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ABSTRACT

STRATEGIES FOR OPTIMIZING HYBRID ELECTRIC VEHICLE POWERTRAINS
AND PROGRESSIVELY CRUSHING RAILS

By
Nathan Chase

In application of automated design optimization methods to complex problems,
often the biggest challenge is to identify an optimization problem statement that will lead
to a design with the desired performance in an efficient and effective manner. In the
current study, the optimization statements of two challenging problems are investigated
and new approaches are introduced to improve the performance of the designs as well as
the optimization process.

Fuel efficient and environmentally friendly ground vehicles require a careful
balance among competing goals for fuel economy, performance, and emissions. Several
optimization approaches are investigated for a series hybrid bus to find the best overall
combination of engine size, battery pack, electric motor and generator with minimum fuel
consumption under specified performance criteria. An alternative to a common
optimization approach for HEV’s is proposed and shown to yield results equivalent to
other common approaches but with greater efficiency for the problem posed.

To increase robustness of the crush mode and to decrease repair costs after a
crash, it is desirable for front and rear structural rails in an automotive vehicle to crush
progressively - where crush initiates near the tip of the rail and progresses rearward in a
controlled fashion. A new strategy is investigated here to achieve progressively crushing
designs during an automated design optimization study. It is demonstrated that high

performing designs with progressive crush can be obtained using the proposed approach.
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CHAPTER 1: INTRODUCTION

Optimization is becoming an essential tool in computer aided engineering,
specifically in the design process. The need for quicker, better solutions in the global
economy that is the reality of today’s world, has made it insufficient to rely solely on an
engineer’s intuition and experience. Optimization allows superior designs to be found
quicker and more robustly in a realm that is not limited to the experience of a specific
engineer working on a project, but rather the search capabilities of the optimization
software in use, and the way the optimization problem is posed.

In the past, optimization has been slow to gain popularity in industry due to the
perceived complexity associated with it. The methods used to perform the optimization
search were largely dependent upon the problem at hand and it was common for one to
need to be an expert in not only the problem being solved but also the search methods
used to solve the problem. Today however, some of the commercial optimization
software packages are improved enough, and user friendly enough, that being an expert
in optimization is no longer a requirement. There are search methods available (e.g.,
SHERPA [29]) that require no knowledge by the user as to the details of the search
strategy employed. Whereas in the past, the user had to specify values of tuning
parameters for a given method, methods like SHERPA require no tuning parameters, only
the number of evaluations allowed. In addition, modern hybrid and adaptive methods
work on broad classes of problems, so the user does not need to know the nature of

design landscape of the problem being solved a priori. These methods adapt to the



landscape of the problem being solved by modifying which search strategies are used,
and how they are used, at various stages of the search process..

Today, it follows that the complexity of search algorithms and their use is no
longer a primary issue. The issue at hand now becomes how to best define the
optimization problem being solved in order to arrive at the desired results. For most
problems this includes only a few decisions by the engineer. He must decide how best to
setup the analysis model of the system he is trying to optimize; this may be deciding on
how best to parameterize a CAD model or choosing the most appropriate settings for a
numerical model, among other things. He then must decide what responses are of interest
to him, and what performance criteria are to be used during the optimization. Finally, he
must decide the allowable design space for his design variables, and what is considered
an acceptable design.

For some applications, the above three decisions by the engineer regarding the
optimization statement may not be sufficient. The way the optimization should be defined
may not be clear to the engineer in that it may be defined in multiple ways. Each
definition possibility may lead the optimization in a different direction and produce
different optimal designs. Defining an optimization problem in one way may lead the
optimization to a design that meets the requirements as defined, but that does not meet
requirements that were undefined — ones that the user may not have thought of before the
optimization was performed, or didn’t know how to define. Once the engineer knows
how to properly define the optimization problem for the specific application he is
interested in, however, not only will he get superior optimal designs, but he also will have

a better understanding of how to define optimization problems for similar applications.



It is the goal of this study to investigate optimization strategies for two specific
applications for which the problem statement is not obvious, and for which multiple
definitions are possible — each that give vastly different results. It is the hope that the
optimization strategies posed here will provide engineers in the respective fields a
“template-like” problem statement to be used in future optimization studies. In addition,
it is hoped that this work will demonstrate the importance of optimization strategies for
complex applications and provide the framework for more application problem

definitions, perhaps even in other fields, to be explored in the future.



CHAPTER 2: INTRODUCTION TO HYBRID ELECTRIC
VEHICLES

2.1 Background

Never before has there been such a concemn over the future of the transportation
industry throughout the world. The recent escalation in concerns over global warming
and greenhouse gases, coupled with the depleting supply of the world’s oil reserves and
the growing instability in the regions of the world where these reserves exist, has caused
a heightened awareness in the insufficiency of the standard internal combustion engine
(ICE). It has never been as apparent as in today’s modern world, that the current models
for automobiles and other vehicles that rely on natural reserves are insufficient for a
responsible, realistic future.

Currently there are many proposals as to the direction the world should take in
changing the dependence on oil. Alternate fuel systems such as fuel cells and bio-diesels
are strong contenders for the next wave of vehicles. However these vehicles, should they
be implemented, would require a major overhaul in the economic and standard landscape
the world has become accustomed to. The shifting agricultural landscape required for
bio-diesels make them an unlikely alternative, while the instability and uncertainty of fuel
cells also make them unlikely in the near future as a replacement for the standard IC
engine. Electric vehicles (EV’s) came into the mainstream of America over a decade ago.
Their prompt failure and unpopularity make them an unlikely alternative for most of the

world anytime soon.



Hybrid electric vehicles (HEV’s) are perhaps the most promising substitute to
conventional vehicles in the near future. HEV’s utilize multiple energy sources; in terms
of this thesis, these energy sources will refer to an energy storage system (such as a
battery or ultra-capacitor), and also an engine. These multiple energy sources allow for
the optimal operation of the engine, thus reducing fuel consumption and emissions. This
proposed alternative to standard vehicles helps reduce the consumption of oil reserves,
while also reducing the emissions of greenhouse gases and not drastically changing the
current landscape of the transportation industry.

The design of hybrid electric vehicles (HEV’s) requires complex optimizations to
account for the intricate interactions among the components, control strategies and the
resulting effects on performance. Due to the size of HEV models and the complexity of
interactions among the many components, it is challenging to properly define an
optimization problem statement that invokes a final design with the desired performance
characteristics. The optimization problem statement definition greatly affects the
performance of the optimized HEV design, as well as the implications of the design.
While this may seem obvious, the proper problem statement for achieving a particular
performance goal is not always so clear.

In the first section of this thesis, the main characteristics of two optimization
strategies that have been shown to be efficient in optimizing hybrid electric vehicles are
merged into a single and more robust strategy that is shown to have several advantages in
terms of design performance. The main purpose here is to explore these various strategies
and associated optimization problem statements and their effects on the resulting hybrid

vehicle design. As a consequence of this study, a practical and efficient approach is



developed for sizing the components and defining the system control of HEV’s to create

efficient, reliable vehicles.

2.2 Literature Review

2.2.1 Overview

Hybrid electric vehicles (HEV’s) include an engine as a fuel converter or
irreversible prime mover, an electric prime mover, and sometimes a generator [1-2]. They
are typically classified into three different categories: series, parallel, or combination.
Series HEV’s utilize an internal combustion engine (ICE) as an auxiliary power unit to
extend the driving range of a purely electric vehicle. These vehicles use a generator to
convert mechanical energy produced by the ICE into electricity that can either charge the
battery or feed the drive motor directly (as shown by Figure 2.2.1). The use of a clutch in
series HEV’s is unnecessary. Parallel HEV’s do require a clutch, and utilize both the ICE
and electric motor to supply tractive power either individually or in combination (see
Figure 2.2.2). Combined HEV’s utilize both a mechanical and electric link, with two

distinct electric machines (as shown by Figure 2.2.3 and Figure 2.2.4).



Engine

L

Generator
Battery |— Power Converter |— Motor Transmission [—] Vehicle
Figure 2.2.1. Series hybrid electric vehicle configuration.
Engine
Battery |—{ Power Converter |— Motor [—] Transmission [—] Vehicle
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Guzzella and Sciarretta [1] as well as Ehsani, Gao, and Miller [3] identify HEV’s
as the most promising alternatives to conventional vehicles. The high energy density of
petroleum fuel and the convenience of current fueling systems make for a long vehicle
operating range, easy refueling, and a smooth transition from conventional vehicles,
while the design of the HEV components provide an improved fuel economy and reduced
emissions. HEV’s can utilize a downsized engine while still fulfilling the maximum
power requirements of the vehicle. They possess the ability to recover energy during
braking (regenerative braking), as opposed to dissipating it in conventional vehicles that
use friction braking. HEV’s can optimize the energy distribution between their prime
movers for maximum efficiency, while also eliminating idle fuel consumption by turning
off the engine when no power is required and eliminating clutching losses by engaging
the engine only when the speeds match. In addition, due to the optimized operation of the
internal combustion engine, the vehicles will need less maintenance than conventional
vehicles currently require, as described by Chan [4].

While the benefits of HEV’s over conventional vehicles are substantial, there are
also some drawbacks as discussed by Chan [4]. Hybrid electric vehicles are typically 10-
30% heavier than conventional vehicles, while costing more due to added motors, energy
storage systems, and power converters. In addition, reliability and warranty related issues
are of concern due to the lack of mechanic training in the electrical aspect of their design.
Safety concerns with HEV’s still need to be addressed due to the presence of high voltage

devices, and the effect of electromagnetic fields on HEV’s is not fully understood.



2.2.2 Modeling Tools

The need for accurate modeling and simulation of hybrid electric vehicles has
been discussed in [5-7]. Gao, et al [5] present an overview of some currently available
methods, and place special emphasis on four modeling tools: ADVISOR [8-9], PSAT
[10], PSIM [11], and VTB [12]. ADVISOR is a steady state model that achieves fast
computation but does not accurately resolve dynamic effects. PSAT is a quasi-steady
state model. PSIM and VTB are dynamic models, in which time integration is performed.
The tool QSS toolbox is introduced by Guzzella, and Amstutz [13] for optimizing and
simulating hybrid powertrains. QSS toolbox uses a backward approach that is faster than
typical approaches due to no feedback loops being used, and rather large time steps being
utilized. There are significant assumptions in this tool, which the authors contend are
small and have negligible effects over an entire drive cycle.

In the current study, ADVISOR was chosen as the modeling tool. An overview of
ADVISOR (advanced vehicle simulator) is provided by Wipke, Cuddy, and Burch [8].
ADVISOR utilizes a combined forward/backward simulation approach to evaluate a
vehicle’s performance. It is used in conjunction with Matlab to simulate the behavior of
Hybrid Electric Vehicles (HEV’s) [9]. An ADVISOR model consists of multiple
components that are evaluated in a 1-dimensional manner, often using look-up tables and
efficiency maps to provide fast computation with the backward facing approach. The
force required to accelerate the vehicle through a time step is calculated directly from the
required speed trace. This force is then translated into torque, etc. This process is carried
backward through the HEV drive train, component by component until the entire system

is solved. This backward facing approach is typically more efficient than the forward



facing approach for force calculation. The forward facing aspect of the ADVISOR
solution uses a driver model that considers the required speed and the present speed to
develop appropriate throttle and brake commands, which are in turn translated into
torque, etc. The forward facing approach better takes into account dynamic effects and
maximum effort accelerations, and enables the development of vehicle controllers. By
combining both of these approaches, ADVISOR is able to solve the problem efficiently,
while achieving the desired accuracy. Chapter 3 provides more details on how ADVISOR

works.

2.2.3 Optimization

Three types of HEV optimization are identified by Guzzella and Sciarretta [1].
The first of these is a structural optimization in which the best possible power train
structure is sought. The second type is parametric optimization to find the best possible
parameter values for a fixed power train structure (sizing of components). The third type
of optimization focuses on the control system, where the best possible supervisory
control strategy for a given structure is sought. While these three types of optimization
studies are not necessarily independent, each one represents a meaningful and tractable
suboptimization problem within the overall design process. The current study focuses
primarily on the second type (sizing) while also addressing the role of the control strategy
on the optimization of HEV’s.

The commercial software HEEDS [29] was used as the optimization tool for the
current study. The hybrid and adaptive search method SHERPA [29] was employed

exclusively here because it has been shown to perform well on a wide variety of
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problems, including muilti-modal, noisy, discontinuous problems. Oh, et al [14]
demonstrated that local search methods such as Sequential Quadratic Programming
(SQP) can be used to find marginal improvement in HEV designs. More often, however,
it has been found that local search methods are not ideal for the optimization of HEV’s.
Montazeri-Gh, et al [15], showed that HEV optimization problems are highly non-linear,
discontinuous, and multi-modal (i.e., multiple local optima exist). Therefore gradient-
based search methods, which require the existence of at least first-order derivatives at
each design point, are often not the ideal choice for HEV design problems. This is
supported by Piccolo, et al [16] who concluded that a genetic algorithm is an efficient
search algorithm for identifying optimized control strategy parameters for a design that
meets performance criteria while having low fuel consumption. Gao and Porandla [17]
also identified genetic algorithms as a potentially efficient search algorithm for HEV
optimization problems. While optimizing an HEV parallel powertrain with PSAT as the
simulation tool, these investigators benchmarked the use of simulated annealing (SA),
genetic algorithms (GA), and the DIRECT technique to perform the optimization.
DIRECT is a modification to the Lipschitzian approach in which the design space is
represented by a series of shrinking hypercubes for high performing regions of the design
space. It was observed that simulated annealing outperformed the genetic algorithm and
modified Lipschitzian approach in terms of performance for the optimization problem
posed. The response functions associated with HEV design problems were found to be
typically multi-modal and sometimes noisy and discontinuous. It was suggested that

stochastic algorithms (such as SA and GA) and deterministic algorithms (such as
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DIRECT) were insufficient in finding the global optimum as efficiently as a hybrid
method that mixes stochastic and deterministic algorithms.

It was observed by Montazeri-Gh, et al [15] that very different optimized designs
were obtained using different driving cycles. Three different driving cycles were explored
for the same optimization problem, resulting in three very different optimized
configurations for the control strategy of the HEV. The effects of drive cycle were also
studied by Markel and Wipke [18-19], where it was found that the drive cycle greatly
affected the optimized sizing of components in the HEV. It was found that more
aggressive drive cycles yielded designs with smaller battery packs, while less aggressive
drive cycles yielded optimized designs with larger battery packs. It was demonstrated that
the drive cycle not only affects the component sizing of the optimized HEV designs, but
also the energy management strategy of the HEV.

Assanis, et al [20] and Fellini, et al [21] integrated ADVISOR and Turbo Diesel
Engine Simulation Program (TDES) to give greater accuracy in the engine maps being
used for altered hybrid designs. Fellini, et al [21] described an optimization study using
an Object Oriented-CORBA-based environment for the analysis, to optimally size the
engine, motor, and battery of the vehicle. They concluded that optimized engine size is
insensitive to variations in the drag coefficient, shell mass, battery efficiency, and drive
ratio, whereas the battery size and optimized motor are sensitive to these parameters. This
was shown through a sensitivity study following the attainment of optimized values via
an optimization study.

Moore [22] suggested guidelines for specifying performance criteria when

designing components and control strategies for HEV’s. These guidelines specify that
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the vehicle must be capable of: launching at a given grade road, accelerating to multiple
speeds under given timeframes, maintaining gradability for a specified time and speed,
achieving a maximum velocity, achieving a minimum fuel economy, meeting emissions
criteria, and being capable of traveling a given distance in a mixed urban and highway
driving environment. In addition, Moore suggested guidelines that are not necessarily
pertinent to optimization of HEV’s, but rather to HEV design in general. These
guidelines include: having refueling times comparable to conventional vehicles, having
noise, vibration, and harshness in travel less than current sedans, having the ability to be
unattended for a given time below freezing temperatures, and meeting safety
requirements.

A common approach to designing HEV’s is to consider some type of battery
state-of-charge (SOC) correction. SOC corrections are routines or methods designed to
ensure that over the timeframe considered the initial SOC and final SOC are the same.
This provides a meaningful way to compare designs and ensures that a design is less
dependent upon the initial SOC. Wayne, et al [23], describe the importance of this
correction in comparing hybrid vehicle performance to conventional vehicle
performance, as described by the SAE Recommended Practice J27117 [24]. Pagerit, et al
[25] describe how SOC corrections can be used within optimization studies for HEV’s.
Duoba [26] and Senger [27] discuss how a conversion for electrical energy usage can be
used as an alternative to SOC correction, by converting the electrical energy that can be
obtained from gasoline through the efficiency of an average power plant in the United
States in 1996. SOC corrections in some form provide the basis for the vast majority of

all optimization work with HEV’s to date.
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A review of the existing literature reveals that successful optimizations have been
performed on HEV component, control strategy, and configuration design. However,
despite the magnitude of attention given to the optimization of HEV powertrains, the
roles the optimization problem statement and SOC correction have in the outcome of the
optimized design has yet to be adequately addressed. In the current study, the HEV
design found with an optimization strategy utilizing an SOC correction method is
compared with the design found utilizing an alternative optimization strategy with no
SOC correction. A comparison between the necessary optimization problem statements
for each strategy and their benefits is presented, and the strategies are merged into a
single and more robust strategy that is shown to have several advantages in terms of

design performance.
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CHAPTER 3: OPTIMIZATION WITH HEEDS AND
ADVISOR

3.1 Introduction to HEEDS

HEEDS (Hierarchical Evolutionary Engineering Design System) is a robust
design exploration and optimization software package that automates the search for better
and more robust solutions within a given design space and dramatically reduces design
time [29]. HEEDS has a search algorithm SHERPA that is a hybrid adaptive search
method proven to be one of, if not the best search algorithm available today. It has been
demonstrated to outperform other methods on a wide variety of problems (both in terms
of performance and robustness) [28]. For this reason, HEEDS and SHERPA have been
chosen as the optimization tool and search algorithm for this thesis project. All
optimizations performed in this first section utilize HEEDS and showcase the benefits

and power of SHERPA as it relates to the optimization of hybrid electric vehicles.

3.2 Introduction to ADVISOR

3.2.1 Overview

The advanced vehicle simulator (ADVISOR) is a simulation tool that utilizes a
combined forward/backward simulation approach to evaluate a vehicle’s performance. It
is used in conjunction with Matlab to solve difficult simulations involving Hybrid
Electric Vehicles (HEV’s).

ADVISOR uses Matlab .m files to define the HEV properties along with the

actions to be taken to test the performance of the HEV. It has a graphical user interface
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(GUI) that correlates all of the .m files needed to run a given problem. However to use
HEEDS with ADVISOR, the GUI cannot be utilized while HEEDS is executing a design
study. As a result the no gui capabilities specific to ADVISOR must be used to define
and alter the HEV and its performance characteristics during a HEEDS design study. The
baseline model however can be built and tested in the ADVISOR GUI for validation
before time is spent on the no_gui capabilities.

In the next sub-section of this chapter, the different .m files needed for a given
ADVISOR analysis are introduced (for further detail, please refer to the ADVISOR
User’s Manual [9]). The no_gui capabilities are not generally discussed, but are discussed
in detail as they relate to the example problem posed in the following section.

An example problem is presented to demonstrate how to use HEEDS with
ADVISOR. 1t is representative of a specific problem and the no_gui utilization will likely

need to be altered for other problems.

3.2.2 Matlab .m Files

To define an HEV and its performance actions in ADVISOR, there are 13 primary
categories of .m files used. These files can be manipulated and managed to represent a

specific HEV. The .m file categories are described below:

Vehicle Description: These .m files describe and load all of the other .m files

needed for a given HEV configuration.

Vehicle: These .m files define all of the parameters associated with

the vehicle such as the coefficient of aerodynamic drag, the
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Fuel Converter:

Exhaust Aftertreatment:

Energy Storage System:

Motor:

Generator:

Transmission:

mass of the vehicle, etc.

These .m files define all of the parameters associated with
the fuel converter or engine of the vehicle. Examples

include the fuel and torque maps.

These .m files define all emissions data and catalytic

converter data associated with the vehicle.

These .m files define all of the data associated with the

energy storage system such as the batteries, super

capacitors, etc.

These .m files define all of the data regarding the electric

motor.

These .m files define all of the data associated with

generators in the vehicle and devices used for recharging.

These .m files define the transmission for use in the

vehicle.
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Wheel/Axle:

Accessory:

Control:

Drive Cycle:

Test Procedure:

These .m files define the wheels and axles and the

resistances associated with each.

These .m files define the electrical accessories needed for

the vehicle. Air conditioning is included in these .m files.

These .m files define the control system used to define how

the HEV operates.

These .m files define the drive cycle over which the vehicle

1s to be tested and evaluated.

These .m files are an alternative category to the Drive
Cycle .m files in that they define a specific test to be
performed on the vehicle rather than a specific route the

vehicle is to take.
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3.3 Linking HEEDS to ADVISOR
3.3.1 ADVISOR Optimization Preparation

There are four files required with every ADVISOR optimization run. The main
file defines the ADVISOR model to be used and contains the commands for writing the
values of the design variables and responses to an output response file
(outdata_control.txt in this example). In this example, the main file is named
optim_control HEEDS.m. Another file identifies the objectives for the run and stores
their values following the simulation (0bj fun_control.m for this example). A third file
identifies and stores the values of the constraints for the run (con _fun control.m for this
example). The fourth file contains the values of the design variables (indata_control.m
for this example). These files are used by ADVISOR to load and define the entire
problem setup for each HEEDS evaluation. They therefore are unique for every single
optimization which utilizes ADVISOR as an analysis tool. Descriptions of the file

contents follow as they relate to this particular example problem.

3.3.1.1 optim_control HEEDS.m

For this example, the file associated with defining the ADVISOR mode] contains
10 primary sections (see Figure 3.3.1). Section 1 of the code creates a Matlab workspace
where no variables are defined. Section 2 initiates a timer so that the length of the
analysis can be monitored. Section 3 loads the vehicle description .m file
PARALLEL defaults in. Section 4 alters the number of battery modules to 14 from the
default value. Section 5 of the code scales the motor to 13.5kW from 75kW. Section 6

defines the variables and responses to be used in the optimization. Section 7 identifies the
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file containing the design variable information and imports their values into the model.
Section 8 identifies the files containing the objective and constraint variables and
associates them with the model. Section 9 creates the output file for the analysis
(outdata_control.ixt) and writes the objective and constraint data to it. Finally, Section10

stops the timer since the analysis is now complete.
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% Clear all the variables
clear all

% initiate timer
tic

% Load advisor saved vehicle
input.init.saved_veh_file='"PARALLEL_defaults_in";
[error_code,resp)=adv_no_gui(‘initialize',input);

%Alteration to ESS
input.modify. param={'ess_module_num};
input.modify.value={14};
[error,resp]=adv_no_gui('modify’,input);

%Alteration to Motor
input.modify.param={"mc_trq_scale'};
input.modify.value={0.18};
[error,respl=adv_no_gui('modify’,input);

% Define variables

‘cs_off_trq_frac','cs_min_trq_frac','cs_charge_trq'};

resp_names={'combined_mpgge','hc_gpm','co_gpm','nox_gpm',
‘vinf.accel_test.results.time(1)','vinf.accel_test.results.time(2)','vinf.accel_test.results.time(3)’,
‘vinf.accel_test.results.max_speed','vinf.accel_test.results.max_rate',
‘vinf.accel_test.results.dist_in_time','vinf.grade_test.resuits.grade'};

% load new design variables
indata_control

% Evaluate responses
obj=obj_fun_control(X,dv_names,resp_names);
con=con_fun_control(X,dv_names,resp_names);

% write responses to file
fid=fopen(‘outdata_control.txt','w');
fprintf(fid,'Fuel Economy: %g',0bj);
fprintf(fid,\n');

fprintf(fid,'HC: %g',con(1));
fprintf(fid,\n");

fprintf(fid,'CO: %g',con(2));
fprintf(fid,\n');

fprintf(fid,'NOx: %g',con(3));
fprintf(fid,\n");

fprintf(fid,'Accel 0-60: %g',con(4));
fprintf(fid,\n");

fprintf(fid,'’Accel 40-60: %g',con(5));
fprintf(fid,"n');

fprintf(fid,'Accel 0-85: %g',con(6));
fprintf(fid,"\n');

fprintf(fid,'Max Speed: %g',con(7));
fprintf(fid,\n');

fprintf(fid,'Max Accel: %g',con(8));
fprintf(fid,\n');

fprintf(fid,'Distance in 5s: %g',con(9));
fprintf(fid,"\n');

fprintf(fid,"Grade: %g',con(10));
fprintf(fid,"n');

fclose(fid);

%end timer
toc

dv_names={'cs_hi_soc','cs_lo_soc','cs_electric_launch_spd_lo','cs_electric_launch_spd_hi',

10

Figure 3.3.1. Main input file: optim_control_HEEDS.m
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3.3.1.2 obj fun_control.m

This file contains six primary sections (see Figure 3.3.2). Section 1 defines a
function. Section 2 initializes the Matlab variables to be used. Section 3 updates the
parameter settings defined by the design variables. Section 4 of the code runs the FTP
driving cycle. Section 5 identifies the objective variable from the driving cycle (gas

mileage). Finally, Section 6 identifies the other objective variables from the driving cycle

(emissions).

function obj=obj_fun(x,varargin) 1

% initialize 2
error=0;

obj=0; 3

% update parameter settings
input.modify.param=varargin{1}; % parameter names are stored in the first optional argument
input.modify.value=num2cell(x); % assign comresponding values
[error,resp]=adv_no_gui('modify’,input);
% run FTP driving cycle 4
if ~error
input.cycle.param={'cycle.name'};
input.cycle.value={CYC_FTP'"},
[error,resp]=adv_no_gui('drive_cycle',input);
end
% assign objective value
if ~error -
obj=resp.cycle.mpgge;
end
% assign objective value
if ~error
assignin('base’,'con’,[resp.cycle.hc_gpm; resp.cycle.co_gpm; resp.cycle.nox_gpm])
end

return

Figure 3.3.2. Objective definition file: obj_fun_control.m
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3.3.1.3 con_fun_control.m

This file has four primary sections (see Figure 3.3.3.). Section 1 defines a
function. Section 2 enables additions to the vector where responses are stored. Section 3
runs and defines an acceleration test, as well as obtains constraints from it (acceleration
times, max velocity, max acceleration, distance covered in Ss). Section 4 runs and defines

a grade test, as well as obtains the constraint associated with the grade test (grade).

function [con, con_e]=con_fun(x,varargin) 1
con=evalin('base’,'con’); 2
3

offset=length(con);
% run acceleration test
input.accel.param={'spds’,'gb_shift_delay','dist_in_time','max_speed_bool''max_rate_bool',},
input.accel.value={[0 60; 40 60; 0 85],0.2,5.0,1,1};
[error, resp]=adv_no_gui('accel_test'input);
if ~error&~isempty(resp.accel.times)
con(offset+1,1)=resp.accel.times(1);
con(offset+2,1)=resp.accel.times(2);
con(offset+3,1)=resp.accel.times(3),
con(offset+4,1)=resp.accel.max_speed;
con(offset+5,1)=resp.accel.max_rate;
con(offset+6,1)=resp.accel.dist;
else
con(offset+1:offset+3,1)=100;
end
% run grade test 4
input.grade.param={'duration’,'speed'};
input.grade.value={1200,55};
[error, resp]=adv_no_gui('grade_test',input);
if ~error&~isempty(resp.grade.grade)
con(offset+7,1)=resp.grade.grade;
else
con(offset+7,1)=0;
end

con_e=0;
% wikkd

retum

Figure 3.3.3. Constraint definition file: con_fun_control.m

23



3.3.1.4 indata_control.m

This file contains only one section which defines all the values for the design

variables referenced in the file optim control HEEDS.m (see Figure 3.3 4).

X(1)=0.98
X(2)=0.96
X(3)=10
X(4)=10
X(5)=0.2
X(6)=0.4
X(7)=10

Figure 3.3.4. Input design variable file: indata_control.m

3.3.2 Running the ADVISOR Simulation from Batch Mode

There is an executable located within the gui folder of the ADVISOR files named
advisor_script.exe that is created when ADVISOR is installed. It is this file that allows
ADVISOR to be run from batch mode. To run this file from a command prompt, the

format is:

advisor_script.exe WorkingDirectory ScriptFilename ADVISORRootDirectory SupportDirectory

Where for our optimization problem, this takes the form (if running from the
C:\Temp directory and the ADVISOR root directory is set to

C:\Program Files\AVL\ADVISOR\ADVISOR2004):

C:\Temp\advisor_script.exe C:\Temp optim_control_HEEDS ...
C:\PROGRA~1\AVL\ADVISOR\ADVISOR2004 C:\Temp

For use with HEEDS, a batch file needs to be created named RUN ADVISOR.bat
which contains this command, with the advisor script.exe copied to the working
directory.
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3.3.3 Process Integration Between HEEDS and ADVISOR

HEEDS performs the optimization using ADVISOR as the simulation tool by
iteratively performing simulations and searching the design space using the search
method SHERPA. SHERPA is a hybrid adaptive search method that tunes itself for a
given problem [29]. The process of optimizing using HEEDS with ADVISOR will be
described in this sub-section.

As was discussed in Sub-Section 3.3.2, ADVISOR needs to be run from batch
mode for HEEDS to be able to perform a design study. Sub-Section 3.3.1 detailed the
no_gui capabilities of ADVISOR and the files associated with this. How HEEDS uses
this capability is as follows. HEEDS inputs variable values into the input design variable
file (indata_control.m for this example). These design variable values are read into the
main file (optim_control HEEDS.m for this example), along with data from the objective
definition file (0bj fun control.m in this example) and the constraint definition file
(con_fun _control.m in this example). The executable advisor script.exe then launches
ADVISOR using the problem statement defined in the main file
(optim_control HEEDS.m). The ADVISOR simulation is then run and the output
response file (outdata control.ixt in this example) is written out based upon the
information in the main file. The response values are then read from this output response
file by HEEDS. SHERPA then adapts and tunes its search based upon this information, in
hopes of improving the design. In doing so, it creates new variable values that are again
put into the input design variable file, and this iterative loop begins again. This loop is
continued for a set number of evaluations or until the optimal design is found. Figure

3.3.5 depicts this process integration performed by HEEDS with ADVISOR.
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Figure 3.3.5. Process integration performed by HEEDS with ADVISOR.

3.4 Optimization Example: Small Vehicle Parallel HEV
3.4.1 Baseline Model

The vehicle powertrain to be studied in this example problem is that of a Parallel
HEV (see Figure 3.4.1 for this configuration in ADVISOR). Its parameters are defined as
follows (similar to the problem defined by M.Montazeri-Gh, A. Poursamad, and B.
Ghalichi [15]):

e Body mass: 592 kg

¢ Rolling resistance coefficient: 0.009

e Body aerodynamic drag coefficient: 0.335

e Vehicle front area: 2m2
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e Wheel radius: 0.282 m

e Gearbox: five speed manual gearbox with the following gear ratios: 2.84, 3.77,
5.01,7.52,13.45.

o IC engine: 41 kW SI engine

e Electric motor: 13.5 kW AC motor

o Energy storage system: 14 12V Hawker Genesis valve-regulated lead-acid battery

e Catalyst converter: close-coupled conventional converter for an SI engine

o Drive Cycle: FTP

\

Gasoline

Figure 3.4.1. Parallel HEV Configuration in ADVISOR

This vehicle model is provided as a baseline model within the ADVISOR
software. Slight modifications however, do need to be made to the default model (these
modifications are described later). This problem definition correlates to the following

pre-existing .m files:

Vehicle Description: PARALLEL_defaults_in.m

Vehicle: VEH_SMCAR
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Exhaust Aftertreatment: EX SI

Energy Storage System: ESS_PB25 with alterations necessary to the number of

battery modules (shown in Sub-Section 3.3.1.1)

Motor: MC_ACT75 with alterations to the torque scaling to make
the motor 13.5 kW instead of 75 kW (shown in Sub-

Section 3.3.1.1)

Transmission: TX_SSPD
Wheel/Axle: WH_SMCAR
Drive Cycle: CYC_FTP
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3.4.2 Optimization Problem Statement

By altering the control system settings of the parallel HEV, this optimization
study attempts to minimize both the fuel consumption and emissions of the vehicle, while
maintaining the performance characteristics of the vehicle. This optimization problem

can therefore be summarized as:

Minimize: J(x)= + 1C+ 0+ VOx

mpgge

where:
mpgge is the gas mileage,
HC is the hydrocarbon emissions,
CO is the carbon monoxide emissions,
NOx is the nitrous oxide emissions.

Subject to: Grade > 6.5
Acc 112
Acc 2<5.3
Acc 3<23.4

V _max>85.13
A max>16.1
Dist _5s > 140.1

where:
Grade is the grade able to be achieved at 88.5 km/hr for 20 min,
Acc_1 is the time to accelerate from 0-60 mi/hr,
Acc 2 is the time to accelerate from 40-60 mi/hr,
Acc_3 is the time to accelerate from 0-85 mi/hr,
V_max is the maximum velocity achieved,
A_max is the maximum acceleration achieved,
Dist_5s is the distance achieved in 5 seconds.
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By varying: 0 < DeltaSOC < 0.31
O0<VL<I1S
0<T 0ff<0.31
0.25<T min<0.88
4<T ch<35

where:

DeltaSOC is the change in limits on the state of charge of the
system,

VL is the vehicle speed below which the vehicle operates as a zero

emissions vehicle (electric launch speed),

T off'is the minimum torque threshold when SOC > LSOC,

T min is the minimum torque threshold when SOC <LSOC,

T ch is the torque load on engine to recharge the battery pack

when the engine is on.

3.4.3 HEEDS Setup
This section details the steps necessary to setup the optimization problem in
HEEDS as posed in Sub-Section 3.4.2. Detailed step-by-step instructions are given in this

section as to this setup.

3.4.3.1 Starting a New Project
1. Open the HEEDS Modeler.
2. Open the file menu and click New (or select New from the options displayed on
the screen).
3. Navigate to your working directory.

4. Save the file as parallelHEV.

3.4.3.2 Defining the Evaluation Process
This problem only has one analysis, with 4 input files and one output file.

1. Select the Processes tab.
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2. Select Analysis_1 in the Process Graph. The Analysis Manager will appear
below.

3. Click the Browse button next to the Execution File field and navigate to the
working directory.

4. Select RUN_ADVISOR.bat. This is the file containing the commands and script
necessary to run ADVISOR from batch mode (see above). Delete the path portion
of the field and replace with “.\”.

5. Select the Input Files button to display the Input Files Manager.

6. Right click anywhere in the Input Files Manager and Add Input File.

7. Add the input file indata_control.m.

8. Repeat for the input files optim_control_HEEDS.m, obj_fun_control.m,
con_fun_control.m, and RUN_ADVISOR.bat.

9. Select the Output Files button to display the Output Files Manager.

10. Right click anywhere in the Qutput Files Manager and Add Output File.

11. Add the output file outdata_control.txt

12. Save the Project.

3.4.3.3 Defining the Project Variables and Responses

3.4.3.3.1 Defining the Project Variables
1. Display the Variables tab.

2. Add 7 design variables and define them as follows:
Name: DeltaSOC; Type: Continuous; Min: 0.0; Baseline: 0.1; Max: 0.31
Name: HSOC; Type: Parameter; Baseline: 0.70

Name: LSOC; Type: Dependent; Formula: HSOC-DeltaSOC
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Name:

Name:

Name:

Name:

VL; Type: Continuous; Min: 0.0; Baseline: 0.0; Max: 15
T_off; Type: Continuous; Min: 0.0; Baseline: 0.0; Max: 0.31
T_min; Type: Continuous; Min: 0.25; Baseline: 0.40; Max: 0.88

T _ch; Type: Continuous; Min: 4; Baseline: 20; Max: 35

3. Add Internal Variables to the project (to define the path in the

RUN_ADVISOR.bat file).

3.4.3.3.2 Defining the Project Responses

1. Add 13 project responses and define them as:

Name:

Name:

Name

Name:

Name:

Name:

Name:

Name:

Name:
Name:
Name:
Name:

Name:

mppge; Source: File

inv_mppge; Source: File

: HC; Source: File

CO; Source: File

NOx; Source: File

J_x; Source: Formula; Formula: inv_mppge+HC+CO+NOx
Grade; Source: File

Acc_1; Source: File

Acc_2; Source: File

Acc_3; Source: File

V_max; Source: File

A_max; Source: File

Dist_5s; Source: File

2. Save the Project.
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3.4.3.4 Tagging the Input and Output Files

3.4.3.4.1 Tagging the Input Files

1. Display the Tagging tab.

2. For this project, there are two input files that need tagging. The first dealing with
the design variable tagging is indata_control.txt. Select this file in the Processes
tree and the design variable HSOC in the Project Variables window.

3. Tag the file as detailed below (note VL is tagged twice since we want the upper
and lower speeds for which it represents to be identical):

Variable: HSOC; Location: Line 1, Field 3
Variable: LSOC; Location: Line 2, Field 3
Variable: VL; Location: Line 3, Field 3
Variable: VL; Location: Line 4, Field 3
Variable: T off;, Location: Line 5, Field 3
Variable: T min; Location: Line 6, Field 3

Variable: T ch; Location: Line 7, Field 3

4. The file RUN_ADVISOR.bat must have the path tagged within it. Select this
input file in the Processes tree and the internal variable Design_Path. Tag the file

as described below:

Internal Variable: Design Path; Location: Line 1, Field 2
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3.4.3.4.2 Tagging the Output File

1. Select the output file outdata_control.txt from the Processes tree and the
response mppge from the Project Responses window.

2. Tag the file as described below:
Response: mppge; Location: Line 1, Field 3
Response: HC; Location: Line 2, Field 2
Response: CO; Location: Line 3, Field 2
Response: NOx; Location: Line 4, Field 2
Response: Acc_1; Location: Line 5, Field 3
Response: Acc_2; Location: Line 6, Field 3
Response: Acc_3; Location: Line 7, Field 3
Response: V_max; Location: Line 8, Field 3
Response: A_max; Location: Line 9, Field 3
Response: Dist_Ss; Location: Line 10, Field 4
Response: Grade; Location: Line 11, Field 2

3. Save the Project

3.4.3.5 Assembling the Problem Definition
1. Select the Assembly tab.
2. Select the OPT_Agent_1 button and assign Process_1 to the Agent.
3. Select the Methods button and select SHERPA as the optimization technique.
4. Click the Next button and change the number of evaluations to 200.

5. Select the Variables button. Leave the resolution at the default value of 101.

34



6. Select the Responses button. Define the optimization problem as that defined
below:

Response: mppge; Type: Prerequisite
Response: HC; Type: Prerequisite
Response: CO; Type: Prerequisite
Response: NOx; Type: Prerequisite
Response: Grade; Type: Constraint > 6.5
Response: Acc_1; Type: Constraint < 12
Response: Acc_2; Type: Constraint < 5.3
Response: Acc_3; Type: Constraint < 23.4
Response: V_max; Type: Constraint > 85.13
Response: A _max; Type: Constraint > 16.1
Response: Dist_Ss; Type: Constraint > 140.1
Response: inv_mppge; Type: Prerequisite
Response: J_x; Type: Objective, Minimize, 1

7. Save the project.

3.4.4 Running the Project

To run the HEEDS project, save the project and click on the Run tab and the Run
button in the HEEDS Modeler. The project should run with a HEEDS window popping
up along with a Matlab window. The Matlab window will close after each evaluation and

a new one pop up with each new evaluation.
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3.4.5 Results and Discussion

The baseline model for this run is defined in Table 3.4.1. This baseline was
chosen somewhat arbitrarily from [15], but was believed to have been a good design to
begin with based upon the paper this problem was adapted from. The resulting response

values for this design are:

mppge =40.19840
HC =0.438372
CO =1.929040
NOx =0.36759
grade =8.21989
Acc_1 =10.3826
Acc_2 =5.3204
Acc_ 3 =22.0176
Vmax = 108.788
Amax =16.2423
Dist_Ss =170.814
J X =2.759884

Tgble 3.4.1. Baseline model design variable values

HEEDS was capable of finding within the 200 evaluations specified, a design that

Name Baseline
HSOC 0.70
DeltaSOC 0.10
LSOC 0.60
VL 0
T off 0
T min 0.4
T ch 20

had the following response values:

mppge =43.75

HC =0.4266190
60) =1.910740
NOx =0.362577
grade = 8.015360
Acc_1 =10.3536




Acc 2 =5.27818
Acc 3 =21.75
Vmax =110.045
Amax =16.2424
Dist_5s =169.719
J X =2.722793

HEEDS found a new design with an 8.84% increase in fuel economy, while
decreasing hydrocarbon emissions by 2.75%, carbon monoxide emissions by 0.96% and
nitric oxide emissions by 1.383% over the baseline design. Also, the design HEEDS
found satisfied all the performance constraints placed upon the problem as defined. This

design corresponds to the values for design variables seen in Table 3.4.2

Table 3.4.2. Optimized design variable values.

Name Value
HSOC 0.70
DeltaSOC 0.0206666
LSOC 0.6793333

VL 1.071429
T off 0.0206666
T min 0.4735484

T ch 4
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CHAPTER 4: BASELINE ADVISOR MODEL FOR A
HYBRID ELECTRIC BUS

4.1. Introduction

In attempting to develop an optimization strategy for HEV’s, it was necessary to
develop an ADVISOR model that was realistic and representative of a real-world
application. A hybrid bus model was chosen as the baseline model for all work in regards
to optimization. Hybrid buses are becoming commonplace, and work in optimizing their
performance is becoming very important.

An accurate simulation model therefore, had to be created and validated for a
baseline design configuration of a hybrid bus. As mentioned previously, the simulation
software ADVISOR has been chosen for the current study. Therefore, the baseline bus
configuration had to be accurately modeled in ADVISOR by defining the necessary
parameters used in the hybrid electric powertrain model. The baseline bus was modeled
according to early bus specifications and data associated with a joint project between
Michigan State University, Kettering University, and TransTeq [30] with support from
the Michigan Economic Development Corporation. After the baseline model was
validated, the optimization software HEEDS was used to perform sizing optimization of
the powertrain so as to develop an optimization strategy for hybrid vehicles. The goal of

this chapter is to define the simulation model for the baseline configuration.
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4.2. ADVISOR Vehicle Model Description

Since ADVISOR was selected as the simulation tool for this project, each of the
vehicle systems had to be described in detail in terms of the parameters that defined that
system within ADVISOR.

A Series Hybrid Electric Vehicle configuration was chosen for the baseline
simulations of the bus. ADVISOR has a pre-existing model for a bus known as the Orion
VI Low-Floor Transit bus. This vehicle model was used for the simulations, with the
parameters modified to represent the early specifications for the bus in the joint project
discussed briefly above.

While many parameters could be measured or obtained directly, some had to be
estimated based upon assumptions. The height of the vehicle center of gravity
(veh_cg height) was one of these parameters. To obtain this vehicle center of gravity, the
bus had to be broken down into components based upon its weight. The curb weight of
the vehicle (the bus weight without passengers) was 26,750 lbs. The tires, axles, and
transmission weight were 4000 lbs, distributed at a location 18.8 inches above the ground
(rolling radius of the wheel). The engine and engine compartment weighed roughly 1300
lbs and had a center of gravity located about 30.8 inches above the ground. The air
conditioning unit was located 80 inches above the ground and weighs 500 lbs. The
remaining weight of the bus (21,150 lbs) was that without components
(veh_glider _mass). The roof of the bus could be estimated as accounting for 15% of the
remaining weight (3,172 1bs) located at 124 inches. The floor accounted for roughly 35%
of the 21,150 Ibs (or 7,402 Ibs) located at 10.5 inches. The walls accounted for the rest of

the 21,150 lbs, but had the weight evenly distributed so their effect on the center of
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gravity was insignificant. Assuming 40 passengers at 150 lbs each gave the cargo mass
(veh_cargo_mass = 6000 lbs). If 23 of these passengers were seated, their center of mass
could be assumed to be 2 ft. The other 17 passengers could be assumed to have a center
of mass of 3 ft since they were standing. Standard calculations for the center of gravity

therefore yielded the center of gravity of the bus to be 35.80 inches.

4.2.1. Vehicle Level Parameters

Table 4.2.1. Vehicle parameters for the baseline bus model.

ADVISOR Parameter Parameter Source Description
Parameter Value Value
(SD) (English)
) 2 2 Reference Acceleration of
veh_gravity 9.81 m/s 32.185 fu's value gravity
. . 3 3 Reference . .
veh_air density | 123kg/m- | 0.0768 Ib/ft value Air density
Transit Bus Coefficient of
veh_CD 0.79 0.79 Standard aerodynamic drag
2 2 Specific for
veh FA 9.4732 m 101.97 fi Flint Buses Frontal area of bus
. Specific for | Height of vehicle
veh cg height 0.908304 m 2.98ft Flint Buses center of gravity
Fraction of total
‘ Specific for vehicle mass
veh front wt frac 0.2785 0.2785 Flint Buses | supported by front
axle when at rest
veh_wheelbase 7.443m 2442 ft Spfe cific for | Distance between
— Flint Buses | front and rear axles
Specific for Mass of bus
veh glider mass | 9593.48 kg | 657.362 slugs . without
- Flint Buses
components
Vehicle cargo mass
Specific for (assuming 40
veh _cargo mass | 2,721.55kg | 186.486 slugs Flint Buses | people at 150 Ibs
per person)
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4.2.2. Fuel Converter Parameters

The fuel converter data corresponded to that of a Detroit Diesel Corp. Series 50

8.5 (205kW) diesel engine. Many of the fuel converter parameters are given as maps.

These maps are defined below in SI units defined in Table 4.2.2.

Map 4.2. 1

fc_map_spd = [125.66, 141.37, 157.08, 172.79, 188.50, 219.91]

Map 4.2.2

fc_ map trq =[123.02, 246.04, 369.07, 492.09, 615.11, 738.13, 861.15, 984.18, 1107.20]

Map 4.2.3
fc_fuel map gpkWh=
[242, 220, 207, 201.5, 198.5, 197, 195.5, 194.5, 193.5;
261, 220, 207, 200, 195, 192.5, 190.5, 189.5, 189.5;
273, 224, 207, 198, 1945, 192, 190.5, 189.5, 189.5;
288, 228, 209, 200.5, 196, 193.5, 191.5, 191.5, 191.5;
288, 238, 217, 207.5, 203, 199.5, 197.5, 197.5, 197.5;
290, 244, 222, 210.5, 204.5, 202.5, 199.5, 199.5, 199.5]
Table 4.2.2. Fuel converter parameters for the baseline bus model.
Parameter | Parameter
:z::lt?:t):: Value Value Source Description
(S (English)
_ ADVISOR
Jfc_fuel type Diesel Diesel Default Type of fuel
Value
ADVISOR Engine size
fc disp 85L 2.245 gal Default (cylinder
Value displacement)
Map 4.2.1 ADVISOR Speed range of the
Jc_map spd (rad/s) Map 4.2.1 Default engine
Value
ADVISOR .
fc_map trq Map 4.2.2 Map 422 Default Engine torque
(N-m) Value range
ADVISOR
fe_fuel map gpkWh r‘g}l’(s\}i‘; Map 4.2.3 D\;fault F"el:;;nmeap of
alue
ADVISOR
Jc_idle speed 650 rad/s 650 rad/s Default Idle spee.d of the
Value engine
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4.2.3. Exhaust Aftertreatment Parameters
The aftertreatment catalyst parameters defined were those for a diesel-powered CI
engine. All of the catalyst parameters are given as maps. These maps are defined below

in SI units defined in Table 4.2.3.

Map 4.2. 4
ex_cat_tmp _range = [-40, 0, 220, 240, 310, 415, 475, 550, 650, 1200]

Map 4.2.5
ex_cat_hc_frac =[0, 0,0.04, 0.08, 0.20, 0.57, 0.80, 0.90, 0.91, 0.91]

Map 4.2.6
ex_cat _co_frac = [0, 0, 0.06, 0.20, 0.50, 0.80, 0.90, 0.95, 0.95, 0.95]

Map 4.2.7
ex_cat_nox_frac =[0, 0, 0.01, 0.15, 0.45, 0.30, 0.20, 0.10, 0.01, 0]

Map 4.2.8
ex_cat_ pm_frac = [0, 0, 0.04, 0.08, 0.20, 0.30, 0.35, 0.40, 0.40, 0.40]

Map 4.2.9
ex_cat lim =[1.25,17.0, 2.0, 0.4]
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Table 4.2.3. Exhaust aftertreatment parameters for the baseline bus model.

Parameter | Parameter
‘;g_:;?g:: Value Value Source Description
(SD (English)
ADVISOR
ex_cat tmp range Ma(;z 82'4 Map 4.2.4 Default Catalystr;ﬁmé)erature
Value g
Automotive Catalyst HC
Eng. 10/95 | conversion efficiency
ex _cat hc frac Map4.25 Map 4.2.5 p. 42 map (dependent on
(Reference) | catalyst temperature)
Johnson Catalyst CO
conversion efficiency
ex_cat _co frac Map 4.2.6 Map 4.2.6 Mg(t)they (dependent on catalyst
P- temperature)
ADVISOR Catalyst NO,
conversion efficiency
ex _cat _nox_frac Map 4.2.7 Map 4.2.7 Iif;a‘:gt (dependent on catalyst
temperature)
ADVISOR Catalyst PM
conversion efficiency
ex_cal_pm_frac Map4.2.8 Map 428 l%:;a‘r:t (dependent on catalyst
temperature)
ADVISOR | Breakthrough limit of
ex_cat lim Map 4.2.9 Map 429 Default converter (5 times the
Value Tier 1 g/mi limits)

4.2.4. Energy Storage System Parameters
The energy storage system was based upon an Ovonic 90Ah NiMH battery. Many
of the catalyst parameters are given as maps. These maps are defined below in SI units

defined in Table 4.2 4.

Map 4.2.10
ess_soc=1[0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1.0]

Map 4.2.11
ess_tmp = [0, 22, 40]

Map 4.2.12
ess_max_ah_cap = [90, 90, 90]

Map 4.2.13
ess r dis=
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0.01*[1.167, 0.631, 0.594, 0.552, 0.541, 0.530, 0.523, 0.536, 0.574, 0.615, 0.585;
1.167, 0.631, 0.594, 0.552, 0.541, 0.530, 0.523, 0.536, 0.574, 0.615, 0.585;
1.167, 0.631, 0.594, 0.552, 0.541, 0.530, 0.523, 0.536, 0.574, 0.615, 0.585]

Map 4.2.14

€ss_voc =
[12.5,12.8,13.1,13.3,13.4,13.4,13.5,13.6,13.7,13.9, 14.2;
12.5,12.8,13.1,13.3,13.4,13.4,13.5, 13.6, 13.7, 13.9, 14.2;
12.5,12.8,13.1,13.3,134,13.4,13.5,13.6,13.7, 13.9, 14.2]
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Table 4.2.4. Energy storage system parameters for the baseline bus model.
Parameter | Parameter
‘;Drv::?]: Value Value Source Description
e (SI) (English)
ADVISOR
ess_soc Map 4.2.10 | Map 4.2.10 Default Range of his state of
charge of the battery
Value
ADVISOR Temperature range
ess_tmp Ma]:():é)ll ] Map 4.2.11 Default over which data is
Value defined.
ADVISOR | Maximum capacity at
ess_max_ah cap Ma&‘filz)'lz Map 4.2.12 Default C/5 rate. (dependent
Value on temperature)
Module’s resistance to
being discharged
ADVISOR
ess r dis Mapd2.13 Map 4.2.13 Default (dependent on
(Ohms) Valie temperature
{vertically} and SOC
{horizontally})
Module’s open-circuit
ADVISOR | voltage (dependent on
ess_voc M?{),:]'ti')m Map 4.2.14 Default temperature
Value {vertically} and SOC
{horizontally})
Storage system
l ADVISOR minimum voltage
ess_min_volts 9.135 volts | 9.135 volts Default (based upon 10 cells
‘ Value and a 105% safety
| factor)
l \ Storage system
ADVISOR maximum voltage
ess_max volts | Ifoélt’/ss ]3061;5 | Default (based upon 10 cells
l l Value and a 95% safety
I | | factor)
[ [ ADVISOR :
ess_module mass l 16.7 kg LI Default Mass of a single 12V
slugs module
Value
ADVISOR i
0. 232971
ess module volume | 006597 m3 i Default Volume of a single
| Valie module
! ADVISOR
ess_module_number ’ Default Number of modules
Value
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4.2.5. Motor Parameters
The motor defined was that of a 58 kW permanent magnet motor/controller.

Many of the motor parameters are given as maps. These maps are defined below in SI

units defined in Table 4.2.5.

Map 4.2.15

mc_map_spd =

[0,26.2, 52.4, 78.5,104.7,130.9, 157.1, 183.3,209.4, 235.6, 261 .8, 288, 314.2, 340.3,
366.5,392.7, 418.9]

Map 4.2.16
mc_map_trq = [0, 25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375,
400]

Map 4.2.17

mc_eff map =

[0.3,0.3, 0.3, 03, 03, 03, 03, 0.3, 03, 03, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3,
0033’ 0.7, 0.75,0.75,0.75,0.73,0.71, 0.7, 0.7, 0.68, 0.65, 0.63, 0.62, 0.61, 0.6, 0.59,
06:538,;0.75, 0.8, 0.82,0.82,0.82,0.82,0.82,0.81,0.8, 0.78,0.77,0.76, 0.76, 0.75, 0.73,
06?32,,0.75, 0.82,0.84, 0.86, 0.86, 0.85, 0.85, 0.85, 0.84, 0.84, 0.83, 0.82, 0.81, 0.8, 0.77,
06737,,0.75, 0.83,0.86, 0.87, 0.88, 0.88, 0.87, 0.87, 0.87, 0.86, 0.86, 0.85, 0.84, 0.84,0.83,
06?32,,0.75, 0.84, 0.87,0.88, 0.88, 0.89, 0.89, 0.88, 0.88, 0.88, 0.87, 0.87, 0.86, 0.86, 0.85,
3623:81,’0.75, 0.84, 0.87, 0.89, 0.90, 0.90, 0.90, 0.89, 0.89, 0.89, 0.89, 0.88, 0.88, 0.88, 0.83,

0.3, 0.75, 0.84, 0.88, 0.89, 0.9, 0.90, 0.90, 0.90, 0.9, 0.90, 0.89, 0.89, 0.89, 0.89, 0.89,
0.89;

0.3,0.75, 0.84, 0.88, 0.90, 0.9, 0.90, 0.91, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90,
0.90;

0.3,0.75,0.84, 0.88,0.9, 0.90,0.91,0.91, 0.91,0.91, 0.91, 0.91,0.91, 0.91,0.91,0.91,
0.91;

0.3,0.75,0.85,0.88,0.9, 0.91,0.91,0.92,0.91,0.91,0.91,0.91,0.91,0.91, 091, 0.91,
0.91;

00-3, 0.75,0.85,0.88,0.9, 0.90,0091, 0.91,>0.91, 0.91, 0.91, 0.91, 0.91, 0.91,0.91, 0.91,
91;

00.91:), 0.75, 0.84,0.88,0.89, 0.9, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90,
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0.3,0.74,0.82, 0.87,0.89,0.89,0.9, 09, 09, 09, 09, 09, 09, 09, 09, 009,
0.9; '
0.3,0.7, 0.82,0.86,0.88,0.89,09, 09, 09, 09, 09, 09, 09, 0.9, 09, 0.9,
0.9;

0.3,0.7, 0.81,0.86,0.88,0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89,

0.892;
03,03, 03, 03, 03, 03, 03, 03, 03, 03, 03, 03, 0.3, 03, 0.3, 0.3,

0.3]
Map 4.2.18

mc_max_trq=[340, 375, 402, 403, 401, 400, 348, 300, 250, 227, 202, 190, 175, 170, 150,
148, 0]
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Table 4.2.5. Motor parameters for the baseline bus model.

Parameter Parameter
‘;:)r::lfe(t):: Value Value Source Description
(SD (English)
ADVISOR Speed range of the
mc_map spd | Map 4.2.15 (rad/s) | Map 4.2.15 Default P mot%r
Value
ADVISOR
mc_map_trq Map 4.2.16 Map 4.2.16 Default Torque range of
(N-m) Value the motor
Motor efficiency
map (dependent on
ADVISOR | speed range of the
mc_eff map Map 4.2.17 Map 4.2.17 Default motor {vertically}
Value and torque range
of the motor
{horizontally})
ADVISOR
mc_max_trq Meg;_%nf) 18 Map 4.2.18 Default | Max Torque Curve
Value
ADVISOR Maximum current
mc_max_crrnt 480 Amps 480 Amps Default alloweill by thg
Value controller an
motor
ADVISOR .
0.017333 ’
mc_inertia 0.0235 kg-m2 2 Default Rotor's ro?anonal
slugs-ft Value inertia
ADVISOR
mc_mass 70 kg 4.80 slugs Default Mass of mcl>]tor and
Value controller
ADVISOR Minimum voltage
mc_min_volts 120 volts 120 volts Default alloweill by th;
Value controller an
motor
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4.2.6. Generator Parameters
Some of the generator parameters were given as maps. These maps are defined
below in SI units defined in Table 4.2.6. For these maps, colons define them. For

example, the torque range is defined by [0:5:200]. This means that the range is from O to

200 in increments of 5.

Map 4.2.19

gc_map_trq = [0:5:200]

Map 4.2.20

gc_map spd = [0:26.18:733.04]

Table 4.2.6. Generator parameters for the baseline bus model.

Parameter | Parameter
;ﬁ:;?g:: Value Value Source Description
(SI) (English)
ADVISOR
gc map trq Map 4.2.19 Map 4.2.19 Default Torque range of the
- (N-m) generator
Value
ADVISOR
gc_map_spd Map 4.2.20 Map 4.2.20 Default Speed range of the
(rad/s) generator
Value
480 Amps ADVISOR | Maximum current draw
gc_max_crrnt P 480 Amps Default for the motor/controller
Value set
ADVISOR . .
gc_min volts | 120 volts 120 volts Default Minimum voltage for
the motor/controller set
Value
o , | 0007376 | ADVISOR -
gc_inertia 0.01 kg-m 2 Default Rotor’s rotational inertia
slugs-ft Value
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4.2.7. Transmission Parameters
The transmission in the model was based upon an Allison automatic transmission
for a school bus/transit bus. Some of the transmission parameters are given as maps.

These maps are defined below in SI units defined in Table 4.2.7.

Map 4.2.21
gb ratio=[3.49, 1.86, 1.41, 1.00,0.75,0.65]

Map 4.2.22
tx_map_spd=[0, 60.85]

Map 4.2.23
tx_map_trq=[-1254, 1254]

Map 4.2.24

tx_eff map= [0.90, 0.90;
0.90, 0.90]
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Table 4.2.7. Transmission parameters for the baseline bus model.

Parameter Parameter
:3:::3:: Value Value Source Description
(S (English)
gb ratio | Map4221 | Map4.2.21 g‘l’;i‘gi:;’: Ratios in gearbox
gb gears num 6 6 Specific for | Number of discrete gear
— Flint Buses choices in gearbox
Map 4.2.22 Specific for Speed of transmission
ix_map spd (rad/s) Map 4.2.22 P shaft output (wheel-side
Flint Buses -
of transmission)
i Torque of transmission
Ix map trq Map 4.2.23 Map 4.2.23 Spf: cific for shaft output (wheel-side
- = (N-m) Flint Buses ..
of transmission)
Transmission efficiency
(dependent on torque of
ADVISOR transmission shaft
tx_eff map Map 4.2.24 Map 4.2.24 Default output {vertically} and
Value speed of transmission
shaft output
{horizontally})
ADVISOR | Final Drive Ratio (5.34
fd ratio 4.037 4.037 Default is also sited as a good
Value value for transit buses)
ADVISOR . ..
fd inertia 0 kg-m2 0 slugs-ﬁ2 Default Romtg:;?l dlr?::la of
Value
ADVISOR
gb _mass 283.447 kg 19.42 slugs Default Mass of gearbox
Value
ADVISOR
Jfd _mass 90.703 kg 6.215 slugs Default Mass of final drive
Value

4.2.8. Wheel Parameters

The wheel parameters were based upon those for a heavy truck (representative of

a transit bus). Some of the wheel parameters are given as maps. These maps are defined

below in SI units defined in Table 4.2.8.
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Map 4.25
wh_axle loss_mass=[0, 5000, 10000, 15000, 30000]

Map 4.26
wh_slip_force coeff=[0, 0.3913, 0.6715, 0.8540,0.9616, 1.0212]

Map 4.27
wh_axle_loss_trq=[0, 15, 30, 45, 90]

Map 4.28
wh_slip=[0.0, 0.025, 0.050, 0.075, 0.10, 0.125]

Map 4.29
wh _fa_dl brake frac=[0, 0, 0.5, 0.8, 0.8]

Map 4.30
wh_fa_fric_brake frac=[0.8,0.8,0.4,0.1,0.1]
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Table 4.2.8. Wheel parameters for the baseline bus model.

Parameter | Parameter
‘;ﬁ:::g:: Value Value Source Description
(SI) (English)
ADVISOR )
wh_axle loss mass Map 4.2.25 Map 4.2.25 Default Vehicle test mass
- (kg) Value vector
Coefficient defined
ADVISOR | 25 thfh tra}:tlvte tiforce
wh_slip force coeff | Map 4.2.26 | Map 4.2.26 I:/ef;\ult °§ivi§e d°:y ﬂ::S
alue weight on the front
axle
Map 4.2.27 ADVISOR | Front brake and
wh_axle loss trq p .2 Map 4.2.27 Default axle bearing drag
Value torque
ADVISOR . .
wh_slip Map 4228 | Map4228 | Default | ' neelslipofdrive
wheels
Value
wh_radius 045 m 1.4764 ft iﬁi‘?gﬁsfg ROIh‘I:,th(lisms of
ADVISOR | Fraction of braking
wh_fa dl brake frac | Map 4.2.29 | Map 4.2.29 Default done by driveline
Value via front axle
ADVISOR | Fraction of braking
wh_fa_fric brake frac | Map 4.2.30 | Map 4.2.30 Default done by front axle
Value friction brakes
wh I* rre 0.00938 0.00938 Reference 1* coefficient of
— - ’ ’ Value ro}’ling resistance
d Reference 2" coefficient of
wh_2"_rre 0 0 Value rolling resistance
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4.3. Summary

A baseline hybrid bus model was developed in ADVISOR based upon early
specifications for a bus in development with a joint project between Michigan State
University, Kettering University, and TransTeq. This was important for early validation
purposes for the project, as well as ensuring that the optimization strategies developed
and explored in this thesis for HEV’s would be valid for real-world hybrid applications.
The development of the baseline simulation model based upon an existing bus also
ensured that the results obtained for simulations were realistic. This chapter gave all of

the details associated with the baseline model.
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CHAPTER 5: OPTIMIZATION STRATEGY FOR HEV’S
USING ADVISOR AS A SIMULATION TOOL

5.1 Introduction

The design of hybrid electric vehicles (HEV’s) requires complex optimizations to
account for the intricate interactions among the components, control strategies and the
resulting effects on performance. Due to the size of HEV models and the complexity of
interactions among the many components, it is challenging to properly define an
optimization problem statement that invokes a final design with the desired performance
characteristics. The optimization problem statement definition greatly affects the
performance of the optimized HEV design, as well as the implications of the design.
While this may seem obvious, the proper problem statement for achieving a particular
performance goal is not always so clear.

In this chapter, the main characteristics of two optimization strategies that have
been shown to be efficient in optimizing hybrid electric vehicles are merged into a single
and more robust strategy that is shown to have several advantages in terms of design
performance. The main purpose here is to explore these various strategies and associated
optimization problem statements and their effects on the resulting hybrid vehicle design.
As a consequence of this study, a practical and efficient approach is developed for sizing

the components and defining the system control of HEV’s to create efficient, reliable

vehicles.

55






5.2 Hybrid Electric Bus Model

5.2.1 Component Sizing Procedure

For the purpose of the current study, we considered a series configuration hybrid
electric bus as shown in Figure 5.2.1, with the baseline components described in Chapter
4, summarized in Table 5.2.1. The main components of interest for the optimization were
the generator, electric motor, engine, and battery. During optimization, a scaling method
was used to represent the size of each component relative to the baseline size.

By altering these scaling factors (which acted as the design variables during
optimization), different size motors, engines, and generators could be evaluated.
ADVISOR uses the scaling factor specified for a given component to linearly scale the
relative internal parameters of that component. This linear scaling assumption makes for
an easy way to change the size of a component without needing detailed experimental
data for multiple sized components, so long as linear scaling is appropriate for the
different size components in question. This is an approximation for a given component,
but is a common and accepted way to size components of HEV’s [9].

Values of the scaling parameters less than one corresponded to smaller sized
devices, while values greater than one corresponded to larger sized devices. The baseline

model was thus represented by the following parameter values:

Generator Speed Scale (GC SPEED): 1.0
Generator Torque Scale (GC TORQUE): 1.0
Motor Speed Scale (MC SPEED): 1.0

Motor Torque Scale (MC TORQUE): 1.0
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Engine Speed Scale (FC SPEED): 1.0

Engine Torque Scale (FC TORQUE): 1.0

Similarly, the battery size was altered using a scaling factor for the capacitance. In
addition, the number of modules for the battery was altered during the study. The

baseline battery was rep d as follows:

Battery Capacitance Scale (ESS CAP): 1.0

Number of Battery Modules (ESS MOD NUM): 25

W igure 5.2.1. Powertrain configuration of the HEV bus (as it appears in ADVISOR).

components of the series hybrid bus for optimization.

Table 5.2.1. Baselin:
Component Characteristics
Engine Detroit Diesel Corp. Series 50 8.5 (205kW) Diesel Engine
Motor UQM 150 kW motor/controller
Generator | UQM 150 kW generator
Battery | NIMH 90Ah Ovonic, 25 battery modules
Wheeland | ACCURIDE, wh_radius = 0.45
Axle

Transmission Single gear, TX_1SPD_BUS with overall ratio (8.074:1).
Accessory Mechanical and electrical power scaled of ~ 21.4 kW (29 hp) with
AIC
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5.2.2 Control Strategy
A thermostat control strategy was used in the current study. This type of control
strategy allows the user to specify a lower/upper limit for the state of charge (SOC) of the
battery, below/above which the engine turns on/off and the generator charges/discharges
the battery. In a thermostat control strategy, when the engine is on it is run at a constant
speed (ideally that for which the engine operates most efficiently). For all optimization
studies, the lower and upper limits on the state of charge for this thermostat control

strategy were defined as:

Lower Limit on SOC: 0.52

Upper Limit on SOC: 0.68

These values were selected in accordance with an assumed requirement that the

battery of the bus must operate with a state of charge between 52% and 68% in practice.

5.2.3 Driving Cycle

Two different driving cycles were considered the most viable to gauge the
performance of a hybrid electric bus: the Federal Test Provisions Driving Cycle (FTP
Driving Cycle) and Urban Dynamometer Driving Schedule (UDDS). The most
demanding of the two driving cycles was judged to be the Urban Dynamometer Driving
Schedule (UDDS), and therefore it was chosen for all comparative studies. It has the

characteristics of Figures 5.2.2 and 5.2.3.
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Figure 5.2.2. Driving cycle speed/elevation vs. time for the UDDS driving cycle.
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Figure 5.2.3. UDDS driving cycle characteristics.
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5.3. Baseline Designs

5.3.1 Conventional Bus Design

For comparison and validation purposes, an existing baseline conventional (non-
hybrid) bus model was used. Starting with the validated conventional bus model, a
baseline hybrid bus model was developed and used to gauge the performance of the

different optimization strategies.
The conventional bus had the same basic design characteristics (e.g., engine,
wheel and axle, transmission, and accessories) as the hybrid bus described in Table 5.2.1.
The conventional bus had the following performance characteristics:
fuel economy: 4.7 mpgge

missed trace: < S mph

l6p : 68.6s

130: 133 s

where:

fuel economy is measured in miles per gallon gasoline equivalent (mpgge),
missed trace is a gauge of how close the bus is to meeting the drive

demands of the cycle (Figure 5.2.2),

160 1s the time required for the bus to accelerate from 0-60 mph, and

1301s the time required for the bus to accelerate from 0-30 mph.
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5.3.2 Baseline Hybrid Bus Design
The validated conventional bus model was used as a starting place in designing a
hybrid bus. The baseline hybrid bus model had all of the characteristics of Table 5.2.1,
and the following performance:
Average fuel economy: 3.71 mpgge
Corrected fuel economy: 4.07 mpgge

missed _trace: 15.7 mph

160 - 52.67s

130:21.22s

where:

Average fuel economy is a measure of the average fuel economy of the
design evaluated with multiple initial SOC’s over multiple run
cycles of the UDDS with no SOC correction (measured in miles
per gallon gasoline equivalent),

Corrected fuel economy is a measure of the fuel economy over one run
cycle of the UDDS with an SOC correction routine as described by
[23-27] (measured in miles per gallon gasoline equivalent),

missed_trace is a gauge of how close the bus is to meeting the drive
demands of the cycle (Figure 5.2.2),

lso1s the time required for the bus to accelerate from 0-60 mph, and

I301s the time required for the bus to accelerate from 0-30 mph.
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Note that the baseline hybrid bus did not meet the target for missed trace, and
acceleration times, and is thus considered an infeasible design. These performance targets
will subsequently be enforced as constraints during optimization. The fuel economies of
this baseline hybrid design will be used for assessing new designs based on the proposed

optimization strategies.

5.4. Modeling Concepts for HEV Optimization

5.4.1. Introduction

For the various optimization studies performed in this work, the optimization goal
was to size the various components of interest in a manner that minimized fuel
consumption while meeting performance characteristics for a given drive cycle. One of
the more challenging and interesting aspects of HEV optimization is identifying an
appropriate definition of fuel economy and subsequently minimizing its sensitivity to
various assumptions in the model and to the drive cycle used during the simulation for
each design. In this section, an overview of why these issues arise is presented as a

pPrelude to the detailed investigation described in the next section.

5.4.2 SOC Corrections

SOC corrections in some form are used in the vast majority of optimization work
with HEV’s to date. SOC corrections are important in the design of HEV’s for multiple
reasons. They provide a meaningful way to compare HEV performance to conventional
vehicle performance [23-24], as well as reduce the impact the initial state of charge has

on the performance of the design [9, 25]. By ensuring initial and final SOC over a drive
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cycle are the same (or nearly the same), SOC corrections alleviate the need for multiple
drive cycles to be performed to see how performance changes with varying initial SOC.
This provides an easy and seemingly robust way to compare designs during optimization

[25].

5.4.3 Multiple Initial SOC’s

It was desired to see the effects on the results obtained from optimization if an
SOC correction was not utilized. A preliminary optimization was therefore performed
that sized the engine, generator, motor, and battery, such that the fuel economy of the
engine was maximized and certain performance characteristics were met. This
optimization run had an initial SOC of 0.68 and did not utilize SOC correction.

The optimized design found had the SOC and engine speed history plots shown in
Figure 5.4.1. The components for this design were sized such that the design acted almost
entirely as an electric vehicle (EV) over the drive cycle, with the engine not needing to
turn on until the end of the drive cycle. This EV behavior gave a very high performance
during optimization since no battery losses were accounted for. These results are

consistent with the trends seen by Markel and Wipke [18-19].

If however, the optimized design had an initial SOC less than 0.68, it would not
perform as an EV over the drive cycle. Figure 5.4.2 shows the SOC and engine speed
history plots for the same design found as optimal during the optimization, re-evaluated
in ADVISOR with an initial SOC of 0.60 instead of 0.68. Clearly the design now does

not act as an EV over the drive cycle, and therefore its performance will be drastically

lower than that found during the optimization where it did act as an EV. It was concluded
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therefore, that if an SOC correction routine is not utilized, multiple initial SOC’s should
be considered when evaluating an HEV’s performance since it is not guaranteed that a

vehicle will always start with a high initial SOC.

SOC
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F i_gllre 3.4.1. Optimized design characteristics for one drive cycle of the UDDS (SOC=state of charge;
®W=engine speed) with an initial SOC of 0.68.
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F i.gure 5.4.2. Optimized design characteristics (SOC=state of charge; w=engine speed) if re-evaluated
with an initial SOC of 0.60.

For a given drive cycle, an HEV performs differently depending upon its initial

SOC [9]. A design’s performance therefore will be skewed depending upon the initial
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SOC that it is evaluated for (performing well at one initial SOC and poor at another). A
method to overcome the sensitivity to initial SOC is to evaluate a given design for
multiple initial SOC’s and average the performance. One issue with this approach is

selecting which initial SOC’s to consider in evaluating the average performance.

5.4.4 Multiple Cycle Repeats

If an SOC correction routine is not utilized, evaluating designs based upon the
average performance from multiple initial SOC’s over a single drive cycle may be
inaccurate. Utilizing the optimized design from Sub-Section 5.4.3, a study was performed
to see the effect the number of consecutive UDDS drive cycles has on the responses. The
optimized 'design was altered so that the initial SOC was 0.60 instead of 0.68 so that it
wouldn’t run as an EV. This design was then run for 1, 3, and 20 drive cycles. When
performing multiple drive cycles, a periodic behavior was observed in the SOC and
engine speed time histories, as shown in Figures 5.4.3 and 5.4.4. Thus, as the number of
drive cycle repetitions is increased, the dependency on the initial SOC decreases while
the evaluation time increases. Since the period of the SOC time history for the evaluated
bus appeared to be slightly less than three drive cycles (as seen in Figure 5.4.3), this was
the number of drive cycle repeats used herein whenever an optimization strategy required

multiple drive cycles.
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Figure 5.4.3. SOC history plots for an optimized design evaluated for different number of drive
cycles. The period (T) of the cycle corresponds with just less than three cycle repetitions.

(c) 20 drive cycles.
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Due to the periodic nature of the SOC history plots with drive cycle repetitions, a
design should be evaluated during optimization for multiple cycle repetitions at multiple
initial SOC’s, in the hopes that this methodology decreases the dependence of a design’s

performance on its initial SOC.

5.4.5 Corrected Fuel Economy

Duoba [26] and Senger [27] discuss how a conversion for electrical energy usage
can be used as an alternative to SOC correction, by converting the electrical energy that
can be obtained from gasoline through the efficiency of an average power plant in the
United States in 1996. The fuel economy values used with the concepts discussed above
base the fuel calculations on the actual volume of fuel used. But in a hybrid vehicle, some
amount of electric energy is also used during the driving cycle. Therefore one could
postulate a ‘corrected fuel economy’ measure as an alternative objective, in which the
equivalent fuel energy of electrical energy used is added to actual fuel energy used. This
approach provides a more consistent comparison among designs and effectively results in

‘perfectly charge sustaining’ vehicle behavior.
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5.5 Optimization Strategies and Problem Statements

Three optimization strategies for optimizing HEV’s have been developed and
compared using the concepts discussed in Sub-Section 5.4. The definition of the
strategies, as well as the formal optimization problem statement utilized with each are

discussed in this sub-section.

5.5.1 Strategy 1-Multiple SOC’s and Multiple Drive Cycle Repetitions

The first strategy utilizes multiple initial SOC’s and multiple drive cycle
repetitions to evaluate the performance of a given design. No state of charge correction is
utilized for this strategy, and a measure of the actual volume of fuel used instead of the
corrected fuel economy. Three analyses are performed for each design, each with a
different initial state of charge (SOC). Two of the analyses use an initial state of charge at
the extremes of the SOC range specified for the thermostat control strategy (High SOC
and Low SOC), while the third analysis uses an initial SOC that is the average of the
extreme SOC’s. By using multiple drive cycle repetitions (three repetitions utilized in this
study) in three different analyses, each with different initial SOC’s, the performance of a
given design should not be highly dependent upon the initial SOC used.

Strategy 1, thus has the following fuel economy performance criterion:

_ 2;1;11 fi
N

f
(5.1)

where:

S is the composite fuel economy (average fuel economy over all analyses),
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fiis the fuel economy for a given analysis, and

N is the number of analyses performed (3 here: each with a different initial SOC).

The optimization problem statement for Strategy 1 as used in this study is

formally expressed as:

Maximize: composite fuel economy (average miles per gallon of gasoline (mpg) as
defined by Equation (5.1))

Subject to: missed trace (mph) < 5.0 (how close the bus was to meeting the drive
demands of the cycle)
minimum SOC > 0.5175 (lowest state of charge over all initial SOC
loadcases)

160 <42.0 s (time to accelerate to 60 mph from start)
130 <10.0 s (time to accelerate to 30 mph from start)

By varying: Number of battery modules = {15,16, .. ,50}

0.3 < Battery capacitance Scale < 1.5

0.5 < Engine Speed Scale < 1.5

0.5 < Engine Torque Scale < 1.5

0.5 < Generator Speed Scale < 1.5

0.5 < Generator Torque Scale < 1.5

0.5 < Motor Speed Scale < 3.0

0.5 < Motor Torque Scale < 3.0

IA

INIA INIA IA LA

With: Upper SOC Limit = 0.68
Lower SOC Limit = 0.52
Initial SOC = {0.68, 0.60, and 0.52} (multiple initial SOC
load cases)
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5.5.2 Strategy 2 — SOC Correction with Corrected Fuel Economy

The second strategy utilizes a SOC correction as well as considers the corrected
fuel economy as opposed to the actual volume of fuel used. Within ADVISOR, there is a
“Zero-Delta SOC correction routine” available [9]. This routine can be set to iterate on
the initial SOC until a tolerance on SOC is satisfied. The routine adjusts the initial SOC
until the simulation run yields either a zero change in SOC +/- a tolerance (making the
inittal SOC more or less equal to the final SOC), or until the routine runs for the
maximum number of iterations specified by the user. The default ADVISOR tolerance
and maximum iterations were utilized in this study: 0.5% and 15, respectively. The
algorithm for this routine is described in the following steps (as described in the

ADVISOR User’s Manual [9]) and by Figure 5.5.1 below:

1. An initial SOC is guessed that is the average of the high and

low limits:

SOC pightSOCiow

SOC initial 0 = :
2 (5.2)

2. The new initial SOC (SOCjpitials+1) is guessed based upon the
previous initial SOC (SOCjyjial ), the change in SOC achieved

(450C)), and a weighting factor (g). The weighting factor is

chosen so that the charge neutral point (zero ASOC) is

bracketed quickly.

72



AN




SOC iiiaer1 = SOC inigiary 1q*ASOC, (5.3)

3. Once the charge neutral state is bracketed (values for the
metrics are known on both the positive ASOC and the negative

ASOC, the new initial SOC is linearly interpolated.

SOC initiat,i+1 =Interp[SOC(ASOCpin (+)),SOC(ASOCrin )] (5.4

4. The simulation is then run and the ASOC evaluated, the bracket

size shrinks, and step 3 is repeated until the ASOC is within the

tolerance band or the maximum iterations are run.

5. Final simulation iteration is run at the initial SOC that gives
ASOC within the tolerance, and only those results are reported

from the ADVISOR simulation.
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Figure 5.5.1. Zero-Delta SOC correction routine. An initial SOC guess is evaluated
(SOCinitial,0) in terms of ASOC. The initial bounds around the zero-ASOC tolerance are

then found (SOCjpitial,1(-) and SOCjnitial,1(+)) and linearly interpolated to get

SOCinitial,2(-)- This bound (SOCjpijtial,2(-) and SOCinitial,1(+)) is then linearly
interpolated and the process repeated until an initial SOC is found that gives a ASOC within

the tolerance (SOCiniﬁal,t-zero-delta) [9].

While the “Zero-Delta SOC correction routine” attempts to ensure that the energy
input to the battery is the same as the energy output from the battery over the drive cycle,
this is not always the case due to the tolerance and maximum iterations specified for the
routine. For this reason, Strategy 2 also converts the difference in battery energy into
gasoline equivalent energy to obtain the corrected fuel economy. This is done using a
value for the electrical energy that can be converted to gasoline through the efficiency of
an average power plant in the United States (3.11 kWh/liter in 1996). With this method, a
‘“fuel penalty’ term (e) is calculated based upon the gasoline equivalence described above

[26-27]. The fuel penalty e is defined as:
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(€SSout — €5Sin)*0.000278
e = *0.264172

3.11 53)

where:

esSoyy is the useful energy leaving the batteries over the drive cycle (units of kJ),

essin1s the energy into the storage system over the drive cycle (units of kJ),

0.000278 is the conversion factor from kJ to kWh,

3.11 is the electrical energy that can be converted to gasoline through efficiency
of an average power plant (units of kWh/L),

0.264172 is the conversion factor from L to gallons, and

e is the fuel penalty (units of gallons).

A positive value for the fuel penalty (e > 0) indicates that electrical energy is used
to propel the vehicle and thus acts as a penalty to the fuel economy of the vehicle. A
negative value for the fuel penalty (e < 0) indicates that fuel has been used to charge the
battery and thus acts as additional fuel economy to the vehicle (boosting its performance
value). Figure 5.5.2 shows the logic-loop that evaluates the corrected fuel economy for a

given design using the fuel penalty calculated for that design. For Strategy 2:
e e will be referred to as the fuel penalty; it is considered as the fuel used to

operate the battery

e mpgge is the dnive cycle mi/gal gasoline_ equivalent calculated by

ADVISOR (the same as the fuel economy used in Strategy 1)
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e dist will represent the distance traveled over the simulation

o fis the corrected fuel economy

This strategy can also be thought of as calculating the consumed fuel (that of the actual
fuel used during the run (mpgge)), a fuel penalty (e), as well as a corrected fuel economy

() (the distance traveled (dist) per consumed fuel).

mpgge > 20 Yes

No No
@) o 9t @[ mpgee
+ dist f= +1

mppge S

Figure 5.5.2. Logic used to calculate the corrected fuel economy. Scenario 1 occurs when the fuel
penalty is small (or negative) and makes the corrected fuel economy equal to: the drive cycle mi/gal
gasoline equivalent for small positive values, and greater than the drive cycle mi/gal gasoline
equivalent for negative values. Scenario 2 occurs when the battery equivalent is large but the drive
cycle mi/gal gasoline equivalent is not too large, thus reduces the corrected fuel economy to account
for the fuel penalty during the run. Scenario 3 occurs when the vehicle operates almost entirely as an
electric vehicle (EV) and therefore treats the corrected fuel economy as if the vehicle were completely
EV with all of its fuel used coming from the fuel penalty.
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The optimization problem statement for Strategy 2 as used in this study is

formally expressed as:

Maximize: corrected fuel economy (accounting for total energy usage with miles per
gallon gasoline equivalent (mpgge) as defined by
Figure 5.5.2 and Equation (5.5))

Subject to: missed _trace (mph) < 5.0 (how close the bus was to meeting the drive
demands of the cycle)
minimum SOC > 0.5175 (lowest state of charge achieved)

160 <42.0 s (time to accelerate to 60 mph from start)
130 <10.0 s (time to accelerate to 30 mph from start)

[By varying: Number of battery modules = {15,16, .. ,50}

0.3 < Battery capacitance Scale < 1.5
0.5 < Engine Speed Scale < 1.5
0.5 < Engine Torque Scale < 1.5
0.5 < Generator Speed Scale < 1.5
0.5 < Generator Torque Scale < 1.5
0.5 < Motor Speed Scale < 3.0
0.5 < Motor Torque Scale < 3.0
With: Upper SOC Limit = 0.68
Lower SOC Limit = 0.52

Zero-Delta SOC correction routine utilized

3.5.3 Strategy 3 — A Hybrid Approach

The third strategy utilizes multiple initial SOC’s and multiple drive cycle
repetitions to evaluate the performance of a given design, along with the corrected fuel
economy. No state of charge correction is utilized for this strategy. As in Strategy 1, three
analyses are performed for each design, each with a different initial state of charge
(SOC). Two of the analyses use an initial state of charge at the extremes of the SOC
Tange specified for the thermostat control strategy (High SOC and Low SOC), while the
third analysis uses an initial SOC that is the average of the extreme SOC’s. In addition,

77



the strategy utilizes multiple drive cycle repetitions (three repetitions utilized in this
study) for each initial SOC analysis, as is done with Strategy 1.

Whereas Strategy 1 utilizes the actual volume of fuel used, Strategy 3 utilizes the
corrected fuel economy as defined by Equation (5.5) and Figure 5.5.2. While Strategy 2
utilizes a SOC correction routine, Strategy 3 does not. Rather than trying to find the
design with the greatest average fuel economy or the design with the greatest corrected
fuel economy, Strategy 3 tries to find the design with the greatest average corrected fuel

economy.

. Zil;ll fi
N

f

(5.6)
where:

[is the average corrected fuel economy over all analyses,
fiis the corrected fuel economy for a given analysis utilizing Equation (5.5) and

Figure 5.5.2,

N is the number of analyses performed (3 here: each with a different initial SOC).
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The optimization problem statement for Strategy 3 as used in this study is

therefore formally expressed as:

Maximize: average corrected fuel economy (accounting for total energy usage with
miles per gallon gasoline equivalent
(mpgge) as defined by Equation (5.6),
Equation (5.5), and Figure 5.5.2)

Subject to: missed trace (mph) < 5.0 (how close the bus was to meeting the drive
demands of the cycle)
minimum SOC > 0.5175 (lowest state of charge over all initial SOC
loadcases)

160 <42.0 s (time to accelerate to 60 mph from start)
130 <10.0 s (time to accelerate to 30 mph from start)

By varying: Number of battery modules = {15,16, .. 50}

0.3 < Battery capacitance Scale < 1.5
0.5 < Engine Speed Scale < 1.5
0.5 < Engine Torque Scale < 1.5
0.5 < Generator Speed Scale < 1.5
0.5 < Generator Torque Scale < 1.5
0.5 < Motor Speed Scale < 3.0
0.5 < Motor Torque Scale < 3.0
With: Upper SOC Limit = 0.68
Lower SOC Limit = 0.52
Initial SOC = {0.68, 0.60, and 0.52} (multiple initial SOC

load cases)
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5.6 Results of the Optimization Studies

5.6.1 Strategy Comparisons

The commercial software HEEDS [29] was used as the optimization tool for all
three strategies, and the hybrid adaptive search algorithm SHERPA [29] was employed.
Three independent optimization runs were performed for each strategy to lessen the effect
of the random starting conditions of the search on the optimized design found. Similar to
a genetic algorithm, SHERPA begins with a set of quasi-random initial designs (unless
these designs are otherwise provided) that depend loosely on the value of an arbitrary
number, called a random seed. When the same or similar results are obtained from
multiple optimization runs with different random seeds, there is greater confidence (but
no guarantee) that the results found are at or near a global optimum. In the current study,
each optimization run was allowed to continue for an extended period of time, up to a
maximum of 1000 evaluations. Though all the optimization runs may not have been fully
converged (something that can never be guaranteed due to the nature of the design
landscapes for these problems), by 1000 evaluations the rate of improvement was very
low in all cases, so the runs were considered to be very nearly converged (see a typical

example in Figure 5.6.1).
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Figure 5.6.1. Typical convergence plot for the HEV optimizations. The shown optimization was
nearly converged by ~300 evaluations.

The optimized designs from all three strategies are collected in Table 5.6.1 and
Table 5.6.2. Recall that Strategy 1 maximizes the fuel economy from the engine only
(miles per gallon of gasoline), while Strategies 2 and 3 maximize the total energy usage
(miles per gallon gasoline-equivalent). Because the objective functions associated with
each strategy are different, it is difficult to directly compare the solutions obtained from
each strategy. Therefore, the optimized designs from Strategy 1 and Strategy 2 were re-
analyzed using the criteria from the opposite strategy to facilitate this comparison. In
other words, the optimized designs from Strategy 1 were re-analyzed with a single drive
cycle utilizing a SOC correction so that their corrected fuel economy could be calculated.
Likewise the optimized designs from Strategy 2 were re-analyzed with no SOC
correction but rather multiple drive cycles for multiple initial SOC values so that their
average fuel economy could be calculated. Strategy 3 calculates the average fuel
economy in terms of the corrected fuel economy; therefore its optimized designs did not

need to be re-analyzed for comparative purposes.
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The fact that each strategy found three different optimized designs with similar
response values is an indication of the difficult design landscapes associated with HEV
design. As Montazeri-Gh, et al [15] showed, HEV optimization problems are typically
highly non-linear, discontinuous, and multi-modal (i.e., multiple local optima exist).
Adding discrete variables to the problem statement as was done in this study, only
complicates the optimization search further. The three different optimized designs for a
given strategy would seem to indicate that the optimization is not fully converged. To
check further for the global optima, local search methods could be used around the
optimized designs to see if further improvement could be attained. Local search methods
have been shown to find marginal improvement in HEV designs as shown by Oh, et al
[14].

The similarity in responses among the three designs for a given strategy could
have multiple explanations. It is possible that multiple local minima with similar
performances exist in the design landscape (see Figure 5.6.2 for an example), or that
many designs with similar performances exist in a flat region in the design space (see
Figure 5.6.3 for an example), among other things. Determining the cause for the
seemingly un-converged similar solutions is beyond the scope of this study.

When considering total energy usage, the optimized designs from Strategies 2 and
3 have a significantly greater corrected fuel economy than the optimized designs from
Strategy 1. Strategy 3 produced designs with a marginally improved corrected fuel
economy over the optimized designs from Strategy 2. Strategies 2 and 3 have consistently
high performing designs for all three optimization runs. Compared to Strategy 2, Strategy

3 has the added advantage of improved run-time efficiency. In the current study Strategy
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3 runs are about 10% more efficient than Strategy 2 runs. This speedup will vary based
on the number of iterations required to perform the SOC correction within Strategy 2.
The speedup would also be affected by the number of initial SOC load cases and drive
cycle repeats utilized within Strategy 3. Overall, Strategy 3 appears to be an effective and
efficient alternative to the commonly used Strategy 2.

When considering only the energy usage from the engine, Strategy 1 produces
designs with the highest average fuel economy, significantly outperforming Strategies 2
and 3. This can be attributed to the very high fuel economies achieved when the initial
SOC is high, corresponding to the 0.68 initial SOC runs. For the three initial SOC’s
chosen for this study (0.68, 0.6, and 0.52) the optimizations with Strategy 1 sized the
components such that they operated almost entirely as an electric vehicle (EV) when the
initial SOC was 0.68. This strategy’s optimized designs had high values for battery
capacitance, a high number of battery modules, and also had less powerful engines than
the optimized designs from Strategies 2 and 3, as shown in Table 5.6.2. Since the average
fuel economy is the average of performance over all initial SOC load cases, the EV
nature of the optimized Strategy 1 designs when the initial SOC is 0.68 gives a very high
overall average fuel economy as well as a high standard deviation. These designs have a
lower performance than those of Strategies 2 and 3 when the relevant measure is overall
energy usage. Nevertheless, in those limited cases where a fixed route can be guaranteed
(as may be the case for some buses) and the fuel usage of the engine is the primary

concern, then Strategy 1 may be very efficient for optimizing such HEV’s.
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Global minima

Local minima

Figure 5.6.2. Three-dimensional contour plot of the local region surrounding the global minima
locations of the Six Hump Camel Back Function. Note the multiple local minima and multiple global
minima with identical response values.

Figure 5.6.3. Three-dimensional contour plot of the Rosenbrock’s Valley function for two variables.
Note the similar response values along the valley close to the global optima value.
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Table 5.6.2. Design variable values corresponding with the optimized designs from each strategy.

Strategy 1 Strategy 2 Strategy 3
Variable Runl | Run2 | Run3 | Runl (Run2 | Run 3 | Runl | Run2 | Run 3
ESS CAP 1.5 1.5 LS 0.3 0.3 03 0.3 1.128 | 0312

ESS MOD NUM 50 50 50 29 42 28 40 31 35

FC SPEED 1.15 0.6 0.77 1.14 1.4 0.83 1.28 1.38 1.18

FC TORQUE 0.65 1.31 0.98 096 | 0.69 1.47 1.18 0.76 1.28

GC SPEED 1.32 0.5 0.70 1.05 0.63 | 061 1.05 097 | 0.87

GC TORQUE 0.89 1.5 1.44 1.22 139 | 145 0.96 1.3 1.5

MC SPEED 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

MC TORQUE 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

Figures 5.6.4-5.6.6 display the SOC and engine speed history plots of a typical
optimized design from Strategy 1 from this study (the result from Run 1 is shown).
Figure 5.6.7 shows the SOC and engine speed history plots of the same optimized design
when it is re-analyzed with the SOC correction of Strategy 2. Conversely, Figures 5.6.8
displays the SOC and engine speed history plots for the optimized design of Run 1 from
Strategy 2, wherein the objective was to maximize total energy instead of engine fuel
usage only, and Figures 5.6.9-5.6.11 show the same optimized design if it is re-analyzed
with no SOC correction and using the settings from Strategy 1.The trends in Figures
5.6.4-5.6.7 versus those in Figures 5.6.8-5.6.11 are significantly different. When
Comparing engine fuel usage only with Figures 5.6.4-5.6.6 and Figures 5.6.9-5.6.11, the
Strategy 1 design runs primarily as an EV for high initial SOC’s whereas the Strategy 2

design does not. The components of the Strategy 1 solution have been designed such that
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the engine runs continually for long durations of time in order to recharge a nearly
depleted battery. Conversely, the Strategy 2 design has a more evenly distributed load
balance between the engine and electric motor. When comparing total energy usage in
Figure 5.6.7 and Figure 5.6.8, the Strategy 1 design has the engine run around 50%

longer than the Strategy 2 design.
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(a) SOC history with initial SOC = 0.68.
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(b) Engine speed history with initial SOC=0.68.
Figure 5.6.4. Comparison of the SOC history and engine speed history plots for a typical optimized

design from the Strategy 1 optimizations (Run 1 shown here). With an initial SOC of 0.68 these
Optimized designs can run primarily as electric vehicles (EV’s).
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(a) SOC history with initial SOC = 0.60.
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(b) Engine speed history with initial SOC=0.60.

Figure 5.6.5. Comparison of the SOC history and engine speed history plots for a typical optimized
design from the Strategy 1 optimizations with initial SOC = 0.60 (Run 1 shown here).
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(a) SOC history with initial SOC = 0.52.
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(b) Engine speed history with initial SOC=0.52.

Figure 5.6.6. Comparison of the SOC history and engine speed history plots for a typical optimized
design from the Strategy 1 optimizations with initial SOC = 0.52 (Run 1 shown here).
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(b) Engine speed history.
Figure 5.6.7. Typical SOC history and engine speed history plots for the Strategy 1 optimized designs

re-analyzed with SOC correction settings from Strategy 2 for a single drive cycle (Run 1 shown here).
Note that due to the Zero-Delta SOC routine, the initial and final SOC’s are very similar.
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(b) Engine speed history.

Figure 5.6.8. SOC history and engine speed history plots for typical optimized designs where
maximizing total energy usage is the objective (Run 1 from Strategy 2 is shown). Note that due to the
Zero-Delta SOC routine, the initial and final SOC’s are very similar.
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(a) SOC history with initial SOC = 0.68.
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(b) Engine speed history with initial SOC=0.68,.

Figure 5.6.9. Comparison of typical SOC history and engine speed history plots (SOC = 0.68) for the
Strategy 2 optimized design of Figure 5.6.8 re-analyzed with no SOC correction and the settings of
Strategy 1 (multiple drive cycle iterations and multiple initial SOC analyses). Note that the optimized
designs do not act as EV’s.
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