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ABSTRACT

UNIVERSAL REALIZABLE ANISOTROPIC PRESTRESS CLOSURE
FOR THE NORMALIZED REYNOLDS STRESS

By

Karuna Sree Koppula

The Reynolds averaged Navier-Stokes (RANS-) equation is an exact, albeit
unclosed, equation that relates the mean velocity field to the mean pressure field and the
Reynolds stress. The continuity equation and a Reynolds stress model provide a low-
order statistical closure for the RANS-equation. This research has developed a new
algebraic closure model for the Reynolds stress that is realizable for all turbulent flows.
In the new theory, the normalized Reynolds (NR-) stress is a solution to an implicit, non-
linear, dyadic-valued, algebraic equation that dcpends on the relative importance of a
local turbulent time scale, a local viscous time scale, a local time scale related to the
mean field velocity gradient, and a time scale associated with the frame of reference. The
theory stems from an analysis of the dynamic equation governing the fluctuating velocity
field of a constant property Newtonian fluid in a rotating frame of reference. Therefore,
the resulting closure can be applied in either inertial or non-inertial frames regardless of
the class of benchmark flows used to determine the phenomenological closure
parameters.

The foregoing low-order closure model for the RANS-equation generalizes carlier
research by Parks (1997) and Weispfennig (1997) based on an integral analysis of
turbulent fluctuating velocity fields and the physical assumption that all space-time

turbulent correlations have finite memories. In this research, the Parks-Weispfennig
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approach is extended to non-inertial frames. A preclosure equation shifts the turbulence
closure problem from the NR-stress to a normalized prestress. The prestress is caused by
pressure fluctuations and fluctuations in the instantaneous Reynolds stress. A self-
consistent hypothesis, similar to the one for the pressure/strain rate correlation, is used to
relate the prestress to the NR-stress. In the present research, a closure for the prestress is
developed and combined with the preclosure equation for the NR-stress to produce a
universal realizable anisotropic prestress (URAPS-) closure for the NR-stress. A critical
review of other algebraic closure models in the literature indicates that the URAPS-
closure provides an answer to one of the key questions in turbulence modeling: Can a
low-order closure model for the NR-stress be formulated that is realizable for all
turbulent flows independent of the specific benchmark flows used for calibration?

The URAPS-closure is formulated as a mapping of a non-negative operator into

itself. The mapping depends on the rotational operator Q associatcd with the frame of
reference, a local scalar-valued turbulent transport time scale tg, and an operator
<F>(=V<u>+2Q):

<u'u'>

I8

(§,TR <

I

>)=

(=

- R

tr(<u'u'>)’

The URAPS-closure is used to predict the components of the NR-stress for three
benchmark flows: rotating homogeneous decay, rotating homogeneous shear, and
spanwise rotating fully-developed channel flows. The URAPS-predictions are consistent
with complementary direct numerical simulations of these flows and, thereby, partially

supports its use as a closure model for the RANS-equation.
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CHAPTER 1

INTRODUCTION

1.1  Rationale for Turbulence Modeling Research

This research is based on the premise that the instantancous velocity and pressure
fields for rotating and non-rotating turbulent flows of constant property Newtonian fluids
are governed by the Navier-Stokes (NS-) equation and the continuity equation (sce

Greenspan, 1968; Piquet, 1999):

T
(Q-Q")-
p_x(E)x )§)+vvzg+0 (1.1)
P

Q)|QJ
~ |I=
+
=
Iy
I
|
<
—~~

where F=Vu+2Q. Egs(l.1) and (1.2) imply that the instantancous pressure

distribution satisfies a Poisson equation:

(o}
-

_VZ(%_K'(Q' )X )=V-(u-F) (1.3)

N
I

The independent variables(x,t) and the dependent variables (u,p) in thc above
equations are defined relative to a non-inertial frame-of-reference. The rotation operator

Q is related to the angular velocity of the frame by Q=¢-Q, where ¢ denotes the

permutation triadic. The same notation is used for an inertial frame-of-reference for
which Q=0.

For large Reynolds numbers, solutions to Eqs.(1.1) and (1.2) subject to
appropriate boundary conditions are unsteady, spatially three dimensional, and sensitive

to initial conditions. A direct numerical simulation (DNS) of these cquations is
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computationally intensive (see Chapter 1 and p. 349 in Pope, 2000) and is limited to
relatively simple geometries. This situation has motivated the development and use of
low-order statistical methods to study ensembles of solutions associated with Eqgs.(1.1)
and (1.2), rather than individual solutions.

An ensemble average of Eqgs.(1.1) and (1.2) yields ecxact, albeit unclosed,
equations for <u> and <p > that depend on the turbulent momentum flux p<uu'>.
The fluctuating velocity u' is defined as u'=u —<u>. An analysis of turbulent flows
based on low-order statistical moments has been an active area of rescarch for more than
a century. Previous studies have produced numerous and significant insights into the

behavior of thc Reynolds momentum flux p<uu'> or, equivalently, the Reynolds
stress, —p<uu'> (see Chen and Jaw, 1999; Piquet, 1999; and, Pope, 2000). The

Reynolds stress is fundamentally important in determining the behavior of all turbulent
flows, including non-rotating flows with streamline curvature and rotating flows
encountered in turbo-machinery, mixers, and fans (Gupta et al., 1984; Salhi and Cambon,

1997).

1.2 Turbulence Closure Problem
Unclosed Reynolds-Averaged Navier-Stokes Equation

The low-order statistical properties of turbulence are governed by the Reynolds-
averaged Navier-Stokes (RANS-) equation and the Reynolds-averaged continuity
equation. Ensemble averages of Egs. (1.1), (1.2) and (1.3) yield the following unclosed

equations:
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) (Q-aT).
0<u> - <p>_§(___= )5)+g+vV2<g>-—V-<g'g'> (1.4)

ot - = p 2
V.<u>=0 (1.5)
(0-an.
v s> X (=2= ) X )=+V-[<u>-<F>+V-<u'u'>]. (1.6)

These equations are fundamentally different from Eqgs. (1.1), (1.2) and (1.3) due to the

presence of the Reynolds stress, —p <u'u'>. The fluctuating velocity is u'(x,t) and
<F>(=V<u>+2Q) is an average kinematic operator. The ensemble-average

operator is linear, commutes with spatial and temporal derivatives, and has the property
that <<u>>=<u>; conscquently, <u'(x,t)>=0. Clearly, the use of Egs.(1.4) and
(1.5) for engineering design and analysis requires a closure model for the spccific
momentum flux <u'u'>. This closure problem is a major challenge for turbulence

rescarch and is the primary focus of this dissertation. Unlike the NS-equation, solutions
to a closed RANS-equation at high Reynolds numbers are temporally and spatially
smooth due to the presence of the Reynolds stress. The mean velocity field may be
unsteady and may have threc components that vary in all three spatial directions.
However, for specific boundary conditions and initial conditions on the mcan velocity
and the mean pressure fields, the RANS-equation may also have periodic solutions,
unique statistically stationary (i.e., steady statc) solutions, multiple statistically stationary
solutions, and statistically homogeneous solutions.

More than a century ago, Boussinesq (1877) used a phenomenological closure for
the Reynolds stress that assumes that the turbulent momentum flux depends on the local

m ean strain rate and the local statistical properties of the fluctuating velocity. Turbulent
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models based on this idea are often referred to as “eddy” viscosity closures (see, p. 359,

Pope, 2000) wherein

] ] 2
-p<u'u >=—§pk£+2pve<§> , tr<S>=0. 1.7
In the above equation for the Reynolds stress, k is the turbulent kinetic energy

(k=tr(<u'u'>)/2). The parameter pv, is a scalar-valued turbulent “eddy” viscosity,

which can be related to a local characteristic length scale and a local characteristic
velocity scale or, equivalently, to the local turbulent kinetic energy and a local

characteristic time scale:
Ve = foug = (1o vk W) = 1.k . (1.8)

The transport time scale t1.(=C,k/¢g) depends on the local turbulent time scale k/¢,

where ¢ is the local dissipation of turbulent kinetic energy, & = v tr(<( Vg')‘(Vg')T >).
Thus, with the turbulent Reynolds number defined as Re, = (k/¢g)/(v/k), the turbulent
“eddy” viscosity can be formally expressed as v./v=C, Re;. In the outer rcgion of
non-rotating, fully-developed channel flows, Re, > 30 thus, in some regions, the “eddy”
viscosity v.may be several orders of magnitude larger than the molecular kinematic

viscosity v. Deep in the viscous sublayer ncar a solid/fluid interface, the “eddy”
viscosity is less than the molecular kinematic viscosity. The no slip boundary condition
implies that v, — 0 near a solid/fluid interface.

In order to complete the Boussinesq (B-) closure for the RANS-equation, additional
closure models are needed for the turbulent kinetic energy k, the turbulent dissipation &,

and the dimensionless transport time scale t.e/k =C,,. Numerous closure models for
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these three statistical properties have emerged over the past forty years in support of
computational fluid dynamic simulations based on the RANS-equation (see, esp., Chen

and Jaw, 1999). The dimensionless group C, is usually assumed to be an algebraic

function of the local statistical state of the turbulence. Dimensional reasoning suggests

that C,, depends on three distinct time scales: a viscous time scale, v/k, a turbulent time

scale, k/¢, and mean ficld time scales related to the two nontrivial independent

invariants of the local mean strain rate <S> (ie, lg=tr(<S>-<S>) and
Olg =tr(<S>-<§8>-<S>)). Based on this hypothesis, C, dcpends on three

independent dimensionless groups: the turbulent Reynolds number (k/€)/(v/k); and, the

two dimensionless time scales: (k /a)l[s’/2 and (k/a)IIIg3,

Transport Equations for the Turbulent Kinetic Energy and the Turbulent Dissipation
Although an exact, albeit unclosed, cquation for turbulent kinetic energy can be

developed from the NS-equation (sce Appendix B), the following phenomenological

transport equation for the kinetic encrgy is used to support the research developed

hereinafter (see Hanjalic, 1994):
ok
E+<g>-Vk=+V-{2v-Vk}+{—<g'g'>:<§>}—{ €}. (1.9)

The three contributions in braces on the right-hand-side of Eq.(1.9) that cause changes in
the turbulent kinetic energy include: 1) the viscous flux and the turbulent flux of kinetic
energy relative to the mean velocity; 2) the “production” of kinetic energy due to the
coupling between the Reynolds stress and the mean strain ratc; and, 3) the dissipation of

kainetic energy. The “production” term may be either positive or negative, depending on
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the local coupling between the Reynolds stress and the mean strain rate (sec p. 180 in

Pope, 2000; Nishino et al., 1996). The dissipation of encrgy is positive for all turbulent

flows inasmuch as € =vitr(< (Vg')-(Vg')nr >)>0. The flux of turbulent kinetic energy,

-D, -Vk, acts like mixing for all turbulent flows provided the dispersion operator D,

satisfies the following conditions:

v

N p—t

+tg<u'u'> , >0 , D :VkVk>0 , VVks|Vk|>0. (1.10)

Although an exact, albeit unclosed, equation for turbulent dissipation can also be
developed from the NS-equation (sec Appendix C), the following complementary
phenomenological transport equation for the dissipation is uscd to support the research
developed hereinafter (see Appendix C):

oe —-<u'u'>:<S> €
—+<u>-Ve=+V-{D_-Veg}+Cp{—————=—} -Cp{—}. (1.11)
ot =V TR TR

The three contributions in braces on the right-hand-sidc of Eq.(1.11) that causc changes
in the turbulent dissipation include: 1) the viscous flux and the turbulent flux of turbulent
dissipation relative to the mean velocity; 2) the “production” of turbulent dissipation;
and, 3) the dissipation of turbulent dissipation. Rodi and Mansour (1993) give an
assessment of the individual contributions to the cxact equation for € based on DNS
results for non-rotating fully-developed channel flows. For a derivation of the exact

dissipation equation, see Appendix C.
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1.3 The Normalized Reynolds Stress
The foregoing results show that the Reynolds stress appears in the cquations that

govern the behavior of <u> and < p >. The normalized Reynolds (NR-) stress, defined

as follows
R=—8Y82>  RT_R t(R)=1, (1.12)
= tr(<u'u'>) = = =

has real eigenvalues and real eigenvectors that are mutually orthogonal. Most
significantly, the NR-stress is a non-negative, dyadic-valued operator inasmuch as its

quadratic form Qg (z) is non-ncgative for arbitrary unit vectors in a Euclidean three-

dimensional vector space:

_<(z-u'Yu'z)>

>0 , VzeE’s|z|=1. (1.13)
tr<u'u'>

Qr(z)=R:zz

Ineq.(1.13), which is equivalent to Schwartz’s inequalitics for the components of the NR-
stress, implies that the eigenvalues of the NR-stress are non-negative and satisfy the
following inequalities: 0<Agp; <Agpy <Ag3 <1 (cf, Schumann, 1977; Lumley, 1978;
Parks, 1997; and, p. 51 and p. 401 in Pope, 2000). Closure models for the NR-stress that
produce solutions that satisfy Ineq.(1.13) for all rotating and non-rotating turbulent flows
are universal and realizable, but they may not be accurate or practical.

The diagonal components of the NR-stress represent the fraction of turbulent
kinetic energy associated with each component of the instantaneous fluctuating velocity.
This information is often displayed on a triangular diagram (or energy simplex), which

represents a subset of positive points in a hyperplane of a three-dimensional Euclidean

3
space for which ZRii =1. For states with energy equally distributed among the
i=1
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velocity components, Ry; =Ry =R33=1/3. This is a necessary condition for an
isotropic state of turbulence, but it is not sufficient inasmuch as the eigenvalues of the
NR-stress may not be the same even if the diagonal components of R are the same. If the
eigenvalues of R are equal (i.e., Agj=Agy =Ag3=1/3), then the turbulent state is

isotropic.
Figure 1.1, which is similar to thc pseudo-triangular graphs introduced by
Lumley and others (see Lumley, 1978; Reynolds, 1987; and, p. 401 in Pope, 2000),

defines the states of turbulence in terms of the invariants of the anisotropic operator:

b

Py

, bT=b , tr(b)=0. (1.14)

R-

W | =

Table 1.1 defines the boundaries of the Lumley (L-) diagram in terms of the non-trivial
invariants of the anisotropic operator and the eigenvalues of the NR-stress. For a
derivation of the inequalities presented in Tablc 1.1, sec Parks (1997). In this rescarch,
the anisotropic invariants are defined by the following threc scalar parameters:

I=tr())=0 , My=tr(b-b) , Il =tr(b-b-b) (1.15)

Figure 1.1 provides a means to compare different anisotropic states associated
with normalized, symmetric, non-negative operators. The eigenvalues of the NR-stress
corresponding to specific anisotropic states on the L-diagram are located in the 1¥ Sextet
of the eigenvalue simplex (see Table 1.1 and the insct on Figure 1.1). Table 1.1 identifies
the type of states on each boundary of the L-diagram. For example, the quadratic forms
associated with the AB- and AC-boundaries are oblate ellipsoids and prolate ellipsoids,
respectively. The quadratic forms associated with the BC-boundary are planar ellipses

inasmuch as one of the eigenvalues of the NR-stress is zero. The quadratic forms
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v A
(0,1,0)

(1,0,0)

Realizable Anisotropic States

Q(Ily, M) =R :2z>0

g —_——— e — —

i

Figure 1.1 Realizable States of the NR-Stress (Lumley, 1978).
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Table 1.1 Boundary Characteristics of the L-Triangle (Parks, 1997; Weispfennig,

1997).

Anisst(;ttl;pic Q(Ily, Iy) Eigenvalues of R Invariants of b

A 3D-Isotropic AR =AR2 =AR3=1/3 I, =0,1I, =0

B 2D-ISOU‘0piC }"R] =)\.R2 :l/Z,KR3 =0 IIIb =—]/36,Hb =1/6

C 1 D-Isotropic }"R] =1,)\.R2 =)"R3 =0 HIb =2/9,Hb =2/3

o 2/3

AB Oblate 0<AR; <1/3<hgy =Ag3<1/2 My = 6(-1I, /6)7 7,

boundary ) -1/36 <1l <0
Iy =2/9+2III
BC b b
0=Ag; SARy £1/2< <1
boundary | P RI=%R2 *R3 ~1/36 <l <8/36
_ 2/3

AC Prolate OS)"RI =)\R‘) 31/3S)‘R351 Hb—6(nlb/6)

boundary - 0<IIl, <8/36

10
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associated with the states at the A-vertex are spheres; the quadratic forms associated with
the states at the B-vertex are circles; and, the quadratic forms associated with the states at
the C-vertex are infinitely eclongated needles. The anisotropic states for which

0<M}, <2/9 and Il =0 are associated with an NR-stress with eigenvalues that satisfy
the following conditions: 0 <Agp; <Agy =1/3<Ag3<I. Anisotropic states that satisfy

all of the Schwartz inequalities are either on the boundary or located within the L-

diagram. Models that predict anisotropic states with (I, IIl,) outside the L-diagram are

unrealizable and, thereby, unphysical.

1.4  Objectives of This Research

The primary objective of this research is to develop an algebraic closure model
for the NR-stress that supports the practical usc of the RANS-equation (sce Eq.(1.4) for
rapid design and analysis of engineering processes. The new closure model is referred to
hereinafter as the universal realizable anisotropic prestress (URAPS-) closure. The
emphasis in this dissertation is on the theoretical development, calibration, and validation
of the URAPS-closure. The implementation of the new closure in a computational code
and the verification of the resulting computer code are not addressed in this research. The
principal focus is on the further development of an algebraic closure model for the NR-
stress initiated earlier by Parks (1997) for non-rotating homogeneous shear and by
Weispfennig (1997) for non-rotating fully-developed channel flows.

The underlying premise of the research stems from the phenomenological idea
that the Reynolds stress is determined by the local statistical properties of the fluctuating

velocity field and the local mean field kinematics. This algebraic idea is similar to the

11
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hypothesis proposed by Boussinesq in 1877, which has evolved into the class of “eddy”
viscosity closures exemplified by Eqgs.(1.7), (1.9), and (1.11) above. In what follows, thc

NR-stress is formulated as a non-nagative mapping of R into itself with the following

property:

R(R,K)=R , if__l§=(=),then§=%!. (1.16)
where K =1p <F > In the above hypothesis,

<F>=V<u>+2Q and tR=%R(Ret,NF)§. (1.17)

The ratio of the turbulent time scale k/e& and the mecan field time scale is
- o)
Ng Ek"<__}:>"/£ where l|<£>““str(<l=:>-<£>T), The specific goal of this

dissertation is to develop a closure for the NR-stress that satisfies Eq.(1.16) and, most
significantly, produces solutions that satisfy Ineq.(1.13) for all rotating and non-rotating
turbulent flows.

Clearly, the pseudo-steady state hypothesis expressed by Eq.(1.16) cannot explain
turbulent phenomena related to the finite time required for the NR-stress to relax to an

isotropic state in an inertial frame, if K — 0 instantancously. Thercfore, for the theory

developed hereinafter, temporal changes in the NR-stress occur implicitly through
temporal changes in the gradient of the mecan velocity and the turbulent time scale k/&
governed by Egs.(1.9) and Eq.(1.11) above. Furthermore, Eq.(1.16) cannot explain the
weak anisotropy that occurs on the symmetry plane of non-rotating, fully-developed

channel flows where K =0, yet 0<R,, =R, <1/3<R,, <I. However, Eq.(1.16)
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does imply that for rotating homogeneous turbulent flows for which K =2Q , turbulence

decay is not isotropic (see Chapter 5 hereinafter).
In addition to the development and calibration of the URAPS-closure, the

“production” and dissipation coefficients Cp and Cp in Eq. (1.11) are estimated by

using the new NR-stress model together with benchmark experimental data and DNS
results related to non-rotating asymptotic homogencous shear flows (Tavoularis and
Kamik, 1989; Parks, 1997), and non-rotating homogeneous decay (sec, esp., Parks, 1997,

and, Pope, 2000). The dimensionless relaxation time Tg, formally introduced by

Eq.(1.16), is related to the space-time structure of the local turbulence and is determined
by using previous theoretical and computational results related to rotating homogeneous
decay (Park and Chung, 1999).

As indicated above, the goal is to develop a new algebraic closure modcl for the
NR-stress that is aligned with previous turbulent modeling principles. This dissertation
addresses four fundamental issucs rclated to this goal: 1) realizabilty of the closure
model; 2) the selection of appropriate benchmark flows for calibration; 3) the practical
development of approximate solutions to the URAPS-closure; and, 4) an assessment of
model predictions related to the influence of frame rotation on the redistribution of
energy.

In summary, with the discovery of an algebraic closure for the NR-stress that
produces realizable solutions in rotating and non-rotating frames of reference for all
turbulent flows, this research provides a unified and practical closure for the RANS-
equation that may have a significant impact on engineering design, research and

education.

13
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1.5 Outline of the Dissertation

A review of the relevant literature that supports the objectives of this dissertation
is given in Chapter 2. Previously developed algebraic models are discussed relative to
realizability and redistribution of energy. Chapter 2 also includes a brief critique of
Eq.(1.7) and other anisotropic models that relate the mecan strain rate and the intrinsic
mean vorticity to the NR-stress. The class of truncated explicit algebraic Reynolds stress
models developed recently by Gatski and Jongen (2000) are also reviewed in Chapter 2.
The predictions of a realizable algebraic model by Shih ct al. (1994) are discussed and the
results are used to partly justify the approach developed in this research. A summary of
the hydrodynamic preclosure equation previously developed by Parks (1997) and by
Weispfennig (1997) is also given in Chapter 2.

In Chapter 3, the preclosure result developed earlier by Parks et al. (1998) is
generalized to include frame rotation. This is a key step in the development that directly
links the NR-stress to another non-negative operator referred to hercinafter as the

prestress. The preclosure mapping includes the hydrodynamic/kinematic operator K (sce

Eq.(1.16) above) and satisfies the condition that if the prestress is a positive operator,
then the NR-stress is a positive operator, which means that Ineq.(1.13) is satisfied. This a
priori theoretical result, which does not depend on any calibration, holds for all rotating
and non-rotating turbulent flows. In Chapter 3, the prestress is assumed to be caused by
the NR-stress and the Cayley-Hamilton (CH-) theorem is used to relate the cigenvalues of
the NR-stress and the prestress. The phenomenological CH-coefficients associated with
the “extra” anisotropy of the prestress must be determined by benchmark flows, but

Ineq.(1.13) provides a means to identify universal bounds on these parameters. Thus, the

14
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resulting URAPS-closure is a non-linear mapping of the NR-stress into itself for all
rotating and non-rotating turbulent flows, provided the wniversal bounds on the CH-
coefficients are observed. This result provides a means to significantly broaden the use of
the RANS-equation as a diagnostic tool for analyzing turbulent flows.

The URAPS-closure coefficients are estimated in Chapter 4. This includes two

CH-coefficients, o and f, implicit in the hypothesis expressed by Eq.(1.16); two

coefficients, Cp and Cp, associated with the e-equation defined by Eq.(1.11); and, the
parameters implicit in the turbulent transport group %R(Ret,Np), introduced by
Eq.(1.17) above. For largeRe,, ig(w,Ng) depends on three coefficients: Cg;, Cra.,

and Cgrj. The foregoing seven URAPS-closurc cocfficients are estimated by using the

following three canonical benchmark flows: 1) non-rotating homogencous decay; 2)
rotating homogeneous decay; and, 3) non-rotating asymptotic homogeneous shear.

The calibrated URAPS-equation can be solved by the method of successive
substitution. This attractive numerical feature is demonstratcd in Chapter 4 for simple
shear flows. The surprising role of the “extra” anisotropy operator in solving the URAPS-
equation is illuminated in Chapter 4.

Chapter 5 examines the influence of rotation on the NR-stress for homogeneous
decay. The URAPS-closure predicts that for rotating homogenous decay, the anisotropic
states are all on the AB-boundary of the L-diagram (see Figure 1.1). Whence, the
coupling between the velocity fluctuating field and the Coriolis acceleration causes an
initially isotropic state to become anisotropic. For long times, the kinetic energy is
transferred to the fluctuating velocity component that is co-lincar with the rotation axis.

This result clearly demonstrates that a return-to-isotropy upon the sudden removal of the

15
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mecan velocity gradient only occurs in an inertial frame. This Coriolis-induced anisotropy
may also have implications on scattering of electromagnetic ficlds in the atmosphere.

The influence of rotation on asymptotic homogencous shear as well as on the
development of these states is presented in Chapter 6. The URAPS-predictions are
qualitatively consistent with DNS results and with other closure models in the literature.

In Chapter 7, the URAPS-closure is used to predict the redistribution of energy

for non-rotating fully-developed channel flows (Ty, = e,e :V<u>). The URAPS-

closure is also used to predict the components of the NR-stress in the region of zero

intrinsic vorticity for fully-developed channel flows with spanwise rotation (Q =Qye, ).
DNS results for Np= k"< F >”/s arc used to predict the URAPS-results. It is

noteworthy that the normal components predicted by the URAPS-closure agree

qualitatively with the DNS results for non-rotating flows: R,y <R,, <R, ; and, for
spanwisc rotating flows, R,, <Ry, <R, . This bchavior is also indicated in the DNS

results. Thus, the new algebraic closurc shows that the Coriolis coupling with the
fluctuating velocity field causes a transfer of cnergy from the longitudinal component of
the fluctuating velocity field to the cross flow (or transverse) component of the
fluctuating velocity field. This prediction supports the conclusion that the URAPS-
closure has captured the essential rclationship between the NR-stress and the

hydrodynamic/kinematic operatorK , as anticipated by the closure hypothesis expressed

by Eq.(1.16).

16
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Chapter 8 gives a summary discussion of salient conclusions related to the
URAPS-closure and Chapter 9 identifies additional research needed before the URAPS-

closure can be integrated into a CFD code.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In this chapter, direct numerical simulation (DNS) and experimental results
related to the following canonical benchmark flows are revicwed: 1) rotating and non-
rotating, fully-developed, turbulent channel flows (Sections 2.2 and 2.3); 2) rotating and
non-rotating, homogeneous, turbulent shear flows (Section 2.4); and, 3) rotating and non-
rotating, homogeneous turbulent decay (Section 2.5). Figure 2.1 illustrates the three
benchmark flows used in this study. DNS results from the literature are used in Chapter 3
to guide the development of the URAPS-closure and in Chapter 4 to estimate the
phenomenological closure cocfficients introduced by the theory. In Chapters 5-7, DNS
benchmark results are used to evaluate the predictions of thc NR-stress based on the
URAPS-closure. A critique of current algebraic closure models for the NR-stress is given
in Section 2.6. The chapter concludes by restating the objectives of this rescarch relative

to the prior art.

2.2 Non-Rotating Fully-Developed Channel Flows
LA NS-Equation
DNS results for non-rotating, fully-developed, channel flows have been
developed by Kim et al.(1987), Moser et al.(1999), Iwamoto et al. (2002), Alamo and
d Lrmenez (2003), Alamo et al.(2004), Hoyas and Jimenez (2006) and many others (sce,

<sSp, Chapter 7 in Pope, 2000). The mean velocity has onc component (i.c.,

18
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I Q,

Homogeneous decay with spanwisc rotation

y
— / du
Z = I'y, constant
—* dy
———
z
l——o»
Qy
—>

Homogeneous shear with spanwise rotation

wall B, (LP)

Yo
o)

mean velocity
profile for
25 Q, <0

wall A (HP)

Channel flow with spanwise rotation

¥Figure2.1.  Definitions of Benchmark Flows.
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<u>=<u, >(y)e,) that depends only on the transverse (cross flow) coordinate y (sce
Figure 2.1). The mean pressure depends on y and z: <p>=<p>(y,z). As indicated in
Figure 2.1, the symmetry plane of the channcl is located at y=9; the walls of the
channel are located at y=0and 26. Mcan momentum is transported across thc flow

towards the solid/fluid interfaces by viscous and turbulent stresses. With (_Izg,

g=8;¢,, and V<u>=Ty,(y) eye;s the non-trivial components of the unclosed

RANS-equation, defined by Eq. (1.4), arc

0=-12<Pp>, 41 okR, ], 0<y<2s 2.1)
p Jdy dy
0=-12<Pp>, d [ d<U;> 5 p 1. 0<y<2s. 22)

p 0Oz dy dy
In the above equations, <pp >(y,z)=<p >(y,z)-zpg,. Boundary conditions for the

mean velocity and the mean pressure are

<u,>(0)=<u,>(28)=0 , —lg<—ap—D—>:constam. (2.3)
z

Eq. (2.1) implies that

<pp >(y,z)-<pp >(0,z)EAPD(y)z—Zpk(y)Ryy(y)SO , 0<y<2s. (2.4)

Due to no-slip on solid/fluid interfaces and continuity, k(0)=k(28)=0 and
Ryy(O) = Ryy(28) =0; therefore, Eq. (2.4) shows that <pp >(0,z) =< pp >(28,z). On
t he symmetry plane, max|ApD| =+p<uy'uy'>(8)#0.

Eq. (2.2) and Eq. (2.3) imply that the total stress is a linear function of the cross

Llow coordinate y:
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d<uz>_2kRyz=_[_la<pD >]y+vd<uZ >‘
dy p 0z dy

\Y

. 2.5)
y=0

For y=0and 28, the shear components of the Reynolds strcss are zero; therefore, Eq.
(2.5) implies that

d<u, > d<u, >

y=0 dy

=2(u")?>0. (2.6)

_,_[_lm]zg; =v
p y=28

oz

The friction velocity u' , defined by Eq. (2.6), is related to the axial pressure gradient or,

equivalently, to the average wall shear stress.

Total Stress

The DNS results used hercin arc consistent with Eq. (2.5). With

F;z =du*/dy”* =I‘yzv/(u*)2, Q; EQXV/(U*)z, k" Ek/(u*)z, yt= yu*/v, and
E=y/d, Figure 2.2 shows that thc total dimensionless stress, defined as I“;z -2k*R

yz’
is a linear function of & :

r;z—zk"RYZ:r;l(O)—g , 0<E<1l , V&' >8! , Qf=0. 2.7
For Re* =8"(= 5u*/v) =300 and Q; =0, the DNS rcsults imply that uy, /u* =17 and

r ;Z(O)=l. It is noteworthy that the viscous component of the total stress is

<Quantitatively important near the solid/fluid interface (viscous sublayer) and that the
R eynolds stress determines momentum transport in the outer region of the flow field. The

tOtal stress is anti-symmetric about the symmetry plane located at £ =1. These results are
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1.0
ry, -2k"Ry,

—o— 87=300
0.8 1 Iwamoto et al. (2002)

-—o-  §"=2000

Hoyas and Jimenez (2006)
0.6 1
-2k"Ry,
04 -
0.2
0.0 T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0
y/8&

¥Figure2.2. Total Shear Stress Profile for Non-Rotating, Fully-Developed, Channel
Flows
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consistent with the 1938 experiments of H. Reichardt for turbulent flow of air in a

rectangular duct (see p.165 of Bird et al., 2007).

Energy States and Anisotropic Invariants

Figure 2.3 shows that the energy states for non-rotating, fully-developed, channel

flows all lie within the 2nd Sextet of the energy simplex: 0 <R,y <R,, <R,, <I. For
this flow, the NR-stress has three independent components that depend only on the cross
flow coordinatey* (= y u' /v):

R=R,e gx+Ryyg

xx €x 9y+R e e, +R e e +Rzygzgy. (2.8)

y 222728727 Nyzlytz

Due to no slip at a solid/fluid interface, all of the components of the Reynolds stress are

zero fory* =0and y" =28%. Continuity and the no-slip condition imply that the

components of the NR-stress have the following propertics at a solid/fluid interface (sce

p-279 in Monin and Yaglom, 1965, Weispfennig ct al. 1999):
0<Ryx(0)<R,,(0) <1, Ry, ox(y" )* and Ry, oy asy’ »>0andy" -25". (2.9)
Thus, the quadratic form associated with the NR-stress (QNR-form) at a solid/fluid

interface is a planar ellipse. On the symmetry plane at y* =8*, the QNR-form is a

prolate ellipsoid:
R, (8")=Ryy(8")<1/3<R,(8") , Ry, (8")=0. (2.10)
DNS results show that four qualitatively distinct encrgetic regions occur in a non-

X Otating, fully-developed, channel flow. Near the wall (0<y* <8), energy is transferred

from RyyandR,, toRy, as y* > 0. A highly anisotropic region occurs for
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(0,0,1)

RXX
(1,0,0) <

(12,0,12) d

(1/3,1/3,1/3)

(DNS Results)

a  §"=395 Moseretal, 1999

o 8"=550 Alamo and Jimenez, 2003
v 8Y=950 Alamo etal., 2004

o &t =2000 Hoyas and Jimenez, 2006

(Experiments, AHS)
o Tavoularis and Karnik, 1989

Figure 2.3.  Energy States for Non-Rotating, Fully-Developed, Channel Flows
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8<y" <30 with max(R,,)=0.85 and max(T'y,)=18. For 30<y" <100, I'j,(y")
decreases as y* increases and energy is transferred from R,, toR,, and R,y . For

100<y* <&, energy continues to be transferred from R, to Ryyas y" = 8%, but

R,x =03 (see Figure 2.3). At the solid/fluid intcrface,Ryy(O)zo, R,x(0)=03,

R,,(0)1-Ryy =0.7, and R, (0)=0. At the symmetry planc (i.c., y* =8"), the mean
velocity gradient is zero and the components of the NR-stress are
Ryx(8")=Ryy(87)=0.28, R,,(8")=1-2Ry(8")=044, and R,(5')=0. This
weak anisotropic phenomenon on the symmetry planc is consistent with the classical
1938 experiments of H. Reichardt for turbulent flow of air in a rectangular duct (sce
p-165, Bird et al., 2007). A similar phenomenon is observed in axisymmetric pipe flows.

This anisotropic energy state is contrary to the hypothesis expressed by Eq. (1.16) and

may be related to the anisotropy in the normal components of the fluctuating pressure

gradient correlation for wall bounded flows (i.c., <Vp'Vp'> for y* =8"), or to an
incomplete development of the flow ficld. It is noteworthy, however, that the fraction of
energy in the spanwise component of the fluctuating velocity near the symmetry plane is
comparable to the fraction of energy in the spanwise fluctuating velocity deep within the
Viscous sublayer (i.e., Ry, =0.3 ). Clearly, the transverse redistribution of kinetic cnergy
among the three components of the fluctuating velocity is significant.
Figure 2.4 shows the DNS results for the second and third invariants of the
Anisotropic component of the NR-stress for non-rotating, fully-developed channcl flows.

"The anisotropic states, defined by 11, and III, , arc all to the right of the anisotropic states
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(DNS Results)
s §t-395 Moseretal., 1999
o §t=550 Alamo and Jimenez, 2003

0.1 -
450 5t =950 Alamo etal., 2004
o &Y =2000 Hoyas and Jimenez, 2006
(Experiments, AHS)
© Tavoularis and Karnik, 1989
0.0 1 1 1 1 1 1 1 | 1
0.00 0.05 0.10
IIIb

Figure2.4. Anisotropic States for Non-Rotating, Fully-Developed, Channel Flows
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for which Il =0. These prolate-like states are parameterized by y*(= yu* /v) and
Tpns(= I'ykie = I";,sz+ /g+;1“}‘fZ =du’/dy"). In the outer region

(i.e.,100<y* <8"), the anisotropic states are associated with prolate-like ellipsoidal
quadratic forms. Figure 2.4 shows that the anisotropic state characteristic of non-rotating,
asymptotic homogeneous shear (see Tavoularis and Kamik, 1989; and, Section 2.4
below) is located near the edge of the equilibrium core region in a channel flow (i.c.,
I:DNS =4.2 for y* =100). This observation partly motivates the use of non-rotating
asymptotic homogenous shear as a benchmark flow for model calibrations (see Chapter
4).

Across the core region (i.e.,30 < y* <100), the quadratic forms associated with
the NR-stress (QNR-forms) change from a prolate-like structurc to an eclongated
ellipsoidal structure as the turbulent kinetic energy increases near the wall. Within the
viscous sublayer, viscous transport of momentum causes the elongated cllipsoidal QNR-
form at y* =8 to collapse to a planar elliptical form as y* — 0. The DNS results used

to construct Figures 2.3 and 2.4 are summarized in tabular form in Table I.1 and Tablc 1.2

in Appendix L

Turbulent Kinetic Energy and Turbulent Dissipation

Figure 2.5 shows the spatial distribution (inner and outer scaling) of turbulent

kinetic energy (ic., k™ = k/(u*)z) for 8" equal to 300 and 2,000. Figure 2.6 shows the

sp‘atial distribution (inner and outer scaling) of turbulent dissipation (i.e.,e* = sv/(u*)4)
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Figure 2.5.  Kinetic Energy for Non-Rotating, Fully-Developed, Channel Flows
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0.05 + Iwamoto et al. (2002)
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y/d
Figure 2.6. Dissipation for Non-Rotating, Fully-Developed, Channel Flows.
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for 8% equal to 300 and 2,000. The DNS results for k* and ¢ at different values of

y* over the half width of the channel (i.c., 0<y* <&") are listed in Table I.1a and

Table I.2a of Appendix 1.

Continuity and the no-slip conditions imply that k* =Ck(yJr )2 +--- and
gt =€}, +C.y" +--- near the wall, which is consistent with the DNS results shown on
the inset of Figures 2.5 and 2.6. (Cy =0.09 and C,=-0.03 ) As y' increases, k*
increases to max(k*)=4.3and5.4 respectively at y* =16 and 18 for
8" =300 and 2,000. However, as expected, the pcak kinctic energy occurs at slightly
different values of £=y/8. For 8" =300, k¥ =3.7 and &' =0.077at y* =30 or,
equivalently, at £=0.1. For 8"'=2000, k™ =5.1 ande* =0.08 at y*'=30 or,
equivalently, at £=0.015. Towards the center of the channel, k* =1 and £* =0.01. The
maximum value of &* occurs at the wall (¢*,, =0.2 and ¢*, =0.27 respectively for the

two 8" cases). For y* ~10, &' rcaches a platcau (sec inset of Figure 2.6) and then

decreases monotonically to a positive minimum at the center of the channel. The platcau
phenomenon related to the dissipation occurs in the region where the turbulent kinetic
energy is a maximum.

Figure 2.7 compares the ratio of the local turbulent time scale k/& and the local

mean field time scale (i.e., fDNS =ly,k/e) for 0<&<1 at two different Reynolds

aumbers (Ret =8 =300and 2,000). The inset on Figure 2.7 shows the behavior of the
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dimensionless shear rate group near the solid/fluid interface: I:DNS ok’ ~ (y+)2 . For
0<y* <10, I'png increases and peaks at y* =10, where T'pyg=18. For y* >10,
Ipns decreases. At y* =30, Tpng=49 for 8"=300 and Tpng=6.3 for

8t =2,000. For 02<§<0.5, FDNS =4, In this region, the local dissipation and the
local production of turbulence kinetic energy approximately balance one another (sce p.
281 in Pope, 2000). At the center of the channel, fDNS =0 inasmuch as the mecan
velocity gradient is zero due to symmetry. Table 2.1 tabulates the transversc variation of

the dimensionless shear group [png and the components of the NR-stress for

30<y* <&". This information is used in Chapter 6 to evaluatc predictions of the NR-

stress for non-rotating fully-developed channel flow for 0<T <6.

2.3 Rotating Fully-Developed Channel Flows

DNS results for fully-developed channel flows with spanwise rotation have been
developed by Wu and Kasagi (2002, 2004), Alvelius (1999), and Grundestam et al.
(2008). Simulations with and without spanwise rotation are performed with the same
constant axial pressure drop or, equivalently, for the same average wall shear stress.
Consequently, the friction velocity, defined by Eq. (2.18) below, is the same for all
simulations. Comprehensive low-order statistical properties for the mean velocity, the

components of the NR-stress, the turbulent kinetic energy, and the turbulent dissipation

are available for 5* =8u” /v =296 and Q} (=Q,v/(u")?) = -0.0042. The results of Wu

arad I asagi (2004) are used in Chapter 7 to benchmark the predictions of the URAPS-
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Table 2.1 Cross Flow Variation of T'png and the Components of the NR-Stress for
Non-Rotating, Fully-Developed, Channel Flow: (a) &t 5300,91 =0 (
Iwamoto et al. 2002) ; (b) 8" = 2000,Q} =0 (Hoyas and Jimenez, 2006).

(@)
[y*1| ¥/8 | Fpns | Rxx | Ryy | Rz | Ryz
30 | 010 | 490 | 021 | 009|070 |-0.11
35 | 012 | 424 | 022 | 011 | 067 | -0.11
40 | 013 | 379 | 023 | 012 | 0.65 | -0.12
45 | 015 | 349 | 024 | 0.14 | 062 | -013
50 | 017 | 330 | 025 ] 015 | 0.60 | -0.13
70 | 024 | 306 | 027 | 0.18 | 0.55 | -0.14
100 | 033 | 309 | 028 | 0.19 | 053 | -0.15
150 | 051 | 3.08 | 028 | 021 | 051 | -0.15
200 | 067 | 273 | 027 | 0.23 | 0.50 | -0.14
250 | 084 | 169 | 027 | 0.26 | 0.47 | -0.09
300 | 1.00 | 0.00 | 027 | 0.28 | 0.45 | 0.00
(b)

[y+] y/d 1:‘DNS Rxx Ryy Rzz Ryz

30 0.015 | 6.28 | 0.23 | 0.08 | 0.69 | -0.09
40 0.02 498 | 025 | 0.10 | 0.65 | -0.10
50 0.03 440 | 0.27 { 0.12 | 0.61 | -0.10
75 0.04 413 | 0.27 | 0.14 | 0.59 | -0.11
100 0.05 417 | 0.27 | 0.15 | 0.58 | -0.11
250 0.13 435 | 025 | 0.16 | 0.59 | -0.12
500 0.25 405 | 0.24 | 0.18 | 0.58 | -0.13
1000 | 0.50 369 | 025 | 0.20 | 0.55 | -0.13
1500 | 0.75 265 | 0.26 | 0.23 | 0.51 | -0.10
2000 | 1.00 0.03 | 0.27 | 0.26 | 0.47 | 0.00
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closure. Hereinafter, a nominal value of 28" =600 is used to refer to the DNS results for

281 =592.

RANS-Equation

For spanwise rotation of a fully-developed channel flow, <u >=<u, >(y)¢c, and
<p>=<p>(y,z). As illustrated by Figure 2.1 above, the symmetry plane is located at
y =9 and the solid/fluid interfaces are located at y=0and 28. The angular velocity of

the frame is Q=Q e, and the rotation operator is Q =§~Q =Q X(gygZ —gzgy). The

angular velocity of the frame is co-lincar with the mean vorticity

<w>=Va<u>=<w, >e,. With g=g,e, and V<g>=l"yz(y)gygz,the two non-

trivial components of the uncloscd RANS-equation (see Eq. (1.4)) for this flow can bc
written as

d
+_

<Pp> [2kRy ] , 0<y<28 @2.11)
dy p  dy ”

i[<pD>]+i[vd<uZ>

-2kR,,] , 0<y<23. 2.12
0 dy dy yz] y (2.12)

In the above equations, the dynamic pressure < pp> (y,z) is defined as

2 2\ N2
Q
& +; )% -zpg,. (2.13)

<pD>(yaZ) =<p> (ywz) -pP
Boundary conditions for the mecan velocity and the mcan axial pressurc gradient arc

_0<pp>

<uz >(0)=<u,>(29)=0 , = constant . (2.14)
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The no-slip condition at solid/fluid interfaces implies that all the components of the
Reynolds stress are zero on the channel walls. Therefore, for spanwise rotation, the
Coriolis force, 2p<u> A Q, acts in the transverse (cross flow) direction and, thercby,

plays an explicit role in the force balance expressed by Eq. (2.11). As a conscquence, the
transverse component of the Reynolds stress and the Coriolis stress cause a cross flow

variation in the dynamic pressure:

<pD > (y,Z) =< PD >(0,Z) EAPD(y)

Yo (2.15)
=-2pk(y)Ryy () +2pQ, [< i, > (§)d§
0
The no-slip condition at a solid/fluid interface implies that the components of the

Reynolds stress are zero at y=0and 23; therefore, unlike the non-rotating case, the

dynamic pressure difference between the two solid/fluid interfaces is non-zero for

Q, #0:
26

App(28)=+2pQ, I<uz >(9)dy =+48pQ up, =[4Q 8™u /ub]pu%. (2.16)
0

Eq. (2.16) shows that <pp >(28,z) is smaller than <pp >(0,z) if <u, >(y)2=0 and
Q, <0. For this configuration, the solid/fluid interface at y =29 is the low pressure

(LP-) interface and the solid/fluid interface at y =0 is the high pressure (HP-) interface.
For &* =300and Q; =—0.0042, the simulations predict that the bulk average velocity

equals uy =18u"  and the pressure  difference across the channel is

Ap (28)=-0275pug .
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Eq. (2.12) and Eq. (2.14) imply that the total stress is a linear function of the

transverse coordinate y:

vd<uz>—2kRyz=-———l-a<pD>]y+vd<uZ>| . 2.17)
dy p cCz dy | _0
y_
For y =0and 2§, the shear components of the Reynolds stress are zcro; therefore,
+[_la<apD >]26=vd<duz> _vd<duz>
z .
P Y ly=0 Yo ly=2s, (2.18)

= Gwup +(wie 5 ,*y2

. . . . . * ~ . . .
As with the no-rotation case, the friction velocity u for spanwise rotation is related to

the axial pressure gradient or, equivalently, to the average wall shear stress (i.c.

* 0 i
0 = YT + (a)ip /@) =[- 2 ZSPD 2112y

p cCz

Total Shear Stress

The DNS results of Wu and Kasagi (2004) for & (= Su'/v= Rc*) equal to 300

and 2,000 are consistent with Eq. (2.17). For cxample, with l";z =du’ /dy+ s
k* =k/(u")?, and y* =yu’ /v, Figure 2.8 shows that Iy, —2k "Ry, is approximately a
linear function of £=y/8 for 0<E<2:

[},(E)-2k* Ry, =+Ty,(0)-&, 0<E<E, V&' >3, —wo<Qy <+m. (2.19)
For 8" =300 and Qj =-0.0042, the DNS results predict that uy /u' =18 and

Y';Z(O)z- 1.38. Figure 2.8 also illustrates that the viscous component of the total shear
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stress is quantitatively important near the solid/fluid interface and that the Reynolds stress
determines transport of momentum in the outer region of the flow field. Although Eq.
(2.17) (or, equivalently, Eq. (2.19)) for spanwisc rotation is formally the same as Eq.
(2.5) for no rotation, the DNS results summarized by Figurc 2.8 show that the total shear

stress, albeit linear in the transverse coordinate, is no longer anti-symmetric about

y=8(or,E=1) for Q2 >0 (i.e., Iy, (0)=1.38 and T'y,(2)=-0.627). Figurc 2.8 also
shows that the total shear strcss is zero at y,(= F;Z(O)S) =1.383 for Q) =-0.0042 ; and

yo =0 for no rotation inasmuch as F;Z(0)=l. Eq. (2.19) implies that thc Reynolds

stress is directly influenced by the Coriolis force. This phenomenon provides ample

motivation for the development of thc URAPS-closure in Chapter 3.

Absolute Mean Vorticity

As indicated by Figurc 2.9, the transversc (cross flow) variation of
ut(=<u, >/ u' ) is not symmetric about the symmetry plane. The maximum vclocity

occurs on the low pressure side of the flow field in the vicinity of y* =415 (&=1.38),

which is consistent with the result that the wall shear stress at the LP-interface (i.c.,

£=2) is less than the wall shear strecss at thc HP- interface (i.c., £=0), i.e.,

[} (0)>

+
[y,(2)-
The mean velocity profile shows that the mcan intrinsic vorticity operator (or,

equivalently, the mean absolute vorticity) is approximately zero over a finite region of the

flow field (also, see, p. 617 in Piquet, 1999; Hamba, 2006; and Grundestam ct al., 2008).
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For  spanwise rotation, the intrinsic mecan  vorticity  operator s

ld<u, >
2

<i> <li/_>+§=25 -(%<E>+Q)=(

1,

+Q,) (eye, —¢,c,). (2.20)

For 8" =300 and QI =—0.0042, the DNS results (sce Figure 2.9) show that there exist

a finite region where the absolute mean vorticity is approximately zero:

w1t
dy* & d§

=-2QF =+0.0084 , 0<EMM=05<E<EM™* =2]<2 (2.21)

Energy States _and Anisotropic Invariants

Similar to the no rotation case, the NR-stress has three independent components

that depend only on the transversc coordinatey* (= yu* /v) . Due to the no slip condition

at solid/fluid interfaces, all of the components of thc Reynolds stress are zero

fory* =0and y* =28*. Decp in the viscous sublayers near the HP-wall and LP-wall,

continuity and no-slip imply that the components of the NR-stress have the following

characteristics:

0<R(0)<R,,(0)<1, Ry c(y)? , Ry, xy", y" >0, (2.22)

0<R,,(28")<R,,(28")<1, Ry, o« (28" —y*)? | o)
Ry, x (28" —y*) , y* —>25" '

For 8" =300and Qj =-0.0042, Figure 2.10 shows that R, (0)=0.3 and R,,(0)=0.7
at the HP-wall; and, R,, (600)=0.2 and R,,(600)=0.8 at the LP-wall. Thus, the

quadratic forms associated with thc NR-stress (QNR-form) are planar anisotropic

(elliptical) at the HP- and LP-walls.
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For 8" =300and Q ~-0.0042, Figure 2.10 shows that max(R,,)=0.8at

y" =10 near the HP-wall and max(R,,)=0.9at y* =590 near the LP-wall. Unlike the

no-rotation case (see Figure 2.3), the energy states are distributed in all six sextets of the

energy simplex. On the symmetry plane of the rotating channel (i.e., y* =8 =300, or
£=1), the energy state is in thc 5™ Sextet: R,x(300)=0.29,R,(300) =0.45, and
R,,(300)=0.26. At y* =300, the cross corrclation component of the NR-stress is non-

Zero: Ryz(300) =-0.135. As noted above, the total shear stress (i.e., 1";2 —2k+R),Z) is

zero at y* =415. The mean velocity profile (see Figure 2.9) shows that I'! (415)=0
yz

and Ry, (415)=0. As indicated by Figure 2.10, the normal components of the NR-stress

at 6''=415 are located in the 4™ Sextet of the energy simplex:

Ry (415) =037 R (415)=0.29, and R, (415)=0.34.

Figure 2.10 shows that the energy is distributed among the three normal

components of the Reynolds stress differently on the HP-side of the channel

(0<y* <415) and the LP-side of the channel (415<y* <600). As indicated above,
near the HP-wall within the viscous sublayer (0 <y* <5) and the LP-wall within the
viscous sublayer (595<y" <600) energy is transferred from R,y andR,, toR,, as
y* >0 and 600, respectively (2" Sextet of the energy simplex). Within the regions

5<y*<30 and 570<y* <595, highly anisotropic QNR-forms develop with

max(R,,) = 0.8 on the HP-side of the channel and max(R,,)=0.9 on the LP-side of the
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channel (2" Sextet of energy simplex). Within the regions 30<y* <150 and

440 <y* <570, energy is transferred from R, to R, and Ry as the distance from the

HP-wall and LP-wall increases. Within the region150 < y* <440, energy is redistributed

among the normal components R, , Ryy ,and R, with the result that max( Ryy) =0.45

at y* =300. Figure 2.10 shows that the encrgy states in the region 150 <y* <300 are

distributed over the 5™ and 6™ -Sextets. The mean absolute vorticity is approximately
zero in this region. This result is used in Chapter 7 to predict the components of the NR-
stress in this region of the flow field.

Figure 2.11 shows the anisotropic states associated with the NR-stress for

8" =300and Q) =-0.0042. A comparison with Figure 2.4 for the no-rotation casc

shows some similarities and some differences. Near the planc where the total mean shear

stress is zero, the QNR-form for the no-rotation casc is ncarly prolate elliptical for

y* =300 whereas for the rotation case the QNR-form is nearly oblate elliptical for
y" = 415. Figure 2.4 shows that for all y*, the invariant Il is positive. On thc other

hand, Figure 2.11 shows that fory* = 440 on the LP-sidc the invariant I, is negative:

(I, OIy) = (+0.03,-0.001). It is noteworthy that on the HP-side of the channel, the

kinetic energy peaks (i.c., max(k)=5.9) at y* =15 for which I'png =23, 1T = +0.33,

and Il = +0.06 (see Figure 2.12 below). However, on the LP-side of the channel, the

kinetic energy peaks (i.e., max(k)=2.7) at y'=582 for which [png=-33,

I, = +0.44, and Iy = +0.11 (see Figurc 2.12 below). In the case of no rotation, the
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kinetic energy peaks (i.e., max(k)=4.3)at y* =16and y* =584 for which I'png =12,

I, =+0.38, and IIIy, = +0.09 (sce Figure 2.4 above).

Turbulent Kinetic Energy and Turbulent Dissipation

Figures 2.12 and 2.13 show the spatial distributions (inner and outer scaling) of
the turbulent kinetic encrgy, k* =k /(u”)?, and the turbulent dissipation, £* = ev/(u’)*,
for QF =-0.0042 for 8" =300. The results ncar the HP- and the LP-walls are shown as
insets by using inner scaling parameters. The insect scale refers to the distance from the
HP- and LP-walls in viscous wall units. The DNS results for k* and €' at different

values of y* are tabulated in Table .4 of Appendix 1.

Continuity and the no-slip conditions at a solid/fluid interface imply that
kt =Cp(y*)?+---, and &' =gl +C_y" +---. At the HP-wall, (C\)p =0.15,
(et )dyp =0.18, and (Cy)yp =-0.02; and, at the LP-wall, (Cy).p=0.04,
(e%)Lp =0.05, and (C.) p=-0.008. Near thc HP-wall at y'=15(£=0.05),

max(k*)=5.9; and, near the LP-wall at y* =582 (£=1.94), max(k*)=2.7. Figure
2.13 shows (see inset) that the turbulent dissipation profile has a platcau in the rcgion

where the turbulent kinetic energy has a local maximum. As noted above (sce Figure

2.8), the total shear stress is zero at 8" =415 (& =1.38). At this position, Figures 2.12

and 2.13 show that min(k*)=1.1 and min(e*)=0.0025.
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For 8" =300and Q) =-0.0042, Figures 2.14 and 2.15 show the behavior of the
turbulent time scale k/e¢ made dimensionless with the mecan velocity gradient,

Tpns =I'y,k/¢, and with the angular velocity of the frame, Qpns =Qy k/e .The
insets on the figures usc inner scaling to highlight the behavior of T'png and QDNS near

the HP-wall (0 <y* <30) and the LP-wall (570 < y* <600 ). The group ['pyg is zero at
the HP- and LP-walls because k(0)=k(23)=0. It is also zcro at £=1.38 becausc

Iy,(1.388)=0.
For  y"'=12 (£=0.04), max(Fpng)=+40. At y*' =588 (£21.96),
min(Tpng) = —40. Near the HP-wall, thc mcan absolute vorticity, defined as

(Cpns/2) + Qpns, is positive. For 0.5<y/3 <1, the mean absolute vorticity on the HP-
side of the flow field is approximately zero. And, on the LP-side of the flow ficld, the

mean absolute vorticity is negative inasmuch as [png and Qpng are both negative for

1.34<E<2. Table 2.2 tabulates the cross flow variation of Ipng, Qpnss and the

components of the NR-stress for 0.1<£* <1.9 (30<y"* <570). This information is

used in Chapter 7 to evaluate predictions of the NR-stress based on the URAPS-closure

for rotating fully-developed channel flow.

Turbulent Production/Dissipation Ratio

Production is approximately balanced by dissipation in the outer region of the
non-rotating channel. This feature is often applied in modeling for obtaining algcbraic

approximation for the Reynolds stress transport equation (this will be further discussed in
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Flows (8" =300and Qf =-0.0042).
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8t =300,

Table 2.2 Cross Flow Variation of I'png » Qpng. and the Components of the NR-
Stress for Rotating, Fully-Developed, Channel Flow:
Q] =-0.0042 (Wu and Kasagi, 2004).
+ . .

[y'] y/5 I‘DNS QDNS Rxx Ryy Rzz R}’Z
30 0.10 7.47 -0.40 0.25 0.10 0.65 -0.12
40 0.13 5.48 -0.49 0.28 0.13 0.59 -0.14
50 0.17 4.57 -0.58 0.30 0.17 0.53 -0.16
75 0.26 3.91 -0.82 0.31 0.24 0.45 -0.19
100 0.34 3.67 -1.03 0.31 0.29 0.40 -0.20
150 0.51 3.25 -1.38 0.29 0.38 0.33 -0.20
200 0.68 3.25 -1.62 0.27 0.44 0.29 -0.19
250 0.85 3.27 -1.78 0.27 0.46 0.27 -0.17
300 1.00 3.07 -1.86 0.29 0.45 0.26 -0.13
350 1.15 2.34 -1.90 0.33 0.41 0.26 -0.09
400 1.32 0.24 -1.87 0.37 0.33 0.30 -0.03
450 1.49 -4.62 -1.59 0.35 0.22 0.43 0.04
500 1.66 -9.40 -1.01 0.29 0.14 0.57 0.08
550 1.83 -13.92 -0.50 0.22 0.09 0.69 0.08
560 1.87 -16.74 -0.43 0.19 0.07 0.74 0.07
570 1.90 -21.23 -0.40 0.15 0.05 0.80 0.06
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Section 2.6). The production to dissipation ratio, P /g, for the rotating and the non-
rotating channel is shown in Figure 2.16. For 8" =300 and Q} =0, a maximum valuc of
P/e(=1.8) occurs in the region where k* is a maximum. For &' =300 and

Q; =-0.0042, the production/dissipation ratio has a maximum value of 4.2 at & =0.04

and then decreases to zero at & =1.38, where the total shear stress is zero. Near the LP-

side, the peak value of P/¢ is about 2.6 at £ =1.92.

2.4  Homogcneous Simple Shear

Non-Rotating Frame of Refercnce

Experimental measurements of low order statistical properties of homogenous
simple shear flows by Harris ct al. (1977), Rohr et al. (1988), Tavoularis and Karnik
(1989)) and others have been usecd to calibrate turbulent models (sec Pope, 2000; and,
esp., Parks, 1997). As illustrated by Figurc 2.1, this statistically stationary flow in a non-
inertial frame of reference (i.c., Q, =0) is caused by a screen with a transverse
resistance that produces an approximate homogenous shear environment downstream of

the grid: V<u >:e, e, = 'y, =constant. As z — oo , the turbulent kinetic energy and the

turbulent dissipation become unbounded (i.e., k = ccand& — o ) and the flow becomes

self-similar with the following characteristic<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>