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ABSTRACT

NATURAL NICHING: APPLYING ECOLOGICAL PRINCIPLES TO

EVOLUTIONARY COMPUTATION

By

Sherri Goings

Evolutionary algorithms have shown great promise in evolving novel solutions to real-

world problems, but the complexity of those solutions is still limited, unlike the apparently

open-ended evolution that occurs in the natural world. The power of traditional evolution-

ary algorithms is constrained by rapid convergence to a single solution on a sub-optimal

local peak, leading to stagnation. In part, nature surmounts these complexity barriers with

ecological dynamics that generate a diverse array of raw materials for evolution to build

upon.

In this dissertation I focus on one ecological force that increases diversity: frequency-

dependent selection that arises from competition among individuals for finite resources. I

explore the benefits of incorporating this force into an algorithmic framework, focusing on

how this mechanism can increase diversity to provide many evolutionary paths to a problem

solution. The use of niching to simultaneously approach a single solution from many direc-

tions has not been extensively studied in previous literature. I study competition for limited

resources in a digital evolution system and examine the importance of specific resource

parameters on population dynamics. I show that my techniques are robust at increasing

diversity over a broad range of settings for each parameter, and that the parameter settings

are governed by a relatively simple set of equations.

Finally I introduce Eco-EA, a general form of an evolutionary algorithm that associates

a limited resource with each trait to be evolved. I apply Eco-EA to several problems, includ-

ing a real-world software engineering problem, and I show that the Eco-EA yields several

advantages over traditional evolutionary algorithm approaches, including: (1) significantly



more rapid evolution of targeted complex functions; (2) discovery and maintenance of a

diverse set of partial solutions that together solve a problem; (3) maintenance of a selection

of high-quality final solutions for the researcher to choose from, often with slightly differ-

ent properties; and (4) discovery of solutions that are more evolvable when placed in new

environments.



This dissertation is dedicated to my mother, who has provided endless support and

encouragement throughout my dissertation research and in memory of my father, who

gave me the confidence to be where I am today.
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Chapter 1

Introduction

An Evolutionary Algorithm (EA) is a search algorithm that abstracts mechanisms of organic

evolution (such as reproduction, mutation, and selection) and uses them to seek optimal

solutions to problems (Back, 1996). Evolutionary algorithms have shown great promise in

evolving novel solutions to real-world problems, but the complexity of those solutions is

limited, unlike the apparently open-ended evolution that occurs in the natural world. To

design EAs that can solve more complex problems, we must examine how complex traits

arise in nature and how EAs fall short in duplicating these dynamics. The complexity of

solutions produced by traditional EAs is partly limited by rapid convergence to a single

solution on a local optimum, resulting in stagnation. One of the ways nature surmounts

this complexity barrier is with natural ecological dynamics that generate a diverse array of

raw materials for evolution to build upon.

Diversity in an evolutionary algorithm can provide other advantages beyond forestalling

stagnation, including: (1) maintenance of a selection of good solutions for the researcher

to choose from, often with slightly different properties; (2) the availability of different par-

tial solutions to be used as building blocks toward the full solution, without the researcher

needing to know the ideal path; (3) resilient solutions that can withstand environmental

changes; and (4) significantly faster evolution of targeted complex functions. Robust eco-



logical communities exhibit all of these traits.

Designers of evolutionary algorithms recognize the importance of maintaining popula-

tion diversity and make use of a variety of diversity preserving techniques based loosely

on natural mechanisms (Mahfoud, 1995). However, the selective pressures that have led

to the high levels of diversity found in the natural world are not yet clearly understood

themselves (Tilman, 2000), nor are the nuances of how diversity facilitates the evolution of

complex behaviors. In order to incorporate the more subtle dynamics of natural evolution

into evolutionary algorithms we must first understand the workings of these mechanisms in

nature.

I focus on one ecological force that can promote diversity: frequency—dependent selec-

tion that arises from competition among individuals for finite resources (Tilman,1982). A

limitation on available resource can lead to the formation of an ecology of diverse species

since negative frequency—dependent selection will drive competition to favor rare types

(Chow et al., 2004). My goal for this thesis is to explore the dynamics of competition for

limited resources in natural ecologies and to use our improved understanding to create an

ecology-based evolutionary algorithm capable of solving complex problems.

The remainder of this dissertation is divided into six chapters organized as follows:

0 In Chapter 2, I provide further motivation for the importance of diversity and I

survey current methods for maintaining diversity in evolutionary algorithms. I

also provide background on how competition for limited resources can maintain

ecosystems of diverse species in the natural world.

0 In Chapter 3, I focus on exploring the dynamics of competition for limited resources

using a digital evolution system. I analyze the effects of the parameters that govern

the limited resources and describe how to set these appropriately.



o In Chapter 4, I explore the benefits of using limited resources in evolving complex

traits. I posit three theories for how environments incorporating this mechanism lead

to the evolution of more complex behaviors than those with non-limiting resources.

0 In Chapter 5, I further explore the dynamics of competition for limited resources

when applied to simple applications where the goal is to evolve a diverse set of

solutions that “cover” a solution space. I examine the factors that lead to many

unique specialists vs. a few generalists, and compare this natural mechanism of

maintaining diversity to other methods currently used in evolutionary algorithms.

0 In Chapter 6, I introduce a general concept of an ecology based evolutionary algo-

rithm (called Eco—EA), and apply it to a real-world application of evolving UML

models for nodes in a remote sensor network. I show three clear advantages of the

Eco-EA over a traditional EA as applied to this problem, including:

1. faster evolution of any satisfactory solution

2. evolution of a more diverse array of solutions

3. evolution of solutions with greater plasticity that are easily adapted to succeed

in different environments.

0 Finally, in Chapter 7, I provide a summary, detail future directions that I plan to take

this research, and provide my initial speculations and results in these directions.



Chapter 2

Background and Related Work

Evolutionary Algorithms are inspired by the ability of natural evolution to produce the

complex life found in the biological world. One of the most striking features of biological

life is its diversity, however a standard EA does not yield a diverse population of individuals

but rather tends to quickly converge to a single phenotype that may not represent the global

optimal solution to a problem. The diversity found in nature keeps biological populations

from stagnating and allows the open-ended evolution we see in the real world. In order

to improve the ability of evolutionary algorithms to find solutions to complex problems,

we must incorporate more of the natural dynamics that maintain diversity in biological

populations. In this chapter I will discuss the potential benefits of diverse ecosystems in

nature, the theory on how diversity is achieved and maintained in the natural world, and

previous mechanisms of increasing diversity in evolutionary algorithms. It is important to

. note that in this thesis the type of diversity we refer to is species richness, where species

are defined in an EA as functionally distinct phenotypes.

2.1 Diversity in Nature

The impacts of diversity on natural ecosystem processes are not fully understood (Tihnan,

2000), however two proposed benefits of a diverse ecosystem have been supported by the-



ory and experimentation. The first benefit is greater productivity of an overall ecosystem

when it is composed of many species rather than only a few (Tilman et al., 1996; Tilman

et al., 1997; Hector et al., 1999). The second benefit is that a diverse ecosystem is more

reliable or stable than a homogenous population (McCann, 2000). We propose a potential

third benefit in the long-term time frame of evolution, which is that a diverse population

yields more potential paths for evolution to follow and thus increases the probability that a

new complex trait will evolve.

Several mechanisms leading to the high level of diversity seen in natural ecosystems

have been proposed. In general, coexistence of many different species will occur when

there are “evolutionarily persistent interspecific trade-offs” (Tilman, 2000) between the

abilities of different species to respond to different environmental factors. Several such

interspecific trade-offs may occur, including differences in species abilities to compete

locally and ability to disperse widely, species success in average conditions and exploitation

of times of resource abundance, or species ability to compete for alternative resources

(Hastings, 1980; Armstrong and McGehee, 1980; Huisman and Weissing, 1999; Tilman,

1982). In this thesis I will focus on the last of these potential trade-off, that is the abilities

of different species to utilize alternative resources in an environment containing multiple

distinct, finite resources.

A large body of literature, both theoretical and experimental, explores how competition

for limited resources can maintain diversity in the natural world, but I will cover here only a

few key points that relate to incorporating this method into evolutionary algorithms (A more

in-depth treatment can be found in Tilman, 1982). Competition for multiple resources will

yield diverse species only under certain conditions. First different species must have vary-

ing abilities to use different resources. The simplest case to consider is when each species

specializes on a different resource, creating a “niche” associated with each resource, al-

though multiple species may still be maintained in certain cases of overlapping niches as

well. Second the amount of available resource must be sufficiently limited to create neg-



ative frequency-dependent selection; that is, the more individuals that are using a single

resource, the less benefit they should each receive from it. As long as there is enough re-

source available that the benefit to individuals using it is higher than the cost, a selective

pressure exists for more individuals to use that resource. Both theoretical and experimental

evidence has shown that species richness is highest at intermediate levels of resource avail-

ability (Chow et al., 2004). Finally given no other population interactions, a well-mixed

environment can indefinitely maintain only as many species as there are distinct resources

available. These conditions must all be met if we hope to use competition for multiple

limited resources to increase diversity in an evolutionary algorithm.

2.2 Diversity in Evolutionary Algorithms

Designers of evolutionary algorithms recognize the importance of maintaining population

diversity and make use of a variety of diversity-preserving techniques. Increasing the diver-

sity of an EA population is generally recognized as having two potential purposes: to allow

the exploration of more of the search space in order to generate a better single solution;

and to form and maintain multiple distinct solutions. Many diversity-preserving methods

focus only on the role diversity plays in preventing a population from stagnating by pre-

maturely converging to a single solution before the best solution had been found. These

methods slow convergence but are not capable of explicitly maintaining multiple species in

a population for long periods of time. Other techniques exploit both potential advantages

of diversity; these methods (called “niching”) are capable of not only avoiding convergence

but also of finding and maintaining multiple diverse solutions (Mahfoud, 1995). Research

into niching methods in evolutionary algorithms has been largely focused on the ability to

find and maintain multiple solutions, such as in multi-objective problems or multi-modal

functions, but in this thesis I will focus on how maintainining multiple sub-solutions on the

way to a single final solution can improve the ability of an algorithm to find solutions to



complex problems.

2.2.1 Preventing Premature Convergence

A technique called crowding was one of the first methods suggested to prevent premature

convergence of an evolutionary algorithm while searching for a single solution (DeJong,

1975). This method slows the loss of population diversity by modifying only the replace-

ment step of an evolutionary algorithm to force new individuals to replace similar individ-

uals in the population. Each time a new individual is ready to be placed in the population,

a small subset of the population is sampled, and the individual determined to be most sim-

ilar to the new one is replaced. Similarity between individuals is determined by either a

genotypic or phenotypic distance measure. The crowding technique has been shown to

significantly increase the speed of search and quality of solution found by an EA before

convergence. Simple crowding is, however, subject to a high rate of replacement errors

that occur when an individual on one fitness peak is replaced by an individual from an-

other peak. Populations eventually converge to one fitness peak and the benefits of using

crowding in replacement are lost.

Deterministic crowding was designed by Mahfoud (1992) to address the issue of re-

placement error. In this method the entire population is split into pairs that undergo

crossover to produce two offspring. Each offspring competes with its most genetically

similar parent and the winners of these competitions are put back into the population. De—

terministic crowding minimizes replacement errors, but cannot eliminate them entirely and

populations still slowly converge. Both crowding methods require the use of a distance

measure between individuals, but for many problems it can be difficult to design an effec-

tive phenotypic distance measure for many problems and genotypic distance may not be

well correlated to fitness peaks in the landscape.

A different approach that does not require a distance measure is to lower gene flow

by subdividing a population into several small populations such as in the island model.



This method allows competition only between individuals in the same subpopulation. A

small amount of migration occurs between subpopulations to spread good solutions among

the entire population. Even this low level of migration between subpopulations allows the

population to eventually converge to a single solution. The diffusion model implements

a complex population structure to achieve the same goal of lowering gene flow without

explicitly creating distinct subpopulations (Back et al., 1997).

An extension of the island model is the Hierarchical Fair Competition (HFC) model

(Hu and Goodman, 2002). In this method individuals are grouped into subpopulations

based on their fitness. Migration between subpopulations moves in only one direction;

when an individual exceeds the fitness-based admission threshold of the next higher sub-

population it is moved up, but individuals are never moved into a lower fitness subpopula-

tion. The HFC model maintains a constant flow of individuals representing potentially new

areas of the search space moving from the lower into the higher subpopulations, however

each subpopulation may still converge, leading to stagnation of the overall algorithm.

2.2.2 Niching

The previous methods work by slowing the loss of existing diversity, but do not inherently

direct exploration to new areas of a search space. Several techniques use direct measures

of diversity to increase exploration in an evolutionary algorithm and prevent populations

from ever converging. One of the first technique of this type was the Diversity-Control-

Oriented genetic algorithm (Shimodaira, 1999). In this method the survival probability of

each individual is partly determined by the genetic distance between it and the current best

individual in the population. A higher distance means a higher survival probability, en-

couraging exploration of areas genetically distant from the current best solution. Two other

approaches divide a population into subpopulations focused on either exploration or ex-

ploitation. The Shifting-Balance genetic algorithm (Oppacher & Wineberg, 1999) divides

the population into a large core population and several small colony subpopulations. The



core population exploits the most promising areas of the search space by receiving through

migration the best individuals from the colony populations. The colony populations are

used for exploration; they are forced to search in different areas of the fitness landscape

than the core population. The forking genetic algorithm (Tsutsui et al., 1997) utilizes a

similar population structure, but assigns the populations opposite roles; the parent populaa

tion is responsible for exploration, continuously searching for new peaks, while a number

of child populations try to exploit previously detected promising areas. The forking genetic

algorithm is unique among those discussed so far in that it finds and indefinitely maintains

solutions representing multiple peaks in the fitness landscape and so is considered a true

niching algorithm. A final method in this class is the Diversity-guided EA (Ursem, 2002).

This method uses just one population but alternates between exploration and exploitation

phases based on the current level of diversity in the population; a high level of diversity

triggers the exploitation phase and a low level triggers the exploration phase.

One of the most popular niching methods used in evolutionary algorithms is fitness

sharing (Goldberg & Richardson, 1987). This method maintains separate species covering

multiple peaks in the fitness landscape while simultaneously encouraging the discovery of

new peaks. A GA using fitness sharing should never converge, and the number of individu-

als present in any given species will be roughly proportional to the height of the peak those

individuals are representing. Fitness sharing uses a distance measure to force an individual

to “share” its fitness with others that are within its “niche radius”. The individual does not

actually share its fitness in the sense of giving it away; its own fitness is simply reduced

by an amount based on the distance between it and each other organism within the niche

radius. The closer another individual is, the larger the fitness reduction to the one being

evaluated. This sharing function encourages exploration in the fitness landscape as individ-

uals that are different from the rest of the population are awarded their full fitness, while

those that are similar, clustered around peaks, end up with only a small fraction of their

initial fitness. Goldberg was able to achieve impressive results on multimodal functions



(Goldberg, Deb, & Horn, 1992), but fitness sharing has drawbacks as well. Like crowding,

fitness sharing requires the use of a distance measure. Also a high level of problem domain

knowledge may be required to effectively set the niche radius and determine the sharing

function in the context of the fitness landscape for the problem being solved. Finally, this

method is largely dependent on a relatively uniform distribution of peaks in the search

space (Darwen and Yao, 1996).

Niched genetic algorithms are often improved by the use of some method of limited

sexual recombination between population individuals in order to enforce stricter specia-

tion. Individuals representing different fitness peaks generally do not produce a fit off-

spring when mated. Inter-species recombination therefore is often a waste of search time.

Two different methods have been suggested by Goldberg (1989) to limit mating to within-

species without losing the ability of the algorithm to perform effective search. The first is

to add a tag to each individual in the population that undergoes mutation and crossover but

is not part of the fitness function, and then allow individuals to mate only with others that

have the same tag. The second is to allow an individual to mate only with another within a

certain distance (determined by the same measure used for niching) of itself. Both of these

limited mating schemes have shown improvements on niching alone.

Resource sharing is a form of implicit fitness sharing, often found in the context of

learning classifier systems, where one example to be classified has only a limited amount

of credit to give that must be divided among each rule that classifies it correctly. In this case

each example can be viewed as a finite resource. A less obvious instance of implicit fitness

sharing is the immune system model analyzed by Forrest et al. (1993). Forrest’s implicit

sharing method preserves diversity in a single population and leads to emergent problem

decomposition in a simple immune system environment. Forrest et al. abstract and simplify

the immune system by representing antibodies and antigens with simple binary strings.

They evolve a population of antibodies to “cover” a given set of antigens. To assign fitness

they choose a single antigen from the set of antigens, and n antibodies from the evolving

10



population. The antibody most closely matching the antigen receives fitness proportional

to the number of bits it matches, the other antibodies receive no credit. This process is

repeated many times each generation. Forrest et a1. show that this mechanism preserves

diversity through a form of implicit fitness sharing.

2.3 Conclusion

Fitness sharing and implicit resource sharing are true niching techniques that directly aim

to maintain multiple diverse species of individuals in a population. These methods work

at a high level by directly manipulating credit assignment to create a negative frequency-

dependent selection in which competition favors rare types. Both methods have been shown

to be effective in certain problem domains, yet still have not yielded the open-ended evo-

lution necessary to solve complex problems that we see occur in the natural world. In

this thesis I will use an artificial life system to explore a more explicit resource sharing

method inspired directly by natural ecological communities (Cooper & Of1ia, 2002), and

use my new understanding of this method to create an improved ecological evolutionary

algorithm.

11



Chapter 3

Exploring the Dynamics of Competition

for Limited Resources in Artificial Life

Natural systems can evolve intricate ecologies that create and maintain diverse organisms

and rapidly evolve complex traits and survival strategies. If we wish to apply similar dy-

namics in computational systems to evolve solutions to complex problems, we must first

understand these dynamics in the natural world. Studying the evolutionary formation of

natural ecosystems, however, is difficult due to the time involved, the fragility of the ecosys-

tems, and the amount of data that would need to be observed to get a clear picture of what

was happening. Even in relatively simple laboratory microcosms of model bacteria, de-

tailed studies are practically intractable. To overcome these difficulties in part, I use a

digital evolution system, Avida, that allows a researcher to track the genetic, phenotypic,

and ecological state of the system at all times.

In this chapter I explore competition for limited resources as a natural mechanism for

creating and maintaining diverse organisms. I describe the specific implementation of a

limited resources environment in Avida, and study the effects on population dynamics of

the parameters that are used to control the limited resources

12



3.1 Avida

For most of the experiments in this thesis I use the digital evolution research platform

Avida, described fully by Ofria and Wilke (2004). Avida maintains a population of asex-

ual self—replicating computer programs (“digital organisms”) that exist in a computational

environment and are subject to mutations and natural selection. Each digital organism has

a genome that is a sequence of instructions in a special-purpose programming language.

As in natural organisms, this genome specifies the phenotype of the individual, including

its own replication. Random mutations occur during replication and include substitutions,

insertions, and deletions. The Avida instruction set is designed so that mutations always

yield a syntactically correct program, albeit one that may not perform any meaningful com-

putation. When an organism replicates, its offspring replaces a randomly chosen individual

currently in the population. Thus Avida maintains a constant population size.

The digital organisms in Avida live in an environment that contains a set of resources,

each of which can be metabolized by the digital organisms for them to gain more CPU

cycles. When an organism performs a user—defined task, it receives a portion of the available

corresponding resource, up to a fixed maximum. The amount of resource the organism

obtains, along with the value of that resource, determines the change in an organism’s

metabolic rate which is how quickly it gains CPU cycles. The fitness of an organism is

detemtined by its metabolic rate (the rate at which is produces CPU cycles) divided by its

gestation requirments (the number of CPU cycles it needs to use to produce an offspring).

Avida uses a unit of time called an “update”, during which a total of 30 x population size

CPU cycles are processed. During a CPU cycle, one genomic instruction is executed within

a single organism in the population. These instructions are allocated to each individual in

proportion to metabolic rate, and thus an organism that consumes a resource to increase

its metabolic rate is expected to make more copies of itself relative to organisms lower

metabolic rates, all else equal.

In most Avida studies, as with most evolutionary algorithms, resources are unlimited,

13



creating a single-niche environment where an organism receives a constant amount of re-

source for each task completed, regardless of the behaviors of any other organisms in the

population. We will call this traditional Avida environment the ”unlimited resource” envi-

ronment.

3.2 Competition for Limited Resources in Avida

A ”limited resources” environment in Avida was first studied by Cooper and Ofria (2002).

This type of environment limits the availability of resources such that the use of a resource

by one organism reduces the amount left to be used by all others. In all of the studies I

present in this thesis, these resources are set up as the computational equivalent of a well-

stirred chemostat; each resource flows into the environment at a constant rate, and a small

percentage of the available resource flows out, limiting the total possible accumulation.

Exploration of new areas of the fitness landscape is highly rewarded as an unused resource

will accumulate; as such, the first mutant able to make use of the resource will receive a

huge fitness boost. However, when many organisms perform functions that consume the

same resource, the availability of that resource will decline until further organisms who

attempt to draw from it do not receive enough reward to overcome competitors who are

targeting a different resource.

3.2.1 Limited Resources Parameters

Environmental resources are governed in Avida by a set of user-defined parameters. Two

parameters regulate the globally available amount of a resource in an analog of a bacterial

chemostat (*): inflow determines the amount of resource that flows into the environment

each update, and outflow sets the fraction of the current resource that flows out of the

environment each update. In the absence of consumption by individuals in the population,

a resource will accrue in the environment until

14



Ri*0=I (3.1)

where Ri is the current amount of resource i in the environment, 0 is the outflow fraction

and I is the inflow amount, at which point R will remain constant. Two further parameters

determine the amount of resource an organism receives when it executes the associated

task. A consumption fraction (Cf) sets the fraction of Rt (current resource amount) an

organism can consume with each performance of the associated task, however this amount

is sometimes capped by an overall maximum (m). If

Cf=l<Ri>m (3.2)

the organism consumes only m units of the resource. This limitation is akin to a biolog-

ical organism that can acquire more of a resource when it is plentiful in the environment,

but only up to its ability to metabolize the resource; it cannot convert an infinite amount of

resource into energy. The imposed maximum consumption slows the initial growth phase

of an organism that discovers an unused resource by limiting the amount of energy the

organism can get from each use of that resource, no matter how much of the resource has

accrued in the environment.

3.2.2 Limited Resources Parameters — Stable State

All four parameters (1, 0, Cf, and m) interact to determine the dynamics of a limited-

resource environment in Avida, however the interactions are not as complicated as they

may first appear and can be largely understood in terms of ecological resource competi-

tion theory. According to Tilman (1982), a well-mixed ecosystem can maintain only as

many distinct species as there are limiting resources, barring any other types of interac-

tions among individuals or between individuals and the environment. For a resource to be

limiting in an Avida environment its availability must be restricted to a low enough level
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that not all individuals in a population can receive the maximum consumption amount. Re-

sources at this low level create the negative frequency-dependent selection that maintains

multiple distinct species by favoring rare types. How much of a resource do we expect an

individual to receive? Let us first consider a population that has reached a stable state with

Nui organisms using resource i each update (resource inflow is set in terms of units/update;

organism generations, however, depend on several factors including the metabolic rate of

the organism). In the stable state the amount of resource that each organism receives (A) is

given simply by Equation (3.3) if we ignore the outflow.

I

The outflow for all experiments in this thesis was set to 1% of current resource per

update. This reduction does have a small effect on the exact numbers in our equations but

the effect is small enough that we can ignore it and still produce a close approximation.

In all experiments described in this thesis an organism was allowed to perform each task

associated with a resource only once in its lifetime, so the value we need to determine if it

is possible for all individuals to receive m units of resource is the inflow of a resource over

an organism’s lifetime. Assuming the population is in a steady state where all individuals

have the same fitness, we can estimate the number of updates it takes any organism in the

population to reproduce based on the average gestation time across all individuals (an indi-

vidual with a longer gestation time must have a higher metabolic rate and thus be receiving

a larger proportion of CPU cycles per update than an individual with a shorter gestation

time or they would not have equal fitness). Given a population-wide replication time in

updates (Tr) of average gestation time divided by 30 (as stated earlier 30 * population size

instructions are executed per update), the previous equation becomes

_I*Tr

 
A,“ (3.4)
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where N,- represents the number of organisms in the population that use a resource

i during their lifetime. Now we can define a resource as limiting if Ai is less than the

maximum resource usable, m, given N,- equal to the entire population size N. Or in terms

of setting the resource inflow parameter, it should be set such that the following equation is

true.

I*Tr<m*N (3.5)

Equation (3.5) states that for a resource to be limiting, the amount of resource that flows

into the population each generation must be less than the maximum amount a population

could consume each generation. If Equation (3.5) is not true for a given resource, every

individual in the population that uses the resource will receive the maximum energy no mat-

ter how many individuals are using it; this scenario is equivalent to the unlimited-resource

environment with no frequency-dependent selection.

Note that the consumption fraction is not involved in any equation thus far. The only

effect the consumption fraction parameter has once a population reaches a stable state is to

determine the constant level of resource in the environment (given a limiting resource) at

that state. Once again ignoring outflow the stable level of a limiting resource is given by

the following equation, taking Ai from the stable state equation above.

a, = g (3.6)

So in the end, of the four resource parameters (1, 0, Cf, and m), only the resource

inflow and the maximum consumable have a major effect on the dynamics of a population

in a steady state. The consumption fraction is only a factor in the amount of resource found

in a population; it does not directly affect the amount of resource an individual obtains, and

the outflow is low enough to have only a small effect.

‘ Equations (3.4) and (3.5) make clear that the gestation time of individuals is also im-
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portant in determining an optimal resource inflow setting. In traditional Avida experiments

gestation time is determined by the individuals themselves and may vary both between

experiments and even during the course of a single experiment. However several factors

allow a reasonable estimate for gestation time to be used in setting the inflow parameter.

First, populations are seeded with an individual ancestral organism that can replicate but

cannot perform any other functions, and the average population gestation time generally

stays within an order of magnitude of this initial individual’s gestation time. We will show

later that the inflow parameter is relatively robust and can vary by an order of magnitude

while still yielding good results. Second, it is possible to restrict the gestation time of Avida

organisms to stay within a smaller range, or even to be constant; I use this method in Chap-

ter 5 for simplicity of analysis. Finally, gestation time is an issue specific to a few systems

such as Avida, and is implementation dependent; in systems with synchronous generations,

such mathematical complications will not be an issue.

3.2.3 Limited Resources Parameters — Non-stable State

The interactions between the parameters are more complex when considering a population

not in a stable state, and I will discuss them only briefly here. The initial growth phase

that occurs after the discovery of a new resource is short enough as to not have a major

effect on the population dynamics, given a reasonably large population size (N > 500). As

shown in Equation (3.1), the inflow and the outflow parameters determine the maximum

amount of an unused resource that can accumulate in the environment. A larger initial pool

of resource leads to a longer initial growth phase where individuals receive a large reward

for targeting the resource. The consumption fraction (Cf) and maximum cap (m) interact to

determine the shape of the initial growth curve (the rise and potential fall of the number of

individuals targeting the resource). At the extreme of Cf = 1.0, only m will limit how much

of the initial resource pool an individual targeting it receives. If m is infinite (no cap on

resource usage), the first individual to use a resource will receive the entire resource pool

18



and replicate very quickly, but the second time it or its offspring attempt to draw from the

resource only the amount that has newly flowed into the population will be available. Thus

the amount of energy individuals targeting that resource receive is immediately governed

by Equation (3.3), and the subpopulation of individuals using that resource will quickly

stabilize to hold as many individuals as that resource inflow can support. If m is small and

Cf = 1.0, each individual will draw that maximum amount of resource, until eventually the

initial pool is depleted, and once again Equation (3.3) will govern the amount of resource

each individual receives. In this case the number of individuals initially targeting a resource

could easily overshoot the number that the resource can support in a stable state, and this

subpopulation may quickly decline after its initial growth phase to reach its final stable

size. Figure 3.1 shows the initial growth phase and resource depletion when a new resource

is targeted in an Avida population, given Cf = 1.0 and both high and low m (2 and 5000,

respectively).

The population holds 1000 organisms and was initially filled with organisms that per-

formed a simple task yielding a constant reward that doubled their execution speed. We

allowed resources to accumulate for 200 updates (with I = 100 and 0 = 0.01) before we

placed five individuals into the population that performed a second simple task correspond-

ing to the accumulated resource. These new individuals received a bonus that multiplied

their execution speed by 2A where A is the amount of resource they consumed. There were

no mutations and we fixed the gestation time of all individuals to be 30, such that there was

approximately one population generation per update. At a stable state we expect the re-

source to be able to support 100 individuals (10% of the population) performing the second

task because Equation 3.3 determines that each individual will receive 1.0 units of resource

at this subpopulation level, and thus have an equal fitness to the individuals performing the

first task.

As expected the large m caused the subpopulation performing the second task to quickly

grow to 100 individuals and then maintain that level, while the low m caused the second
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Figure 3.1: Effects of maximum consumption parameter on limited resources population

dynamics. (a) The fraction of organisms in a population targeting a limited resource after

introduction and (b) the level of the targeted resource over time (averaged over 5 exper-

iments). The resource inflow (I) is 100 units per update (for this population 1 update

= 1 generation), the outflow fraction (0) is 0.01, and the consumption fraction (Cf) is

1.0. Two different maximum consumption values (m) are shown, one effectively unlimited

(m = 5000) and one small (m = 2).
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task subpopulation to overshoot the stable state level, but decline as soon as the initial

resource pool was depleted to reach the stable state level. Note that a value for m of less

than 1.0 would cause the subpopulation to never grow as individuals would have a lower

fitness than the base population.

An intuitive sense of the effect of the consumption fraction is more difficult to infer,

but we expect that a higher Cf will minimize the overshooting of the expected stable level

of the subpopulation and cause a faster return to the stable level if it is overshot. This

dynamic should occur because the initial pool of resource will be consumed as quickly as

possible and Equation (3.3) will take over. We performed the same experiments with a

range of consumption fraction values and the two extreme maximum consumption values

discussed above as well as a middle level. Figure 3.2 shows the initial growth phase and

resource depletion for the effectively unlimited maximum consumption (m = 5000). The

lower consumption fractions do overshoot the expected stable state subpopulation level,

while the highest more slowly and steadily grow to reach it.

The lowest Cf of 0.00025 allows the first individuals using the resource to obtain just

over 2 units (> 8000 * 0.00025), causing the slowest initial growth, however the slow con-

sumption also allows for the longest growth curve as it takes a long time for the resource to

be depleted to its stable state level (4000 from Equation (3.6)), as well as the largest over-

shot of the expected subpopulation level. Note that this curve crosses the curve for a Cf

of 1.0 when the subpopulation reaches approximately 50 individuals; the Cf = 1.0 curve is

governed by Equation (3.3) at this point, which means each individual in this subpopulation

is also receiving approximately 2 units of resource (100/50).
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Figure 3.2: Effects of consumption fraction on limited resources population dynamics (in-

finite max). (a) The fraction of organisms in a population targeting a limited resource after

introduction and (b) the level of that resource over time (averaged over 5 experiments).

I = 100, 0 = .01, and m = 5000. Several consumption fractions are shown, ranging from

Cf = 0.00025 to Cf =1.0.
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Figure 3.3 shows the effects of different consumption fractions when the maximum

consumption is limited. At an intermediate setting for m all of the consumption fractions

caused the subpopulation to overshoot the stable level of 100 individuals, but as expected

the higher the Cf, the less this level was overshot, and the more quickly the subpopulation

returned to the stable state. At a low value for m all consumption fractions caused a long,

slow growth phase as they gradually depleted the resource. Note that even at the lowest

maximum limit of 2 the Cf = 0.00025 subpopulation is still not limited by m but only by

the Cf; its grth curve is qualitatively the same at all three values of m.

Another effect of the consumption fraction is to determine how stable a population that

has reached a steady state really is. Avida creates a relatively noisy environment, akin to

natural environments, where drift can be as strong a factor as a weak level of selection.
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after introduction and (b) and (d) the level of that resource over time (averaged over five

experiments). Same data as in Figure 3.2 for two more values of m ((a) and (b) m = 2 and

(c) and (d) m = 10). I = 100 and 0 = .01. Several consumption fractions are shown, ranging

from Cf = 0.00025 to Cf =1.0.
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A low consumption fraction allows large swings in the number of individuals target-

ing a resource to cause only small fitness changes. This dynamic can make the negative

frequency-dependent selection required to maintain diverse subpopulations too weak to

overcome the inherent noise in the environment. Figure 3.4 shows the subpopulation levels

given the five consumption frequencies over a longer period of time. The results are similar

for all of the tested maximum limits, at Cf = 0.00025, the subpopulation levels oscillate

widely and often are lost completely.
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3.3 Conclusion

While we found that while extreme values for the consumption fraction and maximum limit

can have significant effects, the differences are minimal during the growth phase and virtu-

ally nonexistent at a stable state for a wide range of values; several orders of magnitude for

the Cf. For the work in this thesis we vary only the inflow rate and maximum value, using

the equations discussed previously to set those appropriately to ensure limiting resources.

The outflow, as mentioned earlier, is always 0.01, and the consumption fraction we set to

0.0025, as this value has been used in the few previous examples of Avida experiments

using limited resources, and we have shown here that it is high enough to cause selection

that can overcome environmental noise and maintain a stable population state.
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Chapter 4

The Effects of Limited Resources on the

Evolution of Complex Features

In this chapter I discuss experiments using the Aivda digital evolution system presented in

Chapter 3, to explore competition for limited resources as a mechanism to promote diversity

and evolve complex traits more rapidly and reliably. Incorporating limited resources into an

Avida environment has been shown to lead to the evolution of stable ecosystems of diverse

species (Cooper & Ofria, 2002; Chow et al., 2004). I examine how and why maintaining a

diverse ecosystem in Avida through the use of limited resources leads to improved adaptive

evolution of complex features.

4.1 The 9 Logic Task Environment

In order to explore competition for limited resources as a mechanism to promote diversity

and lead to faster evolution of complex traits in Avida, we start with the default Avida

environment, which is the most widely studied. This environment, called “9-logic” contains

unlimited recourses associated with nine Boolean logic tasks and was used to study the

evolution of complex features (Lenski et al, 2003). Lenski et al. demonstrated to un that

Avida organisms could evolve the ability to perform complex logic functions requiring the
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coordinated execution of many instructions as long as (1) functions of simpler complexity

were rewarded so that they could be used as building blocks, and (2) there were many

possibly ways of evolving the complex functions. Here we repeat this study to examine

the origin of complex functions in environments with limited resources both to compare

their effectiveness to the 9-logic environment and to determine if there are any differences

in the underlying forces that drive this process. Our hypothesis is that limited resources

environments will produce organisms with complex traits more rapidly due to their higher

levels of diversity.

We created a new environment called 9-resource. Tasks in this environment are asso-

ciated with limited resources, but it is otherwise identical to 9-logic. Previous research on

limited resources environments in Avida has shown that populations in these environments

can stably maintain more diverse ecosystems (Cooper & Ofria, 2002) and that species rich-

ness is highest at intermediate (but still limiting) levels of resource inflow (Chow et al.,

2004). p

Each logic task in the environment requires organisms to take as input one or two 32-bit

strings, and output the result of a bitwise Boolean logic operation. The nine operations are

listed below in table 4.1 in order of increasing complexity; one of the simplest, NAND, is

available as an instruction that can be mutated into an individual’s genome, while the most

complex, EQU, requires at least five nand operations and more than 15 total instructions

to complete (nature complex features paper). Each of the nine logic tasks is assigned a

complexity value based on the minimum number of nand operations that are required to

perform the task. Table 4.1 shows the nine tasks and the complexity value of each, given

two inputs A and 1B.

When an organism performs a logic task (by outputting the correct result), it receives an

increase to its metabolic rate (i.e., an execution speed bonus) determined by the following

equation, where V is the complexity value of the task from table 4.1 and A is the amount of

the corresponding resource it consumes.
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Task Name Complexity Value Logic Operation

NOT 1 ~A; ~B

NAND 1 ~(A and B)

AND 2 A and B

OR_N 2 (A or ~B); (B or ~A)

OR 3 A or B

AND.N 3 (A and ~B); (B and ~A)

NOR 4 ~A and ~B

XOR 4 (A and ~B) or (B and ~A)

EQU 5 (A and B) or (~A and ~B)

i.e. are A and B identical     
Table 4.1: The 9-logic environment. The complexity values are the minimum number of

nand operations required to complete a task. The ~ symbol represents bitwise negation. In

cases where logic operations are separated by a semi—colon, either is accepted as completion

of a task, but individuals are only rewarded for performing each task only once.
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Bonus = 2A*V (4.1)

In the 9-logic environment an organism always consumes exactly 1 unit of resource

when performing a logic function. This means performing NOT doubles its speed of exe-

cution while performing EQU causes it to execute 32 times as fast. In the limited resources

environment the amount consumed is determined by the resource parameters discussed

earlier, and the current availability of the appropriate resource. An organism may perform

each task at most once, and all bonuses are multiplied together to determine the total bonus

the organism will receive. An organism’s metabolic rate is updated only upon replication;

each organism executes at a speed based on the performance of its parent. '

The focus of the study by Lenski et al. was the evolution of the most complex opera-

tion, EQU. The authors found that EQU evolved only when at least some of the other eight

operations were rewarded, although no specific operation was required. The simpler oper-

ations act as building blocks toward the final complex task of performing EQU and there

are many ways to use those simpler tasks to build up to the EQU task. We repeated the

9-logic experiments from the previous Lenski et al. study using the newest version of the

Avida software (2.9) to ensure a fair comparison. The results were qualitatively similar to

the original data.

4.2 The Effects of Limited Resources

To examine the effects of limited resource inflow, we must first determine how far we want

to limit the resources and how they will compare the original, unlimited experiments. To

choose the range of inflow rates to explore, we refer back to Equation 3.5, and need to

determine values for T, (the number of updates an organism requires to reproduce), m (the

maximum amount of resources useable by an individual), and the population size.

To calculate Tr, we assume that the population will have a gestation time similar to
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the ones found in the 9-logic environment. The average gestation time in the 100 9-logic

control replicates that we performed is 189 (s=111), with the extreme outliers at 99 and

950; Tr can be approximated by dividing gestation time by 30, so this result puts Tr in the

range 3.3 to 31.7, with a mean of 6.3. Next, we plan to keep population size at 3600 and we

set m to 1, the amount of resource that can be used in the unlimited resource trials. Plugging

these values into Equation 3.5 gives 1 < 545 for the mean gestation time, and the extremes

of the range give I < 116 and I < 1090. As such, we performed experiments with inflow rates

of 10, 30, 100, 300, and 1000. We expect any inflow less than 545 to be at least slightly

limiting, on average. Figure 4.1 shows for each treatment the number of populations, out

of 100, that have at least one EQU-performing individual at a given update.

At the end of 100,000 updates of evolution, the four treatments using inflow rates of less

than 545 all yielded significantly more populations performing equals than the treatments

using an inflow rate of 1000 or with unlimited resources (Fisher’s exact test with Bonferroni

correction for multiple comparisons, largest p value comparing 67 (inflow 10) to 24 (inflow

1000) was 1.3e—9 before correction). Why did limiting resources lead to so many more

populations evolving EQU?

In order to answer this question we looked more closely at individual populations from

experiments using the unlimited resource environment and those using an inflow rate of

100 (as representative of the limited resource environments). We found that, as expected,

the populations that had evolved in a limited resources environment had higher pheno-

type diversity as measured using the Shannon index (p < .001 Mann-Whitney U test). We

defined phenotypes in this experiment based on the exact set of logic tasks an individual

performs; given nine logic tasks there are 29, or 512 possible phenotypes. The higher phe-

notype diversity found in the limited resource treatment supports the theory that EQU is

more likely to evolve when the population is sampling more of the search space giving

more potential paths for evolution to follow. However an analysis of the lineages of the fi-

nal EQU-performing individuals from each population yielded two other potential theories
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for why EQU appears more in the limited resources environments. The next two sections

cover these alternate possibilities.

4.2.1 Deleterious Mutations on the Path to EQU

The first alternate theory we explored is based on the value of deleterious mutations in

limited resources environments. This class of mutations that were harmful when they first

appeared frequently occurred along the lineages of organisms that evolved to perform EQU

in the limited resources environment, but were rarer in the unlimited resource environment.

In both types of environments these deleterious mutations caused the loss of one or more

tasks without any concurrent gain, but were followed soon after by a beneficial mutation

that gave the individual a different set of tasks and a higher overall reward. While a muta-

tion that causes only the loss of tasks is deleterious in both environments, it is much less

deleterious in the limited resources treatment assuming the tasks lost are being performed

by a large portion of the population and thus the corresponding resources are heavily de-

pleted. We know that deleterious mutations can be important for adaptive evolution in

unlimited resource populations (Covert, personal communication), and thus we propose

that these deleterious mutations may be important to evolving EQU. Thus an advantage of

the limited resources environment could be that it allows individuals with these mutations

to survive long enough in the population to undergo the potential compensatory beneficial

mutation whereas in the unlimited resource environment they are removed by selection too

quickly.

We found mutations causing task loss with no concurrent gain in 57 of the 79 lineages

that produced EQU in populations evolved in the limited resources environment, and in

16 of these this type of mutation immediately preceded the mutation that introduced EQU

into the genome. We found a mutation causing task loss with no gain in only 3 of the 21

lineages that produced EQU in populations evolved in the unlimited resource environment,

none of which were followed by the evolution of EQU. To test whether these mutations
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are significantly increasing the evolution of equals we performed 100 runs in each environ-

ment where we did not allow task loss to occur. Specifically each time a mutation occurred

we tested the mutated genome before placing the individual in the population, and if the

mutation had caused the individual to lost one or more tasks without gaining any others,

we ”sterilized” that individual. A sterilized individual is still put in the population and uses

CPU cycles, but it is not allowed to replicate. These experiments resulted in 31 popula-

tions performing EQU at 100,000 updates in the unlimited resource environment, and 74

populations in the limited resources environment. These are both consistent with the pre-

vious number of populations that perform EQU (Fisher’s Exact test, 31 vs. 21 p = .14, 74

vs. 79 p = .5). Thus we conclude that while these mutations may be used on the path to

evolving EQU, they are not necessary nor a factor in the success of the limited resources

environment in evolving EQU.

4.2.2 'Itading Less Complex Tasks to Gain EQU

A second pattern we noticed while analyzing the lineages was that individuals from both

treatments generally lose other tasks when they gain EQU, implying that EQU is often

evolved by co-opting part of the functionality of one or more of the other tasks. In the

limited resources environment these trade-offs almost always yield an individual with a

higher fitness no matter how many tasks are lost to gain EQU, because the unused resource

associated with EQU accrues such that any individual performing EQU receives a large

amount of energy. In the unlimited resource environment the reward for performing EQU

is higher than that of any other task, but an individual that trades two or more lesser tasks

to gain EQU will often lose energy overall and be selected out of the population. Thus

we posit our second theory that EQU appears more in the limited resources environment

because it is more conducive to EQU evolving by co-opting the functionality of lesser tasks.

We found that, on average, 3.07 tasks were lost to gain EQU in the unlimited resource

environment, and 2.4 in the limited resources environment. For each final population that
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evolved EQU, we took the most common EQU-performing individual and found the mu-

tation that first introduced the ability to perform EQU in its lineage. In every one of the

21 lineages from populations evolved in the unlimited resource environment the mutation

that introduced EQU increased the fitness of the individual. Of the 79 lineages from pop-

ulations evolved in the limited resources environment, 65 of the mutations that introduced

EQU would have been either neutral or deleterious had they occurred in the unlimited re-

source environment (33 neutral and 32 deleterious). These data support the theory that

EQU often evolves in the limited resources environment by trading off other tasks in a

manner that would not be beneficial in the unlimited resource environment.

We tested this theory directly by increasing the reward for equals in the unlimited re-

source environment by changing the complexity value for equals from 5 to 21. A value

of 21 means that gaining EQU will be beneficial to an individual even if it loses every

other task in gaining it. We found that the number of populations performing EQU at the

end of 100,000 updates increased significantly from 21 to 48 (p < .0001 Fisher’s Exact

test). Clearly the ability to trade off other tasks for EQU is an important factor, but still a

significantly higher number of limited resources populations evolved EQU (79) than even

the 48 that now performed EQU in the updated unlimited resource environment (p < .0001

Fisher’s Exact test), thus we conclude that easier tradeofls for EQU are not the only factor.

Rewarding EQU with a complexity value of 21 only addresses the potential to trade off

other tasks for EQU itself, however the ability to build more complex tasks on simpler tasks

could affect the evolution of tasks of intermediate complexity as well. We performed a final

test where we changed the complexity values for all of the tasks except the two simplest,

such that the reward for gaining each new complexity tier was large enough to overcome

the loss of all simpler tasks. Specifically, we set the reward values for the nine tasks to l,

1, 3, 3, 9, 9, 27, 27, and 81. We found that using this reward structure, 56 of the popula-

tions evolved in the unlimited resource environment performed EQU at 100,000 updates,

still significantly fewer than the 79 limited resources populations (p < .0001 Fisher’s Exact
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test). Trading off simpler tasks in order to gain more complex tasks is clearly important in

the eventual evolution of EQU, but it appears the limited resources environment yields an

advantage beyond changing the reward structure to encourage tradeoffs.

4.2.3 Diversity

Testing the trade—off theory highlighted the fact that populations sometimes evolved EQU

but then lost it. This revelation caused us to question whether the limited resources en-

vironment actually increases the likelihood of EQU appearing in a population or only the

likelihood of it being maintained in the population once it appears. If the increased diver-

sity in the populations evolved using limited resources is in fact providing evolution with

more paths to EQU, then EQU should appear in these populations more than in populations

evolved in the unlimited resource environment, regardless of whether it is maintained. Fig-

ure 4.2 shows the number of populations that have ever “touched” EQU, i.e. had an indi-

vidual placed in the population that is capable of performing EQU, as well as the number

of populations that currently have an EQU performing individual at a given update.

It appears that EQU does, in fact, appear earlier in the populations evolved in the limited

resources environment, but by 100,000 updates the difference in the number of populations

that have encountered EQU is negligible. To test if EQU also appears more often, we

perform 100 more replicate runs in each environment, but with the change that we remove

the reward for EQU, but still keep a count of how many times an individual has a mutation

that would cause it to perform EQU. We do not actually allow an individual that would

perform EQU to be placed into these populations, but instead replace any mutation that

_ would introduce the ability to perform EQU, and continue to do so until we find a mutation

that does not confer the ability to perform EQU. Table 4.2 shows the means across all 100

experiments of each treatment for the first update at which a mutation occurs that would

have caused an individual to perform EQU, as well as the average number of times per

1,000 updates an EQU-causing mutation appears after the first. Populations evolved in a
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Figure 4.2: Number of populations that ever touch EQU vs. number that currently perform

EQU. Solid lines show the number of populations across all 100 replicates that have ever

had an individual that is capable of performing EQU, regardless of whether it is maintained.

The + lines show the number of populations that currently have an individual capable of

performing EQU (the same data from Figure 4.1 for inflow 100 and unlimited resources

environments). The limited resources environment not only causes more populations to

maintain EQU, but for populations to first discover an individual that can perform EQU

earlier.
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limited resources environment touch equals both significantly earlier and more often than

those evolved in an unlimited resource environment (p < .001 Mann-Whitney U test).

 

 

 

 

Resources First update Number EQU touches after

touches EQU first per 1k updates

Unlimited 17848 40.4

Limited 9251 150.1   

Table 4.2: First update and number times populations touch EQU. Mean data across 100

replicate populations for each of two environments, one using limited resources and one

using an unlimited resource. The first update a population touches EQU is determined by

the first time the offspring of an individual undergoes a mutation that would cause it to

perform EQU. We count number of times a mutation causes this type of phenotypic effect

(after the first) over every 1,000 updates of Avida time and we present the mean of those

data in the third column of the table.

At first, these results indicate that the most likely explanation for the more frequent ap-

pearance of EQU in populations evolving in a limited resources environment is that these

populations were more diverse and thus there were more potential paths to EQU for evo-

lution to follow. On further inspection, however, we found that populations evolved in a

limited resources environment using an inflow parameter of 10 were even more diverse

than using an inflow parameter of 100 (in terms of Shannon diversity) and yet performed

worse based on all three metrics for the evolution of EQU. In fact the inflow 10 treatment

performs on par with the unlimited resource environment in the two measures of how often

a mutation causes EQU to appear in a population. Table 4.3 summarizes the data for the

three treatments.
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Num runs First update Number EQU Shannon

perform EQU at touches EQU touches after first diversity

100k updates per 1k updates

Unlimited 21 17848 40.4 .31

Inflow 79 (159/200)i 9251i 150.1i .791’

100

Inflow 67 (135/200)i* 16796* 22.4* 1.34i*

10  
 

Table 4.3: EQU data for different resource environments. Mean data across 100 replicate

populations for each of three environments, one with unlimited resources and two with lim-

ited resources using different inflow parameters, 10 and 100, respectively. The T symbol

designates a value that is significantly different from the unlimited resource environment

data. The * marks values from the inflow 10 limited resources environment that are signifi-

cantly different than the inflow 100 environment. We used Fisher’s Exact test to determine

significance for the first column data, and Mann-Whitney U tests were used for all other

comparisons, as the data were not normal.
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To understand why the more diverse populations from the inflow 10 treatment might be

less likely to evolve EQU we looked at the number of tasks the average individual in the

population is performing. Lenski et al. found that EQU is built on the other eight subtasks,

and we showed earlier that individuals on average trade off more than two other tasks

when they gain EQU. Thus it is likely (and intuitive) that the more subtasks an individual

is performing, the more opportunity for EQU to evolve by co-opting the functionality of

one or more of those tasks. Figure 4.3 shows the average number of distinct tasks being

performed by at least one individual in each population, and the average number of tasks

being performed by each individual itself (averaged only over individuals that are doing

any tasks at all). At a population level the inflow 10 treatment performs just as many tasks

as the other two, but each individual in the population performs significantly fewer tasks.

In fact the average individual from the inflow 10 treatment performs fewer tasks than are

generally lost by individuals in the other two treatments in order to gain EQU. It seems

highly likely that the low number of subtasks performed by any one individual makes it

difficult for EQU to evolve in this environment.

To test if the low number of tasks performed by the average individual is the factor

degrading the performance of the inflow 10 treatment in evolving EQU, we performed

another set of 100 experiments in each of the three environments where we restricted the

number of tasks any single individual was allowed to perform to three. If an individual

performed more than three tasks it is was not rewarded for any but the first three. Table 4.4

shows the same data as table 4.2 for the experiments with the three task limit per individual.

As expected the inflow-100 and unlimited resource treatments perform significantly worse

when individuals are limited to performing no more than three tasks, while the inflow 10

treatment performs equally as well as before. The overall result is that the performance of

the two limited resource treatments is now qualitatively equivalent in all three measures of

EQU evolution while the performance of the unlimited resource treatment is significantly

worse than either (see table 4.4 for statistics). This is consistent with the theory that higher
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Figure 4.3: Mean number of tasks performed by populations vs. individuals. Means across

100 replicate populations from three environments, one with unlimited resource and two

with limited resources using inflow parameters of 10 and 100 respectively. The population

lines represent the number of tasks being performed by the entire population at that time,

though different individuals are perforating different tasks. The individual lines represent

the mean number of tasks being performed by only individuals in the population that are

performing at least one task, zero task organisms are not counted.
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diversity is driving the increased evolution of EQU. Note that the populations evolved in

the inflow-10 environment are still more diverse than those evolved using an inflow of 100,

but the difference is slight and perhaps not enough to make a difference in the evolution of

EQU.

 

 

 

 

Num runs First update Number EQU Shannon

perform EQU at touches EQU touches after first Diver-

100k updates per 1k updates sity

Unlimited 10 29567 3.5 .23

Inflow 63i 15230”r 19.0i 1.011‘

100

Inflow 64’r 16933”r 18.2i 1.22i*

10   
 

Table 4.4: EQU data when restrict individuals to perform no more than 3 tasks. Mean data

across 100 replicate populations for the same three environments as table 4.3 but where in-

dividuals are restricted to being rewarded for at most three tasks. The T symbol designates

a value that is significantly different from the unlimited resource environment data. The *

marks values from the inflow 10 limited resources environment that are significantly differ-

ent than the inflow 100 environment. Fisher’s Exact test was used to determine significance

for the first column data, and Mann-Whitney U tests were used for all other comparisons,

as the data were not normal.
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4.3 Conclusion

In this chapter I have shown that competition for limited resources increases the diversity

of populations of digital organisms, and improves the evolution of complex traits. Some

of this improvement is caused by the reward structure inherent to the limited resource

environment; individuals that trade off several subtasks in order to gain a new task still

receive a fitness bonus as the unused resource associated with the new task is abundant.

However we showed that the most complex trait, EQU, actually appeared more often and

earlier in populations evolved in the limited resources environment, regardless of whether

it was maintained. The most likely reason for this increased appearance is that the higher

phenotypic diversity caused by competition for limited resources creates more potential

paths evolution can follow to produce the complex trait.
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Chapter 5

Using Limited Resources to Evolve

Diverse Solutions

In Chapter 4 we showed that competition for limited resources can improve the evolution

of a single complex trait that is built on subtasks. However, much of the previous work on

sharing techniques in evolutionary algorithms is focused not on evolving a single solution

to a complex problem, but rather on obtaining a final population of diverse solutions that

together represent the overall solution to a problem. For example in learning classifier

systems the overall solution is an entire population of rules, or in an artificial immune

system a population of antibodies. In this chapter I explore the dynamics of incorporating

competition for limited resources into a simplified version of the Avida digital evolution

system used in Chapters 3 and 4, both to speed up the evolution of high quality solutions

and to increase the diversity of solutions co-existing to “cover” a solution space, rather than

relying on a single all-purpose final solution to a complex problem.

5.1 Binary String Cover Problem

I use binary string covering as a diagnostic problem for this study because it is relatively

simple and will allow a clear analysis of the behavior of an environment with and without
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limited resources. Binary string covering has also been used in several other studies on

niching techniques, including Forrest and Smith’s implicit fitness sharing in a simple im-

mune system (Forrest et al., 1993; Smith et al., 1993), and Potter’s population subdivision

algorithm for automatic problem decomposition (Potter and DeJong, 2000). The problem

consists of finding a binary vector x that is as close a match as possible to a set V of N

binary vectors. The match value for x on each vector v,- in V is defined as

0 ifbi < [/2

S(x,vl-) = (5.1)

(2% — 1)2 otherwise

where all strings are of length l and b,- is the number of bit positions perfectly matched

between x and ”1* Unless the vectors in set V are all identical no single value of x will be

able to perfectly optimize all objectives, and trade-offs must occur. Forrest et al. show that

this simple problem has applications as an abstract version of an immune system. Each

vector in the set V may be viewed as an antigen (a foreign cell), and each vector in the

population as an antibody. The. immune system is able to recognize a large number of

antigens with a much smaller number of antibodies. A population of diverse antibodies

must be maintained with a balance between generalists and specialists to best match any

antigen. We analyze the behavior of our system in this case and the conditions necessary to

maintain multiple match vectors (antibodies) in the population that cover different vectors

in V (antigens). The match score of an antibody on a given antigen is based on the number

of bits that are the same, which is posed slightly differently than in Forrest et al. where a

match was based on complimentary bits, but for all practical purposes these problems are

identical.

Each vector in the set V can be viewed as a single objective in a multi-objective func-

tion. The overall fitness of a vector x is based on its optimization of match values for each

objective vector. However unlike a typical multi-objective problem, our goal is not to find

a pareto-front of all possible trade-offs, but to evolve a population that covers all antigens
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as well as possible. Therefore our fitness function is designed to encourage the precise

matching of bit strings when possible, but if N is large it becomes more important to find

generalists matching specific patterns that are common to many vectors in set V than to

match any single string.

5.2 Avida as a Genetic Algorithm

These experiments were performed using a simplified version of Avida that functions as a

steady-state genetic algorithm. Examining the effects of competition for limited resources

in a traditional genetic algorithm allows me to directly compare between the results of these

experiments and those of previous niching studies. It is also a first step in showing that this

method could be implemented in any EA, and simplifies analysis of the effects of using

limited resources versus a traditional genetic algorithm. I chose to implement this genetic

algorithm within the Avida framework because it will facilitate transitioning to using the

full version of Avida when applying this method to solve more complex problems.

In this simplified version of Avida each digital organism consists of a binary sequence

of ones and zeros. We use an explicit fitness function to evaluate their match to each antigen

sequence in the environment. The organisms do not self-replicate; instead they are auto-

matically replicated in time inversely proportional to their fitness; 3 higher fitness means

faster replication. The limited resources environment remains the same, however, and the

organisms are still placed on a toroidal grid giving a spatial component to the environment.

For this problem, each organism encodes a binary string representing one antibody. An

additional change in this version of Avida to more closely resemble a genetic algorithm is

that organisms reproduced sexually, crossing over only with neighboring organisms on a

toroidal lattice and placing offspring adjacent to at least one parent. The mating-restriction

and replacement strategy yield an implicit crowding effect, which helps to maintain rare

species and reduces the probability of crossover between dissimilar individuals.
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5.3 Binary String Cover Problem in Avida

Upon replication, an organism is evaluated by determining its match quality as compared

to each string in V, using the function S defined above. Note that if an organism matches

fewer than half of the bits for a given string, it receives a match quality of 0. For each

match score greater than 0, the organism receives a fitness bonus determined by the match

score and the environment. The bonuses for each match are multiplied together to attain

the final fitness of an organism. The environments with limited resources (as discussed

in Chapter 3) are compared to those with unlimited resources for each of the following

experiments. The limited resources environment includes one resource for each string in

V; the bonus an organism receives for matching a string is therefore dependent not only on

the match quality S but also on the availability of the corresponding resource. The bonus

an organism receives and the amount of resource consumed from the environment (A) are

determined by the following equations, given a current availability ofR units of resource in

the environment, and a maximum cap on consumption m.

A = min(S*Cf*R,m) (5.2)

Bonus = 2A (5.3)

I set the resource inflow and maximum to appropriate levels based on the findings of

Chapter 3. In this simplified version ofAvida we fixed the gestation time of individuals such

that approximately one population generation occurs each update, or Tr 1. The experiments

in this chapter use smaller population sizes (N = 200 or N = 500) than those in Chapter 4,

to more closely resemble the typical population sizes used in previous niching studies. For

the smallest population size, Equation (3.5) thus gives

I< 200*m (5.4)
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In Chapter 3 we found that a higher maximum consumption value (m) limits the amount

subpopulations overshoot expected stable state levels. At these smaller population sizes

this may be important, so we set m at 5 instead of 1 as in Chapter 4. The inflow therefore

must be less than 1000 in order to be limiting; we set I at 100. In the unlimited resource

environment the bonus each organism receives is based only on the match quality S, but

with a multiplier of 5 to match the maximum setting in the limited resources environment.

5.4 Effects of Limited Resources

We first tested that limiting the resources available for matching each antigen allows our

system to find and maintain diverse types of antibodies in the population. We created an

environment with three antigens each associated with a unique resource. The bit strings

corresponding to these antigens were:

111100110000111100110000

000011110000111100001111

111100001111000011110000

These sequences represent three distinct peaks in the fitness landscape (later, we explore

the behavior of our system given overlap between peaks). Figure 5.1 shows the number of

antibodies in the populations that perfectly matched each of the antigens after 100 genera-

tions, given the two environments described above. Two sample populations are included

along with the average results across ten populations. Each population consisted of 200

individuals.

The unlimited resource environment led populations to find and perfectly match exactly

one antigen, although different populations matched different antigens. Each population

evolved using the limited resources environment, however, diversified to perfectly match

all three antigens, with approximately 1/3 of the antibodies in a population matching each

of the antigens. Note that the first string shares half of its bits with each of the other two,
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Figure 5.1: Matching antigens. Number of antibodies produced that perfectly match each

of three antigens (blue, red, and green represent antigen patterns 1, 2, and 3 respectively)

after 100 generations of evolution in populations of 200 individuals. (a) Two typical popu-

lations and the average of ten populations using an unlimited resource environment. Each

population is able to maintain only one type of antibody that perfectly matches a random

antigen. (b) The same data for populations using limited resources where one resource is

associated with each antigen. Populations reach a stable state with approximately an equal

number of individuals producing antibodies to match each antigen.
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while the second two strings are opposites of each other. It is likely that this is why the

unlimited resource environment converges to the first string in the match set more often than

either of the other two; in every population a generalist immediately sweeps that matches

more than 1/2 the bits of two strings, either the first and second strings or the first and third

strings from the match set. The match score S encourages specialization, however, and thus

eventually the entire population converges to perfectly match one or the other of the two

initial strings. The fact that the first string in the match set is always one of the two strings

initially present gives it twice as high a chance of being the final string in the population as

either of the last two strings in the match set. We performed 40 more replicate experiments

for a total of 50 evolved populations and found that antibodies matching the first string

from the match set swept 26 populations, while antibodies matching the second and third

strings each swept l2 populations, exactly as predicted by the proposed explanation.

5.4.1 Ability to Generalize Appropriately

Limiting resources in the environment allowed the system to maintain diverse antibodies

perfectly matching different antigens in this simple case, but we are interested in how it

will generalize to match a large number of antigens given a smaller number of antibodies.

To explore this question we created a set of 100 antigens, but we embedded patterns among

this set to analyze the ability of our system to automatically find and exploit these patterns

in a case where it’s not practical to perfectly match every antigen.

We built a match set with 100 antigens and embedded one of the following three patterns

into each antigen.

110011001100

001100110011

110100110100

These patterns were placed into every other bit of an antigen’s sequence, so an antigen
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built on the first pattern looks like

1#1#0#0#1#1#0#0#1#1#0#0#

where the # represents a random bit. We created 33 different antigens following this first

pattern, then 33 and 34 of the other two patterns, respectively. Figure 5.2 shows the number

of antibodies in a population that perfectly matched each of the three patterns given above

(ignoring the random bits). In this experiment, each population contained 500 individuals.

Both environments found and exploited patterns, but once again limiting resources in the

environment allowed the populations to diversify and maintain antibodies matching each

pattern, while the unlimited resource environment was able to find antibodies matching

only one pattern in each population. Note that even across all 10 replicate experiments the

unlimited resource environment never discovered one of the three patterns.

Potter noted that his population subdivision method found antibody solutions that

matched slightly more than the expected number of bits when averaged across all of the

antigens, and that up to a point the algorithm did slightly better, on average, the more

species it subdivided into. The reason for this improvement lies in the random bits alter-

nating with the pattern in each antigen. These bits were chosen randomly for each of the

100 antigens, but simply through chance the distribution of 1’s and 0’s for each of these

bits was not uniform. Therefore it is possible for a population to find less obvious patterns

among these random bits and match them as well, creating more than three actual niches.

We tested the limited resources environment to see if it exploited these extra niches cre-

ated by the non-uniforrnity in the random bits. We found that the average proportion of

the random bits matched across all antigens by each of the common antibodies (those that

represent at least 5% of the population) was 0.57 in the limited resource environment. This

is significantly higher than the 0.5 we would expect if the random hits were completely

uniform (p < .001, t-test).

The higher average match value seems to indicate the algorithm did find and exploit

the niches created by the random bits, however an alternate explanation could be that the
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Figure 5.2: Matching embedded patterns. Number of antibodies produced that perfectly

match each pattern embedded in the set of antigens after 100 generations of evolution in

populations of 500 individuals. (a) Two typical populations and the average of 10 popula-

tions using 100 unlimited resources, one associated with each antigen. These populations

are able to maintain only one type of antibody that perfectly matches one of the patterns.

(b) The same data for populations using limited resources. Populations reach a stable state

with an approximately equal number of individuals producing antibodies to match each

embedded pattern.
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populations were perfectly matching three individual antigens, one containing each pattern,

since the fitness function encourages specialization. Once again we analyzed the common

antibodies across all trials and found that only 8% of the antibodies are exact matches to any

single antigen. Clearly the individual antibodies were not simply matching single antigens,

but were they finding patterns in the random bits? Figure 5.3 matches the proportion of

the 100 antigens that contained a 1 at each bit position with the proportion of the dominant

antibodies that contained a 1 at the same position. In all cases, if the proportion of ones

in the antigens was above 0.5, so was the proportion of ones in the antibodies. Also the

further from 0.5 the proportion of ones in the antigens was, the more that position affected

the antibodies. Positions 6, 7, 9, and 10 were the only four positions that were skewed more

than 0.05 from a proportion of 0.5 ones, and they also clearly had the biggest effect on the

antibodies. The populations are achieving the higher match score averages by exploiting

less obvious patterns in the 100 antigens arising from the non-uniformity in their random

creation.
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Figure 5.3: Exploiting hidden patterns. Proportion of each random bit position that is

a 1 across all antigens and antibodies. The antibodies exploit the non-uniformity in the

distribution of 1’s and 0’s in the antigens to achieve a slightly higher match than would be

expected.
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We performed a final test of continuing the evolution of each population for another

1000 generations after the first 100, but without mutations and sex (crossover). This eco-

logical phase allowed us to see how many antibodies the populations were actually main-

taining in a steady state. We found that 17 of the 20 populations maintained the same 6

antibodies; the other 3 populations each maintained one extra antibody, but in a small pro-

portion that most likely would not last indefinitely. Of these 6 antibodies, only 1 was a

perfect match for any one of the antigens, the other 5 represented niches created by the

patterns plus the non-uniform random bits. This result shows the limited resources envi-

ronment is not only able to exploit frequent and clear patterns quickly and efficiently but

also to find less obvious patterns to form a better solution cover.

5.4.2 Frequency Dependent Matching

Forrest et al. found that in their system antibodies matching a given antigen occurred

with a frequency proportional to the sampling rate for that antigen. Frequency dependent

matching of antigens is generally a desired behavior; the more an antigen appears the more

antibodies will be needed to find and neutralize it, and the more important it is to have an

antibody matching that antigen as closely as possible. We found that the limited resources

environment also causes frequency dependent matching, as shown in Figure 4. We once

again used a set of 100 antigens with the same three embedded patterns, but this time we

embedded each pattern in a different proportion of the antigens, 0.55, 0.3, and 0.15 for

patterns 1, 2, and 3 respectively. Figure 5.4 shows the population equilibrium reached after

200 generations of evolution in a population of 500 individuals. Every population reached

a similar equilibrium with the antibody patterns present in close proportions to the antigen

patterns. The same amount of resource inflow is associated with each antigen, so if many

antigens with the same pattern appear in the antigen set, there will be more overall resource

available for matching that underlying pattern, and more individuals producing matching

antibodies will be maintained in the population. The same experiment performed in the
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unlimited resource environment yields all populations matching only the most frequent
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Figure 5.4: Frequency-dependent matching. Number of antibodies produced that perfectly

match each pattern embedded in the set of antigens (with uneven frequencies of 0.55, 0.3,

and 0.15 respectively) after 200 generations of evolution in populations of 500 individuals

using limited resources.

The frequency of patterns in the antigen set also affects the dynamics of antibody evo-

lution. Figure 5.5a shows the highest proportion of each pattern matched by any antibody

in the population. The initial population was generated randomly and on average the best

match on each pattern was around 80% of the possible bits. The best matches on the two

more frequent patterns diverged from the least frequent pattern; the populations quickly

evolved to perfectly match the most frequent pattern, and found a perfect match for the

second most frequent almost immediately thereafter. The best antibody match for the least

frequent pattern actually degraded for the first 30 generations (when a greater selective

pressure still existed for the first two patterns) before building up to a perfect match as the

population reaches a steady state.

To gain some insight into this pattern of evolution we looked at the number of antibod-

ies matching more than half the bits in a pattern instead of the number of antibodies that

match perfectly. One antibody can match more than half the bits in multiple patterns, but
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only if it does not match any one pattern perfectly, due to the nature of the patterns. The

individuals that produce antibodies matching more than half the bits in a pattern can there-

fore be thought of as being on a pathway toward evolving that pattern, even if they haven’t

found the complete match yet. Figure 5.5b shows the number of individuals focusing on

each pattern over the first 200 generations of evolution.
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Figure 5.5: Order of pattern evolution. Evolution of antibodies over 200 generations av-

eraged over 10 replicate populations of 100 individuals. (a) The proportion of bits in an

antigen pattern that the best matching antibody in the population covers. The population

evolves to match the two most frequent antigen patterns quickly, but takes over 150 gener-

ations on average to find a perfect match for the third infrequent pattern. (b) The number

of individuals in the population producing antibodies that match more than 1/2 of each pat-

tern. There is an initial decline in the number of organisms focusing on the least frequent

pattern, but the count climbs again as the resource levels reach equilibrium. The initial

small number of individuals at all matching the infrequent pattern explains why it takes a

longer time to evolve a perfect match.

In the initial population the same number of individuals are focusing on each pattern

due to random chance, but the distribution of resources causes more to focus on the most

frequent pattern, while the number focusing on the least frequent pattern declines. The

more abundant resource associated with the first pattern compared to the third pattern gives

56



those individuals matching it a selective advantage. However, as fewer individuals attempt

to acquire the resources associated with the third pattern, these resource levels accumulate;

more resource is flowing in each generation than flows out or is being used by the popula-

tion. If the population focuses on only the first two patterns, the resource associated with

matching the third pattern will grow to a sufficient amount where an individual that only

partly matches it will receive more resource than another who perfectly matches either of

the other two patterns. This dynamic will lead the population of individuals matching the

third pattern to expand. As more individuals focus on the third pattern a perfect match will

be found, and the population will reach a steady state with perfect matches for each pattern.

5.4.3 Overlapping Niches

All of the experiments discussed thus far have used three antigens or three patterns con-

tained in a set of antigens that represent distinct fitness peaks; that is, the niches over-

lap minimally. Next we tested the behavior of the limited resource environment given

niches with more overlap, by creating a set of four antigens represented by the following

bit strings:

111111000000000000000000

000000111111000000000000

000000000000111111000000

000000000000000000111111

Clearly if only one antibody could exist the best generalist would be a string of all

0’s, matching 75% of each of the antigens. However the match score function we use to

determine fitness is designed to encourage specialists, resulting in a generalist of all 0’s

and any single specialist perfectly matching one antigen receiving the same total fitness. A

specialist antibody that perfectly matches one of the above strings would match all 24 bits

of the corresponding antigen, but only 12 bits of each of the other three. Its fitness would
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therefore be

21*20*20*20=2 (5.5)

across the four antigens (the fitness function rewards individuals only if they match

more than 1/2 the bits of a given antigen). A generalist antibody represented by a string of

all 0’s would match 18 bits of each of the four antigens, giving it a fitness of

Therefore we expect each of the four specialists and the generalist of all 0’s to be

equally competitive in the unlimited resource environment. Our expectation for the lim-

ited resource environment is based on Tilman’s theory on competition for limited resources

in natural ecologies. Assuming there are no other interactions affecting fitness dynamics in

the population, we can still expect populations to be able to stably support only four species

(in this case distinct phenotypes), as there are only four limited resources in the environ-

ment, one associated with each antigen. Theoretically this calculation means it would be

impossible for the four specialists and the generalist to coexist. In fact, we would expect

that a population can support either the four specialists in a stable state of equal propor-

tions, or the generalist alone. We assume that these two stable outcomes will occur with an

equal likelihood.

Figure 5.6 shows the results of this test in both the unlimited and the limited resource

environments. In the unlimited resource environment we get the expected result that the

population can support only one species and in some replicates it converges to a specialist,

but in most the generalist takes over. However in the limited resource environment we find

that the generalist dominates the population in all 10 replicates.

Why is the generalist so successful? There are several possible contributing factors, but

the primary reason comes from the fact that the solutions are using sexual recombination,
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Figure 5.6: Overlapping Niches. Number of antibodies produced that perfectly match each

of four antigens and one generalist represented by string of all 0’s. Data are recorded after

500 generations of evolution in populations of 500 individuals. (a) TWO typical populations

and the average of 10 populations in the unlimited resource environment. (b) TWO typi-

cal populations and the average of 10 populations using an environment with four limited

resources, one associated with each antigen.
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and one of the products of the crossover of any two specialists in this task is the generalist

antibody of all 0’s. Mutation-selection balance will therefore cause the specialists to pro-

duce the generalist, but the reverse is not true. When we perform these same experiments

using the limited resource environment, but without any form of crossover, we find that 6

out of 20 replicates reach a stable state with all four specialists and no generalists.

Why does any imbalance remain? The generalist does have a second slight advantage.

Specifically, once the population reaches a state with either the four specialists or the single

generalist, this state is stable and unlikely to be disturbed; we found in experiments that

invasion by a rare type (or types in the case of the four specialists) was uncommon. This

result indicates that whichever state evolves to dominate the population first will likely

remain dominant. The generalist antibody matches 12 bits of each of the antigens and has

the ability to exploit any one of the four resources that is available at a higher level than

the others. Therefore, for the specialists to dominate the population, they must all evolve at

least to the point of matching 12 of the bits of their respective antigen before the generalist

evolves. We found that if we start populations with equal proportions of each of the five

genomes (the four specialists and the generalist), 16/20 populations reach a steady state

with the four specialists and just four are swept by the generalist. Given that we started

populations with 20% generalists, it is expected given a random walk that the generalist

would dominate the population 20% of the time, which is exactly what we see here.

The fact that the limited resource environment encourages the generalist to evolve is, in

part, a bi-product of the fitness function we used and the fact that the generalist and each

specialist are assigned the same fitness, given equal levels of all resources. We can easily

change the fitness function to bias selection in one direction of the other. We explore this

dynamic by modifying the fitness function such that an individual’s match factor is cubed

instead of squared (see Equation (5.1)), leading to a greater increase in resources acquired

for each extra bit matched.
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0 if b,- < 1/2

S(x,vi) = (5.7)

(255 — 1)3 otherwise

The fitness of the specialist will still be

21*20420420=2 (5.8)

as before, but now the fitness of the generalist will b

and the specialists will have a selective advantage given equal levels of each resource.

Figure 5.7 shows the resulting populations after 500 generations of evolution. The four

antigens are now perfectly matched in equal proportions by the population of antibodies.

We also find that the generalist antibody represented by the string of all 0’s is still main-

tained in the population at a low frequency, however this is not stable, but due only to the

fact that it is constantly being generated by crossover between specialists. If we switch to

an asexual population the generalist disappears completely.
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Figure 5.7: Selection for specialists. Number of antibodies produced that are generalists

(represented by all 0’s) four specialists that perfectly match each of four antigens. Data

recorded after 500 generations of evolution in populations of 500 individuals. The bar

chart depicts two typical populations and the average of 10 populations using a modified

fitness function designed to add selection pressure for specialists.
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5.5 Conclusion

This initial work has shown that natural competition for limited resources enabled popu-

lations to find and cover multiple niches in a bit-string matching problem that is a simple

analogy to the human immune system. Populations were also able to find effective gener-

alists by exploiting patterns in the set of antigens to be matched when there weren’t enough

antibodies to support perfect matching on each antigen. Varying the strength of selection

for specialists in the fitness function allows us to select for specialists or generalists when

niches are highly overlapping. The dynamics of competition for limited resources as a nich-

ing mechanism become more complex when niches overlap, this method is more clearly

applicable when resources can be associated with functions that represent distinct peaks in

the fitness landscape.
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Chapter 6

A General Ecology-Based Evolutionary

Algorithm and its Application to a

Real-World Problem

In Chapter 4 we showed that the natural mechanism of competition for limited resources

can increase the diversity of an evolving population and accelerate the evolution of so-

lutions to complex problems, In Chapter 5 we applied these concepts to an evolutionary

algorithm focused on a simple diagnostic problem and demonstrated that it could discover

and maintain a diverse set of solutions. Here, we introduce the general form of an ecology-

based evolutionary algorithm (Eco-EA) that uses this mechanism, and apply it to a real-

world problem in software engineering.

6.1 Eco-EA

Competition for limited resources can be implemented in any evolutionary algorithm to

increase diversity. The Eco-EA requires that for each trait to be evolved an associated

limited resource must be created and governed by the parameters described in Chapter 3.



When an individual manifests a trait associated with a resource, it receives a fraction of

the currently available resource, and its fitness is increased by a proportional amount. This

resource sharing method differs from existing sharing methods in two ways:

1. The resources are directly tied to phenotypic functionality, as opposed to using a

genetic or phenotypic distance measure. Functionality based resources are simpler

because you do not have to determine a distance metric for sharing. Additionally,

the algorithm can find and cover niches both close together and far apart in the same

fitness landscape. The disadvantage is that you must known of what traits should

be rewarded, but most real world problems have this property, at least in terms of

low-level of building blocks.

2. The researcher can control how much resource is given to different functions (by

setting the inflow rate higher or lower), such that if some domain knowledge is known

it can be easily exploited. As I explore in Chapter 6, subtasks can be assigned less

resources than larger pieces of a problem and the availability of resources can be

made to vary both temporally and spatially.

6.2 Evolving Behavioral UML Models

I implemented the Eco-EA in Avida, and applied it to a real-world application of evolving

UML models for controlling nodes in a remote sensor network. I modified Avida in a

similar fashion as in Chapter 5; individuals are evaluated using an explicit fitness function

to determine the speed at which they can produce offspring. However, unlike Chapter

5, individual genomes are not binary strings, but rather are sequences of special-purpose

instructions that build a UML model, and I do not use crossover during replication. I used

the same resource settings as in Chapter 5 for the limited resources environment, an inflow

of 100 units of resource per update (where the gestation time of organisms is fixed such

that 1 update ~ 1 generation), and a maximum consumption value of 5.
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6.2.1 Avida-MDE

For this study, I used a software engineering extension to Avida called Avida-MDE (Avida

for Model-Driven Engineering), previously developed by Goldsby and Cheng (October

2008). Here I briefly describe the motivation for the creation of Avida-MDE, establish its

links to real-world problems, and provide a high-level overview of how it uses Avida to

automate software engineering research.

Model-driven engineering is a leading software engineering approach to developing

complex software-based systems, including on-board control software for automotive and

flight systems, ecosystem monitoring, and robotic systems. Many of these systems are con-

sidered high-assurance, meaning that they must satisfy safety requirements under a variety

of environmental conditions. Model-driven engineering works by systematically refining

graphical models that can be analyzed for adherence to requirements using a variety of

analysis tools, and then automatically used to generate code (Schmidt, 2006). Konrad et al.

(2007) have proposed a modeling and analysis process for such high-assurance systems,

where a system is represented by a class diagram that captures the structural elements and

several behavioral models (Goldsby & Cheng, July 2008). A given behavioral model com-

prises a set of state diagrams, one for each class in the class diagram, and represents the

behavior of the system under specific environmental conditions.

Manually developing the behaviOral models for a system can be tedious and error prone,

since each model must be created independently and it requires the developer to have fore-

knowledge of the possible environmental conditions. Avida-MDE is a digital evolution tool

that automates this process by generating a suite of behavioral models given information

from the class diagram. At a high level, Avida-MDE accepts a list of triggers, guards, and

actions (created using class diagram elements) as input. These inputs are provided to each

digital organism, which uses them as raw material for constructing a set of state diagrams.

We implemented a new genetic language in Avida-MDE to enable organisms to manipulate

the state diagrams and thus change the behavior of the model it generates. The details of
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this language and how the digital organisms generate models can be found in the previous

papers by Goldsby & Cheng (2008). The key concept is that a mutation to an organism’s

genome changes the behavioral model that it creates.

To evaluate the generated behavioral models (and thus the organisms themselves),

Avida-MDE uses a suite of software engineering tools. We added several tasks to the

Avida environment, which have previously been linked only to constant rewards. Software

engineering metric tasks, such as minimizing the number of transitions and maximizing

the number of deterministic states, guide the evolutionary process to generate models that

adhere to commonly advocated software engineering practices. Scenario tasks reward or-

ganisms for creating models that support one desired execution path, or scenario. Scenar-

ios encapsulate small excerpts of model behavior that can be combined and expanded to

achieve the desired overall system behavior. To account for the uncertainty in the execution

environment, a developer can specify two types of scenarios; (1) requiredfimctional sce-

narios must be supported by the generated models; (2) non-functional (NF) scenarios each

of which specify a different way to achieve the same functional objective with different

non-functional characteristics (e.g., quality, reliability). A model must support at least one

of each type of NF scenarios. The specific NF scenario supported by a model impacts its

non-functional behavior. Next, witness property tasks reward models for having at least one

execution path that supports a desired system property. Finally, property tasks are included

to reward models for having all possible execution paths support a desired system property.

For example, “no data are ever lost,” “battery levels never drop below a threshold value,”

or “water level never exceeds a maximum value.” Therefore, no matter what the system is

performing, these properties are always maintained.

6.2.2 Grid-Stix

Avida-MDE was previously used to generate behavioral models for GridStix, a light-weight

flood warning system that comprises a set of sensor nodes. GridStix is used to monitor the
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water levels for potential flood conditions with the River Ribble in England (Hughes, 2006).

Flooding is an increasing and costly problem for the United Kingdom, and early flooding

predictions enable fast responses to avert flood damage. However, prediction accuracy

must be balanced by two other non-functional considerations: energy efficiency (because

sensor nodes have a limited power supply) and fault-tolerance (because sensor nodes are

deployed remotely). The objective of the case study was to generate a suite of behavioral

models for a single sensor node, where the models make different non-functional tradeoffs

(i.e., different combinations of energy efficiency, prediction accuracy, and fault-tolerance)

and yet all satisfy the overall functional objective of monitoring the river, collecting data,

and notifying nearby nodes.

Different scenario tasks captured different non—functional tradeoffs. Specifically, three

tasks rewarded models that supported scenarios for setting different CPU speeds while

completing various functions on the sensor, and six tasks rewarded models that supported

scenarios where the sensor used different data transmission methods. A model needs only

one path that performs a scenario behavior in order to receive the associated reward, and

can receive a partial reward for partial completion of a scenario. For example one scenario

required a node to set its CPU speed to 100, then query the pressure sensor at this speed for

the water depth, and finally to set its depth data to the query result. A model received 50%

of this scenario task reward if it set its CPU speed to 100, 75% if it also queried the pressure

sensor, and 100% if it completed the entire scenario. Witness and property tasks built upon

the scenario tasks to reward for desired overall system behavior; for example sending flood

predictions based on current water depth. This prediction-sending witness task rewarded

organisms that developed models that contained an execution path that checked the water

depth, calculated a prediction, and transmitted that prediction. The associated property

task rewarded a model only if every possible execution path performed that same behavior.

Checking if a model supported a scenario was simple and quick, however checking if a

model satisfied a witness or property task was difficult and time-intensive; in the worst
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case all possible execution paths of the model had to be checked.

To avoid unnecessary witness and property task checking, we required the models to

support a minimum set of scenarios before we considered them as candidates for satis-

fying overall system properties. For example, a model could not perform the previous

witness/property example of sending a prediction based on current water depth if it did not

use some method to check the water depth and successfully send its prediction. Thus, there

was no reason to check for this system property unless a model supported one scenario

associated with each of those behaviors. In fact, to satisfy any of the Grid-Stix behavioral

requirements, a model needed to support one of each of the scenario alternatives (i.e., one

CPU speed and one transmission method), as well as three other required scenarios. These

combinations of the three CPU speed scenarios and six transmission method scenarios

yielded 18 possible behavioral models or phenotypes, each of which represented a differ-

ent combination of the non-functional properties (energy efficiency, prediction accuracy,

and fault-tolerance). Although the previous Avida-MDE study successfully generated sat-

isfactory behavioral models that represented some of the phenotypes, diverse models were

found only by evolving many separate populations (the original study evolved 40 separate

populations each with 3,600 individuals), and still the experiments were unable to discover

all 18 phenotypes.

6.2.3 Generating a Diverse Suite of Models with Different Non-

functional Properties

Our first objective was to assess how well the Eco-EA version of Avida-MDE performs

compared to the original, unlimited-resource version of Avida-MDE. The Grid-Stix prob-

lem provides an excellent case study for comparison, since one of the desired outcomes

is to generate a suite of models, each of which minimally satisfies the required properties

specified by the developer, but may also contain additional behavior that makes it suitable

for domains that were not explicitly provided. A simple way to determine what additional
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behavior a model may possess is to consider which scenario it uses from each of the non-

functional scenario sets. As described previously, there are 18 possible combinations of

NF scenarios and therefore 18 unique phenotypes a model may represent, each of which

yields a slightly different behavior in terms of energy efficiency, prediction accuracy, and

fault-tolerance. The original version of Avida-MDE was able to evolve only 14 of the 18

possible phenotypes, even across 40 runs.

We compared the efficacy of the Eco-EA version of Avida-MDE in evolving a diverse

suite of models to Goldsby and Cheng’s previous results. The key difference between the

two approaches is how the NF scenarios are rewarded. In both versions of Avida-MDE,

organisms can receive a fitness gain for only one scenario from each of the sets of NF

scenarios (in the Grid-Stix study, one CPU speed and one transmission method). In the

original Avida-MDE all tasks in the environment, including these scenario tasks, add a

fixed amount to an organism’s fitness when they are performed. In the Eco-EA version,

each NF scenario task corresponds to a limited resource in the environment. The rest of the

Avida-MDE tasks (including the required scenarios) are rewarded using the original fixed-

amount method in the Eco-EA version as well; these tasks represent properties and behavior

required in all models and therefore we do not want the fitness gained by performing them

to be dependent on other organisms in the population.

We performed two sets of 20 experiments, one set in each version ofAvida-MDE. Slight

improvements made to the original Avida-MDE after the previous results were published

necessitated re-running the initial experiments in order to fairly compare the results of the

Eco-EA version of Avida-MDE. In future discussions we will refer to these two sets of

experiments, as opposed to the original Avida-MDE experiments. We ran each experiment

for 100,000 updates, or 24 hours, whichever came first. As discussed above, checking

prOperty and witness tasks is time-consuming, leading populations to become very slow in

Avida time once many individuals satisfy the requirements to be checked for these tasks, so

the absolute 24 hour time limit is imposed, In this pair of experiments all of the 20 Eco-EA
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replicates evolved to satisfy the property task and reached the 24 hour limit, ending between

7,000 and 98,000 updates. Sixteen of the unlimited resource EA replicates reached the 24

hour limit, ending between 47,000 and 92,000 updates, and the other four ended at the

100,000 update cut-off.

We found that the Eco-EA version of Avida-MDE not only generated a more diverse

suite of final model phenotypes, but that it also evolved any model satisfying the required

functional property faster than the traditional, unlimited resource approach. The Eco-EA

populations first found models satisfying the property at an average of 2,106 updates, and

across all 20 populations found property-satisfying models of each of the 18 non-functional

phenotypes within 4,000 updates of evolution. In contrast, the traditional approach using

unlimited resources first evolved a model satisfying the property at an average of 3,747

updates, and even after 100,000 updates of evolution of all 20 populations had not found

property-satisfying models representing all of the possible phenotypes (p < .01 that the first

update a model evolved is significantly different between the two environments using a

Mann-Whitney U test).

The Eco-EA version of Avida-MDE also yielded a significantly more diverse set of

models in each individual population than the unlimited resource EA. Figure 6.1 shows the

average number Of unique phenotypes of models satisfying the required property found in

20 Avida populations evolved in each environment over time. As discussed earlier, many

populations reached the 24 hour time limit before evolving for 100,000 updates $0 the

average assumes each population maintains its final number of phenotypes through the end

of 100,000 updates.

Every one of the 20 Eco-EA populations yielded property-satisfying models. The final

populations contained coexisting models representing between eight and the full set 0f 13

different phenotypes, with a mean of 16.1 phenotypes per population. In contrast, only

16 of the 20 unlimited resource Avida-MDE populations evolved any property-satisfying

models, with a maximum of 12 phenotypes in a single population. The average number of
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Figure 6.1: Phenotypic diversity of models satisfying the property. The average number

of unique phenotypes for models satisfying the property found by each of 20 populations

per environment over time. In the Grid-Stix problem there are 18 possible combinations

of non-functional scenarios, each of which results in different non-functional behavior in

the models. In the Eco-EA (limited resources environment), property-satisfying models
representing most of the 18 non-functional phenotypic possibilities evolved in every popu-

lation. In the traditional EA (unlimited resource environment), models satisfying the prop-

erty evolved more slowly and fewer Of the non-functional based phenotypes are found at

all.
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phenotypes found in the final populations of the unlimited resource EA was 5.2 (p < .001

comparing 5.2, s=3.7 to 16.1, s=2.9, with 38df, using the independent group t-test for

means).

One could argue that since we know all 18 target phenotypes, we could simply evolve

each of them in independent populations. However, there are several reasons we would

expect this seemingly simpler method would not perform as well as Eco-EA. First, the

Eco-EA is more generalizable to other problems; in many cases, developers will not know

a priori what novel behavior a model may evolve and thus it is not always possible to

enumerate the desired phenotypes. Second, the complex behavior required for a model to

satisfy the required functional properties must be built on simpler behavior such as support-

ing scenarios. We posit that rewarding for many scenarios yields more potential pathways

for evolution to follow in finding a model that satisfies the property. Once a single property-

satisfying model is found, it may be possible for that model to change its non—functional

behavior while still maintaining the required behavior.

To test this theory we performed experiments where instead of including tasks for all of

the NF scenarios in the environment, we included only one scenario from each of the two

sets, a single CPU speed and a single transmission method, as well as the three other re-

quired scenarios. We performed five replicates in each of the 18 environments thus created,

for a total of 90 experiments (as compared to the 20 performed including all of the see-

narios). We found that when rewarding for only a single phenotype, any model satisfying

the required behavioral property appeared in only 5 of the 90 populations within 100,000

updates of evolution.

The theory that more scenarios yields more evolutionary pathways leading to faster

evolution could also explain why the Eco-EA finds models satisfying the developer’s re-

quirements faster than the unlimited resource EA. Figure 6.2 shows the average number of

unique phenotypes based on NF scenarios of all models in each population, including those

that do not satisfy the required property. The Eco-EA populations diversify quickly to con-
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tain individuals supporting almost all combinations of NF scenarios, while the unlimited

resource populations are stuck on just a few of the possible phenotypes, giving evolution

fewer possible paths to a model satisfying the property.
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Figure 6.2: Phenotypic diversity of models supporting the required scenarios. The average

number of unique phenotypes in each population for models supporting the required sce-

narios. Eco-EA populations diversify to cover almost all of the possible phenotypes prior

to evolving models that satisfy the property, while the unlimited resource EA finds only a

few phenotypes per population. These data suggest that there are fewer evolutionary paths

to find a model satisfying the property in the unlimited resource EA.

6.2.4 Adaptability of Models

Developers often design an initial model suited to a given set of conditions as a first step in

building a full suite of models appropriate for a wide range of condition domains. We there-

fore performed additional comparisons between the Eco-EA and the unlimited resource

EA, where the population was initially filled with copies of one individual that builds a
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model already satisfying the required behavior. We randomly selected five individuals that

generated models satisfying the required property from those evolved using the Eco-EA

version of Avida-MDE, with the specification that they each come from a different repli-

cate population and each represent a different non-functional phenotype. We then did the

same with the models evolved using the original unlimited resource Avida-MDE, ensuring

that we chose the same five phenotypes as the former set. We used each of the 10 cho-

sen models to seed the initial populations of 20 replicate experiments where we continued

evolution in the Eco-EA environment, and 20 more where we continued evolution in the

unlimited resource environment, for a total of 400 additional runs.

We found two key results: 1) the Eco-EA environment generates a more diverse suite

of models, in less time than in the original unlimited resource environment; and 2) the

individuals evolved in the Eco-EA environment appear to be more evolvable themselves

than those evolved in the unlimited resource environment. Figure 6.3 shows that the Eco—

EA version of Avida-MDE quickly generates diverse populations representing models of

many (and often all) phenotypes no matter which model the population is seeded with,

while the unlimited resource EA tends to evolve only phenotypes close in solution space to

that Of the initial model. 7

It also appears that models originally evolved in the Eco-EA environment yield more

diverse phenotypes in either environment when they are used to seed the initial population;

the Eco-EA generated all 18 possible phenotypes when seeded with any of the 5 models

initially evolved using the Eco-EA, and the unlimited resource EA generated over 10 phe-

notypes when seeded with four of these models, while the most it ever found when seeded

with models initially evolved in the unlimited resource environment was 8 phenotypes.
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Figure 6.3: Phenotypic diversity of models when seed population with property-satisfying

model. The number of unique phenotypes of models that satisfy the property found by all

20 runs for each treatment over time. (A) Performance of each version ofAvida-MDE when

seeded with each of the five models originally evolved in the Eco-EA environment. While

individual models yielded varying results, the Eco-EA quickly evolved all 18 phenotypes

no matter which ancestor it was seeded with. The unlimited resource environment was

never able to find all 18 phenotypes. (B) Similar results occurred when populations were

seeded with models originally evolved in the unlimited resource environment. The Eco-EA

generated all 18 phenotypes for only two of these initial models, but still generated more

phenotypes in its worst case (12) than the unlimited resource EA generated in its best case

(8). Each experiment let a population of 1,000 individuals evolve for 24 hours, ranging

from 1,000 to 7,000 updates in Avida time ( 400 to 2,800 generations).
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The increased evolvability of models initially evolved in the Eco-EA version of Avida—

MDE can be seen more clearly in Figure 6.4, where the average results across all five seed

models are shown for each of the four treatments. We again found that the Eco-EA version

of Avida-MDE not only evolved a more diverse set of phenotypes more quickly than the

unlimited resource approach across sets of all 20 runs, but it also yielded higher diversity in

individual populations. When averaging all populations across all 10 seed models, the Eco-

EA evolved an average of 17.1 phenotypes per population, while the unlimited resource EA

evolved an average of only 8.4 phenotypes (p < .001 comparing 17.1, s=1.25 to 8.4, s=2.7

using the independent group t-test for means). The individual population diversity also

differed based on which environment was used to evolve the seed models. Averaging all

final populations from both environments when seeded with the 5 models evolved using the

Eco-EA, 14.8 unique phenotypes are generated per run, vs. 10.7 phenotypes per run when

populations are seeded with the models evolved in the unlimited resource environment (p <

.001 comparing 14.8, s=1.7 to 10.7, s=2.2 using the independent group t-test for means).
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Figure 6.4: Average phenotypic diversity of models when seed population with property-

satisfying model. Average of data with error bars (+/- 1 standard error) for each of four

experimental treatments (All combinations of two types of seed models; those evolved in

the Eco-EA environment or those evolved in the unlimited resource (UR) environment,

and two environments for continued evolution; the Eco-EA and the unlimited resource).

The line for each treatment represents the mean of the number of unique phenotypes found

for each of five seed models. Each seed model was used to start 20 populations, and the

number of unique phenotypes was counted across all 20 of those populations over time.

The Eco-EA found, on average, a more diverse set of models across 20 populations than

the unlimited resource EA no matter which type of models it was seeded with (p < .001,

t-test). Both environments found a significantly more diverse set of models when seeded

with models initially evolved using the Eco-EA than those evolved using the unlimited

resource EA (p < .001, t-test).
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6.3 Conclusion

We have shown that the Eco-EA yields several advantages over a traditional unlimited

resource EA when applied to a real-world complex problem, including:

1. faster evolution of any solutions

2. evolution of a more diverse array of solutions

3. evolution of solutions with greater plasticity that are easily adapted to succeed in

different environments.

These results indicate that the ecology-based EA facilitates the evolution of solutions

to complex problems.
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Chapter 7

Conclusion

In this final chapter I summarize my investigations in using the natural mechanism of com-

petition for limited resources to increase both diversity and the rate of adaptive evolution

in an evolutionary algorithm. I also explore future directions of research and potential

applications of the Eco-EA to solve problems of greater complexity.

7.1 Summary

My major goal for this thesis was to explore the benefits of incorporating competition for

limited resources into an evolutionary algorithm framework. I focused on how this mech-

anism can increase diversity to provide many evolutionary paths to a problem solution, an

aspect of niching methods that has not been extensively studied in previous literature. I

introduced “Eco-EA”, a general form of an evolutionary algorithm that associates a limited

resource with each desired trait or subtask to be evolved, and I showed that it yielded several

advantages over traditional EA approaches, including: (1) significantly more rapid evolu-

tion of targeted complex functions; (2) discovery and maintenance of a diverse set of partial

solutions that together solve a problem; (3) maintenance of a selection of high-quality final

solutions for the researcher to choose from, often with slightly different properties; and (4)

discovery of more evolvable solutions that can easily adapt to new environments.
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In Chapter 3 I presented the specific implementation of competition for limited re-

sources in the digital life system Avida, and studied the effects on population dynamics of

the parameters that are used to control the limited resources. I showed that competition for

limited resources is effective at increasing diversity over a broad range of these parameters,

and that the general appropriate parameter settings are governed by a relatively simple set

of equations.

7.1.1 Rapid Evolution of Targeted Complex Traits

In Chapter 4 I explored how competition for limited resources can lead to the faster evo-

lution of a complex trait in Avida. I compared the performance of Avida with limited re-

sources to a previous study on evolving complex functions using Avida with an unlimited

resource. The study focused on evolving one complex task, EQU, and how simpler tasks

are used as building blocks during its evolution. I found that associating a limited resource

with each subtask as well as EQU itself led to more populations performing EQU at the

end of a period of evolution. Some of this improvement was caused by the reward struc-

ture inherent to the limited resource environment; individuals could more readily trade off

many subtasks in order to gain EQU and still receive an overall fitness increase. However

we also showed that EQU actually appeared more often and earlier in populations evolved

in the limited resource environment, regardless of whether it was maintained. We posit that

the most likely reason for this increased appearance is that the higher phenotypic diver-

sity caused by competition for limited resources creates more potential paths evolution can

follow to produce the complex trait EQU.

7.1.2 Discovery and Maintenance of Diverse Problem Solutions

Much of the previous literature on sharing techniques in evolutionary algorithms is focused

not on evolving a single solution to a complex problem, but rather on obtaining a final pop-

ulation of diverse solutions. These solutions could represent partial solutions that together
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represent the overall solution to a problem, or could all be full solutions to a problem, but

that have different properties. In Chapter 4 I explored how using limited resources in a

simple EA can discover and maintain diverse solutions. I found that when niches were dis-

tinct with little or no overlap (i.e. an individual that performs one task well cannot perform

any others well), populations evolved in a limited resources environment were able to find

and cover multiple niches in a simple bit-string matching problem. Populations were also

able to find good generalists by exploiting patterns found in large sets of tasks when it was

impractical to maintain individuals perfectly performing each task. Highly overlapping

niches tended to cause the populations to converge to generalists unless strong selection for

specialists was introduced. I concluded that while this direction could be explored further,

in general limited resources as a niching method is more clearly applicable when resources

can be associated with functions that represent distinct peaks in the fitness landscape.

7.1.3 Applications to a Real-World Problem

The true test of any method designed to improve the performance of an evolutionary algo-

rithm is to apply it to an actual problem in the real world. In Chapter 5 I applied the Eco-EA

to a real-world application of evolving UML models for controlling nodes in a remote sen-

sor network. I found that the Eco-EA did yield the two advantages discussed in Chapters

3 and 4; it more quickly found any final solution, and it discovered and maintained a more

diverse array of solutions with different properties for the developer to choose from. I also

found that the Eco-EA evolved solutions with greater plasticity that were easily adapted to

succeed in different environments.

7.2 Future Research

The promise and hope of evolutionary algorithms is to evolve solutions to complex prob-

lems beyond what a human engineer could produce. However current evolutionary algo-
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rithms have mostly fallen short of that goal; the complexity of problems they can solve is

generally limited. We hope competition for limited resources will increase the complexity

of problems that can be approached with an EA. The ideal Eco-EA would allow an engineer

to use the domain knowledge they have without over-limiting the trajectory of evolution.

In many cases an engineer may not know exactly how to solve a problem, but may have

general ideas for potential substeps on the way to a full solution. Using the Eco-EA, each

substep could be associated with a limited resource; if an idea turns out to be beneficial the

part of the population targeting that resource will gain the benefit, however if an idea turns

out to lead down a bad path toward an evolutionary dead-end, only part of the population

will follow that path while the rest will still be exploring alternative directions to reach

the final solution. Here I present some initial exploration on this concept of throwing out

ideas and associating limited resources with each, using a diagnostic problem to show the

potential benefits.

7.2.1 Multiple Pathways

We investigate the conditions that allow the ecology-based evolutionary algorithm to con-

currently explore many diverse paths to a final solution in one population. We use a

simple diagnostic problem to explore the dynamics of the system in a clear, tractable

environment. The problem is to evolve a bit string where an individual is rewarded for

how many consecutive 1’s appear starting at the beginning of the string that are immedi-

ately followed by 0101. So the string 11110101. . . receives a bonus of 4, while the string

1011111110101. . .receives a reward of 0 (the 1’s must be consecutive from the beginning

of the string). Any sequence of zeros and ones can follow the 0101 without loss of fitness.

This problem is trivial, but presents a challenge for traditional EA populations because

an organism that evolves a string with the pattern 0101 following even a small number of

1’s will often sweep the population. At this point the population can get stuck on this local

fitness peak, as multiple mutations are required to move the 0101 further down the string
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and any single mutation is deleterious. Therefore an engineer trying to solve this problem

might think of different subtasks that would be useful for organisms to achieve along the

path to evolving the overall solution. One sub-task would simply be to evolve as many 1’s

as possible at the beginning of the bit string. This selective pressure seems advantageous as

a string of all 1’s requires just 2 mutations to receive the full bonus of 28. However, to test

the theory that the limited resource system could withstand poor decisions by the engineer

we also consider a subtask rewarding the organisms for evolving as many 0’s in the string

as possible.

We used a simplified version of Avida similar to the one used in chapter 4 to compare

the limited resources environment to an unlimited resource environment. Each organism

represented a binary sequence of ones and zeros, and we used an explicit fitness function to

evaluate their performance on each task in the environment. These organisms had a fixed

length of 32, so the maximum bonus for the overall task was 28 (gained by a string of 28

1’8 followed by 0101). The maximum bonus for the other two tasks was 32 (a string of 32

1’s or 32 0’3). The population was initially filled with 500 organisms representing random

bit strings. In these experiments organisms reproduced asexually, without crossover. The

parameters for the limited resources environment were set to be the same as those in the

experiments in Chapter 4 (inflow I = 100, outflow 0 = .01, maximum consumption m = 5,

consumption fraction Cf = .0025). The actual reward an individual received for each task

was a multiplier to its execution speed determined by the following equations and the bonus

described above for each task:
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bonus 2

B = maxbonus (7.1)

A = min(B * Cf =1: R,m) if using limited resources (7.2)

A = B * m if using unlimited resources (7.3)

Reward = 2" (7-4)

We compared three different subtask structures in each of two environments (limited

resources and unlimited resource) to an unlimited resource environment where neither of

the subtasks were rewarded. All seven of the treatments reward the overall task of matching

the desired pattern. Table 7.1 shows the three subtask structures that we tested.

 

 

 

  

Label Tasks rewarded

Good subtask Overall + maximize number 1’s in string

Bad subtask Overall + maximize number 0’s in string

Both subtasks Overall + maximize 0’s + maximize 1’s  
 

Table 7.1: Three subtask treatments. The first rewards for the overall task and the subtask

we expect to improve evolution of the overall task, the second rewards for the overall task

and the subtask we expect to hinder evolution of the overall task, and the third rewards the

overall task and both subtasks.

Figure 7.1 shows the number of populations out of 50 that evolved a perfect match to

the overall pattern at each time point. The unlimited resource treatment that rewards only

for the overall task finds a perfect match in 23 populations. Adding just the beneficial sub-

85



task to the unlimited resource environment improves this result to 34 populations, however

if both of the potential subtasks are added only 22 populations find a perfect match, and if

only the harmful subtask is added just two populations find a perfect match. The unlimited

resource environment can maintain only one phenotype, and it is more likely that an indi-

vidual in the initial population will have many 0’s than that it will have many consecutive

l’s followed by a specific four bit pattern. Thus many populations are swept by the higher-

fitness individuals with many 0’s when this subtask is rewarded, and the desired overall
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Figure 7.1: Effects of different subtasks on the evolution of the overall pattern. The number

of populations out of 20 that have evolved a perfect match to the overall pattern at a given

time. Seven different treatments are shown, one that rewards only the overall task, and

three in each resource environment that reward the overall task and combinations of the two

possible subtasks. The legend labels for each treatment show which resource environment

is used, “lim” for limited resources and “unlim” for unlimited resource; labels for which

tasks are rewarded are described in Table 7.1.
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7.2.2 Conclusion

In contrast the limited resources environment evolves a perfect match to the overall pattern

in all 50 populations in the two treatments where the beneficial subtask is rewarded, re-

gardless of whether the harmful subtask is also rewarded, performing even better than the

unlimited resource environment with the beneficial subtask only p < .001 50 is significantly

different from 34, Fisher’s Exact test). Subpopulations in this environment are targeting all

possible resources, and thus though one of those subpopulations is led away from the target

pattern by the harmful subtask, the rest 0f the population is unaffected. Even when only

the harmful subtask is rewarded and not the beneficial, the limited resources populations

appear to do no worse than the single task unlimited resource populations, and much bet-

ter than when only the harmful subtask is rewarded in the unlimited resource environment

(p < .001 19 is significantly greater than 2, Fisher’s Exact test). Again, we see this result

because only part of the population is led astray by the harmful subtask.

I have shown that in this simple problem the Eco-EA can improve the evolution of

the final solution by allowing an engineer to throw any ideas for substeps to that solution

into the environment, and that by associating each witha limited resource we can gain the

benefit of good ideas and mitigate the negative effects of bad ideas. I plan to test this ability

on the real-world software engineering problem discussed in Chapter 6. In that problem we

used only scenarios that helped lead an individual to the desired overall property, however

one could easily imagine a developer including a scenario that leads an individual away

from obtaining the property, either through faulty logic in designing the scenario or simply

error in inputting the scenario into the algorithm. I posit that the Eco-EA will not be overly

affected by a few bad scenarios as the population will be exploring many paths at once, but

that a traditional EA may suffer a serious drop in performance as many whole populations

will target a bad scenario.
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