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ABSTRACT

COMPARISON OF UWB SHORT-PULSE AND STEPPED-FREQUENCY

SYSTEMS FOR IMAGING THROUGH BARRIERS

By

Benjamin Reid Crowgey

Ultra-wideband radar is useful for generating images of objects behind barriers due

to its penetrability and its capability to resolve small targets. Imaging systems may be

constructed to work directly in the time domain by generating baseband or monocycle

pulses and digitizing the received signal using a high-speed analog-to—digital converter,

or in the frequency domain by using a stepped-frequency narrow-band transmitter

and receiver. Each type of system has advantages and drawbacks. The time-domain

method provides ultra-wideband data with a single measurement, but it requires high-

speed A/D converters to provide sufficient resolution, and adequate signal-to—noise

ratios may necessitate repetitive measurements. Stepped-frequency systems have high

dynamic range, but often require long dwell times and are subject to aliasing effects.

A canonical problem is established that allows the affects of various radar param-

eters on radar performance to be studied. For simplicity, a two-dimensional problem

is considered, consisting of a perfectly conducting strip located behind a lossy di-

electric slab of infinite extent illuminated by line sources. To assess the impact of

the parameters on system performance, images of the target are created using the

reflected field computed at several positions in front of the barrier and adjacent to

the sources. Specific parameters that are considered include sample rate, A/D bit

length, pulse width, and SNR for a time-domain system, and sample rate, A/D bit

length, bandwidth, and SNR for a frequency domain system. A time-domain labora-

tory system was constructed to investigate whether the image techniques used with

simulated data in the parameter study can be replicated in practice.
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Chapter 1

Introduction

A comparison between ultra-wide band (UWB) short-pulse and stepped—frequency

systems for imaging through a barrier is undertaken in this thesis. The penetration

ability of UWB radar, and its capabilities for resolving small targets, makes this tech-

nology quite appealing for producing images of objects behind barriers. The concept

of a UWB radar can be used to implement both time and frequency domain systems.

A time-domain—sytem may be implemented by generating baseband or monocycle

pulses and then digitizing the received signal with the use of a high—speed analog-to-

digital (A/D) converter. In a frequency domain system, a stepped-frequency narrow-

band transmitter and receiver may be used. With each type of system there are

advantages and disadvantages. For the time-domain method the UWB signal pro-

vides data with a single measurement, but requires high-speed A/D converters to

ensure sufficient resolution of the image. In addition, inadequate signal-to—noise ratio

(SNR) may produce a need for repetitive measurements and averaging, increasing the

acquisition time. In the frequency domain, long dwell time and aliasing effects are

concerns, while high dynamic range is a significant advantage.



1. 1 Background

A significant amount of research has been done to analyze scattering from objects

located behind barriers [1]. In addition, various processing methods have been de-

veloped to obtain images of the scatterer [2]. This thesis focuses on the comparison

between short-pulse and stepped-frequency systems for imaging through a barrier [3]

[4] [5]. The UWB simulations or measurements are performed in a synthetic aper—

ture radar (SAR) configuration [6] [7] [8] and then images are created using a simple

scattering—center technique.

1 .2 Research Overview

A two-dimensional canonical problem is established to study the affects of various

parameters on the quality of the image produced by time-domain and stepped fre-

quency UWB radar systems. This canonical problem consists of a line source located

above a lossy dielectric slab representing a barrier. The interrogating cylindrical

waves produced by the line source impinge on the barrier and interact with targets

placed behind the barrier. The scattered field is computed in the frequency domain

at specific discrete frequencies within a chosen band. This simulates the data that

would be acquired by a UWB stepped-frequency system. An equivalent time-domain

system is studied by using an inverse Fourier transform to convert the data into the

time domain.

Images are constructed using a simple scattering—center technique to provide a

means of assessing radar performance. Factors such as pulse width, sampling rate,

number of bits, SNR, and time jitter are examined in the time domain to determine

their affect on the quality of the image as measured in terms of the dispersion of

localized scattering centers. Bandwidth, sampling rate, SNR, and number of bits are

examined in the frequency domain.



In addition, a laboratory time—domain radar system was constructed using instru—

mentation to allow a validation of the simulation results. The laboratory system is

not a dedicated radar, but rather uses standard instrumentation. The data was ac-

quired using the Michigan State University (MSU) reflectivity arch range consisting

of two horn antennas. A barrier was constructed to replicate the simulated canonical

problem.



Chapter 2

Canonical Problem Theory

To investigate the different properties of ultra-wide band short pulse and step-frequency

imaging radar systems, a simple canonical problem is considered. Using simulations

instead of measured data allows the affects of important system parameters to be

studied over a much broader range of values than is allowed through laboratory ex—

perimentation. The canonical problem, shown in Figure 2.1, consists of an infinite

electric line source aligned along the x-direction located at a height 2 = h above a

lossy dielectric slab, which represents a barrier. This dielectric slab has a thickness t,

[Line Source Lossy Planar z=h

Barrier

£0 1 Q g z-
z _

/ 8,0’ -0
8 _

0 y Z=Zs-

  

 

  

 

Figure 2.1: Canonical problem geometry.

and is infinite in the x- and y-directions. The slab has relative permittivity er, con-



ductivity or, and free—space permeability no. A target consisting of an infinitesimally

thin perfectly-conducting (PEC) strip is located a distance z = 23 behind the slab.

To solve for the electric fields for this canonical problem, the field incident on the

conducting strip in the presence of the slab must first be determined. The boundary

condition of zero total tangential electric field on the surface of the strip may then

be employed to derive an integral equation for the surface current induced on the

strip. This current is then used to compute the scattered field, and then the total

field, which is what is measured in practice, is found by summing the incident and

scattered fields.

2.1 Electric Fields impressed by a current source

in the Presents of a Dielectric Slab

The fields incident on the conducting strip, in the presence of a dielectric slab, are

derived by first considering Figure 2.2, where the problem is separated into 4 different

regions. Regions 2 and 3 are chosen to be two separate regions because this results

 

 

Region 3

———————————©—-—--—-——-— -———— Z=h

Region 2 8

Egan:Z//////////?Y/y//////////// e,0 :3,

Region 0 80

Figure 2.2: Partitioning of canonical problem geometry.

in source free regions with the line source located on an interface.



2.1. 1 Current Source

The infinite line source is positioned at z = h and y = 0; therefore the volume current

density can be written as

—o

J(y, z) = "16(z — h)6(y). (2.1)

The surface current density can be determined through the use of boundary conditions

in this 2D canonical problem [9]. This current is given by

h+A

K(y)=Ali:I+10/J(y,z)dz. (2.2)

Substituting the volume current density gives

h+A

my) = Aline i16(z—h)6(y)dz. (2.3)

The surface current density for the infinite line source is thus

Re) = My). (24)

2.1.2 Partial Differential Wave Equation Derivation

The fields are represented in terms of potentials to facilitate their computation. The

magnetic flux density vector, B, is expressed as the curl of the magnetic vector po-

tential, A:

ézvXA am



Substituting (2.5) into the differential form of Faraday’s law,

- as

V x E — _—df’ (2.6)

results in

- at

The sum of the two vector quantities can thus be expressed as the gradient of the

electric potential, (15:

- at
E + E — —V¢. (2.8)

Thus,

- at
E = —V ' — —. 2.<0 8t ( 9)

The differential form of Gauss’s law is

V - D = p (2.10)

or, from the constitutive relations assuming a homogeneous medium,

VB: ’3. (2.11)
6

Substituting (2.9) into (2.11) results in

821‘

01‘

_ 2 _ 2 . -' _ eV at (V A) _ 6, (2.13)

which is a differential equation for (13 and A.



Next, examine the differential form of Ampre’s law,

.. .. 313
V H = —.x J + (9t

The constitutive relation,

§=pfi,

along with (2.5) is substituted into (2.14) to give

—o

VXVXAzpj+p%lt2.

an)

an)

(2.16)

In a conducting medium, as seen in this canonical problem, the source field must

be separated into two parts. The first is a causative impressed term j;- which is

independent of the produced fields. Also necessary is a secondary term is which

exists only as an effect of the sourced fields. For an isotropic conducting medium the

effect of the sourced field is given by Ohm’s law,

3:03

Writing the total current as

(2.16) becomes,

VXVXAzpaE+p%—It)+j%.

Then, using the constitutive relation

(2.17)

(2.18)

(2.19)

am)



(2.19) is rewritten as

V XVX/I= (pa+pe—)E+fi.

Substituting (2.9) into (2.21) yields

a a 621' -
V XV XA— (INTI—HEB?) (—V¢—-(737) +Jz

or

.. a 621' 02/?
V x V X A = —,uaV¢ — pean) — [Ia—a- — [16 at? 

Recalling the vector identity

—o —o

VxVxA=V(V-A) v2.4,

(2.23) can be rewritten as

at 824 -
V2A=V(V-A+pa¢+pe%) +p0—+u6—8—t§—JZ~.

(9t at

To simplify (2.25), the Lorentz condition for potentials

18¢_
.A'=———

V V2 at
limb

is used, where z/ is given by

 

This gives

V - A = fine? —/10(,73.

+.7,-.

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)



Inserting (2.28) into (2.25), some terms on the right side of (2.25) vanish, thus giving

62/? -
V2A= pa—6A e—3t2 —J,. (2.29)

at +“

This is a time domain wave equation for the vector potential A By substituting

(2.28) into (2.13) results in

2

—V2$—pc2—‘2—,mg—f— f,(3t2 (2.30)

which is a wave equation for the scalar potential.

The analysis performed in the remainder of this thesis will be undertaken in the

frequency domain. Thus, a frequency domain wave equation is required. Transform-

ing (2.29) into the frequency domain through the Fourier transform identity

gt (a) jw, (2.31)

gives

V2.4 = no (jw) 21+ ,ue (2(.12) xi— J, (2.32)

or

372/1. 2 (jump — are?) A— .12. (2.33)

All quantities are new frequency domain variables. Define the wavenumber as

k = (32,166, (2.34)

where the complex permittivity is

e =e—j—. (2.35)

10



Then (2.33) reduces to

v24+ T34 = —.f,. (2.36)

This is a partial differntial equation for the vector potential, which is solved using in

subsequent sections using spatial Fourier transform techniques.

As shown in Figure 2.2, the geometry is partitioned into 4 regions. Region 1,

inside the dielectric slab, has the wavenumber, k, defined through

k2 = (422/1060. (2.37)

Since this is a source free region, (2.36) becomes

v24 + 162/T = 0. (2.38)

In regions 0, 2, and 3 the wavenumber is given through

168 = (32,1060, (2.39)

because these regions are free space. Also, these regions are source free. Therefore

the partial differential wave equation (2.36) becomes

v24 + 163.4 = 0. (2.40)

2.1.3 Ordinary Differential Equation Derivation

An ordinary differential equation (ODE) is a relation that contains functions of only

one independent variable. While a partial differential equation (PDE) is a relation

which contains partial derivatives of several variables. Thus, ODEs are computation-

ally easier to solve and are homogeneous, for this canonical problem, since the line

11



source lies on the interface between region 3 and region 2. To reduce the PDEs to

ODEs, it is noticed the source and fields are invariant in the sis-direction. Therefore a

Fourier transform of the y variable is performed to reduce the PDE to an ODE. The

definition of the Fourier transform pair is

00

A(ky,z) = /A(y,z)e_jkyydy (2.41)

—00

1 oo

A(y,z) = 2—7; / A(ky,z)e]kyydky. (2.42)

Inserting (2.42) into the partial differential wave equation for region 1, (2.38), results

in

00

(V2+k2))2i /(4(a) )eJflaky: 0 (2.43)

—00

Since there is only a a: component of the current seen in Figure 2.2, the vector magnetic

potential A only has a a: component:

4(a), z) = 2.433067), 2). (2.44)

Therefore (2.43) is rewritten as

00

(V2+k2) 71” / A$(ky,z)ejk3/ydky :0. (2.45)

”00

Ol' 00

a2 a2 a? 2 1 - 4,. .
__ __ —— k: e} yydk. = . 2.4

(3$2+8y2+02——2 +1“ 26 f A“ 3”") y 0 ( 6)
—OO

12



Since the integral is only dependent on y and z, the partial derivative with respect

to x is zero. Performing the remaining derivatives results in

00 OO

1 ~ ° ~ 1 ~ - .

[€2- / AQIUCy, Z)€Jkyydky — 2—7? / A1;(ky, Z)k§€]kyydky 'I'

—oo —oo

00 ..

1 AHA/971,2) jkf,

— —‘ ‘Jydk = .271’ 832 6 y 0

Factoring out the common variables from this expression, (2.47) reduces to

27r

—oo

00

1 2 (92 2 ~ "A:

The Fourier integral theorem then implies

02 ~
(52:2— +132) Ax(k‘y, Z) = 0,

with

p = ilfkg — 163

in regions 0, 2, and 3. For region 1, (2.48) requires

62 ~

(5;? + 02> “(2’2 z 0’

where

_ ,/ 2_ 2
q—i k kg.

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

Note that the proper choice of signs on the radicals depends on the physics of the

problem and is considered later.
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2.1.4 Relationship Between Vector Potentials and Fields

The electric and magnetic fields can be found from the vector potentials once the

ODES (2.49) and (2.51) are solved. To find this relationship first recall the divergence

of A:

~ 8A$ aAy 8A3

V - A = —— — —. 2.53

8:1: + By + 32 ( )

Since there is only an :1: component of A, the divergence reduces to

-' 8A$(y~ 2)
V - A = ———’—. 2. 4

0x ( 5 )

But A3; is only dependent on y and 2, so

V 4:0 asm

Writing the Lorentz condition in the frequency domain and using (2.55) thus gives

3:9 (2%)

The electric field is then, from (2.9),

E = —ij. (2.57)

Combining (2.5) and the constitutive relation (2.15), gives the magnetic field as

1 _.

  

Hz—VXA, 9%)
,u

or from the definition of the curl,

_. 1 19/151; .8A3;

H = — — . 2.59

M (y 32 Z By ) ( I

14



The relations between the fields and the vector potentials are thus summarized as

1 8A3;

H == —— 2.61
y #0 az ( )

Hz 2 __L2_A_£ (2.62)

#0 33/

2.1.5 Solutions to ODE

The ordinary differential equations ( 2.49) and (2.51) are each the harmonic differential

equation. Thus both have solutions that are complex exponential or trigonometric

functions. In region 3, z > h, there is only an upward propagating wave. Therefore

~

A1;(k1,z) = Ole—4P2, (2.63)

where 01 is a constant to be determined using appropriate boundary conditions. In

region 2, t 5 z < it, there are both upwards and downwards propagating waves,

requiring

~

Away, 2) = CQijZ + Cge—jpz. (2.64)

In region 1, 0 _<_ z < t, the potential can be written in terms of standing waves:

~

A5,;(ky, z) = C4 sin qz + C5 cos qz. (2.65)

Region 0 has only a downwards propagating wave. Therefore

~

Amy, z) = 06697”. (2.66)

It is important that the appropriate sign on p and q from equations (2.50) and (2.52)

be determined through the use of physical reasoning. In region 3, when k; 3 k2, the

15



wave must propagate upwards. Therefore, the sign on expressions in the exponent of

(2.63) must be negative. This requires

9 = +(/k(2 — k2, 6% _<_ kg. (2.67)

When 16% > 168, the wave must upward evanescent, again requiring the expression in

the exponent to be negative. Thus,

,0 = _j,/k.§ — 162, 1:5 > 1.3.9.68)

This is equivalent to requiring Re{p} Z 0 and Im{p} S 0. Through this same type

of physical reasoning, it can be determined that Re{q} Z 0 and Im{q} S 0.

The boundary conditions of the field vectors at the interfaces of different media are

necessary to solve electromagnetic canonical problems involving contiguous regions

of different parameters. These boundary conditions are found by applying Maxwell’s

equations to a small region at the interface of two different media. From these deriva-

tions it is found that the tangential component of the electric field is continuous across

an interface. In other words

a x (131 — E2) = 0, (2.69)

where ft is the normal vector pointing into region 1 from region 2 , t designates the

tangential component of E field and the numbers designate the region on each side of

the interface. The normal component of D is discontinuous across an interface where

a surface charge exists, with the amount of discontinuity being equal to the surface

charge density:

In contrast, the normal component of B is continuous across an interface and the

16



tangential component of H is discontinuous across an interface where a free surface

current exists. Thus,

ft- (81 -- 82) = 0 (2.71)

6 x (H1 — H2) = J3 (2.72)

With this set of boundary conditions, the constants in the solutions to the ODEs

can be found. First, the respective E fields are found from (2.60) and the boundary

conditions between regions 0 and 1 are employed. Since (2.69) holds true at z = 0,

[C4 sin zq + C5 cos zq]z=0 = [CGejpz] (2.73)

2:0,

and thus,

C5 = C6. (2.74)

The tangential H fields are examined next. Using (2.72) and (2.61) to derive H from

the potentials, and noting that there is no current source on the surface 2 = 0,

1 6 1 8 '4

—— C sinz +C cosz ] = [—— C 631)“ ] . 2.75

#0 5z( 4 q 5 (1) 2:0 #0 32( 6 ) 2:0 ( )

Taking the derivative with respect to z and multiplying through by #0 gives

  

(C4q cos zq — C5q sin zq) = C6jpejpz (2.76)

z=0 z=0

Inserting z = 0 thus produces

C4 = g 6' (2.77)

On the boundary between regions 1 and 2 E is continuous, resulting in

[_ij2ejpz — ij3e_ij] z—t = [—jw (C4 sin zq + C5 cos zq)]z=t. (2.78)

17



Substituting for C4 and C5 from (2.77) and (2.74), (2.78) becomes

[—ij2ejpz — ij3e—jPZ] z—t = [C6 (% sin zq — jw cos 2(1)] . (2.79)

Thus,

02,3th + C3e_jpt = C6 (353 sin zt + cos 2t) . (2.80)

Next, the boundary conditions for the H fields are employed at z = t. Using (2.72)

gives

[—1--3 (C26jpz + C3e_jpz)] = [95—9— (23 sin zq + cos zq)] . (2.81)

#0 az 2:7 #0 52 q z=t

Taking the derivatives with respect to z and substituting z = t results in

ijerpt — ij3e-jpt = C6 (jpcos zt — qsin qt). (2.82)

Continuity of E across the boundary between regions 2 and 3 requires

[—ij26jpz —jwe—jpz] = [—ijle_jpz] h (2.83)
2:z=h

according to (2.69). Substituting 2 = h then gives

Cgejph + e_jph = Cle—jph. (2.84)

On the boundary between regions 2 and 3, the tangential H field is discontinuous by

the surface current, resulting in

2 x (11ng — Hgyg) : K352. (2.85)

18



Where If}; is the transform domain surface current density given, using (2.4), as

00

K~x(ky, z) = / Id(y)e_jkyydky. (2.86)

--00

Integrating gives

[6213(ky, z) : I. (2.87)

With this, (2.85) becomes

(9 1 _ - '3 1 ,- _ -

___c,. m _ __ (-8298 _ 63.. m) = 1. (2.88)
02 #0 5z #0 z=h

Differentiating and substituting z = h yields

—ijle_jph — ijerph +j12C3e_jph = —1,u0. (2.89)

In summary, there are 6 equations and 6 unknowns,

C5 = CG (2.90)

C4 = gCG (2.91)

Cgejpt + C3e_jpt = C6 (% sin zt + cos at) (2.92)

.7190 ijt — jPC 63—th = C jpcos zt — qsin qt (2.93
2 3 6

CQB-jph + e’jph : ole-3'1)" (2.94)

The 6 constants in (2.90)-(2.95) can be found using tedious standard linear algebra
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techniques. First, (2.92) is multiplied by jp and added to (2.93), giving

. 2

2C2jpejpt = C6 (JD? sin qt + 2jpcos qt — qsin qt) , (2.96)

or

C6 192 . . .
C = —.— ——s1n t+2 cosqt — smqt . 2.972 23.106”, ( q q 37) q ) ( )

Then the multiplication of (2.92) with jp is subtracted from (2.93), resulting in

. _ 2

2C3jpe—th = C6 (Pq— sin qt + qsin qt) , (2.98)

or

C6 132 . .

C =———.—— —sm t+ smt . 2.993 ije_,p,(q q q q) ( )

Next, substitution of C2 and C3 from (2.97) and (2.99) into (2.94) gives

C -. _ 2
_.6_e]1)(h t) _I)_ sin qt + 2jp COS qt — qsin qt 'I'

231) (I

C _. _ 2 _,-

Multiplying through by 2jp and factoring out C6, gives the equation

C6

 

. 2

er(h_t) (_p_ sin qt + 2jpcos qt — qsin qt) +

q

. 2 .

e—Jp(h—t)(p—- sin qt + qsin qt) = 2C1jpe-Jph. (2.101)

(I

 

To continue the procedure, C2 and C3 from (2.97) and (2.99), are substituted into
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(2.95), yielding

C . __ 2

32831701 t) (_%— sin qt + 2jpcos qt — qsin qt)

. 2 .

_%e—JP(h—tl (Eq— sin qt + qsin qt) = 1,120 — Cljpejph.

Rearranging gives

06

 

. 2

(swat—'5) (—% sin qt + 2jpcos qt — qsin qt)

. 2 .

—e—Jp(h—t) (2;— sin qt + qsin qt)] = 21710 — 2C1jpejph.

To simplify notation, (2.101) is rewritten as

CG” [X1 01’

where

. 2

X = [e]p(h—t) (——8— sin qt + 2jpcos qt —— qsin qt)

9

. 2

677120143) (Eq— sin qt + q sin qt)

Similarly, (2.103) is written as

06 [Y] : —21p.0 + 2C1jpe—jph,

21
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where

Y:

 

._ 2

— ejp(h_t) (—-PL sin qt + 2jpcos qt — qsin qt)

‘1

+

. h p2

e—Jp( —t) —q- sin qt + q sin qt . (2.107)

Substituting (2.104) into (2.106) yields

2;, —jph _ -.

[Y]-%k—]—C1 = —2[p.0 + 2C1jpe Jph, (2.108)

or ‘

2- —]])h _ .

([Y]J—pffi— — 2jpe Jph) C1 = —2[11.0. (2.109)

Factoring out similar constants results in

C12jpewjphCKI—[i71-E—I) = —2[1¢0, (2.110)

yielding

_ 1136' 11 [XI

01‘ 2'19 31) (in—[X1] (2'1“)

As seen in (2.111), [Y] — [X] must be computed. This results in the equation

. 2 2

Y — X = er(h_t) (1); sin qt + 3— sin qt — 2jpcos qt — 2jpcos qt + qsin qt

q

. _ 2 2

+q Sin qt) + e—]p(h—t) (_p_ sin qt + 1)— sin qt + qsin qt — qsin qt) (2.112)

q q

or, by subtracting out like terms,

' I t —p2
Y — X = —2e]p( If I — sin qt + 2jpcos qt — qsin qt . (2.113)

q
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Therefore

IX] jp(h—t) P2 - - .
————= 6 -—sm t+2-cost— smt +

. h p2

e—]p( _t) —sinqt+qsinqt x

q

. _ 2 -1

[—2eJP(h‘t) (1 sin qt + 2jpcos qt — qsin 74)] . (2.114)

‘1

Simplifying (2.114) yields

2

  

[X] 1 e‘2jPIh—t) :42’ Si“ qt + 251“ qt (2 115)
—.

= —— —

- 2

.
.

[Y X] 2 2 7% sin qt + 2J1? COS (It — q sin qt

Inserting (2.115), into (2.111) produces C1:

_22 , _

Cl = fliejph + lu—OeTQth-tlejl’h
2 q s1nqt+qs1nqt

ZJP 2]}? :qE' sin qt + 2jp cos qt — qsin qt

(2.116)

The next constant to be solved for is C6. Substituting C1 from (2.110) into (2.104),

a simplified equation for C6 results:

 

—2I;LO

= ——————. 2.117

06 [Y] — IX] ( )

Inserting (2.113) gives C6:

e-J'IIUI-t)

06:1/10— 2 . (2.118)

—qL sin qt + 2jp cos qt — qsin qt
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Substituting C6 into (2.97) then gives C2:

C =flflle—JPUl—tle—th ‘1
2

2' __ 2

Jp —qB—sin qt + 2jpcos qt — qsin qt

This is simplified to give

[#0 -—' h
C = —,—6 JP .

2 2310

Similarly, (2.118) is inserted into (2.99) producing C3:

2

. . ism t+ sin t

03: EQerte—JMh-t) ‘1 q q q

221?

 

_ 2 '

7% sin qt + 2jpcos qt — qsin qt

sin qt + 2jpcos qt — qsin qt

(2.119)

(2.120)

(2.121)

The constants C4 and C5 can be found using a similar procedure. However, they are

not needed to solve the canonical problem and thus are left undetermined. Therefore

in summary,

0, Z flaeiph+fme—2ip(h—t)eiph(m

 

2119 2119

[#0 —' h
C = —,—8 Jp

2 29p

06 ' t — '- h—tC = —.——er6 M )R
3 gm ( )

C6 = [#0 _ 2

7% sinqt + 2jpcosqt — qsinqt

where

_ 2

—p—sin qt + qsin qt

R: ‘1 
_ 2 '

—qE- sinqt + 2jpcos qt — qsin qt

24
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2.1.6 Electric Field Derivation

With the constants now known, the fields on each side of the dielectric slab may be

found. For the region above the slab, z 2 t, the solutions for the potential in regions

1 and 2 are combined as follows:

Ag;(ky,z) : fie JPIZ hI + $er JP(2+h)e2JPtR. (2.128)
21p 2119

Substituting (2.132) into the inverse Fourier transform wave equation, (2.42), gives

00

1 1 _.-. _

—OO

00

i fle—jp(2+h)€2jptRejky1/dky, (2.129)
27r 23p

~00

OI'

 

—OO

00 . .

I , —]p|z—h| . —j[)(2+h—2t) ’

_’10 [_eefl‘yy + e p Rejkyy dky. (2.130)

p '

The electric field above the slab, z 2 t, is then determined from (2.60) yielding

 

I Doejkyy
152(22): 4:0” / —p—[e‘JPIz‘hI+e"JP(Z+h‘2t)R]dky. (2.131)

—00

When 2 < 0 the vector potential is determined by (2.66). Substituting (2.125)

into (2.66) gives

- 1 21)»? ,—jI)(h-t)

4208. z) = 2 “06 e . (2132)
—Z;— sinqt + 2jpcos qt — qsinqt
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OI‘ .

- [HOeJMz-hfi)
 

 

 

 

 

—%— sin qt + 2jpcos qt — qsin qt

Implementing the inverse Fouier transform, (2.42), results in

I I ’jp(z—h+t) jk'yy

42(9, 2:) = 7:9 2 ”0‘3 e dky. (2.134)

—00 —% sin qt + 2jpcos qt — qsin qt

Applying (2.60), the electric field for z < 0 is

00 . -

_ i, 1 1 Jp(z—h+t) Jkyy

E2(y. z) = —]—“2"7rfl 2 “06 e (12,). (2.135)

—00 ~%— sinqt + 2jpcos qt —- qsinqt

In summary, for the canonical problem seen in Figure 2.2, the electric: fields is found

in the regions above and below the dielectric slab:

00 .

—I , , ejk-yy _ .' _

Emu/,2) : “Oi-U / _[e JplZ h] +

477 p

—00

(WWW—20R] city, 2 2 t (2.136)

_ ' 1 ”(Z-[1+0 kyyj

Ex(y, z) : i2? 2 e 8 dry 2 < 0. (2.137)

—00 —%— sin qt + 2jpcos qt - qsin qt

2.2 Scattered Field from Conducting Strip

With the impressed fields on either side of the dielectric slab determined, the current.

across the infinitesimally thin conducting strip can be found. From the current, the

scattered field can be derived at a position above the slab.
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2.2.1 Integral Equation Derivation

An integral equation is determined to obtain the current on the conducting strip [10].

Along the surface of the conducting strip the tangential electric field is equal to zero.

Given that the tangential component of the electric field is zero, from Figure 2.3 it is

Ej(y,z) E§(y,z)

  

> z=4
-w P w

Figure 2.3: Conducting strip parameters.

determined

1320.2) = —E2<y,z>. (2.138)

The strip is assumed to be infinitesimally thin, therefore the currents on the top

and bottom are nearly adjacent, which allows them to be summed together. The

integral representation of the scattered electric field in terms of the two-dimensional

Green’s function is

Eflyiz) = f / 01(9’,z’ly,z)J2(y’)dy’dz’. (2.139)

The summed current, J$(y), is independent of the :1: direction, which makes it possible

to write the surface current as a volume current density:

J$(y, Z) 2 J31; (5(2 - 25) (2.140)
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Substituting (2.140) into (2.139) yields

'11)

/ Guy/.2311}, Zleszll/Wy, = way, a). (2.141)

y ——w

The integral equation in (2.141) can be solved using the method of moments

(MOM). This approach involves expanding the unknown current as a linear combina-

tion of basis functions:

N

J3$(y) = Z anfn(y). (2.142)

n=1

Substituting (2.142) into (2.141) gives

N “1’

2: an / 01(y’,zsly,zs>fn<y’>dy’ = —E§-(y,zs>. (2.143)
n=1 —w

For simplicity the basis functions fn are chosen to be pulse functions:

lryn-%Sy’S3/n+%
fn(y) = P7101) = (2.144)

0 : elsewhere.

In (2.144),

3177. = —w + (n - g) A, (2.145)

and

A _ 22 (2 146)— N o u

The quantity A is the width of the partitions, N is the total number of partitions

used, and yn is the center of a partition.

The method of collocation (or point matching) is used to convert the integral

equation into a system of linear equations. By point matching at y = ym, a set of
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linear equations are obtained:

A

Z (In / Gl(y,,Zsly-7n,23)dy, = —E:tr(y7n,23), m =1,2,...,N, (2.147)

n=1

3171—79—

01'

N

Z anAynn = bm. (2.148)

n=1

The variable an in the matrix equation (2.148), represents the current on the con-

dUcting strip.

When a field impinges on an object, current is induced along the surface. Scattered

fields are then produced from this induced current. For this canonical problem, the

incident field on the conducting strip is the transmitted field from an electric line

source above a lossy dielectric slab. Therefore giving,

00 . - ,
b —jw]/t0 ejp(z—h+t)le~y?/m

m = _—
 dky. (2.149)

2 2 . . .
—oo —% sm qt + 2jpcos qt — qs1n qt

The scattered field from the strip is actually the impressed field produced by an

electric line source in the presence of a lossy slab. Thus yielding

  

oo . I

— thyUJm-y) . /
. U.) 6

_ _

61(y’.z'|ym,2)= :0 f [e 3142 2|+

7‘ 1)
—OO

. ~ ,—

ReJP(~+Z 2t)]dky. (2.150)

The source point in the equations for the impressed and transmitted fields derived in

section 2.1.6 is in reference to the front of the dielectric slab. Therefore the source

point in (2.149) and (2.150) also have to be referenced from the front of the slab.

This results in z, = t — 2:3. Since (2.148) is defined for all points on the surface of the
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conductor, the observation point also results in z = t — zs. Rewriting (2.147) yields

 

  

A

971+? 00 . . /

‘ltow BJkyyme—Jkyy 7.1)27

Amn = —— [1+ Re- 4.9] dkydy. (2.151)
47r p

A —00

Lyn—'2'

Rearranging (2.151) gives

00 - '
_ _ Jky'ym .

AW, 2 "0‘” 6 [1+ ReJP22‘8] Xdky, (2.152)
47r p

—00

where

yn+%' I

X = / e‘Jkyy dy’. (2.153)

yn—%

Performing the integration in (2.153) yields

A

e_jkyyl girl-‘2-

X = ——7— . (2.154)

3 ‘31}

3171—7123—

Inserting the limits of integration for the variable y, gives,

. A . - . A
_e—Jkyynejky?’ + e‘JkyyneJk'y'Q‘

X = , . (2.155)

Jky

 

Simplifying further gives

'. A _,-, A

—jr~. me”? -e ””7
X = e y , , (2.156)

3163/
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which can be reduced to

. . - A

X = e—jkyynm,

Jky

or A

X = e_jkyynASlnky—2—

k A '
1’17

Substituting (2.158) into (2.152) produces

  

oo . .

_ _Jk'l 3m J}? 31771 . -

Amn = [10w / e J 8 y [1 + ReijzS]
p A

-00 km

2.2.2 Amn Evaluation

The Amn integral actually consist of two separate integrals:

Amn = Umn + an,

where 00 /’

wow / e-Jkyyneykyym Asin kyTAdey

A i 9

471’ p ky‘g’

—OO

Umn '—
  

and

  

oo - -_ A: ., . .. . . A
_”0(, f e J yyneflxyymAsmky? ejPQZs

477 p

(1101 .

kg?— J
—00

an =

A sin ky%- dk

y.

(2.157)

(2.158)

(2.159)

(2.160)

(2.161)

(2.162)

It is computationally expensive to integrate a function from negative infinity to posi-

tive infinity. Since portions of the integrand are even about it’s axis, the integrations

of Umn and an are simplified. First employing Euler’s relation to (2.161) results
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in

 

 

oo _ A

—/1,0wA cos ky(m - n)A S111 [Cg/72-

Umn = +
4 A7r —00 p [Cy-2—

" - k A
J sin 1.1/(m — n)A Sln 31-?-

p 16,179

 dry. (2.163)

Given the definition of a sine function, (2.163) is rewritten as

  
UNIT), =

00

—/10wA / cos 163/(m — n)A

'ck A+sm " —

471' p y2

0

j sin ky(m — n)A

p

 

A

sinc ky—2—dky. (2.164)

In (2.164), the sine and 19 functions are even about the vertical axis. When these

functions are multiplited by a cos this results in an even integrand. While mulitplying

by a sin function results in an odd integrand. Therefore this yield

  

  

  

oo

— k( — )A A

Um”: #201511 / COS 9(1)m n) alleging, (2.165)

0

or

A 00 k(m n))A sin kyA— 1 52 cos —

Umn—_ ’0 / y( A7111.) (2.166)

0 k9?

Through the same reasoning (2.162) results in

00 A
— ,l;( —- )A sin k

an= “20cm / COS '(ym n) :7 ReJP2~Sdly . (2.167)

0 kg?
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2.2.2.1 Umn Evaluation

The integrand in (2.166) has the form of

OO

sin (11: cos 6.7:

Umn -—— ——-—(f$.

0 :rVk2—562

(2.168)

When a: = k the denominator of the integrand goes to zero, which is a singularity of

the function. Therefore a numerical method [12] is considered which splits Umn up

into two parts, thus removing the singularity:

k f( > 00 f( >11} CE

U7nn=/————(1I+/———d$,

0 k2_$2 k ‘/k2_$2

where

sin arr cos b1:

f0?) —
13

Rewriting (2.169) gives,

U77"), = [it + 13’.

Looking at Ii‘, the square root in the denominator can be factored giving

Vk+$

k _fleL

Igzo/(T/Efildx,

OI'

 

Now, use the substitution

(2.169)

(2.170)

(2.171)

(2.172)

(2.173)

(2.174)



01‘

t: x/k — x, (2.175)

with the differential

(1:1: = —2tdt. (2.176)

Inserting (2.175) and (2.176) into (2.173) and changing the limits of integration results

 

in

u 9(k — t2)
11 = —T—-(—2tdt) (2.177)

«E

or

fl

1? = 2 / g(k -— t2)dt. (2.178)

0

In the equation for Iu, :1: is always larger than k. given the limits of integration.

Therefore,

00 f( >
I“ = / ‘E (1.1:, (2.179)

k —j‘ /:1:2 _ k2

or

15‘ = j (2.180)

00

/ —\/_f2—(_L——2d:r.

k a: — k

The sign on the square root function in the denominator of (2.179) is chosen because

this function represents the variable p in the original equation. In (2.68) the sign on

p is determined through physical reasoning.

The integrand in (2.180) oscillates substantially and only decays as 1/232; thus it

is difficult to integrate. Using Kummer’s method [13],

CX) OO

. f ,1 .

12‘ = 7 1/ [7,9375 — 16(4)] 4:: +1 [1144114, (2.181)
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where fa(:r) is asymptotic expansion of —ié\/—'—T—)—k—2, the integration is easier to com-

m _—

pute. This is useful only if the oscillations in the integral cancel out at high multiples

of k, and the second term can be integrated in closed form. Further manipulations

of (2.181) yields,

(2.182) 

0° ,G—_—22
u2j/f(l -\/l37:-_kf2fa(l)dr+j/fa(a:)dx

1.

Similarly to the simplification done for 11‘ , the square root function is split up:

ooff37)‘ V $2—k2fa(17) oo
 

 

 

15‘ = j/ H d1: +j [fa(:r)d:1:, (2.183)

16 .

or

00 ~ oo

23'/$111: + j / fa(:r)dx. (2.184)

16 k

Next, use the substitution

x=k+k? (2mm

t = a: — k, (2.186)

with the differential

d3: = 2tdt. (2.187)

By substituting (2.186) and (2.187) into (2.184) gives

- _, t

15‘ = j / LP2tdt+ j / fa(;1:)d;1~., (2.188)

16 is



01'

OO 00

15‘ =2j /g(k+12)dt+j/fa (:1:)d;1:.

k k

In a general form,

00

1% = 2j/§(k+t2)dt+jIA,

k

where

00

IA = [fa(:1:)d:c

16

(2.189)

(2.190)

(2.191)

With the equation for 1%“ in manageable form the the asymptotic expansion fa(;1:)

is chosen to achieve the requirements for the Kummer’s method. By choosing,

sin (1:1: cos bx

fa(~’13)= fi2+$2 ,

and 13 to be arbitrary, IA can be rewritten as

M=%-k,

where

00 . b

s1na:1: cos :1:

I = / —————d:r,
B 32 + $2

0

and

I /sina:1:____2_cosb:1:d$

0: fl2 + 9:2

The equation for [C can be computed numerically. However IB is

(2.192)

(2.193)

(2.194)

(2.195)

more difficult.

To calculateIB, exponential integrals are used. Writing IB in terms of exponential

integrals yields

[B = 5 [E [(a — 0131+ E [(a + 1113]],
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where

E(;zt) = e_xE.,;(1:) — emEi(—:1;) (2.197)

and :1:

—-t

EZ-(x) = / fit—111. (2.198)

2.2.2.2 an Evaluation

When considering an in (2.167), the upper integral limit is changed to a constant,

A. This constant is chosen large enough in value so that the integrand has decayed

close to zero and no longer significantly contributes to the integral. This results in

A

k

0

.2 _ 2

’"0 kg

The constant A must be larger than k0, since it is at kg = 160 that the integrand

blows up and after where the integrand decays to close to zero. Therefore A, is chosen

to be a multiplicative factor of 160.

A numerical method [12] is used to work around the singularity when kg = 1:0.

Splitting the integral at k0, (2.199) becomes

ll0
k k

k2 _ k2 k2 _ k2

0 0 y [co 0 2U

01‘
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Evaluating Ii) by first factoring the square root in the denominator gives,

k0 [M]

1v=/—__
1 0 meg—kg

dry,

01‘

’10

Iv [9(1%)]

”Om

for simplicity. Then by using substitution

city,

A _. 2
ky—ko—t

OI‘

t: (LIED—kg,

along with the differential

dky = —2tdt,

in (2.203) produces

Simplifying further results in

m
11) = 2 / g(k0 — t2)dt.

0

(2.202)

(2.203)

(2.204)

(2.205)

(2.206)

(2.207)

(2.208)

Knowing that the constant A is larger than 360, the second part of an can be
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rewritten as

 

, k
I?“ _ f( 2”) 21111,).

‘3 ky — k0

Then, by factorng the square root in the denominator produces,

f‘

A [Jill/L]
1; —1.~

Using substitution

or

along with the differential

dky = 2tdt,

11 (2.210) result in

()(k t2)
—0—(t+——(2tdt).

Then with further simplification,

A—ko

[g = 2j / 9050 + t2)dt.

0
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(2.210)

(2.211)

(2.212)

(2.213)

(2.214)
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2.2.3 Matrix Equation

With Amn put into manageable form and

—jw1#0 00 ejp(z—h+t)ejkyym

bm =T
 2 dky, (2.216)

——oo —2q— sin qt + 2jpcosqt — qsin qt

the current in the matrix equation of (2.148) can be derived. Thus the current at

the center of each of the partition along the strip, an, is computed. These current

values then can be treated as individual current sources with a width equal to that of

the partition width of the conducting strip. The fields produced from an individual

current source in the presence of a dielectric slab was derived in (2.137). Therefore

the scattered field from strip can be computed by summing up the fields produced by

each of the individual line sources. With this derivation the reflected and transmitted

electric fields for the canonical problem seen in Figure 2.1 is solved for.
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Chapter 3

Numerical Results

Computation of the fields scattered by the strip is carried out using the FORTRAN

programming language. The position of the line source is set and represents the

location of a transmitter. The scattered field is computed at an adjacent point,

representing the position of a receiver. As seen in Figure 3.1, the transmit/receive

pairs. are moved parallel to the barrier and the fields computed from 20 MHz to 16

GHz at 20 MHz increments for each pair.

 

21 different transmitter/receiver positions _

I Equally spaced over 5 m |Z-0.5m

...XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX...

   

 

 

 

80 z z=o.1524m

)5, =6 0=.001$/m g
V =

80 y 2 0

, .15 m 1 Z=-O.8m

Figure 3.1: Position of source/observation pairs.

The total field is computed at 21 different transmitter/receiver locations in the

frequency domain. At each of these positions, the frequency domain responses are
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transformed into the time domain using the inverse Fourier transform. The time

domain data fields from all 21 transmit/receive positions are used to construct an

image of the target. An observation region is created using a 2-dimensional grid of

points, and the propagation time for a wave propagating from each of the 21 different

transmitter/receiver positions to that point is calculated. Given these propagation

times, the intensity values from the time domain data are summed together creating

an image of the target.

3.1 Computation of Incident and Scattered Fields

The permittivity, conductance, and thickness of the slab, as shown in Figure 3.1, are

chosen to those of a concrete wall [14]. Multiple reflections from the conducting strip

to the back of the dielectric slab will produce ghost images of the target. Therefore to

decrease the merging of the ghosts and target responses, the strip is located sufficiently

distant (z = —0.8 m) from the back of the dielectric slab. The width of the conducting

strip is chosen to be relatively small at a width of 0.15 m., to test the ability of the

image technique to resolve small targets.

The conducting strip is partitioned into narrower strips, with each of these strips

having a constant current. The MoM technique is used to find the scattered field from

the conducting strip. The number of partitions on the strip is set to 20 per wavelength,

and is thus dependent on the frequency used. This number can be computed using

the formula

2111f

N = 20—— 3.1C < >

where 211) is the width of the strip, f is the frequency and c is the speed of light. The

minimum number of partitions allowed is 10, regardless of frequency.

The integrals needed to find the incident and scattered fields are computed using

the FORTRAN subroutine DQAG, which is part of the QUADPACK computational
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package [15]. The computational package includes approximations to integrals of the

form

b

/f(:1:)w(:1:)d:1:. (3.2)

a

The weight function w is used to incorporate known algebraic or logarithmic singu-

larities, oscillations, or to indicate that a Cauchy principal value is desired. DQAG

is a general purpose integration routine with a high efficiency and w(:1:) = 1 in (3.2).

The routine subdivides the interval [a, b] and uses a (216+ 1) -point Gauss-Kronrod

rule to estimate the integral over that range [11]. The Gauss-Kronrod rule is an

adaptive Gaussian quadrature method in which, for numerical integral routines, the

error is estimated based on the evaluation at special points called Kronrod points.

With this suitable point selection, the x-coordinate from previous iterations can be

reused as data for the new set of points. A Gaussian quadrature would require a new

x-coordinate at each of the iterations; this is important when a specified degree of

accuracy is required but the number of points needed to achieve this accuracy is not

known in advance.

The calling sequence for DQAG includes the function to integrate F, the lower

limit a and upper limit b. The user defined absolute error e is ERRABS, and the

relative error ,0 is ERRREL. The DQAG routine returns two numbers of interest:

RESULT and ERREST, which are the approximate integral R and the error estimate

E, respectively. The relation between these numbers are as follows:

b b

/f(:1:)d:1:—R _<_ESmax e,p /f(;1:)d:1: (3.3)

a a

0‘200 and the relative accuracy isIn these simulations, the absolute accuracy is 1

chosen as 18 decimal places. Since the limits of integration are infinite, it is necessary

to find a point to truncate the integrals that provides a desired accuracy, hence
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determining a and b. Since the integrands of (2.136) and (2.137) are even about

ky, the lower limit of the integral can be set to 0 and the result multiplied by 2.

The integrand decays rapidly once ky > k0. When ky > 160, values of p become

imaginary in (2.50) producing an exponential decay in the integrand. Therefore, a

good means. for determining the integration truncation point is a multiple of 160. In

these simulations the multiple is chosen to be 10.

The scattered field from the conducting strip is found by first solving the matrix

equation (2.148). As described previously, Amn is separated into two integrals. Using

the DQAG integral routine, bmn and an are computed for the specified degree of

accuracy. In addition, Umn requires two more subroutines to evaluate E1(x) and

E1(x), the exponential integrals found in the evaluation of Umn. The matrix equation

is of the simple form Ax = b, which is solved using another subroutine called SOLVEC

using the decomposed matrix from the routine DCOMP. The solution is the complex

current at each partition on the conducting strip. Finally, the field is determined at

the receiver position by computing the scattered field from the known current on the

conducting strip.

3.2 Imaging Analysis

3.2.1 Frequency to Time Domain Transformation

The field is computed at 21 positions above the slab between -2.5 m to 2.5 m with a

spacing of 0.25 m, as seen in Figure 3.1. At each of these locations, the incident and

scattered field is computed in the frequency domain between 20 MHz and 16 GHz,

at a step size of 20 MHz. The incident and scattered fields are computed separately,

and the frequency domain responses are transformed into the time domain using the

visual basic program WaveCalc (supplied by John Ross and Associates). An example

of the frequency domain field is shown in Figure 3.2 for the transmit/receive pair
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centered above the conducting strip.
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Figure 3.2: Magnitude of the frequency domain scattered field at a position centered

above the strip.

Computing the fields over a certain frequency range is equivalent to evaluating

the total fields over frequencies ranging from zero to infinity and truncating them

using a rectangular function. Therefore, when the data is transformed into the time

domain, the rectangular function is transformed into a sine function, producing an

abundance of oscillations on the edges. To eliminate some of these oscillations, the

data is windowed in the frequency domain using a Gaussian modulated cosine (GMC)

instead of a rectangular function. This allows for a steady roll off of the data, so that

there are no abrupt changes, which results in few oscillations in the time domain. For

these simulations, the GMC is centered at zero frequency with an equivalent pulse

width of 0.12 ns. Figure 3.3 shows the weighted frequency domain data.
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Figure 3.3: Magnitude of the frequency domain scattered field weighted with a GMC.

Finally, the weighted frequency domain data is zero padded and WaveCalc is used

to transform the data into the time domain. Zero padding adds additional points at

high frequencies and results in a finer sampling in the time domain. The final time

domain response is shown in Figure 3.4.
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Figure 3.4: Time-domain scattered field at a point centered above the conductive

strip.

The first event seen in Figure 3.4 represents the first wave interaction with the

conducting strip. The following spikes are multiple reflections between the dielectric

slab and the strip. Note that Figure 3.4 does not include the incident field. This

field, shown in Figure 3.5, is computed separately and shows much stronger spikes

representing the field reflected by the slab (the flash).
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Figure 3.5: Time-domain incident field at a point centered above the conducting strip.

3.2.2 2D Image Construction

The time domain data fields from all 21 transmit/receive positions are used to con-

struct an image of the target. An observation region is created using a 2-dimensional

grid of points, and the propagation time for a wave propagating from each of the

21 different transmitter/receiver positions to that point is calculated. Given this

distance between the transmit/receive position and the grid point, the approximate

propagation time is

T = —\/€7. (3.4)

C

Where 7' is the travel time, d is the distance from the transmitter/receiver position to

a particular point on the grid, 6 is the speed of light and 67- is the relative permittivity

of the material through which the wave travels. The actual travel time is somewhat

difficult to compute since a ray entering the lossy slab undergoes refraction, and thus
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doesnt follow the straight line path between the transmit/receive point and the grid

point. However, since the slab is thin, the straight line path gives very accurate

results. For the portions of the path in free space, er is unity, while for the portions

inside the slab ET is taken to be the real part of the complex permittivity of the slab:

CT = 6.

Using the computed travel time, the value of the total (incident plus scattered)

field is found from each time domain waveform, and the results for all 21 transmit/re-

ceive positions are added to determine the image intensity at this particular grid

point. The image intensity is highest at points corresponding to places of strong

reflection, such as the front of the slab and the target. Thus, strong image intensity

indicates a scatterer. Sometimes this is called a scattering center approach since it

localizes the points on the scatterer that produce the largest reflections.

Figures 3.6 and 3.7 display the two-dimensional intensity image within a box

that includes a portion of the dielectric slab and the conducting strip, using the

time-domain data from 21 transmit/receive pairs. The axes of these two figures are

distance in meters.
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Figure 3.7: Proportionally correct mage of lossy dielectric slab and conducting strip

with scale x1013.
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Figure 3.6 shows a compressed aspect ratio resulting in a square figure, while

Figure 3.6 shows the proper aspect ratio. As seen in Figure 3.1, the back of the lossy

dielectric slab is positioned at z=0 m, while the front is at 220.1524 m and the strip is

at z=-0.8 m. Comparing this figure to Figure 3.6 visually shows the correct positions

of the objects analyzed.

Figure 3.6 shows how the image of the target and the slab are built up from the

time responses at each of the transmit/receive pairs. A strong peak in a time response

produces an arc in the image. These arcs overlap at points where a scattering center

exists, since the reflection from the scattering center appears in all of the observations.

Thus, the brightest spots in the image correspond to the strongest scatterers. In

particular, the conducting strip target can be clearly seen.

3.2.3 Image Quantification

The sharpness of the target image depends on the parameters of the simulated radar

system, including sampling rate, pulse width, etc. To determine the effects on the

image of altering certain parameters, a way of quantifying the sharpness of the con-

ducting strip image is needed. To do this, an image radius is defined, which is the

radius of an equivalent circle that has an area equal to the region that contains the

majority of the image intensity. An observation box is centered on the conducting

strip as shown in Figure 3.8.
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Figure 3.8: Area in which sharpness of conducting strip is determined with scale

x1013.

The size of the box is arbitrary, but it should completely contain the strip and

should not be too large so that other artifacts in the image are excluded. In this

research, a box size of 0.3 by 0.46 111 is chosen. Inside this box the position of the

center of pixel intensity is determined. This approach is much like the formula for

finding the center of mass of an object. The coordinates of the center are given by

”y

g: fiyi

yo = $ (3.5)

,2 f4

1:1

712

Z fizi

20 = _1: , (3.6)

In these equations y and z are the pixel positions, 71y and 712 are the number of pixels

in the y and z direction respectively, and f represents that particular pixel intensity.

The radius of intensity, R, is found by considering only pixels with intensities

above 0.5 times the maximum intensities of all pixels within the box, which are used
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in the formula 71

12 f1 (91-1/0)2+(21-20)2
R: _
 n (3.7)

2 fz'

z=1

where n = nynz. The image radius is the radius of a circle that contains the higher

pixel values and gives a single quantity through which the sharpness of the strip image

may be described. A large image radius corresponds to a blurry image and a small

radius to a sharper image. An example of an image radius is shown in Figure 3.9 for

a relatively large pulse width of 2.0 ns.

0.5

 

-2 -1 0 1 2

Figure 3.9: Circle of radius equal to the image radius centered around the conducting

strip with scale x10“.
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Chapter 4

Parameter Analysis

A parameter analysis is used to compare the performance of the ultra—wide band

short-pulse and stepped frequency radar systems. Simulated data is computed at

21 different transmitter/receiver positions, images are created for different parameter

sets and the sharpness of the images is analyzed. When the pulse width, sampling

rate, SNR, or digitization of the sample data is altered in both the frequency and

time domain, the image radius changes allowing for optimization of these parameters

in an actual prototype.

4.1 Time Domain Analysis

The significant parameters that are investigated during simulations of the time-

domain system are the incident pulse width, sample rate, SNR, and digitization.

Each of these is considered here in turn.

4.1.1 Pulse Width

The pulse width in the time domain is the duration of the pulse emitted from the

transmitter of a UWB radar system. Longer durations of the pulse width cause the
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image of the conducting strip to become blurred. Additionally, during transmitting

the receiver is non-active to prevent cross coupling of the transmitted pulse. If the

duration of the pulse is longer than it takes for the start of the pulse to reflect from an

object and return to the receiver, this signal is not received, producing false results. To

simulate this type of parameter change, the width of the Gaussian modulated cosine

window function is altered in the frequency domain. With the geometry parameters

of Figure 3.1, values of the computed image radius are shown in Figure (4.1).
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Figure 4.1: Effect of pulse width on image radius.

This figure demonstrates that increasing the pulse width enlarges the image radius

which corresponds to an increase in the blurring of the strip. Between 0.06 ns and 0.10

us the image radius unexpectedly decreases; this probably is because the threshold

value of the pixel intensity used to compute the radius is set too low.

It is helpful to visually associate the reduction of image quality as the pulse width

increases with the increase of image radius. The images are displayed in Figure 4.2—
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4.11. When the pulse width reaches 1.5 ns, Figure 4.8, the conducting strip nearly

fades into the background. In Figure 4.11, where the pulse width is 3.0 ns, the image

of the conducting strip appears to have moved away from the actual position of the

strip. The size, position, intensity, and shape of the strip can not be determined when

the pulse width is too large.

0.5

-1 
-2 -1 0 1 2

Figure 4.2: Conducting strip image constructed using a pulse width of 7‘ = 0.06 ns.

56



 
-2 -1 0 l 2

Figure 4.3: Conducting strip image constructed using a pulse width of 7' = 0.10 ns.
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Figure 4.4: Conducting strip image constructed using a pulse width of 7 = 0.16 ns.
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Figure 4.5: Conducting strip image constructed using a pulse width of T = 0.26 ns.
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Figure 4.6: Conducting strip image constructed using a pulse width of T = 0.50 ns.
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Figure 4.7: Conducting strip image constructed using a pulse width of 7' = 1.00 ns.
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Figure 4.8: Conducting strip image constructed using a. pulse width of T = 1.50 ns.
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Figure 4.9: Conducting strip image constructed using a pulse width of 7' = 2.00 ns.
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Figure 4.10: Conducting strip image constructed using a pulse width of T = 2.50 ns.
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Figure 4.11: Conducting strip image constructed using a pulse width of T = 3.00 ns.

4.1.2 Sampling Rate

The sample rate in the time domain represents the number of samples taken per

second from a continuous signal to form a discrete signal (also described in terms

of the sampling period, which is the time between samples). The simulated data is

computed at a high sampling rate, and the affect of lower sampling rates is easily

determined by discarding data points. Figure 4.12 shows the dependence of image

radius on sampling rate. As the number of samples per second decreases, the image

radius increases and the conducting strip becomes blurrier.
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Figure 4.12: Effect of sampling period on image radius.

As seen with the affect of pulse width, the smallest value of sampling period does

not produce the smallest image radius. This is again a result of the difficulty in

choosing an appropriate threshold for selecting which pixel intensities are to be used

in computing the radius. For visual inspection, Figures 4.13 - 4.22 show the images

for each of the sample rates shown in Figure 4.12. As seen in Figure 4.17, when the

sample period reaches 0.40 ns the image of the conducting strip is so unclear that an

accurate detection cannot be produced.

In addition to blurriness, another concern is the existence of ghost images of the

conducting strip. With the time-domain system, ghosting is due to multiple reflections

within the barrier or between the target and the barrier, which produce additional

peaks in the scattered field isignal. These peaks add when constructing the image,

producing ghost images at regular intervals behind the actual image. In Figure 4.17
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it is seen that for a large sample period (0.40 ns, which is a sampling rate of 2.5

GHz), the intensity of the ghost image is larger than the actual conducting strip,

which would result in an incorrect location of the object behind the slab. When the

sampling period reaches 1.60 ns, Figure 4.22, the conducting strip is not visible and

no analysis is possible.
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Figure 4.13: Conducting strip image constructed using a sampling period of At =

0.05 ns.
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Figure 4.14: Conducting strip image constructed using a sampling period of At =

0.10 ns.
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Figure 4.15: Conducting strip image constructed using a sampling period of At =

0.20 ns.
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Figure 4.16: Conducting strip image constructed using a sampling period of At =

0.30 ns.
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Figure 4.17: Conducting strip image constructed using a sampling period of At =

0.40 ns.
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Figure 4.18: Conducting strip image constructed using a sampling period of At =

0.50 ns.
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Figure 4.19: Conducting strip image constructed using a sampling period of At =

0.60 ns.
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Figure 4.20: Conducting strip image constructed using a sampling period of At =

0.70 ns.
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Figure 4.21: Conducting strip image constructed using a sampling period of At =

0.80 ns.
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Figure 4.22: Conducting strip image constructed using a sampling period of At =

1.60 ns.

4.1.3 Signal-to—Noise Ratio

An essential consideration in any radar system is the signal—to—noise ratio (SNR)

appearing at the receiver. As the SNR is reduced, it is anticipated that the target

image will become less distinct. To examine this effect, random Gaussian noise is

added to the simulated time-domain data using the program WavCalc. The noise

level is relative to the largest peak in the waveform (which is the flash from the

barrier), and thus the SNR values described here represent the decibels (dB) down

from the peak value of the time signal. The relationship of image radius to SNR is

shown in Figure 4.23.
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Figure 4.23: Effect of noise on image radius.

While the sharpness of the image is dependent on SNR, it is seen that the noise

must be around SNR = 10 dB before image degradation occurs. This is because

reflection from the target is quite large, and the time-domain peak extends above the

noise until the noise level becomes as large as the reflection.

The target images as a function of SNR are shown in Figures 4.24-4.33. Though

the image radius at SNR = 4 dB is not as large compared to the radii produced by

high sample periods and pulse widths, at the low SNR the conducting strip still blends

into the background, as seen in Figure 4.32. As the noise increases, the background

becomes uniform and no images can be discerned.
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Figure 4.24: Conducting strip image constructed using a SNR = 20 dB.
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Figure 4.25: Conducting strip image constructed using 3. SNR = 18 dB.
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Figure 4.26: Conducting strip image constructed using a SNR = 16 dB.
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Figure 4.27: Conducting strip image constructed using a SNR = 14 dB.
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Figure 4.28: Conducting strip image constructed using 3 SNR = 12 dB.
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Figure 4.29: Conducting strip image constructed using a SNR = 10 dB.
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Figure 4.30: Conducting strip image constructed using a SNR = 8 dB.
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Figure 4.31: Conducting strip image constructed using a SNR = 6 dB.
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Figure 4.32: Conducting strip image constructed using a SNR = 4 dB.
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Figure 4.33: Conducting strip image constructed using 3. SNR = 2 dB.

4.1.4 Digitization

In a time-domain radar system a fast A/D converter is used to sample the time

signal, digitizing the sample using a certain number of bits. Using a low number of

bits results in losing smaller signals by rounding, and poor accuracy in larger signals.

It is anticipated that dependence of the sharpness of the image on the number of bits

used in the A/D converter will be fairly consistent until the number of bits becomes

too small. At that point the image should degrade rapidly.

In order to implement the digitization process, the simulated time data is dis-
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cretized into bins of size (1 based on the number of A/D bits, according to the formula

R

d=2N_1. (an 

Here R represents the range of the intensity and N the number of bits. Every point

in the time data must be put into a bin. This is done using the equation

bin 2 31min + round [W] d (4.2)

With this digitized version of the time data, images are created using different num-

bers of bits. The images are shown in Figures 4.35-4.44. Figure 4.34 shows how the

image radius depends on the number of bits used.
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Figure 4.34: Effect of digitization on image radius.

As seen in the figure there are two jumps in image radius. From 12 to 9 bits
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the constant image radius results from the conducting strip peak intensity values not

being effected by the rounding into bins. The jumps between 9 and 8 bits, and 7

and 6 bits result from a threshold bit value where the peak values new round poorly

into large bin sizes. From 7 to 2 bits the image radius is so high that decreasing the

bits can not decrease the image quality anymore. The subtle changes in intensity

become lost and soon, as seen in Figure 4.44, the strip completely disappears into

the background. This results from having too few bits to differentiate between the

strip intensity and the background. However, it is interesting to note that the ghost

images of the strip are actually removed from the image with decreasing bit numbers

since these weaker artifacts fall into the first bin.
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Figure 4.35: Conducting strip image constructed using the number of bits = 12
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Figure 4.36: Conducting strip image constructed using the number of bits = 11.
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Figure 4.37: Conducting strip image constructed using the number of bits : 10.
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Figure 4.38: Conducting strip image constructed using the number of bits = 9.
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Figure 4.39: Conducting strip image constructed using the number of bits = 8.
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Figure 4.40: Conducting strip image constructed using the number of bits = 7.
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Figure 4.41: Conducting strip image constructed using the number of bits = 6.
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Figure 4.42: Conducting strip image constructed using the number of bits = 5.
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Figure 4.43: Conducting strip image constructed using the number of bits = 4.
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Figure 4.44: Conducting strip image constructed using the number of bits 2 3.

4.2 Frequency Domain Analysis

The important parameters concerning the frequency domain radar system are band—

width (equivalent to pulse width in the time domain system), sample rate, SNR, and

digitization. The effect of these parameters on image quality is investigated by ma-

nipulating the simulated frequency domain data before the inverse Fourier transform

is taken.
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4.2. 1 Bandwidth

Increasing the bandwidth of a stepped-frequency radar system increases the reso-

lution of the images generated by the system. To investigate this effect with the

simulated data, the frequency domain data is multiplied by a Gaussian modulated

cosine windowing function centered on 8 GHz. The equivalent frequency pulse width,

T , is changed to determine the bandwidth, (2, as given by

Q = —1—4ln 2. (4.3)

7”"

The dependence of image radius on bandwidth is shown in Figure 4.45.
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Figure 4.45: Effect of digitization on image radius.

The following figures show the decrease in image quality as the bandwidth in-

creases. Following the progression though each of the images, the conducting strip

and the lossy dielectric slab become progressively unclear. When the bandwidth is
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at 5.81%, as seen in Figure 4.55, the conducting strip is nearly indiscernible from the

background; this makes locating the object behind the lossy dielectric slab almost

impossible.
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Figure 4.46: Conducting strip image constructed using a bandwidth = 110.38%.
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Figure 4.47: Conducting strip image constructed using a bandwidth 2 36.75%.
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Figure 4.48: Conducting strip image constructed using a bandwidth = 22.13%.
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Figure 4.49: Conducting strip image constructed using a bandwidth ; 15.76%.
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Figure 4.50: Conducting strip image constructed using a bandwidth = 12.26%.
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Figure 4.51: Conducting strip image constructed using a bandwidth = 10.03%.
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Figure 4.52: Conducting strip image constructed using a bandwidth = 8.49%.
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Figure 4.53: Conducting strip image constructed using a bandwidth = 7.35%.
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Figure 4.54: Conducting strip image constructed using a bandwidth = 6.49%.
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Figure 4.55: Conducting strip image constructed using a bandwidth 2 5.81%.

4.2.2 Sampling Rate

In a frequency domain system, inadequate sample rate is the main cause of aliasing.

When the data is sampled at too large a frequency step size, the transformed time

domain data wraps around such that later events overlap with earlier events. This

effect produces an image with scattering centers that should be separated in space, but

instead overlap. To investigate the affect of aliasing on image quality, the frequency

step size of the simulated data is increased and the images are formed. The start and

stop frequency, 20 MHz to 16 GHz, remains the same in every case, but the number

of data points within this band is changed. The resulting images are shown in Figures

4.57-4.62, and the computed image radius is shown in Figure 4.56. As the frequency
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step size increases, the image radius widens and the image becomes blurrier. At a step

size of 160 MHz (100 samples) the conducting strip is lost completely and therefore

no image radius is available.
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Figure 4.56: Effect of sampling rate on image radius.

As seen in the figures, artifacts become more prominent as the sample step size

is increased. In Figure 4.58 the ghost of the strip is brighter, which could result in

false identification of another conducting strip. Figure 4.60 shows multiple artifacts

around the conducting strip creating background noise and producing a larger image

radius. The conducting strip is completely blends into the background in Figures 4.61

and 4.62.
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Figure 4.57: Conducting strip image constructed using a sampling rate of Af = 20

MHz.
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Figure 4.58: Conducting strip image constructed using a sampling rate of Af = 40

MHz.
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Figure 4.59: Conducting strip image constructed using a sampling rate of Af = 60

MHz.

113



    

-2 -1 0 1 2

Figure 4.60: Conducting strip image constructed using a sampling rate of Af = 80

MHz.
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Figure 4.61: Conducting strip image constructed using a sampling rate of Af = 100

MHz.
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Figure 4.62: Conducting strip image constructed using a sampling rate of Af = 120

MHz.

4.2.3 Signal-to—Noise Ratio

The same SNR issues seen with time domain data can occur in the frequency domain.

To investigate the effect of SNR on images created using frequency-domain data,

white Gaussian noise was added directly in the frequency domain using the program

WaveCalc. In this case, the SNR is defined as the ratio of signal power to noise power

(as opposed to a ratio of amplitudes as in the time domain). Figure 4.63 shows the

dependence of image radius on SNR.
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Figure 4.63: Effect of the SNR on image radius.

This graph shows that image radius increases with decreasing SNR. Some discrep-

ancies exist wherein the image radius decreases with the decrease of SNR. This may

result from a wrong threshold value or a rogue peak of intensity showing up in the

noise. Figures 4.64 - 4.73 show the images created with various values of SNR. As

expected, the presence of noise makes it difficult to locate the strip.
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Figure 4.64: Conducting strip image constructed using a SNR = 44 dB.
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Figure 4.65: Conducting strip image constructed using a SNR = 42 dB.
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Figure 4.66: Conducting strip image constructed using a SNR = 40 dB.
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Figure 4.67: Conducting strip image constructed using a SNR = 38 dB.
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Figure 4.68: Conducting strip image constructed using a SNR = 36 dB.
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Figure 4.69: Conducting strip image constructed using a SNR = 34 dB.
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Figure 4.70: Conducting strip image constructed using a SNR = 32 dB.
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Figure 4.71: Conducting strip image constructed using a SNR = 30 dB.
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Figure 4.72: Conducting strip image constructed using a SNR = 28 dB.
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Figure 4.73: Conducting strip image constructed using a SNR = 26 dB.

4.2.4 Digitization

Digitization in a frequency domain system takes place directly in the frequency do-

main. To construct the images, the data is transformed into the time domain. An

important consideration is that in a frequency domain system, the reflection from the

target cannot be separated from the flash in the front of the barrier, as it can in a

time domain system (by using a time window). Thus, the target signal may have a

larger discretization error than with the time domain system.

Digitizing is done exactly as in the time domain, by assigning data to discrete

bins. The signals are moved into bins depending on the bin size described in (4.2),

and digitized based on (4.1). Figure 4.74 shows the image radius as a function of the
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number of bits used to represent the data. Figures 4.75 - 4.85 show the images for

various numbers of bits used.
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Figure 4.74: Effect of digitization on image radius.

A different type of blurring is seen than was observed with the digitization of the

time-domain data, and the target can just barely be distinguished with a discretiza-

tion of 4 bits.
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Figure 4.75: Conducting strip image constructed using the number of bits = 12.
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Figure 4.76: Conducting strip image constructed using the number of bits = 11.
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Figure 4.77: Conducting strip image constructed using the number of bits = 10.
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Figure 4.78: Conducting strip image constructed using the number of bits = 9.
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Figure 4.79: Conducting strip image constructed using the number of bits = 8.
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Figure 4.80: Conducting strip image constructed using the number of bits = 7.
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Figure 4.81: Conducting strip image constructed using the number of bits = 6.
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Figure 4.82: Conducting strip image constructed using the number of bits = 5.
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Figure 4.83: Conducting strip image constructed using the number of bits = 4.
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Figure 4.84: Conducting strip image constructed using the number of bits = 3.
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Figure 4.85: Conducting strip image constructed using the number of Bits = 2.

4.3 Two Conducting Strips

The parameter analysis is continued to compare the performance of the ultra—wide

band short—pulse and stepped frequency radar systems when imaging multiple targets.

Simulated data is computed at 21 different transmitter/receiver positions, images are

created for different parameter sets and the sharpness of each image is analyzed. As

seen in Figure 4.86, the multiple targets used are two conducting strips.
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Figure 4.86: Parameters of two conducting strip study

The program used to compute the field scattered by a single conducting strip

needs to be modified only slightly to accomodate scattering by the two conducting

strips shown in Figure 4.86. To compute the field scattered by the two strips, a largef

conducting strip of 0.80 m is first used to fill the Amn and bmn matrices of equations

(2.159) and (2.149). Then the entries corresponding to the 0.4 m gap between the

two strips are removed from these two matrices by replacing the stored values with

zeros. This models two strips of 0.2 m' in length, separated by a gap of 0.4 In.

The scattered field from the two conducting strips is found by first solving the

matrix equation (2.148). The solution is the complex current at each partition on

the two conducting strips. The total field is then determined at the receiver positions

by adding the scattered field from the known current on the conducting strips to the

incident field.

When the pulse width is altered in both the frequency and time domain, the

image radius changes for both conducting strips allowing for optimization of these

parameters in an actual prototype. Only the pulse width in the time domain and the

bandwidth in the frequency domain is examined in this section for multiple targets.
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4.3.1 Pulse Width

With the geometry parameters of Figure 4.86, values of the computed image radii are

shown in Figure 4.87.
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Figure 4.87: Effect of pulse width on image radius of two conducting strips.

This figure demonstrates that increasing the pulse width enlarges the image radii

which corresponds to an increase in the blurring of the strips. The left and right

strips both increase with similar tendencies as the pulse width expands. The images

of the different pulse widths are displayed in Figures 488- 4.97. When the pulse width

reaches 0.5 ns, shown in Figure 4.92, the conducting strips blend together becoming

one large conducting strip. Thus, a pulse width of less then 0.5 ns is needed resolve

these multiple targets. In Figure 4.94, where the pulse width is 1.5 ns, the image of

the conducting strips start to blur into the background. The size, position, intensity,

and shape of the strips cannot be determined when the pulse width is larger then 1.5

US.
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Figure 4.88: Two conducting strip image constructed using a pulse width of T = 0.05

HS
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Figure 4.89: Two conducting strip image constructed using a pulse width of 7' = 0.10
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Figure 4.90: Two conducting strip image constructed using a pulse width of 7' = 0.15
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Figure 4.91: Two conducting strip image constructed using a pulse width of 7' = 0.25
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Figure 4.92: Two conducting strip image constructed using a pulse width of 7' = 0.50
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Figure 4.93: Two conducting strip image constructed using a pulse width of T = 1.00
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Figure 4.94: Two conducting strip image constructed using a pulse width of 7' = 1.50
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Figure 4.95: Two conducting strip image constructed using a pulse width of 7- = 2.00
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Figure 4.96: Two conducting strip image constructed using a pulse width of T = 2.5

D8
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Figure 4.97: Two conducting strip image constructed using a pulse width of T = 3.00

11S

4.3.2 Bandwidth

As stated before, increasing the bandwidth of a stepped-frequency radar system in—

creases the resolution of the generated images. The dependence of image radii 0n

bandwidth for the two conducting strips is shown in Figure 4.98. Since the con-

ducting strips are positioned symmetrically about the z—axiz, the image radii seen

in Figure 4.98 increase almost at the same rate. As the bandwidth gets smaller the

image radius increases causing blurriness for the targets.
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Figure 4.98: Effect of bandwidth on image radius of two conducting strips.

Figures 4.99 - 4.108 show the decrease in image quality as the bandwidth increases.

Following the progression though each of the images, the conducting strips and the

barrier become progressively unclear. When the bandwidth is at 22.13%, as seen in

Figure 4.101, the conducting strips are nearly indiscernible from one another; this

makes locating the separate objects almost impossible. At a bandwidth of 8.81%,

as shown in Figure 4.108, the two conducting strips have almost completely blended

into the background.
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Figure 4.99: Two conducting strip image constructed using a bandwidth of 110.38%
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Figure 4.100: Two conducting strip image constructed using a bandwidth of 36.75%
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Figure 4.101: Two conducting strip image constructed using a bandwidth of 22.13%
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Figure 4.102: Two conducting strip image constructed using a bandwidth of 15.76%
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Figure 4.103: Two conducting strip image constructed using a bandwidth of 12.26%
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Figure 4.104: Two conducting strip image constructed using a bandwidth of 10.03%
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Figure 4.105: Two conducting strip image constructed using a bandwidth of 8.49%
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Figure 4.106: Two conducting strip image constructed using a bandwidth of 7.38%
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Figure 4.107: Two conducting strip image constructed using a bandwidth of 6.49%
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Figure 4.108: Two conducting strip image constructed using a bandwidth of 5.81%
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Chapter 5

Experiment

A time—domain laboratory system [16] was constructed to investigate whether the

image techniques used with simulated data in the parameter study can be replicated

in practice. The laboratory system is not a dedicated radar, but rather uses standard

instrumentation .

This time-domain data was acquired using the MSU reflectivity arch range. This

arch range consists of two horn antennas, which can be arbitrarily located on an arch

of 20 ft in diameter. As seen in Figure 5.1, the transmitting and receiving wideband

TEM-horn antennas remain stationary while the barrier and strip target are moved,

providing equivalent results to moving the transmit/receive antenna pairs, as done

with the simulated data, and thereby simulating a rail SAR. The transmitting and

receiving antennas are American Electronic Laboratories H-1498 TEM horns each

with a bandwidth of 2 to 18 GHz.
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Figure 5.1: Geometry of arch-range scattering system at MSU.

5.1 Experiment Set up

A 4 ft by 8 ft barrier was constructed using 1 /2 inch construction drywall mounted

on pine wood of dimensions 2 inches by 4 inches. The barrier is able to roll by using

small caster wheels. A conducting strip was constructed using a 2 in by 8 ft segment

of aluminum tape applied to a low-density styrofoam column supported 2 ft behind

the barrier. The time domain response is measured using a Hewlett Packard digital

sampling oscilloscope (DSO) model HP54750A. As seen in Figure 5.2, this device has a

time-domain—reflectometer/time-domain-transmission (TDR/TDT) plug-in module,
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model HP54753A, which provides 20 GHz and 18 GHz channels for the oscilloscope.

Bounda

   
Transmitting

Horn
   

  

Receiving

Horn
  

Whom

 Digital Sampllng

  
PulseGem

Figure 5.2: Time domain scattering measurement configuration.

This TDR/TDT device has an integrated step generator, which sends steps from

channel 3 with a rise time of 45 ps and an amplitude of 200 mV. This unit triggers

a step generator made by Picosecond Pulse Labs (PSPL), part number 4015B. A

remote pulse head (PSPL 4015RPH) follows the pulse generator and creates another

step. The step signal is sent into a PSPL 5208—DC pulse-generating network where a

pseudo-Gaussian pulse signal is generated. This pulse, shown in Figure 5.3, is applied

to the transmitting antenna.
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Figure 5.3: Pulse generated by the PSPL 5208—DC pulse generating network.

The frequency spectrum of the generated pulse can be determined by examining

its Fourier transform, which is shown in Figure 5.4. It is seen that the pulse has a

bandwidth of approximately 20 GHz.
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Figure 5.4: Spectrum of the generated pulse.

Although the antennas are positioned as close to one another as possible to simu—

late a monostatic set up, there still exists a bistatic angle of 9b = 14.20. The position

of the antennas with respect to the target is shown in Figure 5.5.
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Figure 5.5: Location of transmitting and receiving antennas.

Channel 4 on the HP54753A is used to receive the signal by sampling the incoming

voltage. A time window of 10 ns at 1 ns/div is used with 1024 sample points, giving

a sample period of about 0.01 ns or an equivalent sample rate of 100 Gs/s. Note

that this is significantly faster than the minimum required sample rate of 5 Gs/s

identified in the parameter exploration section of this report. The sampled signal is

average within the D80 256 times to increase the SNR. The received signal is stored

in a memory location in the D80. Clutter is eliminated by also storing a measured

background signal with no barrier or target present, which is subsequently subtracted

from the target signal.

Target data was measured for 21 equally spaced barrier positions spread over a

distance of 1.77 m, as shown in Figure 5.6.
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I 21 different transmitter/receiver positions
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Figure 5.6: Experimental setup.

It is important to note that thermal drift of the instruments can disturb the

results. Therefore, the equipment should warm up for a minimum of one hour before

measurements are taken. Also, the equipment is vulnerable to electrostatic discharge.

To eliminate this concern, one should always be grounded while taking measurements.

5.2 Experiment Calibration

The scattering measurements stored in the D80 are affected by the transfer functions

of the antennas (HT(f), HR(f)), the lenses (HTL(f), HRL(f)), mutual interactions

between the antennas (HA(f)), interactions between the target and its surroundings

(HSC(f)), and arch-range clutter (HC(f)). Therefore, a calibration procedure is

necessary to recover the target response. A block diagram of the measurement system

[17] is shown in Figure 5.7.
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Figure 5.7: Block diagram model of measurement system.

From Figure 5.7 the waveform of an unknown target is formulated as

am = E(f)HT(f)HR(f){HA(f)

+HTL(f)HRL(f) [Han + H500) + Ham] } + N(f) (5.1)

where Hg(f) is the system transfer function being solved for and N(f) is the envi-

ronment noise. A second measurement is done to find the background response (with

the target absent) which is used to obtain Hg(f) The background measurement is

subtracted from the unknown target response. When the time between these mea-
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surements is long, the subtraction process will worsen from small changes in the test

environment. The formulated response for the background is

Rb(f) = E(f)HT(f)HR(f) {HA(f) + HTL(f)HRL(f)HC(f)} + N(f)- (5-2)

Subtracting the background response from the target response thus gives

Raw) = S(f) [Han + HSCm] . (5.3)

where S( f) is the system transfer function given by

3(f) = E(f)HT(f)HR(f)HTL(f)HRL(f). (5-4)

With this system transfer function the unknown target response can be found. A

theoretically known response is measured to determine S(f) A conducting plat is

chosen as the known target (calibrator) because its theoretical response is —1 [9].

The background-subtracted plate response is given as

RC—bU) = 80) [Hg(f) + Hscml (5.5)

where Hg(f) = —1 is the theoretical response of the plate. Absorbers have been

placed around the targets in the reflectivity arch range to reduce the mutual in-

teractions. Therefore, the mutual interaction term HSC(f) can be assumed to be

negligible or can be eliminated using time gating. The system transfer function is

then found to be

_ RC_b(f)
Sf— , 5.6H Hg“) ( >
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and the unknown target response is found using

Hfgm = W. (57)

Substituting (5.6) into (5.7) results in

, _R._b(f>Hg<‘(f)
Hsm— RC—b(f)
 (5.8)

To demonstrate the calibration process, the time-domain response of a background

subtracted conducting plate is shown in Figure 5.8.

 

.
0
o N

I

  l
l
’

‘
I

I
r

M
e
a
s
u
r
e
d
S
i
g
n
a
l

(
V
)

_
o

o

5
2

8 T

-0.06 -

   
 

'0-08'1.L.L...m..rjnn.4...1

2 4

Figure 5.8: Raw measured waveform for a conducting plate.

First, this signal is transformed into the frequency domain using a Fourier transform

and truncated between 2.0 — 18 GHz, which is the band specification of the anten-

nas. This spectrum is then divided by the theoretical plate response of —1, and the

resulting system transfer function is shown in Figure 5.9.
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Figure 5.9: System transfer function.

With the system transfer function obtained, the target response is found by apply-

ing (5.7). A gaussian modulated cosine is used to window the function with a width

of T = 012713 and centered at 10 GHz. Then, to complete the calibration process the

results are transformed back into the time domain.

5.3 Experiment Results

The image created using the experimental data is shown in Figure 5.10 . From this

figure it can be seen that the barrier has an approximate width of .1 m and the

conducting strip is located at about .6 m from the back of the barrier.
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Figure 5.10: Image of barrier and strip created using time—domain response at re-

sponses measured at 21 different transmitter/receiver positions.

The image radius of this experimental image is 2.61 cm. Comparing this result

to those simulated with the FORTRAN program shows a promising concentration

of conducting strip intensities. This suggests that the time domain imaging system

can provide accurate images of a target located behind a lossy barrier, validating the

simulations results.
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Chapter 6

Conclusion

In this thesis, a two-dimensonal canonical problem is established that allows the

affects of various radar parameters on an ultra-wide band short-pulse and a stepped

frequency radar system to be studied. The canonical problem consists of a line source

positioned above a lossy dielectric slab and a target located behind the slab. The

interrogation cylindrical waves produced by the line source impinge on the barrier

and interact with targets placed behind the barrier. The resulting scattered field is

analyzed in the frequency domain at specific discrete frequencies. The simulated data

acquired is similar to data resulting form a UWB stepped frequency radar system. A

time-domain system is established by using an inverse Fourier transform to convert

the data into the time domain.

Analyzing the performance of these two radar systems is achieved by comparing

images which are constructed using a simple scattering-center technique. Factors such

as pulse width, sampling rate, number of bits, and SNR are examined in the time

domain to determine their affect on the quality of the image. Bandwidth, sampling

rate, SNR, and number of bits are examined in the frequency domain. In addition, a

laboratory time-domain radar system was constructed using instrumentation to allow

a validation of the simulation results.
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Tables 6.1 and 6.2 reveal the dependence of target image on various important

parameters. These results can be summarized by providing a set of minimal require-

ments for producing a good image, and these can be useful for designing an actual

radar system. It must be emphasized that these requirements are subjective, since

they depend on the desired image quality, and are relative to the barrier and target

parameters used in the simulation.

 

Pulse Width Sampling Rate SNR Digitization r

S 0.10 ns 2 5 Gs/s 2 15 dB 2 6 Bits

Table 6.1: Minimum system requirements for a time domain radar system.

 
Bandwidth Frequency Stepsize SNR Digitization
 

2 36.75 % S 40 MHz 2 40 dB _>_ 6 Bits

Table 6.2: Minimum system requirements for a frequency domain radar system.

In chapter 5, the theory was verified using experimental results. An actual tran-

sient pulse with a 2—18 GHz bandwidth was used for measurements to simulate a

realistic time domain radar system. From the results of the measurements, it is con-

firmed that given certain radar parameters, a target can be imaged behind a lossy

barrier.

6.1 TOpics for further study

Possible follow-studies include the analysis of different targets behind a dielectric

slab. An in-depth look at different shaped objects would be useful in designing a

radar system with optimized system parameters. In addition to examining different

objects, an increase in the number of targets located behind the barrier would provide
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further insight into system performance. Next, a method for quantifying the signal-

to—clutter ratio and the ghosting which results from the multiple reflections from

the barrier and target could prove useful. Finally, with the time domain system it

would be helpful to look at the affects of time-jitter, and to alter the number of

transmitter/receiver positions, on the image radius.
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Appendix A: Fortran Code for

Scattered Electric Field

PRleRAM Electric-Field_Scattered

f***************************************************

! For Dielectric Slab

.1 Scattering by a strip using MoM— TM

.' Then Sending the wave back through slab *

f***************************************************

I

f DECLARING VARIABLES TYPES

INIPLICIT REAL=I<8 (A—H,O—Z)

PARAMETER (MATSIZE2512)

PARAMETER (LIMIT=4096 ,IENW=4*LIMIT ,KEY=4)

PARAMEIER (TEST=1.D—-13)

(I)1\/lPLEX*16 Anm(l\/IATSIZE,1\-1ATSIZE) , Bm(MATSIZE) , DIAG (MATSIZE)

OONIPLEXHe J, K, x

INTEGER IPVT(MATSIZE), IFLAG, NN, MM M, N, I, 11, AA

REAL1<8 GAIN/MA, PI, MU, EPSO, EPSR, EPS, FREQ, w, KO, v

REAhs OMEGA, A, B, RK, 2, H, T, SIG, zs, Yobs, Zobs, YS

REAus DELTA, YM, YN, ANSI, ANSQ, ANS3, ANS4, ANss, ANSG

REAL*8 ANS7, ANS8, Emag, Ephase, ANSTl, ANST2, ANST5

REAMS ANST6, ANST8, ANST7, WORKGENW), FINTR
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REAL=I=8 FINTI, FINT, AINTR], AINTR2, AlNTIl, AINTI2

INTEGER IVVORK(LIMIT)

EXTERNAL FINTR, FINTI, FINT, AINTRl, AINTR2, AINTIl, AINTI2

(XXVIPLEXHG ZINT, Umn, M11111, Ben, d1, d2, CURR, mum

REAL WALL, OBS-Y, OBS_Z, SOURCE_Y, SOURCEZ, STRIP, WIDTH

REAL PARTIS, POINTS, ENDrREQ, FREQSTEP

100mm TO ALL or PROGRAM

(mam /NA1\.1E1/YI\'I, DELTA, M, N

(Imam /NAMI22/K0, K, OMHEA, CURR, MU, PI, J

(mix-m /NA1\-IEB/ 2, H, T, 28, YS, Y

(mam /NA1\1E}4/ ECURR, Yobs, Zobs

!DECLARING VARIABLES

PI=3.14159265358979323846D0

J = DCMPIX(O.D0,1.D0)

MU = 4.DO*PI*1.D—7

EPSO = 8.854D—12

W= .075D0

WIDTH 2W

T = .1524D0

WALL = T

ZS = —.8D0
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STRIP = ZS

YS = 0.01D0

SOURCEY = YS

Zobs = .6524d0

OBS_Z = Zobs — T

Yobs = —0.00dO

OBS_Y = Yobs

EPSR = 6.D0

EPS = EPSO*EPSR

SIG = .OOIDO

FREQ = 20.d6

OPEN(10,FILE=’Electric_Field-Scattered_Job_11.DAT’,STATUS=’

UNKNOWN)

OPEN(14,FILE=’PARAI\*IEIERS.DAT’ ,STATUS=’UNKNOWN’)

OPEN(13 ,FILE=’Center-Current-big_strip .DAT’ ,STATUSz’UNKNOWN’)

partis = 20.

DO 1:1, 800

Print *, Freq

if (2*W*FREQ*20.d0/(3.D8) .LT. 10.(.10) then

NN=20

else

NN = 2*W*FREQ*20.d0/(3.D8)

end if
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DELTA = 2 . D0*W/NN

z = —.8d0

H = .6524d0

SOURCEZ = H — T

Y8 = 0.01D0

OMEGA = 2.DO*PI*FREQ

K0 = OMEARSQRHEPSOHVIU)

X: DCMPIx(EPSR,—SIG /(OI\K3A*EPSO) )

K = K0*SQRT(X)

CURR = DCt-iPLX(1.D0,0.DO)

ESUM = 0 . D0

!DEFINING YM AND CREATING Em MATRIX

DO M=1, NN

YM = —w + (l\=I*1.DO—.5D0)*DELTA

Y = YM

CALL BENINT (FINTR,O.dO,10.d0*K0,ANSI

)

CALL BENINT (FINTI ,0. d0 , 10. dO*K0,ANS2

)

Bm(M) = —2.D0*ANSl — 2.DO*J*ANS2

ICREATING Amn MATRIX

Do N=M, NN

YN = —w + (N*1.D0—.5D0)*DELTA
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ENDDO

ENDDO

DOM: 2, NN

CALL BENINT (AINTRI ,0 . D0 ,SQRT(K0) ,

ANS3)

CALL BENINT (AINT11,0.DO,SQRT(KO),

ANS4)

CALL BENINT (AINTR2,0.d0,10.

d0*k0 ,ANSS)

CALL BENINT (AINT12,0.D0,10.

d0*k0 ,ANSG)

E u 2 . D0*ANS3+J *2.D0*ANS4

D2 = 2.D0*J*(ANSEH—J*ANS6')

an -—— D1 + D2

a = DELTA/2.D0

b = (M—N) *DELTA

rk = K0

call Intel (A,B,RK,ZINT)

Umn = —((MU*OMH}A)/PI)*ZINT

Amn(M,N) = Umn + an

DON=1,M—1

ENDDO

ENDDO

Amn(M,N) = Amn(N,M)
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ISOLVING FOR THE CURRENTS

CALL IXDMPC (512 ,NN,Anm,IPVT,DIAG)

CALL SOLVEC (512 ,NN,Anm,IPVT,Bm)

lSending current produced waves back through slab

999

Y = Yobs

H = T — ZS

Z = T — Zobs

DOM=1, NN

YM = —w + (l\1*1.DO—.5DO)*DELTA

vs = 'Y1\1

CURR = DELTA*Bm(M)

CALL BENINT (FINTR,0.d0, 10.

d0*K0, ANS7)

CALL BENINT (FINTI,0.d0, 10.

d0*K0, ANSS)

EBUM -_- ESLM + 2.D0*(ANS7 + J*ANS8)

END DO

01 = FREQ/169

O2 2 DREAL(EBUM)

03 = DII\1AG(ESU1\1)

WRITE (10,999) 01,02,03

format (3(1x,e12.5))

PRINT *, CENTER CURRENT=, ABS(BI\I(I.d0+NN/2.d0))
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write(13,999) 01, DREAL(Bl\1(1.d0-+NN/2.d0)), DIMAG(BI\1

(1.d0+NN/2.dO))

FREQ = FREQ + 20.D6

END DO

POINTS 2 I

ENDFREQ = FREQ

PREQSTEP = FREQ/POINTS

CLOSE (10)

close (13)

WRITE(14 ,*) ’SLAB THICKNESS = ’, WAIL

W'RITE(14,*) ’POISTION OF OBSERVATION POINT ALONG Y = ’, OBS_Y

WRITE( 14 ,*) ’DISTANCE OF OBSERVATION POINT FROM WALL = ’ ,

OBS-Z

WRITE(14 ,1:) ’POSITION OF SOURCE ALONG Y = ’, SOURCEY

WRITE(14 ,*) ’DISTANCE OF SOURCE POINT FROM WAIL = ’, SOURCEZ

WRITE(14 ,*) ’DISTANCE OF STRIP FROM WALL = ’, STRIP

WRHE(14,*)’W1DI'H OF STRIP = ’, WIDTH

WRITE(14 ,*) ’NUMBER OF PARTITION POINTS = ’, PARTIS

WRITE(14 ,*) NUMBER OF POINTS = ’, POINTS

WRITE(14,*) ’STOP FREQUENCY = ’, ENDFREQ

WRITE(14 ,*) ’STEP FREQUENCY = ’, FREQSTEP

close (14)

END
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111111111llllllllllllllllllllllIlllllllll111111111111111111111
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

REAL*8 FUNCTION Fintr (KY)

REAL*8 KY

EXTERNAL Fint

CI)MPLEX*16 Fint

Fintr = DREAL (Fint (KY))

RETURN

END

11111111lllIlIlllllllllllllllllllllllllllllllllllllll111111111
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

REAL>I<8 FUNCTION Finti (KY)

REAL>1<8 KY

EXTERNAL Fint

mMPLEXH6 Fint

Finti = DIMAG (Fint(KY))

RETURN

END

1111111l11111111111111111111111111111111!lllllllllllllllllllll

REAL>I<8 FUNCTION Aintr1(KY)

REAL*8 KY

EXTERNAL Aintl

(I)MPLEX*16 Aintl
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Aintrl = DREAL (Aint1(KY))

RETURN

END

11111111111111lllllllllllllllllll1111lllllllllllllllllllllllll

REAL=I=8 FUNCTION Ainti1(KY)

REAL>I<8 KY

EXTERNAL Aintl

(I)MPIEX*16 Aint1

Aintil = DIMAG (Aint1(KY))

RETURN

END

11111111111111lllllllllllllllllllllll1111111111111111111111111

REAL=I=8 FUNCTION Aintr2 (KY)

REAL*8 KY

EXTERNAL Aint2

(I)MPLEX*16 Aint2

Aintr2 = DREAL (Aint2(KY))

RETURN

END

111111111llll11111llllllllllllllllllllllllIIIlllllllllllllllll
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

REAL*8 FUNCTION Ainti2 (KY)

186

~
‘
.

.
‘
s
l
'
i
-
“

‘
3
5
"
L
A
Y
:

 ‘
1
"
"
a
n
.

 



REAL>I<8 KY

EXTERNAL Aint2

CDMPLEXarl6 Aint2

Ainti2 = DIMAG (Aint2(KY))

RETURN

END

1111111Illlllll111lllllllllllllllllllllllll111111lllllllllllll
oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

(X)MPLEX*16 FUNCTION Fint (KY)

CDMPLEXHG P, Q, J, K, CURR

integer M, N

REAL>I<8 MU, PI, Z, H, T, ZS, Y, OMEBA, KY, K0, YM, DELTA, YS

(IIVINUN /NA1\1E1/YM, DELTA, M, N

(ITWWIN /NAME2/K0, K, Ohm CURR, MU, PI, J

(DWV'KTN /NAME3/ Z, H, T, ZS, YS, Y

IF (KO*KO .LT. KY*KY) THEN

P = —1.D0*J*SQRT(KY*KY—K0*K0)

ELSE

P = SQRT(K0*K0—KY*KY)

END IF

Q = SQRT(K*K—KY*KY)

IF (DREAL (Q) .LT. 0.D0) THEN

Q = —1.DO*Q
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ENDIF

Fint = —(J*OMEI}A*CURR*MU/(2.d0*PI))*(COS(KY*(

Y—YS) ) ) *EXP(J*P*(Z—H+T) ) /((—P*P/Q) *SIN (Q*T

)—Q* SIN (Q*T) +2.D0*J*P*COS(Q*T) )

END

1111Ill1111111111111111111111111111111llllllilllllllllllllllll

(DMPIEXH6 FUNCTION Aintl (TAU)

(I)MPLEX*16 P, Q, J, K, R, CURR

integer M, N

REAL*8 MU, PI, Z, H, T, ZS, OMEEA, KY, K0, TAU, DELTA, RAT,

YM, Y, YS

CDMMON /NAMEI/YM, DELTA, M, N

cmMiN /NAMEZ/K0, K, OMEGA CURR, MU, PI, J

COMMON /NAME3/ 2, H, T, 25, YS, Y

KY=KO—TAU*TAU

IF (K0*KO .LT. KY*KY) THEN

P = —J*SQRT(KY*KY—KO*KO)

ELSE

P = SQRT(K0*KO—KY*KY)

END IF

Q = SQRT(K*K—KY*KY)

IF (DREAL (Q) .LT. 0.DO) THEN

Q = —1.D0*Q
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ENDIF

IF (KY .EQ. 0.D0) THEN

RAT = 1.D0

ELSE

RAT = SIN(KY*DELTA/2.D0) /(KY*DELTA/2.D0)

END IF

R = (( -—P*P/Q) *SIN(Q*T)+Q*SIN (Q*T) ) /((—P*P/Q) *

SIN (Q*T)—Q*SIN (Q*T) +2.d0*J*P*COS(Q*T))

Aintl = —(MU>IOMEI}A*DELTA/(2.DO*PI) ) *(COS(KY*(

M—N) *DELTA) *RAT*R*EXP( J * 2.D0*P*ZS) ) /(SQRT(

KO+KY))

RETURN

END

lilliilllllllllllllllllllllllHllllIllIIIIIHIIIIIIIIHHIIIII

(DMPLEXHG FUNCTION Aint2 (TAU)

(X)MPIEX*16 P, Q, J, K, R, CURR

integer M, N

REAL=I<8 MU, PI, Z, H, T, ZS, OMEEA, KY, KO, TAU, DELTA, RAT,

YM, Y, YS

(13mm /NAI\/IE1/Y1\/1, DELTA, M, N

W /NAME2/K0, K, OMEGA, CURR, MU, PI, J

(IMMON /NAMEB/ 2, H, T, ZS, YS, Y

KY=TAU*TAUi—K0

IF (KO*KO .LT. KYakKY) THEN
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P = -J*SQRT(KY*KY—KO*KO)

ELSE

P = SQRT(K0*KO—KY*KY)

END IF

Q = SQRT(K*K—KY*IQ’)

IF (DREAL (Q) .LT. O.D0) THEN

Q = —1.D0*Q

ENDIF

IF (KY .EQ. 0.DO) THEN

RAT = 1.D0

ELSE

RAT = SIN(KY*DELTA/2.DO) /(KY*DELTA/2.DO)

END IF

R = (Q*Q—P*P)/(—(P*P+Q*Q) —2.DO*P*Q*((1.DO+EXP

(-J *2.DO*Q*T) ) /(1.DO—EXP(-J *2.D0*Q*T) ) ))

Aint2 = —(I‘vIU*OMEI}A*DELTA/(2.DO*PI) ) *(COS(KY*(

M—N) *DELTA) *RAT*R*EXP(J *2.DO*P*ZS) ) /(SQ,RT(

KY+K0))

RETURN

END

HIHIIIHIIHIIHllllillllllillllllllllllllHlllllllIllllllIl
oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

subroutine benint (Func ,mWN,UP, ans)

implicit real*8 (a—h,O—z)
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parameter (limit=4096,1enw=4*limit ,key=5)

parameter(pi=3.14159265358979323846d0)

parameter (test=1.d—18)

real*8 work(1enw), K0

integer iwork(limit)

external Func

call HQAG (Func, down, up, 1.d—200, test, KEY, reSO,

ABSERR, NEVAL, IER, LIMIT, LENW, LAST, IWORK, WORK

)

ans 2 RESO

return

end

llllllllllllllllllllllllllIlllllllllllllllllllllllIlllllllllll

subroutine Intcl (a,bl ,rk , zint)

! computes integral from O to infinity of the function

! sin(ax)cos(bx)/(x*sqrt(rk‘2—x“2))

implicit real=k8 (a—h,o—z)

parameter (limit=4096,1enw=4*limit,key=4)

parameter(pi=3.14159265358979323846d0)

parameter (test=1.d—8)

rea1*8 work(lenw)

real*8 IA,IB,IC,Il,12

complex>k16 zint
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integer iwork(1imit)

external Fint1,Fintg,Fintgb

common /IC1/ aa,bb

common /IC2/ beta

common /IC3/ rrk

! upfact determines upper limit of integration

! for 12

upfact = 6.d0

b = abs(b1)

beta = rk

aa = a

bb = b

rrk = rk

! compute IB

argl = (a+b)*beta

f1 = exp(—arg1)*Ei(arg1) + exp(arg1)*E1(arg1)

arg2 = abS(a—b)*beta

f2 = exp(—arg2)*Ei(arg2) + exp(arg2)*E1(arg2)

if ((a—b) .lt. 0.dO) f2 =—f2

IB 2 (1.dO/(4.d0*beta))*(f1+f2)

! compute IC

down = 0.d0

up = rk
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call [HAG(Fint1, down, up, 1.d—200, test, KEY,

NEVAL, IER, LIMIT, LENW, LAST, IWORK, W)

IC = resO

! compute IA

IA 2 IB—IC

! compute 11

down = 0.d0

up = sqrt(rk)

call UQAG (Fintg, down, up, 1.d—200, test , KEY,

NEVAL, IER, LIMIT, LENW, LAST, IWORK, \MBK)

II = 2.d0*res0

! compute 12

down = 0.d0

up = upfactakrk

call IXQAG (Fintgb, down, up, 1.d—-200, test, KEY,

, NEVAL, IER, LIMIT, LENW, LAST, IWORK, WUiK)

12 = 2.dO*reSO + IA

zint = dcmplx(11,12)

return

end

rea1*8 function Fint1(x)

implicit real*8 (a—h,o—z)

common /IC1/ a,b
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common /IC2/ beta

Fintl = sin(a*x)*cos(b*x)/(beta*beta+x*x)

return

end

real*8 function FWntg(t)

hnpflicit real*8 (a—h,o—z)

common /IC1/ a,b

common /IC3/ rk

x ==rk—t*t

if (x .ne. 0.dO) then

Fintg = Sin(a*x)*cos(b*x)/(x*sqrt(rk+x))

else

Fintg = a/sqrt(rk)

end if

return

end

real*8 function Fintgb(t)

hnpflicit rea1*8 (a—h,o—z)

common /IC1/ a,b

common /IC2/ beta

common /IC3/ rk

x = rk+t*t
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Fintgb = sin(a*x)*cos(b*x)*(1.d0/x — (sqrt(x*x—rk*rk)/(x*x+

beta*beta)))/sqrt(x+rk)

return

end

Real*8 function E1 (X)

 

 

I

! Purpose: Compute exponential integral E1(x)

! Input : x — Argument of E1(x)

! Output: E1 — E1(x) (x > 0 )

!  

IMPLICIT DOUBLE PRECISION (A—H,O—Z)

IF (X.EQ.0.0) THEN

E1=1.0D+300

ELSE IF (x.LE.1.0) THEN

E1=—DLOG(X) +((((1.07857D—3*X—9.76004D—3)*X+5.519968D

—2)*X—0.24991055D0)*X+O.99999193D0)*X—0.57721566D0

ELSE

ESl =(((X+8.5733287401D0) *X+18.059016973D0) *X

+8.6347608925D0) *X+0.2677737343D0

ES2=(((X+9.5733223454D0) *X+25.6329561486D0) *x

+21.0996530827D0) *X+3.9584969228D0

E1=DEXP(—X)/X*ESl/ES2

ENDIF

RETURN

END

real *8 function EI(X)



 
 

I

! Purpose: Compute exponential integral Ei(x)

! Input : x ———— Argument of Ei(x)

' Output: EI —— Ei(x) ( x > 0 )

I
 
 

IMPLICIT DOUBLE PRECISION (A—H,O—Z)

IF (X.EQ.0.0) THEN

EI=—1.0D+300'

ELSE IF (X.LE.40.0) THEN

EI=1.0DO

R=1.0D0

DO 15 K=1,100

R=R>i<K>kX/ (K+1.0D0) “=2

EI=EI+R

IF (DABS(R/EI).LE.1.0D——15) GO TO 20

15 CONTINUE

20 GA=O.5772156649015328D0

EI=GA+DLOG(X)+X*EI

ELSE

EI=1.0DO

R=1.0D0

Do 25 K=1,20

R:R*K/X

25 EI=EI+R
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EI=DEXP(X) /x* E1

ENDIF

RETURN

END

!***********************************************************

SUBROU'TINE IXDMPC (nbig ,N,A,IPVT,DIAG) I5.

3 DMMPOSFS MATRIX A TO TRIANGULAR FORM

i ”H OOMPLEX VERSION HM

l

I
PROM: LINEAR ALGEBRA BY GILBERT SIRANG .I’

 
INTEGER N,IPVT(nbig)

INTEGER NMLI ,J ,K,KP1,M

(DMPLEXH6 A(nbig ,nbig) ,DIAG(nbig)

(I)MPLEX*16 P,T

!

IPVT(N) = 1

NMl = N—l

 
DO 60 K=1,Nl\11

KP1 = K+1

! FIND PIVOT P

M = K

Do 10 I=KP1,N

10 IF (ABS(A(I,K)) .GT. ABS(A(M,K))) M=I

IPVT(K) = M
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IF (M NH K) IPVT(N) = —IPVT(N)

P = A(M,K)

A(M,K) = A(K,K)

A(K,K) = P

DIAG(K) = P

IF (P .EQ. 0.0) GOTO 60

! COMPUTE MULTIPLIERS

20 Do 30 I=KP1,N

30 A(I,K) = —A(I,K)/P

! MERCHANGE RQWS AND (DLUMNS

Do 50 J=KP1,N

T = A(M,J)

A(M,J) = A(K,J)

A(K,J) = T

IF (T .EQ. 0.0) GOTO 50

Do 40 I=KP1,N

A(I,J) = A(I,J) + A(I,K)*T

40 CONTINUE

50 CONTINUE

60 CONTINUE

70 DIAG(N) = A(N,N)*IPVT(N)

RETURN
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END

!***********************************************************

SUBROUTINE SOLVEC (nbig ,N,A,IPVT,B)

I SOLVES MATRIX HQN AX=B WITH A DEIDMHEED BY DCDMPC

INTEGER N,IPVT(nbig)

INTEGER NMl,K,KB,KP1,KI\*'11,M, I F231

(DMPIEXHO A(nbig , nbig) ,B(nbig) 3" I.

(DMPLEX* 16 S

 
I FORWARD ELIMINATION I '

IF (N EC. 1) GOTO 30

 

NMI = N—l

Do 10 K=1,NMl

KP1 = K+1

M = IPVT(K)

S = B(M)

B(M) = B(K)

B(K) = S

Do 10 I=KP1,N

10 8(1) = B(I) +A(I,K)*S

! BACK SUBSTITUTION

Do 20 KB=1,NMl

KMl =N—KB

K = KMl+1
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w
A

F
F
!

A
v

H B(K)/A(K,K)

DO 20 1:1,KMl

20 8(1) =B(I) +A(I,K)*S

30 B(l) =B(1)/A(1,1) a

RETURN

END

 LI:
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Appendix B: Fortran Code for

Incident Electric Field

PR(X}RAM E1ectric-Field_Incident

I***************************************************

! For Dielectric Slab

! Scattering by a strip using MOM— 'IM

! Then Sending the wave back through slab *

!***************************************************

!DECLARING VARIABLES TYPES

IMPLICIT REAL*8 (A—H,O—Z)

PARAMETER (MATSIZE2512)

PARAMETER (LIMIT=4096 ,IEVW=4*LIMIT ,KEY=4)

PARAMETER (TEST=1.D—13)

(DMPLEX* 16 Amn(IVIATSIZEJV’IATSIZE) , Bm(MATSIZE) , DIAG(MATSIZE)

CDMPLEXH6 J, K, X

INTEGER IPVT(MATSIZE), IFLAG, NN, MM, M, N, I, II, AA

REAL*8 GAMMA, PI, MU, EPSO, EPSR, EPS, FREQ, W, KO, OMEEA

REAL*8 A, B, RK, Z, H, T, SIG, ZS, Yobs, Zobs, YS, Y

REAL*8 DELTA, YM, YN, ANSI, ANS2, ANSB, ANS4, ANS5, ANSO

REAL>I<8 ANS7, ANS8, ANSQ, ANSlO, ANSll, ANSI2, Emag, Ephase
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REAL=I=8 “(Ei((IENW) , IINTRl, IINTII , IINTl, IINTR2, IINTIZ,

IINT2

INTEGER IWORK( LIMIT)

EXTERNAL IINTRI, IINTII, IINTl, IINTR2, IINTI2, IINT2

(DMPLEXHG ZINT, Umn, an, Ben, d1, d2, CURR, IBUM, TOTAL,

TOTALl, TOTAL2

real*4 01,02,03

ICIMVON TO ALL OF PROGRAM

(mam /NAME1/YM, DELTA, M, N

COMMN /NAME2/K0, K, OMEGA, CURR, MU, PI, J

COMMON /NAMEB/ 2, H, T, ZS, YS, Y

(13mm /NAME4/ ECURR, Yobs, Zobs

IDECLARING VARIABLES

PI=3.14159265358979323846D0

J = DCMPLX(0.D0,1.DO)

MU = 4.D0*PI*1.D—7

EPSO = 8.854D—12

W: .075D0

ZS 2: ——.8DO

YS = 0.01D0

= .1524D0

Zobs = .6524d0

Yobs = —0.00d0
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EPSR = 6.D0

EPS = EPSO*EPSR

SIG = .OOIDO

FREQ: 20.d6

OPEN(10,FILEz’Electric-Field-Incident-Job_11.DAT’,STATUS=’

UNKNOWN)

DO 1:1, 800

Print *, Freq

if (2*VV*FREQ*40.dO/(3.D8) .LT. 10.d0) then

NN=20

else

NN = 2*W*FREQ*20.d0/(3.D8)

end if

DELTA = 2 . DOarW/NN

Z = Zobs

H = .6524d0

Y8 = 0.01D0

Y = Yobs

OMEGA = 2.D0*PI*FREQ

K0 = Oh'IEEA*SQRT(EPSO*I\/M)

X: DCMPLX(EPSR, —SIG / (OMEEMEPSO) )

K = K0>I=SQRT(X)

CURR = DCIVIPLX(1.D0,0.DO)
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total = 0.D0

CALL BENINT (IINTR1,0.D0,SQRT(K0) ,ANSll)

CALL BENINT (IINTIl ,O.DO,SQRT(KO),AN812)

CALL BENINT (IINTR2,0.d0,10.DO*KO,ANSQ)

CALL BENINT (IINT12 ,0.D0,10.D0*K0,ANSIO)

TOTALI = 2.DO*(ANS11+J*AN812)

TOTAL2 = 2.DO*J*(ANS9+J*ANSIO)

TOTAL = TOTALl + TOTAL2

 

01 = FREQ/1.d9

02 = DREAL(TOTAL)

03 = DIMAG(TOTAL)

WRITE (10,999) 01,02,03

999 format (3(1x,e12.5))

FREQ = FREQ + 20.D6

ENDDO

CLOSE (10)

close (11)

END

llllllliillIHHIIHIIHIlIII!IllllllllllllllllllllllIllllllll

REAL*8 FUNCTION Iintrl (KY)

REAL*8 KY

EXTERNAL Iintl
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(DMPIEX*16 Iintl

Iintrl = DREAL (Iint1(KY))

RETURN

END

llllHllllllllIHlllHllllllIlllllIIHIIIIIHIIIIIllllllllllll

REAL*8 FUNCTION Iintil (KY)

REAL*8 KY

EXTERNAL Iintl

(X)MPLEX*16 Iintl

Iintil = DIMAG (Iint1(KY))

RETURN

END

lllllllllllIllllllllllllllllIlllllllllllllllllIlllllllllllllll
oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

REAL*8 FUNCTION Iintr2 (KY)

REAL>|<8 KY

EXTERNAL Iint2

(DMPLEXIc16 Iint2

Iintr2 = DREAL (Iint2(KY))

RETURN

END

llllllllllllllllllllllllllllIlllllllllllilllllllllllllllllllll
oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
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REAL>I=8 FUNCTION Iinti2 (KY)

REAL>I=8 KY

EXTERNAL Iint2

(DMPLEXHG Iint2

Iinti2 = DIMAG (Iint2(KY))

RETURN

END

IlllllllllllllllllllllllllllllIllIlIllllllllllllHlllllllHlll

(DIV‘IPLEXHG FUNCTION Iintl (TAU)

(I)MPIEX*16 P, Q, J, K, CURR, R

integer M, N

REAL*8 MU, PI, Z, H, T, ZS, Y, OMEGA, TAU, KY, K0, YM, DELTA,

YS

(II/mm /NAME1/YM, DELTA, M, N

(DMNU‘I /NAME2/KO, K, OMEGA, CURR, MU, PI, J

(DI/mm /NAI\IE3/ Z, H, T, ZS, YS, Y

KY=K0—TAU*TAU

IF (K0*K0 .LT. KY*KY) THEN

P = -1.DO*J*SQRT(KY*KY—KO*KO)

ELSE

P = SQRT(K0*K0—KY*KY)

END IF

Q = SQRT(K*K—KY*KY)
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IF (DREAL (Q) .LT. 0.DO) THEN

Q = —1.D0*Q

ENDIF

R = (Q*Q—P*P)/(—(P*P+Q*Q) —2.DO*P*Q* ((1 .DO+EXP

(—J *2.D0*Q*T) ) /(1.D(}-EXP(-—J *2.DO*Q*T) ) ))

 

Iintl = —(CURR*MUICMFI;A/(2.D0*PI))*COS(KY*(Y— E

YS) ) *(EXP(—J*P*ABS(Z—H) )+R*EXP(—J*P*(Z+H €..

—2.DO*T)))/(SQRT(K0+KY)) '

RETURN i .

lllllllllllIllllllIllllIllIIlllllllllllllllllllllllillllllllll

(DMPIEXHG FUNCTION Iint2 (TAU)

CI)MPIEX*16 P, Q, J, K, CURR, R

integer M, N

REAL*8 MU, PI, Z, H, T, ZS, Y, OMEGA, TAU, KY, K0, YM, DELTA,

YS

(IJMMON /NAME1/YM, DELTA, M, N

COMMON /NAME2/KO, K, OMEGA, CURR, MU, PI, J

COMMON /NAME3/ Z, H, T, ZS, YS, Y  
KY=TAU>I<TAU+K0

IF (K0*KO .LT. KY*KY) THEN

P = —1.DO*J*SQRT(KY*KY—KO*K0)

ELSE

P = SQRT(K0*KO—KY*KY)

END IF

Q = SQRT(K*K—KY*KY)
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IF (DREAL (Q) .LT. 0.D0) THEN

Q = —1.DO*Q

ENDIF

R = (Q*Q_P*P)/(—(P
*P+Q*Q) —2.D0*P*Q

*((1.D0+EXP(—J*2.D0*
Q*T))/(1,D0_

EXP(-J*2.DO*Q*T) ) ))

Iint2 = —(CURR*l\/IU*OMEEA/(2.D0*PI))* E

COS(KY*(Y—YS) ) *(EXP(—J*P*ABS(Z—H))

+R=I<EXP(—J*P* (Z—I—H—2.D0*T) ) ) /(SQRT(

K0+KY))

 
END

lllllllllllIIllIIIIIIIIll!IIHIIIIIHIIHIIIIIIIllllllllllllll

subroutine benint (Func ,II)WN,UP, ans)

implicit real*8 (a—h,o—Z)

parameter (limit =4096,lenw=4*limit ,key=5)

parameter(pi=3.14159265358979323846d0)

parameter (test=1.d—15)

real*8 work(lenw), K0

integer iwork(limit)

external Func

call IXQAG (Func, down, up, 1.d—-200, test, KEY, resO,

ABSERR, NEVAL, IER, LIMIT, LENW, LAST, IWORK, WORK

)

ans = RESO
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return

end
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Appendix C: Matlab Imaging Code

clear all

WWMW/WVMVVMWWWWMfWJfoWW/WWWMI

%Loading Files into Matrix %

VWWWWKMVMR“I?(57'67'((3/7(5737"c‘fuMWW/VIW9672“r7“(‘MWQVI9‘67-"M"WWWIZI

%Tau from wavecalc

 

tau = 0.12;

%Engery

Eng = 1/tau;

load Electric-Field-Scattered_Job_01.dat;

load Electric-Field-Scattered_Job-02.dat;

load Electric-Field-Scattered_Job_03.dat;

load Electric_Field-Scattered-Job_O4.dat;

load Electric-Field_Scattered_Job_05.dat;

load Electric_Field_Scattered_Job_06.dat;

load E1ectric-Field_Scattered-Job_07.dat;

load Electric_Field_Scattered-Job_08.dat;

load Electric-Field_Scattered-Job_09.dat;

load Electric-Field_Scattered_Job-10.dat;

load Electric-Field-Scattered_Job_11.dat;
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load Electric-Field-Scattered-Job_12.dat;

load Electric-Fie1d-Scattered_Job_13.dat;

load Electric_Field-Scattered-Job_14.dat;

load Electric-Field-Scattered_Job_15.dat;

load Electric-Field-Scattered-Job_16.dat;

load Electric-Field-Scattered_Job_17.dat;

load Electric-Fie1d-Scattered_Job_18.dat;

load Electric_Fie1d_Scattered_Job_19.dat;

load ElectriC_Field_Scattered_Job_20.dat;

load Electric-Field-Scattered-Job_21.dat;

load Electric-Field-Incident-Job_allT.dat;

ES(: ,1) = Electric_Field_Scattered_Job_01(:,2)/Eng;

ES(: ,2) = Electric-Field_Scattered-Job_02 (: ,2)/Eng;

ES(: ,3) = Electric-Field_Scattered-Job_03 (: ,2)/Eng;

ES(: ,4) = E1ectric-Field_Scattered_Job_04 (: ,2)/Eng;

ES(: ,5) 2 Electric-Field-Scattered-Job_05 (: ,2)/Eng;

ES(: ,6) = Electric-Field-Scattered_Job_06 (: ,2)/Eng;

ES(: ,7) = Electric-Field-Scattered-Job-07(2 ,2)/Eng;

ES(: ,8) = E1ectric-Field_Scattered_Job_08 (: ,2)/Eng;

ES(: ,9) = Electric-Field-Scattered_Job_09 (: ,2)/Eng;

ES(: ,10) = Electric-Field_Scattered_Job_10 (: ,2)/Eng;

ES(: ,11) = Electric-Field-Scattered_Job_11(:,2)/Eng;
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ES(:

ES(:

ES(:

ES(:

ES(:

ES(:

ES(:

ES(:

ES(:

ES(:

El(:

E1(:

E1(:

El(:

E1(:

E1(:

EI(:

El(:

E1(:

E1(:

E1(:

E1(:

EI(: ,13)

Electric-Field-Scattered_Job_12 (:,

Electric_Fie1d_Scattered_Job_13(:,

E1ectric-Field-Scattered_Job_14 (:,

Electric-Field-Scattered-Job_15 (:,

Electric_Field_Scattered-Job_16 (:,

Electric-Field-Scattered_Job_17(:,

Electric-Field-Scattered_Job_18 (:,

2)/Eng;

2)/Eng;

2)/Eng;

2l/EHS;

2l/Eng;

2)/Eng;

2)/Eng;

Electric-Field-Scattered..Job-19 (: ,2) /Eng;

Electric-Field-Scattered-Job-20 (:,

Electric_Field_Scattered_Job_21(:,

2)/Eng;

2l/Eng;

Electric-Field-Incident_Job_allT (: ,2) /Eng;

Electric-Fie1d-Incident_Job_allT(: ,

E1ectric-Field-Incident_Job-allT (:,

Electric-Field-Incident_Job_allT (:,

Electric-Fie1d-Incident_Job_allT (:,

Electric-Field_Incident_Job-allT (:,

Electric_Field_Incident-Job_allT (:,

Electric_Field_Incident_Job_allT (:,

Electric_Field_Incident_Job_allT (:,

Electric-Field_Incident_Job_allT (:

Electric-Field-Incident-Job-allT (:

Electric_Field_Incident_Job_allT (:

Electric-Field_Incident-Job-allT (2
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2”Eng;

2l/Eng;

2)/Eng;

2l/Eng;

2)/Eng;

2l/Eng;

2)/Eng;

2l/Eng;

,2)/Eng;

,2)/Eng;

,2)/Eng;

,2)/Eng;

 

 



EI(:,14) = Electric-Field-Incident_Job-allT(:,2)/Eng;

EI(:,15) = Electric_Field_Incident_Job_allT(z,2)/Eng;

EI(:,16) = Electric_Field_Incident_Job-allT(:,2)/Eng;

EI(:,17) = Electric-Field_Incident_Job_a11T(:,2)/Eng;

EI(:,18) = Electric-Field-Incident_Job_allT(z,2)/Eng;

EI(:,19) = Electric-Field-Incident-Job_allT(z,2)/Eng;

EI(:,20) = Electric-Field_Incident_Job_allT(z,2)/Eng;

EI(:,21) = Electric-Field_Incident_Job_allT(:,2)/Eng;
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%speed of light

c=3E8;

%speed of wave in wall

v=c/sqrt(6);

%Time shift

shift 2 1E—9;

%End of file

last=32768;

%Time step from E—file

delta_t=1.52E—l2;

%Number of points at end of file to Shift

NS = shift/delta_t;

NS = round(Ns);
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%position in the z—direction of the tramsitters

22.65;

%determines the gride Size

delta=.01;

%Front side of wall in Z-direction

wall-ZA=.1524;

%Back side of wall in z—direction

wall_ZB=0;

%size of display window in Z-direction

zp_low=—2;

Zp_high=.5;

%size of display window in y—direction

yp_low=—2.6;

yp-high=2.6;

%Number of gride Points in z and y direction

Zp_delta=((Zp_high-—zp_low)/delta)+1;

yp-delta=((yp_high—yp_low)/delta)+1;

%First position of transmitter from E—field file

y-start=—2.5;

%Incrementing Size of transmitter position from E—Field file

y_delta=.25;

%number of transmitter positions
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num_files=21;

%position somewhere between wall and object

threshold-dist=—.5;

%Position of sources to front of wall for thresholding

threshold-dist2=.2;

%incrementing size of the threshold l

threshold-delta-z=((threshold_dist-Zp_low)/delta)+1;

%number of gride points for the threshold positions

 
threshold-delta_z2=((threshold-dist2—Zp_low)/delta)+1; E

%Fixing ES and Bi files to include shift 9

for m:1:1:num_files;

for i=1:1:Ns;

ESO(i ,m) = ES(last—Ns+i ,m);

end

for i=Ns+1:1:last;

ESO(i ,m)=ES(i—Ns,m);

end

for i=1:1:Ns;

EIO(i ,m) = EI(last—Ns+i ,m);

end

for i=Ns+1:1:last;

EIO(i ,m)=EI(i—Ns,m);

end
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end

%initializing value

for n=1:1: Zp_delta*yp_delta;

value(n)=0;

end

fM/W/WFA/éMMWMMWWVMWVWVMJWMWVWWMWFIRM/WAX)
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y=y—Start;

n=1;

for m=1:1: nuIn_files;

for Zp=Zp_low : delta : Zp_high;

for yp=yp_low : delta: yp_high ;

dist=sqrt ((y—yp) ”2+(Z—Zp) A2);

if (Zp < wall-ZB)

thetazasin ((abs(zp—z) )/dist );

dist-A=abs(wall_ZA—Z )/sin ( theta);

dist-B=abs ( wall-ZB—wall_ZA )/sin ( theta);

dist-C=abs (Zp—wall-ZB )/Sin ( theta);

time = (2*dist-A/c)+(2*dist_B/v)+(2*dist-C/c)+

shift;

elseif (zp < wall_ZA)

thetazasin((abS(Zp-Z))/dist);

dist-A=abs(wall-ZA—Z)/Sin ( theta);
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dist-B=abS(Zp—wall_ZA)/sin(theta);

time : (2*dist_A/c)+(2*dist-B/v)+shift;

else

time=2*dist/c+shift;

end

p=tiIne/delta_t;

post=round(p)+2;

post-low=round (p—delta/c)+2;

 

post-high=round(p+delta/c)+2;

if (post-low >= last)

A=ESO( last ,m) ;

else

A=[ESO( post-high ,m) ,ESO(postJow ,m) ,ESO(post ,m) I;

end

E=max(abs(A) );

value (n)=value (n)+abs(E);

n=n+1;

end'

end

y=y+y_delta;

n=1;

end
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y:y - s t a r t ;

n = 1 ;

for m=1:1:num_files;

for Zp=zp_low:delta:zp-high;

for yp=yp-low:delta:yp-high;

dist=sqrt ((y—yp) 32+(Z—Zp) A2);

if (zp < wall-ZB)

theta=asin((abS(Zp—Z))/dist);

dist-A=abs(wall_ZA—z)/sin ( theta);

dist-B=abs(wall_ZB—wall_ZA)/sin ( theta);

dist_C=abS(zp—wall..ZB)/sin ( theta);

time = (2*dist-A/c)+(2*dist-B/v)+(2*dist_C/c)+

shift;

elseif (Zp < wall-ZA)

theta=asin((abS(Zp—z))/dist);

dist_A=abs(wall_ZA—z)/sin ( theta);

dist-B=abS(zp—wall_ZA)/sin ( theta);

time = (2*dist-A/c)+(2*dist_B/v)+shift;

else

time=2*dist /c+shift;

end
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p=time/delta_t;

post=round(p)+2;

post-low=round(p—delta/C)+2;

post-high=round(p—l—delta/C)+2;

if (post_low >2 last)

A=E10(last ,m);

else

A:[E10(post-high ,m) ,EIO(postJow ,m) ,EIO(post ,m) ];

end

E=max(abs (A) ) ;

value (n)=value (n)+abs (E);

n=n+1;

end

end

y=y+y_delta;

n=1;

end

%V%WVVWMXVMMKWWXWWVMWF%W%

%Quantification %

Nback = 1 0;

fa c = 1 .5;

Int=0;

box-z-end=—.65;
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box_y_start =—.23;

box_z_start =—.95;

box-y-end=.23;

box-area==(abs ( box-y-end~—box-y-start ) ) *(abs ( box-z_end—

box_Z_Start ));

grid_z_start=(abs(Zp_low—box_z_start)/delta)+1;

grid-z-end=(abs(Zp_low—box_z_end)/delta)+1;

grid-y-start=(abs(yp_low—box_y_start)/delta)+1;

grid-y-end=(abs(yp_low—box_y_end)/delta)+1;

n=zp_de1ta*(grid_z-start —1)+grid_y-start;

i=1;

for Zzgrid-z_start :1: grid_Z_end

for y=grid-y-start :1:grid-y-end

Box1( i )=value ((z—1)*yp_delta+y) ;

zi(i)=floor ((i—1)/(grid_y_end—grid_y_start+1))+1;

yi(i)=i-(Zi(i)—1)*(grid_y_end—grid_y_start+1);

i=i+1;

end

end

Box2=sort(Box1, ’descend ’) ;

iendzi—l;

sum_y=0;

sum_z=0;
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sum_f=0;

sum_R=0;

sum-A=0;

for i=1:iend;

sum_y=sum_y+Box1( i )* yi ( i) ;

sum_z=sum_z+Box1( i )* zi ( i) ;

sum-f=surn-f+Box1( i) ;

y-0=sum_y/su1n_f;

Z_0=sum_Z/sum_f;

end

thresh=0.5*Box2(1);

for i=1:iend;

Di()i))=sqrt ((yi(i)—y-0)*(yi(i)—y-0)+(zi(i)—z_0)*(zi(i)—Z_0

Ai( i )=abS ((yi(i)—Y-0)*(Zi ( i l—Z-Oll;

if (Box1( i )>thresh)

sum_R=sum_R+Box1 ( i )*Di( i ) ;

sum-A=sum_A+Box1( i ) *Ai( i ) ;

end

end

RadiuS$um_R/sum_f;

Area=sum_A/sum_f;

v=sqrt (var (Boxl) );
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fract1=0.99;

numl=0;

for i=1:iend

if (Box2(i) > fract1*mean(Box2))

num1=numl + 1 ;

end

end

Box_roth=0;

for i =1:10

Box_roth=Box_roth+Box2( i );

end

Rothwell=Box-roth/1O

numl/iend

figure(2)

plot(Box2);
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%for the stip

for m=1:1:threshold-delta_z*yp-delta;

threshold=0;

if (value(n) < threshold)

value(n)=0;

end

222



end

%for the slab

for n=round( threshold-delta_z*yp_delta) +1:1:round(

threshold-delta_z2*yp_delta);

threshold=0;

if (value(n) < threshold)

value(n)=0;

end

end

%for above Slab

for n=round(threshold-delta_z2*yp_delta) +1:1: yp_delta*

zp-de1ta

threshold=0;

if (value(n) < threshold)

value(n)=0;

end

end

ZWfiFiW/flWflWM/VMJMWflfi/wWWI/VMMMWWWWW/JE

for z=1:1:zp_delta;

for y=1:1:yp_delta;

F(Z ,y) = value(y+yp_delta*(z—1));

end
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end

[y,z] = meshgrid(1:1:yp_delta ,1:1: Zp_delta);

figure(1)

pcolor(yp_low+delta*(y—1),Zp_low+delta*(z—1),F(: ,2) );

colorbar;

shading interp;

colormap hsv;
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