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ABSTRACT

EXPERIMENTAL TESTING OF THE EXTENDED
HIGH-GAIN OBSERVER AS A DISTURBANCE

ESTIMATOR

By

Rachel E. Bou Serhal

In recent years, the Extended High-Gain Observer (EHGO) has proven valuable in

its use with fully actuated mechanical systems. In this thesis we investigate the per-

formance of the EHGO experimentally. First, we explore its use with underactuated

mechanical systems. Using EHGO to estimate and cancel the disturbance in one link

of an underactuated system results in adding that disturbance to other links. However,

we show that the EHGO can be used to reduce the effect of disturbances in a rotary

pendulum system. We also compare the performance of the EHGO as a disturbance es-

timator in a fully actuated mechanical system with the performance of the sliding-mode

observer. We use a DC motor to demonstrate the simplicity of applying the EHGO

compared to the complexity of the sliding-mode observer. We then highlight the advan-

tages and drawbacks of using each observer. Overall, our experimental results provide

a check, using the EHGO, for control engineers working with underactuated mechani-

cal system that may simplify controller design. These results also underline the ease in

implementation of the EHGO and its state of the art performance.
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CHAPTER 1

Introduction

Disturbance estimation techniques such as the sliding mode observer (SMO) [12], the

disturbance observer (DOB) [7], and the extended high gain observer (EHGO) [6] have

been used in fully actuated mechanical systems to reduce the effect of model errors and

unknown disturbances. A survey of disturbance observers in [10] gives a a good record

of their use in control design. In this thesis we focus on two observers, EHGO and

SMO. We use experimental results to achieve two goals :

• Investigate the potential use of EHGO with an underactuated mechanical system

• Compare the EHGO and the SMO

Although disturbance estimation techniques have shown some promising results in

fully actuated systems, their use in underactuated systems has not yet been thoroughly

explored. Often in these techniques of disturbance estimation and specifically the

method presented by Freidovich and Khalil in [6], the cancellation of disturbance oc-

curs in the control. However, in underactuated mechanical systems, the same control

may appear in more than one link. Thus, cancellation of disturbance in one link adds

disturbance to the other. The work done in [11] showed experimental results of distur-
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bance estimation and cancellation in an underactuated mechanical system. However,

their work differs from the work done in this thesis. They estimate and cancel the

disturbance in one of the links, but to deal with added disturbance in the other links,

they design a robust yet complicated control law that overcomes them. Their situation

presents a worst case scenario. We explore the situation where the added disturbance to

the other links actually reduces the already present disturbance. In Chapter 3 we show

a case where this occurs in a rotary pendulum system and use a simple controller to

achieve the desired response. An interesting control problem in underactuated mechan-

ical systems is gantry control (minimization of pendulum oscillations while the arm

tracks a certain reference). Quanser [8] developed a rotary pendulum platform (ROT-

PEN) for educational purposes. It is an underactuated mechanical system that offers a

good exposure to many control problems, including gantry control. Quanser uses lin-

ear state feedback to achieve the desired response. However, this technique does not

consider any unknown disturbances in the system that may affect the system’s perfor-

mance. For fully actuated mechanical systems, [6] presented a technique utilizing the

EHGO to estimate the disturbance. Their work offered a way to estimate and cancel the

disturbance in a system, while promising transient performance recovery and integral

action. We investigate gantry control and try to minimize the effect of disturbance by

utilizing a variation of the disturbance estimation method presented in [6].

The SMO and the EHGO have both proven to be valuable in disturbance compen-

sation problems [14] [6]. Each observer has a set of design parameters that affect its

performance. The choice of these parameters is dependent on and restricted by the ex-

periment performed. The presence of measurement noise affects the performance of the

EHGO [13]. The effect of measurement noise could be avoided by a better understand-
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ing of the sensors used in each experiment [1]. With the SMO we deal with chattering

problems from discontinuity [14]. The choice of the parameters involved in designing

the SMO require some knowledge of the unknown states and the bound on the distur-

bance. This is also true for the EHGO but we show in Chapter 4 that the performance

of the SMO is more sensitive to a better understanding of these bounds. We use the

DC Motor Control Trainer (DCMCT), a fully actuated mechanical system developed

by Quanser [9] to compare the performance of each observer in the same experimen-

tal environment.We implemented each experiment using National Instrument’s ELVIS

station and LabView 7.1 to interface with the ROTPEN and the DCMCT.

In this thesis we present a review of each observer and introduce the model for the

ROTPEN and the DCMCT in Chapter 2. We then apply the EHGO to the ROTPEN

and discuss its use with an underactuated mechanical system in Chapter 3. In Chapter

4 we apply both the SMO and EHGO to the DCMCT and discuss the results of each. In

Chapter 5 we summarize the contributions of our work and discuss the future work.
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CHAPTER 2

Background

This chapter provides the background that is required to understand the contributions of

this thesis. It is divided into two sections. The first section describes the observers de-

signed during our work and the theory behind their use. The second section introduces

the mechanical/electro-mechanical systems used during the experiments.

2.1 Observers

This section discusses the preliminaries needed for designing the observers used in

these experiments. It covers the introduction of the Extended High-Gain Observer and

the Sliding Mode Observer.

2.1.1 Extended High-Gain Observer

Feedback linearization techniques offered a way for designing feedback control for non-

linear systems using linear control theory [6]. Theoretically, these techniques provide

simpler ways of not only achieving stabilization and regulation, but also transient re-

sponse specifications. However, in practice, model uncertainty and disturbance limit the
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realization of what feedback linearization can offer. Consequently, the extended high-

gain observer (EHGO) was developed to combine the idea of disturbance cancellation

with feedback linearization. The design of the EHGO is simple as can be seen in the

following discussion.

Consider a single-input-single-output nonlinear system in the normal form [6]

ẋ = Ax+B[b(x, z, w) + a(x, z, w)u] (2.1)

ż = f0(x, z, w) (2.2)

y = Cx (2.3)

where A ∈ Rn×n, B ∈ Rn, C ∈ R1×n represent a chain of n integrators, x ∈ Rn

and z ∈ Rm are state variables, u ∈ R is the control input, y ∈ R is the measured

output, and w ∈ Rl is a bounded disturbance input.The functions a(.), b(.), and f0(.)

are possibly unknown nonlinear functions. Assuming that:

• w(t) belongs to a known compact set W ⊂ Rl.

• a(.), b(.), and f0(.) are continuously differentiable with locally Lipschitz deriva-

tives.

• There is a radially unbounded function such that

∂(V0)

∂z
(z)f0(x, z, w) ≤ 0, for ‖z‖ ≥ χ(x,w)

ensures the internal dynamics (2.3) to be bounded-input-bounded-state stable. With

assumptions of availability of (x, z, w), and knowledge of the functions a(.) and b(.)

feedback linearization

u =
−b(x, z, w) + v

a(x, z, w)
(2.4)
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could have been used to reduce the model to the target system

ẋ = Ax+Bv, y = Cx.

The control v = φ(x) could be chosen as a twice continuously differentiable state feed-

back control law such thart the closed loop system is locally exponentially stable and

globally asymptotically stable. The state feedback controller v can be chosen using any

linear control design method such as Linear Quadratic Regulator (LQR) or pole place-

ment. However, unavailability of (x, z, w) and uncertainty in the functions a(.) and b(.)

makes this control unrealizable. An EHGO could be used to recover the performance

of the target system.

The extended system is found by augmenting the chain of integrators in (2.1)-(2.9)

with an additional integrator. The EHGO is constructed by designing a high-gain ob-

server to the extended system as

˙̂x = Ax̂+B[b̂(x̂) + â(x̂)(u+ σ̂)] +H(ε)(y − Cx̂) (2.5)

˙̂σ =

(
αn+1

â(x̂)εn+1

)
(y − Cx̂) (2.6)

where σ̂ is an estimate of the disturbance, â(.) and b̂(.) are models of a(.) and b(.)

respectively and

H(ε) =
[α1
ε
, ...,

αn
εn

]T
.

The choice of α1, ..., αn, αn+1 must be made such that

sn+1 + α1s
n + ...+ αn+1

is Hurwitz. Now, the target system could be reached by choosing the control as

u = −σ̂ +

(
−b̂(x̂)− φ(x̂)

â(x̂)

)
= ψ(x̂, σ̂).
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However, it is important to saturate the control to protect the system from peaking [6].

The control, thus becomes

u = Msat

(
ψ(x̂, σ̂)

M

)
where

M > max

∣∣∣∣−b(x, z, w) + φ(x)

a(x, z, w)

∣∣∣∣
The performance recovery of the target system can be achieved by pushing ε small

enough, such that the error between the trajectories of the actual system and the target

system is minimized. In practice, the choice of ε is bounded from below by the level of

measurement noise in the system [13]. In summary, for mechanical systems, the EHGO

is used to estimate matched disturbances in the system. This estimate is then used in the

controller to cancel the disturbance. The controller will also include an output feedback

control that will recover the target system’s performance.

2.1.2 Sliding Mode Observer

Sliding-mode observers (SMO) are used because they could offer finite-time conver-

gence, and robustness with respect to uncertainties and the possibility of uncertainty

estimation. Unlike high-gain observers, such as the extended high-gain observer, when

using SMO’s we need not worry about peaking [3]. Consider a single-input-single-

output second-order system, of the form

ẋ1 = x2 (2.7)

ẋ2 = a21x1 + a22x2 + α(u+ d) (2.8)

y = x1 (2.9)
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where a21 and a22 are known coefficients of x1 and x2, d is a bounded disturbance

term, α is the control coefficient and u is the control input. The design of the SMO to

estimate the unavailable state, x2 and d is as follows [12]

˙̂x1 = x̂2 +M0sgn(y − x̂1)

˙̂x2 = a21x̂1 + a22x̂2 + α[u+M1sgn(z1)] (2.10)

τ1ż1 = −z1 +M0sgn(y − x̂1)

τf żf = −zf +M1αsgn(z1) (2.11)

where z1 and zf are estimates of x2 and d respectively. M0 and M1 are constant

gains defined by the bounds on x2 and the d. Their choice will be discussed in more

detail later in the section. The filters in (2.11) are first order low pass filters whose

time constants τ1 and τf are chosen according to system parameters. For now, to better

understand the idea behind this method, we investigate the error dynamics. Let

η1 = x1 − x̂1

η2 = x2 − x̂2

(2.12)

therefore

η̇1 = η2 −M0sgn(η1)

η̇2 = a21η1 + a22η2 + d−M1sgn(z1)

(2.13)

Given that d and x2 are bounded

|x2| < K1

|d| < K2

then we can guarantee that the estimation error will go to zero in finite time [3] when

we choose

M0(t) > K1

M1(t) > K2

(2.14)
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In sliding-mode the sliding surface is defined as η1 = η2 = 0. The low frequency

behavior yields η̇1 = η̇2 = 0 and

η2 = M0sgn(η1)

d = M1sgn(z1)

(2.15)

The idea is that the low frequency component of M0sgn(η1) must equal x2 and the the

low frequency component of M1sgn(z1) is an estimate of the disturbance d. Therefore

the low-pass filters (2.11) are designed to appropriately reject the high frequency com-

ponents and output the estimate of x2, z1, and the estimate of d, zf . The value of τ1

is chosen such that the the cut off frequency of the filter is outside of the bandwidth of

x2. On the other hand the choice of τf must be made close to zero [12]. As can be seen

the design of the SMO is not as intuitive as the EHGO. The SMO also involves design

parameters dependent on some knowledge of the characteristics of the unknown state

and disturbance. The SMO technique does, however, provide good estimation without

the risk of peaking. Experimental results and comparisons between the SMO and the

EHGO will be developed in Chapter 4.

2.2 Mechanical Systems

In this section a description of the mechanical systems used for experimentation will

be presented. Both systems described are developed by Quanser [8] for educational

use in undergraduate laboratories. They are mounted on National Instruments’ ELVIS

I station, shown in Fig.2.1. Labview 7.1 is used as an interface with both of these

platforms.
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Figure 2.1: National Instruments’ ELVIS I Station. For interpretation of the references
to color in this and all other figures, the reader is referred to the electronic version of
this thesis.

2.2.1 Rotary Pendulum

The Rotary Pendulum (ROTPEN) System, shown in Fig.2.2, is a platform developed

by Quanser [8]. It is used in undergraduate control labs because of the different control

problems it can demonstrate. This system can be used to demonstrate:

• Balance control: balancing the pendulum in the inverted position

• Swing-up contol: bringing the pendulum from the downward position to the in-

verted position

• Ganty control: minimizing oscillations in the pendulum while the arm tracks a

given reference.

For the purpose of our work the ROTPEN was used to demonstrate gantry control. The

free body diagram of the ROTPEN is shown in Fig.2.3
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Figure 2.2: ROTPEN trainer developed by Quanser.

Figure 2.3: Free body diagram of the ROTPEN.

Quanser [8] modeled this system by[
θ̈

α̈

]
=

1

det(D)

[
d22f1 − d12f2 + d22Km(Vm −Kbθ̇)/Rm
−d12f1 + d11f2 − d12Km(Vm −Kbθ̇)/Rm

]

11



Symbol Description Numerical Value Unit

Mp Mass of the pendulum assembly 0.027 Kg

Lp Total length of pendulum 0.191 m

lp Length of pendulum center of mass
from pivot

0.1524 m

r Length of arm pivot to pendulum
pivot

0.826 m

g Gravitational acceleration constant 9.81 m/s2

Jeq Equivalent moment of inertia about
motor shaft

1.23× 10−4 Kg.m2

Jc Pendulum moment of inertia about
its center of mass axis

7.0873× 10−5 Kg.m2

Jp Pendulum moment of inertia about
its center of pivot axis

6.9757× 10−4 Kg.m2

Rm Motor armature resistance 3.3 Ω

Km Motor torque constant 0.02797 N.m

Kb Motor back e.m.f. constant 0.02797 V/(rad/s)

Table 2.1: List of symbols and values for ROTPEN

where

d11 = Jeq +Mpr
2 cos2 θ

d12 = Mplpr cos θ cosα

d22 = Jp

det(D) = JeqJp +Mpr
2Jc cos2 θ sin2 α > 0

f1 = Mpr
2θ̇2 sin θ cos θ +Mplprα̇

2 sinα cos θ

f2 = Mplprθ̇
2 sin θ cosα−Mpglp sinα

θ is the arm angle and α is the pendulum angle. Setting all the derivatives to zero

θ̇ = θ̈ = α̇ = α̈ = 0

12



yields

M2
p l

2
prg cos θ cosα = 0

−(Jeq +Mpr
2 cos2 θ)Mpglp sinα = 0

The solution is therefore sinα = 0 and the equilibrium points are found at α = αr

and θ = θr, where αr and θr are any given reference. For a gantry control problem we

choose α = 0 and θ = θr. The linearized system is thus found as[
θ̈

α̈

]
=

1

∆

[
M2
p l

2
prgα + JpKm(Vm −Kbθ̇)/Rm

−(Jeq +Mpr
2)Mpglpα−MplprKm(Vm −Kbθ̇)/Rm

]

where

∆ = JeqJp +Mpr
2Jc.

Using the change of variables

x1 = θ − θr, x2 = θ̇, x3 = α, x4 = α̇, u = V m

the state model is given by

ẋ = Ax+Bu

where

A =


0 0 1 0

0 a22 a23 0

0 0 0 1

0 a42 a43 0

 , B =


0

b2

0

b4

 (2.16)
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a22 = Mpl
2
prg/∆

a23 = −JpKmKb/(∆Rm)

a42 = −(Jeq +Mpr
2)Mpglp/∆

a43 = MplprKmKb/(∆Rm)

b2 = JpKm/(∆Rm)

b4 = −MplprKm/(∆Rm)

As can be seen from (2.16) the ROTPEN is an underactuated system. There is one

control input but two degrees of freedom. Also, notice that the open-loop system is not

stable with a pole at the origin. To achieve the desired response a variety of control

techniques could be used such as pole placement or Linear Quadratic Regulator (LQR).

The exact controllers used in these experiments will be described in Chapter 3.

2.2.2 DC Motor

The DC Motor Control Trainer (DCMCT) shown in Fig.2.4, is another platform devel-

oped by Quanser [9]. It demonstrates motor control problems such as speed and position

control using the National Instruments’ ELVIS I station and LabView7.1. Neglecting

the armature inductance and given the relevant parameters shown in Table (2.2.2)-

(2.2.2), the DCMCT is modeled by [9]

Vm(t)−Rm(t)Im(t)− Eemf (t) = 0 (2.17)

where

Eemf (t) = kbwm(t) = kwm(t) (2.18)
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Figure 2.4: DCMCT trainer developed by Quanser.

and

J
dwm
dt

= Tm(t) = kIm(t). (2.19)

Substituting (2.18) and (2.19) into (2.17) we reach

Vm(t)−Rm(t)
J

k

dwm
dt
− kwm(t) = 0 (2.20)

Using the change of variables

x1 = θm − θr, x2 = θ̇m = wm(t), u = V m

we get

ẋ1 = x2

ẋ2 =
dwm
dt

= − k2

RmJ
x2 +

k

RmJ
u (2.21)

Thus the state model representation of the system is

A =

 0 1

0 − k2
RmJ

 , B =

 0
k

RmJ

 (2.22)
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Symbol Description Unit

θm Shaft angular position rad

Vm Armature voltage V

Im Armature current A

Eemf Back-electromotive-force(EMF) V

wm Shaft angular speed rad/s

Tm Torque produced Nm

Table 2.2: List of symbols for the DCMCT

Symbol Description Numerical Value Unit

kb Back EMF Constant .0326 V s/rad

k Torque constant (k = kb) .0326 Nm/A

J Equivalent moment of inertia
of the motor shaft and load

1.93× 10−5 kg/m2

Rm Armature resistance 3.3 Ω

Table 2.3: List of symbols and values for the DCMCT
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For the purposes of this thesis we demonstrate position control. To achieve the desired

response many different linear control techniques could be used, such as pole placement

or LQR. The goal is to minimize the tracking error between the position of the shaft and

the reference given to it. The DCMCT is a fully actuated mechanical system with one

control input and one degree of freedom. The exact controllers used for the DCMCT

are presented in Chapter 4.
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CHAPTER 3

Disturbance Cancellation in the Rotary

Pendulum Using Extended High-Gain

Observer

In this chapter we demonstrate the use of the Extended High-Gain Observer (EHGO)

with the Rotary Pendulum (ROTPEN). Specifically we present a case when disturbance

cancellation could be useful in an underactuated mechanical system. First the control

problem is presented with two different solutions: a controller that utilizes disturbance

cancellation and one that does not. Next, we present the experiments performed. This

chapter concludes with a comparison of the responses while highlighting the benefits of

disturbance cancellation.

3.1 Controller Design

In this section we present the control problem at hand and two different controllers to

achieve the desired response. Recall the linearized state model of the ROTPEN is given

18



by

A =


0 0 1 0

0 a22 a23 0

0 0 0 1

0 a42 a43 0

 , B =


0

b2

0

b4

 (3.1)

a22 = Mpl
2
prg/∆

a23 = −JpKmKb/(∆Rm)

a42 = −(Jeq +Mpr
2)Mpglp/∆

a43 = MplprKmKb/(∆Rm)

b2 = JpKm/(∆Rm)

b4 = −MplprKm/(∆Rm)

The task here is to achieve Gantry control; a controller where the arm angle, θ, can track

a given reference, while minimizing movements in the pendulum angle, α. Specifically

the desired specifications are as follows:

• θ(t) tracks a given reference θr(t) with tp < 1.2s and ts < 2.3s

• |α(t)| < 7.5◦ and ts < 6s

• u = Vm < 5V

There are many control laws that can achieve this goal. Quanser suggests a linear

state feedback controller. With only the positions of the arm and pendulum available,

their speeds are found by passing the measured signals through the first order transfer

function

50s

s+ 50
. (3.2)
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The pole of (3.2) is chosen far enough to the left such that it does not affect the system

response. The control

u = −K1(θ − θr)−K2θ̇ −K3α−K4α̇ (3.3)

where

K = [K1K2K3K4]

is found using LQR. Using only a linear controller is satisfactory, but is deficient in

compensation of any unknown disturbances in the links. We propose using a fifth order

EHGO to overcome this deficiency.

Here, we present an adjustment to the method mentioned in section 2.1.1 of Chapter

2. The need for an adjustment arises from the fact that the system is underactuated. For

fully actuated systems method [6] suggests estimating the disturbance and then using

the estimate in the control to cancel the existing disturbance. However, in underactuated

mechanical systems such as the ROTPEN, disturbance may exist in either or both the

links. We could use the EHGO to estimate the disturbance and cancel it from one of the

two links. This raises a problem. Although cancellation of disturbance occurs in one of

the links, it is being added to the other because the same control appears in both links.

Let us reconsider the ROTPEN,

ẋ1 = x2

ẋ2 = a22x2 + a23x3 + b2u+ d2

ẋ3 = x4

ẋ4 = a42x2 + a43x3 + b4u+ d4

where d2 and d4 are unknown disturbances in the arm and pendulum angle equations

respectively. If the disturbance d4 and the coefficients a42, a43 and b4 had been known
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exactly, the control

u = − 1

b4
(a42x2 + a43x3 + d4) + v (3.4)

could have been chosen to reduce the system to

ẋ1 = x2

ẋ2 =

(
a22 −

b2a42
b4

)
x2 +

(
a23 −

b2a43
b4

)
x3 + b2v +

(
d2 −

b2
b4
d4

)
ẋ3 = x4

ẋ4 = b4v

(3.5)

where v = φ(x) is a linear state feedback controller designed for the system (3.5). This

control could be beneficial if the new disturbance in the arm

d2 −
b2
b4
d4 < d2. (3.6)

However equation (3.4) is unrealizable because the system parameters and the distur-

bances are unknown exactly. Next we design a fifth order observer, to estimate the

disturbance d4. To do so we replicate (3.1) and augment it with the disturbance esti-

mator term. However, since a22, a33, a42 and a43 are not known exactly, they can be

lumped in as disturbances in the arm and pendulum equations as well. The observer

will then be

˙̂x1 = x2 +
α1
ε

(x1 − x̂1)

˙̂x2 = u+
α2
ε2

(x1 − x̂1)

(3.7)

˙̂x3 = x4 +
α1
ε

(x3 − x̂3)

˙̂x4 = b̂4u+ σ̂ +
α2
ε2

(x3 − x̂3)

˙̂σ =
α3
ε3

(x3 − x̂3)

(3.8)

Here (3.7) is a second order high-gain observer (HGO) used to estimate the arm angle

and its derivative. While (3.8) is a third order EHGO, designed using the method in [6],
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to estimate the pendulum angle, its derivative and the disturbance. The augmented state

σ̂ is an estimate of the disturbance d4 in the pendulum angle x3, and any error in the

nominal right hand side. The control can now be chosen as

u = − 1

b̂4
(−σ̂ − φ(x̂)). (3.9)

where φ(x̂) is a linear state feedback controller designed for (3.5). We have now shown

two different control schema’s that could be implemented to achieve gantry control. In

the next section we present the results of using (3.9) and (3.11) and compare them.

3.2 Results

Here, we discuss the results of using each controller. The Q and R weighing matrices

are chosen as

Q =


11 0 0 0

0 0.8 0 0

0 0 0 0

0 0 0 12

 , R = 1 (3.10)

The choice of (3.10) produces controller gains

K =


2.24

1.03

13.56

0.75


and guarantees that the desired specs are met. The control is thus

u = −2.24(θ − θr)− 1.03θ̇ − 13.56α− 0.75α̇ (3.11)
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This choice places the eigenvalues of the system at

−48.02

−3.58

−1.49± j4.52

(3.12)

The results of this controller will be presented after the other control technique is pre-

sented.

Before the disturbance cancelation technique is applied, condition (3.6) must be sat-

isfied. If this condition is not satisfied, the added disturbance would increase the arm’s

inherit disturbance and cancellation must not be used. To estimate the disturbance in

each link we use a third order observer designed using the method in [6],

˙̂x1 = x2 +
α1
ε

(x1 − x̂1)

˙̂x2 = b2u+
α2
ε2

(x1 − x̂1)

˙̂σa =
α3
ε3

(x1 − x̂1)

(3.13)

˙̂x3 = x4 +
α1
ε

(x3 − x̂3)

˙̂x4 = b4u+
α2
ε2

(x3 − x̂3)

˙̂σp =
α3
ε3

(x3 − x̂3)

(3.14)

We design α1 = 6, α2 = 11, and α3 = 6. This choice assigns the poles of each EHGO

at −3/ε, −2/ε, −1/ε. The parameter ε is taken as ε = .02. This is a good choice

of ε as it is small enough to closely estimate the the position and speed but also large

enough so that there is little to no effect from measurement noise [13]. The state space

representation of each observer is thus

Âθ =


−300 0 0

−27500 0 1

−750000 0 0

 B̂θ =


300 0

27500 38.58

750000 0

 (3.15)
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Figure 3.1: Estimate of the disturbance in the arm, d2

Âα =


−300 0 0

−27500 0 1

−750000 0 0

 B̂α =


300 0

27500 9.9

750000 0

 (3.16)

We use (3.15) and (3.16) to estimate the disturbance in the arm and the pendulum

respectively. The estimate of d2 and any error in the right-hand side is shown in Fig.3.1.

The estimate of the disturbance in the pendulum, d4 and any error in the right-hand

side is shown in Fig. 3.2. By inspection we can see that (3.6) will be satisfied since

d2 < 0 and d4 < 0. However, to show the reduction in the inherit disturbance, the new

disturbance in the arm is shown in Fig.3.3. Now that it is verified that condition (3.6)

is verified we proceed to implement the fifth-order observer proposed in (3.7) and (3.8).

We use the same values for the parameters as (3.15) and (3.16). This choice assigns the

poles of (3.8) at −3/ε, −2/ε, −1/ε and the poles of (3.7) at −3±
√

2
ε . The state model
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Figure 3.2: Estimate of the disturbance in the pendulum, d4

Figure 3.3: Estimate of the new disturbance found in the arm angle
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of the observer is thus

Â =



−300 1 0 0 0

−27500 0 0 0 0

−300 0 0 1 0

−27500 0 0 0 1

−750000 0 0 0 0


, B̂ =



300 0

27500 38.58

300 0

27500 9.9

750000 0


Ĉ =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 1 0

0 0 0 0 1


(3.17)

Now that we have estimates of the speed of the arm and the pendulum we can design

an output feedback controller for the system in (3.5). We design the poles of the target

system to be close to the dominant poles of the closed loop system designed by Quanser

in (3.12) Using pole placement and Matlab we design φ(x̂) from (3.9) to be

φ(x̂) = 3.3166x1 + 22.4640x̂2 + 1.1224x3 + .003x̂4. (3.18)

From (3.9) the final control to be implemented is thus

u = − 1

9.9
(−σ̂ − φ(x̂)) (3.19)

which places the eigenvalues of the closed loop system at

−34.0764

−6.5251

−1.3603± j3.9599

(3.20)

Recall, that it is important to saturate the control to protect the system from peaking.

However, in practice the output states of the observer can be saturated before entering

the control. This guarantees that the peaking phenomenon does not occur and allows

for a less conservative bound on the control. In this application in particular a bound on

the speed of the arm and pendulum was found from observing the output of (3.2). The

saturation on σ̂ was done through tuning. We now compare the results of using each

controller.
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Comaprison

The reference to the arm angle is a square signal of amplitude 60◦ and frequency of

0.1Hz. To reduce any sharp changes in the reference, it is smoothed using the first

order low pass filter

10

s+ 10
.

The responses using only state feedback without any disturbance reduction are shown in

Fig. 3.4 and Fig. 3.5. Fig. 3.4 shows the response of the arm angle θ given the reference

and Fig. 3.5 displays the response of the pendulum angle α. When using the EHGO

for disturbance estimation and cancellation to make sure the choice of ε is appropriate

we compare the estimate of the speeds to those found by Quanser. Fig. 3.6 compares

the measured position x1 to the estimated position x̂1. Fig. 3.7 displays a comparison

between the speed of the arm found using the first order filter in equation (3.2), and the

estimate of the speed found using the EHGO. The comparison between the estimated

speeds of the pendulum is shown in Fig.3.9. It can be seen from Fig. 3.6-3.9 that the

observer is working well.

Figure 3.4: θ with no disturbance estimation used
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Figure 3.5: α with no disturbance estimation used

Figure 3.6: Comparison between ’theta’, the measurement of the arm angle, and
’theta hat’, its estimate using (3.17)

Now that we know the observer’s estimates are comparable to those found by

Quanser, let us look at the response when disturbance cancellation is utilized. Looking

at Fig.3.5 and Fig.3.11 we see that the maximum motion of alpha was reduced by a half
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Figure 3.7: Comparison between ’theta dot’, the estimated speed of the arm using (3.2),
and ’theta dot hat’, the estimate found using (3.17)

Figure 3.8: Comparison between ’alpha’, the measurement of the arm angle, and ’al-
pha hat’, its estimate using (3.17)
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Figure 3.9: Comparison between ’alpha dot’, the estimated speed of the arm using
(3.2), and ’alpha dot hat’, the estimate found using (3.17)

when we canceled the disturbance in the pendulum and thus achieving better gantry

control. Fig. 3.10 shows the response of the arm angle when the disturbance is can-

celed. By comparing Fig. 3.4 to Fig. 3.10, we can see that x1 has a smoother response.

The rise time and settling time are also reduced.
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Figure 3.10: x1 with disturbance cancelation.

Figure 3.11: x3 with disturbance cancelation.

Conclusion

In this chapter we discussed the use of the EHGO for disturbance estimation and can-

celation in an underactuated mechanical system. We demonstrated the benefits of using

disturbance cancellation in a gantry control problem by applying it on the ROTPEN.
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Our results showed improvement in system performance and a substantial reduction in

the disturbance present in each link. Our experiment raises other questions of inter-

est. For instance, we ran the same experiment but chose to estimate the disturbance in

the arm angle instead of the pendulum angle measurement of the ROTPEN. The out-

comes showed the same type of results we demonstrated in above. The disturbance in

the pendulum angle was reduced as a by product of cancelation of the disturbance in

the arm angle. The responses also showed the same enhanced transient performance

recovery. This chapter offers a check for control engineers dealing with underactuated

mechanical systems in practice. If the condition that the new disturbance is less than

the inherit disturbance does not check, then a different control technique must be used.

However, if this condition checks, then disturbance cancellation could be done using

simpler techniques, such as the EHGO.
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CHAPTER 4

Comparison of Extended High-Gain

Observer and Sliding-Mode Observer

using the DCMCT

In this chapter the goal is to compare the performance of two disturbance estimators,

the Extended High-Gain Observer (EHGO) and the Sliding-Mode Observer (SMO).

The application of disturbance estimators on mechanical systems is important in under-

standing the limitations and dynamics of each observer design. Measurement noise and

system specifications limit the realization of some theoretical requirements. However,

observers can be tuned to achieve the best response possible for the specific conditions.

We apply the EHGO and the SMO to the DC Motor Control Trainer (DCMCT) and tune

their parameters to achieve the best response observed. The design of each observer will

be demonstrated, then the results will be presented for each experiment. This chapter

concludes with a comparison of the two observers.
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4.1 Observer Design

In this section we design EHGO and SMO for the DCMCT. Recall from Chapter 2 that

the state model form of the DCMCT is given by

ẋ1 = x2

ẋ2 = − k2

RmJ
x2 +

k

RmJ
(u+ d)

where d is the matched inherent disturbance due to uncertainty and unmodeled dy-

namics. The task here is to achieve position control. We would like x1 to follow a

specific reference with the fastest possible rise-time and lowest steady-state error. First

we present the Proportional Integral Derivative (PID) controller designed by Quanser

to achieve the desired response. Since x2 is not available Quanser estimates the speed

using the first-order transfer function

250s

s+ 250
. (4.1)

The pole of (4.1) is chosen far enough to the left such that it does not affect the system

response. For a given reference xr the PID control is

u = −ki
∫

(x1 − xr)− kp(x1 − xr)− kdx2 (4.2)

where the gains ki, kp, and kd are found by tuning. The inherent disturbance is not very

large in the DCMCT and its effect on the transient response may not be so detrimental

to the system’s performance. We introduce a matched external disturbance de = 5V to

perturb the system’s performance. The system equations thus become

ẋ1 = x2

ẋ2 = − k2

RmJ
x2 +

k

RmJ
(u+ d+ de) (4.3)
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As will be seen in Section 4.2, using only PID control is satisfactory but the response

could be enhanced when disturbance estimation and cancellation is utilized. Next, we

describe the design of the EHGO to use with the DCMCT.

Extended High-Gain Observer Design

To design an EHGO to estimate the speed, x2, and any inherent disturbance in the

system, we replicate the state equations adding the error terms and augmenting the

system with the disturbance term as follows:

˙̂x1 = x̂2 +
α1
ε

(x1 − x̂1)

˙̂x2 = − k2

RmJ
x̂2 +

k

RmJ
(u+ σ̂) +

α2
ε2

(x1 − x̂1) (4.4)

˙̂σ =
α3

ε3 k
RmJ

(x1 − x̂1)

thus, the feedback linearization control is

u = −σ̂ − 1

k
RmJ

(
k2

RmJ
x̂2 − υ) (4.5)

and the closed loop system is reduced to

˙̂x1 = x̂2 (4.6)

˙̂x2 = υ

where υ = Kx̂ is a linear output feedback controller designed for (4.6). Next, we

design the SMO for the DCMCT.

Sliding-Mode Observer Design

The design of the SMO is similar to the EHGO in that it is a replication of the plant

equations with the added error terms. The sliding-mode observer design and its filters
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are

˙̂x1 = x̂2 +M0sgn(y − x̂1)

˙̂x2 =
k2

RmJ
x̂2 +

k

RmJ
[u+M1sgn(z1)]

τ1ż1 = −z1 +M0sgn(y − x̂1) (4.7)

τf żf = −zf +
k

RmJ
M1sgn(z1) (4.8)

Similar to the technique in the EHGO the control is chosen as

u = −zf −
1

k
RmJ

(
k2

RmJ
z1 − υ) (4.9)

where υ = Kx̂ is a linear output feedback controller designed for (4.6). To ensure that

the estimation error will go to zero we choose

M0 > |x2|

M1 > |d|
(4.10)

The filter time constants, τ1 and τf must be chosen appropriately to capture the desired

estimates. The theory behind the choice of the constants M0 and M1 is not very well

defined. The best choice was made through tuning the parameters online during the

experiments. In section 4.2 we show that using constant gains for M0 and M1 does not

produce the desired results. We suggest using the estimates from the EHGO to drive

the terms M0 and M1. To do so , we implement a third-order EHGO, the same one

described in (4.4), to estimate the speed and the disturbance. The choice of M0 and M1

becomes

M0 = |x̂2|+ c1

M1 = |σ̂|+ c2

(4.11)

where x̂2 is the estimate of x2 and σ̂ is the estimate of the disturbance found using

the EHGO. The constants c1 and c2 are chosen to ensure (4.10) is satisfied. Equations
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(4.7) and (4.8) represent first-order low-pass filters, whose outputs are the estimates of

x2 and d respectively. As will be seen in Section 4.2, using first-order low-pass filters

is inadequate when we introduce an external disturbance. For a faster roll-off slope we

choose to implement second-order low-pass filters to estimate x2 and d. The second-

order low-pass filters have the equations

ż1 = ż2

τ2
1 ż2 = −z1 −

2√
2
τ1ż2 +M0sgn(y − x̂1)

żf = żf2

τ2
f żf2 = −zf −

2√
2
τf żf2 +

k

RmJ
M1sgn(z1)

(4.12)

The exact choice for these parameters will be discussed in the next section.

4.2 Implementation and Results

In this section we show the exact controllers for each experiment. We discuss the rea-

soning behind the chosen parameters in each case. Then we present the results of each

experiment. The state-space representation of DCMCT is

A =

[
0 0

−16.684 1

]
B =

[
0

511.8543

]
(4.13)

With no disturbance cancellation, the gains of the PID controller presented in (4.2) were

found through tuning to be

ki = 2, kd = .025, kp = 2

placing the eigenvalues of the closed-loop system at

−1.0295,−14.2275± j28.1421.
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The response of using only PID control is shown in Fig.4.1. For a better view of the

transient response a close-up is shown in Fig.4.2. The control is shown in Fig.4.2. The

response using only PID is satisfactory has a slow rise-time, no overshoot and steady-

state error. We now look at the reponse using only PID when an external matched

disturbance de = 5V is introduced.

The response of (4.3) using only PID control is shown in Fig.4.4 and a close-up of the

Figure 4.1: Response of x1 with only PID control.

transient response is shown in Fig. 4.5 respectively. The control is shown in Fig. 4.6.

It can be seen that the control effort is increased while the response suffers from a slow

rise time and a large steady-state error. Next, we will use the EHGO and the SMO to

estimate the inherent disturbance and cancel it, followed by estimation and cancellation

of the external disturbance, de.
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Figure 4.2: Close up of transient response of x1 with only PID control.

Figure 4.3: Control with only PID control.
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Figure 4.4: Response of x1 with de = 5V using only PID control.

Figure 4.5: Close-up of response of x1 with de = 5V using only PID control.

Extended High-Gain Observer

We now implement EHGO to the DCMCT to estimate the inherent disturbance and

cancel it in the control. We design α1 = 6, α2 = 11, and α3 = 6. This choice assigns

the poles of the EHGO at−3/ε,−2/ε,−1/ε. Here, the parameter ε is taken as ε = .01.
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Figure 4.6: Control with de = 5V using only PID control.

This is a good choice of ε as it is small enough to closely estimate the speed but also

large enough so that there is little to no effect from measurement noise [13]. The third

order EHGO is

Â =


−600 0 0

−11000 −16.684 511.8543

−11722.08 0 0

 B̂ =


600 0

110000 511.8543

11722.085 0

 (4.14)

The estimates of x1 and x2 are shown in Fig.4.7 and Fig.4.8 respectively. It can be seen

from these figures that the observer produces good estimates of the states.

Now that it can be seen that the estimates from the observer are good we design

the control described in (4.15) for the DCMCT. Substituting for the values of each

parameter we get

u = −σ̂ − 1

511.8543
(16.684x̂2 − υ) (4.15)

where

υ = 994.3995x1 + 28.544x̂2 (4.16)
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Figure 4.7: Comparison between x1 and its estimate, x̂1 using (4.14)

was designed using pole placement to assign the eigenvalues of the closed loop system

at

−14.2275± j28.1421.

The response of x1 when using an EHGO to estimate and cancel the disturbance is

shown in Fig. 4.9. For a clearer view, a close-up of the transient response is shown in

Fig.4.10. The control and the estimate of the disturbance, σ̂, are shown in Fig.4.11 and

Fig.4.12 respectively. We can see from Fig.4.1 and Fig.4.9 that disturbance cancellation

using the EHGO is beneficial to the response of the DCMCT. We see a faster rise time

and a smaller steady-state error than when only using PID control with no disturbance

rejection.

We are now interested in the performance of the EHGO with a larger disturbance. We

introduce the external matched disturbance, de = 5V , to the system and investigate the
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Figure 4.8: Comparison between x2 using 4.1 and x̂2 using (4.14)

Figure 4.9: The response of x1 using EHGO.
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Figure 4.10: A close-up of the transient response of x1 using EHGO.

Figure 4.11: Control using EHGO.
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Figure 4.12: Estimate of the inherent disturbance using EHGO.

results. Recall, with the introduction of de the system equations have now become

ẋ1 = x2

ẋ2 = − k2

RmJ
x2 +

k

RmJ
(u+ d+ de)

We will use the same EHGO described in (4.14) and the control in (4.15). The only

difference is in the estimated disturbance. The disturbance estimator σ̂ is an estimate of

d+de. The response using an EHGO with an external matched disturbance is shown in

Fig.4.13 and a close-up is shown in Fig.4.14. It can be seen that the transient response

is better with disturbance cancellation used. We see a lower steady-state error and a

faster rise time. The estimate of the disturbance is shown in Fig.4.15, it can be seen that

its value is close to the sum on the inherent disturbance,d, estimated in Fig.4.12 and the

external matched disturbance de = 5V . Next, we design the SMO for the DCMCT and

present the results of its use.

Sliding-Mode Observer

We now implement the SMO to the DCMCT and observe the response. Recall from
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Figure 4.13: Response of x1 with de = 5V using EHGO.

Section 4.1 the SMO observer equations are given as

˙̂x1 = x̂2 +M0sgn(y − x̂1)

ẋ2 =
k2

RmJ
x̂2 +

k

RmJ
[u+M1sgn(z1)]

τ1ż1 = −z1 +M0sgn(y − x̂1)

τf żf = −zf +
k

RmJ
M1sgn(z1)

A good choice for M0 and M1 was hard to find using tuning. To get a better idea of

how to choose these gains we use the estimates of the speed and the disturbance found

using the EHGO to find a lower bound on M0 and M1. Using Fig. 4.8 we choose

M0 = 60. From Fig. 4.12 we choose M1 = 5. The choice of the filter time constants

τ1 and τf was done through tuning. The best choice we could find for the first order

filters (4.7) and (4.8) were τ1 = .09 and τf = .008. The estimates of the observer with

τ1 = .09 and τf = .008 and gains M0 = 60 and M1 = 5 are shown in Fig. 4.16 and
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Figure 4.14: Close-up of transient response of x1 with de = 5V using EHGO.

Fig. 4.17. Though the SMO yields a good estimate of x1, it can be seen from Fig.4.17

that z1 is not a good estimate of the x2.The response when using constant gains is

shown in Fig.4.18. We see a large overshoot and steady-state error. A close of the

transient response and the steady state error when the reference goes low is shown in

Fig.4.19. The control is shown in Fig.4.20 and the estimated disturbance is shown in

Fig. 4.21.

Comparing Fig.4.21 and Fig.4.12 we see that the choice of a constant M1 affects the

estimate of the inherent disturbance d. The value of d is not constant and the choice

of a constant M1 cannot account for the variations in d. Choosing a constant gain is

not appropriate when the disturbance is time-varying. We investigate the use of time-

varying gains as discussed in Section 4.1.
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Figure 4.15: Estimate of overall disturbance with de = 5V using EHGO.

We now look at the performance of the SMO using time-varying gains for M0 and M1.

The estimate of x2 when using the time-varying gains in (4.11) is shown in Fig.4.22.

It can be seen that a better estimate is found using (4.11) for M0 and M1. The re-

sponse and a close-up of the transient are shown in Fig.4.23 and Fig.4.24 respectively.

We can see that the response using the SMO with time-varying gains had a faster rise

time and less steady-state error than when only using a PID controller as Quanser sug-

gests. The control is shown in Fig. 4.25 and the estimate of the inherent disturbance

is shown in Fig.4.26. From Fig. 4.25 and Fig.4.26 we can see that the estimate of the

disturbance and the control account for the varying values of d. We now investi-

gate the performance of the SMO when an external matched disturbance de = 5V is

introduced. Note that zf will be an estimate of the sum of the inherent disturbance

and de. As discussed in Section 4.1 the use of first-order low-pass filters is inadequate
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Figure 4.16: Comparison between x1 its estimate, x̂1 using SMO with constant gains

when de is introduced. The response using first-order filters is shown in Fig.4.27. The

effects of the slow response of a first-order low-pass filter could be seen in Fig.4.27.

The oscillations in the response are caused by the chattering nature of the SMO. To fix

this issue we use the second-order low-pass filters presented in (4.12) to estimate the

overall disturbance and reach a desirable response. Using the same filter time constants

τ1 = .09 and τf = .008 we implement the second-order filters. The response is shown

in Fig.4.28 and a close-up of the transient is shown in Fig.4.29. The estimate of the

overall disturbance is shown in Fig.4.30. It can be seen that the response has a faster

rise time with a little bit of overshoot, and we achieve better steady-state error than with

no disturbance cancellation, shown in Fig.4.4. As expected we’ve shown that using the

EHGO and the SMO for disturbance cancellation enhances the response of the system.

Our main interest, however, is how well each observer performers. In the next section
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Figure 4.17: Comparison between x2 using 4.1 and z1 using SMO with constant gains

Figure 4.18: Response using SMO with constant gains.
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Figure 4.19: Close-up of response using SMO with constant gains.

Figure 4.20: Control using SMO with constant gains.

we compare the performances of the SMO and the EHGO in each scenario tested.

4.3 Comparison

We start the discussion by comparing the response of the system in each scenario given

each observer. When estimating and canceling the inherent disturbance we achieve
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Figure 4.21: Estimate of inherit disturbance using SMO with constant gains.

a better response using the SMO. Comparing Fig.4.10 and Fig.4.24 we see a better

steady-state error when using SMO at a cost of a slight overshoot. One of the reasons

a larger steady-state error is observed when using the EHGO, is the fact that the pa-

rameter ε could not be pushed smaller without seeing the effects of measurement noise.

Theoretically we expect the steady-state error to go to zero as ε goes to zero, which is

not realizable in application. The rise time and settling time of each response is very

similar.

In the presence of a larger matched disturbance the response when using the EHGO

was more desirable. Comparing Fig.4.14 and Fig.4.29 we see about the same amount

of overshoot but a faster settling time when using the EHGO than the SMO. thought the

SMO has a smaller steady-state error the settling time is too long.

In the presence of only the inherent disturbance and in the presence of an external
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Figure 4.22: Comparison between x2 using 4.1 and z1 using SMO with time-varying
gains.

disturbance the estimate of the unknown state and the disturbance was better done using

the EHGO. Looking at Fig. 4.8 and Fig.4.22 we can see that the EHGO yields a very

good estimate of the unknown state x2 when we compare it to the estimate found by

Quanser. The low-pass filtering done to get the estimate of x2 does not account for any

fast changes in x2. If the cut-off frequency for the low-pass filter is increased we allow

for more chattering in the response. For the SMO, that is the best estimate we could get

in our experimental conditions.

Finally and most importantly, it must be noted that the responses achieved using the

SMO were only as good as they were because we used the estimates found using EHGO.

Without a good understanding of the disturbance, for example knowledge of upper and

lower bounds or whether or the the disturbance is time-varying, a good estimate cannot
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Figure 4.23: Response using SMO with time-varying gains.

be found using SMO. Even when the EHGO was utilized to drive the terms of the SMO

the response was still pretty comparable to that using only the EHGO. It is superfluous

to use the EHGO and the SMO together to produce results that are comparable to using

only the EHGO. However, we did achieve lower steady state error in Fig.4.24 from uti-

lizing both observers. If having a low steady-state error is necessary the two observers

could be implemented together to produce the desired results.
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Figure 4.24: Close-up of transient response using SMO with time-varying gains.

Figure 4.25: Control using SMO with time-varying gains.
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Figure 4.26: Estimate of inherit disturbance using SMO with time-varying gains.

Figure 4.27: Response with de = 5V using SMO with time-varying gains.
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Figure 4.28: Response of x1 with de = 5V using SMO with time-varying gains and
second-order low-pass filters.

Figure 4.29: Close-up of transient response of x1 with de = 5V using SMO with
time-varying gains and second-order low-pass filters.
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Figure 4.30: Estimate of overall disturbance with de = 5V using SMO with time-
varying gains and second-order low-pass filters.
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CHAPTER 5

Conclusion and Future Work

In our work we investigated the use of the Extended High-Gain Observer (EHGO)

with the Rotary Pendulum (ROTPEN), an underactuated mechanical system. The is-

sue with disturbance rejection in underactuated mechanical systems is that cancelling

disturbance from one link adds it to the other. We have shown a case where the added

disturbance to the other links actually reduces the inherent disturbance. We use EHGO

to estimate the disturbance in the pendulum of the ROTPEN and cancel it in the control.

The added disturbance from the pendulum actually reduced the inherent disturbance in

the arm. We were thus able to implement a simple controller to achieve better results

than when no disturbance rejection was utilized. We have presented a check for control

engineers working with underactuated mechanical systems. We can use the EHGO to

estimate the disturbance in each link and test the possibility of the added disturbance

being a reduction in the inherent disturbance. When this possibility checks, the use of

a simple controller could be implemented. This idea could be applied to other under-

actuated mechanical systems and simple control schemes could be applied rather than

complicated robust techniques.
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We have also applied the Sliding-Mode Observer (SMO) and the EHGO to the DC

Motor Control Trainer (DCMCT) and tested their performance in different scenarios.

We have shown that the SMO is sensitive and needs a lot of tuning for good results.

The EHGO, however, was simple with only two tuning parameters. Its implementation

is simple and the responses it yielded were very comparable to those when using SMO.

Both of these observers show improved results in system performance but the ease of

design and implementation of the EHGO makes it a more desirable choice.

Finally, our work could be used as a pedagogical tool in undergraduate teaching labo-

ratories. The idea of inherent disturbances, those from unmodeled dynamics and model

uncertainties is a very abstract idea. Moreover, the effect of these disturbances may be

undesirable to system performance and there presence must be addressed in a teaching

laboratory. We used Quanser’s [9] [8] educational platforms to estimate the disturbance

and cancel it. Part of our work could be developed into a laboratory project where

the students design disturbance observers, either SMO or EHGO, and implement them.

The students will then have to tune their designs to achieve the best response possi-

ble. This will provide the students with a tangible idea of disturbance as they will be

able to see its estimate. The ability to see the estimate will help the students better

understand the concept of inherent disturbance because it has been shown that a visual

concrete representation will help the students learn [2]. Since the students will have to

tune their parameters online to get the best response they will have to use their prob-

lem solving skills to better understand the tuning process. In a problem-based learning

environment such as this we expect students to have better retention of information [4].

Implementing this in an undergraduate teaching laboratory also provides opportunity to

fulfill multiple ABET accreditation outcomes [5] such as :
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• outcome a: ”an ability to apply knowledge of mathematics, science, and engi-

neering”

• outcome b: ”an ability to design and conduct experiments, as well as to analyze

and interpret data”

• outcome k: ”an ability to use the techniques, skills, and modern engineering tools

necessary for engineering practice”

Outcome a is satisfied through the design of the observer. Outcome b is realized in the

implementation of the experiment and the tuning process of the observers. The use of

LabView and the trainers developed by Quanser satisfies outcome k.

Our work calls for more exploration of the use of disturbance estimators with un-

deractuated mechanical system. It also invokes the comparison of other disturbance

estimators so that conclusions on different observers and their use in different circum-

stances could be drawn.
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