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ABSTRACT

THE EFFECTS OF COULOMB FRICTION ON THE

PERFORMANCE OF CENTRIFUGAL PENDULUM VIBRATION

ABSORBERS

By

Brendan James Vidmar

In this work, the effects of damping parameters, specifically Coulomb friction, on the

performance of centrifugal pendulum vibration absorbers (CPVAs) is investigated

analytically and experimentally. The full non—linear equations of motion for a rotor

subjected to an engine order applied torque and equipped with a circular path CPVA

are non—dimensionalized and scaled with the inclusion of viscous and Coulomb damp-

ing, and the perturbation technique of averaging is applied to the scaled equations.

The absorber dynamics and corresponding angular acceleration of the rotor are in-

vestigated theoretically and a “jump” bifurcation is observed under certain loading

and parameter conditions. To quantify values for the viscous and Coulomb damp-

ing parameters in the experimental rig, a simultaneous decrement method is recast

to account for noise and low resolution in the experimental rig and then applied to

experimental data. It is shown that using this decrement scheme, the damping pa-

rameters can be estimated to a high degree of accuracy. Finally, experimental results

and simulations of the full non-linear equations are presented and shown to be in

good agreement with results from the averaging theory. The hysteresis phenomenon

and jump bifurcation of absorber amplitude is observed experimentally. This system

instability, which causes the absorbers to jump to large amplitudes, is shown analyti—

cally and experimentally to significantly increase the vibrations of the rotor, and must

be avoided in practice. The results derived here will be of general use in assessing

absorber performance when dry friction is present in the absorber suspension.
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Chapter 1

Introduction

The jet engine that makes intercontinental flight possible, the internal combustion

engine which revolutionized ground transportation, the turbines that provide power

to a city. and the helicopter rotor which permits the operator to hover and fly as

he pleases are all subjected to rotating torques that are a function of the angle of

rotation. In many cases these torques can cause unwanted or even dangerous torsional

vibrations of the system at hand.

Centrifugal pendulum Vibration absorbers (CPVAs) have been shown to signifi-

cantly reduce torsional vibrations in rotating machinery that arise from engine order

excitation [l,3~5,9]. Such machinery includes internal combustion engines helicopter

rotors, turbines, and rotary aircraft engines as previously mentioned. CPVAs have

been used for several decades in light aircraft engines and helicopter rotors [6]. Figure

1.1 shows bifilar CPVAs attached to a helicopter rotor in order to decrease torsional

vibrations of the driveshaft.

Previous use of CPVAs in aerospace applications has been to reduce torsional

vibrations of a rotor operating at a nearly constant angular velocity. Recent research

has been conducted into the response and corresponding effectiveness of CPVAS for

use in automotive applications where the mean speed of the rotor varies greatly

I

 



  



 

 
Figure 1.1: Bifilar Absorbers on a Helicopter Rotor. (http://www.b—domke.de /Avi-

ationImages/Rotorhead/ 11358.html)

throughout the range of operation [13,14]. A crankshaft used in an automotive

engine fitted with CPVAs is shown in Figure 1.2.

 

Figure 1.2: Circular Path CPVA on Automotive Crankshaft.

CPVAs have recently come to the forefront in the automotive industry to re-

duce torsional vibrations in multi-displacement engines, which are designed to achieve

greater fuel economy. In this day and age of ever increasing demand for greater fuel

economy, CPVAS could turn out to be an important tool.
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1.1 General Operation of CPVAS

CPVAs are masses suspended from a rotor in such a way that they are free to move

along a desired path, similar to that of a pendulum. CPVAs have several inherent

properties which make them ideal for use in rotating machinery. First, they have a

natural frequency that corresponds to a given order of rotation, thus making them

effective over a continuous range of rotor speeds. In automotive applications, this

order is a function of the number of cylinders being used. In a four stroke internal

combustion engine, each cylinder has a cycle of two rotations, or a period of 47r

radians. Thus, an N cylinder engine will have a leading order harmonic at order %.

With this knowledge, we can model the forcing from a four stroke internal combustion

as Tsin(ni9). where the forcing order, n is equal to N/2.

When tuned to the correct order, the absorbers oscillate in a manner that coun-

teracts the corresponding order component of the fluctuating applied torque acting

on the rotor. This works similar to the tuned translational absorber, and has the

advantage that it remains tuned for all operating conditions. In addition, CPVAs are

completely passive devices which require no active control scheme to reduce torsional

vibrations. Lastly, these devices dissipate very little energy, and are thus very energy

efficient. The little energy the pendulums do dissipate, though, has a significant effect

the performance of the CPVA.

1 .2 Contributions

Den Hartog [5] first considered the non—linearities associated with circular path CP-

VAs and investigated the undesired effects the large pendulum amplitude instability

has on the absorber’s performance. Newland [10] expanded on Hartog’s idea of over—

tuning the pendulums in order to avoid this dangerous instability and developed

a set of guidelines to follow when choosing the tuning order. Madden’s patent on

3
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cycloidal paths [8] started research into alternative paths that help deal with the

non—linearities. Denman [4] explored more paths and tested absorbers with these

special paths in an automotive engine. Nester [9] theoretically and experimentally

investigated the steady-state circular path absorber response with an equivalent vis—

cous damping model. This work extends on Nester’s investigation by incorporating

a Coulomb friction term into the equations of motion. The equations of motion are

then averaged with the inclusion of the Coulomb friction term and the corresponding

performance of the absorber is theoretically investigated.

In order to accurately quantify the viscous and Coulomb damping parameter in

an experimental rig, a simultaneous viscous/Coulomb decrement method is recast to

account for noise and low resolution in the experimental device. Results are presented

that this method can accurately predict the damping in the system.

Finally, experimental results are presented that show the responses predicted by

theory are correct for a single absorber.

1.3 Outline of Thesis

Once the reader has been introduced to the general features and operation of CPVAS,

some detailed analysis will be conducted and results presented.

In Chapter Two, the non-linear equations of motion for a rotor equipped with a

single circular path absorber will be derived, non-dimensionalized and scaled so as

to be in a form in which the common perturbation technique of averaging can be

applied. After the equations have been averaged, some analysis is conducted into

the performance of a single absorber on a rotor. More specifically, the stability and

performance of the absorber is investigated for different absorber parameters, as well

as the corresponding effect it has on the angular acceleration of the rotor.

In the third chapter, the experimental rig used for testing is introduced. Next, the
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physical parameters associated with the rig are identified via different experimental

techniques. These parameters include the rotor inertia, absorber inertia, absorber

tuning order, and absorber damping. In regards to the absorber damping, a simul-

taneous viscous/Coulomb decrement method is improved upon to correctly identify

the damping parameters.

Chapter Four presents experimental results corresponding to the theory developed

in Chapter Two. The absorber amplitude and corresponding angular acceleration of

the rotor versus applied torque are experimentally measured and compared against

theory.

Finally, Chapter Five discusses the conclusions based on the work in the previous

chapters, as well as some recommendations for future research.

 



 

 



 

 

Chapter 2

Theoretical Investigation

2.1 CPVA Equations of Motion

The equations of motion for a rotor equipped with a single CPVA will be derived. A

Coulomb friction term will be introduced .and its effects on the performance of the

absorber will be presented. We start with a complete derivation of the equations of

motion, then non-dimensionalize these equations, scale them and perform averaging

on the scaled versions. Graphical results are presented and will be compared to

experimental results in Chapter 4.

A picture of a circular path CPVA investigated is shown in Figure 2.1 and the

corresponding schematic with labeled unit vectors and parameters is shown in Figure

2.2.

Table 2.1 defines the parameters given in Figure 2.2. To develop the equations

of motion we will formulate kinetic and potential energies as well as the generalized

forces and apply Lagrange’s method.

A position vector to the absorber’s center of mass (COM) can be written as

r: RéR + Lér.

6



  



 

 

Figure 2.1: A Circular Path Absorber Shown Mounted to a Rotor.

Table 2.1: Definition of Symbols in Figure 2.2.

 

Symbol Physical Meaning

 

S
n
o
w
m
e
c
o

Rotor angle

Absorber’s swing angle with respect to the rotor

Distance from the rotor center to the absorber’s center of rotation

Distance from the absorber’s center of rotation to its center of mass

Center of rotor

Location of the absorber’s center of mass

Point about which the absorber swings



_ r

M

i
s  



 

 
To+Tsin(n9)

Figure 2.2: Schematic of Rotor and CPVA for Deriving the Equations of Motion.

 



  



 

 

Taking a time derivative produces a velocity vector

is: Bria, + L(é + 49%

where, from Figure 2.2, it can be easily seen that

egg 2 cos(¢)é0 — sin(¢)éR

Plugging the above vector relationship into the velocity vector yields

is: (129+ L(6’ + 4) cos(¢))é6 — L(é + (13) sin(d>)éR (2.1)

In order to find the equations of motion via Lagrange, the kinetic energy of the entire

system (Tt) must be found. The kinetic energy consists of the rotor kinetic energy

(Tr) as well as that of the pendulum (Tp). Therefore,

Tt = Tr + Tp

where

]_ .

T7‘ = §Jr62

and

1 ;. ;. 1 ' '
Tp = Emr ~ r+ §Jp(¢+ 0)2

in which Jr is the mass moment of inertia of the rotor, Jp is the mass moment of

inertia of the pendulum about its center of mass and m is the mass of the pendulum.

2
Grouping all the terms, letting Jp = mp where p is the pendulum’s radius of gyration

 



 

 



 

 

about its center of mass, and performing the dot product gives

1 . 1 . . . . . . . .

T, = EMQ + 5m [R262 + 21mm + a) cos(¢) + L2(6 + (is)? + p2(0 + (1)2]

Next, the generalized forces, which include the damping and the forcing terms, can

be found to be

Q9 2 cadcosw) + Fssg11(q3) cos(gf>) — cod + To + Tsin(n0)

for the rotor, and

Q¢ = —Ca45 ” FSSEHWS)

for the absorber. Terms in the generalized forces are as follows: ca is the viscous

damping in the pendulum bearing, F5 is the Coulomb friction in the pendulum bear-

ing, co is the rotor damping, To is the mean torque applied to the rotor, and Tsin(n6)

is the fluctuating torque applied to the rotor.

New, Lagrange’s method can be applied to the kinetic energies and generalized

forces to obtain the system’s equations of motion. The rotor and absorbers equation

of motion were respectively found to be:

[Jr + mR2 + m(L2 -+- p2) + 2mRL cos(q§)] 6+ m(L2 + p2 + RL COS(¢))¢ ( )

2.2

— mRLd) sin(¢) [20 + 4)] — cadcosw) — Fssgn(qf)) cos(¢>) = To -+- Tsin(n0)

m(L2 +p2 +RL cos(¢))é+m(L2 +p2)é+mRLé2 sin(¢)+caq3+Fssgn(<15) = 0 (2.3)

The above equations of motion are non-linear with rotor to absorber coupling.

The important quantity in Eqns.(2.2) and (2.3 is the rotor angular acceleration, 5,
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which is desired to be zero. If the angular acceleration of the rotor is zero, one can

conclude the absorber has eliminated the rotor vibrations completely.

For the case in which the rotor is operating at a constant speed (6 = Q) and

assuming small absorber angles, Eqn. (2.3) reduces to

m(L2 + p2)<ii + mRLQ2¢ + cad + Fssgn(<f)) = 0 (2.4)

From Eqn. (2.4) it can easily be seen that the natural frequency of the absorber

alone is given by

RL

L2 + p2

 
U172. = 9

which indicates the absorber’s natural frequency is proportional to a given mean

angular velocity. A common way to express this natural frequency is through a given

order (vi) multiplied by a mean angular velocity

can 2 n9

where, in this case,

BL
71:—

L2+p2

2.2 Scaling and Non-Dimensionalizing of the Equa-

tions of Motion

The equations of motion developed in the previous section (Eqns. (2.2) and (2.3))

comprise an autonomous set of differential equations due to the fact that the cyclic

applied torque, Tsin(n0), is expressed as function of the rotor angle. To perform

further analysis on these equations, using a scheme following that of Alsuwaiyan [1]

and Nester [9], the independent variable is switched from time to the rotor angle. In

11
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order to accomplish this, a new non-dimensional variable is defined as

1}:

0
_ 2.5Q < >

which is the ratio of the rotors angular velocity to its mean velocity. This new variable

will be used to express the rotor’s speed and acceleration. Since our new independent

variable is now 6, some relationships must be developed to relate time derivatives to

those of 6. Using the chain rule, Alsuwaiyan [1] found these relationships to be

- _ d(*) _ d(*) fl

(:k) _ W _ 91/ d6 - S21/(*)’ 

 

(2.6)

-- (12(1) 2 dude) 2 2d2e) 2 I , 2 2 u
(1:): dt2 :9 VEW-l—Q 11 W29 1/1/(*) +9 V (*)

i.e.

6— fl — 21/93 —- Q2 I

‘ dt2 ‘ do “ W

Next, the absorber angle, d), is converted to a non-dimensional arc length

L4)
5 = — 2.7fl ( )

where 13 is a variable which will be used to make the equations readily comparable to

the equations derived by Alsuwaiyan [1] for general path CPVA’s. Substituting these

new parameters into Equations (2.2) and (2.3), expanding the sines and cosines to

 



 
 



 

 

third order in s and rearranging gives

 
2 L R

[l+%(L2+R2+/)2)+ m R— mfi.s‘1/l2]1/

   

 

J JL

mRB3 2 2 // mRfi3 / 2 fl? 3
+ ‘ VV/sl.+1/9 ——V3 3_—s

[ m2 i [ [ JL2 ( ) 6L2
. 2.8

3,13,52,29, Wag,W it. ( ’
JL '7 3L2” JL 2L2

+ pam(L2 + p2)i3I/s/ [: [52

   

 

2

8/1/11 + 1123” + —-LR — L33 112

L2 + [)2 6L2

2 2 2 2 (2'9)

__ _ __ _ _— = 0
,1‘3(L2+p2) 2(L) L 111/ +pasu+cp(s )

where

6:1;fi(LR + L2 + p2)

Ma mQ(L2 + p2)

(1009,) = FSL sgn V393]

711.6’fl2(L2 + p2) L (2.10)

_ 6—0
#0 — JQ

To

F0 = 755
Tsin(nl9)

I‘ 0 =—

( ) .192

The 6 term defined above is physically the ratio of the pendulum’s inertia to that of

the rotor and will be used as the “small” parameter in the pertubation analysis later.

The task of relating Eqns. (2.8) and (2.9) to past forms will now be undertaken.

Alsuwaiyan [1] and Chao [3] used the following non—dimensional equations of motion

13
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for a rotor with a single. general path absorber:

V5” + (5, + 9(3))1’, — ég<3>u +11as/ = 0 (2.11)

for the absorber and

R2 d» ”
LJo dish/2 + x(s)uu’ + §(s)s’uu’ + §(s)s”u2 + %(s)321/2 + w/

3 s

ng

J

(2.12)

 
#a_9(3)3lV — #01! + I10 + me)

for the rotor equation. 2(5) in the above equations is a normalized function that

describes the path followed by the absorber’s center of mass. Referring to Figure 2.2,

2(3) is specifically the distance from O to c squared. Alsuwaiyan [1] showed the form

of this function to be

1(3) = 1 — 712.92 + “/34 + 0(56) (2.13)

in which

7(3) = (115) (71.2 +1)2(712 — A2012 + 1))

Denman [4] showed that A can be used to describe curves that have very special

properties; i.e. A = 1 describes a cycloid, 0 < A < 1 describes certain epicycloids,

and A = 0 gives a circular path which will be used in this analysis.

The §(s) term is also a path function that arises during the derivation of the

general path CPVA equations of motion. Physically, §(s) is the dot product of the

unit vector in the 0 direction and the unit vector in the direction of the absorber

rotation, (1") in this case. It is defined by

2

9(5) = 35(3) — i (gm) = 1 — $7120 + 712»? + 0(34) (2.14)

If Eqn. (2.9) is divided through by 1/ and the V, term is compared to that in Eqn.

14
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(2.11) we get

(2.15)
L211: 1 as 2 L2+LR+p2

‘2 T + L

 

9(9) 2 ,‘3(L2 + p2) L

Since it is desired to get the circular path absorber equations of motion in the same

form as Eqns. (2.11) and (2.12), choosing

(2.16)

forces 97(5) to take on the same form as Eqn. (2.14). Matchng 1/ terms in Eqn. (2.9)

to those in Eqn. (2.11) and recalling the definition of ft gives

2
dm ~2 5 3
_ Z _ _ _ 2.17(is 271 (3 6L28 ) ( )

Integrating Eqn. (2.17) yields

(2.18)

~2

= _~22 IL ~2) 4
23(8) C 718 +12 (1+n s

where C is the integration constant. Letting C = 1 the circular path absorber’s path

(2.19)

function becomes

2 s2 + 7(134
2(3) 2 1 —fi.

where

(a2 + 1)2

S
l
e
w

“la:

The circular path equations of motion are now conveniently scaled to match the

same form used by past researchers and allows for comparison to their extensive work
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2.3 Averaged Equations for a Single Absorber

It has been shown by Alsuwaiyan [1] that by scaling terms in a certain way, one can

uncouple the leading order rotor dynamics from those of the absorber. This scaling

is

1/2
8:6 2’

Ha = Ella.

10(3’) = cit/216(4)

#0 = filo (220)

F0 = 6F0

rm) = 63/2r(0)

1/ = 1 + 63/2111

72 = n(l + 60')

where we have scaled the absorber amplitude, absorber viscous and Coulomb damp-

ing, rotor damping, mean torque, rotor oscillations and applied fluctuating torque.

The order it. has also been scaled, where a is the detuning parameter that allows for

forcing the absorbers slightly away from their tuning order. Newland [10] showed that

overtuning the pendulum allows for larger values of the cyclic torque amplitude to be

applied before the dangerous “jump” in the pendulum’s amplitude can occur. In this

case, overtuning is defined as forcing at a lower order than the pendulum is tuned

to (n < 71). As will be shown experimentally and numerically this jump in absorber

amplitude is accompanied by a 180° jump in phase. This causes the absorbers to

amplify the torsional vibrations and must be avoided in practice.

Substituting the above scaled parameters into Eqns. (2.8) and (2.9), expanding

and keeping terms to order 63/2 gives the following equation for the absorber dynam—

ics

2
z” + n z = 5(27023 — 2n20z — (foa(s,) — [raz/ — wl) (2.21)
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where

  

2

70 = "—(n2 + 1)2 (2.22)
12

~ / F3 I uflfls’
e . s = s~n 2.23

(”A ) m(l+n2)Q2(L2+p2) 5 ( L ( )

and

6(110 — to) + 63/2(w’ + z” — 11(0)) = o (2.24)

for the scaled rotor equation. It. is noted that F0 : [10 must hold to keep the rotor

spinning at a constant mean speed. Inserting this balance into Eqn. (2.24) and

solving for the rotor angular acceleration yields

w’ = 11(9) — z” (2.25)

which, with the known expression

:5” = €(f(z, z/,0)) — 7122

where

c(f(z, z], 0)) : 6(2'7023 — 2n20z — (Ea(sl) — 110,2, — wl)

conviently uncouples the absorber dynamics from those of the rotor. The final form

for the weakly non—linear, weakly damped absorber equation is given by

2 3
z” + n z = 5(2702 — 271202 — ¢a(sl) - flaz’ — I‘(6) — 7122) (2.26)

To solve for the non-dimensional rotor acceleration, Eqn. (2.21) can be used in Eqn.

(2.25) to give

111/, = 63/2 (7122 + F(6)> (2.27)
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which is a good measure of the torsional vibrations the rotor is undergoing. One can

solve for z from Eqn. (2.26), then can use that nonlinear result in Eqn. (2.27 to

obtain the nonlinear rotor response.

To obtain approximate solutions to the equations of motion, the method of aver—

aging is applied. To begin, we will express the absorber motion in polar coordinates

that take the form

2 = asin(n0 + a) (2.28)

z, = 71a cos(n0 + a) (2.29)

where a is the amplitude of the steady—state absorber response and a is the corre—

sponding phase. Both the amplitude and phase will, under our operating conditions,

be slowly varying functions of the rotor angle, 9. Applying the method of averaging

requires the constraint

a, sin(n0 + a) + aa, cos(n0 + a) = 0 (2.30)

to be made. Utilizing this coordinate transformation, the slowly varying amplitude

and phase is found to be,

a, = cos(n0 + a)£f(a sin(n6 + a), na cos(n9 + a), 6)

n (2.31)

I

a = — sin(n0 + a) f(asin(nl9 + a), na cos(n6 + a), 0)

6

71a

where, for this case,

ef(a sin(n0 + a), na cos(n6 + a), 6) = 270253 — 271202 — 95a — flaz’ — F(9) — 7222

The “small” function, ef , is periodic in 6 with a period of 27%. Averaging the above
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equations over a single period yields

~ 2 ~ ~

a’=e —”—aa—fl+wsina (2.32)
2 7r 2n

__/ _ 370 _3 _ 1 f‘(9) _

(ta — 6 < 4n (1 —l— na(a -l- 2) + —2-n cosa (2.33)

where

2 F3

99b
_ m(1+ n2)Q2(L2 + p2)

In order to solve for the the steady state amplitude and phase, we set (‘1 = ass =constant

and it = ass =constant to get

'1

f . ~ 2,;

fl 51110153) = '1?st + Tb (2-34)

f 70 1

% COS(ass) = $1123 — 71113307 + 2) (2.35)

Using (3052 J: + sin2 .r = 1, the steady state phase can be eliminated from Eqns.

(2.34) and (2.35) and the amplitude of fluctuating torque can be solved for in terms

of the steady—state absorber amplitude:

- ~ 2 2
~ )1 , 290 37 1

1“ = (“We + 7b) + (473033 r "“8“" + 2)) (2'36)

 

The above equation is similar to that of Nester [9], with the exception of the 95b

term, which represents the Coulomb friction. Equation 2.36 can be used to evaluate

the absorber’s steady-state amplitude as a function of the applied torque on the rotor.

Using Eqn. (2.36) the amplitude of the non-dimensional fluctuating torque, F, that it

takes the overcome the dry friction and produce an absorber oscillation can be easily
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solved for. Letting 0.33 = 0 one can find

F>

t
o

‘
6
1

c
~

 (2.37)

:
4

to obtain any absorber response.

With Eqns. (2.27) and (2.36) some initial investigations can be performed on the

effects of Coulomb friction in the performance of the absorber. Figure 2.3 shows the

non—dimensional absorber amplitude as a function of the non-dimensional fluctuating

torque for the case of an equivalent viscous damping model used by past researchers

as well as a Coulomb and viscous damping model. It should be noted that the values

used for the damping parameters are the ones which are estimated in the following

chapter, so the trend of the plots does correspond to that of the experimental rig (see

Table 3.2 for values).

From Figure 2.3 it is evident that as the amplitude of applied torque increases, the

absorbers go unstable (indicated by the dotted lines) and the “jump” phenomenon

occurs. This “jump” is accompanied by a 1800 shift in the phase between the absorber

and the rotor. This phase shift of the absorber results in an increase in the torsional

vibrations on the rotor. This is observed by plotting the rotor angular acceleration

amplitude against the applied fluctuating torque amplitude as shown in Figure 2.4.

Looking at Figures 2.3 and 2.4 it can easily be seen that the Coulomb term allows

for a greater torque to be applied to the rotor before the absorber goes unstable. It

is also noted that because of the friction, the absorber “sticks” for a range of small

torques and the rotor’s angular acceleration is as if the absorber is locked. As the

level of Coulomb friction is increased, one would expect it would take a greater level

of fluctuating torque to achieve some absorber oscillation. To confirm this, Figure 2.5

displays the steady—state amplitude of absorber oscillations versus the amplitude of

fluctuating torque for different levels of Coulomb friction. It is evident that as the level
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of Coulomb friction is increased, the absorber sticks for a larger level of fluctuating

torque and also becomes unstable at a larger torque level. The effectiveness of the

absorber as the Coulomb friction is increased can be investigated by plotting the

angular acceleration of the rotor against the amplitude of the fluctuating torque.

This is shown in Figure 2.6 and one can notice that as the absorber sticks for larger

values of torque, it is acting as though it is locked and does not reduce the vibrations

of the rotOr.

 

 

   

   

0.4 l I I I

.. ,, :-.—..-:'5r'""

035— ;;‘->":fw” _

/ /

‘1’ \ \
U '\ \

g l"‘->T,'\.\‘\

'5. - ' \1.\.:\\ _E 03 ~..,_.g:‘:.\\

.\ x

.: \:.:\

s ——F = "-._\.\\_, 0.25- "\.-\\ _

(.1 _
< ......... F —0.1 -,\.\\

5 F =02 ‘\- ‘e 02- —‘—" - '2! l ‘
8 5; I

n —-——F =0.3 : - x
<

..//
E = .‘7

g 015- ‘——FS 0'4
>7'// ‘._ .'- /

U) ..-//

s .37
.E. _.;‘/"'///

o 0.1— _,.-.‘;/ _

Z -‘ ‘:/.//

..-'."/”5/

005— .--“'/":/’ -

.‘;'///

/ /

_ ./ /

U I 1 1 1 1

0 0.005 0 01 0.015 0.02

Non-Dimensional Amplitude of Fluctuating Torque

Figure 2.5: Non—Dimensional Absorber Amplitude vs. Fluctuating Torque Amplitude

for Different Levels of Coulomb Friction and 4% detuning. (ass vs. I‘)

23



 

 

    

     



0.03

8 a
1
3
o M

0015

D D _
.
s

N
o
n
-
D
i
m
e
n
s
i
o
n
a
l

R
o
t
o
r
A
n
g
u
l
a
r
A
c
c
e
l
e
r
a
t
i
o
n
A
m
p
l
i
t
u
d
e

8 8

Figure 2.6:

 

 

 
 

— F =0
5

--- F =01
s

‘" F 20.2
s

——F =0.3 /

S Locked Absorber //
— /

— F =04 ' /
s '<\ //

\ /

\ \\ /// /"fi-/\

\ \ / ./
A //

.(K \ 7

/ ' / '\ \\

/ / ' /

/'/// .\‘

////. -

/ /‘

///'

/,/T"

A";
/

/.
f.

[f

l l l I

0.005 0 01 0.015 0.02

Non-Dimensional Amplitude of Fluctuating Torque

Non—Dimensional Rotor Acceleration Amplitude vs. Non-Dimensional

Fluctuating Torque Amplitude for Different Levels of Coulomb Friction and 4% de-

tuning. (1/1/ vs. I‘)

24

 



  



 

As will be shown, the common approach to avoiding these dangerous “jumps” is

to overtune the absorber to allow for a greater range of torque to be applied. With

overtuning comes a decrease in performance of the absorbers. Therefore, successfully

estimating the correct damping model in this case will allow for a lower detuning level

to avoid the instabilities.

We now to turn to the effect that detuning the absorbers has on their perfor-

mance. Shown in Figure 2.7 is the absorber’s arc length amplitude versus the am-

plitude of the fluctuating torque for several different detuning levels, a, all with the

Coulomb/viscous damping model. Recalling that the detuning parameter was in-

troduced in ft : 12(1 + 60'), a positive value of a coorsponds to “overtuning” the

absorber.

It is visible from Figure 2.7 as compared to Figure 2.3 that overtuning the absorber

does allow for a wider range of torques to be applied before the “jump” occurs.

As mentioned earlier, this luxury of being able to handle larger torque amplitudes

through overtuning has a tradeoff. Shown in Figure 2.8 is the angular acceleration

of the rotor as a function of the applied fluctuating torque with the absorbers locked

and for one free absorber with two different tuning levels, both with Coulomb friction.

Comparing this to Figure 2.4, a decrease in the rotor’s angular acceleration is achieved

for a larger value of torques when the absorber is overtuned.

Compared to Figure 2.8, Figure 2.9 is the same plot for equivalent viscous damp-

ing. As is visible, the absorber doesn’t stick at low amplitudes and the jump occurs

at a slightly lower level of torque.

Overtuning the absorbers though, does in fact decrease the amount of torque that

is absorbed as is visible from Figures 2.7 and 2.8. Choosing the correct detuning

to avoid the dangerous jumps while still obtaining a desired reduction in torsional

vibrations is a design problem that is application specific.
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Chapter 3

System Parameter Identification

The physical parameters associated with the experimental test rig that cannot be mea—

sured by simple means of a ruler or scale will be identified in this chapter. These pa—

rameters include the rotor and pendulum moments of inertia, the pendulum Coulomb

and viscous damping, the pendulums’s tuning order, and the rotor viscous damping.

We first outline the test rig, then present the theory behind the identification

techniques, and finally apply this theory to experiments in order to identify the pa-

rameters.

3. 1 Experimental Rig

A photo of the experimental rig is shown in Figure 3.1 followed by a schematic in

Figure 3.2.

The rotor is equipped with two absorbers that can be locked or free, as well as

two “weights” that increase the inertia of the rotor (decrease e). The angle of the

free absorber is measured via an optical encoder. The rotor speed is also measured

by an optical encoder that. allows for measurement of the shaft’s mean speed as well

as its oscillations about that mean speed. The torque being supplied to the rotor is
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Figure 3.1: Photo of Experimental Rig.
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Figure 3.2: Schematic of Experimental Rig.
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quantified by measuring the current that is produced by the spinning of the rotor.

A current to voltage conversion is set in the control box which allows the torque to

be displayed in volts in Labview. Using inertial properties of the motor given by the

manufacturer, the torque in Newton—meters can then be obtained from the voltage

measurement. All three of these signals (absorber angle, rotor speed, and torque) are

fed into a PC running Labview which allows for real-time viewing and post processing

of the data. The Labview program also allows for PID feedback control of the mean

rotor speed to maintain a nearly constant mean speed. The error analysis associated

with all of these measurements is located in Appendix A. 1

3.2 Rotor and Absorber Inertia

The J used in the averaging analysis is the rotational inertia of the rotor plus one

locked absorber about the center of the rotor, since our rig is equipped with two

absorbers, but only one is free. Assuming the absorber is locked, the equation of

motion for the rotor reduces to

J0 -l- cod = To + Tsin(n0) (3.1)

Letting 19 2 Qt —l— 7}, where Q is the mean rotor speed and r) is a small fluctuation

about the mean speed, Eqn. (3.1) becomes

J77 -i- 00(9 + 77) = To + Tsin(n(f2t + 77)) (3.2)

 

1Thanks to Ryan Monroe for doing most of the work on this
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Noting that the rotor damping must equal the mean torque for the rotor to spin at a

constant mean speed (000 = To), Eqn. (3.1) reduces to

J77 + car) = Tsin(n(Qt + 77)) (3.3)

Neglecting the cor) term. as it can be assumed to be very small, one obtains:

J77 = Tsin(n(Qt + 71)) (3.4)

Equation 3.3 shows that if we experimentally sweep through a range of forcing ampli-

tudes. T, measure the rotor acceleration, 0, at each T and plot the angular acceleration

as a function of the applied torque the result should be a line with a slope of 1 / J.

As mentioned in the previous section, T is measured from the motor current but one

can only measure 0 from the shaft encoder. To obtain 0, the signal from the shaft

encoder can be multiplied by the shaft’s frequency, 719, to calculate the rotor angular

acceleration. Shown in Figure 3.3 is a plot of the experimental rotor acceleration

against the magnitude of the applied fluctuating torque.

The data is obviously linear, therefore fitting a line to the data can reveal the

rotational inertia of the rotor and one locked absorber.

3.3 Absorber Tuning Order and Inertia

Using purely linear theory, Den Hartog [5] showed that a perfectly tuned absorber,

n = ft, with zero damping and modeled as a point. mass on a rotor behaves like

a system with an infinite amount of inertia as it completely eliminates torsional

vibrations. From this, as well as the information in Figure 2.8 which shows the

highest decrease in torsional vibrations at the tuning order, one can conclude that

for a constant amplitude of fluctuating torque, the angular acceleration of the rotor
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Figure 3.3: Angular Acceleration Amplitude of the Rotor vs. the Amplitude of

Fluctuating Torque Applied.
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is at its minimum precisely when the absorber is perfectly tuned. We must be careful

though. as the pendulum can swing at large amplitudes, rendering, by nonlinearity.

the frequency as a function of the pendulum amplitude. For example, the non—linear

effects of a large torque input and corresponding large absorber oscillations will shift

the effective tuning order to a value which is smaller than the actual ii. Recall the

formula for 13 consists of purely geometric parameters. but the non—linear effects can

cause one to observe a minimum rotor angular acceleration at a different value which

is predicted by these parameters. Therefore, the torque input must be kept low

enough to keep the pendulum amplitude below say, 15°. With this information, the

angular acceleration of the rotor can be experimentally plotted against the forcing

order. 11, while keeping the amplitude of the forcing torque constant. This plot is

shown in Figure 3.4.

As is visible from Figure 3.4, the angular acceleration of the rotor reaches a min—

imum, which corresponds to the tuning order of the absorber, f1 = 1.315. It is also

evident from this figure that as n is increased past the absorber order, the angular ac—

celeration begins to increase rapidly. This is due to a system resonance that is located

past the tuning order. The distance between the minimum rotor angular acceleration

at the pcndulum‘s tuning order and the system resonance is a function of the ratio

of the. absorber inertia to that of the rotor. As this inertia ratio tends toward 0, the

minimum of rotor angular acceleration and the system resonance fall exactly at the

same. order. Intuitively. this makes sense as a very small absorber and huge rotor

(e z 0), will essentially be a single degree—of—freedom system with the absorber not

having any effect on the rotor dynamics.

With the absorber tuning order known, the absorbers radius of gyration, p, can

be easily determined from

BL
77.: ,

L2-l—p2
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where R and L are easily measured from the system.

3.4 Determination of Absorber Damping

We model the damping in the absorber as viscous and Coulomb. Following a scheme

by Liang and Feeny [7], these damping parameters can be successfully determined

from free vibration information. Past researchers used an equivalent Viscous model,

and the problems with this will be shown.

First, the sinmltaneous viscous/Coulomb decrement method is outlined and then

improved upon to account for noise and low resolution in the experimental data.

The estimated parameters are then simulated and plotted against the experimental

free vibration decay. The equivalent viscous model is also introduced and plotted to

show the effects of the dry friction. It should also be noted that the method used to

identify the damping parameters assumes not only a linear stiffness but also a single

degree-of—freedom (DOF) free vibration. More specifically Eqn. (2.4) will be used

to model the absorber in this case. To deal with the linear stiffness assumption, an

experimental free vibration is conducted for a maximum absorber angle of 16°. In

this range the assumption of Sing!) 2 d) and cosqb % 1 is assumed to be valid. With

respect to the single DOF assumption, the system being investigated consists of a

pendulum coupled to a rotor and it technically consists of two DOF. The ratio of

the inertia of the pendulum to that of the rotor is very small in this case, and it is

this parameter which allows one to apply to single DOF method with a large value

of accuracy. With a small inertia ratio, the coupling between the absorber and rotor

is very weak.
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3.4.1 Simultaneous Viscous/Coulomb Decrement Method

Lets consider a single DOF translational oscillator with viscous and Coulomb damping

undergoing free vibration:

mil? -+- Ci: + k9: + stgn(.i‘) = O (3.5)

Referring to Eqn. (2.4), it is quite obvious that, for our case:

x = C?

m = m(L2 + p2)

k = mRLQZ (3.6)

c 2 ca

F5 = F3

Rearranging Eqn. (3.5) into standard oscillator form and setting conditions on i: to

eliminate the sgn we get

.. . 9 9 .
I + 29mm + wfim = ~wfixk .1: > 0 (3.7)

and

.. . 2‘ _ , 2 .
.r + 2Cwna: + wnr — +wn$k .r < 0 (3.8)

where .rk = Fk/k. Using this, we can solve (3.5) for every half cycle and find the

amplitude of response noting that in = 0 when direction is changed. Let’s begin with

$(t0) = X0 > 0 and $030) 2 0. With these initial conditions we know the motion

will begin with a negative in, i.e we can solve (3.8) for z(f) to get

at) 2 (X0 — wk)e—<w"(t_t0) cos(wd(t — 250)) + asmade — t0)) + I). (3.9)
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Where .3 = C/\/ 1 — C2 and wd = wny/ 1 — (2. This solution for :L'(t) will hold until

the motion reaches its negative peak (r = 0) which will be a half period (t = t1 =

to + w/wd) later in time. Using these conditions, the extreme displacement at this

point can be. found to be

_ .. _ _ —,.’3’7r —;37r
X1—.L(t1)— e X0+(e +1):ck. (3.10)

Assuming that the mass doesn’t stick, then the mass Will now reverse its motion and

continue with j: > 0. Therefore (3.7) can be solved, and using similar conditions

(3': = 0 and t = t2 = t1 + w/wd) as before the extremum when the mass reaches this

positive peak will be

X _, _ _ —‘37r _ —fi7r ,. .
2 — .1:(t2) —— 6 X1 (e +1)lk ($.11)

Continuing this process of solving for the extrema at each half cycle leads to a recursive

relationship for X (the successive maximums and minimums of the response),

X,- = —e—3”X,-_1 +(—1)'—1((a“37r +1):ck, 2': 1,2, .....,n (3.12)

Which is valid until the mass sticks. The stick criterion is abst- S Fs/k, where FS

is the static friction. To isolate the viscous effect we can sum successive expressions

for Xzfs. To show this let’s find Xi+1 as

X,+1 = —e*»"37TX,-+(—1)’i(e—5W +1):rk (3.13)

It can easily be seen that (—1)i_1 and (—1)i have opposite signs. so adding (3.12)
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with (3.13) and rearranging gives

Xi—1+Xz' ’

And we can solve for 5. Once #3 is found, .rk. can be solved for using (3.12).

3.4.2 Modifying the Method for Dealing with Noise and Low

Resolution in Experiments

The formulas for finding L3 (3.14) and then ask (3.12) use 3 consecutive measurements

of the peak amplitudes of response. Thus, if there is noise and/or a low resolution

displacement device is used, the method breaks down. To deal with this, we can

generalize (3.12) to allow a range of i + m half cycles to 2' half cycles (done by

expanding out Eqn. (3.12) and substituting in the expression for Xi_1), such that

m

Xi+1n : (_1)me—TTI.,L’37TXi + (_1)Z+'nl—1(e—)37T _+_ 1)IkJ:18—(7n—j))i37r (315)

This allows for a measurement over a range of m half cycles. I.e

Xm, + Xi+7n = _€—772.,137l'

(3.16)

Xi—l + X7:

 

But, we can even do better! If we let i —+ 2' + n then the measurement of consecutive

half-cycles can be avoided all together. Doing this we obtain

 

 

Xi+m " Xm+n+i = (_1)m€—m,37r 72. even (3.17)

Xi _ Xi-l—n

and

X'H-m + X771+n+i = (_1)7ne—77‘L,137T n Odd
(3.18)
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The numerator and denominator mark the difference in extrema over 11 half cycles.

The ratio expresses how these differences are changing over a decay of n half cycles.

Therefore. ,3 can be estimated from either (3.17) or (3.18). then .1: k: can be. found from

(3.15). If m = n. then we need only 3 measurements, which can be taken to cover the

entire span of decaying oscillation. Shown in Figure 3.5 is how using 71 and 772, more

cycles of decay are averaged as well as larger differences between the cycles. Both

these help improve the accuracy of the decrement scheme.
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Figure 3.5: Qualitative Visualization of the Effect the Indices m. and n have on the

Method.

To test the efficacy of the improved decrement method. simulations were con-

ducted on a linear. single DOF oscillator with viscous and Coulomb damping under-
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going free vibration. Gaussian white noise was embedded into the response signal at

a signal to noise power ratio of 20 decibels. This signal is shown in Figure 3.6. and

the effect of adding noise is clearly evident.
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Figure 3.6: Free Vibration of Simulated Oscillator Response with Embedded Noise.

The unmodified decrement scheme was first applied to the decay and the identified

damping coefficients were compared to the actual coefficients used in the simulation.

Next, the improved method was used to identify the damping parameters from the

noisy signal. Shown in Table 3.1 are the results, the parameter c is the viscous

damping coefficient and Fs is the Coulomb term (c = 0.2 and F; = 0.11 were the

values used in the simulations). Looking at Table 3.1, it is obvious that the unmodified

method breaks down severely in the presence of noise. The modified method identifies
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the parameter with less than 8% error. This suggests that the method is robust, even

in the presence of strong noise, and when applying this method to experimental data

one would expect even a lower error in the estimated parameters as the noise in the

experimental data is much smaller than what was simulated.

Table 3.1: Estimated Parameters Using the Original Decrement Method and Using

the Modified Method .

 
Parameter Estimated Value Error

(7 from unmodified method —15.3 775070

FS from unmodified method 7.72 691870

c from modified method 0.184 8%

E; from modified method 0.116 5.45%

 

 

3.4.3 Equivalent Viscous Model

The equivalent viscous model used by past researchers assumes purely viscous damp-

ing in the absorber. It can easily be shown by solving a linear oscillator equation

with “small” viscous damping that the ratio of two successive peaks is

X1
1 — E’ 2

n (X2) WC

where C is the damping ratio. To improve the accuracy of this, more than two peaks

of the oscillation can be spanned such that

In (A) a 2m;

X1+i

which implies that plotting ln (XXL) versus 73 should yield a line with a slope of

l+i

27.1 if the damping is indeed viscous.

A plot of In (ff—f) vs. 1‘ is shown in Figure 3.7 for a small amplitude (95 z 160)

’L

42



  



 

uHm“rm-unsuremamsnmsms:- r-nmmsmt

 

decay. The same plot is shown for a larger amplitude (gb z 370) decay in Figure 3.8.

It is obvious from both plots (especially the larger amplitude decay) that a completely

viscous damping model does not fit the data well. If the damping was indeed only

viscous, the data should be linear throughout the entire range of oscillations. In the

plots, as 72 increases (physically meaning the amplitude is getting smaller), the data

radically deviates from linearity and appears to grow exponentially. This is promising,

as Coulomb friction, if present, dominates at smaller amplitudes and not accounting

for this could be the cause for the deviation from linearity at low amplitudes.
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Figure 3.7: Small Amplitude Logarithmic Decrement.

Assuming that viscous damping dominates at larger amplitudes, the large am-
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Figure 3.8: Large Amplitude Logarithmic Decrement.
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plitude equivalent viscous parameter will be used for comparison to the viscous and

Coulomb models in a later chapter.

3.4.4 Results

To get average 13 and .1?k values from free vibration data for a circular path absorber,

we chose an m + n. that. covered the entire range of free oscillations with m and n

directly in the middle of the response. These [3 and :rk values were then simulated in

a free vibration response and compared to the experimental data. It should be noted

that the viscous and Coulomb parameters are estimated assuming a linear stiffness,

which is true of the absorber for small angles. Thus, an experimental free vibration

was conducted from a maximum amplitude of 16°. The simulations used to compare

the identified damping parameters against the experimental results are the fully non-

linear, coupled equations. Simulating the coupled, non-linear equations allows for

confirmation of the earlier assumptions (linear-stiffness, effective single DOF). This

is shown in Fig. 3.9.

It is visible from Figure 3.9 that the parameters extracted from the simultaneous

viscous/Coulomb method track the experimental data very closely. The low ampli—

tude equivalent viscous damping model predicts much more damping than seems to

be present. To quantify how good this data fits the model we can look at the residu-

als. To define our residual, let the amplitude of response that our estimated damping

coefficients predicted be defined as X,- and the experimental amplitude be Xi. The

residual is then defined by

X- _ X-

2 Z (3.19)

ml

7" =

which is a normalized quantity. To get around resolution issues once again, we com-

puted this residual for every 4 half periods. Shown in Figure 3.10 is graph of this

data for the Coulomb plus viscous model.
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plitudes.
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Figure 3.10: Residuals of the Damping Estimation.
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Ftom Figure 3.10. the residuals seem to exhibit a random behavior. oscillating

with small amplitudes about 0. In a statistical sense, this is ideal: if the residuals

exhibit some sort of pattern it could be concluded that the model is incorrect [2].

Next. the identification scheme was applied to a large amplitude ( 37°) decay. Re-

calling that the parameters were extracted assuming a linear stiffness, the pendulum’s

frequency decreases with increasing amplitude, and recalling C = m, one would

expect that the viscous damping would increase at larger amplitudes. Noting that the

viscous damping should dominate at larger amplitudes, the total damping of the sys—

tem should increase. It. is found that the viscous damping term is smaller for the large

amplitude free vibration and the Coulomb term is larger than the small amplitude

decay (see Table 3.2). Figure 3.11 shows simulations of the fully non-linear, coupled

equations using the damping parameters extracted from the large amplitude ring-

down plotted against the experimental results. Also shown is the equivalent viscous

response from the viscous parameter calculated in Figure 3.8.

The theory again seems to track the experiments quite well. As mentioned earlier.

the value of the viscous damping was expected to be greater for the large amplitude

decay and turned out to be smaller. Some reasons for this could be that the damping

is a function of the amplitude, the bearing in the absorber could have heated up,

thus causing a decrease in the viscous damping, or there could be another, possibly

non-linear damping parameter present in the absorber.

To further examine this, the damping parameters extracted from the small am—

plitude decay were simulated in a large amplitude free vibration (370) and compared

to the large amplitude experimental data. It should be expected, knowing the large

amplitude damping parameter. that the simulated response should be smaller in am—

plitude (due to the larger viscous term) for large amplitudes and then approach and

track the experimental results nicely for amplitudes of response similar to those in

Figure 3.9. Figure 3.12 displays the experimental results for a large amplitude ring—
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Experimental Free Vibration Peak Values for Large

Amplitudes using the Damping Parameters Extracted from the Large Amplitude
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down as well as simulations using the viscous and Coulomb parameters extracted

from the small amplitude decay. Also shown is the equivalent viscous response from

the viscous parameter calculated in Figure 3.8.
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Figure 3.12: Theoretical vs. Experimental Free Vibration Peak Values for Large

Amplitudes using the Damping Parameters Extracted from the Small Amplitude

Decay for the Theory.

Examining Figure 3.12, the previous predictions about the response hold. The

simulated response exhibits larger damping than the experimental results and then

begins to track at around 100. The simulations should begin to track around 160

though, and the reason for the late convergence is unknown.

Continuing to examine the discrepancies between the large and small amplitude
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responses, one can impose the smaller amplitude portion of the large amplitude sim-

ulated response onto Figure 3.9. More precisely, maximum amplitude values from

160 to 00 were taken off the large amplitude simulation and imposed onto the small

amplitude experimental data.
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Figure 3.13: Theoretical vs. Experimental Free Vibration Peak Values for Small Am-

plitudes with Small Amplitude Simulation Data Extracted from the Large Amplitude

Response.

The small amplitude data from the large amplitude simulation fits the small ampli-

tude experimental data as expected. From this, one can conclude that the damping

changed slightly between the two experimental tests. The reasons for this are un-

known, and because the error is so small, the parameters extracted from the small

amplitude decrement. will be used for further analysis. A table containing all the
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values estimated in this chapter is shown in Table 3.2.

Table 3.2: Values of Estimated Parameters.

 

 

Parameter Value

R 0.118 m

L 0.039 m

m 0.225 kg

f2. 1.315

J 0.2678 kg-n12

6 0.0167

p 0.03377 m

17k from small amplitude 0.1077

C from small amplitude 0.0025

:1?k from large amplitude 0.1425

C from large amplitude 0.0014

Ceq small amplitude 0.0096

Ceq large amplitude 0.0051
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Chapter 4

Steady-State Response: Theory

and Experiments

The theory which was used to predict the absorber’s steady state amplitude as well

as the rotor angular acceleration will be compared to experimental results in this

chapter. Simulations of the fully-nonlinear equations of motion are also imposed

upon the experimental results. Experimental data presented contains error bars that

arise from the error analysis described in Appendix A.

Using the same experimental setup detailed in Chapter 3, steady-state absorber

amplitudes were recorded as the amplitude of fluctuating torque was varied. This

test was run for several different detuning levels. Shown in Figure 4.1 is such a plot,

conducted with 2% detuning (n = 1.29).

The full non—linear simulations and averaged equation qualitatively track the ex-

perimental results. At small absorber amplitudes, the experimental results show a

lower absorber amplitude than theory predicts, then begin to follow the predicted

response. The experimental results and the simulations jump at the same level of

forcing, while the averaging theory predicts a. slightly larger forcing to cause the in-

stability. The hysteresis phenomenon is clearly exhibited in the experimental data:
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of Fluctuating Torque for 2% Detuning. (ass vs. F)
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sweeping up the torque causes the absorber amplitude to jump to the upper solu-

tion branch, and then while sweeping back down the absorber amplitude stays on

the upper branch for smaller values of applied torque than initially caused the jump.

Remembering that the absorber amplitude was scaled by e, we can expect some error

between the averaged equation response and the experimental and simulation results

on the large amplitude solution. For this small level of detuning, the absorber jumps

at a relatively low level of applied torque and causes an unwanted effect on the vi-

brations of the rotor. Figure 4.2 shows the angular acceleration of the rotor for the

same conditions.

 

   

0.045 I I I I I I

C

.9

‘5
CD 0.04 " -‘

6

8

f 0035 _ - - - Locked Absorbers it ,

(U . _
x

S * Simulations //

E“ .
/ /

,3 0.03 — -}E Experimental // -

8 / /
O /

0: 0.025 ” / / '1

“5 /

<1) 1" x f
"O ./

1‘3 0.02 '- / / _‘

— ' /
O. /

E 411- / /

_ 0.015 r / -

m 1* / ”

E 4* / f

g 0.01L * //’ s

E ./ /

5 / <— Viscous and Coulomb Theo
S 0005 - ry _

z / 1 Equivalent Viscous Theory

0 l l l l L I

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

Non-Dimensional Amplitude of Fluctuating Torque

Figure 4.2: Non—Dimensional Rotor Angular Acceleration vs. Non-Dimensional Am-

plitude of Fluctuating Torque for 2% Detuning. (W, vs. I‘)

55



 

 



?" ~'i:Wm1firemen-1wsmwzmumsu -

 

The experimental data in Figure 4.2 also tracks the theory nicely. One important

feature to notice is the effect of the Coulomb friction causes the absorbers to stick

at low forcing levels, and the angular acceleration of the rotor during this period is

equal to that if the absorbers were locked. The Coulomb and viscous damping model

predicts this and the first experimental data point fits almost exactly to the theory.

Once the absorbers lose stability and bifurcate to large amplitudes, they do indeed

start increasing the torsional vibrations of the rotor as can be seen in Figure 4.2. In

practice, this “jump” must be avoided and one can accomplish this by overtuning

the absorbers. Shown in Figure 4.3 for 4% detuning is the absorber amplitude as a

function of the applied torque.
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The experimental data confirm the theoretical prediction that the more overtuned

the pendulum is, the more torque it takes to go unstable. As visible from Figure 4.3,

the experimental results show the absorber sticking longer than theory predicts. One

explanation for this could be that the static friction is larger than the kinetic friction

in the experimental rig. Once the absorber becomes free, the experimental results

follow the theory within the error bars until near the jump point. Nearing the jump

bifurcation, the experimental and simulation data deviate slightly from the theory and

becomes unstable at a torque level a little bit smaller than predicted. The bifurcation

point can be difficult to capture exactly in experimentation, as the basin of attraction

is so small the initial conditions could miss this basin. At low amplitudes the fully

non-linear simulations quantitatively follow the averaged equations, thus confirming

the accuracy of the averaged solution. Once the instability occurs, the simulations

follow the experiments more closely than the averaging which is an effect of scaling

the absorber amplitude. It has been extensively mentioned that the jump in absorber

amplitude has an unwanted effect on its performance, and as one can see in Figure

4.4, the larger detuning level allows the absorber to counteract the applied torque for

a greater range of forcing.

The final experimental results presented in Figure 4.5 are for a 6% level of detun-

ing, in which one would expect it to take an even larger level of forcing to cause the

absorbers to jump.

Once again, the insights gained from the theoretical analysis seem to hold when

compared to the experimental results. At this large level of detuning, remembering

that the averaged solution assumes forcing near the absorber tuning, one would expect

the theory to deviate largely from the experimental results. This does not appear to

be the case in this situation, and the theory and simulations follow the experimental

results quite well on the lower branch.

Investigating Figure 4.6, the angular acceleration of the rotor is obviously reduced
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Non-Dimensional Amplitude of Fluctuating Torque

ing Torque for 6% Detuning. (ass vs. F)
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Via the oscillation of the absorber. The amount reduced for the large detuning level

is less than that in the previous plots for smaller detuning levels, but has the benefit

of remaining stable for much larger ranges of fluctuating torque.
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Chapter 5

Conclusions and Recommendations

for Future Work

In Chapter 2, the equations of motion for a single CPVA attached to a rotor were

scaled and averaged with the inclusion of a Coulomb friction term, which led to some

initial theoretical investigation into the effects of parameters on the dynamics of the

system. The pendulums were found to bifurcate to large amplitudes at a certain

level of forcing with the undesired effect on the performance of the absorbers that

the instability causes. The effect of the Coulomb friction was shown to cause the

absorbers to stick for very small levels of forcing as well as predicting it. to take a

larger value of fluctuating torque to cause the absorbers to jump.

The experimental spin rig was introduced and different sets of test were con-

ducted to identify certain parameters associated with the rig. The simultaneous

viscous/Coulomb decrement scheme was shown to accurately identify the respective

parameters on the test rig in the presence of noise. It was noted that the damping

in the rig seemed to change slightly from test to test and the reason for this is not

fully understood. With this being said, the amount the parameters seemed to change

was very small, and the damping parameters estimated were believed to accurately
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capture the actual damping in the system.

The experimental results presented in Chapter 3 confirmed qualitatively and at

times quantitatively the theory previously deveIOped. The sudden jump in absorber

amplitude was captured experimentally and the effect that detuning has on the ab—

sorbers was also observed. The validity of the averaged equations was confirmed via

simulations of the fully non-linear equations of motion. The Coulomb friction term

seemed to have a greater effect on the small amplitude performance of the absorber

as well as lower detuning levels. The effect at lower amplitudes was expected as

the Coulomb friction term dominates over the viscous term at small amplitudes of

oscillation.

At large values of detuning (6%), the theory surprisingly predicted the experimen-

tal results quite accurately. Recalling that the detuning parameter, a, was scaled to

order 6, one would expect the averaging to lose some validity at such a large level of

detuning.

Overall, correctly identifying the damping parameters leads to a more accurate

prediction of the performance of the at low forcing and corresponding low absorber lev-

els. Once the absorber jumps, the equivalent viscous model and the Coulomb/viscous

model converge onto each other and their difference is negligible.

5.1 Recommendations for Future Work

With this work, coupled with that of Nester [9], the steady-state response of a sin-

gle, circular path absorber has been extensively studied and no recommendations for

further work on this are necessary. With regards to circular path absorbers, and

especially ones for use in automotive applications, the transient response of the ab-

sorbers should be investigated more thoroughly. As the engine starts and stops, as

well as transitions between full and half cylinder mode in multi-displacement engines,
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the absorbers are in a transient phase and amplitude overshoots are common. These

overshoots can potentially be dangerous and affect the performance of the absorber.

Nester also investigated multiple absorbers attached to a rotor and experimentally

observed non—synchronous behavior that cannot yet be explained. Some research into

explaining these experimental results would be well worth the work.

With research conducted into alternative absorber paths (epicycloid,cycloid) [4,

12]which have been found to alleviate the the jump instability, circular path absorbers

should be considered only for ease of manufacturing. Therefore, quantifying the

damping parameters, investigating transient and non—synchronous responses should

all be conducted experimentally for non-circular path absorbers. Suspending the

absorbers from the rotor in a bifilar fashion (see Figure 5.1) has been a common

approach for allowing the absorbers to follow specific paths.

 

Figure 5.1: Photo of a Bifilar Absorber

In the bifilar design, two identical curves are cut out on a carrier attached to the

rotor as well as two identical, but inverted curves on the pendulum. Two cylindrical
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rollers roll along these curves, allowing the pendulum to translate but not rotate.

Since the rollers rotate and translate, their dynamics can be a factor and these dy-

namics were first investigated by Denman [4], who included the rollers in the equations

of motion. Monroe et. a1 [11] recently investigated the effect the rollers have on the

non-linear tuning of bifilar absorbers and obtained a tautochronic path for non—zero

roller inertias. Bifilar absorbers were experimentally tested on a rotor spinning in

the horizontal frame. An out of plane instability was observed, and created problems

when attempting to quantify the damping parameters. These absorbers should be

tested in the vertical plane, which is assumed to alleviated the out of plane instability.
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Chapter 6

Appendix A

In this appendix we will attempt to quantify the experimental measurement error in

the CPVA testing device. The main measurements of interest include:

H . Absorber COM position 3

I
O

. The speed of the rotor 9

0
.
5

. The applied torque which includes the mean T0 and fluctuating T0 (at order of

interest ),

where the position of the absorber(s) and the rotor speed are each measured with

an encoder. The applied torque on the rotor is measured from a feedback current

that the motor outputs. Each of these measurements will be discussed in more detail

in the following sections. This document follows the NIST experimental uncertainty

guidelines which are published online and in a document.

Uncertainty in Absorber position: A US. Digital optical encoder is used to

measure absorber position. These encoders contain 4 channels which are A. —A. B.

and -B. The two negative channels are literally the negative of A and B. respectively.

To eliminate the noise in the encoder signal the positive channel is subtracted from the

negative channel and then divided by 2. The encoder has 360 pulses per revolution.
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meaning that with 4 channels we get 2} degree resolution from this encoder. Therefore,

assuming the pulses are equally spaced on the encoder and we don’t miss any counts,

the uncertainty in the absorber position is

1

21.3 = ii. (6.1)

Speed of rotor: The encoder on the rotor has 1000 pulses per revolution which

are fed into a frequency to voltage (F2V) converter. The F2V converter measures the

instantaneous frequency between two pulses in pulses/sec. This frequency is divided

by 1000 to obtain the frequency of the rotor in Hz. This device is rated to be able

to measure up to 25 kHz between pulses which means approximately 25 Hz for 1000

pulses. An important. check here was to make sure the F2V converter could detect the

frequency of the rotor during a torsional disturbance. This means the rotor is now

rotating at a mean speed with a oscillating part superimposed. In terms of pulses

going into the F2V this means that these pulses are no longer evenly spaced along

the time axis. Now their time spacing is modulated (i.e. they get closer and further

apart, etc.) due to the fluctuation about the mean rotor speed. The bandwidth of

the F2V converter turned out to be sufficiently large to resolve the frequency of the

rotor pulses. Using the specification sheet from the device manufacturer, the accuracy

calibration of the device is given as a maximum i0.1% of the frequency span to be

measured. Since the frequency at the tuning order for the absorbers used in our lab

is about 10 Hz for mean speeds at 400 rpm, an estimate for the uncertainty in the

F2V conversion using a 10 Hz span which corresponds to an output voltage of 3V (of

the 5 V range) is

216-,sz = i(3"u)(.001) = :l:3mV. (6.2)

After the signal leaves the F2\/ converter it is digitized by the national instruments

DAQ board (PCI—6281). According to the spec sheet, the device has an absolute
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accuracy of 1.05 mV with the built-in low pass filter turned off. The quantization

step size for the 18 bits at :l:(102,i) range is

2 10') _

QN] = W21;—11) = 7.6294 =1: 10 5V. (6.3)

To obtain the quantization error from this we divide Q in half because at worst our

actual signal amplitude could have been exactly in the middle of the quantization step

(i.e. Q/2), in which case it would be rounded up and anything below is rounded down.

Note that this also assumes the maximum amplitude of our signal is approximately

10 volts which is the maximum analog input voltage to the DAQ board. Although,

this isn’t always the case, we will approximate the quantization error as

QNI,e'rror = QNI/2 = :l:0.0381mV. (6.4)

Since the quantization error is about 3% of the absolute accuracy given in the NI DAQ

specification sheet, we will assume that the quantization error was accounted for in

this specification. Therefore the uncertainty in digitizing the speed signal 71DAQ is

”(QB/IQ = :tl.05mV. (6.5)

Finally, the last bit of uncertainty is the overall noise floor of the signal’s FFT.

This can be determined simply by taking an FFT of the speed signal in Labview and

then plotting the magnitude of the Fourier coefficients. One then estimates the largest.

amplitude at which white is present (i.e. constant amplitude level at all frequencies).

This is determined to be

ud,FFT = i0.02mV. (6.6)
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The total uncertainty in the rotor speed is

= :l:3.07mV. (67)
“AT 2 “any T “an/1c) T “aFFT

Torque Uncertainty: The torque measurement comes from a current feedback

signal that is multiplied by two calibration constants (see ultraware software) to

convert the units of the signal to Newton-lVleters. This signal is digitized by the gray

control box and the national instruments DAQ board. The quantization for the gray

control box which is 8 bits at a i(10v) range is

2 * (101,!)

= 78.43mV. 6.828 _ 1 ( )Q5003 =

Just like before we can approximate the quantization error as

= QbOI/Q = i39.22mV. (6-9)Qb0.r,err0-r

Digitizing the torque signal with the National Instruments DAQ board will have the

same uncertainty as calculated in equation (6.5). Similar to the rotor speed signal, the

white noise level for the torque signal is estimated in the same way. This uncertainty

is found to be

11719pr = i2mV. (6.10)

The total uncertainty in the torque signal is

11718,?" = flap/4Q + QbO:E,€7‘T0T + UT0,FFT = i4227’mv. (6.11)

Combined Uncertainties for the Rotor Angular Acceleration and Rotor

Inertia: Using the uncertainties above, this section computes the combined uncer-

tainty for the rotor acceleration and the rotor inertia.
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Rotor Angular Acceleration: The rotor angular acceleration at order n is

computed as follows

5,. = n96”, (6.12)

where n is order of excitation, Q is the mean speed that the fluctuation is about,

and 671 is the magnitude of the FFT of the rotor speed signal at order n. Assuming

the fluctuations in Q and 0.7; are uncorrelated, the combined uncertainty for 6n is

computed following the NIST standards as follows:

85 , 2 09' 2 69' 2
u2- = J 1121+ J 21%} -l- _._n 11.2- . (6.13)

0n dn 89 0011, 6n

We assume here that there is no error in the order of the torque signal an = 0 which

is generated in Labview. To estimate error in the ability of the PID to maintain a

constant speed (119), an experiment is run with the rotor spinning at a constant rate

with PID active. The mean and standard deviation of the resulting rotor speed signal

is computed using basic statistics and the standard deviation yields '09 which is

09 = i2.39mV. (6.14)

The uncertainty in the rotor speed at order n (11.9- ) had already been calculated in

n

equation (6.7). Taking the derivatives in equation (6.13) and using equations (6.14)

and (6.7), the uncertainty in the angular acceleration at order n is

112. : (nOn)2u%2 + (720)2113 (6.15)

0,, ,T’

which will provide error bars on a 6n measurement of iué .

TL
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Rotor Inertia: To compute the rotor inertia we use Newton’s law to obtain

t] : #, (6.16)

where T6,, is the magnitude of the applied fluctuating torque at order n and fin is the

angular acceleration of the rotor at order n. calculated according to equation (6.12).

Assuming the fluctuations in T6.” and 9n. are uncorrelated, the uncertainty in the

rotor inertia is

2 T 2

2 1 2 0n ) 2
u = T— u + -..— u-- , 6.17

J (an) ‘ T677» ( 9721 6n ( )

where "Ta and 11.9- are the uncertainties calculated in equations (6.11) and (6.15),

'n. 7?.

respectively. The error bars on the rotor inertia calculation will then be iuj.
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