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ABSTRACT

ACTIVE SYNTHETIC WHEEL PRISMATIC JOINT BIPED

By

Louis L. Flynn IV

We have developed a three-link biped with stiff ankles and arc-shaped feet that have

the same radius as the leg length: the MSU Active Synthetic Wheel Biped. This

biped is an underactuated, planar walker with paired legs for lateral stability and

motors between each leg and the torso. The robot is designed to naturally fall in the

direction that the torso is leaning, creating the propulsive torque needed to walk. We

present a dynamic model for the system and its collision dynamics. Because of the

unique shape of the biped, the robot has no‘ vertical component of collision, but ve-

locity mismatches at the switching time results in a horizontal component, which has

been modeled as a disturbance. We then describe two methods of gait creation. The

first method creates a gait by defining predetermined trajectories in the actuated de-

grees of freedom and independently tracking them. The second method creates a gait

by tracking trajectories in the actuated degrees of freedom based on the rolling unac-

tuated degree of freedom at the foot-ground interface through feedback linearization.

We present the results of both kinematics and energy consumption for the two meth-

ods of gait creation. A discussion about the choice of reference trajectories for our

system follows, including methods to create trajectories that minimize the horizontal

impulses at the end of the step and to reduce the total work required to complete a

step.
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Chapter 1

Introduction

1 .1 Background

While the process of developing a viable general purpose walking biped has been a

long and challenging endeavor, there is still much work that needs to be done in

order to build a useful biped. We currently have machines that can walk and run

in straight lines and in circles, perform many tasks such as climbing stairs, carry

light masses, and perform complicated path planning; each of these accomplishments

stand alone as incredible feats. But current bipeds cannot do many of the things

necessary to really be useful as service robots. Primarily, they still require extremely

controlled and well known environments in which to work and the most capable robots

require a significant amount of energy to complete simple tasks. In comparison to

their human counterparts, robots simply underperform. For example, looking at

energy efficiency, the estimated specific cost of transport (energy used/[weight a:

distance traveled], Get) for human walking is approximately 0.2 and the related

specific mechanical energy efficiency (Cmt) of 0.05. Asimo, the famous Honda robot

which is still one of the most capable today, achieves an estimated 3.2 Get and 1.6 Cmt

[1]. When looking at capability, while these robots can run, they are limited to



extremely flat ground at speeds of 6 — 7 km/hr in short bursts, while the current

fastest marathon runner ran at an average 20.34 lem/hr [2]. There is still much

work to be done regarding stability and efficiency in biped robots and we hope to

understand some of the essential issues in overcoming these problems through the

development of a simple biped.

Bipedal walking is, by nature, a difficult, dynamically challenging controls prob-

lem incorporating underactuation, non-linearities, relatively high numbers of degrees

of freedom, and hybrid system dynamics due to intermittent contact impact from

foot-ground interaction and discrete events such as switching support between legs.

Therefore it is no surprise why, even after 40 years of intense study, the best bipedal

robots fail to provide the kind of stable, robust and efficient locomotion that biological

organisms can achieve [3]. But the advantages of biped design are clear. As compared

to traditional wheeled mobile robots, walking machines have the potential for better

maneuverability over uneven terrain such as outdoor environments with crevasses and

bumps. By virtue of being anthropomorphic, bipeds are well suited to sharing the

workspace with humans, interactng in a manner similar to how another human may

interact. There have been a large number of methods of adding capability to biped

machines including innovative control techniques, drive and actuator designs, and

better combinations of the two which have brought basic ability to these machines.

Here, we have chosen a sample of these developments to illustrate the wide variety of

methods developed that bring unique capabilities and add efficiency to these robots.

1.2 Review of Biped Robots and Biped Controllers

The academic study of robotic bipeds began at Waseda University in Japan with the

WL—l in 1967 [4]. Due to inherent problems with static controllers, such as speed

and stability limitations, researchers at Waseda University developed the first quasi-



dynamic (WL—9DR) and fully dynamic (WL-IORD) bipeds. The completely dynamic

biped, discussed extensively in [5], employs high-gain controllers to track trajectories

satisfying the Zero Moment Point (ZMP) condition, developed by Vukobratovic and

Juricic [6]. The ZMP method and its different interpretations [6—8], including the Foot

Rotation Index [9], have led to the development of the most stable biped platforms to

date [10—14] including the ASIMO line of robots from Honda and similar consumer

and academic robots [15, 16].

 

(a) Waseda WL-l (b) Waseda WL-lORD

Figure 1.1: Early Waseda Bipeds

The designs for these ZMP bipeds began with equipment and control techniques

developed for anchored robotic arms used in the manufacturing industry, and in

general are built in much the same manner: light linkages paired with extremely

stiff joints which help in driving joints along desired trajectories. There have also

been a number of controllers for stiff robots that do not follow the ZMP criterion

for stability. One of these robots is the Rabbit, developed at Centre National de la

Recherche Scientifique in France [17]. Rabbit is controlled using the virtual constraint

and hybrid zero dynamics method [18] which creates a single degree of freedom system

by applying virtual constraints. The ankle joint of Rabbit is passive and all other

joints are controlled to follow trajectories strictly based on the angle of the ankle.



Any locomotion gait involves synchronous movement of relevant degrees of freedom

of the system and in this regard the active synthetic wheel biped, presented in this

thesis, has similarities with Rabbit.

 

Figure 1.2: The RABBIT Planar Biped

In robots built with high mechanical joint stiffness, other techniques such as

impedance control [19—21] and variable compliance controllers [22] have been im-

plemented in high-level controllers to emulate low joint stiffness to eliminate some of

the problems inherent in stiff robots such as collision impulses with the ground. These

techniques generally also incorporate a low-level, high-gain trajectory controller for

fine position control.

This desire for the addition of compliance in joints has led to a different class

of trajectory controlled robots that incorporate variable joint stiffness, not in their

controllers, but in the mechanisms of the robots. Examples such as Lucy [23] and

W'L—14 [24], utilize compliant actuators which ultimately allow some of the natural

system dynamics to drive trajectory creation. In the WL—14, trajectory tracking that

follows the natural dynamics of the system was shown to have an associated reduction

in energy consumption. Compliance controllers have also been applied to these types

of robots. The Lucy robot was able to show this reduced energy consumption in



simulation, but was not able to experimentally show a reduction in energetic cost due

to speed limitations [25].

 

Figure 1.3: The VU Brussels Robot Lucy

Passive Dynamic Walkers (PDW’s), machines that need no actuation to find sta-

ble gaits, epitomize the use of natural dynamics to create joint trajectories. This

type of approach was pioneered by Tad McGeer in the late 1980s when he investi-

gated passive systems using limit cycle analysis together with basin of attraction and

Floquet multipliers as indicators of stability [26]. Inspired by a walking toy from

McMahon’s 1984 paper [27], McGeer developed a kneed walker that can walk with

human-like, periodic, gaits down small slopes with no control, using potential energy

from traversing down a slope to balance the losses associated with the collision of the

foot during heel strike and system frictional losses. McGeer’s methods for analysis

has produced a number of passive dynamic walkers, such as the series built at Nagoya

University [28]. The Nagoya University planar walker took approximately 4000 steps

on a treadmill, illustrating a reasonable level of stability in these walkers without the

need for a controller. The methods for quantification of stability in passive bipeds

has been expanded upon with methods such as the Gait Sensitivity Norm [29]. There



have also been a few successful three—dimensional passive walkers including the Collins

passive dynamic walker developed at Cornell. This walker was able to compensate

for the yaw forces using a pair of arms attached to the opposite leg [30].

 

(a) McGeer’s Dyna— (b) Nagoya Passive Dy- (c) Cornell 3D PDW

mite namic Walker

Figure 1.4: Various Successful Passive Dynamic Walkers

There are quite a few other robots that are not built to follow limit cycles like

the passive walkers, but are built with the intention of exploiting natural dynamics

during some portion of the gait cycle and use different controllers to remain stable

with a high level of mechanical compliance throughout the robot [1, 31—35]. Unlike

the pure passive dynamic walkers, they are able to have flat feet, which when ac-

tuated either passively or actively are able to increase the control authority of the

ankle when the foot is on the ground. Also, they champion the use of series elastic

actuators in order to reduce the impedance of the joints, which allows fast adaptation

for unknown disturbances without necessarily knowing them in advance [32]. The

virtual model control approach developed at MIT is a way to model the robot and

its behaviors as virtual objects. In this approach, the joint torques can be calculated

to mimic the virtual components of the model without the need for generating joint

trajectories [36—38]. Other controllers such as learning algorithms and neural os-



 

(a) MIT Planar Biped (b) MIT Spring (c) TU Delft

Flamingo Flame

Figure 1.5: Highly Dynamic Robots with Compliant Joints and non-ZMP Based

Controllers

cillators have also been implemented successfully in a number of different types or

robots. Neural oscillators or central pattern generators have been shown to exist in

biological systems and have provided insight into how biological systems might control

their limbs while performing tasks such as walking [39]. This motivated the approach

based on local neural networks [40] that react to inputs from local sensors. Machine

learning algorithms employ a learning controller to analyze its steps after training.

The Toddler [41], developed at MIT, can learn quickly and is efficient because of its

extensive use of natural dynamics.

This thesis describes the design for a new biped robot that we believe is a solid

platform to study the wide range of problems that bipedal robots encounter. We

wanted a design that would remain simple to model, namely having a low number

of degrees of freedom, but also included the issues seen in most bipeds such as un—

deractuation, intermittent contact, and instability. The design is an extension on

the concept of a self-propelled wheel [42], and it promises to provide impact-free and

stable motion during walking.



    
(a) RunBot with Learn- (b) MIT Toddler

ing Neural Oscillator Con-

troller

Figure 1.6: Bipeds with Learning Algorithms

1.3 The MSU Active Synthetic Wheel Biped

As an extension of previous work from Das and Mukherjee [42], we decided to un-

dertake the development of a new dynamic biped that was based on the concept

of a self—propelled wheel. This design began as a rolling wheel, as shown in Figure

1.7 (a), where three eccentric masses are constrained and driven along radial spokes

120° apart to create a mass unbalance used to drive the wheel. Similarly, a mass

unbalance can also be created by changing the relative angular position of the spokes

while keeping the radial distance of the masses fixed. This design variant is shown in

Figure 1.7 (b). We can also restrict the range of motion of these spokes within the

wheel, such that one spoke is always near the top of the disk, as a torso would be in

an upright walking biped, and the other two oscillate around the bottom of the disk,

as two legs would. From this variant, we can then cut the outer rim of the wheel and

create feet-like sections. In our design, shown in Figure 1.7 (c), these sections of the

rim are used as arc-shaped feet that “synthesize” the rim of a wheel as the legs move

along.

Although our design came from completely different work, a similar type of robot



  

m2 I

I
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(b) (c)

Figure 1.7: (a) Self-Propelled Wheel, (b) Design Variant Of Self-Propelled Wheel, (c)

Conceptual Design Of Biped With Torso

had been imagined previously by Tad McGeer, though his emphasis was on using

the natural dynamics of the system to create the gait cycle [26]. This is where

the nomenclature of “synthetic wheel” originated as the wheel would be synthesized

naturally as the walker rolled along. Our robot differs in that we use active control of

the hip joints to drive the swing and stance angles along desired trajectories. Ideally

if we used the same analysis as McGeer, we could determine passive trajectories for

our particular robot, but run into limitations of our hardware, particularly foot size,

required to fully implement this at reasonable velocities. Future work may include a

limit cycle analysis of this particular biped, with hopes of obtaining a more efficient

gait, as discussed in Chapter 7.

Because the synthetic wheel concept provides a large range of stable gaits and has

a low number of degrees of freedom, we believe this is an excellent platform to study

the challenges of biped locomotion. Although our biped is normally unstable due to



the center of mass lying above the center of rotation, due to its geometry, it is able

to remain standing using a relatively simple criterion: one foot always needs to be

below the hip joint at all times. Of course, the complexity comes in how we choose

to satisfy this criterion while remaining stable and preferably with little work. This

design also allows us to avoid collisions. Vertical components of collision are avoided

through the nature of the synthetic wheel design, and the horizontal component of

the collision during foot interchange can be avoided by exchanging when the velocity

of the stance and swing legs are equal. Avoiding the horizontal collisions simplifies

analysis, but imposes constraints on our final gait.

Experimentally this resulted in a planar biped, with paired legs for lateral stability.

The outer pair of legs had a pair of motors that acted in unison to control the leg

length to avoid the swing leg from scuffing on the ground as it swung forward. This

thesis describes the process that we have taken to develop a simple 3-link biped. We

developed two different controllers that were both successfully implemented on our

experimental robot. These models and controllers are discussed in Chapters 2 and 3.

We created two different versions of the biped. The first version did not successfully

accomplish our goals and required a revision which enabled us to easily implement

complex controllers. These mechanical and electrical designs are discussed in Chapter

4. We then discuss the experiments we ran and results in Chapter 5. Optimization

of the swing leg and torso trajectories is discussed in Chapter 6, describing a method

of obtaining an efficient gait and determining velocity changes over a step, as well as

discussion on how we might find further improvements.

10



Chapter 2

Dynamic Model

2.1 Introduction

Here we present the necessary models to analyze the general motion of our three-link

biped. First, we derive the general equations of motion for the biped system and

also derive the impulse disturbances for the system when the swing leg contacts the

ground with a velocity that is not the same as the stance leg velocity. We then impose

constraints to define a gait and derive the equations of motion of the constrained

system. Finally, we show the transformation from our mathematical models to the

motor torques on our experimental platform in order to physically implement the

controllers.

A schematic of the biped is shown in Figure 2.1. It has three degrees of freedom

and can be described by the generalized coordinates: 6, (15, and t/i. These angles

denote the angle of the stance leg with the vertical and the angles of the swing leg

and torso with respect to the stance leg, respectively. The system has two actuators

corresponding to the generalized coordinates c3 and 1p and is an underactuated system.

The system also contains two prismatic joints in the outer legs to avoid foot scuffing

at center stance. The prismatic joints are assumed to be dynamically insignificant
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Figure 2.1: The Two-dimensional Three Link Model

and are therefore not included in this analysis.

2.2 General Dynamic Model

Using Lagrange’s equations, the dynamics of the system shown in Figure 2.1 can be

written in the form

M(Q)ri+N(q.ti)<i+G(q) = T (2-1)

where q and T are given by the relations

T

q=[e¢¢]T, T=[oT,.2] (2.2)

and q is the vector of generalized coordinates; T is the vector of the generalized forces

with 1'1 and T2 denoting the torques of the motors that control the relative angles
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¢ and tb, respectively; M(q) is the symmetric inertia matrix; N(q,q) is the matrix

containing centrifugal and Coriolis terms; and G(q) is the vector of torques produced

by the gravitational force. In this model, 6 is the passive degree of freedom and

therefore its corresponding generalized force is zero. The terms M(q), N(q, (j), and

G(q) are defined as follows

M = [Mijl3x3’N = [Nijl3x3’G =[Gz‘13x1 (23)

where

Mu = J, + Jst + sz + rm [(1% + 212(12 + (d, — R) cos(6 + a) — (10]

+m3t [613, + 2R(R + (as, — R) cos(6) — c130]

+m3w [dgw + 2R(R + (dsw -— R) cos(6 + t/J) — dsw)]

M12 = M21 = Jt + mt(dt - R)(dt — R + Rcos(6 + (15))

M13 = M31 = sz + msw(d3w — R)(dsw — R + Rcos(6 + #0)

M22 = Jt + mt(dt - Rlz

M23 = M32 = 0

M33 = sz + m3w(dsw — a)2

N11 = mtR(R — dt) 311109 + ¢)(9 + (13) + mstR(R — dst) Sinwé

+m3wR(R — dsw) sin(6 + We + 6)

N12 = mtR(R — dt) Sin(9 + (”(9. + <23)

N13 = mszm — d3...) sinw +W+ zi)

N21 = N22 = N23 = 0

N31 = N32 = N33 =0
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G1 = ["3th — dt) $111“) + <15) + mst(R - dst) 513(9)

+msw(R — dew) sin(9 + ¢)lg

G2 = "MR - dt) Si11(6 + 45)!)

03 = msw(R — dsw) sin(6 + tb)g (2.4)

and mt is the mass of the torso and rust and mm are the masses of the stance leg

and swing leg, respectively; Jt, Jst and sz are the mass moments of inertia of the

torso, stance and swing legs about its center of gravity; R is the radius of curvature

of the feet; dst, dsw and dt are the distances of the center of gravity of the legs and

torso; and g is acceleration due to gravity, as shown in Figure 2.1.

2.3 Impulsive Disturbances due to Swing Leg

Collision

 
Figure 2.2: Free-body diagrams of the stance leg, swing leg and torso showing impulses

of all impulsive forces generated as a consequence of swing leg touchdown
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The prismatic joints on the biped prevent collision between the swing leg and the

ground in the swing phase. Additionally, because the feet are of the same radius as

the leg length, they ensure that there are no vertical impulsive forces on the swing leg

at the time of touchdown. The swing leg may, however, be subjected to horizontal

impulsive forces since we may have 16— 7e 0. Assuming that the impulsive force on

the swing leg results in 62+ = 0, we investigate its effect of the motion of the stance

leg, swing leg and torso using the free-body diagrams in Figure 2.2. A summation

of linear impulse in the a: and y directions and angular impulse in the z direction

about the center of mass of these links provide the following nine (three sets of three)

equations:

Equations for stance leg:

[stat + 101; = mst [R — (R - dst) COS 9] (6+ — 9—)

13,, + 10, = — m3t(R — d3.) sin6 (9+ —- 9-)

J3t(6+ — 6‘) = [13153; cos6 + Isty sin 6] (R — dst)

— 169: [R — (R — dst) cos 6]

+ Icy [R — (R — dst) sin 6] (2.5)

Equations for swing leg:

1wa + I = msw [R — (R — dsw) cos(6 + m] (9+ — (9‘ — 6‘)

1w, = — m3w(R — as...) sin(6 + ¢)(é+ — 9'- — 215—)

sz(é+ — 9- — 213-) = [1m cos(6 + 1p) + 13,, sin(6 + in] (R - List)

— I [R — (R — dsw) cos(6 + 111)] (2.6)
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Equations for torso:

In 2 mt [R — (R — dt) cos(6 + ¢)] (6+ — 6_ + d)+ -- (15—)

1.3, = — mic-2 — d.) sin(6 + ¢><é+ — 6' + <i+ — if)

Jt(6+ — é“ + 43+ — (if) = [In cos(6 + a) + 1., sin(6 + ¢)] (R — at) (2.7)

The above nine equations, along with the two equations for force balance at the hip

joint:

Its: 'l' Istx + Iswa: = O

Ity + Isty + Iswy = 0 (2-8)

allow us to solve for the eleven unknowns, namely: 13”, Istya 13m, Iswy, In, Ity,

IGI, 10y, I, 6+ and 65"". A part of the solution is as follows:

Its: = 0

9+ = (9‘ + mi;- (2.9)

where K. is a constant whose value depends on the kinematic and dynamic parameters

of the biped and is defined in Appendix A. Substituting Equation 2.9 into Equations

2.5, 2.6 and 2.7, the angular impulses on the stance leg, swing leg and torso are found

to be

0 1 J3t(0.+ — 9—) = Jst Rd.)—

6 + «p : J.w(é+ — é— — r): J... (n — mi- (210)

0+¢ : Jt(é+—é-+qi+—gi-) =0

The angular impulse expressions in Equation 2.10 correspond to the generalized co-
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ordinates 6, 6 + 1P and 6 + 45, respectively. The angular impulses corresponding to the

generalized coordinates 6, (b and ’t/) can therefore be shown to be

0 I d9: [Jstrt+sz(K»-1)]1/1_

¢ : 61¢ = 0 (2.11)

a : d.) = J... (i. —1)¢-

An accurate dynamic model of the biped, that takes into account the impulsive dis-

turbances due to swing leg touchdown, can now be written as follows

M(a)éi+N(q,ci)é+G(q)=T+D5(t-tc) (2-12)

where D is the vector of angular impulses, defined as

T

D=|:dg dd) (11),]

and d9, d¢, and d1!) are defined in Equation 2.11. It is clear from the expression for d9

in Equation 2.11 that swing leg touchdown results in an impulsive disturbance in the

passive degree of freedom 6. This is also obvious from the last relation in Equation

2.9.

2.4 Constrained Motion and the Nominal Trajec-

tory

Due to our synthetic wheel design, we must only guarantee the stance foot is always

placed with a portion directly below the hip to remain stable as the robot walks.

Therefore we are free to arbitrarily choose torso and swing leg trajectories that satisfy

this condition.
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Figure 2.3: Illustration of the generalized coordinates (15 and t!) and their relations to

6 and a.

We have chosen a couple of general parameterized gait functions which we can

modify to create different types of constraint trajectories. We chose parameterized

gait functions with 5 parameters to minimize the number of parameters needed to be

determined while simplifying the trajectory to be tracked. These parameterized gait

functions are:

¢=(7r+ad—6)+dsin (%+f) (2-13)

for the angle between the stance leg and the torso and

111 = k6 + asin (g) + csin (359) (2.14)

for the angle between the stance leg and the swing leg. Here, ad is the mean value

of the desired torso angle offset with respect to the vertical, ,8 is half of the foot arc

angle, and the parameters It, a, c, d, and f are available to be determined.
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We will later discuss different modifications to these general parameterized gait

functions to allow us to satisfy different gait boundary conditions in Section 6.

The first control trajectory that we investigated was what we call our “Nominal

'Itajectory”. We begin by imposing the following two constraints:

C : w = —26

1 (2.15)

C2 a = ad

where a, depicted in Figure 2.3, is defined by the relation

a=d>+6—7r (2.16)

The constraint C1 ensures that the swing leg is symmetric with respect to the stance

leg about the vertical at all times. The constraint C2 ensures that the torso maintains

angle ad with respect to the vertical.

To satisfy these constraints, we require our parameterized gait functions of Equa-

tions 2.13 and 2.14 to have parameter k = —2 and all the other parameters equal to

zero. The equations of the constrained motion then simplify to

¢=7T+Ozd—9 (2.17)

and

w = ——29 (2.18)

The torques (7'1 and 7'2) required to impose these constraints can be easily com-

puted from Equation 2.1. The constrained system has one passive degree of freedom

with the following dynamics which is derived from Equation 2.1.

Mc(6) a + New, 9') + CC = 0 (2.19)
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where

MC = 1,, — 1..., + mstdgt — mswdgw

+(mt + 2m3t)R2 — 2R(mstd3t — mswdsw)

+mtR(R — dt) cos ad — 2m3tR(R — dst) cos6

NC = R [R(m3t — msw) — mstdst + mswdsw] sin662

CC = [R(m3t — msw) — mstdst + mswdsw] g

—mt(R - dt) sin ad 9 (2.20)

When the stance and swing legs are identical, i.8., mst = msw, dst = dsw, and

Ist = 13w, the expressions in Equation 2.20 simplify to the form

MC = (mt + 2msj)R2 + mtR(R — dt) cos ad — 2m3tR(R — 61306086

NC: 0

CC = —mt(R — dt) sin ad g (2.21)

For any set of reasonable parameter values, it can be verified that 6 will be positive for

positive angle ad and vice versa. This will theoretically result in unbounded growth

of 6 but in reality 6 will saturate at some maximum value due to friction and damping

effects that have not been modeled.

These constraints for the swing leg and torso were chosen due to an intuitive

physical interpretation of the system; if the legs have the same mass and moment of

inertia, the total motive torque on the system is directly proportional to the angle

of the torso. This means that the robot should constantly accelerate at a rate that

is entirely determined by the angle of the torso. As the robot leans forward, it

accelerates the robot forward (or slows it down if it traveling backward at the time)

just as leaning backward will do the opposite. This is not at all an optimal trajectory,
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and necessitates an impulse at foot switching because it necessitates that 2/2— 75 0 if

6 75 0, as discussed in Section 2.3. This causes a number of problems for analysis

of stability of the system but, as shown in our experiments, it does not cause the

experimental system to destabilize. A more detailed discussion about the impulse

disturbance due to leg switching at unmatched velocities is covered in Section 2.3.

Better choices for trajectories are discussed later in Chapter 6.

2.5 Interchange of Stance and Swing Legs

If we consider the constrained motion of the biped for some positive angle ad, it

results in positive acceleration 6. This will result in a positive velocity 6 from zero

initial velocity. When the biped has a positive velocity, it will roll on its stance leg

and the point of contact with the ground will move from the heel to the toe. The

stance and swing legs can be interchanged at any time, but to have the maximum

step size the swing leg should touch down when the heel of the swing leg is right in

front of the toe of the stance leg. As the swing leg becomes the new stance leg and

vice-versa, the definitions of the generalized coordinates change. We can determine a

transformation matrix from the coordinate set during the step to the coordinates of

the new step.

Without assuming maximum step size, an interchange in the stance and swing

legs will result in the following transformation of the generalized coordinates and

their velocities, irrespective of the direction of motion of the biped

  

l 0 1 ]

Qnew =P qold: P: O 1 —I (222)

0 0 —-1

where gold is the set of generalized coordinates during the step and qnew is the new
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set of generalized coordinates after the step has been made. Therefore,

    

anew 901d + ibozd

¢new = ¢old " lbold (223)

_ ibnew _ _ -¢ozd .

and _ _ _ -

612.22» 901d + tiara

43mm 2 450m — lbold (2-24)

_ a... _ . to... ,    
The elements of M, N and G matrices in Equation 2.1 are functions of mst, msw, dst,

dsw, Jat and J3“), and consequently their values need to be updated in the dynamic

model after every interchange of stance and swing legs.

2.6 Forward and Inverse Relations for Control Trans-

formation for Experiments

In our biped platform, two actuators control the relative angles between the torso and

the stance leg and the torso and the swing leg, respectively. We denote the torques

of these motors as Tst and 73w and their corresponding generalized coordinates as cyst

and 73w, respectively. In order to apply our torques generated from our generalized

model, we must transform the torques T1 and 72 into the torques of Tst and Tsw. The

angles a, Vst and 7310 are related to the generalized coordinates 6, ()5, and 11), as shown

in Figure 2.4, by the forward and inverse relations

a = 6+¢—7r 6 = a+73t

'l’st = 7r — Cb => (b = 7r — 'Yst (2.25)

7310 = 7r - (15+ 2P 16 = 73w _ 'Yst
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Figure 2.4: Relationships of the generalized coordinates 6, (25, and ’t/) to the coordinates

"Yst, 73w: and 0-

According to the virtual work principle [43],the total virtual work done by the

actuators in each coordinate is the same, z'.e.,

Tst6'73t ‘l‘ 7.8106732!) = 7—1695 + 7261/} (2°26)

On the other hand, from Equation 2.25, we can Show

565 = ‘6’7’313

51/1 = 6’73w"6’73t (2-27)
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Substitution of Equation 2.27 into Equation 2.26 gives

Tst = ”Tl-T2

73w = 7'2 (2.28)

which are the actual torques applied by the motors.
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Chapter 3

Controller Design

3.1 Introduction

Two different robot controllers have been implemented successfully on our biped. We

call the first our “Decoupled” controller, because the stance and swing leg torques

were determined independently of each other and without considering the coupled

dynamics of the system. The more complete “Coupled” controller contains the full

dynamics of the robot and utilizes feedback linearization for the swing leg and stance

leg torque calculations. Both of these controllers were designed using our “Nominal

Trajectory”, as described in Section 2.4 and use the interchange transformation dis—

cussed in Section 2.5. The model is a two dimensional model, and assumes lateral

stability in the experimental setup for all controllers. Using an optimized trajectory,

such as those described in Chapter 6, would necessitate a change in the control objec-

tives, but analysis could be conducted in a manner similar to that described in this

section.
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3.2 Decoupled Controller

3.2.1 Controller for Fixed Torso Angle

The control objective is to reach a fixed desired angle for the torso, i.e., a -—> ad as

t ——> 00. From Equation 2.25, we can write

6 = (a + 73!.) (3-1)

If ad is the desired angle of alpha and where 7% is the desired angle of the stance

leg, then

9 = (ad + iii) (3.2)

If we define the error

61 = (ad — a) (33)

then Equation 3.1 gives an alternate expression for el, namely

«91 = (’i’st — 73‘.) (3.4)

To achieve the first control objective, we propose the following error dynamics

61 + kdlél + kplel = 0, kp1,kd1 > 0 (3.5)

where km and kdl are positive constant gains. Since ad is constant, we can use

Equations 3.3 and 3.4 to rewrite Equation 3.5 as follows

73. ~73. = —kd,a+kp1<ad —a) (3.6)
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Since ‘jfit is the desired acceleration, the motor control torque Tst will be proportional

to (”7% — fist); 01'

Tst = C163. - ’Y'ét) (3-7)

where c1 is some positive constant whose value depends on the kinematic and dynamic

parameters of the stance leg and its drive. Using Equations 3.6 and 3.7, the first torque

controller is expressed in the form

Tst = 01 [-kdld + kpl (01d -- (1)] (3.8)

In the above equation, cl, km and kdl can be lumped into two independent parame-

ters c1 kpl and cl kdl. The values of these parameters were found during experiments

through tuning. We also implemented a method to choose independent values for

these gains for each outer and inner legs while in stance. This allowed us to better

correct for differences in inertia, mass and friction between the legs.

3.2.2 Controller for Constrained Motion of Swing Leg

The second control objective is to ensure that the swing leg and the stance leg move

symmetrically with respect to the vertical, i.e., satisfy the first constraint in Equation

2.15. Using Equation 2.25, this constraint can be written as follows

i/J + 29 = (73w + ’73t + 201) = 0 (3-9)

The desired value of the swing leg is therefore

if... = ‘(73t + 2a) (3-10)
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We define the error

62 = (7?... — ”73112) (3.11)

and impose the following error dynamics

éiz + kd2é2 + [€1,262 = 0, kPQ’ kd2 > 0 (3.12)

such that 62 —> 0 as t —) 00. Using Equations 3.10 and 3.11, we can write

62 = "(73w + 7323 + 20‘)

(.32 = —("st + ”m + 2(5!) (3-13)

at = i3... — is...

Substitution of Equation 3.12 into Equation 3.13 yields

yg’w - as.” = 19,12 (73w + ‘yst + 2a) + kpghsw + 73t + 20:) (3-14)

Since rig,” is the desired acceleration, the motor control torque Tsw will be proportional

to (fl-[gm _ flaw): 01'

T... = C263... — a...) (13-15)

where c2 is some positive constant whose value depends on the kinematic and dynamic

parameters of the swing leg and its drive. Using Equations 3.14 and 3.15, the second

torque controller is expressed in the form

7'sw = C2 [kdz (7310 ‘l‘ ’l’st 'l' 2d) + kpg (7310 + Vst + 20)] (3-16)

In the above equation, c2, [C192 and kdg can be lumped into two independent param-

eters 62er2 and c2kd2. Once again the appropriate values of these parameters were

found experimentally and their values were dependent on the current swing or stance
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leg.

3.2.3 Simulations of Decoupled Controller

A numerical simulation of the system and controller was created and the outputs can

be found in Figure 3.1. This simulation uses the mass and inertial properties of our

experimental platform, provided in Table 4.1 with initial conditions of 6 = —11.25 deg,

(25 = 91.25 deg, and tb = 22.5 deg. The robot starts from rest and the motion of the

torso and legs with respect to the vertical are plotted. The joint torques for the stance

and swing legs are also plotted. The desired torso angle, ad, was set to 2 deg.

The controller gains were set to kp = 400 and kd = 20. The controller gains

were chosen to keep the maximum motor torques near the 15 Nm limit of our system

within the arbitrary 5 sec of the simulation. Because the robot has a forward—leaning

torso, it will continue to accelerate due to the lack of dissipative elements in the

simulation. This means that the joint torques will continue to increase in magnitude

as the robot continues to accelerate. In the actual robot, the robot would at some

point stop accelerating when the losses match the increase in energy caused by the

torso angle, and therefore reach a steady state velocity.

The decoupled controller has difficulty tracking the desired torso and leg angles.

As the robot’s velocity increases, the tracking error becomes worse as the dynamic

effects of the uncompensated parts of the system become larger. This is particularly

apparent in the torso angle. The torso oscillates with each step, reaching approxi-

mately 3 degrees of error in within the 5 sec. The next section discusses our coupled

controller, which dramatically reduces these errors.
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Figure 3.1: Simulation results of the decoupled controller. The motion of the torso

is shown in (a) as a solid line, the desired torso angle, ad is shown as a dotted line.

The leg motion is seen in (b) where the angle of the stance leg with respect to the

vertical is the solid line, and the angle of the swing leg with respect to the vertical

is the dotted line. Graph (0) shows the two motor torques for T3t (black) and Tsw

(grey). Compare this with Figure 3.2.
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3.3 Coupled Controller

3.3.1 Motivation

In this section, we discuss the design of torque controllers that will enable the biped

walk forward or backward along a straight line using a full dynamic model, as opposed

to the decoupled model discussed earlier. It was determined that our decoupled

controller could not track the desired trajectories sufficiently, and a possible reason

for this is that the swing leg controller has no information about the torso angle

or the torso dynamics. In the decoupled control method, one controller could not

compensate for the dynamics of the other directly, possibly leading to relatively large

oscillations in the torso angle as the robot walked along.

3.3.2 Feedback Linearization

To design a controller that achieves the control objectives stated in Section 2.4, we

consider a new set of generalized coordinates for the system

  

6

a = v1 (3.17)

V2

where

V1 = a — ad

V2 = 26 + "(,6 (3.18)

These new variables are related to the original generalized coordinates 45 and 2/1 by
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the following relations,

()5 = V1—6+7r+ad

a = V2—26 (3.19)

Substituting Equation 3.19 into Equation 2.1, we obtain the dynamics of the system

in terms of the new generalized coordinates as follows

M(a) «'7' + N(q, ci) 6+ 6(6) = T (3.20)

where [[4, N and C have the same dimensions of M, N and C, respectively. The

generalized force corresponding to 6 in Equation 3.20 is zero and this allows us to

eliminate 6 from the two equations corresponding to the generalized coordinates V1

and V2. The reduced-order equations have the form

A U A

M(2) (i + M2. «7) 2 + 6(6) = T (321)

where M E RQX2, N E R2X2 and G E R2X1 are functions of all three generalized

coordinates 6, V1 and V2, and

'01

Q
) H H
)

II (3.22)

'02 7'2

Equation 3.21 represents a completely actuated system and we use feedback lineariza-

tion to design our controller as follows

A A

T = N(r. ci) (i + 6(a) - M(c‘r‘Xchi + Kp 2) (3.23)

where Kd and Kp are diagonal positive-definite matrices of dimension two. Indeed,
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substitution of Equation 3.23 into Equation 3.21 results in

éj+Kdé+Kpcj=0 (3.24)

which implies (j -—) 0 as t —> 00. From the relations in Equations 3.22 and 3.19 it

simply follows that

”01,112 —) 0 :5 a —> ad, 1,1) —) —26 (3.25)

as t ——) 00, therefore the constraints in Equation 2.15 are satisfied.

3.3.3 Simulations of Coupled Controller

A numerical simulation of the system and coupled controller was created and the

outputs can be found in Figure 3.2. This simulation uses the mass and inertial prop-

erties of of our experimental platform, provided in Table 4.1 with initial conditions

of 6 = —11.25 deg, ()5 = 91.25 deg, and it = 22.5 deg. The robot starts from rest and

the motion of the torso and legs with respect to the vertical are plotted. The joint

torques for the stance and swing legs are also plotted. The desired torso angle, ad,

was set to 2 deg.

The controller gains were set to kp = 400 and kd = 41. The controller gains

were chosen to keep the maximum motor torques near the 15 Nm limit of our system

within the arbitrary 5 sec of the simulation. Because the robot has a forward-leaning

torso, it will continue to accelerate due to the lack of dissipative elements in the

simulation. This means that the joint torques will continue to increase in magnitude

as the robot continues to accelerate. In the actual robot, the robot would at some

point stop accelerating when the losses match the increase in energy caused by the

torso angle, and therefore reach a steady state velocity.
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The coupled controller exhibits much better tracking of the desired torso and leg

angles. This better tracking also results in decreased torque values. The torso error

has been reduced to a fraction of a degree for all velocities. The better tracking of the

torso has led to a reduced acceleration over the simulation time because the average

position of the torso is closer to the desired torso angle.
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Figure 3.2: Simulation results of the coupled controller. The motion of the torso is

shown in (a) as a solid line, the desired torso angle, ad is shown as a dotted line.

The leg motion is seen in (b) where the angle of the stance leg with respect to the

vertical is the solid line, and the angle of the swing leg with respect to the vertical

is the dotted line. Graph (c) shows the two motor torques for Tst (black) and Tsw

(grey). Compare this with Figure 3.1.
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Chapter 4

Experimental Methods

4.1 Background

During the period of our research two major versions of this robot were built. Al-

though the mechanical system has remained largely unchanged, the architecture of

the electronics and the controllers changed significantly. Originally we wanted to use

a simple central computer together with integrated position controllers of the motor

amplifiers to drive the hip positions to the desired locations. This proved to not work

very well as discussed later. The main impetus for changing our computing system

was the desire for better inertial measurements. Our original inertial measurement

unit was a crude device made with simple accelerometers which were then filtered to

approximately determine the direction of gravity. This technique was not accurate

enough for a controlled gait and it was decided that we should switch to a more

powerful device. This change to a commercial inertial measurement unit required an

upgrade to our central computer and therefore it seemed prudent to change our focus

from light computing to ease of programming and communications.
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4.2 Mechanical Design

We designed and fabricated our synthetic wheel biped based on the schematic in

Fig.2.1 but used paired legs to avoid lateral instability, a common method in 2D

bipeds ( e. g. [26,35,44]). A picture of the robot can be seen in Figure 4.2.

   

 

(a) CAD of MSU Biped (b) Picture of MSU Biped

Figure 4.1: MSU Synthetic Wheel Biped With Torso

The inner pair of legs is solid, and therefore cannot adjust for leg swing clearance.

We compensate for this by adding a pair of prismatic outer legs that were able to

lengthen during the stance phase and shorten during the swing phase, but still remain

dynamically similar throughout the leg’s range of motion, as in Figure 4.2. A drawing

of the prismatic joint can be seen in Figure 4.3. These joints were only used in the

outer legs to reduce the complexity and number of required motors. Note that at this

time we do not use the prismatic legs for propulsion, but rather only as a means for

providing foot clearance. Because the prismatic joints are in the outer legs only, it

necessitates that when the outer legs are the stance legs, the prismatic joints must

lift the entire mass of the robot, and therefore the motors must be of relatively high
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power. The robot has 3 internal degrees of freedom (as defined in Fig. 2.1) and stands

1.09 m tall. The main structural material is 6061 Aluminium. Dimensions and mass

distribution of the robot are described in Table 4.1.

Table 4.1: Kinematic and Dynamic Parameters of Synthetic Wheel Biped
 

Kinematic Parameters

Length (m) Foot radius, R (m) 5400215212, 6 (deg)

 

 

 

 

Inner leg 0.635 0.635 11.25

Outer leg 0.635 0.635 11.25

Torso 0.457 — -     
Dynamic Parameters .

Mass (kg) Inertia (kgmz) d in Fig. 2.1 (m)

 

 

 

 

Inner leg 1.64 0.094 0.285

Outer leg 3.64 0.128 0.355

Torso 11.87 0.198 0.307      

The robot has four 24 Volt DC servo motors: two of them (Maxon RE40, 150W)

are located at the hip and control the angle of the stance leg and swing leg with

respect to the torso; the other two (Faulhaber 3243 CR, 26.3W) provide simultane-

ous extension and contraction of the outer paired legs. Each hip drive is connected

between the torso and a leg through a 43:1 planetary gearhead (Maxon 42C) and a

final 2:1 helical gear drive. The leg extension motors have a 3.71:1 planetary gear-

head (Faulhaber 38/1) and are connected to the bottom part of the leg through a

4.72 turn/cm ACME screw drive. The leg extensions ride on linear bearings for a

smooth action. The hip joints are made of two concentric tubes, the inner tube

is connected to both the inner legs while the outer tube is connected to both of the

outer legs. Each tube is also attached solidly to a driven gear, as in Figures 4.4 and

4.5. The motors drive the drive gear which in turn rotates the driven gear, and there-

fore changes the angle of the leg with respect to the torso. The motors are mounted

slightly offset fore-aft with respect to each other, but retain a symmetry with respect

to the midline.
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Figure 4.3: Outer Leg Prismatic Joint
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Figure 4.4: Front View of the Hip Joint.
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Figure 4.5: Bottom View of the Hip Joint.
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4.3 Electrical Design

4.3.1 Version 1

The original computing system for the robot was a AVR ATMega128 chip on a

STK300 development board from Kanda (Embedded Results Ltd., PO. Box 200

Aberysth, SY23 2WD, UK). This board was used to compute position commands

that would be sent to the DZRALTE drives from AMC through a step and direction

method of communication. The motor amplifiers would then calculate a current to

output to the motor based on an internal PID controller that could be independently

programmed.

This simplified the design because complex encoder velocity calculations could be

performed by the motor amplifier rather than having the main computer count the

actual values of the incremental encoder. For this method to work, the main computer

has to assume that when a joint is commanded to a specific position, that the joint

arrives at that commanded position within a reasonable time. This generally requires

large gains for fast response.

The largest problem with this method came from our inertial measurement unit

(IMU). It was decided early on that the measurement of the direction of gravity could

have a relatively large error because as long as the robot has the leg near the correct

position (i.e. on the correct side of the body) at the switching time, it would remain

stable due to the synthetic wheel design. To reduce the expense of the robot, a simple

accelerometer based device was built and it was assumed that if the robot was slowly

accelerating horizontally or was traveling at a constant velocity, the measurement of

gravity would be relatively accurate. This, along with heavy filtering, was thought to

provide a reasonable measurement, even though the signal would be subject to lag.

The system provided some decent results when the device was slowly rotated through

its range of motion, but was found to be severely deficient during actual walking
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exercises, encouraging us to abandon this method and either buy a professional IMU

or to spend considerable resources designing and developing a better IMU containing

rate gyros and accelerometers with appropriate Kalman filters. We happened to have

a commercial inertial sensor available to us. The use of this type of off the shelf

IMU required an upgrade of our computing resources, and necessitated the Version 2

redesign.

DZRALTE

IMU (PID Controller)

 

    

  

   

Current 533:”

Position Faulhaber 3243

jib

3 r 53:?"

Maxon RE40

fl

 

Torso

Attitude

  
 

Kanda AVR

 

 

 

—* Analog

—’ HV Current

—> Inc. Encoder (Pulses)

—> Digital l/O

 

 

   

Figure 4.6: Schematic of Version 1 Electrical System

4.3.2 Version 2

Version 2 saw a number of changes in the way sensor data was collected, what infor-

mation was available to the main controller and a significant increase in computing

speed. The system redesign included a new embedded computer, new digital and

analog acquisition board, new encoder counters, and a new power supply.

The largest change in the system was the main computer. The robot was con-

trolled using a relatively low power (12W) embedded computer (WinSystems EBC-

855) running a C program on a Linux operating system. The operating system was

later changed to incorporate the Xenomai real-time framework with the Linux ker-

nel, which allowed for more accurate time measurement by measuring time from the

computer system, rather than having to poll an external timer.
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Figure 4.7: Schematic of Version 2 Electrical System

Data acquisition was provided through a PC104 format data acquisition board also

by WinSystems (PCM-MIO). In combination, these boards were capable of reading

all of the sensors that we needed while providing plenty of computational overhead,

802.11g wireless and Ethernet.

To allow our computer to read the hip positions, we added encoder counter chips

(Avago HCTL—2017) to the hip encoders. These allow our robot to easily determine

the absolute position of the legs through the use of parallel digital inputs on our data

acquisition board.

The walker relies on accurate absolute angle measurement of the torso to operate.

To measure this, we used one axis of an InterSense Inc. Inertiacube2+ 3D inertial

sensor. This provides torso angle data with an angular resolution of 0.01 degrees at

a rate of 180Hz.

The hip joint drives were programmed to provide current control, requiring a +/-
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10VDC analog control signal that was proportional to current. The leg extension

motors were run in a position control mode, requiring a +/- 10VDC analog control

signal that was proportional to position. A comparison of both versions of control

system hardware system components can be found in Table 4.2.

 

 

 

[ [ Version 1 Version 2 ]

Computer AVR ATmega128 (Kanda) WinSystems BBC-855

I/O Card On board I/O WinSystems PCM—MIO
 

Inertial Sensor Self-Built, accelerometer  Inertiacube2+
 

Motor Encoders Agilent HEDS—5500 x4
 

 

 

Amplifiers AMC DZRALTE x4

Battery 20 cell - 3800 mAh SubC NiMH

Hip Motors Maxon RE40, 150W x2
   Leg Extension Motors Faulhaber 3243 CR, 26.3W x2  
 

Table 4.2: Control System Hardware
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Chapter 5

Experimental Results

5.1 Performance Comparison

We measured the kinematics of the robot walking on flat ground while using both our

controllers. Both of our controllers qualitatively worked and were able to complete

many successful steps down a hall, but the coupled controller, discussed in Chapter

3.3, showed better trajectory tracking and better disturbance rejection of step to step

impulses.

5.1.1 Decoupled Controller

The kinematics of the biped were measured using an eight camera, 3-D, passive marker

motion capture system, a product of Motion Analysis Inc., at 120Hz. Reflective

markers were attached to the robot to allow external measurement of the torso and

both legs with respect to gravity as it walked down a runway. The experimental

results are shown in Figures 5.1 and 5.2.

The angle of the torso with respect to the vertical, or, is shown in Figure 5.1. The

desired angle, ad, was set to 2.5 deg and the results indicate that a did not stabilize

to this value. It had a steady oscillation and this in part due to the fact that the

44



torque controller for stabilization of a was designed assuming that the torso dynamics

is decoupled from the dynamics of the legs. Another reason for this oscillation in the

torso angle is from the impulse at switching due to the fact that the swing leg has

a different velocity from the ground. This impulse causes a jump in the velocity of

the torso to which the controller cannot instantly correct. The results shown below

indicate that the oscillation in 0 did not adversely impact the gait of the biped.

The angles of the inner and outer legs are plotted in Figure 5.2. This figure shows a

symmetric motion of the legs which implies that the torque controller for constrained

leg motion performed well. The average amplitude of the legs were 23 deg, which is

close to the ideal case of 22.5 deg. Ideally, the legs must change their direction of

rotation at 3:11.25 deg but switching occurs at slightly different angles because of

error in initialization as well as lag in the controller.
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Figure 5.1: Plot of the Torso Angle a with Respect to Time During Walking
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Figure 5.2: Plot of the Angles made by the Inner and Outer Legs with respect to

Time during walking. The Outer leg angle with respect to the torso is the solid line.

The Inner leg angle with respect to the torso is the dotted line.

The distance traveled by the biped can be estimated from the following equation,

D = nsRA (5.1)

where as is the number of steps taken by the robot, R is the leg length, and A is the

angular amplitude of rotation of each leg during a single step. From Figure 5.2, 17.3

and A are found to be 16 steps and 23 deg (0.4 rad), respectively. This results in an

estimated distance of 4.07 m, which closely approximates the actual traveled distance

of 3.9 m.The distance was covered in roughly 10 sec and therefore the average walking

speed of the biped was 0.4 m/sec.
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5.1.2 Coupled Controller

The synthetic wheel biped in Figure 2.1 has no preferential direction of motion. With

reference to Figure 1.7, it can walk in the direction of the positive :1: axis as well as

negative .7: axis. To make the biped walk in the direction of the negative x axis, the

desired angle of the torso with respect to the vertical was set to a negative value,

equal to ad = —1.5 deg. Since the torso has a large mass (as 70% of total mass -

see Table 4.1), a small torso angle is sufficient to cause the biped to walk. The biped

was programmed to walk with the maximum step size. Since the biped was walking

in the direction of the negative 2: axis, the stance and swing legs were interchanged

when the point of contact of the stance leg with the ground reached the heel, i.e.,

when 6 = —fi = —-11.25 deg (see Table 4.1).

The experimental results are shown in Figures 5.3 and 5.4 for some arbitrary

initial conditions. Figure 5.3 shows the variation of V1 and V2 with time. Both these

variables show oscillatory behavior although they were expected to converge to zero

with the controller designed in Section 3.3. The oscillating behavior can be attributed

to the periodic impulsive disturbance acting on the biped, not taken into consideration

in the control design. The amplitudes of oscillation are small, approximately 2 deg

for V1 and 5 deg for V2, respectively, and as such do not pose any problem with the

gait. The mean value of V1 (—0.278 deg, likely due to the large error at the initial

time) is almost zero and this indicates that the controller compensates the effect of

the disturbance. The same cannot be said in regards to control variable V2. The mean

value of V2 is —3.68 deg (see Figure 5.3) and this negative offset can be explained

with the help of Figure 5.4.

Figure 5.4 plots the angles of the inner and outer legs with the vertical and the

vertical dashed lines in the figure indicate the times at which the stance and swing

legs are interchanged. In the first time interval, the outer leg is the stance leg (ost)
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Figure 5.4: Plots of angles subtended by the inner and outer legs with the vertical.

The vertical dashed lines indicate the times when stance and swing legs are inter—

changed. In the first time interval, the outer leg is the stance leg (ost) and the inner

leg is the swing leg (isw). After the first interchange, the outer leg becomes the swing

leg (osw) and the inner leg becomes the stance leg (ist).
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and the inner leg is the swing leg (isw). After the first interchange, the outer leg

becomes the swing leg (osw) and the inner leg becomes the stance leg (ist). The

plots of inner and outer leg angles with the vertical are both comprised of segments

with positive and negative slopes, with change in slope occurring approximately at

the time of interchange of stance and swing legs. The segments with negative slopes

represent the stance leg angle with the vertical (dashed line in the first time interval,

solid line in the second time interval) and are therefore plots of 6’ versus time. The

segments with positive slopes represent the swing leg angle with the vertical (solid

line in the first time interval, dashed line in the second time interval) and are plots

of (0 + 1,0) versus time. The legs are interchanged based on stance leg angle, and

specifically when 0 = —fl = —11.25 deg, i.e., when the segments with negative slope

reaches the lower horizontal line.

The control objective of V2 = 0 translates to (0 + 1,11) = —6, i.e., maintaining the

swing leg symmetric with respect to the stance leg about the vertical. This symmetry

is not achieved at the time of interchange of stance and swing legs since the swing

leg angle with the vertical fails to reach the desired value of +1125 deg. This error,

denoted by e in both Figures 5.3 and 5.4, can be reduced by increasing the control

gains but this results in a stiffer biped that is prone to instability due to the impulsive

disturbances.

To maintain a symmetric gait, the swing leg angle with the vertical should also

have a positive slope immediately after interchange of stance and swing legs. This

is not the case, as evident from the undershoots below the lower horizontal line in

Figure 5.4. Each leg, for a brief period of time continues to move in the same direction

in which it was moving in the stance phase. This effectively results in large negative

values of V2 (see Figure 5.3) immediately after interchange of the legs as well as

a negative mean value of V2. It is possible to improve overall gait symmetry by

increasing the control gains. This is, however, avoided since higher gains leads to
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instability as mentioned earlier.

The inner and outer legs of the biped have different inertia properties and the

impulsive disturbance has distinct effects on the gait depending on which leg is the

stance leg. This is evident from the nature of the oscillations of V2 in Figure 5.3. It

may be useful to note that It in Equation 2.9, for the data provided in Table 4.1, has

a value of 0.412 when the outer leg is the stance leg and a value of 0.832 when the

inner leg is the stance leg.

5.2 Energy Consumption

Energy consumption was not a major goal of this particular project, but it should

be noted that simple changes in the designs of bipeds can have a significant effect

on energy consumption. Here, we have shown that even though the power values

for our robot were determined using a non-optimized leg trajectory, we still have

relatively efficient and stable locomotion. The robot is able to perform a number of

steps every time it is started. It is expected that simply with trajectory optimization,

our robot could achieve much lower energy consumption values while retaining the

same amount of capability. Additional savings could be found through slight changes

in the geometry and inertial parameters of the system.

Although a fair comparison is not possible, Table 5.1 is offered as a reference for

how efficient our robot is compared to the some of the efficient and capable robots

today. Our robot does not have nearly the capabilities of Asimo, but it is stable and

has a robust gait on reasonably flat ground as well as on slightly sloped ground. The

most efficient robots, such as the fully passive Dynamite, are extremely sensitive to

initial conditions and take some operator skill to achieve a stable gait. They are also

unable to climb slopes, as our robot is capable of doing.

We can calculate a measure called the total specific cost of transport which is
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energy used/ [weight * distance traveled] and abbreviated as Get for our robot and

a number of other robots as a comparison for overall efficiency. Also related to Get

measure is the mechanical energy efficiency, or Cmt. This is calculated similarly, but

only accounts for the mechanical work, or energy the motors consume to walk, rather

than the total energy. This is used to determine the efficiency of the gait itself, in an

attempt to separate computing and sensor energy from actual motor work.

We walked the robot down a hall and measured the distance and time during

travel. Total power was determined by measuring the battery voltage and amperage

using a 0.2 ohm resistor and external data acquisition system at 500 Hz. By sub-

tracting the energy required to run our computers and controllers, we determined

a mechanical energy efficiency. Finally by determining and subtracting the power

required to run the prismatic joints, we could determine a cost of transport using just

the hip joints. This was done because the prismatic joints are high power joints that

are being driven with high gains to precise positions. The design of these joints is

also inefficient due to the use of inefficient high-friction parts such as ACME screws

as opposed to a more expensive ball screw system. The results of five trials were

averaged and recorded in Table 5.1.

The velocity that the robot has during walking can greatly influence the measure-

ment of Cat, especially in robots such as ours where there is a large constant cost due

to our computing and sensor systems. Because of the nature of our two controllers,

the robot had a different preferred speed while making these measurements. There—

fore the efficiencies of the two different controllers Show a large difference in Get, but

similar Cmt values.

5.2.1 Decoupled Controller

The total power required to walk at 0.37 m/s averaged 46 W, corresponding to a

total specific cost of transport of 0.98. The power required to run the motors while
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walking averaged 20 W, corresponding to a mechanical energy efficiency of 0.33. The

power consumption without the leg extension motors averaged 8.7 W, corresponding

to a cost of transport of 0.14. A comparison of the robot’s energy consumption to a

number of other robots as well as a couple of human activities is shown in Table 5.1.

5.2.2 Coupled Controller

The total power required to walk at 0.45 m/s averaged 55.4 W, corresponding to

a total specific cost of transport of 0.73. The power required to run the motors

while walking averaged 26.6 W, corresponding to a mechanical energy efficiency of

0.35. The power consumption without the leg extension motors averaged 13.4 W,

corresponding to a cost of transport of 0.18. A comparison of the robot’s energy

consumption to a number of other robots as well as a human walking is shown in

Table 5.1.

Table 5.1: Energy Consumption of Selected Bipeds
 

 

 

 

Cet Cmt

Robots1 MSU Synthetic Wheel Biped

Decoupled Controller 0.98 0.33/0.14

Coupled Controller 0.73 0.35/0.18

Asimo 3.2 1.6

TU Delft Denise 5.3 0.08

MIT Spring Flamingo 2.8 0.07

Cornell Collins 3D 0.20 0.055

McGeer Dynamite - 0.04

Humans Walking 0.2 0.05    
1 Values found in [30] and [1]
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Chapter 6

Determining Reference

Trajectories

Due to its synthetic wheel geometry, our robot has a wide variety of possible gaits

with which the robot will remain walking. Therefore, we should be able to find swing

leg and torso trajectories that can reduce energy consumption as well as control the

impact at the switching times.

This can be done though creating a trajectory for the swing leg that is a function

of the stance angle, 6, that also has a zero velocity in «p at the end of the swing phase.

Doing this completely eliminates the impact during switching discussed in Section

2.3. In a similar manner, we can create a trajectory for the torso angle as a function

of the stance angle, so that the combination of the two trajectories minimizes the

work to take a step.

Note that for this system, because our model is completely lossless, any changes in

energy of the system results in an increase of kinetic energy of the system if the robot

ends its step in the same position as it started, but with legs in reversed positions.

Therefore, for all of the reference trajectory calculations, it is beneficial to assume

the legs have the same mass and moment of inertia to increase the symmetry in the
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system. This could be achieved in our experimental robot by adding mass to our

inner leg.

6.1 Parameterized Gait Functions

6.1.1 Boundary Conditions

To create functions to relate the swing leg angle and torso angle to the uncontrollable

stance state, we can start by imposing the boundary conditions that guarantee that

we satisfy the zero velocity condition in It at the end of each step. For example if

we choose to use the entire foot during the stance phase (an arbitrary condition that

makes each step the same length), then the stance angle 0 at the start and end of the

step is

42(0) = 0(T) = [3 (6.1)

if we choose to move in the positive X direction as defined in Figure 2.3. T is the

time at the end of the step, 5 is defined as half the foot are as in Table 4.1, and 0 is

as defined in Figure 2.1. By extension, this also imposes the condition

em = —20 (5.2)

where 21) is the angle from the stance to the swing leg, because the swing leg must be

in the correct spot to become the new stance leg. To match our velocities of swing

and stance legs at transition, we can impose the condition

122(0) = 2])(T) = 0 (53)

Note here that ,8 could in reality be any step size by changing the arc length of

the foot or simply using a portion of the foot instead of the full length.
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6.1.2 Work over One Step

We would also like the trajectory functions to minimize the work required to make a

step. This necessitates the minimization of the work equation

T. .
W: [0 [an+¢¢2]dt. (6.4)

Another way to look a this is through total energy of the system. Because the

system is lossless, any energy that is put in or taken out through the motors is found

as a reduction or increase of the total energy of the system. This implies that if the

robot has the same position at the beginning and end of the step, the only change will

be in the kinetic energy of the system. Therefore we can also calculate the change in

kinetic energy over one step to derive the amount of work done by, or on, the motors

during the step.

For most analyses, we choose to model negative work as perfectly regenerated

energy. At best, our motors can recapture around 80% of the negative work, and

if this energy needs to be stored in the battery, estimations for recapture fall to at

least less than 50% of the total work (coulometric charging efficiency of nickel metal

hydride batteries is typically 66% for average charges. For faster charges this rate

will decrease even lower). Theoretically, we can change the amount of work needed

by the motors by adding passive springs to store energy during one part of the gait

cycle and returning it at another time instead of using motor work to provide the

necessary torques.

6.1.3 Parameterized Gait Functions

We now return to our generalized parameterized gait functions. We originally chose

these gait functions because they can satisfy the boundary conditions defined in the

previous section, and used 5 parameters to minimize the number of parameters needed
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to satisfy our desired trajectories as well as simplify the trajectory to be tracked.

These parameterized gait functions are once again:

¢=(7T+ad-0)+dSIIl(ZTI'B-0-+f) (6'5)

for the angle between the stance leg and the torso and

2/2 = k6 + asin ($2) + csin (7:361) (6.6)

for the angle between the stance leg and the swing leg. Here, ad is the mean value

of the desired torso angle offset with respect to the vertical, ,8 is half of the foot arc

angle, and the parameters It, a, c, d, and f are available to be determined. However,

due to the boundary condition in 6.2, we have the relationship

a = —z3(2 + k) (67)

and due to the second boundary condition 6.3

c = — (6.8)

We are now ready to determine the remaining parameters, k, d, and f, by solving

the differential equation in I9 and calculating the work required to take one step.

First, we must derive the differential equation in 0 from the equations of motion of

the system. We begin with the equations of motion for the general system (Equation

2.1) and solve the first equation

M119. + M1203 + M1320 + N119 + N120 + N130 + 01 = 0 (6.9)

while substituting our parameterized gait functions for ab and 1,0. This reduces the
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equation to a differential equation in 0 of the form

N15+N0+C¥=0 (6.10)

We can numerically solve this equation for 6 and 6 in time, and at each time step

determine the corresponding values of 45, «p and their derivatives. These solutions

can then be substituted into the two remaining equations of the general equations of

motion,

M210 + A1220 + lI/[23'Ill + N219 + N220 + N230 + G2 7'1

M315 + Iv132<i5+ M3312} + N310 + N32<I> + N331!) + 03 = 72 (6.11)

to solve for the torques T1 and 72 in time. With the numerical values of the torques

calculated, we can solve for the work done over a single step for given initial conditions

and a desired torso setpoint ad.

6.2 Nominal Trajectory

As a baseline measurement for energy, we can determine the work over one step using

the trajectories previously described in Section 2.4. Substituting the nominal trajec-

tories of Equations 2.15 and 2.16 into the parameterized gait functions of Equations

6.5 and 6.6 would require parameter values of k = —2 and all the other parameters

equal to zero, as shown earlier. The equations of the constrained motion then simplify

to

¢=7r+ozd—6 (6.12)

and

a = —26 (6.13)

58



Therefore, the velocities of the states are

<15 = —6 (6.14)

and

II = —29 (6-15)

both of which can never be zero if 0 74 0

For a torso angle of 1.5 deg, and an initial velocity of zero, we can determine the

work for the step as well as time traces for the states 0, qb and 11), as shown in Figure

6.1 (Note for ease of viewing, (15 is plotted as qt -— 7r).

Total work over the step, assuming a 100% regeneration rate, is .258 J with a

step time of 2.47 3. Note that at the end of the step 1b is not zero, implying that

there must be an impulse if the legs were switched at this time. This impulse is not

included in the analysis of the trajectory. The positive work value also implies that

there must be a positive change in the kinetic energy at the end of the step because

the change in potential energy must be zero. The torque curves in Figure 6.2 show

that the torque needs to be discontinuous at the end of each step, jumping from one

value to the other as it switches legs.

This also illustrates another issue with this method of optimization. Because all

of the parameters are used to control the trajectories with the boundary conditions

we have selected, we have no ability to separately control the velocity in the uncon-

trollable state, 0. This means that the end velocity can and will be different from

the initial velocity of the system without carefully choosing our parameterized gait

functions. In this case, 9 starts initially at zero and progresses to 0.319 rad/sec. This

is intuitively so because the torso is leaning forward and therefore, while using the

nominal trajectory, it is constantly accelerating forward. As we increase the initial

velocity of the robot, the difference in velocity at the beginning and end of the step
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Figure 6.1: Simulation of 0, (15 — 7r, and ’t/J over one step starting from rest and torso

angle at 1.5 deg.
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Figure 6.2: The nominal trajectory torques T1 and r2, corresponding to the torques

on generalized coordinates <15 and 1/) respectively.
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grows smaller, as the system has less time between the beginning and end of the step

but is still accelerating at the same rate. This is illustrated in Figure 6.3.
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Figure 6.3: The work and 0f — do plotted against initial velocity for a torso angle of

1.5 deg using the nominal trajectory.

6.3 Optimized Trajectories

We can choose better parameterized gait functions that will allow us to further un-

derstand the relationship between the uncontrolled and controllable states. First, we

will derive parameterized gait functions that allow zero total work over one step and

prove that it will always be zero work regardless of the initial velocity of the system

or the overall step size. We then can change velocity by changing the parameters

of the parameterized gait functions, allowing us to speed up or slow down the robot

while eliminating collision at the end of the step.
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6.3.1 Constraints for Steps with Zero Total Work

For all of the previous sections we assumed the torso would lean forward, and therefore

the robot was constantly accelerating. This is shown by the increase in kinetic energy

at the end of all of the valid steps in the previous section. This system, when modeled

without friction as we have, is lossless, and therefore any positive work that enters

the system is manifested as an increase in kinetic energy at the end of the step.

We can also show that if we allow our controllable states to be constrained to

functions in 6 of a certain type, we can guarantee that uncontrollable states will do

what we would like them to, primarily progress from —6 to 6, and have 6(0) = 6(T),

where T is the time at the end of the step; and thereby ensure the same position and

velocity of the robot at the beginning and end of the step, but with legs exchanged.

This results in net zero total work over the step, because it has the same kinetic and

potential energy at the beginning and end of the step. This simulation requires the

ability to capture 100% of the negative work done by the system which, while not

really practical, shows that the system could ideally require no work to walk, but still

satisfy our desired boundary conditions of an arbitrary, but equal, step length, and

zero velocity in 16 at the end of the step.

6.3.2 Equations For Gait Requiring Zero Total Work

We would like to develop a constraint for the actuated degrees of freedom of our

system that will guarantee that the underactuated degree of freedom will be in the

correct place and velocity at the end of the step. Because any valid step will allow the

stance foot to rotate from —3 to )8, by definition the kinematics of the underactuated

state will satisfy the boundary condition of Equation 6.1. We need to ensure that

6(0) = 6(T). To prove this, it is sufficient to require 6 = .7:(6) where J'-(6) is an even

function in 6. Because the derivative of an even function is an odd function, it suffices
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to say that 6(6) is an odd function in 6.

We begin with the first equation from the equations of motion, Equation 6.9. We

substitute into this equation our new gait functions, which have the following forms,

A

65(6) = (a6 + b) + o (6.16)

A

1M6) = (c6 + d) + 1/2 (6.17)

where (6 and 26 are any odd functions in 6. By solving the equation for 6, we find

6': 32% (6.18)

where

N(6) = — 65(10 + m0(d0 — R)(d0 — R + R cos [6 + (DD) (Term A)

— tllUsw + msw(dsw — R)(dsw — R + R cos [6 + 10]» (Term B)

+ m3t(d3t — R)(g + R 62) sin [6] (Term C)

+ m0(d0 — R) (g + R(6+<13)2) sin [6 + 6] (Term D)

+ m3w(dsw — R)(g + R(6 + 6)?) sin [0 + 6]) (Term E)

10(6) =10 'I' Ist + 13112 (Term F)

+ m3t((d3t — R)2 + R2 — 2R(—dst + R) cos [0]) (Term F)

+ m0((d0 — R)2 + R2 — 2R(—d0 + R) cos [0 + 6]) (Term G)

+ m3w((dsw — R)2 + R2 — 2R(—dsw + R) cos [9 + 6]) (Term H)
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We will show, term by term, that N(6) is odd and 10(6) is an even function, and

therefore 6 is an odd function.

6.3.3 Term by Term Evaluation of Even/Oddness

cos (6 + qb)

cos (6 + qb) = cos (6) cos ((13) — sin (6) sin ((25)

= cos 6[cos (a6 + 5) COS (<15) — 5111019 'I' b) sin (I’ll

— sin 6[sin (a6 + b) cos (gb) — cos (a6 + b) sin (6)]

and

sin (a6 + b) = odd, cos (a6 + b) = even (6.19)

if b = nrr, where n is an integer. This means that cos (6 + (b) is an even function if

b = n7r. This is the same as for 21) and therefore cos (6 + 1,6) is also an even function.

sin (6 + (1’))

sin (6 + (15) = cos (6) sin ((1)) — sin (6) cos ((25)

= cos 6[sin (a6 + b) cos (a5) + cos (a0 + b) sin (46)]

+ sin 6[cos (a6 + b) cos (6)) — sin (a6 + b) sin (6)]

Once again we let b = nvr such that the relationships in Equation 6.19 hold. This

means that sin (6 + (15) is an odd function if b = mr, and once again this also applies

to sin (6 + 1/1), meaning it is also odd.

Term A
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Term A can be rewritten as

—(/5(C1 + 02(03 + cos (6 + 45))

and is therefore the product of an odd function (b, and an even function composed of

constants, and the function cos (6 + 65), resulting in an odd term.

Term B

Term B can be rewritten as

—2/1(C4 + C5(Cg + cos (6 + 16))

is odd because it is the product of an odd function 1,6, times a number of constants,

times cos (6 + 1b). 0

Term C

Term C can be rewritten as

62 C7sin(6)

which is an even term 62, times an odd term sin(6), resulting in an odd term.

Term D

Term D can be rewritten as

08(09 + (9 + is?) sin(6) + <I>)

and is an even constant times an even term (6 + (b)2, times an odd term sin(6 + ¢),

resulting in an odd term.

Term E

Term E can be rewritten as

016(011 + (9 + 6)?) sin(0 + II»)
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and is therefore an even constant times an even term (6+ 11.02, times an odd term

sin(6 + ’16), resulting in an odd term.

Because Terms A, B, C, D and E are all odd, the numerator, N(6), must be odd.

Term F

Term F is a constant and is therefore even.

Term G

Term G can be rewritten as

C12(013 + 005(9))

and is therefore an even function.

Term H

Term H can be rewritten as

014(C15 + cos(6 + phi))

and is therefore an even function.

Term I

Term I can be rewritten as

016(017 + cos(6 + 1932))

and is therefore an even function.

Because Terms F, C, H and I are all even, the denominator, 10(6), must be even.

6.3.4 Proof of Zero Total Work Gait

We have proven that 6 is odd in 6, meaning 6 is even. Therefore, for any given

symmetric step, the velocity of 6 will be the same at the beginning and the end of

the step. This is true for whatever initial velocity we choose because the function 6 is
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even in 6, and not in time. This requires the step to be a zero total work step because

the other constraints put on the system require the robot have the same potential

and kinetic energies at the beginning and end of the step, i.e.

6(0) = — 6(7) 6(0) = 6(T)

0(0) = a(T) 61(0) = d(T)

6(0) = — 6m 6(0) = 6m

Also note that the restriction on b, namely b = n7r, in Equations 6.16 and 6.17

have physical limitations. The function 65 must be limited to n = 1,3,5, 7... if the

torso is to be standing upright, and for 1/J, n must be limited to 0, 2,4,6... if the

legs are going to have a small step size. It is easiest to simply set these to 1 and 0

respectively.

When using the original parameterized gait functions from Equations 6.5 and 6.6,

our zero work constraints would require the parameters k = 0 and f = 0. It is also

necessary to make ad = 0 to fit the correct form. Substituting in these parameters

creates the new constraint functions

(I) = (7r — 6) + dsin (1;) (6.20)

for the angle between the stance leg and the torso and

R6

6 = —26 sin (7) (6.21)

for the angle between the stance leg and the swing leg.

Now d is the only parameter that can be varied and will decide if a step is com-

pleted in a reasonable time and within our motor capabilities. Note here that even

though the total work is zero, the motors have to provide the correct amount of work

67



at the beginning half of the step and extract exactly the same amount of work dur-

ing the second half. However, there is no guarantee that we will remain within the

instantaneous torque constraints of our physical motors.

Figure 6.4 shows the plots for 6, (,b — 7r, and 16 for a step starting with a slow initial

velocity of 0.1 rad/sec and a d value of —0.06 rad. The traces look dramatically

different from the nominal trajectory (compare to Figure 6.1).

 0.6

R
a
d
i
a
n
s

 

  
     

0.0 ' 0.5 1.0 1.5 2.0

Time (s)

Figure 6.4: Optimized trajectory simulation of 6, go — 7r, and 1,6 over one step starting

from 0.1 rad/sec and torso amplitude of —0.06 rad.

The torque traces in Figure 6.5 are also odd over the course of the step. Because

of the odd nature of 6, d) and 1b the resulting work is zero. Note with this trajectory,

we continue to have a jump in the torques at the end of the step to meet the torque

requirements of the next step.

The velocity at the end of the step always matches the initial velocity independent

of our choice of initial velocity. To illustrate this, we have plotted 6 vs. 6 for different

initial velocities in Figure 6.6. The torso amplitude was set at —0.06 rad for all of

these calculations.
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Figure 6.5: Zero work trajectory torques 1'1 and r2 corresponding to general coordi-

nates 65 and 1,6 respectively. Calculations are over one step starting from 0.1 rad/sec

and torso amplitude of -0.06 rad.
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Figure 6.6: 6 is shown to be the same at the beginning and end of the step, regardless

of the initial velocity, 60. The torso amplitude is constant at —0.06 rad.
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Figure 6.7: 6 is shown to be the same at the beginning and end of the step, regardless

of the amplitude of the torso angle as long as the robot is able to complete a step.

For small, or positive, torso amplitudes, the robot is not able to reach the length of

a full step and simply wobbles on the stance leg.

The amplitude of the torso has a large effect on the velocity of the system during

the step. This corresponds to injecting energy into the system during the first half

of the step and then taking it back out during the second half of the step. While

the initial velocity stays constant at 0.05 rad/sec, the parameter d is varied. The

resulting phase portrait is shown in Figure 6.7. Note that for small values of d the

robot is not able to complete a full step and will wobble on the stance leg forever.

This is shown as a loop in the phase portrait that grows in size until a suitable d

allows 6 to reach the boundary of the step.

The conditions for the robot to wobble on its stance leg rather than taking a step

is a complicated mixture of inertial properties and initial velocity. The conditions can

be calculated, but we have chosen to simply exclude simulations that do not make a

step within 5 sec, with the rationale that if a step is to be useful, it must be completed
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in a reasonable time. This is an arbitrary time limitation, but enables us to speed

the calculation of our simulation. We should also note that because our system is

periodic, if the velocity in 6 changes direction within a step before it reaches the end,

it should be considered a failed step.

6.3.5 Non-Zero Total Work Gait

All gaits that do not follow the form of the zero work gait discussed in Section 6.3.1

end up with either a higher or lower kinetic energy depending on the direction of lean

of the torso and the parameters used in the parameterized gait functions. We can

now map parameters from the parameterized gait functions Equations 6.5 and 6.6 to

best satisfy the new velocities we desire.

The parameter space is large and needs to be simplified for a global parameter

search. We selected boundaries for our parameters primarily based on physical limita-

tions of our robot, in addition to preliminary low resolution searches of the parameter

space. For example, by restricting ()6 to be bounded by i175, the parameter k is con-

strained to the region —55 < k < 55. Similarly, a bound on parameter d can be

chosen as it corresponds directly to the amplitude of motion around the torso set-

point. Here we chose to bound (1 by —0.2 < d < 0.2, corresponding to approximately

$11.5 deg of motion around the desired setpoint, ad.

We can also declare that any steps that require instantaneous torques above what

our motors can individually provide (150W) are not useful for this particular opti-

mization and can be disregarded. Once again we limit step time to 5 seconds for

reasonable steps.

For an illustration of the method, we also calculated solutions for a given torso

angle that was similar to the angles used for experiments with the coupled controller

(Section 3.3) and nominal gait (Section 2.4). The best angle was empirically deter-

mined to be around 1.5 deg for that setup. We begin the search for a better trajectory
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by covering the parameter space determined in Section 6.3.5. Keeping the average

torso angle at ad = 1.5 deg and restricting k to the region —55 < k < 55, d to the

region —0.2 < d < 0.2 and f = 0 results in solutions in the shape shown in Figure

6.8.
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Figure 6.8: Parameter space in k and d. A rough estimate of the valid space of the

parameters.

Figure 6.8 is a two-dimensional plot that gives a rough estimate of the valid region

of the parameter space. We can use this plot to determine what area of the parameter

space to focus our search. Looking at these values it is apparent that the final velocity

does not change much with the parameter k, and therefore we can choose a fixed value

for k , such as k = 10, that allows a large variety of possible values of d. Plots of the

change in velocity from an initial velocity of zero against different values for parameter

d are shown in Figure 6.9. As we change the torso angle setpoint, ad in degrees, we

can see that the robot accelerates faster over the course of one step. This allows us

to choose a final velocity for the robot after one step if the robot starts from rest.

Similar maps can allow different initial conditions, such as the map slowing down the

robot in Figure 6.10.
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6.3.6 Discussion of Optimization

Our optimization method attempts to address the issue of velocity mismatch at the

end of each step, but it has not been implemented. We present a method to constrain

the controllable degrees of freedom to functions of the uncontrolled degree of freedom

and also determine a gait for which the total work is zero over a step and is collision-

less at the switching time. We also describe a method of controlling the torso to

change the velocity of the robot over one step.

The optimization method has a few issues that we choose not to address at this

time. This is a simple simulation, and so does not include the controller dynamics. We

assume that for each step the controller is able to track perfectly, which is impossible

in practice, but especially hard for our robot to approximate because of inability to

use large control gains due to nonlinearities, such as backlash, in the physical system.

Including the controller dynamics would be an obvious extension of this analysis.

Another thing we do not account for is the inability of our system to recapture

100% of the negative work done by the system. Using a weighting method for neg—

ative work would be a good way to attempt to optimize the trajectories further.

Adding friction and motor dynamics to our model would also be a way of getting the

simulation to closer match real life performance of our system.

Another method for doing this would be to simply relax our boundary conditions

and let the simulation run until the swing leg naturally matches velocity with the

stance leg. If there is a zero torque solution that results in an end state that matches

the initial state, as in the method of McGeer [26], we could track the resulting trajec—

tory, knowing that it is a minimum work trajectory for the passive system. Another

good aspect of this type of controller would be that the desired torque would be

necessarily zero at the beginning and end of the step, meaning there would be no

jump in the required torque of the motor. One major problem with this is that some
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initial conditions will not have suitable zero torque trajectories, and does not provide

a method to rectify this in an efficient way. For example, for a small foot size, at

higher velocities the required step length might be beyond the physical foot size, re-

quiring an undesirable gap between the feet during transfer. In cases like these, our

constrained method would be superior.
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Chapter 7

Conclusion and Future Research

We have presented a new simple paired leg, three-link biped which we have called

the MSU Active Synthetic Wheel Biped. This biped has legs that have solid arc feet

that have the same radius as the leg length, allowing it to place one foot in front of

the other at the right times with the correct velocity to simulate the rolling motion

of a wheel. We have developed a general dynamic model and imposed constraints to

create gaits. Using these gaits, we designed and implemented two different controllers

successfully. The first was a decoupled controller, where the swing leg and stance leg

torques were determined independently of each other without considering the coupled

dynamics of the system, and the second was a full dynamics controller utilizing feed-

back linearization. The experimental results of both of the controllers were presented

and finally, we described some ways of improving upon the techniques, primarily in

the methods to find better reference trajectories for the machine.

The robot takes advantage of its synthetic wheel configuration through the use of

its simple stability criterion, namely, if there is a foot below the hip at all times it will

remain stable. This guarantees that as long as we have motor bandwidth sufficient to

satisfy this condition, we can remain walking. We have not yet taken advantage of the

fact that a robot of this type could roll without impact during the switching between
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legs by matching the swing leg velocity with the stance leg velocity in experiments.

Implementing different reference trajectories should allow for a decrease in mechanical

work per step through the reduction of impact at the end of each stride and through

better control of velocity of the robot. We plan on implementing new reference

trajectories in an effort to show this reduction experimentally, as well as attempt to

produce a more pleasing, smooth gait.

Our method works for our synthetic wheel design, and we feel confident that we

can expand the method to robots with more degrees of freedom and different body

shapes. Expanding the method to include robots that have feet with a small radius

and more degrees of freedom will also require the inclusion of collision dynamics, or at

least a different method to avoid collision at the foot fall in at least two dimensions.

Inclusion of all of these topics should provide a much better understanding of how to

produce stable, controllable, and efficient bipeds for general use.
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Appendix A

Impulse Constant 16

While calculating the change in the velocity of the biped system due to impulse at

foot switching (Section 2.3), we encounter a large constant which we defined as It.

This constant is comprised of the kinematic and dynamic parameters of the biped

and is defined as follows.

n =[sz + m,w(d§w — 26sz + 2R2) + msw(dsw - R)((—dst + R) cos (6)

+ 2Rcos (6 + 10+ (6.. — R) cos (26 + 16) - Rsin (9 + 16)]

/[.1,, + sz + dgwmsw — 263.061sz + (mst + 26131161?2 + mst(dst — 10260809)

+ Rcos (6)(2m3t(dst — R) + msw(dsw - RX? COS (w) - sin (16»)

+ sin (6)(m5tR(—dst + R) + msw(dsw - Ell-5160806) + 2 sin (16))

+ 2(—d3t + R) sin (6 + 16)))]
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