2.2). Summer (sy,,,) and winter rosette

survival (s,.;,) were measured in 50 x 50 (Michigan sites) and 40 x 40 cm (Illinois sites)

quadrats. New rosettes were marked in June (2005, 2006, 2007) on transparent plastic
sheets. Survivors were located during a fall survey in October or November and again the
following June. Summer and winter survival rates were estimated as the ratio of fall to
summer rosettes, and mature flowering plants to fall rosettes, respectively. Fecundity (/)
was estimated for each surviving mature plant by counting the number of siliques and
scaling by the number of seeds per fruit. This relationship was determined from a set of
destructively harvested test plants using a breakpoint linear regression to account for
nonlinearity in the ratio of seeds per fruit between large and small plants (Appendix

2.B.iv). Seed addition rates for the germination trays during the following year were
estimated from these plants as the density of seed rain (seeds m'z) produced by all

surviving plants.

Germination trays vandalized or disturbed by animals during the experiment

(21%) were not used in analyses of g1, g2, or s;. All plant densities were converted to a

common scale of plants m™ for use as covariates in analyses of density dependence.
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Climate Data
Temperature and precipitation data were assembled from the National Climate

Data Center (NCDC) database (www.ncdc.noaa.gov) using the nearest available weather

station for each site. Missing observations were filled in using data from the next nearest
weather station. Observations from some stations that were difficult to reformat and
assimilate into the database as provided by NCDC were downloaded from a commercial
internet website (www.wunderground.com) which makes the same data available in a
different format. Daily precipitation (mm), minimum and maximum temperatures (°C)
values were compiled for each site from January, 2004 through October, 2008. These
were then distilled into sets of monthly and seasonal summary statistics to be tested as
predictors of A. petiolata vital rates.

Decisions about how to summarize the climate data were based on A. petiolata's
reported cold tolerance and early season growth (Anderson et al. 1996), and sensitivity to
dry summer conditions (Byers and Quinn 1998) and then refined through exploratory
graphical analysis. Abbreviations for climate statistics are italicized. Temperature data
were processed in five ways. 1) Because A. petiolata is capable of photosynthesizing
during winter when temperatures are above freezing, growing degree days were
calculated using a base temperature of 0°C (gdays). I hypothesized that A. petiolata vital
rates could be driven by threshold-based climate conditions. I calculated the number of
days per month with minimum temperatures: 2) below 0°C (cold days, cold), 3) below -
18°C (very cold days, vcold), and 4) above 0°C (warm days, warm), and 5) with

maximum temperatures above 34°C (hot days, hot). Threshold temperatures used for
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very cold and hot days were based on graphical analysis. Mean, minimum, and maximum
temperatures had weak or no associations with demographic rates.

Precipitation was compiled into three monthly statistics: 1) total monthly
precipitation (mm, prcp), 2) the number of days with > 0 mm precipitation (rainy days,
rain), and 3) the number intervals between precipitation events during which the soil
could dry out (drying events, dry). The drying statistic complements the rainy days
statistic as a way of quantifying the frequency of precipitation events. For example, the
rainy days statistic might indicate that it rained 14 days in a given month but doesn't
convey any information about whether it rained for two weeks straight and then was dry
for two weeks, or if it rained every other day. Knowing additionally whether there was
one drying event versus 14, we can distinguish between these two patterns of
precipitation.

Seasonal climate statistics were calculated by splitting the “garlic mustard year”

into four stages based on A. petiolata phenology and summing monthly values within

each stage for each year: spring (Spring, January — March of seedling year, used with g,
sy), summer (Sum, May — September of seedling year, used with sg,,,,), winter (Win,

October of seedling year— March of flowering year, used with s,,;,), aﬁd flowering period

(fec, February — May of flowering year, used with f). The spring and summer stages were
split further for some analyses. January and February data were grouped, as this seemed
likely to be an important pre-germination time interval, and August and September
drying events, when drought stress seemed most likely to affect summer survival. Finally,
precipitation data from March were used in analyses of seedling survival, and May

precipitation and rainy days were used in summer survival analyses.
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Soil Data

Selected soil chemical and physical properties relevant to plant growth, including
gravimetric water content, particle size distribution, water holding capacity, organic
carbon, pH, P, K, Mg, Ca, and inorganic N were measured at the quadrat level for all
locations. Ten soil cores 1.9 cm in diameter were taken to a depth of 10 cm from the
perimeter of each adult census quadrat at the time of census in June 2007 and bulked to
form a composite sample. Gravimetric soil moisture was immediately determined on a 25
g subsample by oven drying at 65 °C to constant weight (Klute 1986). The remainder of
the composite sample was sent to A&L Great Lakes Laboratories in Fort Wayne, Indiana,
where all other soil analyses were performed. Particle size distribution was measured
using the hydrometer method (Gee and Bauder 1986). Soil water holding capacity was
measured at a matric potential of -1/3 bar (-33 kPa) using the pressure membrane method
(Klute 1986). This matric potential was chosen for measuring soil moisture retention as it
represents field capacity, the point at which all water drainage due to gravity has
occurred, after a soil has been fully saturated (Brady and Weil 1996). Organic carbon was
measured by loss upon combustion (Nelson and Sommers 1994) and soil pH was
measured in aqueous solution with a hydrogen selective electrode (Thomas 1996).
Available P, K, Mg and Ca were measured using ICP (inductively coupled plasma

spectroscopy) methods (Soltanpour et al. 1996). Finally, inorganic N ions, including both
NO;3-N and NH4-N, were measured using automated colorimetric procedures (Mulvaney

1996). The site mean value and standard error of each soil variable are included in

Appendix 2.A.
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Statistical Analysis
The data analysis addressed two principal goals. First, I wanted to determine the

spatiotemporal scales at which most variation occurred for each A. petiolata vital rate to
facilitate pooling of variables at the appropriate scales. For example, if g; varies

significantly at the site level but not across years, estimates of germination probability
can be drawn from a common distribution within each site. These parameter estimates
will be used to assemble a set of A matrices for use in future projection models, loglinear
analyses, and Life Table Response Experiments (LTREs) to analyze how variation in
survival rates contributes to differences in population growth and possible responses to
management. Second, I wanted to explore mechanistic sources of variation in vital rates,
and thus constructed a separate set of environmental models which included climatic,

edaphic, and population density covariates

Hierarchical Mixed Model Analyses

I used fixed effects GLMs and GLMMs, which incorporate both fixed and
random effects, to evaluate how each lower level demographic rate varied across the
spatial and temporal structure of the sampling design. These are generalized forms of
familiar linear and linear mixed models which can accommodate data with non-normal
error distributions (Bolker et al. 2009). This is done via a link function that transforms the
predictor to meet the distributional assumptions made about the data. This allows a linear

model to then be fit. The link function used depends on the underlying distribution of the

data. Models of g1, g2, Sy, Ssum» and s,,;,;, were fit using a binomial error distribution and
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logit link. The natural logarithm of fruit production + 1, In(f+1), was modeled with a
normal distribution and identity link using the mean siliques/plant as the response
variable weighted by the number of plants in the quadrat. Although I initially modeled

the raw fecundity observations at the plant level, residual diagnostics were unacceptable.
Distributions used to model s, are described below. All analyses were conducted in the
GLIMMIX procedure in SAS version 9.2 (SAS Institute 2008) except where noted.

For each vital rate, a set of candidate models was developed that embodied
alternative hypotheses about which spatiotemporal levels of the data structure were

important. I then used a multi-model inferential approach based on maximum likelihood

to evaluate which models were best supported by the data (Burnham and Anderson

2002). Models of sn, f, g2, and s, were evaluated and ranked using AICc, an information

criterion corrected for small sample sizes (Anderson 2008). Models of g1, s,, and s5,;m

were overdispersed and were evaluated with Quasi-AICc (QAICc), which includes an
additional correction for overdispersion (Bolker et al. 2009). AICc and QAICc will both

be referred to as "AIC" in the main text for readability, but will be distinguished in the

tables and appendices where important. The model with the lowest AIC score (AICy;n)

within a set of competing models is considered the best model, given the data. More
details about the model fitting and ranking process are provided in Appendix 2.B.i. An
explanation of how spuriously supported models with "pretending variables" (Anderson

2008) were identified is described in Appendix 2.B.ii.

For g/, 82, Sr, Ssums Swin, and f; the full GLMM structure included fixed terms for

Site, Year, Site*Year interaction, and Location (edge vs. interior). Site was included as a
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fixed effect in this analysis because we are ultimately interested in making site-specific
predictions about A. petiolata population growth and its potential response to
management. Quadrats were modeled as random effects to account for correlations
between observations made within individual quadrats. Although year would ideally have
been modeled as random, there were not enough levels of the year variable (n=3) to test
the assumption that the levels of each random effect are normally distributed. Reduced
models included all factorial combinations of the fixed effects in the full model plus an

intercept-only model for a maximum of ten models per demographic rate.
The seed bank (s;) viability data had an inflated frequency of ones, i.e. 100%

viability. These properties made it difficult to fit a GLM or GLMM using a standard error
distribution. Instead, I used a two stage conditional modeling approach similar to that
described by Cunningham and Linenmayer (2005). The data were analyzed by first
modeling probability # of observing 100% seed viability in a sample with a binary GLM.
Second, I modeled the non-zero observations with a beta error distribution (see Appendix
2.B.iii for details). As Cunningham and Lindenmayer (2005) point out, this two step
method has an advantage over using zero-inflated or mixture distributions because the
component analyses are orthogonal and can be driven by independent processes. Because

a number of observations were discarded (described above) the 113 "good" observations

of s; were unbalanced with respect to sites and quadrats across years. Although there was

at least one empirical observation of s; per site per year, random quadrat effects and

edge/interior location effects were excluded to avoid overfitting.
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Environmental Models

The hierarchical analyses are useful for analyzing the structure of variability in
vital rates across sites and years. However, they are not mechanistic and therefore are
limited in how broadly their results can be generalized beyond the study system. I
constructed a second set of GLMs and GLMMs to explore how A. petiolata demographic
rates responded to differences in soil properties, climate variation, and population
density. Following the example of Buckley et al. (2003a), I used GLMMs to evaluate the
response of each lower level demographic transition in the 4. petiolata life cycle to a set
of extrinsic and intrinsic variables. For each transition, a set of candidate models with
different combinations of fixed and random effects was defined a priori. Because of the
large number of possible explanatory variables and interactions, preliminary graphical
analysis of the data was necessary to reduce the number of variables included during the
model fitting process. Models were fit to the data in GLIMMIX and ranked using AICc
or QAICc when overdispersion was present. Extrinsic factors included as fixed effects in
models for each transition were combinations of climate statistics for time intervals
relevant to the transition and soil variables in each quadrat. If there were no strong a
priori hypotheses about specific soil variables, versions of full models with different
combinations of soil variables were fit and ranked using AIC. Soil variables from the best
supported models were included in the development of subsequent reduced models. In all
cases, the only soil variables retained in the final models were those which had a priori

support. Intrinsic effects included the natural logarithm of 4. petiolata population density

[In(plants m'z)] at the start of the transition as well as observed A. petiolata densities and

survival rates from previous transitions. For example, both October rosette densities and
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June adult plant densities were included in analyses of /. Quadrats were modeled as
random effects. Fecundity models were fit using a Poisson error distribution and survival

models were fit with binomial errors except as noted below.
The environmental models of g, s, and sy,,,, were overdispersed and were ranked

using QAICc (Appendix 2.B.i). The significance of random quadrat effects was tested for
each model with a likelihood ratio test. The residual deviance explained by the full

GLMM was compared to the residual deviance of a reduced GLM with no random terms.

The difference in deviance explained was compared to a mixture of ¥~ distributions with

1 degree of freedom using the covtest / glm option in GLIMMIX to test the null
hypothesis that the random effects did not improve the amount of deviance explained by
the model.

Winter survival had an extreme-value inflated distribution with a high proportion
of both zeros and ones (n = 37). This was accommodated by splitting the winter survival
analysis into a two step conditional process like the seed survival analysis. In the first

step, I estimated the probability of an observation being extreme versus not extreme as a
binary response to a set of predictor variables (model s,,;,1). Second, if the observation
was extreme, | modeled the probability of it having 0 versus 100% survival as a binary

response (model s,,;,2a). If the observation was not extreme (i.e. 0 < s,,;, < 1), it was
modeled with a binomial GLMM (model s,,;,2b). Random quadrat effects did not
improve the fit of the binary models and were dropped from s,,;,1 or s,.;,2a. Note that
model s,,;,1 predicts the probability of an observation being extreme or not. This

determines whether to proceed to s,,;,2a or s,,;,2b. Model s,,;,2a predicts the probability
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of an extreme observation having a survival probability of either 0 or 1, conditional on

knowing that the observation is extreme. Model s,,;,2b predicts quadrat mean survival

probabilities between 0 and 1, conditional on knowing that the observation is not

extreme.

G, was not measured during the third and final season (spring 2009) but was

estimated by modeling the relationship between g; and g,,and the seed bank size during
the first two years of the study and projecting forward (Appendix 2.B.v). Because the

model used pooled data, there are only site level estimates of g, during the third year.
Hierarchical models of g, did not include the estimated rates from the third year. No

environmental analyses were run on g.

RESULTS

Alliaria petiolata demographic rates were highly variable across the twelve sites
and over the three years of the study. For survival there were clear site by year interaction
effects, as the indicted by the changes in ranking of the 12 sites over the study period
(Figure 2.3). These interaction plots are also revealing of the relative contributions of site,

year, and site by year interactions in structuring the vital rates spatiotemporally. For
example, variation in germination of new seeds (g1) appears to have been dominated by
year effects, while the site by year interaction had much stronger eftects on seedling

survival. These data agree with my general observation that summer survival and g were

highest during the first year of the study and then decreased during subsequent years,
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while patterns of variation in seedling survival over time was much less consistently
across sites.

The distributions of most transitions were heavily right skewed (Figure 2.4), with

high frequencies of zero % survival of summer (25 of 143 observations, mean s, = 0.22
+ 0.03) and winter (30 of 121, mean sy, = 0.33 £ 0.03) rosettes. This contrasts with the

more uniform distribution of rosette survival (mean s, = 0.49 £ 0.04), with only four

observations of zero survival out of 144. Seed survival was high in contrast (100% 70 of

113 times, mean s; = 0.92 + 0.02). Mean g; (0.31 £ 0.03) and g3 (0.11 + 0.03) were lower

than comparable mean rates compiled from the literature by Pardini et al. (2009), and are

closer to the means of rates assembled by Davis et al. (2006). Few other A. petiolata

studies have reported measures of sy, and s,,;,. These are more commonly combined
multiplicatively into s,z the probability of surviving from the rosette to the flowering

stage over a full year. The mean estimated s,7(0.1048) calculated from s;,,, and sy, was

also considerably lower than others' estimates (mean of rates compiled in Davis et al.

2006 = 0.548).

Natural peak seedling densities in the study system ranged from 75-6025 m?>

(median = 877.5), and June rosette densities in the system ranged from 31.25-3344 m'2
(median = 232). The high densities I observed occurred during the first year of the study,

reaching maxima (median) of 5696 (1096), 6025 (890), and 2650 (704) plants m'2 for

seedlings and 3344 (368), 1092 (210), and 976 (212.25) m'2 for rosettes in 2005-2007,

respectively.
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Hierarchical Mixed Model Analyses

Demographic rates of A. petiolata were substantially differentiated among sites

and years. Likelihood based evaluations most strongly supported models of g/, g2, s,

Ssum»> and syin, With terms for site, year, and site*year interactions (Table 2.3). This
indicates that sites differed in their responses to year effects for these parameters. For

each of these models except s,,;,, the second best supported model also included a term

for forest edge versus interior location. Each had a AAIC of approximately 3, but the
extra variable didn’t explain any additional variance in the response, evidenced by the
similarity of the In(/) values for these models. The additional location term in these
models appears to be a “pretending variable” (Appendix 2.B.ii) and these models were
discarded from consideration. After dropping these models from consideration, the
remaining models in each of these sets had no support from the data.

The best supported model of fecundity included a significant fixed effect for site
only (F11.45 5.00, P < 0.0001). Estimated mean values for f are therefore statistically the
same for all years within each site. Models with terms for location also appeared to be
well supported as described above and were excluded from model weighting.

Seed viability in the seed bank was evaluated in two stages because of the high
proportion of ones in the data. In the first step, the data best supported the binomial GLM

with a fixed year effect only. The probability of a population having 100% viability was

lower in 2006 than in either 2005 or 2007 (Is-means difference ;19 = 3.17, P = 0.0020,

and 1110 = -3.32, P = 0.0012, respectively), while the probabilities were approximately
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equal in 2005 and 2007. Among the remaining observations with less than 100% seed
survival, variability in seed survival was randomly distributed among sites and years with

a mean viability of 0.7847 and beta distributed errors. Note that the second best model for

ss < 1 also appears to be a "pretending variable" model (Table 2.3). Combining the

probabilities from the two seed survival models yields predictions of s; = 0.9462, 0.8668,

and 0.9508 for all sites for the three consecutive years. Plots of the model conditional

predictions (i.e. including random effects) are shown in Figure 2.5.

Environmental Models:

Density dependent feedbacks and responses to climate and intrinsic factors from
previous life stages were common features in models of most demographic rates. In some
cases an earlier population density, climate or survival metric was predictive of a later
survival or reproductive outcome. This suggests that individual success, however
measured, is developed though a cumulative process that conditions individual plants
over their life time. For most A. petiolata demographic rates a single model clearly

received the greatest support from the data, indicated by the Akaike weights and AAIC
scores. The exception to this was s,,;,1, for which the best model received 34% of the

Akaike weights. Because the next best model was only half as well supported, I chose the
top ranked model. The parameter estimates and their standard errors for the best
supported model of each demographic rate are presented in Table 2.4-Table 2.8. Also

shown are the type-3 F-tests of the null hypotheses that each parameter value is not

different from zero and the )(2 likelihood ratio tests of the random effects. In models that
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included and retained random quadrat effects, the random effect is assumed to be

normally distributed with mean 0 and variance as estimated. Random quadrat effects

greatly improved the fit of models of gy, s,, Ss;um, Swin2b, and fbut were dropped from the

two binary models s,,;,1 and s,,;,2a. The goodness of fit of each model to the data is

illustrated in Figure 2.6. This shows the observed and predicted values from each model
generated from the best linear unbiased predictors (BLUPs) which are based on the
parameter estimates for both the fixed and random effects. Interpreting how the
independent variables in each model affect the response can be challenging when there
are significant interaction terms and because the regression coefficients are in a
transformed data scale. Plots of the observed and predicted demographic rates versus the

independent variables help to illustrate these relationships (Appendix 2.C).

Germination

Germination probability of newly shed seed (g;) was most strongly influenced by
climate conditions in January and February, just prior to germination (Table 2.4). The
best model of g; was supported by 85.3% of the Akaike weights and was separated from

the next best model by AAIC of 3.7. Germination was reduced by the frequency of days
with measurable precipitation (rain) in January and February and increased by the
number of warm January and February days. There was an interaction between warm

days and soil water holding capacity that weakened the relationship between warm days

and W.H.C. as W.H.C. increased. Because of its correlation with g;, g, was not modeled.
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Seedling Survival
Seedling survival was regulated by a combination of negative density dependent

mortality plus the additive and interactive effects of several climatic and edaphic factors
(Table 2.5). The best supported model of s, received 95.8% of the Akaike weights, while
the next best model had a AAIC of 7.8 (Table 2.5). Seedling survival is negatively
dependent on March precipitation (prcp,,.r, mm), the natural logarithm of soil water
holding capacity (whc3bar), and the frequency of warm days in January and February

(warmyg, tyin>0°C) but is positively dependent on total soil inorganic N. The frequencies
of hot days in summer (hots;m, tmax>34°C) and rainy days in autumn (rains,y;) during the
year prior to germination affect s, through an interaction illustrated in Figure 2.7. Fall

rain has a negative effect on s, following a summer with a high number of hot days, but

has a positive effect after a summer with few hot days. Because survival rates are
bounded on the closed interval [0, 1], the relative magnitude of any single effect is
dependent on the combined magnitudes of all the other factors in the model, as is seen in
the effect of seedling density (Figure 2.7). Although only seedling plots in Michigan
contained both seedlings and second year rosettes, including these in the models with
additive or non-additive terms did not explain any additional variance in seedling

survival.

Summer Survival
The best model of summer rosette survival (sg,») was supported by 99.3% of the

Akaike weights, and was separated from the next best model by a AAIC of 10.0. After
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accounting for the variability in survival due to other extrinsic factors in the model, the
strength of density dependent mortality during the summer (slope = -0.2951, Table 2.6)

was approximately equal to the rate in spring (slope = -0.2320, Table 2.5). During

summer, this translates to a decrease in survival probability from 1.0 to 0.427 (=e'0'2951)

for each increase of 1 unit of the log of June rosette density, holding all other variables

constant at zero. The range of June density was ~ 4.6 from the most to the least dense

quadrat, in log transformed units. Density alone would be expected to reduce s, from

-.2951*4.6

1.0 to 0.257 (=e ), again holding other variables constant at zero. In nature the

variables do co-vary and are non-zero, so the strength of density dependence will again

be scaled by the contributions of other variables. Because of a positive correlation

between the quantity (prcppay) and frequency (rainy,y) of rain events (Pearson's r =
0.7699), increases in either variable positively affect s,,,,. There were also negative
correlations between summer hot days hot,,, and the number of drying events in August

and September dry,;. This indicates s, was lower during cooler summers that

associated with more frequent late summer rain events. Although such strong correlations
among variables can indicate multicollinearity, models including the interaction between
these two variables were more strongly supported than models containing polynomial
functions of either individual variable and other simpler models. Summer heat and May
rain were positively correlated (Pearson's r = 0.5133), so it is possible that the positive
effect of hot summer days is a time-lagged outcome of earlier conditioning from ample

spring rains. Summer survival responded positively to increasing percent sand in soils,
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which was generally higher in Michigan sites, but negatively to increasing soil N through

its interactions with spring rain (prcppygy).

Winter Survival
The three component sub-models of the conditional winter rosette survival
analysis predicted that: (1) the probability of having an extreme survival rate, either 0 or

100%, was negatively density dependent and also decreased with the frequency of
summer rainy days (Table 2.7, Model r,,;,1). (2) Among quadrats that did have extreme

values, the probability of having 100% survival (versus 0%) was greatest at very low

densities and was negatively dependent on summer growing degree days (Table 2.7,
Model r,,i,2a). (3) Among quadrats that did not have extreme values (n = 84), there was a
positive correlation between summer and winter survival probabilities (Table 2.7, Model
rwin2b). Survival in these plots was also negatively dependent on the frequency of

summer rain, soil pH, and the frequency of very cold winter days, but was not density

dependent.

Fecundity

Mean quadrat per capita fecundity, modeled as the mean number of fruits
(siliques) per plant was predicted by two opposing density dependent functions, each
conditional on climate interactions (Table 2.8). First, adult plants were negatively

affected by the rosette density they experienced as rosettes during June of their first year.

The strength of this effect on fecundity was greatest during cool summers (low hoty,,n)
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but was tempered during hot summers (high hoty,,,). Second, both the frequency of rain

events during a plant's second spring until flowering (rain) and the log of the final

density of adult plants were positively correlated with per capita fecundity.

DISCUSSION
Comparisons to Previous Studies

The magnitude of variation in A. petiolata demographic rates from this study was
much greater than expected. At the quadrat level, the range of values of each transition
observed in the study system in four years was inclusive of almost all 4. petiolata
demographic rates published previously over a thirty year period that I am aware of
(Figure 2.4). The frequency distributions of most vital rates in my data parallel the
distributions of these published rates, evidenced by the correspondence between the
histograms and the clustering of published rates in Figure 2.4. The means of demographic
rates in this study were not significantly different from those of the compiled published
rates based on overlapping 95% confidence intervals using site by year means. The

exceptions to this were geometric mean per capita fecundity (f) [mine: 52.643 (41.51,
66.75); published: 204.194 (93.17, 447.50)] and rosette to flowering survival (s, [mine:
0.09 (0.054, 0.126); published: 0.548 (0.443, 0.653)]. The means of each of these rates
were lower in my system. Reduced fecundity may have been related to the same
processes that lead to the low rosette survivorship I recorded. This is suggested by the
mutual dependency of summer survival and fecundity on both June rosette density and

hot summer days.
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Past studies have also found evidence of stage-specific density dependent
mortality and reproduction (Winterer et al. 2005, Pardini et al. 2008, Pardini et al. 2009)
or a lack thereof (Rebek and O'Neil 2006) as well as density dependent population
growth (Meekins and McCarthy 2000, but see Appendices D and E for a discussion of
their calculations, 2002). The range of first year rosette densities observed in June and in
October in this study was greater than those evaluated by most previous investigators
(Table 2.9). Meekins and McCarthy's (2002) first year rosette densities fell above the
center of my data range (June from their Figure 3), while Pardini et al.'s (2009) early May
rosette densities fell mostly below it (from their Figure 2A). Rebek and O'Neil's (2006)
fall October densities and Pardini et al.'s (2009) August rosette densities each
encompassed the center of my fall density range. While the Rebek and O'Neil

measurements are comparable to my fall rosette density, Pardini et al.'s August sample is
phenologically earlier than mine. What they measured as s; from early April-mid May
gives a much more compressed seedling survival period than mine. Similarly, my
measure of summer rosette survival covered June-late October, while their s, covered
early May-August. Finally, my winter survival measure ran from October-June, while
their 53 ran from August-May and included most of the mortality attributed to summer

losses. This may be why Pardini et al. found compelling evidence of strong "winter"
density dependent mortality while I did not. Rebek and O'Neil's finding of no density
dependent mortality from October-June concurs with my own.

Seedling densities in my study quadrats fell within the range of other published
accounts (Table 2.9). Winterer et al. (2005, J. Winterer personal communication)

recorded seedling densities within the range I observed. Seedling densities in quadrats
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used to estimate seedling survival by Pardini et al. (2009) were below this range. Their

empirical measure of s, was based on the survival of 469 marked individuals spread
across 40 1 m” quadrats for an average density of 11.725 seedlings m™. These estimates
and my own are all well below Trimbur's (1973) scaled estimate of 20,000 seedlings m'z.
The maximum seedling density recorded in my study system was 142 100 cm'2 (=14,200

m'z) at the Shiawassee site, but this was outside of the study quadrats (J. Evans, personal

observation).

Second year plants have been shown to negatively impact seedling survival
(Meekins and McCarthy 2002, Winterer et al. 2005). Although I saw this as well in
seedling survival environmental models that included a term for second year plant
density, these models were not strongly supported by the data. Other investigators have
shown that 4. petiolata has a plastic response to variation in light availability but reaches
maximum photosynthetic rates under high light. (Dhillion and Anderson 1999, Meekins
and McCarthy 2000, Myers et al. 2005) but I found no differences in any demographic
rates between forest edge versus interior plots. It is possible that the light conditions at
the edge plots were more shaded than those studied by others, or that other unmeasured
differences between edge and interior locations offset the effects of light exposure.

The hierarchical analyses show that there is a significant amount of spatial and
temporal structure underlying this variation (Figure 2.3). I found significant site, year,
and site*year effects in all germination and survival transitions. Germination rates of new
seeds were highest during the first and third years of the study, and were generally

greatest in the southernmost and northernmost sites during all years. Seedling survival
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exhibited the most pronounced spatial structuring, increasing with latitude and from west
to east within each year. It is possible that this structure is partially driven by climate
related differences in germination phenology, which was up to several weeks later in the
more northern sites during some years. Experimental hierarchical models in which I first
adjusted survival rates to correct for phenological differences among sites produced the
same results (not shown), so I used the original data. The distributions of summer and
winter rosette survival were much more temporally than spatially structured. During the
first year, when summer survival was highest across most sites, it was greatest in the
southernmost Illinois sites and decreased northward. There was much less landscape-
scale spatial structure during the second and third summers, although most individual
sites maintained the same rank in summer survival that they had the first year (Figure
2.3). In other words, the "best" sites for summer survival in a good year were still the
best, even when conditions were less favorable across the region. Similar maintenance of
site rank was seen across most sites in germination of new seeds and winter survival
probabilities. Winter rosette survival showed an almost opposite temporal pattern to
summer survival, increasing in the second year in most sites and then decreasing the next.
Per capita fecundity was very consistent within sites over time. Only the Homer Lake site
varied in fecundity over time, dropping during the second year and then increasing in the
third. Finally, seed bank persistence was relatively unstructured. It varied by year only in
the proportion of quadrats with 100% seed viability, which was not spatially driven. The
differences in the spatiotemporal structures of these transitions may translate into
differences in their responses to management of specific life history stages and how

locally specialized management of different stages must be (see Chapter 4).
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Conclusions

These results suggest several important conclusions. First, 4. petiolata does not
perform equally well at all times and locations. It has good years and bad years (or better
years), and these vary by site (Figure 2.3). Additionally, the magnitude and direction of
site and year effects differ across life history stages. Germination of new seeds, summer
survival, and winter survival of most sites closely tracked each other over time, indicating
the importance of regional influences on these demographic rates. In contrast, mean
seedling survival did not show such strong inter-site trends across years. Instead, seedling
survival variation was much more locally driven, as evidenced by the lack of parallel
lines in the seedling plot in Figure 2.3.

From the perspective of a natural resource manager, this means that the target
plant is not likely to perform in the same way at all places and times and, thus, should not
be expected to respond to management identically at all locations. The consequences of
making this assumption have been demonstrated previously in other systems where
multiple populations of an invasive weed responded differently to a common
management effort (Shea et al. 2005). In the case of weed management using classical
biological control, implementation of ineffective strategies is of particular concern
because herbivorous or pathogenic natural enemy species cannot be recalled once
released and can be damaging to non-target species (Pearson and Callaway 2003). It will
be important to determine whether differences among life history stages in the
spatiotemporal scales of variation in vital rates will translate into differences in

population dynamics at the same scales. If so, it could mean that life history stages like
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seedling survival with stronger local structure would require more locally optimized
management plans. Transitions such as germination that are largely shaped by regional
effects may be better suited to implementation of a common management approach
across sites. Future models of 4. petiolata population dynamics will have to account for
these spatial and temporal sources of variation in vital rates by making site-specific
models that account for year to year differences in vital rates.

Second, the variation in vital rates is driven by a common set of underlying
mechanisms. Multiple competing environmental models were evaluated to identify the
mechanisms that are collectively quantified as categorical site and year effects in the
hierarchical models. For each demographic transition, a single explanatory model
emerged as the most probable. These models show that individual plants are affected by
both their immediate and past environments at each step through their life history. For
example, seedling survival is greater where there is higher soil N availability, but this
comes at the cost of lower summer rosette survival. Increased rain in May helps condition
rosettes to endure the hottest days of summer. However, plants that experienced high
densities and hot summer days during their first year on average produce fewer seeds
when they mature. Elements like soils and climate patterns and population densities
which feed from one life stage into the next are consistent within locations over time and
tie the individual life history stages to gether into coherent covariance signatures. Based
on this, it may be worth exploring the data structure further using structural equation
modeling or generalized linear latent and mixed models (GLLAMM) in the future
(Skrondal and Rabe-Hesketh 2004) The models as currently parameterized will form the

basis for exploring the consequences of site differences on projected population
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performance and can be used to predict how populations will respond to perturbations.
Further, because these models quantify the site in terms of continuous variables, it may
be possible to predict the performance of populations at other locations for which the
relevant data are available.

Third, demographic rates of natural A. petiolata populations are more variable
than I expected. The existence of variability in 4. petiolata vital rates documented here is
not surprising. What is noteworthy, though, is that nearly the entire range of previously
known vital rates occurs in just a small subset of A. petiolata's North American
distribution and over a relatively short timescale. Modeling studies based on a single site

or a single year of data are very likely to misrepresent the longer term dynamics of the

population. For example, mean seedling survival (s,) at the Bob-Peoria site was measured
as 0.843, 0.149, and 0.094 over three consecutive years. No single rate characterizes s, at

the site, and it is unlikely that three rates are truly sufficient. Additionally, s, is linked

with other vital rates in the 4. petiolata life cycle through density dependent functions
and dependence on common exogenous factors. Previous modeling studies of this
species have explored how population dynamics change across a range of parameter
values (Davis et al. 2006, Pardini et al. 2009) but have been unable to account for the
covariances among parameters. These models likely capture a subset of the range of
population dynamics exhibited by natural 4. petiolata populations. However, by holding
dynamic parameter values as fixed during simulations or breaking apart the correlations
among vital rates, they may misunderestimate (sensu George W. Bush, November 6,
2000) the complexity or elasticity structure of natural population dynamics (J. Evans,

unpublished).
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An important next step to interpreting the behavior of A. petiolata populations
will be to compare a stochastic population model based on a fixed set of matrices for each
site and year with a dynamic model based on the intrinsic and environmental functions
parameterized here. These can then be used to assess the potential interactions between

the different A. petiolata populations and the suite of proposed management tactics.
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Tables: Chapter 2
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Table 2.1. Names and locations of study sites. Rainfall estimates represent mean values

summed from climatic data used in analyses. See methods section for details.

Site (Abbreviation) State Latitude Longitude Site Description Annual
Rainfall (mm)

Bob-Peoria (B) IL 40.72205 -89.5055 Hardwood 818
floodplain forest

Edward Lowe (ELF) MI 41.96451 -85.9962 Second growth 978
Foundation northern hardwood
forest along edge
of old field.
Farmdale (3] IL 40.67668 -89.4878  Hardwood 818
floodplain forest
Healy Road (HR) IL 42.10862 -88.2148 Mesic second 936
growth hardwood
forest
Holland State (HSP) MI 42.77765 -86.2025 Hardwood forest 774
Park in dunes along
Lake Michigan
shore
Homer Lake (HL) IL 40.06325 -87.9787 Upland second 993
growth hardwood
forest

Illini Plantations (IP) IL 40.07925 -88.2107  Upland second 960
growth coniferous
forest

Ives Road (IR) MI 41.98147 -83.932 Hardwood forest 743
bordered by
restored tallgrass
prairie, descending
to hardwood
floodplain forest

Johnson Park (JpP) MI 42.92559 -85.7699  Hardwood oak 972
forest in urban
park

Rose Lake (RL) MI 42.81234 -84.4042 Second growth 860
hardwood forest in
abandoned crop
field.

Russ Forest (RF) MI 42.01162 -85.9703  Old growth 978
oak/maple forest

Shiawassee YMCA (SH) MI 42.88546 -84.0491 Black locust 912
(Robinia
pseudoaccacia)
and degraded pine
plantation
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Table 2.2. Timeline of Alliaria petiolata sampling for each demographic parameter. S, F,

W, and Sp indicate summer, fall, winter, and spring, respectively. Boxes enclose the time

interval over which a parameter was measured. The unshaded box indicates the summer

survival transition that was measured in the smaller seedling survival-sized quadrats in

Michigan for the 2005-2006 cohort. Germination data are not presented in Chapter 2.

2005 2006

2007 2008 2009

Cohort
2005-2006

Sp S F WSpS F WSpS FWSpS F W Sp S

Germination
Seedling Survival
Summer Survival
Winter Survival
Fecundity

2006-2007

%

%
7

Germination
Seedling Survival
Summer Survival
Winter Survival
Fecundity

2007-2008

%

\

7
Vi

Germination
Seedling Survival
Summer Survival
Winter Survival
Fecundity
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Table 2.3. Results of model selection for spatiotemporal differentiation of 4. petiolata
life history transitions. Details for each transition include the error distribution (dist) used
in GLMs and GLLMs, the information criterion used for model weighting and selection
(ic), and the dispersion parameter ¢ used to calculate QAICc where applicable. Variables:
fixed effects (S=site, Y=year, L=location, I=intercept), Laplace approximated maximum
likelihood (In(/)), number of observations (n), levels of random quadrat effect (), number

of parameters including random effects (k), (Q)AIC: AICc or Quasi-AlICc for
overdispersed models, delta (Q)AIC (Af) , and Akaike weight (w;). Models with r=0 were
GLMs with fixed effects only. A maximum of 5 models are shown per vital rate. All

other models with Ai < 11 and w; > 0 are shown.
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Transition, Details Fixed Effects Inl) n r k (QAICc A; wi
germination 1 (g7) S, Y, S*Y -828.11 137 48 37 352.6 0 0.872
dist=binomial S,Y,S*Y,L -828.08 137 48 38 356.4 38 0.128
ic=QAICc Y -1228.26 137 48 4 3794 26.8 <0.001

9=6.62 Y,L -1228.24 137 48 5 381.5 28.9 <0.001

seedling survival (s,) S,Y,S*Y -513.48 144 48 37 526.6 0 0.820
dist=binomial S,Y,S*Y,L -512.68 144 48 38 529.7 3.0 0.180
ic=QAICc S,Y -886.93 144 48 15 769.8 243.1 <0.001

p=241 S,Y,L -884.43 144 48 16 770.2 243.6 <0.001

summer srv. (sgm) S+ Y» S*Y S11.10 143 48 37 387.9 0 0.843
dist=binomial S,Y, S*Y,L -51047 143 48 38 391.3 34 0.157
ic=QAICc Y -846.68 143 48 4 484.0 96.0 <0.001

p=356 Y,L -846.39 143 48 5 485.9 98.0 <0.001

winter srv. (swm) S, Y, S*Y -240.22 121 48 36 584.1 0 0.541
dist=binomial S,Y,S*Y,L -238.30 121 48 37 584.5 03 0.456
ic=AICc Y -294.28 121 48 4 596.9 12.8 0.001

Y, L -293.31 121 48 5 597.1 13.0 0.001

Fecundity Pooled S -81.37 93 48 13 193.3 0 0.946
dist=lognormal SY -7999 93 48 16 199.1 5.8 0.052
ic=AICc IOnly -100.77 93 48 2 205.7 12.3 0.002

Y -99.61 93 48 5 209.9 16.6 <0.001

germination2 (g) S Y, S*Y 25391 82 45 25 5810 0 0.852
dist=binomial S, Y, S*Y,L 225351 82 45 26 584.5 35 0.148
ic=AICc Y 37888 82 45 3 764.1 1830 <0.001

Y.L 37848 82 45 4 7655 1845 <0.001

seed srv. (s5) Ones Y -66.97 113 0 3 140.2 0 0.994
dist=binomial I Only 27507 113 0 1 1522 12,0 0.002
ic=AICc S, Y 5952 113 0 14 1513 112 0.004

S -6861 113 0 12 164.3 242 <0.001

seed srv. (s5) < 1 1Only 2505 43 0 2 45.8 0 0.849
dist=beta Y 2566 43 0 4 423 3.5 0.145

ic=AICc S,Y 4079 43 0 15 338 120 0.002

s 3685 43 0 13 351 107 0.004

S,Y, S*Y 4578 43 0 25 349 807 <0.001
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Table 2.4. Best supported environmental model of germination of newly shed seeds after

one winter (g1). Parameter estimates from GLMM with binomial errors and logit link.

Model ranking was evaluated with QAICc. Akaike weight = 0.853, AQAICc of next best

model = 3.7. All climate data are from time periods which precede germination. Random

quadrat effect was evaluated with a likelihood ratio test by comparing the change in the -

2In(/) from dropping quadrat from the model to a mixture of ;(2 distributions in

GLIMMIX (SAS Institute 2008).

Parameter Symbol Test Estimate SE
Intercept M NA 27391  0.3961
WHC3bar weh (F1,85= 20.74, P<0.0001) 0.0624  0.0137
Warm Days (Jan., Feb) warmjy  (F1,85=647.31, P<0.0001) 0.3534  0.0139
whe x warm;f veoldWhe  (F1,85=406.09, P <0.0001) -0.00899  0.0004
Rainy Days (Jan., Feb.) rainjf (le 85= 78.18, P<0.0001) -0.03662  0.0041
Quadrat (random effect) eq (x =5442.66,df=1,P<0.0001) 0.9787 0.2116
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Table 2.5. Seedling Environmental Model: Parameter estimates from GLMM of seedling

survival from April until June of the first year with binomial errors and logit link. Model

ranking was evaluated with QAICc. Akaike weight = 0.958, AQAICc of next best model

= 7.8. Random quadrat effect was evaluated with a likelihood ratio test by comparing the

change in the -2In(/) from dropping quadrat from the model to a mixture of )(2

distributions in GLIMMIX (SAS Institute 2008).

Parameter Symbol  Test Estimate SE
Intercept n NA 0.3937 0.8397
In(Seedling Maximum Density)  dsdi(v)  (F1,89= 14.74, P=0.0002) -0.232  0.06043
Precipitation (March, mm) Pmar (F1,89= 59.78, P<0.0001) -0.01301 0.00168
Warm Days (Jan.-Feb.) warmyin (F1 89 = 148.12, P <0.0001) -0.1238  0.01018
Hot Days (Summer) hotsym  (F1,89 = 241.14, P <0.0001) 0.6021 0.03878
Rainy Days (Oct-Dec) rainfgr - (F1,89 =106.23, P < 0.0001) 0.09505  0.00922
hotsym x raingj hsrf (F1,89 = 158.74, P < 0.0001) -0.01661  0.00132
tN tNg (F1,89 =31.46, P <0.0001) 0.07959  0.01419
In[W.H.C. (1/3 Bar)] whe3g  (F1,89 =21.31, P <0.0001) -0.8123 0.176
_Quadrat (random effect) eg (x2 =404.74,df= 1, P <0.0001) 0.5760  0.1409
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Table 2.6. Summer Environmental Model (sg,,,,): Probability of a rosette surviving from

June to October. Summer survival GLMM with binomial errors and logit link. Akaike

weight = 0.993, AQAICc of next best model = 10.01. Random quadrat effect was

evaluated with a likelihood ratio test by comparing the change in the -2In(/) from

dropping quadrat from the model to a mixture of xz distributions in GLIMMIX (SAS

Institute 2008).

Parameter Symbol Test Estimate SE

Intercept h NA -2.1092 1.6265
(F1,85=157,

In(June Rosette Density) dJune P =0.0002) -0.2951 0.07447
(F1,85=21.61,

Rainy Days (May) rainpay P <0.0001) 0.2825 0.06078
(F1,85=92.34,

Precipitation (May, mm) Pmay P <0.0001) 0.09125 0.009496
(F1.85=99.24,

rainmay X Pmay rmpm P <0.0001) -0.00741 0.000744
(F1,85=24.94,

Soil % Sand sandy P <0.0001) 0.1100 0.02203
(F1,85=5.2,

Rainy Days (Spring) raingpy P=0.0251) 0.0837 0.03672
(F1,85 = 14.6,

Sand x Rain (Spring) sandxraingpy P =0.0003) -0.00182 0.000475
(F1,85=51.29,

Soil Total Inorganic N IN P <0.0001) -0.1814 0.02532
(F1,85=53.16,

rainmgy X (N rmN P <0.0001) 0.01072 0.00147
(F1,85=49.52,

Hot Days (Summer) hotsym P <0.0001) 0.2580 0.03667

" (F1,85=199.02,

Drought Events (4ug,Sept.) arysum P <0.0001) -0.5059 0.03586
(F1,85=31.42,

Hot Days x Drought Events hsd P <0.0001) -0.02625 0.004683
(x2 =425.52,df=1,

Quadrat (random effect) eq P < 0.0001) 1.0298 0.2309
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Table 2.7. Winter Environmental Model (sy,in). Two-stage model of winter rosette

survival (swin). Model r,,;,1 predicts the binary probability of observing an extreme
value (either 0 or 100% survival) versus any other intermediate value and determines

whether an observation proceeds to s,2a or s,,;,2b. Higher predicted probabilities from

rwinl are more likely to have extreme values and are passed on to s,,,2a. Model s,,,;,2a
predicts the binary probability of observing 0% survival versus 100% survival,
conditional on knowledge that the outcome is one of these. Model r,,;,2b is a binomial

GLMM that predicts the survival probability of a quadrat that does not have an extreme
value. For the first two binary models, the response coded as the "event" whose

probability was modeled is indicated. Akaike weights = 0.343, 0.904, and 0.865 for the
three models, respectively. AAICc of next best models = 1.4, 5.4, and 3.7, respectively.

Parameter Symbol  Test Estimate SE
Model ryip1 event = extreme

Intercept n na 11.5502 3.0308
In(Oct. Rosette Density) doct (F1,118 = 28.9, P <0.0001) -2.5055 0.4661
Rainy Days (Summer) raingym  (F1,118 = 3.95, P = 0.0492) -0.0775 0.0390

event = 100%
Model ryyjp2a

surv.
Intercept 1) na 19.1297 9.2316
In(October Rosette Density) doct (F133=4.99, P=0.0324) -10.0220 4.4877
Growing Degree Days (Spring) gdspring (F1,33 =4.84, P=0.0350) -0.07713  0.03507
doct X gdsdl drsum@) (F133=5.58,P=0.0242) 0.03738  0.01582
Model ryip2b

Intercept iy na 5.0221 3.7513
Summer Rosette Survival Ssum (F1,35=17.19, P=0.0002) 1.3694 0.3428
Rainy Days (Summer) raingym  (F135=9.00, P =0.0050) -0.02786  0.06026
Soil pH PHy (F1,35=9.28, P=0.0044) -0.3706 0.1298
Cold Days (Winter) coldyin  (F135=5.07, P=0.0307) -0.02085 0.009443
Quadrat (random effect) eg (;(2 =150.4, df=1, P <0.0001) 0.4366 0.1188
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Table 2.8. Fecundity Environmental Model (f). GLMM with Poisson distributed errors,
log link, and random quadrat effects. Model ranking was evaluated with AICc. Akaike
weight = 0.999, AAICc of next best model = 16.3. Random quadrat effect was evaluated

with a likelihood ratio test by comparing the change in the -2In(/) from dropping quadrat

from the model to a mixture of xz distributions in GLIMMIX (SAS Institute 2008).

Parameter Symbol Test Estimate SE

Intercept p NA 7.4679 1.1246
In(June Rosette Density) dJune (F139= 0.23,P=0.6350) -0.0497 0.1039
Hot Days (Summer) hotsym (F1,39 =25.56, P <0.0001) 0.4391  0.08685
dJune X hotsym djunehotsym (F1,39=20.61, P<0.0001) -0.0705  0.01553
Rainy Days (Fecundity) rainfge (F1.39=21.72, P <0.0001) -0.1212 0.0260
In(Flowing Adult Density) df (F1,39 =19.08, P <0.0001) -1.6401 0.3754
dfx rainfec dpraingc (? 39 =20.26, P <0.0001) 0.0355 0.007875
Quadrat (random effect) e Jg ‘OZO‘ 18”8» df=1,P< 02701  0.07244
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Table 2.9. Comparison of plant densities used in four studies of 4. petiolata. Seedling,

Summer, and Winter refer to survival measurements. Plant minimum and maximum

-2 . i
densities have been converted to common units of plants m ~. Geometric mean densities

and 95% confidence intervals of the geometric mean are shown. The mean seedling
density from Pardini et al. (2009) is the arithmetic mean and is based on their report of

marking 469 seedlings across 40 1x1 m quadrats.
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planj plan-t;‘ Scale of
Transition Time Interval m m Mean (LCLUCL)  Measurement Location Ref.
Seedling  March-June 75 6025 806.9 (693.7-938.6) 0-04-0.0625 m’ IL&MI 1
Seedling  April-May - - 11.725 Im’ MO 3
Seedling  March-October 207 2058 ; 0lm’ PA 2

2
Summer  June-October  31.25 3344 253.4(218.0-2945) 0-16&025m ;1 onp g

2

Summer  May-August 4 235 - Im MO 3
2

Winter  October-June 4 540 47.1(372-59.6) 016&025m oMy g
a,b 2

Winter August-May 1 278 6.0 (4.1-8.7) I'm MO 3
2

Winter October-June 447 108.2 - I m OH 4
2

Fecundity June 4 540  263(21.1-329) 016&025m g np
a 2

Fecundity June-July 1 50 44(345.7) I'm MO 3

References cited are: 1) This study, 2) Winterer et al. (2005), 3) Pardini et al. (2009), and 4) Rebek and
O'Neil (2006).

2 Means and confidence intervals from Pardini et al (2009) were obtained by extracting x and y pixel

coordinates from each data point in their printed figures 2B and 2C using photo editing software. Because

they reported sampling winter survival in 34 quadrats but only 18 points are visible in their Figure 2B, 1

-2
inferred that the remaining 16 quadrats had rosette densities of 1 plantm .

b It appears that Pardini et al. (2009) mistakenly reported that 1795 rosettes were used in calculating winter

survival. Data extracted from their figure 2B reveal that there were approximately 1340 rosettes used in this
calculation. This corresponds closely with the 1346 rosettes they report marking for measurements of
summer survival. Thus, I interpret that the number of plants indicated in the text for summer and winter

rosette survival must be reversed in the text on page 390 of their paper. See Chapter 3.
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Figures: Chapter 2
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Figure 2.1. Locations of seven A. petiolata study sites established in Michigan in 2004

and five sites established in Illinois in 2005. Site Key: 1) Shiawassee, 2) Rose Lake, 3)
Ives Road, 4) Johnson Park, 5) Holland State Park, 6) Edward Lowe Foundation, 7) Russ

Forest, 8) Healy Road, 9) Homer Lake, 10) Illini Plantations, 11) Farmdale, 12) Peoria.
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Figure 2.2. Schematic diagram of 4. petiolata life cycle. Arrows represent one-year

transitions from June to June and are comprised of multiple lower level demographic

transitions. These are abbreviated as follows: g;, germination of new seeds within one
year of seed set; g,, germination of dormant seeds from the soil seed bank; s, survival of
newly emerged rosettes to the rosette stage in June; s,,,;, summer survival of new rosettes
from June until late October; s,,;,, winter survival of rosettes to the flowering stage from
October until June; £, fecundity (seeds/plant); s;, survival of dormant seeds in the soil
seed bank. Because seed survival (s;) was measured over a full year but is used twice as

an 8 month, sub-annual transition, s, is raised to the two-thirds power in the seed to

rosette and the flowering plant to rosette transitions to scale its affect.
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Figure 2.3. Observed mean A. petiolata demographic rates over the study period. Light
gray lines follow mean values within individual sites, averaged across quadrats. Heavy
black lines are mean values (:tSEM) of these site means. Year indicates the year during
with each measurement was begun. For example, winter survival 2005 was measured
from fall of 2005 until June of 2006. The three years constitute the three “cohorts” of
plants as grouped in the study, i.e. 2006 germination 1 and 2005 summer survival are
grouped together. *Values of germination 2 from in 2009 are estimations (Appendix

2B.).
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Figure 2.4. Frequency distributions of 4. petiolata demographic rates from this study.

Data shown are raw quadrat level observations. Rosette to flowering plant survival (s is

calculated as rg,,*ry,;, for comparison with previous studies that did not split summer

and winter survival. Letters beneath histograms show observations from previous studies.
References: a (Pardini et al. 2008); b (Pardini et al. 2009); ¢ (Anderson et al. 1996); d
(Meekins and McCarthy 2002); e (Drayton and Primack 1999); f (Nuzzo and Blossey
unpublished data); g (Baskin and Baskin 1992); and 4 (Cavers et al. 1979). Overlapping
observations are shown as: i (Anderson et al. 1996, Meekins and McCarthy 2002); j
(Drayton and Primack 1999, Pardini et al. 2009, Nuzzo and Blossey unpublished data); k

(Cavers et al. 1979, Meekins and McCarthy 2002).
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Figure 2.5. Predicted versus observed values of 4. petiolata seed bank viability (sy),
germination after 1 winter (g;), seedling to rosette survival (s,), summer (ss,,,) and winter
(sywin) rosette survival, per capita fecundity (f), and germination of dormant seeds from

the seed bank after two winters (g7). Fitted values are least squares means estimates for

each site by year combination predicted from the hierarchical GLMs and GLMMs.
Observed values are simple arithmetic means except f. Silique counts were first averaged
across plants within quadrats, then across quadrats for each site and year, and finally

scaled to show the estimated number of seeds per plant. Fitted f, values were modeled as
silique counts and then scaled to generate seed estimates. Only the first two years of g,
are shown, because the third year was estimated from years one and two. Unadjusted R

are shown because the site by years means are shown (marginal model predictions),

whereas the model was fit with random quadrat effects. All R’sand Adjusted R’ in this

and subsequent figures are calculated in the original data scale.
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Figure 2.6. Predicted versus observed values from environmental models. The five
scatterplots show the demographic rates generated from the BLUPs versus the observed
rates, overlaid with a 1:1 reference line. The vertical axis of the box plot shows the

predicted probability of a winter rosette survival observation resulting in an extreme
value, either 0 or 100% survival, versus a non-extreme value from the r,,;,1 binary GLM

versus the actual outcome. Observed extreme values were coded as "Yes" and include all
observations that had either zero or 100% percent survival. Observations in the "No"
category had intermediate survival rates. A well fitting model should predict higher

probabilities for the "Yes" group and lower the probabilities for the "No" group. The

winter rosette survival plot shows the combined results of models r,,;,2a and r,,;,2b. For

observed probabilities of 0 and 1 the predicted values represent the probability of an
observation being 1, versus the alternative of it being 0, conditional on knowing that the
outcome will be one of these two extreme values. The remaining points are predicted
survival probabilities as in the upper row of plots. Mean per capita fecundity was
estimated from the predicted and observed numbers of siliques using the breakpoint

regression function in Appendix 2.B.iv.
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- --Low Dens., Med. !
- Low Dens., Hot |
+ High Dens., Cool
===High Dens., Med.

Predicted Seedling Survival
O

20 25 30 35 40 45 50
Fall Rainy Days

Figure 2.7. Predicted seedling survival is conditioned by interactions among multiple
extrinsic and intrinsic factors. Here, the expected seedling survival probability is

calculated from the best supported seedling model across the observed range of fall rainy
days (raing,), during the year before germination at the minimum (cool), mean (med.),

and maximum (hot) number of observed hot days during the summer before germination.

The figure illustrates the interaction between population density, spring temperature

(hotsum), and fall rain at population densities of 500 (gray) and 5000 (black) seedlings m"
2 Mean observed values were used for all other variables. The change in slope from

negative to positive results from the interaction between raing,; and hotg,p.
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APPENDIX 2.A: SOIL DATA
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Table 2.A.1 Mean soil parameters + SEM. Site abbreviations in Table 2.1
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APPENDIX 2.B: STATISTICAL MODEL FITTING NOTES
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2.B.i. Model Fitting

Maximum likelihood (ML) and the Laplace approximation of the maximum
likelihood were used to fit GLMs and GLMMs for model selection, respectively.
Akaike's Information Criterion with a correction factor for small sample bias (AICc) was
then used rank models by their relative support from the data as described by Anderson
(2008). AICc is based on Kullback-Leibler information and is an estimate of the distance,
in arbitrary units of "information", from a model to the full reality of the processes or
factors driving a system. Models which better describe the variation in the data have

lower AICc scores and are interpreted to more closely approximate reality. Competing
models of each vital rate were compared with AAIC (A;), calculated for each model i as
the difference between its AICc and that of the best supported model. Thus, the best
supported model always has a A; of 0. Models with A; less than approximately 10 are
considered plausible alternatives to the best model (Anderson 2008). The Akaike weight

(w;) is the probability that model i is actually the best model within the set. The w;s are
estimated from the A;s and sum to 1 within each set of competing models.

Models of s.;n, f, £2, and s; were evaluated using AICc. Models of gy, s,, and s,

were overdispersed. In models with binomial errors the expected variance is a function of
the mean, u, expressed as u(1-4). Overdispersion occurs when the observed variance
exceeds this expectation. This can indicate that important covariates are missing from the
model, poor model specification, or an inappropriate error distribution (Crawley 2007).
Although overdispersion often has little effect on parameter estimates (e.g. slopes,

intercepts), it can cause underestimation of parameter standard errors (Joe and Zhu 2005)
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and thereby inflate the type I error rate. Selection among overdispersed models was based
on the Quasi-Akaike Information Criterion (QAICc), which is interpreted in the same

way as AICc but also includes a scale parameter in its calculation, O, calculated as the

Pearson's xz/df statistic (Bolker et al. 2009). For each overdispersed vital rate (] was

estimated from the full model and applied to the QAICc calculation of all reduced models
for model selection.

Overdispersed hierarchical models were then refit using pseudo quasi-likelihood
(PQL) estimation where possible. This allowed using an overdispersed quasibinomial
distribution by fitting multiplicative scale parameter O to the variance structure of the

overdispersed models using the random _residual_ statement in GLIMMIX. Parameter

estimates and standard errors for g; and s, are derived from these re-fit PQL models. The
best supported hierarchical model of s,,,, would not converge using PQL. Parameters for

ssum Were estimated using the Laplace approximation and are uncorrected for

overdispersion. The standard errors for this model may be underestimations and should

be interpreted with caution.

The overdispersed environmental models of g, s, and s, were fit and ranked

using QAICc scores calculated from the Laplace-approximated maximum likelihoods.
Although I then refit the best supported model for each vital rate with a quasibinomial
distribution that corrects for overdispersion, SAS can only fit this distribution using PQL,
which produces less accurate parameter estimates than the Laplace approximation. The
residual diagnostics of the quasibinomial environmental models were poor, and the fit of

the model predictions to the observed data was much worse than the overdispersed
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Laplace estimated models. All final environmental models therefore were fitted with the
Laplace approximation (= better parameter estimates) but were uncorrected for
overdispersion (= possible underestimation of parameter standard errors). Type-3 F-tests
for parameter estimates may have inflated risks of type-1 errors and should be interpreted
conservatively. The significance of random quadrat effects was tested for each model
with a likelihood ratio test. The residual deviance explained by the full GLMM was

compared to the residual deviance of a reduced GLM with no random terms. The

difference in deviance explained was compared to a mixture of x2 distributions with 1

degree of freedom using the covtest / glm option in GLIMMIX to test the null hypothesis

that the random effects did not improve the amount of deviance explained by the model.

2.B.ii. "Pretending variables"

Anderson (2008) describes a scenario that arises in model selection in which two
competing models spuriously appear to have nearly equal support from the data. In these
cases, the In(/) scores of both models will be nearly identical, and the second model will
differ from the better supported model only by having one or more additional
independent variables that parameters do not explain any additional variance in the
response. Because AIC scores are based on the In(/) scores plus a penalty for the number
of parameters estimated, the difference in AIC between these two models will be equal to
the penalty imposed for the extra parameters. The A/ of the competing model may
suggest at first that it is a reasonable alternative to the reduced model. However, if the
AIC differ only by the penalty for fitting extra parameters but the In(/) are equal, the extra

variables do not actually improve the model fit. Anderson (2008) refers to this as the
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"pretending variable" phenomenon, where a parameter with an effect size of zero is
"pretending" to improve model fit. Models with pretending variables are identified in the

text when they occur.

2.B.iii. Conditional Modeling of Seed Survival
Because the seed survival date contained a high proportion of ones, the data were

analyzed in two steps. First, the probability x of observing 100% seed viability in a
sample was modeled as a Bernoulli process: each quadrat-level estimate of s; with 100%

seed viability was coded as a one, and all other observation were coded as zeros. The
recoded binary data were then fit with a set of binary GLMs with different competing
fixed effects structures. Second, I modeled the subset of observations with values less
than one using a beta distribution. Thus the process for simulating » new observations is
to first generate a set of n random Bernoulli variables with probability n (determined in
the binary GLM) of success (i.e. having a 100% viability rate). If s random trials are
successes, then the remaining » - s trials have probabilities < 1 and are simulated from the
fitted beta distribution. Tests of this simulation process faithfully reproduce the observed
mixture distribution. This approach is similar to Cunningham and Lindenmayer's (2005)

solution for modeling zero-inflated distributions.
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2.B.iv. Fecundity estimation

Measuring per capita fecundity directly in the field was not feasible. Instead, I
nondestructively counted the number of siliques on each surviving mature plant in the
rosette quadrats. The number of siliques was then multiplied by the number of seeds per
silique to estimate total per capita seed production.

The number of seeds per silique increased with plant size. To estimate the shape
of this function, a set of 145 test plants was destructively harvested and the number of
siliques and seeds per plant were counted. Test plants were collected from seven field
sites in southern Michigan and Illinois in 2004 and 2005. Individual test plants ranged
from having 0-266 siliques and from 0-3864 seeds.

Three plants had zero siliques and hence had zero seeds. The 142 remaining
plants were analyzed to determine the relationship between total seeds per plant and total
siliques per plant. The number of seeds and siliques per plant were each logg
transformed to stabilize the variance. Exploratory graphical analysis suggested a linear
relationship with a break in the slope close to ten siliques per plant. I created a program in
PROC NLMIXED in SAS version 9.2 (SAS Institute 2008) to fit a breakpoint linear
regression which estimated the location of the break in slope as well as the two slopes

and the intercept.

The fitted model had a maximum likelihood estimated breakpoint of 8 siliques per

plant (Table 2.B.1) and had an adjusted R* 0f0.975 (Figure 2.B.1). The estimated number

of seeds per plant, after the back-transformation, in plants with 1-8 seeds is:
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logIO(S":'eds‘siliquesSS ) = fo + By X logIO(s iliques )
= 0.5860 +1.5022 x log, ¢ (siliques)

g = 100-5860+1 .5022xlog o (siliques)

seeds siliques<

where By and B; are the slope and intercept estimates. Seeds in plants with more than 8

siliques are estimated as:

log;o (Seeds siliques >8 ) = ((ﬂO + fy xlogyo (break )) + By X...

((logy ¢ (siliques ) log;q (break —1))
= ((0.5860 +1.5022 xlog;((8))+1.027 x...

((log ) (sitiques ) logy (8 1))
= (0.5860 +1.5022 x0.9031)+1.027 x....
(log;q (siliques )—0.8451)

=1.9426 +1.027 x (log; (siliques )— 0.8451)

_ 1n1.9426 +1.027 x(lo siliqgues }-0.8451
seedssiliques >g =10 (log 0 (siligues )~ )

where break is the estimated breakpoint, 3, is the slope, intercept is the maximum value

predicted by the equation for smaller plants. Using this as the intercept in the second

equation and subtracting log;o(break +1) from the silique count ensures that the two

functions transition smoothly into each other.

The Michigan plants used in this analysis were previously used to generate the
seed-silique function in Evans and Landis (2007). This re-analysis includes additional test
plants from Illinois and accounts for the nonlinearity between silique number and per

capita fecundity in small plants. Complete SAS code and data for the analysis is provided

below.
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data allo;

0 0 61 4 118
0 0 45 5 137
0 0 51 5 146
1 1 53 5 155
1 1 55 5 148
2 1 57 5 135
2 1 75 5 140
3 1 49 6 165
4 1 52 6 181
5 1 67 6 183
7 1 93 6 131
8 1 43 6 166
6 2 38 7 175
10 2 44 7 201
12 2 56 7 111
17 2 73 7 200
18 2 82 7 149
22 2 87 7 151
23 2 94 7 208
24 2 121 7 163
20 3 15 8 199
21 3 70 8 205
21 3 83 8 214
23 3 89 8 243
19 4 97 8 139
34 4 67 8 193
37 4 86 8 237
40 4 104 9 308
42 4 107 9 231
47 4 116 10 61

data allo; set allo;
logsil=1loglO(siliques);
logseed=10gl0 (seeds) ;
run;

title 'Fit Breakpoint Regression';
* drop plants with zero siliques;
proc nlmixed
data=allo(where=(siliques>0));

* range of breakpoints to try;
parms break 2 to 200;
if siliques <= break then
* regression for smaller
plants;
eta = b0l + bl*logsil;
else
* regression for larger
plants;
eta = (b0l + bl*loglO(break))+
b2*(logsil-1logl0 (break-1));

* fit model;

model logseed ~ normal (eta,V);
* generate fitted values;
predict eta out=pred;

input seeds siliques; cards;

10 181 18 656 49
10 201 18 786 50
10 138 19 869 50
10 222 19 816 52
10 270 20 817 54
11 281 20 850 54
11 264 21 661 55
11 296 21 891 56
11 309 21 874 64
11 257 22 811 65
12 357 25 1094 73
12 449 25 1031 75
12 328 25 839 76
12 368 26 1145 77
13 47 27 1339 79
13 346 27 1125 84
14 393 27 469 86
14 401 27 1527 91
14 341 30 1923 127
14 336 34 2091 151
15 373 35 2762 173
15 506 39 2724 209
16 598 41 3786 248
16 627 42 3718 249
17 565 43 3864 266
17 683 44 ;

17 772 45

17 663 46

17 685 46

18 623 48

run;

* backtransform predicted values;
* calculate residuals;

data pred; set pred;

backpred = 10**pred;

resid = pred-logseed;

run;

* plot results;
title 'Predicted and Observed
Values versus Siliques’';
axisl order=(0 to 4500 by 500);
symboll color=black height=2;
symbol2 color=red value=dot;
proc gplot data=pred;

plot seeds*siliques/
vaxis=axisl;

plot2 backpred*siliques /
vaxis=axisl;
run; quit;

title 'Residual Plot';
proc gplot data=pred;

plot resid*logseed;
run; quit;



2.B.v. Estimation of 2007 G2

Germination of A. petiolata seeds from the soil seed bank (g7) after two winters of
dormancy was measured for the first two experimental cohorts (2005-2006, and 2006-
2007). No measurements of g, were made for the 2007-2008 cohort, which would have

been sown in 2007 and germinated in 2009. g5 for this third cohort was estimated from

the relationship between g; and g; in previous years. A generalized linear mixed model
was fit to the first two years of data as:
82(v+1) = g1(y+1) T seedsy(y+2) + Esite ~N(0,02)
with binomially distributed errors, where y is the year that seeds were sown, g is

the proportion of seeds that germinated after one winter, seeds; is the estimated number

of ungerminated seeds remaining in the soil in year y+1, estimated as the number of

seeds added in year y — the number of seeds that germinated in year y+1, g is the

proportion of seeds, that germinated in year y+2, and &g;, is the random error due to site.

Because a number of data points were suspected of being inaccurate (e.g. were
vandalized, damaged by animals, etc...) pooled parameter estimates were calculated from
the remaining good observations from each site within each year. This was done by

adding the number of individuals from all good quadrats at within a given time interval

and then calculating summary values from these. For example, if three of four g quadrats

were deemed useable, pooled g; was calculated as the total number of seedling that

emerged from the three good quadrats divided by the total number of seeds added to the

thre€ good quadrats. Using pooled values precludes analyses of density dependence, as
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different individual quadrats had different densities of seeds and seedlings. The primary

analyses of g1 and g3 in this study were conducted on the raw, quadrat level data, not the

pooled values. Analyses of g3 excluded the pooled values estimated here for 2009.

The fit of the model to the data is illustrated in Figure 2.B.2, and the parameter
estimates and model fit statistics are given in Table 2.B.2. One observation (Homer Lake

2006) was an outlier and was omitted from model parameterization
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Table 2.B.1 Parameter estimates from breakpoint linear regression of log;o(seeds/plant)

versus log;o(siliques/plant). The breakpoint is the number of [untransformed] siliques

above which the slope of the regression changes. The slope for plants with 1-8 siliques is

given by S 1, while the slope for plants with more than 8 siliques is given by 5.

Parameter Estimate Standard Error DF t Value Pr> |t
breakpoint 8 3.259 142 25 0.0
Intercept 0.586 0.052 142 11.3 <.0001
Bi 1.5022 0.090 142 16.7 <.0001
B2 1.027 0.048 142 214 <0001
\"/ 0.03133 0.004 142 8.3 <.0001
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Table 2.B.2. Parameter estimates from generalized linear mixed model of germination

probability of dormant A. petiolata seeds with binomial errors and random site effects.

Type-3 F-tests of parameter significance and parameter standard errors are given.

Parameter Test Estimate SE
Intercept na 6.6141 0.5907
g1 (F1,9 = 141.37, P <0.0001) -3.5725 0.3005
seeds) (F1,0=276.07, P <0.0001) -1.3836 0.08327
Random Site (x2 =363.54,df=1,P<0.0001) 1.0847 0.2381
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Figure 2.B.1. Number of seeds versus number of siliques in 142 A. petiolata test (black
dots) and fitted values from breakpoint regression (black line). Inset detail graph shows
the change in slope above the breakpoint value of 8 siliques per plant (vertical dashed

line).
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Figure 2.B.2. Fitted versus observed values of pooled 4. petiolata germination rates from

dormant seed (g3) overlaid with 1:1 reference line. The first two years of data, which
were used to fit the model, are shown. This relationship was applied to the third year of

data to estimate the unknown values of g>. Model was fit with binomially distributed

errors and g1 and seeds; as fixed effects plus random site effects.
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APPENDIX 2.C: ENVIRONMENTAL MODEL PREDICTIONS
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Figure 2.C.1. Observed A. petiolata demographic rates versus up to five independent

variables from the best supported environmental models.
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Figure 2.C.2. Predicted A. petiolata demographic rates versus the same independent

variables in Figure D1 from the best supported environmental models. Predicted values

were generated using the BLUPs, and thus include the random quadrat effects.
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