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ABSTRACT

STRATEGIES FOR OPTIMIZING HYBRID ELECTRIC VEHICLE POWERTRAINS

AND PROGRESSIVELY CRUSHING RAILS

By

Nathan Chase

In application of automated design optimization methods to complex problems,

often the biggest challenge is to identify an optimization problem statement that will lead

to a design with the desired performance in an efficient and effective manner. In the

current study, the optimization statements of two challenging problems are investigated

and new approaches are introduced to improve the performance of the designs as well as

the optimization process.

Fuel efficient and environmentally friendly ground vehicles require a careful

balance among competing goals for fuel economy, performance, and emissions. Several

optimization approaches are investigated for a series hybrid bus to find the best overall

combination of engine size, battery pack, electric motor and generator with minimum fuel

consumption under specified performance criteria. An alternative to a common

optimization approach for HEV’s is proposed and shown to yield results equivalent to

other common approaches but with greater efficiency for the problem posed.

To increase robustness of the crush mode and to decrease repair costs after a

crash, it is desirable for front and rear structural rails in an automotive vehicle to crush

progressively - where crush initiates near the tip of the rail and progresses rearward in a

controlled fashion. A new strategy is investigated here to achieve progressively crushing

designs during an automated design optimization study. It is demonstrated that high

performing designs with progressive crush can be obtained using the proposed approach.
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CHAPTER 1: INTRODUCTION

Optimization is becoming an essential tool in computer aided engineering,

specifically in the design process. The need for quicker, better solutions in the global

economy that is the reality of today’s world, has made it insufficient to rely solely on an

engineer’s intuition and experience. Optimization allows superior designs to be found

quicker and more robustly in a realm that is not limited to the experience of a specific

engineer working on a project, but rather the search capabilities of the optimization

software in use, and the way the optimization problem is posed.

In the past, optimization has been slow to gain popularity in industry due to the

perceived complexity associated with it. The methods used to perform the optimization

search were largely dependent upon the problem at hand and it was common for one to

need to be an expert in not only the problem being solved but also the search methods

used to solve the problem. Today however, some of the commercial optimization

software packages are improved enough, and user friendly enough, that being an expert

in optimization is no longer a requirement. There are search methods available (e.g.,

SHERPA [29]) that require no knowledge by the user as to the details of the search

strategy employed. Whereas in the past, the user had to specify values of tuning

parameters for a given method, methods like SHERPA require no tuning parameters, only

the number of evaluations allowed. In addition, modern hybrid and adaptive methods

work on broad classes of problems, so the user does not need to know the nature of

design landscape of the problem being solved a priori. These methods adapt to the



landscape of the problem being solved by modifying which search strategies are used,

and how they are used, at various stages of the search process.

Today, it follows that the complexity of search algorithms and their use is no

longer a primary issue. The issue at hand now becomes how to best define the

optimization problem being solved in order to arrive at the desired results. For most

problems this includes only a few decisions by the engineer. He must decide how best to

setup the analysis model of the system he is trying to optimize; this may be deciding on

how best to parameterize a CAD model or choosing the most appropriate settings for a

numerical model, among other things. He then must decide what responses are of interest

to him, and what performance criteria are to be used during the optimization. Finally, he

must decide the allowable design space for his design variables, and what is considered

an acceptable design.

For some applications, the above three decisions by the engineer regarding the

optimization statement may not be sufficient. The way the optimization should be defined

may not be clear to the engineer in that it may be defined in multiple ways. Each

definition possibility may lead the optimization in a different direction and produce

different optimal designs. Defining an optimization problem in one way may lead the

optimization to a design that meets the requirements as defined, but that does not meet

requirements that were undefined — ones that the user may not have thought of before the

optimization was performed, or didn’t know how to define. Once the engineer knows

how to properly define the optimization problem for the specific application he is

interested in, however, not only will he get superior optimal designs, but he also will have

a better understanding ofhow to define optimization problems for similar applications.



It is the goal of this study to investigate optimization strategies for two specific

applications for which the problem statement is not obvious, and for which multiple

definitions are possible — each that give vastly different results. It is the hope that the

optimization strategies posed here will provide engineers in the respective fields a

“template-like” problem statement to be used in future optimization studies. In addition,

it is hoped that this work will demonstrate the importance of optimization strategies for

complex applications and provide the framework for more application problem

definitions, perhaps even in other fields, to be explored in the future.



CHAPTER 2: INTRODUCTION TO HYBRID ELECTRIC

VEHICLES

2.1 Background

Never before has there been such a concern over the future of the transportation

industry throughout the world. The recent escalation in concerns over global warming

and greenhouse gases, coupled with the depleting supply of the world’s oil reserves and

the growing instability in the regions of the world where these reserves exist, has caused

a heightened awareness in the insufficiency of the standard internal combustion engine

(ICE). It has never been as apparent as in today’s modern world, that the current models

for automobiles and other vehicles that rely on natural reserves are insufficient for a

responsible, realistic firture.

Currently there are many proposals as to the direction the world should take in

changing the dependence on oil. Alternate fuel systems such as fire] cells and bio-diesels

are strong contenders for the next wave of vehicles. However these vehicles, should they

be implemented, would require a major overhaul in the economic and standard landscape

the world has become accustomed to. The shifting agricultural landscape required for

bio-diesels make them an unlikely alternative, while the instability and uncertainty of firel

cells also make them unlikely in the near firture as a replacement for the standard IC

engine. Electric vehicles (EV’s) came into the mainstream of America over a decade ago.

Their prompt failure and unpopularity make them an unlikely alternative for most of the

world anytime soon.



Hybrid electric vehicles (HEV’s) are perhaps the most promising substitute to

conventional vehicles in the near future. HEV’s utilize multiple energy sources; in terms

of this thesis, these energy sources will refer to an energy storage system (such as a

battery or ultra-capacitor), and also an engine. These multiple energy sources allow for

the optimal operation of the engine, thus reducing fuel consumption and emissions. This

proposed alternative to standard vehicles helps reduce the consumption of oil reserves,

while also reducing the emissions of greenhouse gases and not drastically changing the

current landscape of the transportation industry.

The design of hybrid electric vehicles (HEV’s) requires complex optimizations to

account for the intricate interactions among the components, control strategies and the

resulting effects on performance. Due to the size of HEV models and the complexity of

interactions among the many components, it is challenging to properly define an

optimization problem statement that invokes a final design with the desired performance

characteristics. The optimization problem statement (definition greatly affects the

performance of the optimized HEV design, as well as the implications of the design.

While this may seem obvious, the proper problem statement for achieving a particular

performance goal is not always so clear.

In the first section of this thesis, the main characteristics of two optimization

strategies that have been shown to be efficient in optimizing hybrid electric vehicles are

merged into a single and more robust strategy that is shown to have several advantages in

terms of design performance. The main purpose here is to explore these various strategies

and associated optimization problem statements and their effects on the resulting hybrid

vehicle design. As a consequence of this study, a practical and efficient approach is



developed for sizing the components and defining the system control of HEV’s to create

efficient, reliable vehicles.

2.2 Literature Review

2.2.] Overview

Hybrid electric vehicles (HEV’s) include an engine as a fuel converter or

irreversible prime mover, an electric prime mover, and sometimes a generator [1-2]. They

are typically classified into three different categories: series, parallel, or combination.

Series HEV’s utilize an internal combustion engine (ICE) as an auxiliary power unit to

extend the driving range of a purely electric vehicle. These vehicles use a generator to

convert mechanical energy produced by the ICE into electricity that can either charge the

battery or feed the drive motor directly (as shown by Figure 2.2.1). The use of a clutch in

series HEV’s is unnecessary. Parallel HEV’s do require a clutch, and utilize both the ICE

and electric motor to supply tractive power either individually or in combination (see

Figure 2.2.2). Combined HEV’s utilize both a mechanical and electric link, with two

distinct electric machines (as shown by Figure 2.2.3 and Figure 2.2.4).
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Figure 2.2.1. Series hybrid electric vehicle configuration.
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Figure 2.2.2. Parallel hybrid electric vehicle configuration.
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Figure 2.2.3. Combined hybrid electric vehicle configuration A.
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Figure 2.2.4. Combined hybrid electric vehicle configuration B.

   



Guzzella and Sciarretta [I] as well as Ehsani, Gao, and Miller [3] identify HEV’s

as the most promising alternatives to conventional vehicles. The high energy density of

petroleum fuel and the convenience of current fueling systems make for a long vehicle

operating range, easy refueling, and a smooth transition from conventional vehicles,

while the design of the HEV components provide an improved fuel economy and reduced

emissions. HEV’s can utilize a downsized engine while still fulfilling the maximum

power requirements of the vehicle. They possess the ability to recover energy during

braking (regenerative braking), as opposed to dissipating it in conventional vehicles that

use friction braking. HEV’s can optimize the energy distribution between their prime

movers for maximum efficiency, while also eliminating idle fuel consumption by turning

off the engine when no power is required and eliminating clutching losses by engaging

the engine only when the speeds match. In addition, due to the optimized operation of the

internal combustion engine, the vehicles will need less maintenance than conventional

vehicles currently require, as described by Chan [4].

While the benefits of HEV’s over conventional vehicles are substantial, there are

also some drawbacks as discussed by Chan [4]. Hybrid electric vehicles are typically 10-

30% heavier than conventional vehicles, while costing more due to added motors, energy

storage systems, and power converters. In addition, reliability and warranty related issues

are of concern due to the lack of mechanic training in the electrical aspect of their design.

Safety concerns with HEV’s still need to be addressed due to the presence of high voltage

devices, and the effect of electromagnetic fields on HEV’s is not fully understood.



2.2.2 Modeling Tools

The need for accurate modeling and simulation of hybrid electric vehicles has

been discussed in [5-7]. Gao, et al [5] present an overview of some currently available

methods, and place special emphasis on four modeling tools: ADVISOR [8-9], PSAT

[10], PSIM [11], and VTB [12]. ADVISOR is a steady state model that achieves fast

computation but does not accurately resolve dynamic effects. PSAT is a quasi-steady

state model. PSIM and VTB are dynamic models, in which time integration is performed.

The tool QSS toolbox is introduced by Guzzella, and Amstutz [13] for optimizing and

simulating hybrid powertrains. QSS toolbox uses a backward approach that is faster than

typical approaches due to no feedback loops being used, and rather large time steps being

utilized. There are significant assumptions in this tool, which the authors contend are

small and have negligible effects over an entire drive cycle.

In the current study, ADVISOR was chosen as the modeling tool. An overview of

ADVISOR (advanced vehicle simulator) is provided by Wipke, Cuddy, and Burch [8].

ADVISOR utilizes a combined forward/backward simulation approach to evaluate a

vehicle’s performance. It is used in conjunction with Matlab to simulate the behavior of

Hybrid Electric Vehicles (HEV’s) [9]. An ADVISOR model consists of multiple

components that are evaluated in a l-dimensional manner, often using look-up tables and

efficiency maps to provide fast computation with the backward facing approach. The

force required to accelerate the vehicle through a time step is calculated directly from the

required speed trace. This force is then translated into torque, etc. This process is carried

backward through the HEV drive train, component by component until the entire system

is solved. This backward facing approach is typically more efficient than the forward



facing approach for force calculation. The forward facing aspect of the ADVISOR

solution uses a driver model that considers the required speed and the present speed to

develop appropriate throttle and brake commands, which are in turn translated into

torque, etc. The forward facing approach better takes into account dynamic effects and

maximum effort accelerations, and enables the development of vehicle controllers. By

combining both of these approaches, ADVISOR is able to solve the problem efficiently,

while achieving the desired accuracy. Chapter 3 provides more details on how ADVISOR

works.

2.2.3 Optimization

Three types of HEV optimization are identified by Guzzella and Sciarretta [1].

The first of these is a structural optimization in which the best possible power train

structure is sought. The second type is parametric optimization to find the best possible

parameter values for a fixed power train structure (sizing of components). The third type

of optimization focuses on the control system, where the best possible supervisory

control strategy for a given structure is sought. While these three types of optimization

studies are not necessarily independent, each one represents a meaningful and tractable

suboptimization problem within the overall design process. The current study focuses

primarily on the second type (sizing) while also addressing the role of the control strategy

on the optimization of HEV’s.

The commercial software HEEDS [29] was used as the optimization tool for the

current study. The hybrid and adaptive search method SHERPA [29] was employed

exclusively here because it has been shown to perform well on a wide variety of

IO



problems, including multi-modal, noisy, discontinuous problems. Oh, et al [14]

demonstrated that local search methods such as Sequential Quadratic Programming

(SQP) can be used to find marginal improvement in HEV designs. More often, however,

it has been found that local search methods are not ideal for the optimization of HEV’s.

Montazeri-Gh, et al [15], showed that HEV optimization problems are highly non-linear,

discontinuous, and multi-modal (i.e., multiple local optima exist). Therefore gradient-

based search methods, which require the existence of at least first-order derivatives at

each design point, are often not the ideal choice for HEV design problems. This is

supported by Piccolo, et a1 [16] who concluded that a genetic algorithm is an efficient

search algorithm for identifying optimized control strategy parameters for a design that

meets performance criteria while having low firel consumption. Gao and Porandla [17]

also identified genetic algorithms as a potentially efficient search algorithm for HEV

optimization problems. While optimizing an HEV parallel powertrain with PSAT as the

simulation tool, these investigators benchmarked the use of simulated annealing (SA),

genetic algorithms (GA), and the DIRECT technique to perform the optimization.

DIRECT is a modification to the Lipschitzian approach in which the design space is

represented by a series of shrinking hypercubes for high performing regions of the design

space. It was observed that simulated annealing outperformed the genetic algorithm and

modified Lipschitzian approach in terms of performance for the optimization problem

posed. The response fimctions associated with HEV design problems were found to be

typically multi-modal and sometimes noisy and discontinuous. It was suggested that

stochastic algorithms (such as SA and GA) and deterministic algorithms (such as
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DIRECT) were insufficient in finding the global Optimum as efficiently as a hybrid

method that mixes stochastic and deterministic algorithms.

It was observed by Montazeri-Gh, et a1 [15] that very different optimized designs

were obtained using different driving cycles. Three different driving cycles were explored

for the same optimization problem, resulting in three very different optimized

configurations for the control strategy of the HEV. The effects of drive cycle were also

studied by Markel and Wipke [18-19], where it was found that the drive cycle greatly

affected the optimized sizing of components in the HEV. It was found that more

aggressive drive cycles yielded designs with smaller battery packs, while less aggressive

drive cycles yielded optimized designs with larger battery packs. It was demonstrated that

the drive cycle not only affects the component sizing of the optimized HEV designs, but

also the energy management strategy of the HEV.

Assanis, et al [20] and Fellini, et a1 [2]] integrated ADVISOR and Turbo Diesel

Engine Simulation Program (TDES) to give greater accuracy in the engine maps being

used for altered hybrid designs. Fellini, et al [21] described an optimization study using

an Object Oriented-CORBA-based environment for the analysis, to optimally size the

engine, motor, and battery of the vehicle. They concluded that optimized engine size is

insensitive to variations in the drag coefficient, shell mass, battery efficiency, and drive

ratio, whereas the battery size and optimized motor are sensitive to these parameters. This

was shown through a sensitivity study following the attainment of optimized values via

an optimization study.

Moore [22] suggested guidelines for specifying performance criteria when

designing components and control strategies for HEV’s. These guidelines specify that

12



the vehicle must be capable of: launching at a given grade road, accelerating to multiple

speeds under given tirnefrarnes, maintaining gradability for a specified time and speed,

achieving a maximum velocity, achieving a minimum fuel economy, meeting emissions

criteria, and being capable of traveling a given distance in a mixed urban and highway

driving environment. In addition, Moore suggested guidelines that are not necessarily

pertinent to optimization of HEV’s, but rather to HEV design in general. These

guidelines include: having refueling times comparable to conventional vehicles, having

noise, vibration, and harshness in travel less than current sedans, having the ability to be

unattended for a given time below freezing temperatures, and meeting safety

requirements.

A common approach to designing HEV’s is to consider some type of battery

state-of-charge (SOC) correction. SOC corrections are routines or methods designed to

ensure that over the tirneframe considered the initial SOC and final SOC are the same.

This provides a meaningful way to compare designs and ensures that a design is less

dependent upon the initial SOC. Wayne, et a1 [23], describe the importance of this

correction in comparing hybrid vehicle performance to conventional vehicle

performance, as described by the SAE Recommended Practice J27117 [24]. Pagerit, et a1

[25] describe how SOC corrections can be used within optimization studies for HEV’s.

Duoba [26] and Senger [27] discuss how a conversion for electrical energy usage can be

used as an alternative to SOC correction, by converting the electrical energy that can be

obtained from gasoline through the efficiency of an average power plant in the United

States in 1996. SOC corrections in some form provide the basis for the vast majority of

all optimization work with HEV’s to date.
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A review of the existing literature reveals that successful optimizations have been

performed on HEV component, control strategy, and configuration design. However,

despite the magnitude of attention given to the optimization of HEV powertrains, the

roles the Optimization problem statement and SOC correction have in the outcome of the

optimized design has yet to be adequately addressed. In the current study, the HEV

design found with an optimization strategy utilizing an SOC correction method is

compared with the design found utilizing an alternative optimization strategy with no

SOC correction. A comparison between the necessary optimization problem statements

for each strategy and their benefits is presented, and the strategies are merged into a

single and more robust strategy that is shown to have several advantages in terms of

design performance.

14



CHAPTER 3: OPTIMIZATION WITH HEEDS AND

ADVISOR

3. I Introduction to HEEDS

HEEDS (Hierarchical Evolutionary Engineering Design System) is a robust

design exploration and Optimization software package that automates the search for better

and more robust solutions within a given design space and dramatically reduces design

time [29]. HEEDS has a search algorithm SHERPA that is a hybrid adaptive search

method proven to be one of, if not the best search algorithm available today. It has been

demonstrated to outperform other methods on a wide variety of problems (both in terms

of performance and robustness) [28]. For this reason, HEEDS and SHERPA have been

chosen as the optimization tool and search algorithm for this thesis project. All

optimizations performed in this first section utilize HEEDS and showcase the benefits

and power of SHERPA as it relates to the Optimization ofhybrid electric vehicles.

3.2 Introduction to ADVISOR

3.2.1 Overview

The advanced vehicle simulator (ADVISOR) is a simulation tool that utilizes a

combined forward/backward simulation approach to evaluate a vehicle’s performance. It

is used in conjunction with Matlab to solve difficult simulations involving Hybrid

Electric Vehicles (HEV’s).

ADVISOR uses Matlab .m files to define the HEV properties along with the

actions to be taken to test the performance of the HEV. It has a graphical user interface
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(GUI) that correlates all of the .m files needed to run a given problem. However to use

HEEDS with ADVISOR, the GUI cannot be utilized while HEEDS is executing a design

study. As a result the no_gui capabilities specific to ADVISOR must be used to define

and alter the HEV and its performance characteristics during a HEEDS design study. The

baseline model however can be built and tested in the ADVISOR GUI for validation

before time is spent on the no_gui capabilities.

In the next sub-section of this chapter, the different .m files needed for a given

ADVISOR analysis are introduced (for firrther detail, please refer to the ADVISOR

User’s Manual [9]). The noJgui capabilities are not generally discussed, but are discussed

in detail as they relate to the example problem posed in the following section.

An example problem is presented to demonstrate how to use HEEDS with

ADVISOR. It is representative of a specific problem and the no3111' utilization will likely

need to be altered for other problems.

3.2.2 Matlab .m Files

To define an HEV and its performance actions in ADVISOR, there are 13 primary

categories of .m files used. These files can be manipulated and managed to represent a

specific HEV. The .m file categories are described below:

Vehicle Description: These .m files describe and load all of the other .m files

needed for a given HEV configuration.

Vehicle: These .m files define all of the parameters associated with

the vehicle such as the coefficient of aerodynamic drag, the

16



Fuel Converter:

Exhaust Aftertreatment:

Energy Storage System:

Motor:

Generator:

Transmission:

mass of the vehicle, etc.

These .m files define all of the parameters associated with

the fuel converter or engine of the vehicle. Examples

include the fuel and torque maps.

These .m files define all emissions data and catalytic

converter data associated with the vehicle.

These .m files define all of the data associated with the

energy storage system such as the batteries, super

capacitors, etc.

These .m files define all of the data regarding the electric

motor.

These .m files define all of the data associated with

generators in the vehicle and devices used for recharging.

These .m files define the transmission for use in the

vehicle.
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Wheel/Axle:

Accessory:

Control:

Drive Cycle:

Test Procedure:

These .m files define the wheels and axles and the

resistances associated with each.

These .m files define the electrical accessories needed for

the vehicle. Air conditioning is included in these .m files.

These .m files define the control system used to define how

the HEV operates.

These .m files define the drive cycle over which the vehicle

is to be tested and evaluated.

These .m files are an alternative category to the Drive

Cycle .m files in that they define a specific test to be

performed on the vehicle rather than a specific route the

vehicle is to take.
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3.3 Linking HEEDS to ADVISOR

3.3.1 ADVISOR Optimization Preparation

There are four files required with every ADVISOR optimization run. The main

file defines the ADVISOR model to be used and contains the commands for writing the

values of the design variables and responses to an output response file

(outdata_conn'ol.txt in this example). In this example, the main file is named

optim_control_HEEDS.m. Another file identifies the objectives for the run and stores

their values following the simulation (objjitn_control.m for this example). A third file

identifies and stores the values of the constraints for the run (confin_control.m for this

example). The fourth file contains the values of the design variables (indata_control.m

for this example). These files are used by ADVISOR to load and define the entire

problem setup for each HEEDS evaluation. They therefore are unique for every single

optimization which utilizes ADVISOR as an analysis tool. Descriptions of the file

contents follow as they relate to this particular example problem.

3.3. 1.1 optim_control_HEEDS.m

For this example, the file associated with defining the ADVISOR model contains

10 primary sections (see Figure 3.3.1). Section 1 of the code creates a Matlab workspace

where no variables are defined. Section 2 initiates a timer so that the length of the

analysis can be monitored. Section 3 loads the vehicle description .m file

PARALLEL_defaults_in. Section 4 alters the number of battery modules to 14 from the

default value. Section 5 of the code scales the motor to 13.5kW from 75kW. Section 6

defines the variables and responses to be used in the optimization. Section 7 identifies the
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file containing the design variable information and imports their values into the model.

Section 8 identifies the files containing the Objective and constraint variables and

associates them with the model. Section 9 creates the output file for the analysis

(outdata_control.txt) and writes the objective and constraint data to it. Finally, SectionlO

stops the timer since the analysis is now complete.
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 % Clear all the variables 1

clear all

 

 

% initiate timer 2

tic

% Load advisor saved vehicle 3

inputinit.saved_veh_file='PARALLEL_defaults_in';

[error_code,resp]=adv_no_gui('initialize',input);

%Alteration to E88 4

input.modify.param={'ess_module_num'};

input.modify.value={14};

[error,resp]=adv_no_gui(‘modify',input);

%Alteration to Motor 5

input.modify.param={‘mc_trq_scale'};

input.modify.value={0.18};

[error,resp]=adv_no_gui('modify',input); 6

% Define variables

dv_names={‘cs_hi_soc','cs_|o_soc','cs_electn'c_launch_spd_lo',‘cs_electric_launch_spd_hi'.

'cs_off_trchrac',‘cs_min_trq_frac',‘cs_charge_trq'};

resp_names={‘combined_mpgge','hc_gpm','co_gpm'.'nox_gpm',

'vinf.accel_test.results.time(1 )','vinf.accel_test.results.time(2)',‘vinf.accel_test.results.time(3)'.

'vinf.accel_test.results.max__speed','vinf.accel_test.results.max_rate',

'vinf.accel_test.results.dist_in__time','vinf.grade_test.results.grade'};

 

 

 

 % load new design variables 7

indata_control

% Evaluate responses *— 8 

obj=obj_fun__control(X,dv_names,resp_names);

con=con_fun_control(X,dv_names,resp_names);

% write responses to file 9

fid=fopen('outdata_control.txt','w');

fprintf(fid,'Fuel Economy: %g',obj);

fprintf(fid,'\n');

fprintf(fid,'HC: %g',oon(1));

fprintf(fid,'\n');

fprintf(fld,'CO: %g',con(2));

fprintf(fid,'\n');

fprintf(fid,'NOx: %g',oon(3));

fprintf(fid,'\n');

fprintf(fid.'Aocel 0-60: %g',oon(4));

fprintf(fid,'\n');

fprintf(fid,'Accel 40-60: %g',oon(5));

fprintf(fid,'\n');

fprintf(fid,'Aocel 0-85: %g',oon(6));

fprintf(fid,'\n');

fprintf(fid,'Max Speed: %g',oon(7)):

fprintf(fid,'\n');

fprintf(fid,'Max Accel: %g',oon(8));

fprintf(fid,'\n');

fprintf(fld,‘Distance in 55: %g',oon(9));

fprintf(fid.'\n');

fprintf(fid,'Grade: °/og',con(10));

fprintf(fld,'\n');

fclose(fid);

%end timer 10

too

 

    
Figure 3.3.1. Main input file: optim_control_HEEDS.m
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3.3. 1.2 objfln_c0ntrol.m

This file contains six primary sections (see Figure 3.3.2). Section 1 defines a

function. Section 2 initializes the Matlab variables to be used. Section 3 updates the

parameter settings defined by the design variables. Section 4 of the code runs the FTP

driving cycle. Section 5 identifies the objective variable from the driving cycle (gas

mileage). Finally, Section 6 identifies the other objective variables from the driving cycle

(emissions).

 

 

 

function obj=obj_fun(x,varargin) 1

% initialize 2

error=0;

obj=0; 3

 % update parameter settings

input.modify.param=varargin{1}; % parameter names are stored in the first optional argument

input.modify.value=num20ell(x); % assign corresponding values

[error,resp]=adv_no_gui('modify’,input);

% run FTP driving cycle

if ~error

input.cycle.param={'cycle.name'};

input.cycle.value={’CYC_FTP'};

[error,resp]=adv_no_gui('drive_cycle',input);

end

% assign objective value 5

if ~error '

obj=resp.cycle.mpgge;

end

% assign objective value

if ~error

assignin('base','con‘,[resp.cycle.hc_gpm; resp.cycle.co_gpm; resp.cycle.nox_gpm])

end

4

 

 

return   
 

Figure 3.3.2. Objective definition file: obj_fun_control.m
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3.3.1.3 con_fun_control.m

This file has four primary sections (see Figure 3.3.3.). Section 1 defines a

function. Section 2 enables additions to the vector where responses are stored. Section 3

runs and defines an acceleration test, as well as obtains constraints from it (acceleration

times, max velocity, max acceleration, distance covered in SS). Section 4 runs and defines

a grade test, as well as obtains the constraint associated with the grade test (grade).

 

 function [con, con_e]=con_fi1n(x,varargin) 1

con=evalin('base','con‘); 2

3

 

offset=length(con);

% run acceleration test

input.accel.param={'spds','gb_shift_delay','dist_in_time'.‘max_speed_bool'.‘max_rate_bool',};

input.accel.value={[0 60; 40 60; 0 85],0.2,5.0,1,1};

[error, resp]=adv_no_gui('accel_test',input);

if ~error&~isempty(resp.accel.times)

con(offset+1 ,1 )=resp.accel.times(1);

con(offset+2,1 )=resp.accel.times(2);

con(offset+3,1 )=resp.accel.times(3);

con(offset+4,1 )=resp.accel.max_speed;

con(offset+5,1 )=resp.accel.max_rate;

con(offset+6,1 )=resp.accel.dist;

else

con(offset+1 :offset+3,1 )=100;

end

% mn grade test 4

input.grade.param={‘duration','speed'};

input.grade.value={1200,55};

[error, resp]=adv_no_gui('grade_test’,input);

if ~error&~isempty(resp.grade.grade)

con(offset+7.1 )=resp.grade.grade;

else

con(offset+7,1 )=0;

end

 

 

con_e=0;

0/0 itti

return   
Figure 3.3.3. Constraint definition file: con_fun_control.m
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3.3. 1.4 indata_control.m

This file contains only one section which defines all the values for the design

variables referenced in the file optim_control_HEEDS.m (see Figure 3.3.4).

 

X(1 )=0.98

X(2)=0.96

X(3)=10

X(4)=10

X(5)=0.2

X(6)=0.4

X(7)=10    
Figure 3.3.4. Input design variable file: indata_control.m

3.3.2 Running the ADVISOR Simulationfrom Batch Mode

There is an executable located within the gui folder of the ADVISOR files named

advisor_script.exe that is created when ADVISOR is installed. It is this file that allows

ADVISOR to be run from batch mode. To run this file from a command prompt, the

format is:

advisor_script.exe WorkingDirectory ScriptFilename ADVISORRootDirectory SupportDirectory

Where for our optimization problem, this takes the form (if running from the

C:\Temp directory and the ADVISOR root directory is set to

C:\Program Files\AVL\ADVISOR\ADVISOR2004):

C:\Temp\advisor_script.exe C:\Temp optim_control_HEEDS

C:\PROGRA~1\AVL\ADVISOR\ADVISOR2004 C:\Temp

For use with HEEDS, a batch file needs to be created named RUN_ADVISOR.bat

which contains this command, with the advisor_script.exe copied to the working

directory.
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3.3.3 Process Integration Between HEEDS andADVISOR

HEEDS performs the optimization using ADVISOR as the simulation tool by

iteratively performing simulations and searching the design space using the search

method SHERPA. SHERPA is a hybrid adaptive search method that tunes itself for a

given problem [29]. The process of optimizing using HEEDS with ADVISOR will be

described in this sub-section.

As was discussed in Sub-Section 3.3.2, ADVISOR needs to be run from batch

mode for HEEDS to be able to perform a design study. Sub-Section 3.3.1 detailed the

no_gui capabilities of ADVISOR and the files associated with this. How HEEDS uses

this capability is as follows. HEEDS inputs variable values into the input design variable

file (indata_control.m for this example). These design variable values are read into the

main file (optim_control_HEEDS.m for this example), along with data from the objective

definition file (objjim_control.m in this example) and the constraint definition file

(conjun_control.m in this example). The executable advisor_script.exe then launches

ADVISOR using the problem statement defined in the main file

(optim_control_HEEDS.m). The ADVISOR simulation is then run and the output

response file (outdata_control.txt in this example) is written out based upon the

information in the main file. The response values are then read from this output response

file by HEEDS. SHERPA then adapts and tunes its search based upon this information, in

hopes of improving the design. In doing so, it creates new variable values that are again

put into the input design variable file, and this iterative loop begins again. This loop is

continued for a set number of evaluations or until the optimal design is found. Figure

3.3.5 depicts this process integration performed by HEEDS with ADVISOR.
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Figure 3.3.5. Process integration performed by HEEDS with ADVISOR.

3.4 Optimization Example: Small Vehicle ParallelHEV

3.4.1 Baseline Model

The vehicle powertrain to be studied in this example problem is that of a Parallel

HEV (see Figure 3.4.1 for this configuration in ADVISOR). Its parameters are defined as

follows (similar to the problem defined by M.Montazeri-Gh, A. Poursamad, and B.

Ghalichi [15]):

0 Body mass: 592 kg

0 Rolling resistance coefficient: 0.009

0 Body aerodynamic drag coefficient: 0.335

0 Vehicle front area: 2m2
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0 Wheel radius: 0.282 m

0 Gearbox: five speed manual gearbox with the following gear ratios: 2.84, 3.77,

5.01, 7.52, 13.45.

0 IC engine: 41 kW SI engine

0 Electric motor: 13.5 kW AC motor

0 Energy storage system: 14 12V Hawker Genesis valve-regulated lead—acid battery

0 Catalyst converter: close-coupled conventional converter for an SI engine

0 Drive Cycle: FTP

  I’
T
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o
l
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e

\
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Figure 3.4.1. Parallel HEV Configuration in ADVISOR

This vehicle model is provided as a baseline model within the ADVISOR

software. Slight modifications however, do need to be made to the default model (these

modifications are described later). This problem definition correlates to the following

pre-existing .m files:

Vehicle Description: PARALLEL_defaults_in.m

Vehicle: VEH_SMCAR
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Exhaust Aftertreatment: EX_SI

Energy Storage System: ESS_PB25 with alterations necessary to the number of

battery modules (shown in Sub-Section 3.3.1.1)

Motor: MC_AC75 with alterations to the torque scaling to make

the motor 13.5 kW instead Of 75 kW (shown in Sub-

Section 3.3.1.1)

Transmission: TX_5SPD

Wheel/Axle: WH_SMCAR

Drive Cycle: CYC_FTP
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3. 4.2 Optimization Problem Statement

By altering the control system settings of the parallel HEV, this optimization

study attempts to minimize both the fuel consumption and emissions of the vehicle, while

maintaining the performance characteristics of the vehicle. This optimization problem

can therefore be summarized as:

 

+ IC+ ,‘0+ l0x Minimize: J(x) =

mpgge

where:

mpgge is the gas mileage,

HC is the hydrocarbon emissions,

C0 is the carbon monoxide emissions,

NO): is the nitrous oxide emissions.

Subject to: Grade 2 6.5

Acc_I S 12

Acc_2 S 5.3

Acc_3 S 23.4

V_max 2 85.13

A_max 2 16.1

Dist_5s 2 140.]

where:

Grade is the grade able to be achieved at 88.5 km/hr for 20 min,

Acc_I is the time to accelerate from 0-60 mi/hr,

Acc_2 is the time to accelerate from 40-60 mi/hr,

Acc_3 is the time to accelerate from 0-85 mi/hr,

V_max is the maximum velocity achieved,

A_max is the maximum acceleration achieved,

Dist_5s is the distance achieved in 5 seconds.   
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By varying: 0 S DeltaSOC S 0.31

0 S VL S 15

0 S. T_oflS 0.31

0.25 s T_min s 0.88

4 s T_ch s 35

where:

DeltaSOC is the change in limits on the state of charge of the

system,

VL is the vehicle speed below which the vehicle operates as a zero

emissions vehicle (electric launch speed),

T_oflis the minimum torque threshold when SOC > LSOC,

T_min is the minimum torque threshold when SOC < LSOC,

T__ch is the torque load on engine to recharge the battery pack

when the engine is on.   
 

3.4.3 HEEDS Setup

This section details the steps necessary to setup the optimization problem in

HEEDS as posed in Sub-Section 3.4.2. Detailed step-by-step instructions are given in this

section as to this setup.

3.4.3.1 Starting a New Project

1. Open the HEEDS Modeler.

2. Open the file menu and click New (or select New from the options displayed on

the screen).

3. Navigate to your working directory.

4. Save the file as parallelHEV.

3.4.3.2 Defining the Evaluation Process

This problem only has one analysis, with 4 input files and one output file.

1. Select the Processes tab.
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2. Select Analysis__l in the Process Graph. The Analysis Manager will appear

below.

3. Click the Browse button next to the Execution File field and navigate to the

working directory.

4. Select RUN_ADVISOR.bat. This is the file containing the commands and script

necessary to run ADVISOR from batch mode (see above). Delete the path portion

of the field and replace with “.\”.

5. Select the Input Files button to display the Input Files Manager.

6. Right click anywhere in the Input Files Manager and Add Input File.

7. Add the input file indata_control.m.

8. Repeat for the input files optim_control_HEEDS.m, obj_fun_control.m,

con_fun_control.m, and RUN_ADVISOR.bat.

9. Select the Output Files button to display the Output Files Manager.

10. Right click anywhere in the Output Files Manager and Add Output File.

1 1. Add the output file outdata_control.txt

12. Save the Project.

3.4.3.3 Defining the Project Variables and Responses

3.4. 3.3.1 Defining the Project Variables

1. Display the Variables tab.

2. Add 7 design variables and define them as follows:

Name: DeltaSOC; Type: Continuous; Min: 0.0; Baseline: 0.1; Max: 0.31

Name: HSOC; Type: Parameter; Baseline: 0.70

Name: LSOC; Type: Dependent; Formula: HSOC-DeltaSOC
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Name: VL; Type: Continuous; Min: 0.0; Baseline: 0.0; Max: 15

Name: T_off; Type: Continuous; Min: 0.0; Baseline: 0.0; Max: 0.3]

Name: T_min; Type: Continuous; Min: 0.25; Baseline: 0.40; Max: 0.88

Name: T_ch; Type: Continuous; Min: 4; Baseline: 20; Max: 35

3. Add Internal Variables to the project (to define the path in the

RUN_ADVISOR.bat file).

3.4.3.3.2 Defining the Project Responses

1. Add 13 project responses and define them as:

Name: mppge; Source: File

Name: inv_mppge; Source: File

Name: HC; Source: File

Name: CO; Source: File

Name: NOx; Source: File

Name: J_x; Source: Formula; Formula: inv_mppge+HC+CO+NOx

Name: Grade; Source: File

Name: Acc_l; Source: File

Name: Acc_2; Source: File

Name: Acc_3; Source: File

Name: V__max; Source: File

Name: A_max; Source: File

Name: Dist_SS; Source: File

2. Save the Project.
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3.4.3.4 Tagging the Input and Output Files

if. 3. 4. 1 Taging the Input Files

1. Display the Tagging tab.

2. For this project, there are two input files that need tagging. The first dealing with

the design variable tagging is indata_control.txt. Select this file in the Processes

tree and the design variable HSOC in the Project Variables window.

3. Tag the file as detailed below (note VL is tagged twice since we want the upper

and lower speeds for which it represents to be identical):

Variable: HSOC; Location: Line 1, Field 3

Variable: LSOC; Location: Line 2, Field 3

Variable: VL; Location: Line 3, Field 3

Variable: VL; Location: Line 4, Field 3

Variable: T_off; Location: Line 5, Field 3

Variable: T_min; Location: Line 6, Field 3

Variable: T_ch; Location: Line 7, Field 3

4. The file RUN_ADVISOR.bat must have the path tagged within it. Select this

input file in the Processes tree and the internal variable Design_Path. Tag the file

as described below:

Internal Variable: Design Path; Location: Line 1, Field 2
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_3_.:l. 3. 4.2 Tagging the Output File

1. Select the output file outdata_control.txt from the Processes tree and the

response mppge from the Project Responses window.

2. Tag the file as described below:

Response: mppge; Location: Line 1, Field 3

Response: HC; Location: Line 2, Field 2

Response: CO; Location: Line 3, Field 2

Response: NOx; Location: Line 4, Field 2

Response: Acc_l; Location: Line 5, Field 3

Response: Acc_2; Location: Line 6, Field 3

Response: Acc_3; Location: Line 7, Field 3

Response: V_max; Location: Line 8, Field 3

Response: A_max; Location: Line 9, Field 3

Response: Dist_SS; Location: Line 10, Field 4

Response: Grade; Location: Line 11, Field 2

3. Save the Project

3.4.3.5 Assembling the Problem Definition

1. Select the Assembly tab.

2. Select the OPT_Agent_1 button and assign Process_l to the Agent.

3. Select the Methods button and select SHERPA as the optimization technique.

4. Click the Next button and change the number of evaluations to 200.

5. Select the Variables button. Leave the resolution at the default value of 101.
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6. Select the Responses button. Define the optimization problem as that defined

below:

Response: mppge; Type: Prerequisite

Response: HC; Type: Prerequisite

Response: CO; Type: Prerequisite

Response: NOx; Type: Prerequisite

Response: Grade; Type: Constraint _>_ 6.5

Response: Acc_l; Type: Constraint 5 12

Response: Acc_2; Type: Constraint: 5.3

Response: Acc_3; Type: Constraint _<_ 23.4

Response: V_max; Type: Constraint 3 85.13

Response: A_max; Type: Constraint _>_ 16.1

Response: Dist_5s; Type: Constraint 3 140.1

Response: inv_mppge; Type: Prerequisite

Response: J_x; Type: Objective, Minimize, l

7. Save the project.

3.4.4 Running the Project

To run the HEEDS project, save the project and click on the Run tab and the Run

button in the HEEDS Modeler. The project should run with a HEEDS window popping

“P along with a Matlab window. The Matlab window will close after each evaluation and

a new one pOp up with each new evaluation.
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3.4.5 Results and Discussion

The baseline model for this run is defined in Table 3.4.1. This baseline was

chosen somewhat arbitrarily from [15], but was believed to have been a good design to

begin with based upon the paper this problem was adapted from. The resulting response

values for this design are:

mppge = 40.19840

HC = 0.438372

CO = 1.929040

NOx = 0.36759

grade = 8.21989

Acc_l = 10.3826

Acc_2 = 5.3204

Acc_3 = 22.0176

Vmax = 108.788

Amax = 16.2423

Dist_SS = 170.814

J_X = 2.759884

11 variable values
 

Table 3.4.1. Baseline model desi

 

 

 

 

 

 

  

Name Baseline

HSOC 0.70

DeltaSOC 0.10

LSOC 0.60

VL 0

T off 0

T min 0.4

T ch 20     

HEEDS was capable of finding within the 200 evaluations specified, a design that

had the following response values:

mppge = 43.75

HC = 0.4266190

CO = 1.910740

NOx = 0.362577

grade = 8.015360

Acc_l = 10.3536
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Acc_2 = 5.27818

Acc_3 = 21.75

Vmax = 110.045

Amax = 16.2424

Dist_SS = 169.719

J_X = 2.722793

HEEDS found a new design with an 8.84% increase in fuel economy, while

decreasing hydrocarbon emissions by 2.75%, carbon monoxide emissions by 0.96% and

nitric oxide emissions by 1.383% over the baseline design. Also, the design HEEDS

found satisfied all the performance constraints placed upon the problem as defined. This

design corresponds to the values for design variables seen in Table 3.4.2

Table 3.4.2. Optimized design variable values.
 

 

 

 

 

 

 

   

Name Value

HSOC 0.70

DeltaSOC 0.0206666

LSOC 0.6793333

VL 1.071429

T off 0.0206666

T min 0.4735484

T ch 4
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CHAPTER 4: BASELINE ADVISOR MODEL FOR A

HYBRID ELECTRIC BUS

4.1. Introduction

In attempting to develop an optimization strategy for HEV’s, it was necessary to

develop an ADVISOR model that was realistic and representative of a real-world

application. A hybrid bus model was chosen as the baseline model for all work in regards

to optimization. Hybrid buses are becoming commonplace, and work in optimizing their

performance is becoming very important.

An accurate simulation model therefore, had to be created and validated for a

baseline design configuration of a hybrid bus. As mentioned previously, the simulation

software ADVISOR has been chosen for the current study. Therefore, the baseline bus

configuration had to be accurately modeled in ADVISOR by defining the necessary

parameters used in the hybrid electric powertrain model. The baseline bus was modeled

according to early bus specifications and data associated with a joint project between

Michigan State University, Kettering University, and TransTeq [30] with support from

the Michigan Economic Development Corporation. After the baseline model was

validated, the Optimization software HEEDS was used to perform sizing optimization of

the powertrain so as to develop an optimization strategy for hybrid vehicles. The goal of

this chapter is to define the simulation model for the baseline configuration.
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4. 2. ADVISOR Vehicle Model Description

Since ADVISOR was selected as the simulation tool for this project, each of the

vehicle systems had to be described in detail in terms of the parameters that defined that

system within ADVISOR.

A Series Hybrid Electric Vehicle configuration was chosen for the baseline

simulations of the bus. ADVISOR has a pre-existing model for a bus known as the Orion

VI Low-Floor Transit bus. This vehicle model was used for the simulations, with the

parameters modified to represent the early specifications for the bus in the joint project

discussed briefly above.

While many parameters could be measured or obtained directly, some had to be

estimated based upon assumptions. The height of the vehicle center of gravity

(veh_cg_height) was one of these parameters. TO obtain this vehicle center of gravity, the

bus had to be broken down into components based upon its weight. The curb weight of

the vehicle (the bus weight without passengers) was 26,750 lbs. The tires, axles, and

transmission weight were 4000 lbs, distributed at a location 18.8 inches above the ground

(rolling radius of the wheel). The engine and engine compartment weighed roughly 1300

lbs and had a center of gravity located about 30.8 inches above the ground. The air

conditioning unit was located 80 inches above the ground and weighs 500 lbs. The

remaining weight of the bus (21,150 lbs) was that without components

(veh_glider_mass). The roof of the bus could be estimated as accounting for 15% of the

remaining weight (3,172 lbs) located at 124 inches. The floor accounted for roughly 35%

of the 21,150 lbs (or 7,402 lbs) located at 10.5 inches. The walls accounted for the rest of

the 21,150 lbs, but had the weight evenly distributed so their effect on the center of
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gravity was insignificant. Assuming 40 passengers at 150 lbs each gave the cargo mass

(veh_cargo_mass = 6000 lbs). If 23 of these passengers were seated, their center of mass

could be assumed to be 2 ft. The other 17 passengers could be assumed to have a center

of mass of 3 ft since they were standing. Standard calculations for the center of gravity

therefore yielded the center of gravity ofthe bus to be 35.80 inches.

4.2.1. Vehicle Level Parameters

Table 4.2.1. Vehicle parameters for the baseline bus model.
 

 

 

 

 

 

 

 

 

 

 

ADVISOR Parameter Parameter Source Description

Parameter Value Value

(SI) (English)

. 2 2 Reference Acceleration of

vehgravza 9.81 m/s 32.185 ft/s value gravity

- . 3 3 Reference . .
veh_alr_denszty 1,23 kg/m 0.0768 lb/fi value Arr densrty

Transit Bus Coefficient of

veh_CD 0'79 0'79 Standard aerodynamic drag

2 2 Specific for
veh_FA 9.4732 m 10197 ft Flint Buses Frontal area ofbus

. . Specific for Height ofvehicle
veh__cg_hezght 0.908304 m 2.98ft Flint Buses center 0f gravity

Fraction of total

' Specific for vehicle mass
vehfront_wtjrac 0.2785 0.2785 Flint Buses supported by front

axle when at rest

veh wheelbase 7.443m 24.42 ft Specrfic for Distance between

— Flrnt Buses front and rear axles

S ecific for Mass Of bus
veh_glider mass 9593.48 kg 657.362 slugs p. without

— Flrnt Buses

components

Vehicle cargo mass

Specific for (assuming 40
veh_cargo_mass 2,721.55 kg 186.486 slugs Flint Buses people at 150 lbs

per persop)     
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4.2.2. Fuel Converter Parameters

The fuel converter data corresponded to that of a Detroit Diesel Corp. Series 50

8.5 (205kW) diesel engine. Many of the fuel converter parameters are given as maps.

These maps are defined below in SI units defined in Table 4.2.2.

Map 4.2. l

fc_map_spd = [125.66, 141.37, 157.08, 172.79, 188.50, 219.91]

Map 4.2.2

fc_map_trq =[123.02, 246.04, 369.07, 492.09, 615.11, 738.13, 861.15, 984.18, 1107.20]

Map4.2.3

fc_fuel_map_gpkWh =

[242, 220, 207, 201.5, 198.5, 197, 195.5,

261, 220, 207, 200, 195, 192.5, 190.5,

273, 224, 207, 198, 194.5, 192, 190.5,

288, 228, 209, 200.5, 196, 193.5, 191.5,

288, 238, 217, 207.5, 203, 199.5, 197.5,

290, 244, 222, 210.5, 204.5, 202.5, 199.5,

194.5,

189.5,

189.5,

191.5,

197.5,

199.5,

193.5;

189.5;

189.5;

191.5;

197.5;

199.5]

Table 4.2.2. Fuel converter parameters for the baseline bus model.
 

 

 

 

 

 

 

     

Parameter Parameter

33:53:: Value Value Source Description

(SI) (English)

_ ADVISOR

fc_filel_type Diesel Diesel Default Type of fuel

Value

. ADVISOR Engine size

fc_disp 8.5 L 2.245 gal Default (cylinder

Value displacement)

ADVISOR

fc_map_spd Map 4'2'1 Map 4.2.1 Default Speed range Ofthe
(rad/s) Value engine

ADVISOR .

fc_map_trq ngrfi'z Map 4.2.2 Default Englr:ttérque

Value g

ADVISOR
Map 4.2.3 Fuel use map of

c el ma kWh Ma 4.2.3 Default .
ffl — p_gp (g/kWh) p Value engine

ADVISOR

fc_idle_speed 650 rad/s 650 rad/s Default Idle speed 0f the

Value engrne
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4.2.3. ExhaustAftertreatment Parameters

The aftertreatrnent catalyst parameters defined were those for a diesel-powered CI

engine. All of the catalyst parameters are given as maps. These maps are defined below

in SI units defined in Table 4.2.3.

Map 4.2. 4

ex_cat_trnp_range = [-40, 0, 220, 240, 310, 415, 475, 550, 650, 1200]

Map 4.2. 5

ex_cat_hc_frac = [0, 0, 0.04, 0.08, 0.20, 0.57, 0.80, 0.90, 0.91, 0.91]

Map 4.2.6

ex_cat_co_frac = [0, 0, 0.06, 0.20, 0.50, 0.80, 0.90, 0.95, 0.95, 0.95]

Map 4.2.7

ex_cat_nox_frac = [0, 0, 0.01, 0.15, 0.45, 0.30, 0.20, 0.10, 0.01, 0]

Map 4.2.8

ex_cat_pm_frac = [0, 0, 0.04, 0.08, 0.20, 0.30, 0.35, 0.40, 0.40, 0.40]

Map 4.2.9

ex_cat_lim = [1.25, 17.0, 2.0, 0.4]
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Table 4.2.3. Exhaust aftertreatment parameters for the baseline bus model.
 

 

 

 

 

 

      

ADVISOR Parameter Parameter . .

Parameter Value Value Source Descrrptron

(SI) (English)

Map 4.2.4 ADVISOR Catalyst temperature

ex_cat_tmp_range (oC) Map 4.2.4 Default ran e

Value g

Automotive Catalyst HC

Eng. 10/95 conversion efficiency
ex_cat_hcjac Map 4.2.5 Map 4.2.5 p. 42 map (dependent on

(Reference) catalyst temperature)

Johnson Catalyst CO

conversion efficiency
ex_cat_cofrac Map 4.2.6 Map 4.2.6 Matthey (dependent on catalyst

rp. temperature)

ADVISOR Catalyst NOx

conversion efficiency

ex_cat_noxjrac Map 4.2.7 Map 4.2.7 [33111: (dependent on catalyst

temperature)

ADVISOR Catalyst PM

conversion efficiency

ex_cat_pmfiac Map 4.2.8 Map 4.2.8 12163:: (dependent on catalyst

temperature)

ADVISOR Breakthrough limit of

ex_cat_lim Map 4.2.9 Map 4.2.9 Default converter (5 times the

Value Tier 1 g/mi limits)
 

 
4.2.4. Energy Storage System Parameters

The energy storage system was based upon an Ovonic 90Ah NiMH battery. Many

of the catalyst parameters are given as maps. These maps are defined below in SI units

defined in Table 4.2.4.

Map 4.2.10

ess_soc = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

Map 4.2.11

ess_tmp = [0, 22, 40]

Map 4.2.12

ess_max_ah_cap = [90, 90, 90]

Map 4.2.13

ess_r_dis =
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0.01*[1.167, 0.631, 0.594, 0.552, 0.541, 0.530, 0.523, 0.536, 0.574, 0.615, 0.585;

1.167, 0.631, 0.594, 0.552, 0.541, 0.530, 0.523, 0.536, 0.574, 0.615, 0.585;

1.167, 0.631, 0.594, 0.552, 0.541, 0.530, 0.523, 0.536, 0.574, 0.615, 0.585]

Map 4.2.14

ess_voc =

[12.5, 12.8, l3.1,13.3,13.4,13.4,13.5,13.6,13.7,13.9,14.2;

12.5, 12.8, 13.1, 13.3, 13.4, 13.4, 13.5, 13.6, 13.7, 13.9, 14.2;

12.5, 12.8, 13.1, 13.3, 13.4, 13.4, 13.5, 13.6, 13.7, 13.9, 14.2]
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Table 4.2.4. Enem storage system parameters for the baseline bus model.

 

 

 

 

 

 

 

 

 

      

Parameter Parameter

:DVISOR Value Value Source Description
arame er (SI) (English)

ADVISOR

ess soc Map 4.2.10 Map 4.2.10 Default Range Of the state 0f
— charge of the battery

Value

ADVISOR Temperature range

ess_tmp M21202?'1 1 Map 4.2.11 Default over which data is

Value defined.

Ma 4 2 12 ADVISOR Maximum capacity at

ess_max_ahicap p ' ' Map 4.2.12 Default C/5 rate. (dependent

(A-h)
Value on temperature)

Module’s resistance to

ADVISOR bemg dlscharged

. Map 4.2.13 (dependent on
ess r drs Map 4.2.13 Default

— _ (Ohms) Value temperature

{vertically} and SOC

{horizontally} )

Module’s Open-circuit

ADVISOR voltage (dependent on

ess_voc M33385” Map 4.2.14 Default temperature

Value {vertically} and SOC

{horizontally})

Storage system

ADVISOR minimum voltage

ess_min_volts 9.135 volts 9.135 volts Default (based upon 10 cells

Value and a 105% safety

factor)

Storage system

1 5.675 1 5.675 ADVISOR maxlmum voltage

ess_maxgvolts volts volts Default (based upon 10 cells

Value and a 95% safety

factor)

ADVISOR .

ess module mass 16.7 kg 1'144313 Default Mass ofa s1ngle 12 V
— r slugs module

Value

ADVISOR .
0.232971

ess module_volume ,006597 m3 3 Default Volume ofa Slngle
r it module

Value

ADVISOR

ess_module_number 25 25 Default Number ofmodules

Value    
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4.2. 5. Motor Parameters

The motor defined was that of a 58 kW permanent magnet motor/controller.

Many of the motor parameters are given as maps. These maps are defined below in SI

units defined in Table 4.2.5.

Map 4.2.15

mc_map_spd =

[0, 26.2, 52.4, 78.5, 104.7, 130-9, 157.1, 183.3, 209.4, 235.6, 261.8, 288, 314.2, 340.3,

366.5, 392.7, 418.9]

Map 4.2.16

mc_map_trq = [0,25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375,

400]

Map4.2.17

mc_eff_map=

[03,03, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 03,03, 03, 0.3, 0.3, 0.3, 03,03,

0033,07, 0.75, 075,075, 0.73, 071,0.7, 0.7, 0.68, 0.65, 0.63, 0.62, 0.61,0.6, 0.59,

00.55315, 0.8, 0.82, 0.82, 0.82, 0.82, 0.82, 0.81, 0.8, 0.78, 0.77, 0.76, 0.76, 0.75, 0.73,

00.732303, 0.82, 0.84, 0.86, 0.86, 0.85, 0.85, 0.85, 0.84, 0.84, 0.83, 0.82, 0.81, 0.8, 0.77,

00737:075, 0.83, 0.86, 0.87, 0.88, 0.88, 0.87, 0.87, 0.87, 0.86, 0.86, 0.85, 0.84, 084,083,

0($3230.75, 0.84, 0.87, 0.88, 0.88, 0.89, 0.89, 0.88, 0.88, 0.88, 0.87, 0.87, 0.86, 0.86, 0.85,

(30:3;075, 0.84, 0.87, 0.89, 0.90, 0.90, 0.90, 0.89, 0.89, 0.89, 0.89, 0.88, 0.88, 0.88, 0.88,

0.3, 0.75, 0.84, 0.88, 0.89, 0.9, 0.90, 0.90, 0.90, 0.9, 0.90, 0.89, 0.89, 0.89, 0.89, 0.89,

0.89;

0.3, 0.75, 0.84, 0.88, 0.90, 0.9, 0.90, 0.91 , 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90,

0.90;

0.3, 0.75, 0.84, 0.88, 0.9, 090,091,091, 0.91,091,091,0.91,o.91,0.91,0.91.0.91.

0.91;

0.3, 0.75, 0.85, 0.88, 0.9, 091,091,092, 091,091,091,0.91,o.91,0.91,0.91,0.91,

0.91;

00-3, 0.75, 0.85, 0.88, 0.9, 0.90, 0.91, 091,091, 0.91, 0.91, 0.91, 0.91, 0.91, 0.91, 0.91,

.91;

00036 0.75, 0.84, 0.88, 0.89, 0.9, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90,
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0.3, 0.74, 0.82, 0.87, 0.89, 0.89, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9,

0.9;
.

0.3, 0.7, 0.82, 0.86, 0.88, 0.89, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9,

0.9;

0.3, 0.7, 0.81, 0.86, 0.88, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89,

0.892;

0.3,0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3,

0.3]

Map 4.2.18

mc_max_trq=[340, 375,402, 403,401,400, 348, 300, 250, 227, 202, 190, 175, 170, 150,

148, 0]

47



Table 4.2.5. Motor parameters for the baseline bus model.
 

 

 

 

 

 

 

 

  

ADVISOR Parameter Parameter . .

Parameter Value Value Source Descrrptron

(SI) (English)

ADVISOR S eed ran e ofthe

mc_map_spd Map 4.2.15 (rad/s) Map 4.2.15 Default 9 motif

Value

Map 4.2.16 ADVISOR Torque range Of

mc_map_trq Map 4.2.16 Default

(N-m) Value the motor

Motor efficiency

map (dependent on

Ma 4 2 17 ADVISOR speed range of the

mc_eff_map p ' ‘ Map 4.2.17 Default motor {vertically}

Value and torque range

of the motor

{horizontallyD

‘ ADVISOR

mc_max_trq M22413). 18 Map 4.2.18 Default Max Torque Curve

Value

ADVISOR Maximum current

mc_max_crrnt 480 Amps 480 Amps Default allowed]by th:

Value contro er an

motor

. . 2 0-017333 ADVISOR Rotor’s rotational

mc_mertza 0.0235 kg-m 2 Default . .

slugs-ft Value 11161113

ADVISOR

mc_mass 70 kg 4.80 slugs Default Mass 0f mcfior and

Value contro er

ADVISOR Minimum voltage

mc_min_volts 120 volts 120 volts Default alloweillby a:

Value contro er an

motor     
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4.2. 6. Generator Parameters

Some of the generator parameters were given as maps. These maps are defined

below in SI units defined in Table 4.2.6. For these maps, colons define them. For

example, the torque range is defined by [0252200]. This means that the range is from 0 to

200 in increments Of 5.

Map 4.2.19

gc_map_trq = [0252200]

Map 4.2.20

gc_map_spd = [0:26. 182733.04]

Table 4.2.6. Generator parameters for the baseline bus model.
 

 

 

 

 

 

      

Parameter Parameter

33:53:: Value Value Source Description

LSI) (English)

Map 4.2.19 ADVISOR Torque range of the
go map trq Map 4.2.19 Default

” " (N-m) generator
Value

ADVISOR

gc_map_spd Map 4'2’20 Map 4.2.20 Default Speed range 0f the

(rad/s) generator

Value

480 Am 3 ADVISOR Maximum current draw

gc_max_crrnt p 480 Amps Default for the motor/controller

Value set

~ ADVISOR Minimum volta e for
gc_min_volts 120 volts 120 volts Default g

the motor/controller set

Value

. . 2 0.007376 ADVISOR , , ,

gc_mertza 0.01 kg-m 2 Default Rotor’s rotatronal 1nert1a

slugs-ft Value
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4.2. 7. Transmission Parameters

The transmission in the model was based upon an Allison automatic transmission

for a school bus/transit bus. Some of the transmission parameters are given as maps.

These maps are defined below in SI units defined in Table 4.2.7.

Map 4.2.21

‘gb_ratio=[3.49, 1.86, 1.41, 1.00, 0.75, 0.65]

Map 4.2.22

tx_map_spd=[0, 60.85]

Map 4.2.23

tx_map_trq=[- 1254, 1254]

Map 4.2.24

tx_eff_map= [0.90, 0.90;

0.90, 0.90]
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Table 4.2.7. Transmission parameters for the baseline bus model.
 

 

 

 

 

 

 

 

 

  

Parameter Parameter

33:11:33: Value Value Source Description

(SI) (English)

gb_ratio Map 4.2.21 Map 4.2.21 Filiiilgfrsf: Ratios in gearbox

b ears mm 6 6 Specific for Number of discrete gear

g _g - Flint Buses choices in gearbox

Map 4.2.22 S ecific for Speed of transmission

tx_map_spd (rad/s) Map 4.2.22 p. shaft output (wheel-side
Flrnt Buses . .

of transnussron)

. Torque of transmission

tx map trq Map 4'2'23 Map 4.2.23 SPECIFIC for shaft output (wheel-side
- - (N-m) Flrnt Buses . .

of transmrssron)

Transmission efficiency

(dependent on torque of

ADVISOR transmission shaft

tx_efl_map Map 4.2.24 Map 4.2.24 Default output {vertically} and

Value speed of transmission

shaft output

{horizontally})

ADVISOR 'Final Drive Ratio (5.34

fd_ratio 4.037 4.037 Default is also sited as a good

Value value for transit buses)

ADVISOR . . .

fd_inertia 0 kg-m2 0 slugs-ft2 Default Routgrfi?(1123:“! Of

Value

ADVISOR

gb_mass 283.447 kg 19.42 slugs Default Mass of gearbox

Value

ADVISOR

fd_mass 90.703 kg 6.215 slugs Default Mass of final drive

Value    
 

4.2. 8. Wheel Parameters

The wheel parameters were based upon those for a heavy truck (representative of

a transit bus). Some of the wheel parameters are given as maps. These maps are defined

below in SI units defined in Table 4.2.8.
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Map 4.25

wh_axle_loss_mass=[0, 5000, 10000, 15000, 30000]

Map 4.26

wh_slip_force_coeff=[0, 0.3913, 0.6715, 0.8540, 0.9616, 1.0212]

Map 4.27

wh__axle__loss_trq=[0, 15, 30, 45, 90]

Map 4.28

wh_slip=[0.0, 0.025, 0.050, 0.075, 0.10, 0.125]

Map 4.29

wh_fa_dl_brake_frac=[0, 0, 0.5, 0.8, 0.8]

Map 4.30

wh_fa_fric_brake_frac=[0.8, 0.8, 0.4, 0.1, 0.1]
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Table 4.2.8. Wheel parameters for the baseline bus model.
 

 

 

 

 

 

 

 

 

      

ADVISOR Parameter Parameter . .

Parameter Value Value Source Descnptron

(SI) (English)

ADVISOR .

wh__ax1e_loss_mass Map 4'2'25 Map 4.2.25 Default Veh1cle test mass

(kg) V 1 vector

a ue

Coefficient defined

ADVISOR as thfhtragtrvtefiforce

wh_slipforce_coefl Map 4.2.26 Map 4.2.26 [iffimlt ocliivifledobly this

a ue weight on the front

axle

Ma 4 2 27 ADVISOR Front brake and

wh__axle_loss_trq p ' ' Map 4.2.27 Default axle bearing drag

Value torgme

ADVISOR . .

wh_slip Map 4.2.28 Map 4.2.28 Default Wheel 81") °f dnve
wheels

Value

wh radius 045 111 1.4764 fi Specific for Rolling radius of

— Flrnt Buses wheels

ADVISOR Fraction ofbraking

whfa_dl_brakefiac Map 4.2.29 Map 4.2.29 Default done by driveline

Value via front axle

ADVISOR Fraction ofbraking

whjafiicjrakejrac Map 4.2.30 Map 4.2.30 Default done by front axle

Value fiiction brakes

wh Isl rrc 0 00938 0 00938 Reference 18' coefficient of

— r ' ' Value rolling resistance

wh 2nd rrc 0 0 Reference 2nd coefficient of

— - Value rolling resistance
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4.3. Summary

A baseline hybrid bus model was developed in ADVISOR based upon early

specifications for a bus in development with a joint project between Michigan State

University, Kettering University, and TransTeq. This was important for early validation

purposes for the project, as well as ensuring that the optimization strategies developed

and explored in this thesis for HEV’s would be valid for real-world hybrid applications.

The development of the baseline simulation model based upon an existing bus also

ensured that the results obtained for simulations were realistic. This chapter gave all of

the details associated with the baseline model.
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CHAPTER 5: OPTIMIZATION STRATEGY FOR HEV’S

USING ADVISOR AS A SIMULATION TOOL

5.1 Introduction

The design of hybrid electric vehicles (HEV’s) requires complex optimizations to

account for the intricate interactions among the components, control strategies and the

resulting effects on performance. Due to the size of HEV models and the complexity of

interactions among the many components, it is challenging to properly define an

optimization problem statement that invokes a final design with the desired performance

characteristics. The optimization problem statement definition greatly affects the

performance Of the optimized HEV design, as well as the implications of the design.

While this may seem obvious, the proper problem statement for achieving a particular

performance goal is not always so clear.

In this chapter, the main characteristics of two optimization strategies that have

been shown to be efficient in optimizing hybrid electric vehicles are merged into a single

and more robust strategy that is shown to have several advantages in terms of design

performance. The main purpose here is to explore these various strategies and associated

optimization problem statements and their effects on the resulting hybrid vehicle design.

As a consequence of this study, a practical and efficient approach is developed for sizing

the components and defining the system control of HEV’s to create efficient, reliable

vehicles.
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5.2 Hybrid Electric Bus Model

5.2.1 Component Sizing Procedure

For the purpose of the current study, we considered a series configuration hybrid

electric bus as shown in Figure 5.2.1, with the baseline components described in Chapter

4, summarized in Table 5.2.1. The main components of interest for the optimization were

the generator, electric motor, engine, and battery. During optimization, a scaling method

was used to represent the size of each component relative to the baseline size.

By altering these scaling factors (which acted as the design variables during

optimization), different size motors, engines, and generators could be evaluated.

ADVISOR uses the scaling factor specified for a given component to linearly scale the

relative internal parameters of that component. This linear scaling assumption makes for

an easy way to change the size of a component without needing detailed experimental

data for multiple sized components, so long as linear scaling is appropriate for the

different size components in question. This is an approximation for a given component,

but is a common and accepted way to size components of HEV’s [9].

Values of the scaling parameters less than one corresponded to smaller sized

devices, while values greater than one corresponded to larger sized devices. The baseline

model was thus represented by the following parameter values:

Generator Speed Scale (GC SPEED): 1.0

Generator Torque Scale (GC TORQUE): 1.0

Motor Speed Scale (MC SPEED): 1.0

Motor Torque Scale (MC TORQUE): 1.0
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Engine Speed Scale (FC SPEED): 1.0

Engine Torque Scale (FC TORQUE): 1.0

Similarly, the battery size was altered using a scaling factor for the capacitance. In

addition, the number of modules for the battery was altered during the study. The

baseline battery was represented as follows:

Battery Capacitance Scale (ESS CAP): 1.0

Number of Battery Modules (ESS MOD NUM): 25

 

 

  
 

Figure 5.2.1. Powertrain configuration of the HEV bus (as it appears in ADVISOR).

Table 5.2.1. Baseline com onents of the series h brid bus for o timization.

      
 

 

 

 

   

   

   
  

Component Characteristics

Engine Detroit Diesel Corp. Series 50 8.5 (205kW) Diesel Engine

Motor UQ/I 150 kW motor/controller

Generator UQM 150 kW generator

Battery NIMH 90Ah Ovonic, 25 battery modules

Wheel and ACCURIDE, wh_radius = 0.45

Axle

Transmission Single gear, TX ISPD BUS with overall ratio@742 1).

Accessory Mechanical and electrical power scaled of ~ 21.4 kW (29 hp) with

A/C  
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5.2.2 Control Strategy

A thermostat control strategy was used in the current study. This type of control

strategy allows the user to specify a lower/upper limit for the state ofcharge (SOC) of the

battery, below/above which the engine turns on/off and the generator charges/discharges

the battery. In a thermostat control strategy, when the engine is on it is run at a constant

speed (ideally that for which the engine operates most efficiently). For all optimization

studies, the lower and upper limits on the state of charge for this thermostat control

strategy were defined as:

Lower Limit on SOC: 0.52

Upper Limit on SOC: 0.68

These values were selected in accordance with an assumed requirement that the

battery of the bus must operate with a state of charge between 52% and 68% in practice.

5.2.3 Driving Cycle

Two different driving cycles were considered the most viable to gauge the

performance of a hybrid electric bus: the Federal Test Provisions Driving Cycle (FTP

Driving Cycle) and Urban Dynamometer Driving Schedule (UDDS). The most

demanding of the two driving cycles was judged to be the Urban Dynamometer Driving

Schedule (UDDS), and therefore it was chosen for all comparative studies. It has the

characteristics ofFigures 5,2,2 and 5.2.3.
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Figure 5.2.2. Driving cycle speed/elevation vs. time for the UDDS driving cycle.
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Figure 5. 2.3. UDDS driving cycle characteristics.
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5. 3. Baseline Designs

5.3.1 Conventional Bus Design

For comparison and validation purposes, an existing baseline conventional (non-

hybrid) bus model was used. Starting with the validated conventional bus model, a,

baseline hybrid bus model was developed and used to gauge the performance of the

different optimization strategies.

The conventional bus had the same basic design characteristics (e.g., engine,

wheel and axle, transmission, and accessories) as the hybrid bus described in Table 5.2.1.

The conventional bus had the following performance characteristics:

fuel economy: 4.7 mpgge

missed_trace: < 5 mph

’60 I 68.6 S

130: 13.3 S

where:

fuel economy is measured in miles per gallon gasoline equivalent (mpgge),

missed_trace is a gauge of how close the bus is to meeting the drive

demands of the cycle (Figure 5.2.2),

1601s the time required for the bus to accelerate from 0-60 mph, and

t30 is the time required for the bus to accelerate from 0-30 mph.
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5.3.2 Baseline Hybrid Bus Design

The validated conventional bus model was used as a starting place in designing a

hybrid bus. The baseline hybrid bus model had all of the characteristics of Table 5.2.1,

and the following performance:

where:

Averagefuel economy: 3.71 mpgge

Correctedfuel economy: 4.07 mpgge

missed_trace: 15.7 mph

:60 : 52.67 s

130: 21.22 8

Averagefuel economy is a measure of the average fuel economy of the

design evaluated with multiple initial SOC’s over multiple run

cycles of the UDDS with no SOC correction (measured in miles

per gallon gasoline equivalent),

Correctedfuel economy is a measure of the fuel economy over one run

cycle of the UDDS with an SOC correction routine as described by

[23-27] (measured in miles per gallon gasoline equivalent),

missed_trace is a gauge ofhow close the bus is to meeting the drive

demands of the cycle (Figure 5.2.2),

160 is the time required for the bus to accelerate from 0-60 mph, and

130 is the time required for the bus to accelerate from 0-30 mph.
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Note that the baseline hybrid bus did not meet the target for missed trace, and

acceleration times, and is thus considered an infeasible design. These performance targets

will subsequently be enforced as constraints during optimization. The fuel economies of

this baseline hybrid design will be used for assessing new designs based on the proposed

optimization strategies.

5. 4. Modeling Conceptsfor HEV Optimization

5.4.]. Introduction

For the various optimization studies performed in this work, the Optimization goal

was to size the various components of interest in a manner that minimized fuel

consumption while meeting performance characteristics for a given drive cycle. One of

the more challenging and interesting aspects of HEV optimization is identifying an

appropriate definition of fuel economy and subsequently minimizing its sensitivity to

various assumptions in the model and to the drive cycle used during the simulation for

each design. In this section, an overview of why these issues arise is presented as a

prelude to the detailed investigation described in the next section.

5.4.2 SOC Corrections

SOC corrections in some form are used in the vast majority of optimization work

with HEV’s to date. SOC corrections are important in the design of HEV’s for multiple

reasons. They provide a meaningful way to compare HEV performance to conventional

vehicle performance [23-24], as well as reduce the impact the initial state of charge has

on the performance of the design [9, 25]. By ensuring initial and final SOC over a drive
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cycle are the same (or nearly the same), SOC corrections alleviate the need for multiple

drive cycles to be performed to see how performance changes with varying initial SOC.

This provides an easy and seemingly robust way to compare designs during optimization

[25].

5.4.3 Multiple Initial SOC’s

It was desired to see the effects on the results obtained from optimization if an

SOC correction was not utilized. A preliminary optimization was therefore performed

that sized the engine, generator, motor, and battery, such that the fuel economy of the

engine was maximized and certain performance characteristics were met. This

optimization run had an initial SOC of 0.68 and did not utilize SOC correction.

The optimized design found had the SOC and engine speed history plots shown in

Figure 5.4.1. The components for this design were sized such that the design acted almost

entirely as an electric vehicle (EV) over the drive cycle, with the engine not needing to

turn on until the end of the drive cycle. This EV behavior gave a very high performance

during optimization since no battery losses were accounted for. These results are

consistent with the trends seen by Markel and Wipke [18-19].

If however, the Optimized design had an initial SOC less than 0.68, it would not

perform as an EV over the drive cycle. Figure 5.4.2 shows the SOC and engine speed

history plots for the same design found as optimal during the optimization, re-evaluated

in ADVISOR with an initial SOC of 0.60 instead of 0.68. Clearly the design now does

not act as an EV over the drive cycle, and therefore its performance will be drastically

lower than that found during the optimization where it did act as an EV. It was concluded
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therefore, that if an SOC correction routine is not utilized, multiple initial SOC’s should

be considered when evaluating an HEV’s performance since it is not guaranteed that a

vehicle will always start with a high initial SOC.

 

SOC 0.52

0.6

0.58

0.55

0.54 0.52 ~    05 I I I I I l n

0 200 400 500 800 1000 1200 1400 T‘me(5)

 

140 1 f fi U l I

120 .. -.

100 - -l

Engine Speed 80 2 —

(rad/s)

50 l + -

40» -

20-
..

0 200 400 600 1000 1200 1400 mm“)

(b) 01 vs. time.

  
Figure 5.4.1. Optimized design characteristics for one drive cycle of the UDDS (SOC=state of charge;

to engine Speed) with an initial SOC 01' 0.68.
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Figure 5.4.2. Optimized design characteristics (SOC=state of charge; to=engine speed) if re-evaluated

wrth an initial SOC of 0.60.

For a given drive cycle, an HEV performs differently depending upon its initial

SOC [9]. A design’s performance therefore will be skewed depending upon the initial
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SOC that it is evaluated for (performing well at one initial SOC and poor at another). A

method to overcome the sensitivity to initial SOC is to evaluate a given design for

multiple initial SOC’s and average the performance. One issue with this approach is

selecting which initial SOC’s to consider in evaluating the average performance.

5.4.4 Multiple Cycle Repeats

If an SOC correction routine is not utilized, evaluating designs based upon the

average performance from multiple initial SOC’s over a single drive cycle may be

inaccurate. Utilizing the optimized design from Sub-Section 5.4.3, a study was performed

to see the effect the number of consecutive UDDS drive cycles has on the responses. The

optimized design was altered so that the initial SOC was 0.60 instead of 0.68 so that it

wouldn’t run as an EV. This design was then run for l, 3, and 20 drive cycles. When

performing multiple drive cycles, a periodic behavior was observed in the SOC and

engine speed time histories, as shown in Figures 5.4.3 and 5.4.4. Thus, as the number of

drive cycle repetitions is increased, the dependency on the initial SOC decreases while

the evaluation time increases. Since the period of the SOC time history for the evaluated

bus appeared to be slightly less than three drive cycles (as seen in Figure 5.4.3), this was

the number of drive cycle repeats used herein whenever an optimization strategy required

multiple drive cycles.
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Figure 5.4.3. SOC history plots for an optimized design evaluated for different number of drive

cycles. The period (T) of the cycle corresponds with just less than three cycle repetitions.
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Figure 5.4.4. Engine speed history plots for an optimized design evaluated for different number of

drive cycles.
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Due to the periodic nature of the SOC history plots with drive cycle repetitions, a

design should be evaluated during optimization for multiple cycle repetitions at multiple

initial SOC’s, in the hopes that this methodology decreases the dependence of a design’s

performance on its initial SOC.

5.4.5 Corrected Fuel Economy

Duoba [26] and Senger [27] discuss how a conversion for electrical energy usage

can be used as an alternative to SOC correction, by converting the electrical energy that

can be obtained from gasoline through the efficiency of an average power plant in the

United States in 1996. The fuel economy values used with the concepts discussed above

base the fuel calculations on the actual volume of fuel used. But in a hybrid vehicle, some

amount of electric energy is also used during the driving cycle. Therefore one could

postulate a ‘corrected fuel economy’ measure as an alternative objective, in which the

equivalent fuel energy of electrical energy used is added to actual fuel energy used. This

approach provides a more consistent comparison among designs and effectively results in

‘perfectly charge sustaining’ vehicle behavior.
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5.5 Optimization Strategies and Problem Statements

Three optimization strategies for optimizing HEV’s have been developed and

compared using the concepts discussed in Sub-Section 5.4. The definition of the

strategies, as well as the formal optimization problem statement utilized with each are

discussed in this sub-section.

5. 5.1 Strategy I-Multiple SOC’s and Multiple Drive Cycle Repetitions

The first strategy utilizes multiple initial SOC’s and multiple drive cycle

repetitions to evaluate the performance of a given design. No state of charge correction is

utilized for this strategy, and a measure of the actual volume of fuel used instead of the

corrected fuel economy. Three analyses are performed for each design, each with a

different initial state of charge (SOC). Two of the analyses use an initial state of charge at

the extremes of the SOC range specified for the thermostat control strategy (High SOC

and Low SOC), while the third analysis uses an initial SOC that is the average of the

extreme SOC’s. By using multiple drive cycle repetitions (three repetitions utilized in this

study) in three different analyses, each with different initial SOC’s, the performance of a

given design should not be highly dependent upon the initial SOC used.

Strategy 1, thus has the following fuel economy performance criterion:

_ 25:] fi

N

f

(5.1)

where:

fis the compositefire] economy (average fuel economy over all analyses),
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f,- is the fuel economy for a given analysis, and

N is the number of analyses performed (3 here: each with a different initial SOC).

The optimization problem statement for Strategy 1 as used in this study is

formally expressed as:

 

Maximize: compositefile] economy (average miles per gallon of gasoline (mpg) as

defined by Equation (5.1))

Subject to: missed_trace (mph) 5 5.0 (how close the bus was to meeting the drive

demands of the cycle)

minimum SOC 2 0.5175 (lowest state of charge over all initial SOC

loadcases)

t60 S 42.0 s (time to accelerate to 60 mph from start)

t30 S 10.0 s (time to accelerate to 30 mph from start)

By varying: Number ofbattery modules = {15,16, .. ,50}

0.3 _<_ Battery capacitance Scale 5 1.5

0.5 3 Engine Speed Scale 3 1.5

0.5 5 Engine Torque Scale 5 l.5

0.5 _<_ Generator Speed Scale 5 1.5

0.5 S Generator Torque Scale _<_ 1.5

0.5 5 Motor Speed Scale 5 3.0

0.5 5 Motor Torque Scale 5 3.0

With: Upper SOC Limit = 0.68

Lower SOC Limit = 0.52

Initial SOC = {0.68, 0.60, and 0.52} (multiple initial SOC

load cases)   
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5.5.2 Strategy 2 — SOC Correction with Corrected Fuel Economy

The second strategy utilizes a SOC correction as well as considers the corrected

fuel economy as opposed to the actual volume of fuel used. Within ADVISOR, there is a

“Zero-Delta SOC correction routine” available [9]. This routine can be set to iterate on

the initial SOC until a tolerance on SOC is satisfied. The routine adjusts the initial SOC

until the simulation run yields either a zero change in SOC +/- a tolerance (making the

initial SOC more or less equal to the final SOC), or until the routine runs for the

maximum number of iterations specified by the user. The default ADVISOR tolerance

and maximum iterations were utilized in this study: 0.5% and 15, respectively. The

algorithm for this routine is described in the following steps (as described in the

ADVISOR User’s Manual [9]) and by Figure 5.5.1 below:

1. An initial SOC is guessed that is the average of the high and

low limits:

SOC high+SOClow

SOC initial.0 = '

2 (5.2)

 

2. The new initial SOC (SOCinitial, ,+ 1) is guessed based upon the

previous initial SOC (SOCMin-a], t), the change in SOC achieved

(4900), and a weighting factor (q). The weighting factor is

chosen so that the charge neutral point (zero ASOC) is

bracketed quickly.
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SOC initial.t+1 = SOC initiaLt +q*ASOCt (5.3)

3. Once the charge neutral state is bracketed (values for the

metrics are known on both the positive ASOC and the negative

ASOC, the new initial SOC is linearly interpolated.

SOC initial.t+l =interp[SOC(ASOCminrHLSOCMSOCminr-D] (5.4)

4. The simulation is then run and the ASOC evaluated, the bracket

size shrinks, and step 3 is repeated until the ASOC is within the

tolerance band or the maximum iterations are run.

5. Final simulation iteration is run at the initial SOC that gives

ASOC within the tolerance, and only those results are reported

from the ADVISOR simulation.
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SOCinitialJl—l mpg

I I

I I

./. : : OCinitiaLt-zerocdelta

I

SOCinitiaL2(-) /@ : : ./ SOCinitial,l(+)

SOCinitialJl-l : : .

: r 4

: ; K ASOC

: : SOCinitial,0

fi—fi

Zero-ASOC tolerance   
Figure 5.5.1. Zero-Delta SOC correction routine. An initial SOC guess is evaluated

(SOCinitial,0) in terms of ASOC. The initial bounds around the zero-ASOC tolerance are

then found (SOCinitial,l(-) and SOCinitial,l(+)) and linearly interpolated to get

SOCinitial,l(-)- This bound (SOCinitial,2(-) and SOCinitial,l(+)) is then linearly

interpolated and the process repeated until an initial SOC is found that gives a ASOC within

the tolerance (SOCinitial,t-zero-delta) [9]-

While the “Zero-Delta SOC correction routine” attempts to ensure that the energy

input to the battery is the same as the energy output from the battery over the drive cycle,

this is not always the case due to the tolerance and maximum iterations specified for the

routine. For this reason, Strategy 2 also converts the difference in battery energy into

gasoline equivalent energy to obtain the corrected fire] economy. This is done using a

value for the electrical energy that can be converted to gasoline through the efficiency of

an average power plant in the United States (3.11 kWh/liter in 1996). With this method, a

‘fuel penalty’ term (e) is calculated based upon the gasoline equivalence described above

[26-27]. The fuel penalty e is defined as:
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(essout — essin)*0.000278

e = *0.264172

3.11 (5-5)

 

where:

essou, is the useful energy leaving the batteries over the drive cycle (units of k1),

essm is the energy into the storage system over the drive cycle (units of k1),

0.0002 78 is the conversion factor from k] to kWh,

3.11 is the electrical energy that can be converted to gasoline through efficiency

of an average power plant (units ofkWh/L),

0.2641 72 is the conversion factor from L to gallons, and

e is the fuel penalty (units of gallons).

A positive value for the fuel penalty (e > 0) indicates that electrical energy is used

to propel the vehicle and thus acts as a penalty to the fuel economy of the vehicle. A

negative value for the fuel penalty (e < 0) indicates that fuel has been used to charge the

battery and thus acts as additional fuel economy to the vehicle (boosting its performance

value). Figure 5.5.2 shows the logic-loop that evaluates the corrected fuel economy for a

given design using the fuel penalty calculated for that design. For Strategy 2:

0 e will be referred to as the fuel penalty; it is considered as the fuel used to

operate the battery

0 mpgge is the drive cycle mi/gal gasoline equivalent calculated by

ADVISOR (the same as the fuel economy used in Strategy 1)
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- dist will represent the distance traveled over the simulation

0 fis the correctedfixel economy

This strategy can also be thought of as calculating the consumed fuel (that of the actual

fuel used during the run (mpgge)), a fuel penalty (e), as well as a corrected fuel economy

(f) (the distance traveled (dist) per consumed fuel).

 

 

  

  

@ dist

mpgge>20 Yes H f: — 

   

 

 

 

  

No No

6) f: —— dISt. @ mpgge

e + drst f = e+1

mppge   
    

Figure 5.5.2. Logic used to calculate the corrected fuel economy. Scenario 1 occurs when the fuel

penalty is small (or negative) and makes the corrected fuel economy equal to: the drive cycle mi/gal

gasoline equivalent for small positive values, and greater than the drive cycle mi/gal gasoline

equivalent for negative values. Scenario 2 occurs when the battery equivalent is large but the drive

cYcle mi/gal gasoline equivalent is not too large, thus reduces the corrected fuel economy to account

for the fuel penalty during the run. Scenario 3 occurs when the vehicle operates almost entirely as an

electric vehicle (EV) and therefore treats the corrected fuel economy as if the vehicle were completely

EV with all of its fuel used coming from the fuel penalty.
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The optimization problem statement for Strategy 2 as used in this study is

formally expressed as:

 

Maximize: correctedfire] economy (accounting for total energy usage with miles per

gallon gasoline equivalent (mpgge) as defined by

Figure 5.5.2 and Equation (5.5))

Subject to: missed_trace (mph) 5 5.0 (how close the bus was to meeting the drive

demands of the cycle)

minimum SOC 2 0.5175 (lowest state of charge achieved)

I60 S 42.0 s (time to accelerate to 60 mph from start)

t30 S 10.0 s (time to accelerate to 30 mph from start)

By varying: Number ofbattery modules = {15, 16, .. ,50}

0.3 5 Battery capacitance Scale 51.5

0.5 5 Engine Speed Scale 5 1.5

0.5 5 Engine Torque Scale 5 1.5

0.5 S Generator Speed Scale _<_ 1.5

0.5 S Generator Torque Scale S 1.5

0.5 5 Motor Speed Scale 5 3.0

0.5 5 Motor Torque Scale 5 3.0

With: Upper SOC Limit = 0.68

Lower SOC Limit = 0.52   Zero-Delta SOC correction routine utilized

 

5. 5.3 Strategy 3 — A Hybrid Approach

The third strategy utilizes multiple initial SOC’s and multiple drive cycle

repetitions to evaluate the performance of a given design, along with the corrected fuel

economy. No state of charge correction is utilized for this strategy. As in Strategy 1, three

analYses are performed for each design, each with a different initial state of charge

(SOC) Two of the analyses use an initial state of charge at the extremes of the SOC

range Specified for the thermostat control strategy (High SOC and Low SOC), while the

third analysis uses an initial SOC that is the average of the extreme SOC’s. In addition,
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the strategy utilizes multiple drive cycle repetitions (three repetitions utilized in this

study) for each initial SOC analysis, as is done with Strategy 1.

Whereas Strategy 1 utilizes the actual volume of fuel used, Strategy 3 utilizes the

corrected fuel economy as defined by Equation (5.5) and Figure 5.5.2. While Strategy 2

utilizes a SOC correction routine, Strategy 3 does not. Rather than trying to find the

design with the greatest average fuel economy or the design with the greatest corrected

fuel economy, Strategy 3 tries to find the design with the greatest average correctedfuel

economy:

_ 2:1 fi

N

f

(56)

where:

fis the average correctedfuel economy over all analyses,

fl is the corrected fuel economy for a given analysis utilizing Equation (5.5) and

Figure 5.5.2,

N is the number of analyses performed (3 here: each with a different initial SOC).
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The optimization problem statement for Strategy 3 as used in this study is

therefore formally expressed as:

 

Maximize: average correctedfitel economy (accounting for total energy usage with

miles per gallon gasoline equivalent

(mpgge) as defined by Equation (5.6),

Equation (5.5), and Figure 5.5.2)

Subject to: missed_trace (mph) _<_ 5.0 (how close the bus was to meeting the drive

demands of the cycle)

minimum SOC _>_ 0.5175 (lowest state of charge over all initial SOC

loadcases)

I60 S 42.0 s (time to accelerate to 60 mph from start)

130 _<_ 10.0 s (time to accelerate to 30 mph from start)

By varying: Number ofbattery modules = {15,16, .. ,50}

0.3 5 Battery capacitance Scale 5 1.5

0.5 5 Engine Speed Scale 5 1.5

0.5 S Engine Torque Scale 5 1.5

0.5 S Generator Speed Scale 5 1.5

0.5 S Generator Torque Scale 5 1.5

0.5 5 Motor Speed Scale _<_ 3.0

0.5 S Motor Torque Scale S 3.0

With: Upper SOC Limit = 0.68

Lower SOC Limit = 0.52

Initial SOC = {0.68, 0.60, and 0.52} (multiple initial SOC   load cases)
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5. 6 Results ofthe Optimization Studies

5. 6. 1 Strategy Comparisons

The commercial software HEEDS [29] was used as the optimization tool for all

three strategies, and the hybrid adaptive search algorithm SHERPA [29] was employed.

Three independent optimization runs were performed for each strategy to lessen the effect

of the random starting conditions of the search on the optimized design found. Similar to

a genetic algorithm, SHERPA begins with a set of quasi-random initial designs (unless

these designs are otherwise provided) that depend loosely on the value of an arbitrary

number, called a random seed. When the same or similar results are obtained from

multiple optimization runs with different random seeds, there is greater confidence (but

no guarantee) that the results found are at or near a global optimum. In the current study,

each optimization run was allowed to continue for an extended period of time, up to a

maximum of 1000 evaluations. Though all the optimization runs may not have been firlly

converged (something that can never be guaranteed due to the nature of the design

landscapes for these problems), by 1000 evaluations the rate of improvement was very

low in all cases, so the runs were considered to be very nearly converged (see a typical

example in Figure 5.6.1)-
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Corrected Fuel Economy
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Figure 5.6.1. Typical convergence plot for the HEV optimizations. The shown Optimization was

nearly converged by ~300 evaluations.

The optimized designs from all three strategies are collected in Table 5.6.1 and

Table 5.6.2. Recall that Strategy 1 maximizes the fuel economy from the engine only

(miles per gallon of gasoline), while Strategies 2 and 3 maximize the total energy usage

(miles per gallon gasoline-equivalent). Because the objective functions associated with

each strategy are different, it is difficult to directly compare the solutions obtained from

each strategy. Therefore, the optimized. designs from Strategy 1 and Strategy 2 were re-

analyzed using the criteria from the opposite strategy to facilitate this comparison. In,

other words, the optimized designs from Strategy 1 were re-analyzed with a single drive

CYCle utilizing a SOC correction so that their corrected fuel economy could be calculated.

Likewise the optimized designs from Strategy 2 were re-analyzed with no SOC

correction but rather multiple drive cycles for multiple initial SOC values so that their

average fuel economy could be calculated. Strategy 3 calculates the average fuel

ecoflOmy in terms of the corrected firel economy; therefore its optimized designs did not

need to be re—analyzed for comparative purposes.
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The fact that each strategy found three different optimized designs with similar

response values is an indication of the difficult design landscapes associated with HEV

design. As Montazeri-Gh, et a1 [15] showed, HEV optimization problems are typically

highly non-linear, discontinuous, and multi-modal (i.e., multiple local optima exist).

Adding discrete variables to the problem statement as was done in this study, only

complicates the optimization search further. The three different optimized designs for a

given strategy would seem to indicate that the optimization is not fully converged. To

check further for the global optima, local search methods could be used around the

optimized designs to see if further improvement could be attained. Local search methods

have been shown to find marginal improvement in HEV designs as shown by Oh, et a1

[14].

The similarity in responses among the three designs for a given strategy could

have multiple explanations. It is possible that multiple local minima with similar

performances exist in the design landscape (see Figure 5.6.2 for an example), or that

many designs with similar performances exist in a flat region in the design space (see

Figure 5.6.3 for an example), among other things. Determining the cause for the

seemingly un-converged similar solutions is beyond the scope of this study.

When considering total energy usage, the optimized designs from Strategies 2 and

3 have a significantly greater corrected fuel economy than the optimized designs from

Strategy 1. Strategy 3 produced designs with a marginally improved corrected fuel

economy over the optimized designs from Strategy 2. Strategies 2 and 3 have consistently

high performing designs for all three Optimization runs. Compared to Strategy 2, Strategy

3 has the added advantage-of improved run-time efficiency. In the current study Strategy
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3 runs are about 10% more efficient than Strategy 2 runs. This speedup will vary based

on the number of iterations required to perform the SOC correction within Strategy 2.

The speedup would also be affected by the number of initial SOC load cases and drive

cycle repeats utilized within Strategy 3. Overall, Strategy 3 appears to be an effective and

efficient alternative to the commonly used Strategy 2.

When considering only the energy usage from the engine, Strategy 1 produces

designs with the highest average fuel economy, significantly outperforming Strategies 2

and 3. This can be attributed to the very high fuel economies achieved when the initial

SOC is high, corresponding to the 0.68 initial SOC runs. For the three initial SOC’s

chosen for this study (0.68, 0.6, and 0.52) the optimizations with Strategy 1 sized the

components such that they operated almost entirely as an electric vehicle (EV) when the

initial SOC was 0.68. This strategy’s optimized designs had high values for battery

capacitance, a high number of battery modules, and also had less powerful engines than

the optimized designs from Strategies 2 and 3, as shown in Table 5.6.2. Since the average

fuel economy is the average of performance over all initial SOC load cases, the EV

nature of the optimized Strategy 1 designs when the initial SOC is 0.68 gives a very high

overall average fuel economy as well as a high standard deviation. These designs have a

lower performance than those of Strategies 2 and 3 when the relevant measure is overall

energy usage. Nevertheless, in those limited cases where a fixed route can be guaranteed

(as may be the case for some buses) and the fuel usage of the engine is the primary

concern, then Strategy 1 may be very efficient for optimizing such HEV’s.
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Local minima

Figure 5.6.2. Three-dimensional contour plot of the local region surrounding the global minima

locations of the Six Hump Came] Back Function. Note the multiple local minima and multiple global

minima with identical response values.

 

' Figure 5.6.3. Three-dimensional contour plot of the Rosenbrock’s Valley function for two variables.

Note the similar response values along the valley close to the global optima value.
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Table 5.6.2. Design variable values corresponding with the optimized designs from each strategy.

 

 

 

 

 

 

 

 

 

 

Strategy 1 Strategy 2 Strategy 3

Variable Run 1 Run 2 Run 3 Run 1 Run 2 Run 3 Run 1 Run 2 Run 3

ESS CAP 1.5 1.5 1.5 0.3 0.3 0.3 0.3 1.128 0.312

ESSMODNUM 50 50 50 29 42 28 40 31 35

FCSPEED 1.15 0.6 0.77 1.14 1.4 0.83 1.28 1.38 1.18

FC TORQUE 0.65 1.31 0.98 0.96 0.69 1.47 1.18 0.76 1.28

GCSPEED 1.32 0.5 0.70 1.05 0.63 0.61 1.05 0.97 0.87

GC TORQUE 0.89 1.5 1.44 1.22 1.39 1.45 0.96 1.3 1.5

MCSPEED 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

MC TORQUE 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0            
Figures 5.6.4-5.6.6 display the SOC and engine speed history plots of a typical

optimized design from Strategy 1 from this study (the result from Run 1 is shown).

Figure 5.6.7 shows the SOC and engine speed history plots of the same optimized design

when it is re-analyzed with the SOC correction of Strategy 2. Conversely, Figures 5.6.8

displays the SOC and engine speed history plots for the optimized design of Run 1 from

Strategy 2, wherein the objective was to maximize total energy instead of engine fuel

usage only, and Figures 5.6.9-5.6.11 show the same optimized design if it is re-analyzed

With no SOC correction and using the settings from Strategy 1.The trends in Figures

5.6.4-5.6.7 versus those in Figures 5.6.8-5.6.11 are significantly different. When

comparing engine fuel usage only with Figures 5.6.4-5.6.6 and Figures 5.6.9-5.6.11, the

Strategy 1 design runs primarily as an EV for high initial SOC’s whereas the Strategy 2

design does not. The components of the Strategy 1 solution have been designed such that
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the engine runs continually for long durations of time in order to recharge a nearly

depleted battery. Conversely, the Strategy 2 design has a more evenly distributed load

balance between the engine and electric motor. When comparing total energy usage in

Figure 5.6.7 and Figure 5.6.8, the Strategy 1 design has the engine run around 50%

longer than the Strategy 2 design.
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(a) SOC history with initial SOC = 0.68.
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Figure 5.6.4. Comparison of the SOC history and engine speed history plots for a typical optimized

design from the Strategy 1 optimizations (Run 1 shown here). With an initial SOC of 0.68 these

optimized designs can run primarily as electric vehicles (EV’s).

87



 

SOC History

 

 

 
 

(a) SOC history with initial SOC = 0.60.

200

150

Engine Speed 100

(rad/s)

50

U-

 

  
 

0 500 1 000 1 500 2000 2500 3000 3500 4000 4500

Engine Speed History

_-

_ + a

0 500 1 000 1 500 2000 2500 3000 3500 4000 4500

(b) Engine speed history with initial SOC=0.60.

Time (s)

Time (s)

Figure 5.6.5. Comparison of the SOC history and engine speed history plots for a typical optimized

design from the Strategy 1 optimizations with initial SOC = 0.60 (Run 1 shown here).

88



SOC History

058 I I l l —f l | I

 

0.58 - -

SOC 0.54 ~ ~

0.52 -

   U5 1 l l l l l I l .

0 500 1000 1500 2000 2500 3000 3500 4000 4500 Time (s)

(a) SOC history with initial SOC = 0.52.

Engine Speed History

 

 

200

150 .— t. .’.' * . .7 . :1 ' . ‘1'... . . . ._. '-,.~.. -

Engine Speed 100 . _

(rad/s)

50 -
_

U L   
 

L 1 I l J l 1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 Time (s)

(b) Engine speed history with initial SOC=0.52.

Figure 5.6.6. Comparison of the SOC history and engine speed history plots for a typical optimized

design from the Strategy 1 optimizations with initial SOC = 0.52 (Run 1 shown here).
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Figure 5.6.7. Typical SOC history and engine speed history plots for the Strategy 1 optimized designs

re-analyzed with SOC correction settings from Strategy 2 for a single drive cycle (Run 1 shown here).

Note that due to the Zero-Delta SOC routine, the initial and final SOC’s are very similar.

90



SOC History

0.7 i i . 

0.65

SOC 0,5

0.55  

 

 g

o 200 400 500 son 1000 1200 1400 Time (5)

0.5

(a) SOC history.

Engine Speed History

200 . . . . 

_

150

Engine Speed

(rad/s) 1CD '
.l

a]-

UL . L .
0 200 400 600 800 1000 1200 1400 Time (s)

(b) Engine speed history.

  
 

Figure 5.6.8. SOC history and engine speed history plots for typical optimized designs where

maximizing total energy usage is the objective (Run 1 from Strategy 2 is shown). Note that due to the

Zero-Delta SOC routine, the initial and final SOC’s are very similar.
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Figure 5.6.9. Comparison of typical SOC history and engine speed history plots (SOC = 0.68) for the

Strategy 2 optimized design of Figure 5.6.8 re-analyzed with no SOC correction and the settings of

Strategy 1 (multiple drive cycle iterations and multiple initial SOC analyses). Note that the optimized

designs do not act as EV’s.

92



SOC History

0.7 I I I I r r I I

0.65 -
_

0.8 ..

0.55 - -

 

SOC

0.5 L ‘

  
 

045 I l I I I I I I

0 500 1000 1500 2000 2500 3000 3500 4000 4500 Time (s)

(a) SOC history with initial SOC = 0.60.

Engine Speed History

 

 

200 I 7 r I fl I I I

150 _— — _ _

Engine Speed

(rad/s) 100 -
a

+

50 -
_

+ +

U.  W
0 500 1000 1500 2000 2500 3000 3500 4000 4500 Time (s)

(b) Engine speed history with initial SOC=0.60.

Figure 5.6.10. Comparison of typical SOC history and engine speed history plots (SOC = 0.60) for the

Strategy 2 optimized design of Figure 5.6.8 re-analyzed with no SOC correction and the settings of

Strategy 1 (multiple drive cycle iterations and multiple initial SOC analyses).
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Figure 5.6.11. Comparison of typical SOC history and engine speed history plots (SOC = 0.52) for the

Strategy 2 optimized design of Figure 5.6.8 re-analyzed with no SOC correction and the settings of

Strategy 1 (multiple drive cycle iterations and multiple initial SOC analyses).

5. 6.2 Baseline Hybrid Bus Comparisons

The optimized designs from Strategy 1 significantly outperformed the baseline

non-hybrid bus in terms of engine fuel usage (measured in miles per gallon of gasoline),

as shown in Table 5.6.3. However, when total energy usage is considered (measured in

miles per gallon gasoline equivalence), the optimized designs from Strategy 1 are sub-

par. Again, this is caused by the EV nature of the designs when they start with a high

initial SOC. This demonstrates further the importance of this strategy being utilized only
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when a fixed route is guaranteed and the starting initial SOC is known to be very high

frequently.

Table 5.6.3. Comparison between the optimized designs from Strategy 1 and the baseline hybrid bus

 

 

 

 

 

model.

Average Fuel Average Fuel Corrected Fuel Corrected Fuel

Economy Econ. Economy Econ.

(mp8) Improvement (mpgge) Improvement

over Baseline over Baseline

Baseline 3.71 NA 4.07 NA
Desrgn

Oph'i‘md 13.23 256 % 4.01 -1.5 %
Desrgnl ,

Opt‘inmd 12.22 229 % 3.96 -2.7 %
Desrgn 2

Opufn'z‘d 13.10 253 % 3.86 -5.1 %
Dggn 3       
 

The Strategy 2 optimized designs perform better than the baseline non-hybrid bus

design in terms of total energy usage and engine file] usage. With Strategy 2 (summarized

in Table 5.6.4), all three optimized designs are a significant improvement in corrected

fuel economy, while two of the three optimized designs are an improvement in the

average fuel economy measure (with the third optimized design being equal).

Table 5.6.4. Comparison between the optimized designs from Strategy 2 and the baseline hybrid bus

model.
 

 

 

 

 

 

Average Average Fuel Corrected Corrected

Fuel Econ. Fuel Fuel Econ.

Economy Improvement Economy Improvement

(mpg) over Baseline (mpgge) over Baseline

Base?“ 3.71 NA 4.07 NA
Design

o"“'.“‘““ 3.90 5.12 % 4.30 5.65 %
Desrgnl

Opt'f‘m" 4.03 8.68 % 4.33 6.38 %
Desrgn 2

Opt'fmed 3.70 -0.27 % 4.30 5.65 %
Deggn 3     
 

95

 



As with the Strategy 2 optimized designs, the Strategy 3 optimized designs

perform better than the baseline non-hybrid bus design in terms of total energy usage and

engine fuel usage. With Strategy 3 (summarized in Table 5.6.5), all three optimized

designs are a significant improvement in average corrected fuel economy, while

marginally better in terms of average fuel economy.

Table 5.6.5. Comparison between the optimized designs from Strategy 3 and the baseline hybrid bus

model.
 

 

 

 

 

    

Average Average Fuel Avg. Corrected

Fuel Econ. Corrected Fuel Econ.

Economy Improvement Fuel Improvement

(mpg) over Baseline Economy over Baseline

(mpgge)

Basin” 3.71 NA 4.07 NA
Desrgn

whim“ 3.84 3.50 % 4.41 8.35 %
Desrgnl

o""'.'““" 4.04 1.09 % 4.30 5.65 %
Desrgn 2

“mime" 3.74 0.81 % 4.42 8.60 %
Desrgn 3  
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5. 7 Conclusions

The main characteristics of two optimization strategies that have frequently been

used in optimizing hybrid electric vehicles have been merged into a single and more

robust strategy that is shown to have some advantages in terms of design performance

and solution efficiency.

1f reducing fuel usage is the primary goal, then Strategy lwas shown to work well

for optimizing vehicles with a fixed route, and where a high initial SOC can be

guaranteed a large portion of the operating time. This strategy found optimized designs

for the current problem that run mostly electric in cases where the initial SOC is high.

If total energy usage is more important than fuel consumption, then Strategies 2

and 3 were shown to be superior to Strategy 1 for the problem posed in this study.

Strategy 3 significantly outperformed Strategy 1 in terms of optimized designs with high

corrected fuel economy and marginally outperformed Strategy 2 on this measure.

Strategy 3 was also observed to have an added advantage over Strategy 2 in terms of run-

time efficiency. Strategy 3 has been shown to be a viable alternative to the common

Strategy 2 for optimization of hybrid electric vehicles.
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CHAPTER 6: INTRODUCTION TO PROGRESSIVE

CRUSH

6.1 Preliminary Information

Axial crush rails are one of the key energy absorbers during frontal and rear crash

of automotive and other transportation vehicles. These components not only absorb a

significant amount of kinetic energy, but also control the maximum forces that are

transmitted to the remaining structure. When designing crush rails, a common goal is to

identify the geometry, gage thickness and material of the rail so as to maximize its energy

absorption while satisfying constraints on mass and the allowable axial force. Using such

a statement within an automated design optimization study can lead to lightweight

designs that absorb large amounts of energy. However, these designs may not necessarily

absorb energy in a progressive manner, in which crush initiates near the tip of the rail and

then progresses rearward in a controlled fashion. Progressive crush here is defined as

crush occurring sequentially through a rail beginning at the front of the rail where impact

occurs and propagating through to the rear of the rail. More formally, ideal progressive

crush would occur when at any place where crush is occurring, there is no place to the

rear of that location where crush has occurred. The propagation of progressive crush can

be thought of as that of an accordion that is fixed at one end and pushed together from the

Opposite end. Figure 6.1.1 shows an example of progressive crush, while Figure 6.1.2

Shows an example of non-progressive crush. Note that the rail in Figure 6.1.1 crushes
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from front-to-back, whereas the rail in Figure 6.1.2 does not. While this is clearly

exaggerated, it demonstrates the point.

Progressive crush is important for several reasons, but the primary ones are

0 to achieve a robust and repeatable crush mode, and

0 to decrease repair costs after a minor crash event.

A rail design with a robust, repeatable crush mode is a key ingredient to achieving

robust crashworthy behavior of the entire vehicle during frontal and rear crash events,

both in terms of crash modality and total energy absorbed. In addition, during a minor

crash only a small portion of the rail may experience crush. If this crushed region is

limited to the tip of the rail, then repair costs can be minimized.
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(a) Rail with no impact yet occurring. (b) Rail just after impact.

  

(c) Rail midway through crush (11) Rail after crush.

Figure 6.1.1. Example of a rail undergoing progressive crush.

l
(a) Rail with no impact yet occurring. (b) Rail just after impact.

 

 

   
(C) Rail midway through crush (d) Rail after crush.

Figure 6.1.2. Example of a rail undergoing non-progressive crush.
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6.2 Literature Review

DiPaolo et al. [31] describe three major response characteristics for axial energy

absorbing devices. Depending upon such factors as plastic deformation, friction, and

fracture, an energy absorbing device can either undergo axial crush (buckling), inversion,

or splitting when undergoing axial compressive loading. For the purpose of this thesis,

axial crush will be the primary focus.

Extensive research has been performed on the progressive buckling of columns

under axial impact (see Jones [32] for a general overview of the subject). The two

primary collapse modes in columns are global bending and progressive short-column

buckling (folding) (Karagizova and Jones [33]). The latter mode absorbs significantly

more energy than does collapse in bending, or global buckling. The introduction of a

trigger (e.g., a local change in shape or material property) can improve the energy

absorbing characteristics of a column by promoting the initiation of progressive buckling.

When progressive buckling occurs, the force-displacement curve typically follows

a characteristic path (as shown by Guillow et a1. [34]'as well as Zarei and Kroger [35])

(see Figure 6.2.1). The axial load rises until a first buckle is formed, after which the force

decreases significantly. Then folds begin to form, with a small peak in the force-

displacement curve corresponding to each new fold. The values of the force required to

initiate these folds are often significantly less than the maximum force observed at

initiation of the first buckling event. ldeally, the formation of folds occurs sequentially

from the front of the rail progressing toward the rear during progressive crush.
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Figure 6.2.1. Quasi-static axial compression of thin-walled circular aluminum tubes (from Guillow et

al. I341).

Ku et al. [36] identify three key aspects in judging how well a column

progressively crushes: geometric efficiency, load efficiency, and energy efficiency.

Geometric efficiency is defined as the effectiveness of the deformation during the

collapse (i.e., the ratio of compression to original length). Load efficiency is a measure of

the load fluctuations between folds in the force-displacement curves. Energy efficiency is

the total amount of energy absorbed.

Many formal definitions have been used to characterize axial crush (DiPaolo et. a1

[31]). The specific energy absorption is defined as the energy absorbed per unit mass of

an axial crush. Similarly, the energy dissipation density is defined as the energy absorbed

per unit volume of material. The structural effectiveness is sometimes used as a means to

compare different materials’ crushing capabilities and is defined as the specific energy
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divided by the specific true ultimate tensile strength of the material. A load uniformity

parameter is defined as the ratio between maximum and mean crushing forces seen

during crush and indirectly gives an indication of the energy absorbing capabilities. In

addition, there are common characteristics related to the collapse efficiency during crush.

The crush efficiency is defined as the ratio between the maximum displacement and the

total length. The load efficiency is defined as the inverse of the load uniformity parameter

(or as the ratio of the mean load to the maximum load). Finally, the energy efficiency is

defined as the energy absorbed divided by the product of the maximum load magnitude

and the total length of the energy absorbing device.

Gumruk and Karadeniz [37] discuss a common characteristic to progressively

buckling designs of top hat thin-walled sections. When comparing the rigid wall crush

force profiles of progressively buckling designs, designs with mixed modes of

deformation, and globally buckling designs, distinct differences can be seen. For

progressively buckling designs, sharp peaks and valleys are present in the profile. The

mixed modes of deformation designs have the same peaks and valleys present, however

they are much smoother. Finally, global buckling designs have the size of the peaks

decrease substantially.

Through optimization of hexagonal thin-walled columns undergoing axial crush,

Hou et al. [38] show the effect of a constraint limiting the maximum peak force on the

Optimal design obtained during optimization. By performing identical optimizations of

maximizing specific energy absorption with and without constraints imposed upon the

maximum peak force seen, the authors were able to demonstrate the necessity of the

constraint in crashworthy optimization of rails. Without the constraint, design variables
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determining the thickness of the columns were seen to increase to the extremes of their

allowable values, causing higher energy absorption, weight, specific energy absorption,

and maximum peak forces. Most notably, the peak forces reached values considered

detrimental to passenger safety and vehicle crashworthiness when the reaction force

constraint was not imposed.

Kim [39] performed an optimization of multi-cell aluminium profiles for columns

in which maximizing the specific energy absorption was the objective. The author

defined a unique approach to force progressive crush in his designs by defining a

constraint for the stable progressive collapse of square comer elements in his profile

(based upon a theory for the stable deformation mode of a thin-walled prismatic square

column presented by Abramowicz and Jones [40]). By analytically calculating whether

the profile would progressively buckle based upon the thickness, length, and width of the

comer elements in the profile using this theory, the author was able to enforce the desired

collapse mode and eliminate designs as feasible that had a high specific energy but didn’t

progressively buckle. For simple column buckling this was shown to be an effective way

to optimize for progressive buckling, however for complicated energy absorbing devices

such as front rails where the geometry prevents a simple analytical solution as to whether

progressive cmsh will occur, the approach is invalid.

The majority of the studies on crashworthy optimization have focused on total

energy absorbed as opposed to progressive crushing. For example, Yamazaki and Han

[41] performed tube optimizations in which they attempted to maximize the total energy

absorbed while constraining the axial reaction force and mass of the tube. Zarei and

Kroger [35] used a weighted multi-objective problem statement which attempted to
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maximize the sum of the total energy and the specific energy absorbed by tubes while

satisfying a constraint on the axial reaction force. Sidhu et al. [42], [43] used a crush

optimization statement that maximized total energy absorption in a front rail with

inequality constraints on the peak rigid wall force and mass. Cho et al. [44] used a similar

problem statement for optimization of a frontal frame where the goal was to maximize

total energy absorption with constraints on reaction force and volume. A crashworthiness

optimization on an S-frame was performed by Kim et al. [45] in which they utilized an

optimization problem statement that attempted to minimize the mass of the frame while

constraining not only the energy absorption, but also the sectional bending stiffness.

Kurtaran et al. [46] presented an optimization statement that attempted to minimize the

forces in the occupant compartment (or the intrusion), while constraining the energy

absorption.

A slightly different crush optimization problem statement was used by Avalle et

al. [47]. They used the load uniformity parameter (LU) defined as the ratio between the

maximum and mean crushing forces. This load uniformity parameter was then minimized

in the optimization problem statement. By encouraging the design to have an average

force as close as possible to the maximum force, it was assumed the optimization was

attempting to maximize the total energy absorbed. Karbhari and Haller [48] however,

caution that optimizing based upon the load uniformity parameter can give designs with

an extremely good LU at very low overall load levels, and hence at low corresponding

levels of energy absorption. This needs to be considered when determining if the load

uniformity parameter is alone appropriate as an objective for optimization. Hanssen et al.

149] define a parameter called the total efficiency as the product of the load efficiency
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(which they call the crush force efficiency) and the relative deformation. This

characteristic accounts for the concern presented by Karbhari and Haller and could be

used in optimization as an alternative to the load uniformity parameter.

None of these common optimization approaches guarantees progressive buckling

of complex structures such as front rails because the buckling failures could initiate

anywhere in the rail and progress in a non-sequential manner.
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CHAPTER 7: OPTIMIZATION STRATEGY DEFINITION

7.1 Introduction

A new strategy for achieving progressively crushing designs during an automated

design optimization study is presented and explored in this chapter. Independent crush

zones are defined along the length of the rail. The main goal of the optimization is then to

encourage maximum energy absorption in a given crush zone to occur prior to any energy

absorption in rearward crush zones. In other words, crush should initiate in the tip and

progress from zone to adjacent zone toward the rear of the rail. Compared to traditional

optimization statements that focus only on total energy, it is demonstrated that the current

approach can produce designs with similar total energy absorption but with a dominant

progressive mode.

7.2 Formal Definition

Traditional crush optimization strategies produce designs that absorb a lot of

energy, but not necessarily progressive crush. The new strategy considered here attempts

to find optimal designs that not only absorb a lot of energy, but also exhibit progressive

crush behavior. The strategy utilizes a measure of the amount and timing of energy

absorbed in different regions of the rail to promote progressive crush.

Figure 7.2.1 displays a rail profile in which different crush zones have been

defined. In an ideal progressive crush scenario, zone N-l will crush almost entirely

before zone N begins crushing (for N > 1).

107



We define a measure called progressive energy absorbed (PEA) as:

NZ-l

PEA = Z PEAN - EANZ

(7-1)

N=1

where PEAN is the progressive energy absorbed in Zone N, NZ is the total number of

zones defined in the rail, and EANZ is the total energy absorbed by the last zone in the

rail. We define the zone-wise progressive energy absorbed, PEAN, as:

PBAN = EAN(UN) — EAN(UN-1) (7.2)

where EAN (UN) is the total energy absorbed so far by Zone N when the impactor has

displaced an amount U = UN , EAN (UN_1) is the total energy absorbed so far by Zone N

when the impactor has displaced an amount U = UN-1. U is the distance the impactor has

traveled (or in practical terms how far a reference point has moved) after impact (see

Figure 7.2.2 and Section 7.3 for more details).

We assume here that Zone NZ should not crush at all, so the role of the final term

in Equation (7.1) is to penalize PEA for energy absorption that occurs in Zone NZ. In

system level crash models, often there is a zone such as NZ that must maintain its

integrity during the crash. Further, in component level models such as considered here, it

is common to constrain the rear of the rail at a location beyond which crush is expected

or desired. So crush in Zone NZ is undesirable in both scenarios.
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The progressive energy as described above does not consider any energy absorbed

in Zone N, after the impactor has reached a displacement UN. By definition, any energy

absorbed in Zone N before the impactor has reached a displacement UN-1 is also not

considered. Therefore, the impactor displacement range for which the energy absorbed by

Zone N contributes to the progressive energy absorbed is:

UN-l .‘E U 5 UN (73)

A rail design that absorbs significant energy in each zone N (for N = 1 to NZ-l)

while the impactor displacement corresponds to that of Equation (7.3) has a much higher

PEA than a rail design that absorbs the same amount of total energy that is not in

conjunction with the impactor displacement as described in Equation (7.3). The former

design would, by definition, have a crush mode that originates at the front of the rail and

propogates rearward. The latter design could allow energy absorption to occur in a non-

sequential manner, and therefore could have a non-progressive crush mode.

The optimization problem statement for progressive crush optimization can now

be stated as:

Maximize: PEA

Subject to: Constraints on mass, force, etc.

This is contrary to typical crash optimization statements that do not encourage

progressive crush:
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Maximize: EA

Subject to: Constraints on mass, force, etc.

where EA is the total energy absorbed by the rail during crush. In the latter case, the

optimal solution may find a design that crushes progressively or non-progressively.

 

 

| Zonel E Zone2 I ZoneN Zone NZ

 

 

Figure 7.2.1. Specified crush zones in a rail. The tip of the rail corresponds to Zone 1, and the rear of

the rail corresponds to Zone NZ.
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Figure 7.2.2. Definition of impactor displacements, as used in the calculation of PEA.
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7.3 Implementation ofStrategy

As was mentioned briefly in the previous section, the impactor displacements are

measured utilizing a reference point (or node) located on the impactor. As the impactor

moves, the relative displacement of the reference point can be measured. Since the

analyses performed in this thesis were performed with LS-DYNA [50], the displacement

of the node or reference point was measured from the nodout file.

The zones were achieved in LS-DYNA by making each zone a separate part. With

different parts making up the rail, the internal energy of each part was written out

independently to the matsum file by LS-DYNA at different times.

As defined by Equation (7.2) the primary interest for the progressive energy

definition is the energy absorption of a specific zone (or part) while the reference point is

at a specific location. However, the displacements of the reference point are reported in

the nodout file and the energy absorptions of the parts in the matsum file. Both are linked

however by the time at which they occur (the nodout file reports the displacements for a

given time and the matsum file reports the energy for a given time). A simple executable

therefore was created that would report the energy absorption for a given part (zone)

given a requested displacement of the reference node. The executable takes the requested

displacement, finds in the nodout file the time at which it occurs, and then obtains from

the matsum file the energy absorption for the part at that time (see Figure 7.3.1). Utilizing

this simple executable, the energy absorbed in zone N at an impactor displacement UN-1

could be obtained along with the energy in zone N at an impactor displacement UN, such

that Equation (7.2) could be used to calculate the PEA of zone N.
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Simple Executable

 

 

nodout time matsum .
 

U, PART ID

     
 

   
Figure 7.3.1. Simple executable used with LS-DYNA to Obtain EA(U).
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CHAPTER 8: AXIAL RAIL CRUSH AND ANALYSIS

MODEL

In this thesis, the following crush scenario and corresponding model were used to

assess the proposed strategy for progressive crush optimization. A tube (rail) of length

500 mm was fixed at its right (rear) end. The tube was made of steel with a density of

7.85e-6 kg/mm3, a Young’s Modulus of 207 GPa, Poisson’s ratio of 0.28, yield strength

of 500Mpa, and the plasticity data of Table 8.1.1. The finite element model for the tube

consisted of 7479 nodes and 7391 shell elements (Belytschko-Tsay with 2 through shell

thickness integration points [50]). A flat rigid impactor with 500 kg mass travelling

initially at 50 kph was used to crush the tube for 25 ms, as shown in Figure 8.1.1.

Impactor (Mass = 500 kg)

\ Encastered

Impactor Velocity = 50 kph
 

Rail profile

in .
500 mm

Figure 8.1.1. Analysis model used for the progressive crush strategy.
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Table 8.1.1. Plasticity data for the rail analyses. For different strain rates, the stress vs. effective

plastic strain is defined.
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          

Strain Rate (mm/ms

0.005 0.1 10 100 500

Effective Stress Effective Stress Effective Stress Effective Stress Effective Stress

Plastic (MPa) Plastic (MPa) Plastic (MPa) Plastic (MPa) Plastic (MPa)

Strain Strain Strain Strain Strain

0 500 0 500 0 500 0 500 0 500

0.0004 541.65 0.0004 545 0.0005 570.16 0.001 672.62 0.0016 823.46

0.0018 591.96 0.0013 586.24 0.0016 600.13 0.0021 712.03 0.0027 853.28

0.0022 598.91 0.0035 630 0.003 630.85 0.0093 778.56 0.0047 878.03

0.0044 622.32 0.0065 665 0.0056 668.82 0.0122 797.12 0.01 910.59

0.0079 651 0.0086 690 0.0075 689.51 0.0152 817.83 0.0232 934.62

0.0115 678.29 0.011 715 0.0096 712.58 0.0236 853.36 0.0305 945

0.0147 700.93 0.0134 730 0.01 18 738.19 0.0284 871 0.0496 967.48

0.0194 730.46 0.0162 750 0.0143 758.35 0.0379 902.44 0.0567 979.02

0.0242 757.27 0.0214 790 0.019 792.49 0.045 920.14 0.066 990.73

0.0297 784.09 0.0286 815 0.0285 838.85 0.0568 948 0.0753 1003.73

0.0349 806.15 0.0334 833.71 0.0357 867.81 0.0661 967.12 0.0845 1015.92

0.0422 831.51 0.0429 859.62 0.0451 899.89 0.0777 987.85 0.0936 1028.2

0.0475 846.92 0.0477 871.39 0.0569 933 0.0846 998.21 0.1004 1039.41

0.054 862.44 0.0547 887.7 0.0616 941.76 0.1027 1020.37 0.1093 1051.58

0.0601 874.27 0.0617 902.55 0.0685 955.43 0.1072 1026.19 0.1182 1063.55

0.0659 883.51 0.0687 916.09 0.0778 970.7 0.1139 1030.59 0.127 1075.19

0.0722 891.57 0.0871 946.66 0.0892 986.21 0.125 1041.74 0.1357 1084.39

0.0788 898.41 0.0962 959.29 0.096 994.1 0.1293 1044.67 0.1422 1092.42

0.0849 903.66 0.1007 965 0.1073 1005.54 0.1359 1050.66 0.1508 1102

0.0941 910.37 0.1052 970.32 0.1118 1009.62 0.1489 1058.86 0.1594 1110.85

0.0976 912.71 0.1186 983.88 0.1162 1013.46 0.1553 1064.84 0.1678 1116.24

0.1046 917.3 0.1252 989.25 0.1294 1023.43 0.1596 1066.64 0.1763 1119.57

0.111 921.62 0.1318 993.6 0.1338 1026.15 0.1638 1068.96 0.1825 1124.27

0.1 177 926.49 0.1383 996.82 0.1404 1029.53 0.1681 1070.74 0.1908 1 129.38

0.1234 930.99 0.1427 998.28 0.1447 1031.2 0.1723 1075.92 0.199 1133.03

0.1303 937.06 0.1492 999.32 0.1512 1032.62 0.2072 1090.8 0.2072 1136.7

0.2072 969 0.2072 1008.6 0.2072 1044.9    
At each iteration during the optimization study, the shape of the rail was varied

according to the following scheme. The cross-sectional shapes at several stations along

the length of the profile (see Figure 8.1.2) were designed independently, thereby allowing

the shape of the profile to vary along the length. Nine independent stations were used

along the length of the rail. Each cross-sectional shape was governed by 12 control points

(only 4 of which were independent due to symmetry). Control points that could move in

the horizontal direction (in Figure 8.1.3) were allowed to vary within 30% of the baseline
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coordinate. Control points that could move in the vertical direction were allowed to vary

within 60% of the baseline coordinate. For manufacturability, the total perimeter of all

cross-sections was constrained to vary only within 2% of the baseline perimeter. This was

controlled by scaling of the shape produced for a given cross-section until the perimeter

satisfied the perimeter constraint. Symmetry about vertical and horizontal planes was

maintained in each cross-section.

 

 

       
1234567 8 9

Figure 8.1.2. Crush zones and cross-sectional design stations used in the rail analysis and design

model.
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Figure 8.1.3. Section profiles were controlled by 4 independent control points (1 through 4). The

other control points were positioned by satisfying vertical and horizontal lines of symmetry. The

cross-section perimeter was scaled to ensure that it was within 2% of the baseline perimeter.
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The number of stations along the length of the rail was chosen largely based upon

intuition and experience. Since the goal is to design a rail that progressively crushes, it is

desirable to create more shape variation at the front of the rail, and less towards the rear

of the rail. This helps with crush initiation, as well as creating a crush mode that

propagates rearward. At the same time, it has been observed that too much shape

variation overcomplicates the design and causes complexity in manufacturing as well as

inferior performing designs.

With nine cross sections and five degrees of freedom per cross-section, there were

45 shape design variables for this problem. In addition, the gage thickness was allowed to

vary, so there was a total of46 design variables.

Figure 8.1.4 displays the zones and impactor displacements used for the majority

of the studies in this thesis (unless noted otherwise). The selection of the location of the

zones was chosen largely based on intuition. In order to emphasize the initial energy

absorption that occurs in the front of the rail, the first two zones were made smaller than

the last two zones which are toward the back of the rail. Attachment locations as well as

stipulations on the size of Zone NZ also should guide the selection of zone locations and

lengths. Note in Figure 8.1.4 that the definition of U3 used in the study does not

correspond with the end of Zone 3. This modification was necessary to account for stack

up in the crushed rail (as will be proven in Section 4 of Chapter 9).
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Figure 8.1.4. Zone dimensions and impactor displacement specifications in the current model.

In rail design, it is commonly required to impose a constraint on the maximum

wall reaction force. A typical crush event is shown in Figure 8.1.5. In the current study,

the first reaction force peak is ignored when calculating the maximum force, as this force

is often artificially high due to numerical inaccuracies. Instead, the highest force after F1

occurs, referred to as F2, was used as a constraint for optimization.
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Figure 8.1.5. Reaction force versus time during a typical crush event.
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CHAPTER 9: OPTIMIZATION USING THE

PROGRESSIVE CRUSH STRATEGY

9. 1. Relation Between Progressive Energy and Total Energy

The advantages of progressive crush would be diluted if the associated total

energy absorbed was less than that for a non-progressively crushing rail. To investigate

this possible trade-off, a multi-objective optimization study was performed in which both

PEA and EA were maximized for the rail model described in Chapter 8. Multi-objective

optimization studies generate multiple optimal solutions representative of the tradeoffs

among the objectives. This is commonly called Pareto optimization. In this study, the

multi-objective crush optimization problem statement used was:

Maximize: PEA and EA

Subject to: F2 S 150 kN

By Varying: Control Points

Rail Thickness

Where PEA is the progressive energy absorbed, EA is the total energy absorbed, F2 is the

maximum reaction force after initial crush initiation, Control Points refers to the position

of the 45 independent shape control points, and Rail Thickness is the rail gage thickness,

which varies between 1-3 mm.
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The simulations were performed using the LS-DYNA explicit finite element code

[50] as the analysis solver, and the hybrid and adaptive algorithm SHERPA within the

HEEDS optimization software [29] as the optimizer. The study was performed for 15,000

evaluations, at which stage the results were considered nearly converged. The study was

then repeated to obtain very nearly the same results. Figures 9.1.1 and 9.1.2 illustrate the

resulting feasible designs from this study along with the rank 1 (non-dominated) designs

on the Pareto front. In Figure 9.1.1, it is apparent that many designs with very high total

energy absorption have very poor progressive energy absorption. In some instances, the

progressive energy absorption measure is negative. These designs absorb a significant

amount of total energy, but do so with a very non-progressive crush mode. Contrarily,

there are no designs with high progressive energy and low total energy. Figure 9.1.2

focuses on the local range of best designs found, and better shows the rank 1 designs of

the Pareto front. Within the Pareto front identified here, the EA varies by only 3%, and

this variation appears to be decreasing (note the apparent convergence toward a single

point for maximum PEA and EA in Figure 9.1.1) as the search progresses. These results

indicate that the tradeoff between PEA and EA is very small, if not negligible, for the rail

considered herein.
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Figure 9.1.1. Scatter plot of all evaluations performed during the multi-objective optimization. There

are numerous designs with total energy above 15 11.1 but with negative progressive energies.

Furthermore, there are designs at 25 [LI and above that have negative or near-zero progressive

energies.
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Figure 9.1.2. Scatter plot of good designs in terms of both total energy absorbed and progressive

energy absorbed. Highlighted is the Pareto front of the rank—1 designs from the multi-Objective

optimization.
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9.2 Progressive Crush Optimization - without considering mass

Two optimization studies were performed — one with a conventional strategy

which maximized total energy absorbed, and one with the proposed new strategy which

maximized progressive energy absorbed. In both strategies, the impact of mass on the

design was ignored. The results of both studies are presented here to assess the ability of

each to produce designs that absorb energy progressively.

For each of the two studies, four optimization runs were performed. Each

optimization run started with the same baseline design with the rail having a constant

rectangular cross-sectional shape along its length, as shown in Figure 8.1.3. Each of the

four optimizations however, started with a different random seed that controlled the

initial set of designs for the optimization. With different random seeds, the four

optimizations started their search in different locations in the design landscape of the

problem. This was done to account for the effects of stochasticity and initial starting

conditions on the search of both strategies. The same four random seeds were used for

both strategies.

In each run, 2,000 crash evaluations were performed using the LS-DYNA explicit

finite element code. The hybrid and adaptive algorithm SHERPA within the HEEDS

optimization software was used for the optimization runs. At 2,000 evaluations, the

optimization runs were not fully converged, but they had made significant progress

toward identifying high performing designs, and their rate of improvement had begun to

decrease significantly. Since in most industrial applications of optimization it is not

feasible to achieve complete convergence due to time constraints, it was deemed more
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valuable here to compare the results of four nearly converged designs than one fillly

converged design.

9.2.1 Conventional Crush Optimization to Maximize Total Energy Absorbed

The following conventional crush optimization problem definition was used:

Maximize: EA

Subject to: F2 _<_ 150 kN

By Varying: Control Points

Rail Thickness

Where EA is the total energy absorbed by the rail during crush, F2 is the maximum

reaction force after initial crush initiation, Control Points are the independent control

points varied in Figure 8.1.3, and Rail Thickness is the rail gage thickness, which varies

between 1 mm and 3mm.

Figure 9.2.1 (a) shows the shapes of the optimized designs found using this design

statement, while Figure 9.2.2 (a) shows their force-displacement curves. The performance

of these designs is summarized in Table 9.2. 1.
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9.2.2 Progressive Crush Optimization to Maximize Progressive Energy Absorbed

The progressive crush optimization problem statement used was:

Maximize: PEA

Subject to: F2 _<_ 150 kN

By Varying: Control Points

Rail Thickness

Where PEA is the progressive energy absorbed, as defined in Equations (7.1,7.2), F2 is

the maximum reaction force after initial crush initiation, Control Points are the

independent control points varied, and Rail Thickness is the rail gage thickness, which

varies between 1-3 mm.

Figure 9.2.1 (b) shows the shapes of the optimized designs found using this

design statement, while Figure 9.2.2 (b) shows their force-displacement curves. The

performance of these designs is summarized in Table 9.2.1.

9.2.3 Optimization Results

Based on the optimization results, the following conclusions can be reached.

Three out of four runs using the conventional crush design optimization statement yielded

optimized solutions that did not exhibit progressive crush behavior, while one of the

designs (design D) exhibited very good progressive crush. All of the optimized designs

resulting from the progressive crush optimization statement performed very well in terms
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of progressive crush. Figures 9.2.3-9.2.6 depict the crushing modes of these designs and

support these conclusions.

On average, the progressive crush strategy yielded designs with over 70% more

PEA and 3.6% less total energy than did the conventional crush strategy. Perhaps more

importantly, the standard deviation of EA and PEA for designs based on the progressive

crush strategy was significantly lower than that for designs based on the conventional

strategy. This indicates that the progressive crush strategy was much more robust in terms

ofproducing designs that behaved as intended.
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Design A-top view. Design A-side view.
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Design D-top View. Design D-side View. Design D-top view. Design D-side View.

(:1) Optimized design shapes from the conventional (b) Optimized design shapes from the

progressive crush strategy (maximizing EA). crush strategy (maximizing PEA).

Figure 9.2.1. Comparison of the optimized design shapes from the conventional crush optimization

and progressive crush optimization. After 2000 evaluations the optimization runs were not

fully converged but had made significant progress.
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Design D Design D

(a) Force-displacement curves of the optimized designs (b) Force-displacement curves of the

from the conventional crush strategy optimized designs from the progressive

(maximizing EA). crush strategy (maximizing PEA).

Figure 9.2.2. Comparison of the force-displacement curves for the optimized shapes from the

conventional crush optimization (maximize EA) and the progressive crush optimization (maximize

PEA).
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(a) Conventional strategy crush mode. (b) Progressive strategy crush mode.

Figure 9.2.3. Crush modes of the Design A optimized designs. At t = t2, the conventional strategy’s

optimized design begins to non-progressively crush.

  

 

       

(a) Conventional strategy crush mode. (1)) Progressive strategy crush mode.

Figure 9.2.4. Crush modes of the Design B optimized designs. At t # t2, the conventional strategy’s

Optimized design begins to non-progressively crush.
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(a) Conventional strategy crush mode. (b) Progressive strategy crush mode.

Figure 9.2.5. Crush modes of the Design C optimized designs. At t = t2, the conventional strategy’s

optimized design begins to non-progressively crush.
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(a) Conventional strategy crush mode. (b) Progressive strategy crush mode.

Figure 9.2.6. Crush modes of the Design D optimized designs. Both the conventional strategy and

progressive strategy yielded optimized designs that progressively crushed.
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9.3 Progressive Crush Optimization- accountingfor mass

Many times in industry, it is desirable to have a design that absorbs as much

energy as possible while not being too heavy. Design statements such as this create high

performing designs that are cheaply made, thus maximizing performance and profits.

This concept can be extended to use with the progressive crush strategy implemented in

the previous section so that it is desired to have a design that absorbs as much progressive

energy as possible while not being too heavy.

Two Optimization studies were performed — one with a conventional strategy

which maximized total energy absorbed per unit mass (specific energy absorption: SBA),

and one with the new strategy which maximized progressive energy absorbed per unit

mass (specific progressive energy absorption: SPEA). The results of both studies are

presented here to assess the ability of each to produce designs that absorb energy

progressively, while accounting for mass.

For each of the two studies, four optimization runs were performed. In each of

these four runs, a different set of starting conditions was used to account for the effects of

stochasticity and starting conditions on the search. The same four starting conditions

were used for the two studies. In each run, 2,000 crash evaluations were performed using

the LS-DYNA explicit finite element code. The hybrid and adaptive algorithm SHERPA

within the HEEDS optimization software was again used for the optimization runs. At

2,000 evaluations, the optimization runs were not fully converged, but they had made

significant progress toward identifying high performing designs, and their rate of

improvement had begun to decrease significantly. Since in most industrial applications of

optimization it is not feasible to achieve complete convergence due to time constraints, it

130

y
.
.
:

$
.
1
4
.
"

a
.
u
r
J

i
_



_
‘

.
_

was once more deemed more valuable here to compare the results of four nearly

converged designs than one fully converged design.

9.3.] Conventional Crush Optimization to Maximize Total Energy Absorbedper Unit

Mass

The following conventional crush optimization problem definition was used:

Maximize: SEA = EA/m

Subject to: F2 5 150 kN

EA _>_ 20 kJ

By Varying: Control Points

Rail Thickness

Where SEA is the total energy absorbed per unit mass by the rail during crush (specific

energy absorbed), F2 is the maximum reaction force after initial crush initiation, EA is the

total energy absorbed, Control Points are the independent control points varied in Figure

8.1.3, and Rail Thickness is the rail gage thickness, which varies between 1 mm and

3mm. It should be noted that in addition to the force constraint imposed, there is also an

energy constraint. This constraint ensures that low energy absorbing designs with very

low masses are deemed inferior designs. This is necessary to ensure high energy

absorbing designs are still sought over very low mass designs.

Figure 9.3.] (a) shows the shapes of the optimized designs found using this design

statement, while Figure 9.3.2 (a) shows their force-displacement curves. The performance

of these designs is summarized in Table 9.3.1.
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9.3.2 Progressive Crush Optimization to Maximize Progressive Energy Absorbedper

Unit Mass

The progressive crush optimization problem statement used was:

Maximize: SPEA = PEA/m

Subject to: F2 5 150 kN

PEA Z 14 kJ

By Varying: Control Points

Rail Thickness

Where SPEA is the progressive energy absorbed per unit mass (specific progressive

energy absorbed), F2 is the maximum reaction force after initial crush initiation, PEA is

the progressive energy absorbed as defined in Equations (7.1,7.2), Control Points are the

independent control points varied, and Rail Thickness is the rail gage thickness, which

varies between 1-3 mm. The constraint on PEA is necessary to ensure that high energy

absorbing designs is sought over low energy absorbing designs with a very low mass.

Figure 9.3.1 (b) shows the shapes of the optimized designs found using this

design statement, while Figure 9.3.2 (b) shows their force-displacement curves. The

performance of these designs is summarized in Table 9.3. 1.
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9.3.3 Optimization Results

Based on the optimization results, the following conclusions can be reached. Two

out of four runs using the conventional crush design optimization statement yielded

optimized solutions that did not exhibit progressive crush behavior, while one of the

designs (design D) exhibited very good progressive crush and one of the designs (design

A) exhibited moderate progressive crush. All of the optimized designs resulting from the

progressive crush optimization statement performed very well in terms of progressive

crush. Figures 9.3.3-9.3.6 depict the crushing modes of these designs and support these

conclusions.

On average, the progressive crush strategy yielded designs with over 27% more

specific progressive energy absorbed (SPEA) and 12.6% less total specific energy

absorbed (SEA) than did the conventional crush strategy. Perhaps more importantly, the

standard deviation of SPEA for designs based on the progressive crush strategy was

significantly lower than that for designs based on the conventional strategy. This

indicates that the progressive crush strategy was once more, much more robust in terms

ofproducing designs that behaved as intended.
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Design C-top view. Design C-side view.
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Design D-top view. Design D-side view.
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Design D-top view. Design D-side view.   
 

(a) Optimized design shapes from the conventional

progressive crush strategy (maximizing SEA = EA/m).

PEA/m).

(b) Optimized design shapes from the

crush strategy (maximizing SPEA =

Figure 9.3.1. Comparison of the optimized design shapes from the conventional crush strategy

(maximizing SEA=EA/m) and the progressive crush strategy (maximizing SPEA=PEA/m). After

2000 evaluations the optimization runs were not fully converged but had made significant progress.
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Design D Design D

(a) Force-displacement curves of the optimized designs (b) Force—displacement curves of the

from the conventional crush strategy (maximizing EA/m). optimized designs from the progressive

crush strategy (maximizing PEA/m).

Figure 9.3.2. Comparison of the force-displacement curves for the optimized shapes from the

conventional crush optimization (maximize SEA=EA/m) and the progressive crush optimization

(maximize SPEA=PEA/m).
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(a) Conventional strategy crush mode. (b) Progressive strategy crush mode.

 

      
Figure 9.3.3. Crush modes of the Design A optimized designs. Both the conventional strategy and

progressive strategy yielded optimized designs that progressively crushed.

  

        

F12

(a) Conventional strategy crush mode. (b) Progressive strategy crush mode.

Figure 9.3.4. Crush modes of the Design B optimized designs. At t = t1, the conventional strategy’s

optimized design begins to non-progressively crush.
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(a) Conventional strategy crush mode. (b) Progressive strategy crush mode.

Figure 9.3.5. Crush modes of the Design C optimized designs. At t = t1, the conventional strategy’s

optimized design begins to non-progressively crush

 
 

 

   

 

  

(a) Conventional strategy crush mode. (b) Progressive strategy crush mode.

Figure 9.3.6. Crush modes of the Design D optimized designs. Both the conventional strategy and

progressive strategy yielded optimized designs that progressively crushed.

Table 9.3.1. Comparison of progressive crush ,and conventional crush optimized results when

accounting for mass.

 

Progressive Crush Strategy Conventional Crush Strate

Opt. EA PEA Mass SPEA SEA EA PEA Mass SPEA SEA

DCSign (U) (kJ) (kg) (kl/kg) (RI/kg) (kJ) (kJ) (kg) (Id/kg) (Id/kg)

A 22.37 18.52 2.85 6.50 7.85 27.35 14.23 2.68 5.34 10.22

B 28.51 17.03 3.06 5.58 9.33 27.31 6.59 2.65 2.49 10.31

C 27.23 14.80 2.86 5.17 9.52 25.82 9.09 2.49 3.65 10.36

D 28.10 16.07 3.06 5.25 9.18 29.30 17.54 2.87 6.11 10.20

Average 26.55 16.60 2.96 5.62 8.97 27.45 1 1.86 2.67 4.40 10.27

Std Dev 2.84 1.57 0.12 0.61 0.76 1.43 4.94 0.16 1.63 0.07
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9.4 Zone 3 Definition Study

9.4.1 Introduction

It was assumed that the displacement measure U3 had to be offset from being

aligned with the end of Zone 3 to account for stackup (recall Figure 8.1.4). This was an

assumption justified by the fact that the material crushed during an optimization does not

vanish, but rather stacks or “builds up” such that there is a distance 8 of stackup (see

Figure 9.4. 1). Since it is desired that there be no crush occurring in Zone 4, it was

assumed that there needed to be a lag in U3 of distance 5 from the end of Zone 3 (the start

of Zone 4). This was done with no proof throughout Section 2 of this thesis, with the

justification of this concept intuitively making sense.

 

    

‘ Desired Crush | | 6

(a) Uncrushed rail with zones labeled. (b) Fully crushed rail.

The desired crush zones are Zones 1-3.

 

   

Figure 9.4.1. Stackup of a typical rail that progressively crushes. Stackup occurs with a material

buildup of thickness 6.

Alternatively, the stackup 6 is the sum of the stackup occurring in the first three

zones (there is a stackup 61 in Zone 1, a stackup 62 in Zone 2, as well as the stackup
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occurring in Zone 3 (63)). For an arbitrary rail of N zones, the stackup can be expressed

(9.1)

It has been assumed that accounting for the total stackup (6) at the end of Zone 3 is a

better practice for encouraging progressive crush than not accounting for stackup at all.

The value of 6 however, has been chosen arbitrarily up until now as 83.4 mm (see Figure

9.4.2). The benefit of accounting for 6, as well as the best value for 6 in encouraging

progressive crush will be explored in this section. Also, the effect of using 6 at the end of

Zone 3 as opposed to 61 at the end ofZone 1, 62 at the end of Zone 2, and 63 at the end of

Zone 3 (see Figure 9.4.3) will be explored. The decision to use the former in the previous

work in this thesis instead of the latter was based upon a quick separate study performed.

The validity of this decision will be proved here.
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Figure 9.4.2. Zone definitions and impactor displacement specifications used within this study. The

material stackup has arbitrarily been set at 83.4 mm.
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Figure 9.4.3. Alternative definition of accounting for stackup: 61 + 62 + 63 = 6.
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9. 4.2 Evaluation ofthe Efleet of6

9. 4. 2. 1 Problem Definition

The size and necessity of the stackup distance 6, along with its effect on the

progressive crush optimization strategy, was studied through four optimizations. Each

optimization had the same Optimization problem statement, and began in the same

starting location in the design space with the same random seed for the search. Each

optimization however had a different value for 6 (see Table 9.4.1). A different value for 6

meant that each optimization had a different value of U3 used in the progressive crush

statement. Figure 9.4.4 shows the values of U: used for each optimization. Aside from

this alteration, the analysis model and optimization problem statement remained the same

as used throughout this thesis, with the progressive energy optimization statement here

being:

Maximize: PEA

Subject to: F2 5 150 kN

By Varying: Control Points

Rail Thickness

Where PEA is the progressive energy absorbed (as defined previously), F2 is the

maximum reaction force after initial crush initiation, Control Points are the independent

control points varied, and Rail Thickness is the rail gage thickness, which varies between

1-3 mm.
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Table 9.4.1. Stackup distance 6 allotted for each optimization in the study.
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(a) Zone definition for Optim. A (6 = 133.4 mm). (b) Zone definition for Optim. B (6 = 83.4 mm).
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(c) Zone definition for Optim. C (6 = 41.6 mm).
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(d) Zone definition for Optim. D (6 = 0.0 mm).

Figure 9.4.4. Zone definitions used for the different optimizations performed in the study to

determine the effect of 6.
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9.4.2.2 Results

The resulting optimized designs from the four optimizations performed with

different values of U3 are shown in Table 9.4.2. From this table it is clear to see that the

second optimization (Optimization B with U3 = 250 mm) yielded the design that

absorbed the most total energy. Comparing the progressive energy for the optimized

designs from the four optimizations is not direct however, since the progressive energy

problem statement used in each optimization was different (due to U3 being different).

Therefore for comparison, the four optimized designs had PEA calculated for four

different values of 6. Table 9.4.3 and Figure 9.4.5 show these results.

The design from the second optimization (Design B) had the highest PEA

regardless of the value of U3 used in the definition of PEA. The designs from the first

(Design A) and fourth (Design 1D) optimizations had the lowest PEA regardless of the

value of U3 used. Recall that the optimization statement for which Design A was found

used a value of U3 equal to 200 mm (6 = 133.4 mm), while the optimization for which

Design D was found used a value of U3 equal to 333.33 mm (6 = 0.0 mm). Therefore,

optimizing for too large of stackup (as shown for 6 = 133.4 mm) and no stackup at all (6

= 0.0 mm) is not as efficient of an optimization statement as having values of 6 close to

the actual stackup that can be expected. Optimizations seeking progressive crush

therefore should use a definition ofU3 that accounts for a realistic stackup 6.
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In addition, the fact that in Figure 9.4.5 the PEA doesn’t change for any of the

four designs when calculating PEA with a statement of 6 = 41.6 mm and a statement of 6

= 0.0 mm, shows that stackup indeed does occur. If this were not the case, from U =

291.73 mm to U = 333.33 mm there would be an increase in energy absorbed in the rail in

Zone 3. This however is not the case demonstrating that the material has stacked up as

much as possible for the design in the first 3 zones and any additional energy absorbed

likely comes from the fourth zone (which is undesired). Figure 9.4.6 shows the crush

modes of the four optimized designs found with the different optimization statements via

the definition of U3.

Table 9.4.2. Results for each optimization.
 

 

 

     

Optimization A OJtimization B Optimization C Omimization D

PEA (kJ) 12.187 18.429 19.480 17.606

EA (Q) 26.105 29.195 26.600 25.018
 

 

Table 9.4.3. Optimized design from each optimization reevaluated in terms of PEA for four different

values of 6.
 

 

 

 

 

 

         

Desi n A Desigi B DesigLC Deggn D

6 (mm) PEA EA PEA EA PEA EA PEA EA

(H) (U) (H) (U) (kJ) (U) (U) (kJ)

133.4 12.187 26.105 12.320 29.195 11.043 26.600 10.718 25.018

83.4 14.945 26.105 18.429 29.195 16.666 26.600 15.208 25.018

41.6 16.736 26.105 20.651 29.195 19.480 26.600 17.606 25.018

0.0 16.736 26.105 20.651 29.195 19.480 26.600 17.606 25.018
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Figure 9.4.5. Optimized designs from the four optimizations with PEA calculated for different values

of 6. The optimized design from optimization B had the highest PEA regardless of the statement

used. This shows that realistic values for the stackup 6 occurring in crush should be used in the

optimization problem statement to encourage the best progressive crush.
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Figure 9.4.6. Crush modes of the optimized designs from the optimization study of the impact of the

value ofU3 on the optimization.
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9.4.3 Total Stackup Represented by the Sum of Individual Zone Stackups

9. 4. 3. 1 Problem Statement

Recall that Equation (9.1) defined the total stackup distance (6) as the sum of the

material stackup of all desirable crush zones in the rail. However, in the optimizations

performed in this report the stackup of the individual layers was ignored and only the

total stackup was accounted for; the optimization problem statements considered 6 at the

end ofZone 3, as opposed to 61 at the end of Zone 1, 62 at the end ofZone 2, and 63 at the

end of Zone 3. The validity of considering only 6 at the end of Zone 3 will be explored

through a series of three optimizations.

Using the observed best value for 6 from the optimization study just performed (6

= 83.4 mm; U3 = 250 mm), two additional optimizations were performed to study the

impact the values of 61, 62, 63 have on the optimization for a fixed 6. The optimizations

used the same problem statement as before, started in the same location in the design

space, and had the same random seed.

Table 9.4.4 displays the differing characteristics among the optimizations and

compares them to that of OptimizationB from before (where 6 = 83.4 mm; U3 = 250

mm). Optimization B recall, had a value of 6 = 83.4 mm applied as 63 only. Therefore, U3

was the only U. offset from the end of the respective zone. Optimizations B-i and B-ii

however, have values of 61 and 62 in addition to 63, meaning U1 and U2 are offset from

the end of their zones as well. Optimization B-i had 61 = 62 = 63 = 27.8 rrnn (6 = 83.4
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mm). This optimization statement assumed equal stackup between zones. This likely isn’t

the case however, since the zones are in different locations and have different lengths.

Optimization B-ii therefore, scaled the lengths of 6i according to the length of the zone.

Since Zone 3 was larger than Zone 2, and Zone 1 larger than Zone 2: 63 > 61 > 62 (6 =

83.4 mm).

Table 9.4.4. Stackup definitions used to study the relationship between total stackup (6) and the

individual zone stackups (6i).

 

 

 

 

        
 

 

”mm” 5"“) 81mm) 62mm) 63(mm) U1(mm) U2(mm) U3(mm)

B 83.4 0 0 83.4 100 166.7 250

B-i 83.4 27.8 27.8 27.8 72.2 133.9 305.6

B-ii 83.4 25 16.7 41.7 75 150 291.7

9. 4.3.2 Results

The optimized design from all optimizations had very similar total energy

absorbed (29-30 kJ). Again, due to the definitions of their objective function being

different (PEA defined differently due to different U1, U2, and U3 for all three

optimizations being compared), a direct comparison of progressive energy absorbed

cannot be done without calculating PEA for all definitions of 6 used. Table 9.4.5 and

Figures 9.4.7 and 9.4.8 display these results.

Design B outperforms the other two designs in terms of PEA regardless of the

definition used. At the same time, the designs are very similar in performance (as is

evident by the small standard deviations seen in Figure 9.4.8). This leads to the

conclusion that accounting for total stackup (6) is the same or better than trying to

account for the stackup of each individual zone. This is more practical anyhow since
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estimating total stackup after the entire crush is performed is likely easier than predicting

stackup at various stages ofthe crush.

Table 9.4.5. Optimized design from each optimization with energy absorbed calculated for three

U1(mm) U2 (mm) U3 (mm)

 

 

   

     

PEA for Optimal Designs with Different Opt. I Des'gn B

' - I Design B-i
Definitions

. ..

25,000
I Desrgn B-n
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51
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0.000 4
z

Def. B Def. B-i Def. 341

Definition of PEA    
Figure 9.4.7. Progressive energy absorbed by the different optimized designs with the different

optimization definitions.
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Figure 9.4.8. Standard deviation of the progressive energy absorbed among the three designs for the

different optimization definitions.

9. 4.4 Conclusions

It has been shown that accounting for stackup in your definition of PEA (through-

the definition of U1, U2, U3) produces better progressively crushing designs than not

accounting for stackup. In addition, it has been shown that giving reasonable stackup

definitions gives better performing designs than over-predictions or under-predictions of

stackup. Also, it has been demonstrated that approximating the total stackup (6) and

using that to define U3 (or UN-1 for N zones), produces as good or better designs than

accounting for the stackup in individual zones (in defining U1, U2, and U3). This section

therefore justifies and explains the use of U3 = 83.4 mm for all work performed in

Section II of this thesis.
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CHAPTER 10: SUMMARY AND CONCLUSIONS

There are common optimization problem statements used for optimizing the

performance of hybrid electric vehicles as well as the crashworthiness of front rails in an

automobile vehicle. These optimization statements have been shown to be suitable for

achieving certain desired performance characteristics, but not others. In the current study,

alternative optimization problem statements have been shown to be as effective as

traditional statements for the problems posed, with additional benefits.

Hybrid electric vehicle (HEV) optimizations have primarily been done utilizing a

state of charge (SOC) correction to account for the effects of the initial SOC on

performance. In this study, this common approach (referred to herein as Strategy 2) was

compared with two alternative approaches in optimizing a series hybrid bus. The first

alternative strategy (Strategy 1) utilized multiple drive cycles and multiple initial SOC

load cases as a means to account for initial SOC, instead of an SOC correction. This

optimization strategy considered only the fuel consumption from the engine while

neglecting energy usage by the other components. Like Strategy 2, another alternative

strategy (Strategy 3) accounted for total energy usage as opposed to engine energy only.

This was achieved using the conversion for the electrical energy that can be converted to

gasoline through the efficiency of an average power plant in the United States. Strategy 3

like Strategy 1, did not utilize an SOC correction but rather multiple drive cycles and

multiple initial SOC load cases.
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Strategy 1 was shown to be effective only if energy usage from the engine is the

primary concern, and a fixed driving route can be guaranteed frequently. Strategies 2 and

3 however, were shown to be effective if total energy usage is the primary interest.

Strategy 3 was shown to have a similar performance as Strategy 2 while being more run-

time efficient for the problem posed.

As with HEV optimizations, there is a typical optimization strategy used for

optimizing the crashworthiness of front rails in automotive vehicles. This common

approach focuses on maximizing total energy absorption by the rail during impact. It does

not however, guarantee the rail will crush progressively, as is desired for safety and repair

cost reasons. An alternative strategy for optimizing front rails therefore was proposed that

accounts for a quantity defined herein as progressive energy absorption (PEA). PEA

considers the time in which the energy absorption occurs in a given region of the rail.

High values of PEA correspond with designs that crush in the front of the rail and

propagate rearward with time.

The alternative approach for optimizing front rails was shown to yield optimized

designs with similar total energy absorption as conventional strategies, but with

significantly improved progressive crush modes. Through multi-objective optimizations,

the relationship between PEA and total energy absorption was explored; it was found that

as PEA increases, so does total energy absorption.
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