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ABSTRACT

UNIVERSAL REALIZABLE ANISOTROPIC PRESTRESS CLOSURE

FOR THE NORMALIZED REYNOLDS STRESS

By

Karuna Sree Koppula

The Reynolds averaged Navier—Stokes (RANS-) equation is an exact, albeit

unclosed, equation that relates the mean velocity field to the mean pressure field and the

Reynolds stress. The continuity equation and a Reynolds stress model provide a low-

order statistical closure for the RANS-equation. This research has developed a new

algebraic closure model for the Reynolds stress that is realizable for all turbulent flows.

In the new theory, the normalized Reynolds (NR-) stress is a solution to an implicit, non—

linear, dyadic—valued, algebraic equation that depends on the relative importance of a

local turbulent time scale, a local viscous time scale, a local time scale related to the

mean field velocity gradient, and a time scale associated with the frame of reference. The

theory stems from an analysis of the dynamic equation goveming the fluctuating velocity

field of a constant property Newtonian fluid in a rotating frame of reference. Therefore,

the resulting closure can be applied in either inertial or non-inertial frames regardless of

the class of benchmark flows used to determine the phenomenological closure

parameters.

The foregoing low-order closure model for the RANS-equation generalizes earlier

research by Parks (1997) and Weispfennig (1997) based on an integral analysis of

turbulent fluctuating velocity fields and the physical assumption that all space-time

turbulent correlations have finite memories. In this research, the Parks-Weispfennig
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approach is extended to non-inertial frames. A preclosure equation shifts the turbulence

closure problem from the NR-stress to a normalized prestress. The prestress is caused by

pressure fluctuations and fluctuations in the instantaneous Reynolds stress. A self-

consistent hypothesis, similar to the one for the pressure/strain rate correlation, is used to

relate the prestress to the NR—stress. In the present research, a closure for the prestress is

developed and combined with the preclosure equation for the NR—stress to produce a

universal realizable anisotropic prestress (URAPS-) closure for the NR-stress. A critical

review of other algebraic closure models in the literature indicates that the URAPS—

closure provides an answer to one of the key questions in turbulence modeling: Can a

low-order closure model for the NR-stress be formulated that is realizable for all

turbulent flows independent of the specific benchmark flows used for calibration?

The URAPS-closure is formulated as a mapping of a non-negative operator into

itself. The mapping depends on the rotational operator _§__2 associated with the frame of

reference, a local scalar-valued turbulent transport time scale TR, and an operator

<§>(EV<E>+ZQ):

<u'u'>
  

H
S R,t <F> =R , R .

(= R = ) = = tr<<y_'g'>>

The URAPS-closure is used to predict the components of the NR-stress for three

benchmark flows: rotating homogeneous decay, rotating homogeneous shear, and

spanwise rotating fiJlly-developed channel flows. The URAPS-predictions are consistent

with complementary direct numerical simulations of these flows and, thereby, partially

supports its use as a closure model for the RANS-equation.
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CHAPTER 1

INTRODUCTION

1.1 Rationale for Turbulence Modeling Research

This research is based on the premise that the instantaneous velocity and pressure

fields for rotating and non-rotating turbulent flows of constant property Newtonian fluids

are governed by the Navier-Stokes (NS-) equation and the continuity equation (see

Greenspan, 1968; Piquet, 1999):

 

7

)+vV“u+g
(1-1)

V - u = 0 (1.2)

where E 5 V3 + 2 g. Eqs.(l .1) and (1.2) imply that the instantaneous pressure

distribution satisfies a Poisson equation:

gown
 

V

II <
1

,
L
,

1
C

11
*1
-1
V

(1.3)

The independent variables (Lt) and the dependent variables (u,p) in the above

equations are defined relative to a non-inertial frame-of-reference. The rotation operator

3 is related to the angular velocity of the frame by gag-Q, where 2 denotes the

permutation triadic. The same notation is used for an inertial frame-of-reference for

which _Q = Q.

For large Reynolds numbers, solutions to Eqs.(1.1) and (1.2) subject to

appropriate boundary conditions are unsteady, spatially three dimensional, and sensitive

to initial conditions. A direct numerical simulation (DNS) of these equations is
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computationally intensive (see Chapter 1 and p. 349 in Pope, 2000) and is limited to

relatively simple geometries. This situation has motivated the development and use of

low-order statistical methods to study ensembles of solutions associated with Eqs.(1.l)

and (1 .2), rather than individual solutions.

An ensemble average of Eqs.(1.1) and (1.2) yields exact, albeit unclosed,

equations for < u > and < p > that depend on the turbulent momentum flux p < ug' >.

The fluctuating velocity u' is defined as _u' E u — < _u >. An analysis of turbulent flows

based on low-order statistical moments has been an active area of research for more than

a century. Previous studies have produced numerous and significant insights into the

behavior of the Reynolds momentum flux p<uu'> or, equivalently, the Reynolds

stress, —p<uu_'> (see Chen and Jaw, 1999; Piquet, 1999; and, Pope, 2000). The

Reynolds stress is fundamentally important in determining the behavior of all turbulent

flows, including non-rotating flows with streamline curvature and rotating flows

encountered in turbo-machinery, mixers, and fans (Gupta et al., 1.984; Salhi and Cambon,

19971

1.2 Turbulence Closure Problem

Unclosed Reynolds-Averaged Navier-Stokes Equation

The low-order statistical properties of turbulence are governed by the Reynolds-

averaged Navier—Stokes (RANS-) equation and the Reynolds-averaged continuity

equation. Ensemble averages of Eqs. (1.1), (1.2) and (1.3) yield the following unclosed

equations:
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o n x

— +«qp»<§>=—V( — ’)+g+vV2<u>—V«qyy> 04)

V<u>=0 as)

 )=+V-[<u>-<F>+V-<u'r_1_>]. (1.6)

These equations are fundamentally different from Eqs. (1.1), (1.2) and (1.3) due to the

presence of the Reynolds stress, —p<_u'u_'>. The fluctuating velocity is u '(3, t) and

<l__~‘> (2V < u > +2g) is an average kinematic operator. The ensemble-average

operator is linear, commutes with spatial and temporal derivatives, and has the property

that <<u>>=<u>; consequently, <u'(§,t)>=Q. Clearly, the use of Eqs.(l.4) and

(1.5) for engineering design and analysis requires a closure model for the specific

momentum flux <u'u'>. This closure problem is a major challenge for turbulence

research and is the primary focus of this dissertation. Unlike the NS-equation, solutions

to a closed RANS-equation at high Reynolds numbers are temporally and spatially

smooth due to the presence of the Reynolds stress. The mean velocity field may be

unsteady and may have three components that vary in all three spatial directions.

However, for specific boundary conditions and initial conditions on the mean velocity

and the mean pressure fields, the RANS—equation may also have periodic solutions,

unique statistically stationary (i.e., steady state) solutions, multiple statistically stationary

solutions, and statistically homogeneous solutions.

More than a century ago, Boussinesq (1877) used a phenomenological closure for

the Reynolds stress that assumes that the turbulent momentum flux depends on the local

mean strain rate and the local statistical properties of the fluctuating velocity. Turbulent
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models based on this idea are often referred to as “eddy” viscosity closures (see, p. 359,

Pope, 2000) wherein

. . 2
—p<uu >2—3—pkl+2pve<§> , tr<§>=0. (1.7)

In the above equation for the Reynolds stress, k is the turbulent kinetic energy

(k E tr(<u'_u'>)/ 2). The parameter pve is a scalar-valued turbulent “eddy” viscosity,

which can be related to a local characteristic length scale and a local characteristic

velocity scale or, equivalently, to the local turbulent kinetic energy and a local

characteristic time scale:

vezrcuc =(rCJE)JE)=rck. (1.8)

The transport time scale re (2- CVk/e) depends on the local turbulent time scale k/e ,

where e is the local dissipation of turbulent kinetic energy, 3 E vtr(< (Vu')-(Vu')T >) .

Thus, with the turbulent Reynolds number defined as Ret E (k/ 8)/(V/ k) , the turbulent

“eddy” viscosity can be formally expressed as ve /v = CV Ret. In the outer region of

non-rotating, fully-developed channel flows, Ret > 30 ; thus, in some regions, the “eddy”

viscosity ve may be several orders of magnitude larger than the molecular kinematic

viscosity v. Deep in the viscous sublayer near a solid/fluid interface, the “eddy”

viscosity is less than the molecular kinematic viscosity. The no slip boundary condition

implies that ve —> 0 near a solid/fluid interface.

In order to complete the Boussinesq (B-) closure for the RANS-equation, additional

closure models are needed for the turbulent kinetic energy k, the turbulent dissipation 8,

and the dimensionless transport time scale res/k ECV. Numerous closure models for
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these three statistical properties have emerged over the past forty years in support of

computational fluid dynamic simulations based on the RANS-equation (see, esp., Chen

and Jaw, 1999). The dimensionless group Cv is usually assumed to be an algebraic

function of the local statistical state of the turbulence. Dimensional reasoning suggests

that CV depends on three distinct time scales: a viscous time scale, v/k , a turbulent time

scale, k/e, and mean field time scales related to the two nontrivial independent

invariants of the local mean strain rate <§> (i.e., Hsstr(<§>-<§>) and

HISEtr(<§>-<§>-<§>)). Based on this hypothesis, CV depends on three

independent dimensionless groups: the turbulent Reynolds number (k/ a) /(v / k); and, the

two dimensionless time scales: (k/e)II}3‘I2 and (k/e)IIIlS’/3 .

Transport Equationsfor the Turbulent Kinetic Energy and the Turbulent Dissipation

Although an exact, albeit unclosed, equation for turbulent kinetic energy can be

developed from the NS-equation (see Appendix B), the following phenomenological

transport equation for the kinetic energy is used to support the research developed

hereinafter (see Hanjalic, 1994):

8k

—a—t—+<y_>-Vk=+Vo{gv-Vk}+{—<g'u_'>:<§>}—{ a}. (1.9)

The three contributions in braces on the right-hand-side of Eq.(1.9) that cause changes in

the turbulent kinetic energy include: 1) the viscous flux and the turbulent flux of kinetic

energy relative to the mean velocity; 2) the “production” of kinetic energy due to the

Coupling between the Reynolds stress and the mean strain rate; and, 3) the dissipation of

kinetic energy. The “production” term may be either positive or negative, depending on
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the local coupling between the Reynolds stress and the mean strain rate (see p. 180 in

Pope, 2000; Nishino et al., 1996). The dissipation of energy is positive for all turbulent

flows inasmuch as a E vtr(< (Vu')-(Vg ')T >) > 0. The flux of turbulent kinetic energy,

—2v -Vk , acts like mixing for all turbulent flows provided the dispersion operator [=)V

satisfies the following conditions:

V

l
l
r
—
t

+IR<Q'Q'> , rR>0 , Qv:Vka>0 , VVkalle||>0. (1.10)

Although an exact, albeit unclosed, equation for turbulent dissipation can also be

developed from the NS-equation (see Appendix C), the following complementary

phenomenological transport equation for the dissipation is used to support the research

developed hereinafter (see Appendix C):

as —<g'u'>:<S> g

—+<u>-Ve=+V-{D ~Va}+cp( — E—}~—CD{——}. (1.11)

(3t =V TR TR

 

The three contributions in braces on the right-hand-side of Eq.(l.l 1) that cause changes

in the turbulent dissipation include: 1) the viscous flux and the turbulent flux of turbulent

dissipation relative to the mean velocity; 2) the “production” of turbulent dissipation;

and, 3) the dissipation of turbulent dissipation. Rodi and Mansour (1993) give an

assessment of the individual contributions to the exact equation for 8 based on DNS

results for non-rotating fully-developed channel flows. For a derivation of the exact

dissipation equation, see Appendix C.
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1.3 The Normalized Reynolds Stress

The foregoing results show that the Reynolds stress appears in the equations that

govern the behavior of < u > and < p >. The normalized Reynolds (NR-) stress, defined

asfollows

Rs—flg—Z— , RT=R tr(R)=1, (1.12)
= tr(<g'u'>) = = =

has real eigenvalues and real eigenvectors that are mutually orthogonal. Most

significantly, the NR-stress is a non-negative, dyadic-valued operator inasmuch as its

quadratic form QR (g) is non-negative for arbitrary unit vectors in a Euclidean three-

dimensional vector space:

 
=<(z-u')(u'-z)>

.. 20 1 VzeE3allzll=L (1.13)
tr<ug>

engage;

Ineq.(1.l3), which is equivalent to Schwartz’s inequalities for the components of the NR-

stress, implies that the eigenvalues of the NR-stress are non-negative and satisfy the

following inequalities: OS TR] S 1R2 S km :1 (cf., Schumann, 1977; Lumley, 1978;

Parks, 1997; and, p. 51 and p. 401 in Pope, 2000). Closure models for the NR-stress that

produce solutions that satisfy Ineq.(1.l3) for all rotating and non-rotating turbulent flows

are universal and realizable, but they may not be accurate or practical.

The diagonal components of the NR-stress represent the fraction of turbulent

kinetic energy associated with each component of the instantaneous fluctuating velocity.

This information is often displayed on a triangular diagram (or energy simplex), which

represents a subset of positive points in a hyperplane of a three-dimensional Euclidean

3

Space for which ZR“ =1. For states with energy equally distributed among the

i=1
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velocity components, R11=R22 =R33 =1/ 3. This is a necessary condition for an

isotropic state of turbulence, but it is not sufficient inasmuch as the eigenvalues of the

NR-stress may not be the same even if the diagonal components of g are the same. If the

eigenvalues of g are equal (i.e., XRI =AR2 = XR3 =1/3 ), then the turbulent state is

isotropic.

Figure 1.1, which is similar to the pseudo—triangular graphs introduced by

Lumley and others (see Lumley, 1978; Reynolds, 1987; and, p. 401 in Pope, 2000),

defines the states of turbulence in terms of the invariants of the anisotropic operator:

11
c
-

111

II
7
° 1

u
l
—

l
i
b
—
1

, bT=g , tr(l=))=0. (1.14)

Table 1.1 defines the boundaries of the Lumley (L-) diagram in terms of the non—trivial

invariants of the anisotropic operator and the eigenvalues of the NR-stress. For a

derivation of the inequalities presented in Table 1.1, see Parks (1997). In this research,

the anisotropic invariants are defined by the following three scalar parameters:

Ib—.——.tr(g)=0 , IIbstr(_b_-l=)) , IIIbEtr(2-b-_b_) (1.15)

Figure 1.1 provides a means to compare different anisotropic states associated

with normalized, symmetric, non-negative operators. The eigenvalues of the NR-stress

corresponding to specific anisotropic states on the L-diagram are located in the lSt Sextet

of the eigenvalue simplex (see Table 1.1 and the inset on Figure 1.1). Table 1.1 identifies

the type of states on each boundary of the L-diagram. For example, the quadratic forms

associated with the AB— and AC-boundaries are oblate ellipsoids and prolate ellipsoids,

respectively. The quadratic forms associated with the BC-boundary are planar ellipses

inasmuch as one of the eigenvalues of the NR-stress is zero. The quadratic forms
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Realizable Anisotropic States
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Figure 1.1 Realizable States of the NR-Stress (Lumley, 1978).
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Table 1.1 Boundary Characteristics of the L-Triangle (Parks, 1997; Weispfennig,

 

 

 

 

 

 

 

1997).

Anisstzttrezpic Q(Hbamb) Eigenvalues of 5 Invariants of 2

A 3D-Isotropic )‘R1 = XRZ = 1R3 = 1/3 IIIb = 0, Hb = 0

B 2D-lsotropic A‘R] = XRZ = l/2,KR3 = O HIb = —l/36,llb = 1/6

C lD-lSOtI’OplC KR] =1,)\,R2 = A'R3 = 0 HIb = 2/99Hb = 2/3
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associated with the states at the A-vertex are spheres; the quadratic forms associated with

the states at the B-vertex are circles; and, the quadratic forms associated with the states at

the C-vertex are infinitely elongated needles. The anisotropic states for which

0 S Hb S 2/ 9 and 1111, = 0 are associated with an NR-stress with eigenvalues that satisfy

the following conditions: 0 S KR] S XRZ = l/ 3 S 1R3 S 1 . Anisotropic states that satisfy

all of the Schwartz inequalities are either on the boundary or located within the L-

diagram. Models that predict anisotropic states with (Ilb, 1111,) outside the L-diagram are

unrealizable and, thereby, unphysical.

1.4 Objectives of This Research

The primary objective of this research is to develop an algebraic closure model

for the NR-stress that supports the practical use of the RANS-equation (see Eq.(l.4) for

rapid design and analysis of engineering processes. The new closure model is referred to

hereinafier as the universal realizable anisotropic prestress (URAPS-) closure. The

emphasis in this dissertation is on the theoretical development, calibration, and validation

of the URAPS-closure. The implementation of the new closure in a computational code

and the verification of the resulting computer code are not addressed in this research. The

principal focus is on the further development of an algebraic closure model for the NR-

stress initiated earlier by Parks (1997) for non-rotating homogeneous shear and by

Weispfennig (1997) for non-rotating fully-developed channel flows.

The underlying premise of the research stems from the phenomenological idea

that the Reynolds stress is determined by the local statistical properties of the fluctuating

velocity field and the local mean field kinematics. This algebraic idea is similar to the

11
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hypothesis proposed by Boussinesq in 1877, which has evolved into the class of “eddy”

viscosity closures exemplified by Eqs.(1.7), (1.9), and (1.11) above. In what follows, the

NR-stress is formulated as a non-nagative mapping of 5 into itself with the following

property:

Z(§,§)=§ , if§=2,then§=%l. (1.16)

where E 5 TR <1; > In the above hypothesis,

<1=I>=V<g>+2r=2 and rR=%R(Re,,NF)§ (1.17)

The ratio of the turbulent time scale k/e and the mean field time scale is

- ’7

NFEkll<£>H/8 where ll<£>H72tr(<__F>-<:>T). The specific goal of this

dissertation is to develop a closure for the NR-stress that satisfies Eq.(1.16) and, most

significantly, produces solutions that satisfy Ineq.(l .13) for all rotating and non-rotating

turbulent flows.

Clearly, the pseudo-steady state hypothesis expressed by Eq.(1.16) cannot explain

turbulent phenomena related to the finite time required for the NR-stress to relax to an

isotropic state in an inertial frame, if E —-) (_) instantaneously. Therefore, for the theory

developed hereinafter, temporal changes in the NR-stress occur implicitly through

temporal changes in the gradient of the mean velocity and the turbulent time scale k/ e

governed by Eqs.(1.9) and Eq.(1.11) above. Furthermore, Eq.(1.16) cannot explain the

weak anisotropy that occurs on the symmetry plane of non-rotating, fully-developed

channel flows where 5:2, yet 0<Rxx =Ryy<l/3<RZZ <1. However, Eq.(1.16)

12
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does imply that for rotating homogeneous turbulent flows for which E = 2g , turbulence

decay is not isotropic (see Chapter 5 hereinafter).

In addition to the development and calibration of the URAPS-closure, the

“production” and dissipation coefficients Cp and CD in Eq. (1.11) are estimated by

using the new NR-stress model together with benchmark experimental data and DNS

results related to non-rotating asymptotic homogeneous shear flows (Tavoularis and

Kamik, 1989; Parks, 1997), and non-rotating homogeneous decay (see, esp., Parks, 1997;

and, Pope, 2000). The dimensionless relaxation time ER, formally introduced by

Eq.(1.16), is related to the space-time structure of the local turbulence and is determined

by using previous theoretical and computational results related to rotating homogeneous

decay (Park and Chung, 1999).

As indicated above, the goal is to develop a new algebraic closure model for the

NR—stress that is aligned with previous turbulent modeling principles. This dissertation

addresses four fundamental issues related to this goal: 1) realizabilry of the closure

model; 2) the selection of appropriate benchmark flows for calibration; 3) the practical

development of approximate solutions to the URAPS-closure; and, 4) an assessment of

model predictions related to the influence of frame rotation on the redistribution of

energy.

In summary, with the discovery of an algebraic closure for the NR-stress that

produces realizable solutions in rotating and non-rotating frames of reference for all

turbulent flows, this research provides a unified and practical closure for the RANS-

equation that may have a significant impact on engineering design, research and

education.
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1.5 Outline of the Dissertation

A review of the relevant literature that supports the objectives of this dissertation

is given in Chapter 2. Previously developed algebraic models are discussed relative to

realizability and redistribution of energy. Chapter 2 also includes a brief critique of

Eq.(1.7) and other anisotropic models that relate the mean strain rate and the intrinsic

mean vorticity to the NR-stress. The class of truncated explicit algebraic Reynolds stress

models developed recently by Gatski and Jongen (2000) are also reviewed in Chapter 2.

The predictions of a realizable algebraic model by Shih et al. (1994) are discussed and the

results are used to partly justify the approach developed in this research. A summary of

the hydrodynamic preclosure equation previously developed by Parks (1997) and by

Weispfennig (1997) is also given in Chapter 2.

In Chapter 3, the preclosure result developed earlier by Parks et a1. (1998) is

generalized to include frame rotation. This is a key step in the development that directly

links the NR-stress to another non-negative operator referred to hereinafter as the

prestress. The preclosure mapping includes the hydrodynamic/kinematic operator 5 (see

Eq.( 1.16) above) and satisfies the condition that if the prestress is a positive operator,

then the NR-stress is a positive operator, which means that Ineq.(l .13) is satisfied. This a

priori theoretical result, which does not depend on any calibration, holds for all rotating

and non-rotating turbulent flows. In Chapter 3, the prestress is assumed to be caused by

the NR-stress and the Cayley-Hamilton (CH-) theorem is used to relate the eigenvalues of

the NR-stress and the prestress. The phenomenological CH-coefficients associated with

the “extra” anisotropy of the prestress must be determined by benchmark flows, but

Ineq.( 1.13) provides a means to identify universal bounds on these parameters. Thus, the

14
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resulting URAPS-closure is a non-linear mapping of the NR-stress into itself for all

rotating and non-rotating turbulent flows, provided the universal bounds on the CH-

coefficients are observed. This result provides a means to significantly broaden the use of

the RANS-equation as a diagnostic tool for analyzing turbulent flows.

The URAPS-closure coefficients are estimated in Chapter 4. This includes two

CPI-coefficients, or and [3, implicit in the hypothesis expressed by Eq.(1.16); two

coefficients, Cp and CD, associated with the e-equation defined by Eq.(1.11); and, the

parameters implicit in the turbulent transport group iR (Ret,NF), introduced by

Eq.(1.17) above. For large Ret, iR(oo,NF) depends on three coefficients: CR1, CR2,

and CR3. The foregoing seven URAPS-closure coefficients are estimated by using the

following three canonical benchmark flows: 1) non-rotating homogeneous decay; 2)

rotating homogeneous decay; and, 3) non—rotating asymptotic homogeneous shear.

The calibrated URAPS-equation can be solved by the method of successive

substitution. This attractive numerical feature is demonstrated in Chapter 4 for simple

shear flows. The surprising role of the “extra” anisotropy operator in solving the URAPS-

equation is illuminated in Chapter 4.

Chapter 5 examines the influence of rotation on the NR-stress for homogeneous

decay. The URAPS-closure predicts that for rotating homogenous decay, the anisotropic

states are all on the AB-boundary of the L-diagram (see Figure 1.1). Whence, the

coupling between the velocity fluctuating field and the Coriolis acceleration causes an

initially isotropic state to become anisotropic. For long times, the kinetic energy is

transferred to the fluctuating velocity component that is co-linear with the rotation axis.

This result clearly demonstrates that a retum-to-isotropy upon the sudden removal of the
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mean velocity gradient only occurs in an inertial frame. This Coriolis-induced anisotropy

may also have implications on scattering of electromagnetic fields in the atmosphere.

The influence of rotation on asymptotic homogeneous shear as well as on the

development of these states is presented in Chapter 6. The URAPS-predictions are

qualitatively consistent with DNS results and with other closure models in the literature.

In Chapter 7, the URAPS-closure is used to predict the redistribution of energy

for non-rotating fully—developed channel flows (Fyz = $29): :V < u >). The URAPS-

elosure is also used to predict the components of the NR-strcss in the region of zero

intrinsic vorticity for fully-developed channel flows with spanwise rotation (Q = Qx ex ).

DNS results for N .=.k <F> /8 are used to predict the URAPS-results. It is
F =

noteworthy that the normal components predicted by the URAPS-closure agree

qualitatively with the DNS results for non-rotating flows: Ryy < RXX <R and, for
22"

spanwise rotating flows, RZZ < Rxx < Rvy. This behavior is also indicated in the DNS

results. Thus, the new algebraic closure shows that the Coriolis coupling with the

fluctuating velocity field causes a transfer of energy from the longitudinal component of

the fluctuating velocity field to the cross flow (or transverse) component of the

fluctuating velocity field. This prediction supports the conclusion that the URAPS-

closure has captured the essential relationship between the NR-stress and the

hydrodynamic/kinematic operator§= , as anticipated by the closure hypothesis expressed

by Eq.(1.16).
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Chapter 8 gives a summary discussion of salient conclusions related to the

URAPS-closure and Chapter 9 identifies additional research needed before the URAPS-

closure can be integrated into a CFD code.

17



 

  

.
T: ,

u.

A. I. p

.. thLrLCfl

Inflm 4... GI... .! J.
.E? .0 Haze: -   ..

4
4.;4

*

#

.-v-..
_

.
-

ul;
J

L

n. L... citiflr.

Jwfl.sla....1 4
14.1

. .

1,. ..t....r. f.
n..~ r0. .'

.... '(...f
I

.h-.Jl
ril

...-Lin.

. 7.4.11) .
4

0
p: L.... "lyrn'vrk/

(1‘
A11.

. .

....» 2:? 5...; _

n. -..... .
. _... 4

”.2; an a? L131V.

2111-
_

....rrigii ,.0?“; L2,.

u'u‘

I

Tr... ..11.2..l-Yr
fialcwfl.’

g
a
r

{six .

995.... m.

 



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In this chapter, direct numerical simulation (DNS) and experimental results

related to the following canonical benchmark flows are reviewed: 1) rotating and non-

rotating, fully-developed, turbulent channel flows (Sections 2.2 and 2.3); 2) rotating and

non-rotating, homogeneous, turbulent shear flows (Section 2.4); and, 3) rotating and non-

rotating, homogeneous turbulent decay (Section 2.5). Figure 2.1 illustrates the three

benchmark flows used in this study. DNS results from the literature are used in Chapter 3

to guide the development of the URAPS-closure and in Chapter 4 to estimate the

phenomenological closure coefficients introduced by the theory. In Chapters 5-7, DNS

benchmark results are used to evaluate the predictions of the NR-stress based on the

URAPS-closure. A critique of current algebraic closure models for the NR-stress is given

in Section 2.6. The chapter concludes by restating the objectives of this research relative

to the prior art.

2 - 2 Non-Rotating Fully-Developed Channel Flows

\RANS-Eguation

DNS results for non—rotating, fully-developed, channel flows have been

developed by Kim et al.(1987), Moser et al.( 1999), Iwamoto et al. (2002), Alamo and

Jimenez (2003), Alamo et al.(2004), Hoyas and Jimenez (2006) and many others (see,

esp_’ Chapter 7 in Pope, 2000). The mean velocity has one component (i.e.,
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Figure 2.1. Definitions of Benchmark Flows.
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< u >:< uZ > (y) e2) that depends only on the transverse (cross flow) coordinate y (see

Figure 2.1). The mean pressure depends on y and z: < p > = < p > (y,z). As indicated in

Figure 2.1, the symmetry plane of the channel is located at y=5; the walls of the

channel are located at y=0and 28. Mean momentum is transported across the flow

towards the solid/fluid interfaces by viscous and turbulent stresses. With 9:0,

g = gzez , and V < u > = Fy2(y) eyez , the non-trivial components of the unclosed

RANS-equation, defined by Eq. (1.4), are

0=_1m+i[_2kRW] , OSyS25 (2.1)

p 6y dy

0=—la—<ED—>+i[vd—iu—Zi—2kRyz] . OSySZB. (2.2)
p 62 dy dy

In the above equations, < PD > (y,z) a < p > (y,z)—ngz. Boundary conditions for the

mean velocity and the mean pressure are

__l_8<pD>

<uz>(0)=<uz>(25)=0 , =constant. (2.3)

p 82

Eq. (2.1) implies that

<pD>(y.z)—<pp>(O.z)sAppty)=—2pk(y)R,,.(y>.<.o . OSyszs. (2.4)

Due to no-slip on solid/fluid interfaces and continuity, k(0) = k(25) = 0 and

Ryy(0) = Ryy(25) =0; therefore, Eq. (2.4) shows that < PD > (0,2) = < PD > (25,2). On

the symmetry plane, maxlApD| =+ p< uy'uy' > (5) ¢ 0.

Eq. (2.2) and Eq. (2.3) imply that the total stress is a linear function of the cross

flow coordinate y:
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Vd<uz> d<uz>
—2kRyz =_ _lm]y+v

2.5

dy p 62 dy ( ) y=0

For y =Oand 25, the shear components of the Reynolds stress are zero; therefore, Eq.

(2.5) implies that

+[__1_.i:.P_D__>_

p

d<uz>
V————.—

]25=Vd<uz>

dy

22 ”>0. 2.662 dy (U) ( )

y=25  
y=0

The friction velocity u* , defined by Eq. (2.6), is related to the axial pressure gradient or,

equivalently, to the average wall shear stress.

Total Stress

The DNS results used herein are consistent with Eq. (2.5). With

I‘;stu4’/dy+ =FyZv/(u*)2, Q; Eva/(u*)2, k+ Ek/(u*)2, yJr syu*/v, and

g:- y/8 , Figure 2.2 shows that the total dimensionless stress, defined as I“; —2k+Ryz ,

is a linear function of i :

r;Z-2k+RYZ=r;Z(0)—§ , osgst , v5+>53 , o+=0. (2.7)
X

For Re+ = 5+(E Bu,“ /v) E 300 and Q: = 0, the DNS results imply that ub /u* 217 and

F; (0) = 1. It is noteworthy that the viscous component of the total stress is

Quantitatively important near the solid/fluid interface (viscous sublayer) and that the

Reynolds stress determines momentum transport in the outer region of the flow field. The

tOtal stress is anti-symmetric about the symmetry plane located at E, = 1. These results are
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Figure 2.2. Total Shear Stress Profile for Non-Rotating, Fully-Developed, Channel

Flows
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consistent with the 1938 experiments of H. Reichardt for turbulent flow of air in a

rectangular duct (see p.165 of Bird et al., 2007).

Enet-m1 States and Anisotropic Invariants

Figure 2.3 shows that the energy states for non-rotating, fully-developed, channel

flows all lie within the 2nd Sextet of the energy simplex: 0 < Ryy S Rxx < R22 < 1. For

this flow, the NR-stress has three independent components that depend only on the cross

flow coordinate y+ (E y u* /v):

§=R e e +Ryy§xx_x_x ey+R ee+R e e+R22-2-2 yz_y_z zyezey- (2.8)
Y

Due to no slip at a solid/fluid interface, all of the components of the Reynolds stress are

zero fory+=0and y+=28+. Continuity and the no-slip condition imply that the

components of the NR—stress have the following properties at a solid/fluid interface (sec

p.279 in Monin and Yaglom, 1965, Weispfennig et al. 1999):

7

0< Rxx (0) < RZZ(0) < l, Ryy cc (y+ )‘ and Ryz oc y+ as yJr —> O and y+ —-> 25+. (2.9)

Thus, the quadratic form associated with the NR-stress (QNR-form) at a solid/fluid

interface is a planar ellipse. On the symmetry plane at y+ =5+, the QNR-form is a

prolate ellipsoid:

RXX(8+)=RW(5+)<l/3<RZZ(8+) , Ryz(6+)=0. (2.10)

DNS results show that four qualitatively distinct energetic regions occur in a non-

rOtating, fully-developed, channel flow. Near the wall ( 0 < yJr < 8), energy is transferred

fl‘om Ryy and R22 to Rxx as y+—)0. A highly anisotropic region occurs for
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Figure 2.3. Energy States for Non-Rotating, Fully—Developed, Channel Flows
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8<y+<30 with max(RZZ);0.85 and max(r+);18. For 30<y+<100, r;Z(y+)
)’Z

+ . .

decreases as y increases and energy IS transferred from R22 to Rxx and Ryy. For

100< y+ (5+ , energy continues to be transferred from R22 to Ryy as y+ —> 5+, but

Rxx 20.3 (see Figure 2.3). At the solid/fluid interface,Ryy(0)=O, Rxx(0);0.3,

RZZ(O)1—Rxx E 0.7 , and Ry2(0) =0. At the symmetry plane (i.e., yJr = 5+ ), the mean

velocity gradient is zero and the components of the NR-stress are

Rxx(5+)=Ryy(5+);0.28, RZZ(6+)=l—2Rxx(5+);0.44, and Ryz(5+)=0. This

weak anisotropic phenomenon on the symmetry plane is consistent with the classical

1938 experiments of H. Reichardt for turbulent flow of air in a rectangular duct (see

p.165, Bird et al., 2007). A similar phenomenon is observed in axisymmetrie pipe flows.

This anisotropic energy state is contrary to the hypothesis expressed by Eq. (1.16) and

may be related to the anisotropy in the nomial components of the fluctuating pressure

gradient correlation for wall bounded flows (i.e., <Vp'Vp'> for y+ =51. ), or to an

incomplete development of the flow field. It is noteworthy, however, that the fraction of

energy in the spanwise component of the fluctuating velocity near the symmetry plane is

Comparable to the fraction of energy in the spanwise fluctuating velocity deep within the

Viscous sublayer (i.e., Rxx 3. 0.3 ). Clearly, the transverse redistribution of kinetic energy

among the three components of the fluctuating velocity is significant.

Figure 2.4 shows the DNS results for the second and third invariants of the

anisotropic component of the NR-stress for non-rotating, fully-developed channel flows.

The anisotropic states, defined by [lb and [Nb , are all to the right of the anisotropic states
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Figure 2.4. Anisotropic States for Non-Rotating, Fully-Developed, Channel Flows
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for which IIIb =0. These prolate-like states are parameterized by y+(= yu* /v) and

FDNS(= I‘yzk/s E ng+ #:7317312 5 du+ /dy+). In the outer region

(i.e.,100<y+ <8+ ), the anisotropic states are associated with prolate-like ellipsoidal

quadratic forms. Figure 2.4 shows that the anisotropic state characteristic of non—rotating,

asymptotic homogeneous shear (see Tavoularis and Kamik, 1989; and, Section 2.4

below) is located near the edge of the equilibrium core region in a channel flow (i.e.,

fDNS 24.2 for yJr E 100). This observation partly motivates the use of non-rotating

asymptotic homogenous shear as a benchmark flow for model calibrations (see Chapter

4).

Across the core region (i.e.,30< y+ < 100), the quadratic fomis associated with

the NR-stress (QNR-forms) change from a prolate—like structure to an elongated

ellipsoidal structure as the turbulent kinetic energy increases near the wall. Within the

viscous sublayer, viscous transport of momentum causes the elongated ellipsoidal QNR-

forrn at y+ = 8 to collapse to a planar elliptical form as y+ —) 0. The DNS results used

to construct Figures 2.3 and 2.4 are summarized in tabular form in Table 1.1 and Table 1.2

in Appendix I.

Turbulent Kinetic Energy and Turbulent Dissifpation

Figure 2.5 shows the spatial distribution (inner and outer scaling) of turbulent

kinetic energy (i.e., k4r E k/(u*)2) for 8+ equal to 300 and 2,000. Figure 2.6 shows the

$03tial distribution (inner and outer sealing) of turbulent dissipation (i.e., 8+ 5 ev/(u*)4)
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Figure 2.5. Kinetic Energy for Non-Rotating, Fully-Developed, Channel Flows

28



 

[1:11-

_
:
=
~

1-1111’, ._

01"



 

 

0.20
 

 

 
 

 
 

    

 
 

0.30

1
0.15 1

l

l

|

|

I

l

l

|

|

l

0.10 «1 0.00 = = . .

1 0 5 10 15 20 25

l +

1? Y

8+ 1
I

1

Cl

1, ——0— 5* =300

0-05 ‘ 1“] Iwamoto et al. (2002)

1

1‘ -1}- 5+ =2000

1;: Hoyas and Jimenez (2006)

D

\

\

\

U\\

0.00 1 --------

0.0 0.2 0.4 0.6 0.8

y/5

Figure 2.6.

29
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for 5+ equal to 300 and 2,000. The DNS results for k+ and 8+ at different values of

y+ over the half width of the channel (i.e., 0< y+ <6+) are listed in Table [.1a and

Table 1.23 of Appendix 1.

Continuity and the no-slip conditions imply that kJr = Ck(y+)2 +--- and

8+ = 8:; +C£y+ +--- near the wall, which is consistent with the DNS results shown on

the inset of Figures 2.5 and 2.6. (Ck 50.09 and C8 5—003 ) As y+ increases, k‘L

increases to max(k+)§4.3 and 5.4 respectively at y+516 and 18 for

5+ =300 and 2,000. However, as expected, the peak kinetic energy occurs at slightly

different values of flay/5. For 6+ 2300, k+ 53.7 and 8+ 50.077 at y+ =30 or,

equivalently, at §=0.1. For 5* =2,000, k+ 25.1 ander 50.08 at yr :30 or,

equivalently, at E, =0.015. Towards the center of the channel, k+ E l and 8+ 5 0.01. The

maximum value of 8+ occurs at the wall ( 8+“, 5 0.2 and 8+“, 3 0.27 respectively for the

two 5+ cases). For y+ ~10, 8+ reaches a plateau (see inset of Figure 2.6) and then

decreases monotonically to a positive minimum at the center of the channel. The plateau

phenomenon related to the dissipation occurs in the region where the turbulent kinetic

energy is a maximum.

Figure 2.7 compares the ratio of the local turbulent time scale k / e and the local

mean field time scale (i.e., fDNS sryz Us) for 0<§<l at two different Reynolds

gum bets (Re+ = 5+ = 300 and 2,000 ). The inset on Figure 2.7 shows the behavior of the
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Figure 2.7. Mean Dimensionless Strain Rate fDNS for Non-Rotating, Fully-

Developed Channel Flows.
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dimensionless shear rate group near the solid/fluid interface:FDNS 0C k+ ~ (er)2 . For

0<y+ <10, fDNS increases and peaks at yJr 210, where IZDNS 218. For y+ >10,

fDNS decreases. At y+ =30, fDNS 5 4.9 for 5+ =300 and fDNS 56.3 for

8+ =2,000. For 0.2<§<0.5 , fDNS 54. In this region, the local dissipation and the

local production of turbulence kinetic energy approximately balance one another (see p.

281 in Pope, 2000). At the center of the channel, fDNS =0 inasmuch as the mean

velocity gradient is zero due to symmetry. Table 2.1 tabulates the transverse variation of

the dimensionless shear group fDNS and the components of the NR-stress for

30 S yJr S 5+. This information is used in Chapter 6 to evaluate predictions of the NR-

stress for non-rotating fully-developed channel flow for 0 S F S 6.

2.3 Rotating Fully-Developed Channel Flows

DNS results for fully-developed channel flows with spanwise rotation have been

developed by Wu and Kasagi (2002, 2004), Alvelius (1999), and Grundestam et a1.

(2008). Simulations with and without spanwise rotation are performed with the same

constant axial pressure drop or, equivalently, for the same average wall shear stress.

Consequently, the friction velocity, defined by Eq. (2.18) below, is the same for all

simulations. Comprehensive low-order statistical properties for the mean velocity, the

components of the NR-stress, the turbulent kinetic energy, and the turbulent dissipation

are available for 5+ 5 5u* /v E 296 and Q: (E va/(u*)2) = —0.0042. The results ofWu

and Kasagi (2004) are used in Chapter 7 to benchmark the predictions of the URAPS-
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Table 2.1 Cross Flow Variation of fDNS and the Components of the NR-Stress for

Non-Rotating, Fully-Developed, Channel Flow: (a) 6+ 2300;): =0 (

Iwamoto et al. 2002) ; (b) 5* z 2000 ,9; = 0 (Hoyas and Jimenez, 2006).

 

 

 

 

 

 

 

 

 

 

 

          

(a)

ly+l y/5 IZDNS Rxx Ryy Rzz Ryz

30 0.10 4.90 0.21 0.09 0.70 -0.11

35 0.12 4.24 0.22 0.11 0.67 -0.11

40 0.13 3.79 0.23 0.12 0.65 -0.12

45 0.15 3.49 0.24 0.14 0.62 -0.13

50 0.17 3.30 0.25 0.15 0.60 -0.13

70 0.24 3.06 0.27 0.18 0.55 -0.14

100 0.33 3.09 0.28 0.19 0.53 -0.15

150 0.51 3.08 0.28 0.21 0.51 —O.15

200 0.67 2.73 0.27 0.23 0.50 -0.14

250 0.84 1.69 0.27 0.26 0.47 -0.09

300 1.00 0.00 0.27 0.28 0.45 0.00

(b)

 

ly+l y/5 lZoNs Rxx Ryy Rzz Ryz

 

30 0.015 6.28 0.23 0.08 0.69 -0.09

40 0.02 4.98 0.25 0.10 0.65 -0.10

50 0.03 4.40 0.27 0.12 0.61 -0.10

75 0.04 4.13 0.27 0.14 0.59 -0.11

100 0.05 4.17 0.27 0.15 0.58 -0.11

250 0.13 4.35 0.25 0.16 0.59 -0.12

500 0.25 4.05 0.24 0.18 0.58 -0.13

1000 0.50 3.69 0.25 0.20 0.55 -0.13

1500 0.75 2.65 0.26 0.23 0.51 -0.10

2000 1.00 0.03 0.27 0.26 0.47 0.00
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closure. Hereinafter, a nominal value of 25+ = 600 is used to refer to the DNS results for

25* = 592.

RANS—Equation 

For spanwise rotation of a fully-developed channel flow, < u >:< uZ > (y) 92 and

< p > = < p > (y,z). As illustrated by Figure 2.1 above, the symmetry plane is located at

y = 8 and the solid/fluid interfaces are located at y = 0 and 28. The angular velocity of

the frame is Q = Q X e x , and the rotation operator is Q = g-Q = Q x(g
ygz _gzgy) - The

angular velocity of the frame is co-linear with the mean vorticity

<w>sVA<u>=<wx >ex. With gzgzeZ and V<u>=Fyz(y)§y§Z,the two non-

trivial components of the unclosed RANS-equation (see Eq. (1.4)) for this flow can be

written as

—2<uz>ox=—%[—<pp—D>]+%[—2kkyy] , 0SyS28 (2.11)

_a_ mpiwflz —2kR , OS S28. 2.12

02 p dy dy yz] y ( )

In the above equations, the dynamic pressure < PD > (y, z) is defined as

2 2 2
+2 (2

<pD>(y,z)s<p>(y,z)—p (y 2) x —ngz. (2.13) 

Boundary conditions for the mean velocity and the mean axial pressure gradient are

<uz>(0)=<uz>(28)=0 , —m=constant. (2.14)

Z
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The no-slip condition at solid/fluid interfaces implies that all the components of the

Reynolds stress are zero on the channel walls. Therefore, for spanwise rotation, the

Coriolis force, 2p < u > /\ 9, acts in the transverse (cross flow) direction and, thereby,

plays an explicit role in the force balance expressed by Eq. (2.1 1). As a consequence, the

transverse component of the Reynolds stress and the Coriolis stress cause a cross flow

variation in the dynamic pressure:

<PD > (>82) -< Po >(0aZ) E APDQ’)

y . . ,. (2.15)

=—2pk(y)R,,y(y)+2pQx l<uz >(y>dy

0

The no-slip condition at a solid/fluid interface implies that the components of the

Reynolds stress are zero at y=0and 28; therefore, unlike the non-rotating case, the

dynamic pressure difference between the two solid/fluid interfaces is non-zero for

(2x $0:

28

APD(28)=+2pQX j< uZ > (y)dys+45pox ub 44:2; 5+0" /ub]pu§. (2.16)

0

Eq. (2.16) shows that < PD > (2 8,2) is smaller than < PD > (0,2) if < uZ > (y) 2 0 and

Qx <0. For this configuration, the solid/fluid interface at y = 28 is the low pressure

(LP-) interface and the solid/fluid interface at y = 0 is the high pressure (HP-) interface.

For 8+ = 300 and Q; E - 0.0042 , the simulations predict that the bulk average velocity

It . .
equals ub'518u and the pressure difference across the channel IS

APD (25) = —0.275pu§ .
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Eq. (2.12) and Eq. (2.14) imply that the total stress is a linear function of the

transverse coordinate y:

 

  

Vifjii_2kRfl=_[_l§f_;Q:]y+vw . (2.17)

dy p 02 dy y=0

For y = 0 and 28 , the shear components of the Reynolds stress are zero; therefore,

+_16<apD>]25=Vd<uZ> _ d<duz>

p Z Y=0 y F”. (2.18)

E (Twliip +(TwlLP =2(u"‘)2

o c o o u * q o o c

As With the no-rotation case, the fr1ct10n veloc1ty u for spanmse rotation 15 related to

the axial pressure gradient or, equivalently, to the average wall shear stress (i.e.

 

_8_5<pD>

u" =,/1<rw)up +(rw)Lp1/(2p> =1—p 1“"2 >.
(72

Total Shear Stress 

The DNS results of Wu and Kasagi (2004) for 8+(E 8u* /v = Re+) equal to 300

and 2,000 are consistent with Eq. (2.17). For example, with F;ZEdu+/dy+,

k+ a k/(u'i)2 , and y+ _=_ yu* /v , Figure 2.8 shows that I“; —21<+Ryz is approximately a

linear function of E, E y/8 for 0 S g S 2:

I“;Z(§)-2k+R),z=+I“;Z(O)—E,, 03:35”, 17585;, —oo<Q;<+eo. (2.19)

For 8+=300 and Q;5_0-00429 the DNS results predict that ub/u*;18 and

1140) E 1.38. Figure 2.8 also illustrates that the viscous component of the total shear
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Figure 2.8 Total Mean Shear Stress Profile Across the Rotating Channel for

5+ 2 300 and o; z — 0.0042.
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stress is quantitatively important near the solid/fluid interface and that the Reynolds stress

determines transport of momentum in the outer region of the flow field. Although Eq.

(2.17) (or, equivalently, Eq. (2.19)) for spanwise rotation is formally the same as Eq.

(2.5) for no rotation, the DNS results summarized by Figure 2.8 show that the total shear

stress, albeit linear in the transverse coordinate, is no longer anti-symmetric about

y=8(or,§=l) for Q; >0 ( i.e., F;Z(0) ; 1.38 and F;Z(2); -0.627 ). Figure 2.8 also

shows that the total shear stress is zero at yO(E F;Z(0)8) = 1.388 for Q: E — 0.0042 ; and

Y0 =8 for no rotation inasmuch as I“;Z(O) =1. Eq. (2.19) implies that the Reynolds

stress is directly influenced by the Coriolis force. This phenomenon provides ample

motivation for the dCVClOment of the URAPS-closure in Chapter 3.

Absolute [Mean Vorticitv
 

As indicated by Figure 2.9, the transverse (cross flow) variation of

u+( E < uZ > / u* )is not symmetric about the symmetry plane. The maximum velocity

occurs on the low pressure side of the flow field in the vicinity of y+ = 415 (§ $1.38),

which is consistent with the result that the wall shear stress at the LP-interface (i.e.,

i=2) is less than the wall shear stress at the HP- interface (i.e., 6:0), i.e.,

 

r;Z(0)' >
 
F;z(2)[.

The mean velocity profile shows that the mean intrinsic vorticity operator (or,

equivalently, the mean absolute vorticity) is approximately zero over a finite region of the

flow field (also, see, p. 617 in Piquet, 1999; Hamba, 2006; and Grundestam et al., 2008).
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Figure 2.9 Mean Velocity and the Mean Velocity Gradient for 8+ 5 300 and

Q; g — 0.0042 .
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For spanwise rotation, the intrinsic mean vorticity operator is

1d<uz>

2 dy

 

A E V II
I

1

<_fl_>+g=g(§<fl>+9)=( +Qx)(§ysz-929y). (2.20)

For 8+ = 300 and Q: E — 0.0042 , the DNS results (see Figure 2.9) show that there exist

a finite region where the absolute mean vorticity is approximately zero:

+ + .

d“ —i9“—;—2o;;+0.0084 , 0<§m'";0.5<g<§max;1<2 (2.21)

dy+ "5+ d:

 

Energy States and Anisotropic Invariants

Similar to the no rotation case, the NR-strcss has three independent components

that depend only on the transverse coordinate y+(s yu* / v) . Due to the no slip condition

at solid/fluid interfaces, all of the components of the Reynolds stress are zero

for yJr =0and y+ = 28+. Deep in the viscous sublayers near the HP-wall and LP-wall,

continuity and no-slip imply that the components of the NR-stress have the following

characteristics:

0<Rxx(0)<Rzz(0)<l , Ryyoc(y+)2 , Ryzocy+ , y+ —>0, (2.22)

0<Rxx(28+)<R.I_z(25+)<1 , Ryy°c(25+’y+)2 ’
(7 23)

Ryz 0C(28+ —y+) I y+ "925+.
.

For 8+ 5 300 and Q: 5 —0.0042 , Figure 2.10 shows that Rxx(0) s 0.3 and RZZ(0) E 0.7

at the HP-wall; and, Rxx (600)502 and Rzz(600);0.8 at the LP-wall. Thus, the

quadratic forms associated with the NR-stress (QNR-form) are planar anisotropic

(elliptical) at the HP- and LP-walls.
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Figure 2.10 Energy States for Rotating, Fully-Developed, Channel Flow (8+ E300
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For 5* s 300 and a; 2 —0.0042, Figure 2.10 shows that max(RZZ) ; 0.8 at

yJr 9:10 near the HP-wall and max(RZZ) _=_ 0.9 at y+ E 590 near the LP-wall. Unlike the

no-rotation case (see Figure 2.3), the energy states are distributed in all six sextets of the

energy simplex. On the symmetry plane of the rotating channel (i.e., yJr = 8+ 5 300, or

6:1), the energy state is in the 5th Sextet: RXX(300)=0.29,Ryy(300)=0.45, and

R22 (300) = 0.26. At y+ E 300, the cross correlation component of the NR-stress is non-

zero: Ryz(300) = —0.l35. As noted above, the total shear stress (i.e., I"; —2k+RyZ) is

zero at y+ E 415 . The mean velocity profile (see Figure 2.9) shows that I“; (415) E 0

and Ryz(415) E 0. As indicated by Figure 2.10, the normal components of the NR-stress

at 8+§415 are located in the 4'h Sextet of the energy simplex:

Rxx(415) = 0.37 ,Ryy(415) = 0.29, and RZZ(415) = 0.34.

Figure 2.10 shows that the energy is distributed among the three normal

components of the Reynolds stress differently on the HP-side of the channel

(0S y+ S415) and the LP-side of the channel (415 S y+ S 600). As indicated above,

near the HP-wall within the viscous sublayer (0< y+ < 5) and the LP-wall within the

viscous sublayer (595 < y+ < 600) energy is transferred from R”, and R22 to R as
XX

yJr —>0 and 600, respectively (2nld Sextet of the energy simplex). Within the regions

5 < y+ < 30 and 570 < y+ < 595 , highly anisotropic QNR-forms develop with

max(Rzz) s 0.8 on the HP-side of the channel and max(RZZ) E 0.9 on the LP-side of the
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channel (2nd Sextet of energy simplex). Within the regions 30<y+<150 and

440 < y)r < 570 , energy is transferred from R22 to Rxx and RW as the distance from the

HP-wall and LP—wall increases. Within the region 1 50 < yJr < 440 , energy is redistributed

among the normal components R R and R22 with the result that max(Ryy) s 0.45
XX’ yy’

at y+ s 300. Figure 2.10 shows that the energy states in the region 150 < y+ < 300 are

distributed over the 5th and 6th -Sextets. The mean absolute vorticity is approximately

zero in this region. This result is used in Chapter 7 to predict the components of the NR-

stress in this region of the flow field.

Figure 2.1] shows the anisotropic states associated with the NR-stress for

8+ E300 and Q: 5—00042. A comparison with Figure 2.4 for the no-rotation case

shows some similarities and some differences. Near the plane where the total mean shear

stress is zero, the QNR-form for the no-rotation case is nearly prolate elliptical for

y+ 3300 whereas for the rotation case the QNR-form is nearly oblate elliptical for

y+ ’5 415. Figure 2.4 shows that for all y+, the invariant Hlb is positive. On the other

hand, Figure 2.11 shows that for y+ s 440 on the LP-side the invariant HIb is negative:

(11b,IIIb)§(+0.03,—0.001). It is noteworthy that on the HP-side of the channel, the

kinetic energy peaks (i.e., max(k) E 5.9) at y+ E 15 for which fDNS = 23 , 11b 3 +0.33 ,

and IIIb ; +0.06 (see Figure 2.12 below). However, on the LP-side of the channel, the

kinetic energy peaks (i.e., max(k);2.7) at y+2582 for which FDNS=—33,

Hb :1 +0.44, and IIIb E +0.11 (see Figure 2.12 below). In the case of no rotation, the
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kinetic energy peaks (i.e., max(k) E 4.3 ) at y+ E l6and y+ E 584 for which fDNS =12 ,

11b 2 +0.38 , and Illb 5 +0.09 (see Figure 2.4 above).

Turbulent Kinetic Energy and Turbulent Dissipation

Figures 2.12 and 2.13 show the spatial distributions (inner and outer sealing) of

the turbulent kinetic energy, k4r a k/(ul')2 , and the turbulent dissipation, 8+ 5 av/(u’l)4 ,

for Q; E —- 0.0042 for 84r = 300. The results near the HP- and the LP-walls are shown as

insets by using inner scaling parameters. The inset scale refers to the distance from the

HP- and LP-walls in viscous wall units. The DNS results for k+ and 8+ at different

values of y+ are tabulated in Table 1.4 of Appendix 1.

Continuity and the no-slip conditions at a solid/fluid interface imply that

k+=ck(y+)2+--., and e+=e;,+e8y++---. At the HP-wall, (Ck),.”,=0.15,

(e;,)HP=0.Is, and (Camps—0.02; and, at the LP-wall, (Ck)Lp=0.04,

(8:,)Lp=0.05, and (Cams—0.008. Near the HP-wall at y+515(E,=0.05),

max(k+)25.9; and, near the LP-wall at y+ s 582 (a: 1.94 ), max(k+);2.7. Figure

2.13 shows (see inset) that the turbulent dissipation profile has a plateau in the region

where the turbulent kinetic energy has a local maximum. As noted above (see Figure

2.8), the total shear stress is zero at 8+ = 415 (5,: 1.38). At this position, Figures 2.12

and 2.13 show that min(k+ ) 2 1.1 and min(e+ ) a:— 0.0025.
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For 8+ = 300 and Q: E — 0.0042 , Figures 2.14 and 2.15 show the behavior ofthe

turbulent time scale k/ 8 made dimensionless with the mean velocity gradient,

IZDNS EFyzk/a, and with the angular velocity of the frame, QDNS EQX k/s .The

insets on the figures use inner scaling to highlight the behavior of fDNS and QDNS near

the HP-wall (0 < y+ < 30) and the LP-wall (570 < y+ < 600 ). The group fDNS is zero at

the HP- and LP—walls because k(0) = k(28) = 0. It is also zero at F, :— 1.38 because

ryz(1.385)=0.

For yJr 512 (1250.04), max(FDNS) 2 +40. At y+ 5588 (£51.96),

min(FDNS) "z“ — 40. Near the HP-wall, the mean absolute vorticity, defined as

(FDNS /2) + QDNS , is positive. For 0.5 < y/8 < l , the mean absolute vorticity on the HP-

side of the flow field is approximately zero. And, on the LP—side of the flow field, the

mean absolute vorticity is negative inasmuch as fDNS and QDNS are both negative for

1.34<§<2. Table 2.2 tabulates the cross flow variation of fDNSa QDNSa and the

components of the NR-stress for 0.1Sé+ S 1.9 (30S y+ S570). This information is

used in Chapter 7 to evaluate predictions of the NR—stress based on the URAPS-closure

for rotating fully-developed channel flow.

Turbulent Production/Diss{nation Ratio

Production is approximately balanced by dissipation in the outer region of the

non-rotating channel. This feature is often applied in modeling for obtaining algebraic

approximation for the Reynolds stress transport equation (this will be further discussed in
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Figure 2.14 Transverse Profiles of fDNS for Rotating, Fully-Developed, Channel

Flows (5+ 5 300 and a; 5 — 0.0042 ).
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Table 2.2 Cross Flow Variation of fDNS , QDNS , and the Components of the NR-

Stress for Rotating, Fully-Developed, Channel Flow:

(2; E — 0.0042 (Wu and Kasagi, 2004).

+ 2 2

[y ] 31/5 l“DNS QDNS Rxx RY)’ R22 RYZ

30 0.10 7.47 -0.40 0.25 0.10 0.65 -0.12

40 0.13 5.48 -O.49 0.28 0.13 0.59 -0.14

50 0.17 4.57 -0.58 0.30 0.17 0.53 -0.16

75 0.26 3.91 -0.82 0.31 0.24 0.45 -0.19

100 0.34 3.67 -1.03 0.31 0.29 0.40 -0.20

150 0.51 3.25 -1.38 0.29 0.38 0.33 -0.20

200 0.68 3.25 -1.62 0.27 0.44 0.29 -0.19

250 0.85 3.27 -1.78 0.27 0.46 0.27 -0.17

300 1.00 3.07 -1.86 0.29 0.45 0.26 -0.13

350 1.15 2.34 -1.90 0.33 0.41 0.26 -0.09

400 1.32 0.24 -1.87 0.37 0.33 0.30 -0.03

450 1.49 -4.62 -1.59 0.35 0.22 0.43 0.04

500 1.66 -9.40 -1.01 0.29 0.14 0.57 0.08

550 1.83 -13.92 —0.50 0.22 0.09 0.69 0.08

560 1.87 -16.74 -0.43 0.19 0.07 0.74 0.07

570 1.90 -21.23 -0.40 0.15 0.05 0.80 0.06          
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Section 2.6). The production to dissipation ratio, 79/8, for the rotating and the non-

rotating channel is shown in Figure 2.16. For 8+ = 300 and Q: = 0, a maximum value of

P/e (E 1.8) occurs in the region where k+ is a maximum. For 8+ = 300 and

Q; E — 0.0042 , the production/dissipation ratio has a maximum value of 4.2 at E, = 0.04

and then decreases to zero at E,=1.38 , where the total shear stress is zero. Near the LP-

side, the peak value of 73/ a is about 2.6 at 5,: 1. .92.

2.4 Homogeneous Simple Shear

Non-Rotating Frame ofReference

Experimental measurements of low order statistical properties of homogenous

simple shear flows by Harris et a1. (1977), Rohr et al. (1988), Tavoularis and Karnik

(1989)) and others have been used to calibrate turbulent models (see Pope, 2000; and,

esp., Parks, 1997). As illustrated by Figure 2.1, this statistically stationary flow in a non-

inertial frame of reference (i.e., Qx =0) is caused by a screen with a transverse

resistance that produces an approximate homogenous shear environment downstream of

the grid: V< g >:eZ ey = Fyz = constant . As 2 —> oo , the turbulent kinetic energy and the

turbulent dissipation become unbounded (i.e., k —> oo ands —> oo ) and the flow becomes

self-similar with the following characteristics:

far _1_(_ Z—)oo

8

y, —————>FAHS = 4.18 (2.24)

2—->oo AHS .

§——)§ =0.236 ex _ex +0.197 ey _ey +0567 92 e2

—-0.165§y e2 —0.165§Z ey

(2.25)
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The Viz—point on the energy simplex (see Figure 2.3 above) and on the anisotropic

diagram (see Figure 2.4 above) shows that the asymptotic state for homogeneous shear,

defined by Eqs.(2.24) and (2.25) above, is close to the turbulent states formed in non-

rotating, fully—developed, channel flows near the outer edge of the equilibrium region.

This observation justifies the use of asymptotic homogenous shear flow statistics as a

benchmark flow. Eqs.(2.24) and (2.25) are used in Chapter 4 below to calibrate the

URAPS-closure developed in Chapter 3.

Rotating Frame ongference 

Bardina et al. (1983) and others (see, esp., Speziale 1989; Salhi and Cambon,

1997) used large eddy simulations (LES) of the Navier—Stokes equation to detemiine the

effect of spanwise rotation on the statistical properties of a statistically stationary,

homogeneous mean shear flow (see Figure 2.1 above). The results were developed for an

“initial” dimensionless shear rate of F(0) E 3.3 . Simulations are available for three

rotation numbers: Q/FEQX/Fy2=—l/2,-l/4,and0. The computations were

allowed to develop for a dimensionless space-time of tuFYZ=5 , where

tu Ez/<uz>(0) . The components of the NR-stress and F for tquZ=5 are

summarized in Table 2.3. In Chapter 6, these LES results will be used to partially assess

the ability of the URAPS-closure to predict the influence of rotation on the NR-stress.

Brethouwer (2005) also developed DNS results for Q/ F = — l / 2 , — l / 4 , and 0. In

this study, each simulation was initiated by suddenly setting F(O) E 18 in an otherwise

homogenous turbulent field. The simulations were conducted over a finite development
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Table 2.3 DNS and LES Results for Asymptotic Rotating Homogeneous Shear:

DNS (Brethouwer, 2005); LES (Bardina et al., 1983 (as reported by

Speziale , 1989; Salhi and Cambon, 1997)).

 

 

 

 

 

 

          

~ ~ F0 t r(8)

Q/ P (appx) (appx) (appx) Rxx Ryy Rzz RYZ

DNS 0 18 12 12 0.210 0.120 0.670 -0.130

-0.25 18 8 l2 0.280 0.370 0.350 -0.320

-0.5 18 l4 12 0.394 0.553 0.053 -0.065

LES 0 3.3 5 - 0.294 0.073 0.633 -0.15

-0.25 3.3 5 - 0.224 0.383 0.393 -0.35

-0.5 3.3 5 - 0.344 0.583 0.073 -0.10

 

55

 



 

 

  

'
<

in: USIUT}2 < 1..

33% Le experimenta

its: to attain a sel Ilsir‘

:jtoumate asymptot: ..

a
;

. .
....

.' ,5
-1“. 12d results slim '

I“. i

b“ S’IL’CLI‘QMSC compt 31‘;

:mpanent Note that

aeration flips and R
‘\

s......'n:ta;~ns lor spantx is.

1:7: Elj-golr ‘
are mean \ in"!

Brethouwer t“ "

tr(. 3"...r_tg.ueous shear tlo‘

- =.t‘=‘l.

‘

--...Jn numbers (2

A;
~;l| T ~

'77-;an r’(‘(

Let: -

‘1 5 lhe .

Well.

2:: prC‘dl'n

QkLS
t\\ 0

 

 



time, OStquZ <15. For Qx =0 and tqu2 =12, F(12)=12, which is significantly

above the experimental value of fAHS = 4.2. The simulation time may have been too

short to attain a self-similar state. The components of the NR-stress listed in Table 2.3 are

approximate asymptotic values extrapolated from the developing statistical results. The

tabulated results show that as 52/ F becomes more negative, the energy is shifted from

the streamwise component of the fluctuating velocity to the crossflow (or transverse)

component. Note that for ("l/lz =0, Ryy <R but, for fl/F=—1/2, the energy
22;

distribution flips and Ryy > RZZ. This redistribution of energy was also noted in the DNS

simulations for spanwise rotation of channel flows (see Figure 2.4 above) in the region of

zero absolute mean vorticity (sec Eq. (2.21) above).

Brethouwer (2005) recently developed DNS simulations for spanwise rotation of

homogeneous shear flows and showed that self-similar solutions occur over a finite range

of rotation numbers (2 / F :

(fa/hm,“ < (Ci/1"“) < (52mm (2.26)

The DNS results developed for 52/ F between (52/ 1:)min and (fl/1:)max show self-

similar behavior inasmuch as the turbulent kinetic energy, the turbulent dissipation, and

all the components of the Reynolds stress increase as the dimensionless development

time t increases, but F and all the components of the NR—stress approach a self-similar

state as indicated by Table 2.3. Brethouwer (2005) also noted that forfl/ F = —3/ 4 and

52/11 = +1/ 4 the turbulent kinetic energy k and the turbulent dissipation a both decrease

to zero as the development time increases. Therefore, spanwise rotation of homogeneous

shear produces two qualitatively distinct flow regimes. A decay regime, defined as
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lim (k,s) = (0,0) 3 lim F = oo

‘11—“) turyz ‘W . (2.27)

for (fl/f“) < (r2 / mm,“ or ((2 / f) > (62/ mm

And, a self-similar regime, defined as

“I“ (k,8) = ((13,513) 3 um I: = fAlIS < 00

In —)CX3 turyz 6(1) . (228)

for (fl/mm,n < ((2/1“) < ((‘2/1“)max

In Chapter 6 and in Section 2.6 below, the existence of self-similar states for rotating

homogenous shear flows provides a means to validate and compare specific predictions

of different closure models for the NR-stress.

2.5 Homogeneous Decay

Non-Rotating Frames ofReference

Experimental measurements of the low-order statistical properties of

homogeneous decay in an inertial (non—rotating) frame of reference by Comte-Bellot and

Corrsin (1971) and many others (see, esp., pg. 160, Pope 2000) confirm many

fundamental ideas related to turbulent velocity fluctuations (see, Chapter 3, Piquet, 1999;

and Parks, 1997). DNS and lattice Boltzmann simulations have also been developed for

homogenous decay and are consistent with experimental results (see, Mansour and Wray,

1993 ; Yu et al. 2005). For this flow (see Figure 2.1), the turbulent kinetic energy

k (5 tr <g'g' > /2) and the turbulent dissipation e (E vtr < (172')-(Vg')T >) , which are

both positive, are related by (see Eq. (1.9) above)

dk_
___8, 2.29dt ( )
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Figure 2.17 gives a summary of the experimental results (Comte-Bellot and Corrsin,

1971) in the form ofa phase plane graph of k(t) E k(t)/k(0) and 52(1) 2 8(t)/8(0). The

decay curves are parameterized by the dimensionless timet=ta(0)/k(0). The non-

viscous decay of turbulent kinetic energy has the feature that 0 S 5(t) S k(I) S l , which

implies that k/é —>oo as t—-> 00. All NR—stress closure models that use k —8 transport

equations (see Eqs.(1.9) and (1.11) use the results portrayed in Figure 2.17 to partially

calibrate the phenomenological relaxation time IR governing the decay of turbulent

dissipation (see Chapter 4 below):

E =_CD_8_. (2.30)
C“ IR

Rotating Frame ofReference

Experimental results for homogenous decay in a rotating frame of reference have

been reported by Ibbetson and Tritton (1975), Weigland and Naguib (1978) and Jaquin et

al. 1990. They noted that in the presence of rotation, rate of decay of turbulent kinetic

energy is decreased along with a decrease in the dissipation. Although anisotropy was

observed in the integral length scales, there was no significant Reynolds stress anisotropy

reported. Complementary DNS and LES results were developed also by Bardina et al.

(1985), Speziale et al. (1987) and Mansour et a1. (1992) (see pg. 59 Gatski 1992). These

earlier simulations were limited to relatively small decay times (i.e.,t<10) and low

initial rotation numbers, (20 =ka(0)/e(0)<75 ). A weak prolate anisotropic state

developed from an initial rotation number of (20 ~ 1; however, no discemable anisotropy
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developed for large rotation rates. However, recent simulations based on lattice

Boltzmann, LES, and DNS methods have indicated that rotation can redistribute turbulent

kinetic energy among the three components of the fluctuating velocity (see Yu et al.,

2005; Bartello et al., 1994; Cambon et al., 1997; Momishi et a1. 2001; and Yang and

Domaradzki, 2004). However, significant anisotropy only occurs after I >> 10 . Yang and

Domaradzki (2004) used LES to show that an anisotropic state eventually develops after

a long simulation time for rotation numbers ((20 > 20) and the results of Cambon et al.

(1997) show that the QNR-form may be either an oblate ellipsoid or a prolate ellipsoid,

depending on the initial conditions and the development time (see, esp., Figure 7 in

Cambon et al., 1997; and Yang and Domaradzki, 2004).

The influence of frame rotation on the energy cascade in homogeneous decay has

been studied theoretically by Zhou (1994) and Zeman (1995). Park and Chung (1999)

developed a relationship between the relaxation time TR , defined by Eq. (2.29), and the

rotation number QEka/a. The results of Park and Chung (PC-) are used in this

research to determine several calibration parameters associated with the URAPS—closure.

Appendix F provides a brief summary of the PC-paper needed to support the calibration

of the URAPS-closure in Chapter 4 below.

2.6 Algebraic Models for the NR-Stress

An algebraic closure model for the NR-strcss in a non-inertial frame of reference

relates the normalized Reynolds stress to the local mean velocity gradient, to the local

statistical properties of the fluctuating velocity, and to the angular velocity of the frame.

The relationship may be either implicit or explicit. An implicit model is a non-linear
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algebraic mapping of 5 into itself. A formal representation of this idea can be expressed

as follows:

3
.
4

’ —
W35)» H

z
!

ll
7< ETR<F>, <__1~:>=V<_u>+2§=2, TRECRk/S. (2.31)

In general, the scalar—valued dimensionless closure function CR depends on two

dimensionless groups related to the relative importance of time scales associated with the

local statistical state of the turbulence, viz., Ret E (k/a)/(v/k) and NF 2 (k/e)”< E >ll.

An explicit model provides a direct link between the hydrodynamic/kinematic operator

5 and the NR-stress £2

snag—g. (2.32)

Both implicit and explicit algebraic models employ the assumption that deviations from a

local isotropic state can only occur by a coupling with an external field. Therefore, if

5 =2 in either Eq. (2.31) or Eq. (2.32) above, then 5 =1/3. This hypothesis excludes

the possibility of a weak anisotropic state on the symmetry plane for fully-developed

channel flows (see Figure 2.3). It also excludes the possibility of a non-zero shear

component for 5 =0 in fully-developed annular flows (see Churchill and Chan, 1995).

However, it is consistent with DNS results for spanwise rotating channel flows that

predict a zero total stress on the LP-side of the symmetry plane where the shear

component of the NR-stress is zero and the mean velocity is a maximum (see Figures 2.8

and 2.9 above).

In Chapter 1, several theoretical properties for the NR-stress were identified and,

in Sections 2.2-2.5, experimental and DNS results for the NR-stress for specific

benchmark flows were noted. In this section, these observations are used to critique
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several algebraic closure models presently used to support an analysis of the RANS-

equation (see Eq. (1.4)). Additional information related to these specific models is

available in the book by Pope (2000) and in the references cited in the bibliography. The

following nine characteristics of the NR-stress will be used to benchmark algebraic

closure models:

C 1: The NR-stress is real, symmetric (RT = 5 ), and normalized (tr(g) =1).

C2: The eigenvalues of the NR—stress are non-negative real numbers for all

flows.

C3: For non—rotating, fully-developed, channel flows the normal components

of the NR-stress are in the 2nd Sextet of the energy simplex (see

Figure 2.3).

C4: For spanwise rotation of fiilly-developed, channel flows, the normal

components of the NR-stress are distributed in all six sextets of the

energy simplex (see Figure 2.10).

C5: In the absence of rotation, the QNR-form for fully-developed, channel

flows near the isotropic state is nearly prolate (i.e., IIIb > 0 ; also see

Figure 2.4).

C6: For spanwise rotation of fully-developed, channel flows, the QNR-form

near the isotropic state is nearly oblate (i.e., Hlb < 0; also see Figure

2.11).

C7: For non-rotating homogenous shear, the NR-stress is self-similar and the

dimensionless turbulent time scale,F =(k/e)I‘ is self-similar for
Y2 ’

sufficiently large development times.

C8: For spanwise rotation of homogeneous shear, the NR-stress and F are

self-similar for sufficiently large development times for a finite range

ofrotation numbers:

—00 < (Qx /T‘yz)min < (Qx /1‘yz) < (0)( /I‘yz)max < +00.

C9: For rotating homogeneous decay, the energy distribution is anisotropic

and, for long decay times, the QNR-form is stretched into a prolate or
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oblate ellipsoid (see, Figure 7 in Cambon et al., 1997 and Yang and

Domaradzki, 2004).

Closure Models Based on a Phenomenological flgpotlzesis

An “eddy” viscosity model for the Reynolds stress is analogous to the closure

employed for the molecular stress of a Newtonian fluid. This idea, which is often referred

to as the Boussinesq (B-) closure (see p. 162 in Bird et al., 2007; p. 93 in Pope, 2000;

and, Boussinesq, 1877), has been used by numerous researchers to relate the anisotropic

component of the Reynolds stress to the mean strain rate. The B-closure is an example of

an explicit model for the NR-stress inasmuch as (see Eq. (1.7) above):

e=aE<<§>>= 1+2, 2 —CV<

I
l
m
t

>,<

11
U
3
1

V “
I

/
\

ll
U
)

V (2.33)

m
l
x
‘

l

3

The dimensionless scalar-valued “eddy” viscosity coefficient CV links the mean strain

rate and the turbulent time scale k/ a to the anisotropic component of the NR-stress. In

general, CV depends on the turbulent Reynolds number, Ret =(k/a)/(v/ k), and the

invariants of < S >. Eq. (2.33) is widely used to support computational analyses of the

RANS-equation (see Eq. (1.4)). The “eddy” viscosity closure for the NR—stress has the

following characteristics.

> Eq. (2.33) clearly satisfies characteristic C 1 above.

> The eigenvalues of <__S=> and g are related by ARi = —CV XSi +1/3. Eq. (2.33)

is realizable for all. flows and, therefore, satisfies characteristic C2 above

provided the invariants of 2 are within the L-diagram (see Figure 1.1). This

requires a phenomenological coefficient CV that satisfies the following
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inequality OS—Cv X81 +l/3 S1 for all flows. A specific form for CV has

been identified by Shih et al. (1995) using benchmark statistics for non-

rotating simple shear, but a recalibration is needed for rotating simple shear

flows. Therefore, Eq. (2.33) satisfies characteristic C2 provisionally

inasmuch as the B-closure is not universal (i.e., a different “eddy” viscosity

coefficient is needed for rotating flows).

> For non-rotating homogeneous shear and for non-rotating fully-developed

channel flows, the B-closure predicts that the turbulent kinetic energy is

equally distributed among the three components of the fluctuating velocity.

Therefore, Eq. (2.33) is qualitatively inconsistent with C3 above.

‘P Eq. (2.33) can be “sensitized” to rotation through the turbulent time scale k/c ;

however, the B-closure applied to a rotating simple shear still predicts that

the energy is equally divided among the three normal components of the

NR-stress. This theoretical prediction is qualitatively inconsistent with C4

above.

> Eq. (2.33) predicts that all the realizable anisotropic states for non-rotating

simple shear flows have invariants that satisfy the following conditions:

0 S Hb S 2/9 and HIb = 0. This result is qualitatively inconsistent with C5

( see Figure 2.4). If Eq. (2.33) were used for rotating channel flows, then

IIIb = 0 would still be predicted for all anisotropic states. This prediction is

qualitatively inconsistent with characteristic C6 above.

> The “production” term, —< E 'g ' >:< S > , in the k-equation (see Eq. (1.9)) may

be either positive or negative (see Pope, p.180, 2000; and Nishino et al.
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1996). However, if the realizable B-closure (Shih et al., 1995) is used as a

model for the Reynolds stress, energy “production” is positive for all flows

inasmuch as CV > 0 and

—<u'g'>:<§>=—28§z<§>=+28 CV <__S_>:<_S_>20.

Speziale (1991) extended the explicit “eddy” viscosity model for the NR-stress to

an explicit second-order model for the NR-strcss by using the Cayley-Hamilton theorem

of linear algebra with the result that

5:

I
I
—

+2: 1+Cl<§>+cz(<§>.<§>_nsin), (2.34)

m
l
—

w
h
—

The phenomenological coefficients C] (115 , 1115) and C2(lls ,1113) may depend on the

invariants of <§> , defined as 115 Etr(<§>-<__S:>)and IIIS str(<§>-<§>~<§>).

If C2(IIS ,1113) = 0 , then Eq. (2.34) reduces to Eq. (2.33). Clearly, Eq. (2.34) satisfies C1

above. Moreover, the phenomenological coefficients C1(IIS ,IIIS) and C2(IIS , 1113)

could be selected so that 5 is realizable (characteristic C2); however, Eq. (2.34) predicts

that for simple shear flows, RZZ = Ryy. This result clearly does not agree with C3, which

xx S RZZ S l. Apparently, the mean strain rate is not an appropriaterequires 0 S Ryy S R

kinematic operator for the NR-stress.

Rivlin (1955) used the classical Cayley-Hamilton (CH) theorem of linear algebra

to develop a general class of constitutive stress models for fluids that satisfy certain

invariance properties. Pope (1975) and others (see p.452, Pope, 2000; Gatski, 2000)

applied a similar approach to develop phenomenological models for the normalized

Reynolds stress by assuming that 2 , the anisotropic component of g , depends on the
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dimensionless strain rate operator, < S > , and the dimensionless intrinsic vorticity

operator, < _):_V: > E < l > + g . Thus, a further generalization of Eq (2.33) assumes that

the NR-stress in rotating and in non-rotating frames depends independently on < S > and

< i >. With 2: g(< g >,< g >) , an application of the Cayley-Hamilton theorem (see

Frazer et al., 1960) yields the following explicit irreducible representation for the

anisotropic component of the NR-stress (see p. 453 in Pope, 2000):

§=1+ = >,<
l

3

1
1
0
‘

M
e

"
(
I
n

“
E
r

n(< >). (2.35)

h
a
l
t
—
- 10

+ Z Cn

n=1

The scalar-valued CH-coefficients Cn in Eq. (2.35) depend on the non-trivial invariants

of the so-called integrity operators 2 n (see Appendix D). The dimensional operators

<S> and <_)/2> are objective, symmetric, and traceless hydrodynamic/kinematic

operators. If k/s is assumed to be an objective scalar field, then all ten integrity

operators 9n are objective and the ten CH-coefficients are scalar-valued objective

functions.

Comment on Objectivity: The eigenvalues and the magnitude of the eigenvectors

associated with an objective operator do not depend on the rotation of the frame

of reference. DNS simulations in non-inertial frames clearly show that the NR-

stress depends on the angular velocity of the frame. Therefore, the NR-stress is

not objective. Theoretical support for this conclusion follows from the fact that

the fluctuating velocity field (if) in a *-frame (i.e., rotating frame) is related to

the fluctuating velocity 2' and the fluctuating motion 1' in a non-rotating frame
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by the following kinematic equation (g*)'=9-g'+Q-Z' , where Q is an

arbitrary, time-dependent, orthogonal operator. An earlier impression that

unfortunately still persist in the turbulence modeling literature (see, esp., Durst

2001, Gatski, 2004, Thais et al. 2005, Dafalias and Younis, 2007) is that the

Reynolds stress is an objective statistical property of a turbulent ensemble of

flows. This idea stems from an earlier theoretical argument by Speziale (1998)

that <(g*)'(g*)'>=g-<g'_u'>-9T. This relationship between the Reynolds

stress in two different equivalent frames is not correct inasmuch as the

fluctuating motion x' of a turbulent ensemble of flows is not zero.

If Cn =0 forn22, then Eq. (2.35) reduces tO Eq. (2.33) with $1 =<§> . 1f

CIn =0forn23,then

g=§g+g=gr+cl <§>+c2[<§>.<V_V>+<g>T-<§>]. (2.36)

The bi-linear model defined by Eq. (2.36) was introduced by Shih ct al. (1994) as a

means to account for the anisotropic structure of the NR-stress. The model is clearly

symmetric and reduces to 3:1/3 if <S>=Q. The coefficients C1 and C2 can be

specified so the resulting NR-stress is realizable (see Appendix E). For simple shear

flows, Eq. (2.36) predicts that the energy states are in the 2nd Sextet of the energy

simplex: 0< Ryy S Rxx S RZZ <1. However, for simple shear flows, Eq. (2.36) also

predicts that Rxx =1/3 and lIIb=0 for all values of FEFka/e, which is not

consistent with the energy distribution and the anisotropic invariants associated with

fully-developed channel flows (see Figures 2.18; also see Appendix E). Clearly, a
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Figure 2.18
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phenomenological approach based on the hypothesis that 2: g(< g >,< Ll} >) does not

capture the low-order statistical phenomena of turbulent flows.

Higher order closure models have been developed by retaining additional terms in

Eq. (2.35). For example, Crafi et a1. (1996) and Speziale (1996) developed a closure for

the NR-stress that includes contributions from the cubic terms. The resulting six CH-

coefficients were selected based on statistical properties related to flows through curved

channels, impinging jet flows, and rotating pipe flows. Although the Craft-closure can

reproduce the flows used to select the model parameters, it does not ensure realizable

behavior for other flows.

Recently, Rahman and Siikonen (2006) developed an explicit non-linear algebraic

stress model that considered the first four terms in Eq. (2.35). This quadratic model uses a

scalar-valued turbulent transport time scale IR that accounts for the anisotropic turbulent

structure near a solid/fluid interface. The authors assume that the CH-coefficients depend

on the ratio of energy “production” and energy dissipation, 73/8=—2 8§2<S>. The

closure model is consistent with characteristic C2 above for boundary layers and for

homogeneous shear flows. It is also realizable for mean field planar-extensional flows

and for axisymmetrie-extensional flows. However, because the model coefficients were

selected based on specific flows, realizability may not occur for other flows.

Comment on the Phenomenological Approach: Eq. (2.35) stems from the

assumption that the NR-stress is an objective operator (see Speziale,

1987, 1989, 1991). This conjecture, which was inspired by a similar

assumption regarding the molecular stress of fluids, is not supported by

DNS results (see Chen and Song, 1997; El-Samni and Kasagi, 2001;
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Abid and Habibi, 2003; Grundestanm 2004; Brethouwer, 2005;

Grundestam and Wallin, 2008; and Grundestam et al., 2008).

Nevertheless, many researchers continue to use objectivity as a guiding

principle to improve low-order turbulence closure models (see, for

example, Gatski, 2000; p.19 in Piquet, 1999; Durst, 2001; Weis and

Hutter, 2003; Girimaji 2004; Dafalias and Younis, 2007; Hamba, 2006).

Unfortunately, the explicit representation of the NR-stress in terms of

objective operators has not provided a practical closure for the RANS-

equation. The primary weakness has been characteristic C2 above. In

Chapter 3 below, this problem is addressed by formulating a non-

negative mapping of 5 into itself that does not depend on specific

benchmark flows used to calibrate closure parameters. Thus, once the

URAPS-closure is calibrated, it does not need to be recalibrated to

ensure realizable behavior for other flows. This theoretical approach has

the potential of transforming the use of the RANS-equation as a

diagnostic tool for engineering design and education.

Closure Models Based on a Weak Equilibrium Hypothesis 

The need for an algebraic closure model for the Reynolds stress motivated Rodi

(1972) (see pg. 449, Pope 2000; pg. 281, Piquet, 1999) and many others over the past 30

years to seek an algebraic model based on hydrodynamic principles. An unclosed, albeit

exact, differential equation for the second-order moment of the velocity distribution

functional can be developed from the Navier—Stokes equation (see p.387 in Pope, 2000).
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The resulting moment equation requires three statistical closure models: one for

“mixing”, one for “redistribution”, and another for “dissipation”. The “production” term

provides an explicit coupling to the frame rotation operator through the operator

< E > (a V < u > +2 2) and is already in closed form. The unclosed moment equation can

be written as follows (see Appendix A for a derivation):

(:6? < u > make) =O _

-t-[vV2 <u'u'>—(V<u'£ >)T —(V<p—u'>)—V-<u_'u'u'>]

\

Y

"mixing"

T
(2.37)

+[—<u'u'>-<g>—<i==> ~<g'g'>]

”production "

+2 [<E:§'>] —2[V<(VQ')T'(VQ')>]p- a .
 

H—w—J dissipation

redistribution

Numerous closure models for the foregoing three statistical correlations in Eq.

(2.37) have appeared in the literature (see Pope, 2000). Each set of closure models

produce a separate transport equation for the NR-stress that must be calibrated.

Consequently, many calibrated RSM transport models are available to support the

RANS-equation. Unfortunately, a general assurance that any of these models produce

realizable operators is not available. Realizability issues are generally handled a

posteriori for specific classes of flows when they are deemed to be important.

Rodi (1972) reduced Eq. (2.37) to an implicit algebraic equation for the NR—stress

by using the following weak equilibrium [twat/resin (also see Gatski, 2000) together with

Eq. (1.9) without the mixing contribution:

(§+<u>~V)[2k5]-L=_25(%+<u>-V)[k]s2(—25:<§>— l)e5. (2.38)
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Eq. (2.38) is partially justified by the observation that in fully-developed channel flows,

the NR-stress is approximately constant in the outer region. The following implicit

algebraic Reynolds stress model (IARSM) follows by neglecting the mixing term in Eq.

(2.37) and using an isotropic closure for the dissipation term:

2 2 < 'S'>

>—l)R=—(R-<F>+<F>T-R)+ p: —l

= = = = 2 p8 3

 
(—25:<

H
U
D
!

l . (2.39)

The IARSM closure is completed by using a closure for the pressure/strain-rate

correlation (Speziale et al. 1991, Girimaji, 1996; Craft and Launder, 1996):

<p'§'>

p8

 

ll
ér ) . (2.40)

II
a
?

(5x ‘>,

Solutions to Eqs.(2.39) and (2.40) are generally difficult to develop and, according to

Rung et al. (1999), are unrealizable for flows with strong streamline curvature.

Gatski (2000) addressed the dilemma associated with the IARSM type closures by

developing an explicit algebraic Reynolds stress model (EASRM) for the NR-stress

based on Eq. (2.35). In principle, the ten CPI-coefficients in Eq. (2.35) can be determined

by using “benchmark” flows generated by a closed moment equation for the NR-stress.

EARSM closure models vary depending on the number of “integrity” operators used in

the representation defined by Eq. (2.35) and the closure models used for Eq. (2.37)

above. The RSM “benchmark” flows used in the calibration strategy include flows in

rotating frames, flows with curvature, and other flows with difficult features.

Unfortunately, according to Rung et al.(l999) and Gatski (sec, esp., Gatski,1998; Gatski

and Jongen, 2000; Gatski, 2004; and Gatski and Rumsey, 2006) a fully calibrated IASRM

model may still produced unrealizable behavior. The IASRM and the EASRM class of
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algebraic NR-stress closure models do not provide a practical closure for the RANS-

equation in support of engineering design and analysis.

Closure Models Based on a Space- Time Smoothing Htynotliesis

In a rotating frame of reference, turbulent velocity fluctuations satisfy the

continuity equation,V -u' = 0, and the following dynamic equation (Parks et al., 1998):

6; +<u>-Vu'—vV2u'=—u'-<:>—f'. (2.41)

In the above equation, the vector f' represents the fluctuating acceleration caused by

pressure fluctuations and fluctuations in the instantaneous Reynolds stress:

I
I
I
—
n

+u'u'—<u'y_'>]. (2.42)
ftav.[£

p

A formal solution to the above equation that neglects fluctuations due to initial conditions

and fluctuations due to boundary conditions can be expressed in temis of a mean field

Greens fiinction associated with the convective/viscous parabolic operator defined by the

left hand side of Eq. (2.41) above:

t

gist) = — I d? de{G(x,t;x,i) [titan- < r > (at) +£'(&,i)]} (2.43)
_m V

For non-inertial frames (i.e., <l=3>=V <u >), Parks et al. (1998) used Eq. (2.43) and

derived the following non-negative mapping between the prestress and the NR-stress

based on a smoothing approximation:

T

Il
.’
.t
>

Em: <F>]‘1 , Ba-LLL. (2.44)= R = =
R:

= ) tr<f'f'>

l
l
}
>

T

Q

'én
e
w

"
0
"

tr(

|
l
>
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Clearly, if the prestress operator is non-negative, then Eq. (2.44) produces a NR-stress

that satisfies C2 for all flows (see above model characteristics). This result provides the

basis for the development of the URAPS-closure in Chapter 3.

Parks (1997) and Weispfennig (1997) assumed that the prestress operator 5 is an

objective operator that depends on the turbulent time scale k / s , the mean strain rate, and

its time derivative:

k 253<__S:>

§= by <§>,(-—) St (2.45)

 

l 1:

3 e

A generalized convective derivative was used to account for mean field memory effects

of turbulent flows:

53<S> 6<S> T

= a = +<u>-V<§>+<1>~<§>+<§>.<Xt_:> 

(2.46)

+Q[<§>-<§>+<§>-<§>]

The above operator is objective (pg. 18], Parks, 1997) for —oo < Q < +w. For C = 0 , Eq.

(2.46) reduces to the classical Jaumann derivative (see pg. 250 in Bird ct al., 2007).

If B: I/ 3, then Eq. (2.44) reduces to the universal, realizable, isotropic,

prestress (URIPS—) closure and provides a significant generalization for Eq. (2.33)

introduced by Boussinesq more than 130 years ago:

AT-A _l
g=——ET—=— , gang] , 52rR<E> , tr(5)20. (2.47)
__ tr(: é) _ _ _ _ _ _

For simple shear flows, the energy states for the URIPS-closure are all located on the

boundary between the 1St and 2nd Sextets of the energy simplex:

OSRxx =Ryy Sl/3SRZZ $1. For 5:0, the NR-stress is isotropic, 521/3. For no
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rotation and as “5“ —> 00, the turbulent energy is shifted to the axial component of the

fluctuating velocity (i.e., RZZ —> 1 ). Also, for no rotation, the locus of anisotropic states

predicted by the URIPS-closure follows the DNS results in the core region of the flow

field: 10 S y+ S 100. For P = 0 , the turbulence is isotropic (see Point A of Figure 1.1).

As P —>oo , the QNR-form is elongated into an infinite needle (see Point C of Figure

1.1).

If 5 =2, Eq. (2.47) implies that 5 =I/3. If 0 < H 5 H << 1 , then a representation

of the operator in terms of a power series of 5 can be expressed as (see Kantorovich

and Akilov, 1964)

+K- +---. (2.48)> 7
<

:1—

|
l
7
<

For small H 5 , Eqs.(2.47) and (2.48) imply that
  

) “Ell—)0 gig—gill <§>. (2-49)

AT -

tr(AT

ll
il
>

 

“
7
0

ll
it
>

The Coriolis acceleration formally drops out ofthe representation at first order; therefore,

the URIPS-closure reduces to the B-closure for H 5 ll << 1.

2.7 Conclusions

DNS results and experimental data for channel flows with and without rotation

show significant primary and secondary normal stress differences. In contrast to this

evidence, the traditional B-closure predicts that the primary and secondary normal stress

differences for simple shear are zero for non-roating and for rotating simple shear flows.

For non-rotating channel flows, the energy states are all in the 2nd Sextet Of the energy
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simplex. However, for rotating simple shear flows, the normal components of the NR-

stress are distributed among all six sextets in the energy simplex. For rotating simple

shear, the anisotropic states may be prolate-like with IIIb >0, or oblate-like with

IIIb < 0. For rotating channel flows, the variation of P is not symmetric about the center

of the channel. On the HP-side of a fully-developed channel flow there is a region where

the mean velocity profile is a linear function of the crossstream coordinate and the

intrinsic absolute mean vorticity is zero. On the LP side of the channel, the maximum

velocity occurs at the same position where the total shear stress is zero. On the LP-side of

the channel, both I“ and f) are negative and the anisotropic states near the isotropic state

are oblate-like.

DNS results clearly show that the NR-stress is not objective; therefore, the

eigenvalues of the NR-stress depend on the angular velocity of a non—inertial frame.

Closure models built on the hypothesis that the NR-stress is objective and, thereby,

represented in terms of objective basis operators are inconsistent with the physical nature

of a fluctuating velocity field governed by the Navier-Stokes equation.

The preclosure theory developed by Parks et al. (1998) is a fundamentally

different approach which relates the NR-stress to the mean field based on a Green’s

function representation of the fluctuating velocity. The isotropic assumption for the

prestress which lead to the URIPS-closure is realizable for all flows. The preclosure

theory can be further developed to include anisotropy and also preserve the non-negative

feature of the prestress to develop a universal and realizable algebraic closure for the NR-

NR-stress.
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CHAPTER 3

URAPS-CLOSURE FOR THE NORMALIZED REYNOLDS STRESS

3. 1 Introduction

The preclosure theory by Parks et al. (1998) discussed in Chapter 2 provides an

explicit relation for the NR-stress in terms of the prestress. This theory (see Eq. 2.44) is

extended for rotating flows and a summary of the preclosure theory for non-inertial

frames is presented in Section 3.2 below. This Chapter is focused on developing a closure

for the prestress that appears in the preclosure equation. A hypothesis will be presented

for closing the prestress in the following Section 3.3. An irreducible representation based

on the Cayley- Hamilton theorem for the prestress resulting in an implicit algebraic

relation for the NR-stress is developed. Further, the eigenvalues of the prestress closure

are analyzed to understand the conditions of realizability for all flows. From a study of

the various boundaries on the NR-eigenvalue simplex, a domain for the coefficients that

appear in the prestress is identified such that the CH-mapping of the NR-stress into the

prestress is non-negative for any choice of the coefficients within the domain. This

ensures that the NR-stress from the preclosure theory is also realizable. A numerical

strategy to solve the implicit closure relation is also discussed. The scalar-valued

turbulent transport time scale introduced by the preclosure theory is used as the

phenomenological transport time in the equation for the turbulent kinetic energy and in

the equation for the turbulent dissipation.
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3.2 Hydrodynamic Preclosure

Preclosure theory (Parks et al. 1998) briefly discussed in Chapter 2 is presented in

detail for non-inertial frames in this section. Although the derivations are clearly

presented in Parks (1997), and Weispfennig (1997), the derivation is also discussed in

detail in this Chapter for non-inertial frames to understand the kinematic operators

associated with rotating flows. Equation for the fluctuating velocity in Eq. (2.41) for

rotating flows remains the same except for a term that involves the frame rotation dyad

through <__F> (EV <u > +2 5). The fluctuations within the flow domain in Eq. (2.41)

are caused by (1) a convective coupling between the mean velocity gradient and the

fluctuating velocity, (2) fluctuations in Coriolis forces (3) pressure fluctuations and (4)

fluctuations in instantaneous Reynolds stress. A formal representation for the fluctuating

velocity in terms of a Green’s fianction has been presented in Eq. (2.43) discussed in

Chapter 2. An unclosed equation for the fluctuating correlation <u'u'>(x,t) (i.e.

Reynolds momentum flux) can be developed from Eq. (2.43).

 

Unclosed Integral Equation for the Rgfliolds Momentum Flux

An unclosed integral equation for < u 'u ' > (x, t) can be developed from Eq. (2.43)

by first multiplying with the fluctuating velocity and then averaging the result over the

turbulent ensemble of realizations as shown in Eq. (3.1) below.

t

<u'u'>(§,t)=— IdifljdVGv(§,t;fi,t)[<y_'fl'>~<E> + <u'£'>]. (3.1)

—00 V

Eq. (3.1) shows that <u'u'>(x,t) is caused by <u'g'>(x,t;3,i)-<E>(g,t) and

< u'f' > (x,t;3,f). The convective/viscous Green’s function, Gv(x,t;fg,i) accounts for
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the transport of momentum from (553) to (x,t) . The utility of Eq. (3.1), which is

unclosed, is that it clearly identifies two space-time turbulent correlations (i.e.,

<g'_fi_'> (x,t;fi,t) and <g'f' > (x,t;3,f)) as important factors in detemtining the local

behavior of <g'g’ > (5,0. In addition, and most significantly, Eq. (3.1) also shows that

<l=:>(EV<g>+2 g) is the primary connection between the mean field and the

Reynolds stress. An analogous representation for the correlation < f'g‘> (x,t) follows

directly from Eq. (3.1):

t A A A

<_f_'u'>(x,t)=— IdtIHdVGv(x,t;3,t)[<f'g'>-<:>+<f‘f'>]. (3.2)

—00 V

Representations similar to Eq. (3.2) for the turbulent flux of a passive scalar near a

solid/fluid interface have been used by Petty (1975), Hill and Petty (1996), and Parks and

Petty (1999). Petty and Lyons (1985) also used a result analogous to Eq. (3.2) to study

the effect of dilute polymer solutions on the Reynolds momentum flux.

Smoothingapproximation

The single-point point correlations < u'g ' > and < f 'u ' > given by Eqs. (3. 1) and

(3.2) depend on the space/time relaxation of the Green’s function and the space/time

relaxation of specific turbulent correlations. In a frame of reference moving with the

mean velocity, the convective/viscous Green’s function is spatially peaked for small

values of lt—il. The Green’s function acts like a delta distribution on a time scale for

which turbulent correlations become uncorrelated. If the space/time turbulent correlations

 

have finite memories and if a single scalar-valued memory function MR (x, t— fl) or time
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scale is used to characterize all space/time correlations, then the application of a spatial

smoothing approximation to Eqs. (3.1) and (3.2) yields the following algebraic equations

for <g'_u'> and <_f_"_u'> (see Parks et al., 1998):

<g'g'>(x,t)=—IR[<g'g'>-<:>+<g'f‘>] (3.3)

<f'u_'>(x_,t)=—'cR[<['_u'>-<£>+<f'f‘>]. (3.4)

where ”ER is the turbulent relaxation time defined as below in Eq. (3.5)

t

"R E idilMRQ,

—CX')

 

t—il)JfldVGv(x,t;g,t)}. (3.5)

V

Combining Eqs. (3.3) and (3.4), a relation between <g'g'> and <f'£'> can be

obtained as in Eq. (3.6) below.

<u'u'>=r§(5T-<f'§'>.5) (3.6)

where the operator 5 ( 5 [1+ TR < E >]_I ) is related to the turbulent relaxation time IR ,

the mean velocity gradient and the frame rotation rate. Rearranging the Eq. (3.6) yields

the preclosure relation presented in Eq. (2.44).

As discussed in Chapter 2, both the operators 5(—:—

<f f > . . . .
_t’fo' ) are symmetric and non-negative and have a unit trace. A relation for

r < >
eta

the prestress should essentially be formulated to be symmetric and non-negative and

would result in a realizable NR-stress closure. The kinematic Operator 5 and the

preclosure operator 5 2[ 1+5]_1 are important to understand the applicability of the
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closure. The general preclosure operator for the benchmark flows discussed in Chapter 2

can be written as below (see Appendix G for details)

52111132 §y§2+21RQx (9y 92—552 9y)

 

(3.7)

= NF 9y 92+ NQ (9y 92‘92 9y)

where N1“ = IRFyz and NQ = 2IRQx . The preclosure operator is,

7
A = (1+NrNQ +Nf))_eX ex+eyey +eZ _e_Z —(Nr +NQ)gy_e_Z +Ngezgy. (3.8)

(1+NrNQ +N22)

The operator 5 above as shown has an inverse in the case when the denominator

 

4 —1:,/N%—4
(1+NFNQ+NE))¢O. FOI' N0: 2 , the inverse of 5 does not exist.

1 J3
Example of such points would be (Nr,NQ)=(3,—§i7),(4,—%ix/—3—) etc. for

rotating simple shear flows. However, to avoid this, the adjugate operator C 2 adj (1+5)

is used so that the determinant is cancelled in the numerator and denominator in the

limiting case of the determinant det(§) =0. This is used in the subsequent numerical

implementation of the preclosure theory.

.5:

trT'(é.

ET
B:

T ) trT(g

=adj(l+5) (3.9)

”
w
A
l
l
a
—
l

H
O

H
O

O

"
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l
—
1
H
0
:

”
3
,

"
3
>

The above operator for the specific benchmark flows will be discussed in the Chapters 5,

6 and 7.
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3.3 Prestress Closure and “Extra” Anisotropy

The preclosure equation expressed by Eq. (3.9) shifts the closure problem from the

normalized Reynolds stress 5 to the normalized prestress 5. Most significantly, 5

must be modeled to be non-negative. So a closure for 5 , such that it is realizable and

)SE ' ) > 2 0; tr(5) = 1 should be developed. satisfies Q(_z_) E 5 : g; 2

Closure liygothesis

As noted in Chapter 2, f’ represents the fluctuating acceleration caused by

pressure fluctuations and fluctuations in the instantaneous Reynolds stress. The prestress

5 is intrinsically related to the pressure fluctuations. As noted in Eq. (3.3), the

correlation <f'f'> is related to <g'f'> through mean field operator <5>. It is

interesting to note from the equation for fluctuating velocity that the correlation

(< g'f ' > + < 5 'f ' >) is linked to the pressure/’strain-rate (pressure redistribution) term as

shown in Eq. (3.10) below.

(<u'£'>+<_f_'ii'>)

=<-lV°[(u'p')I+I(u'p')]+E[Vu'+(Vu')Tl-V-u'u'u' > (3.10)
p ‘ ' p

=[-(\7 <u'g >)T -(V <Eu'>)-V°<u'u'u'>]+2[<E§'>l

p p p“

The first term in the LHS is related to the turbulent mixing and the second term is the

pressure/strain-rate term in the transport equation for fluctuating Reynolds stress (see Eq.

(2.37)). Because 5 is closely linked to <g'f'> and hence to the pressure/strain
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correlation (see Eq. 3.10), the prestress operator can be modeled using similar kinematic

variables as for the pressure/strain-rate correlation.

In second order closure models, the pressure/strain-rate terms have also been

modeled to be fiinctions of the mean strain rate and the Reynolds stress itself as discussed

in Chapter 2 (see esp. Eq. 2.40). A key hypothesis in this research is that the pre-stress

operator 5 is a dyadic-valued function of 5. With 5 22(5), which is similar to the

Rona-conjecture (Rotta, 1951) for the pressure/strain rate, the following CH

representation forms the prestress closure. The hypothesis that 5 = ‘3(5) may provide a

practical closure to the preclosure theory.

Cavlev — Hamilton theorem and non-negative mapping

If 5 is a continuous function of 5, then an irreducible representation of 5 in

terms 5 and its invariants can be developed by the application of the Cayley- Hamilton

theorem from linear algebra (Frazer et al., 1960). An uncalibrated closure for the

prestress can be written as

5=C01+C1(5)+C2(5-5) (3.11)

C0, C1 and C2 can be functions of the invariants of 5. Since tr(5) =1 and tr(5)= l ,

one of the three coefficients can be eliminated and with two coefficients remaining.

I 1 i
5=—;—+CI(HR,IIIR)(5—?)+C2(IIR,IIIR)(5-5—IIR =3) (3.12)

3 3

IIR 527.33,, and 111R 52in (3.13)

i=1 i=1
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The eigenvalues of these two real, symmetric, and non-negative operators are related to

each by the following equation:

I 1 II .

A13,1=§+C10~RJ—§)+C2(?~2R,r"ER-l , 1:1,2,3 (3.14)

The three eigenvalues of 5 and 5 satisfy the following conditions: 0 S it] S 12 S k3 S l

and 2c] + 7&2 + k3 =1 . The non-negative mapping of 5 into 5 is equivalent to a mapping

of the lSt Sextet into itself, which also corresponds to a mapping of the L-diagram (see

Figure 1.1) into itself. It follows from the above equation that the eigenvalues of 5 on

the vertices and in the center of the 1R —triangle, map onto similar points on the

)‘B — triangle (see Figure 3.1). The three boundaries of the AR —triangle are mapped

onto corresponding boundaries of the kB—triangle, provided Eq. (3.15) below is

satisfied.

C] +C2 HR :1 (only on the boundaries of the AR — triangle). (3.15)

One of the eigenvalues is zero on each of the boundaries of the AR — triangle . In order to

map the boundaries of AR —triangle onto AB —triangle plane, then Eq. (3.15) results in

Eq. (3.1 6) below by direct substitution of 2393 =itR,3 =0 (for one of the boundary

lines).

1:3 =5+C2(5-5-HR5). (3.16)

FrOn the above result, without loss of generality, the mapping from XR —triangle to

AB ~triangle can now be expressed as in Eq. (3.17) where C2 could be a function of the

1' , .

"Variants as below.
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Figure 3.1
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Eigenvalue mapping from the KR — triangle to AB — triangle
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£)27det(5) (3.17)=§+C2(s-s—HRst+ntg—%
“
C
I
!

The coefficient C2 is chosen to be a linear function of the second invariant [IR such that

deviation of normal components of 5 from isotropic states is along the Rxx = Ryy line

for simple shear flows. This is because DNS results for channel flow as discussed in

Chapter 2 shows that the results close to the center of the channel are along R. xx = Ryy .

1

C2 = -<1(11R -§)
(3.18)

2:; -(1(HR —§-)(5-5—11R5)+13(5——;1 )27det(5). (3.19)

The above representation is therefore associated with linear and nonlinear terms. The

following discussion is related to developing the coefficients or and [3 such that Eq.

(3.19) above is realizable.

Realizability Domain:

The eigenvalue relation for the prestress relation, Eq. (3.19) is,

l l .

A131: KRi +B[27det(§_)(lni ‘3)1- 0t[(11R ‘3)(7Liii 4118mm , 1=1,2,3. (3.20)

In the following sections, the lower and upper bounds on (1 and B are determined from

an analysis of Eq. (3.20) on the boundaries of the ISI sextet.

L0 ”51"” bound on a:

The CH-mapping of 5 into 5 for planar anisotropic states (see BC-boundary of

F‘

lgure 3. l ) implies that
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l

433=Kns-attllR—gtttirllktmu . HR=(1—AR3)2+i2R3. (3.21)

On the BC-boundary, )‘RI 2 0 , 5R2 =1—A‘R3 , and 1/2 S KR3 S 1. By dlI'CCl SUbStltUthl‘l,

it follows from Eq. (3.21) that Point B is mapped into itself for all values of (it; and, Point

C is mapped into itself for all values of the Qt. However, some interior points on the BC-

boundary may not map onto the BC-boundary of the 15' sextet if or is too small or too

large- Eq. (3.22) can be used to determine a critical value of 0. that would give M33 =1

for specific values of AR3:

7e —1 H— '

amin 5 R32 , M3 C mapp‘"g >tB3=L (3.22)

(HR-4/3XXR3—HRAR3)

As indicated by Figure 3.2, a plot of (1min vs. )tR3 shows that max(ormm)=—3/2,

which i s an a priori universal lower bound on the or-coefficient.

Upper bound on a:

Eq. (3-2 1) can also be used to eliminate redundancy in the CH-mapping. For example, a

critical value of or can be determined that that would give K33 = 1/ 2 for specific values

iR3—1/2

(II 1/3)(}t2 11 t ) CH_mapping ihB3=l/2.
(3.23)

R“ 113‘ R R3

0‘ XR3max 5

AS indicated by Figure 3.3, a plot of amax vs. 1R3 shows that min(amax) = + 9 , WhiCh

'8 all aPriori universal upper bound on the a-coefficient. It is noteworthy that for CL = 9

t

he CH'n’lapping gives
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lower bound on or

max(ormin) = —3/2
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Figure 3.2 The influence of XR3 on am“ for K33 = 1.
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(5R1 , leakRB) = (0,0.2,0.8) i9—> (0,0.5,0.5) = (ABIJBQJLEB). (3.24)

For at > 9, points on the BC-boundary of the lSt Sextet would be mapped into planar

anisotropic states associated with the 6'h Sextet. Thus, the upper bound on the or-

coefficient eliminates redundant non-negative states whereas the lower bound on the 01-

coefficient eliminates unrealizable states.

Lower bound on ,8

The CH-mapping of 5 into 5 for oblate anisotropic states (see AB-boundary of

Figure 3.1) implies that

. i 1
1133 = 7cm - a [(11R 7) (th —11R7.R_,)]+13[27ctet(5)(tR3 ——3—)]

(3.25)

1Jump)“R3
 IIR=2(%33->2+7~§3 , det(_n_)=(

On the AB-boundary (see Figure 3.1), 1R2 = 5R3 , XR1=l—2KR3, and

l/ 3 S 1R3 S 1/ 2 . By direct substitution, it follows from Eq. (3.25) that Point B is mapped

into itsel f for all values of or and B; and, Point A is mapped into itself for all values of the

a and B- However, for (1min S 01 S amax , some interior points on the AB-boundary may

“01 map onto the AB—boundary of the 1St Sextet if B is too small or too large. For a

Specific value ofa and 2.113 , Eq. (3.25) implies that a minimum value off» for K33 =1/3

is gi wen by
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1/3';‘~R3+ GKHR -:,,*)(7»1213 'IIRKR3)]

 

 

Bmin = 1

l27d€t(§)(7~R3 ‘3')1

(3.26)

CH— '

5. . mapping >533 =1/3

R3 (Xmln < (I < amax

As indicated by Figure 3.4, a plot of Binin vs. 5R3 shows that max(Bmin) = —l for all or

in the interval amin <0t<01max. The parameter max(Bmin) is an a priori universal

lower bound on the B-coefficient. If B = —1, then

(A‘Rl , ARZ’A‘R3) —) (l/3,l/3,1/3) :> (ABi9ABZ9A’B3) —-)(1/3,l/3,1/3) . (3.27)

However, if B < —l , then some oblate anisotropic states on the AB-boundary between the

lSt and 6th Sextets will be mapped into prolate anisotropic states between the 3rd and 4lh

Sextets - The lower bound on B removes the redundancy of the CH mapping.

Upper bound on ,8

For amin Son S amax, some interior pomts on the AB-boundary may not map

onto the AB-boundary of the lSt Sextet ifB is too large. Eq. (3.25) implies that for a

Specific value of or and AR3, a maximum value of [3 occurs for K33 = l/ 2. Therefore,

With 183 =1/2 , Eq. (3.25) can be used to define Bmax as follows:

1
1 / 24.1.3 + 0t[(IIR —3)(>»§3 -IIRKR3 )]

 

 

max 2 1

[27d6t(§)(7tn3 __3_)]

(3.28)

CH—mapping 47183 = 1/2

A
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Figure 3.4 The influence of AR3 on [3mm for X33 = 1/3 and (1min < or < amax .
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Figure 3.5 shows how Bmax depends on km for specific values of or. Clearly, the

minimum upper bound (i.e., min Bmax ) occurs at 5113 —> 1/2 and depends on or. The

results shown in Figure 3.5 can be represented by a linear relation:

min(Bmax)=a/27+4/9 , (1min Set S amax. (3.29)

The parameter mianax is an a priori universal upper bound on the B-coefficient. If

B > min Bmax , then a point on the AB-boundary of the ISI Sextet will be mapped into an

unrealizable state.

In summary, Eq. (3.20) maps the lSt sextet of the eigenvalue simplex into itself

provided or and [3 satisfy the following two inequalities:

—3/2<a<9 (3.30)

—1<13<a/27+4/5. (3.31)

The above theoretical inequalities are universal. Since 5 has non negative eigenvalues,

5 is a priory realizable with non-negative eigenvalues. Figure 3.6 identifies universal

bounds for the “extra” anisotropy functions or(IIR _, IIIR) and BUIR ,IIIR) , which must be

determined from experimental and DNS results for benchmark flows. The physical and

mathematical significance of Figure 3.6 is that the CH-mapping of the NR-stress into the

prestress is non-negative for all turbulent flows provided the “extra” anisotropy functions

are within the realizable region developed. This conclusion does not depend on the

benchmark flow selected to calibrate the closure. The bounds are universal and apply for

all inertial and non-inertial frames of reference.
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Different classes of turbulent flows may have different “extra” anisotropy

fiinctions, but they must all conform to the universal bounds developed herein. In Chapter

4, non-rotating asymptotic homogeneous shear flow is used as a benchmark flow to

estimate or and B. These estimates are used to predict the NR-stress for rotating

asymptotic homogeneous shear in Chapter 6. All of the NR-stress solutions to the

URAPS-closure are realizable.

3.4 URAPS-Closure

The preclosure equation (Eq. (3.9)) and the prestress closure (Eq. (3.12) can be

combined to give a non-linear, implicit, algebraic equation for the NR-stress, referred to

herein as the universal realizable anisotropic prestress (URAPS-) closure. The URAPS-

closure is a significant generalization of the universal, realizable, isotropic prestress

(URIPS-) closure. The resulting URAPS-closure can be fomially expressed as

R_ slats-a _.

=— taggers) _

'
u
-
u

 

i( |
l
7
<

, 5) - (3.32)

The k- and 8- transport equations adopted for the URAPS-closure are briefly

presented in the next section. An important requirement of these scalar-valued partial

differential equations is that they should produce positive solutions inasmuch as the

turbulent kinetic energy k and the turbulent dissipation 8 are by definition positive

within the flow domain.

The URAPS-closure is universally realizable inasmuch as the predicted NR-stress

is realizable for all rotating and non-rotating rigid-body frames of reference. A calibrated

URAPS-closure provides a means to predict the NR-stress for bounded and for

96



unbounded flows as well as for statistically stationary and non-stationary flows governed

by the RANS-equation. Accuracy of the model for a specific class of flows will depend

on the previous theoretical ideas and on the benchmark flows used to determine the

closure parameters.

3.5 Turbulent Relaxation Time scale

A single time scale, TR has been introduced in the preclosure theory and the k

and 8 equations. Dimensional reasoning suggests that TR depends on three local time

scales: a viscous time scale, v/ k; a turbulent time scale, k/e; and, a mean field time

—I . . . . .

scale, |< E >” that includes the time scale assoc1ated With the frame rotation.
 

TR ECR] ETR, WhCI‘C TR = fR (Ret,NF) (3.33)

R€t>>i

Thus, TR =CR1iR(Ret,NF)k/s CRliR(oo,NF)k/e, where Re, 218 /(ve),

 

turbulent time scale
 

NF Elsi—“E": , and U<5> “=\/<5>:<I=:>T . For turbulent flows

mean field time scale

near a solid/fluid interface, the influence of the local Reynolds number will have an

important impact on iR . A model and calibration for iR will be presented in Chapter 4.

3.6 Transport Equations for Turbulent Kinetic Energy and Dissipation

An unclosed transport equation for the kinetic energy (see Appendix A) and

unclosed equation for dissipation equation (see Appendix B) can be derived from the

dynamic equation for the fluctuating velocity. However, in the k equation (see Eq. 1.9)

the dispersion (or mixing) terms must be modeled as discussed in Chapter 1. Modeled
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transport equation presented in Eq. (1.11) is used in this research. The URAPS-closure

relies on positive solutions for the k and 8 equations for all flows.

The dispersion operator in the k-equation and the e-equation are the same. An

interesting consequence of this assumption is that these equations support the existence of

self-similar behavior. That is if k(§,t) is proportional to 8(5,t) within a finite space—

time domain, then

IR =CPP—CDS , provided 5=c0nstant. (3-34)

k/e 73—8 8

 

The calibration for the “production” and dissipation coefficients, Cp and CD , as well as

the turbulent transport time TR must be developed so that solutions to transport equations

Eqs. (1.9) and (1.11) yield non-negative solutions for all turbulent flows. In the following

chapter, these are determined from benchmark flows discussed in Chapter 2.

3.7 Fixed-Point Mapping and Solution Strategy of the URAPS-closure

Solutions to a calibrated URAPS-equation can be developed by successive

substitution. Thus, if 5n in a positive operator, then the following iterative algorithm

yields another positive operator 5n +1 that converges to a fixed point of the closure

equafion.

_ absent-a

= W tr(gT-ggnlg)

 =g(rR<§>,gn) . (3.35)

An initial guess starting at the isotropic distribution of energy, the prestress for the IPS

closure would also be isotropic.
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0 :>

1 I (3.36)

51=50+Cl(50—§l)+C2(50-50—IIR0 £0):—3—

T T

=1: —T— — — =—-——-——-—-=T= (55) :>

tr[é gimp-gt trig A] (3.37)

I

22 =§+C1(§—§l)+C2(§'§-HK K)

In subsequent iterations, rc-distribution of energy starts to develop for 5 which as a

result yields anisotropic distribution in 5 .

 

T

R _ é '§2(§|)'é :>

=2‘ T
tr[5 -52(5l)-5]

(3.38)

l

53=5Z+C1(52—§l)+C2(52.B—_2—IIR252)

The iterations are proceeded till the successive substitution has converged when each of

the components of the Reynolds stress remain the same up to certain significant figures.

AT-B (R ).A

5...: 1:“ =" =
tr[é .gn+l(§n).-—é—]

 (3.39)

1
B H zgn+cl(5n—-3—p+cz(5n-5n—11Rn5n) (3.40)
=n

tim ass"? aatrR<£>,a*>=h*
n->OO— _ _ — — _

In the following Chapter 4, the iteration procedure is illustrated to converge to a fixed

final solution independent of the realizable three component initial condition given, for

simple shear flows.
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3.8

1.

Conclusions

Figure 3.7 presents a summary of the above URAPS-closure. The various steps in

development of the implicit algebraic closure are shown starting from the Navier

Stokes equation. An integral analysis of the equation for fluctuating velocity using

Green’s function is used to relate turbulent corrections to the mean field

kinematics. A smoothing approximation based on the assumption that turbulent

correlations have finite memories yields the preclosure theory.

The preclosure theory for non-inertial frames relates the Reynolds stress to the

prestress though a kinematic operator, 5=rR(V<g >+2 5) that takes into

account both the mean velocity gradient and the angular velocity of the rotating

frame. The preclosure time scale TR depends on the turbulent time scale, the

mean field time scale, the time scale associated with frame rotation, and a

viscous time scale.

An implicit closure for the Reynolds stress is obtained by relating the prestress to

the NR-stress stress itself. Based on this self-consistent hypothesis, the CH-

theorem has been used to find an irreducible representation for the prestress (see

Eq.(3.19)). In order for the resultant closure to provide realizable solutions for the

NR-stress, CH-coefficients in the prestress relation must remain within the

realizable bounds given by Ineq.(3.30) and Ineq.(3.3l). The boundaries of the

realizable domain are identified by analyzing the eigenvalue relation for 5 and

5 (see Eq. (3.20)) on the prolate and oblate anisotropic boundaries. The URAPS-

closure is thus a priori realizable for all flows.

100



 

 

Continuity equation

 

RANS-equation

 
 

 

 
 

Navier-Stokes equation

  

Equation for fluctuating velocity

  
  

/\
  

  
 

I
t
:

|

   
 

 
 

 

  
 

 
 

 
  

 

  
 

 

  
 

 

 
 

    
  

  
 

   
 

 

  
 

 

 

 

 
 

 
 

Preclosure theory

T
' ' A -B-A

B: <92? = =T== ;éE[I+IR<E>]_I

— tr<55> tr(A H55) — ‘ —
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Figure 3.7 Summary of URAPS-Closure
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Successive substitution method can be used to solve the URAPS-closure starting

with an initial state say, isotropic state. The results for the prestress and

subsequently the NR-stress are updated until a converged state for the NR-stress

is obtained based on the convergence criteria used.
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CHAPTER 4

MODEL CALIBRATION

4. I Introduction

The URAPS-closure requires the determination of the following four

dimensionless phenomenological parameters:a,B,Cp ,CD and a model for the

turbulent timescale TR. In this chapter, the parameters for the URAPS-closure are

estimated from the following benchmark flows. 1) non-rotating homogeneous decay; 2)

rotating homogeneous decay; and, 3) non-rotating asymptotic homogeneous shear as

discussed in Chapter 2. Transport equations for k and a are simplified for homogeneous

flows because of the absence of production and diffusive transport. The coefficient of

dissipation is estimated from this flow as described in Section 4.2. From the theoretical

analysis of energy spectrum in rotating homogeneous flows, the dimensionless turbulent

time scale ER in Eq. (3.33) is formulated in Section 4.3, along with the specification of

the coefficients. The coefficients or and B in the prestress relation are estimated using

the components equations for the URAPS-closure and from the knowledge of asymptotic

states described in Chapter 2 (see Eq. (2.25)) for homogeneous shear using an

Optimization procedure. Optimization also yields the value of CR], associated with

model for IR in Eq. (3.33). Finally, the coefficient Cp is also evaluated from the

asymptotic equation for homogeneous shear flows.
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4.2 Dissipation Coefficient

For non-rotating isotropic homogeneous decay at high initial turbulent Reynolds

numbers, the NR-stress is isotropic and the decay of turbulent kinetic energy and

turbulent dissipation are governed by the differential equations, Eqs.(2.29) and (2.30) as

described in Chapter 2. The turbulent time scale for this flow is

2

TR =CRIE fOTRBOEVkSQ—>>1(1.€., 9:9), NF =0 , TR(NF)=1).1f CD and CR1

0

are constant, then the autonomous Eqs. (2.29) and (2.30) imply that

dk CR1 1( 80 CR] k0

where k(0)=k0 and 8(0)=80 . Figure 4.1 shows the decay process in the k-e plane

parameterized by the dimensionless decay time is teO /k0. The classical experimental

data of Comte-Bellot and Corrsin (1971) for Re0 =354 and 769 (see Figure 2.17)

described in Chapter 2 are used to estimate the coefficient CD / CR1. The DNS results of

Mansour and Wray (1994) and experimental results of Comte-Bellot and Corrsin (1971)

imply that CD / CR1 = 1.83. Parks (1997) incorporated a Reynolds number dependence in

the coefficient CD/CRI based on a comprehensive temporal analysis of the classical

Karman-Howarth equation together with the experimental data of Tavoularis et al. (1978)

and the DNS results of Mansour and Wray (1992). In this research, CD / CR1 is assumed

to be a constant forRet>>l. For high Reynolds number homogeneous decay,

k(t)28(t)—>0 and Ret —>oo as i—>oo. The temporal development of k and a

reconstructed for homogenous flows as well as predictions for rotating homogeneous
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Figure 4.1 Isotropic Homogeneous Decay in an Inertial Frame of Reference
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flows which include this coefficient CD / CR1 = 1.83 , are presented in Chapter 5. In the

following section 4.3, the model for turbulent transport time is discussed.

4.3 Turbulent Transport Time

Turbulent relaxation time scale IR is which appears in the preclosure theory in

Eq. (3.33) is described as a function ofthe characteristic time scales ofturbulence using

dimensional reasoning. In Eq. (3.33), the dimensionless turbulent transport time

iR(Ret,NF) is defined so that iR(oo,0) =1 . TR needs to be determined so that

solutions to the k-equation and the e-equation are non-negative functions for all turbulent

flows. Analysis of the energy spectrum provides information on the dependence of iR

on rotation rate. For the case of rotating homogeneous turbulence, the energy spectrum

deviates from the Kolmogorov’s -5/3 dependence on wave number K in inertial subrange

and shows a 1(‘2 dependence instead (see Zeman, 1995 and Zhou, 1994). In the inertial

subrange, the spectrum is represented as

soc) = CK(8)2/ 3 165/ 3 K >> ((23 /a)“ 2 (4.3)

E(K) = Cause)“ 2 (2 K << (Q3 /a)1 ’ 2 (4.4)

where K is the wave number, CK is Kolmogorov’s constant and CQ = C1354. From the

spectrum equations (Eqs. 4.3 and 4.4), Park and Chung, (1999) derived an equation for k

by integrating the energy spectrum over the entire range of wave length and also an

equation for 8 by differentiating the k equation with time. This analysis of the spectrum,

identified the variation of the CD/‘ER for the dissipation equation to vary with
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dimensionless rotation rate IQlk/ a. The complete summary of the derivation of the key

results are presented in Appendix F. Based on Eq. (F.42) for the coefficient of

dissipation, a similar dependence on rotation rate is adopted into the model for turbulent

time scale. A, non-unique, empirical equation for iR is proposed:

= (1+CR3NF)
. (4.5)

(1+CR2 N?)

 

The coefficients are assumed to be universal constants and. can be determined by well-

defined benchmark flow and applied to any other flow. In the limiting cases,

iR(NF—)0)=1 and iR(NF ——>oo)=CR3/CR2. The dependence iR on the group

Elli" can be deduced from Eq.(F.42) to be 3/2 since for homogeneous flows,

Ellell=zfilfltk/s-

Figure 4.2 shows the variation of —C—D——:]—-— in Eq. (F.42) with [QIk / e. The following are

CRt TR

the noticeable features of the Figure 4.2.

~16—1 , forlQ]k/e=0 (NF=0)

Egg—=4 2 , forlQlk/e=l (NF=2\/2). (4-6)

CR1 1-’R 8

3 , forIQIk/s=oo (NF—>00)

 

CD (1+CR2(2\/§)3/2) _
—2 and

CR1 (1+CR3(2\5)3/2)

 (Note that from the above points, it can be seen that

C

AER—2— : § ). From Eq. (4.6), with —C—D— = 1—1 , the estimates for the coefficients are:

CR1 CR3 3 CR1
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Figure 4.2 The Influence of I {2‘ (5 IQI k / a) on the Turbulent Transport Time Scale
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(CR2,CR3) = ( 0.0764,0.0526) (4.7)

The variation of TR with NF with the above coefficients and n = 3/2 is shown in the

Figure 4.2. For 0<NF <00, iR varies as 0.62<iR <1 with smaller values of iR

corresponding to larger values of NF. The model reconstruction in the phase plane of k

and e for the limiting cases discussed in Eq. (4.6) are discussed in Chapter 5 along with

predictions for NR-stress distribution for rotating homogeneous flows using the above

calibrated model for turbulent time scale. In the forgoing Section 4.4, the two CH-

coefficients related. to the “extra” anisotropy terms in the prestress are determined.

4.4 Coefficients of First and Second-Order “Extra” Anisotropy (01 and B)

In the following analysis, first the ratio of [3/ or is obtained from the analysis of

the component equations of URAPS-equation for homogeneous shear and using the

experimental results described in Table 4.1. All the NR-stress components from the

experimental data for asymptotic states cannot be exactly satisfied by the URAPS

closure. So an optimization strategy is used to find the coefficients (0t and CR1) that

closely recover the experimental values.

For non-rotating asymptotic homogeneous shear, the algebraic URAPS-equation

depends on three dimensionless groups: NF (2 CRfiR F); or; and, [3 . For simple shear, a

relation for the “extra” anisotropy coefficients and the components of the NR-stress can

be obtained from an analysis of the component equations of URAPS-equation as shown

in Eq. (4.8) below. For details of the derivation, see Appendix G (Eq. G.30)
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Table 4.1 Optimum URAPS Closure Coefficients and Stress Components Compared

with the Experimental Results of Asymptotic States for Homogeneous

Shear.

 

 

 

          

Model Statistic -—> N}: Rxx Ryy RZZ *Ryz Nr (1 —B CR,

experimental data 7 , ,
(TavoularisandKarnik,1989) 4.; 0.23 0.9 0.59 0.11 n/a n/a n/a n/a

APS-closure 4._2_ 0.25 0.29 0.55 0.1_9_ 0.01; 0.19 0.019 0.0039
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1

(HR-r) R R . R2

_+3 3 X" W (Rxx—Ryy—JE). (4.8)
a 27det(5) (Rxx —Ryy)

I
'
m

 

where 11R :55: R3,, +ng 4R3Z 42R}Z and det(5) = RXX Ryy R2, —R,.x R3,

Eq.(4.8) is used herein to estimate B/or from self-similar (asymptotic) homogeneous

shear measurements of Tavoularis and Kamik (1989) with F = NF = 4.9 summarized in

Table 4.1. The components of the Reynolds stress listed in Table 4.] imply

thatk R1: 0.134; X R220.236; and, it R3=0.630. Thus, det(5) = 0.029 and

HR =0.4Z. Therefore, the CH-ratio, defined by Eq.(4.8), is B/a =—0.09§ . The

important conclusion from this estimate is that [3/0t <0; and, B/a 2—0.l. For non-

rotating simple shear flows, the primary normal stress difference, RZZ -— RW , is positive;

and, the secondary normal stress difference, R —R is negative (i.e.,
yy xx:

Ry), < Rxx <RXX) as discussed in Chapter 2. This observation implies that the CH-

coefficients a and B for homogeneous simple shear satisfy the following inequalities:

or > 0 and B < 0.

The remaining two groups NF and or (with B=—0.101) are estimated by

minimizing the following optimization metric over a two dimensional domain where the

components of the NR-stress are R§§p=02§ , R§§p=0.9,R§§p=0.5§, and

Rap = —0.12 listed in Table 4.1.
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‘1’(Nr,0t,l3)

I/Z

RAPS Rexp RAPS _ RCXP RAPS Rexp RAPS _ Rexp (49)

xx xx ' 22 22 .—;p )2 +( W exp Y)’ )2 +( 6:“) )2 +( yz exp yz 7

Rxx Ryy Rzz Ryz

=( 

A search is conducted over a two dimensional domain defined as 0 S NF S 1 , 0 < or S 9,

B = —0.10t. Figure 4.3 shows several graphs of how ‘I’(Nr,0t,[3) depends on NF for a

fixed value of or. The search is conducted subject to the constraint implied by Eq.(4.9)

above. The method of successive substitution is used to find the solution to the URAPS-

equation for each value of NF . Figures 4.3 and 4.4. show how the optimization is done.

Figure 4.3 shows the influence of the “extra” anisotropy coefficient at on the constrained

optimization metric 91%,,” , defined as follows

‘I’gfin 2 min (‘I’I Cl) , B: —0.10t = constant. (4.10)

R

For each fixed value or, the URAPS-equation for the NR-strcss was solved for several

values of N in order to detemiine ‘1’“. . Fi ure 4.3 shows an exam le of various
F min g P

curves constructed with or =0.25,0.1, 1,5 and 0< N1- <1. There appears a 91%,,” for

each or. The (NI—)gfin corresponding to each of those 93,“, are also shown in the figure.

Figures 4.3 and 4.4 show that the minimum of ‘P(N1~,0t,[3) subject to the constraint

defined by Eq.(4.9) is almost the same for or in the range 0<a <1 with

min(‘l’;1nin) ; 0.153 :r 0.05.

Figure 4.5 shows the locus of anisotropic states of the NR-stress predicted by the

URAPS-closure for four different values of the second-order “extra” anisotropy
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Figure 4.3 Constrained Optimization Strategy for Determining the “Extra”

Anisotropy Coefficients, 0t and B, and the Dimensionless Transport

Group, Nr , for Non-Rotating Asymptotic Homogeneous Shear.
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Anisotropy Coefficient ( 'i‘r-state, experiments, Tavoularis and Karnik,

1989;
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coefficient 01. Each (it-curve is parameterized by NF =CRfiR F. The values of NF

identified in the caption correspond to the local minima of the optimization metric

LI’(N1—) defined by Eq.(4.9). Each a-curve has a minimum value of ‘I’ . The ‘ 71? ’ state

corresponds to the experimental results for asymptotic homogeneous shear in a non-

rotating frame of reference. By definition, ‘1’ = O at the ‘ i? ’ state. The inset in Figure 4.5

shows the behavior of the Qt -curve for 0 S NF S 1 .

The parameter optimization strategy yields the following result:

min ‘P(N1~,a);0.15§:> 012+0.1 , [ls—0.01 , er+0.01§. (4.11)

rad

Table 4.] compares the components of the NR-stress predicted by the calibrated URAPS-

closure with the experimental results for asymptotic homogeneous shear in a non-rotating

rame of reference. The URAPS-closure optimized state differs from the experiments by

0.01 for the normal components and by about 0.02 for the shear component.

The coefficient CR] can be estimated from the following relationship between

Np and F.

N1“ =CR1fTR(OO,NF)

=Cle, (1+CR3NE). (4.12)

(1+CR2 Ni“)

 

For homogenous shear with no rotation, NF = F = 4._2 (see Table 4.1) and NF = 0.01}

(from optimization). Eq.(4.]2) implies that CR1=0-003§~ The three coefficients

CR1,0t.and[3 are assumed to be universal constants. In the section below, the

coefficient of production in dissipation equation is determined.
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4.5 Production Coefficient

The k and Equations for the k and 8 yield a relation for the turbulent time scale as a

function of the production to dissipation ratio as described earlier in Eq. (3.34). This

relation is used to determine the model coefficient C p / CR] inasmuch as

CD/CR1+(IP/51—1)TR(°09NF)

[73/8]

 Cp/CR,= , [P/e]=—2NFRAPS(NF) (4.13)
yz

Eq.(4.l3) and the experimental data in Table 4.1 for NF 24.9 indicate that

iR(oo,4.2) 20.85. With N1“ 2 0.019, R52PS 2 —0.19 (see Table 4.1), it follows directly

from Eq.(4.l3) that [P/8]=1.596. Finally, with CD/CRI =15, Eq.(4.l3) implies that

Cp/CR1215.

In summary, Table 4.2 lists the eight URAPS closure coefficients for Ret —> 00.

The specific benchmark flows used for evaluation along with the calibrated coefficients

are shown. In the forthcoming Chapters 5, 6, and 7 on application of the URAPS closure,

the above closure coefficients are used assuming them to be universal constants.

4.6 Contraction Mapping and “Extra” Anisotropy

The following two cases for shear flow are illustrated. These cases appear in Ch.6

and the significance of anisotropy will be discussed in Ch.6, for this specific flow case

along with the relevant equations.

Case 1: O/F20 and F24;

Case2: O/F2—5/8 and F211.)
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Table 4.2 Summary of calibration for the URAPS closure parameters.

   

Parameter Benchmark Flow

 

£2.21};

CR1 _

Non-rotating homogeneous decay. Parameter selected

using high Reynolds number, initial decay data (Batchelor

and Townsend,l948, Comte-Bellot and Corrsin,l97l).

Independent of other calibration parameters.
 

l
e

Rotating homogeneous decay. Parameter selected based on

theoretical analysis of energy spectrum (Park and Chung,

1999)
 

(CR 2 ’CR3) =

(0.0750053)

Rotating homogeneous decay. Parameters selected based

on energy spectrum analysis (Park and Chung, 1999).

Depends only on an estimate for CD / C RI .
 

 

Non-rotating simple shear. Parameter selected based on

URAPS closure and the components of 5 for asymptotic

homogeneous shear (Tavoularis and Kamik, 1989).

Independent of other parameters.
 

 

Non-rotating homogeneous simple shear. Parameter

selected based on the components of 5 for asymptotic

homogeneous shear (Tavoularis and Kamik, 1989) Depends

on all the above parameter estimates.
 

Non-rotating homogeneous simple shear. Parameter

selected based on APS transport time consistent with the R-

eigenvalues of the asymptotic anisotropic state (Tavoularis

and Kamik, 1989). Depends on all the above parameter

estimates.
 

  
Non-rotating homogeneous simple shear. Parameter

selected based on asymptotic behavior of k and e

(Tavoularis and Kamik, 1989). This parameter does not

depend on the estimate for CR1, but it does depend on all

the other parameters listed above.
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The components of the prestress, the NR-stress, and the extra-anisotropic operator

are listed in Table 4.3 for non-rotating simple shear flows with Q/F = 0 and F 2 4. For

th is case, NF24, iR 20.8818 and NF 20.01259. Figure 4.6 shows the locus of

an isotropic invariants (11b,IIIb) associated with several solution paths produced by

URAPS-theory. The invariants of the fixed-point (i.e., $3? on Figure 4.6) are

II? 20.1389 and III? 20.01525, which corresponds to the anisotropic state for

asymptotic homogeneous shear for case 1. The following initial operators were selected

to produce the four solution paths illustrated in Figure 4.6:

1 l 1 . . .

E 0 : "3'9x9x +§§y§y +3992 , "b 2 0 , IIIb 2 0, isotropic state (4.14)

9 9

E 0 => 6 e +—e —e e 11b =0.0817,111b =—0.0095, oblate state; (4.15)
20"” 20 ”EV + 20 ‘2—2’

y $9292 , Ilb = 0.3267 , IIIb 2 0.0762 , prolate state; (4.16)”7
°

0 U l |

i 0 :>0.2 gxgx +0.3 gyg +0.5 9292 +0.19xgy +0.1 gygx
Y

—0.3 gx _ez —0.3 _ezgx —0.2 gygz —0.2 gzgy ; , ellipsoidal state. (4.17)

11b 2 0.3267,1Hb = 0.0582

The eigenvalues of 50 associated with the ellipsoidal state are All 2 0.0127 ,

)2 ‘2‘ 2 0.2000 , and it}; = 0.7873. Figure 4.6 shows that all the solution paths are in the

V i C inity of the fixed-point in about 120 iterations. More than 600 iterations are needed to

Sati sfy the convergence criterion (5 n+l__B__ n) :9in S 10‘5 5 n: (_aigj for

1 § X, y,z and j 2 x,y,z. However, within about 200 iterations, all the solutions are close

to a single unique solution. The specific number of iterations depend on the initial
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Table 4.3. Components of 5, 5 , and 5 (F 2 4 and 62/ F 2 0)

component xx yy 22 yz X8 and xR

2 + 0.253705 + 0.202491 + 0.543804 — 0.185129 + 0.557892

5 + 0.252520 + 0.201545 + 0.545935 — 0.186801 + 0.563148

2 = 2 25 + 0.001185 + 0.000946 — 0.002131 + 0.001672 n/a      
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c: ondition. Figure 4.7, shows solution trajectories from the initial conditions in Eqs. (4. 14)

to (4.17) for case 2. The components of E, g, and Q are listed in Table 4.4. The

components of g are of the order of 10—3. For this case (Q/Fz—S/S and F211),

N}: =14, TR 20.7506 , NI‘ 2002948, and NQ = —0.03685. Although the trajectories

seem to intersect at some point for the case 2, the components are all unique and finally

reach single solution.

4. 7 Conclusions

The URAPS-closure coefficients have been estimated using benchmark flows

described in Chapter 2 assuming them to be universal constants. Following is a summary

of the calibration described in Table 4.2.

1. The ratio CD / CRI , which appears in the in the e-equation, has been calibrated to

be l._8_ from experimental data (see Figure 2.17) for non-rotating homogeneous

flow for high initial Reynolds number. In this research, CD / CR1 is assumed to be

a universal constant

The turbulent time scale for the URAPS closure is based on an empirical

(1+CR3 Ngfz)

3/2 which has

(1+CR2NF )

 

formulation for the dimensionless timescale ER 2

been proposed from the understanding derived from the analysis of Park and

Chung (1999) presented in Appendix F. The analysis of energy spectrum for

homogeneous flows in the presence of rotation shows the dependence of

dissipation equation on rotation (see Eq.(F.42)). This information is used to derive
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Figure 4.7. The Development of Anisotropic Invariants of the NR-Stress for F =11

and fl/ F=—5/ 8 from Different Initial States (same as Figure 4.6);

113? = 0.1190; 1113’ =0.01144).
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Table 4.4. Components of g , 5 , and g (F =1 l andQ/F = —5/8)

component xx yy 22 yz x3 and XR

2 + 0.264508 + 0.592243 + 0.143249 - 0.066540 + 0.228447

5 + 0.263520 + 0.594788 + 0.141692 — 0.067148 + 0.231303

2 = E-i + 0.000988 — 0.002545 + 0.001557 + 0.000608 n/a

 

xR EMT—w. :111—
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the coefficients (CR2,CR3)=(0.0764,0.0526) in order to include the

dependence on mean field time scale. The power on the group NF , i.e. n = 3/2, is

adopted from the dependence of time scale on the rotation rate observed in the

energy spectrum analysis. For 0 < NF < oo , iR varies between the limits

0.69 < IR < l.

. The URAPS relation for simple shear and experimental data for asymptotic states

flows has been used to estimate the ratio B/a ; —0.l . URAPS-closure component

equations cannot exactly satisfy all the experimental data in Table 4.1 for

asymptotic homogeneous shear. Consequently, an optimization strategy was used

to minimize the metric defined by Eq. (4.9). The resulting coefficients or = + 0.1

and CR] 5 0.0036 minimized the error between the model predictions and the

experimental data. The coefficient of production (Cp /CRI 51.5) was estimated

from the asymptotic relation for the turbulent time scale. The summary of the

parameters listed in Table 4.2 will be used for the application of URAPS-closure

for predicting the NR-stress. Figure 4.8 shows the realizable choice of or = + 0.1

and B = — 0.01 from the calibration procedure to be within the realizable bounds

discussed in Chapter 3.

Successive substitution method for finding the URAPS-closure solution is

illustrated for two cases of simple shear flows: Case 1: 51/ F = 0 and F = 4; and,

Case 2: (“l/lZ = —5/8 and F =11 . It is shown that for different initial anisotropic

states in Eqs. (4.14) to (4.17) show a convergence towards a unique final ‘ i? ’

state shown in Figures 4.6 and 4.7 for a specific convergence criteria.
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CHAPTER 5

HOMOGENEOUS DECAY

5. 1 Introduction

In the absence of spatial gradients in the mean velocity, turbulence decays. This

flow field which is referred to as homogeneous decaying turbulence, is often used as a

benchmark flow for studying turbulence models. Eq. (2.29) and Eq. (2.30), which are

autonomous non-linear dynamic equations for k(Ek/ko) and {3(28/80), define the

decay dynamics as discussed in Chapter 4. The dimensionless turbulent time scale ER

described in Eq. (4.5) has been modeled in Chapter 4 to include the time scale associated

with the rotation of the frame through the group NF 5 k“ <£ >u/e. In Section 5.2, the

reconstruction of some of the results used in the calibration along with a further

parametric analysis for various important turbulent quantities like the turbulent time scale

k/é, and the turbulent dispersion 122/é are discussed to understand the temporal

development of (2(2 (20 k)/é). The focus of Chapter 5 is on the development of the

Reynolds stress anisotropy in the presence of rotation for high initial turbulent Reynolds

numbers (kg /(ve0) >> 1). The URAPS-closure component equations are simplified for

this case because of no shear. These are discussed in Section 5.3. The temporal

development of the NR-stress for the URAPS-closure estimated from the temporal

Variation of f) is discussed in Section 5.4. The temporal development of the ‘extra’

anisotropy terms is studied in Section 5.5 to understand their role in energy redistribution.
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5.2 Turbulent Energy and Turbulent Dissipation: Results and Discussion

The dimensionless time t is defined as sot/k0 and the rotational operator is

related to the angular velocity by g = Qx (eyez —§zey). For t: 0, k =1 and E: =1 , the

initial value problem (defined by Eq. (2.29) and (2.30)) was solved for a wide range of

rotation numbers by using a fourth-order Runge-Kutta algorithm implemented in

MatLab® (Appendix H provides the flowchart and Matlab program). Summary of the

influence of (20 on the decay process as discussed below.

In the presence of rotation for decay of homogeneous turbulent flow, the rate of

decay of k is hindered by rotation with a decrease in dissipation (Bardina et al.. 1985,

Speziale et al. 1987, Cambon et al. 1997) as discussed in the literature in Chapter 2.

Figure 5.1 shows the decay dynamics for 0< (~20 <10 all lie between the two curves.

Although turbulence decays monotonically for all rotation rates, the decay rate of k

decreases with increasing rotation. During the initial stage (i.e., 0 <1 < 0.1 ), an enhanced

rate-of-decay of E in Eq. (2.30) arises due to a decrease in the dimensionless turnover

time %R as the rotation number NF(= 272 (2012/ {2) increases as discussed in Chapter 4

(see Figure 4.2). The influence of rotation on k is relatively small during the initial stage.

However, during the intermediate stage (i.e., 0.1<t<4), the rate of decay of k is

mitigated by the smaller dissipation that is developed during the initial stage. For the final

(non-viscous) decay period (i.e., t>4), the rate-of-decay of 5 decreases due to the

persistence of a relatively large value of k as k/ 5. —> 00. Thus, for I» 4 , NF —> 00 and

iR —> CR3 /CR2 =11/16. Figure 5.1b shows that the dissipation for Q0 =10 eventually
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Figure 5.1. The Influence of Rotation Number on the Decay of k and E.
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exceeds the dissipation for (20 = 0. This feature, which was not noted by Park and Chung

(1999) shows that rotation actually retards the rate-of—decay of dissipation during the

final stage of the decay process.

Figure 5.2 shows the decay dynamics in a phase plane. The decay process starts at

k = E = 1 and decays with time asymptotically approaching zero with k 2 0, and E 2 0 for

all times. During the initial decay period, the slope of the curves in the phase plane shown

in this figure are related to the coefficients in Eq.(5.l) below, which is obtained by

combining Eqs. (2.29) and (2.30).

dé CD1é _CD;
——.— =——7—7= ~ (5.1)

k {=0 CR1 1R k CR1 TR

~ CD 1 ll . ~ . .

For (20 = 0, C.—:— =—— Since TR(NF —> 0) =1 for no rotation. For very large rotatlon

R1 TR

~ . CD 1 8 . .
rates, where 00 ——>oo, the slope IS -C——"__—)— smce TR(NF ——)oo)—)11/l6. These

R1 TR

limiting values are a consequence of the model for IR in Chapter 4. Figure 5.3 shows

that the turbulent time scale increases monotonically for increasing rotation rates. The

initial slopes of the curves are positive and continue to remain so during the entire decay

process as described by Eq. (5 .2) for turbulent time scale below.

(I t 8 v-t- CR1 TR

CD 1 ~ CD 1 . . . , .

———__—— > 1 V 90 and so —1 +—~— > 0 i.e. posmve slope for any rotation rate.

CR1 TR
CR1 TR

The decay dynamics in the presence of rotation has a qualitatively different

response compared with its non-rotating counterpart. Figure 5.4 shows that turbulent
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dispersion (i.e., 122/é) variation with t for various rotation rates. In the absence of

rotation, 122/é decreases monotonically as k2 decreases faster than 5. However, in the

presence of rotation, although k and {1 decrease monotonically, 122/E becomes

unbounded for large rotation numbers (see Figure 5.4). For 0<§~20 <1, 122/é, first

decreases and then increases and becomes unbounded for long times while for Q0 21,

there is a monotonic increase. This can be explained by the Eq. (5.3) below for the rate of

. . . . . . . ~7 .. ~

change ofturbulent dlspersmn which gives the inmal slope of k“ /8 vs. I .

~

2
C

141;) =_2+———D;. (5.3)
d I 8 {:0 CR1 TR

. . . . . ~ . 11 CD 1 . ~
The initial slope IS negative for 0<QO <1 smcc -—<-———;——<2. For (20 21, the

CR1 TR

. .. . . . CD 1 *2 ~ . .

initial slope IS posmvc as —C—_~—— > 2 and so k /8 increases monotonically.

R1 TR

From the above information on the k and E, the group (2 = (2012/ 5 increases for

all rotation numbers during the decay process. Viscous effects are negligible for all initial

rotation numbers (20 21 and for 0 < ()0 <1 during long times since k2 /(v{:) increases

monotonically in this region as discussed above. The following Section illustrates the

simplified URAPS-closure component equations and. the Reynolds stress anisotropy

predicted by the URAPS—equation.

134



5.3 Preclosure Operator and URAPS-Closure

For rotating homogeneous flows, the preclosure operator A is defined by the

following equations Eq.(5.4) and Eq.(5.5). (See Appendix G. for more detailed

 

derivations).

51:91.9). +9y9y +9292 +Nn§y§z -NQ§7_9y (5.4)

A = (1+N122)9x9x +9y9y +392 - Nagygz + Nggzey (5.5)

= (1+ N22)

12
where NQ =2CRIER Q0 =2CthRf2. For V<g>=2 and 0<§~20<oo, an analysis

E

URAPS-closure predicts that if Bxy =0 and sz =0 , then ny =0and sz =0.

Furthermore, if Byz=0 and Byy-B then Ryz=0. Therefore, for rotating
_ ZZ’

homogeneous decay, URAPS closure can be written in the component form (See

Appendix G. Case3).

K Rxx =0+Né>2 Bxx (5.6)

K Ryy = Byy+NE2 1322 (5.7)

K RZZ = 1x102 Byy+ 1322 (5.8)

Ks(1+N§-,)(1+N%,Bxx) (5.9)

The components of the prestress operator for rotating homogeneous decay are also

presented in Appendix G. Eqs.(5.7) and (5.8) imply that if Byy = BZZ , then Ryy = R22.

This is consistent with the closure expressed by URAPS-theory. Therefore, with

Byy = BZZ = (1 — Bxx)/2 and Ryy = RZZ = (l — Rxx)/2 , URAPS-equations implies that
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_ (1+N3218xx
Rxx _ 2 .

(1 +NQBXX)

 
(5.10)

Based on the simplified URAPS-closure result in Eq. (5.10), the NR-stress variation with

rotation is discussed in the following Section.

5.4 The NR-Stress: Results and Discussion

Eq. (5.10) shows that for NQ =0, Rxx = B“. For the non-rotating case, three

solutions to URAPS equations exist: RXX =0;1/3;and,l. For NQ =ioo, Eq.(5.10)

implies that R xx =1; therefore, Bxx =1 also. Thus, as the rotation number increases, the

URAPS-closure predicts that the Coriolis force causes a transfer of energy from the

fluctuating velocity components in the plane orthogonal to the rotating axis (i.e. y and 2

components) into the fluctuating velocity aligned with the angular velocity (i.e. x

component). If —oo< NQ <00, prolate anisotropic states also exist. The prolate

anisotropic form produced is characterized by the following inequality:

OSRyy=RZZ<l/3<Rxx 31.

Figures 5.5 and 5.6 summarize the solutions to URAPS-equations for different

rotation numbers, ()0. Temporal variation of the rotation group,

N9 = 2CR] TR (onflé are calculated based on the decay dynamics discussed earlier.

Thus from Eq. (5.10), the URAPS-closure predicts that the Coriolis force causes a

redistribution of energy from an initial isotropic state to a prolate state as the turbulent

kinetic energy decays. The algebraic nature of the URAPS-closure causes a rapid

(instantaneous) redistribution of energy at t = 0 followed by a slower transfer of energy
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Figure 5.5. The Influence of Rotation on the Temporal Variation of Rxx Component

of Reynolds Stress for Homogeneous Decay (see Tables 5.1a,b).
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for t> 0. During the decay process, the quadratic form associated with the NR-stress

changes from a spherical isotropic form to a prolate ellipsoidal form with an aspect ratio

of 2Rxx /(l —Rxx). Table 5.1 lists the anisotropic states identified as ‘a’, ‘e’, ‘e’, and ‘g’

in Figure 5.5 for which R xx = 1/ 2 all have quadratic forms with an aspect ratio of 2:1.

The anisotropic states identified as ‘b’, ‘d’, ‘f ’, and ‘h’ in Figure 5.5 for which

Rxx = 3/4 all have quadratic forms with an aspect ratio of 6:1. (See Table 5.1 for the

details of values of each of URAPS variables for these states). As the turbulent transport

time increases (i.e., IR >> 0;] ), the energy redistribution process continues and is

effectively completed (i.e., Rxx E l ) in a finite amount oftime if = tfso /k0 < 00. Figure

5 .5 shows that the time needed to shift the energy to the Rxx component depends on the

rotation numberQO. For ()0 =1, the transfer time is significant inasmuch as if 233.

However, for ()0 =15 , if s 1.8.

From the above discussion, it can be seen that for URAPS-closure, if the initial

state is isotropic (Rxx =Ryy = RZZ =1/3) and homogeneous, then prolate anisotropic

states (0<Ryy =RZZ <1/ 3<Rxx <1) develop due to strong non-linear interactions

among the velocity components (i.e., "f’(x_,t)” z llu'(§,t)-g” ). The action of the

intrinsic acceleration _f ‘(§,t)is fundamental in this reorganization of turbulent kinetic

energy. Transport equation for the Reynolds stress shows that the effect of rotation is

purely reorganization of turbulent kinetic energy into an axisymmetric form, without

effecting the equation for k directly (see Piquet, 1999) This is consistent with the

knowledge of literature presented in Chapter 2, indicating that the Reynolds anisotropy is
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Table 5.1a.

Figure 5.5 For Prolate States).

The Influence of Rotation on the NR-Stress for Homogeneous Decay (see

 

 

 

 

 

 

 

 

        

- Rxx El 1 ~
pro ate ~ ~ ..

no ‘1', state t k/e NF TR

a 1; 16 46.; 0.7g

1 3;

b 20 3; 87.5 0.62

c 1.; 3.; 46.; 0.70

5 6.0

d 3 ; 6.; 87.5 0.6_9_

e 0.40 1.6 46.; 0.70

10 2.8

r 1.; 3.0 87.5 0.62

g 0.060 1.L 46.2 0.70

15 1.;

h 0.6; 2.0 87.5 0.62  
 

Table 5.1b. The Influence of Rotation Number on the NR-Stress, the Prestress, and the

“Extra” Anisotropy for Homogeneous Decay Predicted by The URAPS-

Closure.

 

prolate states

 

 

  

A

(see Figure 5 .5) N0 R“ 13“ xx

a , C , e , g + 0.082 + 0.500 + 0.498 — 0.0017

b , d , f, h + 0.15 + 0.750 + 0.746 — 0.0042
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sensitive to the initial conditions and may be either oblate or prolate. DNS results

indicated Rxx >l/3 for simulations with ()0 =25 (see page 71, Gatski, 1992). As

demonstrated by Cambon et a1. (1997) and Yang and Domaradzki (2004), anisotropic

distribution among the normal components of NR-stress could be either prolate or oblate

for long time simulations. Rapid Distortion Theory (RDT) theory which indicates no

anisotropy for pure rotation case is incorrect (see Piquet, 1999).

Thus, for three-dimensional rotating homogeneous decay, the Reynolds stress is

clearly anisotropic and the URAPS-closure predicts anisotropy shifting the energy to

Rxx component in a finite time (although long time if £33 for small rotation rates

(20:1).

5.5 “Extra” Anisotropy: Results and Discussion

The normalized prestress and the NR-stress have anisotropic components. The

“extra” anisotropy __A: in the CH-representation is defined by

és§—§=Cl(§—y3)+C2(§-§—IIR g)

I)27det(:R__)—01(IIR—%)(_R_-_R_:—IIRI={__). (5.11)

The second invariants of the “extra” anisotropic operators are defined as HA1 E g] :ng

and HA2 222 2.2; The second invariant associated with g is “A 22:93. In Figure

5.7, although HA is small compared with the second invariants of the anisotropic

components of the normalized prestress and the NR-stress, the presence of g in
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Figure 5 .7. The Development of “Extra” Prestress Anisotropy During the Decay

Process for (~20 =1 : a) Dynamic Response of the Second Invariants for the
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Anisotropy. b) Relative Changes of the First Order and Second Order

“Extra” Prestress Anisotropies.
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Eq.(5.l l) is nevertheless fundamentally important. It is noteworthy that if g = (:1, then the

only prolate solution is _R_ = E = ex ex . Figure 5.7 also shows that the relative importance

of the first-order and the second-order anisotropic operators on the local anisotropic state.

During the initial stage of the decay process ( 1 << 1 ), the first-order anisotropic operator

A] controls the redistribution of energy (see Figure 5.7a and Figure 5.7b). However,

during the final stage (t >>1), the second-order anisotropic operator 22 controls the

transfer of energy from the transverse plane to the longitudinal axis.

5.6 Conclusions

In this chapter, the NR-stress distribution, along with the dynamic behavior of k,

.. ‘" .. ”’7 .. . . . . .

a , k / e and k“ / 8 , for rotating homogeneous flows rs studied for various rotation rates.

1. The decay of k and 8 shown in the phase plane indicates that both k and E:

decay for all rotation rates. The decay dynamics in the initial stage indicate that

there is decreased. dissipation rate with increased rotation. During the initial stage

(i.e., 0<t<0.l), an enhanced rate-of-dccay of E is observed because of the

decrease in 'ER. However, during the final stage for i>4, where rotation

mitigates the rate of decay of dissipation, dissipation for (~20 =10 eventually

exceeds the dissipation for Q0 = 0 (see Figure 5.1b).

2. The turbulent time scale and dispersion monotonically decrease for non-rotating

homogeneous decay. However, in the presence of rotation, turbulent dispersion,

122/é becomes unbounded for all rotation rates (see Figure 5.4) with the initial
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slopes defined in Eq. (5.3), to be either positive or negative depending the initial

rotation number (20.

In rotating homogeneous decay, the anisotropic quadratic form associated with

the NR-stress is elongated by a coupling between velocity fluctuations and the

Coriolis acceleration. The component equation for Rxx (see Eq.(5.10)) shows

that prolate anisotropic states exist for the rotation group

—00 < N0 = 2CRfiRf) < 66.

For (~20 <1, energy is shifted slowly to the RM component (Rxx =1). The

transfer time is significant inasmuch as if >30. However, for rotation rates

(~20 >1, the redistribution of energy from an isotropic initial state is attained in a

relatively short time (cg. (~20 =15 , if E 1.8 ).

The extra-anisotropy terms in the preclosure play the role of this transfer of

energy in URAPS-closure. During the initial and final decay stages, first and

second order anisotropic contributions to the prestress control the transfer process

(see Figure 5.7).
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CHAPTER 6

HOMOGENEOUS SHEAR

6. 1 Introduction

Statistically homogenous shear flow is characterized by constant or uniform mean

shear independent of spatial position. Self similar solutions obtained for this flow

observed in experiments (Rohr at al., 1988, Tavoularis and Kamik, 1989) as well as DNS

and LES simulations (see Salhi and Cambon, 1997, Brethouwer, 2005) for rotating

homogeneous shear discussed in Chapter 2, are often used in turbulence modeling to

calibrate and validate closures for low-order statistical properties. Figure 6.1 illustrates

the idea of a homogeneous shear with rotation. The shear rate Fyz is constant and the

rotation rate is Q = QxeX . In this chapter, the dynamic equation for F = I‘yzk /e and the

URAPS-closure component equations are presented in Sections 6.2 and 6.3. In Section

6.4, the asymptotic states for different values of Qx /17yZ are determined by solving the

dynamic equation for F: I“),Zk/s and the URAPS-equation. The predictions are also

compared with the literature discussed in Chapter 2. The NR-stress results for various

initial conditions (i.e., F0) are discussed in Section 6.6. Sections 6.5 and 6.7 are focused

on understanding the contribution of the “extra” anisotropy terms in the URAPS-closure.

6.2 Dynamic Equation for F

As discussed in Chapter 3, the k and epsilon equations support the existence of

self—similar behavior. That is, if k(§,t) is proportional to a(x_,t) within a finite space-

1.45



 

—— = ryz constant

 

 

  
 

Figure 6.1 Schematic of Rotating Homogeneous Shear Flow
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time domain (i.e., k/e is a constant), then the ratio of the turbulent time scale to the mean

field time scale F satisfies the following non-linear algebraic equation:

  

” ~ ~ —2FR:e e -

d—F-{—2FR_:ezey—l}—{Cp f ‘H —CD 1

— TR IR
(6.1)

~

=<t73/21—1)—.i<ép1P/21—C6)=0
TR

7
‘
"
!

I

W 2

U
whereFEF 7 , FOEF —9— 15F t and t s——————.

08 so yzu <uz>(0)

This flow shows an asymptotic solution that i—l;=0, (i.e. F a =constant) The above

equation can be rearranged as below in Eq. (6.2)

6p [p/8]—CD

[P/e]—l ’

 

moo, NF) = [79/21 = —2 f i; 2:19,) (6.2)

where Cp ECP /CR1, CD 2 CD /CR1 and 73/82 is the ratio of production of turbulent

kinetic energy to dissipation. It should be noted that 73/82 is also a constant for the

asymptotic states. The above Eq. (6.1) however, needs the information of the shear

component of NR-stress that can be computed from the URAPS-closure. Eq. (6.1)

together with the URAPS-closure can be solved for developing homogeneous flows so

that Eq. (6.2) is satisfied in the asymptotic region. The URAPS-closure equations are

discussed in the following section.

6.3 Preclosure Operator and URAPS-Closure

Asymptotic homogeneous shear (AHS-) flow in a rotating frame of reference for

which the angular velocity is co-linear with the mean field vorticity has the following
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URAPS equations (see Appendix G for URAPS equations with NF =0 and NQ #0

case). The preclosure operator for this flow is,

 

g"=1+IR <§>= 9,9,.+9y9y+ezgz+tNr+Ng)syez-Ngszsy (6.3)

C

A: =
= det(l+tR<:>)

(6.4)

_ (1+NrNQ +N§2219x§x +9y9y +9292 —(Nr +NQ)Qy92 +N692

(1 +NI~NQ + N5)

9y

where NI“ 5 iRF and N9 2 2 TR (2. URAPS-closure can be fully defined by specifying

F and (2 or for asymptotic homogeneous shear. NF and N9 defined above are used to

simplify the component equations. Through the developing flow region towards

NQQQ
~

. 1
x

asymptotic states, the ratio—___ (2 __ : . 
) remains constant although NF and N0

yz

change with time. Solutions to URAPS-closure equations for a given value of NI" and

N9 were determined by successive substitution. For rotating simple shear flows, the

algorithm converges to a unique solution for any initial non-negative operator (i.e., n = 0)

with invariants within the L-diagram (see Figures 4.6 and 4.7)

6.4 Asymptotic States for F and the NR-Stress: Results and Discussion

The self-similar solutions summarized in this section were developed numerically

by simultaneously solving Eq.(6. 1) and the URAPS-closure equations for long times such

that RHS of Eq. (6.1) is essentially zero. Appendix H has the flowchart and program for

solving the above equations. Figure 6.2 shows that non-trivial, self-similar solutions
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(1 it
occur for a finite range of rotation numbers: —0.65 :(%)min <F<(—1~:)max =+0.15.

The lower curve in Figure 6.2 shows the effect of the rotation number on F _l and the

upper curve shows the effect of Q/ F on the dimensionless transport time ER. Clearly,

the rotation number has a large effect on F. For example, with (2:0, F=4.2.

However, near the upper and lower bounds on 52/ F (see States 1 and 7), F is about 11.

As Q/F decreases from 0 to —1/4, F decreases from 4.2 to 3, which is a local

minimum.

Figure 6.3 illustrates the effect of rotation on the redistribution of the normalized

turbulent kinetic energy and on the anisotropic invariants. The URAPS-closure predicts

that all the anisotropic states are prolate-like (i.e., IIlb > 0 ). For Q/F > 0, the energy is

removed from the cross-flow and span-wise components of the fluctuating velocity and

shifted into the stream—wise component. For 62/ F = 0 , R22 is about 0.55 and increase to

about 0.60 as fl/F increases to +1/8. However, as fl/F decreases to —8/5, RZZ

decreases from 0.55 to 0.14; and, Ryy increases from 0.20 to 0.60. As shown in Figure

6.3, the predicted shift in the turbulent energy by the URAPS-closure is qualitatively

consistent with results observed in DNS and LES studies (see Bardina et al., 1983;

Piquet, p. 213, 1999; Brethouwer, 2005) (The solution is extrapolated from the short time

simulations). The widely used B-closure predicts an cquipartition of energy among the

three components of the fluctuating velocity for all values of the rotation group (see

Figure 6.3).
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It is especially interesting to note that O/ F = —0.5 corresponds to the zero mean

absolute vorticity discussed in Chapter 2. This region occurs in the HP side of spanwise

rotating channel (see Chapter 7). The results for the asymptotic solution in this region and

the results in rotating channel (see Table 1.4, Appendix I) show the same trend of energy

. 22.distribution with Ryy > R

URAPS-closure predictions are qualitatively consistent with the second-order

closures which predict asymptotic solutions for —0.53 = (%)min < % < (%)max = +0.09

(Speziale et al., 1996, Piquet, p.259, 1999). Rapid Distortion Theory (RDT) predicts

~

asymptotic states in the region of about —0.6 <%<0.2 (see Salhi and Cambon, 1997,

Piquet, p.259, 1999). Standard B-closure based models cannot predict this bifurcation

region which distinguishes region of self-similar solutions with regions where there are

no self similar solutions. Linear and Bilinear Shih models (Shih et al. 1994, Shih et al.

1995) predict self similar solutions for ~00 <51; < 00. For all values of g, the value of

F approaches a constant within a finite time, which is not consistent with the knowledge

of DNS and LES results. Incase of URAPS—closure, asymptotic states are observed for a

finite range of rotations. The effect of rotation on the Eq. (6.1) through the production

term which causes this phenomenon of asymptotic states for finite rotation rates is

captured. Further details of why the asymptotic states occur for URAPS and not for some

of the algebraic models will be clearer at the end of this chapter after studying developing

states for all rotation rates.
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6.5 Asymptotic “Extra” Anisotropy: Results and Discussion

In this section, first the convergence of URAPS closure theory and the role of

extra anisotropy in attaining a unique state is discussed for two of the asymptotic states.

Later, the extra anisotropy contributions for all the asymptotic states are discussed. (Note

that the fixed. point mapping trajectory for the two cases presented below has been

illustrated in Chapter 4, Section 4.7, for various initial conditions. Case 1: Q/F = 0 and

F=4;Case2: Q/F=—5/8 and F=11.)

The components of the prestress, the NR-stress were discussed in earlier Chapter

in Table 4.3, and the extra-anisotropic operator are listed in Table 6.1a for non-rotating

simple shear flows with fl/F=0and F =4. For this case, NF =4, FR =0.8818 and

NF = 0.01259. The results show that the components of the extra-anisotropic operator

are more than two orders of magnitude smaller than the components of the prestress and

the NR-stress. The correlation coefficients for g (i.e., x3 alByzl/,/BWBZZ =0.558)

 

and for E (i.e., ZR EIRyZ /,/RnyZZ =0.563) are comparable. Table 6.1 gives the

eigenvalues for g , g , and 2. Although the eigenvalues of the extra-anisotropic operator

g are two orders of magnitude smaller than the eigenvalues of E and _R_ , the g -operator

nevertheless plays a fundamental role in determining the fixed-point solutions to URAPS

as shown by Figures 6.4 and 6.5. As illustrated by Figure 6.4, the eigenvalues of the

extra-anisotropic operators, A t and A 2 , determine the fine structure ofthe solution path

near the fixed-point. Figure 6.4a shows that the eigenvalues of g t begin to appear after a

few iterations whereas the eigenvalues of A 2 do not appear until after 20 iterations. If
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Table 6.1a. Eigenvalues ofg, §,and é (F=4 and O/F=0)

 

 

 

  

 

    
 

 

 

 

  

eigenvalue A? A}? AA, x 103

i=1 +0.121361 +0.1l9680 + 1.681

i=2 + 0.253705 + 0.252520 + 1.185

i=3 + 0.624934 + 0.627800 — 2.866

Table 6.1b. Eigenvalues of __13 , E , and g (F =11 and O/F = —5 7’8)

eigenvalue 7).? ll} AA, x 103

i=1 + 0.133596 + 0.131950 + 1.646

i=2 + 0.264508 + 0.263520 + 0.988

i=3 + 0.601896 + 0.604530 - 2.634   
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Figure 6.5. The Development of Extra-Anisotropy Eigenvalues for F =11 and

Q/ F = —5 / 8 from an Isotropic State (see Figure 6.4 for notation).
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the extra-anisotropic operator were turned off for n > 120 (i.e., or = 0 and [3 = 0), a fixed-

point to URAPS still exist, but it moved to a different ellipsoidal state with Nb = 0.6662

and IIIb=0.2220. This is significantly different than the fir-point for which

11;? 20.1389 and 11117,“? =0.01525 with or = 1/10 and p = —1/100. Thus, the prestress

extra-anisotropy, albeit small, plays an important quantitative role in determining the

prestress and, thereby, the NR-stress.

The components of :12, E, and g are listed earlier in Table 4.4 for rotating

simple shear flows with Q/F = —5/8 and F =11. For this case, NF =14, TR =0.756 ,

NF = 0.02948, and N9 = —0.03685. The results in Figure 6.5 also show that the fixed-

point components of the extra-anisotropic operator are more than two orders of

magnitude smaller than the components of the prestress and the NR-stress. The

correlation coefficients for g and 5 are comparable (i.e., 18 = 0.228 and XR = 0.231 ),

but significantly smaller than the non-rotating example above. Table 6.1b gives the

eigenvalues for the rotating example. Like the non-rotating case, the eigenvalues of g are

two orders of magnitude smaller than the eigenvalues of 2 and _R: ; and, as illustrated by

Figures 6.4 and 6.5, the é-operator plays a fundamental and quantitative role in

determining the NR-stress.

The eigenvalue contributions from the extra-anisotropy g are of the order of 10'3

for all the asymptotic states as can be seen in Figure 6.6. Two of the eigenvalues are

positive while the other is negative. One of the eigenvalues remains almost

approximately the same for all the rotation variations at about 1.5x10'3. The variation in
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the other two although small, causes different energy states for the NR-distribution. The

normal components of NR are different for =0 and -0.5 because of the different

"
1
1
'
:
0
1

energy contributions in the Ryv and R22. However, the eigenvalues associated with

these states are the same as there is a shift in the energy states without change in the

values. This is reflected in the eigenvalues of the extra anisotropy too as the eigenvalue

5?
distribution is symmetric about = —-0.25 , with the same eigenvalues for 0 and -0.5 etc.

The relative contributions from —A-1 and A, can be seen in Figure 6.6. The relative values

of the second invariant contributions show that contributions from g, are significant in

~

the range between —0.45 < % < 0.05. At these limits, both the contributions are almost

equal. Outside this range, _A_ eigenvalues are more important for the anisotropic
1

distribution.

6.6 Developing F , ’P/ s and the NR-Stress (shear component) for Homogeneous

Shear

Eq. (6.2) along with the URAPS-closure discussed in Sections 6.2 and 6.6 are

studied for different initial conditions of FO =0.5,1,2,5,10and15 and for different

rotation rates to understand the development towards asymptotic states which occurs only

~

for the finite range of ? discussed in Section 6.4. Figure 6.7 presents variation of the

dimensionless shear F from different initial values of F0. Although at f: 0, the states
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are all different, all the curves rapidly attain a final asymptotic state of Fa z 4.2 .

Independent of the initial condition, F attains an asymptotic state that does not vary any

further with the downstream distance in f z 10. Development of the shear component for

different initial values of F0 mentioned above are presented in Figure 6.8. Depending on

the initial shear, as shown in the small graph, the initial Ryz is different. For an increase

of F0 from 0.5 to 5, there is an increase in the initial value (i<0.3) of the shear

component (—Ryz) from 0.08 to 0.19, while for FO variation from 5 to 10, the initial

values of ( -Ryz) are smaller (see Figure 6.8). However, independent of the initial values,

the curves rapidly attain a final asymptotic state of —R:Z = 0.19 (in 1 ~ 1 1 ). As shown in

Figure 6.9, the ratio of production to dissipation (79/8) also approaches a constant value

in a finite time. The initial values range from 0 to 5 for the initial values of F0 chosen.

The final states of (73/13)8 = 1.57 are attained for all the initial conditions.

The development of NR-strcss to asymptotic states is presented for high initial

shear FO = 18 in Figure 6.10. DNS results from Brethouwer (2005) are also shown in this

figure for comparison. The URAPS closure predicts NR stress distribution

instantaneously to imposed shear like other algebraic models. So the initial values of NR-

stress distribution is anisotropic compared to the isotropic initial condition in the DNS

simulations. The simulations show development towards constant values, which however

may need more simulation time steps to further develop into asymptotic states. The

extrapolation of DNS results seem to be directed towards the final states predicted by the

URAPS—closure (see Figure 6.10).
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The asymptotic states exist for Q/F =0 for all initial values described above.

The following discussion shows the temporal development for various values of

Q/F=—0.75—0.5,—0.25,—O.1,0,0.1,0.25,1, covering beyond the range for which

asymptotic solutions exist (AS-range). The initial value is fixed at F0 =1 for all the

above cases of rotation. Interesting features below explain why there are no asymptotic

states in a certain region. Figure 6.11 describes the downstream development of

dimensionless shear for a fixed initial F0, for different values of rotation rates. As

discussed in the Section 6.4 of this Chapter =—0.5,—0.25,—0.1,0, and 0.1, have

"
j
i
l

:
0
:

asymptotic states as they are range between the maximum and minimum discussed

previously. However, the asymptotic states are different with F a being the minimum for

1
1
0
*

-0.25. For the range of ~ =—0.75,0.25,1,and2, which are outside the AS-range, F

"
1

increases monotonically, with slopes equal to Eq.(6.5) below, where the slopes depend on

the rotation rate through ER .

d5 4330—1 (6.5)
dt t—)FIJ TR

 

Eq. (6.5) is a consequence of understanding that R),Z —> O as F —> 00 as can be seen in

Figure 6.12. For Ryz ——>O, Eq. (6.1) becomes Eq. (6.5). Figure 6.12 describes the

downstream development of the shear component of the Reynolds Stress. The initial

=1 because of the rotation rates. R attainsvalues seem to be different for the same F0 yz

different asymptotic states in a finite time for the rotation rates within the AS—range

165



100
 

 

 

 

   

5.3 :1
r

0.5

-075, 0.25

10 -

0.1

F

-o.5,o

-025

1 T l l l

10 20 30 4o 50

Figure 6.11 Developing F for Different Rotation Numbers for F0 =1 .

166



 

 

 

 

   
 

 

  
  

53—21
F

0.0“K

0'5 -0.75, 0.25

0.1

-01qK/f

RYA

-o.5,0

-0.2 -

—0.25

-0'3 I I l j

10 20 30 40 50

Figure 6.12 Developing Ryz for Different Rotation. Numbers for F0 =1.

167



described earlier. Outside this range, Ryz —>O. The development of the 73/8 ratio is

shown in Figure 6.13 for various rotations for an initial F0 =1. Within the AS-range,

P/e approaches a constant (The asymptotic states are all between 1.45 and 1.65 as

shown in the inset to Figure 6.13. For the rotation rates outside the asymptotic range,

73/ 8 approaches zero because R approaches zero.
yZ

From the knowledge of the above discussion for rotation rates outside the AS-

range, it can be seen that since URAPS closure and Eq. (6.1) yield Ryz —>0 and so

~

~ (1 F . .

73/ a (= 2 F Ryz) —> 0. :17 approaches a constant value depending on the rotation

t —) 00

rate as described in Eq. (6.5). For rotation rates within the AS-range, Eq. (6.1) proceeds

till the rate of change (id—It: = 0. For the bilincar model by Shih et a1. (1994) and some of

the other non linear models (see Piquet 1999) which cannot predict effect of rotation

through the Ryz component predict that all the range of rotation rates have asymptotic

states and that 73/8 and the normal components of NR-stress always approach a

constant. Realizable model. by Shih et a1. (1995) can predict variation of the normal

components of NR-stress with rotation but not the shear component as shown in

Appendix E.

6.7 Developing “Extra” Anisotropy: Results and Discussion

The extra anisotropy in the URAPS-closure is studied for the following case of

developing flow. F0 =1 and Q/ F = 0. Figure 6.14 shows the eigenvalues of the extra-
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anisotropy 2 start with an initial distribution corresponding to the initial 5 at t: 0 and

[‘0 = 1. (i.e. 3 x103 =0.22 9ng +0.22 _eygy —0.44 e292 +0.10eygz +1.01 gzgy and the

eigenvalues are MA x 103 = (—l.17, 0.22, 0.95)). As the time proceeds, with the variation

in F towards the asymptotic state, the eigenvalues of 3 also approach the asymptotic

state as A approaches a constant ( _A_ x 103 =

1.23 ex _ex + 0.97 eygy — 2.2 _ezez + 0.10 eyez +1.67 §2§y and eigenvalues are

A? x103 =(——2.91,1.23,1.69)). The eigenvalues contribution from the second order

tCI’ITlS A, are almost zero initially as can be seen from the ratio ofthe second invariants
b

in Figure 6.14b. However, both become significant during the final development time

(t>15) as g approaches its asymptotic values (see in Figure 6.14), with the ratio

HA] /(IIA1 +IIA2)being about 0.539. This value is also evident in earlier Figure 6.6

which showed the asymptotic states for several rotation rates. The values for Q/F = O on

Figure 6.6 are the final states of f >15 in Figure 6.14.

6.8 Conclusions

The transport equations for k and a , along with the URAPS—closure predict self-

similar states for homogeneous shear. The range of rotations for which asymptotic states

exist is qualitatively consistent with known literature results (Brethouwer 2005).

l. The observed anisotropy for the URAPS-closure shows a transfer of energy from

R to RZZ for increasmg 1n the range
yy

'
—
]
l
|
D
!
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-0.65 = (%)niin < FE < (51;)max = +0.15 , which is similar to the trend in DNS and

LES simulations (see Figure 6.3b). For this range of rotation rates the dynamic

states approach asymptotic values, F —> F3 , 73/8 ——> (77/18)a and _R_ —> Ea. This

occurs because Eq. (6.2) balances in the asymptotic range (AS-). However,

outside the AS- range, the turbulent kinetic energy, the turbulent dissipation, and

the shear component of the NR—stress relax to zero. (i.e., Ryz —>0 ). The ratio

73/8 also decays. So the dynamic equation for F for t—> 00 becomes Eq. (6.5)

resulting in monotonically increasing values of F.

The effect of rotation predicted by the URAPS—closure agrees with the DNS and

LES results (see Figure 6.3b), with the energy shift from the R22 to Ry},

component as (N F changes from + 0.1.5 to -0.65. The distribution of energy in

the case of 52/ F = —0.5 , which corresponds to the zero absolute mean vorticity,

with Ry), > R is consistent with the knowledge of NR-stress distribution in
22’

spanwise rotating channel in similar region (see Table 1.4). Distinctly larger with

maximum values of l/Fa E 0.33 , (73/8)8 2 1.64, and —R§Z E 0.27 for

Q/F=—0.25 occur in the AS-region, which is also consistent with literature

(Brethouwer 2005). The URAPS- closure accounts for the effect of rotation on the

R component which is important for the finite range of asymptotic states
yZ

observed.
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The development towards asymptotic states occurs within t~11 for various

initial FO ranging from 0.5 to 15 for the dimensionless shear rate, NR-stress and

the “production” to dissipation ratio. For the case of F0 = 1 and (If F = 0 , during

the initial time of development towards AS—states, __A__] contributions to the NR-

stress are large compared to 92' However, both the contributions are almost

equal towards the asymptotic solution. In the asymptotic range, for

—0.45 < (2/ F < 0.05 , g, is important compared to g].
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CHAPTER 7

FULLY-DEVELOPED CHANNEL FLOWS

7.1 Introduction

The RANS-equation and important flow characteristics for non-rotating and

spanwise rotating channel flow for a constant streamwise pressure gradient have been

discussed in Chapter 2. Low-order statistics (<u>+,k+,a+,F;Z) from DNS results

available in literature have also been discussed in Chapter 2 for 5+ = 300 and 2000 (see

Figures 2.5, 2.6 and 2.7) for non-rotating channel and also for 5+ =300 with rotation

number (2+ = —0.0042 (see Figures 2.9 to 2.14). The mean statistics are not symmetric

about the center of the channel in the case of rotating channel. These results in the core

region of the channel have been tabulated in Appendix I (Tables 1.1 to 1.3). Apart from

these, the linear velocity region results for various rotations have also been presented in

Appendix I (Table 1.4) and discussed in Section 7.6. The DNS results for the NR-stress

are compared with the NR-stress predicted by the URAPS-theory. In this chapter, the

URAPS-closure predictions for NR-stress in a fully developed channel flow with and

without rotation are presented. DNS results are used to test the closure performance.

Influence of rotation on the NR-stress is also compared with the DNS results in the zero

absolute mean vorticity region and in the core region of a spanwise rotating channel. The

closure prestress and its components are studied to understand. their contributions to the

NR-stress predictions. Figure 7.1 presents a schematic of fully-developed channel flow

with 2 as the streamwise direction and y as the crossflow direction ( <gz> (y) ). The

174



0
2
1
%

II

N

wall B, (LP)

mean velocity V

‘ profile for

25 (2,, < 0
   

wall A (HP)

Figure 7.1 Schematic of Fully Developed Channel Flow with Spanwise Rotation.
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rotation vector is aligned along the vorticity direction (Q = Q Xe x ). The cross length of

the channel is from y/5 = 0 to y/6 = 2 where 5 is the half-width ofthe channel.

7.2 Preclosure Operator and URAPS-Closure

The preclosure operator for URAPS for non-rotating simple shear has been

presented in Appendix G, Eq. (G.7). Eqs. (G.12)-(G.20) are the URAPS-closure NR-

stress component equations. For simple shear flow without rotation, the simplified

URAPS equations have been presented in Case 2 (i.e. NF i 0 & N9 = 0 ). The equations

show that there is a mechanism to transfer energy from one component to the other

through the prestress components depending on the shear group NF- Case 4 represents

the case when NF = —NQ (i.e. F; = —2Q: ). It is interesting to note that the preclosure

operator for Case 2 (i.e. non rotation simple shear) and Case 4 (i.e. linear velocity profile

region of rotating channel) are the transpose of each other (compare Eqs. (G22) and

(G44) ). The resulting URAPS component equations for NR-stress are also the similar

except for a change in the yy and 22 component equations (see Eqs.(G.24)-(G.27) and

Eqs.(G.46)-(G.49) in Appendix G).

7.3 Locus of States Predicted by URAPS-Closure for Simple Shear Flows

Solution to the URAPS-equation for the NR-stress can be obtained by successive

substitution, as described in Chapter 4. Locus of states predicted by URAPS-closure

equations for a range of F and (2 are presented below. The study can be simplified by

fixing the ratio 52/ F and varying F. Figure 7.2a shows the locus of URAPS-closure
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Figure 7.2a Locus of URAPS-Closure States Parameterized by F for O/ F =0 and
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theory for non-rotation case (i.e. O/F = 0) and for the case O/F = —0.5 . As discussed

earlier, since the preclosure Operator 2 for the above cases is the transpose of one other,

URAPS-equations predict same anisotropic states, except for a flip in energy states R yy

and R22 for the two cases. The energy simplex reflects the above feature with states in

the 2nd sextet and 5th sextet respectively for the two cases. Figure 7.2b complements

Figure 7.2a showing the component distribution with variation in F. Components of R

with a variation in the dimensionless shear —00 < F(= Fyzk / a) < +00 , show that for F = 0 ,

there is equi-distribution of energy with no shear component to the NR-stress. But as

Fl—me, the ener—T is transferred from the R. and R com onents to the R
| by xx P 22

Y)’

~

components. For negative values of F, there is a positive RyZ and for positive F

negative RyZ occurs with peak value of about ‘RYZ.=0.19 occurring at IF‘ES.

Typically the normal components are close to the two component energy state RZZ = 0.8

and Ryy = 0.2 for IF‘ESO. However, the shear component relaxes to zero

asymptotically for 1F1>> 50. In the case of O/ F =—0.5, the energy distribution

approaches the two component state where RZZ = 0.2 and Ryy = 0.8, for IF 1250.

However, the anisotropic states for both the cases are the same because of the values

being the same.

Locus of states for 52/ F > 0 and O/F < —-0.5 are presented in Figures 7.3a and

7.3b. For 52/ F >0, the energy distribution shifts from the 2nd and 3rd sextet and

approaches the single component state R xx =1 with increasing values of IF I. As noted
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earlier, if F>0, then Ryz <0 and vice versa. However, the magnitude of the shear

component is the same. So as shown in the Figure 7.33, for both positive and negative

values of F , the locus of states remain the same in the energy simplex. For O/F < —0.5 ,

the energy shifts from the 5lh sextet to the 4'h sextet approaching Rxx = 1 for large values

of IFI. The anisotropic states for each value of O/F>0, remains the same as for

—0.5—O/F. For example, the anisotropic states are the same for O/F=0.05 and

O/F =—O.55 (see states Figure 7.3b). This is because although there is a shift in the

energy distribution, the eigenvalues are the same. It can be seen that the states can be

either prolate like distribution (lllb >0) or towards oblate like states (IIIb <0)

depending on the magnitude of I F I. Each ofthe constant O/ F lines start at the isotropic

state for I FI = 0 and pass through the oblate state, which typically is associated with F

corresponding to the RXX =RZZ and RXX =R),y in energy plane for Q/F>0 and

O/ F < —0.5 , respectively. This is because of the shear component being small compared

to the normal components. Unlike other eddy viscosity based linear and bilinear closure

models (see Chapter 2), the URAPS-closure states occupy both IIIb > O and Illb <0

states depending on the rotation rate and magnitude of the shear rate, which is expected

from the previous knowledge of DNS results for rotating simple shear flows.

For —0.5 < O/F < 0, the locus of states are restricted to Rxx <1/3 in the energy

simplex (see Figure 7.4). The locus of states starting at the equi-distribution of energy

approach Rxx = 0 for increasing values of I F I from 0 to 20 as shown in the Figure 7.4.

For Q/F=—0.25, Ryy=RZZ. All the states for O/F>—0.25 are in the region
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Ryy < R22. For (~2/F < —0.25 , the states are in RZZ < Ryy ofthe energy plane. However,

interestingly, for all (~2/F in this range, the anisotropic states follow a single curve in the

Lumley’s diagram. Each 52/ F is characterized by different I F I for any given state along

this curve.

7.4 NR-Stress in the Outer Region with (2 = 0 : Results and Discussion

The URAPS-equation needs the group Nl—(E IRFyz = CleRF) to give the NR-

stress distribution for non rotating simple shear. This can be calculated from the

FDNS(= Fyzk /€)DNS group from the DNS simulations as a preliminary analysis without

solving the boundary value problem. FDNS calculated from the DNS statistics has been

presented in Chapter 2 (see Figure 2.7 and Table 2.1 discussed in Chapter 2). From this

the ER and NF for URAPS theory are calculated.

Figure 7.5 presents the URAPS closure predictions for components of R with a

variation in the dimensionless shear 0 < F < +00. DNS results corresponding to each F

are also shown for comparison. For F = 0, there is equi-distribution of energy with no

shear component to the NR-stress, while DNS results show weak anisotropy (with

R22 > Ryy = Rxx ). The qualitative shift of energy to RZZ component for F > 0 , which is

seen in the DNS results, is also observed in the URAPS-closure results. For 5+ = 300 and

2000, there is a sudden change in the energy distribution occurring at F 53 and 4

respectively. In this region, DNS results show different NR-stress variations for the same

values of F. Although URAPS- closure predicts unique values of NR-stress distribution
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for each F , the values in this region agree closely with DNS results. URAPS-closure for

1‘ = 4 predicts Rxx = 0.25, Ryy = 0.20, R22 2 0.55 and 12,, = —0.187. DNS results

show Rxx =0.25, Ry), =0.18, RZZ = 0.57 and R22 =—0.l3 for 5+ = 2000. The

minimum value ofthe shear component Ryz in the DNS results is of the order of -0.15

for 5+ = 300 while the URAPS closure has minimum of about -0.19. There is a

significant qualitative agreement with the DNS results for the NR-stresses. Typically the

normal components are close to the two component energy state RZZ = 0.8 and Ryy =

0.2 for F E 50. (RszDNS relaxes to zero for F < 50, while for the URAPS-closure, the

shear component relaxes to zero asymptotically for F > 100.

The shear group Nr(= CRfiRF) , which appears in the URAPS-closure equation,

determines the NR-stress variation. So the variation of the group along with the %R is

presented in Figure 7.6 with respect to the wall coordinates. For y/S, where F=0,

FR =1 . Away from the center ofthe channel (i.e., O < y/S < l), the dimensionless time is

influenced by the increasing shear rate. For F > O the mean field time scale affects the

timescale associated with turbulent transport. These effects are maximum when F 218

(see Figure 2.7, Chapter 2) which occurs at y+ ~10 for y/5 < 0.05 (Note that ‘ER has

not been calibrated to include the Ret dependence and so the near wall effects are not

discussed). Nl— typically reflects the F variation with increasing values from y/ 8 = 0 to

y/5 = 0.05 . The URAPS-closure predictions ofthe NR-stress, calculated from the group

fDNS (for 5+ E300 ), are presented in Figure 7.7. The redistribution of energy with
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RZZ > Rxx > Ryy is predicted by the URAPS-closure. At the center of the channel for

FDNS = 0, there is no anisotropy predicted unlike the DNS results, but the states in the

core region of the channel remain in close agreement with the DNS results. The symbols

correspond to the specific points presented in Table l.1c (Appendix 1.). RyZ component

is slightly higher for the URAPS compared to the DNS results (See Table I.1c for the

values). The statistics of the URAPS closure for Reynolds stress components for

5+ 5 2000 are also presented in Figure 7.8. The overall predictions in the core region of

the channel flow are in qualitatively agreement with the DNS results. The IRsz predicted

by URAPS closure has a maximum of 0.19 while the DNS data has 0.15 for this case.

The near wall region needs further modeling.

7.5 NR-Stress in the Outer Region withf2 ¢ 0: Results and Discussion

DNS results by Wu and Kasagi, 2004 for spanwise rotating channel is presented

in Table 1.3. in Appendix I. for Re+ E 300, (2+ 2 —0.0042 and the dimensionless time

~

scales associated with the shear and rotation numbers, F and (2, are discussed in

Chapter 2. The shear and rotation groups NF = CRfiRF and Na = 2CR1iR§~2 give the

relative degree of each of the effects (i.e shear and rotation) in the URAPS-equations. As

shown in Figure 7.9, NF values vary between 0.02 and -0.04 in the core region of the

channel while NQ values reach to a maximum of about -0.012. So the effect of rotation

may be small. %R as seen on the Figure 7.9 has a smaller value at y/ 5 = 1.5 compared to

y/5 = 0.5. Since both F and (2 are negative at y/8 21.5, the value of NF is larger and
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the value of IR is smaller compared to the corresponding values at y/ 5 = 0.5 . URAPS-

closure can essentially be computed from the knowledge of the two groups FDNS and

QDNS- The URAPS-closure states can be computed by successive substitution. The

converged solution predicts a distribution of turbulent kinetic energy among the normal

components. The predictions of Ryy , R22 and Ryz are shown in Figures 7.10, 7.11 and

7.12 respectively. The results for each of the components in the LP-side of the channel

(i.e. l< y/8 < 2) are in close agreement with the DNS results. This is the region where

both F and 52 are negative. Qualitative agreement is also observed for the normal

components in HP side of the channel (i.e. 0.1 < y/B <1). At y/8 2 0.75 , it can be seen

that Ry), > RZZ unlike the case of channel without rotation. However deviation from the

DNS predictions seem to occur at y/8 = 0.1 (y+ ~ 30), possibly due to influence of wall

(viscous effects).

7.6 NR-Stress for Zero Absolute Mean Intrinsic Vorticity: Results and Discussion

Data presented by Grundestam et a1. (2008) in the core region of the channel is

compared with the URAPS-closure predictions. Results reported by Grundestam et a1.

(2008) in this region which falls mostly in the 0 < y/ 6 <1 region (HP-side where kinetic

energy peaks) are presented in Table 1.4 of Appendix I. It is interesting to note that

asymptotic homogeneous shear discussed earlier in Chapter 6 for f2/F=—0.5 also

represents zero absolute mean vorticity region and represents similar features of NR-

stress distribution which will be discussed below.
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The zero absolute mean vorticity has the feature discussed in Case 4 of Appendix

G. The URAPS closure equations for this case also show a similarity with the non-

rotating channel equations as discussed earlier in Figure 7.2. The predictions in this case

shown in Figure 7.13 indicate that energy is concentrated in the R”, component unlike

the R22 component for the non-rotating case. For (2:0 , there is equi-distribution of

energy and this shifts to Ryy component when I§~2I > O. For about IO I ’5 50, the energy

is all in the Ryy and Rxx components. The shear component is negative for negative

values of f2 and vise versa with a maximum value of 0.19 occurring at IO I E 2.5. As

summarized in Figure 7.14, for the case when F = —2§2 , with increasing values of F (or

—2O ), the energy is transferred from R22 to Ryy. DNS results from literature (open

symbols) for rotating channel from different simulations with different rotation rates in

this region show that RW > RZZ. Also note that the previous results for asymptotic

homogenous shear (see Figure 6.3) discussed in Chapter 6, with O/F = -0.5 also show

that Ryy > RZZ. Corresponding predictions by URAPS closure (closed symbols in Figure

7.14) show that the redistribution of energy consistent with the trend observed in DNS

results.

7.7 “Extra” Anisotropy with (2 = 0 : Results and Discussion

Figure 7.15 indicates that as the value of F increases from 0 to 5, the magnitude

of the eigenvalues of the extra anisotropy tensor also increase. From F = 5 to 50, one of

the eigenvalues decreases to zero. This is the region where the NR-stress approaches the
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two component anisotropic state where the shear component eventually decreases to zero.

The first order linear term of the extra anisotropy is important for smaller values of F up

to about 5. For F >5, the second order extra anisotropy has a dominating role in

controlling the NR-stress anisotropy towards the two component anisotropic states.

7.8 Conclusions

The URAPS-closure with the parameters calibrated in Chapter 4 has been used to

predict the NR-stress distribution for simple shear flows using DNS results for the

dimensionless shear time and the dimensionless rotation time. Key features for this flow

 

are as below.

1. For simple shear flows without rotation, the energy distribution predicted by the

URAPS-closure is consistent with the DNS results in the core region of the

channel. The anisotropic states IIIb > 0 starting with the isotropic state for F = 0

and reaching a two component state for F >10 are also consistent with the DNS

results. Near wall results indicate that further evaluation is needed so the NR-

stress near a solid/fluid interface is qualitatively consistent with current

knowledge.

2. As expected, in the ease of rotating simple shear, the states predicted by the

URAPS— closure are within the L-diagram for all rotations. For the range of

—O.5 < O/F < 0, the locus of states are in the region for which Rxx < 1/3 in the

energy simplex and the anisotropic states fall on the curve as for the case of no

rotation with IIIb >0, although the F is different for each specific state. For
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rotation rates O/F < —0.5 and f2/ F > 0, the locus of anisotropic states span the

entire L-diagram with Illb > 0 as well as with IIIb < 0.

URAPS-closure results for rotating channel flows with FDNS and QDNS from

DNS results for Re+ E300, (2+ 2—00042 show a close agreement with the

DNS NR-stress results on the LP—side of the channel where both F and (2 are

negative. Qualitative agreement is also observed on the HP-side of the channel

although the predicted values for the nomial components differ by about 0.1 for

the RV), when compared with DNS results. The shear component in this region

needs improvement by studying the near wall viscous effects and taking into

account for the URAPS-closure through the turbulent relaxation time.

Zero absolute mean vorticity region ofthe channel which is towards the HP-side

of the channel, for various rotation rates show a consistent trend that Ryy > RZZ

as indicated through DNS results for {2+ ranging from -0.004 to -0.3 (Table 1.4,

Appendix I). This is also observed in the asymptotic region of rotating

homogeneous shear (see Figure 6.3b). URAPS-closure correctly predicts this

feature (see Figure 7.14).

First order and second order extra-anisotropy terms are important for the

convergence of URAPS-closure states. The first order anisotropy contribution is

more important for smaller values of F < 5 while second order terms are more

important for larger values, for the case of non-rotating simple shear flows (see

Figure 7.15).
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CHAPTER 8

CONCLUSIONS

A universal realizable anisotropic prestress (URAPS-) closure for the normalized

Reynolds (NR-) stress has been formulated for the first time as part of this research. This

result has much potential as a practical and dependable closure model for the Reynolds

averaged Navier-Stokes (RANS-) equation. PI‘OC‘IlCCI/ll)‘ stems from the algebraic nature

of the URAPS-equation. The new closure is formulated as a non-negative algebraic

mapping of the NR-stress into itself. Consequently, the method of successive substitution

yields a local solution to the URAPS-equation that is realizable. A calibrated URAPS-

closure is dependable inasmuch as all solutions are non-negative operators. This feature

holds for all turbulent flows in inertial and non-inertial frames of reference.

Unlike other commonly encountered algebraic models for the NR-stress,

realizability for the URAPS-closure does not depend on the selection of benchmark flows

used to determine phenomenological coefficients in the closure. Once the model has been

benchmarked against a class of turbulent flows, it yields a realizable NR-stress for all

other flows. Thus, the assurance of realizability (dependability feature) together with the

simplicity of constructing solutions to a non-linear equation by using a successive

substitution algorithm (practicality feature) strongly support the use of the URAPS-

closure as a turbulence model for the RANS-equation.
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Synopsis oft/2e URAPS—Closure

The URAPS-closure depends on two fundamentally important physical ideas: 1)

all. turbulent space-time correlations have finite memories; and, 2) the nomialized

prestress operator is phenomenologically dctemiined by the normalized Reynolds stress.

As demonstrated in Chapter 3, the first idea supports the use of a smoothing

approximation to obtain a local algebraic preclosure mapping between the NR-stress and

the normalized prestress:

T 0

1
1
>

10
;:

1
5
>

”3
’

5: , <E>=V<u>+2§=2. (8.1) 

T 0

tr(

I
l
>

1
1
w

1n the above equation, the NR-stress R and the normalized prestress I} are defined as

follows:

. E'EV-[p—+u'2'-<Q'y.'>1- (8.2)
tr(<£'£'>) p

g <B'E'> <£|£I>

II
I

II
C
D

11
1

  

tr(<2'u'>)

It is noteworthy that the NR—stress and the normalized prestress are symmetric,

normalized, and non-negative operators. Eq.(8.1) is clearly a non-negative mapping of

2 into :5.

The second idea noted above provides an additional equation that completes the

formal URAPS-closure:

g=g<§>=§+c1(5—%11+C2(53—11115). (8.3)

The coefficients in Eq.(8.3) may be functions of the invariants of the NR-stress and,

without loss of generality, can be expressed as (see Chapter 3 for a rationale)

cla+pz7det(g) , Czs—OLUIR —%). (8.4)
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A major finding in Chapter 3 is the discovery that Eq.(8.3) is also a non-negative

mapping of _R_ into 2 provided the dimensionless coefficients a and B in Eq.(8.4) satisfy

the following universal inequalities:

—3/2<a<9 and —1<B<01/27+4/5. (8.5)

Specific functional forms for 01(IIR,IIIR) and [3(IIR,IIIR) can be determined by

appropriate benchmark flows. However, they must satisfy the upper and lower universal

bounds to insure that all solutions to the URAPS-closure are non-negative operators.

About fifty-eight years ago, Rotta (see p. 422 in Pope, 2000) used a self-

consistent approximation wherein the pressure/strain rate correlation was assumed to

depend on the anisotropic component of the Reynolds stress. Rotta’s conjecture provided

an algebraic closure for a correlation that appears in the second-order moment equation

for the NR-stress (see the redistribution temi in Eq.(A.1 1). The research developed herein

uses a similar strategy for the nomialized prestress. Thus, Eq.(8.3) completes the closure

for the preclosure equation given by Eq.(8.l) above. The URAPS-closure generalizes

previous work of Parks (1997) and of Weispfennig (1997) by assuming that the prestress

is phenomenologically connected to the NR-stress and that the preclosure operator 2 ,

defined by Eq.(8.1) above, provides an appropriate coupling between the NR-stress and

the normalized prestress for all rigid body frames of reference.

As noted in Chapter 2, other phenomenological algebraic closures for the NR-

stress incorrectly relate the NR-stress to objective operators, such as the mean strain rate

and the intrinsic vorticity operator. This approach misrepresents the underlying physics of

the simplest turbulent flows and should be avoided. Therefore, extensions of the prestress

closure hypothesis employed in this dissertation should not be based on representation
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theorems based on objective operators, as proposed earlier by Parks (1997) and, by

Weispfennig (1997). However, an appropriate extension of the URAPS-closure could be

made based on the URIPS-closure (see Eq.(2.47)) developed previously by Parks et al.

(1998). For example,

1
1
3
> -
1

1
1
3
>

B=§<ILB°> , 302—. (8.6)
— —‘— _ tr(

1
1
3
> -
1

11
11
>

This hypothesis is not developed in the research reported herein.

URAPS-Closure Calibration

The URAPS-closure for the NR-stress requires an estimate of five

phenomenological statistical properties: a turbulent transport time TR; the “extra”

anisotropic prestress coefficients a and B; and, the dissipation and production

coefficients, CD and Cp , in the transport equation for the turbulent dissipation. Table

4.3 gives a summary of the calibration results.

In this research, a scalar-valued turbulent transport timch was defined in terms

of the space-time structure of the local turbulent state (see Eq. (3.5)). The theoretical

development suggests that TR depends on three distinct time scales associated with the

local turbulent state: a viscous time scale, v/k ; a turbulent time scale, k/e ; and, a mean

field time scale, 1/II<:>II. An analysis of the energy spectrum for rotating and non-

rotating homogeneous decay shows that IRS/k depends on the dimensionless group

NF _=_ (k/a) 1::ng (see Section 4.3; Appendix F; and, Koppula et al., 2009). The three

coefficients CR2 , CR3 , and the exponent ‘n’ in Eq.(4.3) were determined by recovering
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the results of Park and Chung (1998) for rotating homogeneous decay. The dissipation

coefficient CD /CR1 was estimated by using experimental and DNS results related to

non-rotating homogeneous decay.

The “extra” anisotropy coefficients 0L and B, the coefficient CR1, and the

production coefficient Cp are calibrated based on self-similar states in non-rotating

homogeneous shear. Optimal values of the coefficients are chosen so that the NR-stress

components for self-similar states are recovered with minimum deviation from the

experimental data used. The optimized choice of Cl=+0.l and B=—0.01 from the

realizable domain ensures that the predicted normalized Reynolds stress is non-negative

for all flows.

Solution Strategl’for the URAPS~equations Successive Substitution

The mathematical significance of the URAPS-closure for the NR-strcss is that a

solution can be obtained by successive substitution. If the hydrodynamic/kinematic

Operator TR <F> is known locally, then a solution to the URAPS-closure can be

determined by the application of the following algorithm: §n+l:2(§n)' The

algorithm converges within 600 iterations (i.e., (g n+1—_R_n):_ei§j $10“5 §n3§i§jl for

rotational simple shear flows. This result occurs for any initial non-negative operator go.

If this solution method converges for all flows (conjecture), then the URAPS-closure will

provide a practical closure of the RANS-equation in rotating and in non-rotating frames

of reference.
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Homogeneous Decay

For rotating homogeneous decay, the Coriolis acceleration couples with the

fluctuating velocity field and causes a redistribution of turbulent kinetic energy into the

fluctuating velocity component co-linear with the angular velocity of the frame. The

URAPS-closure predicts this redistribution of energy from an initial isotropic state. The

resulting quadratic form associated with the NR-stress is a prolate ellipsoid. The prolate

anisotropic states (0 < RZZ = RZZ < 1/ 3 < Rxx <1) exist for all non-zero rotation

numbers. This phenomenon is consistent with DNS and LES simulations of rotating

homogeneous decay. Thus, there is no return to isotropy in non-inertial frames. For small

rotation rates (i.e., £20 <1 ), the URAPS-closure predicts that energy is shifted slowly to

the RM component with a large transfer time of if > 30. For larger rotation rates (i.e.,

(20 =15), the redistribution of energy occurs for if 51.8. The “extra” anisotropic

operator 2] triggers the reorganization of energy during the initial stage of decay (

f << 4) and the “extra” anisotropic operator 2 2 completes the energy transfer during for

the final stage of the decay (1 >> 4 ).

Unbounded Rotating Homogeneous Shear

For unbounded rotating homogeneous shear, the transport equations for k and 8

together with the URAPS-closure for the NR-stress have self-similar solutions for

—0.65 = (§~2/'F)min < (O/F) < (f2/F)max = +0.15. As the rotation group decreases from

0 to 40, energy is shifted from R22 to Ryy. For oIrz—1I4, 1Ira, (P/e)a, and
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-R?,Z show a maximum compared to other rotation numbers. The URAPS—predictions

are qualitatively consistent with DNS and LES results. Algebraic models that cannot

account for the rotation dependence on the shear component of the NR-stress cannot

predict the finite asymptotic region and the energy redistribution phenomenon.

For rotating homogeneous shear flows, the eigenvalues associated with the

“extra” anisotropy operators g] and g, are several orders of magnitude smaller than the

eigenvalues associated with the anisotropic component of the NR-stress. Nevertheless,

these operators play an important role in attaining the self-similar states. For 52/ F =0

and F0 =1 , the g] -operator is prominent during the early stage of development towards

a self-similar state; however, during the final stage of development, both “extra”

anisotropic operators are important.

Full)t-Developea' Channel Flows with Spelt-wise Rotation

For simple shear flow, there are no energy states in the ISI -Sextet or the 2nd -

Sextet of the energy simplex (see Figure 7.3a) for rotation rates 52/ F <—0.5 and

52/ F > 0. However, the anisotropic states span the entire L-diagram ( IIIb may be either

positive or negative) as indicated by Figure 7.3b. However, for -0.5 < f2/F _<_ 0 , there are

no energy states in the 3rd -Sextet and the 4th -Sextet (see Figure 7.4). The third invariant

of the anisotropic stress is always positive and all anisotropic states, (11b,H1b), fall on

the same curve within the L-diagram (see Figure 7.4). URAPS-closure predictions for

non-rotating and rotating fully-developed channel flows depend on two groups F and (2

that vary across the channel. Both groups are zero at a solid/fluid interface. The shear
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group F is zero where the mean velocity is a maximum. The magnitude of the rotation

group (i.e.,
 

(2| ) is non-zero within the flow domain inasmuch as k/ a > 0.

For non-rotating flows ((2:0), the energy states are all in the 2"d-Sextet and the

second invariant of the anisotropic stress is positive for all states (i.e., IIIb > 0). These

predictions are in good qualitative agreement with DNS results for fully-developed

channel flows (see Figures 7.5, 7.7, and 7.8). The invariants of the “extra” anisotropy

operators A] and g, indicate that g] is more important for F<5, while A, is more

important for larger values of the local shear group (see Figure 7.15).

As indicated by Figure 7.14, the URAPS-closure predictions in the region where

F =—2§2 are in good qualitative agreement with DNS results. Note that the Coriolis

phenomenon has shifted the energy to the transverse component in the region where the

intrinsic vorticity is zero. This is a significant conclusion and strongly supports the use of

the URAPS-closure as a practical and physical closure for the RANS equation.

As indicated. by Figures 7.10, 7.11, and 7.12, the local components of the NR-

stress predicted by the URAPS-closure based on the local values of FDNS and QDNS are

qualitatively consistent with the DNS results. The URAPS-closure predictions on the LP-

side of the channel are in close agreement with the DNS results for Re+ E300 and

(2+ :—: —0.0042. Qualitative agreement is also observed on the HP-side of the channel.

The shear component on the HP-side (see Figure 7.12) needs to be improved by either

modifying TR near the solid/fluid interface and/or by modifying the “extra” anisotropic

prestress coefficients near the solid/fluid interface. In conclusion, the remarkable

qualitative agreement between the URAPS-closure and the DNS results strongly supports
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the conclusion that Eq. (3.32) will provide a low-order closure model for the RANS-

equation.
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CHAPTER 9

RECOMMENDATIONS

The following three problems will complement the research results developed

herein and will support the use of the URAPS-closure as a low-order closure model for

the RANS-equation.

9.1 Turbulent Transport Time for Low Turbulent Reynolds Numbers

The turbulent transport time TR introduced by the preclosure equation (see

Eq.(3.5)) depends on the turbulent Reynolds number Ret =(k/a)/(v/k)and the shear

group N1: 2 (k/e)II < E > II. In this research (see Section 4.3), the URAPS-closure for the

NR-stress was calibrated for unbounded turbulent flows for which

(k/c) >>(v/k) and IR, =CRfiR(00,NF)k/e.

For wall-bounded flows, turbulent transport time will be influenced significantly by the

turbulent Reynolds number. A method for including a Reynolds number dependence in

the preclosure equation was proposed earlier by Weispfennig (1997) for the URIPS-

closure. This approach can also be used for the URAPS-closure.

For fully-developed channel flows, the turbulent Reynolds number Ret is large in

the outer region and small near the walls. Viscous transport of mean momentum

compared with turbulent transport of mean momentum is negligible in the core of the

flow field; however, close to the wall, viscous effects dominate the transport of mean

momentum as can be seen in the total shear stress profiles portrayed by Figures 2.2 and

2.8. The near wall influence of the turbulent Reynolds number can be included in the
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turbulent transport time by developing a functional dependence of FR on Ret. 1n the

near wall region (i.e., 0< y+ <30) major differences between DNS and the URAPS-

closure are observed for the shear stress for both rotating and non-rotating flows (see

Figure 7.7, 7.8 and 7.12). Accurate predictions of the shear component of the NR-strcss

in the near wall region are critical for predicting the mean velocity profile. Hence, the

following analysis based on a previous study by Weispfennig (1997) may provide a

framework to include the influence of the turbulent Reynolds number on the turbulent

transport time: FR = %R(Ret,NF).

Near a solid/fluid interface, continuity and the no-slip boundary condition imply

that (see Monin and Yaglom, 1965; Weispfennig, 1997):

<ux'ux'>=(u*)2[Cxx(y+)2+~-] (9.1)

<uy'uy'>=(u"‘)2 [ny(y+)4+---] (9.2)

1 v _ * 2 + 2

<uZ uZ >—(u) [CZZ(y ) +---] (9-3)

<uy'uz'>:—(u*)2[Cyz(y+)3+-“]
(9-4)

k+ =Ck (y+)2+--- (9.5)

8+ =8:,+C8y++“'
(9.6)

DNS results for rotating and non-rotating channel flows are consistent with Eqs.(9.l)-

(9.6). Eqs. (9.4) and (9.5) imply that

—Ryz=Cyz y+ +-~. (9.7)
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Figure 9.1 shows the variation of —Ryz with Nr(= TRFW) for the URAPS-closure. For

NF >>1 , it can be seen that —R 0C l/Nr. Thus, Eq. (9.7) implies that
yz

Nroc l/y+ as y+—>0. (9.8)

An empirical expression for FR (Ret,NF) consistent with this behavior of NF is

- k
NFETRryZZCRITR(RCt,NF);ryz where

3/2 (9.9

.. —3/4 (1+CR3NF ) )
TR(Ret9NF):(1+C\VRCt ) 3/2

(l-l-CRzNF‘h)

 

Near wall statistical data can be used to determine the dependence of the wall function

Cw on Ret and NF subject to the following two conditions:

CW (0,0) = CQV < 00

Cw(oo,NF)=0 '

C“I(RCt,NF)—>{ (9.10)

9.2 “Extra” Anisotropy Coefficients

Although the components of the NR-stress predicted by the high Reynolds

number URAPS—closure are qualitatively consistent with DNS, an improved quantitative

agreement is nevertheless needed in the near wall region where the anisotropy associated

with the NR-stress is large. The “extra” anisotropic coefficients or and B in the URAPS-

theory (see Section 3.3) were calibrated in this research based on experimental data

associated with asymptotic homogeneous shear (see Section 4.4), which is a relatively

weak anisotropic state by comparison with the near-wall region. The near wall URAPS-

results portrayed in Figure 7.12 were calculated based on the assumption that or and [3

are universal constants. This assumption is probably not correct and needs to be
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Figure 9.1 URAPS-Closure Predictions of —Ryz for Non-Rotating Simple Shear.
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examined carefully. An approach forward based on the theoretical finding portrayed by

Figure 3.6 is proposed below.

For simple shear flows in an inertial frame of reference, the maximum value of

—RyZ predicted by the URAPS-closure is about +0.19 for F s 5 . This is the maximum

value for all 5+ . This is too large. DNS results show that max(—Ryz) = +0.15 for F E 3

and 5+ =300. For 5* 22000, DNS results show that max(—Ryz)=+0.13 for r24.

The URAPS-prediction of this statistical property can be improved by further exploring

the assumption that the “extra” anisotropy coefficients or and [3 depend on the local

invariants of the NR-stress: Q(IIRJIIR) andB(lIR,IllR). The only theoretical

restriction on these coefficients is the universal bounds portrayed by Figure 3.6. This type

of point re-calibration could also improve the near wall predictions of the URAPS-

closure inasmuch as the invariants [IR and 111R change significantly across a wall-

bounded flow field. Figure 9.2 shows the URAPS-prediction for the energy distribution

and the anisotropic states for fully—developed channel flows with spanwise rotation based

on the assumption that 0t and B are constants. A comparison of Figure 9.2 with Figures

2.10 and 2.11 provides ample motivation for dropping the assumption that the “extra”

anisotropic coefficientsor andB are universal constants. The proposed re-calibration

under the constraint expressed by Figure 3.6 should improve the quantitative agreement

between the DNS results and the URAPS-closure predictions.
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9.3 Explicit URAPS-Closure

The URAPS-closure, defined by Eq.(3.32), is an implicit equation for the NR-

stress. As demonstrated in this research, Eq.(3.32) can easily be solved by using a method

of successive substitution. This result occurs in part because the URAPS-closure is a

mapping of the NR—stress into itself for all turbulent flows (i.e., all TR <F>). The

convergence of the successive substitution algorithm depends on the choice of the initial

operator in the space of non-negative operators. For simple shear flows with spanwise

rotation, this research demonstrated that any initial non-negative operator will converge

to a unique NR-stress by applying a successive substitution algorithm to Eq.(3.32). This

global contraction property is highly desirable and would support the need for rapid

solution methods in CFD applications. However, for more complex flows, the choice of

the initial condition for the successive substitution algorithm to converge may be

restricted to a “neighborhood” of the NR-stress operator that satisfies Eq.(3.32). For

example, this will surely occur for statistically stationary flows with multiple solutions.

This issue can be addressed by formulating an explicit URAPS-closure wherein the non-

negative prestress Operator is directly related to the hydrodynamic/kinematic operator

TR <: > by a non-linear algebraic equation. Previous research by Parks (1997) and

Weispfennig (1997) used the assumption that the normalized prestress could be

approximated as an isotropic operator, but this approach could not explain the energy

distribution for non-rotating, fully-developed channel flows. A proposed alternative to the

Parks—Weispfennig conjecture is to use the URIPS-stress as an appropriate

hydrodynamic/kinematic operator. This idea is briefly discussed below.
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An example of an explicit representation for the NR-stress follows by combining

the preclosure equation (see Eq.(2.44) and Eq.(3.9)) with the following hypothesis:

(9.11)

) tr( 0’n
o

”
"
2

E=§(BIPS) , Bursa

— _ _ tr(

5: Q

A“: :1

The application Of the non-negative Cayley-Hamilton mapping theorem developed in this

research yields the following representation for the prestress (cf., Eq.(3.19)),

l

RURIPS -OL(IIR1Ps»IHRlPs )lIIRlPs ——ll§wS 'EIPS — H 1PS§IPS ]

3 R (9 12)

2:

1 l

+13(111{11’S»IHRII’S)27C191151PSHR”)S —31]

The calibration of the two “extra” anisotropic prestress coefficients with appropriate

benchmark flows is subject to the following universal bounds (see Figure 3.6):

3

—E < Q(IIRIPS , IIIRlPS ) < +9

. (9.13)

—l<B(II 111 )<—l-(1(ll III )+i
RIPS ’ RIPS 27 RIPS 1 RIPS 9

The proposed explicit URAPS-closure is defined by

AT.,B(R1PS).A

= = = = (9.14) 

1
1
7
°

tr(éT.2(§lPS 1:).

The above EURAPS-closure does not require a numerical search for a solution. Once

IR <1:j > has been specified locally, then Eq.(9.14) yields a prediction of the local NR-

SITCSS.
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APPENDIX A

UNCLOSED EQUATION FOR THE REYNOLDS STRESS

The equation for fluctuating velocity can be derived by subtracting the ensemble

average equation from the instantaneous equation. A transport equation for the Reynolds

stress can be developed by multiplying with the fluctuating velocity and ensemble

averaging it. An unclosed equation for the Reynolds stress in a rotating frame Of

reference is presented in this appendix. The governing equation for fluid flow in a non-

inertial frame of reference is as follows:

 
é=+tl-£=—V(—— . i ' )+vV7 u+g (A.l)

V-g=0 (A.2)

  

T,9
x- Q-Q ~X

(<9>+<u>.<F>=—V(<p>- “ (= = )‘ )+g+vV2<u>-V'<E'E'> (A3)
at = P 2 —

V-<g>=0

(A4)

The equation for fluctuating velocity can be Obtained by subtracting Eq.(a.3) from Eq.

(A.1) as shown in Eq. (A.5)

Qg+<u>.Vu'—VV2u'——u"<F>—V'(—p—I+U'U'_<U'u'>)

at - — — — = p= —— " (A5)

1 11 111 IV V VI VII

where < E > = V < u > + 2 g. Upon pre-multiplication and post multiplication of the

above equation with g ' the resulting equations are
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91:! + <2 >-Vu'-vV22'] =u'l—u'-<E > -V-(3I+2'u'-<g'y_'>)] (A6)_ p _
I

 

[(221 +<u > -Vp_'-vV29'12'=[—9'-<E> -V-(£I+e'u'-<u'g'>)111' (A7)
0 — p '

 

Adding the above two equations, the equation for fluctuating momentum can be Obtained.

 

au' au' ,,

I: u'———+ — u' = —— u'u'

L 6t 8t_) 6t(—_)

11: u'(<2>-Vu')+(<u>-Vu')u' = <u>~V(u'u')

I 2 ' 2 I I 2 I I I T I

111: -VI9 (V 9 )+(V 2111.1 = —vV (u u)+ZV[(Vu) We )1

1V: 2'(—2'-<§>)-(u'-<§>)2' = -u'2'-<'__E>-<§>T-g'a'

. .
(A.8)

V: -u'V-(-p—l)-(V-(p—I))_L1' =
P‘ P-

l I I I I p. I I T

-—V-[(u p )I+I(9 p )1+—[Vu+(Vy_) ]

P ’ 7 P

V1: ~u'V-(9'u')-(V-(u'u'))2' = -V'u'_u'g'

V11: g'V-<u'u'>+(V-<u'u'>)g'=V-(g'<g'u'>)

The resultant equation is the transport equation for instantaneous Reynolds stress

a ' I I I I 2 I I

,—t(u a )+<a>-V(u a )-vV (u u) =
C

I II Illa

-ZV[(V2')T-(Vu')l —[(u'1_1')-<_.E>+<§>T ~(2'u')l

IIIb IV

1 I I I I p. I I T

--V'[(2 P )I+l(u P)l+—1VE+(VE ) 1 (A9)

P ' " P

Va Vb

221

 



Ensemble averaging Eq. (A.9) results in Eq. (A.10) below. Note that

VII: <V-(g'<g'g'>)>=Ve(<g'><g'_u'>)=0.

’7

<g'g'>+<g>-V<g'g'>—VV“<g'g'> —
Q
J
I
Q
)

1 11 III
a

—<g'g'>~<F_>—<F>T-<u'g'>

IV

1 ' (A.10)

——V-(<u'p'>l+l<u'p'>)+<p—[Vu'+(Vy_')T]>

P _ ' P

Va Vb

-V- <e'2'9'> -2V[(Vu')T -('Vg')>l

V1 lllb

Eq. (A.10) can be further re-arranged showing the physical significance of each term as

8

T<g’g'>+<g>-V<g'_u_'>=

ct

+[vV2 <g'g'>—(V<u'p—>)T—(V<P—u_'>)—V-<g'g'u_'>]

"mixing"

(A.11)

+[—<u'g'>-<:>-<:>T -<u'u'>]

"production"

+2 [<E§'>1 —2lv<<Ve')T-(Ve'1>1p .. - .
 

W—J dissipation

redrstrrbutlon

Eq. (All) has been discussed in the context of algebraic closures derived from the

Reynolds stress transport equation (based on a weak equilibrium hypothesis, see Eq.

(2.38)) and also in deriving the equation for turbulent kinetic energy.
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APPENDIX B

UNCLOSED EQUATION FOR KINETIC ENERGY

The exact equation for turbulent kinetic energy (k = < g'-g' > /2 ) can be Obtained by

taking the trace ofthe exact transport equation for Reynolds stress (A.l l). The resulting

transport equation in a rotating frame Of reference is presented in this appendix. The

individual terms aficr taking the trace Oqu. (A.10) are as below.

I: i<u'-_u'>)=2££

5t _ at

11: <g>:V<g'g'>=2<_u>:Vk

’7 ’7

Illa: —vV‘<u'-u'>=—2vV“k

IIIb: —2v[(Vg')T:(Vg')>];28

IV: —<_u'g'>:<:>—<:>T:<g'g'> =

—<u'u'>:(V<u>+22)—((V<u>)T—Zg)).<g'
g'>

=—<g'g'>:(V<t_l>)—(V<g>)T):<_'g'>

=—2<E'E'>3<§>

(Note:<_u'u_'>:2g=2gz<g'u'>=0)

. l , I I I I l I I I I

Va. (—SV.(<gp>l+1<gp>))=—2EV-(<_up>+<gp>)

VI: —V:<u'_u'g'>=—V~<g'k>

vb: tr[<%(Vg’+(Vu_')T)>]=<%(V~u'+(V-g')T)>=O

Dividing by 1/2, the transport equation for turbulent kinetic energy is thus,
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fl(-+<E>th—VV2I( -

 

q _ —v<(Vu_'):(Vg')T> —<g'g'>:<§>

C t (dissipation rate) (production due to mean strain)

1 II IIIa lllb IV (B 1)

—lv.<g'p'>—v.<g'(9'9 )>

p 2

V VI

- (u'-u'

Eq. (8.1) 1S exact and unclosed. A model for  <u_' —2_)> is needed. This can be

simplified as defining ¢=£E—.E—)- (can be considered as fluctuating part of kinetic

energy).

,(u'ou')E _ _
=<g'k>+<g'¢>=<g'>k+<u'¢>=<g'¢> (B.2)

SO closure for <g’¢> is needed. Equation for (I) can be written by subtracting the

equation for k =< g'tg' > /2 from (g'-g')/2 . Taking the trace oqu. (8.4),

 Emu.)+<2>~Vw—sz(—E:E—')=-(B'E'li<S>—1V'[(E'P')l
at 2 2 2 = P

(B.3)

_ngu)
-V[(V9'):(Vu')T] +V-(e'k)

Substracting Eq. (8.6) from Eq. (B8),

1

z

)

@
-

 

)

+<E>'V¢_VV2 ¢=—(E'E'—<Q'fl'>)3<s>——1‘V'(E'P')'—V
'(fl'(g.9)

xt = p

2 )

(B.4)

—v<(Vu'):(Vu')T >+ g'-Vk

Now, re-arrangine Eq. (8.9), with the explicit Laplace term,
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£0» = 2'-Vk 41;

z—Ba—t+<g>-V—VV2 (8.5)

fl = (u'u'- <u'u' >)r<§> +lV-(u'p')'-V-(u'-(E—"2‘li—'))'+v <(Vu'):(Va')T >

‘ 9

Now applying the Green’s function analysis and smoothing approximation as discussed

in Chapter 3 (also see Weispfenning, 1997),

k'(x,t)=- 1911197 G(x.t;3,i)[u"Vk 4113.?)

— ‘ T

(8.6)

t

<u'k'>=— Idtmdv sanding-w 4;, 1(33)

—'r.1 1

Applying smoothing approximation and introducing a time scale,

<g'k'> =—rR<g’g'>-Vk—IR<u_'fk'> (B.7)

Similarly,

<g'fk'> =—tR<g'fk'>-<:>—rR<f'fk'> (B.8)

Rearranging, Eqs. (8.7) and (B8),

<g’k'> =—'CR<u'u'>-Vk—TR2<£'fk'>-é (13.9)

<g'k'> z—TR<E'E'>-Vk. (8.10)

The unclosed exact equation presented in Eq. (8.1) together with Eq. (8.10) are used in

describing the transport of turbulent kinetic energy in a rotating frame of reference (see

Eqs. (1 .9) and (1.10)).
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APPENDIX C

UNCLOSED EQUATION FOR DISSIPATION

Exact turbulent dissipation equation can be derived from the transport equation

for fluctuating velocity (see Eq. (A.5)) (Eq. (A5) is presented again in Eq. (C.l) below

for convenience).

 

(c1)

where < I: > = V < E > + 2 Q. The Roman numerals represent individual terms. The

following Operations are performed in the order, on the above equation to finally derive

the equation for a. 1) gradient Operator is applied 2) scalar multiplication with (Vg' )T

is carried 3) trace operator is applied 4) multiplied by 2v and 5) ensemble average is

 

performed.

T au' 1 a T

l: Vu' :V — =—v—— Vu' :Vu'(_) 6t Zat((_) _)

I 3

2v<lv:((Vg')T:Vg')>=g

2 8t 8t

11: (Vg')T:V(<g>-Vg')=(Vg')T:(V<g>th')+(Vg')T:(<g>'VVg')

=(Vy_')T:(V<11>-Vu')+%<u>-V(VB'I(V9')T)

=<Ve')-<Vg'>T :V <2 > +% < e > -V(Vu'I(V9')T)

Note that (Vg')-(Vg')T :v < u > = (Vg')-(Vu_')T :v < u >
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LZZ

(52+<fi>A)=<AufiiCfiA)>Az—<§>I<(.fiA)-i(.fiA)>Az—=

<(Oz+<fi>A)3(A°.fii(.fiA)—<§>=((.fiA)-l(.fiA))—>AZ

(52+<fi>A)3(A'.fii(.fiA)-<§>:((.fiA)-i(.fiAD—=

<:1>1(A'.fii(.fiA))-<j>:((.T1A)-law)—=3A1<=

l<<fi>A)>3<(,fiA).i(,fiA)>I\—=<fi>A>z<(,fiA).i(,fiA)>A—‘oslv

(0=E§=z1<(.fiAl'iCfiA)>3.)<fi>A1[(.fiA)°i(.fiA)1=

(5z+<H>A):[(.fiA)-l(.fiAH=<5>2[(.fiA)-11'EA)]191119101\1

<a>:(A‘tfil(tfiA))—<j>:[(fim-i(.fiA)]—=

<:l>3(A'.fii(.fiA))-(<j>-.fiA)=i(.fiA)—=

(<31>M11:lam-(<3-.fiA):i(.fiA1—=

[<j>A-,fi+<_.:1>-,fiA]:1(‘fiA)_:

(<j>'.fi)A3i(.I_1A)-=(<§>-.fi—)AIicfiA)1A1

<11'nA)A5l(.nA)>AZAZ+3ZAA-=

_,_<_._z

<i(.nAlA;i(.“A)A/\+(.“A-1(111A))ZA/\T—>’\Z

———_z

((1“AMEitnA)AA+(.11A:it.“ANZAAT—=

((.fiAA)=l(.fiA)'A)A+((.fiAA)3i(.fiA))'A/\-=

(.fizAAlii(.fiA)A-=(.fiZAA—)Aii(.fiA)Illl

3A-<fi>A+<§>:<i(.fiA)-(|IIA)>AZ=

___z=__

<(_L(.nA)3."A)A'<n>T+<S>3i(.nA)'(.nA)>/\Z=11<=



V : (Ve'f :V(—V . <‘ E1)) = 4172'? :th—1
p - p

= —(W(P—> : (WM = —(V - (V(p—) : (VE'1T)
p 9

2V < V-(V(E:) : (Vg')T >= 2vV~ < (V(—p—') : (Vg')T >

p 9

VI —(Vu')T :V(V u'u’) = —(Vu')T IVE-V!)

= -[(Vu')T -(Vl_l')] 1(VE')-(V2')T 3(9“ V(Vu'))

= «WM we» : (Venégtvavw we»

2v < —((Vu')T we» 2 We) -%u'-V((Vg')T =(Vg')) >

= 2v < (VE'IF -(VL1')):(V9') > —v < ewe/9'11 we» >

== 2v < (VE'1T 079)) : §' > —vV' < MW!)T :(Vu'D >

v11: (Vg')T :V(V-<t1'u_'>)=(Vu')T :v <g'-Vu'>

2v <(Vu')T :V <g'-VL_1'>> =2v(V <u'>)T :V<g'-Vu'>

=0

Arranging all the above terms to Obtain the exact equation for the dissipation,
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68

—+<y_>-V8-VV28=

fit

I llb Illa

P' . .T . .T, .
—ZV<(VV(——)-(Vu) >-V<u-V((Vu) .(Vu))>

P

V VIb

- 2V < (VE')T 072') >:< § > ‘2V < (Vu'HVu')T >:< § > (C2)

1va 11,

—2v < (Vu')Tu'-V >:(v < u > + 2 g)—2v < (Vg')T -(Vg')]:§‘ >

IVb VIa

— 2v2V < (Vg')T swvttjf >

lllb

Upon rearranging:

5 8

T+ < E > 'VS :

C I

rate of change of dissipation

relativeto the mean velocity

—v-{ —vvs +2v<V(R)-vg'>+v<g'[(vtt_'):(v_ty)T]>}

p
\——V—_J

viscous flux of dissipation \ v . . +

turbulent flux Of d1ssrpatlon

 

—2v < (Vg')-(Vu')T >:<§> —2v < (ng -(Vu') >:< g > (C3)

  

production due to mean strain rate mixed production due to mean strain rate

—2v(< (Vu')Tg' > -V) : (V< u > +2 g) —2v < (vg)-(vy_')T :g' >
  

gradient production due to the mean field production due to fluctuating strain rate

—2v2 < V(Vg')T svmy)T >

dissipation of dissipation

 

Often the following terms are modeled as: (see Launder and Spalding, 1972; Rodi and

Mansour, 1992)

v < 2(Vu')T ME) > —v< Envy) ; (Vg')T] >} = —TR < u'u' > vs (C4)

9
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—2v <(V_u')-(Vu')T >:<§> —2v < (Vg')T -(Vg') >:<§>

—2v <(Vg')Tg'>3VV<g>—2v <(Vu')-(Vg')T:§'>=Cp —

2V2 < wvg)T §V(Vu')T > = + CD 3’— (C6)

TR

A transport equation resulting from Eqs. (C3) to (GO), which is similar to the transport

equation for turbulent kinetic energy is used for describing the turbulent dissipation (see

Eq.(1.11)).
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APPENDIX D

INTEGRITY OPERATORS

Complete Set of Symmetric, Anisotropic, Objective Operators:n described in

Eq. (2.35) (see Pope 2000) are presented in this appendix.

 

n (gm-UT = $01) symmetric; tr(glm) = 0 anisotropic; QT ,[$(n)]_Q = 2m)

 

 

 

 

 

l 21n=<S>

2 -<§>-<§>—1/3tr(<§>-<§>)I] I

3 —<§>o<)_~‘>—<Z~_>T-<§>)I

 

 

 
 

 

 

 

<_1/1_/>-<_V_V~_>-<S>-<S>+<S>T~<S>T-<Ll/>T-<_V:/>

—2/3tr(<le_>-<fl>-<§>-<§>)l

 

~

10 <V~V>e<§>-<§>.<W>-<V_l/>+<)/l/>T-<W>T-<§_>T~<S>T-<W>T
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APPENDIX E

REALIZABLE SHIH CLOSURE FOR THE NR-STRESS

Shih et al. (1994) developed a realizable bilincar eddy viscosity closure. A linear

version Of this model (Shih et al., 1995) is widely used in commercial codes. This

appendix summarizes the model and also presents the scope or locus of the states for

simple shear flows in rotating and non-rotating cases.

<§>=%[V<u_>+(V<g>)T] (E.l)

<fl>=%[V<y_>—(V<u>)T] (E2)

1 k k2
R=-3~1-CH—<S>+C2—7[—<§>-<W>+<W>-<§>] (E.3)
_ _ e _ a“ _ _ _ _

where the coefficients are as below:

 

\/1—9Cfi(§k)2

 
 

 

 

 

C11: 1 ’ A0265, C2: Sk 8Wk , Cozl, A::\/6cos¢,

A0+AS(U ) C0+6(——*)(— )
a e 8

tr<S>-<S>o<S>

3¢=cos'l(\/6X),X= ( = =/ = ), S: <S>:<S>, W=\/<W>:<W>T,

(8)32 = = = =

T

and U: <§>z<§>+<1>z<=W=> .

In non-inertial frames, the model is modified. fl is replaced by < 2 > defined by

(E.4)/
\

11
$:
V II

1
1
2
+

1:
)

Apart from this, U is modified particularly as U

232



 

 

 

  

 

 

U=J<§>;<§>+(<3_ij>+2g)z(<g>+2g)T (E5)

The K and epsilon equations for this model are:

(£+<g>°V—VV2)1(Z-Yt—Vzk—<g'g'>2<S>—8 (E.6)

(2t Gk =

e. v 8 82

(3+ <g>~V—VV2)8 =—LV28—C81 —<u'u_'>:<S >—C87—— (E.7)

(3t (58 k = “ k

cat =1.44; C32 =1.92; 9k =1; 08 =l.3

Component equations for NR-stress for simple shear flows

1 1 ~ ~ ~

RZZ =§+C2§r(r+20) (13.8)

R —l—C lfirwr‘z) (E 9)
yy 3 2 2 "'

.

1.

Rxx =3 (E.10)

R --C ii“ (E 11)
yz ll 2 '

~ k d < uZ > . . .

where F = ——d—. It IS evrdent that the states on an energy dlagram would be on the

5 y

line Of Rxx =1/3. Further more, the coefficients reduce to

it it 3 1 \fi—9Cfi($k)2at:

Xz0:>¢:—:>AS:JECOS(_):h9 CH: :0: 9 C2: 8* a

6 6 72 3 u k Sk w k
6.5+ .( ~) 1+6( ___.-)(___)

72 s s e

..2 ... ~ ‘— ~ *

U*-k—=\If—+(F+6Q) ,%=—r= and W 1‘ =—]—(r+2o).
e 2 2 J2 8 J2
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In an inertial frame, as F——>O, R Ryy,RZZ—+1/3 and Ryz—>0. As F—>oo,
XX’

Cu

721

f?

1

F, (72-90 , R Ryy,RZZ—>1/3 and Ryz—>——3 (IIIb=0 =0,11b=
XX’ 3J—

2Ryz2 =1/9=0.111).

The above closure based on the hypothesis that NR-stress is objective, has been

discussed in Section 2.6 (see Chapter 2). The locus of energy and anisotropic states for

the above closure for non-rotating simple shear are shown in Figure 2.18.
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APPENDIX F

SPECTRAL ANALYSIS FOR ROTATING HOMOGENEOUS DECAY

This appendix presents details of the derivations of equations in Park and Chung

(1999) that are used in modeling iR(NF) for the relaxation time for the URAPS theory.

The model energy spectrum in the presence of rotation is represented by Eqs. (F. 1), (F.2),

and (F3). (Speziale, 1998, Zhou , 1995 and Zeman, 1994). (See Figure F.1). In the

following discussion, KL and 1<r1 are wave numbers associated with the inverse of

energy containing scale (kw2 la) and the Kolmogorov scale (v3 /a)1'/4). In the small

wave number range or the energy containing scales (K < KL ), the spectrum is

E(1<) = BKm (F.1)

1n the inertial subrange (KL < K < Kn ), the spectrum is represented as

E(1<) = Omen)12 167- K << (O3 Is)” 2 (F2)

E(K) = CK(e)2/3 165/ 3 1e >> (O3 Ie)‘ ”- (F.3)

where CK = 25/9 is the Kolmogorov constant and C9 =CI3(/4. Let KM be the wave

number where the two functions in Eq.(F.2) and (F3) meet (KM =CR3/4KQ ). In the

absence of rotation, Eq. (F.3) holds in the inertial subrange as well as dissipation range of

the spectrum. The turbulent kinectic energy for homogeneous flows can be obtained by

the integral of the energy spectrum over the entire wave number space.

k: I E(K)dt< (F.4)

0
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Case I: NO rotation

KL Kn

k=IBKm+ IC (t:)‘31<53

0 KL

2/3 —213 —2/3

————C (ex *(tc “-8 “1
m+l 2 K r1 L ’

In the region where the two spectrum functions Eq. (F. l) and Eq. (F.3) meet,

CK (8)21/3Ki2/3 : B KLm+l

Substituting the (F.7) in the third term of Eq. (F.6),

(3m+5) ”1+1 3 W ”/3 _at’lz

k= BK ——C. a “ K “ ‘

2(m+1) L 2 K” ( '1 )

 

Eq. (F.7) can be rearranged as below for a representation for KL.

3(m+l)
2.43 . A

‘- - (3m+5)

B

l V3 _1/4 . . .

Also, Kn =— = (—) . SO insertlng KL and Kn 1n Eq. (F8),

1] 8

319W).

3m+5 c e ”'3 (MM) 3 v3k=(. )B l<() ___CK(8)2.3(_)1/6

2(m+1) B 2 e

Rearranging to get a relation between k and e ,

31111:] I. 21 111 +1 )

3 5 ”_‘“k: (3m+5)B CK ( m+ )(8)(3m+5)—2CK(V)1'2(8)l/2

2(m+l) B 2

Now differentiating the above equation,
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(F5)

(F6)

(F.7)

(F8)

(F9)

(F.10)

(F.1l)

 



3.1."lill- 2(m+l)

(3k C (3m+5) F” J— 3 I2 _ ,2

at B 4

I
O
)

 (F.12)

O
)

H

Comparing the above equation with the standard model equations in homogeneous

decaying turbulence,

 

q“(z—g
(F.13)

5t

7 9

‘“ C l “‘

dt k CRl TR 1‘

Substituting F. (13) and F.(l4) (and also (F9) for simplification), in the LHS and R.H.S

Oqu. (12),

(3}11_+5)BKLm41_ ECK(v)"’/2(c)' 2

2(m+ 1) 2

3 = (E15)

(10(8)

 C
{I

Replacing k in the denominator oqu. (15) with Eq. (11),

11
c,2 = (F.16)

18 KLm+1_:CK(V)1/2(8)1I2I

 

Eq. (16) can be rearranged to be a function of turbulence Reynolds number as following.

Substituting Eq. (F.7) and dividing numerator and denominator by CK (8)2/31<[:2’l3 ,

2(m+l) 2

3m+5 3 I _ l ,1”[(______)__(V)1I2(8) 1,6K2L 3)

C82 : 3

11.2 '— l/ 2/

(l—gcldVF (8) 16KL 3)

(F. 17) 
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8

3/2

 
Now substitute, KL =

k

(3m+5) 3 1x2 1:2 —1
,2 __2‘ -_ ,2 ~ k

(2(m+l) 2M (t) l
C 3 ‘

[l_4(v)l.’2(8)l.’3kl]

 

82

Replacing kZ/(vs) with Ret,

[gig-F‘ii—iRCt
—l/ZJ

m-l'

C82 :

(1—3Refl/2)
4

 

Case 11: Intermediate rotation rates

KL KKA '7 7 Kn 7‘ I

k: J'BKm+ [Cg(so)"~K‘-+ lete)“’3K“5’3

BK m“ 1/2 »1 —1 3 2/3 —2/3 —2I3

k=——m%__CQ(SQ) (KM-KL)—ECK(8)' (Kn —1< )

In the region where the two spectrum functions Eq. (F.1) and (F2) meet,

B xi? = CQ(8§2)“2K;2

In the region where the two spectrum functions Eq. (F .2) and (F.3) meet,

/ — - 2 - — f3
CQ(SQ)1 2K5} =CK(8) fiKM5 )

Substituting Eqs. (F. 22) and (F. 23) in Eq. (F. 21),

m+l

_ m+2
B [99(8Qfl/

2

k ”MAC (so)‘-”2K”'—3C (8)2;j3(K_2/3)
m+l B 2 Q M 2 K ‘1
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(F.18)

(F.19)

(F20)

(F21)

(F22)

(F23)

(F24)



the wave numbers, KM =CR3’; KQ ,Now, substituting ,

 

 

V3 14
K1]:— (_)— v

n

C 9'” "H; 1(m+1)

"- m+ ‘ " )

k2m—32-B ii)— (sf-“M”Ir—ngcfg“((2)—'(8)Jew/“3(a)“2 (F25)

m+l B 2

Now differentiating the above equation for k,

n

k 9"" mi: l(m+l) a

5‘ 1 CO( )”" m+- 2(n1+2)_ l 314 _1 3 1/7 _1/7 (,8

:—B—-“—— a“ “+—CC‘Q——Cv“a “—

8t2[8]() 29“” K” at 4

(F26)

Comparing the above equation with the standard model equations in homogeneous

decaying turbulence Eqs (F.13) and (FM),

CQci/‘4(Q)“(g) — chv' ”(a)“2

 

 

1/2 111-,“ ”mil!

”3::ng C.Q_(_Q)__: m+2 (8)2(m+2) +_l_

m+l B
2

,m+1 _1 (11l+_1)_l 1 3

(8)2(m+2) +2CQC?<4(Q
)—l__4CK ]/._(8)—l/2 8

(F27)

C82 3

1/2 ‘7—

13 _CQ(Q.,)+ mt

2 B

Now substituting, B KEHZ = C9080)l "[2 (derived from Eq. F22),

(F28)

l

CQC11"4(Q>"(e>—-§CKv' 2(a)”)

l

+ ECQCR/flm—RS) — i CKV1/2(8)U2)

m+2 l(‘m‘fi B [KL]m+ +

C82 : l
(a B [KL]m+l
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. . . . /7 _

Now d1v1d1ng both numerator and denomlnator by BKE1+1 =CQ(BQ)1'“KLl and

8

substituting, KL 2 —,7— ,
k3" ._

im+2 1 ‘3/4 8 3)") 3 8 1)") k2 ~11“?

— A + C, A ~_ —C 2 _ ~ __ -

i k (Qk) 2 K(Qk) (vs)

 

m+l 2

C82: 7 (F29)

1 1 3I4 8 3I2 3 8 1I2 k“ ~1I2
- +~C‘ -- I —- C --— ,2, ~

[2 2 K (Qk) 4 “((219 (vs)

Replacing k2 /(ve) with Ret and a/Qk with R0]

 

£::%+ACgk/4(R01)3/2-:CK(R01)1/2(R€t)”2]

C83: 1 1 3 (F30)
, 2 ./ 2 — 2

(7+2ci4mol)‘ —4CK(Rol)l (Ret)l )

Case 111: For high rotation rate

In this case, the inertial range of energy spectrum function Eq.(F.2) extends till the

dissipation range of spectrum.

KL Kn

k: (B Km + jCQ(ao)"’7-K‘2 (F31)

0 KL

m+l .

k = EfiT—CQQQFQMHI —KL') (F32)

At K , where the two functions in F2 and F3 meet,

1/2 —7
B K?) = CQ(F,Q) KL“ (F33)

From Eq. (33), it can be seen that CQ(8Q)I/2KLl =BI<rLn+1 and also eliminating

K111”?- = (CQ(gQ)l’/2)/ B. So using these relations in Eq. (1:32),.
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m+1

m+2 C (1:0)”2 31:7- 122 _1

k =EB{—93—— —CQ(gQ) Kn (F33)

. . l V3 _1/4 .

Subst1tut1ng, the wave numbers, K = — = (——) 1n Eq. (F.33),
11 ll 8

m+l

- ”2 m+2 ,— 3 1

k = ___—2:? B [___—C9“? -CQ(gQ)" Rig—)1” 4 (F34)

 

Rearranging for a relation between k and 8

m+l

. — l(m+l)

1/2 m+2 3 "’ I ,.kZMBip—Qgg—i (8)2(m2) _CQ(Q)II2(V3)l/4(8)l/4 (F.35)

m+l

Differentiating the above equation for k,

UH] l(m+_l)fi_l

(8)2(11H2) _CQ(Q)12(V)3/4(8)_3/4
m+2

(F.36)

6 8

T
(:_ _ —]-B ___—CQ(Q)I/2

(2t 2 B at

 

Comparing the above equation with the standard model equations in homogeneous

decaying turbulence Eqs (F. l 3) and (F. 14),

 

m+l 1 . 1

C {DI/2 m+2 "(’mi) 1 1
{Di-7:3 gg_2_( ___ (8)2(m+2)_CQ(Q)l/2(V)3I4(8)lx4

m+1 B

C32 = m+l (F.37)

1(2 “1+5 "“—‘-3‘-”— , .
;B[CQ(§82):I (8)2(m+2) _CQ(Q)l/2(V)3/4(8)—3)4 8

The above equation can be simplified and rearranged using, Eq. (F.33) as following
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+2 1(m_ B[1<L]m+ _ CQ(9)1. 2(\,)3. 4(8)1 4)

m+1

C (F.38)
8‘2 : ] m (7. I

[ZEN] +'—CQ(Q)'-(v)34(e>'4)

 

. . . . /‘) _

Now d1v1d1ng both numerator and denommator by BKE1+1 =CQ(13§2)1'“1<Ll and

 

 

 

. . _ 8
subst1tut1ng, KL — k3"? ,

m+2 V8 3/4

(151:1 “ "2) l
C82 = . k (F39)

[_(V§)3I4

[2 k2 l

(“Hf—Rely?

C82: “H (F.40)

Summam: Results form Cases 1, II and III, (See Eq. (F. 19), (F30) and (F.40) have been

used to formulate the following relation by Park and Chung for all rotation rates for m=2.

)
 

 

C 4

C82 = (_D)URAPS =—+ 3,4 3,, (F41)
TR 3 (1+2CK' ROI")

This can be re—arranged as

4 1+ EC‘K3”4(|Q|1</e)3”2)

(F.42)

C

(TQNRAPS :3+ 1 3r (7
R [1+ECR"4(lQIk/e)3’“j

The asymptotic behavior of the above equation is as shown in
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’ 2

—1—l-8—— , forRolzoo

g—E—4—2— , for Rol =1 (F.43)

dt

2

—EE— , forRo|=0

 
This asymptotic behavior in Eq. (F.42) is incorporated into the model for fR in the

URAPS theory (see Chapter 4).

1n('E(K))

 

Figure F.1

BKm

16mm”K‘Ztexpt—ztxnf)

....... (cK(g)3-’3K-S‘3;.cxp(_2(x,,)3)

slope = -2

slope = m

\ SlOpC : _5/3

‘

ln(K)

Model Spectrum in the Presence of Rotation (Park and Chung, 1999)
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APPENDIX G

COMPONENT EQUATIONS FOR THE URAPS-CLOSURE

The URAPS-closure component equations are described for specific benchmark

flows (sec Chapters 5, 6 and 7) in this appendix. For rotating simple shear flows with 2 as

the flow direction and y as the cross flow direction, and with axis of rotation aligned in

the direction of vorticity, the URAPS closure equations can be simplified as shown in this

 

 

appendix.

V < u > Simpmm' “0““ > d <(1:2 > 93,92 = FY] Bygz (6.1)

g :29 Q is colinear with <2“ng (93/92 —§z_e_y) ((3.2)

V<g>+2g=ryz eyez+2f2x (eygz—ezgy) (G3)

The inverse of the preclosure operator defined in Eq. (2.44) is related to the mean field

kinematics as shown in Eq. (G.4) below.

A" =1+rR (V<u>+2§2)=I+K

= = = = = (G.4)

: Exgx+§y§y+92§z+(Nr+NQ)§y§z_NQ gzgy

where the two groups appearing in the above Eq. (G4) are

Nr ETRryZ =CRl2ERI: ((3.5)

NQ E ZTR QX = ZCRITRQ (CLO)

Then, Eq. (G.2) can be rewritten in terms of the adjugate operator 2 2 adj (1+ 1: R< E >)
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(
'
3

 

l
l
}
>

: det(I+I_R<£>)

 

 

 

 

(G.7)

_ (1+ NFNQ + NE?) gxgx +§y9y +9292 —(NF + N§2)9y92 + NQQZQY

(1+ NrNQ + N21)

Also, the nomializcd turbulent relaxation time scale is defined as below.

3,12

- (1+C N” “)
,R 2 R3 52 (6.8)

(1+CR2NF )

NF=H<£>Hk/s=+\RF+2§2)2+(2§)2 ((3.9)

where the two dimensionless timescales are

F a ryz k/e ((3.10)

Qstk/a ((3.11)

. . AT -B.A CT BC

The component equat1ons from the URAPS closure R_= = T: = = = T: '—=—

‘ tr(: EA.) tr(; 29

follow as in Eq (G.12) to Eq. (G.16)

KRxx =(1+Nr1\1Q +1422)2 Bxx (G.12)

KRyyszy+2NQ Byz+N§2 BZZ (G.13)

KRZZ —_—(N,—+NQ)2 Byy—2(Nr+NQ)By2+BZZ ((3.14)

KRyZ =ByZ—(NF+NQ)BW—(Nr+NQ)NQ Byz+NQ BZZ (G.15)

The parameter 1c is defined as follows

1<E(1+NI~NQ+1\1§,)2Bxx +(1+(1\1r+1\19)2)Byy+(1+1\1§1)BZZ —2N,~ Byz. (G.16)

Furthermore, the CPI-mapping of 5 into 2 (see Eq.(4.1)) implies that
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1
Bxx =RXX+C1(R,x—§)+C2(R§x—11RRXX) ((3.17)

l 7

Byy = Ryy +C,(Ryy ——3—)+C3(R;.y + RyZRZy —11RR,,y) (0.18)

1
B22 = RZZ +C,(RZZ —§)+C3(R§Z +RZyRyz —IIRRZZ) ((3.19)

Byz =[1+C, +C2(Ryy +RZZ —IIR)]RyZ . (6.20)

, 1 .

where C] E 27Bdet(§) , C2 2 —01(11R —§). Four specific cases of the above

general set of equations for simple shear flows in the presence of rotation are discussed

below. Case]: NF =0 and N9 =0; Case 2: NF =0 and N9 #0 Case 3: Nr=0 and

NQ i 0 and Case 4: Nr = —NQ. Case 4 here refers to the zero absolute mean vorticity

region discussed in Chapters 2, 6. and 7.

Case 1: NF =0 and Na =0

This case is for Homogeneous flows in a non-inertial frame where 5 =2 and g =1. It

follows directly from URAPS-equations that g = E and 2 =2 . Consequently, R =1/3.

The following cases illustrate the equations for rotating homogeneous flows and shear

flow with and without rotation.

CASE 2: Nr¢0 and 149:0;

The equations below apply to homogeneous shear and for simple shear flows without

rotation.

|
|
7
<

11 Z

-
1

I
C
D

[
L
1
0

(G21)
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g = 2.2,, +9y§y +9292 - Nr gyg‘z (G22)

NF=|1<__F>|lk/g=+\/F—3 (G23)

The preclosure equations in Eq.(G. 12) to Eq.(G.]6) can be simplified as below

K RXX = Bxx (G24)

K Ryy = By), (G25)

K 8,, = 1\1%Byy —2 Nr Byz+ BZZ (G26)

K Ryz = Byz — Nl— Byy (G27)

The parameter K is defined as follows

Ks1+rxtf~BW—21\1r Byz. (G28)

It should be noted that in this case for shear flows without rotation (homogeneous or

simple shear), the URAPS-equations have a feature that

1
R B Rx,+C,(R,,——)+C2(R§x—11RRXX)

xx = xx = 3 . (G29)
R, B 1 -2
yy yy Ryy+C|(Ryy-—3)+C2(Ryy+RyZRZy-HRRyy)

   

This results in the following equation for the ratio the two CPI-related extra anisotropy

  

coefficients

(11 1> 3R ‘ R R R“

E : +3 3 "X W (Rxx _ Ryy — yz ). (G30)

0. 27det(§) (Rxx—Ryy) Ryy

Case 3: Nr=O and NQ¢0;

This case if for homogeneous flows in inertial frames (i.e. rotating flows)
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§=No(§y§z-§z§y) (G31)

2

g = (1+ No) EKQK +§y9y +9293 - Nagyez + Ngezgy (6.32)

(1+Nf1)

NF=”<:>”k/’e=+\/(2§2)2+(2Q)2 =+2 2627- (G33)

For this case,

V<g>= y—z—gz—C—y)‘ (G34)

II
C '8 C
.

ll
:
3

U
N
I
T
!
)

“
0 ll

>
3
0

1
?
?

O

Furthemiore, if ByZ = 0 and B”, = 822, then Ryz = 0, (URAPS closure prediction for

this flow field),

K Rxx = (1 + N32): Bxx (G35)

K Ryy = BW+ NE, B2Z (G36)

K RZZ = N5) BW+ BZZ (G37)

The parameter K is defined as follows

KE(1+N22)2BXX+(1+N§))BW+(1+NE,)BZZ. (G38)

86. = R... +9036. —1/3)+C2<Rix 411113...) (6.39)

Byy =Rw+C1(Ryy—1/3)+C2(R§y—IIRRW) (G40)

BZZ =RZZ+C,(RZZ—1/3)+C2(R§Z—IIRRZZ). (G41)

In the above equations, IIRER:R=REX+R§y+R‘;‘Z inasmuch as the shear

components of E are zero. Eqs.(G.26) and (G.27) imply that if Byy =BZZ , then
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Ryy =RZZ which means that Byy =BZZ =(l—Bxx)/2 and Ryy =Rzz =(l—RXX)/2.

So, Eq.(G.26) results in

_ (1 +N‘E‘2)Bxx

— . 7 '

(1+ Nthx)

 R,x (G42)

Case 4: N1" = —NQ.

This case is specifically occurs in the zero absolute mean vorticity region of channel.

EZNFE 92+ NQ (_e_ygz—gzgy) (6.43)y

+ Bygy + 22522 + Ng; 972,, (0.44)

It can be noted that the pre-closure operator for Case 2 non-rotating channel is the

transpose ofthe operator for rotating channel where the velocity profile is linear.

NF =H<g>HK/g=+./(2o)3 (G45)

K Rxx = Bxx (G.46)

K Ryy = Byy+ 2 NQ ByZ+NE2 BZZ (G47)

K RZZ = BZZ (G.48)

K Ryz = Byz + N9 BZZ (G.49)

The parameter K is defined as follows

KE1+(N§,)BZZ—2NFBYZ. (G50)

It is important to note that the equations for Case 2 and Case 4 are quite similar, except

for a change/ flip in Ryy and R22 equations. The component equations of the URAPS-

closure for the specific cases described in this appendix are used in Chapter 5 (Case 2:
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NF=0 and NQ at 0) and in Chapters 6 and 7 (Case 3: Nr=0 and NQ i 0; and Case

4: NF = -N0 ).
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APPENDIX H

PROGRAMS AND FLOW CHARTS

The following programs are used in different chapters of the dissertation:

General URAPS Closure Calculation Subprogram

H2

H3

H4

Optimization of APS Parameters

Homogeneous decay

Homogeneous Shear
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H.1 General URAPS Closure Calculation Subprogram

 

 

   

    

  

 

 

 

   
   

  

 

 

  
 

  

   
   

 

  

   

 

      

  

 

 

      

Start

Output

1 t . bl Calculate T

npu varra es _ . , :

<_E>,l(,8 NF—ll<£>”k’5 :

’ t 3/2

APS parameters 7 _ (1+ CR3NF )

" 3/2 B ,5 ,1
(1+CR2NF ) —n —n

A71=I+Cth—<F> f

i ' successive E E

E 7 Calculate 1 substitution i l

: C = Ad' A“ : i
: for i =2 to n = J( ) : E

I A, confinue ' E

: ‘ break loop :

l r
:

l Calculate E E

: CLi = +[27det( g 1 )113 5 E

5 1 l l
. C - =— II - —— 01 l
E 2,1 [ R,1 3] NO YES :

I 1 E

QiECl,i(§i_§l)+C2,i(§i'§i‘HR§ :

5 En = 511—1 +2114 Check 5

i CT.B .C , (in—gn-ll3gigj E

i = = =11 = 1

. = T —5 , lE n tr(g ”Eng)
$10 En—lue-igj E
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% Input variable needed

% F=[ 0 0; 0 0 Gam_yz; 0 0 0] (in the form a matrix)

% k (kinetic energy)

2 eps (dissipation)

1 APSpar=[0.1, —0.01, 0.00357, 0.0764, 0.0526, 3/2] (APS parameters)

% Call the following matlab program

[R,B,it,Tau]=aps_gen_funl(F,k,eps,APSpar);

function[R,B,it,Tau]=aps_gen_funl(F,k,eps,APSpar)

alpha: APSpar(l);

beta: APSpar(2);

crl= APSpart3);

cr2= APSpar(4);

cr3= APSpar(5);

n: APSpar(6);

I=[l 0 0; 0 l 0; 0 0 l];

NF=k/eps*sqrt(trace(F*(F)'));

T2=(1+cr2*(NF)“(n));

T3=(l+cr3*(NF)A(n));

Tau=T3/T2;

TauR=crl*Tau*(k/eps);

 

8 A inverse

Ain=I+TauR*F;

lCalling the successive substitution function

[R,B,it]=aps_gen*fun2(Ain,alpha,beta);

end

function [R,B,i]=aps_gen_fun2(Ain, alpha, beta)

I=[l 0 0; 0 l 0; 0 O l];

Cxx=Ain(2,2)*Ain(3,3)-Ain(3,2)*Ain(2,3);

ny=(—l)*(Ain(2,l)*Ain(3,3)—Ain(3,1)*Ain(2,3));

sz=Ain(2,l)*Ain(3,2)—Ain(3,1)*Ain(2,2);

ny=(-l)*(Ain(1,2)*Ain(3,3)—Ain(3,2)*Ain(1,3));

ny=Ain(1,1)*Ain(3,3)-Ain(3,l)*Ain(l,3);

Cyz=(—l)*(Ain(l,l)*Ain(3,2)-Ain(3,l)*Ain(1,2));

sz=Ain(l,2)*Ain(2,3)—Ain(2,2)*Ain(l,3);

Czy=(-l)*(Ain(l,l)*Ain(2,3)-Ain(2,l)*Ain(l,3));

sz=Ain(l,l)*Ain(2,2)—Ain(2,l)*Ain(l,2);

rxx(l)=l/3,

ryy(l)=l/3;

rzz(l)=l/3;

ryz(l)=0;

rxy(l)=0;

rxz(l)=0;

(note that C adjugate which is Transpose of the minor

=[Cxx ch sz; ny ny Cyz; sz Czy sz] ;O
0
‘
2
3
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R=[rxx(l) rxy(l) rxz(l); rxytl) ryy(l) ryz(l); rxz(1) ryz(1) rzz(l)];

for i=2:4000

ITR = trace(R*R);

detr=det(R);

cl=beta*(27*detr);

c2=—alpha*(IIR -1/3);

E = R + Cl*(R-I/3)+ C2*(R*R - IIR‘R);

CT=C';

D=(CT*B)*"

tr=trace(D);

 

R=D/tr;

rxx(1)=R(l,l);

ryy(1)=R(2,2);

rzz(1)=R(3,3);

rxy(1)=R(l,2);

1xz(1)=R(1,3);

ryz(1)=R(2,3);

err1= abs((rxx(i)—rxx(i— l))/rx>:(1 1));

err2= abs((ryy(i)-ryy(i-1))/ryy(1-l ));

err3: abs((rzz(i)—rzz(i-H))/izz(1));

err4= abs((rxy(i)-rxy(1: 1))/rxy(i —l));

err5= abs((rxz(i)—rxz(i ))/rxz(1—l));

err6= abs((ryz(i) ryz(i-1))/ryz(i *l));

if ((err1<0.00001) && (err2<0.00001) && (err3<0.00001) &&

(err4<0.00001) && (err5<0.00001) && (err6<0.00001))

break

end

end

end
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H.2 Optimization of APS Parameters

 

 

Optimized a, B, NR

T
   

  

      

 

    

 

   

 

   
  

  

   

 

     

  

            
    

Start min ( ‘1’(NR,01,B))V 01

fori=1t012 i forj =l:n '

alpha=[0<01<9] := NF =j*0.001 5

beta = -O.l * alpha : :

continue i TR < E > 1

5 =[0,0,0;0,0,Nr0;0,0,0] 5

store ; :

min(‘P(NR,a,B))Vj E é_l=l+TR<E> E

_______________________________ Call successive :

: substitution :

l Calculate l

§ 110111.060) 5 ' 5

Note:

\P(NR ,(1,B) E

l/2

APS APS _ exp APS APS __ exp

R128 83’)” Rap 13;?
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I=[l 0 O; O 1 0; O 0 l];

for a=1:12

end

alpha =[0.01,0.025,0.05,0.075,0.l,0.25,0.5,0.75,1,2.5,5,9];

beta(a)=—0.l*alpha(a);

if (alpha(a)<l)

step=0.0001;

else if (alpha(a)>=l)

step=0.001;

end

end

for i=l:100l

Ng(i)=(i-1)*step;

Ngam=10 0 O; 0 0

I=[l 0 0; 0 l 0;

Ain=I + Ngam;

[R,B,it]=aps_gen_fun2(Ain,alpha(a),beta(a));

Rxx_ss=R(l,l);

Ryy_ss=R(2,2);

Rzz_ss=R(3,3);

Ryz_ss=R(2,3);

d(i) = sqrt( ((Rxx_ss—0.236)/O.236)“2

((Ryy_ss-0.l97)/O.l97)“2

((Ryz_ss+0.l65)/0.l65)“2

((Rzzmss—0.567)/O.567)“2

data(i)=d(i);

data2(i)=Ng(i);

data3(i)=i;

data4(i)=Rxx_ss;

data5(i)=Ryy_ss;

data6(i)=Rzz_ss;

data7(i)=Ryz_ss;

end

mini(a,l)=alpha(a);

[y,v]=min(data); %y is the value and v is the index

mini(a,2)=data2(v);

mini(a,3)=data(v);

mini(a,4)=y;

mini(a,7)=data4(v);

mini(a,8)=data5(v);

mini(a,9)=data6(v);

mini(a,10)=data7(v);

R=[data4(v) 0 0; 0 data5(v) data7(v); 0 data7(v) data6(v)];

b=R-I/3;

IIb(a)=trace(b*b);

IIIb(a)=trace(b*b*b);

x(i)=(data6(v)+2*data5(v))/2;

yti)=0.5*sqrt(3)*data6(v);
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H.3 Homogeneous Decay

 

 

 

Start

   

 
 

 

 

2:2
URAPS

 

arameters

p t, k, a

  

 

 
 
 

  
 

 

Call matlab Runge-Kutta solver

-(specify options and tolerance,

specify the time steps)

-ca1culate: Nl— ,TR, C

-1ntegrate  
 

 t

 

 

I
I
F
U

1
1
w

 
 

 

Call 2 subprograms:

 

 

Calculate

NF , TR , é—l

aps_gen__funl

  
 

 

 V

 

 

Call successive

substitution

aps_gen_fun2
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APSpar=[0.l, -0.01, 0.00357, 0.0764, 0.0526, 3/2];

omg_x=0.25;

yz=2*omg_x;

zy=-2*omg_x;

F=[0 0 0; 0 0 yz; 0 2y 0];

I=[1 0 O; 0 1 0; 0 0 1];

[t,y1=homogeneous_decay(F,APSpar);

for i=l:101

k =y(i.1);

eps=y(i,2);

[R,B,it,Tau]=aps_gen_fun1(F, k, eps, APSpar);

Rxx(i)=R(l,1); Ryy(i)=R(2,2); Rzzti)=R(3.3);

ny(i)=R(1,2); sz(i)=R(l,3); Ryz(i)=R(2,3);

B=R—I/3;

IIb_apS(i -t)= rac B‘B);

IIIb_aps(i) tr

e(

ace(B*B*B);

Bxx(i)=B(1,l); BYY(i)=B(2,2); Bzz(i)=B(3,3);

Bxy(i)=B(1,2); sz(i)=B(1,3); Byz(i)=B(2,3);

end

function[t,y]=homogeneousgdecay(F,APSpar);

Cd_cr1=11/6; Cp_Cr1=l.486;

alpha: APSpar(l);

beta: APSpar(2);

crl= APSpar(3);

cr2= APSpar(4)

cr3= APSpar(5)

n= APSpar(6);

I

I

options = odeset('Re1Tol',1e-4,'AbsTol‘,[le-6 le-6]);

[tIle

ode45(@isodecayl,[0:0.1:1,1.2:0.2:5,5.5:0.5:25,26:1:40,45:5:60,70:10:l7

0],[l l],options);

function dydt = isodecayl(t,y)

dydt = zeros(2,l); % a column vector

NF=(y(l)/y(2)*sqrt(trace(F*(F)')+0.00000000001));

T2=(l+cr2*(NF)“(n));

T3=(1+cr3*(NF)“(n));

Tau=(y(l)/y(2))*T3/T2;

dydt(l) = -y(2);

dydt(2) = -Cd_cr1/(Tau)* y(2);

end

end
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H.4 Homogeneous Shear

 

 

 

 

Fob/1“, _
 

 

 

Start ' and

URAPS
   
  

  
parameters

 

 

 

   
 

 

Call matlab Rungc-Kutta solver

-(specify options and tolerance, specify the time

steps)

-calculate: TR, Nr, NQ C

-Integrate the equation for F

I
I
W

1
1
w

  
 

 
 

Call successive

substitution

aps_gen_fun2

  
 

l
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APSpar=[0.l, —0.01, 0.00357, 0.0764, 0.0526,

Omg_Gam =-0.25;

Gamo=1;

Cd_cr1=ll/6;

Cp_cr1=1.486;

alpha: APSpar(1);

beta: APSpar(2);

crl= APSpar(3);

cr2= APSpar(4);

cr3= APSpar(5);

n= APSpar(6);

[t,y]=homogeneous_shear(Gamo,Omg_Gam,APSpar);

num=size(t);

for i=1znum

Gam=y(i);

I=[1 0 0; 0 l 0; 0 0 1];

D=sqrt((1+2‘Omg_Gam)“2+(2*Omg_Gam)02);

NF=Gam*D;

T2=(l+cr2*(NF)A(n));

T3=(l+cr3*(NF)A(n));

Tau=cr1*T3/T2;

yz=1+2*Omg_Gam;

zy=-2*OmgHGam;

er=y(i)*[0 0 0; 0 0 yz; 0 zy 0];

Ain=I+Tau*er;

[R,B,iter]=aps_gen_fun2(Ain, alpha, beta);

3/2];

Rxx(i)=R(1,1); Ryy(i)=R(2,2); Rzz(i)=R(3,3);

ny(i)=R(l,2); sz(i)=R(l,3); Ryz(i)=R(2,3);

end
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function [t,y]=homogeneous_shear(Gamo,Omg_Gam,APSpar);

Cd_cr1=11/6;

Cp_cr1=l.486;

alpha: APSpar(l);

beta= APSpar(2);

cr1= APSpar(3);

cr2= APSpar(4);

cr3= APSpar(5);

n: APSpar(6);

D=sgrt((1+2*Omg_Gam)“2+(2‘Omg_Gam)“2);

[t,y] = ode45(@isodecayl,[0:0.5:1000],[Gamo]);

function dydt = isodecay1(t,y)

Gam=y;

I=[1 0 0; 0 1 0; 0 0 l];

NF=Gam*D;

T2=(1+cr2*(NF)“(n));

T3=(l+cr3*(NF)“(n));

Tau=crl*T3/T2;

yz=l+2*Omg_Gam;

zy=-2*OmgflGam;

er=y*[0 0 0; 0 0 yz; 0 zy 0];

Ain=I+Tau*er;

[R,B,i]=aps_gen_fun2(Ain, alpha, beta);

xx=R(l,1); Ryy=R(2,2); Rzz=R(3,3);

ny=R(l,2); RXZ=R(1,3); Ryz=R(2,3);

dydtz (-2*y*Ryz=l)-(Cp_cr1*cr1*(—2*y*Ryz)/Tau-Cd_crl*crl/(Tau));

end

yf=y(2001);

zer=(—2*Ryz*yf)-(Cd_cr1*cr1—Tau)/(Cp_cr1*cr1—Tau);

end
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APPENDIX 1

BENCHMARK STATISTICS

The following Tables are the DNS results for non-rotating and rotating channel

used in Chapters 2 and 7. The information of F and (2 from the DNS results is used in

the URAPS-closure equations to predict the NR-stress. A comparison of DNS results and

URAPS-closure results is presented in Chapter 7.

Table 1.1a: DNS data in the core region of non rotating channel (Iwamoto, 2002, i'

Iwamoto et al. 2002).

 

 

 

 

 

 

 

 

 

 

 

 

            

+

if] y+ W5 DJr u+ du+ kJr 8+ F Re+ 77/8

d y

30 30.72 0.10 0.56 13.64 0.102 3.70 0.077 4.90 177.64 1.05

35 35.18 0.12 0.67 14.04 0.082 3.49 0.067 4.24 181.62 0.97

40 39.91 0.13 0.75 14.39 0.067 3.30 0.058 3.79 186.59 0.92

45 44.92 0.15 0.80 14.70 0.057 3.13 0.051 3.49 192.48 0.88

50 50.21 0.17 0.85 14.98 0.049 2.98 0.045 3.30 199.12 0.87

70 70.74 0.24 0.88 15.82 0.035 2.55 0.029 3.06 224.20 0.87

100 99.65 0.33 0.83 16.70 0.027 2.14 0.018 3.09 248.48 0.92

150 151.07 0.51 0.66 17.86 0.019 1.59 0.010 3.08 254.39 0.92

200 199.84 0.67 0.52 18.67 0.014 1.16 0.006 2.73 222.71 0.75

250 249.37 0.84 0.43 19.23 0.008 0.82 0.004 1.69 173.70 0.32

300 297.90 1.00 0.39 19.43 0.000 0.69 0.003 0.00 147.44 0.00  
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Table 1.1 b.: DNS data of Table [.13 continued.

 

 

 

 

 

 

 

 

 

 

 

            

 

 

 

 

 

 

 

 

 

 

 

 

 

             

W5 Rxx Ryy R22 Ryz )‘Rl AR2 Mu HIb ”b

0.10 0.21 0.09 0.70 -0.11 0.07 0.21 0.72 0.039 0.236

0.12 0.22 0.11 0.67 -0.11 0.08 0.22 0.70 0.031 0.206

0.13 0.23 0.12 0.65 -0.12 0.10 0.23 0.67 0.024 0.182

0.15 0.24 0.14 0.62 -0.13 0.10 0.24 0.66 0.020 0.162

0.17 0.25 0.15 0.60 -0.13 0.11 0.25 0.64 0.016 0.146

0.24 0.27 0.18 0.55 -0.14 0.13 0.27 0.60 0.010 0.116

0.33 0.28 0.19 0.53 -0.15 0.14 0.28 0.58 0.008 0.104

0.51 0.28 0.21 0.51 —0.15 0.15 0.28 0.57 0.007 0.094

0.67 0.27 0.23 0.50 -0.14 0.17 0.27 0.56 0.006 0.080

0.84 0.27 0.26 0.47 -0.09 0.22 0.27 0.51 0.004 0.046

1.00 0.27 0.28 0.45 0.00 0.28 0.27 0.45 0.001 0.018

Table I.lc: URAPS predictions

y/8 % NF R xx Ryy RZZ Ryz AR] ARZ 1R3 [11b 11b

0.10 0.859 0.015 0.24 0.18 0.58 —0.19 0.10 0.24 0.66 0.019 0.162

0.12 0.875 0.013 0.25 0.20 0.55 -0.19 0.12 0.25 0.63 0.016 0.145

0.13 0.888 0.012 0.25 0.21 0.54 -0.19 0.12 0.25 0.63 0.014 0.133

0.15 0.896 0.011 0.26 0.22 0.52 -0.18 0.14 0.26 0.60 0.013 0.124

0.17 0.902 0.011 0.26 0.22 0.52 -0.18 0.14 0.26 0.60 0.012 0.118

0.24 0.910 0.010 0.26 0.23 0.51 -0.18 0.14 0.26 0.60 0.010 0.110

0.33 0.909 0.010 0.26 0.23 0.51 —0.18 0.14 0.26 0.60 0.011 0.111

0.51 0.909 0.010 0.26 0.23 0.51 -0.18 0.14 0.26 0.60 0.011 0.111

0.67 0.920 0.009 0.27 0.24 0.49 -0.17 0.15 0.27 0.58 0.009 0.098

0.84 0.955 0.006 0.29 0.28 0.43 -0.14 0.20 0.29 0.51 0.003 0.055

1.00 1.000 0.000 0.33 0.33 0.34 0.00 0.33 0.33 0.34 0.000 0.000
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Table 1.2a: DNS data in the core region of non rotating channel (Hoyas and Jimenez,

 

 

 

 

 

 

 

 

 

 

 

           
 

 

 

 

 

 

 

 

 

 

 

 

           

2006).

d uJr .

[y+] y+ W5 u+ + V 8+ r Rc+ 79/8

d y

30 30.56 0.015 13.49 0.102 5.08 0.083 6.28 312.05 1.09

40 40.39 0.02 14.28 0.065 4.77 0.063 4.98 364.64 0.95

50 51.27 0.03 14.88 0.047 4.54 0.048 4.40 427.23 0.90

75 75.86 0.04 15.79 0.030 4.25 0.031 4.13 576.87 0.91

100 100.16 0.05 16.44 0.024 4.09 0.023 4.17 722.93 0.95

250 252.71 0.13 18.75 0.010 3.56 0.009 4.35 1488.97 1.06

500 505.16 0.25 20.61 0.005 2.93 0.004 4.05 2161.31 1.02

1000 1002.11 0.50 22.61 0.003 1.95 0.002 3.69 2327.16 0.94

1500 1503.02 0.75 23.82 0.002 1.19 0.001 2.65 1777.16 0.56

2000 2004.30 1.00 24.29 0.000 0.85 0.001 0.03 1333.08 0.00

Table 1.2 b: DNS data of Table 1.2a continued.

y/ 5 , xx yy Rzz yz AR1 7~R2 km Hlb 11b

0.015 0.23 0.08 0.69 -0.09 0.07 0.23 0.70 0.030 0.216

0.02 0.25 0.10 0.65 -0.10 0.09 0.25 0.66 0.019 0.173

0.03 0.27 0.12 0.61 -0.10 0.10 0.27 0.63 0.014 0.148

0.04 0.27 0.14 0.59 -0.11 0.12 0.27 0.61 0.011 0.127

0.05 0.27 0.15 0.58 -0.11 0.12 0.27 0.61 0.011 0.124

0.13 0.25 0.16 0.59 -0.12 0.13 0.25 0.62 0.014 0.128

0.25 0.24 0.18 0.58 -0.13 0.14 0.25 0.61 0.015 0.124

0.50 0.25 0.20 0.55 -0.13 0.16 0.25 0.59 0.011 0.104

0.75 0.26 0.23 0.51 -0.10 0.19 0.26 0.55 0.007 0.071

1.00 0.27 0.26 0.47 0.00 0.27 0.27 0.46 0.002 0.026
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Table 1.20: URAPS predictions

 

 

 

 

 

 

 

 

 

 

  

W5 1 Nr Rxx Ryy Rzz Ryz KR] 1R2 Mu [Uh 11b

0.015 0.830 0.019 0.24 0.15 0.61 -0.19 0.08 0.24 0.68 0.025 0.190

0.02 0.857 0.015 0.24 0.18 0.58 -0.19 0.10 0.24 0.66 0.020 0.163

0.03 0.871 0.014 0.25 0.19 0.56 -0.19 0.11 0.25 0.64 0.017 0.150

0.04 0.878 0.013 0.25 0.20 0.55 -0.19 0.12 0.25 0.63 0.016 0.142

0.05 0.877 0.013 0.25 0.20 0.55 -0.19 0.12 0.25 0.63 0.016 0.144

0.13 0.872 0.014 0.25 0.19 0.56 -0.19 0.11 0.25 0.64 0.017 0.148

0.25 0.881 0.013 0.25 0.20 0.55 -0.19 0.12 0.25 0.63 0.015 0.140

0.50 0.891 0.012 0.26 0.21 0.53 -0.18 0.13 0.26 0.61 0.014 0.130

0.75 0.923 0.009 0.27 0.24 0.49 -0.17 0.15 0.27 0.58 0.008 0.095

1.00 1.000 0.000 0.33 0.33 0.34 0.00 0.33 0.33 0.34 0.000 0.000            
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Table 1.33: DNS data for Spanwise rotating channel in the linear velocity profile region.

3: Wu and Kasagi, 2002, Wu and Kasagi, 2004.

b,c: Alvelius, 1999 (as reported by Grundestam et al. 2008)

d,e,f :Grundcstam et al., 2008:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

    

a b c d e f

60x

R0 27 -0.0687 -0215 -0.385 -049 -075 -103

b

5
.1

Reb = 3b— 5378 ~3100 ~3470 4026 6592 9605

V

so

Ro+ E —..—" -1.25 -371 -7.41 -11 —27.5 -55

ll

R61 5 5” 295.5 180 180 180 180 180

V

% 0.7 0.5 0.5 0.25 0.25 0.25

< u'zu'z >+ 1.00 1.1 1.05 1.1 0.6 0.1

< u'yu'y >+ 1.55 3.6 4.9 5.3 6.3 3.6

< u'xu'x >+ 0.95 2.3 3.3 3.9 4.2 2.1

< u'yu'Z >+ -0.67 -095 -0.85 -105 -0.7 —0.2

k+ 1.75 3.5 4.625 5.15 5.55 2.9

8+ 0.0045 0.04 0.065 0.11 0.18 0.12

d +

du+ = 2‘9; 0.0084 0.04 0.08 0.12 0.31 0.61

y

~ d + k+
r = du+ —+— 3.30 3.61 5.86 5.72 9.42 14.77

y 8

- k+

o = ox —+ -1 .65 -1.80 2.93 -2.86 -4.71 -7.38

8

o

x -0 5 —0 5 —0 5 -05 -0 5 -0 5
ryz      
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Table I.3b: DNS data for spanwise rotating channel in the linear velocity profile region

and the corresponding APS predictions for the Reynolds stress components.

 

 

 

 

 

 

 

 

 

 

 

 

a b c d e f

DNS + +
~ du k

1“ = + —+— 3.30 3.61 5.86 5.72 9.42 14.77

dy a

- k+

Q = (2x ’7 -l .65 -l .80 -2.93 -2.86 -4.71 -7.38

8

R22 0.29 0.16 0.11 0.11 0.05 0.02

RW 0.44 0.51 0.53 0.51 0.57 0.62

Rxx 0.27 0.33 0.36 0.38 0.38 0.36

RyZ -019 -0.14 -0.09 -0.10 -0.06 -0.03

URAPS RZZ 0.22 0.21 0.16 0.16 0.11 0.07

Ryy 0.51 0.53 0.60 0.60 0.67 0.72

Rxx 0.27 0.26 0.24 0.24 0.22 0.21

RyZ -O.18 -0.18 -0.19 -0.19 -0.18 -0.15         
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Table 1.4a: DNS data for Spanwise rotating channel (Wu and Kasagi, 2002, Wu and

Kasagi, 2004).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           

+

[W] y+ y/5 p+ u+ du. k7“ 3+ 1" f2

dy

570 560.53 1.90 2.09 12.65 0223 2.39 0.026 -2123 -0.40

560 551.41 1.87 2.09 14.38 -0.162 2.16 0.021 -16.74 -043

550 541.20 1.83 2.06 15.79 -0117 1.99 0.017 -13.92 -050

525 515.53 1.74 1.88 17.98 -0.063 1.72 0.010 -1091 -073

500 490.34 1.66 1.62 19.23 0039 1.49 0.006 -940 -101

450 440.45 1.49 1.13 20.42 -0.012 1.15 0.003 -4.62 -159

400 390.49 1.32 0.97 20.66 0.001 1.09 0.002 0.24 -1.87

350 340.45 1.15 1.08 20.50 0.005 1.20 0.003 2.34 -1.90

300 295.50 1.00 1.25 20.21 0.007 1.37 0.003 3.07 -1.86

250 250.55 0.85 1.42 19.88 0.008 1.56 0.004 3.27 -1.78

200 200.52 0.68 1.60 19.47 0.009 1.80 0.005 3.25 -1.62

150 150.55 0.51 1.81 19.01 0.010 2.09 0.006 3.25 -1.38

100 100.66 0.34 2.12 18.40 0.015 2.55 0.010 3.67 -103

75 75.47 0.26 2.35 17.96 0.021 2.96 0.015 3.91 -0.82

50 49.80 0.17 2.65 17.30 0.034 3.68 0.027 4.57 -O.58

40 39.59 0.13 2.76 16.89 0.049 4.16 0.036 5.48 -0.49

30 30.47 0.10 2.81 16.32 0.080 4.76 0.050 7.47 —0.40   
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Table l.4b: DNS data of Table [.48 continued.

 

y/5 RCI P/e RXX Ryy RZZ Ryz ARI ARZ AR3 “lb 111)

 

1.90 222.86 2.53 0.15 0.05 0.80 0.06 0.05 0.15 0.80 0.07 0.33

1.87 219.42 2.43 0.19 0.07 074 0.07 0.07 0.19 0.74 0.05 0.26

1.83 234.19 2.26 0.22 0.09 059 0.08 0.08 0.22 0.70 0.03 0.21

1.74 296.48 1.84 0.27 0.12 0.61 0.09 0.10 0.27 0.63 0.01 0.15

1.66 356.79 1.46 0.29 0.14 0.57 0.08 0.12 0.29 0.58 0.01 0.11

1.49 432.43 0.39 0.35 0.22 0,43 0.04 0.21 0.35 0.44 0.00 0.03

1.32 481.39 0.01 0.37 0.33 0.30 -0.03 0.29 0.35 0.37 0.00 0.00

1.15 541.56 0.43 0.33 0.41 025 -009 0.22 0.33 0.45 0.00 0.03

1.00 603.95 0.83 0.29 0.45 0.25 -0.13 0.19 0.29 0.52 0.00 0.06

0.85 658.33 1.10 0.27 0.46 0.27 -0.17 0.17 0.27 0.56 0.01 0.08

0.68 687.73 1.26 0.27 0.44 0.29 -0.19 0.16 0.27 0.57 0.01 0.09

0.51 683.05 1.35 0.29 0.38 0,33 -0.20 0.15 0.29 0.56 0.01 0.09

0.34 622.05 1.48 0.31 0.29 0,40 -0.20 0.14 0.31 0.55 0.00 0.09

0.26 571.60 1.47 0.31 0.24 0.45 -0.19 0.13 0.31 0.56 0.00 0.09

0.17 506.61 1.48 0.30 0.17 053 -0.16 0.11 0.30 0.59 0.01 0.12

0.13 478.37 1.60 0.28 0.13 0.59 -0.14 0.09 0.28 0.63 0.01 0.15

0.10 454.12 1.91 0.25 0.10 0,55 -0.12 0.07 0.25 0.68 0.02 0.19
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Table l.4c: URAPS predictions

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         

y / 8 5 Nr NQ Rxx Ryy R22 R yz

1.90 0.723 -0.055 -0.002 0.22 0.06 0.72 0.101

1.87 0.735 -0.044 -0.002 0.22 0.07 0.71 0.110

1.83 0.746 -0.037 -0.003 0.23 0.09 0.68 0.113

1.74 0.760 -0.030 -0.004 0.24 0.12 0.64 0.101

1.66 0.766 -0.026 -0.006 0.26 0.14 0.60 0.083

1.49 0.797 -0.013 -0.009 0.30 0.22 0.48 0.046

1.32 0.854 0.001 -0.011 0.34 0.34 0.32 -0.004

1.15 0.880 0.007 -0.012 0.31 0.46 0.23 -0.071

1.00 0.888 0.010 -0.012 0.28 0.51 0.21 -0.125

0.85 0.894 0.010 -0.011 0.27 0.52 0.21 -0.156

0.68 0.904 0.011 -0.010 0.26 0.52 0.22 -0.183

0.51 0.918 0.011 -0.009 0.25 0.50 0.25 -0.225

0.34 0.924 0.012 -0.007 0.23 0.41 0.36 -0.298

0.26 0.918 0.013 -0.005 0.23 0.34 0.43 -0.306

0.17 0.893 0.015 -0.004 0.23 0.26 0.51 -0.291

0.13 0.866 0.017 -0.003 0.22 0.21 0.57 -0.276

0.10 0.822 0.022 -0.002 0.22 0.15 0.63 -0.250
 

(P.T.O. Table I.4c contd.)
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Table 1.40 continued: URAPS predictions

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

W5 4R] 4R2 4R3 “lb “6

1.90 0.04 0.22 0.74 0.04 0.26

1.87 0.06 0.22 0.72 0.04 0.24

1.83 0.07 0.23 0.70 0.03 0.22

1.74 0.10 0.24 0.66 0.02 0.17

1.66 0.13 0.26 0.61 0.01 0.13

1.49 0.21 0.30 0.49 0.00 0.04

1.32 0.32 0.34 0.34 0.00 0.00

1.15 0.22 0.31 0.48 0.00 0.03

1.00 0.17 0.28 0.55 0.01 0.08

0.85 0.15 0.27 0.58 0.01 0.10

0.68 0.14 0.26 0.60 0.01 0.12

0.51 0.12 0.25 0.63 0.02 0.14

0.34 0.08 0.23 0.68 0.03 0.19

0.26 0.08 0.23 0.69 0.03 0.21

0.17 0.07 0.23 0.70 0.03 0.22

0.13 0.06 0.22 0.72 0.03 0.24

0.10 0.04 0.22 0.74 0.04 0.26
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Table 1.5 DNS Results for Developing Homogeneous Shear (Brethouwer,

2005)(f2/f‘=0); fo =18

I Rxx Ryy R22 Ryz

0 0.333 0.333 0.334 0.000

2 0.436 0.172 0.392 -0.169

4 0.573 0.091 0.336 -0.157

6 0.654 0.078 0.268 -0.139

8 0.693 0.075 0.232 -0.128

10 0.697 0.089 0.214 -0.127

12 0.663 0.112 0.225 -0.135

 

 

 

 

 

 

 

       
 

 

 

 

 

 

 

 

Table 1.6 Self Similar States for Homogeneous Shear (DNS- Brethouwer, 2005;

LES- Bardina et al., 1983 (see Salhi and Cambon, 1997))

92/17 F0 t I18) Rxx Ryy R22 RYZ

(appx) (aPPX) (appx)

DNS 0 18 12 12 0.210 0.120 0.670 -O.130

-O.25 l8 8 12 0.280 0.370 0.350 -0.320

-0.5 l8 14 12 0.394 0.553 0.053 -0.065

LES 0 3.3 5 - 0.294 0.073 0.633 -0.15

-0.25 3.3 5 - 0.224 0.383 0.393 -0.35

-0.5 3.3 5 - 0.344 0.583 0.073 -0.1          
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