

30/0

LIBRARY

Michigan State

University

This is to certify that the

thesis entitled

GENERATING COMBINATORIAL TEST SETS FOR MODEL

TRANSFORMATIONS

presented by

Matthew J. McGill

has been accepted towards fulfillment

of the requirements for the

Master of degree in Computer Science

Science

Major Professor’s Signature

W144 / 7, J10 / fl

(/ 1

Date

MSU is an Affirmative Action/Equal Opportunity Employer

-
_
.
-
l
—
.
—
.
-
-
.
-
-
o
p

—
.
-
.
-
.
-
.
-
.
-
.
-
.
-
.
-
o
-
-
.
-
.
-

_

PLACE IN RETURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE DATE DUE DATE DUE

5/08 K:IProj/Aoc&Pres/ClRC/DaleDue.indd

GENERATING COMBINATORIAL TEST SETS FOR MODEL

TRANSFORMATIONS

By

Matthew J. McGill

A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Computer Science

2010

ABSTRACT

GENERATING COMBINATORIAL TEST SETS FOR MODEL

TRANSFORMATIONS

By

Matthew J. McGill

Model transformations are particularly susceptible to feature interaction errors.

To expose feature interaction errors during testing, a developer must construct test

inputs that systematically cover modeling language features in combinations. Man-

ually constructing such a test set is labor-intensive, and the developer may fail to

cover rarely occurring or counter-intuitive feature combinations. This thesis de-

scribes ATIG, a prototype tool for automatically generating sets of models to test

model transformations. ATIG uses combinatorial testing techniques to generate test

sets of manageable size that systematically cover the language features of a model

transformation’s source notation. To validate ATIG, I used it in a case study to

generate a test suite for an industrial strength code generator. The results suggest

that ATIG is useful for finding subtle feature interaction errors.

TABLE OF CONTENTS

List of Tables

List of Figures

1 Introduction

2 Background

2.1 Category-Partition Method

2.2 Combinatorial testing

2.3 Combinatorial testing with jenny

2.4 Object—Role Modeling

2.5 Alloy and Alloy Analyzer

3 Generating Combinatorial Test Sets of Models

3.1 ATIG Inputs and Outputs

3.1.1 Feature Specification

3.1.2 Test specification

3.1.3 ATIG Outputs

3.2 ATIG Internals

3.2.1 Algorithm Description

3.2.2 Cardinality Analysis

3.2.3 Practicality of the Algorithm

4 Case Study

4.1 Feature Specification

4.2 Test Specification

4.3 Generated Feature Specification Populations

4.4 Converting Populations into ORM Models

4.5 Test results

4.6 Discussion

5 Related Work

5.1 Combinatorial testing and constraints on program inputs

5.2 Generating Test Inputs for Model Transformations

6 Conclusions

BIBLIOGRAPHY

iii

4

5

9

10

11

18

23

24

26

29

32

33

35

39

45

49

49

50

52

56

Table 2.1

Table 2.2

Table 4.1

Table 4.2

Table 5.1

LIST OF TABLES

Example test specification for a web application login page . . 8

Sample population of an ORM model 13

Excerpt from a population generated by ATIG 49

Summary of test results for all versions of VisualBlox 50

Test specification for a telephone billing system 57

iv

LIST OF FIGURES

Figure 2.1 Example ORM product management data model 12

Figure 2.2 Derivation rules for derived fact types in Figure 2.1....... 14

Figure 3.1 Overview of the ATIG tool 23

Figure 3.2 An example feature specification for ORM 25

Figure 3.3 A sample test specification for Fig. 3.2 27

Figure 3.4 The ATIG Test Generation Algorithm 30

Figure 3.5 The data flow between modules in ATIG 31

Figure 4.1 Core ORM modeling features 40

Figure 4.2 Static semantics of ORM subtyping 41

Figure 4.3 Static semantics of ORM objectification 42

Figure 4.4 Static semantics of intersection predicates 43

Figure 4.5 Static semantics of grouping 44

Figure 4.6 Test specification for the VisualBlox case study 46

Figure 4.6 Test Specification continued 47

Figure 4.7 Feature specification for the case study 49

Figure 4.8 Generated test input that exposed a VisualBlox error 51

Figure 4.9 Another error-exposing test input 51

Figure 4.10 An infeasible choice combination detected by ATIG 52

Figure 4.11 An invalid ORM model accepted by NORMA 53

Chapter 1

Introduction

Software developers most commonly verify a program by testing the program on a

variety of inputs. Testing involves executing a program one or more times for each

input in a test set, and comparing in each case the actual output of the program with

the expected output for that input. If the actual and expected outputs disagree, then

the program or the specification of the expected input (or both) contains an error,

and we say that the test exposes the error. Testing is an empirical process, and cannot

generally prove the correctness of a program in a mathematical sense. However,

because testing is much less expensive than formal verification, and because testing

demonstrates that a program is correct for at least some inputs, it is overwhelmingly

the most common program verification approach.

Some test sets are better than others at exposing errors, and researchers have

developed many techniques for selecting test sets [16, 21, 9, 13, 3, 5]. The Category-

Partition Method [21] (CPM) is a black-box method, wherein test inputs are selected

from a partition of the input space that is derived from a functional specification

of program behavior. Another method, t-way Combinatorial Testing [5] (hereafter

t-way testing), applies combinatorial design to cover many combinations of input

parameter values with as few tests as possible. These methods have achieved popu-

larity in the software development industry, in part because they can be automated:

associated tools can automatically generate descriptions of the inputs to include in

a test set. Additionally, the methods are complementary: t-way testing can be used

in conjunction with the CPM to produce smaller test sets that are still regarded

likely to expose errors when they exist.

These methods, however, have proven difficult to apply when the inputs to a

program must satisfy complex structural constraints. Such is the case for an impor-

tant class of programs called operational model transformations. Operational model

transformations (hereafter simply model transformations) translate source software

models into target models or implementation-level code [11]. Model transformations

play a key role in Model-Driven Engineering (MDE), a designation for software de-

velopment approaches that use software models to bridge the gap between software

requirements and implementations [11]. Model transformations have many uses in

MDE, including automated refinement and refactoring of models, and automated

code generation. They must be thoroughly tested so that errors are not introduced

into transformed models. We would like to use the CPM and t-way testing to gen—

erate models for model transformations, but in this context the existing tools for

the CPM and t-way testing are difficult to apply. Most existing tools have insuffi-

cient support for expressing or handling constraints [5], such as those embodied by

the static semantics of a modeling language. When the tools are used to generate

descriptions of test sets comprising models, the descriptions are frequently inconsis-

tent with the static semantics of the modeling language and therefore not useful for

testing.

This thesis explores the possibility of compensating for weak constraint support

in existing tools by integrating them with additional technologies. Specifically, I

evaluate the following three hypotheses:

1. Existing tools for the CPM and t—way testing can be extended to generate test

sets of models that respect complex static semantic constraints.

2. The generation of test sets for model transformations can be fully automated.

3. The resulting test sets are useful for finding errors in real-world programs.

Chapter 2 provides necessary background information, including the main technolo-

gies upon which my research builds. Chapter 3 introduces the Automatic Test Input

Generator (ATIG), the tool that I developed to automate the generation of t-way

test sets, according to the CPM, that respect complex constraints. Chapter 4 de-

scribes a case study in which I used ATIG to automatically generate a test set for

an industrial code generator. Chapter 5 discusses prior work on generating test in-

puts, examining how each work relates to my approach. Finally, Chapter 6 presents

my conclusions, and includes a discussion of planned future work in the area of

automated test input generation.

Chapter 2

Background

This chapter describes the testing methods that motivate ATIG, and the tools that

ATIG employs to generate test inputs:

0 In Sections 2.1 and 2.2 I discuss the CPM and t-way combinatorial testing

respectively. ATIG was developed to support the application of these methods

to the testing of model transformations.

0 Section 2.3 introduces jenny, an existing tool that ATIG relies on to generates

t-way combinatorial test sets.

0 Section 2.4 describes the ORM modeling notation, which I employ to describe

the static semantics of modeling languages;

0 Finally, Section 2.5 describes the Alloy Analyzer, which I use to generate test

sets that respect the static semantics.

2.1 Category-Partition Method

A tester that constructs a set of test inputs in an ad-hoc manner can easily over-

look important important cases that should be tested. The Category-Partition

Method [21] (CPM) is a systematic method of deriving a set of test inputs from

a program’s specification that is intended to overcome this problem.

The CPM is a six-step process.

1. The tester analyzes a program’s functional specification to identify functional

units of the program that can be tested individually. For each functional unit,

the developer analyzes the specification to find characteristics of the unit’s

parameters or environment that affect its behavior in a way that should be

tested. Each identified characteristic is referred to as a category.

2. Each category is partitioned into choices, where each choice is a significant

case within a category.

3. The tester determines constraints among choices from different categories. It

is unusual for all identified categories to be completely orthogonal. The tester

must identify which combinations of choices do not describe valid parameter

values or environmental conditions.

4. The tester writes a test specification containing the category, choice, and con-

straint definitions, and supplies it to a program that generates a set of test

frames that cover all choice combinations not excluded by a constraint. A

test frame is a set of choices, one from each category, that defines a single

equivalence class in a partition of the program’s input space.

5. The tester examines the set of test frames in case the test specification needs

revision. The absence of a key test scenario, an illegal choice combination, or

an unreasonably large number of frames might cause the tester to amend the

test specification and generate a new set of test frames.

6. Having ensured that the set of test frames is acceptable, the tester converts

each frame into a test case.

Steps 3—5 are iterated until a satisfactory set of test frames has been produced.

To summarize, a tester analyzes the specification to identify important charac-

teristics of the program’s input parameters and environment. The tester then uses

these characteristics to derive a partition on the input space of the program, and

selects a single test input from each equivalence class.

A simple example clarifies the CPM steps. We are given a specification for a

web application login page that prompts the user for a user name and password.

According to the specification, a user name consists of up to 32 alphanumeric char-

acters; a password must be between 6 and 16 characters in length. On successful

login, the user is forwarded to a home page. When the user name is unrecognized

or the password is incorrect, the user remains at the login page, and an error is

displayed. Three unsuccessful attempts locks the user out of the application for a

period of time. We can use the CPM to derive, from the specification, an effective

set of inputs to test this login screen.

In step one, we first identify functional units, or modules, that may be tested

individually. We next extract categories from the functional specification. In our

simple example, the specification clearly describes a single functional unit. Several

important characteristics of the inputs are apparent:

1. the length of the entered user name,

2. the kinds of characters present in the user name (i.e. alphanumeric or not),

and

3. the length of the entered password.

Environmental characteristics includelz

1. whether the entered user name is recognized by the system,

2. whether the password is correct, and

3. the number of prior unsuccessful login attempts.

In step 2, we select choices for each category. Table 2.1 shows possible choices for

the categories in our example. Notice that the choices pay particular attention to

boundary conditions. In general, choices represent important cases to test; most are

taken from the specification, but we may also rely on experience or special knowledge

of the implementation (for example, including unrealistically large inputs to check

for buffer overflows).

In step 3 we determine constraints among the choices. In our example the cate-

gories are completely orthogonal, and there are no constraints to consider.

1One might argue whether the correctness of the password is a characteristic of the input or the

environment. Either answer is defensible, and the distinction is not important when generating

test frames.

Table 2.1: Example test specification for a web application login page

Category Choices

User name length 0; 1-31; 32; 33; 34-1499; 1500

User name characters Only alphanumeric; Alphanumeric with spaces;

Non-printable characters

Password length 0; 1-5; 6; 7-15; 16; 17; 18-1499; 1500

Password characters Only alphanumeric; Alphanumeric with spaces;

Non-printable characters

Prior failed login attempts 0; 1; 2; 3

In step 4, we would represent the categories, choices, and constraints as a test

specification in the input language of a generator tool (such as jenny, described in

Section 2.3). We would then use the generator tool to produce a set of test frames

containing all choice combinations not excluded by the constraints. An example

of a test frame that might be generated from the choices in Table 2.1 is the tuple

(1-31, “Only alphanumeric”, 0, “Alphanumeric with spaces”, 3).

Assume the set of generated test frames was acceptable (step 5). In step 6,

we would convert each frame into a complete test case with inputs and expected

outputs. In our example, we might turn each test frame into a test script, with

instructions for how to manually prepare the environment, enter apprOpriate inputs

into the login form, and verify the results. Alternatively, we might convert each test

frame into a single test case for an automated GUI testing tool such as Selenium [12].

In theory, we can apply the CPM to any program with an associated specifica-

tion. In practice, the CPM is difficult to use on model transformations because the

constraints on choice combinations are difficult to identify. The difficulty lies in ac-

counting for the static semantics of the transformation’s source notation. Identifying

which choice combinations are incompatible with the static semantics of a modeling

language can be extremely challenging when the static semantics are complex. 2

Ideally, a CPM tool for model transformations would automatically determine the

choice combination constraints by analyzing a formal representation of the source

notation’s static semantics.

2.2 Combinatorial testing

t-way combinatorial testing [4] is a testing method for covering many combinations

of input parameters with as few test cases as possible using t-way combinatorial test

sets. A t-way combinatorial test set is a test set that covers all combinations of

parameter values for every set of t parameters. The method relies on the intuition

that only the values of a small subset of input parameters determine whether a

given error will be exposed by a test case. If this intuition is true, most errors

can be exposed by testing all combinations of carefully selected candidate values for

each set of t input parameters. The benefit of using small values of t is a dramatic

reduction in the number of necessary test cases. When t is smaller than the total

number of parameters, each test case can cover multiple size-t combinations. D.

Cohen et al3 [4] show that the size of an optimal t—way combinatorial test set grows

logarithmically in the number of parameters for fixed t.

t-way combinatorial testing and the CPM are complementary methods. Whereas

the CPM focuses on identifying the characteristics of a program to be considered

2Consider that the static semantics of UML 2.x are scattered throughout a 700—page specification

[30].

3Here and in the remainder, we distinguish between David Cohen and Myra Cohen.

during testing, t-way combinatorial testing focuses on efficiently covering combina-

tions of input values. The CPM can produce an impractical number of test frames to

instantiate; the number of frames grows exponentially in the number of categories.

In the standard CPM, the tester reduces the number of test frames by adjusting the

test specification, either by removing choices and categories or by adding additional

constraints to restrict the allowed choice combinations. Alternatively, a tester may

reduce the number of frames by using a tool to generate a t-way combinatorial test

set for some t less than the total number of categories. The reduction in test set size

can be dramatic. There are 59,049 possible test frames for 10 categories of 3 choices

each. In contrast, there is a 3—way test, i.e. a test set covering every combination of

choices for each group of three categories that contains just 65 test cases.

2.3 Combinatorial testing with jenny

ATIG uses a tool called jenny [28] to generate t-way combinatorial test sets. The

inputs to jenny are:

1. a value of t,

2. a sequence of numbers denoting the number of choices in each category, and

3. an optional set of choice combinations to exclude from the generated test set.

jenny uses a greedy algorithm to produce a small t-way test set from these inputs.

Categories and choices are represented generically in the generated test set. Cat-

egories are assigned numbers increasing from 1, and each choice in a category is

10

assigned a single letter increasing from ‘a’. To use the test specification, a tester

associates each category number and choice letter with a specific category and choice

from the test specification.

2.4 Object-Role Modeling

A formal description of a modeling language and its static semantics is a prerequi-

site for generating valid models in that language. I use the Object-Role Modeling

[15] (ORM) language to describe a modeling language’s abstract syntax and static

semantics. ORM is a graphical fact-oriented language for conceptual modeling: an

ORM model represents the world in terms of objects (things) and the facts that are

known about how they relate. Unlike many modeling approaches, such as Entity-

Relationship (ER) modeling and the UML, which force modelers to divide facts into

relationships (relating objects) and attributes (relating objects with values), ORM

makes no attribute-relationship distinction. The decision to represent a kind of fact

as an attribute or a relationship is not always clear; when it is not, the necessity

of choosing becomes an obstacle. By avoiding the attribute—relationship distinction,

ORM simplifies the task of creating high-level conceptual models to describe almost

any domain.

Figure 2.1 shows a project management conceptual model for a software devel-

opment company. The figure illustrates all of the ORM features that we discuss in

this section.

The things described by an ORM model are represented with object types. An

11

has member]

is member of

is managed by/

®.. manages"

" .-

Em lo ee-

III 3,

I I
[TeamLead] I ------©--- ',

belongs to . manages!

, works on/ "Assignment" '8 managed by
I IS assrgned to Department

.- (.name)

makes/is made by I

I
__..... 4—---~‘

is assigned! - 5933::

'3 assugned to commited code for on

’—---------~

includes -- . D . t' t
—

escnp ion '

Feature has .---------.'I

0...... I] |-——. Status :

has shipped extended by/ 8

extends

] Extension] [BugFix

Figure 2.1: Example ORM product management data model

ORM model of product management in a hypothetical software company

object type denotes a set of objects, and is drawn as a rounded rectangle containing

a name. There are two kinds of object type: entity type and value type. Loosely

speaking, an entity type is a set of instances (or entities) that are distinct from

the labels we use to identify them. The person Jane is an entity in the entity type

Manager. The label “Jane” is distinct from, and uniquely identifies, a physical ob-

ject. In Figure 2.1, Team(.name), Project(.name) and Employee(.nr) are entity types.

The abbreviations in parentheses indicate an entity type’s reference scheme: in our

example, we uniquely identify teams and projects by their names, and employees by

12

their employee number. When referring to an entity type, we often elide its reference

scheme for brevity. In contrast, the instances of a value type are just values4. A

value type is drawn as a rounded rectangle with a dashed border to distinguish it

from an entity type. In Figure 2.1, Date, Description, Status are value types.

Table 2.2: Sample population of an ORM model

Sample population for a fact type and two entity types from Figure 2.1

Team(.name) Team works on Product Product(.name)

U1 U1 Word Processor Word Processor

Optimization UI Spreadsheet Spreadsheet

QA Optimization Spreadsheet Printer driver

Fact types represent relationships among object types. A fact type contains one

or more roles, each played by an object type, and is drawn with adjacent boxes

(one for each role) connected to the role players. A fact type may have any arity

(number of roles), though binary fact types are most common. A fact type has

one or more readings; a reading is a natural—language statement with place—holders

for each role player. A reading is written alongside its fact type; a ‘/’ separates

alternative readings. For example Team works on Product is a fact type that can also

be read Product is assigned to Team. As the reading suggests, facts in this fact type

record which teams work on which products.

The pOpulation of a fact type can be visualized as a table with a column for

each role. Table 2.2 shows a population for Team works on Product along with the

populations of the role—playing entity types. We interpret ORM models according

4The entity type/value type distinction is not always crystal clear; in most cases, for example,

a calendar date is considered a value type. However, in certain contexts it may be appropriate to

model a date as an entity type identified by, for example, a unique combination of month, day and

year. The subtleties of the entity type/value type distinction are not important for understanding

this thesis.

13

to the Closed- World Assumption (CWA), the assumption that all relevant facts are

known and reflected in a model’s population. According to the CWA, we can deduce

from Table 2.2 that team “QA” does not work on any product and that product

“Printer driver” is not assigned to any team.

Some TeamLead leads some Employee

iff

that TeamLead runs some Team and

that Employee is member of that Team

Some Manager manages some Employee

iff

that Manager manages some Department and

that Employee belongs to that Department

Figure 2.2: Derivation rules for derived fact types in Figure 2.1.

Most fact types are asserted fact types. The population of an asserted fact type

cannot be deduced a priori from any information in the model; its population of

facts must be given. However, the populations of some fact types may be derived

from the populations of other fact types in the model; we call these derived fact

types. A derived fact type is marked with an asterisk (“*”). Figure 2.1 includes two

derived fact types: TeamLead leads Employee and Employee is managed by Manager.

The contents of these fact types can be derived according to the derivation rules

given in Figure 2.2. Derivation rules can be included directly in the model.

ORM provides a rich set of constraints for conceptual modeling. The most of-

ten used constraints are simple mandatory and internal uniqueness constraints. A

simple mandatory constraint applies to a single role, and indicates that the role

must be played at least once by every instance of the role-playing object type. The

constraint is drawn as a solid dot where a role connector line meets a role’s box.

14

The simple mandatory constraint on the Employee role of Employee belongs to De-

partment states that every employee belongs to at least one department. Internal

uniqueness constraints apply to one or more roles in a fact type, and indicate that

each combination of role players can occur at most one time in the fact type popu-

lation. Internal uniqueness constraints are drawn as lines above a fact type’s roles.

In the example, the internal uniqueness constraint on Product includes Feature says

that a feature is included in at most one product. The role played by Feature also

has a simple mandatory constraint. The two constraints together express that each

feature is included in exactly one product. Employee committed code for Feature on

Date has an internal uniqueness constraint spanning two of its three roles (the dot-

ted line over Feature’s role indicates that the role is not included). This constraint

states that for a given employee and a given date, the employee committed code for

at most one feature on that date.

ORM also supports subtyping of object types. A subtype relationship is indicated

by an arrow pointing from the subtype to the supertype. In our example, TeamLead

and Manager are subtypes of Employee. ORM’s subtyping feature is very flexible;

a subtype relationship by itself states only that the instances of the subtype are a

subset of the instances of the supertype. Subtypes are neither disjoint nor exhaustive

by default. In our example, an employee might not be a team lead or a manager,

might be one but not the other, or might be both a team lead and a manager.

We have seen fact types that represent facts about object types; occasionally

modelers wish to represent facts about fact types themselves. A modeler can repre-

sent facts about a fact type by objectifying the fact type. An objectified fact type

15

has an associated entity type, and each fact in the fact type is associated one—to—one

with an entity in that entity type. An objectified fact type can thus play roles in

fact types like any other entity type. An objectified fact type is drawn inside a

rounded rectangle, like an entity type. In Figure 2.1, Employee is assigned Feature

is objectified as Assignment, allowing us to express that a TeamLead makes (an)

Assignment.

A value constraint restricts the set of values in a value type, and is drawn as

comma—delimited list or range next to the value type. In our example, a value

constraint on Status lists the possible status values as “unstarted”, “implemented”,

and “tested”.

A frequency constraint indicates how many times a role player must participate

in a given fact type. It is shown as a number or inequality attached to a role with

a dashed line. A frequency constraint may express a minimum number of times, a

maximum number, or both. The frequency constraint on the Employee role of Team

has member Employee states that each team that plays a role in the fact type has

at least three team members. Frequency constraints apply to the objects that play

a role in a fact type, not to all objects in the object type that plays a role. So,

the frequency constraint on Team has member Employee does not by itself require all

teams to have three employees; only those that have some employee must have at

least three. However, because a simple mandatory constraint requires that all teams

have some employee, the net effect in this case is to require that teams have three

or more members.

Exclusion constraints apply to sequences of roles to indicate that no combination

16

of role-playing objects occurs in more than one role sequence. Exclusion constraints

are very powerful because they can express constraints across multiple fact types.

They are drawn as Xs inscribed in a circle, with dashed lines connecting the con-

strained role sequences. In Figure 2.1, an exclusion constraint covers the roles in

TeamLead leads Employee and Employee is managed by Manager. The constraint states

that no team lead both leads and is managed by the same employee; that is, no team

lead may be in charge of their manager. Exclusion constraints may also be applied

to subtype relations, as with Extension and BugFix. In this context, the constraint

states that the two subtypes are disjoint.

Disjunctive mandatory constraints generalize simple mandatory constraints. Dis-

junctive mandatory constraints apply to a set of roles played by the same object

5, and state that each instance of the object type must play in at least onetype

of the roles. A simple mandatory constraint may be thought of as a disjunctive

mandatory constraint that covers only one role. Like exclusion constraints, dis-

junctive mandatories can be applied to subtype relations, where they indicate that

each instance of the supertype must also be an instance of at least one subtype.

Disjunctive mandatory constraints are drawn as a solid dot contained in a circle,

connected by dashed lines to the covered roles. When a disjunctive mandatory con-

straint and exclusion constraint cover the same roles, they are often superimposed

on one another to form a single exclusive-or constraint.

Subset constraints are used to indicate that the pOpulation of one role sequence is

5In fact, disjunctive mandatory constraints can apply to roles played by different types, provided

the types share a common ancestor type.

17

a subset of the population of another role sequence. Subset constraints are drawn as

a dashed arrow from the subset role sequence to the superset role sequence, passing

through a circled subset symbol. Our example contains two subset constraints.

One of these constraints states that every manager that manages a department also

belongs to that department.

Finally, ring constraints apply to pairs of roles played by object types with a

common ancestor type. In Figure 2.1, a ring constraint is applied to “Feature is

extended by Extension”. Ring constraints are so—called because the path from one

role, through its role—playing object type, to the other role, forms a ring. There are

several kinds of ring constraints; the ring constraint in our example is an acyclic

ring constraint. It means the “Feature is extended by BugFix” relationship contains

no cycles; informally, no chain of feature extensions can loop back on itself.

2.5 Alloy and Alloy Analyzer

Alloy Analyzer [18] represents a compromise in the use of formal methods versus test-

ing to validate software. Ideally, software developers would rely on formal methods

to prove conclusively that their software is correct and free of errors. Unfortunately,

formal methods of proof have so far been too difficult and expensive to apply to

all but the most safety—critical software. In practice, testing is most often used to

build confidence in the correctness of a software system because it is easier and less

expensive. However, it is commonly observed that testing can at best demonstrate

the presence of errors, never their absence; thus testing provides less assurance than

18

formal proof. Alloy Analyzer aims to provide some benefits of each approach by en-

abling automated, rigorous analysis to prove or disprove properties of formal models

within a specified finite scope. As with formal methods of proof, a user can formally

specify and verify properties against a formal model. However, the properties are

only assured for instances less than a specified scope, or size, and the “proofs” are

arrived at via an exhaustive search for a counterexample, which gives the tool the

flavor of exhaustive testing. Alloy Analyzer also allows validation by examination

of individual instances of a model, which the tool can generate automatically.

Alloy Analyzer analyzes models expressed in the Alloy language. Alloy comprises

first-order logic (variables, boolean operators, and quantification) with the addition

of relational operators and transitive closure. Alloy’s semantics are based entirely on

relations; sets are considered unary relations, and elements are considered singleton

sets. An Alloy model contains signatures, relations, functions, predicates, and facts.

A signature introduces a type, or named set, of atoms. Alloy supports sub—typing of

signatures. Relations among signatures can be of arity two or higher. Functions are

parameterized expressions that evaluate to a value (i.e. an atom, set or relation);

they are used to remove repetition and increase comprehension in models. Predi-

cates are functions that return true or false, and are useful for exploring a model’s

instances; Alloy Analyzer can generate instances for which a given predicate evalu-

ates true, or show than no such instances exist within a given scope. Finally, facts

are expressions (possibly referencing functions or predicates) that are defined to be

true of any instance of the model.

Alloy Analyzer provides several analysis capabilities. Most simply, it can iterate

19

A

through a model’s instances, allowing the modeler to validate a model by ensuring

that successive instances agree with the modeler’s intentions. When a model has no

instances within the chosen scope, the tool reports that the model may be incon-

sistent. The tool can also search for instances that satisfy predicates, enabling the

modeler to examine instances having certain specific characteristics.

In addition to finding instances, the tool can be used to verify assertions. An

assertion is a statement that the modeler believes to be entailed by the model’s

facts. Alloy Analyzer can show that the assertion holds within a specified scope, or

provide a counter-example if it does not. Assertions are useful for checking that the

modeler’s assumptions about a model are correct.

The analyses performed by Alloy Analyzer are ultimately brute-force searches,

and are subject to a combinatorial explosion of the search space; the search space

increases exponentially with the size of the model and the chosen scope. Alloy Ana-

lyzer reduces instance generation and analysis tasks to instances of the 3—satisfiability

problem, or 3SAT, for which no eflicient algorithms are known to exist. Given a fi-

nite boolean expression of conjuncts of the form (p,- V pj V pk), where each p,- is

either a variable or its negation, the 3SAT problem is to find an assignment of the

variables that makes the expression true, or show that none exists. The tool relies

on highly optimized 3SAT solvers that are able to handle 3SAT problems with tens

or hundreds of thousands of variables. Due to combinatorial explosion, use of Alloy

Analyzer is restricted to small models and scopes. Alloy Analyzer’s usefulness as a

validation tool despite these scalability problems is based on the small scope hypoth-

esis. The small scope hypothesis holds that most errors in a program or model can

20

be exhibited by means of small test cases or examples [18].

21

Chapter 3

Generating Combinatorial Test

Sets of Models

The Automated Test Input Generator (ATIG) integrates existing tools to enable

automatic generation of t-way test sets for model transformations. ATIG gener-

ates test inputs that conform to a tester-supplied feature specificationl, which is a

machine-readable metamodel that describes the abstract syntax and static seman-

tics of a model transformation’s source notation. ATIG leverages the jenny tool

to generate t-way test plans, and the Alloy Analyzer to search for populations of

the feature specification that conform to each test frame in a test plan. Existing

combinatorial testing tools require the user to manually identify infeasible choice

combinations. An infeasible choice combination is a choice combination that only

describes invalid test inputs. ATIG represents a significant contribution because it

automatically infers infeasible choice combinations that arise from constraints in the

1i.e. a specification of the relevant language features from the source notation

22

l

 l ,

Feature

Specification 7

.4 Feature Spec.

;' Populations

Test @

Specification

Test Set

'3, creates

Tester

«0......
0900....

Conversion

' ' Scn'pt

" creates

Figure 3.1: Overview of the ATIG tool

feature specification.

3.1 ATIG Inputs and Outputs

Figure 3.1 provides an external view of the ATIG tool. To generate test inputs

for model transformations using ATIG, a tester first creates a feature specification

to describe the syntax and static semantics of the source notation. The tester next

creates a test specification that describes how to partition the input space for testing.

The tester runs ATIG to generate a set of populations of the feature specification;

Finally, the tester converts eacheach population represents a valid test input.

population into a test input. The tester typically automates the conversion process

23

with a script.

Separating the feature specification and the test specification allows the feature

specification to be reused. A tester has the option of creating multiple test specifi-

cations that each focus on separate parts of one feature specification.

3.1.1 Feature Specification

The feature specification, as previously noted, is a metamodel. Metamodels are

commonly expressed in the literature using UML class diagram notation, or a similar

attribute-based notation. I chose ORM to express the feature specification because,

in my view, ORM is an excellent language for metamodeling. First, ORM has

a clean graphical syntax that, when coupled with tool support to manage multiple

diagrams relating to a single model, can be used to model very complex structures in

an intuitive, readable fashion. ORM is frequently used by business analysts as a tool

to communicate with customers, and was designed specifically to be understandable

by nontechnical users. As such, ORM has a shallow learning curve that will represent

a low hurdle for testers looking to make use of ATIG. Second, ORM has a formal

semantics grounded on set theory and first-order logic. A formal semantics ensures

that each ORM model can be interpreted unambiguously, and serves as a foundation

for applying tools such as the Alloy Analyzer to reason about and generate instances

of ORM models. Finally, ORM has robust tool support in the form of NORMA [7],

an extension to Microsoft Visual Studio for creating ORM models. ATIG consumes

ORM models stored in the file format used by NORMA. To summarize, ATIG relies

on ORM as a metamodeling notation because ORM has a clean, understandable

24

is lone *

I "'""""‘

$Alloy$z RolelsLoneDerivation

RolelsLone= { r:Role | #isln.(r.is|n)=1 }

Figure 3.2: An example feature specification for ORM

An example feature specification for ORM models, expressed in ORM

graphical syntax as well as a formal semantics that enables instance generation.

Figure 3.2 shows a simple example of a feature specification that might be used

to generate simple ORM models2 A population of this model represents a (differ-

ent) ORM model, for example the ORM product management model in Figure 2.1.

Object types represent ORM modeling concepts; the object types Role, FactType

and EntityType, for example, represent the populations of roles, fact types, and en-

tity types in an ORM model. The fact types in the model represent the ways that

ORM modeling elements can be composed together. lnternalUC constrains FactType

shows that an internal uniqueness constraint applies to a unique fact type. The con-

straints in the metamodel express ORM’s static semantics. The exclusion constraint

on the roles played by Role in Role is lone and lnternalUC excludes Role, for example,

2Figure 3.2 is both an ORM model and a description of the ORM modeling languages; thus,

it is a reflexive metamodel [22]. A reflexive metamodel can be confusing, but we use one as an

example because the case study uses a more complex reflexive metamodel of ORM to generate test

inputs.

25

captures the static semantic constraint that roles in unary fact types cannot have

internal uniqueness constraints.

Most features and static semantic constraints for a modeling language can be

expressed graphically in ORM. However, some constraints and derivation rules may

not be expressible using ORM’s graphical syntax. For this reason, ATIG supports

the use of textual constraints. We express textual constraints in Alloy, and embed

them in a feature specification as notes. ATIG processes these notes along with the

rest of the feature specification when generating test sets3.

Figure 3.2 shows a derivation rule for the unary fact type Role is lone. The

$Alloy$ symbol informs ATIG to process the note as a constraint or derivation rule,

depending on the context“. The rule states that Role is lone is the set of roles

belonging to fact types that contain a single role.

3. 1 .2 Test specification

Whereas the feature specification defines a “space” of input models, the test spec-

ification dictates how that space is partitioned for testing. In addition, the test

specification includes several configuration Options. Figure 3.3 shows a possible test

specification for the feature specification presented above in Figure 3.2. The T pa-

rameter (line 1) is the value to use for t when generating a t—way combinatorial test

3At this time the NORMA modeling tool does not support a formal textual notation, but we

expect this support to be available soon (see [14] for a brief overview of the planned notation).

It will be straightforward to extend ATIG to support textual constraints in the language that is

ultimately adopted within NORMA.

4The names in the derivation rule must conform to ATIG’s rules for mapping ORM models into

Alloy code. In this example, RolelsLone refers to the fact type Role is lone, Role to the entity type

of the same name, and isln to the fact type Role is in FactType.

26

1: T=2

2: InputMetamodel=orm-feature-spec.orm

3: TempDir=/tmp

4: 0utputDir=testset01

5: Timeout=5

6: PopulationSize=6 but 8 Role

7:

8: [Categories]

9: [testing.spec.ObjectTypeCardinality]

10: Name=EntityType

11: Range=1,2,[3-5]

12: [End Category]

13:

14: [testing.spec.FactTypeCardinality]

15: Name=EntityTypeP1aysRole

16: Range=0,1,2,[3-5]

17: [End Category]

Figure 3.3: A sample test specification for Fig. 3.2

plan using jenny. In Figure 3.3, t is set to 2, instructing ATIG to generate a pair-

wise combinatorial test set. The InputMetamodel parameter (line 2) specifies the file

system path to the feature specification. The TempDir and OutputDir parameters

(lines 3-4) provide paths to the directories that should be used to store intermediate

files and the final generated test set, respectively. The Timeout parameter (line 5)

sets the maximum number of seconds to spend attempting to find an instance of the

feature specification for a given test frame. The final parameter, PopulationSize

(line 6), sets an upper bound on the population size of any object type in the feature

specification. The parameter bounds the search for an instance that satisfies a test

frame, ensuring that it terminates. In the example, each object type in the model

has a maximum population size of 6 except the Role object type, which may have

up to 8 members.

27

Choosing an appropriate population size is important to ensure that an effective

test set is generated in a reasonable amount of time. On one hand, when the

population size is set too high, the problem of identifying a population that fits a

test frame becomes intractable, particularly if no such population exists. The search

must exhaustively cover the space of inputs within the population size to determine

that no satisfying population exists. On the other hand, when the population size

is set too low, the search for a population that fits a test frame will often fail when

such a population does exist, because the population is larger than the maximum

population size. The tester may find an appropriate population size and timeout

settings for a given feature and test specification by trial and error.

The remainder of a test specification defines the categories and choices that are

used to partition the input space in order to generate test inputs. Figure 3.3 shows

two categories that might be defined for the feature specification in Figure 3.2.

ATIG presently supports just one kind of category, called a cardinality category. A

cardinality category partitions the input space according to the population size of a

specific object type or fact type from the feature specification. Figure 3.3 shows a

cardinality category definition for an entity type (lines 9—12) and a fact type (lines

14-17). Each cardinality category refers to the name of an object or fact type from

the feature specification, and includes a partition of the possible values (non-negative

integers) into choices. In practice, the choices need not form a proper partition of

the non-negative integers, or even of the possible values up to the global scope. Line

11 defines three choices for the “EntityType” category, grouping ORM models into

those that have 1 entity type, those that have 2 entity types, and those that have

28

between 3 and 5 entity types inclusive.

Many kinds of categories other than cardinality categories could no doubt be

defined, and other category kinds may be added to ATIG in the future. Presently,

ATIG restricts the tester to cardinality categories for three reasons. First, experience

indicates that cardinality categories are suflicient to ensure that diverse test sets

are generated. Second, they are simple to implement. Third, the restriction to

cardinality categories makes possible an optimization that in many cases significantly

reduces the amount of time necessary to generate a test set. The optimization is

discussed in Section 3.2.2.

3.1.3 ATIG Outputs

ATIG returns a set of populations of the feature specification, one population for each

test frame in the generated test plan. It stores a population as sample population

data within a copy of the original feature specification, enabling the tester to view

the population using NORMA’s sample population editor. To transform a generated

population into a test input in the format expected by the model transformation to

be tested, the tester must create a conversion script. The eflort required to produce

this conversion script depends primarily on the details of the input format expected

by a model transformation. If the format is a simple plain-text representation, the

conversion is straightforward. A conversion script for more complex representations,

in particular for graphical source notations that include diagram information, might

require a significant time investment. For example, to convert a sample pOpulation

of the feature specification from Figure 3.2 into a file that can be loaded in NORMA

29

as an ORM model, a conversion script must translate each sample population into

the corresponding XML representation used by NORMA, and should additionally

include diagram layout information. The tester should determine, for a given model

transformation, whether or not the effort necessary to create a conversion script

is warranted. If only a handful of small test sets will be generated for a given

feature specification, it may be more practical to perform the conversion from sample

population to test input by hand. IA

3.2 ATIG Internals

ATIG uses an iterative algorithm to identify likely-infeasible choice combinations

automatically. We call a choice combination likely-infeasible when we have verified

that no corresponding valid population exists up to a certain size.

Figure 3.4: The ATIG Test Generation Algorithm

1: alloySpec := orm2alloy(featureSpec)

2: infeasChoiceCombos :2 (l)

3: repeat

4: testFrames := jenny(testSpec, infeasChoiceCombos)

5: for i z: 1 to count(testFrames) do

6: alloySpecWithFrame := alloySpec + choices2alloy(testFrames[i])

7: alloyPopls[i] := alloy(alloySpecWithFrame, tspec.popsize)

8: if .L= alloyPopls[i] then

9: for all choiceCombo E 2t83tmeeslil sorted ascending by size do

10: alloySpecWithChoices := alloySpec + choices2alloy(choiceCombo)

11: if .L= alloy(alloySpecWithChoices,tspec.popsize) then

12: add(infeasChoiceCombos, choiceCombos)

13: break

14: break

15: until testFrames contains no infeasible choice combinations

16: for i := 1 to count(testFrames) do

17: ormPopls[i] := alloy2orm_popl(alloyPopls[i])}

30

Inputs Outputs

Test Feature] l Feature Spec].

Specification Specificationu Populations

A

_
_

ATIG

(4) Generate (1) Translate
Candidate ORM To Alloy Feature

Test Plan Spec. in

(jenny) Alloy

Test (9-13) Find Likely-

frames lnfeas. Choices

(Alloy)

Likely-

lnfeas. Choice

L Combos Likely-lnfeas.

test frame

1/‘\\\

(7) lnstantiate

Test Frames

(Alloy)

(16-17) Translate

Alloy Instances to

Alloy ORM Populations

instances
Figure 3.5: The data flow between modules in ATIG

31

3.2.1 Algorithm Description

Figure 3.4 shows the ATIG algorithm, and Figure 3.5 shows a complimentary view

of how data flows between the steps in the algorithm.

ATIG first translates the feature specification into Alloy (Figure 3.4, line 1).

The body of the algorithm (lines 3-15) loops until a test plan with no infeasible test

frames has been created.

Within this 100p, ATIG first calls jenny (line 4) to construct a t—way combinato-

rial test plan. ATIG passes jenny the following items from the test specification5:

o the value of t,

o a sequence containing the number of choices in each category, and

e an encoding of all likely-infeasible choice combinations that have been discov-

ered.

jenny returns the test plan as a set of encoded test frames. Each test frame is

encoded as a number-letter pair, where the number indicates a category and the

letter indicates a choice. Categories are numbered increasing from 1. Choices are

encoded as letters, increasing alphabetically from “a”. For example, consider the

example test specification from Figure 3.3. For this specification, the letter-number

pair “2c” refers to a choice of 2 for the population size of the EntityType plays Role

fact type from the feature specification in Figure 3.2.

ATIG next attempts to generate a population of the feature specification that

fits each encoded test frame (lines 5-14). First, ATIG translates an encoded test

5For simplicity, in Figure 3.4, I show the test specification as an argument to jenny.

32

frame into a set of Alloy constraints (line 6), one constraint for each choice. The

example choice “2c” from above would be translated into an Alloy constraint on a

relation that represents the EntityType plays Role fact type. ATIG then appends the

constraints to the Alloy feature specification (line 6), and invokes Alloy Analyzer

on the result (line 7). Alloy Analyzer searches within the population size selected

by the user for a population of the feature specification that fits each choice in the

frame. If Alloy Analyzer finds a satisfying population, ATIG moves on to the next

frame.

If not6, ATIG loops through choice subsets in the test frame in increasing size

order (lines 9-13) to find the smallest choice subset that has no satisfying population

within the maximum population size. Because the subset has no satisfying popu-

lation, no test frame containing the subset will have a satisfying population either.

Thus, ATIG stores the subset as a likely-infeasible choice combination (line 12), and

returns to the top of the main loop, where a new test plan is generated (line 4).

When a test plan containing no infeasible choice combinations has been gener-

ated, ATIG converts the Alloy populations into populations of the original feature

specification (lines 16-17). Each converted population is saved in a separate copy of

the feature specification, and can be viewed using NORMA.

3.2.2 Cardinality Analysis

The algorithm in Figure 3.4 relies solely on computationally expensive calls to Alloy

Analyzer to detect likely-infeasible choice combinations via exhaustive search. To

6I denote a return value of “unsatisfiable” in Figure 3.4 as .l.

33

reduce the number of Alloy Analyzer invocations, ATIG uses an extension of Fig-

ure 3.4. At the start of the algorithm, ATIG analyzes the feature specification to

identify relations that must hold among the population sizes of its object and fact

types. The relations form a system of inequalities, each of the form x 3 mm . . .g,

or x S y1 + . . . + y;. Before each Alloy Analyzer invocation (lines 7 and 11), ATIG

uses the current choice combination and the maximum population size to initialize

conservative upper and lower bounds on the variables in the inequalities. ATIG

substitutes the bounds for the variables in the right-hand side of each inequality

to calculate improved upper bounds. The substitution is repeated until either a

fixpoint is reached, or an upper bound crosses a lower bound. In the former case,

nothing is learned and ATIG invokes Alloy Analyzer as in Figure 3.4. In the latter

case, there is no satisfying solution to the inequalities that agrees with the choice

combination. Thus, the choice combination is invalid, and there is no need to invoke

Alloy Analyzer.

The algorithm above is a simple adaptation of an algorithm by Smaragdakis

et al. [24] for determining whether a model expressed in a special subset of ORM

(termed ORM‘) can be populated. Their algorithm is based on a proof that a

system of inequalities constructed in a particular way (detailed in the paper) from

an ORM“ model has a solution if and only if the model can be populated. They

prove that the algorithm is guaranteed to terminate in polynomial time. In my

adaptation of the algorithm, a solution to the system of inequalities does not imply

that a valid population fitting the current choice combination exists, because the

feature specification may use ORM features that are not in the ORM‘ subset.

34

However, the converse still holds. Any valid population of an ORM model M is also

a valid population of the model M’ obtained by removing all non—ORM— features.

Thus, if there are no valid populations of M' , there are also no valid populations of

the original model M.

The algorithm only applies to choices that bound the population sizes of object

and fact types in the feature specification. At present, ATIG supports only cardi-

nality categories; therefore, the algorithm is automatically applicable to all choice

combinations.

3.2.3 Practicality of the Algorithm

Two issues call into question the practicality of the ATIG algorithm.

1. Smaragdakis et al. [24] have shown that finding a valid pOpulation of an ORM

model is NP-Hard. The search space quickly explodes as the size of ORM

models increase. Yet the ATIG algorithm depends on repeated searches for

ORM populations that fit individual test frames.

2. In the worst case, ATIG invokes Alloy Analyzer 2" times on all subsets of a test

frame in order to identify a minimal likely-infeasible choice combination, where

n is the number of categories in the test specification. Therefore, identifying

a likely-infeasible choice combination could quickly become intractable as the

number of categories increases.

These issues place practical limits on the sizes of the feature and test specifi—

cations, and on the size of the generated test inputs. A tester must construct the

35

feature specification carefully to include the modeling features thought most likely

to expose errors while remaining small enough to analyze with Alloy Analyzer. If

a feature specification is too large to analyze, the tester may have to abstract away

important details of the source notation. Too much abstraction may reduce the

likelihood that a generated test set will expose errors. Similarly, the number of cat-

egories must remain small enough that all subsets of a test frame may be checked

in a reasonable amount of time, if necessary.

The next chapter describes a case study in which ATIG is used to generate a

test set for an industrial code generator of moderate size. The results of the case

study suggest that the ATIG algorithm is a practical solution for generating model

transformation test inputs.

36

Chapter 4

Case Study

I conducted a case study to investigate two questions:

1. Can ATIG generate test inputs for a real-world model transformation in a

reasonable amount of time?

2. Does the adequacy of test inputs generated with ATIG compare favorably with

that of manually created test inputs?

In the study, I used ATIG to generate a test set for VisualBlox, a model transfor-

mation developed at LogicBlox, Inc. I used the generated test set to look for errors

in all available VisualBlox releases. While the study was not sufficiently broad to

answer either of the above questions definitively, the results lend anecdotal support

in favor of the hypothesis that ATIG can generate adequate test sets for realistic

model transformations. The modest success of the study warrants further deveIOp-

ment of ATIG, and a more thorough investigation of its usefulness. The study also

led to insights regarding how ATIG might be improved.

37

VisualBlox automatically transforms conceptual data models (expressed in ORM)

into database schema definitions to streamline the development of database applica-

tions. VisualBlox is implemented as a set of XML Schema Language Transformations

(XSLT) templates. Briefly, each template describes how to generate database code

from some ORM modeling feature1 . During development, programmers manually

created an ad hoc test set that exercises all ORM features supported by VisualBlox.

However, no effort was made to systematically test features in combinations.

In the case study, I used ATIG to generate a test set of ORM models that

systematically cover combinations of ORM language features. First, I created a

feature specification that describes the ORM modeling features to be tested. Next,

I created a test specification that partitions the space of input models according

to categories and choices defined in terms of the feature specification. I then used

ATIG to generate a set of populations of the feature specification, each representing

a valid ORM model. To obtain the final set of test inputs, I wrote a conversion script

to translate each generated population into an ORM file in the XML format that

VisualBlox consumes. Finally, I executed VisualBlox for each test input to obtain

database code, and executed that code in a fresh database. Unexpected error or

warning messages, from VisualBlox or from the database engine, were considered

test failures. I also manually inspected the generated database code for errors.

The following sections describe the case study in more detail. Section 4.1 de-

scribes the feature specification used to generate ORM test models for VisualBlox.

1In reality, there is not a one-to-one relation between modeling language features and templates.

A modeling feature may have several associated templates, and a template may be invoked for more

than one modeling feature. Additionally, some templates are used to generate (or generate code

from) intermediate representations.

38

Section 4.2 describes how the test specification was created. In Section 4.3, I de-

scribe the populations that ATIG produced from the feature and test specifications.

In Section 4.4, I describe how I translated each population into a valid VisualBlox

input. Section 4.5 describes the results of running the generated test set on several

versions of VisualBlox. Finally, Section 4.6 discusses some lessons learned from the

case study and its results.

4.1 Feature Specification

VisualBlox translates ORM models into schema declarations in the DatalogLB lan-

guage. Because VisualBlox translates ORM models, ATIG must generate a suite

of ORM models selected to cover some set of features of the ORM language itself.

Thus, for this case study, the feature specification describes the structure and static

semantics of ORM models.

To simplify exposition, I divided The ORM feature specification from the case

study into five diagrams, Figures 4.1 through 4.5. Figure 4.1 shows the core ORM

language features, including roles, fact types, entity types, value types, simple

mandatory constraints and internal uniqueness constraints.

Derivation rules and complex static semantic constraints are expressed textually,

in Alloy, and embedded in the feature specification as model notes. For example, in

ORM it is illegal for one internal uniqueness constraint to subsume another on the

same fact type. This rule is expressed as a model note with an accompanying Alloy

39

constrained byl

constrains

$Alon$zRolelsUna Def

RolelsUnary = { r: ole |

#isln.(r.isln)=1)

excluded by/ i

exclu es

.-.---"

objectifies

$AI|oy$2TextAndlntegerAreSingletons

#Text—1 and #lnteger=1 A ValueType participating in a FactType

must be excluded by the pnmary iden Ifier

uniqueness constraint.

No lntemalUniqueness excludes $A"° §1N0V3'U3TYP0'PK9YSP309

a subset of the rules excluded b all .ValutType l)?" I-Vt-P aYSC]
another lntemalUniqueness on e Identifies.(r.lsln In Lexclude By

same FactType.

$Aiiu 3,3..." * ‘ " ‘ '

no cfsl I1 ,i2.:lntemaIUniqu_eness I

i1 .constrains=i2.oonstrains _

and excludedBy.i2 in excludedBy.I2
Figure 4.1: Core ORM modeling features

constraint, shown in the bottom—left corner of Figure 4.12.

Figure 4.2 and Figure 4.3 describe subtyping and objectification respectively.

These features are particularly important to test in combinations, because they

interact subtly with the other ORM modeling features.

2Alloy constraints in the feature specification must use the names that ATIG generates for the

Alloy sets and relations representing object and fact types. Sets representing object types use the

object type name directly. Relations representing fact types use the reading text, excluding role

player names, with spaces removed and all but the leading word capitalized. Thus, in Figure 4.1,

lntemalUniqueness refers to the object type of the same name, and excludedBy refers to Role

excluded by lntemalUniqueness.

40

has supertype has root 9’99" $Allo $:Enti Ty eSupe pesAreEnti T es

Enti Typeihasgupertygfe’ in EntityTytge yp

$Alloy$zValueTy eSupertypesAreValueT pes

ValueType.hasgupertype in ValueType y

ObleCtTYPe $Alloy$:SupertypesHaveACommonAncestor

all ot:ObjectType | lone ot.hasRootType

$Alloy$zEnti TypesVlfithoutSuper'typesHaveRefmodes

all ezEntity ype | ein EntityTy e asRefmode

or one e. as upertype

[or (no e.hasSIupeiitygdeI a)nd

EntityType | D 7 some er nVO V n

has refmode _

For all EntityTypes, no ancestor of a supertype should also

be a direct su ertype (as this is redundant, and NORMA

$A||oy$zDefi-lasRootType gives an error).

has ootTyBe =

{disjot,rt: bjectTypel $Alloy$zNoRedundantSu rtypes

It in ot.("hasSupe pe) all ezhasSu ertype.Enti Type |

and no rt.hasSupe pe} no (e.has upertype.("has upertype)) 8. e.hasSupertype

$Allc\>y$:Sub pedValueTy HasCompatibIeDataType

all :Value ype|vt.has upertypehas in vt.has

Figure 4.2: Static semantics of ORM subtyping

Figure 4.4 describes the static semantics associated with an intersection predicate,

which is a short—hand notation supported by VisualBlox. Simply, an intersection

predicate stands for a set of role players shared by many fact types. An intersection

predicate is drawn as an objectified fact type with a special annotation; we represent

it in the feature specification as a unary fact type on ObjectifiedType. An intersection

predicate must satisfy the usual static semantic constraints for objectification, as well

as the constraints in Figure 4.4. Because intersection predicates are not a part of the

ORM language, we guess that they are likely to interact with other ORM features

in unexpected ways.

Finally, Figure 4.5 describes how ORM elements may be organized into groups

within a model. Grouping is a feature of the NORMA modeling tool, rather than of

41

An Ob'ectType participates in a FactType iff

that O ect ype, an ancestor of that

Obbject ype ora descendent, playsta Role"In that FactType.

$Alloy$z ParticipateslnDef

partIcipatesln= ((~("hasSupertype)+"hasSupertype+(iden:>ObjectType)).plays).isln

participates in/

'-.__has participant”

FactType

“ObjectifiedType”

ObjectType

EntityType

objectifies

Figure 4.3: Static semantics of ORM objectification

the ORM language itself. We include grouping in the feature specification because

VisualBlox uses group information to organize code into namespaces.

This feature specification of ORM does not cover all ORM features. We have two

reasons for modeling just a subset of ORM. First, VisualBlox does not support all

of ORM. By excluding unsupported modeling features, we ensure that VisualBlox

should fully translate all generated test inputs into database code. Second, a feature

specification that includes all ORM features, or even the full subset of features

supported by VisualBlox, would be too large to analyze with the Alloy Analyzer.

Generally speaking, feature specifications must be carefully tuned to include the

features thought most likely to interact in subtle ways, without causing the state

space to explode to an unmanageable size. The feature specification in the case

study includes the most commonly used core ORM features, as well as those features

42

considered most likely to expose subtle interaction errors in VisualBlox.

Of course, a feature specification that precludes ill-formed and unsupported input

models precludes testing that VisualBlox provides correct error messages. To test

error handling with ATIG, we could include a description of unsupported modeling

features in the feature specification.

"ObjectifiedType"

[EntityType FactType]

objectifies

is intersection

An intersection FactTcyge must not play

a role that is exclude y an lntemalU .

$Allo $2NolntersectionanalueSpace

no Islnvolvedln.0bjectifiedTypelslntersection).plays.excludedBy

An intersection must not play the role in a unary fact type.

$Allo _$:NolntersectionannaryFactlepe .

no Islnvolvedln.ObjectIfied ypels ntersection).plays & RolelsUnary)

An intersection must have at least two roles.

$Allo $:lntersectionlsNotUnary . _

no olelsUnary & (isln.(islnvolvedln2.ObjectIfiedType|slntersectIon))

An. intersection must have a covering

umqueness constraint.

$Alloy$:CoveringUniquenessConstraintsForlntersections .

no excludedBy.(constrains.(Is|nvolvedln2.ObjectIfiedTypelslntersection))

Figure 4.4: Static semantics of intersection predicates

43

Group

(.Id) Gr‘lflfi‘i‘b'e
“Q

. sill v
_.—::==".-’ ,v‘

' _____. .
.....________

,—

1‘

0"

[ObjectTyFfl [FactType] [SimpleMandatory] UntemalUniqueness]

Figure 4.5: Static semantics of grouping

44

4.2 Test Specification

After creating the feature specification, I defined a test specification to partition the

space of models for testing. I specified a t value of 2 in order to cover all pairwise

choice combinations. I specified a global maximum population size of 6, with an

exception for the Groupable entity type, for which I specified a maximum population

size of 9. Groupable requires a larger population size because it is a supertype of

several other entity types, as shown in Figure 4.5. Its pOpulation is the union

of the populations of these other entity types, and so its size must be configured

accordingly. I arrived at these maximum population sizes using trial and error to

balance model size with analysis time. By running ATIG with various values, I found

that larger sizes took undesirably long to analyze, while smaller values produced less

interesting models.

The body of the test specification consists of the categories and choices that

partition the input space. I used a simple strategy for defining categories: I defined

a cardinality category for each asserted3 fact type in the feature specification. This

strategy is interesting because it is simple enough to be automated. ATIG could

easily be extended with an option to generate a default test specification in this

manner. If this simple strategy can produce adequate test sets, then it might be

useful for generating a test set early in a development cycle with minimal effort. I

also hope to avoid over-estimating ATIG’s effectiveness based on the VisualBlox case

study. An ineffective tool may provide deceptively successful results if it is configured

3The population of a derived fact type is entirely determined by the p0pulation of other fact

types, so attempting to vary the population size of a derived fact type independently will produce

many invalid choice combinations.

45

Figure 4.6: Test specification for the VisualBlox case study

Test all combinations for every pair of categories

N=2

ORM metamodel of ORM models

InputMetamodelzvisualblox-orm.orm

Directory to use for temporary files

TempDir=temp

Directory in which to store generated instances

OutputDir=visualblox—testset

Maximum population size of any object or fact type

GlobalScope=6 but 9 Groupable

JavaInstanceTranslator=testing.visualblox.AlloyInstance2ORM

ExtendedClasspath=TestInG-VisualBlox.jar

[Categories]

[testing.spec.FactTypeCardinality]

Name=ValueTypeHasDataType

Ranges=0 1 2 [3,5]

[End Category]

[testing.spec.FactTypeCardinality]

Name=ObjectTypePlaysRole

Ranges=1 2 [3,5]

[End Category]

[testing.spec.FactTypeCardinality]

Name:RoleConstrainedBySimpleMandatory

Ranges=0 1 2 [3,5]

[End Category]

[testing.spec.FactTypeCardinality]

Name=ObjectifiedType

Ranges=0 1 2

[End Category]

46

Figure 4.6: Test Specification continued

[testingspec.FactTypeCardinality]

Name:RoleExcludedByInternalUniqueness

Ranges=0 1 2 [3,5]

[End Category]

[testing.spec.FactTypeCardinality]

Name=InternalUniquenessConstrainsFactType

Ranges=1 2 [3,5]

[End Category]

[testing.spec.FactTypeCardinality]

Name:ObjectifiedTypeIsIntersection

Ranges=0 1 2

[End Category]

[testing.spec.FactTypeCardinality]

Name:GroupContainsGroupable

Ranges=0 1 2 [3,5]

[End Category]

[testingspec.FactTypeCardinality]

Name:ObjectTypeHasSupertypeObjectType

Ranges=0 1 2 [3,5]

[End Category]

[testing.spec.FactTypeCardinality]

Name=EntityTypeHasRefmode

Ranges=0 1 2 [3,5]

[End Category]

47

very carefully for a given problem. By using ATIG with a test specification that I

produced according to a generic rule, I hope to gain a more realistic view of ATIG’S

effectiveness.

Figure 4.6 shows the resulting test specification. Each cardinality category con-

strains the number of times that some relationship between modeling elements oc-

curs in an ORM model. For example, a choice of 2 for a cardinality category on

the fact type ValueType has DataType requires ATIG to generate an ORM model

with exactly two ValueTypes in the model. In this example, each value type has

exactly one data type; thus, the category is equivalent to a cardinality category on

ValueType. The specified ranges for the category ensure that ATIG generates some

ORM models with no value types, some with exactly one value type, some with

two value types, and some with between three and five value types. However, the

category on EntityType objectifies FactType“, when combined with other categories,

ensures that some models include EntityTypes that objectify FactTypes, and some

that do not. I partitioned each category into choices that seemed intuitively reason-

able. Specifically, I selected ranges of 0, 1, 2, and [3—5] for choices in all but a few

cases. I excluded a choice of 0 in some cases to avoid generating completely trivial

models. For instances, the feature specification stipulates that each fact type must

have an associated internal uniqueness constraint, so a choice of 0 for the category

on lntemalUniqueness constrains FactType would correspond to models with no fact

types.

4also named ObjectifiedType, and referred to as such in the test specification

48

4.3 Generated Feature Specification Populations

ATIG generated a set of 31 populations from the feature and test specifications

described in Sections 4.1 and 4.2. Each population represents a valid ORM model.

Generation took 2 hours and 45 minutes on a 30th Pentium Core 2 Duo with

2 gigabytes of RAM5. In the process, ATIG detected 162 likely-infeasible choice

combinations.

4.4 Converting Populations into ORM Models

Table 4.1: Excerpt from a population generated by ATIG

Contents of non-empty fact type in a population generated by ATIG

ObjectType plays Role Role is in FactType Role is unary

Groupable2] Rolel Rolel]Groupable1 Rolel

groupable1

[Groupable2],____{:j

(.ld) _

’ Figure 4.7: Feature specification for the case study

The ORM model corresponding to the feature spec. population in Table 4.1

I wrote a script to convert each population into an actual ORM model in the XML

format processed by VisualBlox. Table 4.1 shows one of the generated populations.

The conversion script extracts the population data from each file generated by ATIG,

and transform it into an ORM model stored in NORMA’s XML format. The script

has two stages. In the first stage, the script converts population data into an XML

ORM model with no diagram information. This model is sufficient to test VisualBlox

5ATIG does not yet take advantage of multiple cores.

49

(which does not interpret diagram information), but the generated test set is difficult

to validate without diagram information. In the second stage, therefore, the script

builds a graph representation of the ORM model, and uses Jiggle[29]6 to generate

layout information. It then uses this layout information to generate a NORMA

diagram, which is saved along with the model for convenient viewing. Figure 4.7

shows the ORM diagram generated from the population in Table 4.1.

4.5 Test results

I used the converted models to test all three release versions of VisualBlox.

VisualBlox Version7 New Errors Old Errors Total Errors

3.0.0 4 - 4

3.2.0 0 4 4

3.3.12 2 2 4

Table 4.2: Summary of test results for all versions of VisualBlox

The generated test set exposed previously unknown errors in all three versions of

VisualBlox. Table 4.2 shows a summary of the results. “New Errors” indicates the

number of errors exposed by the generated test set that were not present in earlier

VisualBlox versions. “Old Errors” indicates the number of errors exposed in one

version that were also exposed in earlier versions. “Total Errors” shows the total

number of errors exposed by the test set.

Figure 4.8 shows a generated test input that exposed an error in the way that

VisualBlox generates code for objectified fact types. This error is only exposed by

models that contain objectified unary fact types. Inspection of the VisualBlox out-

6Jiggle is a freely available force-based graph layout library written in Java.

50

”Groupable5"

Erma Ca)ble4] @ E

groupable3

 groupable2

Figure 4.8: Generated test input that exposed a VisualBlox error

put for this test model revealed that VisualBlox failed to generate an important

consistency constraint for objectified unary fact types. All three versions of Visu-

alBlox exhibited this error. The existing test set for VisualBlox included models

with unary fact types, and models with objectified fact types, but did not include a

model that combined these two features in a way that exposes the error. The error

is particularly serious because it does not cause either VisualBlox or the database

engine to emit any warnings or error messages. Instead, an important database

constraint is silently omitted, which could allow insertion of inconsistent data in a

production database.

and groupable5

objectifies

[Groupable7]

(.ld)

Figure 4.9: Another error-exposing test input

Figure 4.9 shows another error-exposing test input generated by ATIG. Visual-

Blox generates a database predicate for each role in an objectified fact type. When

51

the same object type plays multiple roles of the same objectifled fact type, Visu-

alBlox mistakenly generates two database objects with the same name. This error

was present in all three tested versions of VisualBlox. The test set manually created

by VisualBlox developers did not expose it. Thus, without automated testing, this

error may have persisted for a long period of time before being discovered.

4.6 Discussion

The case study demonstrated that ATIG can automatically generate valid test inputs

for a real-world model transformation in a practical amount of time. VisualBlox

supports a large subset of the ORM language, providing a realistic test of ATIG’s

practicality. Moreover, the generated inputs exposed multiple previously-unknown

errors. These results, though anecdotal, warrant further development and research

on ATIG.

Figure 4.10: An infeasible choice combination detected by ATIG

(1) |ObjectType plays Role] = 2

(2) [Role constrained by SimpleMandatoryl = 2

(3) [EntityType objectifies FactType] = 1

Some important lessons were learned in the course of the case study.

0 Manually identifying infeasible choice combinations that arise from static se-

mantic constraints is not practical. ATIG was developed to overcome a limita-

tion of existing combinatorial testing tools, namely that users must manually

identify infeasible choice combinations. The case study illustrates why this

limitation is significant when testing model transformations.

52

"Swimmer"

competes is professional

"Athlete" "ProfessionalAthlete"

Figure 4.11: An invalid ORM model accepted by NORMA

Consider the reasoning required to determine whether the combination in Fig-

ure 4.10 is feasible or not. To fit the choice combination, a model must have

exactly two roles, one objectified type, and at least one other object type to

play a role in the fact type being objectified. The feature specification requires

that all object types play at least one role, and an objectified fact type is an

object type. Thus, one role must be played by the objectified type, and the

remaining role must belong to it. However, now choice 2 cannot be satisfied be-

cause no unary role may be mandatory (the feature specification captures this

rule with an exclusion constraint on Role is unary and Role constrained by Sim-

pleMandatory). As there are no other alternatives that would allow mandatory

constraints without violating choice 1 or 3, the choice combination is invalid.

Creating a feature specification may reveal cases that developers

missed. The feature specification must include a complete description of a

source notation’s static semantics to ensure that no invalid models are gen-

erated. During the validation of an early version of the feature specification

53

used in the case study, ATIG generated several populations describing unusual

ORM models. The models consisted of a cycle of objectified fact types: Each

fact type had a role player, yet the model contained no object types. One

such model is shown in Figure 4.11, with more meaningful labels added to aid

comprehension. Though these models are not valid ORM models, they can

currently be created in NORMA, and NORMA fails issue an error or warning

message.

Small models are sufficient to expose subtle errors in a model trans-

formation. ATIG cannot generate large models as test inputs, due to the in-

herent difficulty of the problem. This lack of scalability precludes using ATIG

to generate populations of large ORM models, such as ORM data models for

database applications. However, the results of this case study indicate that

small models are sufficient to expose errors in model transformations. Thus,

ATIG’S lack of scalability does not prevent ATIG from generating useful test

sets.

The cost of detecting infeasible choice combinations can be amor-

tized over many ATIG executions. ATIG was executed repeatedly as

I added to the feature specification for the case study, in order to validate

the changes. I observed that likely—infeasible choice combinations typically

remained infeasible when the feature specification was extended. To avoid

spending time identifying the same infeasible combinations on each execution,

I extended ATIG to store likely-infeasible feature combinations in a file be-

54

tween runs. ATIG now reloads stored likely-infeasible combinations at the

start of a run, if they exist. Each reloaded combination is checked to ensure

that it has not become feasible due to a change in the feature specification

or the maximum population size. Checking an infeasible choice combination

requires a single invocation of Alloy Analyzer, versus at worst 2" invocations

(for n categories) to find the combination in a test frame. Combinations that

become feasible are discarded.

The test generation time reported in Section 4.3 was for an ATIG execution

that did not make use of previously discovered infeasible choice combinations.

In practice, a new test set can be generated in much less time.

55

Chapter 5

Related Work

The work most closely related to ATIG is divided into two categories:

0 work on generating combinatorial test sets that avoid invalid inputs, and

0 work on generating test inputs for model transformations.

5.1 Combinatorial testing and constraints on pro-

gram inputs

A practical combinatorial testing tool must account for constraints on program in-

puts. Recall that a t-way test plan is a set of test frames, where each test frame

describes an equivalence class of program inputs. In an efficient t-way test plan,

each test frame covers at least one combination of t choices that is not covered by

any other frame. Thus, each frame must describe at least one valid program input

to preserve t—way choice coverage in a test set constructed according to the test plan.

56

Throughout this thesis, we have referred to choice combinations that describe only

invalid program inputs as infeasible choice combinations.

Combinatorial methods and tools vary in their support for constraints. Some

combinatorial testing methods, such as IPO [19] or the method described by Hnich

et al [17], leave out constraint support entirely. Others offer limited constraint

support. For example, the Deterministic Density Algorithm (DDA) [6] supports only

soft constraints. A soft constraint is a feasible choice combination that the tester

does not wish to appear in the generated test set, such as a choice combinations

that the tester considers unlikely to expose errors. The DDA algorithm attempts to

avoid soft constraints, but does not guarantee that a generated test plan will exclude

them.

Categories

Access Billing Call Type Status

Loop Caller Local Success

Choices ISDN Collect Long_Distance Busy

PBX Toll-Free International Blocked
Table 5.1: Test specification for a telephone billing system

The TestCover tool [23], as reported by M. Cohen et al. [5], requires the user

to remove infeasible choice combinations by decomposing the test specification into

_ sub—specifications. TestCover generates a t-way test plan for each sub-specification

and returns the union of these test plans. Table 5.1 shows a simple test specification

for a telephone billing system, taken from [20], that we use to illustrate this method.

Suppose the program specification includes the constraint that international calls are

never toll—free or collect. To remove the infeasible choice combinations, a TestCover

user would split the test specification into two specifications, each containing all

57

categories. One sub—specification would include only the “Caller” choice from the

Billing category, and the other would exclude the “International” choice from the

“Call-Type” category.

Several combinatorial testing tools provide generate test plans that exclude all

infeasible choice combinations supplied by the user. AETG [4] accepts test specifica-

tions written in the AETGSpec language [20]. AETGSpec supports constraints on

choice combinations, expressed as if-then statements. PICT [8] also supports if-then

constraints. jenny [28], the tool used by ATIG, requires the user to supply infeasible

choice combinations as a list of tuples. M. Cohen et al. developed the prototype

tool mAETG.SAT [5] to show how 3 SAT solver can be integrated into existing

algorithms to add constraint support. mAETG_SAT is based on the original AETG

algorithm [4] and accepts constraints as a list of infeasible choice combinations, much

like jenny.

All of these tools assume that the user can easily identify infeasible choice com-

binations that arise from constraints on program inputs. This assumption generally

holds when categories relate one-to—one with program parameters or configuration

options and choices relate directly to ranges of input values. In Table 5.1, for exam-

ple, the program inputs relate directly to the test specification, and infeasible choice

combinations follow directly from constraints on the inputs. Using PICT, we would

represent the constraint that international calls are never toll-free or collect with

an if—then statement: “IF Call Type = International THEN Billing != Collect and

Billing !2 Toll-Free”. Using jenny, we would represent the constraint as two choice

pairs (International,Collect) and (International,Toll-Free).

58

Generating combinatorial test sets for model transformations is difficult using

existing tools, because infeasible choice combinations are difficult to identify. Most

infeasible choice combinations arise from the static semantics of the source nota-

tion. However, the static semantics cannot be directly expressed in terms of the

test specification. As a result, a tester cannot realistically identify infeasible choice

combinations for a test specification like the one in the case study. ATIG is, to my

knowledge, the only combinatorial testing tool that automatically identifies infeasi-

ble choice combinations arising from constraints on a program’s inputs.

5.2 Generating Test Inputs for Model Transfor-

mations

Several recent methods for generating model transformation test inputs differ in the

strategies they use to partition the input space, and in the extent to which they

use knowledge about the behavior of the model transformation under test. Most

methods provide only limited support for constraints that express complex static

semantics.

Brottier et al.’s [2] OMOGEN tool generates test inputs for model transforma-

tions. Like ATIG, OMOGEN accepts a simplified metamodel of the source notation,

which they call the effective metamodel. The effective metamodel is expressed as a

UML class diagram. OMOGEN also accepts a partition of the effective metamodel.

The partition is based on choices that specify ranges of values for each attribute and

association cardinality in the effective metamodel. These choices are similar to the

59

choices in an ATIG test specification. OMOGEN uses the effective metamodel and

its partition to automatically generate test models for a model transformation.

Compared with ATIG, OMOGEN has significant limitations. For instance,

OMOGEN does not process textual constraints in the effective metamodel. As a

result, it may generate models that violate the source notation’s static semantics.

In contrast, ATIG employs Alloy to ensure that all generated models respect the

static semantics. Additionally, OMOGEN requires a set of test framesl, which the

tester must derive from the partition by some other means. In contrast, ATIG uses

jenny to automatically derive a t-way test set from the test specification.

Wang et al. [31] present a tool-supported method for generating test inputs

directly from a model transformation to be tested and a metamodel of the source

notation. Their method assumes the model transformation is written in a model

transformation language that is amenable to automated analysis. The metamodel

must be expressed as a UML class diagram. In the method, a tool derives a set of

coverage items from the transformation and the metamodel. A coverage item defines

combinations of attribute and association values to be represented in the generated

test set. The tool then generates a set of models that satisfy all coverage items. The

algorithm for generating models from coverage items is only sketched.

Wang et al. implemented their method with a tool that generates models for

transformations written in the Tefkat [25] transformation language. The authors

report that the tool often generates very large test sets containing redundant models;

they are investigating pairwise testing as a means of reducing test set size. The

1Brottier et al. use the term model fragments.

60

method description makes no mention of support for OCL constraints. Without

support for textual constraints, many of the generated models will be invalid.

At least two methods generate test models from a formal description of a code

generator’s behavior as a graph rewriting system. A graph rewriting system consists

of graph rewriting rules. A graph rewriting rule has a left-hand side (LHS) and a

right-hand side (RHS). The left-hand side is a search pattern to be matched against

parts of a model. The right-hand side describes how a model that matches the LHS

pattern is rewritten by the rule. In these methods, a code generator is represented

as a graph rewriting system, with input and output models represented as graphs.

The challenge in applying these methods is in formally describing the code generator

to be tested. ATIG offers a method of generating inputs that does not require a

formal specification of the model transformation to be tested.

Stiirmer and Conrad [26] present a method to generate test models for a code

generator, given a representation of the code generator as a graph rewriting system.

Their method relies on the Classification Tree Method [13] to partition the space of

models that match the LHS of a rule. They then construct one model for each class

of the partition to form a test set for the rule. In later work [27] the authors automate

both the derivation of a classification tree and the generation of test models from

that tree.

Baldan et al. [1] present a method that uses a description of both the code gen—

erator’s behavior and the structure of its inputs as graph rewriting systems. A code

generator’s behavior and its source notation are each described by generative graph

grammars, referred to as the optimizing grammar and the generating grammar re—

61

spectively. Given a set of rules from the Optimizing grammar, their method attempts

to generate a test case that triggers those rules. The test case is generated according

to the generating grammar, ensuring that it is well formed.

Ehrig et al. [10] describe a method of deriving an instance generating graph

grammar from a metamodel expressed as a UML class diagram. The grammar can

then be used to generate instances of the model. The method does not currently

support OCL constraints; as a result, a large proportion of models generated by the

grammar are invalid. The authors sketch an extension that would support a subset

of OCL. However, the subset does not include iteration over collections, which occur

frequently in well-formedness rules. For example, the UML 2.0 metamodel [30]

includes 5 OCL constraints on a state machine region, of which 3 contain iteration.

62

Chapter 6

Conclusions

This thesis explored the feasibility of extending tools for the CPM and t-way combi-

natorial testing to support complex constraints on test inputs, with a view towards

testing model transformations. I examined prior combinatorial testing tools, and

saw that they require the user to identify infeasible choice combinations manually.

I developed ATIG, a prototype tool that automatically infers likely-infeasible choice

combinations that arise from a formal description of test inputs. In a case study,

I explored ATIG’S practicality by using it to generate test inputs for an industrial

code generator.

The results of the case study suggest that despite scalability issues, ATIG is a

practical tool for generating model transformation test inputs. ATIG was able to

generate a set of test models covering a significant subset of the features supported by

VisualBlox. The test set was generated in a matter of hours, and included no invalid

models. Moreover, the generated test set exposed errors in all versions of VisualBlox

that were not exposed by an existing test set, which was created manually.

63

The case study results suggest several areas for future work. I intend to ex-

plore whether ATIG can be made more scalable. Currently, ATIG generates a

complete population of a feature specification in one call to Alloy Analyzer. This

method quickly becomes intractable as the feature specification grows in size. How-

ever, it may be possible to improve scalability by generating a population in several

steps. I will explore ways of subdividing a large feature specification that allow

sub-populations to be merged efficiently.

I also plan to use ATIG to study combinatorial testing of model transformations

in more detail. For example, I will compare the cost-effectiveness of 2—way, 3-way

and higher test sets versus manually created test sets. I also plan to use ATIG to

test model transformations that accept other types of models, such as UML models.

Finally, I plan to improve ATIG itself. The ATIG prototype currently provides

only a command-line interface. I will extend ATIG with a graphical user interface to

give the tester more control over ATIG during a test generation run. I also plan to

speed up ATIG test generation by parallelizing the ATIG algorithm. ATIG spends

a large majority of time searching for infeasible choice combinations by consider-

ing each choice subset in a test frame. Extending ATIG to distribute this work

across many processor cores or networked computers would considerably reduce test

generation time.

64

BIBLIOGRAPHY

65

BIBLIOGRAPHY

[1] P. Baldan, B. Konig, and I. Stiirmer. Generating test cases for code generators

by unfolding graph transformation systems. Lecture notes in computer science,

pages 194—209, 2004.

[2] E. Brottier, F. Fleurey, J. Steel, B. Baudry, and Y. Le Ttaon. Metamodel-

based test generation for model transformations: an algorithm and a tool. In

Proceedings of ISSRE, volume 6, pages 85—94, 2006.

[3] T.Y. Chen, R. Merkel, G. Eddy, and PK. Wong. Adaptive random testing

through dynamic partitioning. In Proceedings of the Fourth International Con-

ference on Quality Software, pages 79—86, 2004.

[4] D.M. Cohen, S.R. Dalal, J. Parelius, G.C. Patton, and NJ Bellcore. The combi-

natorial design approach to automatic test generation. IEEE software, 13(5):83—

88, 1996.

[5] MB. Cohen, ME. Dwyer, and J. Shi. Interaction testing of highly-configurable

systems in the presence of constraints. In Proceedings of the 2007 international

symposium on Software testing and analysis, pages 129—139. ACM New York,

NY, USA, 2007.

[6] C.J. Colbourn, ME. Cohen, and RC. Turban. A deterministic density algo-

rithm for pairwise interaction coverage. In Proc. of the IASTED Intl. Conference

on Software Engineering, volume 41, pages 242—252. Citeseer, 2004.

[7] M. Curland and T. Halpin. Model driven development with norma. In System

Sciences, 2007. HICSS 2007. 4 0th Annual Hawaii International Conference on,

pages 286a—286a, 2007.

[8] J. Czerwonka. Pairwise testing in real world. In 24th Pacific Northwest Software

Quality Conference, volume 82, 2006.

[9] RA. DeMilli and A.J. Offutt. Constraint-based automatic test data generation.

IEEE Transactions on Software Engineering, 17(9):900—910, 1991.

66

[10] K. Ehrig, J.M. Kiister, and G. Taentzer. Generating instance models from meta

models. Software and Systems Modeling, 8(4):479—500, 2009.

[11] R. France and B. Rumpe. Model-driven development of complex software: A

research roadmap. In 2007 Future of Software Engineering, pages 37—54. IEEE

Computer Society, 2007.

[12] G. Gheorghiu. A look at Selenium. Better Software, 7(8):38, 2005.

[13] M. Grochtmann and K. Grimm. Classification trees for partition testing. SOFT-

WARE TEST VERIF RELIAB, 3(2):63-82, 1993.

[14] T. Halpin. ORM 2. Lecture notes in computer science, 37622676, 2005.

[15] T. Halpin and T. Morgan. Information modeling and relational databases: from

conceptual analysis to logical design. Morgan Kaufmann, 2008.

[16] K.V. Hanford. Automatic generation of test cases. IBM Systems Journal,

9(4):242—257, 1970.

[17] B. Hnich, S.D. Prestwich, E. Selensky, and BM. Smith. Constraint models for

the covering test problem. Constraints, 11(2):199—219, 2006.

[18] D. Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press,

2006.

[19] Y. Lei and KC. Tai. In-parameter—order: a test generation strategy for pairwise

testing. In Proceedings of the third IEEE High Assurance Systems Engineering

Symposium, pages 254—261, 1998.

[20] C. Lott, A. Jain, and S. Dalal. Modeling requirements for combinatorial software

testing. In Proceedings of the Ist international workshop on Advances in model-

based testing, page 7. ACM, 2005.

[21] T.J. Ostrand and M.J. Balcer. The Category—Partition Method for Specifying

and Generating Functional Tests. Communications of the ACM, 31(6), 1988.

[22] E. Seidewitz. What models mean. IEEE software, pages 26—32, 2003.

[23] G. Sherwood. http://testcover.com/pub/constex.php.

67

[24]

W

[26]

[27]

[28]

[29]

[30]

[31]

Y. Smaragdakis, C. Csallner, and R. Subramanian. Scalable automatic test

data generation from modeling diagrams. In Proceedings of the twenty-second

IEEE/ACM international conference on Automated software engineering, pages

4—13. ACM New York, NY, USA, 2007.

J. Steel and M. Lawley. Model-based test driven development of the tefkat

model-transformation engine. In ISSRE’04 (Int. Symposium on Software Reli-

ability Engineering), pages 151—160, 2004.

I. Stiirmer and M. Conrad. Test suite design for code generation tools. In

18th IEEE International Conference on Automated Software Engineering, 2003.

Proceedings, pages 286—290, 2003.

I. Stiirmer, M. Conrad, H. Doerr, and P. Pepper. Systematic testing of model-

based code generators. IEEE Transactions on Software Engineering, 33(9):622—

634, 2007.

http://burt1eburt1e.net/bob/math/jenny.html. jenny, June 2006.

D. Tunkelang. JIGGLE: Java interactive graph layout environment. Proceedings

of Graph DrawingQS, 1998.

v2.0 UML Superstructure Specification. http://http://www.omg.org/cgi-

bin/d0c?f0rmal/05-07-04, 2004.

J. Wang, S.K. Kim, and D. Carrington. Automatic Generation of Test models

for Model Transformations. In Proceedings of the 19th Australian Conference

on Software Engineering, Washington, 2008.

68

03063 49543193

