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ABSTRACT 

EXPLORING RELATIONSHIPS BETWEEN IN-STREAM CONDITIONS AND 

ECOLOGICAL HEALTH WHILE ASSESSING LANDUSE AND CLIMATE SCENARIOS 

 

By 

Matt Einheuser 

Human disturbances can have significant impacts on physicochemical and biological 

conditions of streams. A good understanding of the relationships among these factors will help 

decision makers in sustainable management of the ecosystems. To address these issues, the 

following research objectives were developed: 1) bridge the gap between hydrologic models and 

ecological conditions using the Soil and Water Assessment Tool, 2) identify influential in-stream 

variables to explain fish and macroinvertebrate measures, 3) compare fuzzy logic techniques 

with statistical approaches to describe and model ecological health, 4) use in-stream variables 

obtained from SWAT to predict the impacts of different landuse and climate scenarios, and 

evaluate the effectiveness of best management practices, in regards to aquatic health. A high 

resolution SWAT model was built for the Saginaw River basin of Michigan, and flow and water 

quality outputs were linked with measured biological data. Results indicate that SWAT models 

can be an effective tool to produce in-stream variables, explaining 21% to 57% of variation (R
2
) 

in ecological measures. Fuzzy logic methods are effective approach to model ecological health 

and outperformed other statistical methods tested here. Average annual flow rate had the 

strongest correlation with IBI, whereas nutrient concentrations showed the largest influence on 

all other ecological measures. Results suggest that efforts to model historic baseline conditions 

and to provide context for stream health assessments should include both pre-settlement land use 

and climate conditions. Meanwhile, the conservation practice, native grass, showed the most 

improvement to stream health, followed by residue management and no-tillage.
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INTRODUCTION 

With over 3.5 million miles of rivers and streams within the United States (USEPA, 2011a) and 

given the numerous benefits and services provided by them, these freshwater ecosystems are of 

great importance to humans and much attention has been given to their protection. Land- use 

changes, climatic changes, and other stressors can have a profound effect on water resources. 

Among these stressors, agriculture practices, specifically, have a large influence on streams and 

rivers, effecting water quality, water quantity, and geomorphology (Dale and Polasky, 2007; 

Zimmerman et al., 2003; Webb et al., 2008). This in not only observed at field scale, but also 

large scale assessments identify agriculture as a leading source of current water quality problems, 

through practices such as fertilizer, manure, and pesticide applications and  sediment inputs from 

increased erosion and runoff (Heimlich, 2003).  

These effects to our streams can be further reflected in the aquatic organisms and 

ecological health of the system. Alterations to flow regimes (Poff et al., 1997), changes in water 

temperature (Wehrly et al., 2003), increases in sediment (Wood and Armitage, 1997) and 

nutrient (Miltner, 2010) concentrations, and changes to physical habitat and stream 

geomorphology (Rowe et al., 2009; Sullivan et al., 2004), have all been shown to influence the 

aquatic organisms within river systems. Being that the ecological health of the stream cannot be 

directly measured, biological indicators, such as fish or macroinvertebrates, are often used to 

represent different communities’ responses to stressors (Karr, 1991; MDEQ, 1997; Barbour et 

al., 1999).  

Overall, the relationships between environmental variables, such as nutrients, and 

macroinvertebrates or fish measures need to be further investigated (Wang et al., 2007; Weigel 

and Robertson, 2007). In addition, there is a need to forecast the impacts that anthropogenic 
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activities have on stream health and fish distributions (Diebel et al., 2010). The first challenge 

when linking disturbance and stream condition data to biological data is the lack in availability 

of high resolution and complete datasets (Wang et al., 2008; Sutela et al., 2010). The use of 

biophysical models can play an important role in successfully estimating this data otherwise 

nonexistence. Few studies, however, have examined the use of models to help fill this gap.  

Meanwhile, efforts are currently under way, through the Conservation Effects Assessment 

Project (CEAP), to quantify the ecological benefits of best management practices (BMPs) and 

conservation practices through modeling applications and tools (Maresch et al., 2008; Shields et 

al., 2006). The second challenge is finding a suitable modeling technique or method that can 

capture the complex relationships between stream conditions and ecological components (Wang 

et al., 2008; Sutela et al., 2010). Alternative soft computing methods, such as fuzzy logic, may be 

a possible solution to address this challenge (Marchini, 2011). 

The overall goal of this research is to provide foundation for linking watershed models to 

ecological health to better understand and further document the relationships involved between 

environmental variables and biological integrity within a large watershed in Michigan. In 

addition, this study investigates the consequences of agricultural practices on ecological health 

and aims at providing critical information to support decision making regarding landuse 

management. 

The specific objectives of this study are to: 

 Bridge the gap between hydrologic models and ecological conditions using the Soil and 

Water Assessment Tool (SWAT) to generate high resolution flow and water quality data  
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 Identify the influential in-stream variables and their relationship to macroinvertebrate and 

fish indices and metrics, ultimately indicating the overall ecological health 

 Employ and compare soft computing techniques and statistical analysis to describe and 

model the relationships among stream health, flow, and water quality variables. 

 Demonstrate the applications of SWAT to model beyond sampled locations and forecast 

conditions by predicting historical reference conditions under pre-settlement land-use and 

climate data as well as determine the effectiveness of large scale best management 

practice implementation. 

 

 

 

 

 

 

 

 



4 

 

LITERATURE REVIEW 

1.1 Overview 

This review discusses stream health and integrity, along with the aquatic organisms that 

can serve as indicators. Because fish and macroinvertebrates are commonly used indicators 

(MDEQ, 1997; Flinders et al., 2008; Barbour et al., 1999; Infante et al., 2008; Karr, 1991), they 

will be discussed specifically, including frequently used indices. The review then describes how 

agriculture can impact streams and reviews its effects on flow, sediments, nutrients, pesticides, 

water temperature, dissolved oxygen, and other channel characteristics. It continues by 

connecting the first two sections and shows how water quality, quantity, and other 

characteristics, influenced by agriculture, can affect aquatic organisms and ecological health. It 

also looks at methodological approaches that have been taken to make this connection. 

Furthermore, the use of agricultural conservation practices to reduce the impacts on streams and 

aquatic species is reviewed along with the Conservation Effects Assessment Project (CEAP) and 

its efforts to quantify the effects of these practices on ecological integrity. The review ends with 

a look at potential models and how they can play a role in these efforts. 

1.2 Stream / Ecological Health and Integrity 

Ecological health is a term that is not so clear cut and has been defined in many different 

ways, making it difficult to measure and quantify (Karr, 1999). In general, the health of the 

stream refers to a condition of the stream when it is flourishing, resilient, sustainable, and 

maintains its societal values (Meyer, 1997). Associated with stream health, although different, is 

the term integrity (Karr, 1996). Integrity refers to a quality or condition that is compared to an 

original condition (Karr, 1996). . Biological Integrity, as defined by Karr and Dudley (1981) is 

the ability of a system to support "a balanced, integrated, adaptive community of organisms 
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having a species composition, diversity, and functional organization comparable to that of 

natural habitat of the region” (Karr, 1991). The definition, as later explained by Karr (1999), 

involves three main principles; temporal and spatial scale, elements of biodiversity and 

processes, and the aspect that “living things are embedded in dynamic evolutionary and 

biogeographic contexts”. Biological integrity, along with physical and chemical integrity, makes 

up ecological integrity (Karr, 1996). Both “ecological health” and “integrity” are terms 

frequently used by agencies and are included in legislation and laws, including the Clean Water 

Act (Karr, 1991). ). These definitions make integrity a valuable approach at looking at how 

human disturbances have affected streams and rivers ecologically.  To determine the integrity of 

a system, we review measurements of the condition of a system, indicators within the system, 

and the indexes that involve them. 

1.2.1 Indicators 

There exist numerous biological monitoring methods to measure and quantify the 

ecological condition of a stream system. Using biological indicators is a highly accepted 

technique in seeing how different communities respond to water quality issues and can often be 

efficient in situations where physical habitat (Flinders et al., 2008) and low levels of pollutants 

may be otherwise hard to detect (Barbour et al., 1999; Flinders et al., 2008). Common biota used 

as indicators in aquatic systems are fish and macroinvertebrates (MDEQ, 1997; Flinders et al., 

2008; Barbour et al., 1999; Infante et al., 2008; Karr, 1991), while others like periphyton, 

macrophytes, and diatoms are not as frequently used. Periphyton, however, have been shown to 

be informative indicators because of their short life, their location at the base of the food web, 

and their connection to fish and macroinvertebrates (Griffith et al., 2009; Hill et al., 2010; 

Barbour et al., 1999). 
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  Ideally, both fish and macroinvertebrates should be measured together because they can 

react differently, vary in sensitivity to different stressors, and mirror conditions at different scales 

(Griffith et al., 2009; Lammert and Allan, 1999; Infante et al., 2008; Flinders et al., 2008; Karr, 

1981). Previous research from Infante and others (2008) showed weak community concordance 

between fish and macroinvertebrates within their study region, suggesting that certain landscape 

factors may be more stressful for certain organisms and/or the scale at which influences may 

differ between organisms. More specifically, it has been shown that fish tend to respond to 

broader scale factors like flow and land use, due to their range of movement and lifespan 

(Lammert and Allan, 1999; Barbour et al., 1999; Plafkin et al., 1989). Conversely, 

macroinvertebrates seem to be influenced more by local habitat, including substrate (Lammert 

and Allan, 1999). This can be attributed to invertebrates living much of their lives within the 

hyporheic zone of streams and their connection with the stream bed with little migration (Power 

et al., 1999; Barbour et al., 1999). Flinders and others (2008) further supported this when they 

found that watershed land-use predicted a higher percentage of fish community variation more 

consistently than that of macroinvertebrates.  

1.2.1.1 Fish as Indicators 

Fish have several benefits when it comes to biological monitoring and being used as 

indicators. Karr (1981) explained that fish cover many trophic levels, including piscivores, 

herbivores, omnivores, and insectivores, which allows them to be a good representation of the 

system and its interactions. This is also achieved by being at the top of the aquatic food chain 

(Karr, 1981). Fish are advantageous because of their long lives and mobility, allowing for 

observation of long term effects, as well as influences from larger, broader scales (Karr, 1981; 

Babour et al., 1999). Because of fishes’ ability to often persist and recover from environmental 
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strain (Rowe et al., 2009), stress and toxicity effects can be observed, through missing taxa and 

growth and reproductive variations (Karr, 1981). From a sampling stand point, fish are easy to 

collect and identify. Their life history information is often known, along with distributions and 

environmental requirements (Barbour et al., 1999). Not only does the public relate to reports and 

information about fish, but the information collected is directly applicable to fisheries (Karr, 

1981; Barbour et al., 1999).  

1.2.1.1.1 Index of Biological Integrity  

One common index recognized and used by many (Lammert and Allan, 1999) to measure 

biological integrity is the Index of Biotic Integrity (IBI) which was introduced by James Karr 

(1981). The IBI uses a set of metrics that cover hierarchical aspects of a system, from the 

individual through the whole ecosystem (Karr, 1991). The original 12 metrics, intended for the 

Midwest United States, are broken up into three main components including species richness and 

composition, trophic composition, and fish abundance and condition. Within species richness 

and composition, six metrics focus on quantifying native, benthic, water-column, long-lived, 

intolerant, and tolerant species. With the trophic composition component, three metrics look at 

percentages of omnivores, insectivores, and piscivores. The last three metrics, within fish 

abundance and condition, quantify number of individuals, hybrids, and individuals with diseases 

or abnormalities (Karr, 1991). After metrics are measured, they are scored by a comparison to 

how the site would be expected to be found if undisturbed; this is usually done with a 1, 3, or a 5, 

5 being the best. Totaling the metric scores obtains a final IBI score, which can be represented by 

a class that can range from very poor to excellent (Karr, 1981). Over the years, others have used 

alternative metrics and made appropriate modifications to the IBI to properly assess specific sites 

(Cooper et al., 2009; Roth et al., 1996; Lammert and Allan, 1999; Wang et al., 2006; MDEQ, 
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1997; Wehrly et al., 2003; Lyons et al., 1996; Lyons, 1992). Several IBIs have been created for 

the various regions of North America and specific states (Barbour et al., 1999). Furthermore, 

indexes that are modified for stream type based on temperature also exist; an example being the 

coldwater and warmwater IBIs (Lyons et al., 1996; Lyons, 1992). Streams are often classified as 

being a cold, cool, or warm water streams, leading to the species and faunal assemblages they 

support (MDEQ, 1997; Lyons et al., 2009). With warmwater streams supporting more diversity 

and species richness (Karr, 1981; Lyon et al., 2009), just as important, coldwater streams may 

not be represented well, using the same metrics.  By adjusting metrics to fit species and measures 

that are realistic to the site, more accurate estimations and scores can be obtained. In past studies, 

underestimations of biotic integrity were obtained where warmwater or coldwater indexes were 

used for streams that were classified as coolwater (Lyons et al., 2009). The MDEQ (1997) survey 

protocols also call for different metrics to be used, anticipating the absence of many species in 

coldwater streams, and highlighting the presence of others, like salmonids. 

1.2.1.1.2 Modified Index of Well Being 

The Modified Index of Well Being (MIWB) was created to resolve the issues with the 

first Index of Well Being that often gave misleading results and is considered to be a sensitive 

and consistent index to environmental stressors (Yoder, 1987; Barbour et al., 1999). This index 

however, is made up of the same computational steps, with the elimination of certain species 

when computing. Problems with the first index were often skewed due to tolerant species being 

dominant and abundant, masking lack of diversity and other structural problems (Yoder, 1987). 

The MIWB is made up of four estimates, two measuring diversity and two measuring abundance, 

including relative number of all species, relative weight of all species, Shannon Diversity Index 

of relative number of species, and the Shannon Diversity Index of relative weight. Modifications 



9 

 

to the original index includes highly tolerant species, exotics, and hybrids being eliminated from 

the numbers and biomass estimates, while still being acknowledged within the Shannon 

Diversity Index (Yoder, 1987). The estimates are put into a basic formula, resulting in a final 

score (Barbour et al., 1999; Yoder, 1987). Higher scores for the MIWB reflect healthier 

communities and better environmental conditions (Covert, 1997). When reviewing the literature, 

very rarely was the MIWB used compared to Karr’s (1981) Index of Biotic Integrity. When 

comparing results across agencies in a particular study, Covert (1997) found that IBI values were 

less varied and consistent compared to the MIWB. The MIWB is often a complimentary index to 

the IBI and can react faster to severe impacts and recovery within a lotic system (Yoder and 

Smith, 1999). 

1.2.1.2 Macroinvertebrates and Indicators 

Frequently, macroinvertebrates have also been used to evaluate stream conditions and 

integrity. Because of their smaller migration habits and sessile lifestyle, macroinvertebrates can 

be efficient at reflecting localized sites and habitats (Barbour et al., 1999; Flinders et al., 2008; 

USEPA, 2009c). They often respond quickly to stressors due to sensitive life stages, complex life 

cycles, and varying pollution tolerances. While this allows macroinvertebrates to be affected by 

short-term environmental conditions (Barbour et al., 1999), they also tend to live for periods 

longer than a year (USEPA, 2009c; Barbour et al., 1999), making it possible to observe affects 

over extended periods of time.  Macroinvertebrates represent a range of trophic levels and being 

that they are an important food source for fish (Barbour et al., 1999); they act as a link in the 

food web connecting multiple organisms (USEPA, 2009c). As for sampling, macroinvertebrates, 

much like fish, are generally easy to collect and identify.  There is a great deal of background 

information available, as well (Barbour et al., 1999; USEPA, 2009c). Over the years there have 
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been numerous indexes and metrics used in identifying and measuring stream conditions and 

integrity using macroinvertebrates. Macroinvertebrate indexes provide useful information about 

the condition of the community (Ohio EPA, 1989) by evaluating elements and processes 

(Barbour et al., 1999), along with reflecting the health and integrity of a stream. There are two 

main informative types: multi-metric indexes, that have several metrics that measure and cover 

specific attributes of the assemblage; and pollution-tolerance indexes, which are based on taxon-

specific tolerance values (Fore et al., 1996). There are many variations of these indexes that have 

been presented for different regions and conditions. Below, are some of the more common and 

basic ones. 

1.2.1.2.1 Invertebrate Community Index 

The Invertebrate Community Index (ICI) is a commonly used multi-metric index, which 

was created by the Ohio EPA. Being based off of Karr’s fish IBI, the ICI is made up of ten 

metrics reflecting the structure and composition of the community. The ten original metrics 

include total number of taxa, number of Mayfly taxa, number of Caddisfly taxa, number of 

Dipteran taxa, percent Mayfly composition, percent Caddisfly composition, percent Tribe 

Tanytarsini Midge composition, percent other Dipteran and non-insect composition, percent 

tolerant organisms, and number of qualitative EPT taxa. These metrics are then given a score of 

6, 4, 2, or 0, based on a comparison with undisturbed reference sites, and summed up to a final 

ICI value (DeShon, 1995; Ohio EPA, 1989). However, before being summed up, metrics may be 

scaled to the relative attributes of the sample and the drainage area of the stream (Lammert and 

Allan, 1999; Ohio EPA, 1989). Like most indexes, the ICI may be modified to take into account 

regional variation and the levels at which identification is being done. An example of this is 

where Lammert and Allan (1999) used a modified ICI, by omitting midges and tolerant species 
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metrics, in determining the influence of land cover and structure on biotic integrity in Michigan’s 

River Raisin watershed. 

1.2.1.2.2 Benthic Index of Biological Integrity 

The Benthic index of Biotic Integrity is another multi-metric index, which was based off 

Karr’s IBI for fish that has been used commonly and was developed by Kerans and Karr (1994). 

This index focuses on taxa richness, composition, and biological process. All metrics represent 

attributes that are reactive to human disturbances (Fore et al., 1996). They are compared with 

undisturbed sites and given a score of 1, 3, or 5. These scores are then added up to give a final B-

IBI value. There are thirteen original metrics involved in this index including, total taxa richness, 

intolerant snail and mussel species richness, mayfly richness, caddisfly richness, stonefly 

richness, relative abundance of Corbicula, oligochaetes, omnivores, filterers, grazers, and 

predators, proportion of individuals in two most abundant taxa, and total abundance. With the 

metrics, total taxa richness and total abundance, statistical comparisons can be made among sites 

(Kerans and Karr, 1994). Modifications also are needed and have been made for this index, 

depending on local conditions and sampling methods. Fore and others (1996) modified and 

created a B-IBI for the Pacific Northwest that used metrics that were similar to those of Kerans 

and Karr’s (1994) that responded to logging. In addition, Lammert and Allan (1999) modified 

metrics and scoring criteria to work for the River Raisin watershed in Michigan, based on 

taxonomic differences in the area. 

1.2.1.2.3 Biotic Index 

The Biotic Index (BI) that was presented by Hilsenhoff (1987), also known as the HBI, is 

an index based on the tolerance values of organic pollution for species and genera (Hilsenhoff 

,1988; Barbour et al., 1999). Biotic indexes can target different types of stressors and the 
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tolerance values derived, determine the accuracy of the index (Lenat, 1993). The tolerance values 

are multiplied by the number of individuals in that taxa, summed up across taxa, and then a 

weighted average pollution tolerance is derived (Lenat, 1993; Fore et al., 1996; Lammert and 

Allan, 1999). The sites with higher BI scores, which are scaled from 0 to 10, are determined to 

be more degraded by pollution (Lammert and Allan, 1999).  As mentioned previously, different 

modifications have been made to the index based on tolerances to the pollutions of concern, 

differences in season, stream size, and geographic regions (Lenat, 1993; Davis, 1995). Not only 

has this index continued to be used and modified individually, but it has also been incorporated 

into multi-metric indexes as well (Davis, 1995).  

1.2.1.3 Habitat Indexes 

With physical habitat being the fundamental driver of fish communities and structure 

(Lammert and Allan, 1999), often agencies will use habitat indexes as well. With this evaluation, 

habitat restraints on the biological potential of a stream can be determined. Having habitat 

conditions combined with water quality conditions can allow for a better understanding of the 

limiting factors of a system (MDEQ, 1997). Habitat characteristics that have been shown to be of 

importance in influencing faunal assemblages include velocity, depth, water temperature, 

substrate, woody debris, in stream and stream side cover, and diversity of pools, riffles, runs, and 

bends (Infante et al., 2008; Barbour et al., 1999; Rowe et al., 2009).  

1.2.1.3.1 Qualitative Habitat Evaluation Index 

The Qualitative Habitat Evaluation Index (QHEI) is a habitat index that was developed to 

give a measure of macrohabitat based on physical and functional factors that can affect fish 

communities (Rankin, 1989; Miltner and Rankin, 1998). There are six components that make up 

the QHEI; type and amount of substrate; type and amount of in-stream cover; channel 
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morphology, including sinuosity, development, channelization, and stability; Riparian zone 

width and bank erosion; pool, glide, riffle, and run quality; and Gradient. These metrics are 

scored based on comparison with streams that have high biological diversity and integrity and 

summed up for a QHEI value (Rankin, 1989). 

1.2.1.4 Michigan DEQ GLEAS Procedures 

In their survey protocols and procedures, the Michigan Department of Environmental 

Quality, Great Lakes and Environmental Assessment Section (GLEAS) have outlined a 

standardized evaluation of nonpoint source impacts, developed specifically for Michigan. These 

protocols involve evaluations of the habitat quality of a stream along with the biological integrity 

based on fish and macroinvertebrate community metrics (MDEQ, 1997). 

  The Macroinvertebrate score is similar to that of the ICI (DeShon, 1995) and is 

composed of nine metrics that are scored based on a comparison of an excellent site and summed 

up for a final score. The nine metrics include total number of taxa, representing diversity; total 

number of mayfly taxa, caddisfly taxa, and stone fly taxa, all of which are in the EPT group and 

sensitive to pollution and disturbance; Percent mayfly composition; percent caddisfly 

composition; percent contribution of the dominant taxon, an indication of community balance; 

percent isopods, snails, and leeches, which are highly tolerant; and percent surface dependent 

taxa, which are indicators of dissolved oxygen levels (MDEQ, 1997). These metrics have been 

used by many; including Cooper and others (2009) when looking at sediment contamination and 

faunal communities in urbanized watersheds. 

 The fish index within these protocols works like most of the indexes with metrics that are 

scored based on ideal conditions and totaled for a final fish score. If sites have fewer than 50 fish 
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or extensive amounts of fish have anomalies, the site will be considered below acceptable 

quality. Cold water streams will be judged by macroinvertebrates, with salmonid numbers 

determining designation. The ten metrics that compose the index are; number of darter species, 

which are sensitive to habitat degradation; number of sunfish species, which are responsive to 

habitat structure and cover; number of sucker species, an intolerant species to habitat and 

chemical degradation; number of intolerant species; percent omnivores, who can dominate 

degraded sites; percent insectivores, who can respond to degradation; percent piscivores, which 

are indicators of a healthy and diverse community; percent tolerant species; and percent 

lithophilic spawners, who rely on gravel for spawning and can be largely impacted by sediments 

(MDEQ, 1997). This index is not only used by itself but also has been integrated into the IBI as 

seen by Lammert and Allan (1999). 

1.3 Agricultural Influences on Streams 

Because of the importance of having healthy streams with healthy biological integrity, it is 

essential to recognize and be able to assess the impacts of anthropogenic activities, such as 

agricultural practices. Agriculture makes up a large portion of the land-use in the United States. 

We use approximately 20% of total land for the production of crops and a quarter of private land 

is used for grazing (USEPA, 2009a). Recently, due to urbanization and the conversion of 

farmland through development, land area designated for cultivation has shown some decline 

(USEPA, 2009a). This decline, however, does not relieve the risks to our natural resources. 

Difficulties in reducing these risks will continue with future conditions in climate change, water 

supply challenges, and production of biomass for alternative fuel (Maresch et al., 2008). 

Agricultural practices can have a large influence on our water resources and often results in 

alterations in flow (Dale et al., 2007; Shields et al., 2006; Rowe et al., 2009; Poff et al., 1997); 
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increases in sediments (Rowe et al., 2009; Dale and Polasky, 2007; Zimmerman et al., 2003; 

Wohl and Carline, 1996; Diana, 2006); an excess of nutrients (Bernot et al., 2006) and pesticides 

(Gillium, 2007); increases in water temperature (Poole, 2001; Caissie, 2006; Webb, 2008); and 

changes in stream morphology (Sullivan et al., 2004; Rowe et al., 2009). 

1.3.1 Agriculture and Flow 

Flow is a primary function of lotic systems and has been shown to be altered by different 

land covers. Agriculture, through topography, geology, and vegetative cover, or lack thereof, can 

influence flow patterns (Poff et al., 1997) and critical components of flow (Shields et al., 2006). 

For example, increases in agricultural land-use can often lead to increases in both magnitude and 

frequency of storm flows (Shields et al., 2006). Diana and others (2006) also observed a decrease 

in flow stability associated with agriculture in southeastern Michigan. With natural vegetation 

often lacking in agricultural areas, there is little to act against overland flow and runoff. This 

combined with artificial drainage, like tiles, that rapidly discharge water into channels, illustrates 

processes in which agriculture can have an effect on flow (Rowe et al., 2009). Irrigation and 

water withdrawal is another activity tied to agriculture that shapes flows and infiltration patterns 

(Dale and Polasky, 2007).  

1.3.2 Agriculture and Sediments 

With variable flows, higher peak rates, and higher velocities, comes easier and increased 

transport of sediments. Sediments can be transported from either the channel itself or from the 

catchment through erosion (Wood and Armitage, 1997). Both of these are found to be amplified 

in agricultural regions. Rowe and others (2009) illustrated this connection between land-use and 

sediments when looking at fine substrates and different land covers. Row-crop agriculture 

showed a positive relationship with fine substrates. Easily erodible sediments from bare soil and 
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cultivated lands contribute to these increases along with easier transport of sediments with 

increases in run-off (Zimmerman et al., 2003). Agricultural regions often have riparian areas 

with reduced vegetation (Bernot et al., 2006) and this can not only promote easier sediment 

transport with higher runoff velocities and reduced trapping efficiencies (Liu et al., 2008), but it 

can also lead to less stable banks (Lyons et al., 2000). This in turn leads to bank erosion and 

added sediments. Similar outcomes can be seen in areas of grazing. Wohl and others (1996) 

exhibited this when comparing un-grazed and grazed reaches. They found both increases in 

stream bank erosion and the amount of streambed composed of fine sediments. A Yankey and 

others (1991) study even estimated that grazed reaches, compared to croplands, can supply two 

to five times’ greater amounts of sediments (Wohl and Carline, 1996). 

1.3.3 Agriculture and Nutrients 

Along with sedimentation, nutrients are also a significant factor originating from 

agriculture that contributes to the alterations within a watershed. Increases in nitrogen and 

phosphorus are well documented in their association with agricultural practices (Bernot et al., 

2006), especially the use of fertilizers (Robertson and Vitousek, 2009; Gentry et al., 2007). 

Fertilizers, soil disturbances, and biological fixation from crops all contribute in making 

agriculture the leading source for nutrients in streams (Bernot et al., 2006). The transport of 

nutrients from agricultural lands to channels can be further driven by climatic factors, application 

timing, soil characteristics, and different flows (Heathwaite and Johnes, 1996). Groundwater, 

runoff, drainage, and irrigation all help to determine the loads and concentrations of nutrients 

(Domagalski et al., 2008). Irrigation using local water sources can result in lower loads than the 

use of imported water due to the possibility that local water withdrawals might break the 

connection between groundwater and a stream (Domagalski et al., 2008). Once nutrients reach a 
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stream, the flow and biological conditions determined by agricultural practices can continue to 

direct impacts by affecting stream flow, with low discharges creating conditions for retention, 

while higher discharges process and transport nutrients downstream (Royer et al., 2006; Bernot 

et al., 2006). 

 Nitrogen can be in many forms and is often an abundant nutrient found in agricultural 

regions and the watersheds they influence. Johnson and others (1997) found that the highest 

nitrate and nitrite concentrations were in catchments that were dominated by row-crops 

agriculture.  Along with nitrate and nitrite, other inorganic forms of nitrogen, including 

ammonium and ammonia, are of the more common forms of nitrogen that are introduced to 

fields through microbial activity, animal waste, and fertilizers (Robertson and Groffman, 2007). 

Manure can be an input of nitrogen where animals graze and where it is used as a fertilizer. In 

other areas, often intense cropping operations, synthetic fertilizer is another main nitrogen source 

(Robertson and Vitousek, 2009). The nitrogen from these sources can be transported both by 

runoff and subsurface flow (Domagalski et al., 2008), with subsurface flows often being a 

dominant means of transport (Heathwaite and Johnes, 1996).  

 Phosphorus is another main nutrient in streams that can reach degrading levels in areas of 

agriculture and like nitrogen, phosphorus in these regions have shown increase in many studies 

(Bernot et al., 2006). Fertilizers are a large contributor and source of inorganic phosphorus to a 

system (Heathwaite and Johnes, 1996). Phosphorous levels can be further raised with the input of 

organic phosphorus through animal wastes and manures. Phosphorus’s tendency to be immobile 

and connect with soils, make overland transport through runoff and erosion the primary mode 

(Sims et al., 1998; Heathwaite and Johnes, 1996). This makes application timing, soils, 

precipitation, and flow driving forces behind its transport. Greater concentrations of phosphorus 
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have been observed in areas where fertilizer was applied on frozen soils, right before a 

precipitation event (Gentry et al., 2007) and also in areas of heavily grazed grasslands 

(Heathwaite and Johnes, 1996). Sharpley and others (1999) further explain the significances of 

location and that P application near stream has more of an impact on a watershed than areas of 

application further from the channel. Besides runoff, Phosphorus, like nitrogen, can also reach a 

channel through leaching, subsurface runoff (Sims et al., 1998), and tile drainage (Royer et al., 

2006). 

1.3.4 Agriculture and Pesticides 

Pesticides are commonly used in protecting crops and agricultural practices from insects 

(insecticides), unwanted vegetation (herbicides), bacteria (Antimicrobials), fungi (Fungicides), 

and other pests (USEPA, 2009b). Gillium (2007) showed that 97% of streams in agricultural 

areas had detectible pesticides. These pesticides can have significant negative impacts to streams. 

They can enter channels through transports similar to those of nutrients, including overland 

runoff, erosion, groundwater flow, and leaching. Wind and spray drift is another means of 

transport for pesticides within agricultural areas (USGS, 2000). Runoff, however, continues to be 

one of the most important routes (Schulz and Liess, 1999; Domagalski et al., 2008). Transport of 

pesticides can be affected by soil characteristics, field slope, climatic conditions, and application 

timing and amount (MSU Weed, 2010). Pesticides can accumulate in sediment and biota based 

on their solubility in water and their persistence in soils. Low solubility and longer soil half-lives 

can lead to more accumulation and affects, much like that of earlier used pesticides, including 

DDT (USGS, 2000). Herbicides are the most widely used pesticides with hundreds of kinds 

available for use (Helfrich et al., 2009). Some herbicides that are commonly used and detected 

include Atrazine, Deethylatrazine, Simazine, and Metolachlor, which show high yields in basins 
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correlated with high use (Domagalski et al., 2008; Gillium, 2007). Additional herbicides that are 

commonly used include 2, 4-D, Glyphosate and Acetochlor, along with several others (MSU 

Weed, 2010). Other pesticides that have originated from agricultural uses and have been 

monitored in streams include insecticides like Diazinon, Chloropyrifos (Gillium, 2007), 

Fenvalerate, and Parathionethyl, which was observed in river channels through edge of field 

runoff by Schulz and Liess (1999).  

1.3.5 Agriculture and Bacteria 

Agricultural practices can continue to impact water quality by amplifying the amount of 

bacteria and pathogens found in streams and channels. Although this data is often unavailable 

and not within the scope of our project, we recognize that they can have significant impacts on 

our water resources. Animal and livestock grazing, along with manure applications in 

agricultural areas, can lead to these increases in bacteria (Mishra et al., 2008; USEPA, 2006a; 

Jamieson, 2002). With bacteria and pathogens living in the digestive system of humans and 

animals, fecal matter then continues to carry these organisms to the land. Two main bacteria, 

Fecal Coliform and Escherichia coli (E.coli), are often tested due to efficiency and their 

indication of other more harmful bacteria, pathogens, viruses, and protozoa (USEPA, 2006a; 

Mishra et al., 2008). The survival of these bacteria in agricultural areas and soils can be 

contributed to soil characteristics such as nutrients, moisture, and organic matter (Jamieson et al., 

2002). Mishra and others (2008) showed that manure applications lead to higher edge of field 

concentrations of Fecal coliform and E. coli. Lyautey et al. (2010) and Vidon et al. (2007) further 

showed the influence of animals and animal waste on bacteria numbers by observing an increase 

in E. coli densities with proximity to livestock production and stream sections where cattle have 

access. Grazing practices and lack of vegetated riparian areas also have been observed to show 
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increases in bacteria in streams (Roodsari et al., 2005; Jamieson et al., 2002; Sullivan et al., 

2007). Transport of bacteria is often related to precipitation, soil characteristics, land cover, and 

bacteria survival. Precipitation has been shown to influence transport of bacteria through runoff, 

splash transport (Boyer, 2008), and leaching (Gagliardi and Karns, 2000). Once these bacteria 

have reached a stream, agricultural effects on other characteristics of the stream like sediments, 

temperature, and flow, further influence their survival and levels (Minnesota Pollution Control 

Agency, 2008).  

1.3.6 Agriculture and Water Temperature 

Water temperature is an additional characteristic of streams that can be manipulated by 

external factors from catchment and land-use. One factor that affects stream temperature is 

stream morphology (Poole and Berman, 2001). Agriculture can affect this morphology by 

increased bank erosion and increased sediments. This can further lead to channel widening and 

shallowing, which can also increase temperatures (Webb et al., 2008). Another factor influencing 

temperature is solar radiation and canopy cover from riparian zones (Wehrly et al., 2003; Poole 

and Berman, 2001; Caissie, 2006). As discussed previously, agricultural lands often have limited 

vegetated riparian area, meaning little shading. These conditions also lead to increase lateral 

inputs and overland flow, which can affect temperature. Wehrly and others (2003) showed that 

agricultural areas with surface runoff-dominated reaches that had little shading were found to be 

warmer then streams that were groundwater dominated and had forested landscapes. Vegetated 

cover, often lacking in agricultural areas, can also influence temperature by decreasing heat 

exchange through wind and air movement (Poole and Berman, 2001; Webb et al., 2008). In 

addition, irrigation and water withdrawals are another activity frequently tied to these areas, 

which can further manipulate temperatures (Poole and Berman, 2001; Cassie, 2006). 
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1.3.7 Agriculture and Dissolved Oxygen 

Dissolved oxygen (DO) is used in both biotic and abiotic components of lotic systems 

and can, too, be affected by agricultural practices (Garvey et al., 2007). The relationship and 

responses of DO to agriculture however, is much more complex. This complexity is due to all the 

interactions involved, including temperature, nutrients, flow, and further biotic interactions 

(Garvey et al., 2007; Wang et al., 2002). The temperature of a stream, affects the amount of 

dissolved oxygen in it, with colder waters being able to hold more dissolved oxygen (USEPA, 

2006b). Because agricultural regions affecting stream temperatures, as explained earlier, they 

too, indirectly affect DO. Additionally, this indirect relationship is seen with flow. Garvey and 

others (2007) explains how flow can affect oxygen levels through the interaction of water and 

the atmosphere, along with the effects of substrates and depth. Further agricultural effects on 

dissolved oxygen include factors that influence eutrophication. Due to light, dissolved oxygen in 

streams varies often from day to night, through photosynthesis and respiration from organisms 

within, including algae and periphyton. This lack of oxygen at night can reach extremes in 

impacted areas (Wang et al., 2002; Loperfido et al., 2009; Hill et al., 2009). Nutrients, sediments, 

light, temperature, and flow continue to influence abundance, respiration, production and 

decomposition of these organisms which alter and often limit dissolved oxygen within a system 

(Loperfido et al., 2009). 

1.3.8 Agriculture, Physical Habitat and Stream Morphology  

As shown, previously, agriculture can change both water quantity and quality 

characteristics. In addition to those, there are also more physical conditions that can be impacted 

by land use. Although majority of these variables are not included within the scope of our 

project, we do recognize their importance. Structure and debris within a stream is one of these 
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conditions. The amount of woody debris and organic material that is found in a stream is 

influenced and primarily driven by the vegetation and forested composition within the riparian 

zone (Roth et al., 1996; Poole and Berman, 2001). Agricultural areas, having less forested 

riparian areas, have been shown to have lower numbers of large woody debris within a channel 

(Shields et al., 2006).  Channelization, homogenous habitat, and decreases in stream sinuosity 

can also be conditions associated with agricultural areas, through the straightening of channels 

and increased drainage. This can lead to a decrease in bed stability, peak stream flow and power, 

and other further impacts (Sullivan et al., 2004; Rowe et al., 2009). 

1.4 Stream Conditions and Aquatic Health 

The above mentioned stream conditions and factors affected by agriculture can have a 

large influence on the aquatic biota and overall aquatic health of a system. These factors include 

flow, sediment, nutrients, pesticides, bacteria, water temperature, dissolved oxygen, and channel 

morphology.  

1.4.1 Flow and Aquatic Health 

Flow within a lotic system has a great deal of influence on ecological processes and fish 

assemblages. As earlier explained, flow can affect temperature, sediment, nutrient, and pesticide 

input, dissolved oxygen levels, and other stream conditions, which in turn affect aquatic 

organisms. Flow can also affect the biota in more direct ways, including habitat availability, 

wash out, and other stressors. Macrophytes and aquatic vegetation that are a resource for food, 

juvenile habitat and cover, among other things, can be impacted by altered flows (Poff et al., 

1997; Bunn and Arthington, 2002). In addition, flow is tied to many important life events for 

some fish, including spawning and recruitment, and changes can have negative implications on 

these species behavior and survival (Bunn and Arthington, 2002). All of these impacts can be 
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observed through five components of flow; including magnitude, frequency, timing, duration, 

and rate of change (Poff et al., 1997). With changes in flow, potential areas for habitat and or 

connections to areas of habitat can be created or reduced (Sparks, 1995).A common way of 

describing how flow can have an effect on fish and macroinvertebrates in this way is the IFIM, 

Instream Flow Incremental Methodology. This model shows the amount of available habitat with 

varying discharges based on water depth, velocity, and substrate (Poff et al., 1997). Within 

several studies, fish have consistently been shown to be negatively affected, including diversity 

of species, to changes in natural flow regimes. This is true for both decreases and increases in 

flows. Also, in their review of 165 papers, Poff and Zimmerman (2010) found that 92% of them 

showed negative responses of ecological metrics to alterations in flow. Lammert and Allan 

(1999) observed flow’s effect on fish, revealing that IBI score variation was strongly associated 

with flow stability. Abundance and diversity of macroinvertebrates are also commonly reduced 

in studies with flow alterations (Poff and Zimmerman, 2010). These reductions can occur due to 

changes in substrate habitat from flow and, in a more direct affect, increased drift and 

downstream transport (Bunn and Arthington, 2002; Borchardt, 1993). 

1.4.2 Sediments and Aquatic Health 

Sediments can also impact the ecology of stream in several direct and indirect ways. 

Primary production within a stream can be affected due to sediments limiting light penetration, 

transporting nutrients, and covering substrate (Wood and Armitage, 1997). Izagirre et al. (2009) 

observed sediments impacting periphyton negatively soon after siltation. Although they saw a 

recovery, it was partially contributed to a shift in community structure. These influences on 

periphyton can be linked to and show indirect effects from sediments on fish and 

macroinvertebrates through habitat structure alteration, food availability, and dissolved oxygen 
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levels (Griffith et al., 2009). Although sediments are shown to have negative effects toward 

larger aquatic organisms, it is also possible that they can improve habitats by limiting periphyton 

growth and eutrophication (Hill et al., 2009).  

Sediments can further affect fish in other ways by degrading their habitat within a stream; 

with, increased turbidity, their feeding efficiency and abundance of food is obstructed (Wood 

and Armitage, 1997; Karr and Dudley, 1981). Sullivan et al. (2009) showed results that indicated 

that sediment loads and their duration affected certain feeding guilds more than others, with 

opportunistic feeders being the most resilient. Fish can also be hindered by sediments that cover 

and embed substrates, which impede on spawning, nesting, and juvenile habitat (Sullivan et al., 

2009; Newcombe and Jensen, 1996). Sediments continue to affect fish in more direct ways like 

physiological stress when sediments clog gills (Wood and Armitage, 1997) and increase 

respiration rate (Zimmerman et al., 2003). All these stresses can further impact fish assemblages 

by reducing growth rates, causing delayed hatching, mortality, and natural fish migration 

(Zimmerman et al., 2003; Wood and Armitage, 1997). Overall community structure and diversity 

can be influenced by suspended sediments and sediment deposition. Rowe et al. (2009) observed 

significant declines in fish IBI’s from sites where substrates were dominated by sediments.  

Along with loads and concentrations, effects of sediments have been observed to increase with 

particles size and have more of an affect to fish in warmer waters (Newcombe and Jensen, 1996).  

Macroinvertebrates have been shown to be directly impacted from sediments as well. 

Their abundance, diversity, density, and community structure have been observed in studies to be 

affected, due to covered and modified substrate habitat, affecting their respiration, impairing 

feeding, and increasing drift (Wood and Armitage, 1997). Wohl and Carline (1996) observed 

lower densities in streams with higher sediment loads. Griffith et al. (2009) also continued to see 
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effects of sediments on macroinvertebrates in direct ways, including increases in percent 

burrower taxa, as well as indirect means through interactions with periphyton as explained 

earlier.  

1.4.3 Nutrients and Aquatic Health 

Sediments often are accompanied by nutrients when they reach channels. These nutrients, 

although essential to organisms, can exceed levels that are needed and have considerable 

negative impacts on the individual, community, and the system as a whole. In some situations, 

where nutrients are low, supplied nutrients from agriculture can show positive effects on a lotic 

system and aquatic organisms. However, often this is not the case and there is an excess of 

nutrients in the system (Miltner, 2010). One of the main effects of nitrogen and phosphorus 

overload in a lotic system is the acceleration of eutrophication (Carpenter et al., 1998). Both 

nitrogen and phosphorus, predominantly in areas of adequate light (Hill et al., 2010); have been 

shown to increase algal, macrophyte, periphyton, and phytoplankton growth (Bernot et al., 2006; 

Carpenter et al., 1998). Shifts in algal community structure have also been observed, leading to 

more tolerant species like blue-green algae becoming dominant in streams with high nutrients 

(Minnesota pollution Control Agency, 2003). These alterations and increases can reach levels 

that create dangerous algal blooms and conditions, which lead to low dissolved oxygen levels 

and areas of hypoxia, which are unable to support other organisms (USEPA, 2009d; Robertson 

and Vitousek, 2009). Not only can these increases in periphyton and algae negatively affect 

dissolved oxygen levels, but they can continue to affect consumers and secondary consumers by 

influencing feeding and habitat structure (Griffith et al., 2009).   

Some fish are more intolerant than others to high levels of nutrients, along with the 

conditions they create within the habitat. These increased levels of nitrogen and phosphorus have 
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been observed many times to affect fish assemblages and communities. For example, Wang et al. 

(2006) showed that total phosphorus and total nitrogen contributed to most variation in fish 

variables, including negative relationships with IBI, number of carnivores, omnivores, and 

intolerant species. This negative relationship between these nutrients and IBI was also observed 

by the Minnesota Pollution Control Agency (2003) and Miltner (1998) as well.  

In addition, these effects have been reflected in macroinvertebrate communities. Miltner 

and Rankin (1998) observed a decrease in ICI associated with NH3. It was also shown that EPT 

taxa decreased, while some other taxa increased, with higher nutrient levels. Justus et al. (2010) 

observed that biotic indexes for both fish and macroinvertebrates were negatively correlated with 

nutrients and were found to be lowest where nutrient concentrations were at their highest.  

1.4.4 Pesticides and Aquatic Health 

Pesticides can be introduced to streams through agricultural practices and throughout the 

years have proven to be detrimental to aquatic systems. One of the most well-known and 

damaging pesticides was DDT (dichlorodiphenyl-trichloroethane). This, along with all other 

organochlorine insecticides, has now been banned from use in the United States due to harmful 

effects on the environment and biota (Helfrich et al., 2009). Other types of pesticides, however, 

are still commonly used and can affect aquatic organisms directly through absorption, respiration 

through the gills, and orally through feeding and drinking. Pesticides, although toxic to aquatic 

life in high doses and for long periods of time, seldom cause kills. This is due to pesticides being 

often short lived and strongly absorbent to sediments and mud. Insecticides are generally the 

most harmful to a lotic system, being highly toxic to macroinvertebrates and fish (Helfrich et al., 

2009). Schulz and Liess (1999) observed several macroinvertebrate species disappearing and 

others’ population densities showing significant reductions in streams affected by insecticides. 
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Schafer and others (2007) also showed negative relationships between pesticides and 

macroinvertebrate community structure. These eliminations and shifts in macroinvertebrates can 

affect food resources for specific fish and ultimately impact them as well (Pimentel, 2005). 

Herbicides, like Atrazine, Metolachlor, and Simazine, also can be detrimental to streams through 

their impacts on macrophytes and vegetation, which can affect habitat, food, and refuge for many 

aquatic organisms (Solomon et al., 2008).  

1.4.5 Bacteria and Aquatic Health 

Fecal bacteria that originate from manure and animal waste in agricultural areas can have 

impact on the ecological health of a stream. Along with the cloudiness and turbidity that it can 

create, the decomposition of the organic material can contribute to low dissolved oxygen 

concentrations as well. The bacteria, pathogens, viruses, and protozoan that are present can all 

present health risks within a lotic system, especially for humans (USEPA, 2006a). Geldreich and 

Clarke (1966) observed levels of fecal coliform in fish’s intestinal tracts that were reflective of 

the pollution levels within the stream and indicated that these bacterial microorganisms could in 

fact survive and multiply in favorable temperatures. Similar results were obtained by Del Rio-

Rodriguez and others (1997) who found that E.coli could be established in trout through feeding 

on infected feed in water at warmer temperatures. These pathogens cannot only be found in the 

digestive tract of fish, but also in their skin, organs, and muscles, making them a potential risk 

for human consumption (Fattal et al., 1992). 

1.4.6 Water Temperature and Aquatic Health 

Temperature and thermal regimes within streams is significant when it comes to aquatic 

biota and their distributions and physiologies (Wehrly et al., 2003; Poole and Berman, 2001). 

Not only can temperature affect aquatic organisms directly, but it can also affect them indirectly 
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through its influence on oxygen levels, with colder waters are able to hold more dissolved 

oxygen (USEPA, 2006b; Garvey et al., 2007). Nutrient toxicity is also influenced, with many 

contaminates showing an increase in toxicity at higher temperatures (Caissie, 2006). 

Temperature has also influenced alterations in production and consumption (Loperfido et al., 

2009). Additionally, there influence on the system affects rates of nutrient cycling and 

productivity (Poole and Berman, 2001). Although warmer waters are known to support more 

aquatic species and diversity (Karr, 1981; Lyons et al., 2009), warmer waters can also lead to 

detrimental conditions as well. 

 Fish, through community composition, variations in species richness, and amounts of 

standing stock, have shown that temperature is significant in determining their distribution and 

its use for classifying them and their habitats is very valuable in management (Wehrly et al., 

2003; Lyons et al., 2009). Water temperature has been observed to have direct effects on fish, 

including warmer waters associated with increased metabolic rates (Pool and Berman, 2001; 

MDEQ, 1997) and increased growth rate (Hinz and Wiley, 1998; Caissie, 2006). With both 

increases in metabolic rates and lower levels of dissolved oxygen, these factors can sometimes 

lead to unfavorable and harmful conditions (Cassie, 2006). Increases in temperature have also 

been shown to exceed optimal levels for fish and in effect show declines in the above mentioned 

rates (Power et al., 1999). Many life events can be triggered by temperatures as well, including 

fish movement, spawning, and smolt runs (Caissie, 2006; Power et al., 1999). Along with this, 

habitat and food availability can be influenced by water temperature and its fluctuations. 

Groundwater supplies are often associated with colder waters with less fluctuation, allowing for 

refuge from extreme temperatures in both summer and winter (Poole and Berman, 2001; Power 

et al., 1999). When groundwater is the primary source of flow, creating constant colder thermal 
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conditions, different fish, that are intolerant to warmer waters, are supported in that system (Chu 

et al., 2008; Lyons et al., 2009; Wehrly et al., 2003). This variation in distribution of fish at 

varying temperatures has systems commonly classified as cold water, cool water, or warm water 

streams, with cool water being the most common within Michigan and Wisconsin (Lyons et al., 

2009). 

 Macroinvertebrates are also influenced by temperature in much of the same way as fish. 

It can affect their habitat around them and increases in temperature have shown increases in their 

metabolic rates (MDEQ, 1997; Poole and Berman, 2001) and growth rates (Caissie, 2006). 

Pockets of desired temperatures also create localized refuge for macroinvertebrates in extreme 

temperatures (Poole and Berman, 2001). Hinz and Wiley (1998) found that several temperature 

measures, including annual maximum and mean daily summer temperature, were positively 

correlated with macroinvertebrate biomass and standing stock. 

1.4.7 Dissolved Oxygen and Aquatic Health 

With oxygen often being a limiting substance for aquatic organisms, like fish (Garvey et 

al., 2007), dissolved oxygen can be a significant predictor of ecological conditions within a 

stream (Loperido et al., 2009). The dissolved oxygen within an aquatic system can be influenced 

by temperature, light, flow, channel morphology, and the organisms within (Loperfido et al., 

2009; Garvey et al., 2007; Wang et al., 2002). Although densities of larger organisms seldom 

reach levels where they can deplete a system of dissolved oxygen, smaller organisms like zebra 

mussels, macrophytes, and periphyton can be significant in reducing DO levels (Caraco and 

Cole, 2002; Garvey et al., 2007). Although macrophytes, algae, and periphyton all contribute to 

creating dissolved oxygen through photosynthesis, they also deplete the system through 

respiration at times of limited light (Loperfido et al., 2009; Francis-Floyd, 1992). This is why 
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aquatic systems see diurnal fluxes in dissolved oxygen levels, with low levels being reached at 

night (Francis-Floyd, 1992). During those times in which oxygen levels reach insufficient 

amounts, fish and macroinvertebrates, especially at earlier life stages, can be impacted, leading 

to migration or even lethal states of hypoxia (Francis-Floyd, 1992). Other, more specific effects 

on fish include growth declines (Garvey et al., 2007), altered heart rate, changes in circulation, 

changes in respiration, and increases in breathing rate (Seager et al., 2000). 

Lethal impacts of low dissolved oxygen have been observed along with its correlation with fish 

IBI and macroinvertebrates (Minnesota Pollution Control Agency, 2003; Garvey et al., 2007). 

1.4.8 Physical Habitat, Channel Morphology and Aquatic Health 

Woody debris and substrate have also been connected to fish and macroinvertebrate 

assemblages. Woody debris can affect flows and heterogeneity of depth and habitat along with 

providing structure and cover for aquatic biota (Roth et al., 1996). Degerman and others (2004) 

showed that brown trout were more frequent and abundant in sites with more woody debris. 

Similar results were observed by Schneider and Winemiller (2008) who saw abundance and 

richness increase in areas with woody debris, as well as macroinvertebrate abundance and 

community structure. 

A diversity of pools, riffles, runs, and bends allows for a diversity of species and 

organisms that need and rely on them (Rowe et al., 2009; Sullivan et al., 2004). This variation of 

habitat units supports life cycle stages and special requirements for species including spawning 

areas and juvenile habitat. These areas also provide refuge for organisms, whether it is for 

thermal conditions, dissolved oxygen needs, cover, feeding, flow patterns, or extreme conditions 
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(Caissie, 2006). Areas of channelization and little diverse habitats have been shown to support 

less diversity in fish assemblages (Sullivan et al., 2004). 

1.4.9 Influences and Different Scales 

Agriculture can influence streams and their ecological integrity from both the local and 

catchment scale, requiring a hierarchical approach of thinking when looking at its affects (Rowe 

et al., 2009; Roth et al., 1996). There have been several studies that have observed local riparian 

habitat to be a better predictor of biotic integrity, including Lammert and Allan (1999). Rowe 

and others (2009) also showed these results with a stronger relationship with physical habitat at a 

small scale. However, these and several other studies recognize the importance of the landscape 

and catchment area and its ultimate influence on the local area (Infante et al., 2008; Hutchens et 

al., 2009). Roth and others (1996) especially saw this influence and reported a higher correlation 

between IBI and the catchment scale with local riparian conditions being a secondary and often 

an ineffective predictor.  These results have also been observed by others as well, including 

Lyons and others (2000), who observed fish communities to be more influenced by conditions at 

the larger scale. Although Wang and others (2006) observed local factors explaining fish 

communities better, these were in catchments of relatively low disturbance. As the local and 

catchment areas became more disturbed, the more local factors had less of an impact and 

influence on fish communities. The contradicting results, of the scale at which agriculture has 

more of a weight on fish, have additionally been seen with macroinvertebrates. Several studies 

have shown that macroinvertebrates are more commonly influenced by local riparian conditions, 

yet, some have shown that the watershed scale can also be a significant predictor as well 

(Flinders et al., 2008). It is apparent that factors at a variety of scales contribute to the conditions 

of aquatic biota communities within lotic systems and can be influential (Stewart et al., 2001; 
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Hutchens et al., 2009).  For predictive modeling purposes, it is very common that the off stream 

environmental variables including the types and percentages of different land uses are included 

in development of a predictor for stream health indicators. However, using this variable in a 

watershed that mainly dominated with one landuse (e.g. agriculture) can lead to poor predictions 

(Heitke et al., 2006; Stauffer et al., 2000; Johnson and Host, 2010). In addition, the relationship 

built base on the percentages of different landuse is insensitive to climatological variables, which 

has an important influence on stream health. There continues to be a challenge in capturing the 

confounding interactions among landscape factors that help in forming aquatic ecosystems 

(Johnson and Host, 2010). 

1.5 Methods Linking Environmental Stressors and Ecological Variables 

Several approaches have been proposed to study the complex relationships between 

stream health and human disturbance. Efforts to link disturbances and stream variables to aquatic 

macroinvertebrates and fish have been made through numerous methods ranging from simple 

linear models to complex soft computing techniques such as fuzzy logic. 

1.5.1 Linear Methods 

Simple models such as regression models have been considered reliable where there is a 

lack of knowledge or limited data (Van Sickle et al., 2004). These models are relatively easy to 

develop and can help in understanding how changes in independent variables affect the 

dependent variable. There have been numerous studies demonstrating the use of linear regression 

models for ecological studies (Van Sickle et al., 2004; Maret et al., 2010). Waite and others 

(2010) used linear regression when looking at the relationship between environmental variables 

and macroinvertebrate metrics. Other studies employed multivariate and dimensional approaches 

like canonical correspondence analysis (CCA) (Pool et al., 2010; Wang et al., 2008) and 
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nonmetric multidimensional scaling (NMS) (Sutela et al., 2010). In addition, other multivariate 

approaches such as partial least squares regression (PLSR) has advantages compared to general 

linear regression methods when dealing with ecological processes, due to their ability to handle 

complex interaction and redundancy among a large array of variables (Carrascal et al., 2009). 

PLSR is a multivariate method that linearly combines several predictor variables into latent 

factors that maximize the explained variance in the response variable or variables (Carrascal et 

al., 2009). 

1.5.2 Non-Linear Methods 

As it is often the case in ecological processes, relationships are complex and non-linear. 

To better understand and represent these relationships for purposes including modeling, Non-

linear statistical methods can be used. These methods include piecewise linear regression, 

regression tree analysis (Wang et al., 2007; Weigel and Robertson, 2007), and kernel regression. 

Maret and others (2010) used piecewise regression to identify thresholds in biotic responses and 

nutrient concentrations. Wang and others (2007) employed regression tree analysis to analyze 

linkages between nutrients and aquatic organisms (fish and macroinvertebrates). Kernel 

regression is another non-linear technique that can be used to create a non-linear and flexible 

regression function (Hastie et al., 2009). Kernel methods are memory-based and use a localized 

weighting function along with different local smoothing techniques (Hastie et al., 2009). 

1.5.3 Soft-Computing Methods 

Other methods that can handle complex problems and are based on “inexact” computing 

techniques are known as soft computing (Huang et al., 2010).  Methods, such as fuzzy logic 

(Adriaenssens et al., 2006) can provide robust solutions with tolerances to imprecision, 
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uncertainty, and approximation (Huang et al., 2010) and has shown an increasing trend in 

ecological research (Marchini, 2011). 

 Fuzzy logic is a computing approach introduced in 1960’s by Zadeh (1965) and is a 

method that deals with approximate reasoning (Huang et al., 2010), which can be data driven or 

executed through expert knowledge. Fuzzy logic approach can be especially effective when 

dealing with highly variable, complex, non-linear, and uncertain relationship of variables, 

commonly observed in ecological studies (Adriaenssens et al., 2004; Chen and Mynett, 2003). In 

addition, the fuzzy models constructed can often be easily interpreted based on their linguistic 

nature. Fuzzy logic techniques involve the creation and building of membership functions and 

inference rules, which can often be the most difficult part involved in fuzzy modeling (Chen and 

Mynett, 2003) and can often be subjective (Adriaenssens et al., 2004). This is especially true 

when working with fuzzy logic models based on Mamdani-Assilian methods (Mamdani, 1977). 

When building a Mamdani-Assilian type model, both the input and output variables are 

incorporated into membership functions. Whereas in the other approach, Takagi-Sugeno (Takagi 

and Sugeno, 1985), the input variables are expressed in membership functions, however, the 

output is expressed through as a linear relationship with the input variables. In addition, fusion of 

fuzzy logic with other soft computing methods, such as neural networks, can provide adaptive 

learning techniques that can be very useful when data is already available and a predetermined 

model structure is not (MathWorks, 2010). The adaptive neural-fuzzy inference system (ANFIS) 

is an example of the fusion technique.  

Applying to environment and ecological processes, fuzzy logic has proven to be a valid 

method for developing predictive models and decision support tools (Adriaenssens et al., 2004). 

Fuzzy logic has been used for water quality assessment and classification, such as construction 
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of an index model for surface water quality classification (Icaga, 2007) and the evaluation of 

watershed conditions and creation of a decision support system (Jensen et al., 2000). Fuzzy logic 

has also been used to develop predictive models for both abiotic and biotic processes. Using 

fuzzy logic for flow (Zhang et al., 2009) and flood forecasting (Nayak et al., 2005) have been 

shown to be reliable. Fuzzy logic techniques have been successfully used for modeling algae, 

macroinvertebrate, and fish communities. Chen and Mynett (2003) illustrated the use of fuzzy 

logic developed with the combination of data mining techniques and heuristic knowledge in 

predicting algal biomass and eutrophication for a lake system. Adriaenssens and others (2006) 

illustrated that fuzzy models were valuable and practical for predicting the abundance of 

macroinvertebrate taxa in a river basin based on conductivity, dissolved oxygen, water velocity, 

and stream width. Predictions of fish assemblages and their physical habitat have also been 

conducted using fuzzy logic approaches. For example, Mouton and others (2008) demonstrated 

fuzzy logic application in developing a physical habitat model for European grayling in a river 

system. Jorde and others (2000) used fuzzy logic to evaluate relationships among floodplain 

processes, in-stream habitat quality, and fish communities. 

1.6 Conservation Practices 

There are several conservation and best management practices that are implemented by 

land owners and organizations that aim to reduce the negative environmental consequences that 

come from agriculture procedures. These conservation actions, more specifically, help in 

reducing erosion and sedimentation, nutrient transport, water runoff and surface transport, and 

impacts to stream morphology and habitat (NRCS, 2006).  
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1.6.1 Filter Strips 

Filter strips are a conservation practice that works similarly to herbaceous riparian 

buffers. Filter strips are strips of vegetation that is often placed adjacent to streams in the act of 

removing or reducing contaminates pesticides, and sediments from runoff produced by fields. 

These strips can also reduce the quantity of overland flow through infiltration and the potential 

benefits, like in riparian buffers, can increase with width and vegetation used (NRCS, 2006).  

1.6.2 Terraces 

When trying to reduce runoff, terraces are often used as well. This best management 

practice consists of a series of earth embankments or ridges that lay across a farmed hillside, 

which retain runoff and direct it to a desired location. They can hold runoff for moisture and also 

reduce erosion, which leads to less sediment transport to stream and channels (NRCS, 2006). 

1.6.3 Grassed Waterways 

Another conservation practice that works by directing water to favorable outlets is 

grassed waterways. These are vegetated channels through fields that direct runoff in low 

velocities to stable outlets, while reducing erosion and keeping contaminates and sediments from 

going directly into streams (NRCS, 2006). Not only can these waterways direct runoff and trap 

sediments efficiently, but they can also reduce velocities by prolonging infiltration time (Fiener 

and Auerswald, 2002). 

1.6.4 Constructed Wetlands 

Sometimes grassed waterways can lead to outlets like constructed wetlands. These low 

lying ecosystems with hydrophytic vegetation are an additional best management practice used 
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to improve water quality (NRCS, 2006). These wetlands can not only help in improving water 

quality and regulate flow, but they can also supply important wildlife habitat (USEPA, 2000). 

1.6.5 Conservation Tillage 

Conservation Tillage is another conservation practice that is known to reduce erosion, 

improve soil matter content, increase plant available moisture, and reduce soil particulate 

emissions. This is the practice of managing of plant residue on the soil surface, while limiting 

disturbances to the soils when applying nutrients and planting crops (NRCS, 2006). There are 

several types of conservation tillage, including strip till, ridge till, and no till, all being beneficial 

to lessening the impact on water quality in nearby aquatic systems (USEPA, 2009e). 

1.6.6 Rotational Grazing 

The managing of grazing animals and their harvest of vegetation is a conservation 

practice that can improve plant species composition, riparian and watershed function, subsurface 

and surface water quality and quantity, and soil condition, all while reducing soil erosion 

(NRCS, 2006). There have been several studies where areas of intense grazing have led to 

increased sediments and runoff (Wohl and Carline, 1996).  

1.6.7 Contour Farming 

Contour farming is the practice of using farming operations, tillage ridges, and plantings 

to alter the transport of runoff from going directly downhill. This technique can reduce sediment 

and contaminate transport, along with increasing infiltration as well. This practice is especially 

efficient on sloped land with increased residue cover and roughness, achieved through vegetation 

(NRCS, 2006). 
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1.6.8 Strip Cropping 

Strip cropping is the act of growing rotational crops in an arrangement of strips across a 

field in effort to reduce soil erosion from both wind and overland flow. Strips should alternate 

between erosion-resistant crops and crops that are subject to erosion. Several factors determine 

the efficiency of this practice including, number of strips, alignment, width, and orientation 

(NRCS, 2006). 

1.6.9 Conservation Reserve Program (Native Grasses) 

The Conservation Reserve Program is a voluntary program that contracts and pays farmers 

to designate, usually cropped land, to be planted with tree, shrubs, grasses, and native prairie 

species. These actions can reduce erosion, sediments inputs into streams, and improve other 

water quality conditions (NRCS, 2006). 

1.6.10 Conservation Effects Assessment Project (CEAP) 

Following the 2002 farm bill and the boost of conservation program funding, the USDA 

Natural Resources Conservation Service (NRCS) and other USDA  agencies established the 

Conservation Effects Assessment Project (CEAP) in an effort to show the environmental benefits 

of conservation practices at the national, regional, and watershed level (Maresch et al., 2008; 

Duriancik et al., 2008; Mausbach and Dedrick, 2004). With the U.S. Federal government 

spending about 4 billion annually in agricultural conservation programs (Shields et al., 2006), 

being able to quantify and support these programs is critical. Outcomes of this project are 

intended to continue to provide insight, understanding, and recommendations for conservation 

decisions to everyone in the conservation community, from policy makers to the farmers 

themselves (Duriancik et al., 2008; NRCS, 2010; Maresch et al., 2008). Educating farmers and 

others on conservation options and effectiveness, has proven to be influential in practice 
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adoption and the move toward more conservation actions. CEAP also can provide other insights 

into human dimensions of conservation practices and the factors influencing adoption (Maresch 

et al., 2008). Several programs and conservation techniques are assessed and covered by CEAP, 

including the Conservation Reserve Program (CRP), Wildlife Habitat Incentives Program 

(WHIP), Conservation buffers, nutrient management, pest management, and tillage management 

(Duriancik et al., 2008). There are three main components of CEAP, one being bibliographies, 

literature reviews, and a scientific workshop. This component was initiated to distinguish what is 

known about the impacts of conservation practices and what still needs further research and data 

collection. This includes not only the effects, but also, methods that are used to assess the effects 

(Duriancik et al., 2008). The second component is watershed assessment studies, which is aimed 

at providing the effects of conservation practices on water and soil quality at the local level. This 

can allow for more efficient management and implementation of conservation methods within a 

watershed (Dureiancik, 2008). Earlier research focused in on environmental impacts at the 

individual farm or field level, however CEAP recognizes and looks at the off-site effects through 

the watershed, which are regularly unseen by the people who apply the conservation practice 

(Maresch et al., 2008).  The third component in CEAP is national and regional assessments. 

Much like the second component, this too looks at the benefits and impacts of conservation 

practices, but on a larger scale (Duriancik et al., 2008). It can also help in applying or designing 

new conservation programs for more efficiency at reaching desired outcomes (Maresch et al., 

2008; NRCS, 2010). Within the national assessment, CEAP focuses on the effects of 

conservation practices on four elements including croplands, wetlands, grazing lands, and 

wildlife. Due to diversity of fish and wildlife resources, agricultural landscapes, and conservation 

activities from region to region, the wildlife component is split up into four regions, including 
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the Midwest, Southeastern, Northeastern, and Western (Duriancik et al., 2008). Because fish and 

wildlife are connected to landscapes and the conservation practices, the wildlife element is linked 

and influenced by the other three elements (NRCS, 2010). Because of this connection and the 

complexity of biological outcomes, the impacts on fish and wildlife are often difficult to 

understand and measure. After the compiling of literature reviews, Duriancik and others (2008) 

identified areas with a lack of research pertaining to and understanding the effects on fish and 

wildlife from conservation practices. The research that was available often used habitat quality 

and suitability, which is seen as a reliable predictor of the impacts.   

1.7 Modeling 

Other environmental effects, from conservation practices in agricultural regions, have 

been assessed within CEAP through model development and application (Mausbach and 

Dedrick, 2004). These include AnnGNPS, a watershed model; CONCEPTS, a channel evolution 

model; REMM, a riparian ecosystem management model; and SWAT, a watershed model 

(Shields et al., 2006). Although these models can be used to see water quality and quantity 

effects, limited connection to ecological effects has been shown (Shields et al., 2006). The 

development of models is often very complex, which has led to gaps in research. The 

improvement of application and uncertainty of models is a strong focus for CEAP (Maresch et 

al., 2008). Shields and others (2006) look at the possibilities of using current models and 

adapting their use for assessing fish or macroinvertebrate habitats. Simulated flow, water quality, 

channel morphology, and other outcomes, which are all valuable habitat characteristics, could, 

with further processes, be applied to modeling habitat and ecological conditions.  
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1.7.1.1 SWAT 

The Soil and Water Assessment Tool (SWAT) is a commonly used watershed scale 

model that can simulate runoff, soil erosion, chemical and sediment transport, along with several 

other hydrologic processes, in an aim to predict effects from land use and agricultural 

watersheds. This GIS based and spatially explicit model, developed by the USDA-ARS temple 

Texas, uses input data, including but not limited to weather, topography, soil, and vegetation. 

Simulation, along with calibration and validation, then provides outputs for sub-watersheds and 

reaches on different time scales (Casper et al., 2011; Neitsch et al., 2009; Shields et al., 2006). 

Several studies have shown the use of SWAT in evaluating hydrologic condition in agriculture 

areas and its possible impacts on aquatic health. For example, Rossi and others (2008) looked at 

SWAT’s ability to simulate hydrology, pollution discharge from point sources, runoff, and 

average stream flow, and found it to be an effective tool. The SWAT model’s prediction of 

stream flow was also demonstrated to be more efficient than that of other models in uncalibrated 

conditions (Heathman et al., 2008). Other studies have shown SWAT’s ability to evaluate best 

management practices and nutrient loading (Sood and Ritter, 2010), sediments, and bacteria 

(Parajuli et al., 2008). Casper and others (2011) used the SWAT model in efforts to simulate 

hydrograph data for streams that did not have monitored or gauged data. They found that 

predicted model outputs such as hydrographs, although significantly sensitive to resolution, 

could be a viable option in linking to the habitat model, PHABSIM.   

1.7.1.2 AnnAGNPS 

Another watershed scale model developed by the USDA, used for simulating the long 

term allocation and load of pollutants is the Annualized Agricultural Non-point Source Model 

(ANNAGNPS) (Bingner and Locke, 2009). This model, much like SWAT, can simulate runoff, 
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sediment and chemical yields, in-channel transport, and the effects agricultural practices have on 

them (Shields et al., 2006). Some differences between the two models include; AnnAGNPS uses 

various sized designated cells, while SWAT uses HRUs; AnnAGNPS has less components and 

capabilities, like pathogen transport and crop growth; and there are different methods and 

simulators within the model (Parajuli et al., 2009). Although SWAT is often found to be a more 

appropriate and efficient model for watersheds (Heathman et al., 2008), Parajuli and others 

(2009) observed that AnnAGNPS can be used in simulating surface runoff and sediment yield in 

‘impaired waters’ within a CEAP watershed in Kansas. Other studies have observed similar 

results with AnnAGNPS and it has been used to show how conservation practices can reduce 

sediment load, including Yuan and others (2008) who observed a 77% and 64% reduction of 

sediment load when converting crop land to no-till soybeans and no-till cotton respectively. 

1.7.1.3 APEX 

When trying to simulate environmental and hydrologic impacts from agricultural 

practices on a whole farm or smaller watershed scale, the Agricultural Policy/Environmental 

eXtender model, APEX, is a viable option (Williams et al., 2008; Harman et al., 2004). APEX 

was developed from the EPIC model and can evaluate erosion, economics, water quantity and 

quality, soil quality, plant competition, weather, and pests, along with routing water, sediments, 

nutrients, and pesticides (Williams et al., 2008). The outputs from APEX can then be put into 

SWAT and be further evaluated (Duriancik, 2008). Harmon and others (2004) used APEX to 

look at Atrazine loss related to different conservation practices on a crop farm and found several 

practices, including filter strips and constructed wetlands, which reduced the amount lost. Both 

runoff and sediment yield have also been shown to be reduced through different tillage systems, 

using a validated and calibrated APEX model (Wang et al., 2008). 
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1.7.1.4 CONCEPTS 

The Conservation Channel Evolution and Pollutant Transport System (CONCEPTS) is a 

model developed for simulating channel hydraulics, morphology, and sediment transport 

(Langendoen, 2000; Shields et al., 2006). This model can predict in-channel processes along 

with riparian processes, including simulating streamside riparian vegetation’s effects on stream 

morphology and pollutant loading (Bingner and Locke, 2009), along with stream bank erosion 

and channel widening. Outputs from this model can be used within CEAP to see the effects of 

varying riparian area and stream bank activities. Shield and others (2006) used CONCEPTS to 

show the effects of deforestation on bed sediment gradation and percent gravel/cobble content.  

Other studies used CONCEPTS with AnnAGNPS to identify sediment sources and flows 

through different management and climatic scenarios (Kuhnle et al., 2005).  

1.7.1.5 REMM 

The earlier mentioned models have all been used and integrated with the Riparian 

Ecosystem Management Model (REMM) in looking at riparian buffers and there efficiency at 

reducing sediments and nutrients (Liu et al., 2007; Yuan et al., 2007; Langendoen et al., 2009).  

REMM, developed by USDA, helps to simulate riparian buffers based on three zones and their 

effects on, surface and subsurface hydrology; sediment and nutrient transport, removal, and 

cycling; and buffer conditions, like vegetation type, size, slope, and harvesting (Lowrance et al., 

2000; Shields et al., 2006). Yuan and others (2007) used REMM to simulate water and sediment 

movement and reduction along a riparian buffer, given inputs of sediment and water loading 

from AnnAGNPS model outputs. REMM was also used with CONCEPTS to show reduction of 

bank erosion rates with woody vegetation and coarse rooting systems (Langendoen et al., 2009). 

Other significant uses that can apply to CEAP include large woody debris and leaf litter inputs, 
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which are important habitat components for fish and macroinvertebrates. These too can be 

obtained with the help of REMM modeling (Shields et al., 2006). 

1.7.1.6 PHABSIM 

The Physical Simulation Model (PHABSIM) is also a hydraulic model. However, 

PHABSIM relates changes in stream flow, including surface elevation and velocities, to 

quantities of physical habitat, based on weighted useable area (WUA). Although PHABSIM 

cannot relate hydrology directly to biota measures, like abundance or diversity, it can be 

predictor of available physical habitat through defined hydraulic parameters and habitat 

suitability criteria (Casper et al., 2011; USGS, 2010). This model uses the same approach as 

IFIM, Instream Flow Incremental Methodology, using a curve of WUA over discharge, and can 

be used in developing standards for withdrawals. Applications of PHABSIM have also been used 

in urban rivers to look at modifications to the stream channel and effluent discharges (Booker 

and Dunbar, 2004). However, some studies have shown little relations between WUA and 

population parameters of fish (Nuhfer and Baker, 2004) and that PHABSIM carries a great deal 

of uncertainty (Williams, 2010). 

1.7.1.7 AQUATOX 

Although there is little modeling available to predict all the ecological processes within a 

system, because of the complexity, the U.S. EPA’s AQUATOX model is one of the few that 

comes close. AQUATOX is a simulation of aquatic systems, including the processes, direct and 

indirect effects, and relationships between pollutants, nutrients, sediments, dissolved oxygen, 

periphyton, macroinvertebrates, fish, and many other components. This is done with the use of 

450 equations within the model, system linkages with SWAT and EPA-BASINS, and uncertainty 

analysis (Park et al., 2008). Carleton and others (2009) used AQUATOX to develop nutrient and 
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sediment criteria and thresholds of impairment to lotic systems, using biological indexes. Food 

web modeling, bio-magnification of PCBs, and the recovery for specific species have also been 

characterized and simulated through AQUATOX (Rashleigh et al., 2008). The Dominant 

pathway for PCB’s was also observed in this study showing its course from detritus to daphnia to 

shad to largemouth bass. Other known AQUATOX applications include the assessments of 

pesticides, dissolved oxygen, nutrients, sediments, periphyton biomass, and fish dynamics (Park 

et al., 2008). 
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INTRODUCTION TO METHODOLOGY AND RESULTS 

This thesis is in the form of two research papers that have been submitted to scientific 

journals.  The first paper, entitled “Exploring Relationships between In-Stream Conditions and 

Ecological Health while Assessing Land-use and Climate Scenarios”, aims to employ watershed 

model results to obtain in-stream flow and water quality data and fill a critical gap in data 

collection. This data was then used to describe and estimate fish index of biological integrity 

(IBI) and the percent of intolerant fish individuals through series of models representing 

ecological health at un-sampled stream reaches within the Saginaw River watershed in Michigan. 

The ecological health models were then used to predict historical reference conditions for 

streams under pre-settlement landuse and climate scenarios. The process started by setting up a 

Soil and Water Assessment tool (SWAT) model to generate high-resolution flow and water 

quality data for all reaches within the study area. The model was calibrated and validated for 

stream flow, sediment concentrations, total nitrogen concentrations, nitrate concentrations, and 

total phosphorus concentrations. Relationships between estimated flow and water quality 

variables obtained from the watershed model and stream health measures were described using 

statistical methods and fuzzy logic techniques based on 10-fold cross validation. The best 

performing model to predict the Index of Biological Integrity (IBI) and percent intolerant 

individuals was then used to forecast the ecological health measures under pre-settlement 

conditions. Next, pre-settlement and current scenarios were compared to evaluate the potential 

impacts that landuse and climate change may have on IBI and the percent of intolerant 

individuals, as well as demonstrate the applications of linking ecological health to a watershed 

model. 
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The second paper, entitled “Study and Model the Effects of Conservation Practices on 

Stream Health”, aims to complement the first paper by estimating additional ecological health 

measures using in-stream flow and water quality variables and ultimately study the impacts of 

agricultural conservation practices on overall stream health measures. This paper, specifically, 

focuses on connecting in-stream variables to macroinvertebrate measures (Family index of 

biological integrity, Hilsenhoff Biotic Index, and number of Ephemeroptera, Plecoptera, and 

Trichoptera taxa). Model setup, calibration, and validation were performed in the same matter as 

the first paper. Relationships between model outputs and macroinvertebrate measures were 

described using statistical methods and adaptive neural fuzzy inference system. The best 

performing model was selected based on the 10-fold cross validation for each macroinvertebrate 

measure and then used to forecast the potential impacts of agricultural best management practice 

(BMP) implementation in a large-scale watershed. Three BMPs (no-tillage, residue management, 

and native grass) were physically represented within the SWAT model. The BMP scenarios were 

compared through statistical significant analysis and spatial representation of stream segment 

degradation or improvement in regards to current land use scenario. 
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EXPLORING RELATIONSHIPS BETWEEN IN-STREAM CONDITIONS AND 

ECOLOGICAL HEALTH WHILE ASSESSING LAND-USE AND CLIMATE 

SCENARIOS  

Matt Einheuser, A. Pouyan Nejadhashemia, Lizhu Wang, Scott Sowa 

 

1.8 ABSTRACT 

Land use and other human disturbances have significant impacts on physicochemical and 

biological conditions of stream systems. A good understanding of the relationships among those 

factors will help aquatic resource managers to make wise decisions in protecting un-impacted 

systems and rehabilitate degraded systems.  The objectives of this study were to employ 

watershed model results to obtain in-stream flow and water quality data and fill a critical gap in 

data collection. This data was then used to describe and estimate fish index of biological integrity 

(IBI) and the percent of intolerant fish individuals representing ecological health at un-sampled 

stream reaches within the Saginaw River watershed. Three methods were used in connecting in-

stream variables to fish measures including stepwise linear regression, partial least squares 

regression, and fuzzy logic. The model developed using fuzzy logic showed the best 

performance based on the highest R
2
 for IBI (R

2
 = 0.48) and for percent intolerant fish 

individuals (R
2
 = 0.21) and the lowest mean square error for IBI (MSE=268) and for percent 

intolerant fish (MSE=275). Overall, average annual flow rate had the strongest correlation with 

IBI, whereas nutrient concentration showed the largest influence on the percentage of intolerant 

individuals. Based on the best model identified from the previous section, predictions were made 

for pre-settlement landuse and climate conditions. Results showed overall significantly higher 
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IBI and percent intolerant individuals under pre-settlement landuse scenario. This implies that 

landuse change from pre-settlement to current has profound negative impacts on stream health. 

Results also showed that including pre-settlement climate factors have strong influences on 

stream flow and water quality measures that interactively affect stream health as indicated by 

fish measures. These results suggest that efforts to model historic baseline habitat conditions and 

to provide context for stream health assessments should include both pre-settlement land use and 

climate conditions. 

1.9 INTRODUCTION 

Land use and other anthropogenic activities have profound effects on water resources 

through complex interactions among specific land practices and lotic systems’ structure, process, 

and function. Agriculture and urbanization have especially strong influence on water quality and 

quantity of streams and rivers (Dale and Polasky, 2007; Zimmerman et al., 2003; Webb et al., 

2008; USGS, 2011). Several of the reported impacts include altered flow (Dale and Polasky, 

2007; Shields et al., 2006; Rowe et al., 2009), temperatures (Poole and Berman, 2001; Caissie, 

2006; Webb, 2008), and channel morphology. Additionally, those land uses have shown 

increases in sediment loading (Rowe et al., 2009; Dale and Polasky, 2007; Zimmerman et al., 

2003), nutrients levels (Bernot et al., 2006), and pesticide concentrations (Gillium, 2007). 

Consequently, those influences may impact biological communities, such as fish and 

macroinvertebrate assemblages, and hence aquatic system health.  

A healthy stream can be described in several ways.  In general it refers to the condition of the 

stream when it is flourishing, resilient, sustainable, and maintains its ecological and societal 

values (Meyer, 1997). Numerous biological monitoring methods measure the ecological 

condition of a stream and quantify its health. Biological indicators is a commonly accepted 
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technique for assessing how different communities respond to water quality issues and can often 

be efficient when physical habitat (Flinders et al., 2008) and low levels of pollutants may be 

otherwise hard to detect (Barbour et al., 1999; Flinders et al., 2008). The most common and 

widely used biotic indicators in aquatic systems are fish and macroinvertebrate assemblages 

(MDEQ, 1997; Flinders et al., 2008; Barbour et al., 1999; Infante et al., 2008; Karr, 1991; Wang 

et al., 2007; Sutela et al., 2010). Fish and macroinvertebrates can react differently, vary in 

sensitivity to different stressors, and mirror conditions at different scales (Griffith et al., 2009; 

Lammert and Allan, 1999; Infante et al., 2008; Flinders et al., 2008; Karr, 1981). Fish have 

several strengths for biological monitoring and being used as indicators. Karr (1981) explained 

that fish cover many trophic levels, including piscivores, herbivores, omnivores, and 

insectivores, which allows them to be a good representation of aquatic systems and its 

interactions. Fishes’ long lives and mobility allow for observation of long-term effects at broad 

scales (Karr, 1981; Babour et al., 1999). Often, when using fish as indicators, there is an aim to 

capture the biological integrity of the system. Biological integrity, as defined by Karr and Dudley 

(1981) is the ability of a system to support "a balanced, integrated, adaptive community of 

organisms having a species composition, diversity, and functional organization comparable to 

that of natural habitat of the region” (Karr, 1991). Biological integrity involves three main 

principles; temporal and spatial scales, elements of biodiversity and processes, and that biotic 

species are important components in a dynamic evolutionary and biogeographic context (Karr, 

1999). In addition to biological integrity, ecological integrity also includes biochemical and 

physical integrities, which refer to the condition of the physical and chemical environment (Karr, 

1996).  
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In this research, we used the index of biological integrity (IBI) of fish as an indicator of 

stream health, which is widely recognized and used (Lammert and Allan, 1999; Van Sickle et al., 

2004; Wang et al., 2008; Weigel and Robertson, 2007). IBI scores are calculated by summarizing 

multiple metrics.  The original 12 fish metrics, developed for the Midwest United States, are 

broken up into three main components including species richness and composition, trophic 

composition, and abundance and condition. Within species richness and composition, six metrics 

focus on quantifying native, benthic, water-column, long-lived, intolerant, and tolerant species. 

With the trophic composition component, three metrics look at percentages of omnivores, 

insectivores, and piscivores. The last three metrics, within fish abundance and condition 

component, quantify number of individuals, hybrids, and those with diseases or abnormalities 

(Karr, 1991). However, over the years, some modifications to the IBI have been made to 

properly assess stream conditions for specific regions (Lyons, 1992; Lyons et al., 1996; Roth et 

al., 1996; MDEQ, 1997; Lammert and Allan, 1999; Wang et al., 2008).  

Flow, sediments, and nutrients are among the many factors influencing biotic composition 

and overall stream health.  Numerous studies have linked environment variables of both in-

channel and landscape of different scales to fish biological integrity.  Van Sickle et al. (2004) 

used regression model to evaluate interaction among land use and flow variables and fish 

metrics, and a coefficient of determination of 0.37 was obtained for predicting IBI.  They further 

employed their models to predict IBI values based on future alternative land-use scenarios.  

Wang et al. (2008) developed a disturbance index for all stream reaches in Michigan based on 

environmental factors and their relationship with fish measures, including IBI.  Relationships 

among nutrient concentrations and stream fish and macroinvertebrate measures have also been 
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used for the development of nutrient criteria for water resource management (Wang et al., 2007; 

Weigel and Robertson, 2007; Sutela et al., 2010). 

Stream flow regime has strong influence on ecological processes and fish assemblages. Not 

only can flow be a reflection of stream size (Lyons, 1992), but flow is a driving force that affects 

temperature, sediment, nutrient, pesticide, dissolved oxygen, and other stream conditions, which 

in turn affect aquatic organisms (Poff et al., 1997). Flow also affects biota in more direct ways 

such as habitat availability, wash out, and diluting stressors. In addition, flow is tied to many 

important life events for some fish, including spawning and recruitment, and flow regime 

changes can have negative implications on these species behavior and survival (Bunn and 

Arthington, 2002). For example, changes in flow can directly impact habitat areas and river 

network connections (Sparks, 1995). In the review of 165 studies, Poff and Zimmerman (2010) 

reported that 92% studies showed negative responses of ecological metrics to flow alterations. 

Lammert and Allan (1999) also showed that variation in IBI scores was strongly associated with 

flow stability. 

Sediments impact the function and process of stream systems in several direct and indirect 

ways. Primary production within a stream can be affected due to sediments limiting light 

penetration, transporting nutrients, and covering substrate (Wood and Armitage, 1997). Izagirre 

et al. (2009) observed sediment negative impacts on periphyton soon after siltation. Such an 

indirect influence of sediments through periphyton can be realized by alteration of habitat 

structure, reduction of food availability, and changes in dissolved oxygen levels (Griffith et al., 

2009). In addition, sediments can directly affect fish through physiological stress, such as 

sediments clogging gills (Wood and Armitage, 1997) and increasing respiration rate 

(Zimmerman et al., 2003). All these stresses can further impact fish assemblages by reducing 
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growth rates, causing delayed hatching, increasing in mortality, and affecting natural fish 

migration (Zimmerman et al., 2003; Wood and Armitage, 1997). Overall community structure 

and diversity can be influenced by suspended sediments and sediment deposition. Rowe et al. 

(2009) observed significant declines in fish IBI scores from sites where substrates were 

dominated by sediments.  Meanwhile, effects of sediments have been observed to have more 

impact on fish in warmer waters (Newcombe and Jensen, 1996). 

Sediments often are accompanied by nutrients when they reach the channel. These nutrients, 

although essential to organisms, can exceed levels that are needed and have negative impacts on 

the individual, community, and the entire system. In fact, an excess amount of nutrients is one of 

the top ranked causes for the degradation of US waters during the past decade (USEPA, 2011b). 

In some situations, where nutrients are low, supplied nutrients from agriculture can have positive 

effects on aquatic organisms. However, often this is not the case and there is an excess of 

nutrients in the system (Miltner, 2010). One of the main effects of nitrogen and phosphorus 

overload in a lotic system is the acceleration of eutrophication (Carpenter et al., 1998). Not only 

can these increases in periphyton negatively affect dissolved oxygen levels, but also they can 

affect primary and secondary consumers by influencing food sources and habitat structure 

(Griffith et al. 2009). High levels of nitrogen and phosphorus have been observed to affect fish 

assemblages. For example, Wang et al. (2006) showed that total phosphorus and total nitrogen 

contributed to most of the variation in their observed fish variables, including negative 

relationships with IBI, number of carnivores, omnivores, and intolerant species. This negative 

relationship between nutrients and IBI was also reported by the Minnesota Pollution Control 

Agency (2003) and Miltner (1998). 
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Along with the above mentioned variables, there are several other variables that have large 

influences on fish communities and ecological health. These variables include stream 

morphology, temperature, physical habitat variables, etc. Although these variables are 

recognized as being very important, considering all of these variables are beyond the scope of 

this research. 

1.9.1 Ecological Modeling 

Several approaches have been proposed to study the complex relationships between 

stream health and human disturbance or environmental stresses. Simple models such as general 

regression models have been considered reliable where there is a lack of knowledge or limited 

data (Van Sickle et al., 2004). These models are relatively easy to develop and can help in 

understanding how changes in independent variables affect the dependent variable. There have 

been numerous studies demonstrating the use of linear regression models for ecological studies 

(Van Sickle et al., 2004; Maret et al., 2010; Waite et al., 2010). Other studies have employed 

multivariate and dimensional approaches like canonical correspondence analysis (Pool et al., 

2010; Wang et al., 2008) and nonmetric multidimensional scaling (Sutela et al. 2010). In 

addition, the use of methods addressing the non-linear nature of the relationships have also been 

increasing, including the use of regression tree analysis (Weigel and Robertson, 2007), 

regression neural networks (Sutela et al., 2010), and other non-linear models like piecewise 

regression (Maret et al., 2010).  

One non-linear approach that is particularly suitable for modeling and exploring the 

relationship of ecological processes is fuzzy logic (Marchini, 2011). Fuzzy logic is a computing 

approach introduced in 1960’s by Zadeh (1965) and is a method that deals with approximate 

reasoning (Huang et al., 2010), which can be data driven or executed through expert knowledge. 
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Fuzzy logic approach can be especially effective when dealing with highly variable, complex, 

non-linear, and uncertain relationship of variables (Adriaenssens et al., 2004). In addition, the 

fuzzy models constructed can often be easily interpreted based on their linguistic nature. 

Applying to environment and ecological processes, fuzzy logic has proven to be a valid method 

for developing predictive models and decision support tools (Adriaenssens et al., 2004). Fuzzy 

logic has been used for water quality assessment and classification, such as construction of an 

index model for surface water quality classification (Icaga, 2007) and the evaluation of 

watershed conditions and creation of a decision support system (Jensen et al. 2000). Fuzzy logic 

has also been used to develop predictive models for both abiotic and biotic processes. Using 

fuzzy logic for flow (Zhang et al., 2009) and flood forecasting (Nayak et al., 2005) have been 

shown to be reliable. Fuzzy logic techniques have been successfully used for modeling algae, 

macroinvertebrate, and fish communities. Chen and Mynett (2003) illustrated the use of fuzzy 

logic developed with the combination of data mining techniques and heuristic knowledge in 

predicting algal biomass and eutrophication for a lake system. Adriaenssens et al. (2006) 

illustrated that fuzzy models were valuable and practical for predicting the abundance of 

macroinvertebrate taxa in a river basin based on conductivity, dissolved oxygen, water velocity, 

and stream width. Predictions of fish assemblages and their physical habitat have also been 

conducted using fuzzy logic approaches. For example, Mouton et al. (2008) demonstrated fuzzy 

logic application in developing a physical habitat model for European grayling in a river system. 

Jorde et al. (2000) used fuzzy logic to evaluate relationships among floodplain processes, in-

stream habitat quality, and fish communities.   
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1.9.2 Motivation and Objectives 

Linking anthropogenic disturbances in watersheds with in-stream physicochemical and 

biological conditions is challenged by the lacking of high resolution and complete landscape 

datasets and the selection of modeling techniques that can adequately deal with the complex and 

non-linear relationships of model components (Wang et al., 2008; Sutela et al., 2010). The Great 

Lakes regional river database and classification system (GLRRDACS), including all streams and 

rivers in Michigan, meets such high resolution and complete landscape database needs. This 

database divides stream networks into confluence-to-confluence stream reaches, with each reach 

having delineated local and network catchments (Brenden et al., 2008).  The local and network 

catchments provide the basis for attributing landscape-scale information to the streams, which is 

essential for comprehensive evaluation of watershed conditions affecting biotic or habitat 

conditions of a reach.  

Quantifying linkages among watershed anthropogenic factors and in-stream stressors and 

biological assemblages to provide management information is focus of many studies.  However, 

most such studies are either simply linked coarse-scale watershed condition measures (e.g., % 

watershed land use) directly with stream reach-scale biological indicators or modeled fine-scale 

watershed condition measures (e.g., land use in 30x30 m cells) for only river mouth.   Our study 

incorporated a highly detailed SWAT model (13,831 stream reach watersheds) and connects 

environmental and ecological variables at an individual homogenous reach scale.    

The objectives of this research were to (1) employ the Soil and Water Assessment Tool 

(SWAT) to generate high resolution flow and water quality data for all reaches within a large 

watershed so that the SWAT outputs could be estimated for all un-sampled stream reaches; (2) 

link stream reach scale SWAT estimates to fish measures to identify how much those estimates 
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could explain in overall stream health; (3) describe the relationships among stream health, flow, 

and water quality using statistical methods and fuzzy logic techniques, and (4) show the 

applications of SWAT to model beyond sampled locations and forecast conditions by predicting 

historical reference conditions for streams in the Saginaw River watershed using pre-settlement 

land-use and climate data. 

1.10 METHODOLOGY 

1.10.1 Study Area 

The Saginaw River watershed, hydrologic unit code (HUC) 040802, is located in the 

central eastern portion of the lower peninsula of Michigan (Figure 1). This 6-digit HUC 

Watershed is approximately 1,612,266 ha and is made up of six 8-digit HUC watersheds 

including the Tittabawassee (04080201), Pine (04080202), Shiawassee (04080203), Flint 

(04080204), Cass (04080205), and Saginaw (04080206) watersheds that discharge into Lake 

Huron. The Saginaw River watershed is the largest watershed within Michigan. This watershed 

has a large amount agricultural land use along with the America's largest contiguous freshwater 

coastal wetland system (USEPA, 2011c). The basin’s land cover is made up of 42.9% 

agriculture, 3.7% Rangeland, 24% forest, 14.1% developed, 14.1% wetland, and 1.2% water. 

Agricultural production within the region in mainly composed of corn, soybean, and 

pasturelands. The study area is dominated by warm water streams that belong to three Level-3 

Ecoregions (USEPA, 2011d): 21% within Northern Lakes and Forests Ecoregion (NLF), 39% 

within Southern Michigan/Northern Indiana Drift Plains Ecoregion (SMNIDP), and 40% within 

Huron/Erie Lake Plains Ecoregion (HELP). Segments of the Saginaw River within the Saginaw 

River watershed, along with its outlet, have been designated as an area of concern with degraded 
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fisheries, fish consumption advisories, loss of recreational values, and contaminated sediments 

(USEPA, 2011c). 

 

Figure 1. Saginaw River watershed 

 

1.10.2 Biophysical Model 

Although field sampled data for quantifying the relationships between in-stream water 

quality and biotic assemblages is regularly measured, this approach is expensive and cannot be 

performed for a large-scale study area for a long period due to budget and logistical constraints. 
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Biophysical models play an important role to estimate water quality where it may otherwise be 

missing or impractical to collect. For example, Wang et al. (2008) used nutrient estimates from 

spatially referenced regressions on watershed attributes (SPARROW) model to assess stream 

health. Casper et al. (2011) used the Soil and Water Assessment tool (SWAT) to simulate flows 

and then predict fish habitat using Physical Habitat Simulation (PHABSIM) model. In this 

present study, the SWAT model (ArcSWAT v.2.3.4) developed by the USDA-ARS Temple 

Texas, was used. SWAT is a spatially explicit watershed scale model that can simulate several 

hydrologic processes and is commonly used in water resources management (Neitsch et al., 

2005). The model can be used to simulate runoff, soil erosion, chemical components, and 

sediment transport, along with hydrologic processes, in an aim to predict effects of land use in 

watersheds. Input data to the model include, but are not limited to, weather, topography, soil, and 

vegetation (Arnold et al., 1998). In addition, both scheduled fertilizer applications and 

management operations can be included in the SWAT modeling process to allow for detailed 

simulations of real world processes and conditions along a continuous time scale.  

Within SWAT, the watershed being modeled is delineated into subbasins that contain one 

stream reach and at least one hydrologic response unit (HRU). An HRU is a unit area with 

unique combination of land use, soil, and slope conditions based on thresholds designated by the 

user (Neitsch et al., 2005). Once hydrologic balance, sediment loads, and nutrient losses are 

calculated for each HRU, each variable is then accumulated within subbasins and routed through 

the stream network. The hydrologic balance is achieved within SWAT by simulating canopy 

interception, evapotranspiration, precipitation partitioning, snowmelt, surface runoff, lateral 

subsurface flow, infiltration, redistribution of water through soil profile, and return flow from 

aquifers (Gassman et al., 2007). A complete and detailed description of the processes within 
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SWAT can be found in Neitsch et al. (2005). However, here we briefly describe the sediment 

and nutrient components. 

1.10.3 Water Quality Elements of SWAT 

In this study, we used SWAT to calculate erosion and sediment yield using the Modified 

Universal Soil Loss Equation (MUSLE). MUSLE generates erosive energy through precipitation 

data, as well as simulating yields through surface runoff. In addition to these factors, runoff 

volume, peak runoff rates, subbasin area, soil surface characteristics, slope characteristics, land 

cover, and management conditions were also contributed to the calculations (Neitsch et al., 

2005). Once these sediments reach the channel for routing, they are controlled and transported 

through the processes of deposition and degradation (Neitsch et al., 2005). 

In general, different forms of nitrogen (N) and phosphorus (P) are simulated as a function 

of nutrient cycles with losses occurring through crop/plant uptake, surface runoff in their solution 

phases and by erodible sediments, percolation, lateral subsurface, degradation, and volatilization 

(Gassman et al., 2007). The supply and demand approach is used in determining plant use of 

nitrogen and phosphorus as explained by Williams et al. (1984) and Santhi et al. (2006). Both 

nutrients can be added to soils through fertilization, manure, or residue applications. 

More specifically, Nitrogen can be found in three major form including organic, mineral 

form held by soils, and mineral form in solution. Nitrate (NO3) can be transported through 

surface runoff, lateral flow, and percolation, as a function of the runoff volume and nitrates 

concentration in the soil. Organic N, on the other hand, is more connected with sediment 

particles and is a function of sediment loading. Once the different forms of nitrogen have entered 

the stream reach, channel routing and transformations are simulated through routines developed 
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for QUAL2E stream water quality model, with organic forms susceptible to settling (Neitsch et 

al., 2005; Gassman et al. 2007). 

Phosphorus is modeled in three major forms, including organic, insoluble mineral and plant-

available forms. Dissimilar to nitrogen, phosphorus’ mobility is often limited and diffusion acts 

as its mode for movement through soils. Both organic and mineral forms attach to soil particles 

and are calculated based on sediment loadings (Neitsch et al., 2005). Once in-stream, phosphorus 

is routed and transformed through the routines based on QUAL2E, also having organic forms 

being lost to settling. 

1.10.4 Model Setup 

SWAT requires many input datasets, including topography, land use, soils type, and 

climate. For topography data, a 30m resolution USGS National Elevation Dataset (NED) was 

obtained from the Better Assessment Science Integrating point and Nonpoint Sources (BASINS) 

software, version 4.0 (BASINS, 2007).  

Both current and pre-settlement land-use layers were used for this research. The current 

condition SWAT model scenario (Current) was built based on the 2009 Cropland Data Layer 

(CDL) map at 56 m resolution. This was obtained from the National Agriculture Statistics 

Service within the U.S. Department of Agriculture (USDA) (Johnson and Mueller, 2010). The 

CDL has crop-specific land cover classifications making it ideal for the study area, which is 

dominated by agricultural lands. The second SWAT model was developed using pre-settlement 

land-use data, which was acquired from the Michigan Natural Features Inventory (MNFI) and 

represents mid-1800’s land cover. The land uses and their percentages of total area within the 

watershed our shown in Table 1. 
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Table 1. Current and pre-settlement landuse distributions 

Landuse Current 

% of Area 

Pre-settlement 

% of Area 

 

Water 

 

1.2 

 

0.8 

Agriculture 42.9 0 

Forest 24 82 

Urban 14.1 0 

Rangeland 3.7 1.5 

Wetland 14.1 15.7 

 

Soil data were obtained from the USDA State Soil Geographic dataset (STATSGO), 

which are primarily designed for planning, management and monitoring in areas such as river 

basins. The STATSGO map, at a scale of 1:250,000, is linked to both physical and chemical 

properties of the soil that are relevant to hydrologic modeling (USDA, 1995).  

High resolution stream network data were obtained from the 1:24k National Hydrography 

Dataset plus (NHDPlus) that was acquired by Michigan Institute for Fisheries Research. In total, 

the Saginaw River watershed was delineated into 13,831 individual subbasins, each containing 

individual stream reaches that represented spatial units having homogenous physicochemical, 

geomorphological, and biological features. Both the stream network and subbasins were 

predefined layers added to the SWAT model. It is important to point out that this is one of the 

most comprehensive SWAT models built and is the first to include such detailed subbasins and 

reaches.  

Climatic data for the period of 1990-2008 were obtained from the National Climatic Data 

Center (NCDC). A total of 21 stations provided precipitation data while 16 stations provided 

temperature data within and near the watershed. Supplementary meteorological data was 

generated by SWAT weather generator (Neitsch et al., 2005).  
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A third SWAT model scenario (Presettle2) was built based on both climate and landuse 

data from mid-1800s. Climate data used for the pre-settlement scenario was obtained from the 

Intergovernmental Panel of the Climate Change (IPCC) 20C3M scenario, representing historic 

conditions (1870-1889). The dataset is available in a GIS format by the Community Climate 

System Model (CCSM) project (www.ccsm.ucar.edu) and the National Center for Atmospheric 

Research (NCAR) GIS Initiative. The precipitation and temperature data were downscaled by 

NCAR to a 4.5 km scale for higher resolution (Hoar and Nychka, 2008). Conversion of observed 

precipitation and temperature data to historic values was performed based off of the delta method 

(Fowler et al., 2007; Woznicki et al., 2011) at each weather station. Monthly 20C3M 

precipitation averages are compared with observed monthly precipitation averages and delta 

ratios are calculated and applied to daily observed precipitation to obtain daily pre-settlement 

values. This can be seen in equation 1 below: 

                           (
              

            
)    (1) 

where,   is the daily precipitation for 20C3M,   is the daily precipitation of the current observed,   

is the monthly average precipitation for 20C3M (1870-1889), and   is the monthly average 

precipitation of the current observed (1990- 2008). To calculate daily pre-settlement (20C3M) 

temperatures, monthly 20C3M temperature averages were compared with observed monthly 

temperature averages and additive deltas were calculated. These deltas were applied to daily 

observed maximum and minimum temperature values. This is presented in Equation 2: 

                           (                            )  (2) 
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where,   is the daily temperature for 20C3M,   is the daily temperature of the current observed,   

is the monthly average temperature for 20C3M (1870-1889), and   is the monthly average 

temperature of the current observed (1990- 2008). Mean monthly temperature and precipitation 

over all the years from all sites representing current and pre-settlement conditions can be seen in 

the Figure 2. 

 

Figure 2. Average monthly (a) precipitation and (b) temperature 

Once data were obtained, the model was set up for the Saginaw River watershed and HRUs 

were defined based on dominant landuse, soil, and slope class (0 to 2%, 2 to 5%, 5 to 10%, 

>10%) within each subbasin. In addition, localized management operations and crop rotations 
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were applied to the model in replacement of SWATs default values. Further detail on the 

operations and rotations can be found in Love and Nejadhashemi (2011). 

1.10.5 Sensitivity Analysis, Calibration, and Validation 

Sensitivity Analysis was performed on the model to identify which input parameters had 

the most influence on the models output. A Latin Hypercube One-factor-At-a Time (LH-OAT) 

method, embedded in SWAT, was executed to perform the sensitivity analysis (Van Griensven et 

al., 2006). The analysis was completed for flow, sediment, nitrogen, and phosphorus, providing a 

rank of parameters to be explored during the calibration process. 

The calibration and validation was performed, using observed flow, sediment, and 

nutrient data for current conditions. Calibration is the process of adjusting parameters to achieve 

predictions or outputs that are within the common acceptable range when compared against 

actual observed data, while reducing uncertainty. The validation is performed next, using the 

determined parameters from calibration in order to measure model accuracy and credibility 

(Moriasi et al., 2007).  Parameters that were chosen to be involved in the calibration process 

were identified during sensitivity analysis and also from knowledge of the study area. The model 

was run from 2000 through 2005 with a two-year-warm-up (2000 - 2001). This period was 

selected since it coincides with stream water quality observations. The calibration was performed 

near the outlet (Figure 3) of the watershed with monthly observed data (24 monthly flow 

samples) from 2002 through 2003. First, flow was calibrated, using observed data from USGS 

site 04157000. Next, water quality outputs were calibrated individually, including sediments 

(SED), total phosphorus (TP), nitrate (NO3), and total nitrogen (TN). Observed data for 

sediment and nutrient calibration was obtained from EPA STORET (090177).  The same sites 

were used to gather data for validation period that covers years 2004 through 2005. The 
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calibration parameters used to calibrate the first SWAT model scenarios were then used for the 

rest of the scenarios.  

Both calibration and validation was evaluated using three statistical measures; Nash-

Sutcliffe efficiency (NSE), Percent bias (PBIAS), and coefficient of determination (R
2
), to 

minimize the influence of biased single measures on performance. To determine if calibration 

and validation was satisfactory or better, we used guidelines proposed by Moriasi et al. (2007).   

The NSE statistic determines the goodness-of-fit of the model output by comparing 

residual variance compared to the observed data variance (Moriasi et al., 2007). The NSE shows 

how well observed data versus simulated data fits the 1:1 line. NSE can range from - ∞ to 1.0, 

with 1.0 being a perfect fit and can be calculated based on equation 3, below: 

       [
∑ (  

      
   )

  
   

∑ (  
             )

  
   

]   (3) 

where,   is the observation for the constituent,   is the simulated value for the constituent,   is the 

mean of observed data for the constituent, and n is the total number of observations.  

PBIAS is a measure of the average tendency of the simulated data to be larger or smaller 

than the observed data and has an optimum value of 0.0. Positive and negative values either 

represent an underestimating or overestimating model, respectively (Gupta et al., 1999; Moriasi 

et al., 2007). PBIAS can be computed through equation 4: 

       [
∑ (  

      
   )       

   

∑ (  
   ) 

   

]  (4) 



67 

 

where,   is the observation for the constituent,   is the simulated value for the constituent, and n is 

the total number of observations.. 

Another measure for goodness-of-fit is R
2
, which determines collinearity between 

simulated and measured data.  The coefficient of determination can range from 0 to 1, with 

higher values indicating a better fit. R
2
 is a commonly used statistic; however, drawbacks 

include its sensitivity to extreme outliers and its absence in addressing whether the model is over 

predicting or under predicting (Moriasi et al., 2007; Love and Nejadhashemi, 2011). R
2
 can be 

calculated with equation 5: 

   (
∑ (  

             ) (  
             )  
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             )
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             )
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   (5) 

where   is the observation for the constituent,   is the simulated value for the constituent,   is the 

mean of observed data for the constituent,   is the mean of the simulated data for the constituent, 

and n is the total number of observations.  

1.10.6 Fish Data 

Fish data (IBI and percent intolerant fish individuals) were used for 193 sites (Figure 3 

and Table 2); including both wadeable and non-wadeable reaches, within the Saginaw River 

watershed. The data were obtained from the Michigan DNR Fish Collection System and 

Michigan River Inventory databases (Seelbach and Wiley, 1997). IBI was a main focus, because 

of its representation of the overall biological health. The percent of intolerant individuals was of 

interest because of its direct linkage to stressors within the reach, including water quality. 
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Wadeable sites were sampled along 80 to 960 m stretches, while sample lengths of non-wadeable 

sites were 1610 m. Fish sampling for these sites was performed between 1982 and 2007 and was 

collected through electrofishing methods including backpack, tow-barge, and boom units 

depending on stream size. Sampling was performed by single-pass methods and all 

measurements were taken in the field. Data were then summarized into indicator variables giving 

insight into species thermal, feeding, habitat preferences; reproductive strategies; tolerances to 

stressors; and taxonomic summaries. IBI scores were calculated depending on the temperature of 

the reach and the size of the rivers. A modified procedure developed by the MDEQ (1997) was 

used to determine IBI scores for wadeable warmwater streams. Wadable coldwater sites’ IBI 

were calculated based on procedures described by Lyons et al. (1996). For transitional or cool 

water sites, IBI scores were calculated based on both methods and the higher of the two was 

obtained. Non-wadeable river IBI scores were calculated based on (Lyons et al., 2001).   
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Figure 3. Location of fish data and calibration site. For interpretation of the references to 

color in this and all other figures, the reader is referred to the electronic version of this 

thesis 



70 

 

 

Table 2. Summary of the fish and SWAT output data at the 193 sites 

Variable Description Min Max Mean Median SD Transform 

Fish Measures       

IBI Fish Index of Biotic Integrity 10.0000 54.00000 53.33641 100.0000 22.38380 None 

%INTOL % of intolerant fish individual 0.00000 11.76471 16.68774 95.06173 17.64305 BoxCox 

        

In-stream Variables       

StreamGrad Stream segment gradient (m/m) 0.00000 0.00130 0.00250 0.06120 0.00490 BoxCox 

SFLOW Average seasonal flow (cms) 0.00165 0.32700 1.71600 24.30000 3.66366 BoxCox 

SPercBase % Average seasonal water yield 

contributed by groundwater (%) 

0.00000 0.05183 0.13089 0.61609 0.15216 BoxCox 

SSED Average seasonal sediment 

concentration (mg/L) 

0.00581 30.70000 36.43494 667.00000 53.05459 BoxCox 

SOrgN Average seasonal organic 

nitrogen concentration (mg/L) 

0.00057 0.18224 0.59930 19.14941 1.59855 BoxCox 

SOrgP Average seasonal organic 

phosphorus concentration (mg/L) 

0.00049 0.04050 0.11592 4.42445 0.34060 BoxCox 

SNo3 Average seasonal nitrate 

concentration (mg/L) 

0.00523 0.54439 0.84929 6.73634 1.00706 BoxCox 

SNH4 Average seasonal ammonium  

concentration (mg/L) 

0.00081 0.07111 0.30408 16.59655 1.23761 BoxCox 

SNo2 Average seasonal nitrite 

concentration (mg/L) 

0.00000 0.03725 0.13397 5.20531 0.41631 BoxCox 

SMinP Average seasonal mineral 

phosphorus concentration (mg/L) 

0.00007 0.06399 0.11104 2.14759 0.19370 BoxCox 

SCHLA Average seasonal Algal biomass 

(chl - a) concentration (mg/L) 

0.00000 0.00028 0.00381 0.13178 0.01436 BoxCox 

SCBOD Average seasonal carbonaceous 

biochemical oxygen demand 

concentration (mg/L) 

0.00000 0.01094 4.36289 340.83949 26.42415 BoxCox 
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Table 2 (cont’d) 

SDO Average seasonal dissolved 

oxygen concentration (mg/L) 

16.4736 190.8016 192.8333 424.32580 93.41015 None 

STN Average seasonal total nitrogen 

concentration (mg/L) 

0.05681 1.10778 1.88664 41.74690 3.38894 BoxCox 

STP Average seasonal total 

phosphorus concentration (mg/L) 

0.00141 0.11848 0.22696 6.57204 0.51208 BoxCox 

AFLOW Average annual flow (cms) 0.00280 0.55110 2.34492 28.67000 4.44611 BoxCox 

APercBase % Average annual water yield 

contributed by groundwater (%) 

0.00000 0.33706 0.38045 0.91104 0.32031 BoxCox 

ASED Average annual sediment 

concentration (mg/L) 

0.04302 38.75000 43.78935 805.80000 63.73573 BoxCox 

AOrgN Average annual organic nitrogen 

concentration (mg/L) 

0.00618 0.21370 0.86339 11.42676 1.69843 BoxCox 

AOrgP Average annual organic 

phosphorus concentration (mg/L) 

0.00179 0.04138 0.14052 1.88790 0.26776 BoxCox 

ANo3 Average annual nitrate 

concentration (mg/L) 

0.05866 0.66349 1.09702 4.89171 0.98626 BoxCox 

ANH4 Average annual ammonium 

concentration (mg/L) 

0.00103 0.12063 0.40243 5.25043 0.71551 BoxCox 

ANo2 Average annual nitrite 

concentration (mg/L) 

0.00000 0.04004 0.12701 1.48670 0.23073 BoxCox 

AMinP Average annual mineral 

phosphorus concentration (mg/L) 

0.00024 0.04952 0.10536 0.84138 0.13093 BoxCox 

ACHLA Average annual Algal biomass 

(chl - a) concentration (mg/L) 

0.00000 0.00187 0.01258 0.61265 0.05069 BoxCox 

ACBOD Average annual carbonaceous 

biochemical oxygen demand 

concentration (mg/L) 

0.00000 0.01513 5.94347 413.85163 34.10963 BoxCox 

ADO Average annual dissolved oxygen 

concentration (mg/L) 

5.65440 188.4474 193.4237 432.68067 103.4019 None 
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Table 2 (cont’d) 

ATN Average annual total nitrogen 

concentration (mg/L) 

0.14780 1.44068 2.48985 17.03094 2.95091 BoxCox 

ATP Average annual total phosphorus 

concentration (mg/L) 

0.00476 0.11615 0.24588 2.36214 0.36750 BoxCox 
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1.10.7 Data Analysis 

With instream conditions beings the focus of this research, water quality and water 

quantity outputs for each 13,831 individual reaches were generated from the model. These 

outputs include flows, sediment loads, nutrient loads, and other water quality measurements 

(Table 2). Flow data collected from SWAT comprised of flow in cubic meters per second (cms), 

percent of flow contributed by groundwater (PercBase), along with the stream gradient 

(StreamGrad) of each segment in meters per meter (m/m). Sediment and nutrient loads simulated 

were converted to concentrations (mg/L) and included organic nitrogen (OrgN), nitrate (NO3), 

nitrite (NO2), ammonium (NH4), organic phosphorus (OrgP), and mineral phosphorus (MinP). 

Total nitrogen (TN) and total phosphorus (TP) was also calculated by summing all their 

respective forms. Along with nutrients, other water quality outputs included dissolved oxygen 

(DO), carbonaceous biochemical demand (CBOD), and algal biomass based on chlorophyll A 

(CHLA). An annual average over the five years (2002-2006) was calculated for all variables. 

Seasonal averages were also attained to represent conditions during the time of collection of fish 

data and covered a three month time period of June through August. Once SWAT variables were 

gathered, data from 193 reaches were extracted to link with fish community data at those specific 

stretches where it was available. 

Three methods were evaluated and compared in this study in order to identify the best 

model that can be used to predict ecological condition of a stream (IBI and percent intolerant fish 

individuals) using water quality and quantity measures. These methods include stepwise linear 

regression, partial least squares regression (PLSR), and fuzzy logic. To address some of the 

assumptions for two of the methods (stepwise and PLSR), normality was tested among all the 

variables with the Shapiro-Wilk and Kolmogorov-Smirnov tests. In several cases, normality was 
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not achieved and transformations were made to best address this through the Box-Cox 

transformation technique (Box and Cox, 1964). Box-Cox transformation can be used to find 

potential nonlinear transformation based on a log-likelihood function (SAS/STAT, 2010).  

Ten-fold cross validation was performed to validate the models, compare methods, 

prevent over fitting, and select the best model (Mahmood and Khan, 2009). To do so, we divided 

the 193 stream reaches with fish data into 10 approximately equal size mutually exclusive 

subsets. This was performed through random sampling within R statistical software v. 2.12.1. 

Once subsets were created, models can be trained based on 9 subsets and validated with the other 

subset. This is performed 10 times, with each subset being used for validation once. Following 

all analysis, the procedure for choosing the best method was conducted by comparing the mean 

square error (MSE) and R
2
 based on validations. For each analysis method (Stepwise, PLSR, 

Fuzzy), the MSE and R
2
 of the test data is averaged among the 10 models. These measurements 

are compared among methods and the method with the lowest average MSE and highest average 

R
2
 was identified as the best model. All models within each method will be tested against 

validation datasets to identify the best model within each method using the criteria described 

above. 

1.10.7.1 Stepwise linear regression 

Stepwise linear regression was first performed within SAS 9.2 to identify and model the 

SWAT output variables that have significant influence on the two fish measures. Simple models 

such as regression models have been considered reliable where there is a lack of knowledge or 

limited data (Van Sickle et al., 2004). At the same the time, linear stepwise regression is an easy 
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approach. In this modified forward-selection process, variables are added one by one, depending 

on the significance of the F statistic. After a variable has been added, the stepwise process goes 

back and looks at the significances of the other variables already in the model and may remove 

them (SAS/STAT, 2010). Once variables were selected, a test to detect collinearity among 

variables was performed. We used a conservative variance inflation factor threshold of two 

(VIF<2) (Maret et al., 2010) to identify whether or not to further investigate. This further 

investigation was based on eigenvalues approaching zero (Morris et al., 1986) and condition 

index values with high proportions of variation. If collinearity exists, the variable would be 

removed and stepwise would be rerun. Furthermore, residuals were checked for normality to 

satisfy the assumption of a normal distribution of the error.  

1.10.7.2 Partial Least Squares Regression 

Partial Least squares regression (PLSR) was also performed to identify significant 

variables that have strong influence on fish measures using STATISTICA (STATSoft, 2011). 

PLSR was performed because of advantages compared to general linear regression when dealing 

with ecological processes, including its ability to deal with large array of variables and to handle 

the complex interaction and redundancy among them (Carrascal et al., 2009). PLSR is a 

multivariate method that linearly combines several predictor variables into latent factors that 

maximize the explained variance in the response variable or variables (Carrascal et al., 2009). 

Because it is an extension of multiple linear regression, similar assumptions with stepwise were 

made and the transformed data were used in this analysis. Although, it is an option with PLSR to 

look at how a set of predictor variables affect a set of response variables, within this study we 

looked at each response variable independently. This was done so that comparison among the 
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methods could be made, due to the fact that the other methods could only handle one response 

variable at a time. 

1.10.7.3 Fuzzy Logic 

Fuzzy logic was performed within MATLAB R2009A with Fuzzy Logic Toolbox and 

was choose as an alternative method that could deal with complexity, non-linearity, and 

uncertainty of the data that is commonly encountered in ecological studies (Chen and Mynett, 

2003). When building the fuzzy logic models, the first step was to determine what variables to be 

included in the model. This can often be a common problem in ecological modeling and can be 

achieved through data-driven approaches or expert knowledge (Adriaenssens et al., 2004). In 

order to better describe the complexity/non-linear relationships among the variables, Spearman’s 

Rho correlations were performed within STATISTICA (STATSoft, 2011). Spearman's Rho rank 

correlation is a nonparametric approach for correlating two sets of measurements by their rank 

and is not limited by the assumption of a normal distribution, like when computing Pearson 

product-moment correlation. Based on this results, all variables showing a significant correlation 

(p<0.05) to IBI and percent intolerant individuals were considered to be incorporated in the 

fuzzy logic analysis. In the next step, pairs of variables that exhibited a high correlation 

coefficient (r >0.7) (Waite et al., 2010) were identified and the one with the weakest correlation 

with the fish measure were removed (Wang et al., 2008). Following construction of the ranked 

variables from the strongest correlated to fish measures to the weakest, a cutoff value r>0.18 was 

assigned. This value allowed for inclusion of multiple variables, yet still kept the number of 

variables to be included in the fuzzy logic model at a manageable size. This can be an issue in 

fuzzy logic analysis, because rule sets can exponentially increase with the addition of input 

variables (Chen and Mynett, 2003).  
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The creation and building of membership functions and inference rules can often be the 

most difficult part involved in fuzzy modeling (Chen and Mynett, 2003) and can often be 

subjective (Adriaenssens et al., 2004). This is especially true when working with fuzzy logic 

models based on Mamdani-Assilian methods (Mamdani, 1977). When building a Mamdani-

Assilian type model, both the input and output variables are incorporated into membership 

functions. The membership construction approach in this study was driven by scatter plots of 

input and output variables, which had already been classified based on expert knowledge. For 

example, IBI was broke into membership functions based on IBI score ratings (Karr et al., 1986; 

Lyons, 1992). Natural breaks and clusters within the data lead to a starting point for the range 

and shape of the membership functions. Next, adjustments were made based on trial-and-error 

methods in order to optimize the model, which are often the only possible way (Adriaenssens et 

al., 2004). In addition, fuzzy inference rules were also based on both the data and heuristic 

knowledge. Once values were transformed (fuzzification) into linguistic terms, combinations 

were identified along with their respective outputs. The most observed combinations for each 

outcome helped in determining if-then rules.  

1.10.8 Predictions 

After selection of the best model for predictions of IBI and percent intolerant fish 

individuals, the models were then used with the outputs from the different scenarios within the 

SWAT model. Two pre-settlement scenarios were investigated; 1) with pre-settlement landuse 

and 2) with pre-settlement landuse and pre-settlement climate. Predictions from all three 

scenarios (current, pre-settlement landuse, pre-settlement landuse and climate) were then 

compared through paired-t test and further investigation. 
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1.11 RESULTS 

1.11.1 Calibration and Validation 

The SWAT model was calibrated and validated for flow, sediments, total phosphorus, 

nitrate, and total nitrogen. All components were successfully calibrated and validated based on 

NSE of 0.50 or greater recommended by Moriasi et al. (2007). PBIAS also showed a satisfactory 

or better performance with values within the range of ±25 for flow, ±55 for sediment, and ±70 

for nutrients. In addition, R
2
 ≥ 0.5 has been used in other studies such as Nejadhashemi et al. 

(2008) and Chinkuyu et al. (2004) as one of the criteria to evaluate a satisfactory model 

performance. Model performances along with calibration and validation results are presented in 

Table 3.     

Table 3. Calibration and validation results 

 

Parameter 

 

Performance 

measure 

 

Calibration 

Period 

 

Validation 

Period 

 

Combined 

 

Flow 

 

NSE 

 

0.72 

 

0.85 

 

0.81 

 PBIAS(%) 6.02 -1.75 1.48 

 R
2
 0.74 0.85 0.82 

Sediment NSE 0.71 0.81 0.8 

 PBIAS(%) -10.27 0.86 -3.02 

 R
2
 0.71 0.92 0.88 

Total Phosphorus NSE 0.64 0.67 0.67 

 PBIAS(%) 18.08 -22.68 -6.87 

 R
2
 0.68 0.71 0.7 

Nitrate NSE 0.76 0.82 0.8 

 PBIAS(%) 22.7 12.87 17.01 

 R
2
 0.86 0.83 0.83 

Total Nitrogen NSE 0.5 0.67 0.62 

 PBIAS(%) 47.34 38.73 42.4 

 R
2
 0.87 0.84 0.84 
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1.11.2 Model Results 

Once the SWAT model was calibrated and outputs were generated, all three methods of 

analyses, including stepwise linear regression, partial least squares regression, and fuzzy logic 

were used to explore the relationships among variables and to find the best overall predictive 

models for IBI and percent intolerant percent intolerant fish individuals.  

1.11.2.1 Stepwise linear regression 

When performing stepwise linear regression, AFLOW (average annual flow), ANO2 

(average annual nitrite concentration), ANO3 (average annual nitrate concentration), ANH4 

(average annual ammonium concentration), SFLOW (average seasonal flow for months of June 

through August) were identified as significant predictors for all 10 models for IBI (Table 8). 

Among these variables, flow was the most influential, by consistently provided the highest 

partial R
2
. Half of the models chose AFLOW, while the other half chose SFLOW as a predictor 

of IBI. Since collecting flow data for long periods is costly, we decided to examine the 

replacement of seasonal flow instead of annual flow. Therefore, as a test, annual flow was 

manually removed from the dataset before performing the stepwise regression. When compared, 

they performed very similarly based on MSE and R
2
. All other variables that were identified by 

stepwise were average annual concentrations of nitrogen, including NO3, NO2, and NH4. 

Overall, through stepwise linear regression models, in-stream variables from SWAT explained 

on average 32% of the variation in IBI.  

Majority of models created to predict the percent intolerant individuals by stepwise 

(Table 9) identified average annual total phosphorus concentration as the most influential 

variable, with the largest partial R
2
  in 7 out of the 10 models. As for other variables identified, 
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this differed based on the 10-fold datasets and included; ANH4 (average annual ammonium 

concentration), ASED (average annual sediment concentration), ANO3 (average annual nitrate 

concentrations), SNO2 (average seasonal nitrite concentrations), SFLOW (average seasonal 

flow). Four models identified seasonal flows, three identified average annual sediment 

concentration, and three identified annual nitrate concentrations as significant parameters. 

Overall, only 12% of variation in percent intolerant individuals was explained using stepwise 

regression method. 

1.11.2.2 Partial Least Squares Regression 

By using stepwise linear regression, many variables were removed to reduce or eliminate 

the collinearity and therefore, the interaction among certain variables may have not been 

captured. To address this, PLSR was performed. In all models, no more than two significant 

principal components were identified (Table 10). Within these components, seasonal and annual 

flows were the most important variables recognized through PLSR. Behind flow, all other water 

quality variables showed fairly equal importance, with none largely standing out. This shows the 

high collinearity and redundancy among the variables. Although variables were similar in 

importance, annual organic forms of nitrogen and phosphorus were found to be the next most 

important variables. Overall, the average R
2
 for PLSR models built for IBI was nearly the same 

as stepwise, at 0.32. Similarly, PLSR models created for percent intolerant fish individuals 

(Table 11) identified important variables similar to those selected in stepwise procedure. 

Although, all variables were comparable in importance, average annual total phosphorus and 

average annual organic phosphorus concentrations were the most important. On average PLSR 

model explained 14% of the proportion of variation in percent intolerant individuals when 

validated, being slightly higher than that of stepwise. 
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1.11.2.3 Fuzzy Logic 

Although, the above methods provided insightful results that were consistent with other 

studies, it is recognized that the assumption of linear relationships may not be the most accurate. 

To explore this, fuzzy logic models were built based on variables identified through spearman 

rank correlations (Table 14, Table 12). The variables identified and used in fuzzy logic for 

explaining IBI, from most correlated to least correlated, were AFLOW (average annual flow), 

AOrgP (average annual organic phosphorus, SNO2 (average seasonal nitrite), SNO3 (average 

seasonal nitrate), and StreamGrad (stream gradient). Models that were built, assuming non-linear 

relationships, on average had an R
2
 of 0.44 when validated, which explained an additional 12% 

of the variation in IBI than that of stepwise linear regression and PLSR methods. Fuzzy logic 

also improved MSE values, which were 17% and 15% lower than stepwise and PLSR, 

respectively. The same improvement of model performance was observed when building fuzzy 

logic models for the percent intolerant fish (Table 13). The variables identified and used for the 

models, from the highest correlated to the lowest, included, AOrgP (average annual organic 

phosphorus), ANO2 (average annual nitrite), AFLOW (average annual flow), and ACHLA 

(average annual chlorophyll-a). On average fuzzy logic models improved R
2
 to 0.25, which is 

almost 78% improvement than other methods. In addition, MSE was also found to be lower in 

fuzzy logic than the other models (Table 4).  

1.11.3 Model Interpretations and Selection 

Overall, all the methods described above consistently revealed significant relations 

between average annual flow and both measures of stream health. Average annual flow was 

positively correlated with IBI.  This positive relation could result from the fact that, reaches with 
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smaller average annual flows are more sensitive to extreme weather conditions and the resulting 

fluctuations in habitat have been shown to be negatively related to fish community metrics and 

IBI (Poff and Zimmerman, 2010; Lammert and Allan, 1999).  However, this positive relation 

could also be explained by the significant correlation of average annual flow and stream size and 

in turn how species richness has been shown to increase with stream size (Lyons, 1992).  Given 

that so many instream habitat variables change predictably with stream size (Vannote et al., 

1980) it is impossible to determine with our set of predictor variables, which interpretation is 

correct.  Adding a measure of stream size and instream physical habitat variables along with 

other measures of watershed physiographic characteristics would likely provide the necessary 

context to reveal the relative residual effects of flow and water quality on IBI. However, these 

variables were not included in the scope of our project, but are being investigated in a current 

study building upon our research. 

IBI was negatively associated with nitrogen and phosphorus concentrations.  This result 

is consistent with several other studies including Wang et al. (2006) who showed total nitrogen 

and total phosphorus explaining a high amount of variation in fish measures, including a 

negative correlation with IBI. In addition, all three methods identified phosphorus concentrations 

as being significant and of great influence on percent intolerant individuals. This negative 

correlation among total phosphorus and intolerant fishes is consistent with the fact that a species 

is classified as intolerant based on its sensitivity to environmental degradation and poor water 

quality (Lyons, 1992). Once again, similar results were observed by Wang et al. (2006) between 

total phosphorus and percent intolerant species.  

Based on the results (Table 4), fuzzy logic models showed greater explanatory and 

predictive performance, for both IBI and percent intolerant fishes. The final fuzzy logic model 
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chose for predicting IBI (from the 10 fuzzy logic model developed for the cross validation) had 

an average R
2
 among all validation subsets of 0.48 and a MSE of 268. The final fuzzy logic 

model performance for the prediction of percent intolerant had an average R
2
 of 0.21 and a MSE 

of 275 among all validation subsets. The best models for all methods and the variables associated 

with those models are presented in Table 5.  

Table 4. Average MSE and R
2
 amongst models from 10-fold cross validation 

 

Method 

 

IBI 

 

% Intolerant 

  

Average Test 

MSE 

Average Test 

R
2
 

 

Average Test 

MSE 

 

Average Test 

R
2
 

Stepwise Linear Regression 363.9 0.32 334.2 0.12 

PLS Regression 358.4 0.32 331.7 0.14 

Fuzzy Logic 303.2 0.44 261.3 0.25 
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Table 5. Best performing models for all methods 

 

Method 

 

Response Variable 

 

Predictor Variables 

 

 R
2
 

 

 MSE 

 

Stepwise IBI 

 

TSFlow 

 

0.36 

 

326.8 

  LANo2   

     

PLSR IBI Component 1 .34 335.0 

  Component 2   

     

Fuzzy Logic IBI AFlow .48 268 

  AOrgP   

  SNo2   

  SNo3   

  StreamGrad   

     

Stepwise %INTOL TATP .20 299.8 

  TASED   

  LSNo2   

     

PLSR %INTOL Component 1 .16 311.7 

  Component 2   

     

Fuzzy Logic %INTOL AOrgP .21 274.6 

  ANo2   

  Aflow   

  ACHLA   

 

1.11.4 Evaluation of Landuse and Climate Changes Impacts on Stream Health  

1.11.4.1 Impacts on IBI and percent intolerant individuals classes  

The best fuzzy logic models choose in the previous section were used to predict the IBI 

and percent intolerant fishes of each stream reach within the Saginaw River watershed under 

different climate and landuse scenarios. As it was described earlier, the current condition 

scenario evaluates basin-wide stream health under 2009 CDL landuse information. The second 

scenario (Presettle1) consists of mid-1800 pre-settlement landuse data, while current climate 

information was used. This scenario allows evaluation of landuse change effects to stream health 
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without considering climate variability. In addition, the last scenario (Presettle2) considered both 

climate and landuse information from mid-1800. To further analyze and graphically present the 

results, IBI scores were divided into five classes as very poor (0-19), poor (20-29), fair (30-49), 

good (50-64), and excellent (65-100) (Lyons, 1992).  Because the percent intolerant fish variable 

does not have a rating system in connection to stream health, we used the classes adopted from 

the fuzzy logic model (class I (x=0), class II (0<x≤10), class III (10<x≤20), class IV (20<x≤40), 

and class V (40<x≤100).  We evaluated the impacts of landuse and climate changes on fish 

metrics for stream reaches with fish data(Figures 4-5) and those without fish data, basin-wide 

(Figures 8-9).   

Total reach lengths within different IBI score and rating classes is presented in Figure 4 

for the 193 fish sampling locations.   As shown in Figure 4 for the current IBI conditions, 40% of 

the total stream length was classified as good, 28% as fair, 22% as excellent, 8% as poor, and 1% 

as very poor.  For the Presettle1, 44% of the total stream length was classified as good, 36% as 

fair, 19% as excellent, 1% as poor, and 0% as very poor.  For the Presettle2, 48% stream length 

was classified as good, 33% as fair, 13% as excellent, 6% as poor, and 0% as very poor. 

Although the distributions for each scenario are very similar, the pre-settlement scenarios 

showed decreases in lengths of less poor, very poor, and excellent classes and increases in fair 

and good classes. The result of pre-settlement conditions falling into poor and fair categories is 

surprising in that we expect these sites to be in undisturbed and good conditions. This is a 

reflection of the limitation of the model and how flows large influence within the model can lead 

to possible misinterpretation. In addition, further examination of reaches that had unclear trend 

between current and pre-settlement conditions showed that the land uses had been converted 

from forestlands to wetlands during the two study periods. This likely contributed to the higher 
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IBI scores observed. Total reach lengths within different percent intolerant fish classes is 

presented in Figure 5 for the 193 fish sampling locations. As shown in Figure 5, the model did 

not predict any reach in either class I (x=0) or class V (40<x≤100). However, the percentages of 

total stream length within class IV (20<x≤40) increased by 25% for Presettle1 and 15% for 

Presettle2 from Current conditions. It is apparent that incorporating pre-settlement climate data 

into the model mitigates the changes from Current scenario when compared to Presettle1.  
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Figure 4. IBI scores and total reach lengths among 193 fish locations 
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Figure 5. Percent intolerant individuals and total reach lengths among 193 fish locations 
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Total reach lengths within different IBI score and rating classes are presented in Figure 6 

for the entire basin (watershed). Overall, at the basin scale, a similar trend was observed to the 

193 fish sampling sites with the exception of the “good” class when incorporating historic 

climate data (Presettle2). Results indicated a reduction of the total reach length classified as good 

by 4% when compared to Presettle1. Meanwhile, total reach lengths within different percent 

intolerant individuals classes is presented in Figure 7 for the entire watershed. Once again, 

similar trends were observed to the 193 fish sampling sites with the exception of the class V 

under Current scenario. As it was previously discussed, the majority of the areas classified as V 

are currently covered by wetlands. The conversion from forested lands (pre-settlement) to 

wetlands (current) could explain the models prediction of expansion to class V under the current 

conditions. This provides insight into the potential benefits of wetlands and their ability to reduce 

nutrients that provide better conditions to fish and overall stream health. The full impact of this 

particular landuse change however cannot be fully interpreted from the models based on the 

numerous other factors that would be altered as well that were not included within this study. 

Overall, the results showed increases in IBI and percent intolerant individuals under pre-

settlement conditions. This can be expected since pre-settlement scenarios represent less human 

disturbance. Results also support the importance of including historic precipitation and 

temperatures data in in evaluating land-use change impacts on aquatic communities.  
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Figure 6. IBI scores and total reach lengths within Saginaw River watershed 
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Figure 7. Percent intolerant individuals and total reach lengths within Saginaw River watershed 
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1.11.4.2 Statistical significance analysis 

Paired t-tests were performed to evaluate if and how landuse and climate factors affected 

current predictor variables and ultimately IBI and percent intolerant at the basin-scale. Before 

starting the analysis, it is important to provide some evidences about the fuzzy logic models 

performance under Current condition. This was done by comparing our predicted fish measures 

versus the actual observed values. The predicted IBI did not show a significant difference (p-

value = 0.034) from actual IBI observations at 1% level of significance. In addition, the percent 

of intolerant individuals predicted from the fuzzy logic model did not a show a significant 

difference (p-value = 0.69) from actual percentages observed values. This gives further insight 

into the reliability of the fuzzy logic models’ predictions.  

Next, the impacts of landuse and climate changes on 193 fish data sampling locations 

were evaluated. Results showed no significant changes in index of biological integrity from 

either of the pre-settlement conditions to current conditions. These insignificant changes could 

be because all water quality variables within the model changed in a manner that predicts 

decreases in IBI. Meanwhile, flow, the most influential variable within the IBI model, showed 

significant increases with a corresponding predicted increase in IBI, which may counteract the 

predicted decline from the water quality variables. However, a significant change (p <.01) was 

observed in IBI when comparing the two pre-settlement scenarios, implying the effects of 

climate change (Presettle1 to Presettle2). This resulted in a 4% decrease in the overall average 

IBI with the addition of pre-settlement climate. The significant changes between these scenarios 

resulted from the significant reduction in flow (due to precipitation reduction-Figure 2) while 

mixed changes in water quality variables were observed. Once again, here we see a limitation of 

the model where reduction in flow leads to a reduction in IBI. When the model was built, flows 
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inclusion was more than likely based on its reflection of stream size, with lower values 

correlating with lower IBI scores. With flow reductions occurring between scenarios, IBI 

predictions based on the models show reductions as well. Further inclusion of other variables, 

such as stream size, can mitigate this limitation in the model. 

Percent intolerant individuals on the other hand showed significant decreases from pre-

settlement scenarios (Presettle1 and Presettle2) to the current scenario, with no significant 

change between the two pre-settlement scenarios. As it was discussed earlier, AOrgP and ANO2 

were found to be the most influential variables for predicting percent intolerant individuals. 

Therefore, the significant reduction to percent intolerant individuals resulted from the SWAT 

model predicted increases in AOrgP and ANO2 (between 65 to 73 and 74 to 82 percent in 

average concentration, respectively). For the last scenario (Presettle1 and Presettle2), AOrgP and 

ANO2 were significantly increased (average values were raised less than 50%). Meanwhile, 

ACHLA (the fourth ranked variable for percent intolerant individuals) was significantly 

increased while the average value was raised by 350%.  The counteracting nature of these 

variables may explain the insignificant change in percent intolerant individuals between the two 

pre-settlement scenarios.   

In order to predict the impacts of land-use and climate changes for stream reaches having 

no fish observations, the above analysis were replicated for the entire basin (13,831 reaches). 

Table 7 presents the results of paired t-tests and average changes between land-use and climate 

scenarios. Overall, significant differences were observed in all predictor variables along with 

IBI. In general, IBI significantly decreased from pre-settlement to current conditions. The basin-

wide average of IBI values decreased by 7% from Presettle1 to the Current scenario. This 

predicted decrease in biotic integrity can be attributed to the significant increase in nutrients and 
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other water quality measures that are often negatively associated with agricultural and urban land 

uses (Table 1). When climate factors were considered, the basin-wide average IBI decreased 2% 

from Presettle1 to Current conditions as a result of AFLOW increasing. This result underscores 

the importance of incorporating climate information when assessing temporal changes in stream 

health conditions. This result is not consistent with conventional knowledge of likely changes in 

biological integrity of streams since European settlement (Trautman, 1981; Harding et al., 1998), 

which underscores the need for further investigation into mechanisms behind the relations within 

our models and in particular the relations of predictors, like AFLOW, with other important 

contextual variables like drainage area and stream size. 

For the percent intolerant fishes, all predictor variables showed significant changes. The 

only exception is that the average ANO2 concentration increased 4% from Presettle2 to Current 

conditions. This is a result of climate change in combination of land-use changes. In addition, 

significant increase (576%) in ANO2 was observed for Presettle1 to Presettle2 scenarios. For the 

percent intolerant fish models, although ANO2 did not show significant changes from Presettle2 

to Current conditions, the overall percent intolerant fishes significantly decreased from pre-

settlement to current conditions. The basin wide average of percent intolerant fish values 

decreased 35% from Presettle1 to Current conditions, which can be attributed to the significant 

increases in nutrients and other water quality measures. When climate condition was 

incorporated,  the predicted basin-wide average percent intolerant fishes increased 32% between 

Presettle2 and Current conditions, which can be attributed to less increases in AOrgP and the fact 

that flow is not as influential to fish for stream reaches having on poor environmental conditions. 

Such water quality change is combination of several factors, including basin-wide average 

concentration changes in AOrgP (33%), ACHLA (221%), and ANO2 (576%). 
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Table 6. Paired t-test and changes among scenarios based on 193 fish sampling locations 

 

Variables 

 

Presettle1 to 

Current 

 

Presettle 2 to 

Current 

 

Presettle1 to Presettle2 

  

% change 

 

p-value 

 

% change 

 

p-value 

 

% change 

 

p-value 

 

IBI 

 

-2 

 

0.093 

 

2 

 

0.111 

 

-4 
 

<.01 

PCINTONB -24 <.01 -23 <.01 -1 0.764 

AFLOW 6 <.01 23 <.01 -18 <.01 

AOrgP 73 <.01 65 <.01 32 <.01 

ANO2 82 <.01 74 <.01 46 <.01 

ACHLA 86 <.01 36 0.169 354 <.01 

SNO3 13 <.01 14 <.01 -4 <.01 

SNO2 84 <.01 92 <.01 -49 <.01 

 

Table 7. Paired t-test and changes among scenarios considering all reaches within the 

Saginaw River watershed 

 

Variables 

 

Presettle1 to 

Current 

 

Presettle2 to 

Current 

 

Presettle1 to Presettle2 

  

% change 

 

p-value 

 

% change 

 

p-value 

 

% change 

 

p-value 

 

IBI 

 

-7 
 

<.01 

 

-2 
 

<.01 

 

-5 
 

<.01 

PCINTONB -35 <.01 -32 <.01 -2 <.01 

AFLOW 8 <.01 24 <.01 -17 <.01 

AOrgP 77 <.01 70 <.01 33 <.01 

ANO2 86 <.01 4 0.777 576 <.01 

ACHLA 80 <.01 37 <.01 221 <.01 

SNO3 70 <.01 91 <.01 -69 <.01 

SNO2 85 <.01 95 <.01 -67 <.01 

 

1.11.4.3 Overall stream health changes among reaches 

In this section, overall stream health for individual reaches at the basin level will be 

evaluated. Figures 8-10 show whether any changes were predicted for fish measures within 

individual reaches. In these figures, improvement was defined as any increase in the IBI scores 
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or percent intolerant individuals, while decline was defined as any decrease in the 

aforementioned scores. 

As land use changed from the Presettle1 to Current conditions (Figure 8a), the IBI scores 

for the majority of stream reaches (59%) in the study region decreased, while 39% of reaches 

increased, and 2% reaches had no change. When changes in IBI class is considered, 30% of the 

reaches declined by one class or more, 17% improved in one or more classes, and 53% did not 

change. This result highlights that although IBI scores in majority of reaches changed; many are 

still classified as the same and may not experience substantial biological assemblage changes. 

However, it is expected that under pre-settlement conditions, substantial biological changes 

would occur compared to current conditions. This once again shows limitations of the models 

and possible misinterpretations that may be made without considering other variables (stream 

size, components of flow, physical habitat). The percentages of intolerant fishes decreased for 

66%, increased for 31%, and unchanged for 3% stream reaches from pre-settlement to current 

land use conditions (Figure 8b). Such changes are presumably attributed to the conversion of 

forest to agricultural and urban land uses (Table 1), which could have led to increased nutrients 

that had strong influence on percent intolerant fishes.   

When pre-settlement climate condition was incorporated, the percentages of stream 

reaches having negative (52%) and positive (47%) IBI scores changes were similar from 

Presettle2 to Current conditions (Figure 9a). In contrast, the IBI classes were unchanged for the 

majority of the stream reaches (50%), while IBI classes declined for 26% and increased for 24% 

stream reaches. For the study region, both precipitation and anthropogenic land use increased 

from pre-settlement to current conditions.  The predicted changes in biological conditions are a 

result of integrated influences of precipitation and land-use changes on the variables incorporated 
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in our models.  These combined impacts of landuse and climate changes on percent intolerant 

individuals were stronger than IBI with 70% stream reaches showing a decrease and 29% 

showing an increase between presettle2 and Current conditions (Figure 9b).   

The stream health changes when evaluated Presettle1 and Presettle2 models differed 

substantially (Figures 10a and 10b), emphasizing the importance of incorporation of climate 

information. Overall, the addition of historic climate data resulted in 63% reaches declining and 

36% reaches increasing in IBI scores. However, when considering changes in IBI class, only 

22% of the reaches declined while 10% showing improvement to a higher class. Unlike IBI, 59% 

of reaches increased and 41% reaches decreased in percent intolerant fishes (Figure 10b), which 

was largely due to the changes in the predictor variables (AOrgP, ANO2, AFLOW, and 

ACHLA). 
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Figure 8. Improvements and declines in IBI (a) and percent intolerant individuals (b) from 

Presettle1 to Current. 
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Figure 9. Improvements and declines in IBI (a) and percent intolerant individuals (b) from 

Presettle2 to Current 
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Figure 10. Improvements and declines in IBI (a) and percent intolerant individuals (b) 

from Presettle1 to Presettle2 
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1.12 CONCLUSION 

Anthropogenic activities could have profound impacts on the health of aquatic ecosystems. 

To rehabilitate or prevent these impacts, there is a need to fill critical gaps where data is not 

available, to enhance our understanding of the complex relationships between biotic 

communities and in-stream conditions, and to explore alternative methods of for predicting the 

consequences. 

This study employed a highly detailed and calibrated SWAT model for the Saginaw River 

basin. SWAT successfully provided information to fill a knowledge gap in un-sampled locations 

by supplying high-resolution in-stream predictions, such as flow, sediment, nutrient 

concentrations, which may directly or indirectly determine the health of a stream. Overall, water 

quality and quantity variables obtained from SWAT explained 48% of the variation in IBI and 

21% of the variation in percent intolerant individuals. Since the goal of our study is to identify 

the roles of in-stream water quality stressors in influencing fish indicators, the limited variations 

in fish measures explained by the SWAT model outputs are expected.  This is because many 

other natural and human induced factors within the watershed and stream also influence the fish 

indicators. Therefore, in order to have more comprehensive predictions and explanation of 

ecological measures, additional variables such as physical, chemical, and natural factors should 

be considered. However, this is not always possible and it is impractical to collect this data for 

every reach within a watershed.  Both linear (stepwise linear regression, partial least squares 

regression) and non-linear (fuzzy logic) methods were employed to describe the relationship 

between in-stream variables and fish measures (IBI and the percent of intolerant individuals). 

The best model was selected through 10-fold cross validation analysis for the development of a 

baseline evaluation of stream health using pre-settlement landuse and historical climate data.  
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In general, similar predictors of biological condition were identified and selected to develop 

stepwise linear regression, partial least squares regression, and fuzzy logic models. Average 

annual flow consistently revealed the strongest relation to IBI; with annual flows generally 

positively related to this measure of stream health. Due to the significant positive correlation 

between average annual flow and drainage area, the ecological significance of AFLOW to fish 

communities in the Saginaw River watershed is difficult to decipher. Land uses that increase run-

off, like agriculture and urbanization, can lead to increases in average annual flows yet also alter 

other significant components of flow (e.g., reduced base flows  and increased peak flows) which 

have been consistently shown to reduce biological integrity (Poff and Zimmerman, 2010).  More 

detailed studies of these relations are currently underway to evaluate and better understand the 

relative influence of watershed and instream variables on fish community metrics. On the other 

hand, the percent of intolerant individuals was more influenced by nutrient concentrations and 

average annual chlorophyll-a. This is the fact that those species are identified by their inability to 

inhabit waters that experience poor water quality and environmental degradation. 

Among the methods considered above, non-linear fuzzy logic method performed the best. 

This reemphasizes the fact that non-linear models should be used when dealing with complex 

and no-linear relations such as among water quality, water quantity, and stream health. The best 

models were then employed to show the applicability of using SWAT as a means of collecting 

essential data for predicting fish communities. Our results imply that human activities in our 

study area have largely impacted overall stream health as measured by IBI and percent intolerant 

fish individuals. Such impacts are largely resulted from increases in nutrient concentrations from 

the conversion of forest to agricultural or urban lands (Table 1).  The inclusion of climate data is 

critical for this type of analysis because climate variables have direct influences on biological 
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communities through water quantity and indirect influences through its effects on nutrient, 

sediment, and physical habitat. In contrast to the above mentioned improvements of pre-

settlement landuse, some improvements were observed under Current conditions, which were 

linked to the change from forests (pre-settlement) to wetlands (current). In addition, these 

conflicting results may be attributed to the above mentioned limitations of the inputs to the 

model (AFLOW) without considering highly correlated natural driving variables (stream size, 

drainage area) that were not within scope of this project. Although the results of this study 

provide insight into possible consequences of different landuse and climate scenarios, it is 

important to acknowledge the uncertainty in the process of data collection, model input, model 

structure, model parameter, and model output.  

This research not only identified water quality variables and stream characteristics that can 

be linked to stream health indicated by fish communities, but also demonstrated the possibilities 

of working with a watershed model such as SWAT, as well as alternative, non-parametric 

modeling methods. With such complex interactions and relationships involved in aquatic species 

and their environments, there is a need to continue to explore alternative methods for capturing 

and modeling these processes. Furthermore, understanding the relationship between fish 

community metrics and variables obtained from watershed models, like SWAT, provides an 

effective tool to more directly study how different landuse management and human disturbances 

alter biological endpoints of aquatic ecosystems. 
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STUDY AND MODEL THE EFFECTS OF CONSERVATION PRACTICES ON 

STREAM HEALTH 

Matthew D. Einheuser, A. Pouyan Nejadhashemi, Scott Sowa, Lizhu Wang, Yaseen Hamaamin 

 

1.13 ABSTRACT 

Anthropogenic activities such as agricultural practices can have large effects on the 

ecological components and overall health of stream ecosystems. Therefore, having a better 

understanding of those effects and relationships allows for better design of mitigating strategies. 

Our study began with the development of a high-resolution watershed model for the Saginaw 

River basin in Michigan for generating in-stream water quality and quantity data at stream 

reaches with biological sampling data. These in-stream data was then used to explain 

macroinvertebrate measures of stream health including family index of biological integrity 

(Family IBI), Hilsenhoff  biotic index (HBI), and the number of Ephemeroptera, Plecoptera , and 

Trichoptera taxa (EPT taxa). Three methods (stepwise linear regression, kernel regression, and 

adaptive neuro-fuzzy inference systems (ANFIS)) were evaluated for developing predictive 

models for macroinvertebrate measures. The ANFIS method performed the best on average and 

the final models displayed the most favorable R
2
 and mean squared error (MSE) for Family IBI 

(R
2
 =0.50, MSE=29.80), HBI (R

2 
= 0.57, MSE=0.20), and EPT taxa (R

2 
=0.54, MSE=6.60). 

Results suggest that nutrient concentrations have the strongest influence on all three 

macroinvertebrate measures. Consistently, average annual organic nitrogen showed the most 

significant association with EPT taxa and HBI. Meanwhile, the best model for Family IBI 

http://www.google.com/url?sa=t&source=web&cd=3&ved=0CDIQFjAC&url=http%3A%2F%2Fequipe.nce.ufrj.br%2Fadriano%2Ffuzzy%2Ftransparencias%2Fanfis%2Fanfis.pdf&ei=tKaRTqWGOunx0gHcwfE0&usg=AFQjCNFc3RIiLVcIl8GZC42256wEkUbluA
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included average annual ammonium and average seasonal organic phosphorus. The ANFIS 

models were then used in conjunction with the Soil and Water Assessment Tool to forecast and 

assess the potential effects of different best management practices (no-till, residual management, 

and native grass) on stream health. Based on the model predictions, native grass resulted in the 

largest improvement for all macroinvertebrate measures. 

1.14 INTRODUCTION 

A healthy stream can be described as one that is resilient, sustainable, and maintains its 

ecological and societal values (Meyer, 1997). Often associated with the term stream health is the 

term integrity, which refers to a quality or condition that is compared to an original, undisturbed, 

condition (Karr, 1996). A common and accepted technique to quantify ecological health is the 

use of biological indicators for measuring how communities react to disturbances. This can be 

especially efficient when pollutants and physical habitat are otherwise impractical or hard to 

quantify (Flinders et al., 2008; Barbour et al., 1999). Among biological indicators, 

macroinvertebrate assemblages are one of the most widely used (Infante et al., 2008; Wang et al., 

2007; Flinders et al., 2008; Barbour et al., 1999). Due to their smaller migration habits and 

sessile lifestyle, macroinvertebrates can accurately reflect localized site conditions (Barbour et 

al., 1999; Flinders et al., 2008; USEPA, 2009). In addition, they often respond quickly to 

stressors due to sensitive life stages, complex life cycles, and varying pollution intolerances. 

Macroinvertebrates represent a range of trophic levels and being that they are an important food 

source for fish (Barbour et al., 1999); they act as a link in the food web connecting multiple 

organisms (USEPA, 2009). Over the years, numerous indices and metrics have been developed 

and used for identifying and measuring stream conditions and integrity using macroinvertebrates 

as indicators. There are two main informative types: multi-metric indexes, that measure specific 
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attributes of the assemblage; and pollution-tolerance indexes, which are based on taxon-specific 

tolerance values (Fore et al., 1996). An example of a multi-metric index is the Family IBI which 

is made up of metrics at a family taxonomic resolution. The Hilsenhoff biotic index (HBI; 

Hilsenhoff, 1987) is an example of a pollution-tolerance index based on the tolerance values of 

organic pollution for species and genera (Hilsenhoff, 1988; Barbour et al., 1999). Often, metrics 

within indices include information on certain taxonomic orders of macroinvertebrates that are 

highly intolerant to pollutants and can represent environmental conditions quite well. The three 

common orders often looked at in rapid bioassessments are Ephemeroptera (mayflies), 

Plecoptera (stoneflies), and Trichoptera (caddisflies), also known at EPT. These three orders of 

macroinvertebrates are very sensitive to degradation and their occurrence in streams can be a 

great indication of the water quality and overall health of the stream (Michigan DEQ, 1997).  

Anthropogenic disturbances, such as agricultural production, can affect the ecological 

processes and biota within lotic systems by altering flows, introducing point and non-point 

source pollutants, modifying geomorphology, and influencing other components of aquatic 

habitats (Wang et al., 2008; Dale and Polasky, 2007; Rowe et al., 2009). Such alteration can have 

large impacts on macroinvertebrate communities and stream health in general (Bedoya et al., 

2011).  

Flow is a primary characteristic of lotic systems and can be altered by different land uses. 

In an indirect manner, flow can affect other characteristics including temperature, sediment, 

nutrient and pesticide input, and dissolved oxygen levels. These conditions in turn affect aquatic 

organisms. Flow can also affect the biota more directly, including habitat availability and 

downstream drift (Bunn and Arthington, 2002; Borchardt, 1993). Abundance and diversity of 
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macroinvertebrates were found to be commonly reduced in studies with flow alterations (Poff 

and Zimmerman, 2010).  

With variable flows, higher peak rates, and higher velocities, often an increase in the 

transport of sediments to a channel occurs.  Bare soil and cultivated lands can contribute most of 

this sediment to the channel (Zimmerman et al., 2003). These increases in sediments can impact 

the ecology of stream in several direct and indirect ways. Sediments can affect 

macroinvertebrates indirectly by affecting primary production (Wood and Armitage, 1997). 

These influences on primary production can be linked to habitat structure alteration, food 

availability, and dissolved oxygen levels (Griffith et al., 2009). Studies have also shown that 

sediment impacts macroinvertebrate abundance, diversity, density, and community structure due 

to covered and modified substrates, affecting their respiration, impairing feeding, and increasing 

drift (Wood and Armitage, 1997). 

Often bound to sediments, nutrients are also a significant factor originating from 

agriculture activities within a watershed. Increases in nitrogen and phosphorus are well 

documented in their association with agricultural practices (Bernot et al., 2006), especially the 

use of fertilizers (Robertson and Vitousek, 2009; Gentry et al., 2007). These nutrients, although 

essential to organisms, can exceed needed levels and have considerable negative impacts on the 

biological communities and overall health of stream systems, commonly through eutrophication 

(Carpenter et al., 1998). Macroinvertebrates have shown negative responses to nutrients as 

demonstrated by Miltner and Rankin (1998), who observed a decrease in the Invertebrate 

Community Index (ICI) score associated with NH3. It was also shown that EPT taxa decreased, 

while some other taxa increased, with higher nutrient levels. 
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Several other factors can shape macroinvertebrate communities, including water quality 

parameters such as dissolved oxygen (DO) and physical habitats such as substrate and cover 

(Bedoya et al., 2011). 

1.14.1 Approaches to Linking Environmental Variables and Biota 

Efforts to link disturbances and stream variables to aquatic macroinvertebrates have been 

made through multiple approaches. These range from simple linear models to complex soft 

computing techniques such as fuzzy logic and artificial neural networks.  Simple linear models, 

such as stepwise regression are commonly used and are considered to be reliable when there is 

lack of knowledge of the relationships or processes being examined (Van Sickle et al., 2004). 

Waite and others (2010) used linear regression when looking at the relationship between 

environmental variables and macroinvertebrate metrics as well as Maret et al. (2010) and Van 

Sickle et al. (2004) who also employed standard regression models. Other authors such as 

Cheimonopoulou et al. (2011) have used multidimensional approaches like Canonical 

Correspondence Analysis (CCA) and Principle Component Analysis (PCA) to study the 

relationships between macroinvertebrate communities and stressors. Meanwhile increasing 

attention has been brought to addressing these relationships in a non-linear fashion. These 

methods include piecewise linear regression (Maret et al., 2010), regression tree analysis (Wang 

et al., 2007), and soft computing techniques such as artificial neural networks (Dedecker et al., 

2004).  

Fuzzy logic is another soft computing method based on approximate reasoning that has 

been increasingly used in ecological studies (Marchini, 2011). Fuzzy logic, introduced by Zadeh 

(1965), is an effective approach for developing models used for prediction or decision support 

(Adriaenssens et al., 2004). Fuzzy techniques can be interpreted easily because of its linguistic 
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nature and it efficiently deals with highly variable, complex, and uncertain data and processes 

(Adriaenssens et al., 2004). Both data driven and expert knowledge techniques have been used 

and several fuzzy methods exist. Fuzzy logic have been shown to be reliable for modeling 

several aquatic biota related to stream health including algae (Chen and Mynett, 2003), fish 

(Mouton et al., 2008; Jorde et al., 2000), and macroinvertebrates (Adriaenssens et al., 2006; Van 

Broekhoven et al., 2006).  

1.14.2 Challenges and Objectives 

The first challenge when linking disturbances and in-stream water quality and quantity 

conditions to ecological health is the lack of field data. There is not only a lack of high resolution 

data, but it is often impractical and impossible to have complete and long term datasets for 

streams networks, especially in a large basin as in this study. However, biophysical models can 

play an important role in successfully filling this knowledge gap as well as forecasting 

hypothetical conditions. Some studies have partially incorporated such models to help fill this 

role including Wang et al. (2008) who used nitrogen and phosphorus estimates from a spatially 

referenced regressions on watershed attributes (SPARROW) model to link with ecological 

measures. It is very common for investigators to use the types and percentages of different land 

uses in the watershed as predictor variables for biological measures of stream health. However, 

using these variables in a region where watersheds are mainly dominated with one land-use type 

(e.g. agriculture) can lead to poor predictions (Heitke et al., 2006; Stauffer et al., 2000; Johnson 

and Host, 2010). In addition, relations base on the percentages of different land uses is 

insensitive to climatological variables, which has an important influence on stream health. In 

order to solve these problems, instead of using percentages of different land use or cover, the 

geospatial information about land cover was incorporated in the Soil and Water Assessment Tool 
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(SWAT) model to determine local and regional stream conditions that are essential in 

development of biological model. This also addressed the challenge of capturing the 

confounding interactions among landscape factors that help in forming aquatic ecosystems 

(Johnson and Host, 2010). Another challenge is finding a suitable modeling technique or method 

that can capture the complex and non-linear relationships that exist between stream conditions 

and ecological components (Wang et al., 2008; Sutela et al., 2010). Alternative soft computing 

methods, such as fuzzy logic, may provide a possible answer for this challenge (Marchini, 2011). 

Overall, the relationships between variables such as nutrients and macroinvertebrates need to be 

further investigated and have not yet been well documented (Wang et al., 2007). Currently, there 

are efforts through the Conservation Effects Assessment Project (CEAP) to quantify the 

ecological benefits of best management practices (BMPs) and conservation practices through 

modeling applications and tools (Maresch et al., 2008; Shields et al., 2006).  

The objectives of this study were to: (1) bridge the gap between hydrologic models and 

ecological conditions using the (SWAT) as a means of quantifying high resolution flow and 

water quality elements; (2) identify the influential variables in explaining macroinvertebrate 

indices and metrics, ultimately indicating overall stream health; (3) describe the relationships 

between aquatic macroinvertebrates and local in-stream conditions (SWAT outputs) through 

models built using statistical methods and adaptive neuro-fuzzy inference systems (ANFIS) 

technique; and (4) show the applicability of SWAT coupled with the predictive 

macroinvertebrate models to forecast and assess the effects of numerous agricultural BMPs on 

stream health within the Saginaw River watershed. 

http://www.google.com/url?sa=t&source=web&cd=3&ved=0CDIQFjAC&url=http%3A%2F%2Fequipe.nce.ufrj.br%2Fadriano%2Ffuzzy%2Ftransparencias%2Fanfis%2Fanfis.pdf&ei=tKaRTqWGOunx0gHcwfE0&usg=AFQjCNFc3RIiLVcIl8GZC42256wEkUbluA
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1.15 METHODOLOGY 

1.15.1 Study Area 

The Saginaw River watershed (or basin) is Michigan’s largest 6-digit HUC (hydrologic 

unit code 040802) basin with a size of 612,266 ha (Figure 11). Located in the central eastern 

portion of the Lower Peninsula, this watershed consists of six 8-digit HUC watersheds, the 

Tittabawassee (04080201), Pine (04080202), Shiawassee (04080203), Flint (04080204), Cass 

(04080205), and Saginaw (04080206). The outlet of the Saginaw River basin discharges into 

Lake Huron. Streams and rivers within the basin range in size and order; however, majority of 

the basin is dominated by warm water streams. The basin lies within three Level-3 Ecoregions, 

the Northern Lakes and Forests Ecoregion, the Southern Michigan/Northern Indiana Drift Plains 

Ecoregion, and the Huron/Erie Lake Plains Ecoregion (USEPA, 2011b). The Saginaw River 

watershed consists of approximately 43% of agricultural lands that are mainly comprised of corn, 

soybean, and pasture fields. The remaining lands are 24% forest, 14% developed, 14% wetland, 

4% rangeland, and 1% water. With a large percentage of its drainage area being agriculture and 

developed, segments of river as well as the outlet of the basin have been impaired due to nutrient 

loading, soil erosion, and contaminated sediments. Because of this, it has been identified as an 

area of concern by the US EPA. These concerns are in regards to degraded fisheries, fish 

consumption advisories, and loss of recreational values (USEPA, 2011a). 
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Figure 11. Saginaw River watershed (040802) 

1.15.2 Soil and Water Assessment Tool 

To obtain much needed water quality and quantity data at a large scale, an inexpensive 

and informative approach is the use of models. The Soil and Water Assessment Tool (SWAT) is 

one such model that is commonly used for watershed scale predictions that may be used by 

decision makers and managers for dealing with water resource issues (Neitsch et al., 2005). 

SWAT (ArcSWAT v.2.3.4) was a spatially explicit model developed by the USDA-ARS Temple 

Texas. This physically based model was developed to simulate runoff, stream flow, soil erosion, 
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along with nutrient, pesticide, and sediment loadings and transportation based on input data 

including landuse, weather, topography, soils, and scheduled management operations (Gassman 

et al., 2007).  

The SWAT model and watershed being simulated, at its basic unit, is made up of 

hydrologic response units (HRUs) that represent areas with unique land use, soil, and landscape 

slope (Neitsch et al., 2005). For each HRU, a hydrologic balance, sediment loads, and nutrient 

losses are calculated and then accumulated within subbasins that have been delineated 

throughout the watershed. At this time, routing of each variable occurs through the stream 

network within the model.  

1.15.2.1 Model Setup 

In order to build an accurate and reliable model within SWAT, the use of accurate and 

reliable input data is a must. As mentioned earlier, this input data includes, but is not limited to 

landuse, topography, soils, and climate. For land-use data, the 2009 Cropland Data Layer (CDL) 

map at 56-m resolution, acquired from the National Agriculture Statistics Service within the U.S. 

Department of Agriculture (USDA) (Johnson and Mueller, 2010) was used. Classifications 

within this layer are of a high resolution and are crop specific making it ideal for this dominated 

agricultural watershed.  

For topography data, the USGS National Elevation Dataset (NED) at 30-m resolution 

was obtained through the Better Assessment Science Integrating point and Nonpoint Sources 

(BASINS version 4.0) software (BASINS, 2007).  

For soil data, the USDA State Soil Geographic dataset (STATSGO) at a scale of 

1:250,000 was used. This data includes both physical and chemical properties for hydrologic 
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modeling, which is commonly used for management in large areas such as watersheds and basins 

(USDA, 1995). 

Precipitation and temperature data was obtained from the National Climatic Data Center 

(NCDC). Within and around the basin, 21 stations and 16 stations provided precipitation and 

temperature data, respectively. The acquired climate data spanned from 1990 to 2008. Additional 

climatic data, including wind speed and relative humidity, was obtained by SWAT weather 

generator (Neitsch et al., 2005). 

Typically, watershed boundaries and stream networks are delineated and defined based 

on the topography data. However, for this study, both the stream network and subbasins were 

predefined layers inputted into the SWAT model. These layers were created using stream 

network data from a 1:24k National Hydrography Dataset plus (NHDPlus), acquired by the 

Michigan Institute for Fisheries Research. The 13,831 predefined subbasins and individual 

stream reaches are presumably homogenous in physicochemical, geomorphological, and 

biological characteristics. 

Further setup of the model included defining HRUs based on dominant land use, soil, and 

slope class (0 to 2%, 2 to 5%, 5 to 10%, >10%) within each subbasin. Additionally, management 

operations, schedules, and crop rotations were modified from SWAT default values, as presented 

by Love and Nejadhashemi (2011) for the study area. 

1.15.2.2 Sensitivity Analysis, Calibration, and Validation 

Following the model setup, sensitivity analysis and calibration was performed. Sensitivity 

analysis was used to first identify input parameters within the SWAT model that had the most 

influence on model outputs. This was done for model outputs including flow, sediments, 
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nitrogen, and phosphorus. SWAT employs a Latin Hypercube One-factor-At-a Time (LH-OAT) 

method when performing sensitivity analysis (Van Griensven et al., 2006).  

Calibration was then performed using parameters identified through sensitivity analysis 

as well as parameters known to be sensitive based on knowledge of the study area. Calibration 

was executed by adjusting those parameters in efforts to obtain outputs that meet an acceptable 

accuracy when compared to actual data, while reducing the uncertainty. In addition, validation 

was performed by using the adjusted parameters from calibration to determine model accuracy 

and reliability (Moriasi et al., 2007). Both calibration and validation was performed at the basin 

outlet (Figure 12) for flow, sediments, and nutrients. The model was run from 2000 through 2005 

with the first two years being warm up years. This time frame was chosen according to 

availability of measured streams and habitats data. In addition, the time frame includes both wet 

and dry precipitation periods. Calibration and validations were performed on monthly basis. 

Calibration period was 2002-2003 while the validation period was 2004-2005. Flow was 

calibrated and validate against data from USGS (site # 04157000). In addition, the model was 

calibrated and validated for water quality elements including total phosphorus, nitrate, and total 

nitrogen based on observed data acquired from EPA STORET (site # 090177). 

Evaluations of both calibration and validation were done using Nash-Sutcliffe efficiency 

(NSE), percent bias (PBIAS), and coefficient of determination (R
2
). The evaluations and the 

performance of the model were based on guidelines outlined in Moriasi et al. (2007). Multiple 

measures were used to minimize biased results that might arise from using only one performance 

measure. NSE is a commonly used performance measure in hydrologic models and reflects how 

well simulated data versus observed data fit a 1:1 line. PBIAS on the other hand helps in 
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showing if the model is over-predicting and under-predicting. Meanwhile R
2
 is a commonly used 

statistic that measures the goodness of fit between simulated and observed data. R
2
 however, can 

be over sensitive to outliers and does not help in addressing over or under predicting of the 

model (Moriasi et al., 2007; Love and Nejadhashemi, 2011). Further information and details on 

the measures and evaluation guidelines used in this study can be found in Moriasi et al. (2007). 

1.15.2.3 BMP Scenarios 

Multiple best management practices (BMP) ,1) no tillage (NT),2) residue management 

(RM 1000) (1000 kg/ha), and 3) native grass (NG) were simulated using SWAT model (applied 

to all agricultural lands) to forecast the potential effects of these scenarios on the three 

macroinvertebrate measures of stream health.  

The no-tillage BMP refers to practice of keeping soils untilled and undisturbed until 

agricultural planting. This not only reduces erosion of soils, but it also can increase soil 

moisture.(USDA, 2010). To represent this in the SWAT model, custom operation schedules were 

made to halt tillage operations. 

Residue management refers to the practice of keeping a certain amount of crop residue on 

the soil surface within an agricultural field. This can reduce both sheet and rill erosion, while 

improving soil conditions (USDA, 2010). To model this within SWAT, no-till operations were 

incorporated as well as modifying parameters including average moisture condition curve 

number (CN2 (-2)), universal soil loss equation support practice factor (USLE_P (0.39)), and 

Manning’s n value for overland flow (OV_N (0.2)) (Arabi et al. 2007). The modified values are 

based on the amount of residue to be left, which was 1000 kg/ha for this study.  
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Native grass was the third BMP incorporated into the model and refers to the practice of 

replacing agricultural row crops with native grasses (e.g. big bluestem) as done in programs such 

as Conservation Reserve Program. This conservation practice can reduce sediment and nutrient 

transport within watersheds. To represent this in the SWAT model, a custom operation was used 

where row crops were converted to rangeland (Woznicki et al., 2011) and mowing was done 

every 5 years according to the information obtained from the NRCS field office. 

1.15.3 Macroinvertebrate Data 

Macroinvertebrate data, including HBI, family IBI, and total EPT taxa, were obtained 

from 262 sites (Figure 12 and Table 15) within the Saginaw River watershed. Both Family IBI 

and HBI are indices of the overall stream health of the system while the total number of EPT 

taxa reflects stream health based on those macroinvertebrates’ intolerance to degraded water. All 

the macroinvertebrate data was obtained from the Michigan Department of Environmental 

Quality (DEQ) and collected through standard DEQ procedures (Michigan DEQ, 1997). 

Sampling was performed in all habitat types and in both high velocity and low velocity areas. 

Methods of sampling included hand picking and dip nets, meanwhile samples were identified to 

the family taxonomic level. Metrics were then calculated and index scores were obtained. Metric 

measurements included taxa richness, numbers of taxa in the orders of Ephemeroptera, 

Trichoptera, and Plecoptera, percent Ephemeroptera composition, percent Trichoptera 

composition, percent contribution of the dominant taxon, percent isopods, snails, and leeches, 

and percent surface dependent macroinvertebrates. Ephemeroptera taxa are pollution sensitive 

and are often the first groups to disappear at impacted sites, Trichoptera taxa are often a 

predominant component within the community and few species are tolerant to pollution, and 

Plecoptera are sensitive to environmental quality (Michigan DEQ, 1997). 
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Figure 12. Location of macroinvertebrate data and calibration site 

1.15.4 Data Analysis 

Analysis of the data began with gathering and calculating in-stream concentrations and 

conditions, both water quality and quantity variables, from the output of the watershed SWAT 

model. The in-stream variables (flow, sediment loads, nutrient loads, etc.) generated from the 

model was obtained for each of the 13, 831 individual reaches within the basin. The annual and 

seasonal (June through August) averages were calculated over the five years when the model was 

run (2002 to 2006). In addition, the bankfull cross sectional area of the reach as a trapezoidal 

shape was attained based on bankfull depths and widths calculated through SWAT for each 

stream segment. Flow related measurements included discharge (m
3
/second, flow), the 
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percentage of flow that is driven by groundwater (PercBase), and stream gradient (StreamGrad) 

of the reach (m/m). Sediment and nutrient concentrations (mg/L) were then calculated based on 

the loads and discharge within each reach. Nutrient forms and values that were obtained from 

SWAT included organic nitrogen (OrgN), nitrate (NO3), nitrite (NO2), ammonium (NH4), 

organic phosphorus (OrgP), mineral phosphorus (MinP), total nitrogen (TN), and total 

phosphorus (TP). In addition, dissolved oxygen (DO), carbonaceous biochemical demand 

(CBOD), and algal biomass based on chlorophyll A (CHLA) concentrations were acquired from 

the model. These water quality and quantity variables along with the natural variable of stream 

cross-sectional area were then specifically extracted for 262 reaches where the macroinvertebrate  

data was available (Table 15). At these sites, the relationship between the above mentioned 

variables and the macroinvertebrate measures were then investigated. Finally, three methods 

were evaluated to explain these relationships. 
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Table 8. Summary of macroinvertebrate and SWAT output data at 262 sites 

Variable Description Min Max Mean Median SD Transform 

Macroinvertebrate Measures       

HBI Macroinvertebrate  Biotic Index 3.60541 7.89024 5.10950 5.02465 0.68171 BoxCox 

FamilyIBI Family Index of Biotic integrity 0.00000 36.00000 16.07634 15.0000 7.80202 None 

EPTtaxa Total number EPT taxa  0.00000 17.00000 6.13691 6.00000 3.82337 None 

       

In-stream Variables       

CrossArea Cross-sectional area of reach 

(m
2
) 

0.02100 573.0581 51.79563 14.0755 100.438 BoxCox 

StreamGrad Stream segment gradient (m/m) 0.00000 0.03140 0.00179 0.00120 0.00267 BoxCox 

SFLOW Average seasonal flow (cms) 0.00066 25.00000 1.87672 0.39700 4.04417 BoxCox 

SPercBase % Average seasonal water yield 

contributed by groundwater (%) 

0.00000 0.58796 0.09320 0.04437 0.11958 BoxCox 

SSED Average seasonal sediment 

concentration (mg/L) 

0.08670 518.0000 41.41481 34.5000 44.5916 BoxCox 

SOrgN Average seasonal organic 

nitrogen concentration (mg/L) 

0.00294 15.42615 0.84168 0.29599 1.52020 BoxCox 

SOrgP Average seasonal organic 

phosphorus concentration 

(mg/L) 

0.00114 2.75150 0.16056 0.05695 0.28803 BoxCox 

SNo3 Average seasonal nitrate 

concentration (mg/L) 

0.00079 10.76602 1.11424 0.72740 1.32166 BoxCox 

SNH4 Average seasonal ammonium 

concentration (mg/L) 

0.00073 4.77614 0.35343 0.11764 0.61962 BoxCox 

SNo2 Average seasonal nitrite 

concentration (mg/L) 

0.00000 2.21420 0.15899 0.05961 0.24940 BoxCox 

SMinP Average seasonal mineral 

phosphorus concentration 

(mg/L) 

0.00003 1.23628 0.13475 0.08921 0.15353 BoxCox 

SCHLA Average seasonal Algal biomass 

(chl - a) concentration (mg/L) 

0.00000 1.04482 0.01192 0.00065 0.08284 BoxCox 
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Table 8 (cont’d) 

SCBOD Average seasonal carbonaceous 

biochemical oxygen demand 

concentration (mg/L) 

0.00000 299.6894 5.45341 0.01764 26.8655 BoxCox 

SDO Average seasonal dissolved 

oxygen concentration (mg/L) 

13.3485 424.3258 187.8763 179.877 84.4387 None 

STN Average seasonal total nitrogen 

concentration (mg/L) 

0.28433 23.05467 2.46834 1.67509 2.86633 BoxCox 

STP Average seasonal total 

phosphorus concentration 

(mg/L) 

0.00428 3.26787 0.29532 0.16339 0.38360 BoxCox 

AFLOW Average annual flow (cms) 0.00133 29.53000 2.58448 0.70005 4.94849 BoxCox 

APercBase % Average annual water yield 

contributed by groundwater (%) 

0.00000 0.91104 0.31717 0.33018 0.28845 BoxCox 

ASED Average annual sediment 

concentration (mg/L) 

0.21060 660.7000 49.35930 42.5650 55.0759 BoxCox 

AOrgN Average annual organic nitrogen 

concentration (mg/L) 

0.00618 8.74909 1.17311 0.34997 1.77460 BoxCox 

AOrgP Average annual organic 

phosphorus concentration 

(mg/L) 

0.00179 1.27287 0.18353 0.06978 0.25342 BoxCox 

ANo3 Average annual nitrate 

concentration (mg/L) 

0.04488 6.32230 1.37998 1.25396 1.02889 BoxCox 

ANH4 Average annual ammonium 

concentration (mg/L) 

0.00122 3.13374 0.51953 0.23141 0.62542 BoxCox 

ANo2 Average annual nitrite 

concentration (mg/L) 

0.00000 0.98350 0.15704 0.07660 0.19189 BoxCox 

AMinP Average annual mineral 

phosphorus concentration 

(mg/L) 

0.00017 0.52431 0.13105 0.09111 0.11607 BoxCox 

ACHLA Average annual Algal biomass 

(chl - a) concentration (mg/L) 

0.00000 0.61265 0.01836 0.00331 0.05920 BoxCox 



123 

 

Table 8 (cont’d) 

ACBOD Average annual carbonaceous 

biochemical oxygen demand 

concentration (mg/L) 

0.00000 468.7425 8.71597 0.01659 43.9080 BoxCox 

ADO Average annual dissolved 

oxygen concentration (mg/L) 

5.93453 432.6806 182.3555 175.107 97.8748 None 

ATN Average annual total nitrogen 

concentration (mg/L) 

0.24720 12.05519 3.22965 2.31450 2.69881 BoxCox 

ATP Average annual total phosphorus 

concentration (mg/L) 

0.01120 1.48351 0.31458 0.17047 0.32449 BoxCox 
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These methods included stepwise linear regression, kernel regression, and adaptive 

neural-fuzzy inference system (ANFIS). Ten-fold cross validation was performed among all 

methods. This allows the comparison among methods, facilitates in model validation, prevents 

over-fitting, and helps with selection of the overall best predictive model for each of the response 

variables (Mahmood and Khan, 2009). Random sampling was performed with R statistical 

software v. 2.12.1 to divide the data for the 263 reaches into 10 approximately equally size 

subsets. Models and relationships were built and trained based on 9 of the subsets and validated 

with the remaining subset. This is done until each subset has been used for validation, resulting 

in 10 models. Performance measures including mean square error (MSE) and coefficient of 

determination (R
2
) were then calculated for the test or validation datasets and averaged across 

the 10 models. This average performance based on validation is then compared among the three 

methods (stepwise, kernel, and ANFIS) and the method with the lowest MSE and highest R
2
 was 

recognized as the best method. Finally, models within the best method were tested against each 

of the 10 folds or subsets and their average performance dictated the best model, which was later 

used for predictions. 

1.15.4.1 Stepwise Linear Regression 

Stepwise linear regression models were developed using SAS 9.2 for each of the 

macroinvertebrate response variables (HBI, family IBI, and EPT taxa) based on the significant 

in-stream variables obtained from SWAT. Although linear models are a simple approach, they 

are thought to be reliable and effective in cases where knowledge or data is limited (Van Sickle 

et al., 2004). Variable normalties were evaluated using Shapiro-Wilk and Kolmogorov-Smirnov 

tests. Box-Cox transformations (Box and Cox, 1964), which applies non-linear transformations 
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based on log-likelihood functions (SAS/STAT, 2010), were performed for those variables that 

did not satisfy the normal assumption. In this stepwise procedure, a modified forward-selection 

process was performed and variables were added based on significance of the F statistic. 

Following the addition of a variable, the process goes back to check if other variables need to be 

removed in the model based on their significances (SAS/STAT, 2010). Additionally, the 

collinearity among predictive variables was addressed by looking at the variance inflation factor 

(VIF), eigenvalues, and condition index. If a variable had a VIF of greater than two (Maret et al., 

2010) and either an eigenvalue approaching zero (Morris et al., 1986) or condition index value 

with a high proportions of variation, then that variable was removed and stepwise would be 

rerun. 

1.15.4.2 Kernel Regression 

Kernel regression was performed through R statistical software v. 2.12.1 in efforts to 

explain and model macroinvertebrate measures with a non-linear and more flexible regression 

function (Hastie et al., 2009). Kernel methods are memory-based and use a localized weighting 

function. The specific analysis for this study uses a local linear regression technique due to 

computational time and it’s un-biasness at boundaries of the domain, which is unlike some other 

kernel methods. Three different kernels were considered (Tri-cube, Epanechnikov, and 

Gaussian) to look at different local smoothing techniques. Within each kernel, leave-one out 

cross validation was performed to define the best width of the local neighborhood (Hastie et al., 

2009). Environmental variables used within the kernel regression were selected with the same 

methods as the ANFIS method based on Spearman’s Rho correlations. However, for kernel 

method, there is no limit of the number of variables used in the models; therefore all variables 

identified in the process were used. 
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1.15.4.3 Adaptive Neural-Fuzzy Inference Systems (ANFIS) 

ANFIS is a fuzzy logic approach that uses adaptive learning techniques similar to that of 

neural networks and was performed in MATLAB R2009A with Fuzzy Logic Toolbox 

(MathWorks, 2010).  This fusion technique is suitable for very suitable when data is already 

available and when a predetermined model structure is unknown. Fuzzy logic is an alternative 

soft computing method that can be used when dealing with non-linear and complex interactions 

(Chen and Mynett, 2003). To determine the variables to be included in the ANFIS model, 

Spearman’s Rho correlations were performed within STATISTICA (STATSoft, 2011) among all 

variables. This non-parametric approach identified variables that were significantly correlated 

(p<0.05) with either HBI, family IBI, or EPT taxa for further consideration. Meanwhile, where 

pairs of variables had a high correlation coefficient (r >0.7) (Waite et al., 2010) amongst each 

other, the one with the weakest correlation with the macroinvertebrate measure was removed 

(Wang et al., 2008). The top three variables were then selected to be incorporated in the model 

for each macroinvertebrate measure. In addition, stream size (cross-sectional area) was also 

incorporated into each model to represent the natural longitudinal variation in stream 

morphology, substrate, shading, and flow regime. Cross-sectional area was forced into the 

models for the methods where it was possible (kernel and ANFIS). This was in attempt to model 

the residual effects of flow, which is highly correlated with cross-sectional area, on 

macroinvertebrate and ultimately stream health. This is another benefit to the fuzzy approach 

compared to other methods in that variables can be included where otherwise they may be 

rejected. The limit of four variables was used based on number of samples, which limits the 

building of membership functions without exceeding the number of modified parameters. At this 

point, ANFIS builds initial fuzzy inference system parameters based on grid partitioning and 
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continues to shape membership functions and rules with training data. Meanwhile, test data and 

error of the model was tracked throughout the process to prevent over-fitting. Multiple 

membership function shapes were tested as well as optimization options within the program 

while building models. The output’s membership function could either be linear or constant. An 

example of a linear membership function may be if the inputs are in specific membership 

functions, then the output is a specific linear equation. The ending model was identified based on 

minimizing error of both training and test datasets. Further information and a detailed 

explanation of the ANFIS function can be found in the Fuzzy Logic Toolbox 2, User’s Guide 

(MathWorks, 2010). 

1.16 RESULTS 

1.16.1 Calibration and Validation 

Calibration and validation was performed within the SWAT model for water quantity and 

quality components in the following order; flow, sediments, total phosphorus, nitrate, and total 

nitrogen. Based on criteria explained in Moriasi et al. (2007), all variables were successfully 

calibrated and validated based on NSE (>0.50) and PBIAS (within ±25 for flow, ±55 for 

sediment, and ±70 for nutrients) (Table 16). 
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Table 9. SWAT model calibration and validation summary 

Parameter Performance 

measure 

Calibration 

Period 

Validation 

Period 

Combined 

Flow NSE 0.72 0.85 0.81 

 PBIAS(%) 6.02 -1.75 1.48 

 R
2
 0.74 0.85 0.82 

Sediment NSE 0.71 0.81 0.8 

 PBIAS(%) -10.27 0.86 -3.02 

 R
2
 0.71 0.92 0.88 

Total  NSE 0.64 0.67 0.67 

Phosphorus PBIAS(%) 18.08 -22.68 -6.87 

 R
2
 0.68 0.71 0.7 

Nitrate NSE 0.76 0.82 0.8 

 PBIAS(%) 22.7 12.87 17.01 

 R
2
 0.86 0.83 0.83 

Total  NSE 0.5 0.67 0.62 

Nitrogen PBIAS(%) 47.34 38.73 42.4 

 R
2
 0.87 0.84 0.84 

 

1.16.2 Model Results 

Calibrated and validated outputs from the watershed model were obtained at sites where 

macroinvertebrate data were available. The three methods of analyses (stepwise linear 

regression, ANFIS, and kernel regression) were than performed to explore and identify in-stream 

variables that can be used to explain and predict macroinvertebrate measures (HBI, FamilyIBI, 

and EPTtaxa). 

1.16.2.1 Stepwise Linear Regression 

Average annual organic nitrogen concentration (AOrgN) was consistently identified as 

the most influential variable for HBI in the Stepwise linear regression analysis.  . Throughout the 

ten-fold process, AOrgN had the highest partial R
2 

in explaining the variation of HBI for all 

models. Throughout the stepwise technique and based on correlations, organic phosphorus also 
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exhibited high correlations with HBI, but it was removed because of its collinearity with AOrgN. 

Additionally, all models identified average annual sediment as a significantly influential variable 

for HBI. All other variables that were incorporated in the models were some forms of nitrogen 

concentrations. However, one of the models built did identify dissolved oxygen as a significant 

addition to the regression equation. Because HBI is based on macroinvertebrate pollution 

tolerance scores, the selection of nutrient and sediment concentrations as predictors is consistent. 

When applying the linear regression models to test datasets, on average in-stream water quality 

variables (SWAT outputs) explained 25% of the variation in HBI (table 18).  

Stepwise regression performed for FamilyIBI also recognized nitrogen concentrations as 

a highly influential variable. Based on 9 out of the 10 models created during the 10-fold cross 

validation, average annual total nitrogen concentration (ATN) was found to have the highest 

partial R
2
.  Average annual flow was also identified consistently as a significant variable. Flow, 

unlike ATN however, showed a positive correlation with FamilyIBI and explained an additional 

four to eight percent of the variation. In majority of the models, no other variables significantly 

increased the R
2
 or reduced MSE. Much like, HBI, the tolerances of macroinvertebrates to 

nutrients is reflected in the FamilyIBI. However, this index also takes into consideration other 

metrics not just based on tolerances, which may explain the selection of flow as an influential 

variable, which may be a reflection of natural longitudinal variation within the watershed. Based 

on stepwise linear regression techniques, on average, in-stream variables from SWAT explained 

27% of the variation in FamilyIBI (Table 18).  

For EPTtaxa, average annual nitrogen concentration (ATN) was also consistently 

incorporated into the models. Similar to FamilyIBI average annual flow was also identified in 
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majorities of the models. The reason these two variables were selected in both FamilyIBI and 

EPTtaxa is likely due to the fact that EPTtaxa is related to several of the metrics in FamilyIBI. In 

addition to the above mentioned variables, average seasonal nitrite (SNO2) was also included in 

majority of the models, explaining only an additional one to two percent of the variation in 

EPTtaxa. Some models built based on certain folds of data, included other forms of nitrogen (e.g. 

average annual nitrate and average seasonal ammonium) as well as the concentration of 

chlorophyll a. The identification of nutrient values as being predictors of EPT taxa is consistent 

based on the fact that EPT taxa are known to be sensitive to water quality. Overall, through the 

stepwise process, water quantity and quality variables explained 34% of the variation in EPTtaxa 

(table 18). 

1.16.2.2 Kernel Regression 

The first step of performing the kernel regression for HBI was identifying what 

parameters should be used in the models. Unlike stepwise, this analysis does not have a set 

selection process.  The predictors identified by our spearman rank correlation analysis in the 

order of importance include average annual organic nitrogen concentration (AOrgN), average 

annual nitrite (ANO2), average seasonal total nitrogen (STN), average annual and seasonal 

flows, average annual water yield contributed by groundwater (APercBase), average annual 

carbonaceous biochemical oxygen demand concentration (ACBOD), average annual algal 

biomass (chl - a) concentration (ACHLA), and average seasonal sediment concentrations 

(SSED). Within the 10-fold process, no specific type of kernel for local smoothing consistently 

outperformed the others and all three methods (Tri-cube, Epanechnikov, and Gaussian) were 

used depending on the dataset. When applying these “black-box” models built through kernel 

regression to test data, those predictors explained an average of 19% of the variation in HBI 
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(table 18). This low predictability was unexpected because it does not assume linear relationships 

and performed worse than linear regression. This result could be contributed to how the variables 

were selected and the fact that the kernel method used different variables than stepwise. 

Kernel regression models for FamilyIBI used similar variables that were chosen for HBI. 

Once again, concentrations of different nitrogen forms were included in every model such as 

organic nitrogen, total nitrogen, nitrite, and nitrate. Also ACHLA, ACBOD, ASED, and 

APerceBase were included in the kernel models. In addition to the common variables that have 

been involved in majority analysis, average seasonal dissolved oxygen concentration (SDO) was 

also an input variable in five of the ten models. One of the models based off of a specific dataset 

within the 10-fold process used average seasonal ammonium (SNH4) and average seasonal 

organic phosphorus (SOrgP) as inputs, replacing AOrgP and ANO2. The kernel regression 

process for FamilyIBI consistently used a tri-cube kernel for local smoothing, which 

outperformed the other kernels in every model. Kernel regression models explained on average 

18% of the variation in FamilyIBI (table 18). Similar to HBI, once again kernel regression did 

not show favorable results. 

Similar variables were used for the kernel analysis of EPTtaxa. The highly correlated 

variables were comparable to that of FamilyIBI. This likeness may be due to the fact that highly 

related measures to EPTtaxa, are used to calculate FamilyIBI. However, some notable 

differences were apparent in EPTtaxa model inputs and spearman rank correlations. Average 

seasonal dissolved oxygen concentrations (SDO) were included in all models built based on the 

10-fold datasets. Also, stream gradient was included in several of the models. Tri-cube kernels, 

once again outperformed other local smoothing methods for EPTtaxa; however, Epanechnikov 
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kernel was also used for some of the models. On average, when applied to test data, the kernel 

method explained 24% of the variation in EPTtaxa (table 18).  

1.16.2.3 ANFIS 

Average annual organic nitrogen concentration (AOrgN) was once again found to have a 

strong association with HBI when variables were identified based on spearman rank and 

modeled through the ANFIS approach. Meanwhile, concentrations of other forms of nitrogen 

also were included in the models consistently, including average seasonal total nitrogen (100% 

of the models) and average annual nitrite (50% of the models). Average annual flow was the 

other variable that was incorporated into the ANFIS for some of the folds. Cross-sectional area 

was selected for five of the models by spearman rank correlations, but was forced into all the 

models. ANFIS model structures varied depending on the training dataset used throughout the 

10-fold validation analysis. Variables were either broken down to two or three membership 

functions and HBI’s membership function was also linear or constant, depending on the dataset. 

Gaussian curve, triangular-shaped and generalized bell-shaped membership functions were the 

common membership function structures identified within the HBI models. Based on test data 

within 10-fold validation, ANFIS models on average explained 36% of the variation in HBI, 

which is 11% more than linear regression and 17% more than kernel methods. MSEs were also 

more favorable for ANFIS models, when compared to the other methods (table 18). 

ANFIS models for FamilyIBI also included nitrogen concentrations in different forms as 

highly influential inputs. In five out of the ten models built, average annual total nitrogen (ATN) 

was included as a variable. Within the specific datasets used to build those models, ATN was 

found to have the highest spearman correlation with FamilyIBI. Other models however, included 

AOrgN (4 out of 10) and ANH4. Specifically, the model built that identified NH4, also included 
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average seasonal organic phosphorus (SOrgP) and was one of the better performing models. 

Also, consistent among the data folds, average annual flow was selected and included into the 

models. Cross-sectional area was forced into the models as a natural variable, although it was 

correlated with flow in most of the models. The input variables were once again made up of two 

or three membership functions and varied in shape. The common membership function shapes 

that built the best models based on training datasets, included Gaussian (4 out of the 10 models), 

triangular (2 out of the 10 models), and trapezoidal (2 out of the ten models). On average, ANFIS 

models explained 28% of variation in FamilyIBI, similar to that of stepwise. MSEs based on test 

data were also slightly more favorable for the ANFIS method (table 18). However, R
2
 values 

obtained from training sets explain 12% more variation then stepwise methods (table 17).  

For EPT taxa, ANFIS and spearman rank correlations selected AOrgN to be included in 

all models throughout the 10-fold process. Average annual nitrite concentrations (ANo2) were 

also selected for every model. Five out of the ten models included average annual flow, whereas 

the other five included average seasonal flow. Cross-sectional area was forced into the model to 

represent the natural variations, although it was selected for five of the models by spearman rank 

correlation. The structure of the membership functions for all variables differed among models 

depending on the training data. EPTtaxa membership function was found to be linear, instead of 

constant, in nine of the ten models. Similar to the models built for HBI and FamilyIBI, input 

variables for EPTtaxa were made up of two to three membership functions. The most common 

shape used to build the membership functions within the EPTtaxa models was triangular. On 

average, based on test data, the ANFIS models explained 39% of the variation in EPTtaxa (table 

18).  
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1.16.3 Model Selection and Interpretation 

Based on all the methods of analysis and model development, the effects of nutrients on 

stream health were apparent. Nitrogen concentration, especially organic nitrogen, was 

consistently identified as an influential variable for all of the macroinvertebrate measures. At the 

same time, other variables such as nitrite, total nitrogen, and ammonium were also identified 

having an effect on macroinvertebrate health. In most cases based on spearman rank correlations, 

phosphorus measures were highly correlated with nitrogen concentrations and therefore removed 

during the variable selection process. However, in some situations phosphorus, such as organic 

phosphorus, showed strong correlations with macroinvertebrate measures. In fact, the best model 

chosen for FamilyIBI included seasonal organic phosphorus concentration. Flow also was 

identified as an influential factor for FamilyIBI and EPTtaxa. Although flow was used in the 

models, a high correlation was revealed with cross-sectional area. Flow is likely to be selected 

based on its correlation with this natural variation that captures several other factors. Flow, 

however, was not found to be as influential in HBI, which is strictly based of pollutant tolerance 

values.  Both seasonal and annual outputs were highly correlated. In several situations, for the 

same macroinvertebrate measure, both average seasonal and average annual nitrogen 

concentrations and flows were selected to be in the model depending on the 10-fold dataset. On 

average, EPTtaxa was explained the most by the in-stream variables for all three methods 

(stepwise, kernel, and ANFIS). This could be a result where indices, like HBI and FamilyIBI 

may be less sensitive because they are based off several metrics that may respond differently to 

different stressors.  

Overall, ANFIS displayed better performance (MSE and R
2
) for explaining and 

predicting all three macroinvertebrate measures. ANFIS outperformed other methods for both 
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model training dataset (table 17) and model testing dataset (table 18). This highlights the 

importance of recognizing the non-linear relationships that are involved in ecological processes. 

At the time, it also displays the complexity and further variation that exists due to other variables 

and interactions that are unknown or were not considered in the scope of this study. The 

inclusion of these factors would lead to more reliable predictive models and may reduce 

uncertainty and misinterpretation of results. Based on the average MSE and R
2
 from the test 

dataset, the ANFIS method was chosen to further identify the best model for prediction. The best 

model for each biological indicator was selected based on average MSE and R
2
 among all 

validation subsets within the 10-fold validation process. The final predictive ANFIS model 

identified for predicting HBI had a R
2
 of 0.57 and MSE of 0.20. The final model selected for 

FamilyIBI had a R
2
 of 0.50 and MSE of 29.80. The final predictive model for EPTtaxa 

performed with an average R
2
 of 0.54 and MSE of 6.60 (Table 19). 

Table 10. Average R
2
 and MSE obtained from 10-fold cross validation based on training 

data 

Response 

Variable 
Stepwise Regression Kernel Regression ANFIS 

 Avg. 

Training 

MSE 

Avg. 

Training 

R
2
 

Avg. 

Training 

MSE 

Avg. 

Training 

R
2
 

Avg. 

Training 

MSE 

Avg. 

Training  

R
2
 

HBI 0.357 0.27 0.364 0.21 0.236 0.49 

FamilyIBI 43.836 0.28 47.570 0.22 36.270 0.40 

EPTtaxa 9.006 0.35 10.113 0.31 7.519 0.48 
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Table 11. Average R2 and MSE obtained from 10-fold cross validation based on test data 

Response 

Variable 
Stepwise Regression Kernel Regression ANFIS 

 

 

Avg. Test 

MSE 

 

Avg. Test 

R
2
 

 

Avg. Test 

MSE 

 

Avg. Test 

R
2
 

 

Avg. Test 

MSE 

 

Avg. Test 

R
2
 

HBI 0.387 0.25 0.410 0.19 0.321 0.36 

FamilyIBI 46.275 0.27 53.293 0.18 45.712 0.28 

EPTtaxa 9.872 0.34 12.232 0.24 9.229 0.39 

 

Table 12. Predictor variables used for the best performing macroinvertebrate model 

Method Response Variable Predictor Variables Overall MSE Overall R
2
 

ANFIS HBI crossArea 0.20 0.57 

  AOrgN   

  STN   

  ANo2   

ANFIS FamilyIBI crossArea 29.80 0.50 

  ANH4   

  AFLOW   

  SOrgP   

ANFIS EPTtaxa crossArea 6.60 0.54 

  AOrgN   

  SFLOW   

  ANo2   

 

1.16.4 Evaluations of Best Management Practices’ Effectiveness on Stream Health 

1.16.4.1 Significant Changes with Implementation 

The best models selected in the above sections were used to assess the potential effects of 

the implementation of three best management practices (BMPs) on stream health 

(macroinvertebrate measures) within the Saginaw River watershed. This was not only to evaluate 

the potential ecological impacts of conservation practices, but also to demonstrate the flexibility 

and opportunities when using predictive models and connecting data with SWAT model outputs. 

As mentioned earlier, the inclusion of other factors would provide more reliable predictions as 
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well as allow for more meaningful interpretations of the results obtained. A Wilcoxon rank 

signed rank test, which is a non-parametric test used to compare populations based on the 

medians, was performed for all variables to see if HBI, FamilyIBI, and EPTtaxa significantly 

differed across the basin when applying the BMP scenarios. To begin, the current scenario 

predictions, representing land-use conditions with no BMPs was compared with observed data 

from the 262 sites within the basin. The predicted HBI scores across those sites showed no 

significant difference from the observed population of scores (p-value = 0.7213). The FamilyIBI 

scores from the predicted population also showed no significant difference from the scores 

observed (p-value = 0.4093). In addition, the number of EPTtaxa did not significantly differ from 

observed numbers across the sites (p-value = 0.2593). This provides further insight into the 

reliability of the ANFIS model’s predictions.  

For the 262 sites from which the predictive models were built and represented (Table 

20),both HBI and EPTtaxa showed no significant change between no-tillage BMP and the 

current conditions (p-values > 0.01). However, FamilyIBI did show a significant decrease in the 

median value and increase in the mean with the addition of no-till operations. All water quality 

variables showed significant small decreases with the implementation of no-till, except seasonal 

organic phosphorus concentration (SOrgP), which increased. Increases in organic phosphorus 

has been shown in other studies (Giri et al., 2011), and is likely due to an increase in organic 

matter on fields from no-tillage. In addition, flow measures also showed small significant 

increases between no till and the current condition. This could be resulted from reduced 

infiltration and/or increased runoff, which can be a consequence of no-tillage operations (Jones 

et al., 1994). The significant change in FamilyIBI, as opposed to EPTtaxa and HBI, could be due 

to the inclusion and interaction of seasonal organic phosphorus concentrations with other 
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variables in the predictive model. When observing the effects of residue management at the 262 

sites, significant differences from current conditions were displayed. HBI values significantly 

decreased, while EPTtaxa and FamilyIBI showed a significant increase, all indicating that stream 

health improved. Both annual and seasonal flows along with nutrient concentrations showed 

significant decreases with the implementation of residue management. However, SOrgP showed 

a significant increase. As assumed, all significant changes were amplified when compared to the 

effects of no-tillage. This was expected because residue management includes no-tillage 

operations plus a decrease in runoff. This trend continues when exploring the effects of 

implementing conservation practices like the Conservation Reserve Program and converting 

lands to native grass. Significant increases were predicted for both FamilyIBI and EPTtaxa. At 

the same time, HBI scores showed a significant improvement. Significant decreases in nutrient 

concentrations (greater than 25% change in mean and median values) were observed and likely 

the biggest contribution to significant changes in macroinvertebrate measures. Both annual and 

seasonal flow measures showed a significant reduction when comparing the native grass scenario 

to current conditions. 

The same analysis was performed to evaluate the BMP effects throughout the basin 

(13,831 reaches), including un-sampled sites where no observed data are available (Table 21). 

Similar results are observed when looking at the difference among the whole basin compared to 

the differences at the 262 sites. No-Till practices did not seem to make a significant difference 

for HBI and EPTtaxa throughout the basin (p-values > 0.01). However, FamilyIBI did show a 

significant increase. Although small, significant changes were observed among all water quality 

and quantity variables. When focusing on the effects of residue management, all three 

macroinvertebrate measures significantly improved. HBI showed a significant decrease and both 
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EPT taxa and Family IBI increased. All water quality and quantity variables across the basin 

responded in a similar fashion to the 262 sampled sites. When comparing native grass to current 

conditions, significant improvement were detected for all three macroinvertebrate measures. It is 

important to note that the results from the Wilcoxon rank test are primarily used to evaluate the 

statistical significant effects of BMPs’ implementation on the three ecological health measures 

on the study area as a whole. The percent changes, however, can be misleading because they are 

based on the mean and medians, which in some cases contradict each other (e.g. No-Till effects 

on HBI and FamilyIBI). 

 

Table 13. Wilcoxon rank sum test and percent changes variables before and after BMP 

implementation scenarios for 262 sampling locations 

Variables Current to No Till Current to Residue 

Mgt. 

Current to Native Grass 

    % change            % change            % change  

 Mean median pvalue Mean Median pvalue Mean Median pvalue 

HBI 0.46% -0.14% 0.3961 -2.5% -0.79% <0.01 -4.59% -1.48% <0.01 

FamilyIBI 0.90% -1.93% <0.01 1.86% -0.32% <0.01 4.94% 3.63% <0.01 

EPTtaxa -3.0% -1.18% 0.041 4.90% 0.28% <0.01 17.24% 10.49% <0.01 

AFLOW 0.34% 0.66% <0.01 -2.4% -1.46% <0.01 -5.03% -5.95% <0.01 

SFLOW 0.71% 0.22% <0.01 -3.9% -2.07% <0.01 -12.3% -7.73% <0.01 

AOrgN -6.9% -5.89% <0.01 -9.6% -14.8% <0.01 -41.5% -35.6% <0.01 

ANo2 -7.6% -4.53% <0.01 -13% -16.2% <0.01 -48.1% -45.7% <0.01 

ANH4 -8.1% -7.15% <0.01 -15% -15.3% <0.01 -46.6% -42.9% <0.01 

SOrgP 1.48% 5.50% <0.01 7.51% 2.44% <0.01 -33.9% -25.3% <0.01 

STN -7.4% -8.11% <0.01 -1.8% -12.3% <0.01 -42.8% -39.8% <0.01 
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Table 14. Wilcoxon rank sum test and percent changes variables before and after BMP 

implementation scenarios for the entire basin 

Variables Current to No Till Current to Residue Mgt. Current to Native 

Grass 

 % change   % change  % change  

 Mean median pvalue Mean Median pvalue Mean Median pvalue 

HBI 0.62% 0.12% 0.1169 -1.86% -0.33% <0.01 -1.1% -0.22% <0.01 

FamilyIBI 1.47% 0.33% <0.01 1.46% 1.07% <0.01 7.11% 7.99% <0.01 

EPTtaxa -0.5% 0.07% 0.0344 4.31% 4.52% <0.01 1.67% 2.54% <0.01 

AFLOW 0.32% 0.31% <0.01 -2.49% -3.32% <0.01 -7.0% -7.83% <0.01 

SFLOW 0.76% 0.95% <0.01 -4.11% -5.47% <0.01 -9.5% -14.6% <0.01 

AOrgN -4.5% -0.33% <0.01 -4.29% -3.71% <0.01 -44% -24.3% <0.01 

ANo2 -7.9% 0.01% <0.01 -16.9% -1.58% <0.01 -51% -39.6% <0.01 

ANH4 -8.2% -1.34% <0.01 -19.0% -9.15% <0.01 -56% -66.4% <0.01 

SOrgP 0.01% 4.72% <0.01 12.01% -0.64% <0.01 -31% -28.3% <0.01 

STN -6.7% -1.87% <0.01 -0.10% -7.25% <0.01 -39% -39.4% <0.01 

 

1.16.4.2 Stream Health for Individual Reaches 

In this section, the predicted effects of BMP implementation for individual reaches 

throughout the basin are evaluated. Overall, the practice of no-tillage increased FamilyIBI in 

27% of the reaches within the basin. Meanwhile 18% showed a decline in FamilyIBI and the 

remaining 55% showed no change at all (Figure 13, Table 22). Of the reaches that showed no 

impact, only 5% of them were within a subbasin that had a BMP. Within the reaches that showed 

increases in Family IBI, roughly 50% were located within subbasins that implemented no-tillage. 

However, of the reaches that showed decreases, roughly 50% also were in subbasins that 

implemented BMPs. The water quality and quantity variables that were included in predicting 

FamilyIBI also changed similar among improved and declined reaches. This could be a result of 

the non-linearity responses that are captured in the ANFIS models and indicates the importance 

of interactions among variables. It also may be a limitation of the models that were built off of 

data that was affected by a large amount of other factors that are not captured in the scope of this 

study. The number of EPTtaxa was increased by no-till operations in 20% of the subbasins, 
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while 62% showed no change, and the remaining 18% showed a decline (Figure 14, table 22). Of 

the reaches that showed no change, most were in subbasins that were classified as pasture, forest, 

and wetlands. Only 13% of them were in subbasins where no-tillage was implemented. Of the 

reaches that showed a decline in EPTtaxa, 45% of them were found in subbasins where no-tillage 

was practiced. Meanwhile, 52% of the reaches that showed increases were found in subbasins 

where no-tillage was present. A distinction that was made between the reaches that increased and 

decreased in EPTtaxa was that degraded reaches on average showed an increase in ANo2 

concentration, whereas improved reaches showed a decrease in ANO2. In addition, higher 

percentage (40%) of the reaches with declined EPTtaxa showed an increase in AOrgN 

concentrations) compared to reaches with increased EPTtaxa (15% of the reaches increased in 

AOrgN). When focusing on no-tillage’s effects to HBI, 21% of the reaches in the basin showed 

an improvement, 62% showed no change, and 17% showed a negative change (Figure 15, Table 

22). The majority (86%) of the reaches that did not respond in HBI were those with no-BMP. Of 

those reaches with improved HBI scores, 66% reaches showed a decrease in all three nitrogen 

concentration variables (STN, AOrgN, and ANo2). For reaches with declined HBI scores, 93% 

showed an increase in at least one nitrogen measure.  

The residue management BMP implementation in the subbasin also resulted mixed 

results. About 31% of the reaches showed an increase in FamilyIBI, 54% showed no change, and 

15% showed a decrease (Figure 16, Table 22).  For reaches that showed no change, 97% had no 

row-crop lands applicable for residue management. However, the majority (60%) of subbasins 

that had residue management implementation had increased FamilyIBI value. Reaches that had 

decreased FamilyIBI values showed an average increase in SOrgP. The EPTtaxa also showed 

more of an increase with residue management. About 26% of the reaches showed an increase in 
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EPTtaxa, 59% showed no change, and 15% showed decreases (Figure 17, Table 22). Of the 

reaches that showed no change, majority (57%) were in subbasins dominated by forest or 

forested wetland, and only 10% were in subbasins with residue management. A major difference 

between reaches that improved and declined was reflected on how AOrgN responded. For 

reaches where EPTtaxa declined, on average the AOrgN showed an increase, while for reaches 

that EPTtaxa improved, AOrgN showed a decrease on average. In addition, a larger percentage 

of reaches decreased in AOrgN for the improved reaches when compared to the degraded ones. 

For HBI, about 25% of the reaches improved, 58% did not respond, and 17% responded 

negatively to the Residue Management (Figure 18, Table 22). Of the reaches that did not 

respond, 93% of them were located in subbasins that were not disturbed through residue 

management operations. For reaches with degraded HBI condition, more than half of the reaches 

showed an increase in at least one nitrogen measure (STN, AOrgN, or ANo2). In addition, the 

proportion of reaches that had increased STN, AOrgN, and ANO2 for the degraded sites was 

higher than the proportion in the improved sites. This could potentially explain why some sites 

actually degraded from residue management.  

In the case where native grass was applied to the agricultural lands, 50% of reaches 

increased in FamilyIBI score, 22% had no change, and 28% decreased (Figure 19, Table 22). Of 

the reaches that showed no change, only 1% was within subbasins that received the native grass 

conversion and the subbasins of those reaches were largely forests, wetlands, and pastures that 

were not altered between two scenarios. Reaches with increased FamilyIBI had a smaller 

proportion (16%) of reaches with increased ANH4. For EPTtaxa, about 46% of the reaches 

increased, 24% had no change, and 30% declined by native grass BMP (Figure 20, Table 22). Of 

the reaches that showed no change in EPTtaxa, 92% were in subbasins that had no BMP 
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implementation and very little differences in water quality and quantity variables between 

scenarios. The reaches improved by native grass BMP had larger average decrease in AOrgN (-

2.57 mg/L) than reaches degraded by native grass had (-0.85 mg/L). Native grass’s effect on HBI 

benefitted for 44% of the reaches within the basin, had no effect for 25% of the reaches, and had 

negative for 31% of the reaches (Figure 21, Table 22). Among the reaches that had declined 

condition, 60% showed an increase in at least one of the three nutrient measures. 
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Table 15. The impact of BMP implementation scenarios at watershed scale based on macroinvertebrate measures 

BMP 
Family IBI 

% total reaches 

EPT taxa 

% total reaches 

HBI 

% total reaches 

 Improve Decline No 

Change 

Improve Decline No 

Change 

Improve Decline No 

Change 

 

No-Till 

 

27% 

 

18% 

 

55% 

 

20% 

 

18% 

 

62% 

 

21% 

 

17% 

 

62% 

Residue Mgt. 31% 15% 54% 26% 15% 59% 25% 17% 58% 

Native Grass 50% 28% 22% 46% 30% 24% 44% 31% 25% 
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Figure 13. Improvements and declines in Family IBI from current scenario after no-till 

implementation 
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Figure 14. Improvements and declines in EPT taxa from current scenario after no-till 

implementation 
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Figure 15. Improvements and declines in HBI from current scenario after no-till 

implementation 
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Figure 16. Improvements and declines in Family IBI from current scenario after residue 

management implementation 
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Figure 17. Improvements and declines in EPT taxa from current scenario after residue 

management implementation 
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Figure 18. Improvements and declines in HBI from current scenario after residue 

management implementation 
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Figure 19. Improvements and declines in Family IBI from current scenario after native 

grass implementation 
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Figure 20. Improvements and declines in EPT taxa from current scenario after native grass 

implementation 
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Figure 21. Improvements and declines in HBI from current scenario after native grass 

implementation 

 

1.17 CONCLUSION 

As demands for agricultural production and landscape conversion into urban environment 

continue, there is a need to assess the effects of these activities for developing possible 

mitigating strategies to protect the health of water resources. To effectively do so, there is a need 

to continue to explore alternative methods in predicting and understanding the complex 

relationships involved. The objectives of this study included linking hydrologic models and 

ecological conditions using the Soil and Water Assessment Tool (SWAT as a means of building 
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and collecting high resolution flow and water quality elements. The study then identifies the 

influential variables for explaining macroinvertebrate indices. The relationships between aquatic 

macroinvertebrates and local in-stream conditions (SWAT outputs) are explored through models 

built using statistical and alternative methods. Those models were then used to forecast and 

assess the effects of numerous agricultural BMPs on stream health. 

Within this study, a high resolution and detailed SWAT model was built and calibrated for 

the Saginaw River watershed to provide data and predictions of in-stream conditions, where they 

otherwise would not be available. Outputs obtained from the SWAT model included in-stream 

variables such as sediment and nutrient loads that often originate from anthropogenic activities. 

In addition, stream size was included in efforts to capture the natural longitudinal variation from 

headwaters to downstream rivers. The variables were then linked with three macroinvertebrate 

measures (HBI, FamilyIBI, and EPTtaxa), which were used as indicators of overall stream 

health.  

Overall, in-stream variables obtained through the SWAT model explained 54% of the 

variation in EPTtaxa, 57% of the variation in HBI, and 50% of the variation in FamilyIBI. The 

limited variance explained by the in-stream water quality and quantity variables within this study 

exhibits the influence of other factors, which are not available for every reach or within the scope 

of this study. Linear (stepwise linear regression) and non-linear (ANFIS and kernel regression) 

methods were explored to describe the linkage between in-stream variables and 

macroinvertebrate measures. The best model was identified through 10-fold cross validation 

analysis for the prediction of stream health under current conditions and under scenarios 

involving the implementation of agricultural conservation practices. Among the methods, the 

non-linear ANFIS method performed the best for all three stream health measures. This 
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highlights the non-linear and complex relationships between environmental and ecological 

components.  

Throughout all three methods, similar in-stream variables were consistently identified as 

having a large association with the macroinvertebrate measures. Average annual organic nitrogen 

had the highest partial R
2
 and highest spearman correlation with HBI; with lower concentrations 

generally associated with better stream health. This relationship was expected due to the fact that 

HBI is calculated based on pollution tolerance values. The best model for predicting HBI also 

included average seasonal total nitrogen and annual nitrite. EPTtaxa was also consistently 

explained through nitrogen concentrations, with AOrgN being included in the best model along 

with nitrite, average seasonal flow, and cross-sectional area. FamilyIBI was also commonly 

explained through nutrient concentrations more than any other variables. The best model for 

Family IBI included average annual ammonium and average seasonal organic phosphorus in 

addition to average annual flow and cross-sectional area.  

The predicative models were then used in connection with outputs from SWAT models for 

forecasting the effects of BMP implementation within the Saginaw River watershed. The three 

best management practices looked at represented three different efficiencies when it comes to 

reducing the effects to our water quality and quantity, with no-tillage being minimal, residue 

management being medium, and native grass being the maximum. This was partially mirrored in 

the predicted effects on stream health (HBI, FamilyIBI, and EPTtaxa). Significant changes were 

observed with all three practices from current conditions with the exception of HBI and EPTtaxa 

under no-tillage scenario. The improvements observed from the implementation of the BMPs 

were highly caused by their reduction of nutrient concentrations, especially within subbasins 
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where they were implemented. Meanwhile, there were a smaller percentage of reaches that 

showed declines in stream health with the implementation of BMPs. This was often connected 

with increases in one or more nutrient concentrations. In addition, these results could be 

misinterpretations because of limitations in the models and variables included. While the results 

help enhance the understanding of the potential benefits from large scale BMP implementation, 

uncertainty in the data collection and model components still exists, which should be explored in 

future studies. This study employed a SWAT model that was calibrated at a single location, and 

future studies using a more spatially extensive calibration may reduce this uncertainty. In 

addition, the use of more biological data, both spatially and temporally, may also improve 

understanding.  

This study identified in-stream variables and conditions that have significant relations with 

macroinvertebrate communities and ultimately stream health. At the same time, it made these 

connections through a hydrologic model and the use of non-linear alternative methods. The 

benefit of linking watershed models, such as SWAT, to stream health is that it allows us to 

forecast the effects of different management practices and anthropogenic activities. 
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CONCLUSIONS 

The research presented here evaluated the potential for a Soil and Water Assessment Tool 

(SWAT) model to provide influential in-stream variables to explain fish and macroinvertebrate 

measures beyond the biological sampling points within the Saginaw River watershed, located in 

Michigan. The high resolution SWAT model was built that includes detailed information at 

spatial units having homogenous physicochemical, geomorphological, and biological features for 

all stream segments within the study area. The in-stream variables provided by the model 

included flow, sediment, nutrient concentrations, which may directly or indirectly influence the 

health of a stream. Relationships between in-stream variables (SWAT outputs) and fish (Index of 

Biological Integrity (IBI) and Percent Intolerant Individuals) and macroinvertebrate (Family 

index of Biological Integrity (Family IBI), Hilsenhoff Biotic Index (HBI), and Number of EPT 

taxa) measures were explored and predictive models were built using statistical methods and 

alternative soft computing techniques. Scenarios representing landuse conversion, climate 

change, and management practices were then presented within the SWAT model and their 

potential effects on stream health were estimated. The first section of this research focused on the 

connection between in-stream conditions and fish measures. In addition, historical reference 

conditions for streams in the Saginaw River watershed were predicted under pre-settlement land-

use and climate data. The second study explored the relationships between in-stream conditions 

and macroinvertebrate measures and assessed different agricultural best management practices’ 

(BMPs) performances on improving ecological health measures. The following can be concluded 

from the results of both studies: 

 The Soil and Water Assessment Tool can be an effective tool to provide influential in-

stream data where it otherwise would not exist  
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 In-stream variables obtained from SWAT explained 48% of the variation in IBI, 21% of 

the variation in the percent of intolerant individuals, 50% of the variation in Family IBI, 

57% of the variation in HBI, and 54% of the variation in the number of EPT taxa. 

 Fuzzy logic and adaptive neural-fuzzy inference system techniques outperformed other 

statistical methods (stepwise linear regression, partial least squares regression, and kernel 

regression) and provide a valuable and practical approach to connecting environmental 

and water quality conditions to ecological health measures. 

 Average annual flow rate had the strongest correlation with IBI, whereas nutrient 

concentrations (e.g. organic phosphorus, organic nitrogen) showed the largest influence 

on the percentage of intolerant individuals and all three macroinvertebrate measures. 

However, adding a measure of stream size and in-stream physical habitat variables along 

with other measures of watershed physiographic characteristics would likely improve the 

accuracy of model predictions. 

 Results showed overall significantly higher IBI and percent intolerant individuals under 

the pre-settlement landuse scenario. This implies that landuse change from pre-settlement 

to current has profound negative impacts on stream health. 

 Pre-settlement climate factors had a strong influence on stream flow and water quality 

measures that interactively affect stream health as indicated by fish measures. These 

results suggest that efforts to model historic baseline habitat conditions and to provide 

context for stream health assessments should include both pre-settlement land use and 

climate conditions. 
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 Among the studied best management practices, native grass resulted in the most 

improvement in stream health as indicated by macroinvertebrate measures, followed by 

residue management and no-tillage operations. 
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RECOMMENDATIONS FOR FUTURE RESEARCH 

This research provides results and valuable insight into the efforts of linking watershed 

models and in-stream variables with ecological health. In addition the information looks at 

alternative methods in capturing these relationships and building predictive models that can act 

as effective tools for decision makers in quantifying the impacts of landuse and climate change, 

along with management strategies. However, continuing research must be done that builds upon 

these studies and addresses issues outside the scope of this project. The following are 

suggestions for future research: 

 There is a great deal of uncertainty in the data collection and model components that 

exists. This uncertainty should be explored and quantified to better aid managers and 

decision makers. 

 In order to have more comprehensive predictions and explanation of ecological measures, 

additional variables such as physical, chemical, and natural factors should be considered. 

Adding measures, such as stream size and instream physical habitat variables would 

likely provide more robust predictions and the necessary context to reveal the relative 

residual effects of flow and water quality on aquatic communities.  

 With such complex interactions and relationships involved in aquatic species and their 

environments, there is a need to continue to explore alternative methods for capturing and 

modeling these processes. This may include continuing research employing different 

fuzzy logic techniques or fusion-methods. 

 Ideally, both fish and macroinvertebrates should be measured together because they can 

react differently, vary in sensitivity to different stressors, and mirror conditions at 

different scales. Assessing multiple indices of stream health and doing so through 



161 

 

methods such as analytic hierarchy processes may provide more comprehensive insight 

into the impacts of landuse and climate change. 

 There are a number of potential best management practices that may be implemented 

within agricultural regions and at different scales, which go beyond the scope of this 

project. Additional studies addressing these scenarios will provide a more comprehensive 

assessment of BMP implementation within the Saginaw River watershed. 

 Potential future changes in climate and landuse (e.g. biofuel crop expansion) and their 

impacts on ecological health need to be addressed. Future research, applying similar 

strategies as this study, can be performed to assess the potential associated risk involved. 

 Relationships and measures studied in this project were within a highly agricultural and 

warm-water dominated watershed. Additional studies in different climatological and 

physiographical regions will likely provide diverse results and are needed to better 

understand the interactions involved and implications of landuse and climate change 

across a larger scale. 

 

 

 

 

 

 

 



162 

 

 

 

 

 

 

 

 

APPENDIX 

 

 

 

 

 

 

 

 



163 

 

APPENDIX 

Table 16. Stepwise linear regression models for IBI 

 

10 

Fold 

Set 

 

Response 

Variable 

 

Predictor 

Variables 

 

Training 

MSE 

 

Training   

R
2 

 

Test 

MSE 

 

Test 

R
2 

 

Overall 

MSE 

 

Overall 

R
2 

 

1 

 

IBI 

 

*1,*2 

 

303.07 

 

0.39 

 

662.05 

 

0.02 

 

333.69 

 

0.33 

2 IBI *1,*3,*4 336.94 0.35 301.67 0.19 326.48 0.34 

3 IBI *1,*2 323.89 0.35 399.22 0.29 326.27 0.34 

4 IBI *1,*2,*3 335.53 0.33 332.12 0.34 328.24 0.34 

5 IBI *1,*2,*3 321.30 0.35 452.56 0.31 327.57 0.34 

6 IBI *1,*2 345.94 0.35 251.83 0.32 331.30 0.33 

7 IBI *5,*2 333.05 0.32 314.53 0.50 326.05 0.34 

8 IBI *5,*4 326.71 0.37 399.29 0.08 329.15 0.34 

9 IBI *5,*2 338.90 0.31 270.62 0.63 326.55 0.34 

10 IBI *5,*2 340.19 0.32 255.86 0.49 326.16 0.34 

 

* All Variables after transformation                                                                                                                              

*1 AFLOW; *2 ANO2; *3 ANO3; *4 ANH4; *5 SFLOW 
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Table 17. Stepwise linear regression models for percent intolerant individuals 

 

10 

Fold 

Set 

 

Response 

Variable 

 

Predictor 

Variables 

 

Training 

MSE 

 

Training   

R
2 

 

Test 

MSE 

 

Test 

R
2 

 

Overall 

MSE 

 

Overall 

R
2 

 

1 

 

%INTOL 

 

*1,*2 

 

280.37 

 

0.14 

 

580.81 

 

0.03 

 

309.95 

 

0.12 

2 %INTOL *3,*4 320.11 0.11 272.30 0.02 315.40 0.10 

3 %INTOL *1,*4 328.93 0.10 236.20 0.01 319.80 0.09 

4 %INTOL *3,*2,*5 304.54 0.18 270.68 0.00 301.21 0.13 

5 %INTOL *3,*4 332.19 0.10 105.14 0.19 309.84 0.10 

6 %INTOL *3,*6 297.22 0.10 528.69 0.18 320.01 0.10 

7 %INTOL *3,*6 336.18 0.09 107.66 0.33 313.68 0.10 

8 %INTOL *3,*6 326.03 0.11 227.89 0.05 315.86 0.10 

9 %INTOL *3,*6 309.13 0.07 445.93 0.39 323.31 0.10 

10 %INTOL *1,*2 284.93 0.15 566.83 0.01 314.14 0.12 

 

* All Variables after transformation                                                                                                                              

*1 ANH4; *2 ASED; *3 ATP; *4 ANO3; *5 SNO2; *6 SFLOW 

 

Table 18. PLSR models for IBI 

 

10 

Fold 

Set 

 

Response 

Variable 

 

Predictor 

Variables 

 

Training 

MSE 

 

Training   

R
2 

 

Test 

MSE 

 

Test 

R
2 

 

Overall 

MSE 

 

Overall 

R
2 

 

1 

 

IBI PC1, PC2 313.39 

 

0.35 606.05 0.04 342.20 0.31 

2 IBI PC1, PC2 343.04 0.33 320.04 0.16 340.77 0.31 

3 IBI PC1, PC2 331.88 0.32 374.17 0.31 336.04 0.32 

4 IBI PC1, PC2 345.17 0.30 290.32 0.42 339.77 0.31 

5 IBI PC1, PC2 325.90 0.32 472.06 0.29 340.29 0.31 

6 IBI PC1, PC2 347.33 0.32 246.22 0.27 337.37 0.32 

7 IBI PC1, PC2 342.41 0.29 294.15 0.56 337.66 0.32 

8 IBI PC1, PC2 335.04 0.34 403.52 0.07 342.14 0.31 

9 IBI PC1, PC2 342.54 0.29 308.11 0.56 338.97 0.31 

10 IBI PC1, PC2 342.12 0.31 269.80 0.46 334.63 0.32 
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Table 19. PLSR models for percent intolerant individuals 

 

10 

Fold 

Set 

 

Response 

Variable 

 

Predictor 

Variables 

 

Training 

MSE 

 

Training   

R
2 

 

Test 

MSE 

 

Test 

R
2 

 

Overall 

MSE 

 

Overall 

R
2 

 

1 %INTOL PC1, PC2 288.58 0.11 669.48 0.00 326.08 0.08 

2 %INTOL PC1, PC2 326.99 0.09 238.87 0.12 318.31 0.09 

3 %INTOL PC1, PC2 328.14 0.10 221.78 0.02 317.67 0.09 

4 %INTOL PC1, PC2 328.53 0.10 193.01 0.11 315.19 0.10 

5 %INTOL PC1, PC2 336.69 0.09 95.61 0.28 312.95 0.09 

6 %INTOL PC1, PC2 298.75 0.09 536.97 0.10 322.20 0.09 

7 %INTOL PC1, PC2 341.22 0.08 100.49 0.38 317.52 0.09 

8 %INTOL PC1, PC2 331.41 0.09 230.69 0.06 320.97 0.09 

9 %INTOL PC1, PC2 312.05 0.07 449.42 0.37 326.28 0.09 

10 %INTOL PC1, PC2 291.16 0.13 581.00 0.00 321.19 0.09 
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Table 20. Fuzzy logic models for IBI 

 

10 

Fold 

Set 

 

Response 

Variable 

 

Predictor 

Variables 

 

Training 

MSE 

 

Training   

R
2 

 

Test 

MSE 

 

Test 

R
2 

 

Overall 

MSE 

 

Overall 

R
2 

1 

 

IBI 

 
*1,*2,*3, 

*4,*5 

295.31 0.41 494.5 0.20 314.92 0.37 

2 IBI *1,*2,*3, 

*4,*5 

319.65 0.40 240.6 0.47 274.90 0.40 

3 IBI *1,*2,*3, 

*4,*5 

288.05 0.43 350.0 0.39 271.59 0.43 

4 IBI *1,*2,*3, 

*4,*5 

341.08 0.37 237.4 0.56 330.88 0.39 

5 IBI *1,*2,*3, 

*4,*5 

295.88 0.43 438.5 0.42 276.86 0.42 

6 IBI *1,*2,*3, 

*4,*5 

283.89 0.47 219.8 0.31 250.64 0.46 

7 IBI *1,*2,*3, 

*4,*5 

329.69 0.37 262.0 0.56 323.03 0.39 

8 IBI *1,*2,*3, 

*4,*5 

280.83 0.49 387.7 0.25 263.11 0.46 

9 IBI *1,*2,*3, 

*4,*5 

274.37 0.45 205.1 0.68 243.17 0.48 

10 IBI *1,*2,*3, 

*4,*5 

298.17 0.41 196.2 0.61 287.62 0.43 

 

*1 AFLOW; *2 AOrgP; *3 SNO2; *4 SNO3; *5 StreamGrad 
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Table 21. Fuzzy logic models for percent intolerant individuals 

 

10 

Fold 

Set 

 

Response 

Variable 

 

Predictor 

Variables 

 

Training 

MSE 

 

Training   

R
2 

 

Test 

MSE 

 

Test 

R
2 

 

Overall 

MSE 

 

Overall 

R
2 

1 

 

%INTOL *1,*2,*3, 

*4 

250.40 0.16 537.6 0.03 278.68 0.14 

2 %INTOL *1,*2,*3, 

*4 

286.30 0.13 172.1 0.38 275.07 0.14 

3 %INTOL *1,*2,*3, 

*4 

300.58 0.11 148.2 0.34 285.59 0.12 

4 %INTOL *1,*2,*3, 

*4 

292.57 0.12 178.2 0.12 281.32 0.12 

5 %INTOL *1,*2,*3, 

*4 

317.79 0.11 92.63 0.30 295.62 0.11 

6 %INTOL *1,*2,*3, 

*4 

266.98 0.12 380.9 0.29 278.20 0.13 

7 %INTOL *1,*2,*3, 

*4 

298.36 0.12 92.17 0.41 278.06 0.14 

8 %INTOL *1,*2,*3, 

*4 

304.37 0.12 196.7 0.12 293.22 0.12 

9 %INTOL *1,*2,*3, 

*4 

273.57 0.10 320.8 0.53 278.47 0.13 

10 %INTOL *1,*2,*3, 

*4 

250.01 0.17 493.8 0.01 275.27 0.14 

 

*1 AOrgP; *2 ANO2; *3 AFLOW; *4 ACHLA 
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Table 22. Spearman rank correlations with red indicating significance 

 IBI %INTOL StreamGrad SFLOW SSED SOrgN SOrgP SNo3 SNH4 SNo2 SMinP 

%INTOL 0.67 1.00 0.01 0.23 -0.08 -0.35 -0.36 0.05 -0.32 -0.30 -0.12 

StreamGrad -0.18 0.01 1.00 -0.52 -0.34 0.12 0.12 -0.48 0.01 -0.13 -0.41 

SFLOW 0.43 0.23 -0.52 1.00 0.42 -0.43 -0.41 0.66 -0.18 0.09 0.51 

SSED 0.02 -0.08 -0.34 0.42 1.00 0.30 0.30 0.74 0.51 0.59 0.84 

SOrgN -0.38 -0.35 0.12 -0.43 0.30 1.00 0.99 -0.06 0.83 0.60 0.23 

SOrgP -0.40 -0.36 0.12 -0.41 0.30 0.99 1.00 -0.03 0.85 0.63 0.26 

SNo3 0.20 0.05 -0.48 0.66 0.74 -0.06 -0.03 1.00 0.25 0.44 0.88 

SNH4 -0.35 -0.32 0.01 -0.18 0.51 0.83 0.85 0.25 1.00 0.84 0.53 

SNo2 -0.29 -0.30 -0.13 0.09 0.59 0.60 0.63 0.44 0.84 1.00 0.63 

SMinP 0.04 -0.12 -0.41 0.51 0.84 0.23 0.26 0.88 0.53 0.63 1.00 

SCHLA -0.02 -0.10 -0.63 0.49 0.65 0.23 0.24 0.63 0.35 0.43 0.67 

SCBOD -0.15 -0.14 0.07 -0.27 0.26 0.63 0.58 -0.05 0.39 0.22 0.12 

SDO 0.13 0.08 -0.18 0.35 0.21 -0.24 -0.23 0.26 -0.08 0.02 0.21 

STN -0.04 -0.17 -0.31 0.26 0.78 0.50 0.52 0.77 0.66 0.65 0.89 

STP -0.13 -0.25 -0.22 0.13 0.74 0.65 0.67 0.59 0.73 0.67 0.81 

SPercBase 0.03 0.10 -0.07 -0.08 -0.39 -0.50 -0.49 -0.16 -0.35 -0.31 -0.28 

AFLOW 0.47 0.27 -0.49 0.98 0.35 -0.52 -0.49 0.61 -0.26 0.02 0.44 

ASED 0.03 -0.05 -0.29 0.33 0.95 0.34 0.34 0.69 0.54 0.59 0.78 

AOrgN -0.41 -0.38 0.03 -0.44 0.41 0.88 0.87 0.08 0.81 0.61 0.32 

AOrgP -0.43 -0.40 0.06 -0.45 0.39 0.89 0.88 0.07 0.81 0.62 0.32 

ANo3 0.08 -0.04 -0.40 0.34 0.74 0.12 0.14 0.83 0.35 0.45 0.77 

ANH4 -0.30 -0.34 -0.13 -0.05 0.71 0.67 0.68 0.46 0.86 0.81 0.67 

ANo2 -0.26 -0.32 -0.20 0.13 0.73 0.52 0.53 0.55 0.75 0.90 0.72 

AMinP -0.09 -0.21 -0.34 0.35 0.88 0.32 0.33 0.77 0.57 0.65 0.90 

ACHLA -0.15 -0.25 -0.61 0.33 0.59 0.34 0.34 0.53 0.44 0.53 0.61 

ACBOD -0.17 -0.15 0.16 -0.37 0.16 0.56 0.50 -0.12 0.35 0.16 0.03 

ADO 0.09 0.12 -0.14 0.21 0.13 -0.19 -0.18 0.14 -0.11 -0.03 0.10 

ATN -0.17 -0.26 -0.27 0.05 0.74 0.50 0.50 0.65 0.63 0.60 0.75 

ATP -0.24 -0.34 -0.21 -0.01 0.71 0.62 0.62 0.51 0.70 0.63 0.71 

APercBase 0.05 0.15 -0.06 -0.05 -0.36 -0.48 -0.45 -0.13 -0.28 -0.23 -0.24 
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Table 22. (cont’d) 

 SCHLA SCBOD SDO STN STP SPercBase AFLOW ASED AOrgN AOrgP 

%INTOL -0.10 -0.14 0.08 -0.17 -0.25 0.10 0.27 -0.05 -0.38 -0.40 

StreamGrad -0.63 0.07 -0.18 -0.31 -0.22 -0.07 -0.49 -0.29 0.03 0.06 

SFLOW 0.49 -0.27 0.35 0.26 0.13 -0.08 0.98 0.33 -0.44 -0.45 

SSED 0.65 0.26 0.21 0.78 0.74 -0.39 0.35 0.95 0.41 0.39 

SOrgN 0.23 0.63 -0.24 0.50 0.65 -0.50 -0.52 0.34 0.88 0.89 

SOrgP 0.24 0.58 -0.23 0.52 0.67 -0.49 -0.49 0.34 0.87 0.88 

SNo3 0.63 -0.05 0.26 0.77 0.59 -0.16 0.61 0.69 0.08 0.07 

SNH4 0.35 0.39 -0.08 0.66 0.73 -0.35 -0.26 0.54 0.81 0.81 

SNo2 0.43 0.22 0.02 0.65 0.67 -0.31 0.02 0.59 0.61 0.62 

SMinP 0.67 0.12 0.21 0.89 0.81 -0.28 0.44 0.78 0.32 0.32 

SCHLA 1.00 0.24 0.17 0.62 0.57 -0.32 0.43 0.63 0.28 0.28 

SCBOD 0.24 1.00 -0.23 0.32 0.41 -0.58 -0.32 0.30 0.60 0.58 

SDO 0.17 -0.23 1.00 0.06 0.00 0.04 0.36 0.15 -0.25 -0.25 

STN 0.62 0.32 0.06 1.00 0.94 -0.41 0.17 0.74 0.56 0.55 

STP 0.57 0.41 0.00 0.94 1.00 -0.51 0.05 0.70 0.65 0.65 

SPercBase -0.32 -0.58 0.04 -0.41 -0.51 1.00 -0.01 -0.40 -0.43 -0.44 

AFLOW 0.43 -0.32 0.36 0.17 0.05 -0.01 1.00 0.27 -0.53 -0.54 

ASED 0.63 0.30 0.15 0.74 0.70 -0.40 0.27 1.00 0.48 0.45 

AOrgN 0.28 0.60 -0.25 0.56 0.65 -0.43 -0.53 0.48 1.00 0.99 

AOrgP 0.28 0.58 -0.25 0.55 0.65 -0.44 -0.54 0.45 0.99 1.00 

ANo3 0.55 0.10 0.11 0.76 0.62 -0.16 0.30 0.74 0.34 0.31 

ANH4 0.45 0.38 -0.02 0.75 0.77 -0.37 -0.14 0.75 0.83 0.83 

ANo2 0.48 0.25 0.06 0.71 0.71 -0.32 0.06 0.74 0.66 0.66 

AMinP 0.65 0.21 0.16 0.83 0.78 -0.32 0.28 0.86 0.49 0.49 

ACHLA 0.86 0.32 0.14 0.57 0.54 -0.31 0.29 0.59 0.42 0.41 

ACBOD 0.14 0.95 -0.26 0.23 0.30 -0.44 -0.40 0.22 0.56 0.54 

ADO 0.11 -0.16 0.85 -0.02 -0.06 0.05 0.22 0.08 -0.20 -0.19 

ATN 0.55 0.35 -0.02 0.87 0.80 -0.30 -0.03 0.76 0.71 0.69 

ATP 0.54 0.43 -0.05 0.82 0.84 -0.42 -0.10 0.72 0.81 0.81 

APercBase -0.35 -0.69 0.04 -0.39 -0.48 0.87 0.00 -0.37 -0.41 -0.41 
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Table 22. (cont’d) 

 ANo3 ANH4 ANo2 AMinP ACHLA ACBOD ADO ATN ATP APercBase 

%INTOL -0.04 -0.34 -0.32 -0.21 -0.25 -0.15 0.12 -0.26 -0.34 0.15 

StreamGrad -0.40 -0.13 -0.20 -0.34 -0.61 0.16 -0.14 -0.27 -0.21 -0.06 

SFLOW 0.34 -0.05 0.13 0.35 0.33 -0.37 0.21 0.05 -0.01 -0.05 

SSED 0.74 0.71 0.73 0.88 0.59 0.16 0.13 0.74 0.71 -0.36 

SOrgN 0.12 0.67 0.52 0.32 0.34 0.56 -0.19 0.50 0.62 -0.48 

SOrgP 0.14 0.68 0.53 0.33 0.34 0.50 -0.18 0.50 0.62 -0.45 

SNo3 0.83 0.46 0.55 0.77 0.53 -0.12 0.14 0.65 0.51 -0.13 

SNH4 0.35 0.86 0.75 0.57 0.44 0.35 -0.11 0.63 0.70 -0.28 

SNo2 0.45 0.81 0.90 0.65 0.53 0.16 -0.03 0.60 0.63 -0.23 

SMinP 0.77 0.67 0.72 0.90 0.61 0.03 0.10 0.75 0.71 -0.24 

SCHLA 0.55 0.45 0.48 0.65 0.86 0.14 0.11 0.55 0.54 -0.35 

SCBOD 0.10 0.38 0.25 0.21 0.32 0.95 -0.16 0.35 0.43 -0.69 

SDO 0.11 -0.02 0.06 0.16 0.14 -0.26 0.85 -0.02 -0.05 0.04 

STN 0.76 0.75 0.71 0.83 0.57 0.23 -0.02 0.87 0.82 -0.39 

STP 0.62 0.77 0.71 0.78 0.54 0.30 -0.06 0.80 0.84 -0.48 

SPercBase -0.16 -0.37 -0.32 -0.32 -0.31 -0.44 0.05 -0.30 -0.42 0.87 

AFLOW 0.30 -0.14 0.06 0.28 0.29 -0.40 0.22 -0.03 -0.10 0.00 

ASED 0.74 0.75 0.74 0.86 0.59 0.22 0.08 0.76 0.72 -0.37 

AOrgN 0.34 0.83 0.66 0.49 0.42 0.56 -0.20 0.71 0.81 -0.41 

AOrgP 0.31 0.83 0.66 0.49 0.41 0.54 -0.19 0.69 0.81 -0.41 

ANo3 1.00 0.62 0.61 0.82 0.53 0.03 0.07 0.85 0.68 -0.13 

ANH4 0.62 1.00 0.92 0.83 0.56 0.33 -0.05 0.84 0.89 -0.32 

ANo2 0.61 0.92 1.00 0.84 0.59 0.19 -0.01 0.76 0.79 -0.26 

AMinP 0.82 0.83 0.84 1.00 0.67 0.13 0.07 0.86 0.85 -0.29 

ACHLA 0.53 0.56 0.59 0.67 1.00 0.23 0.08 0.58 0.60 -0.35 

ACBOD 0.03 0.33 0.19 0.13 0.23 1.00 -0.19 0.29 0.36 -0.59 

ADO 0.07 -0.05 -0.01 0.07 0.08 -0.19 1.00 -0.04 -0.07 0.06 

ATN 0.85 0.84 0.76 0.86 0.58 0.29 -0.04 1.00 0.93 -0.29 

ATP 0.68 0.89 0.79 0.85 0.60 0.36 -0.07 0.93 1.00 -0.40 

APercBase -0.13 -0.32 -0.26 -0.29 -0.35 -0.59 0.06 -0.29 -0.40 1.00 
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