
 



O
N

,- .
)

\

 

I' LIBRARY
Michigan State

University

 

This is to certify that the

thesis entitled

MEASURING ANTHROPOGENIC DISTURBANCES IN A

HYDROGEOMORPHlC-BASED LAKE CLASSIFICATION BUILT

USING FISH ASSEMBLAGES IN 360 NORTH-TEMPERATE LAKES

presented by

BRETT MICHAEL ALGER

has been accepted towards fulfillment

of the requirements for the

MS degree in FISHERIES AND WILDLIFE
  

MMKE/mmo Ly
/Major Professor's Sjgnature

it: Aeflembef 2009

Date

MSU is an Affirmative Action/Equal Opportunity Employer



 

PLACE IN RETURN BOX to remove this checkout from your record.

To AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

 

DATE DUE DATE DUE DATE DUE

 

 

 

 

 

 

 

 

 

      
5/08 K1IPrqlAccaPrelelRC/DateDue.indd



MEASURING ANTHROPOGENIC DISTURBANCES IN A HYDROGEOMORPHIC-

BASED LAKE CLASSIFICATION BUILT USING FISH ASSEMBLAGES IN 360

NORTH-TEMPERATE LAKES

By

Brett Michael Alger

A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Fisheries and Wildlife

2009



ABSTRACT

MEASURING ANTHROPOGENIC DISTURBANCES IN A HYDROGEOMORPHIC-

BASED LAKE CLASSIFICATION BUILT USING FISH ASSEMBLAGES IN 360

NORTH-TEMPERATE LAKES

By

Brett Michael Alger

Hydrogeomorphic features and anthropogenic disturbances affect fish

assemblages but the relative importance of these variables is inadequately understood.

Quantifying these linkages, across multiple spatial scales, is key to developing lake

ecosystem assessment tools and management plans. Accordingly, I classified lakes with

similar hydrogeomorphic features and within these lake groups, identified the most

important anthropogenic influences on fish species richness. I used fish assemblage,

hydrogeomorphic, and anthropogenic data from 360 lakes in Maine, New Hampshire,

Iowa, Michigan, and Wisconsin. To build lake classes, I used classification and

regression trees; lakes having similar fish species richness were best grouped by lake

area, ecological drainage unit, and watershed area. Results indicated that in addition to

positive associations of lake and watershed area with species richness, regionalization

frameworks were useful tools in identifying unique areas of freshwater biodiversity.

Within classes of naturally similar lakes, species richness generally had a negative

association with fish stocking, dams, and urban and agricultural land cover/use. Species

richness was positively associated with human population density and road density. The

methodology of classifying lakes appears to be a tool that lake managers can utilize to

better understand fish assemblages in inland lakes. Classifications were also useful in

grouping naturally similar lakes to identify the effects of human disturbances.
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Thesis Introduction

The natural landscape has shaped freshwater ecosystems across the Earth;

glaciers, climate, and other natural processes have affected the distributions and

abundances of biota in streams, inland lakes, and other aquatic ecosystems. Because

freshwater ecosystems are so complex and influenced by many features, natural and

human, at multiple temporal and spatial scales, lake managers and researchers have

attempted to partition the many effects of the landscape on in-lake biota by classifying

ecosystems. These efforts have resulted in a strong understanding of how land use/cover

types (e.g., forest, wetlands), lake morphometry (e.g., lake area, lake depth), water quality

(e.g., pH, total phosphorous), hydrology, and surface connectivity affect fish

assemblages, yet often all of these factors have not often been included comprehensively

in the same lake classification study (Johnson et al. 1977, Dolman 1990, Schupp 1992).

Regionalization frameworks have been created to identify area of unique

biodiversity; they represent sets of natural features across a large region, with subregions

distinguished by finer scale variation among features (Seelbach et. al. 2002). These

schemes can help to explain variation among ecosystems at different spatial scales

(Omemik 1987, McMahon et al. 2001, Irz et al. 2004, Cheruvelil et al. 2008).

Subsequently, I attempt to compare the ability of these various metrics of the

hydrogeomorphic landscape across scales and in combination to explain patterns of fish

assemblages using a lake classification approach.

Classifications have been built as a way to comprehensively explain the variation

in fish species composition across the landscape, resulting in relatively similar lakes

within a class and higher variability among classes Iowa (Johnson et a1. 1977, Dolman



1990, Schupp 1992). Since fish management agencies for most states are often

financially limited and lack the ability to gather data for every lake, classifications are

potentially an efficient tool for tackling the pitfalls of managing thousands of lakes with

limited information. While each lake classification is best developed with distinctive

goals in mind (and often unique predictor variables as a result) to explain any number of

characteristics of fish assemblages; the entire method (that of developing classifications

and using them in a management context) is an important concept to further investigate

and upon which to build.

Similar to the natural landscape, human activities also impact aquatic systems;

lake managers and researchers have attempted to use anthropogenic variables to explain

variation within and among lakes as well (Brunberg and Blomqvist 2001, Pierce and

Tomcko 2003). While some anthropogenic disturbances positively affect valued qualities

of fish assemblages through species additions (stocking), many have negative effects,

such as blockage of movement (e.g., dams), and landscape alterations (e.g., land

use/cover) (Radomski and Goeman 1995, Carpenter et al. 2007, Johnson et a1. 2008).

Because management agencies are often financially limited, they are often resigned to

weigh trade-offs between preventing human-induced species invasions while at the same

time supplementing faltering fisheries through stocking and habitat alterations, all the

while maintaining relatively stable and healthy ecosystems. Although individual lakes

are unique in many ways, there are similarities of how human disturbances affect fish

assemblages. Therefore, I hypothesized that after grouping naturally-similar lakes using

landscape-based classification techniques, the effects of humans on fish assemblages can



be quantified in a way that is relevant to management agencies that then can implement

plans and account for humans across classes of lakes.

The research presented here examines how natural features and human

disturbances affect fish species richness in inland lakes. I build upon previous lake

classification methods to investigate the ability of regional-scale features in addition to

previously well studied local-scale features to classify 360 lakes across Maine, New

Hampshire, Michigan, Wisconsin, and Iowa (Johnson et a1. 1977, Dolman 1990, Schupp

1992). In chapter 1, I create a hydrogeomorphic lake classification using natural

landscape metrics from four major categories: regionalization frameworks, species

extinction/isolation, lake hydrology, and land use/cover to predict patterns of total and

native species richness (having statistically removed the effects of disturbance on the

response metric). In chapter 2, I measure the effects of anthropogenic disturbances on

native species richness within classes of lakes from chapter 1 using land use/cover, dam,

road density, fish stocking, and human population density as predictor metrics. Because

no other study has covered such a broad geographical region and large number of lakes

and examined regional-scale features in conjunction with local features, my research will

contribute to the science of landscape limnology and to the further development of

methods for lake classification. Additionally, this research will provide managers with

helpful information and a fruitful approach for developing classes of lakes that are

naturally similar, and likewise, respond similarly to human disturbances.



Chapter l-What natural lake and landscape features best classify fish species

richness in 360 north-temperate lakes using CART analysis?

Introduction

Researchers and lake managers have long attempted to explain and understand variation

of in-lake features among lakes, often using local landscape features and lake

morphometry to predict different metrics of water quality (e.g., total phosphorous, pH)

and fish assemblages (e.g., spatial distribution, species richness). Lake classification

systems are one way to group lakes according to the variation of a response metric (e.g.,

species richness), using the most significant predictor variables for a set of lakes (Johnson

et a1. 1977, Dolman 1990, Schupp 1992). Such studies provide a basic approach to

classifying fish assemblages based on local landscape, lake morphometry, and in-lake

water quality features. Previous studies typically were conducted in a single state or

Canadian province, and their focus was to explain variation in fish assemblages using

local landscape and in-lake features (Rahel 1984, Dolman 1990, Schupp 1992, Jones et

al.2004). They provide a method and context for investigating how to monitor and

manage statewide fish populations through the use of predictive lake classifications.

State and federal agencies are primarily responsible for managing inland lake fish

assemblages; they are often financially limited and must weigh trade-offs between

investing in assessment and implementing decisions from gathered information (Hansen

and Jones 2008). Management agencies in lake-rich regions therefore must implement

their programs on all lakes, while only being able to collect data, particularly of in-lake

biota, from a subset of lakes. However, based on known lake-to-landscape relationships

established using data from sampled lakes, managers can now extrapolate these results

from sampled lakes to unsampled lakes (using readily-available landscape data for



unsampled lakes) to help make decisions. To build a natural lake classification system

based on hydrogeomorhic landscape features, it is important to understand and include

those features already known to shape lake fish assemblages, while still accounting for

human disturbance. Therefore, in this chapter, I created a series of lake classifications

based on natural hydrogeomorphic features of the landscape (a combination of natural

hydrologic, geologic, and topographic factors) that range in spatial scale to explain the

variation in fish species richness present among lakes.

We can learn a lot from previous research of the relationship between the natural

landscape and fish assemblages conducted at the local scale (i.e., lakes within a single

state). Studies have extensively measured the landscape-to-fish linkages in terms of lake

surface area (Johnson et al. 1977, Tom and Magnuson 1982, Rahel 1984, Eadie et al.

1986, Jackson and Harvey 1989, Holmgren and Appleberg 2000, Riera et al. 2000, Irz et

al. 2004), lake perimeter (Olden et al. 2001 , Olden and Jackson 2002, Hershey et al.

2005, Olden et al. 2006), lake depth (Marshall and Ryan 1987, Mehner et al. 2005),

surface water connectivity as an isolation metric and as a proxy for landscape position

(Kratz et al. 1997, Magnuson et al. 1998, Riera et al. 2000, Olden et al. 2001), and

catchment area (Allan and Johnson 1997, Tonn et al. 2003, Irz et al. 2004). These studies

show positive relationships between lake surface area, depth, and/or perimeter and fish

species richness; likewise, lakes lower in the landscape with more surface connections

have higher species richness. Conversely, lakes with relatively low habitat complexity

(e.g., low values for lake area, depth or perimeter) or isolated lakes (e.g., higher in the

landscape, with no surface connections) typically have relatively low species richness.

By identifying the linkages between the landscape and species richness through past



literature, it is possible to create a lake classification that is interpretable and applicable to

lake managers.

Past lake classification systems were created for unique purposes in single states

or provinces using a limited number of natural landscape, in-lake water quality, and

human disturbance predictors to group inland lake fish assemblages (Johnson et al. 1977,

Tonn et al. 1983, Dolman 1990, Schupp 1992). The term “fish assemblage” has included

a variety of response metrics: presence or absence of individual or key fish species

(Johnson et al. 1977), relative species abundance (Marshall and Johnson 1987),

associations of dominant species (Dolman 1990), or species richness (SR) and

composition (Eadie et al. 1986, Kratz et al. 1997). This previous research has

incorporated many different lake morphometry characteristics to group inland lake fish

assemblages (Tonn et al. 1983), water quality data such as pH and temperature (Dolman

1990), physical substrate (Johnson et al. 1977), or local human disturbances such as

distance to nearest road (Magnuson et al. 1998) to explain among-lake differences in fish

assemblage metrics. Lake ecosystems are complex and there are many landscape factors

that shape fish assemblages at the local level; however, regional-scale predictors (e.g.,

spatial patterns of past glaciation, regional climate characteristics) may play a role as

well. While unique in their purpose and spatial scale (across a single state), many past

attempts at classifying lakes have disregarded regional-scale factors when attempting to

better understand the distribution and variation of fish assemblages across the landscape.

Past studies have laid a strong foundation for developing lake classifications and

determining what local features shape inland lake fish assemblages; however, research

suggests incorporating landscape features at a much larger spatial scale can aid in



explaining variation among lakes (Tonn 1990, Poff 1997, Cheruvelil et al. 2008).

Although individual lakes have somewhat unique physical, chemical, and biological

characteristics, there also are similarities across a state and even across broader regions,

exemplified by the wide-ranging distribution of many fish species. Therefore, in

developing an approach to classify lakes across large lake-rich areas for a variety of

purpose, it is important to incorporate hydrogeomorphic landscape predictors at multiple

spatial scales. When working at such spatial scales, lakes can be viewed as patches

within a landscape that are hierarchically organized, with regional factors such as climate

and soil type constraining local and in-lake impacts on lake biota (Tom 1990, Poff 1997,

Cheruvelil et al. 2008, Soranno et al. 2009).

One way to incorporate a broader-scale landscape perspective into a classification

framework is to include a regionalization scheme as a classifying variable. Such schemes

have been developed for both terrestrial and aquatic systems, and they can serve as strong

proxies for natural features (e.g., soil types, sub-surface geology, land use; Omemik

1987). Most regionalizations represent a set of natural features across a large region,

with subregions distinguished by finer scale variation among features (Seelbach et. al.

2002). These schemes can help to explain variation among ecosystems at different

spatial scales (Omemik 1987, McMahon et al. 2001, Irz et al. 2004, Cheruvelil et al.

2008), and thus should be included as a potential classification variable to group lake fish

assemblages.

I included in my analysis three regionalization frameworks that have been shown

to help to explain variation among aquatic systems: United States Geological Survey

(USGS) hydrologic units, (HUC, Seaber et al. 1987), ecological drainage units (EDU,



Higgins et al. 2005), and freshwater ecoregions (Abell et al. 2000). HUC’s were

developed by the USGS to approximate watersheds at multiple scales across the country

and provide a standardized method of locating, storing, retrieving, and exchanging

hydrologic data for water-resources organizations (Seaber et al. 1987). HUC’s are

hierarchical in spatial scale; six-digit HUC’s are further divided by eight-digit HUC’s

with 12-digit HUC’s being an even finer spatial scale. EDU’s were developed by

agglomerating eight-digit HUC’s using landscape features, such as climate and landforrn,

to form contiguous, geographically dependent regions. These regions were developed to

classify freshwater ecosystems to represent coarSe-scale regions of freshwater

biodiversity for regional conservation planning (Higgins et al. 2005). Freshwater

ecoregions were created using native fish distributions (presence/absence data) to

delineate sub-regions across North America; they represent likely freshwater aquatic

biodiversity patterns for conservation purposes (Abell et al. 2000). All of these

regionalization schemes have been delineated at different spatial scales; across the five-

state region there are 97 six-digit HUC’s, 28 EDU’s, and five freshwater ecoregions, each

allowing for an examination of the most appropriate spatial scale for grouping lake fish

assemblages.

Because I was attempting to build classes based upon natural landscape features,

it is imperative to recognize that human disturbances can also significantly alter lake fish

assemblages at multiple spatial scales and mediate the effects of natural features. For

example, land use/cover, the prevalence of roads and dams, and fish stocking rates all

vary across the landscape and affect inland lake fish assemblages (Radomski and

Goeman 1995, Magnuson et al. 1998, Roth et al. 2007). Human disturbances such as fish



stocking or dam and reservoir creation can mask natural patterns by directly and/or

indirectly altering fish assemblage patterns through species introductions and food web

alterations (Radomski and Goeman 1995, Johnson et al. 2008). Because natural lake

classifications are based on predictable relationships between natural landscape features

and fish assemblages, human disturbances, which can mask natural patterns, must be

considered and accounted for when attempting to explain natural variation in fish

assemblages.

My study examines the variation of fish species richness across five states

(Maine, New Hampshire, Michigan, Wisconsin, Iowa), ranging from the Atlantic Ocean

to west of the Mississippi River. My work incorporates both local and regional-scale

predictor metrics; the focus is to use the natural landscape across multiple states and

spatial scales to identify which metrics explain the greatest amount of variation in lake

fish species richness. Because previous classifications are unique to their own regions,

hypotheses, and goals, my study is not necessarily intended to compare my classification

with previous results, but rather to examine the approach of using regional-scale

predictors along with local landscape features to explain variation in fish species richness

among lakes.

In this chapter, I developed lake classifications to explain patterns of fish species

richness based on natural hydrogeomorphic features of the landscape (combination of

natural hydrologic, geologic, and topographic factors) that range in spatial scale. My

study provides a good opportunity to compare local and regional patterns of fish

assemblages, unlike past studies that only focused on a single state. Species richness, for

this study, was judged to be a more reliable response metric than others (e. g., fish



abundance) because fish assemblage data was collected from multiple agencies each with

their own methods and purposes. Each state had a unique set of species to examine, so

species counts were determined to be a more universal and comparable response metric

than assemblage type. I also advanced the methodology behind building natural lake

classification systems by taking advantage of advances in geographical information

systems (GIS) and incorporating regional-scale predictors with previously well-studied

local landscape factors and by accounting for human disturbances. I restricted the

potential predictor variables to those that are map-based and hence available for all lakes.

Although in-lake water quality can predict fish assemblages (Bachmann et al. 1996,

Jeppesen et al. 2000), I did not include water quality metrics as predictors. This way, it is

possible to extrapolate my natural lake classification results that are based on map and

GIS data to ‘new,’ unsampled lakes. I also focused on the ability of natural

hydrogeomorphic features (as opposed to human-mediated landscape features) to build

lake classes because management and conservation efforts often need to know what the

‘natural’ state of a lake would be in the absence of anthropogenic factors. Natural

features such as lake depth or lake area are relatively unchanging as compared to human

disturbances; therefore, the relationship between the landscape and fish species richness

may be more predictable when including only natural features.

Methods

Data Collection and Lake Selection

I collected data on hydrogeomorphic features (e.g., regionalization schemes, lake

hydrology, lake morphometry) and anthropogenic disturbances (e. g., land use, road

10



density, human population) for approximately 2300 inland lakes as part of a larger study

(e.g., Cheruvelil et al. 2008, Webster et al. 2008) to determine how the natural and human

landscapes shape lake water quality and fish assemblages (Tables 1-3). The initial data

collection focused primarily on lakes with water quality response metrics that are

typically easier to collect and more readily available than fish assemblage information.

Available fish assemblage data were then obtained for New Hampshire, Maine,

Michigan, Wisconsin, and Iowa (Figurel, Table 1). Because water quality and fish

assemblage monitoring is often conducted by different agencies using different methods

for lake selection, not every lake that existed in the original hydrogeomorphic (2,348

lakes) and landscape (2,573 lakes) databases existed in the fish assemblage database (555

lakes). Therefore, I created an overlap database that contained 360 lakes with all three

data categories (hydrogeomorphic, anthropogenic, and fish assemblage; Table 1). For

these 360 lakes, I obtained additional hydrogeomorphic (e.g., lake isolation metrics,

number of surface connections) and anthropogenic disturbance (e.g., dam density, fish

stocking metrics) data from agency sources and the use of Geographic Information

System (GIS; Table 1).

Fish Assemblage Response Metrics

I gathered fish assemblage data from state and federal agencies and universities

(Table 4); each entity’s goal was to quantify presence/absence of fish species or estimate

abundance based upon sampling effort to effectively monitor fishery resources. For lakes

represented multiple times in the fish assemblage data, I used the most recent year

sampled. Most fish had been identified to the species level. However, some fish were

11



identified only to an aggregate level of genus or family, or were of unknown identity

(7%-24% of fish across ME, NH, MI, WI, and IA). For example, some states reported

fish as “unknown bullhead” or “minnow sp”. Depending on the response metric (see

below for response metric details), these aggregate terms were either included or

removed based upon lake-specific fish assemblages and by using the following decision

rules. If a species was present in a lake, higher taxonomic aggregates and unknown

fishes related to that species were eliminated. However, the aggregate term was included

in the species richness count if no other species representing that aggregate term was

found in the lake. For example, if the aggregate “unknown bullhea ” was found in a lake

but no specific bullhead species (yellow, black, or brown) was recorded, I counted the

aggregate as representing one bullhead species. On the other hand, if a specific bullhead

species was captured in a lake in addition to an aggregate being recorded, the aggregate

was eliminated from the total species count.

I created two metrics to use as response metrics in our natural lake classes: Total Species

Richness (Total SR) and Native Species Richness (Native SR) (Table 5). To standardize

across all 360 lakes in five states, species richness was used as a consistent response

metric for total and native species (native by state). While metrics such as species

abundance or assemblage type (e.g., bass and bluegill co-occru'rence) were considered,

fish assemblage data came from different agencies and were collected using different

methods and amount of effort (e.g., electroshocking, fyke netting). Fish assemblages

were quite different from state to state and management agencies have different social

values to manage for in their lakes; these facts made species abundance or assemblage

type less advantageous response metrics than species richness.

12



I selected the two most prominent gears for each state (Maine and New

Hampshire (gill net and trap net); Michigan, Wisconsin, and Iowa (electroshocking and

fyke net)). I used only the species caught with these corresponding gears to create my

response metrics to include the greatest number of fish species from each lake while

minimizing gear biases across lakes and management agencies (Table 4). In other words,

I did not want to include species caught with a gear that was only used in a few lakes

and/or a single state. State-specific records (not lake-specific) were used to determine

whether a fish was native or not for all lakes in that state (Maine (David Halliwell,

personal contact), New Hampshire (Scarola 1973), Michigan (Hubbs and Lagler 2007),

Wisconsin (Becker 1983), and Iowa (Harlan and Speaker 1956)). Because it is

impossible to determine lake-by-lake historical assemblages, I considered a fish to be

native to a state if it was at least native to a single lake in the state. Since my two

response metrics were derived using the same fish assemblage data, to quantify the

association between these two variables, I ran a correlation of one (Total SR) against the

other (Native SR).

Hydrogeomorphic Features and Anthropogenic Disturbances

I included hydrogeomorphic features and anthropogenic disturbance data in

categories of regionalization, extinction/isolation, lake hydrology, and land use/cover (see

details of methods in Webster et al. 2008). I compiled maximum lake depth, mean lake

depth, and watershed cumulative catchment area from existing state databases, and

quantified lake surface area and perimeter from state geographic information systems

(GIS) data at a 1: 24,000 resolution. A lake’s runoff was calculated using mean annual

l3



runoff from 1951 to 1980 within a SOO-m buffer from a GIS coverage for a lake (Webster

et al. 2008). Land use/ cover data within each lake’s 500-m buffer were obtained from

the 1992 National Land Cover Dataset (Webster et al. 2008).

I calculated additional hydrogeomorphic features not described in Webster et al.

(2008) as summarized in Table 2. The regionalization frameworks used are as described

above: USGS six-digit hydrologic units (97 total regions) (HUC, Seaber et al. 1987),

ecological drainage units (28 total regions) (EDU, Higgins et a1. 2005), and freshwater

ecoregions (5 total regions) (Abell et al. 2000). To obtain a measure of species isolation,

I displayed maps showing the furthest glacial extent (> 15,000 years ago) in a GIS to

determine whether a lake’s current location had been covered by glaciers or not (Prest

1969)

In order to get a measure of potential immigration of new species (leading to an increase

in species richness), I included measures of lake connectivity and surficial hydrology as

predictor variables in my classifications. I determined the number of surface water

connections of each lake, both upstream and downstream, using GIS and the National

Hydrography Dataset (NHD) at a 1: 100,000 resolution (http://nhd.usgs.gov, 2007).

Lakes with no surface connection were declared “seepage” while lakes with one or more

surface connections were determined to be “drainage”. I used GIS to calculate regional

and local lake density, defined as the number of lakes within each EDU (range = 159-

2856) and 12-digit HUC (range = 1-89; 10,609 total regions across five-state region). An

individual lake’s regional and local lake density were measured by translating all water

bodies (>0.001 kmz) across the entire spatial range of EDU’s and 12-digit HUC’s from

polygons to points; these centroids were placed within the polygon of each water body.

14



Each lake was assigned a region (EDU and 12-digit HUC) and the total number of water

bodies within each EDU and 12-digit HUC was counted. My 360 study lakes were then

assigned to a region (EDU and 12-digit HUC) with its corresponding lake density for

each regionalization scheme. At a finer spatial scale, I collected measures of lake hydrology

such as average annual precipitation and mean base-flow index (BFI), an estimate of sub-

surface water inputs relative to surface water inputs (USGS) (http://water.usgs.gov)).

Average annual precipitation for years 1971-2000 was obtained from the Spatial Climate

Analysis Service at Oregon State University (www.0cs.oregonstate.edu).

I also collected anthropogenic disturbance variables at multiple spatial scales

(summarized in Table 3) to account for the effects of disturbances on my response

metrics before creating lake classes. Related to measures of potential fish species

isolation, I calculated dam density within each EDU and 12-digit HUC using dam GIS

layers from state agency databases. Just like calculating lake density at multiple spatial

scales, dams were assigned a region, and each study lake was assigned a regional and

local dam density using EDU’s (range = 48-3,634) and 12 digit-HUC’S (range = 0-59).

Other anthropogenic variables related to potential fishing pressure and shoreline habitat

modification were collected for each lake including human population and housing

density (United States 2000 Census (http://factfinder.census.gov)), and local road density

(it/acre) (calculated within a 500 m buffer of each lake).

Lake-specific fish stocking records were collected from each state to control for

the effects of fish stocking on fish species richness (Maine (http://www.pearl.maine.edu),

New Hampshire (Gabe Gries, personal contact), Michigan

(http://www.michigandnr.com/fishstock), Wisconsin

15



(httpz/linfotrek.er.usgs.gov/doc/wdnr_biology/Public_Stocking), and Iowa

(http://limnoweb.eeob.iastate.edu/fishgrowth)) (Table 6). I created three different metrics

of stocking pressure for each individual lake: total number of species stocked, total

number of stocking events (regardless of species), and total number of stocking events

divided by the number of years for which I had stocking data for each state (Table 6).

These metrics likely vary some from state to state because each state has different angler

pressures for particular species, varying financial resources for stocking, and many

biological factors to consider when determining which species to stock, when, and how

often. The third stocking metric was created to help standardize stocking across states by

accounting for the different number of years of stocking data available for each state

(Table 6).

Developing Natural Lake Classes

To build natural lake classes based on hydrogeomorphic features, I wanted to first

account for the effects of human disturbances on lake fish assemblages. I first

transformed all anthropogenic and fish response metrics to meet normality assumptions

for regressions models including arcsine-square root transformation for land use/cover

variables and natural log, squared, or square root for all other variables. Because every

transformation did not necessarily result in meeting assumptions (approximately 75% of

the variables did not meet assumptions); I transformed the remaining metrics using the

best relative transformation based on the overall distribution of data and that with the

least amount of outliers. I then ran multiple linear regressions of each response metric

(Total SR and Native SR) against all human disturbance variables (Table 3), regardless of
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correlations among variables, to obtain residual values to be response metrics when

building natural lake classes. Best model selection was used to determine which

disturbance variables to include in the final model (SAS version 9.1). I used condition

index (Cl) and variance inflation factors (VIP) to determine if multicollinearity among

predictor variables was unduly influencing our models. Variables with CI values greater

than 10 and VIP values greater than 30 in the regression were removed from the model

(Hair et al. 1995). The best model was significant using 0.05 alpha and had both the

highest adjusted R-squared and lowest Akaike's information criterion (AIC) value (Table

7).

The residuals, related to the amount of variation unexplained by these multiple

regression models of human disturbance variables and fish metrics, were tested to see if

they met normality assumptions after these initial regression models. They were

normally distributed; therefore, no subsequent transformations were needed. The

residuals were then used as the response variables in classification and regression tree

(CART) analyses (R version 2.9.0) with multiple hydrogeomorphic variables as

predictors (Table 2). All hydrogeomorphic variables were left untransformed and

included in the CART models (this method allows for non-normal data); a correlation

matrix of highly correlated (>.6) predictors was used, however, when interpreting results.

CART models were built using the recursive partitioning algorithm “rpart” in the R

software system that initially splits a parent group into two daughter groups based on the

value of a predictor variable that maximizes the reduction in the total residual sum of

squares of the response metric (Breiman et al. 1984). Each daughter group is then split
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using the same algorithm; I examined the proportional reduction in error (PRE) for each

split in the tree and summed them to produce an overall PRE value.

Each CART model was run using a range of complexity parameters (CP; 0.01,

0.015, 0.02, 0.025, and 0.03). Increased CP values result in models with relatively

coarse, less refined tree (few splits and subsequent terminal classes); decreased CP values

result in a more refined tree with more splits and terminal classes. Since my other

objective for this research was to examine human disturbance on lake classes (chapter 2),

I sought to find a reasonable and pragmatic final classification. Therefore, I compared

the number of classes and the number of lakes within each class for the classifications

that were made using each CP cutoff. To be sure that each classification resulted in

classes that were significantly different from one another, I ran analyses of variance

(ANOVA) and post hoc Tukey tests to compare the variation between classes within a

classification (SAS version 9.1). I did not objectively select a final, “best” lake

classification but rather, subjectively determined the most useful classification based on

the total number of classes, the range of the number of lakes in the classes, and the

ANOVA results.

Results

Controlling for Human Disturbance

The two response metrics were highly correlated (r = .97); state-by—state, the total

number of species in a lake is very similar to the total number of native species (native by

state) (Table 5). Human disturbances explained 16% (Total SR) and 22% (Native SR) of

the variation in lake fish assemblages and both final models contained similar
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disturbances variables: number of fish species stocked, number of stocking events/years

of data, dam density (12-digit HUC), local agricultural land use, and human population

density (Table 7). Even though some predictor metrics were highly correlated, all were

included in the models so that I could explain the greatest amount of variation by human

disturbances. With the exception of agricultural land use metrics (Total SR -, Native SR

+), both models had similar parameter estimates: number of fish species stocked (-),

number of stocking events/years of data (+), dam density (12-digit HUC) (-), and human

population density (+) (Table 7). Within a general landscape category, many of the land

use/cover and fish stocking metrics exhibited high correlation with one another (Table 8).

For example, agricultural land use metrics (crop, pasture, all agriculture, and agriculture

combined with urban) had coefficients greater than 0.66as were all three stocking metrics

(r > 0.85) (Table 8).

Analysis of Variance Across Classes

Before I present the results ofmy lake classifications (below), I discuss how I

chose a CP value, and thus a final classification for each response metric (Total SR and

Native SR). ANOVA analysis of all classifications for Total SR and Native SR revealed

all models to be statistically significant (Table 9). The classification with the fewest

number of classes (CP=0.03) had the greatest percentage of significantly different class-

by-class comparisons; few classes were not significantly different from another.

Conversely, the classification with the most classes (CP=0.01) had the lowest percentage

of significantly different classes; many classes were not significantly different from

another. The tradeoff seen here makes intuitive sense, as the number of classes increases,
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there is less in-class variation but not as great of a difference in species richness from one

group of lakes to the next. Because any classification is created for different purposes

(with this tradeoff likely driving how refined or unrefined final classes are), lake

managers will likely determine on a case-by-case basis how many clasSes (and how

different those classes should be from one another) they would like to include in a

classification.

My resulting classifications could all be considered and further analyzed since

they all had significant among-class variation. The final classifications selected for

presentation in chapter 1 (CP = 0.015) were not meant to be the statistically “best”

classification. Rather, I chose these classifications based on the number of final classes

and the range of the number of lakes across classes; in both classifications (Total SR and

Native SR), over 75% of the pair-wise comparisons were significantly different (Table 9).

Since my ultimate goal was to measure the effects of human disturbances on classes of

lakes (chapter 2), I selected a classification (Native SR) that did not have very few classes

with many lakes (e.g., CP of 0.03) or a classification with a large number of classes, each

with very few lakes (e.g., CP of 0.01).

In the first scenario (too many lakes in a class), some classes are not refined

enough (split into smaller groups) to make final classes management-applicable. For

example, if all 360 lakes were split into only small and large lakes (< or > 53 ha), little

would be known about lakes within the two classes (e.g., land use/cover) other than large

lakes have more species than small lakes. Therefore, it is likely more helpful to lake

managers to have smaller classes and know more about the lakes in them by refining

these larger classes. In the second scenario (too few lakes in a class), there would not be
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enough observations to run multiple regression analysis (chapter 2) given the number of

disturbance predictors in this study. For example, a class with only five lakes would

result in a non-significant regression model, making the class (and its lakes) statistically

unhelpful. Given this issue, it was important to have a moderate ntunber of lakes in an

individual class. For chapter 1, I presented the results for classifications using a CP of

0.015, which appeared to fall in the middle of ranges for class number and class size

(e.g., number of lakes per class). Ultimately, for chapter 2, I selected a classification that

had 10 classes ranging in size from 10 to 69 lakes; this decision led to a more pragmatic

and thorough examination of human disturbances across the landscape on my study lakes.

Determining the Hydrogeomorphic Variables that Classify Fish Species Richness

Both lake classification trees (Total SR and Native SR) included predictors

representing multiple spatial scales and general landscape categories. Most notably, both

models included the extinction metric lake area as the main split in the model, a regional

scale predictor (EDU), and a lake hydrology metric (watershed area) (Figures 2 and 3).

Many of the morphometry variables were highly correlated with one another, (e.g., lake

area vs. lake perimeter; r = 0.92, mean depth vs. maximum depth; r = 0.88, Table 8).

Other highly correlated variables that appeared in at least one CART model include:

wetland (woody) which is correlated with wetland (all) (r = 0.97), and cumulative

watershed area which is correlated with lake perimeter (r = 0.74), lake area (r = 0.70),

and number of surface connections (r = 0.69) (Table 8). It is important to recognize how

these significant hydrogeomorphic variables are correlated because it affects our ability
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to interpret our classifications; it is difficult to distinguish the effects of some predictors .

from each other (e. g., lake perimeter and lake area).

The final results presented here use a CP cutoff of 0.015 in the Total SR

classification. Five natural landscape predictor metrics partitioned the 360 lakes into 11

final lake classes that included 7 to 105 lakes and explained 60% of the variation in Total

SR disturbance residuals (Figure 2). Lake area was the first split that separated the entire

group of lakes; the regionalization framework EDU split the two main subgroups further.

In addition to lake area and EDU, wetland (woody), cumulative watershed area, and

mean base flow partitioned the remaining subgroups of lakes (Figure 2). The smaller

lakes (< 53 ha), classes A and B, which have the lowest total species richness, lay

primarily in Maine and New Hampshire, with a few lakes in parts of Wisconsin and Iowa

(Figure 2 and 4). Lake classes C, D, and E primarily lay in Michigan, Wisconsin, and

Iowa and have relatively higher total species richness than Maine and New Hampshire

lakes (Figure 2 and 4). Larger lakes (> 53 ha), classes F, G, H, and I (151 total lakes), lay

entirely in Maine and New Hampshire and make up most of Michigan, Wisconsin, and

Iowa (Figure 5). These regions have relatively higher mean total species richness than

classes A through E, but have relatively lower total species richness than classes J and K

(Figures 2 and 5). Classes J and K lay primarily in Southeastern Michigan, Northwestern

Wisconsin, and Eastern Iowa; these lakes have the highest total species richness across all

360 lakes in the 5-state region (Figures 2 and 5).

In the Native SR classification, again using a CP cutoff of 0.015, only four natural

landscape predictor metrics partitioned the 360 lakes into 10 final lake classes that

included 10 to 69 lakes and explained 58% of the variation in Native SR disturbance
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residuals (Figure 3). Lake area was the first split that separated the entire group of lakes;

the regionalization framework EDU split the two main subgroups further. While the

response metric was different in the Native SR model, lake area and EDU separated the

initial group of 360 lakes similarly to what I saw with Total SR. In addition to lake area

and EDU, lake elevation and cumulative watershed area partitioned the remaining

subgroups of lakes (Figure 3). In the smaller lakes (< 53 ha), classes A and B had the

same distribution as classes A and B from the Total SR model; they lay primarily in

Maine and New Hampshire, with a few lakes in parts of Wisconsin and Iowa and these

lakes had the lowest relative native species richness (Figure 3 and 6). Lake classes C and

D primarily lay in Michigan, Wisconsin, and Iowa and had relatively higher total species

richness than lakes in classes A and B (Figure 3 and 6). The larger lakes (> 53 ha),

classes E, F, G, H, I, and J (227 total lakes), had a similar distribution to the classes in the

Total SR classification. Classes E, F, and G made up all of Maine and New Hampshire

and almost all of Iowa and had relatively higher mean total species richness than classes

A through D, but have relatively lower total species richness than classes H, I, and J

(Figures 3 and 7). Classes H, I, and J lay primarily in the entire Lower Peninsula of

Michigan, the Western part of the Upper Peninsula in Michigan, and Northwestern

Wisconsin; there were also some small regions (with few lakes) in Southern Wisconsin

and Iowa (Figure 7). Classes H, I, and I had the highest total native species richness

across all 360 lakes in the 5-state region (Figure 3).
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Comparing the Total SR and Native SR Classifications

The variation explained (PRE) in disturbance residuals across the two

classifications using a CP of 0.015 (Total SR = 0.602 and Native SR = 0.575) was

relatively similar. The two response metrics were highly correlated (r = .97) and the

hydrogeomorphic predictors and spatial scales that were included and represented in the

classifications were similar. Both classifications were driven primarily by lake area

(extinction), EDU (regionalization), and cumulative watershed area (hydrology). Lake

area, an extinction predictor and proxy for lake habitat complexity, split all 360 lakes into

two subgroups (small lakes (< 53 ha) and large lakes (> 53 ha)) and explained a majority

of the variation at the initial split of each classification (Total SR = 29%, Native SR =

27%) (Figures 2 and 3). Lake area also explained an additional portion of the variation in

both classifications in the subgroups of lakes (Total SR = 6%, Native SR = 4%).

In addition to lake surface area, EDU’s explained a significant amount of total

variation in each of the classifications (Total SR =l7%, Native SR = 17%). Beyond the

initial split of lake area in both classifications, EDU’s split the two main subgroups of

lakes into four subgroups, two subgroups of smaller lakes (<53 ha) and two subgroups of

larger lakes (> 53 ha) (Figures 2 and 3). In smaller lakes for both Total SR and Native

SR, EDU’s primarily classified lakes into two main groups, Maine/New Hampshire lakes

and Michigan/Wisconsin/Iowa lakes. Although there were a few exceptions, generally

speaking, small lakes in the Northeastern United States had lower species richness than

lakes in the Midwestern states (Figures 4 and 6). Similar patterns were seen in the larger

lakes for both classifications. Maine and New Hampshire had relatively lower species

richness, although most of Iowa and parts of Michigan and Wisconsin also shared similar
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EDU patterns and corresponding fish species richness. In fact for larger lakes, the

highest species richness lake classes were in EDU’s in parts of Michigan and Wisconsin.

In addition to lake area and EDU, cumulative watershed area explained variation

in subgroups of lakes in both classifications (Total SR = 3%, Native SR = 8%), and mean

base flow (hydrology) split a subgroup of lakes in the Total SR classification.

Specifically, in the Total SR classification, of the larger lakes located in classes I and K,

lakes > 40 km2 watershed area (class K) had a greater species richness than lakes < 40

km2 watershed area (class J) (Figure 2). Similarly in the Native SR classification, greater

cumulative watershed area resulted in relatively greater species richness when comparing

classes F to G, H to I and J, and I to I (Figure 3).

Lake elevation, an isolation metric related to the probability of a species

introduction, split a subgroup of lakes in the Native SR classification. Of the larger lakes,

lakes < 165.4 m in elevation (class E) had lower species richness than lakes > 165.4 m in

elevation (classes F and G), opposite of what would be predicted. For these lakes, it

appeared that other landscape predictors (e. g., lake area, EDU) significantly explained the

variation seen in the response metric and lake elevation merely grouped the lake

according to location. Lake elevation, which explained 2% of the variation among lakes,

split lakes close to the ocean in Maine and New Hampshire (lower elevation, class B) and

those higher in elevation in Maine, New Hampshire, and Iowa (classes F and G). The

last isolation metric included in either classification was wetland (woody), which split a

subgroup of lakes in the Total SR model (Figure 2). Lakes with greater local wetland

cover > 1.6% (measured within 500 m buffer) had greater species richness (classes H and

1) than lakes with less wetland cover (classes F and G).
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Discussion

Hydrogeomorphic Features That Explain Variation in Lake Fish Assemblages

Lake area explained over half of the variation in the disturbance residuals in both

classifications (Total SR = 35% of 60%, Native SR = 31% of 58%); the literature reflects

the significance of lake surface area in predicting species richness; (r = 0.43-0.81; Rahel

1984, Eadie et al. 1986, Jackson and Harvey 1989). These studies were conducted in a

much smaller region than my study; it appears that lake area may be even more important

when only a smaller spatial scale is being studied. My results follow the literature in that

at every branch where lake area was the primary splitting variable, in both classifications,

larger lakes had significantly higher species richness (less likely of species extinctions)

than smaller lakes. Lake area was highly correlated with other extinction metrics (e.g.,

lake perimeter) so it could be broadly stated that greater habitat complexity (for my 360

lakes) was the primary hydrogeomorphic predictor in shaping either total or native

species richness across a 5-state region. Lakes with larger surface areas tend to have

extended littoral zones allowing for increased habitat and refuge for smaller species of

fish (e.g., protection from predation). Deeper lakes typically stratify thermally, which

can provide habitat for cool water species in the open water zone (pelagic) of a lake.

With more complex habitat available in larger, deeper lakes, unique species are able to

exist (upon introduction), which supports the potential for large populations and less

vulnerability to extinction. The relationship between greater species richness and greater

habitat complexity has been shown in many other studies; extinction metrics play a large

role in shaping inland lake fish assemblage (Tom and Magnuson 1982, Magnuson et al.

1998).
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These studies, however, did not explicitly incorporate regional-scale metrics or

attempt to remove the effects of anthropogenic disturbances. By using a large geographic

area, by including regionalization frameworks, and by accounting for the effects of

humans, other predictor metrics (e.g., EDU) explained some of the variation seen in fish

species richness. Cumulative watershed area was highly correlated (r > .7) with habitat

complexity metrics (lake area and lake perimeter) (Table 8); it can generally be stated

that a greater cumulative watershed area (relatively higher habitat complexity) may also

result in greater species richness for all sizes of lakes. Cumulative watershed area was

also correlated with the number of surface water connections (r = .69) (Table 8), a strong

proxy for landscape position (isolating metric). Lakes that are higher in the landscape are

less likely to experience species introductions whereas lakes lower in the landscape are

less isolated (higher likelihood of an introduction). Lakes with greater cumulative

watershed area (complex habitat, lower in landscape) exhibit positive correlations with

species richness (Kratz et al. 1997, Magnuson et al. 1998, Riera et al. 2000, Olden et al.

2001); this was exhibited in the Total SR classification (Figure 3).

Overall, local extinction and isolation metrics explained the greatest amount of

variation in both total species richness and native species richness. In every case, with

the exception of the lake elevation split in the Total SR model (Figure 3), lakes lower in

the landscape, less isolated, had greater species richness than lakes higher in the

landscape (less likely for an introduction). Lake elevation in a local region (e.g., single

state or group of counties) followed that of landscape position; lower elevations had more

species than lakes at a higher elevation. However, since my study region spanned from

sea level (Maine) to relatively higher elevations in the Midwest (Michigan and
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Wisconsin), elevation in this study was likely not an appropriate proxy for landscape

position. For example, a lake with a relatively low landscape position in a high elevation

area may be at the same elevation as a lake with a relatively high landscape position in

another watershed.

While local metrics explained a large portion of the natural variation, EDU’s

(large spatial scale predictor) explained a significant amount of variation as well (17% in

both classifications). Across classifications and lake sizes, EDU’s in Maine and New

Hampshire generally split from those in Michigan, Wisconsin, and Iowa. However,

exceptions existed for smaller lakes in the Total and Native SR classifications. Some

EDU’s in Michigan (Upper Peninsula), Wisconsin, and Iowa shared characteristics with

those in the Maine and New Hampshire (Figures 4 and 6). Likewise, for larger lakes,

EDU’s in parts of Michigan, Wisconsin, and most of Iowa shared some commonalities

with the Maine and New Hampshire lakes, as reflected in the distribution of lake classes

(Figures 5 and 7).

Regionalization frameworks of three different spatial scales were included in

analysis; however, EDU’s were the only regional-scale metric to explain variation in

either Total SR or Native SR. Although freshwater ecoregions were delineated for

freshwater systems to identify distributions of fish species across all of North America

(Abell et a1. 2000), they appear to be too large in scale (five regions across five states) to

significantly explain variation in my study lakes. In contrast, EDU’s were delineated

primarily using drainage boundaries such as watersheds (eight-digit HUC’s) and 1

identified areas with similar biotic patterns (Higgins et al. 2005). EDU’s, generally

between 1,000 and 10,000 km2 in area, are at a scale where watershed boundaries,
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climate, and landscape features would reveal aquatic biodiversity patterns. Their

consistent inclusion in my lake classifications, regardless of lake size, reflected their

ability to detect broad—scale species richness patterns. The classes of lakes here,

partitioned by a regional-scale predictor, support earlier findings that demonstrate the

importance of including relatively broad spatial-scale features (Tonn 1990, Poff 1997,

Cheruvelil et al. 2008). Past attempts at classifying lakes have not included

regionalization schemes when building classifications based on fish assemblages (e.g.,

Dolman 1990, Schupp 1992). Research on classification schemes for fish assemblages

was conducted before many of the regionalization frameworks were created. Likewise,

these studies were uniquely developed within single states and may not have warranted

including such broad-scale predictors to examine fish assemblages. Some of the

regionalization frameworks themselves sought to identify unique biodiversity patterns

nationally and internationally. Current research and conservation efforts are focused on

multi-state, and even nationwide collaboration and management (e.g., the Environmental

Protection Agencies’ National Lakes Assessment

(http://www.epa.gov/owow/lakes/lakessurveyl)). Therefore, examining variation of fish

assemblages across state boundaries warrants the inclusion of regional-scale predictors in

new classification schemes.

It is important to note that there are some limitations that I faced when building

these lake classifications. For example, I utilized the National Land Cover Dataset from

1992, but my fish assemblage data came from many years following that, as late as 2008.

It is possible that land use/cover changes that occurred between when the two sets of data

were collected influenced my results. In addition, the stream layer I used to categorize
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stream connections was at a 1:100,000 resolution. It is possible that I did not capture all

relevant hydrological connections such as small perennial streams that could be sources

of immigration ofnew species and/or refiiges from hypoxia (extinction metric). In

addition, by not completely and accurately identify all hydrological connections, I was

likely not able to properly identify seepage or drainage status for every lake or determine

for all lakes which ones were natural and man-made (reservoirs). Reservoirs have

different hydrological characteristics than natural lakes, including a short water retention

time and typically larger watersheds and surface areas. Lake area and cumulative

watershed area explained a great amount of variation in my lakes; however, specific

classes had both natural lakes and reservoirs (e.g., Iowa reservoirs shared classes with

natural lakes from other states). Although different types of lakes (e.g., natural vs.

reservoir) can share fish assemblage characteristics (e.g., same number of species), a

rigorous search into the background of all 360 lakes could have identified whether it was

natural or man-made. Using continuous data I already have, a metric such as the ratio of

cumulative watershed area to lake area may identify hydrological difference among lake

types.

Differences in Species Richness Between the Northeastern and Midwestern States

The glacier predictor metric I included in CART analysis was not significant in

any tree splits. However, the effects from glaciers and local glacial refugia appeared to

play a role in my results, and might have been captured in part by EDU. During the

furthest glacial extent thousands of years ago, fish in the Midwest (Michigan, Wisconsin,

and Iowa) and parts of Canada had the Mississippi drainage system as a freshwater retreat
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from lakes being covered in ice. Once the glaciers retreated, fish were able to colonize or

disperse to previously glaciated areas, resulting in the upper Midwestern states and

Canada becoming relatively speciose (Rempel and Smith 1997). Fish in Maine and New

Hampshire did not have as accessible of a freshwater refuge from glaciers. In fact, many

freshwater species were likely displaced into the Atlantic Ocean (saltwater) and

extirpated due to the inability to quickly evolve with the rapid changes, resulting in the

Northeastern inland lakes having fewer fish species (Table 5). Once the glaciers revealed

freshwater ecosystems upon their retreat, there were fewer species left behind to colonize

these lake and streams.

As discussed in the introduction, I selected fish species richness (a measure of

biodiversity) as my response metric over other potential fish assemblage metrics (e.g.,

fish abundance, assemblage types). Although other studies have used species

associations in streams (Brenden et al. 2008) or species abundance in lakes (Marshall and

Ryan 1987), I felt that it was more pragmatic to use general species counts; this metric

has been successfully used in other classification studies (Magnuson et al. 1998). There

were differences in the biodiversity patterns of the five states; as discussed above,

glaciations patterns result in Maine and New Hampshire naturally having many less

species than Michigan, Wisconsin, and Iowa. Additionally, there are differences in the

types of species found in different areas; the Northeast has multiple species that are not

present in the Midwest and vice versa. I also used general species counts rather than

species abundance because my fish assemblage data was from different management

agencies that for the most part, attempt to examine the status and trends of their own

lakes and are typically concerned mainly with recreational species. Therefore, I could
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not be certain that agencies were not targeting recreational species when selecting lakes

to study or at least specifically targeting and capturing particular species while sampling

in a lake. Although species richness as a response metric has its drawbacks, species

abundance, in this case, potentially could have had even more biases associated with it.

My decision to use species richness was also based on my inability to control for having

data from five different states (four different agencies). I used species richness based on

considerations of what would best integrate all five states and their fish assemblages.

Species richness is useful because even though management agencies do not always

specifically concern themselves with biodiversity, they certainly take precautions to

avoid species loss across the state. Some may not be greatly concerned if they stock a

species into a lake that results in the loss of a minnow or sunfish species for that specific

lake. However, state-wide, there are divisions within state management agencies that are

concerned with biodiversity, maintain a conservative approach, and care for all public

resources, not just those that have recreational value.

In the future, consideration could be given to using fish abundance or co-

occurrence of species as a response metric. For example, a lake with seven species in

New Hampshire could have a totally different composition than a lake with seven species

in Wisconsin. Tolman Pond in New Hampshire shared four species with Friendship Lake

in Wisconsin, both of which had seven total species and were in the same class.

However, both Pine Lake and Squaw Lake in Wisconsin, also with seven total species

and in the same class, only shared two species with Tolam Pond. By using other

response metrics such as co-occurrence or abundance of fish species, natural features

may identify different lake classes across such a broad region. However, species richness
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warrants as much consideration by management agencies, resulted in interesting and

useful classifications in my study, and has been shown to reveal significant features

shaping inland lake fishes (Magnuson et al. 1998)

Although I attempted to look at differences of how well the natural landscape

shaped total species richness versus total native species richness, my response metrics

were likely too similar (r = 0.97) to confidently discern differences between one another ,

which may indicate that my count of native species for each lake was too coarse. I

considered any species that was native to a state to be native to any lake; however, there

are cases where a species may only be native to a few watersheds in a state and non-

native in any other lakes outside those watersheds. Given the way I calculated the

number of native species in a lake across a state, I was not able to identify which species

were truly non-native to a lake. Most ofmy lakes were estimated as having zero or one

non-native species (~300 lakes out of 360); this is likely not what is present in most lakes

that are affected by some form of human disturbance. A more refined method of

identifying native and non-native species in each lake may reveal a greater presence of

non-natives in my data than what I present here. Ultimately, my two metrics were likely

too similar; more work is required to best identify what natural features specifically affect

all or just native fish species.

Conclusions

Despite the shortcomings of my research and some classification frameworks in

general, my predictive lake classification using different categories of hyrdogeomorphic

and anthropogenic landscape features at multiple spatial scales explained variation in

33



different metrics of fish assemblages. Given the recent advances in technology, GIS data

can be combined with easily obtainable descriptive lake information to form landscape-

based classes with a variety of predictor variables such as regionalizations,

isolation/extinction metrics, and lake hydrology. Based on known lake-to-landscape

relationships tested using data from sampled lakes, managers can then apply these results

to unsampled lakes to help guide their management decisions. Even though individual

lakes are unique in some respects, they have many local and regional characteristics in

common that help to shape fish communities.

By examining these shared characteristics across lakes within and even among

states, and identifying the similarities and differences in the fish communities, managers

can better understand the landscape’s effects on lakes in order to conserve and protect

unique aquatic resources while providing recreational opportunities in inland lakes. More

credence should be given to species richness (i.e., biodiversity) and conserving by

management agencies. Sport fisheries can be created through fish stocking in lakes with

poor biodiversity, but recreational opportunities are more stable in lakes with high

biodiversity and strong ecosystem-level interactions. Since lake managers are required to

implement fishing regulations and restrictions on all public waters while explicitly having

fish assemblage data on only a small portion ofthem, classifications provide a tool that

can aid those charged with the task of managing inland lakes. Additionally, by dividing

lakes into classes using map‘based characteristics, lake managers may be able to

appropriate resources to other projects otherwise used for rigorous and expensive

sampling programs. Classifications can also help to indentify regional and national

biodiversity patterns by grouping lakes of relatively lower species richness and higher
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species richness. Choosing lakes to monitor across very broad regions using a

classification approach could also reveal the loss or gain of species due to human impacts

and allow us to better-understand the natural state of aquatic biota in the absence of

humans.

My research explored previously overlooked predictor metrics and their ability to

explain variation in fish assemblages using a predictive classification framework. My

study was unique in that I incorporated many states, each with a wide ranging set of

natural features and human disturbances, as well as regional-scale landscape predictors

such as regionalization frameworks and the number of dams per EDU. My classification

results highlight the importance of regional-scale predictors and suggest that they be

considered when attempting to explain the variation seen in fish assemblages, especially

when using a classification approach and a large geographic area.
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Chapter 2-Using a hydrogeomorphic-based lake classification to compare

effects of anthropogenic disturbances on fish species richness in 360 north

temperate lakes.

Introduction

Lake managers and researchers seek to understand and explain the variation

among fish assemblages in inland lakes, often trying to distinguish between effects

stemming from natural features and human disturbances. In the absence of human

disturbances, hydrogeomorphic predictors shape in-lake biota. For example, lakes with

greater habitat complexity (e. g., larger lake area), increased potential for species invasion

(e. g., greater number of surface connections past and/or present), and lower hydrologic

position in the landscape (e.g., greater cumulative watershed area) generally have greater

species richness (Tom and Magnuson 1982, Rahel 1984, Kratz et al. 1997, Hershey et al.

2000, and Irz et al. 2004). However, because humans can impact inland lake fish species

through species additions (e. g., fish stocking), blockage of movement (e. g., dams), and

landscape alterations (e.g., land use/cover), among other disturbances, the relationship

between the natural landscape and fish assemblages can be disrupted (Radomski and

Goeman 1995, Carpenter et al. 2007, Johnson et al. 2008). Therefore, understanding how

the hydrogeomorphic landscape structures fish assemblages must be augmented with an

understanding of how anthropogenic disturbances affect fish assemblages in inland lakes.

With advances in technology such as Geographic Information Systems (GIS),

researchers have powerfirl tools to investigate the effects of land use/cover (e. g.,

agriculture, urban) and human population densities on all aquatic systems. To date, much

attention has been paid to the impacts of humans on water quality and/or fish

assemblages in lotic systems (Gergel et al. 2002, Buck et al. 2003, Jones et al. 2004),
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whereas research on lentic systems has lagged behind. However, recent research has

demonstrated that agricultural and urban land within catchments can negatively impact

fish communities in lakes (Carpenter et al. 2007). Riparian alterations around a lake have

also caused negative impacts to fish assemblages such as the loss of forested land due to

shoreline development (i.e., increased agriculture land use, higher human populations)

(Jennings et al. 1999, Carpenter et al. 2007). Increased shoreline development has

resulted in the loss of coarse woody debris (CWD) within a lake and directly caused

negative changes to the fish community (Roth et al. 2007). GIS has been useful in

identifying these lake catchment and riparian alterations which may aid in measuring the

negative effects on fish assemblages.

In addition to land use/cover, inland lake fish assemblages can be affected by

roads. Roads are large, flat, impervious surfaces that alter local hydrology and pH (Rahel

1984); additionally, lakes near roads (areas of relatively higher human populations) can

have higher fishing pressure and fish stocking rates than remote lakes (Kratz et al. 1997,

and Magnuson et al. 1998). Roads have been viewed as a direct source of species

immigration (e. g., lake to nearest road distance), but also as a catchment-wide influence

from hydrological alterations that may ultimately influence a lake’s fish assemblage.

Another disturbance that can affect fish movement is dams. These structures

fragment aquatic systems and have been found to change species composition of

vegetation and fish communities in streams (Hill et al. 1998, Brunberg and Blomqvist

2001). In this sense, for lakes connected by streams, movement of species between lakes

is more likely in unfragmented systems than in those with dams blocking movement. Not

only do dams fragment stream connections between lakes, they have also been used to
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create large impoundments where otherwise a lake would not be present. Recent research

suggests that impoundments have higher likelihood of non-native species invasions than

natural lakes (Johnson et al. 2008). These researchers found that impoundments are

likely to be more accessible to humans than natural lakes (e.g., greater number of boat

landings in impoundments). In addition, impoundments are more likely to be connected

to stream networks and have more surface connections than natural lakes. Therefore, it

appears that dams can both fragment stream systems (i.e., limit movement of native

species) and, through the creation of man-made systems (e. g.,' impoundments), increase

non-native species (Johnson et al. 2008).

Perhaps the most profound and well-established anthropogenic disturbance to

affect fish assemblages in inland lakes is fish stocking. Research on fish stocking is quite

extensive both at the individual species level and fish assemblage levels (Anderson and

Schupp 1986, Radomski and Goeman 1995, Holmlund and Hammer 2004, Irz et al.

2004). Adding a species to a lake (stocking or unintended release) can result in altered

food web dynamics, the elimination of a species from a system (through competition or

predation), indirect changes in water clarity, and changes in fish growth rates (Anderson

and Schupp 1986, Radomski and Goeman 1995, Holmlund and Hammer 2004, Irz et al.

2004). For example, Irz et al. (2004) found native fish species richness and non-native

species richness to be negatively correlated, indicating that introductions have led to

saturated communities (limited potential of fish species richness to increase). Although

fish stocking across the landscape is primarily intended to help manage faltering

ecosystems and/or create new fisheries, stocking can result in unintended negative

consequences that alter fish assemblages in inland lakes.
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Some human disturbances cause an increase to total species richness (e. g., fish

stocking, road proximity), while other disturbances result in a decrease in species

richness by fragmenting lake connectivity (e.g., dams). Since anthropogenic disturbances

vary across the landscape (e.g., dam densities, stocking rates within and across states),

and because features of the natural landscape may mediate effects of human disturbances

on fish assemblages, impacts from human disturbances on inland lake fish assemblages

should be measured more broadly than in a single lake or even single state and should

measure the effects of disturbances on groups of naturally similar lakes (i.e. fish

assemblages). However, to date, research investigating effects of human disturbances on

fish assemblages has typically looked at a particular species, only in-lake features (such

as CWD), or a small set of water bodies in a single state (Rahel 1984, Roth et al. 2007).

Therefore, I hypothesize that measuring effects of anthropogenic disturbances on fish

assemblages in classes of naturally similar lakes across a broad region will reveal unique

patterns otherwise masked by lake heterogeneity.

In order to measure the effects of anthropogenic disturbances on subgroups of

naturally similar lakes (lake classes), I first developed a hydrogeomorphic-based lake

classification system (that accounted for anthropogenic disturbances) using only the

native fish species within each lake (see Chapter 1 for details). I chose native species

richness (as opposed to species abundance or assemblage type) to make a more

straightforward comparison between different regions, each with different fish species

composition. In this effort, I identified the most significant natural predictor variables

across 360 lakes, subdividing the original group of lakes into 10 classes, ranging in size

from 10 to 69 lakes. The classification system was driven primarily by lake area,
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cumulative catchment area, and the ecoregion (ecological drainage unit, EDU; Higgins et

al. 2005) in which each lake was located (Figure 3). The mean native species richness

across classes ranged from a low of 5.1 in Class A to a high of 20.4 in Class J (Figure 3

described in Chapter 1). In this chapter, I then sought to compare the effects of

anthropogenic disturbances on total native species richness within each lake class.

Because lake area was the primary variable in splitting all lakes into two subgroups,

small lakes (< 53 ha, Classes A, B, C, and D) and large lakes (> 53 ha, Classes E, F, G,

H, and I) (Figure 3 described in chapter 1), I also compared the effects of anthropogenic

disturbances between lakes in these broader size-based groupings.

Lastly, to look at fish assemblage responses in more detail than total native

species richness as affected by human disturbances across sizes or classes of lakes, I

determined what disturbance variables affected specific groups. To do so, I assigned fish

species to one of two groups: recreational or non-recreational. These two categories of

fish likely function somewhat differently in ecosystems, and they often are associated

with contrasting social values. Recreational species often are highly sought after by

humans, hold relatively high economic value, and are typically at higher trophic levels.

Non-recreational species have little economic value and hold lower trophic status; in

some cases, they are conserved only to maintain biodiversity in a lake. Because each fish

type has different ecosystem and social value, I hypothesized that recreational and non-

recreational species would differ in their response to a given disturbance. For example,

walleye (recreational) and emerald Shiner (non-recreational) may both be native to a

given state, but each holds unique values within that state. In this sense, a specific

anthropogenic disturbance (e.g., fish stocking) may affect recreational native species

40



differently than non-recreational native species in a set of lakes within or across states.

Disturbance metrics such as road density or human population density, which have been

attributed to fishing pressure (Magnuson et al. 1998), is likely attributable to the presence

of recreational species in a lake rather than non-recreational species. Therefore, these

species disturbances may affect recreational species differently than non-recreational.

Therefore, I measured the effects of human disturbances on recreational native species

and non-recreational native species within each of my 10 hydrogeomorphic-based lake

classes.

Methods

Selecting a Lake Classification from Chapter 1

In Chapter 1, I created two classifications of lakes based on the hydrogeomorphic

landscape using total species richness (Total SR) and native species richness (Native SR)

as response variables, while accounting for anthropogenic disturbances (Chapter 1:

Figures 2 and 3). Both classifications explained 67% of the total variation in species

richness (combined variation explained by multiple regression and CART analysis), had a

similar number of lake classes (Total SR, 11 classes; Native SR, 10 classes), and each

included very similar natural landscape predictors (e.g., lake area, EDU). Because the

Total SR and Native SR classifications were driven by similar predictors, contained lake

classes located in relatively similar areas of the 5-state region (Chapter 1: Figures 4, 5, 6,

and 7), and explained variation equally well, neither classification was objectively

deemed “better” than the other. However, since Chapter 2 is primarily focused on

studying how humans have impacted “natural” lake fish assemblages, I used the Native
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SR classification in Chapter 2. The Native SR classification of 360 lakes is made up of

10 classes with membership ranging from 10 to 69 lakes across Maine, New Hampshire,

Michigan, Wisconsin, and Iowa (Chapter 1: Figures 3, 6, and 7).

Fish Assemblages of the 10 Lake Classes

Each of the 10 final classes from the Native SR classification from Chapter 1

(Figure 3) was comprised of a relatively unique range and mean value of total native

species richness. Because all lakes spanned across a wide spatial range and contained

such a variable assemblage of fish species from state to state, I first wanted to determine

if classes differed in terms of their predominant fish species. To do so, I determined the

most prevalent species in each class, and if the most prevalent species were common for

the vast majority of the lakes in each class. I conducted this analysis to determine if most

of the lakes in a class contained the same three or four most common species (indicating

some similarity in species composition in that class) or whether species composition,

even of the most prevalent species, was highly variable among lakes in a class. Lastly, I

compared the most prevalent species across classes to see if similar species were most

prevalent in several classes, or whether the identity of predominant species could be used

to distinguish among lake classes. For all species assemblage comparisons within and

across classes, I created frequency histograms and displayed the percentage of lakes in

each class for which each species was present.

Native Species Richness Response Metrics
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By state, I classified each fish species as either recreational or non-recreational. I

used each state’s recreational fishing guide (published by the state’s fish management

agency) as a standard, (Maine, Department of Inland Fisheries and Wildlife 2008; New

Hampshire, Fish and Game Department 2009; Michigan, Department of Natural

Resources 2009; Wisconsin, Department of Natural Resources 2009; and Iowa,

Department of Natural Resources 2009). If a species had a bag/size limit or

seasonal/gear restriction associated with it, it was declared recreational; fish with no

restrictions were deemed non-recreational (Table 10).

In total, three fish species response metrics were created, total native species

richness (SR), native recreational SR, and native non-recreational SR (Table 10). Total

native SR was used as the response variable to analyze the effects of disturbances

between small and large lakes (Table 1 1) and within each of the 10 classes of lakes

created in Chapter 1. Within an individual lake class (Chapter 1: Figure 3; Classes A

through J), native recreational SR and native non-recreational SR also were used to

compare the effects of human disturbances on these different fish types (Tables 12 and

13).

Effects of Anthropogenic Disturbances on Fish Species Richness

I transformed all anthropogenic disturbance and fish response metrics to meet

normality assumptions for regression models including arcsine-square root

transformation for land use/cover variables and natural log, squared, or square root for all

other variables. For metrics that did not meet normality assumptions, even after

transformation (approximately 75% of the variables did not meet the assumptions for any
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of the transformations), 1 selected the data transformation that resulted in the distribution

most approaching normality and with the fewest number of outliers. In short, because for

some metrics there was not a transformation that completely worked, I used the

transformation that did the “best relative job”.

In order to measure the effects of human disturbances on fish species richness, I

first ran multiple linear regressions of total native SR against non-highly-correlated (r <

0.6) human disturbance variables that included metrics of fish stocking, dam density, land

use/cover, road density, and human population density (Tables 14 and 15). Best model

selection was used to determine which disturbance variables were significant (p <0.05)

and to include in the final model (SAS version 9.1). I used condition index (CI) and

variance inflation factors (VIP) to determine whether multicolinearity among predictor

variables was unduly influencing my models. Variables with CI values greater than 10

and VIP values greater than 30 in the regression were removed from the model (Hair et

al. 1995). The best model had both the highest adjusted R-squared and lowest Akaike's

information criterion (AIC) value.

I ran multiple linear regression models using disturbance variables with total

native SR as the response metric to determine any effects (positive or negative) of human

disturbances. Models were run for each of the Native SR lake classes from Chapter 1

(Figure 3) and for each of the two broader groups of small lakes (< 53 ha, 133 lakes) and

large lakes (> 53 ha, 227 lakes). Lastly, to explore how different species vary in their

response to disturbances, I conducted the same analysis for recreational and non-

recreational species within each of the 10 classes. To compare the relative ability of the

models to explain variation in species richness, weighted R-squared values were
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calculated by multiplying the number of lakes in a class (or size group) by the total R-

squared value in that specific class (or size grouP), adding those values all together, and

then dividing by all lakes (360).

Results

Fish Species Assemblages in 10 Lake Classes

Across all 10 classes, sunfishes such as bluegill and pumpkinseeds were

“dominant” species (at least one was in the top three species by frequency in every class);

largemouth bass and black crappie were consistently “dominant” as well (Figures 8

through 17). Brown bullhead, yellow perch, golden shiner, walleye, chain pickerel and

northern pike were also some of the more prevalent species; each of these species was

one of the top three “dominant” species in at least one class (Figures 8 through 17). Eight

classes of the 10 were comprised of dominant species in a vast majority of the lakes

(Classes B, C, D, E, F, H, 1 and J), at least 83 % of the lakes (Class F) and as high as 100

% of the lakes in two other classes (Classes D and J). Meaning, for a given class, the

most dominant species were typically the same three or four species in most of the lakes

rather than high variability in assemblages lake to lake in a class. Because the most

prevalent species in these eight classes were common to so many lakes in the class, it

indicates a lack of within-class variability of assemblage type (as defined by the most

prevalent species). In fact, Classes B, C, D, and F had the same three species as their

most frequent: largemouth bass, bluegill, and black crappie (Figures 9, 10, 11, and 13).

Therefore, what distinguishes these classes is not their most common species (as

determined by presence/absence), but rather the presence/absence of rarer taxa.

45



Classes A and G were more variable in species composition (Figures 8 and 14).

The most prevalent (frequently observed) species (Class A, brown bullhead, golden

shiner, pumpkinseed, yellow perch; Class G, bluegill, largemouth bass, yellow perch)

were in fewer than half the lakes for Class A and approximately 63 % of the lakes in

Class G (Figures 8 and 14). This result suggests that compared to the other eight classes,

these two classes, A and G, have more variability in species composition across their

lakes. Because these classes contain lakes from all five states; there are many

assemblage types within the class with the dominant species being highly variable. The

other eight classes have lakes from only four states (Classes C and F), three states

(Classes B, D, H, 1, and J) and two states (Class E), indicating less variability in

assemblage types and therefore more consistent dominant species for a given class.

Comparing Disturbance Effects Among Lake Classes

My exploration of how anthropogenic disturbances were associated with total

native species richness across lake classes included ten class-specific models. Of these

models, eight had one to three significant predictor variables resulting in adjusted R-

squared values ranging from 0.17 to 0.38 across the classes (Table 16). Two class-

specific models (B and J) had no significant predictor variables, four classes (A, D, E,

and F) had a single significant predictor, two classes (H and I) had two significant

predictors, and two classes (C and G) had three significant predictors (Table 16). The

total weighted adjusted R-squared across all 360 lakes (10 classes) was 0.20; 20% of the

variation of total native SR in the natural lake classes was explained by anthropogenic

disturbances (Table 16). Human population density was positively associated with six
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different lake classes (small and large lakes) and road density was the only disturbance

metric to have no significant association with any lake classes (Table 16). The number of

species stocked (Class G), dam density per EDU (Class E), dam density per 12-digit

HUC (Class C), agricultural land use (Class H), urban land use (Class I) and agricultural

and urban combined land use (Class E, F, and G) all had a negative association with total

native SR in some lake classes (Table 16).

Comparing Disturbance Effects Between Small and Large Lakes

My exploration of how anthropogenic disturbances were associated with total

native species richness across a large range of lake sizes included two main regression

models based on lake size. The small lake (< 53 ha) regression model had three

significant predictors; number of dams per 12-digit HUC (negative), road density

(positive), and human population density (positive) together explained 21 % of the

variation in total native species richness across 133 lakes (Table 17). The large lake (>

53 ha) regression model had five significant predictors. The number of dams per 12-digit

HUC (negative association), road density (positive association), and human population

density (positive association) had the same impacts on large lakes as small lakes and the

number of species stocked (negative association) and agricultural land use (negative

association) additionally affected large lakes (Table 17). However, even though there

were two additional human disturbance metrics in the large lakes model, the five

significant metrics collectively explained only 12 % of the variation across 227 lakes

(Table 17). The total weighted adjusted R-squared across the two lake size groups is
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0.15; 15% of the variation of total native SR is explained by anthropogenic disturbances

(Table 17).

Comparing Disturbance Effects on Recreational and Non-Recreational Species

Richness

My exploration of how anthropogenic disturbances have affected native

recreational and non-recreational species richness included ten class-specific models. Of

the native recreational species richness models, eight of them had one to three significant

predictor variables resulting in adjusted R-squared values ranging from 0.08 to 0.71

across the classes (Table 18). Two class-specific models (I and J) had no significant

predictor variables, two classes (F and H) had only a single significant predictor, three

classes (A, B, and C) had two significant predictors, and three classes (D, E, and G) had

three significant predictors (Table 18). The total weighted adjusted R-squared across all

360 lakes (10 classes) was 0.25; 25 % of the variation of native recreational SR in the

natural lake classes was explained by anthropogenic disturbances.

In the native non-recreational species richness models, eight of them had one to

three significant predictor variables resulting in adjusted R-squared values ranging from

0.14 to 0.81 across the classes (Table 19). Two class-specific models (B and J) had no

significant predictor variables, one class (C) had only a single significant predictor, five

classes (A, D, F, H, and I) had two significant predictors, and two classes (E and G) had

three significant predictors (Table 19). The total weighted adjusted R-squared across all

360 lakes (10 classes) was 0.33; 33 % of the variation of native non-recreational SR in

the natural lake classes was explained by anthropogenic disturbances.
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In smaller lakes (Classes A, B, C, and D), human disturbances affected native

recreational species differently than native non-recreational species; these differences

were seen in the significant predictors in the final regression models. Native recreational

SR was influenced primarily by the negative associations with dam density (exception

Class D) and positive associations with urban land, agriculture and urban land combined,

road density, and human population density (Table 18). Native non-recreational SR was

also positively associated with road density and human population density; however, land

use/cover metrics (e.g., agriculture, urban, and agriculture and urban combined) had

negative associations (Table 19).

In large lakes (Classes E, F, G, H, I, and J), native recreational SR was affected by

negative associations with fish stocking and the combined land cover/use of agriculture

and urban (Table 18). Native recreational SR was positively associated with dam

density, agriculture, road density, and human population density. Native non-recreational

SR was negatively associated with darn density for some classes (F and G) but positively

associated with Class H (Table 19). Combined agriculture and urban land use/cover also

had differing associations depending on lake class for native non-recreational SR,

positive in Class E, but negative in Classes F and H (Table 19). Agriculture and urban

land cover/use as individual disturbances were negatively associated with native non-

recreational species; human population density was a positive association. Overall,

within a given class, recreational species and non-recreational species were affected

differently by anthropogenic disturbances. Because these two types of fish hold such

different social values and ecosystem functions, humans appear to have varying
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associations with different native species rather than consistent impacts across all fish in

inland lakes.

Discussion

Measuring Anthropogenic Disturbance Effects on Native Species in Lake Classes

Almost all of the anthropogenic disturbances included in my models (all variables

but road density and human population density) were negatively related to total native SR

(for the eight classes with significant models). An increase in the number of fish species

stocked was associated with a decrease in native fishes (Class G); literature has shown

that an introduction of non-native species into lakes has caused declines in native species

abundance (Irz et al. 2004). My metric of stocking (number of species) included all

native and non-native species, therefore, it can not be concluded that the negative impact

on native fishes was due solely to stocking non-native species. However, because

stocking can result in altered food web dynamics, and the loss of a species from a system

(through competition or predation), among many other changes, fish stocking can

certainly have the effect of lowering species richness in lakes (Anderson and Schupp

1986, Radomski and Goeman 1995, Holmlund and Hammer 2004).

Dam densities had similar associations as fish stocking (negative) in Classes C

(per 12-digit HUC) and E (per EDU) (Table 16). Johnson et a1. (2008) found that non-

indigenous species were more likely to invade impoundments (dam created) than natural

lakes; this certainly has repercussions on native species. Darn density, either scaled in

12-digit HUC’s or EDU’s, had a negative association with total native SR. Dams
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fragment systems that would otherwise be connected in their absence, causing changes to

the species composition (Hill et al. 1998, Brunberg and Blomqvist 2001).

Individual land use/cover metrics of agriculture (Class H) and urban (Class I), as

well as their combined use/cover (Classes C, F, and G) all impacted total native SR

negatively (Table 16). Agriculture was highly correlated with agriculture and urban

combined (r = 0.96). Further, forest land cover was highly negatively correlated with

agriculture (r = -0.85) and agriculture and urban combined (r = -0.89). Literature has

shown that loss of forested land in the riparian of a lake (i.e., loss of CWD) can result in

changes to the fish assemblage in a lake (Roth et al. 2007). In Classes C, F, and G,

higher agriculture and urban combined land use (i.e., lower forested land cover) had

negative associations with total native SR. Lakes with the highest relative total native SR

(by class) were mostly found in Michigan and Wisconsin (i.e., higher forest, lower

agriculture) whereas less species-rich lakes were mostly in Iowa (i.e., lower forest, high

agriculture) (Chapter 1: Figures 6 and 7). However, it can be generally stated that Iowa

had lower species richness overall than Michigan and Wisconsin, regardless of lake class,

so agricultural and urban land were likely not the only factors, natural or human, causing

differences between the two broad regions.

Human population density appeared positively associated with total native SR

across the entire five state region; higher human population densities in six classes (small

lakes, A, C, D; large lakes, G, H, and 1) correspond to higher native SR. While road

density did not significantly affect any class, lakes near roads (i.e., areas of relatively

higher human populations) can have impacts on fish assemblages through higher fishing

pressure (boat movement and bait buckets) and intentional fish stocking rates as
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compared to remote lakes (Rahel 1984, Kratz et al. 1997, Magnuson et al. 1998). While

species from these introductions were often non-native to the specific lake, it was likely

the species was native to the state. Given that we determined native/non-native status for

each species by state, an increase in total native SR in areas of higher human population

densities could actually be a species native to the state (non-native to the lake) that has

been moved from one lake to another, increasing total native SR in lakes near human

population centers. In addition, humans may choose to live near lakes with higher

species richness; therefore, it is not necessarily that higher SR is an effect from humans

but an association with higher human populations.

Measuring Anthropogenic Disturbance Effects on Native Species in Small and

Large Lakes

The number of species stocked was negatively associated with total native SR in

large lakes while dam density (per 12-digit HUC) was negatively associated with total

native SR in both sizes of lakes. These results corroborate the literature in that stocking

can have negative impacts on a lake’s fish community while dams fragment systems and

often are associated with impoundments (i.e., higher human access) (Irz et al. 2004,

Johnson et al. 2008) (Table 17). Agricultural land use had a negative association with

total native SR in larger lakes, potentially due to the inverse relationship agriculture had

with forested land cover (r = -0.85) (data not shown). Many of the lakes with relatively

lower total native SR were located in Iowa (i.e., high agriculture, low forest) while the

- lakes with the highest relative native SR were in Michigan and Wisconsin, where there is

less agricultural land (Chapter 1: Figure 6). These results reflect the literature; areas of

lower forested cover (i.e., higher agriculture, increased shoreline development) have led
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to changes in fish community structure (Jennings et al. 1999, Carpenter et a1. 2007). This

does not imply that Iowa was once vastly covered by forest and now is completely altered

by humans to be covered with agriculture, but broad-scale patterns of species richness

(e.g., low versus high native species richness) may reflect the broad land cover types that

currently exist in our study region.

Road density and human population density were positively associated with total

native SR in small and large lakes (Table 17). A lake’s proximity to roads has previously

been shown to negatively impact species richness (Rahel 1984, Magnuson et al. 1998).

However, since road density was moderately correlated with human population density in

our study (r = 0.52, data not shown), it is entirely possible that road density is exhibiting

the same positive effects on total native SR as human population density (Tables 16 and

17). Additionally, our metric for roads was calculated as the road density around the lake

(within a 500-m buffer), not distance to the nearest road (Rahel 1984, Magnuson et al.

1998). Our measure of road density around a lake may actually better-reflect the

likelihood of human access to lakes because as road density increases it is likely that

access is easier, potentially leading to a greater likelihood of species richness to increase

through introductions. Similarly to what we found with road density, as human

populations increased around small and large lakes, total native SR increased (Table 17).

Regardless of lake size, native species richness was higher in areas with increased road

and human population density, increased accessibility of humans to lakes was positively

associated with greater biodiversity.
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Examining Recreational and Non-Recreational Species Within Lake Classes

The effects of anthropogenic disturbances explained the variation in native

recreational species (R2 = 0.25) and native non-recreational species (R2 = 0.33) across all

classes of lakes (Tables 18 and 19), the variation explained in total native SR was 20 %

(Table 16). Human disturbances explained over 50% of the variation in recreational

native SR for Classes D, E, and G and over 50% of the variation in non-recreational

native SR for Classes A, E, F, and G. Conversely, the most variation human disturbances

were able to explain in total native SR was only 38% (Class F). More variation was

explained by human disturbances in the Native SR lake classes when the specific type of

species was identified for all native fish (recreational or non-recreational), rather than

total native SR.

Specifically comparing recreational and non-recreational species within classes,

the effects of human disturbances explain recreational native SR better in classes B (R2 =

0.43) and D (R2 = 0.71) than non-recreational native SR (Class B, R2 = Non significant

model; Class D, R2 = 0.34) (Tables 18 and 19). Conversely, the effects of human

disturbances explained a greater amount of variation in non-recreational native SR (Class

E, R2 = 0.81; Class F, R2 = 0.59) than recreational native SR (Class E, R2 = 0.52; Class F,

R2 = 0.08). The same trend could be seen in Class A where native non—recreational SR

(R2 = 0.55) was explained much better by disturbances than was native recreational (R2 =

0.22). Because non-recreational species were more prevalent in lake classes than

recreational species (Figures 8 through 17), variability was higher within a class for non-

recreational species. In this sense, the greater within-class variability of non-recreational
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species likely made them a better response metric that total native SR or native

recreational SR for measuring the effects of human disturbances.

Recreational species dominated individual lakes in almost all classes by

frequency; for the most part, recreational species comprised the top three or four most

frequent species in a lake. However, non-recreational species far outnumbered

recreational species in every state (Table 10), therefore, it was reasonable to expect that

more variation would be explained using non-recreational species as a response metric.

Non-recreational species were more frequent for an entire class, however, unique taxa of

families such as darters, minnows, madtoms, sculpins and shiners were only present in a

few lakes; whereas, recreational species were typically the dominant species in almost all

lakes, (Figures 8 through 17). In fact, many non-recreational species occurred in only a

few lakes within a class, many of which were likely intolerant of human disturbances.

Other researchers have shown that human disturbances are likely to affect species

intolerant of human-induced stress; these species are therefore strong biotic indicators of

anthropogenic disturbance (Drake and Pereira 2002). The presence of these unique

species appeared to identify lakes with high biodiversity, a value many lake managers

strongly consider when making decisions. Non-recreational species appear to be a key

group of fish that managers and researchers could examine within specific lake classes

for management in the face of anthropogenic disturbances. Ultimately, they may help to

indicate what lakes human-induced stressors are affecting intolerant species, therefore

warranting conservation efforts to maintain biodiversity.
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Conclusions

The effects of human disturbances on my study lakes were generally consistent

with the literature, although they were exhibited at a much broader scale than previous

studies. The disturbances that had generally positive associations with fish species

richness were road density and human population density. With greater accessibility to

lakes (i.e., more roads and people), fishing pressure and stocking rates have been shown

to increase, therefore, likely more accidental fish introductions through bait buckets (i.e.,

fishing) (Kratz et al. 1997, and Magnuson et al. 1998). Dams (local scale and regional

scale), agricultural and urban land use/cover, and fish stocking were negatively

associated with fish species richness in my study lakes. Dams fragment connectivity of

freshwater systems, restricting the movement of fish to naturally colonize a new lake, and

cuting off access to stream refuge for fish during winter (hypoxic) conditions. Shoreline

development (i.e., increased agriculture and urban land and corresponding loss of forest)

results in the loss of habitat (CWD) for fish and likely causes negative impacts through

increased nutrient inputs and alterations to the near shore zones (e.g., removal of

macrophytes).Stocking of non-native species (either to a lake or even entire state (e.g.,

brown trout)) may initially increases species richness, although long-term food web

dynamics and loss of niche space can end in the loss of other species (i.e., decrease in

species richness). The metrics I created using the best, readily-available stocking data do

not account for all purposeful species introductions into lakes. For example, I acquired

state agency stocking information, and for Michigan and Wisconsin, these data were

post-1970. However, stocking is known to have been conducted long before then, and in

most states, private stocking programs likely result in introductions for which agencies
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have no records. Besides intentional stocking, unintentional introductions (e.g., bait

buckets, boat movement) also affect the distribution of species and surely influence the

overall distribution of fish species across my five states. Altogether, my estimates of fish

stocking were likely conservative and did not capture all forms of human-induced

introductions of fish species (native or non-native) into inland lakes.

Many different fish response metrics were considered for analysis, ultimately, I

decided on using species richness. Because of the large spatial scale of this study and

how much fish distributions vary across all five states, there was high variability in the

fish assemblages among all lakes and classes. Because of this, it seemed most practical

to use species richness rather than abundance of each species or assemblage type.

Species richness ultimately drives conservation approaches to management (e. g.,

maintaining biodiversity) and helps to account for the distributional differences of fish

species that is inherent when researching lakes across 5 states. Non-recreational species

appear to vary across and within classes making them more useful for identifying

disturbances than recreational species. Species abundance in lakes where recreational

fishing is prevalent is often driven by management decisions to maintain opportunities to

catch game species. This fact likely compromises the use of recreational species richness

as a response metric because each agency has a different fish assemblage to manage and

constituents for which to manage. Different recreational values such as bass fishing

versus trout fishing makes comparing lake-to-lake species abundances more difficult than

a general species count. Managing with biodiversity (species richness) in mind crosses

political boundaries and somewhat mitigates differences in species distributions and
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abundances across such a large region like in this study, therefore, species richness was

selected as the sole response metric.

Future research of relationships between anthropogenic disturbances and fish

species richness might also benefit from analyses such as general additive models (GAM)

to identify such non-linear relationships. For example, I would expect that non-linear

relationships might be revealed in fish stocking because adding a new species into a lake

has a positive effect on species richness. However, continued addition of new species

can alter ecosystem dynamics leading to an overall species richness decrease. Because

human disturbances can likely have non-linear relationships with fish assemblages, future

research should consider additional analysis to linear regression.

In conclusion, my research highlighted the ability to identify specific effects of

humans on inland lake fish assemblages; species richness was positively and negatively

associated with a wide range of anthropogenic disturbances. Lake managers could use

this information to help mitigate the loss of species and conserve biodiversity;

additionally, managers may able to create and improve species richness using other

management tools. For the most part, despite the many varying effects (positive and

negative) on fish within a class, lakes were dominated primarily by the same three or four

species. Therefore, future research and management may be able to identify these

dominant species and make inferences as to how speciose a lake might be given the

presence or absence of a few key species. This may help to reduce the amount of in-lake

sampling is needed to make decisions across a large number of lakes. It was more

effective and informative to measure human disturbances in classes of lakes rather than
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across all lakes; this would also help to make decisions for a large number of lakes while

only have resources to collect in-lake data on a subset.
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Thesis Conclusions

In Chapter 1, I successfully developed lake classifications for total and native

species richness using hyrdogeomorphic features of the landscape at multiple spatial

scales. In the future, managers can use classifications such as these to assign lakes for

which only hydrogeomorphic data are available to classes. Class-specific management

options can then be pursued by managers, allowing them to incorporate the natural

variation among lakes even when it is difficult to obtain in-lake data. Even though

individual lakes are unique in some respects, they share similar characteristics due to

having similar local and even regional characteristics with other lakes which collectively

shape fish communities. My research and lake classifications were not necessarily

intended to compare results with other studies (indeed the variety of approaches and

variables used across studies challenges statistical comparisons of classification systems),

but rather to explore previously overlooked predictor metrics and their ability to explain

variation in fish assemblages in a classification.

My study was unique in that I incorporated multiple states, each with a wide

ranging set of natural features and human disturbances. Regional-scale predictors, which

have been incorporated into classification efforts relatively recently and lack thorough

evaluation, were useful in explaining variation in species richness, and valuable for

creating disturbance metrics such as the number of dams per EDU. Even though the

primary splits in all classifications were local features, regional-scale predictors also were

included in several of the classifications, highlighting the importance of regional-scale

predictors.

60



To investigate the effects of human disturbances on inland lake fish assemblages,

it was more useful to quantify these relations within classes than across all lakes. 1 found

that the effects of human disturbances such as dams (local scale and regional scale),

agricultural land use and urban land use, and stocking all are associated with lower

species richness. In contrast, road density and human population density generally were

associated with higher species richness. Species richness was a useful response metric

for studying lakes across five states and native non-recreational species richness, in

particular, appeared to be the best indicator of human disturbances on lakes of those I

considered. Non-recreational species were the most prevalent by frequency in all classes;

presence and absence of unique taxa therefore helped to identify patterns of biodiversity.

Species richness should be a concern of management agencies for conservation goals,

even while working to ensure the presence of recreational species for sport fisheries. In

conclusion, lake classifications should be considered by state agencies as an approach to

managing a large number of lakes while having information on a subset. By dividing

lakes into classes using map-based characteristics, lake managers may be able to: (a)

appropriate resources otherwise used for rigorous and expensive sampling programs to

other projects, and (b) make somewhat informed decisions about the management of

individual lakes, even when in—lake data are lacking.

My research highlights the importance of within and among management agency

collaboration, or lack there of. I was able to collect natural landscape and human

disturbance data on more than 2,300 lakes. In contrast, fish assemblage data were only

available for approximately 550 lakes across all five states, reflecting the fact that fish

assemblage data are more difficult to gather than map-based features. Even within a
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single state, agencies had non-overlapping monitoring programs, meaning that agencies

collecting water quality data did not coordinate with agencies collecting fish data in order

to sample the same lakes. As a result, nearly 200 lakes of my 550 lakes with fish

assemblage data lacked the other data that I needed for my analysis, ultimately because

they had not been sampled by the water quality management agency. From the

standpoint of developing classification models such as those described here, coordinated

monitoring efforts across agencies would be extremely beneficial. Efforts such as the

Environmental Protection Agencies’ National Lakes Assessment help align multi-state

and even nationwide collaboration and management, which I view as a step in the right

direction.
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Appendix

Tables

Table l. The number of lakes in each state for which data were obtained according to

variable category. ‘Overlap’ indicates the lakes used in analysis because complete data

were available.
 

 

 

Variable Category ME NH MI WI IA TOTAL

Hydrogeomorphic 569 740 486 426 127 2348

Anthropogenic 658 725 637 426 127 2573

Fish Assemblage 65 31 125 219 115 555

Overlap 28 27 105 90 110 360
 

63



Table 2. List of hydrogeomorphic variables (regionalization, extinction/isolation,

hydrology, morphometry, land use/cover) and their measurement units arranged

according to category. NA indicates a non-continuous variable and therefore does not

have a median, minimum, or maximum. Land use/cover coverage’s were calculated

within a 500-m buffer of the lake.

 

 

Category/Name Median Minimum Maximum

Regionalization

6-Digit Hydrologic Unit Code (HUC) 97 Total Regions

Ecological Drainage Unit (EDU) 28 Total Regions

Freshwater Ecoregion 5 Total Regions

Isolation

Lake Glaciated or Not Glaciated NA NA NA

Lake Seepage or Drainage NA NA NA

# of Lakes within an EDU 1,549 159 2,856

# of Lakes within a 12-digit HUC 9 1 89

# of Surface Water Connections 2 0 37

Lake Elevation (m) 303 17 570

Extinction

Lake Area (ha) 84.4 3.3 6,039.1

Lake Maximum Depth (m) 8.5 1.2 40.8

Lake Mean Depth (m) 3.1 0.8 12.2

Lake Perimeter (m) 6,444 722 185,962

Hydrology

Mean Base Flow (%) 57.0 14.0 89.0

Mean Precipitation (cm/yr) 84.7 65.4 124.3

Mean Runoff (cm/yr) 27.9 5.1 76.2

Watershed Cumulative Catchment Area (kmz) 11 0.1 31,080

Land Use/Cover (%)

Water 2.4 0 35.2

Forest 49.8 .6 99.7

Grassland/Field 1.0 0.0 36.4

Wetland Woody 3.9 0.0 71.8

Wetland Herbaceous 1.4 0.0 16.3

Wetland Combined 5.7 0.0 74.9

All Other 0.0 0.0 11.0
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Table 3. List of anthropogenic disturbance variables and their measurement units (land

use/cover, dams, roads, fish stocking, human populations) arranged according to

category. Land use/cover coverage’s were calculated within a 500-m buffer of the lake.

 

Categogy/Name Median Minimum Maximum

Land Use/Cover (%)

Urban 1.2 0.0 66.1

Agriculture Pasture 6.0 0.0 72.9

Agriculture Row Crop 10.2 0.0 89.8

Agriculture Other 0.0 0.0 33.5

Agriculture Combined 20.1 0.0 94.7

Agriculture and Urban 25.6 0.0 95.9

Dams

# of Dams within an EDU 558 48 3,634

# of Dams within a 12-digit HUC 2 0 59

Roads

Road Area in a 500 m Buffer (ft/acre) 38.7 0.0 141.7

Fish Stocking

# of Fish Species Stocked per Lake 1 0 22

# of Fish Stocking Events per Lake 14.5 0 393

# of Fish Stocking Events per Lake/Years of Data 0.3 O 5.1

Human Population

Human Population Density in 2000 1,083 18 68,636

Housing Densitv in 2000 ~ 816 34 29.749
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Table 5. List of fish assemblage response metrics used in building natural lake classes

(Total SR and Native SR). Values of each metric are for individual lakes but displayed

for the 5-state region and each individual state.

 

Response Metric Median Minimum Maximum

5-State

Total SR 11 1 26

Native SR 11 1 25

Maine

Total SR 9 l 16

Native SR 9 1 16

New Hampshire

Total SR 8 3 13

Native SR 6 2 10

Michigan

Total SR 15 3 26

Native SR 14 2 24

Wisconsin

Total SR 14 5 25

Native SR 14 5 25

Iowa

Total SR 8 4 21

Native SR 7 3 19
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Table 6. Summary of fish stocking by state agency (Maine-Department of Inland

Fisheries and Wildlife (DIFW), New Hampshire-Fish and Game Department (FGD),

Michigan-Department of Natural Resources (DNR), Wisconsin-Department of Natural

Resources (DNR), and Iowa-Department of Natural Resources (DNR)), range of years

across all lakes, statistics (median, minimum, and maximum) of the number of species

stocked per lake, and the total number of species stocked across all lakes in a state.

No. Sp. Stocked per Lake Total No. Sp.

State Ageng Years in Data Median Min. Max. Stocked in All Lakes

ME DIFW 1937-1996 2 0 9 10

NH FGD 1926-1996 2 0 8 13

MI DNR 1 979-2006 1 0 7 20

W1 DNR 1972-2005 2 0 5 16

IA DNR 1928_;2004 l 0 22 27
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Table 7. Final multiple regression model results for each response metric versus human

disturbance variables (n = 360 lakes for all analyses). All variables were significant at p

< .05.

 
 

Response Adjusted Parameter Standard

Variable R-Sguared Estimate Error

Total SR 0.16

Number of Fish Species Stocked -0.19 0.10

Number of Fish Stocking Events/Years in Data 0.21 0.10

Number of Dams per 12-Digit HUC -0.10 0.03

Agricultural Land Use -0.29 0.10

Human Population Density 0.40 0.06

Native SR 0.22

Number of Fish Species Stocked -0.18 0.10

Number of Stocking Events/Years in Data 0.22 0.10

Number of Dams per 12-Digit HUC -0.14 0.03

Agricultural Land Use (Pasture) 1.14 0.30

Agricultural Land Use (Crop) 0.58 0.30

All Agricultural and Urban Land Use Combined -l .30 0.28

Hum_an Population Densitv 0.52 0.07
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Table 8. Pearson correlation coefficients for those predictor variables with an r > 0.60.

Correlations are grouped by major category; anthropogenic disturbances only,

hydrogeomorphic features only, and anthropogenic disturbances and hydrogeomorphic

features combined.

Variable r

Anthropogenic Disturbances

Agriculture (All) Land Use vs Agriculture and Urban Land Use 0.96

Number of Stocking Events vs Number of Stocking Events/Years 0.95

Agriculture (Crop) Land Use vs Agriculture (All) Land Use 0.92

Number of Species Stocked vs Number of Stocking Events 0.90

Agriculture (Pasture) Land Use vs Agriculture (All) Land Use 0.89

Human Population Density 2000 vs Housing Density 2000 0.88

Agriculture (Crop) Land Use vs Agriculture and Urban Land Use 0.87

Number of Species Stocked vs Number of Stocking Events/Years 0.85

Agriculture (Pasture) Land Use vs Agriculture and Urban Land Use 0.82

Agriculture (Pasture) Land Use vs Agriculture (Crop) Land Use 0.67

Urban Land Use vs Agriculture (Other) Land Use 0.63

Hydrogeomorphic Features

Wetland (Woody) Cover vs Wetland (All) Cover 0.97

Lake Area vs Lake Perimeter 0.92

Lake Max Depth vs Lake Mean Depth 0.88

Forest Land Cover vs Mean Runoff 0.79

Lake Perimeter vs Cumulative Watershed Area 0.74

Lake Area vs Cumulative Watershed Area 0.70

Number of Surface Connections vs. Cumulative Watershed Area 0.69

Anthropogenic Disturbances and Hydrogeomorphic Features

Forest Land Cover vs Agriculture and Urban Land Use 089

Forest Land Cover vs Agriculture (All) Land Use -0.85

Mean Runoff vs Agriculture (All) Land Use -0.79

Mean Runoff vs Agriculture and Urban Land Use -0.78

Forest Land Cover vs Agriculture (Crop) Land Use -0.76

Mean Runoff vs Agriculture (Pasture) Land Use -0.73

Forest Land Cover vs Agriculture (Pasture) Land Use -0.72

Mean Runoff vs Agg’culture (Crop) Land Use -0.68
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Table 9. Summary of Total SR and Native SR lake classifications developed using a

range of CP values; listed is the number of classes, the range of lakes per class, total PRE

value, ANOVA F value, and ANOVA P-value. The last column indicates the percentage

of significant class-by-class pair-wise comparisons.

 

 

Total SR

Pair-wise

CP # of Classes # of Lakes PRE ANOVA F ANOVA P Comparisons 1%)

0.030 6 20-151 0.50 72.4 <.0001 93.3

0.025 7 20-1 17 0.53 64.8 <.0001 90.4

0.020 9 12-105 0.57 57.1 <.0001 75.0

0.015 11 7-105 0.60 51.3 <.0001 74.5

0.010 16 7-66 0.67 43.2 <.0001 62.5

Native SR

Pair-wise

CP # of Classes # of Lakes PRE ANOVA F ANOVA P Comparisons (%)

0.030 6 27-98 0.49 86.6 <.0001 86.6

0.025 6 27-98 0.49 86.6 <.0001 86.6

0.020 8 10-82 0.54 70.6 <.0001 85.7

0.015 10 10-69 0.58 64.8 <.0001 77.7

0.010 14 10-46 0.63 48.7 <.0001 67.0
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Table 10. Summary of the total number of native fish species by state with all native

separated into species that are native recreational and native non-recreational.

 

fife Total Native Native Recreational Native Non-Recreational

Maine 34 6 28

New Hampshire 19 7 12

Michigan 78 18 60

Wisconsin 86 l 7 69

Iowa 32 17 15
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Table 11. List of fish assemblage response metrics used in measuring anthropogenic

disturbance across natural lake classes (Native SR). Values of each metric are for

individual lakes but displayed across all lakes, small lakes only (< 53 ha), and large lakes

only (> 53 ha).

 

Response Metric Median Minimum Maximum

All Lakes (360)

Total Native SR 11 l 26

Small Lakes (133)

Total Native SR 7 l 21

Large Lakes (227)

Total Native SR 13 3 25
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Table 12. List of fish assemblage response metrics used in measuring anthropogenic

disturbance across natural lake classes (Native SR). Values of each metric are for

individual lakes but displayed across classes (A, B, C, and D) of small lakes only (< 53

ha).

 

Response Metric Median Minimum Maximum

Class A Lakes (31)

Total Native SR 5 1 10

Native Recreational SR 2 1 8

Native Non-Recreational SR 2 0 6

Class B Lakes (27)

Total Native SR 5 1 1

Native Recreational SR 5 1 8

Native Non-Recreational SR 0 0 6

Class C Lakes (57)

Total Native SR 8 16

Native Recreational SR 6 l 10

Native Non-Recreational SR 2 9

Class D Lakes (18)

Total Native SR 13 7 21

Native Recreational SR 7 5 12

Native Non-Recreational SR 5 0 14
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Table 13. List of fish assemblage response metrics used in measuring anthropogenic

disturbance across natural lake classes (Native SR). Values of each metric are for

individual lakes but displayed across classes (E, F, G, H, I, and J) of large lakes only (>

53 ha).

 

Response Metric Median Minimum Maximum

Class E Lakes (16)

Total Native SR 8 3 12

Native Recreational SR 5 1 5

Native Non-Recreational SR 2 2 9

Class F Lakes (36)

Total Native SR 10 6 15

Native Recreational SR 7 5 9

Native Non-Recreational SR 3 0 8

Class G Lakes (46)

Total Native SR 1 1 6 20

Native Recreational SR 7 l 13

Native Non-Recreational SR 6 0 13

Class H Lakes (50)

Total Native SR 13 5 20

Native Recreational SR 7 3 11

Native Non-Recreational SR 6 0 12

Class I Lakes (69)

Total Native SR 17 7 25

Native Recreational SR 8 4 12

Native Non-Recreational SR 8 2 16

Class J Lakes (10)

Total Native SR 21 16 24

Native Recreational SR 8 7 12

Native Non-Recreational SR 1 1 8 16
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Table 14. List of anthropogenic disturbance variables and their measurement units (land

use/cover, dams, roads, fish stocking, human populations) used in multiple regression

analysis, data displayed here are for small lakes only (<53 ha), Native SR classes A, B, C,

and D. Land use/cover coverage’s were calculated within a 500-m buffer of the lake.

 

Categog/Name Median Minimum Maximum

Land Use/Cover (%)

Urban 1.3 0.0 66.1

All Agriculture 33.8 0.0 94.7

Agriculture and Urban 47.1 0.0 95.9

Dams

# of Dams within an EDU 615 48 3,634

# of Dams within a 12-digit HUC 2 0 59

Roads

Road Area in a 500 m Buffer (ft/acre) 35.8 0.0 141.7

Fish Stocking

# of Fish Species Stocked per Lake 1 0 6

Human Population

Human Population Densitv in 2000 1L075 25 68.636
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Table 15. List of anthropogenic disturbance variables and their measurement units (land

use/cover, dams, roads, fish stocking, human populations) used in multiple regression

analysis, data displayed here are for large lakes only (>53 ha), Native SR classes E, F, G,

H, I, and J. Land use/cover coverage’s were calculated within a 500-m buffer of the lake.

 

Categopy/Name Median Minimum Maximum

Land Use/Cover (%)

Urban 1.1 0.0 60.0

All Agriculture 15.0 0.0 88.8

Agriculture and Urban 17.5 0.0 89.7

Dams

# of Dams within an EDU 558 51 3,634

# of Dams within a 12-digit HUC 2 0 46

Roads

Road Area in a 500 m Buffer (ft/acre) 41.3 0.3 131.9

Fish Stocking

# of Fish Species Stocked per Lake 1 0 22

Human Population

Hum_an Population Density in 2000 Q04 18 64.804
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