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ABSTRACT

DEVELOPMENT OF DISCOURSE ON LIMITS: CONNECTING HISTORY AND

CLASSROOM PRACTICE THROUGH A COMMUNICATIONAL APPROACH

TO LEARNING

by

Beste Giicler

The notion of limit is considered to be the building block ofmany calculus

concepts such as continuity, derivative and integral. On the other hand, the concept

presents students with many challenges. This study views mathematics learning as

initiation to the historically established mathematical discourse and uses a

communicational approach developed by Sfard (2008) to explore the conceptual

obstacles in learning limits. One of the goals of this study is to investigate how the

discourse on limit and its underlying concepts is generated over history. This exploration

goes in conjunction with the discursive analysis of the historical junctures that led to

particular changes in the discourse on limits as mathematicians encountered conceptual

obstacles. The study then focuses on one college-level calculus classroom to explore how

the discourse on limits is generated by the instructor. This is followed by an investigation

of students’ discourse on limits at the end of their instruction. Finally, possible

connections between the discourse on limits as generated over history and as generated in

the classroom are explored to examine whether the communicational approach is useful

to gain further insights about learning of limits.

The study revealed that the consideration of limit as a distinct object of

mathematics (a number) obtained at the end of a process was challenging for

mathematicians over history. The students in the study had difficulties distinguishing the



process aspect of limits from the realization of the concept as an end-state (a number),

which is consistent with the historical development of the concept. Opportunities for

addressing the differences between the consideration of limit as a process and limit as a

number were present in the instructor’s discourse. However, the distinct assumptions

underlying each realization of limit remained implicit for students.
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CHAPTER I

INTRODUCTION

Starting with the calculus reform movement initiated in mid-eighties, research on

undergraduate mathematics education has focused on improving curricular and

pedagogical approaches to beginning calculus. Today, students in majors such as

economics, engineering and physics are expected to be competent in various

mathematical domains and calculus is one of the main courses required of students in all

these majors. As a result, there also exists a relatively rich research base at the

undergraduate level on student thinking about the content of elementary calculus

concepts such as function, slope and derivative (Carlson, 1998; Monk, 1987, 1994; Monk

& Nemirovsky, 1994; White & Mitchelmore, 1996; Zandieh, 2000).

The concept of limit has also been ofparticular interest for researchers since it is

considered to be the building block ofmany fundamental calculus concepts such as

continuity, derivative and integral. The notion of limit, however, presents major

difficulties for students (Bezuidenhout, 2001; Cottrill et al., 1996; Tall & Vinner, 1981;

White & Mitchelmore, 1996; Williams, 1991). These studies highlight that the formal

understanding of the concept is unlikely to occur unless students first have an intuitive

understanding of the concept. However, they also argue that the intuitive understanding

ofthe concept relies heavily on the idea of continuous motion, which might hinder

understanding of the other aspects of limit. In that respect, some of the representational

tools (verbal, visual and symbolic) used by students while thinking about limit lead to

additional difficulties (Bagni, 2004, Bezuidenhout, 2001; Cottrill et al., 1996; Williams,

1991). Therefore, the concept of limit presents the student with two challenges: the need
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to make the transition from intuitive to formal understanding and the need to cope with

the issue of compatibility of the conceptual and representational tools within the

intuitively understood aspects of limit.

Considering mathematics learning as initiation to the historically established,

patterned activity of doing mathematics, one of the goals of this study is to explore how

the discourse on limit and its underlying concepts as generated over history. This

exploration will go in conjunction with the discursive analysis of the historical junctures

that led to particular changes in the discourse on limits as mathematicians encountered

conceptual obstacles. In this study, such changes will be will be defined through elements

of a communicational framework developed by Sfard (2008). Sfard’s framework will

then be used to explore how the discourse on limits is generated by the instructor in a

college-level calculus classroom. This will be followed by an investigation of students’

discourse on limits at the end of their instruction and what conceptual obstacles they

encounter. Finally, possible connections between the discourse on limits as generated

over history and as generated in classrooms will be explored to examine whether the

communicational approach, in general, and a discursive analysis ofhistorical junctures, in

particular, help us gain further insights about learning of limits. More specifically, the

study addresses the following questions: 1) How is the discourse on limits generated by

the instructor in a beginning college-level calculus classroom? 2) Given the instructor’s

discourse on limits, how do students talk about limits in a beginning college-level

calculus course? and 3) How do the elements of discourse on limits as generated over

history compare and contrast with the discourse on limits generated in a beginning-level

calculus course?
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The contribution ofthe study to educational research is two-fold: First, although

research has identified many of the conceptual obstacles students have about limits,

explanation of the nature of those obstacles remain incomplete. Some similarities

between mathematicians’ and students’ struggles is implied by research but there is no

elaboration on the principles underlying the transitions learners need to go through as

they attend to different aspects ofthe limit notion. This study approaches the same

problem by means of a different lens that emphasizes communication to examine whether

it can provide further insights about the conceptual obstacles in learning of limits. I will

use elements of Sfard’s (2008) framework to investigate the historical development of

discourse on limits with respect to possible roots ofthe conceptual obstacles faced by

mathematicians. The study will then explore whether Sfard’s (2008) framework can be a

useful lens to gain more information on students’ discourse on limits.

Second, although research about limits suggests that the intuitive aspects of the

notion are perpetuated in calculus classrooms, there is no analysis of instruction in order

to justify this claim. In this work, I will analyze one instructor’s discourse on limits in a

college-level calculus classroom and investigate the possible impacts of the instructor’s

discourse on students’ thinking about limits. In this respect, the study is an attempt to fill

out an important gap in the literature about teaching of limits at the undergraduate level.
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CHAPTER II

THE CONTEXT OF THE STUDY

This chapter starts with a brief description of the limit concept followed by a

literature review on learning about limits. Next, the theoretical fi'amework for the study is

introduced and explained in terms of its main characteristics. Finally, particular elements

of the theoretical framework that I use for the analysis of the historical development of

limits are described.

Axioms, definitions, theorems and proofs presented in their formal

representations are among the final products ofmathematics. The processes with which

mathematicians and learners ofmathematics initially think about mathematical concepts,

on the other hand, are informal and intuitive. Although such processes may be invisible in

the mathematics curricula, the transition from the informal aspects ofmathematical

concepts to their rigorous formulations is by no means trivial. The historical development

of a concept is a valuable tool in providing clues about where to look for the obstacles

learners may face and the transitions they may go through as they tackle different aspects

ofthe concept. The nature ofthose transitions and conceptual difficulties, however, may

not be found in history itselfbut can be identified by means of a focused analysis of the

historical development. This study uses elements of the commognitive framework (Sfard,

2008) for the analysis of the historical development of limit and its underlying concepts.

In what follows, the notion of limit is briefly discussed and a summary of the research on

its learning is given. Then the commognitive framework is introduced as a potentially

useful lens that can help us gain more insights about the nature of the conceptual

obstacles in the learning of limits.





2.] Limit: What is it and what do we know about its learning?

2.1.]. The notion oflimit

The concept of limit is the foundation on which fundamental concepts of calculus

are based. Limits are used to define the tangent to a curve, which leads to the notions of

the derivative of a function and instantaneous rate of change. In that sense, limits are used

to determine how functions vary. When used to define the behavior of Riemann sums at

infinity, the notion leads to the concept of the integral of a fimction. In particular, limits

are also used in determining whether sequences and series converge. Given these, it is

impossible to talk about the essential concepts of calculus without limits. The informal

definition of limit is ofien given in some form similar to the following:

Let [a function] f(x) be defined on an open interval about [the point] x0 ,

exceptpossiblyfor x0 itself If f(x) gets arbitrarily close to L (as close as

we like) for all x sufficiently close to x0 , we say that f approaches the

limit L as x approaches x0 , and write lim f(x) = L , which is read ‘the

x—)x0

limit of f(x) as x approaches x0 is L ’. (Thomas, Weir, Hass &

Giordano, 2008, p. 77)

A typical calculus-level formal definition, on the other hand, would be similar to the

following:

Let [a function] f(x) be defined on an open interval about [the point] x0 ,

except possibly for x0 itself. We say that the limit of f(x) as x

approaches x0 is the numberL , and write lim f(x) = L if for every

x—>x0



numbers > 0 , there exists a corresponding number 5 > 0 such that for

allx,0 < Ix—xol < 6 :> [f(x) —L| < e . (Thomas et al., 2008, p. 92)

At the undergraduate level, students are introduced to the notion of limit in their

preliminary calculus courses]. The textbooks designed for these courses often outline the

content of calculus starting from reviews ofbasic notions such as real numbers, number

line, functions and types of functions. Then the notions of limit and continuity are

introduced. This is followed by discussions on derivative and then the integral. Finally,

the notions of sequences and series are introduced with a particular focus on their

behavior at infinity, which form the basis of the discussions about convergence and

divergencez.

2.1.2. Research on learning about limits

In what follows, the difficulties associated with the limit concept as pointed out by

research on student learning will be explained.

Limit implies continuity. Bezuidenhout (2001) argues that this refers to the incorrect

assumption that the existence of limit of a function at a given point is a sufficient

condition for the continuity of the function at that point. The students who have this

difficulty believe that if a function has a limit at a given point, then it must also be

continuous at that point. For example, such students would think the limit does not exist

at the point x=3 for the function in Figure 2.1 since it is not continuous at 3.

 

1 Students can also have familiarity with the limit concept from their high school courses such as AP

Calculus and precalculus.

2 See Thomas et a1. (2008) and Hughes-Hallett et a1. (2008) for their content outline for calculus.
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Figure 2.1: An example where the difficulty limit implies continuity can occur

Limit as thefunction ’s value. Bezuidenhout (2001) notes that the incorrect assumption

limit implies continuity “may also originate from another misconception, namely,

lim f(x) = 3 implies f(2) = 3 , so thatf is then continuous at x=2” (p. 494). In this

x—-)2

respect, students could view lim f(x) and f(2) as the same thing. This view of limits is

x—>2

called “limit as the frmction’s value” and it corresponds to the belief that “the limit of a

function at a point means the value of the function at that point” (Cottrill et a1, 1996, p.

178) Students having this difficulty would give ‘limit does not exist’ as the answer

whenever the function is not defined at the point where the limit is taken. Their strategy

while finding the limit of a fiinction at a point is to evaluate the fimction’s value at that

point and give the result as the limit value. For example, for the function in Figure 2, such

students would give 3 as the answer for the limit of the function at x=2.





  L
7

O l 2 3 4 5

Figure 2.2: An example where the difficulty limit as thefunction ’s value can occur

Bezuidenhout (2001) argues that the procedures used in the calculation of limits such as

the method of substitution “may sell the idea to some students that the value of the

function at the point concerned is ofprimary importance, rather than the behavior of

values ofthe function about the point” (p. 496).

Limit as a bound. Cornu (1991) mentions that limits can sometimes be interpreted as “an

impassable limit which is reachable”; “a higher (or lower) limit”; “a maximum or

minimum”; “a constraint, a ban, a rule”; “the end, the finish”. (pp. 154-155). These

utterances emphasize limit as a boundary. So limit as a bound refers to the idea that “limit

is a number or point past which the function cannot go” (Williams, 1991, p. 221).

Students who have this difficulty think that a function is bounded by a specific limit

value or think ofthe absolute maximum/minimum values of the fimction, if they exist, as

the limit for the function. They would also have difficulty working with horizontal

asymptotes where the limit of a function at positive or negative infinity can be a number

past which the function, in its whole domain, can go. For example, for the function in

Figure 2.3, the limit at positive and negative infinity is equal to zero but the function also

attains values greater than zero.
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 it
Figure 2.3: An example where the difficulty limit as bound can occur

Limit as monotonic. There are other interpretations of limits such as “monotonic and

dynamic monotonic” which are based on formal teaching (Cornu, 1991, p. 155).

Utterances such as “a convergent sequence is an increasing sequence bounded above (or

decreasing bounded below)” and “a convergent sequence is an increasing (or decreasing)

sequence which approaches a limit” (Cornu, 1991, p. 155) might lead to the expectation

ofmonotonic behavior from the function in order to find its limit. This difficulty is

related to the expectation of ‘nice behavior’ from the fiinction. Research indicates that if

a function is strictly increasing or strictly decreasing, students can more easily find the

limit at a given point. This difficulty becomes evident when working with constant and

piecewise functions (See Figures 2.4 and 2.5). The function in Figure 2.4 remains

constant in its entire domain and so students could have difficulty considering it as

increasing or decreasing. As a result, they might not be comfortable with thelidea that the

limit of that function at every point in its domain is equal to the same number 2. For the

graph illustrated in Figure 2.5, the function is increasing but not strictly. For every a, b
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e N, the interval (a, b) is constant. Moreover, for every a e N, the function jumps rather

than increasing smoothly. Students who expect strictly increasing or strictly decreasing

behavior fi'om a function might have difficulties finding the limit of the function in

Figure 2.5 at the points which lie between (a, b), where the function remains a constant

value. They also might think the limit at a given point a e N equals to both a and a+1 due

to the discontinuous nature of the function at those points. In fact, Tall and Vinner (1981)

report a similar finding for the case of sequences. They argue that given a sequence

{1,0,1,0,l,0,. . . }students might think there are two separate sequences there instead of

one. Therefore, students who perceive “limit as monotonic” might also have difficulty

determining the convergence of a sequence where the subsequences can have different

patterns fi'om each other.

A

 

 

 i7
Figure 2.4: An example where the difficulty limit as monotonic can occur
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Figure 2.5: An example where the difficulty limit as monotonic can occur

Difi‘iculties resultingfrom the dynamic approach to limit. The dynamic approach refers to

using the intuitive idea ofmotion when working on limit related problems. Although it

implies motion, the dynamic approach to limit is not necessarily a graphical approach.

The common phrases such as approaches, tends to, getting close to all indicate motion-

related processes and are considered among the verbal representations of the dynamic

approach (Bagni, 2004). In his study on models of limit held by students in a second-

sernester calculus class, Williams (1991) found that

In general, the words approaching or getting close were interpreted in one

or both oftwo ways: as describing the physical process of evaluating a

function at different numbers, which are chosen over time to be closer and

closer to the value s [for lim f(x) ], or as describing the mental process of

x—>s

11
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imagining the points on the graph moving closer and closer to the limit

point. (p. 228)

Tall and Vinner (1981) also note that limits of functions of the form lim f(x) = c are

x—>a

“often considered as a dynamic process, where x approaches a , causing f(x) to get close

to c” (p. 160, italics in original). They argue that this intuitive approach to limits “is often

so strong that the feeling of the student is a dynamic one: as x approaches a , so f(x)

approaches c, with a definite feeling of motion” (Tall & Vinner, 1981, p. 161, italics in

original).

Research has identified two difficulties resulting from the dynamic view of limits:

limit as an approximation and limit as unreachable. In what follows, these terms will be

explained and also exemplified.

Limit as approximation. One of the possible ways of using the dynamic approach to

limits for lim f(x) is investigating the behavior of a function around the limit point

x—>a

(as x ——) a ) by substituting successive x-values that are closer to the pointa . In this case,

responses such as ‘when x approaches a , the values of f(x) approach the limit L ’ often

points to

a confusion of the limiting process and the product resulting from that

process. Such a confusion may go hand in hand with the erroneous View of

limit as an approximation. One can also sense a dynamic character ofthe

limit in the student’s motivation. (Bezuidenhout, 2001, p. 492)

This approach is dynamic since it involves the movement of the points closer to the limit

point and looking at the function’s values near that point. It resembles the tabular

representation of the function near the limit point. Some students see this approach as

12
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sufficient to determine the limit of a function at a given point without realizing that

although the function can seem to be approaching or getting close to or tending to a limit

value for those points, there are still infinitely many points near the limit point that

remained unchecked (see Figure 2.6).

 

 

x f(x)

-0.1 0.9

-0.01 0.99

-0.001 0.999

-0.0001 0.9999

0 1

0.0001 1.0001

0.001 1.001

0.01 1.01

0.1 1.1
 

Figure 2.6: An example where the difficulty limit as approximation can occur

Students having the dynamic view and who think of limit as an approximation argue that

lim f(x) is equal to 1 since the firnction values approach 1 as the x values approach 0.

x—)0

On the other hand, it is not possible to conclude that the limit of this function is 1 since

we do not have enough information about the behavior of the function between the points

x = —0.0001 and x = 0 as well as between x = 0.0001 and x = 0.

Some students who consider limit as an approximation also round off the

function’s values at the successive points close to the limit point and claim it is reaching a

value, which they would think is the limit value (Tall & Schwarzenberger, 1978). For

example, for the function in Figure 2.6, students can just check the function values at the

x values close to the limit value and round them to 1 to claim the limit value at x = 0 is

equal to 1. “We surmise that at the root of such a misconception is the practice, both

13
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inside and out of the classroom, of approximating numbers to convenient significant

digits” (Parameswaran, 2007, p. 210).

Limit as unreachable. The second idea related to the dynamic approach is mostly used

when determining the limit of the function from a graph. Here the movement feature

comes from the visualization of the graph. The basic logic behind this approach is to ask

where the function approaches as x approaches the limit point. (Does f(x) —) L

as x —-> a ?) Here, some students confuse the idea ‘x never reaches a’ with ‘f(x) never

reaches L’. So, they think the limit is unreachable. These students have difficulty working

with constant functions where the limit value is taken by the function at the limit point.

They also have difficulty working with the continuous functions. Williams (1991) notes

that although this view might suggest students’ awareness of the irrelevance of the

fimction value at the limit point, it might also suggest the consideration of taking the limit

of continuous function as inappropriate. As a result, some students cannot accept

continuous functions as having limits. He argues that “in general, reachability is not a

characteristic of limits, but rather is a matter of continuity” (Williams, 1991, p. 228).

According to Tall and Schwarzenberger (1978), the colloquial use of the words such as

‘close’ implies getting near to but not being coincident with. Given this, they argue that

the informal notion of limit may carry for students the assumption that one can get close

to the limit value but cannot reach it.

14
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Figure 2.7: An example where the difficulty limit as unreachable can occur

For the graph in Figure 2.7, students who have the difficulty “limit as unreachable”

would distinguish the function value at 0, which is f(0), from the function’s value as it

approaches x=0 . Therefore, they would be uncomfortable saying lim f(x) is equal to -l

x—)0

since the fimction attains the value -1 at x = 0.

It is important to note that the consideration of “limit as unreachable” is not

restricted to situations that involve graphing. The realization of limit as unreachable

signals the separation of the process of approaching and the number that is approached

(which can, in fact, be the limit). This distinction might also lead to confusion between

plugging in and approaching the number. As a result, students might be comfortable

x2 —25
 computing lim by cancelling the common factor (x-S) since the function is not

x—+5 x -

defined at x = 5 and so the values ofx cannot reach that point. On the other hand, they

might have difficulty understanding why they can plug 5 into the function when finding

15
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lim (x + 5) since the function will then attain its value at the point x = 5 3. Table 2.1

x—>5

summarizes the student difficulties and the related assumptions about limit mentioned in

the literature.

Table 2.1: Difficulties mentioned by the research on student thinking about limits
 

 

Student difficulties about limit Assumption underlying the views

Limit implies continuity If a function has a limit at a point, then it must be continuous at

(Bezuidenhout, 2001) that point.

Limit as the function’s value When finding the limit of a fiinction at a given point, it is

(Bezuidenhout, 2001) enough to look at the function’s value at that point.

Limit as a bound A limit is a value past which the fimction cannot go. A limit is

(Cornu, 1991; Williams, 1991) the absolute maximum (or minimum) value of a function.

Limit as monotonic A function (or sequence) has to be strictly increasing or strictly

(Comu, 1991; Tall & Vinner, 1981) decreasing in order to have a limit.

Limit as approximation In order to find the limit of a function at a point, it is sufficient

(Bezuidenhout, 2001; Parameswaran, to look at the behavior of the function at points successively

2007; Tall & Schwarzenberger, 1978) closer to the limit point.

Limit as unreachable A limit is a value that is approached but never reached.

(Tall & Schwarzenberger, 1978;

Williams, 1991)

These student difficulties about limits are mostly identified by empirical studies,

which generally include surveys followed by individual student interviews. For example,

Bezuidenhout’s (2001) study focuses on first year students’ understanding of limit of a

function and continuity of a function at a point. He selected 100 students as the sample

fiom a much larger population in three South Afiican universities. The students were in

engineering, physical sciences and in other majors that required service calculus courses.

Among the 100 students who responded to an initial survey, 15 students were selected to

 

3 See Szydlik (2000, p. 276) for the details of such student assumptions.
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participate in interviews. The difficulties “limit implies continuity” and “limit as the

function’s value” were mentioned frequently by the students who were interviewed.

In Williams’ (1991) study, 341 students from two second-semester calculus

classes were given a questionnaire about limits. Based on the student responses to the

survey, students were selected for in-depth questioning. The first question of the survey

included six statements to categorize students’ views of limits as dynamic-theoretical;

boundary; formal; unreachable; approximation; and dynamic-practical, respectively (See

Appendix A for the survey). Among the 341 students, 36% stated that the statement that

considered “limit as unreacheable” described best how they thought of limits. 30% chose

the statement about the dynamic-theoretical characterization of limit as the best way they

made sense of the concept. The statement about the formal definition was chosen as best

by 19% ofthe students. The statements about “limit as boundary”, “limit as

approximation” and the dynamic-practical aspect were selected by 3%, 4%, and 5% of

the students, respectively.

From 341 students, Williams (1991) then classified 50 volunteers in terms of the

models of limit they held. He classified 24 students as having the view limit as dynamic;

20 students as having the view limit as unreachable; three students as having the view

limit as a bound and one student as having the view limit as an approximation". From

those 50 students, he selected 10 students for treatment that consisted of five sessions

over a period of seven weeks. He mentions that:

 

4 Williams (1991) couldn’t classify two of the student responses since they were ambiguous.
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All 10 students in the study expressed at some point a view of limit as dynamic,

that is, involving motion along the graph, and plugging in points that over time get closer

and closer to the value s as x approaches in the limit [for lim f(x) ]. (Williams, 1991, p.

x—>s

229)

He further notes that the problems students worked on in the treatment sessions targeted

student difficulties through situations that could lead to cognitive conflicts. However, no

real change occurred in students’ views of limit as dynamic after treatment. “The stage

was set for cognitive conflict, and in fact, some conflict did occur. What did not occur

was real cognitive change” (Williams, 1991, p. 229). By the end of the final session, “no

student was willing to give up the view that plugging in a finite number of values was

essentially correct or that moving along the graph was a good way to view a limit

problem” (Williams, 1991, p. 230).

Limits tend to be seen as processes performed on functions, an idealized

form of evaluating the function at a series of points successively closer to

a given value. The dynamic element here is clear, and because the actual

value of the function at the point of interest is irrelevant, the limit is never

reached. The paradigm picture seems to be the classical geometric

progression involved in walking halfway to a wall, then half the remaining

distance, and so forth; students seem to be willing to accept the fact that

we never reach the wall even though we may know exactly where the wall

is. To most of the students, this was a compelling metaphor for limit...

Still, it has been suggested that, although perhaps necessary, such a view

18



of limit does present a cognitive obstacle to further understanding.

(Williams, 1991, p. 230)

Szydlik’s (2000) study focused on calculus students’ beliefs about mathematics

and the role of those beliefs in their understanding of the limit concept. She initially gave

577 second-semester calculus students a questionnaire about their convictions and beliefs

about calculus and limits. Based on this questionnaire, she identified four groups of

students, 27 ofwhom participated in a structured interview about limits. “All 27 students

used a definition of limit as motion to explain their work on the limit problems; a few

students used either a static or an infinitesimal definition as well” (Szydlik, 2000, p. 271).

Nine ofthe 27 students agreed with statements that implied limit as a bound. “The

majority ofthe students who held this conception believed that the limit is a value the

function cannot exceed. They appeared to hold this View globally, often drawing or

describing a horizontal asymptote.” (Szydlik, 2000, p. 271). On the other hand, three

students in the study thought of limit as a local bound. Students having this idea

“believed that within a certain tolerance of the limiting value, the limit acts as a

boundary; however, they did not think of the limit as a global boundary”. (Szydlik, 2000,

p.271)

In Szydlik’s (2000) study, students who view calculus as a collection of facts to be

memorized and who do not follow the theory behind those facts

often cannot give a coherent definition of limit of a function or explain

why the formulas and procedures that they use to solve limit problems are

valid. Many hold misconceptions of limit as a bound that cannot be

crossed or as unreachable. (p. 273)

19
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The students who see calculus as consistent and logical, on the other hand, can have

“access to formal definitions, power to solve limit problems, and concept images free of

major inconsistencies” (Szydlik, 2000, p. 273). It is important to note, however, that

Szydlik mentions that not all students holding these beliefs towards calculus have

complete understanding of the limit notion. These findings are in conjunction with

Sierpir'rska’s (1987) findings which imply that “the students’ attitudes towards

knowledge, and mathematical knowledge, in particular, have a strong impact on their

intuitions of infinity and limits” (p. 382).

2.1.3. Dzfliculties about the underlying concepts oflimits

Some of these difficulties about limit come from the difficulties students have of

the underlying concepts related to limit. According to Sierpir'rska (1987), the obstacles

related to the notions of scientific knowledge, infinity, function and real number form the

basis ofthe epistemological obstacles about limits. Carlson (1998) and Vinner & Dreyfus

(1989) argue that some students perceive functions merely consisting of algebraic rules.

Similarly, Bezuidenhout (2001) and Tall & Vinner (1981) found that students mostly rely

on rules and graphs of functions while trying to find the limit of the function at a given

point. Williams (1991) and Szydlik (2000) also mention students’ faith in graphing as a

means ofunderstanding the behavior of firnctions when finding limits

Students’ notions of infinitely small and infinitely large can also play roles in

their understanding of the limit concept. According to Pararneswaran (2007), “it is

common practice in real life as well as in classroom that one often ‘ignores’ negligible

quantities and rounds off numbers to convenient significant digits” (p. 194). He

investigated how such practices affect students’ understanding ofthe limit concept. He
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used questions involving infinitely large and infinitely small quantities (infinitesimals) to

explore the student difficulties such as “limit as approximation” and the dynamic view of

limit. In order to do this, he investigated students’ experiences in arithmetic where they

represent decimals and do finite approximations such as rounding off real numbers to '

relevant decimal numbers. Pararneswaran (2007) found that students use approximations

before taking the limit of the function if the function includes infinitesimal quantities.

Another strategy students used when working on such limit problems was to round the

very small quantities to zero.

...the students identify what they perceive as ‘large numbers’ with infinity

and ‘small numbers’ with zero. Also, in our experiments, they unwittingly

rounded offvery small parameter values occurring in the definition of the

function in question to a convenient number close to it... Most of the

students in our samples view limiting as a process of approximation when

very minute quantities are involved in the definition of the function. . .They

tend to approximate the given fimction by changing or ignoring quantities

appearing in its definition which they perceive as ‘small’ constants to zero.

(Pararneswaran, 2007, p. 209, italics in original)

In her study of 31 pre—calculus students Sierpir'rska (1987) found that some students

think of infinity as a large finite number. Tall and Schwarzenberger’s (1978) note that

the students in their study had idiosyncratic views of infinity. Some thought about

infinity as a symbol that represents what is unreachable; some defined it as the biggest

number that exists; and others thought about it as the endpoint of the real numbers.

21
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Continuity is also one of the problematic terms that cause difficulties in students’

understanding ofthe limit concept. Daily uses of the term in phrases such as “the rail is

continuously welded” or “it rained continuously all day” ofien result in associating

continuity with having no gaps or breaks (Tall & Vinner, 1981, p.164). Such uses,

together with the initial uses of the term continuous functions result in a “reinforcement

of the intuitive idea that the graph has ‘no gaps’ and may be drawn freely without lifting

the pencil from the paper” (Tall & Vinner, 1981, p. 165).

This viewpoint is ofien reinforced by teacher’s attempts to give a simple

insight into the notion of continuity by speaking of the graph “being in one

piece” or “drawn without taking the pencil off the paper”, thereby

confusing the mathematical notions of continuity and connectedness.

(Cornu, 1991, pp. 156-157)

Tall and Vinner (1981) gave 41 students a questionnaire that involved different functions.

The students were asked to decide which of the given functions were continuous and to

explain their reasoning. They found that most of the students who gave the correct

answers gave those for the incorrect reasons. For example, students might say a given

function is continuous because “it was given by a single formula” or “it is all in one

piece” (Tall & Vinner, 1981, p. 167). Similarly, students might say a given function is

discontinuous because “the graph is not in one piece” or “it is not given by a single

formula” (Tall & Vinner, 1981, p. 167).

There is further evidence that students’ early notions of continuity, geometric

motion and very small quantities (infinitesimals) can lead to problems with respect to

their notions of function, infinity and limit (Carlson, 1998; Cottrill et al., 1996; Tall,
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1980; Vinner & Dreyfus, 1989). It is possibly due to the interplay of all these notions that

there are many different colloquial and idiosyncratic interpretations ofthe word limit

(Cornu, 1991). As a result, everyday uses of the terms limit, approaching, or tending to

can be problematic for students since they are used differently in the theory of limits

(Bagni, 2004). In addition to this, mathematical notations like “ f(x) —> c as x —> a ”,

which is verbalized as “ f(x) approaches c as x approaches a ” entails a feeling of motion

and hinders students’ understanding of the formal definition (Tall & Vinner, 1981,

p.155). The main difficulty for students when dealing with the e — 6 definition results

from the static character of the formal theory and the dynamic character of the intuitive

approach (Bagni, 2004). Bezuidenhout (2001) argues that the formal approach is

extremely difficult to understand for students who have the difficulties mentioned above.

Similarly, Williams (1991) argues that the dynamic approach to limit is likely to hinder

student understanding of the formal approach where the idea is to makef(x) as close to

the limit value as we want by making x close enough to the limit point.

These researchers consider the formal definition of limits as an important element

of understanding limits conceptually. Although they acknowledge that the dynamic view

seems to be usefiil, and perhaps inevitable, in making sense of the limit concept

intuitively at the initial stages of learning, they also highlight that the lack of familiarity

with the assumptions ofthe formal theory results with difficulties with respect to

particular applications of the concept5 (Bezuidenhout, 2001; Tall, 1980; Tall &

 

5 On the other hand, Parameswaran (2007) mentions that the introductory calculus courses should be

informal and intuitive and notes that “the precise, formal definition ofthe concept of limit is so complex
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Schwarzenberger, 1978; Williams, 1991). “Limiting processes are not always intuitive,

and so a formal framework provides a powerful tool for thinking about and evaluating

some limits” (Szydlik, 2000, p. 259).

2.1.4. Textbooks, teaching and attitudes towards mathematics

Some researchers would argue that the intuitive aspects of limit are perpetuated in

teaching and textbooks with their emphases on the visual representations of functions as

graphs or numerical approximations, which are based on the natural perception of

continuity. Cornu (1991) mentions that “in teaching mathematics, certain aspects of the

limit concept are given greater emphasis which are revealed by a review of the

curriculum, the textbooks and examinations” (p. 153). According to him, instead of

focusing on limit conceptually, textbooks may overemphasize “equalities, the notion of

absolute value, the idea of sufficient condition and, above all, on operations: the limit of

a sum, a product, and so on” (Comu, 1991, p. 153, italics in original). He argues that the

textbooks’ focus on algebra and calculation reflects a bias favoring operations and

procedures over the analytical aspects of the limit concept.

Similarly, Bezuidenhout’ (2001) argues that students’ understanding of limits and

its underlying concepts seems to be based on isolated procedures and the conceptual link

among those are missing.

Such a situation may be mainly due to a learning and teaching approach

that emphasizes to a large extent the procedural aspects of the calculus,

and neglects a solid grounding in the understanding of the conceptual

 

and counterintuitive that it fails to bring out readily the simple and intuitively obvious ideas which led to it

in the first place” (p. 194).
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underpinnings of the calculus. Moreover, the stereotyped exercises that are

a feature of several calculus texts ofien encourage an instrumental

approach, rather than a relational understanding of the calculus concepts.

Taking into account the procedure-oriented nature of some calculus texts,

it should not be considered as strange if a student confuses manipulative

skills with a real understanding of calculus content. (p. 498)

Williams (1991) considers students’ attitudes toward practicality and mathematical truth,

which hinder their appreciation of formal thinking, as another element that can affect

learning about limits. He mentions that attitudes toward practicality can result from

students’ classroom experiences and the current curriculum provides little motivation

with respect to formal thinking and notes that the students in his study

...often considered the ease and practicality of a model of limit more

important than mathematical formality. This is particularly true in the

sense that models of limit that allow them to deal with the realities of

limits in the classroom, the kind they see on tests, tend to be seen as

sufficient for the purposes ofmost students. It was noted by several

students that neither formal or dynamic models of limit figure heavily in

the procedures students use to work problems from their calculus class;

their procedural knowledge (e.g., substituting values into continuous

functions, factoring and cancelling, using conjugates, employing

L’Hopital’s rule) is largely separate from their conceptual knowledge.

(Williams, 1991, p. 233)
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Pararneswaran (2007) states that “it is typical for calculus books to motivate the notion of

limits graphically” (p. 212). He then talks about an example in a typical calculus textbook

sin x
 in which lim

x—-)0 x

is first motivated by the tabulating some values of the function around

x=0 and then drawing the graph of the function. He points out that although the textbook

author mentions explicitly that the table only allows one to guess the limit value but not

to prove it, “the students seem to develop the idea that limit is no different from a process

of approximation” (p. 213).

2.1.5. Possible links between historical development and student learning oflimits

Cornu (1991) distinguishes between didactical and cognitive obstacles in learning

mathematics. Didactical obstacles “occur because of the nature of the teaching and the

teacher”, whereas epistemological obstacles “occur because of the nature of mathematical

concepts themselves” (Cornu, 1991, p. 158). He identifies four epistemological obstacles

in the historical development of the limit concept: the failure to link geometry with

numbers, the notion of infinitely large and infinitely small, the metaphysical aspect of the

notion of limit, and the question of whether the limit is attained or not. By considering

some ofthe conceptual obstacles about limits as epistemological, he acknowledges that

the difficulties faced by students might also result from the nature of the limit concept

besides the teaching approaches. In fact, some of the conceptual obstacles students face

as they learn the concept may be identical to those mathematicians faced over the

historical development of limits. For example, Williams (1991) mentions “limit as

boundary” and “limit as unreachable” as common student difficulties about limit (See

Section 2.1.2). These views of limit are mathematically incorrect and were also

problematized by Lagrange and other mathematicians when they debated “whether a
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variable can go beyond the limit and whether a variable can definitely reach the limit”

(Schubring, 2005, p. 293). Given this, some researchers consider bringing some elements

ofthe historical development of limits to classrooms as potentially useful in student

learning. For example, given the findings of his study, Williams (1991) comments that

Just as students’ informal limit models tend to parallel those of the

mathematical community prior to Cauchy, it is possible that only by

appreciating the sorts of problems that motivated Cauchy’s work will

students be motivated to understand its implications. Perhaps this is to say

that the very historical and cultural contexts that lent vitality to the original

work are the best medium through which to approach the understanding of

that work. (p. 23 5)

Similarly, Bagrri (2004) highlights that the historical development of visual, verbal and

symbolic representations of limits might parallel those of students’. He then notes that

this could help design teaching to overcome some ofthe conceptual obstacles and to help

students develop the different registers required by the static and the dynamic views of

limit6.

At this point, it is also important to note that research on learning about limits and

infinity is, so far, directed mainly by a cognitivist framework and primarily focuses on

the notion ofmisconceptions. According to Sfard (2001), the cognitivist framework is

based on the metaphor learning as acquisition, which considers learning “as the storage

of information in the form of mental representations” (p.20). It considers understanding
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as relating new knowledge to prior knowledge by refining the existing mental

representations. By doing so, it highlights the individual nature of learning, viewing it as

the acquisition of the necessary mental schemes. Although this fi'amework significantly

enhanced our understanding of the conceptual obstacles associated with the learning of

limit, another outlook on the issue might be needed since we cannot have direct access to

abstract constructs such as mental schemes, intuition and (mis)conceptions. Therefore, a

cognitive framework may not offer sufficient tools of analysis with which we can explore

how learners make sense of the limit concept. This study uses the commognitive

framework (Sfard, 2008), which is based on the metaphor learning as participation and

views learning as becoming a participant in a discourse. Basing learning processes on

social foundations, this framework considers discourse as its central unit of analysis in

which “the language of mental schemes, misconceptions, and cognitive conflict seems to

be giving way to a discourse on activities, patterns ofinteraction and communicational

failures” (Sfard, Forman & Kieran, 2001, p. 1, italics in original).

2.2 Commognitiveframework

2. 2.1. The general tenets

One of the highlights of the commognitive framework is the interrelationship

between communication and thinking. By defining thinking as the individualized form of

communication, Sfard (2008) argues that the “cognitive processes and interpersonal

communication processes are thus but different manifestations ofbasically the same

phenomenon” (p. 83). Given this, the term commognitive entails the combination of the

 

6 On the other hand, Bagni (2004) warns that the introduction of the problems faced by mathematicians in

history would not necessarily help students with their difficulties. In this respect, he seems to also consider

the epistemological nature ofsome of the conceptual obstacles associated with the limit concept.
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terms cognitive and communicational. From this perspective, developmental

transformations are “the result of two complementary processes, that of individualization

ofthe collective and that ofcommunalization ofthe individual” (Sfard, 2008, p. 80, italics

in original). That the communal and individual aspects of discourse development are

intertwined processes can be explained as follows: Individual learning, which is defined

as participation in a discourse (e.g., mathematical discourse) whose rules are communally

agreed upon, is an example of individualization ofthe collective. On the other hand, as

individually formed ideas get accepted by the larger discourse community, it is also

possible for the individual to affect the development of a discourse on a broader range.

This is an example ofcommunalization ofthe individual. By being processes rather than

static entities, discourses construct and reconstruct themselves in the interplay of

individualization and communalization, and are thus the “medium and the carrier of both

continuity and developmental change” (Sfard, 2008, p. 118). Therefore, the study of

human development can be considered equivalent to the study of the development of

discourses, where discourses are defined as “the different types of communication set

apart by their objects, the kinds ofmediators used, and the rules followed by participants

and thus defining different communities of communicating actors” (Sfard, 2008, p. 93).

The commognitive fiamework views mathematics as a particular type of

discourse which is distinguishable by its word use, visual mediators, routines, and

narratives. Sfard (2008) differentiates between two types of discourse: colloquial

discourses are non-specialized, everyday discourses, and literate discourses are the

“discourses mediated mainly by symbolic artifacts created specifically for the sake of

communication” (p. 299). Number or quantity related words can frequently be found in
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colloquial discourses but “mathematical discourses as practiced in schools or in academia

dictate their own, more disciplined uses of these words” (Sfard, 2008, p. 133). Unlike

colloquial discourses, the objects of the mathematical discourse “are featured as

something that can perhaps be ‘represented’ with visual means, but never really shown”

(Sfard, 2008, p.135). Given the abstract nature of mathematical concepts and that

students are expected to participate in the literate mathematical discourse, word use is a

critical element of the discourse because possible differences in participants’ use of those

words can hinder mathematical communication.

Visual mediators refer to the visible objects created and operated upon for the

sake of communication. Colloquial discourses are “ofien mediated by the images of

concrete objects” whereas scientific and mathematical discourses are primarily mediated

by symbolic artifacts (Sfard, 2008, p. 147). In mathematics, such artifacts consist of

algebraic symbols as well as the conventionally or idiosyncratically created diagrams,

graphs, tables and icons.

Routines refer to the set of metarules7 that define repetitive patterns in a

discourse. Routines can be idiosyncratic. For example, a student’s repetitive patterns

while doing mathematics might differ from that of another student or mathematicians.

The routines that are accepted as valid and enacted extensively by the experts of the

community are called norms. Although both routines and norms consist ofmetarules that

characterize repetitive patterns in a discourse, not every metarule that is enacted or

endorsed can be considered a norm. A metarule must satisfy the following in order to be

 

7 Metarules refer to the rules that characterize the patterns in the activity of the participants of a discourse.

See Section 2.2.2 for a more detailed discussion of the notion.
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a norm: It must be enacted widely within the community of discourse, and it must be

endorsed by the majority of the community, “especially by those within the community

who count as experts” (Sfard, 2008, p. 204).

Narrative is “any sequence of utterances framed as a description of objects, of

relations between objects, or of processes with or by objects, that is subject to

endorsement or rejection with the help of discourse-specific substantiation procedures”

(Sfard, 2008, p. 134, italics in original). Axioms, definitions and theorems are among the

endorsed narratives ofmathematics. Narratives of a given discourse that are endorsed by

the majority of the discourse community, in particular by “experts”, are considered as

“true”. The endorsed narratives of an individual, however, can be different than those

endorsed by the mathematics community. For the analysis of an individual’s discourse,

an endorsed narrative refers to what one considers to be true in relation to the routines

one uses to substantiate those narratives. The idiosyncratic nature of endorsed narratives

results from the idiosyncratic nature of the routines. Mathematical learning takes place as

the endorsed narratives and routines of an individual become compatible with those of

the experts.

Sfard (2008) notes that “mathematics begins where the tangible real-life objects

end and where reflection on our own discourse about these objects begins” (p.129, italics

in original) and so it is “a multilayered recursive structure of discourses-about-discourse,

and its objects therefore are, in themselves, discursive constructs” (p. 161). The

generative power ofmathematical discourses, like any other discourse, is obtained

through recursion with which “we can turn one discursive act into the object of another”

(Sfard, 2008, p. 103) and create metastatements, that is, statements about statements.
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Sfard (2008) argues that discourses develop in terms of expansions and compressions.

Discursive expansions are considered as endogenous “when there is an increase in the

amount ofcomplexity of discursive routines” and as exogenous “when there is a

proliferation ofnew discourses” (Sfard, 2008, p. 119, italics in original). Discursive

compressions, on the other hand, result from reaching to a metalevel by means of

objectification. Objectification occurs through reification and alienation. Reification “is

the act ofreplacing sentences about processes and actions with propositions about states

and objects” (Sfard, 2008, p. 44), whereas alienation refers to “using discursive forms

that present phenomena in an impersonal way, as if they were occurring ofthemselves,

without the participation of human beings” (Sfard, 2008, p. 295). Through

objectification, we identify the commonalities between different processes within a

discourse and we unify many lower-level phenomena under one name. This new

metalevel discourse subsumes the lower-level, independently existing discourses and

“enables us to express in the new language everything that can be said in any of the

original discourses with their own signifiers” (Sfard, 2008, p. 122). Therefore, the

objectified discourse is more abstract than any single one ofthe discourses it subsumes.

Objectification increases the effectiveness of our communication and is also a means of

formalization of the mathematical discourse, especially through the use of symbolic

artifacts. However, since objectification replaces the talk about processes with the talk

about objects in an impersonal ways, it hides the discursive layers that constitute the

objects and also the metaphorical nature of the objects we speak about. By doing so, it

 

8 Note that changing the talk about processes to the talk about objects necessitates changes in the word use

ofa discourse. Therefore, Sfard (2008) considers degree of objectification as crucial factor in the analysis
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also blurs the differences between the lower-level discourses that are subsumed, which

can be of significant importance, especially at the beginning stages of learning. This is

probably the reason why the insiders of the mathematical discourse (e.g., mathematicians,

mathematics teachers) “lose the ability to see as different what children cannot see as the

same” (Sfard, 2008, p. 59).

When human development is considered equivalent to the development of

discourses, the study ofthe historical development ofmathematical concepts become

equivalent to the study of the evolution of the mathematical discourse about the concepts.

Since mathematics is a patterned, historically established metadiscursive activity, such

evolution consists of the development of thinking about the objects. Therefore, although

the historical processes of object creation follows a different sequence than students’

individualization of those objects, the communal aspect of mathematizing contains the

narratives and the routines students need to adapt to as they become participants in the

mathematical discourse. Moreover, the historical development ofmathematical concepts

includes the junctures that enable the grth of the discourse through the interplay of

expansion and compression, which can be useful in the exploration ofthe conceptual

obstacles associated with the concepts. In this study, I will discuss the conceptual

obstacles associated with limit and its underlying concepts (infinitesimals and infinity)

through the analysis of the historical junctures that necessitated particular changes in the

previous mathematical discourse about the concepts. Next, I describe the elements of the

commognitive fiamework I will use to analyze those historical junctures in Chapter III.

 

ofword use. The details ofhow to analyze ofword use, visual mediators, routines and endorsed narratives

will be discussed in Chapter IV (design ofthe study).
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2. 2. 2. Metarules and metaphors in discourse development

It was mentioned in Section 2.2.1 that discourses develop through the interplay of

expansions and compressions. More often than not, such junctures in the development of

a discourse result in changes in the metarules, also called metadiscursive rules, of the

existing discourse in order to extend it firrther. Unlike object-level rules, which “take the

form of narratives on the objects of the discourse”, metarules “define patterns in the

activity ofthe discursants trying to produce and substantiate object-level narratives”

(Sfard, 2008, p. 201). “A metarule in one mathematical discourse will give rise to an

object-level rule as soon as the present metadiscoruse turns into a full-fledged part of the

mathematics itself” (Sfard, 2008, p. 202). For example, one of the metarules of

arithmetic ‘If we add an even number with another even number, the sum is an even

number’, becomes an object-level rule ‘ 2n + 2m = 2(n + m) for all n, m e R ’9 in the

algebraic discourse when expressed as the relation between the algebraic objects n and m .

The tacit nature of the metarules ofmathematics is amplified by objectification and

symbol use. Through reification and alienation, mathematical statements reach their

timeless forms, making it seem like mathematics exists independently ofthe creators of

those statements. Therefore, among the reasons metarules are mostly tacit are the

metadiscursive and metaphorical nature ofmathematical objects. By being discourses

about discourses, metadiscursive statements hide the discursive layers they consist of and

the metaphors they are based on. Metaphors help us create new discourses through usage

 

9 Note that the metarule and the object-level rule mentioned here are justified by the experts of

mathematics as true. As a result, they are among the endorsed narratives ofmathematics. The former is a

meta—level narrative whereas the latter is an object—level narrative. Said differently, one can talk about rules

as well as narratives of a discourse as being meta-level and object-level.
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of words from familiar contexts when making sense of an unfamiliar context. Thus, the

mechanism ofmetaphor can be thought of as “the action of ‘transplanting’ words from

one discourse to another” (Sfard, 2008, p. 39). Although metaphors are crucial

mechanisms with which we build and expand discourses, “words that have been

transferred from one discourse to another cannot be incorporated to the new discourse

without some bending of the old rules” (Sfard, 2008, p. 75). Given this, the exploration of

the metaphors that govern different layers of a mathematical discourse becomes a central

part of the exploration of metarules10 in the development of the discourse. The analysis of

junctures in the development of a discourse with respect to the changes in the metarules

can give us information regarding the transitions learners need to go through as they

participate in the extended discourse. In what follows, an example of such a juncture will

be given in the domain of arithmetic.

When we work with positive integers, the metaphor underlying multiplication is

repeated addition. We make sense ofmultiplication by means of addition and consider

the product 2 x 3 as 2 + 2 + 2 (two added to itself three times) or 3 + 3 (three added to

itself two times). Therefore, in this case, ‘we multiply by adding repeatedly’ is the

metarule of multiplication. This metarule also leads to another metarule, that

‘multiplication always makes bigger’. This means that whenever we multiply two

positive integers different than 1, the product is bigger than either ofthose integers. When

we multiply two positive rational numbers, on the other hand, the discourse on

multiplication has to go through some change. Considering %x 3 as adding gto itself

 

‘0 Note that using metaphors consistently in a given discourse is a type of metarule.
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3 trmes does not make sense. Given this, the metarule, that multrplrcatron rs repeated

addition, has to change. We can think of multiplication ofpositive rational numbers by

considering each number as the side length of a rectangle and think about multiplication

in terms of the area of that rectangle. Moreover, since %x :1; is equal to% , which is a

smaller number than both of the numbers we multiply, the metarule ‘multiplication

always makes bigger’ also needs to be abandoned. The visualization of multiplication as

hopping on the number line, which works for the case ofpositive integers, needs to be

replaced by the visualizations of multiplication as area of rectangles1 1. It is these types of

junctures that will be elaborated on in this study since they require changes in the

metarules ofthe previously existing discourse to extend the discourse further. It should be

noted that the discourse on multiplication of positive rational numbers subsumes the

discourse on the multiplication ofpositive integers. Given this, the metarules, visual

mediators, and endorsed narratives, as well as the object-level rules that are valid for the

former are also valid for the latter. In contrast, not all the metarules, visual mediators and

endorsed narratives ofthe discourse on multiplication ofpositive integers are necessarily

valid for the more general, subsuming discourse on the multiplication ofpositive rational

numbers.

By being based on the tacit metarules and metaphors governing the discourse,

developmental junctures eventually require changes in the endorsed narratives of the

 

l l . . . . . . .

Ofcourse, the discourse about multiplication goes through yet other transrtrons when negative numbers

get into the picture.
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discourse. In that sense, they lead to the changes that are essential in order for the learner

to participate in the new aspects ofthe extended mathematical discourse.

Summary

In this chapter, I described the limit concept and summarized the literature about its

learning. Existing research on the learning of limits mostly characterizes the difficulties

students have about limits through misconceptions based on the assumptions of a

cognitivist framework. From this perspective, students need to change and refine their

mental schemes in order to overcome the conceptual obstacles they have about limits. I

argued that we do not have direct access to constructs such as (mis)conceptions and

mental schema. In other words, a cognitive framework may not offer sufficient tools of

analysis with which we can explore how learners make sense of the limit concept. I then

introduced Sfard’s (2008) commognitive framework as an alternative lens to investigate

development of discourse on limits and student difficulties associated with the concept.

From this perspective, students need to change elements oftheir discourse on limits in

order to overcome their conceptual obstacles. Sfard (2008) highlights word use, visual

mediators, routines, and narratives as the main tools of analyses to learn more about one’s

mathematical discourse. In this study, I will investigate whether such an analysis

enhances our knowledge of student learning about limits.

Existing research on limits also points to some possible links between the

historical development of limits and student learning. However, it does not elaborate on

the principles underlying the transitions learners need to go through as they attend to

different aspects of the limit notion. By viewing developmental processes as resulting
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from individualization ofthe communal and communalization ofthe individual, I will

concentrate on historical, and therefore communal, development of discourse on infinity,

infinitesimals, and limit in the following chapter. More specifically, I will explore the

historical development of limit related concepts through the commognitive framework,

with a particular focus on the junctures that resulted in changes in the metarules and

metaphors of the previously existing discourse on limits. The purpose of this

investigation is to gain more information about the nature of the conceptual obstacles

related to limits over history. Later in the study (Chapter VII), I will examine whether

such a consideration of historical development can be useful to learn more about

_ individual student learning.
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CHAPTER III

HISTORICAL DEVELOPMENT OF THE DISCOURSE ON INFINITY,

INFINITESIMALS AND LIMITS

In this chapter, I explore the historical development of infinity, infinitesimals and

limits. While doing so, I rely on historical documents as well as research on the historical

development of those concepts. When investigating the historical development of

discourse about those concepts, I pay attention to particular elements of the

commognitive framework, namely word use (objectification), metarules and metaphors1 ,

that characterized particular realizations of infinity, infinitesimals and limits. I also use

these elements to identify the historical junctures that led to changes in the

metadiscursive rules as the discourse on these notions extended.

Although the historical developments of the concepts of infinity, infinitesimals

and limits are intertwined, I will first focus on them separately. I will then argue that

there were two types ofhistorical junctures that led to changes in the metadiscursive rules

ofthe discourse on these concepts. The first type led to the objectification of the ideas

about infinity, infinitesimals and limits. The second type, which occurred in the

development of discourse on limits, led to an alternative realization of limit and

ultimately resulted in the elimination ofmotion as an idea underlying this notion. I will

argue that these two types ofjunctures form the bases of the changes in the

metadiscursive rules in the historical development of discourse on these three concepts.

 

l .

Recall that using metaphors when making sense of a mathematical concept rs a type of metarule (See

Section 2.2.2)
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In order for the reader to follow the historical development of these concepts

clearly, I present the timeline for the mathematicians who will be addressed in this

chapter in Table 3.1.

Table 3.1: Timeline of the mathematicians discussed in this chapter over history

 

 

Ancient times Renaissance period 17th and 18th centuries 19th and 20th centuries

Eudoxus (405-355 BC.) Viete (1540-1603) Newton (1643-1727) Weierstrass (1815-1897)

Aristotle (384-322 BC.) Descartes (1596-1650) Leibniz (1646-1716) Dedekind (1831-1916)

Euclid (325-265 BC.) Cavalieri (1598-1647) Euler (1707-1783) Cantor (1845-1918)

Archimedes (287-212 Fermat (1601-1665) Lagrange (1736-1813) Robinson (1918-1974)

BC.) Wallis (1616-1703) Cauchy (1789-1857)
 

3.1. The notion ofinfinity

Historically, the notions of potential infinity and actual infinity have been of

interest for philosophers, mathematicians and scientists since ancient times. Lakoff and

Nunez (2000) note that “outside mathematics, a process is seen as infinite if it continues

(iterates) indefinitely without stopping” (p. 156). On the other hand, there can be no

direct experience with the notion of infinity in real-life since our environment is restricted

by finiteness. Therefore, Aristotle (384-322 BC) considered infinity only as potential:

“the non-limited possibility to increase an interval or to divide it” (Fischbein, Tirosh &

Hess, 1979, p. 3) and rejected the notion of actual infinity to avoid Zeno’s paradoxes2

and the inconsistencies in the existing discourse about potential infinity. Fischbein

(2001) notes that, in the case of potential infinity,

we deal with a dynamic form of infinity when we consider processes,

which are, at every moment, finite, but continue endlessly. We cannot

conceive the entire set of natural numbers, but we can conceive the idea
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that after every natural number, no matter how big, there is another natural

number. (p. 3 10)

The dynamic nature of visualizing infinite continuation without an endpoint is also

mentioned by Lakoff and Nunez (2000). They note that we make sense of such

continuation by motion that goes on and on forever. With this metaphor, we talk about

continuous processes without end by thinking of them as “infinite iterative processes,

processes that iterate without end but in which each iteration has an endpoint and a

result” (Lakoff& Nunez, 2000, p. 157). Thus, this metaphor enables us make sense of

infinite processes by means of infinitely many step-by step processes that are discrete.

This is the metaphor with which we realize potential infinity. In mathematics, we use the

notion ofpotential infinity whenever we write down the elements of a given sequence,

-;—,—;—,...or when we write the decimals of J3 in terms of ones, tenths,for example% , as 1,

hundredths, and so on. Similarly, Tall (1992) argues that using words such as ‘ x tending

to infinity’ for the notations like ‘ x —> 00 ’also represent infinity as a potentiality.

Therefore, mathematics makes frequent use of the notion ofpotential infinity through

word use and symbolization. At this point, it is important to note that, despite its common

use in the mathematical discourse, potential infinity is not objectified. When we think

about infinity as potential, we talk about it as aprocess but not as a distinct mathematical

object. Its use in the mathematical discourse is equivalent to its use in the colloquial

discourses, “which are also known as everyday or spontaneous because they often

develop as ifby themselves, as a by-product ofrepetitive day-to-day actions” (Sfard,

 

For the description ofZeno’s paradox and its variations, see (Fischbein, 2001 ).
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2008, p. 132). Aristotle’s notion of potential infinity continued for centuries and it was

not until the 19th century that the mathematical distinction between potential and actual

infinity was made explicit: “In XVIII century. . .the difference among a very big number

and on ‘infinity’ was neglected and it seemed self-evident that a theorem true for every n

was true for n infinite, too” (Kline, 1991, I, p. 506 as cited in Bagni, 1997, p. 210).

Cantor’s (1845-1918) work in the 19th century replaced the notion ofpotential

infinity -— the idea that infinity resides beyond any given number (positive or negative) -

with the notion of actual infinity, realized as an accumulation point. Using Cantor’s

words:

Mathematical infinity. . .is crescent beyond every limit or

indefinitely decrescent, and it is a quantity that remainsfinite. I call it

improper infinity [potential infinity]. Moreover, recently, another kind of

infinity. . .took place. . .By that. . .the infinity is considered as concentrated

in a certain point. When infinity occurs in this form, I call it proper infinity

[actual infinity]. (Bottazzini, Freguglia & Toti Rigatelli, 1992, p. 428 as

cited in Bagni, 1997, p. 210).

Here Cantor talks about improper, or potential, infinity similar to Fischbein’s (2001)

arguments that although the process continues endlessly, it is considered as finite at every

given moment. Cantor uses the word proper, or actual, infinity, on the other hand, to refer

to an end-state. Given this, Cantor realized actual infinity as a distinct entity but not as a

process and therefore objectified the notion of infinity through reification. This, on the

other hand, required changes in both the existing discourse about potential infinity and

also in the metarules of mathematical activities such as counting and measuring. “The
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shift of attention, from the natural numbers as a potentially infinite collection going on

and on, to a single entity the setN , given axiomatically, leads to considering the

relationships with other infinite sets” (Tall, 2001 , p. 212, italics in original). By

introducing the notion of one-to-one correspondence in determining the equivalence of

the cardinality of sets, Cantor eventually transformed the metarules of counting: “If we

have to compare two infinite sets, we should not count their elements as we count finite

groups of objects. We have to determine the equivalence-or non-equivalence-of these sets

byformal means” (Fischbein, 2001, p. 310). The acceptance of infinity as actually

existing required the acceptance of “the strange proposition that the whole may be

equivalent to some of its parts” (Fischbein, Tirosh & Hess, 1979, p.4). For example, we

can come up with a one-to-one correspondence between the set ofpositive even numbers

and natural numbers, which in Cantorian terms, means that the cardinality ofthese two

sets are equal to each other. This, on the other hand, also means that the set ofpositive

even numbers, which is contained in the set of natural numbers, has equal cardinality

with the set ofwhich it is a subset. Therefore, a previous metarule of counting that “if we

find the cardinality of a proper subset of a given set, the result is a number less than the

cardinality of the larger set” had to change in the case of infinite sets. Moreover, Cantor

also showed that the cardinality of the set of natural numbers and the cardinality of the set

ofpoints on a number line are not equivalent to each other since there could be no one-to-

one correspondence between these two sets. Therefore, although both sets contained

infinitely many numbers, they had distinct cardinalities. This meant that more than one

type of infinity existed. In that sense, although infinity was objectified as an ultimate

state and an existing ‘number’ 00 , the symbolic equation 5 = 5 , which made perfect sense
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for the number 5 as an object of mathematics, was meaningless for the case of infinity:

infinity was not equal to infinity! Instead, we used a family of notations N.- to denote

different infinities. Lakoff and Nunez (2000) also mention that the famous mathematician

Hardy warns us not to consider 00 as a number in the usual sense “because

mathematicians have devised notions and ways of thinking, talking, writing, in which

co is a number with respect to enumeration, though not calculation” (p. 165).

Besides counting, the notion of actual infinity also required changing some of the

metarules of arithmetic. Tall (2001), highlights that neither the subtraction nor the

division ofthe infinite cardinals can be uniquely defined. On the other hand, the

introduction of the notion of actual infinity results in a proliferation of other

mathematical discourses. Tall (1992) considers cardinal infinity, ordinal infinity and non-

standard (measuring) infinity among the three notions of infinity3 used in mathematics

today. The fact that “natural numbers are not only used for counting, but also for putting

a set into an order” (Tall, 2001, p. 216) eventually led to the definition of order

relationships and the creation of ordinal numbers for which addition was not

commutative. As a result, the metarule of adding quantities regardless of their order,

which is valid for real numbers and the cardinal numbers does not hold for ordinal

numbers. “So strange were these ideas to the mathematics community when first

announced that Kronecker prevented the initial publication of Cantor’s theory of infinite

cardinals...” (Tall, 2001, p. 218).

 

3 Cardinal infinity extends counting by means ofcomparison of sets. Ordinal infinity is conceptualized in

terms ofcomparison of ordered sets. Measuring infinity extends measuring from real numbers to larger

ordered field (Tall, 1992).
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Fischbein, Tirosh and Hess (1979) argue that “the contradictory nature of infinity

can be pushed to higher levels but cannot be completely eliminated. . .even with the most

sophisticated mathematical tools” (p.4). Lakoff and Nunez (2000) seem to agree with this

since they claim that the metaphor with which we realize actual infinity is a special “case

of a single general conceptual metaphor in which processes that go on indefinitely are

conceptualized as having an end and an ultimate result” (p. 158). They call this metaphor

the Basic Metaphor ofInfinity and argue that it turns potential infinity into actual infinity

in tenns of a largest ‘number’ 00. By means of this metaphor, proof by induction “needs

“0 longer be considered as potentially infinite process” but becomes a three-step

Procedure following Peano’s axiom4 (Tall, 2001, p. 210). As a result, actual infinity also

Changes the metarules of proving.

It is probably true that even the symbolization of the notion of infinity in

m"=llil'rematics cannot keep us away from the conceptual obstacles associated with it.

The common mathematical notion for infinity-‘ . . . ’— as in the sequence

‘ l + 2 + 4 + ’— does not even distinguish between potential and actual

infinity. If it is potential infinity, the sum only gives an endless sequence

of partial sums always less than 2; if it is actual infinity, the sum is exactly

2. (Lakoff& Nunez, 2000, p. 180)

On the other hand, actual infinity is now a meaningful, “non-contradictory concept,

consistent with the totality of the other mathematical concepts” (Fischbein, Tirosh &

A

I

4 Tall (2001, p. 211) mentions that to prove a statement P(n) by induction, it is enough to (a) show P(1) is

true, (b) show the truth ofP(k) implies the truth ofP(lr+ I), and (0) quote the induction axiom, which states

that if (a) and (b) are true, then P(n) is true for all n in the set of natural numbers.
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Hess, 1979, p. 3). Therefore, we accept the notion’s mathematical reality. In that respect,

the mathematical answer for l + g + i + is exactly 2. The difficulty Lakoff and Nunez

addresses above, therefore, results from the conceptual but not the mathematical aspect of

infinity.

Summary

The objectification of infinity as a distinct mathematical entity did not occur till

the 19th century. This required changing the talk (and word use) about potential infinity,

which is a process, to the talk about actual infinity, which is an accumulation point. Such

a transition necessitated changes in the metarules of counting, measuring, arithmetic and

proving. The notion of actual infinity also gave rise to new types of ‘numbers’, namely,

cardinal, ordinal and measuring (non-standard) infinities. Therefore, the development of

actual infinity led to an exogenous expansion in the mathematical discourse since it

ignited the proliferation of different mathematical discourses. Fischbein’s (2001) and

Tall’s (2001) arguments support the idea that the discursive expansion about the notion of

cardinals and ordinals took place only after, not before, the objectification and

formalization of actual infinity by means of an axiomatic system.

Although the notions of potential and actual infinity are distinct from each other

mathematically, they are both used frequently in the mathematical discourses. Lakoff and

Nunez (2000) argue that the metaphors we use for potential and actual infinity are

 

5 It should be noted, however, that the notion of actual infinity created quite a chaos in the mathematics

community before its mathematical existence was accepted (Bagni, 1997; Fischbein, Tirosh & Hess, 1979;

Tall, 2001).
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variations of each other and are primarily based on our realization of the infinite

processes through iterative processes that have an end and an ultimate state.

3. 2. The notion ofinfinitesimals

The concept of infinity, which is mostly associated with the notion of infinitely

large, also brings with it the notion of infinitely small. The term infinitesimal entails

infinitely small quantities, generally negligible, that are not real constants. Infinitesimals

are also called indivisibles, differentials, evanescent quantities and infinitely small

magnitudes (Kleiner, 2001). As mentioned in the preceding section, the discussions

about infinity go back to Aristotle and the first integral-like approach given to area

related problems was given by Eudoxus (405-355 BC). Eudoxus suggested an approach

that seemed to have characteristics similar to an infinite process. This approach was

called the method of exhaustion, which led to the implicit notion of infinitesimals. The

method assumed infinite divisibility of magnitudes and was primarily based on the

proposition

If fi'om any magnitude there be subtracted a part not less than its half,

from the remainder another part not less than its half and so on, there will

at length remain a magnitude less than any preassigned magnitude ofthe

same kind. (Eves, 1983, p. 289)

A magnitude being “less than any preassigned magnitude of the same kind” formed the

initial underpinnings of an infinitesimal quantity. Although this method was handled by

Euclid (about 325-265 BC.) and Archimedes (287-212 BC.) later, it was Archimedes

who tied the problems of finding area to the explicit use of the concept of infinity. He

initiated the idea that an area could be composed of infinitely many geometrical lines but
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he could not form a solid explanation of the vaguely defined concept of infinitesimals.

The mathematics of this period is considered as static since it lacked the consideration of

motion and change and was based on the axiomatic structure of geometry. Although the

initial underpinnings of infinitesimals were present in this era (around 300 BC), they

could not be justified with the geometric foundation. Since the idea of infinitesimals

relied too much on intuition and was not based on the solid foundation ofmathematics,

which was geometry with its axiomatic/deductive structure in this period, it was

considered unsound. Therefore, it was discarded by the ancient Greek mathematicians

and was not emphasized assertively by Archimedes.

In 1635, Cavalieri (1598-1647) applied indivisibles or fixed infinitesimals

successfully to problems in the mensuration of areas and volumes which brought

infinitesimals back into discussion (Boyer, 1970). He used the geometrical approach,

which still dominated the renaissance mathematics, and found the integrals of nth-degree

polynomials accurately. Yet, a revolution was about to come as mathematicians like

Viete, Descartes, Wallis and Fermat recognized the use of algebra as an aid to geometry.

This led to the tendency towards the symbolic-algebraic over geometric by the end of the

renaissance period. Descartes’ (1596-1650) work, published shortly after Cavalieri’s,

changed the course of infinitesimal analysis once again and initiated the period called the

arithmetization of geometry6.

 

6 This, together with the discovery ofnon-Euclidean geometry, marked the stagnation of geometry for

about a century and a half.
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The mathematics of the late renaissance and 17th century relied on the dynamic7

approach and overshadowed the static approach given to mathematics since the ancient

Greeks. These changes enabled the reevaluation and reanalysis of the infinitesimal

calculus into what we now know as calculus. The use of infinite-series expansions for the

generalization of analysis not only to polynomial functions but also to rational, irrational,

algebraic and transcendental functions required a new infinite analysis. This was

recognized first by Newton in 1665-66 and then independently by Leibniz in 1673-76

(Boyer, 1970).

Newton’s main contribution was to justify that the infinite processes were as

respectable as the algebraic ones. His approach to infinite processes was mainly dynamic

and relied on the notion of incremental change because of the physical nature of his

problems at hand. However, since mathematicians have been deeply skeptical of the

concept of infinitesimals due to their intuitive and non-rigorous characteristics, Newton

avoided using ‘infinitely little’ but used the term ‘evanescent’ while discussing fluxionsg.

Historically, the strongest criticism ofNewton’s calculus came from Berkeley in 1734.

Berkeley’s reaction was primarily based on Newton’s implicit use of infinitesimals in

calculus: “And what are these same evanescent Increments? They are neither finite

Quantities, nor Quantities infinitely small, nor yet nothing. May we not call them the

Ghosts of departed Quantities?” (Berkeley, 1734, as cited in Jesseph, 1993, p. 199).

Leibniz, on the other hand, gave importance to appropriating notations and was

able to give the correct rule for differentiation for the product oftwo quantities. Yet, he

 

7 . . . . . .

The consrderatron ofmotion and change in mathematics through physrcal problems.
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did not consider these quantities as variables one of which depended on the other, so he

missed the idea of differentiation of a variable with respect to another variable. Leibniz’

proof of the product rule was as follows:

d(xy) = (x + dx)(y + dy) — xy where dx and dy are the differentials or

infinitely small differences of x and y . So Leibniz states that “the

quantity dxdy ...is infinitely small in comparison with the rest, and hence

can be disregarded” (Edwards, 1979, p.255).

Boyer (1970) argues that Leibniz and his disciples could not make clear what they meant

by infinitely small change and could not justify the elimination of quantities that were

infinitely small compared to others. According to him, Leibniz’ calculus was a failure

compared to Newton’s from this logical viewpoint. It should be noted that both Newton

and Leibniz worked on the calculus of instantaneous change. Therefore, they were

implicitly using limit as a process, but not as an explicitly defined concept, as they

obtained the tangent line at a point through a sequence of the secant lines passing from

that point (Lakoff& Nunez, 2000). On the other hand, Newton used a geometric

approach in the process whereas Leibniz relied more on arithmetic.

Euler (1707-1783) shone in 18th century with his work on the possibilities

inherent in the infinite power series. By means of symbol manipulation, Euler showed

that “what is true for convergent series is true for divergent series, what is true for finite

quantities is true for infinitely large and infinitely small quantities” (Kleiner, 1991, p.

295). To Euler, the transition from finite differences to the limit method (limit as a

 

8

Newton referred to a varying (flowing) quantity as a fluent. He used the term fluxion to refer to the

instantaneous rate ofchange of a fluid.
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process) was straightforward and was based on his consideration of continuity of real

numbers:

Both infinitely small and infinitely large quantities often occur in series of

numbers. Since there are finite numbers mixed in these series, it is clearer

than daylight how, according to the laws of continuity, one passes fi'om

finite quantities to infinitely small and to infinitely large quantities (Euler,

2000,p.90)

On the other hand, infinitely small quantities were intentionally banned from Lagrange’s

lectures since he considered them as concepts that lacked adequate foundational basis

(Schubring, 2005, p. 290).

Infinitesimals went on being under attack till the beginning of the 20th centuryg.

On the other hand, “they still continued to flourish in the practical world of engineering

and science ..., representing not a fixed infinitesimal quantity, but as a variable that could

become ‘arbitrarily small’” (Tall & Tirosh, 2001, p. 130). In mid 20th century, Abraham

Robinson (1918-1974) introduced his theory of non-standard analysis, in which

“infinitesimals were formulated on a logical basis” (Tall & Tirosh, 2001, p. 130). This

still did not solve the debate as to whether infinitesimals can be considered as logically

sound mathematical objects since the new formulation of infinitesimals brought its

relevant incompatibilities with the existing mathematical discourses. This debate

continues into the 21 5’ century.

 

See the next section about limit for further details.
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It was mentioned before that the introduction of different types of infinities

changes the metarules of counting and measuring. Cardinal numbers, for example,

require a different way of counting for infinite sets than finite sets through the notion of

one-to-one correspondence. Recognition of non-standard infinity, which Tall (1992)

refers to as the measuring infinity, marks a change in the notion of infinity and the

metarules ofmeasuring and is based on the non-standard analysis of Robinson. “To

explain such a theory requires the formal interpretation of the notion of an infinitesimal”

(Tall, 1980a, p. 274). Measuring infinity considers a point as a ball of infinitesimal size,

by which “we discover a theory that allows both the indivisibility of ‘points’ and also

infinite divisibility of a line” (Tall, 1980a, p. 274). In that sense, a point which is

considered dimensionless is now a ball with an infinitesimal radius. Tall (1980b) also

mentions that non-standard analysis, through the reformulation of infinitesimals, leads to

new types ofnumbers, namely hyperreal or superreal numbers.

Summary

Although the objectification of infinitesimals is absent before the 20th century, the

period that precedes Robinson’s non-standard analysis highlights the conceptual

obstacles regarding the acceptance of infinitesimals as mathematically justifiable objects.

Sfard (2008) notes that “not every metarule, whether enacted or endorsed, is a norm. In

order for a rule to be a norm, it must be widely enacted within a community” and it must

also “be endorsed by everybody [as true], and especially by those within the community

who count as experts” (p. 204). Given this, although the uses of infinitesimals had been

present, the narratives about them were not endorsed by the majority of the mathematics

community for a long time.
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Initially, the reason that hindered the acceptance of infinitesimals as valid

mathematical objects resulted from the almost mystical nature of the utterances about

infinitesimals (e.g., evanescent quantities or vanishing increments). Moreover, the use of

geometry by its dynamic representations, such as curves and graphs, but not by means of

its formal-deductive structure (Euclidean geometry) entailed continuous motion in space,

which was considered intuitive and sensuous. A more important reason, however, was

the way infinitesimals contradicted the endorsed narratives about real numbers. Lakoff

and Nunez (2000) mention that infinitesimals do not obey the arithmetic rules of real

numbers since they violate the Archimedean Principle10 and commensurabilityl 1. Did

Robinson’s objectification of infinitesimals as particular types of numbers solve these

problems?

To this day the debate continues. Although the infinite cardinals are

generally accepted by the mathematical community, there are

mathematicians who fully embrace the theory of infinitesimals in non-

standard analysis, those who deny their existence and assert the pre-

eminence of standard analysis, and even a greater number who do not

agonise over the foundational problems and simply get on using

mathematics for practical purposes. (Tall & Tirosh, 2001, p. 130)

 

10 “Archimedean Principle: Given numbers A and B (where A is less than B) corresponding to the

magnitudes of two line segments, there is some natural number n such that A times it is greater than B”

(Lakoff& Nunez, 200, p. 298).

11 “Those magnitudes are said to be commensurable which are measured by the same measure, and those

incommensurable which cannot have any common measure” (Heath, 1956, p. 10). In modern sense, two

non-zero quantities A and B are commensurable if there exists a quantity C such that A=mC and B=nC for

non-zero whole numbers m and n.
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Interestingly, the reformulation of infinitesimals by means of logic “invoked the axiom of

choice to assert that such entities existed without being able to give a specific finite

construction” (Tall & Tirosh, 2001, p. 130). That is to say, the formal theory of

infinitesimals assumes the existence of the concept but cannot prove or construct their

existence. In that respect, it seems impossible to justify the notion based on the solid

foundations ofmathematics. However, the discourse on infinitesimals continues to lead

to the proliferation ofnew mathematical discourses such as measming infinities,

hyperreal and superreal numbers.

3.3. The notion oflimit

Being the founders of calculus, Newton and Leibniz both used infinitesimals in

their theories as they worked on incremental change. By obtaining the tangent line at a

point through the use of a sequence of secant lines, they were using the notion of limit as

a process. The dynamic mathematics influencing the renaissance period relied heavily on

the metaphor of continuous motion. On the other hand, the symbolism of arithmetic and

its use for expanding the discourse on functions made arithmetic a better candidate for

‘the’ foundation of mathematics than geometry. Given these, it is not surprising that

Newton was criticized more than Leibniz or Euler. Although they all referred to

infinitesimals in their work, Newton also used geometry in the dynamic, and hence the

most intuitive, manner. Leibniz, by relying on arithmetic, probably avoided some

criticism.

Using the notion of limit as a process is referred to as the limit method in the

historical documents. After Newton and Leibniz, mathematicians such as MacLaurin and
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d’Alembert kept on using this method on their problems. Lagrange opposed them on their

use ofthe limit method:

MacLaurin and d’Lambert used the idea of limits; but one can

observe the subtangent is not strictly the limit of subsecants, because there

is nothing to prevent the subsecants from further increasing when it has

become a subtangent. True limits... are quantities which one cannot go

beyond, although they can be approached as close as one wishes.

(Lagrange, 1799, as cited in Schubring, 2005, p. 293)

Lagrange’s arguments were primarily based on

the lacking of the concept of absolute value. . .so that it seems as if the

variable goes beyond the limit; the criticism is also at the problem, which

has always remained controversial, whether a variable can definitely reach

the limit or is only allowed to come close to it at any rate (Schubring,

2005, p. 293).

Although Lagrange uses words like “true limits. . .are quantities”, it was not until Cauchy

( 1 789-1857) that the notion of limit was objectified. Lagrange seems to talk about limit

as a “subtangent”, which is “the limit of subsecants”. In that sense, he considers limits as

the quantities obtained through the limit process and does not explicitly define them. It

Sl'lould also be noted that Lagrange’s word use “[true limits]...can be approached as close

as One wishes” entail very small or infinitely small increments as well as motion.

Therefore, the limit method makes use of the notion of infinitesimals and is based on the

[ 1etaphor of continuous motion.
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The discourse of calculus went through a fundamental change with Cauchy. He

realized the necessity of establishing a theory of limits, which required the explicit

definition of the concept. He selected the fundamental concepts of calculus like limit,

convergence, derivative and integral and created the grand design of calculus where limit

became the concept on which the others were based and the concept of derivative came

before the concept of integral (Kleiner, 1991, 2001). The college level calculus that we

teach today mostly follows the outline of Cauchy. Table 3.2 shows the comparison of the

historical development of the calculus concepts with Cauchy’s design.

Table 3.2: Comparison of the historical development of calculus with Cauchy’s

fiarnework

 

 

_ Historical development Design of Cauchy

Area and integral Infinity

Infinity and Infinitesimals Limit

Series (finite, infinite) and sequences Derivative

Derivative Integral

Limit Series and sequences
 

 

One ofthe reasons underlying Cauchy’s revolutionary departure from the established

Practice was his opposition to Lagrange, whose foundation of calculus was based on

algebra. Cauchy wanted to eliminate algebra as a basis of calculus and wanted his

IIlethods to have the rigor demanded in geometry (Kleiner, 1991 , 2001). Cauchy defined

limit as follows:

When the values successively attributed to the same variable approach

indefinitely a fixed value, eventually differing form it by as little as one

could wish, that fixed value is called the limit of all the others (Kitcher,

1983, p.247).

IiS definition of infinitesimals was:

56



When the successive absolute values of a variable decrease indefinitely in

such a way as to become less then any given quantity, that variable

becomes what is called an infinitesimal. Such a variable has zero for its

limit (Kitcher, 1983, p.247).

An analysis of Cauchy’s word use reveals that he objectified the notion of limit through

reification by referring to limit as a “fixed value”, that is a distinct mathematical object.

Note also that he uses the word “approaching”, which is based on the metaphor of

continuous motion. Finally, the phrases “absolute values of a variable decrease

indefinitely” and “differing from [a value] as little as one could wish” entail the use of

infinitely small quantities, namely, infinitesimals. Therefore, Cauchy’s definition of limit

Was based on infinitesimals and the continuous motion metaphor, which were both

problematic for mathematicians of his time. The dynamic interpretation of limit was

Considered intuitive by the community since terms like tending to have a “connotation of

desire, of aspiration. Numbers do not tend” (Fischbein, 1994, p. 239).

Since Cauchy based all of his calculus on the concept of limit, a precise definition

0f limit became of crucial importance. Weierstrass (1815-1897) and Dedekind 12(1831-

1 9 1 6) attempted to ‘remedy’ Cauchy’s definitions by finding “a purely arithmetic and

perfectly rigorous foundation for the principles of infinitesimal analysis” (Dedekind,

1 963, p.1 as cited in Kleiner, 1991). These mathematicians wanted to replace Cauchy’s

l(irletnatic approach with the algebraic-arithmetic approach. The goal was to

ITeQOrrceptualize calculus as arithmetic by eliminating spatial intuition. In order to do this,

\

1 2

Bolzano and Hilbert were also among the mathematicians of 19th century who favored arithmetization of

lalysis.
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Natural continuity had to be eliminated from the concepts of space, planes,

lines, curves, and geometric figures. Geometry had to be reconceptualized

in terms of sets of discrete points, which were in turn to be conceptualized

purely in terms of numbers: points on a line as individual numbers. . .The

idea of a firnction as a curve in terms of the motion of a point had to be

completely replaced. There could be no motion, no direction, no

approaching a point. All these ideas had to be reconceptualized in purely

static terms using only real numbers. The geometric idea of approaching a

limit had to be replaced by static constraints on numbers alone, with no

geometry and no motion. This is necessary for characterizing calculus

purely in terms of arithmetic. (Lakoff& Nunez, 2000, p. 308)

Weierstrass accomplished this full agenda by considering space as sets of points. This led

to file consideration of the points on a line as numbers, which then led to the realization

of “Continuity for a function as the preservation of closeness” (Lakoff& Nunez, 2000, p.

322) - In that sense, the distance between points in motion was replaced by the distance

bet"Ween numbers. The result was Weierstrass’ ultimate definition of limit:

Let a firnction fbe defined on an open interval containing a, except

possibly for a itself, and let L be a number. Then lim f(x) = L if and only

x—>a

if for any number 8 > 0 there exists a 6 > 0 such that if

0 <lx—al <§then|f(x)—L| < 8.

I‘Iaving eliminated the metaphor of continuous motion associated with infinitesimals and

geometry, and being a logical-deductive system that had arithmetic as its foundation, this
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definition seemed to provide the precision mathematicians were looking for”. Secondly,

the definition was strong enough to explain anomalous cases that violated the geometric

and dynamic conceptions of functions as curves. By doing so, it was believed that this

new paradigm was generalizable to a broader number of situations”. On the other hand,

some mathematicians argued that this definition wiped out all the intuitive tools with

which we make sense of the concept. Note that the formal definition of limit is not

constructive since it does not enable us to find what the limit of a function is but to prove

that the limit we initially hypothesize is indeed the limit of the firnction at a particular

Point. That may be why the dynamic approach is still widely used both by

mathematicians and the students as they make sense of the notion.

Summary

The objectification of the notion of limit initiated by Cauchy requires the consideration of

liITlit as a thing: a particular value obtained from the limiting process. Hence, Cauchy

giVes a definition of limit by reificationls. His definition of limit is based on the metaphor

of c()ntinuous motion and infinitesimals. Weierstrass and Dedekind’s attempts to

Tremedy’ Cauchy’s definition result from the incompatibility of these two notions with

tl‘le discourse on previously existing concepts ofmathematics that can be described

I1131‘er by means of algebra. The formal definition of limit Weierstrass introduces

e112lnges the metaphor of natural continuity to the metaphor of discreteness. By

\

1 3

l 4 At least till the collapse of the search for foundations (See Hersh, 1997; Lakatos, 1976).

However, Lakoffand Nunez (2000) argue that, since natural continuity uses a different conceptual

metaphor than the continuity of Weierstrass, the latter is neither a formalization nor a generalization of the

‘osl‘lner.

Note that reification is part of objectification and changes the talk about processes to the talk about

pl’Oducts (See Section 2.2.1).
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considering numbers as sets of discrete points on the number line, he eliminates natural

continuity and therefore geometric motion and time from the discourse on limits. It is

imPortant to point out that such a shift also requires a change in the definition of

functions as curves as well as the phrases like ‘tending to’ or ‘approaching’ since these

utterances entail continuous motion. It is by means of arithmetization, and thus the

discretization, of calculus that function becomes a type of correspondence between two

sets and that the distance between two points in space becomes the absolute value of the

difference between two numbers.

3- 4- Historicaljunctures in the development ofdiscourse on infinity, infinitesimals and

limits

In the previous sections about infinity, infinitesimals and limit, the historical

development ofthese concepts were discussed with a focus on some elements of the

conunognitive framework such as word use (objectification), metarules and metaphors. In

this section, I identify the historical junctures in the development of discourse on these

c0Ilenepts that resulted in changes in the metarules of the discourse in order to extend it

fill'tl'ler. It was mentioned that the exploration of metaphors that govern different layers

of a discourse is a central part of the exploration of the metarules in discourse

development (See Section 2.2.2). Table 3.3 shows the junctures that transformed the

tIlet'c‘lrules in the development of infinity, infinitesimals and limits over history.

I highlight two types ofjunctures in the historical development of discourse on

t119$: three concepts: one led to the objectification of each concept; and one led to an

alternative realization of the limit concept by the elimination of motion in space. Note

that for infinity and limits, the objectification initially took place by means ofreification,

that is, by changing the talk about a process to the talk about a product.
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Table 3.3: Historical junctures in the development of discourse on infinity, infinitesimals

and limits over history
 

  
ficept Infinity Infinitesimals Limits

Juncture(s) Cantor’s objectification of Robinson’s formulation of [1]Cauchy’s objectification of

potential infinity as actual infmitesimals on a logical limit

infinity basis [2] Weierstrass’ introduction of

the formal definition of limit

Changing Realization of infinity as an Realization of [l]Realization of limit as a

metaphor(s) indefinite process through infmitesimals as process is changed to

continuous motion is evanescent or diminishing realization of limit as a fixed

changed to realization of quantities is changed to value obtained as a result of

infinity as an end-state, realization of the process.

ultimate result or an infinitesimals as variables [2]Continuous/spatial motion

accumulation point. that can be made and infinitesimals in

arbitrarily small. Cauchy’s definition are

eliminated. Motion is

replaced by the distance

between discrete numbers.

Changing Counting, measuring, Measuring (a point is a Representing functions (as

metarules proving (proof by induction) ball with an infinitesimal algebraic rules but not as graphs

and properties of arithmetic radius) of curves), points in space (as

such as addition and discrete points on the number

division. line) and geometrical objects

\ (arithmetization of geometry).
 

Potential infinity and the limit method were originally realized as processes in their

historical development. Actual infinity and limit, however, were realized as end-states or

nurl‘lbers obtained at the end of the processes of going on forever and limit method,

respectively. The objectification of infinitesimals was slightly different than infinity and

limits in that the mathematical justification of the concept is still under scrutiny.

I\’Iolf‘eover, their initial realization was not in terms of a process but in terms of very small

qua-ntities that could be eliminated. I consider Robinson’s approach to the concept

quUgh logic a historical juncture since it enabled a formal theory of infinitesimals as

Objects ofmathematics. However, the existence of infinitesimals cannot still be justified

through constructive methods ofmathematics but rather is assumed.

I argue that the second type of historical juncture took place in the historical

dGVelopment of discourse on limits. By revising Cauchy’s definition of limit, Weierstrass
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also changed centuries-held metaphors about motion and continuity. Weierstrass’ formal

definition of limit eliminated infinitesimals from the previously existing discourse on

limits and replaced the metaphor of natural continuity with the metaphor of discreteness.

He discarded motion and time from his discourse on limits and geometry and offered

realizations of points as numbers on the number line and distances between points in

space as the distances between numbers.

As discourses develop and expand, the metarules and metaphors underlying the

mathematical concepts can change. Although an expanded discourse on a mathematical

c>01‘lcept subsumes the preceding discourse and enables generalization, some aspects of

the former version of the concept are lost during such transitions. The metaphor that

charlges might be the most natural attribute of the concept with which learners initially

make sense of the concept. Therefore, the junctures in discourse development leading to

tral'lsfonnations in the metarules can be of significant importance for learners and also

Ini.gl'rrt explain some of their difficulties. Changes in metaphors and metarules eventually

I.eslllt in changes in the word use and the endorsed narratives of the discourse as the

Irlet<'=1discursive rules take the form of object-level rules (See Section 2.2.2). As a result,

me)? enable the proliferation of discourses. For example, the objectification of infinity

resIlllted in a proliferation of discourses leading to concepts such as cardinal, ordinal and

IIleasuring infinities. Therefore, historical junctures may highlight some of the transitions

lea:l‘rrers need to go through as they participate in the expanded mathematical discourse.

Surnmary

In this chapter, the development of discourse on infinity, infinitesimals and limits

0\r'er history was explored by means of some elements of the commognitive fiamework.
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The exploration revealed the objectification of the notions as important milestones in

discourse development. Historically, objectification ofmathematical concepts changed

the talk about processes to the talk about products or end states. Such changes also

resulted in transformations in particular metaphors and metarules ofmathematics.

It was mentioned in Chapter II that, according to Sfard (2008), developmental

changes take place in the interplay oftwo processes: individualization ofthe communal

and communalization ofthe individual. The historical development of limit reveals how a

mathematical idea generated by an individual mathematician gains acceptance

COllectively (e.g., Cantor’s objectification of infinity as actual infinity). From the

Commognitive lens, this is an example ofcommunalization ofthe individual. One

inStance where the second process, individualization ofthe communal, takes place is

Stu(lent learning. Note that Sfard (2008) considers learning as participation in the

communally agreed upon discourse on mathematics. Therefore, a question that will be

pursued later in the study is how and whether the investigation ofhistorical development

of limits through the commognitive lens is useful to gain more information about

teaelling and learning of limits. In particular, can the historical junctures that led to

cIl'C‘lIlges in the metarules of the discourse on limits be useful to explain some of the

hallsmons students go through as they learn about limits? These issues will be addressed

In Chapter VII of the study.
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CHAPTER IV

DESIGN OF THE STUDY

In this chapter, I first present the specific research questions for the study. I then

describe the overall design of the study including the participants, data collection and

data analysis methods.

4.1. Specific research questions

The study addresses the following questions: 1) How is the discourse on limits

generated by the instructor in a beginning college-level calculus classroom? 2) Given the

instructor’s discourse on limits how do students talk about limits in a beginning college-

level calculus course? and 3) How do the elements of discourse on limits as generated

over history compare and contrast with the discourse on limits generated in a beginning-

level calculus course?

4. 2. The participants

Participants for this study consisted of one calculus instructor and his section of

undergraduate students who were taking a beginning-level calculus course in a large

IVIiCleestern University. The course addresses the fundamental concepts of calculus such

as lillrits, differentiation and integrals. The course is fast-paced and loaded in terms of the

I7“-‘I?I11)er of topics covered. It is structured to focus more on the concepts and their

applications than proofs.

While selecting the classroom to observe, I initially formed a complete list of

11'1St1’uctors who were teaching the course in Spring 09. I then selected the instructors

' U 1lose teaching schedules enabled me to observe their classrooms. I sent five instructors,

who were randomly selected, an e-mail that briefly described my research interests and



asked whether they would like to participate in my study. One instructor responded to the

e-mail and expressed his willingness to let me observe his classroom. He wanted to learn

how I planned to conduct my study so we met before the beginning of the semester.

During that meeting, he gave me some information about the syllabus, the textbook and

the students enrolled in his classroom. I told him I was interested in both the teaching and

learning of limits. Initially, I suggested only audio-taping the class not to disturb the flow

of the lessons. However, the instructor suggested video-taping. I informed him about the

diagnostic survey I wanted to give students at the end ofthe unit on limits. He provided a

schedule for finishing the discussion on limits and suggested giving the surveys at the end

of the last lesson, a review session for the first exam. During the meeting, the instructor

also mentioned he planned to go over the formal definition of limit1 as well as proofs of

some basic theorems and facts about limit in the classroom to motivate the students who

migllt take higher-level calculus classes in the future.

There were 31 students registered to the instructor’s section. During the period of

Classroom observations, the number of students attending the class ranged between 17

and 2. 3. The class was very diverse in terms of the majors of students. Table 4.1 shows

the distribution of students across their majors. There were 18 first-year; nine second-

yea-1‘; three third-year students and one fourth-year student enrolled in the class. The

Whole section was asked to take a diagnostic survey at the end of the unit on limits.

 

\

1

I did not give the instructor any directives about what to teach and did not in any way intervene in his

= aching method or topics covered.
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Table 4.1: Distribution of students across their majors
 

Department Number of students Department Number of students
 

Computer engineering 2 Statistics 1

Electrical engineering 1 Accounting 1

Civil engineering 2 Finance 4

Engineering Biochemistry and
2 . 2

(no preference) molecular biology

Computer Science 2 GBA—Prelaw l

Premedical 3 Marketing 2

Residential College 1 Economics 2

Mathematics 2 Ecological scrences and l

agriculture

Physics 1 Asian langiage l
 

Based on the responses given to the survey, I interviewed four students to further explore

their discourse on limitsz. Three of the students who participated in the individual

interview session had not taken calculus before; this was the first time they were

introduced to the limit concept. One student took a calculus class during high-school.

Having prior knowledge about limits was not necessarily problematic for the study since

Stuclents’ familiarity with colloquial or some of the literate aspects of limits was

anticipated, though not required. The focus of the empirical part of the study was, given

their previous knowledge and also how the notion was introduced in the classroom, how

Studems worked on and talked about particular limit problems.

4. 3. Data collection

The primary sources of data for this study consisted of field notes as well as video

tElpes that were taken during the classroom observations; responses to a diagnostic survey

gven to students; and task-based interviews including students’ written work. The

te)‘ltbook students used in their class (Thomas ’ Calculus, 11th edition) and informal

c118Cussions with the instructor with respect to his mediation of students’ use of the

\

:2

I‘Iow the students were recruited will be discussed in Section 4.3.
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textbook (e.g., assigned readings or homework problems) were considered as

supplementary data.

The data for the classroom observations were collected in eight days over a period

oftwo and a half weeks3. I video-taped the classes in which the instructor talked about

limits and continuity starting fi'om the first week of Spring 09 semester. Overall, the

observation data consisted of eight SO-minute lessons. While video-taping, I only focused

on the instructor and did not video-tape the students. I took field notes during classroom

observations and used them to keep track of the number of students attending the class as

well as the questions they asked to the instructor. I also used the field notes to keep a

record of definitions and problems the instructor presented in the class. My role in the

classroom was a participant observer. I did not interfere with the flow of the class during

instruction. However, I helped some students before and after class if they asked me

some questions about limits. Since I wanted to interview some of the students at the end

0f the unit on limits, providing such help was useful to establish a relationship with them

and get ideas about their difficulties about limits. I transcribed the video-taped lessons

both with respect to what the instructor said and what he did in the classroom. Therefore,

for the analysis of the instructor’s discourse, my data consisted of video-tapes of eight

lesSons and their transcripts as well as the field notes taken during classroom

0bServations.

On the last day ofthe classroom observations, I gave all students a diagnostic

S‘ll‘Vey. That lesson was the review session for the exam and by that time, the instructor

 

\

3

The class met three times a week.
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had completed his discussions on limits and continuity. He gave me 10 minutes at the end

ofthe class to administer the survey to the students. There were 23 students in the class

that day and all ofthem agreed to take the survey. I used the diagnostic survey (a) to

select the students for an individual interview session, and (b) to analyze student

responses with respect to the instructor’s discourse4. The questions in the diagnostic

survey (See Appendix A) were taken from Williams (2001) since his classification of

Views related to limit is widely endorsed by research on student learning about limit. The

first question of the survey included six statements about limits and asked students to

decide whether the statements were true or false. Each ofthe six statements in the survey

was related to a different view of limit, some ofwhich were difficulties addressed by

research on student learning. The second question then asked them which ofthe six

statements best described their understanding of limits. The third question asked students

to describe what they understood a limit to be. The final question asked students to give a

rig<>rous (formal) definition of limit, if possible.

While selecting the students for interview sessions, I focused on their responses to

the first and the second questions of the survey. I initially grouped all students with

reSIDect to the six statements they chose as best for the second question. I planned to

interview one student for each of the six different views of limit they chose as best

describing how they thought about limits. Since I wanted variety in terms of students’

Viers oflimit, I then recorded the number of correct responses students in each group

gave for Question 1. Table 4.2 is a cross tabulation of questions 1 and 2, and shows the

\

<1.

In this section, I only talk about how the students for the interview session were selected. The details of

e analysis of the diagnostic survey in regard to the instructor’s discourse will be discussed in Section 4.4.
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classification of responses for the selection of students for the interview session. Its use is

explained below.

Table 4.2: Classification of student responses for Question I and Question 2 of the survey

Number of students selecting the statements as best in Question 2

Total number of students = 23

Number

IV. V. VI. VII.ofcorrect I. II. 111.

responses Statement] Statement2 Statement3 Statement4 Statements Statement6 "None”

given to (N=11) (N=0) (N=1) (N=6) (N=1) (N=3) (N=1)

 

  

 

 

 

@estionl

All correct 2 0 O O 0 0 0

5 correct " .5.. 0 if: 1113 0 0 f// 0

4 correct .4 O 0 O 1 '_ 0

3 correct 0 O O 2 0' fight:

2 correct 0 O O 3 :sLeumi 0

1 correct 0 O 0 is“ 1 O 0

0 correct 0 0 O 0 O O

3 Initial emailing Final selection

 

As an example, Table 4.2 shows that of the 11 students who selected statement 1

(“A limit describes how a fimction moves as x moves toward a certain point”) as the best

definition of limit, two categorized correctly all 6 statements in question 1, while 4

Categorized four correctly and two incorrectly. I initially e-mailed six students from

Columns 1, III, IV, V, VI and VII, respectivelys (See Table 4.2). The students I e-mailed

are fiom the shaded cell in each column. The final selection of students is shown with

l1aSl‘1-marks in the relevant cells. The selection process proceeded as follows.

In the e-mails I briefly described my study, provided some information about the

itlterview sessions and offered a $25 gift card from a bookstore for their participation.

only one student, from Column III, agreed to be interviewed. The other students did not

9 V ant to participate (participation was voluntary). I then sent another set of e-mails to six

\

8

Note that none of the students chose Statement 2 as best.
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students: two students with four correct answers from Column I, two students with three

correct answers from Column IV, and the two remaining students from Column VI (See

Table 4.2). Only the student from Column V1 with five correct responses agreed to be

interviewed. At that point, I had one student selected from Column III and one from

Column VI. The students who were in Columns V and VII did not want to participate and

there was no student in Column 11.

I repeated the procedure again, this time e-mailing all of the remaining students

from Columns I and IV. One ofthe students from Column I with five correct responses

agreed to participate in the interview session. At that stage, I had three students who

considered three different statements related to limits as best describing their realization

of l imit. On the other hand, the students’ responses to the six statements were mostly

accurate6. In order to find candidates who would likely have many of the difficulties

indicated by the literature, I went to the classroom and looked for volunteers. Together

With the instructor, we encouraged students to participate since the experience could

cOl’ltlibute to their learning. As a further motivation (besides the gift card), I also

Suggested tutoring the students at their convenience (such as before the exam). Only one

S1“-ICIent agreed to participate. She was from Column I and had five correct responses to

QUestion 1 (See Table 4.2). I wrote my e-mail on the board and asked students to contact

1Tie in case they wanted to be interviewed but did not receive any response.

Getting students’ acceptance to volunteer for the study lasted for about two and a

1It11fweeks. In the end, I decided to go with the four who volunteered. Unfortunately, I
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could not recruit the students with many incorrect responses to the survey to participate in

the study. However, the interview sessions revealed that some of the four students who

seemed to have grasped the idea behind limits had many of the difficulties indicated by

research when they worked on tasks that targeted those obstacles7.

The questions in the interview session were designed to probe students’

realizations of limits and also investigate in further detail the conceptual obstacles

addressed by research on learning about limits. For the interview sessions, I initially

 

formed a pool ofproblems, which consisted of ten questions. Some of those questions

were taken directly from research on student learning on limits and limit related concepts;

the others I developed considering the instructor’s discourse on limits. For example, the

instructor told me he planned to go over the formal definition so I added problems to the

P001 that were about the formal view of limit. By the time I interviewed the students, I

1‘educed the number ofquestions to six (See Appendix B). There were two reasons for the

elimination ofthose tasks: (a) It was unlikely for students to work on all of the problems

in about an hour, and (b) given the instructor’s discourse in the class, some ofthe

Problems turned out to be redundant or completely unfamiliar to students. For example,

one ofthe questions I eliminated was about computing limits of a variety of functions

represented algebraically. The instructor did not only go through similar examples in the

c1ass but he also assigned these types ofproblems as homework. Therefore, it seemed

that this problem was redundant since it was going to assess students’ computational

\

6

It should be noted the term “accuracy” is considered here only in terms of students’ responses to the six

tements in the diagnostic survey and does not necessarily imply students’ realizations of limits were

790mm in general.

The details of the student discourse on limits will be discussed in Chapter VI.
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skills more than their mathematical reasoning. Another problem I eliminated was taken

fi'om research on student learning about infinity and required familiarity with some early

underpinnings of sequences. Since the instructor did not talk about infinity as a separate

concept in the class and since he did not give any elementary examples of sequences, I

concluded students would be too unfamiliar with the question. The other two questions I

eliminated were different versions of similar problems that were already in the remaining

six questions.

I conducted the interviews with the participants individually over a one week

period. The interviews lasted between 53 and 76 minutes. I audio-taped the interviews

and transcribed them with respect to what the students said and did. In order to keep track

of what the students did, I took notes during the interviews as students worked on the

problems. Besides the transcriptions, interview data also consisted of students’ written

Work, To sum up, for the analysis of students’ discourse on limits, my data consisted of

res13cmses to a diagnostic survey as well as four audio-taped interview sessions,

tral’lscripts of the sessions and written student work.

4. 4. Data analysis

4- 4- I . Analysis ofthe instructor’s discourse

I used the transcribed classroom observations to analyze the discourse of the

instructor with respect to the four elements of discourse from the commognitive

fi"i-"lll'rework: word use, visual mediators, routines, and narratives. During the process of

trailscription, I created a list of common words the instructor used and categorized them

as Signifying functions, infinity, infinitesimals, limits, motion and proximity. When the

h anscription of the eight lessons was completed in terms of what the instructor said and
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what he did, I color-coded the words I initially identified depending on their

categorization. Every category was coded with a different color in the transcribed text.

The words were color-coded based only on their mathematical use in the class. For

example, I coded the word at as signifying proximity in the instructor’s discourse (e.g.,

‘ff is continuous if you can find the limit at a by plugging in”) but I did not code it when

he used it in a colloquial manner (e. g., “now, let us look at this example”).

The next step was to identify the utterances in which the instructor talked about

limits. In order to do that, I first pulled out all the sentences including the word “limit”,

Which was already color-coded, from the transcripts of the video tapes. However, there

Were also utterances about limit in which the instructor did not explicitly utter the word

“1th”. In some of the cases where the instructor did not utter the word “limit”, he

described the behavior of function values as the x values approached the limit point. In

some others, he referred to a previously mentioned limit (e. g., “It [the limit] does not

eXist”; “L [the limit] is equal to three”; “The answer [the limit] is one”). I considered

SUCh utterances as related to limits as well. An utterance about limit was formed by a

Sentence, part of a sentence or multiple sentences that conveyed a particular idea about

linlit that could be interpreted just by reading. About 85% of the 775 utterances I

identified as related to limits consisted of a single sentence. The remaining utterances

eitl'ler consisted of less than (about 2%) or more than (about 13%) a whole sentence

depending on the purposes of the study. The only context in which an utterance consisted

of Some part of a sentence was when the instructor attended to multiple limit notations in

a Single sentence. During the transcription process, I noted that the instructor used a

Val‘iety ofwords when he attended to the limit notation although he and the textbook
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suggested using a single word, namely “approaches” when reading the notation. The

existence of a family of words associated with the same notation in the instructor’s

discourse led me consider each instance in which he referred to the limit notation as a

distinct utterance in order to look for the patterns in his word use. In these cases, an

utterance could be less than one sentence if the instructor addressed more than one limit

notation. For example, the following explanation was considered as consisting of three

Utterances since the instructor referred to three different limit notations.

“If the limit as x approaches c from the right is L [first utterance

about lim f(x) = L] and the limit as x approaches c from the left is K
+

x—)c

[second utterance about lim f(x) = K ], and ifK is not equal to L, then

x—)c_

the limit as x approaches 0 offofx does not exist [third utterance

about lim f(x) =does not exist]”.

x—->c

The only contexts in which an utterance was considered as consisting ofmore

than one sentence were (a) when the instructor described the behavior of the function

vallues in relation to the x values, (b) when he asked what a given limit was equal to and

in‘lInediately gave the answer following his question, and (c) when the idea the instructor

c0l'nrnunicated about limits could be understood only together with the sentences

preceding his conclusive statement about limits. While identifying an utterance in these

coIltexts, I looked whether the utterance conveyed a complete idea about limits. Each of

the following examples was considered as a single utterance about limits although they

c0Ilsisted oftwo sentences:
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Example 1: “So really what this [the function] is trying to do, it is

approaching a number very very small. A small negative or a small

positive”.

Example 2: “What is the limit offofx as x approaches six? You get an

undefined”.

Example 3: “As x approaches, say c, of the function one. What is that

limit?”

Example 4: “When x approaches one, what do the function values do?

They get closer to two”.

Example 5: “What I want to do is to talk about another tool that is useful

for computing limits. This is called the sandwich theorem”.

Example 6: “What is our conclusion that we want here? Here is our

conclusion:fofx minus L [the limit] is less than epsilon”.

Once the utterances about limit were identified, they were coded into four

Categories with respect to the degree of objectification: colloquial, operational,

Obj ectified, and both operational and objectifiedg. The identification of these categories in

Word use was based on the commognitive framework (degree of objectification) (See

Chapter III). Colloquial word use referred to talking about limits in everyday sense.

ODerational word use referred to talking about limits as a process, whereas objectified

Word use referred to talking about limit as an end result of the limit process or as a

Illltlrber. There were also utterances in which the instructor talked about limits both in an

\

8

‘ The details of these categories will be firrther discussed in the word use section of the chapter on

l“Structor’s discourse.
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operational and objectified manner. These four categories (colloquial, operational,

objectified and both operational and objectified) and color-coding were used to explore

the patterns ofword use in the instructor’s discourse. The exploration of patterns in the

instructor’s word use was then used to identify the contexts in which he altered his word

use from one categorization to the other or where his word use remained consistent, (e.g.,

strictly objectified) without any shifts. As a result, there were four contexts in which the

instructor’s word use was analyzed in detail: (a) informal definition of limit, (b) formal

definition of limit, (0) computing limits, and (d) continuity.

For the analysis of visual mediators, an inventory of all the visual mediators the

instructor used was created from the transcripts, which also included the snapshots of

everything he wrote and drew on the board. Those mediators were then classified in four

Categories: written words; drawn pictures of geometric shapes; graphs; and symbolic

representation.

Routines correspond to the set of metarules that describe repetitive actions of the

discursants (Sfard, 2008). Note that the repetitive nature of routines requires them to be

applied consistently in similar situations. Therefore, not all actions count as routines

unless they are consistently used in analogous contexts. For the investigation ofroutines,

I mainly focused on what the instructor did9 throughout the eight lessons. There were

ITlalny possible routines that could be elaborated on over the entire observation period

(e-g., assigning homework at the end ofthe class). For the purposes of the study,

hoVvever, only the routines emerging fiom the transcripts that were most relevant to the

\
 

9

Note that the transcripts of the instructor’s discourse included both his words and actions in the

QIElssroom.
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analyses ofthe word use and visual mediators were reported. Some of the routines in the

instructor’s discourse consisted of repeated mathematical procedures (algebra-based

routines) he utilized in the classroom in regard to limits. Some other routines, such as

graphing, were repeated actions emerging also from the analysis of word use and visual

mediators. The main focus during the analysis of routines was to identify the when and

the how of a routine. How of a routine can be thought of as the “course ofaction or

procedure”, whereas when of a routine refers to the instances “in which the discursants

Would deem this performance as appropriate” (Sfard, 2008, p. 208, italics in original).

The when of a routine embodies the applicability and closure conditions (Sfard, 2008).

Applicability conditions enable the exploration of the situations that trigger the

application of a particular routine. Closure conditions characterize the circumstances

under which a performer considers her routine as successfully completed. Since routines

are used to substantiate mathematical narratives, closure conditions mark the end of a

routine and are followed by the closing statements afier the implementation the routine.

Narrative is “any sequence of utterances framed as a description of objects, of

relations between objects, or of processes with or by objects, that is subject to

endorsement or rejection with the help of discourse-specific substantiation procedures”

(Sfard, 2008, p. 134, italics in original). It was mentioned in Section 2.2.2 that “a

metarule in one mathematical discourse will give rise to an object-level rule as soon as

file present metadiscourse turns into a full-fledged part of the mathematics itself” (Sfard,

2008, p. 202). Object-level rules, once endorsed by the community, form the object-level

narratives ofmathematical discourse and are known as mathematical facts. The meta-

1eVel narratives, on the other hand, characterize the metarules related to the object-level
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narratives. For the instructor’s discourse, most of the endorsed narratives were object-

level in the form of a definition, theorem or rule about limits. For example, he endorsed

the following object-level narrative about the limit of the sum oftwo functions:

If lim f(x)=L and lim g(x)=M,whereLandM arereal

x—+a x—>a

numbers, then lim (f(x) + g(x)) = L + M .

x——)a

In this study, the instructor’s object-level narratives were not reported because this would

result in restating all the facts about limits that are widely endorsed by the mathematical

Community that can also be found in a beginning calculus textbook. Instead, the focus

Was on the meta-level narratives that were most relevant to the instructor’s word use,

visual mediators and routines in the classroom (e. g., “limit is a number”, and “limit is a

process”, etc.).

4- 4- 2. Analysis ofthe diagnostic survey and student interviews with respect to the

instructor ’s discourse

The diagnostic survey taken from Williams (2001) was used to select students for

the interview sessions and to gain information on students’ discourse on limits at the end

of tlleir lessons (See Appendix A). How the survey was used to select students for the

interviews was discussed in Section 4.3. Here, I talk about the analysis of the survey with

reSpect to the instructor’s discourse.

Recall that the first question of the survey consisted of six statements about limits

Stlldents chose as true or false. In the second question, students picked one of those

StEltements as best describing their view of limit. For the third question, they provided

their own definitions of what a limit is. For the fourth and final question, they provided a

rigorous (formal) definition oflimit.
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According to Williams (1991), the six statements in the first question of the

survey correspond to six views about limit. He categorizes these views as dynamic-

theoretical; boundary; formal; unreachable; approximation; and dynamic-practical,

respectively. The statements describing limit as dynamic-theoretical, formal, and

dynamic-practical (Statements 1, 3, and 6, respectively) give general information whether

the students’ realizations of limit is based on motion or not. The statements describing

limit as boundary, unreachable, and approximation (Statements 2, 4, 5, respectively), on

the other hand, are used whether students have some of the difficulties identified by

research on student learning about limits (See Section 2.1.2, Table 2.1).

For the analysis of the first two questions of the survey, I initially recorded the

responses students gave for each of these statements as true or false. I then made a cross-

comparison of the responses with respect to the statements students chose as true. For

example, I looked at how many of the students marking Statement 1 as true also marked

Statements 2, 3, 4, 5, 6 as true. The purpose here was to look at the range of responses as

well as how and whether students considered different views of limit as related to each

other. I then made a cross-comparison of the statements students chose as true in regard

to the statements students chose as best describing their views of limit. For example, I

looked at how many ofthe students marking Statement 1 as true considered it as the best

statement; how many of those students considered Statement 2 as the best statement, etc.

The purpose of this part was to gain information about the views that dominated students’

realizations of limit and what other views of limit were connected to those realizations.

I then analyzed students’ responses for each of the six statements (some of which were

difficulties addressed by research) in relation to the instructor’s discourse. The purpose of
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this was to examine how instructor’s word use, visual mediators, routines, and endorsed

narratives compared and contrasted with the view of limit indicated by the statements.

For the third and fourth questions, I assigned numbers corresponding to each

student’s response. I also included which of the six statements students chose as best

were closest to their descriptions. I then explored student responses in relation to their

word use, visual mediators and endorsed narratives”). While doing so, I investigated

whether students referred to limit as a process (operational word use) or as an end-state

(objectified word use). I also looked whether students’ word use was dynamic (based on

motion) or static (based on proximity by means of distance). If students’ word use was

operational, they endorsed the narrative “limit is a process”; if their word use was

objectified, they endorsed the narrative “limit is a number”. In case students used any

visual mediators in their descriptions, such as the limit notation, I focused on their word

use when talking about the notation and whether it was based on dynamic or static word

use. I then compared and contrasted students’ word use, visual mediators and endorsed

narratives with the instructor’s. In cases instructor’s word use when talking about a visual

mediator was reflected in students’ discourse, I also examined how the instructor used

that visual mediator (such as graphs or symbolic notation).

Missing in the diagnostic survey were student difficulties such as “limit implies

continuity”, “limit as the function’s value”, and “limit as monotonic” (See Section 2.1.2,

Table 2.1). The interview questions were designed to address all of the difficulties

mentioned by research and also provide more information about students’ discourse on

 

lO . . . . , . .

The diagnostic survey was not a context In which students routmes could be analyzed smce such

analysis requires the exploration of repetitive patterns in a discourse. In order for such patterns to emerge,
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limits. I analyzed students’ discourse in the interviews, again, in terms of (a) elements of

the instructor’s discourse on limits (word use, visual mediators, routines, and endorsed

narratives), and (b) the difficulties indicated by research on student learning about limits.

While analyzing student responses in relation to the elements ofthe instructor’s

discourse, I focused on five mathematical contexts that emerged from the analysis of the

instructor’s discourse in relation to his word use. Those contexts were: (a) dynamic

aspect of limits, (b) formal aspect of limits, (c) limit notation, (d) infinity, and (d)

continuity. I used the transcripts of what the students said and did to explore each

instance of talk about these five contexts. I then compiled all the utterances for each

student in regard to these contexts in a separate document. The document also included

each student’s routines (e. g., graphing, plugging in the limit point to the fimction, etc)

and visual mediators (e.g., graphs and symbolic notation) that emerged from the

transcripts. I then looked at the general characteristics of each student’s word use (degree

of objectification as well as use ofdynamic and static vocabulary), visual mediators,

routines, and endorsed narratives. I then compared and contrasted these four elements of

students’ discourse with those of the instructor’s.

While analyzing students’ discourse with respect to research on learning about

limits, I looked for the instances in the interview transcripts where students showed signs

ofhaving the difficulties mentioned in the literature (See Section 2.1.2, Table 2.1). I

compiled each student’s utterances in such instances in another document, categorizing

them with respect to the six difficulties identified by the literature (See Table 2.1).

 

students’ discourse over a period of time needs to be observed in multiple contexts. This element of

students’ discourse was investigated during the interview sessions.
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After this, I focused on the similarities and differences between the elements of students’

and instructor’s discourse and explored how and whether the instructor’s discourse was

reflected in students’ discourse.

4. 4.3. Analysis ofthe classroom discourse with respect to the historical development of

limits

In Chapter III, the historical development of infinity, infinitesimals and limit was

described with a focus on particular elements of the commognitive framework: word use

(objectification), metarules and metaphors. In the same chapter, I also identified the

historical junctures in the development of discourse on these concepts that resulted in

changes in the metarules in order to extend it further (See Section 3.4). One of the goals

of this study was to explore whether the historical development of limits through the

commognitive lens could help us gain more information about student learning in today’s

calculus classrooms. In order to address this question, I examined the instructor’s and

Students’ discourse on limits in relation to the historical development of limit related

concepts.

While analyzing the instructor’s discourse with respect to the development of

disCourse on limits over history, I compared the ordering and introduction of topics

related to limits with the historical development of the related concepts. Besides this, the

focus ofthe analysis of instructor’s discourse in terms of the historical development was

to c(>mpare and contrast the word use (objectification), metarules and metaphors in the

instrlrctor’s discourse with those in the discourse on limits as generated over history.

While examining students’ discourse in regard to the historical development of

limit ' ' ’related concepts, I first explored the contexts 1n which the experts conceptual

b8tacles were srmrlar to or drfferent from those of the students’ 1n the study. I then
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focused on students’ realizations of the informal and the formal definition of limit as well

as infinity and compared and contrasted the word use (objectification), metarules, and

metaphors in students’ discourse with those in the discourse on limits as generated over

history. Finally, I looked at whether the historical junctures I identified through the

commognitive framework were reflected in the instructor’s and the students’ discourse on

limits.

In what follows, I will first present the findings of the analysis of the instructor’s

discourse on limits (Chapter V). Next, I will talk about students’ discourse on limits at

the end of their instruction (Chapter VI). Last, I will examine the classroom discourse in

relation to the historical development of limit related concepts (Chapter VII).
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CHAPTER V

THE INSTRUCTOR’S DISCOURSE ON LIMITS

In this section, I first describe the general characteristics of the lessons taught by

the instructor. I then analyze the instructor’s discourse on limits with respect to word use,

visual mediators, routines, and endorsed narratives using the commognitive framework. I

use a pseudonym for the instructor and refer to him as Jason throughout the study.

A big portion of this chapter will be devoted to the analysis ofword use. While

exploring Jason’s word use, I focus on the degree of objectification in his utterances on

limits. The degrees of objectification in his word use are classified as colloquial,

operational, objectified, and both operational and objectified. I then concentrate on

particular mathematical contexts to elaborate further on Jason’s word use. Those contexts

are the informal and the formal definition of limit, computing limits (limits at a point,

limits at infinity and infinite limits), and continuity.

The second element of Jason’s discourse I attend to is the visual mediators he

used in the class. I talk about four types of visual mediators: written words, drawn

PiCtln‘es of geometric shapes, graphs and symbolic notation. The discussion about the

VisIlla] mediators is followed by the discussion of the routines (metarules that underlie the

relDetitive patterns) in Jason’s discourse. I talk only about the routines that are most

r I I O 0

e1ated to hrs word use and vrsual mediators: algebra-based routrnes, geometry-based

I‘ .. , . . . .

Outlnes, usrng contrnuous motion as a metaphor, and usrng discreteness as a metaphor.

11125llly, I describe the narratives that Jason endorsed in the classroom based on the

la~1yses of the previous elements of his discourse.
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Jason covered limits during eight SO-minute lessons, one of which was a review

session for the exam. There were 31 students registered for the course. Jason’s mode of

teaching was lecture and there was little, if any, discussion among students. He started

the limit chapter on the first day of the semester and did not review or cover functions

and basic algebra. In the first lesson, he gave students information about homework,

textbook, syllabus and also exams. He told students they did not have to know calculus

for the course but they needed to have solid algebra knowledge. He mentioned this

consistently throughout the following lessons. He put a lot of emphasis on homework,

which he expected students to submit every week. He considered homework as the most

important part ofthe class in order for students to keep the pace of the class and also get

feedback on their work. He firrther noted that the exam problems would be directly from

or slight variations of the homework problems.

Jason assigned the homework problems directly from the textbook (Thomas ’

Calculus, 2008, 11th edition). He considered the textbook as the most important resource

for the class. He mentioned that students could use either the 5th or the 11th edition of the

bOOk. He said that the media upgrade, which is the 11th edition, contained CDs that had

l'Bctllres and mentioned this as possibly useful for some of the students. He also noted that

he would sometimes follow the textbook very closely and sometimes he would deviate

from it to give students extra examples. It should be noted, however, that Jason did not

allow calculators for the exam; did not use any technology in the classroom and did not

assign any problems that would require students to use technology as homework

I)‘rg‘blems. Table 5.1 shows the topics of each of the eight lessons and the corresponding

‘1

e)itbook section.
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Table 5.1: Topic outline for Jason’s lessons
 

Lesson

number

and date

Topics covered Textbook

section

 

Lessonl

01/12/09

Introduction: Homework, exam, attendance, calculator policy; syllabus

and textbook information

Rates ofchange and limits

Average rates of change (average speed)

Instantaneous rate of change (instantaneous speed)

Limit (as the instantaneous rate of change)

Section 2.1

 

Lesson2

01/14/09

Formal definition of rate of change

Geometrical interpretation (slope, secant lines, tangent line)

Instantaneous rate of change

What is a limit? Informal/intuitive definition

Computing limits (polynomials, rational functions, constant functions)

Factor theorem for polynomials

Findingthe limits from a given graph

Section 2.1

 

Lesson3

O 1/ 1 6/09

Limit laws

Computing limits by using the limit laws

Rule (Theorem 2 in the book): You can find the limits ofpolynomials

by plugging in.

(Theorem 3 in the book) We can find the limit of rational functions by

plugging in as long as the denominator is not zero.

Some applications of the theorems: computing limits

Section 2.2

 

Lesson4

O l /2 l /09

 

Long division (initiated from a homework problem)

Sandwich theorem

An application of the sandwich theorem: computing the limit of a

function sandwiched in between two functions

The precise/formal definition of a limit

One proofproblem f(x)=2x-l; a=2; L=3 (algebraic)

Geometric explanation of the proofproblem

Section 2.2 and

Section 2.3

 

[‘eSSOnS

0 1 /23/09

Refining the concept of limit and more about the sandwich theorem

sin 6 _ 1
 

Proof using sandwich theorem: lim

6—>O 6

sin 6
 

Computing other limits derived fiom combinations of

Finding limits from graphs of functions (as an introduction to two-sided

limits)

Theorem (Theorem 6 in the book) If the right hand limit and the left

hand limit exist at a point, then the limit exists at that point.

Limits at infinity

Computing limits at infinity (rational functions)

Horizontal asymptotes (definition and some applications in the form of

computing limits of firnctions at infinity)
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Table 5.1 cont’d: Topic outline for Jason’s lessons
 

Lesson

number

and date

Topics covered Textbook

section

 

Lesson6

01/26/09

Homework problem about one-sided limits that include absolute value

Horizontal asymptote applications: finding horizontal asymptotes of

given functions

Oblique/slanted asymptotes (Long division ofpolynomials) Section 2.4 and

Graphing functions focusing on their behavior at positive and negative 3606011 2-5

infinity; right-hand-side and left-hand-side of a vertical asymptote

(Book’s terminology: dominant terms)

Vertical asymptote (definition and applications)
 

Lesson7

01/28/09

Continuous functions

Intuitive definition of continuous functions

Mathematical definition of continuous functions

Examples of continuous functions

Showing that a firnction is continuous (two examples)

Properties of continuous fiinctions

Theorem (Example 6 in the book): Polynomials are continuous. Section 2-6

Rational functions are continuous when the denominator isn’t equal to

zero. -without proof

Theorem( Theorem 10 in the book): Continuity of a composite function-

without proof

Fact(not in the book): Sin and Cos are continuous-without proof

Continuous extension/maximal continuous extension examples
 

Lesson8

01/30/09

Intermediate value theorem (won’t be on the exam)-theoretical

definition and an example

Computing limits of various functions (rational, trigonometric,

involving absolute value, limits at infinity)

Graphing a rational firnction using dominant terms (oblique asymptote, . _

vertical asymptote —computing these limits) RCVleW 535510“

Continuous extension/maximal continuous extension of a rational

firnction and a trigonometric function

Discussion: Can a function have an oblique asymptote and a horizontal

asymptote at the same time?

5.1. Word use

The words Jason used when talking about limit of a function mainly consisted of the

words related to motion, proximity, infinitesimals, infinity, and continuity. Figure 5.1

S . . . . . .

hOWs the list of common words Jason used in his discourse on limits and the related

notions those words signify. The list includes the words that Jason used most frequently

When referring to limit related concepts and was generated during the process of

bra-Ilscfibing the video-taped classroom sessions.
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The analysis of Jason’s discourse revealed that the degree of objectification in his

discourse varied depending on the context ofword use. His utterances were classified as

colloquial, (mathematical) operational and (mathematical) objectified. Jason’s utterances

were considered colloquial if he used limits in everyday sense; operational if he referred

to limit as a process and based his arguments mainly on dynamic motion; and objectified

(or structural) ifhe referred to limit as a number, that is, as a distinct mathematical object

obtained at the end of the limiting process.

The classification of a particular utterance as operational or objectified turned out

to be complex in the context of reading the notation lim f(x) = L 1. Mathematically, we

x—>a

read lim f(x) = L as “the functionf(x) approaches the limit L as x approaches a ”

x—)a

(Hughes-Hallett et al., 2008; Thomas et al., 2008). In this respect, verbalizing x -—> a

using the word approaches is a part of the objectified literate discourse on limits and

although the word approaches signifies motion, its use in this context is not necessarily

based on motion; it is how we read the notation. Therefore, Jason’s utterances when

reading the notation in cases where he used the word approaches were classified as

Objectified if he referred to L as a number at the end of the notation. His use ofthe word

approaches was classified as operational when he used it outside the context ofreading

the limit notation. His utterances when reading the notation were classified as operational

If: (a) he used different words that signify motion for verbalizing x —> a , for example, “as

3": gets closer and closer to a ”; “as x becomes larger and larger” or “as x becomes a ”,

 

\

1

ms will be discussed more in detail in the section about visual mediators.
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and (b) he used the word “approaches” while reading x —+ a but did not refer L as a

number that is obtained at the end of the limiting process. Jason sometimes read

lim f(x) = L as “the limit offofx at a is [the number] L”. Such utterances were

x—>a

classified as objectified since they were not based on dynamic motion and the end

product, which is the limit L, was used as a distinct number.

Overall, there were 775 utterances about limit throughout the eight lessons. Given

this large number of utterances, it is not feasible to discuss every utterance. However,

Jason’s colloquial, operational and objectified uses of limit related words will be

exemplified during the discussions that follow.

5. 1.1 Colloquial word use

Jason used limits in the colloquial sense only twice and he did so in the first

lesson where he talked about average and instantaneous rate of change. When addressing

average rate of change in terms of speed, he asked “What is the speed limit on Grand

River [Ave]? Probably twenty five miles per hour” (Jason, 12 January, 2009, Lesson 1).

Later in the lesson, when he wanted to connect the notion of limit to instantaneous rate of

change, he mentioned the title of the lesson and said “I am trying to get to the second

Word that we had in the title today. Rates of change. . .and the second word was limits”.

miS was considered a colloquial use of the word limit since Jason referred to limit as a

Word he wrote on the board but not as a concept. Besides these, he did not use limits in

evel‘yday sense but used the term mathematically.

5

‘ I ~ 2 Operational word use

Operational use of limits results from the consideration of limit as a process,

' mch is consistent with the dynamic view of limit based on continuous motion. In most
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of these cases, Jason did not use the word limit but described the behavior of function

values (f(x) approaching L) as x approaches a . In this respect, he referred to the limiting

process instead ofreferring to limit as a fixed value obtained from that process. While

doing so, he frequently used words that signify dynamic motion (see Figure 5.1, words

related to motion). 127 of Jason’s 775 utterances about limit were classified as

operational.

Operational word use contains two elements: use of words that signify motion. and

description of the process of obtaining the limit rather than referring to the limit as a

number. Table 5.2 shows some examples of Jason’s operational word use. Jason

explicitly mentioned once that the mathematical way to deal with the “process of getting

closer and closer” (See Table 5.2, [1])2 is limits. In the context of continuity, while

determining the continuity of a function at a particular point from a given graph, he

looked at the function values on the left hand side and the right hand side of the limit

point and compared them with the function’s actual value at the limit point. He referred

to this as a “limiting process” (Table 5.2, [16]). In these utterances, Jason used the word

liI'Iflit but referred to it as a process rather than the end result ofthe process.

When Jason used words operationally, he referred to x —> a using words that

Signify motion such as “x get(s) closer and closer to” (Table 5.2, [3], [4]); “x goes to”

(Table 5.2, [7], [13]); “x gets/becomes smaller and smaller/larger and larger” (Table 5.2,

[1 1], [14]); and “x becomes very very large” (Table 5.2, [15]). He also mentioned

“Walking on” (Table 5.2, [12]) and “moving along” (Table 5.2, [17]) the x-axis while

determining the related function values in his discussions about particular limits.
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Table 5.2: Examples of Jason's operational word use

Utterance

 

Context of use
   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 First of all, this process of getting closer and closer, mathematically the way you Instantaneous
[ . . .

want to deal With this IS limits. rate of change

[2] When x is zero point nine nine nine, then f of x is one point nine nine nine; and x2 _1

when x is one point zero zero zero zero zero zero zero zero one, then we get two lim

point zero zero zero, very close to two. x->l x "1

[3] We have some kind of function and what we are looking for is what happens to 1. 3x2 -1

this expression here when x gets closer and closer to three. x1313 x

[4] If I get closer and closer, as x gets closer and closer to five, this quantity gets lim x + 1

closer and closer to six. x—->5

[5] If we are less than six, the function tries to get smaller and smaller [referring to lim f(x)

negative infinity]. x—>6

[6] If we are a little bigger than six, it tries to get larger and larger [referring to lim f(x)

positive infinity]. x—>6

- 2x2 — 3
[7] So as x goes to infinity, the numerator goes to two. 1'

x—>oo 7x + 4

. l

[8] And if x is smaller than one, it will look like it will tend to negative infinity. 11ml ——1

x—> x-

. l

[9] So as x approaches one, it becomes really large if x is larger than one. 11ml —1

x—> x—

[1 0] So what are we doing here? Denominator is going to zero; how about the 1. x2 - 5

numerator? It is going twenty five minus five and it approaches twenty. :35 x _ 5

[1 1] So as I graph this, as x becomes smaller and smaller [referring to 0], one over x lim sin(—)

becomes larger and larger. x_,0 x

[1 2] So I just keep walking on this axis [referring to the x-axis] the fiinction values, in lim 1

this case, they get closer and closer to zero. x900 x

. . 2x2 — 3
[I 3 ] If x goes to mfimty, then seven over x approaches zero. 1'

\ x—>oo 7x + 4

. sin x

[I 4] Well, ifwe consider this, what happens as x becomes larger and larger? 11m

x-—)oo x

[1 5] What I want to do is I want, just like here, try to describe what the firnction does as lim (2 + sin x )

x becomes very very large. x900 x

[1 6] If I start drawing like this and I approach say here [referring to the left hand side

ofthe limit point] I have to make sure actually I can get to that point [the limit Continuity

\ point]. So this here, drawing like this, you can think of it as a limiting process.

1&1 I move along the x axis alongmy function values. ContinuitL

[1 8] So I want to end up, I want to get closer and closer to the function value at this Continuity

2

(Table 5.2, [1]) refers to utterance number 1 in Table 5.2.
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There were cases in which Jason’s word use was operational but did not necessarily

include words signifying motion. For example, in [2] (See Table 5.2), although he didn’t

use a word signifying motion, be assigned successive values for x and investigated the

behavior ofthe function at those points to obtain the limit, which is described as the

dynamic view of limit in literature.

Another element that characterizes operational word use is whether an utterance

describes the process of obtaining a limit or the end result ofthe process, in which case

limit is a distinct value. If it is the former, the word use is operational, if it is the latter,

2

, Jason the word use is objectified. For example, in the context of computing lim

x—)l x—

noted that the function values got “very close to two” (Table 5.2, [2]) but did not mention

the limit as being equal to the number two in that utterance. Similarly, in the context

0f lim x +1, he said “this quantity gets closer and closer to six” (Table 5.2, [4]) but this

.x—)5

Utterance does not consider the limit ofthe quantity as equal to six. In the context of

finding lim f(x) from a given graph (see Figure 5.2), Jason talked about the function

x—>6 .

Values as getting “smaller and smaller” [5] when x is less than six and as getting “larger

and larger” [6] when x is greater than six. However, he did not objectify the process of

getting “smaller and smaller” and “larger and larger” with negative infinity and positive

itlfinity, respectively. Therefore, these two utterances describe the process of obtaining

the limit rather than the end result of that process.
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Figure 5.2: Jason's hand-written example for finding limits from a given graph

Symbolically, the operational word use seems to describe the processes ofx values

approaching a (x —> a) and the function values approaching the limit ( f(x) —> L). In this

respect, the limit L is approached but is not referred to as a distinct value that is obtained.

Jason’s utterances in which the function “get(s) closer and closer to” [4], [12], [18];

“becomes really large” [9]; “tends to” [8]; “is going to” [10]; “goes to” [7] and

“approaches” [10], [l 3] highlight that his focus is on the process of the function values

approaching L rather than the limit being equal to L.

5- 1.3 Objectified word use

An utterance about limits is considered objectified if (a) the word limit is uttered

explicitly to signify a mathematical object or a number that is obtained at the end of the

1ilimiting process or (b) the word limit is not explicitly uttered but the behavior of the

function around the limit point is described through words that signify proximity or

distance, which is consistent with the formal definition of limits. Throughout the eight

1essons, 634 of Jason’s 775 utterances about limit were classified as objectified. Table 5.3

Shows some examples of Jason’s objectified word use on limits.

In Jason’s objectified discourse, limits were particular mathematical objects that

could be found (See Table 5.3, [6], [19]) and computed (Table 5.3, [4], [6], [13], [23])
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having some “properties” (Table 5.3, [3]) and “rules” (Table 5.3, [7]). Moreover, they

could also help define other mathematical concepts such as continuity (Table 5.3, [20]).

Table 5.3: Examples of Jason's objectified word use
 

 

 

 

 

 

 

 

 

 

 

 

Utterance Context of use

[ l ] What does it mean that the limit of the function as x approaches x zero is lim f(x) = L

L?

x->a

[2] This limit is one. . 1

11m

x—-)2 x — l

[3 ] So what I want to do is to look at some properties of limits. Limit laws

[4] I want to compute limits from limits that I know already. Limit laws

[5] x approaches say c of the function one... What is that limit? One. lim 1

x—+c

[6] Ifp ofx is a polynomial, then you can find the limits by plugging in. lim P(x)

x—>c

[7] ...we can use our limit rules and compute a number and we know the When does a limit not

limit exists. exist?

[8] ...and suppose I know that the limit as x approaches c ofh ofx is L. lim h(x) = L

x—)C

[9] Well if the function values of f get arbitrarily close to L as long as x is Informal definition of

sufficientlflose to x zero. limit

[ l O] This means x is sufficiently close to x zero and this means f ofx is Formal definition of limit

arbitrarilyclose to L.

[ l l ] We want to say that the function values should be no further than epsilon

away from the limit.

Formal definition of limit

 

 

 

 

 

 

 

 

 

[ l 2 ] The limit...the function values should be close to the limit. If(x) _. Li < 3

[1‘3] You want to compute the limit as x approaches two of f of x and that lim f(x) = 3

\should be equal to three. x—)2

I: 1 4] I say I want to be within one over two hundred close to three [the limit], lim f(x) = 3

how close do we have to be to two in order to insure that? x—)2

[ 1 5] What is the limit as x approaches one of the firnction? That is one. lim f(x)

\ x—-)l

[ 1 6] So if the left hand and the right hand limit exists but are not equal, then Right hand and left hand

[ the limit does not exist. limits

1 7 . . . o o o o

] So. the horizontal asymptote just Simply means that the limit at mfimty Horizontal asymptote

\exrsts and equals a number b. ..

[ 1 8] Infinity is not really a number. So technically, this limit doesn’t exist. lim 1

x—->0+ x

 

\

[ 1 9] Let’s look at this. f is continuous if you can find the limit at a by

\plugging in.

Q]Well the definition of a continuous firnction is given in terms of the limit.

xl'gna f(I) = f(61)

Continuous functions

 

 

\

 

[2 1] What is this limit? It’s one; we have computed this. 1 sin x

\
x—>0 x

I22] So the limit x approaches two fi'om the left. .. What is the answer? 1, 2x — 4

N ti tw . ‘m.g. v. o .-z-Ix-zi
[23] If I need to compute limits, all I need to know is what the function does (2 + x)2 _ 4

near when x is equal to zero. uni)—x—

x—)
\
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Jason’s consideration of limit as an object was also apparent when he referred to limits as

the “answer” of a limiting process (Table 5.3, [22]) and when he uttered phrases like

“what is this limit?” (Table 5.3, [S], [21]) Once objectified, the limit also leads to other

mathematical objects such as “the left hand and the right hand limit” (Table 5.3, [16])

that could again be computed.

Jason frequently talked about limits being equal to a number in his objectified

discourse (Table 5.3, [2], [5], [13], [15], [17]). He noted that the limit “exists” if it is

equal to a number (Table 5.3, [7], [17]); it “does not exist” if the right hand limit is not

equal to the left hand limit (Table 5 .3, [16]) or the limit is equal to infinity (Table 5.3,

[ 1 8]). The instances where Jason read the limit notation (Table 5.3, [1], [5], [8], [15])

were also considered a part of his objectified discourse as long as he referred to limit as

an end product (a number or infinity) ofthe limiting process.

When talking about limits in an objectified manner, Jason’s words that signify

motion gave way to words signifying proximity in terms of distance (see Figure 5.1,

Words related to proximity). When describing the behavior ofthe function around the

litnit point, he started talking about the function values being “arbitrarily close to L (the

limit)” as the x values are “sufficiently close to” (Table 5.3, [9], [10]) or “near” x0 (Table

5 -3, [23]) . Jason also mentioned the function values being “no further than epsilon away

from the limit” (Table 5.3, [11]); “close to the limit” (Table 5.3, [12]) or “within one over

two hundred (epsilon) close to three (the limit value)” (Table 5.3, [14]) instead of using

Words signifying motion such as “closer and closer to” (See Table 5.2, [2], [3]) or

"become” (Table 5.2, [14]).
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The only case when Jason used a word signifying motion in his objectified

discourse on limits was when he referred to the limit notation. In these cases, he used the

vvord “approaches” (Table 5.3 [l], [5], [8], [15]) while reading notations of the

form lim f(x) = L. It was mentioned before that his use of the word approaches was

x—>a

considered as objectified since this was how Jason and the textbook for the course

described how to read the limit notation. Moreover, he talked about the limit as a number

when he read the notation whereas he did not explicitly utter the word “limit” when he

used approaches in an operational manner.

5- 1.4 Operational and objectified word use

There were twelve instances where Jason’s utterances about limits were classified

as both operational and objectified. In such cases, Jason used a combination of words that

signify motion, which is consistent with the operational use of limit, together with words

that signify limit as objectified (See Table 5.4).

For example, he mentioned that if the function values get “closer and closer to

Some number L, then we call that the limit” (Table 5.4, [1]). Here, he used “closer and

Closer to”, which be explicitly identified as a process before (see Table 5.2, [1]), together

With the end result of that process - “the limit”. On the other hand, in this utterance, the

1iInit value is not obtained; the function values get “closer and closer” to it. Except this,

all his utterances that were categorized as both operational and objectified include the

Word “goes to” (Table 5.4, [2-12]) in which he used the word limit as a distinct

mathematical object or a number but considered x —) a as a process. For instance, in [7]

(See Table 5.4), Jason explicitly uttered the word limit and stated two as the answer of
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the limit problem. However, he used the word “goes to” instead of “approaches” while

reading the limit notation.

Table 5.4: Examples of Jason's operational and objectified word use

[1]

Utterance

There was a little if in our definition if you read it carefully, and it says if it

gets closer and closer to some number L, then we call that the limit. If it

doesn’t, we say it is not defined.

Context of use

Informal definition of

limit

 

 

 

 

 

[2] l\iVell, if we have some sort of expressron or function, we can try to take a What is a limit?

mrt, say when x goes to zero

. . sin6?

[3 ] Now I want to compute the hmit as theta goes to zero. I —

6—>0

[4] Let’s compute the limits as theta goes to zero of those two outside functions 1im Sing

here. g_,o

5x2 — 3x +1

 

 

 

 

 

 

 

 

 

 

[5 ] So what is the limit as x goes to infinity of the numerator? lim

Hoe 2x2 -5

[6] Well, how do we do it? What is a horizontal asymptote? We say that this Horizontal asymptote

function has a horizontal asymptote y equals b if the limit as x goes to plus f(x) = 2 + srn x

infinity or as x goes to negative infinity of this quantity is b. x

[ 7] What is the limit of two as x goes to infinity? Two. , sin x

11m (2 +—)

‘ x—)oo x

, sin x

[8 ] The limit of sine x over x as x goes to infinity? One. Inn (2 + )

x—>oo x

. sin —t

[9] I converted a limit from negative infinity to a limit where t goes to infinity. 2 + lim ——(t—)

t—roo -

[ 1 0] So the limit, to make it precise here, as x goes to infinity is zero of the 1' 2x2 — 3

\denominator. x1120 7x + 4

[ 1 1 ] How about the limit as x goes to negative infinity oftwo x squared minus x lim 2x2 - x + 1

plus one divided by three x plus x squared minus five.

\

[ 1 2] Because in order to have an oblique asymptote, the limit as goes to infinity is

\what? It is plus or minus infinity

xe-°°3x+x2 —5

Oblique asymptote

At first, it seems that “goes to” and “approaches” are similar phrases that can be

Used while reading the limit notation. However, the textbook and Jason mentioned the

Ilotation lim f(x) = L is read as the limit as x approaches a is L and eight of the eleven

x-)a

utterances in which Jason used “goes to” took place in the context of reading the limit

notation when x approached infinity. These observations suggest that Jason did not use

these two phrases as synonyms. Jason used “goes to” only three times in his utterances
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about limit at a point (Table 5.4, [2-4]). In contrast, he used the phrase eight times when

he talked about limits at infinity. Such operational word use was also consistent with his

overall utterances in the context of limit at infinity and is likely to result from Jason’s

consideration of infinity as potential infinity instead of actual infinity3.

Table 5.5 and Figure 5.3 summarize the categorization ofJason’s utterances

throughout the eight lessons. Table 5.5 shows the count and percentage for each of the

four categories across all the lessons. Figure 5.3 excludes the utterances in Lesson 1, and

thus all the colloquial utterances, because ofthe sparseness of limit-related discourse in

Lesson 1.

Table 5.5: Categorization of Jason’s limit related utterances in four categories

 

 

 

 

 

 

 

 

 

 

 

Lesson number L1 L2 L3 L4 L5 L6 L7 L8 Total

Colloquial 2 0 0 0 0 0 0 0 2

Limit related Operational 3 21 I 15 2 20 47 3 16 127

utterances Objectified 3 44 l 17 87 125 107 87 64 634

ational and

001326fled 0 1 1 o 3 5 o 2 12

\ Total 8 66 133 89 148 159 90 82 775

Colloquial 25.00 0.00 0.00 0.00 . 0.00 0.00 0.00 0.00 0.26

Operational 37.50 31.82 11.28 2.25 13.51 29.56 3.33 19.51 16.39

Percentages Objectified 37.50 66.67 87.97 97.75 84.46 67.30 96.67 78.05 81.81

OPcraiiml and 0.00 1.52 0.75 0.00 2.03 3.14 0.00 2.44 1.55
\ objectrfied
 

3

This will be discussed more in detail in Section 1.5.3.2 (limit at infinity) and Section 1.5.3.3 (infinite

limits).

99



 

Categorization of Jason's limit related utterances
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Lesson Number  
Figure 5.3: Categorization of Jason’s limit related utterances as operational, objectified or

both in lessons 2-8.

5. 1 - 5 Mathematical context ofuse

It is important to note that Jason often used a combination of operational and objectified

utterances in the same mathematical context. In this section, some of his word use in

different mathematical contexts will be described in further detail. For the sake of

Simplicity, I use “context” rather than the longer “mathematical context” in the remainder

of tl‘lis section. The contexts that are fundamental to the realizations of limit were

identified as: the informal definition of limit; the formal definition of limit; computing a

lil‘Ilit (at a point and at infinity); infinite limits; and continuity. The purposes of this

Se=<>tion can be summarized as follows:

0 To exemplify the existence of shifts in word use (objectified, operational and/or

both) in Jason’s discourse in the same context.

0 To describe Jason’s informal and formal definition of limit and to explore the

differences in his word use in these contexts.
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0 To describe Jason’s word use when he talked about limits at infinity and infinite

limits and to draw attention to his going back and forth between potential and

actual infinity in these contexts.

- To explore Jason’s use of infinitesimal related words in these contexts.

0 To describe Jason’s informal and precise definition of continuity and to explore

the differences in his word use in these contexts.

5.1.5.1 Informal definition oflimit

Jason introduced the informal definition of limit in the second lesson, right after his

di scussions of average and instantaneous rate of change. He initially defined

instantaneous rate of change as the limit of average rate of changes “over smaller and

SmaJler intervals”. He then defined what a limit is and gave the informal definition of the

concept (See Table 5.6 and Figure 5.4). Although his discussions of instantaneous rate of

cillange contained words that signify infinitesimals, such as “smaller and smaller” or

“Very small” intervals, he did not use infinitesimals in the informal definition of limit.

During his definition of the informal aspect of limit, Jason referred to the behavior

of the function both in an operational and an objectified manner. He said that the function

VahJes “should get closer and closer to L” as the x values get “closer and closer to” x0

(Table 5.6, [4]), which describes the limiting process by means of continuous motion.

Note that although Jason verbally mentioned this process, what he wrote on the board

Was the objectified version of the function’s behavior: “we say that the limit is L” (Table

5-6, [8]) if the function values get “arbitrarily close to L for all x sufficiently close to x0”

(Table 5.6, [6]).
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Table 5.6: Jason's utterances about the informal definition of limit
 

 

 

 

 

  

 

 

 
 

 

 

 

 

What is said What is done Type ofutterance

He writes “f is defined on an interval

[ l ] What is a limit? about x0 ” on the board and starts Objectified

drawns a graph-

2) x zero is here. I have some function

and I want to make sure it is

defined at least near x zero.

b) So if I take a small interval here, He draws an open interval around x0 .

this function is defined.

, _ He shows the point on the left of

c) I don t care what it does x0 where the function has an

somewhere away fi'om x zero.

‘15an-

d) So we don’t ask it to be defined at x He writes “except possibly at x0 ” on

zero but at least nearby. the board.

[2 ] Then we say as x approaches x zero of . .

the function f of x equals some He writes x132 f(x) and then Ob'ectified

number L if...(does not finish his 0 J
sentence) pauses.

[3 ] What does it mean that the limit of the He shows the notation and turns back Ob'ectified

function as x approaches x zero is L? to them he drew. J
4 . .

[ ] It means that the function value, if 1 He puts L on the y-axis in the graph he .

get closer and closer to x zero, it drew (See Fi 5 4) Operational

should approach some number L. gure ' '

[5 I It should get closer and closer to L. Operational

[6] I want to say it gets arbitrarily close to He writes these on the board (See . .
. . Objectified

_ L for all x sufficrently close to x zero. Flame 5.4).

[7] So this is what I would want to call the Ob‘ectified

intuitive definition ofa limit. 1

[8] So we say the limit is L ifl can make

the function values to be arbitrarily Objectified

close to L if I choose my values of x

\ sufficiently close to x zero.

 

  

Figure 5.4: Jason’s informal definition of limit (hand-written)
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In such utterances, he did not base his arguments on continuous motion but on proximity

through words that signify distance, which is consistent with the formal definition of

limit. Therefore, it seems that Jason used elements from both definitions to introduce the

l imit notion.

Only two of his eight utterances about the informal definition of limit were

operational. However, his utterances following this definition about evaluating the limits

of particular functions and finding limits from a given graph (see Table 5.1 for the topic

outline for this lesson) were often operational. In fact, Lesson 2 is the lesson that contains

the highest proportion of operational utterances throughout the eight lessons (See Table

5 -S and Figure 5.3).

5.1.5.2 Formal definition oflimit

Jason introduced the formal definition of limit in the fourth lesson and also worked on an

example where he proved lim 2x —1 = 3. Before talking about the formal definition, he

x—-)2

Provided the rationale for the need for a precise definition of a limit (see Table 5.7). Jason

mentioned that the ways they computed limits “at least convinced us what these limits

31‘e” (Table 5.7, [4]) but noted that they would need a “precise definition” in order to

make sure those techniques work (Table 5.7, [5-5a]). After this, he said that students

Were going to have some homework problems about the formal definition but the topic

Was not going to be in the exam. He wanted students to consider this as a challenge and

erlcouraged them to try to do the related homework problems. He also told students at the

e11d ofthe class that the homework problems about the precise definition would not be

graded. In fact, he mentioned this definition being very abstract while working on the

Proof example.
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Table 5.7: The rationale for the precise definition of limit
 

 What is said What is done Type ofutterance

[ l ] I want to spend the rest ofthe time in

this class today by looking at the Objectified

formal definition of the limit...

[2] Sowhatlwanttodohereislwantto . “ . .. . .,,

write down the precise definition of a He writes precrse definition thmlt Objectified
limit. on the board.

[3 J Why would we need such a thing as . .

recise definition of a limit? Objectified

[4] Well, we kind of said what a limit is in

words and it helped us to at least

convince us what these limits are that Objectified

we have been computing in class, say

 

ofpglflomials or things like this.

[5] It kind ofmade sense those laws of

limits that I wrote down but to really . .

make sure these work in mathematics, Objectified

we have to prove those things.
 

a) In order to prove something, we

need a precise definition...

[6] So that is why we need the precise All his comments up to here are . .

definition ofa limit verbal. Oblect‘fied

Table 5.8 shows Jason’s utterances about the formal definition of limit (See also Figure

5-5).

  
Figure 5.5: Jason's precise definition of limit (hand-written)
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Table 5.8: Jason's precise definition of limit
_—f

What is said

T7] So how do we do a precise definition of

a limit?

We need a function f and we need it to

be defined in...my words that I said

before when we used for the loose

definition of the limit I said nearx zero.

3) Let’s make this maybe more

precise. On an interval about x zero

except possibly for x zero.

So we have seen before limits are very

interesting if our function is not defined

at the mint.

[1 OJThen we say that the limit offofx as x

approaches x zero is L.

[1 l ] And let’s see in math language how do 1

write this? I say the limit as x

approaches x zero of f of x equals L.

[ l. 2 ] We say that is the case if. ..in my words

before I said well if the fimction values

of f are arbitrarily close to L as long as

x is sufficiently close to x zero.

[1 3 J So a little more formally, in math

language, I say if for all epsilon greater

than zero, this is going to play the role

of measuring how close we are to L in

our function values, there exists a delta

greater than zero, the delta is going to

play the role to measure saying that we

are sufficiently close to x zero.

[1 4] So let’s put that in words... whenever x

is sufficiently close to x zero so that

means that the difference is no more

than delta then the function values

\should be close to L.

[1 5] So how do we write this? The difference

ofthe fitnction values from L should be

less than epsilon.

\

[ 1 6] Now this looks somewhat complicated.

So let me maybe decipher this. This

means x is sufficiently close to x zero

and this means fof x is arbitrarily close

[8]

[9]

 

.\to L.

[ 1 7] For any epsilon, I should be able to do

this and for any one of them then there

\exists this delta.

[1 8] That means if x is sufficiently close,

delta close to x zero, then the limit. . .the

fimction values should be close to the

\ limit.

[19] So let’s maybe do one example and

\prove that a limit exists in this way.

What is done

He emphasizes the word “near”.

He writes these on the board.

He writes these on the board.

He writes these symbolically on the

board (See Figure 5.5).

He emphasizes the word

“sufficiently”.

He writes Ix - x0I < 5 and then

If(x) -LI < 8 on the board.

He writes “sufficiently close to x0”

under Ix - xOI < 5 on the board.

He writes “f(x) arbitrarily close to L”

under If(x) - LI < 8 on the board.

(See Figure 5.5)

He first shows Ix -— xOI < 5 and then

If(x)-—LI<8

He shows 5 > 0

He first shows Ix — xOI < 5 and then

If(x)—LI<£
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Objectified

Objectified

Objectified

Objectified

Objectified

Objectified

Objectified

Objectified

Objectified

Objectified

Objectified

Objectified
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Overall, there were 19 utterances about the formal definition of limit and all of them were

categorized as objectified. The words Jason used when talking about the precise

definition of limit differed from those he used when talking about the informal definition

in two aspects. First, his words signifying motion were replaced with words that signify

proximity. Second, the presence of symbolism in the formal definition required Jason to

associate symbolic representations with particular words. In what follows, these two

aspects will be described in more detail.

Jason’s words about the informal, or in his words “intuitive” (Table 5.6, [7]) and

“loose” (Table 5.8, [8]), definition of limit addressed the limiting process and were based

on continuous motion. Utterances in which the function values “approach” or “get closer

and closer to L” (Table 5.6, [4], [5]) as the x values “get closer and closer to x0 ” (Table

5 -6, [4]) are examples of Jason’s operational word use when he talked about the informal

definition of limit. In contrast, his words about the formal or “precise” (Table 5.8, [7])

definition addressed proximity and were based on distance measured by means of

absolute values. He mentioned that 6‘ would “play the role of measuring how close we

are to L in our function values” and 6 would “play the role to measure saying that we are

Sufi‘iciently close to x zero” (Table 5.8, [13]). He also talked about the closeness of the x

Values to x0; and thef(x) values to L in terms of the “difference” Ix — xOI being no bigger

than 5 [l4] and the “difference” If(x) — LI being less than 8 [15], respectively. In

Sl-lllnmary, the operational terminology such as getting closer and closer to (Table 5.2,

[1]), approaching (Table 5.2, [10]), becoming (Table 5.2, [9]) and going (Table 5.2, [7])
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were replaced by being “sufficiently close” (Table 5.8, [13], [14], [16], [18]), “arbitrarily

close” (Table 5.8, [12], [16]) and “close” (Table 5.8, [18]) in the formal definition4.

Indeed, Lesson 4 stands out as the lesson which had the highest proportion of

Objectified utterances about limits (see Figure 5.3). This is in contrast with Lesson 2,

where Jason introduced the informal definition of limit and worked on some examples,

which had the highest proportion of operational utterances about limits. This signals a

di flerence in word use in these two contexts. However, this shifi in vocabulary was not

addressed by Jason in the classroom. Instead, he tried to connect these definitions when

he mentioned Ix — xOI < 6 can be read as “x is sufficiently close to x0” and

If(x) — LI < a can be read as “f(x) is arbitrarily close to L” (Table 5.8, [16] and Table 5.6,

[8] ). This brings us to the second aspect of the word use in the formal definition.

The difference in word use between the informal and the formal language also

I‘eSulted from the translation of symbolic representations to words. Jason went back and

forth between the “math language” (Table 5.8, [1 l], [13]) and “words” (Table 5.8, [12],

[1 4]) more frequently while discussing the formal definition than the informal definition.

The informal definition contains lim f(x) = L , which is expressed as “the limit of the

x—>x0

t“-lnction as x approaches x zero is L” (Table 5.6, [3]) in words. The formal definition, on

the other hand, also requires the explanation ofwhat 8 and 6 refer to and what

Ix ~ xOI < 6 and If(x) — LI < 8 mean. Jason considered this translation as complicated and

\

Jason used sufficiently close and arbitrarily close in the informal definition of limit as well (Figure 5.4)

1.3m his word use was not consistent with this terminology when he worked on examples following the

Informal definition. When describing the behavior of the fimction in those examples, he often referred to

the limiting process using words signifying motion as illustrated in Table 5.2.

107



therefore wanted to “decipher” (Table 5.8, [16]) the formal definition by using elements

of the informal definition.

Jason did not utter any infinitesimals related word in the context of the formal

definition of limit.

5.1.5.3 Computing a limit

Throughout the eight lessons, Jason computed 64 different limits. Among those, 43 were

limits computed at a point; 10 were limits computed at infinity; and 11 were infinite

limits. Infinite limits refer to the limits computed at a point or infinity whose result is

positive or negative infinity rather than a real number L. The reason infinite limits were

considered as a distinct category of computing limits results from Jason’s different word

use between infinite limits and limits at infinity when referring to infinity.

It was mentioned before that, although Jason’s word use about the informal and

formal definition of limit was mostly objectified, his description of a function’s behavior

while computing limits was mainly operational. In what follows, his discourse in three

different contexts will be examined in detail to both justify the existence ofmixed

utterance use and to explore Jason’s discourse about infinity and infinitesimals.

5.1.5.3.] Limit at apoint

The majority of the limit computation problems Jason worked on were computing the

limit of a function at a given point. For the purposes of this study, the limits at a point for

which the limit is equal to L, where L is a real number were considered separately from

the limits at a point for which the limit is equal to plus or negative infinity (infinite limits)

since Jason’s word use differed significantly in these contexts.

108



his W0

35011 1

eombir



When addressing limit at a point, Jason often talked about limit as objectified, but

his word use on the behavior of the function was primarily operational. Table 5.9 shows

. l , . .

Jason’s utterances when he computed lim ———1. In this computation, Jason used a

x——)2 x -—

combination of objectified and operational utterances. He considered the limit of the

function as a distinct number obtained at the end of the limiting process when he said

“this limit is one” (Table 5.9, [5]).

. . . 1
Table 5.9: Jason’s utterances 1n the context of computing 11m —.

 

 

 

x->2 x -1

What is said What is done Type ofutterance

[1] What is this limit?

He writes lim on the board.

x—>2 x -1 Objectified

(Some students say it is one.)

 

[2] Let’s see. If x gets closer and

 

 

 

 

 

closer to two, this quantity gets He shows x —> 2 and then shows

closer and closer to one over two , x f Operational

minus one. He says these verbally and doesn t write

anythingon the board.

13] It is very close to one over one. Operational

[4] So the closer x gets to two, the .

closer this will get to one. He ShOWS 1 Operational
x _

[5] This limit 18 one. Slrzxnntes 1 near the question; no graph rs Objectified

 

When he talked about the function’s behavior near the limit point, on the other hand, he

mainly used words signifying continuous motion and considered limit as a process. He

referred to x —> 2 as x getting “closer” (Table 5.9, [4]) and “closer and closer” to two

(Table 5.9, [2]) instead of the notational language of “x approaches two” (See Table 5.6,

[2]). He also talked about f(x) —-) L in an operational manner when he said the function

values get “closer” (Table 5.9, [4]) and “closer and closer to” (Table 5.9, [2]) one.

Jason worked on many ofthe limit computation problems in similar ways, although he

sometimes used different words signifying motion when describing the behavior of the
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9, 6‘

fiinction such as “becoming , moving”, and getting “smaller and smaller” (See Figure

5.1 and Table 5.2 for motion related/operational word use). What is not visible in the

above example is his use of infinitesimal related words, which often took place when he

talked about right hand and the left hand limits. Table 5.10 shows Jason’s utterances

when he computed lim f(x) from a given graph.

x—>1

Table 5.10: Jason’s utterances in the context of computing lim f(x) from a graph.

x—>l 
What is said What is done Type ofutterance

[1] The limit as x approaches one of f Objectified

of x. I claim it doesn t exrst.

 

 
3) Why would that be? Let’s

think about the definition. 
[2] What we want is that we get

closer and closer to one, it should He shows x=1 on the graph. Operational

approach some number.

[3] But if it is a little less than one, He puts a dot to the left hand side ofx=l

then it looks like we are getting (See Figure 5.6) and shows the point Operational

close to two. f(x)=2. 
[4] If we are a little bigger than one, it

looks like the function wants to be He puts a dot on the right hand side of

equal to one. x=l and shows fix)=1 on the graph

a) It can’t make up its mind.

[5] So there is no single number that

this function gets closer and closer Operational

t0.

Objectified

 

[6] So what we say here, the limit is He writes lim f(x) = undefined. Objectified

undefined x—>l 

 

Figure 5.6: Computing limits fiom a given graph (hand-written)
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Here, we see that Jason talked about the x values getting “closer and closer to” one (Table

5.10, [2]) and he looked at what number the function values were approaching (Table

5.10, [2]) or getting “closer and closer to” (Table 5.10, [5]). In this respect, he again used

the dynamic view of limit when explaining how the function behaved near the limit point.

Besides this, he drew two points very close to the left hand side and the right hand side of

the limit point x=1 (See Figure 5.6) and mentioned being “a little less than one” [3] and

“a little bigger than one” [4], respectively. This suggests infinitesimal related word use5

since he used these phrases to refer to the points that are very close to the limit point,

which are of very small proximity to the limit point. Jason consistently used infinitesimal

related words when he talked about the right hand and the left hand limits at a given

point. In the context of limit at a point for which the answer is a real number, Jason used

infinitesimals for finding lim f(x) from a graph (See Table 5.10), when he made the

x—>1

transition from average rate of change to instantaneous rate of change in Lesson 1, and

«lice—1)
I II in Lesson 6. During his introduction to
x _

when he computed lim

x—)l

instantaneous rate of change, he mentioned the time intervals getting “smaller and

smaller” and being “a very small number” (Jason, January 12, 2009, Lesson 1) when he

 

referred to h —> 0 in f(x + h}: - f(h) . When looking at the right hand and the left hand

tax-1)
limits ofthe function

Ix -II
at 1, he mentioned the x values being “a little larger than

one” and “a little smaller/less than one” (Jason, January 26, 2009, Lesson 6). He did not

 

5 Infinitesimals refer to very small quantities that are often negligible (See Chapter 111, Section 3.2).
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use infinitesimal related words in the context of limit at a point besides these instances.

Further details about his infinitesimal related word use6 will be discussed in the following

sections about infinite limits and limits at infinity.

5.1.5.3.2 Limit at infinity

Limit at infinity is a limit computed at positive or negative infinity. Throughout the eight

lessons, all limits Jason computed at infinity had a real number L as the answer except for

one. For one infinite limit Jason computed, the answer was equal to infinity. This

problem was categorized as “infinite limit” rather than “limit at infinity” because how

Jason referred to infinity changed between these two contexts.

Jason introduced the notion in Lesson 5 under the title limits at infinity. After this,

he started computing lim -1- (See Table 5.11). Note that the title, limit at infinity

xawx

(Figure 5.7 and Table 5.11 [1]) signifies that the distance from the x values to infinity is

zero; that is, it treats infinity as a distinct entity that can be reached. This view of infinity

is referred to as the actual infinity and was discussed previously in Chapter 111. Reading

part ofthe limit notation x —> 00 as x approaches infinity (Table 5.11, [2]), however, talks

about potential infinity that carmot be reached. The only reason this particular utterance

was considered objectified is because both Jason and the textbook defined this as how to

read the notation. Jason’s consideration of infinity as potential in the context of limit at

infinity, on the other hand, is not restricted to how he read the notation. He associated

x —> 00 with also the x values getting “larger and larger” (Table 5.11, [3]) and with

 

See Figure 5.1 for a complete list of infiniteSImal related words in Jason’s discourse.
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“walking on this axis [x-axis]” (Table 5.11, [4]) as he extended the x-axis he initially

drew to represent infinity.

Table 5.11: Jason's utterances when computing lim 1.

 

 

 

 

X—>oo x

What is said What is done Type ofutterance

[1] So now, I want to talk about some

other types of limits. I can also He writes “limits at 00”. Objectified

look at limits at infinigy.

8) So this horizontal eight, it He writes “infinity” near 00.

means infinity.

[2] What is the idea behind this? I

Wm.“ '° 53" ”mething. like.” He writes lim 1. Objectified
limit as x approaches infinity of x—>oo x

say the function one over x.
 

a) What should that be? Does

that make any sense? Let’s just

graph the fiinction one over x to

get some idea.

b) This is what the function one He starts drawing the graph of the

over x looks like if I gaph it. function. 
[3] So, ifx approaches infinity, what

should that mean? That means if I He puts his hand on a point on the x axis

take x and make x larger and and moves along the x axis towards the Operational

larger. . .(does not finish his right with his hand.

sentence)
 

He extends the initial graph he drew

towards positive infinity and also extends

[4 the x axis (See Figure 5.7).

I
—
l

So I just keep walking on this

axis, the function values, in this

 

Operational

:3: they get closer and closer to He then moves his hands along the y

' values on the graph and then writes 0 as

the answer for the limit.

[5] So this [the limit], I want to say, is He shows 11m __ Objectified

equal to zero. x—>oo x

 

 

Figure 5.7: Jason's hand-drawn graph of f(x) = —1—

x
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These utterances are consistent with the view of infinity as potential: a continuous

process that goes on indefinitely. His bodily gestures of extending his arms and moving

along the function with his bands can also be thought of as further evidence of expressing

the process of approaching infinity by dynamic means. (See Table 5.11, what is done)

In this example, Jason described the behavior of the function in dynamic and

motion related words, which refers to limit as a process (Table 5.11, [4]). Yet, he also

said that the limit “is equal to zero” (Table 5.11, [5]), which refers to limit as the result of

that process. Therefore, we can still see his use of mixed utterances in the context of

limits at infinity.

Overall, Jason worked on ten problems about computing the limit at infinity.

Some of those were tied to the idea of finding the horizontal asymptotes of a given

function. Table 5.12 shows the limits Jason computed at infinity and also how he talked

about the x values approaching infinity in the limit notation.

Besides the word approaches, Jason frequently talked about x —> 00 using the

phrase goes to (Table 5.12, [8], [10], [13], [19-21]). Note that “going to” infinity invokes

motion towards infinity, which is not reached, and is compatible with the view ofinfinity

as potential. Moreover, Jason’s other utterances in which the x values made/get/become

larger and larger (Table 5.12, [2], [5], [16], [18]) fiirther support this dynamic process of

approaching infinity. On the other hand, Jason also used the word at when talking about

x —> 00 (Table 5.12, [6], [12], [15]), which is more compatible with the view of actual

infinity (See Section 3.1) since it refers to infinity as a discrete point. In the context of

limit at infinity, Jason uttered the word number referring to (negative) infinity only once,

when he said “as x becomes larger and larger but a large negative number” (Table 5.12,
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[16]). Except for this instance in which Jason talked about infinity as a number and the

instances he used the word at, he talked about infinity as a potentiality (process) rather

than a distinct entity. Therefore, his word use about infinity was mainly operational than

objectified.

Table 5.12: Jason's utterances about the x values when he computed limits at infinity
 

Limits at infinity
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lesson Number Context of use How x —) 00 is referred to

1im _1_ [1] Limit as x approaches infinity...

x—>oo x [2] If I take x and make x larger and larger...

. 1

11m [3] Limit as x approaches infinity...

x—)oo x - 5

. 1

Lesson 5 lim — + 5 No infinity related word is uttered.

x—>oo x

l' 5 [4] Limit as x approaches infinity...

x1120 [5] ...when x gets larger and larger...

[6] ...the limit at infinity...

lim 5x2 — 3x +1 [7] Limit as it approaches infinity...

x600 2x2 _ 5 [8] Limit as x goes to infinity...

. [9] Limit as x approaches infinity...

lim (2 + srn x) [10] Limit as x goes to infinity...

x_,w x [l 1] We know what it [the limit] is at infinity.

[12] Limit at positive infinity...

mnt as x goes to negative in inity

[l 3] L’ . . . f‘ .

- [l4] Limit as it approaches negative infinity...
. srn x

Lesson 6 11m (2 + ) [15] Limit at negative infinity...

x"'°° x [16] As x becomes larger and larger but a large

negative number...

. sin x [17] Limit as x approaches infinity

11m —— [18] ...as x becomes larger and larger...

x-m x [19] ...asxgoes to infinity...

2

. - + . . . . .

11m ____2x2x 1 [20] Limit as x goes to negative infinity. ..

Lesson 8 x 3x + x - 5

x2 —1
lim [21] Limit as x goes to infinity...

x—)oo x + 2
 

In the context of limits at infinity, Jason used infinitesimals only once when he

computed lim s_1n_x. Table 5.13 shows his utterances when he worked on this limit.

x—>oo x
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Table 5.13: Jason's utterances when he computed lim

sin x
 

 

 

 

 

 

 

 

 

 

 

 

 

x-—)oo x

What is said What is done Type of utterance

[1] How about the limit as x . sin x

approaches infinity of sine x over He writes 11m Objectified

x? x—)m x

[2] Well, if we consider this, what

happens as x becomes larger and He shows when he says “this”. Operational

larger? x

a) The sine is a number that

stays between negative one

and one.

' x

[3] The larger x gets, the smaller this He shows when he says “this”. Operational

Will be for sure. x

. . . . . . Sin x ' ‘

[4] So this limit is zero. He wntes 11m = 0 Objectified

x—)oo x

. “ ,, sin x

Here, Jason mentioned that as the x values become larger and larger [2], gets

“smaller” [3]. He used the word smaller to talk about small quantities that are very close

. . . . sin x . .

to zero Since he then said the limit of —— would be zero [4]. It was mentioned in

x

Chapter III that Cauchy defined infinitesimals as follows:

Jason’s utterance about the process of

When the successive absolute values of a variable decrease indefinitely in

such a way as to become less then any given quantity, that variable

becomes what is called an infinitesimal. Such a variable has zero for its

limit (Kitcher, 1983, p.247).

sin x
 

getting “smaller” as the x values getting

“larger” [3] clearly describes the fiinction as decreasing indefinitely and having zero as

its limit. Therefore, Jason used infinitesimals in this particular problem. He did not use

116



 

any 01k

is equa

Infinite

infinity

worked

shows }

functim

G

Klfip.’ .
tJIe 1”]



any other infinitesimal related utterance in the context of limit at infinity7 where the limit

is equal to a real number L.

5.1.5.3.3 Infinite limits

Infinite limit is a limit computed either at a point or infinity that has plus or minus

infinity as the answer. Although Jason introduced vertical asymptotes in Lesson 6, he

worked on some problems about infinite limits in the preceding lessons (See Table 5.14).

Overall, there were 11 cases in which Jason computed infinite limits. Table 5.14

shows how he referred to infinity and the limit in each of those cases. He mentioned

function values being/getting/becoming a (very) large positive or negative number (Table

5.14, [5], [7], [15-17], [20]); and being/becoming an arbitrarily large (negative) number

(Table 5.14, [l l], [13]) when he talked about infinite limits. In this respect, he referred to

infinity as a number more fi'equently than he did in the context of limits at infinity. When

referring to infinity, Jason also mentioned the function values getting larger and

larger/smaller and smaller (Table 5.14, [1-2]); becoming larger and larger (Table 5.14,

[10]); becoming really/very/arbitrarily large (Table 5.14, [3], [6], [20-21]); getting

large/really large (Table 5.14, [14-15]); tending to/going to/approaching to plus or

negative infinity (Table 5.14, [4], [20-22]); becoming arbitrarily large (Table 5.14, [12]);

and getting closer and closer to a line (slanted asymptote) (Table 5.14, [9]).

 

7 2 ._

Jason also used infinitesimals when he worked on [im 2x 3 but this limit was considered as an

x—>oo 7x + 4

 

infinite limit in this study.
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Table 5.14: Jason’s utterances about infinity in the context of infinite limits
 

Infinite limits
 

 

 

 

 

 

 

 

 

 

 

 

 

Lesson Context of How f(x) —) 00 is referred to How lim f(x) = :00 is

Number use x—)a

referred to

[1] If we are a little bigger than six, it

lim f(x) [the function ] tries to get larger and [23] The limit is not defined.

Lesson 2 x—)6 larger [24] . . .the limit does not have

from a graph [2] If we are less than six, the function to exist.

tries toget smaller and smaller.

3 ...it the function becomes reall . .

. 1 [ ] large[if x is larger] than one. y [25] ltJuSt does not turn to

11m— . . . any fixed number. So the
x—vl x _ 1 [4] ...and ifx is smaller than one... it limit is undefined

will tend to negative infinity. '

[5] we could get a very large positive

number if x is just a little bigger than

Lesson 3 five. . . . .

2 [6] ...and lf 1 lelde this [twenty] by a

. x - 5 very small number, I get something [26] So this [the limit] is

1345 x _ 5 really large. So this [the function] undefined.

will become very large.

[7] ...choose x to be a little smaller than

five... it [the function] will be a very

large negative number.

[8] The denominator? If x goes to [27] So the limit...as x goes to

. 2x2 — 3 infinity, then seven over x infinity ofthe

$3100 7x + 4 approaches zero. denominator is zero.

[9] It [the function] will get closer and [28] The limit [of the function]

closer to a line. does not exist.

[10] one over x, becomes larger and

larger. [29] It [the limit] is undefined.

[11] It’s an arbitrarily large number. [30] The [right hand] limit

[12] ...as x approaches zero from the equals plus infinity.

lim _1_ right, f of x becomes arbitrarily large [31] Infinity is not really a

x_,0 x and is positive. number. So technically,

[13] If we look to the lefi...it becomes an this limit doesn’t exist.

arbitrarily large negative number. [32] The [left hand] limit is just

[14] [The fiinction] gets very large and negative infinity.

positive or very largeand negative.

Lesson 6 [33] This [right hand] limit will

[15] (approaching from the right of be plus infinity or in other

lim 1 two)... we get a positive number that words, this quantity will

x——>2 x _ is very large. get arbitrarily large.

[34] It [left hand limit] is going

to be negative infinity.

[16] We have a negative number, we

fl divide it by a very small positive [35] This [right hand] will be

lim 49 number, it makes it a very large negative infinity.

4 7x + 4 negative number. [36] So this [left hand] limit in

x"“‘ [17] If x approaches negative four over the end will be plus

seven from the left. . .I get a large infinity.

positive number.

lim x +1 [18] It [the function] is going to become [37] So we say it [the limit] is

2 very large; arbitrarily large plus infinity.
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Table 5.14 cont’d: Jason’s utterances about infinity in the context of infinite limits
 

Infinite limits
 

 

 

Lesson Context of How f(x) —) 00 is referred to How lim f(x) = too is referred

Number use x->a

to

11m — No infinity related word is uttered. [38] The limit does not exrst.

x—>O x

Lesson 7 [39] So this [limit] does not

x + I exist.
 

No infinity related word is uttered.

 

 

x—->1 x2 _ 1 [40] At plus one, the limit does

not exist.

[19] When x rs close to negative two, this [41] ...the limit doesn’t exist.

thing becomes really large. . . . .
. It 18 plus or minus infinity

[20] So as the denominator gets a small .

. . if I come from the left or
negative number, this [the the right

. x2 —1 remainder] becomes a “FY large [42] So the answer [left hand
Lesson 8 11m negative number. So it Will approach . . . . .

x—>—2 x + 2 negative infinity. limit] is Just negative

infinity.

[43] Similarly here [right hand

limit]... you will get plus

infinity.

[21] ...as x approaches two from the Iefi,

my function goes to negative infinity.

[22] If I come negative two from the

right, itgoes to plus infinity.
 

In all these instances where he described f(x) —> oo , Jason’s word use was operational

since he was talking about limit as a process. His arguments about infinity were mainly

based on potential infinity except possibly for the cases where he referred to it as a

number. It should also be mentioned that in these cases, he rarely uttered the word infinity

explicitly and when he did (Table 5.14, [4], [20-22]), the fimction values were considered

to tend/go to/approach infinity, suggesting continuous motion towards infinity and

therefore, potential infinity.

When talking about limit in an objectified manner, that is, as the result of the

limiting process, we see Jason talking about the limit as being plus or negative infinity

(Table 5.14, [30], [32-3 7], [42], [43]). Therefore, he uttered the word infinity more often

when talking about the limit as the end of the limiting process. He was more likely to

think about actual infinity rather than potential infinity in these instances where he

mentioned limit as being plus or negative infinity since then infinity was signified as the
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end result of the process. This can further be supported with the fact that Jason wrote

lim f(x) = ioo for each of these problems when representing the limit using the

x-)a

notation. By doing so, the limit was considered as equal to infinity but not as a process

that went on and on as his earlier utterances suggested. Jason considered an infinite limit

as “not defined” (Table 5.14, [23]); “undefined” (Table 5.14, [25-26, 29]); and “does not

exist” (Table 5.14, [24], [28], [31], [38-39]). So for him, lim f(x) = ioo implied that the

x—>a

limit did not exist or was undefined. This was also clear when he said “infinity is not

really a number. So technically, this limit does not exist” (Table 5.14, [31]). Note,

however, that he used utterances that signified infinity as a large/very large/arbitrarily

large number during his discussions on the behavior of the fimction values. "Therefore,

his word use about infinity was not consistent between the contexts in which he talked

about the function values approaching infinity and the limit being equal to plus or

negative infinity.

In summary, Jason used a combination of operational and objectified utterances in

the same context when he addressed limits at infinity and infinite limits. Moreover, his

consideration of infinity as operational (potential) and objectified (actual) depended on

whether he was addressing the behavior of the x values as well as the function values or

the limit ofthe function.

Infinite limits turned out to be the most important context for gaining information

about Jason’s word use on infinitesimals. It was mentioned before that Jason used
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infinitesimals three times in the context of limit at a point8 and once in the context of

limits at infinityg. Except these, all remaining seven cases in which Jason used

infinitesimal related words took place in the context of infinite limits. Table 5.15 shows

Jason’s utterances about infinitesimals in the context of infinite limits.

While working on infinite limits, Jason frequently mentioned “a very small

(positive/negative) number (Table 5.15, [1], [5-7], [12], [14-17]). When talking about x

values approaching the limit point from the right, he mentioned being “a little” or

“slightly bigger than” the limit point (Table 5.15, [l], [4], [13]). When the talked about

the x values approaching the limit point from the left, he mentioned being “smaller/a little

smaller than” the limit point (Table 5.15, [2], [7]). He also said the function values could

be “something very very small” (Table 5.15, [3]); a “small negative or small positive

(number)” (Table 5.15, [3], [18]); “quite a small number” (Table 5.15, [9]); and could get

“smaller and smaller” (Table 5.15, [10]).

When Jason used an infinitesimal related word for the function values or specific

parts of a function such as the denominator, he considered the values to be very close to

zero. For example, he said “This [the denominator] will be a very small number, say zero

point zero zero zero one” (Table 5.15, [5]). Such quantities had zero for their limits.

Jason mentioned this explicitly when he said “. . .dividing seven by a very large number is

very small. The limit will be zero” (Table 5.15, [8]) and “So this limit is zero” (Table

5.13, [4]).

 

8 When he computed lim f(x) from a graph (See Table 5.10); when he computed limm; and

x—>1 x - l
x—>l

during the transition from average rate ofchange to instantaneous rate of change.

121



 

Table

lesson

\urnlv

 

 

Lesson

1433011

/

L330“

/
Winn

l
Mm



Table 5.15: Jason's infinitesimal related word use in the context of infinite limits
 

 

 

 

 

 

 

 

Lesson Context of use Infinitesimals related utterances
Number

[1] Well, if x is a little larger than one, then this quantity is one over a very

lim __1_ small positive number.

x —->1 x _] [2] and if x is smaller than one, then this denominator here will be a

really small negative number.

[3] So really what this is trying to do, it is approaching to a number twenty

over something very very small. Maybe a small negative or a small

positive.

[4] we could get a very large positive number if x is just a little bigger

x2 _ 5 than five

lim [5] So it is a little bigger than five then what is the denominator? This will

x—>5 x - 5 be a very small number, say zero point zero zero zero one.

[6] ...and if I divide this [twenty] by a very small number, I get something

Lesson 3 really large.

[7] ...choose x to be a little smaller than five... this [the denominator will

be a very small negative number.

[8] Seven over x approaches zero because x becomes a larger and larger

number, dividing seven by a very large number is very small. The

2x2 _ 3 limit will be zero. .

lim —————. [9] Similarly, here, four over x squared as x becomes larger and larger...

x—)oo 7x + 4 that is quite a small number.

[10] It [4/x3] gets smaller and smaller.

[1 1] When x is very large... this one [the remainder] will be very small.

1 [12] What do we have in the denominator? We have a positive number that

x—>2 x _ 2 is very small.

[13] If x approaches negative four over seven, but it is slightly bigger than

-115 that...

76— [14] So if the denominator is positive but very small number it means we

lim — divide b a ve small ositiv numb r the numerator is ne ative.y TY P e C i g

x_,_fl 7x + 4 [15] We have a negative number, we divide it by a very small positive

Lesson 6 7 number, it makes it a very large negative number

[16] If x approaches negative four over seven from the left... I have a

negative number, and I divide it by a verysmall negative number.
 

lim x +1 [17] So this will approach a number that is two divided by a very small

positive number.

 

 

x2 -1 [18] So as the denominator gets a small negative number, this becomes a

Lesson 8 11m very large negative number.
x——>—2 X+2

 

 

 

2

Except for lim 2" - 3 , all infinitesimal related words uttered in the context of

x—>oo 7x+ 4

infinite limits took place when determining the function’s behavior on the right hand side

 

sin x
 9 When be computed lim (See Table 5.13).

x—-)oo x
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and the left hand side of the limit point. Jason did not use the terminology of approaching

from the left/right until Lesson 6, where he introduced right hand and the left hand limits.

Instead, he mentioned the x values being a little larger/bigger than or being smaller/a

little smaller than the limit point (Table 5.15, [1-2], [5], [7]).

The analysis of word use also revealed that Jason used the same term, getting

smaller and smaller, for both infinitesimal quantities that are negligibly small (whose

limit is zero) and for negative infinity depending on the context. For example, in the

 , he said that , i which he obtained after dividing

2

context of computing lim 2x -3 2 i

xx—)oo 7x+ 4

every term by the highest power ofx, “gets smaller and smaller” (Table 5.15, [10]). Here,

Jason used the term to refer to an mfimtesrmal quantity srnce the limit of ——2— at infinity is

x

equal to zero. Similarly, he referred to infinitesimals when he talked about the “time

intervals getting smaller and smaller” (Jason, January 12, 2009, Lesson 1) in the context

of instantaneous rate of change to talk about the h values approaching 0 when working

 
on lim

h-—>O

f(x + h; _ f(x) . In the context of computing limits from a graph (See Figure 5.2)

where he talked about lim f(x) , however, he also said “if we are a little less than six,

x—>6

the filnction tries to get smaller and smaller” (Table 5.14, [2]). Here, he used smaller and

smaller to talk about the left hand limit of the function at the point 6, which is negative

infinity. Besides this instance, he did not use smaller and smaller to signify negative

infinity but used “a very large negative number” (Table 5.14, [5], [16], [20]) or

“arbitrarily large negative number” (Table 5.14, [13]) instead.
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5.1.5.4 Continuity

Jason introduced continuity in Lesson 7 (See Table 5.1 for the topic outline). He

mentioned that he was going to give one intuitive and one mathematical definition of the

notion. He then told students that they would need to use the mathematical definition to

answer questions in the exam.

Table 5.16: Jason's utterances about the intuitive definition of continuity
 

What is said What is done]0
 

[1] So what is a continuous function? He writes continuous functions on the board.

 

[2] A continuous function is a function, and I

am just going to say it in words, that I can

graph without taking the chalk off the

board.
 

[3] So this is really all that we need to know,

from an intuitive perspective, about

continuous filnctions.
 

[4] Continuous just means I can graph without
taking the chalk off the board. He states these verbally.

 

After giving students an intuitive definition of continuity, he drew graphs of arbitrary

functions and discussed their continuity based on whether he could graph them “without

taking the chalk off the board” (Table 5.16, [2], [4]). While doing so, he moved his hand

along the graphs of the functions and mentioned that approaching and graphing like this

could be thought as a “limiting process” (See Table 5.2, [16]). Therefore, although he did

not utter any limit related word during his discussions of the intuitive definition of

continuity, he verbally stated that he relied on the limiting process as well as whether he

was taking the chalk off the board when determining the continuity of a given function

from a graph. He then introduced the “precise” definition of continuity (See Table 5.17

and Figure 5.8).
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Table 5.17: Jason‘s utterances about the precise definition of continuity
 

What is said What is done Type of utterance 
[1] So let’s try to make this precise. A

function f of x is continuous at a

point x equals a if...

[2] So what I want to say is what does

it mean to be continuous at this

int?

He writes these on the board but does not

finish his sentence.

 
[3] The limit has to exist and it has to

 

 

 

 

equal to the function value. Objectified

[4] So I need the limit to exist. Objectified

[5] So the limit as x approaches a of f He writes lim f(x) = f(a) on the

of x has to exist and equal to f of x-ya Objectified

a. board (See Iiggre 5.8).

[6] Just writing this already implies

that it [the limit] exists because it Objectified

uals a number.

[7] So in particular, f 18 defined at a He writes these besrdes the defimtlon in Objectified

and the limit exists. parenthesis. 

 

Figure 5.8: Jason's precise definition of continuity (hand-written)

Whereas Jason’s informal definition of continuity was based on dynamic motion where

limit was considered as a process, his precise definition of the notion considered limit as

a number (Table 5.17, [6]), which is equal to the function value (Table 5.17, [3], [5]).

Given this, in context of the precisell definition of continuity, his utterances about limit

were mainly objectified. In fact, Lesson 7 was the lesson that had the second highest

proportion of objectified utterances about limit (See Figure 5.3).

 

10 . . .

Note that Jason did not use any limit related utterance here. Therefore, the types of utterances were not

reported.
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It should be noted that Jason did not talk about continuity in any of the lessons

prior to Lesson 7 although his operational word use about limits relied on continuous

motion. The precise definition of continuity was the first context in which he explicitly

connected these two concepts. Later in the class, he also said

How can I tell if a function is continuous or not? A question about

continuity is a question about limits. If I ask to see if a function is

continuous, we need to check that for each point a the limit exists and

equals to the function value. (Jason, 28 January, 2009, Lesson 7)

After this, he talked about properties of continuous functions, which he noted would be

the same as limit laws because “the definition of a continuous function is given in terms

of the limit” (Jason, 28 January, 2009, Lesson 7).

Jason talked about plugging in12 as one of the possible ways of computing a limit

in the lessons prior to Lesson 7. In Lesson 7, however, he seemed to put extra emphasis

on plugging in as a means of computing the limit of a continuous function. For example,

x+

x2+1

 while showing f(x) = is continuous, he showed for every numbera ,

lim f(x) = 612+] = f(a) and mentioned that he found that limit by plugging in. He then

x—M a +1

 

turned back to the precise definition of continuity and described the relationship between

continuous functions and plugging in as illustrated in Table 5.18.

 

11 Jason did not introduce the formal definition of continuity that involves 6‘ and 5 . Therefore, the

mathematical definition he gave was referred to as “precise” instead of “formal” to be compatible with

Jason’s own description of the definition (See Table 5.17, [1]).

126



 

1H1

151 C0:

”able



Table 5.18: The relationship between computing the limit of a continuous function and

 

 

 

 

 

 

 

 

pluggingin

What is said What is done Type of

utterance

' ° ° . a + l
[1] In fact, we found this limit by He shows 11m f(x) 2 2 : f(a) Objectified

plugging 111- x—m a + 1

[2] A continuous function is a

fiinction where we can always Objectified

find limits by pluggi_ng in.

a) That is really what this He goes back to the precise definition of

definition says. limit he wrote on the board (See Figure 8xx)

[3] f is continuous if you can find the He til-St shows lim f(x) and then f(a) in . .
limit at a b lu in in x—aa Objectlfied

y p gg g ° the definition.

a) That is exactly what the

definition says.

[4] In other words, function f is

continuous at a If we can find the He writes these on the board. Objectified

limit of f at x equals a by plugging

in.
 

a) These are great functions.
 

[5] Continuous functions are exactly

the ones that we can find the limit Objectified

by plugggg in.

Jason did not mention plugging in when he introduced the precise definition of continuity

x+l

x2+

 (see Table 5.17). However, after showing that the function f(x) = is continuous,

he revisited this definition and explained how plugging in was embedded in the definition

(Table 5.18, [1-5]). Some of his utterances in this context also exemplified Jason’s word

use when referring to the limit notation in the context of continuity. He used “limit at a ”

(Table 5.18, [3]) or limit of the function “at x equals a ” (Table 5.18, [4]) when referring

to lim f(x) . In the context of continuity, Jason only used the words approaches (the

x—>a

limit as x approaches a of a filnction) and at (the limit of a function at the point a) when

 

l2 . . . - . . . .
In the context ofevaluating a limit 11m f(x) , plugging in refers to evaluating the fiinction value at the

x—>a

point a, which would be equal tof(a). So plugging in can be thought of as inserting the number a into the
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talking about the limit notation. He did not refer to x —> a in the limit notation as x values

“getting closer and closer to”; “going to” or “becoming” a as he did in other contexts

discussed before. Note that to determine the continuity of a function at a given point, one

first needs to find the limit of the function as x ‘approaches’ that point and then check if

the limit value is equal to the function value ‘at’ that point. In this respect, the function’s

behavior at the limit point is relevant to the discussions about continuity. This, together

with Jason’s explanation about continuous functions as the functions whose limits can be

found by plugging in might be the reason why he used approaches, which is how to read

the limit notation, together with the word at in his discussions about continuity. Plugging

in the limit value to the function is one of Jason’s routines and will be further discussed

in Section 5.3.1. The student difficulties “limit as the function’s value” and “limit implies

continuity” (See Table 2.1) are tied to the routine ofplugging in since they result in

checking the function value at the limit point to determine its limit. Students might

generalize Jason’s routine of plugging in for continuous functions to functions in

general”. However, Jason also explicitly mentioned that, in general, the function’s value

at the limit value is not related to the limit of the function at that point both in this lesson

and in the preceding lessons:

To compute the limit as x approaches zero, what the function does at the

point x equals zero is irrelevant. What only matters is what happens

nearby. (Jason, 28 January, 2009, Lesson 7)

 

functionf(x).
.

Students’ discourse with respect to the instructor’s discourse will be discussed in Chapter VI].
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The function value is something completely different. And here we see

something again that the actual value of the function at the point where we

are looking at has very little to do with the limit. In fact, it has nothing to

do with the limit. (Jason, 23 January, 2009, Lesson 5)

Jason did not use any infinitesimal related word in the context of continuity.

Summary ofword use

The limit, if it exists, is an obtained value at the end of the limiting process.

Utterances that consider limit as a process, on the other hand, do not emphasize this

ultimate result as the limit. Instead, through the use of words that signify continuous

motion, it treats limit as a process that goes on and on and therefore never actually

reached. Commognitive framework enables the exploration of this issue through

considering objectification in the instructor’s word use.

The analysis of Jason’s discourse on limits reveals the existence of shifts in

objectified and operational word use in the contexts of informal definition of limit;

computing limits, infinity and continuity. The context in which his utterances were

consistently objectified was the formal definition of limit. Although the majority of

Jason’s utterances about limits were objectified (See Table 5.5 and Figure 5.3), shifts in

word use in a given limit related context might be problematic for students”. The

instructor can move flexibly among these utterances and distinguish their similarities and

differences depending on context but students might not yet be able to participate in the

limit related discourse in similar ways. Therefore, switching between the operational and

objectified word use, and treating limits as end products and as processes in the same
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context, could contribute to one of the common student difficulties with limit, “limit as

unreachable” (See Table 2.1). Talking about limit as a process in which the function

values “approach”, “get closer and closer to” or “become” a number L suggests that one

can get close to the limit but cannot reach it (See Section 2.1.2).

A similar issue arises in Jason’s discourse on infinity. We see that, depending on

whether he computes a limit at infinity or he works on infinite limits, how he refers to the

notion changes between actual (end-state) and potential infinity (process). Again, as the

instructor, he is able to work with different realizations of infinity depending on context.

However, students are unlikely to do that since they are relatively new participants to

such mathematical discourse. On one hand, we see Jason talking about infinity as

potential, especially in the context of referring to x —> oo in the limit notation. His

utterances about the x values “getting larger and larger”, “going to” or “becoming”

infinity consider infinity as an ongoing process without an end state. On the other hand,

we see him talking about infinity as actual in the context of infinite limits and when he

writes the limit of a particular function as being equal to infinity. His utterances about the

f(x) values being an “arbitrarily large number”, “very large number” are examples in

which he talks about infinity as an actual number. The instructor’s shifts in word use in

the context of infinity may result in students’ realization of infinity as a process and

contribute to their realization of “limit as unreachable”. It is also possible that, based on

Jason’s utterances on limit where he talks about infinity as a number might result in

students’ consideration of infinity as a finite number similar to the findings of Sierpir’rska

(1987) (See Section 2.1.3). It should be noted, however, that Jason explicitly mentioned

 

l4 . . . . . . . . . . .

Student thlnking about limits in relation to the lnstructor’s discourse Will be dlscussed in Chapter VI.
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infinity is not a number, and stated that if the limit of a function is infinity, then the limit

is undefined.

5. 2. Visual mediators

Visual mediators refer to the visible objects created and operated upon for the

sake of communication. In mathematics, visual mediators can take many forms such as

manipulatives, tables, figures, diagrams, graphs, symbols, etc. There were four types of

visual mediators identified in Jason’s discourse as he communicated with his students: (a)

written words, (b) drawn pictures of geometrical shapes, (c) graphs, and (d) mathematical

symbols. Among these, graphs and symbolic notations were more common means of

visual communication.

5.2.1. Written words

Written words correspond to what Jason wrote on the board besides mathematical

symbols when he talked about limits. The analysis of his word use was conducted in the

previous section. What will be highlighted here is the difference between his written and

spoken words in particular contexts.

It was mentioned in the preceding sections that Jason used a combination of

operational and objectified utterances in the same context (such as the informal definition

oflimit and computing limits). The analysis also revealed that his operational utterances

mostly occurred when he used words only verbally whereas his objectified utterances

often occurred when he wrote words on the board. For example, in the context of

informal definition of limit, Jason wrote the following on the board:

f is defined on an interval about x0 (except possibly at x0) then
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lim f(x) = L if f(x) gets arbitrarily close to L for all x sufficiently close

x—->x0

to x0 (See Figure 5.4).

Here, Jason mentioned the function values getting “arbitrarily close” to the limit value as

the x values get “sufficiently close” to the limit point, and so used the words in an

objectified manner. When he explained what this definition meant verbally, on the other

hand, he mentioned the function values “approaching” or getting “closer and closer” to

the limit value (Table 5.6, [4], [5]) as the x values got “closer and closer to” the limit

point (Table 5.6, [4]). By doing so, he used the words in an operational manner. In fact,

this difference between the words uttered and written can also be seen in the context of

computing limits (See Tables 5.9, 5.10, 5.11 and 5.13, what is said and what is done) and

in the context of continuity (See table 5.16, [2]). In those instances, Jason used words

operationally when he communicated his ideas verbally and when he talked about the

graphs that he drew, whereas he used them in an objectified way when he wrote the final

arguments on the board. The context where his written and spoken words were most

consistent with each other was the formal definition of limit. Note that, in that case, he

wrote and spoke at the same time (See Table 5.8, what is said, what is done) and his word

use was objectified throughout his explanations.

In summary, there seems to be a difference in word use depending on the means

ofcommunication Jason chose. When he presented his ideas visually, writing words on

the board, he was more formal. When he further explained ideas related to limit verbally,

he was less precise and less formal. Moreover, he rarely, if ever, wrote on the board any

ofhis operational utterances. This signaled a difference in the mode of endorsement of

narratives about limits, which was likely to be a result of Jason’s alternating positions in
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the classroom. On one hand, being a mathematician, he was careful presenting the

mathematical ideas accurately. On the other hand, as an instructor, he was aware when

students did not follow his arguments. It is often in these instances that he was more

flexible in his word use and relied more on informal utterances (as well as graphs) to help

his students.

5. 2. 2. Drawn pictures ofgeometric shapes

There were only three occasions where Jason drew pictures of geometric shapes

to explain the related concepts. In Lesson 1, he drew a falling rock when he talked about

average rate of change. In Lesson 5, he drew the unit circle and formed triangles within

the circle. He later used the similarity of these triangles to find the boundary functions for

sin (9
 before computing (Slim %€. Finally, in Lesson 7, he drew the unit circle again,

—>0

this time to talk about the fact that sin 9 and 0036 are continuous. Besides these, he did

not draw any diagrams or figures but frequently used graphs of fimctions.

5. 2. 3. Graphs

Jason used graphs of functions as he communicated his ideas about limits. He

drew graphs in three different settings: (a) when he computed the limit of a fiinction, (b)

when he explained a particular definition, theorem or fact about limits, and (c) when he

solved a problem that specifically asked to draw the graph of a given filnction.

In the context of computing a limit, Jason utilized graphs in two ways. He

sometimes determined limits of functions directly fiom the graphs that he drew without

utilizing any a1gebra-based technique to compute the limit. He also used them for further

explanation or clarification after computing a limit algebraically. When Jason only used

graphs to determine the limit of a function, his approach was considered as graphical.
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When he initially solved a limit problem by means of algebraic manipulations and then

drew the graph to support his arguments, his approach was considered both algebraic and

graphical. When Jason only relied on algebraic manipulations when computing a limit,

his approach was identified as algebraic. Table 5.19 summarizes these approaches

throughout the eight lessons in the context of computing limits.

Table 5.19: Tynes of visual mediators used in the context of computing a limit
 

 

 

 

 

 

 

 

 

15 Graphical Algebraic Algebraic and Number of graphs

Lesson Number approach approach graphical approach drawn

Lesson 2 6 3 l 3

Lesson 3 l 10 O 1

Lesson 4 0 l 2 2

Lesson 5 8 6 l 3

Lesson 6 l 9 1 2

lesson 7 O 6 O 0

Lesson 8 0 8 O 0

Total 16 43 5 12
 

Note: The number of graphs Jason drew in the context ofcomputing a limit is less than the number of

instances be relied on a graphical approach while computing limits. This results from the fact that Jason

sometimes computed multiple limits using a single graph he drew. Note also that the nonexistence of

graphs in Lesson 7 and Lesson 8 in the context of computing limits does not mean Jason did not use any

graphs in those lessons; it just means he did not use graphs while computing limits.

Jason used a graphical approach for 16 of the 64 limit computation problems that he

worked on. He used a combination of algebraic and graphical approach for five problems.

In those cases, the graphs were drawn only after the limits were initially computed by an

algebraic method. The remaining 43 problems were solved using only an algebraic

approach”. Therefore, in the context of computing a limit, Jason’s primary visual

mediators were symbolic rather than graphic.

 

Jason did not compute any limits in Lesson 1 (See Table 5.1 for the topic outline)

16 . . . . . .

Some ofthe common algebraic approaches Jason used Will be discussed in the section about routines.
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Besides computing limits, Jason also used graphs when explaining a definition,

theorem or fact about limits; and when solving a problem that specifically asked for the

graph of a function using dominant terms1 7. There were 21 such graphs identified

throughout the eight lessons. 20 of those were utilized to explain limit related facts and

one was drawn as the solution of a problem about graphing a function using dominant

terms.

In the cases where Jason utilized graphs to explain the endorsed narratives about

limits such as definitions and theorems, the graphs were mostly drawn when he

introduced them for the first time. In the remaining instances, Jason drew graphs for

further elaboration after realizing the students were not clear about the mathematical

ideas he communicated previously. Table 5.20 shows some examples of the graphs drawn

in the context of introducing/explaining/elaborating on a limit related idea.

Most important for the purposes of the study is the graph Jason drew when he

proved lim 2x —1 = 3 (See Table 5.20, the last example). He worked on this problem

x—>2

right after he introduced the formal definition of limit and initially solved the problem

using only the algebraic approach that involved a and 6 . The students were mostly

silent and asked some clarifying questions about the algebraic solution of the problem. It

was only then Jason started drawing the graph as “another way that we can play this

game about limits” (Jason, January 21, 2009, Lesson 4).

 

17 Graphing a function using dominant terms refers to graphing the fimction’s behavior at positive and

negative infinity (horizontal asymptotes) as well as its behavior at the points where it is undefined (vertical

asymptotes). This requires the evaluation of the limit of the function at positive and negative infinity as

well as at the points where the function is undefined while graphing. Jason told students they do not have to

draw the graph accurately except for the dominant terms since drawing a precise graph of a function would

be discussed during the chapter on derivatives.
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Table 5.20: Examples of Jason’s hand-drawn graphs besides the context of computing

limits 
Context of use  Graph drawn

Average rate of

change

Purpose

“To think about the

[difference] quotient

geometrically" (Jason,

January 12, 2009).

“To represent speed as the

slope of the secant line"

(Jason, January 12, 2009).

 

Informal definition

of limit (See Figure

5.4)

To explain what it means

for a function to be defined

near x0.

 

Sandwich theorem

To explain the theorem

visually.

 

Intermediate value

theorem

To explain the theorem

visually.

 

Continuity

To introduce the

mathematical definition of

continuity based on the

intuitive aspects of

continuity. 

Proving that

lim 2x —1 = 3

x—)2

To elaborate on students”

confusion about the

algebraic solution of the

problem. Jason presented

this as another way to think

about the problem.
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Note that Jason did not represent the formal definition of limit visually when be defined it

(See Figure 5.5), so this was the only instance in which he addressed what a and

5 corresponded to on a graph. As will be discussed later, this graph turned out to be the

most useful mediator with which one of the participants in the study made sense of the

limit concept.

5. 2. 4. Symbolic notation

Mathematical symbols were the primary visual mediators Jason used both in the

context of computing limits (See Table 5.19) and also in other limit related contexts. He

solved most of the limit computation problems by means of algebraic manipulations and

represented definitions, theorems and facts about limits using mathematical notations

consisting of symbols (as well as written words). The characteristics of the most common

algebraic approaches Jason used will be discussed in the following section about routines.

Here, the limit notation and how Jason addressed the notation will be examined.

It was mentioned in the section about word use that Jason introduced the notation

lim f(x) = L which he addressed as the limit as x approaches a offofx equals some

x—>a

number L (see Table 5.6, [2]). In fact, he used the word approaches for about 70% ofthe

197 instances where he attended to the notation throughout the lessons. It was noted,

however, that he also used other words besides approaches when he talked about the

limit notation. During the discussions on Jason’s operational word use (see Section

5.1.2), he was reported to refer to x —> a in the notation also as x “gets closer and closer .

to”a (Table 5.2, [3], [4]) and as x “goes to” a, (Table 5.4, [2-4]) when a was a real

number. Jason also used the word “at” ten times when he attended to the limit notation,
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where a was a real number. Five of those utterances took place in the context of

continuity (See Table 5.18).

In the context of limits at infinity, he referred to x —> oo in the limit notation as x

“goes to” infinity18;x values “getting/becoming larger and larger” as well as “limit at

positive/negative infinity” (See Table 5.12). When he wrote lim f(x) = ioo , on the other

x-)a

hand, he talked about the limit as “equal to” or “being” plus/minus infinity (See Table

5.14).

In both x —) 00 and lim f(x) = ioo , the symbol 00 signified infinity. In Jason’s

x—>a

discourse, however, 00 in x —-> 00 was often associated with potential infinity whereas 00

in lim f(x) = too was often associated with actual infinity (see Section 5.1.5.3.2 and

x——)a

Section 5.1.5.3.3). So the same symbol 00 was used to signify two different aspects of the

concept of infinity. In the context of limits at infinity, the symbol indicated an infinite

process; in the context of infinite limits, the same symbol indicated the end result of the

process.

To summarize, although both Jason and the textbook read the notation using the

word approaches“), the arrow in the notation lim f(x) = L signified a family ofwords

x—->a

9, 66 99 6‘

such as “approaches , goes to ,
99 6‘

at”, “becoming , getting closer and closer to” in

Jason’s discourse on limits.

 

18 . . -
In Jason’s discourse, eight of the eleven occurrences of the phrase “goes to” took place in the context of

limit at infinity (see Section 1.4, Table 5.4).

9 , . ,

Mathematically, we read 11m f(x) = L as the functionflx) approaches the limit L as x approaches a

x—) a

(Hughes-Hallett et al., 2008; Thomas et al., 2008).
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Summary ofvisual mediators

The different ways Jason addressed the limit notation is another aspect of his

discourse that‘might impact student learning. Referring to the arrow sign in the limit

notation as “approaching”, “going to” and “getting closer and closer to” the limit point

signifies the process ofmoving towards the limit point without reaching it whereas the

word “at” would signify reaching the limit point. In addition to this, talking about the

function values “getting closer and closer to”, “approaching” or “becoming” the limit

value L considers limit as an ongoing process whereas the limit of the function being

represented as equal to L in the notation considers it as a number obtained at the end of

that process. Given this, it might be difficult for students to distinguish the process from

the product in cases when Jason attended to the limit notation.

Having a family ofwords associated with the same symbol also occurred when

Jason referred to infinity in the limit notation. In the context of limits at infinity, the 00

symbol in the limit notation signified potential infinity, that is infinity as a process, when

,9 ‘6

Jason addressed it as the x values “getting/becoming larger and larger , approaching” or

“going to” infinity. In the context of infinite limits, however, the same symbol was

associated with actual infinity, an end-state, when he talked about limit as being “equal

to” infinity. Therefore, the way Jason attended to the limit notation contributed to his use

ofmixed utterances about limits in the same context.

Jason did not rely mainly on graphs when he determined the limits of functions as

the literature on learning about limits suggested (See Section 2.1.3). He used graphs more

often to introduce a definition, theorem or fact about limits than to compute limits of

functions. In fact, he only drew 12 graphs for the 64 limit computation problems that he
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worked on. He used graphs as an aid for teaching the main ideas related to limit and for

addressing students’ confusions about the algebraic solutions of the problems than

making sense of every function by means of graphs, but his primary mode of

representation was symbolic, not graphical.

Jason used a variety of functions in his discussions on limits and drew a variety of

graphs for those functions. In this respect, he represented functions both algebraically and

graphically but he did not use a tabular representation. He gave examples of continuous

functions, constant functions as well as functions with removable and jump

discontinuities. Moreover, he used not only polynomials but also rational fimctions and

trigonometric fiinctions as he computed limits. This finding is not consistent with the

research on student learning arguing that instruction heavily relies on continuous

fiinctions (like polynomials) and graphs while teaching limits (Bezuidenhout, 2001;

Parameswaran, 2007).

5.3. Routines

It was mentioned in Section 2.2.1 that metarules describe the patterns of the

discursants as they construct and substantiate object-level narratives, that is, narratives

about the objects ofmathematics. Routines refer to the set of metarules that describe

repetitive actions ofthe discursants. Sfard (2008) distinguishes between how of a routine

from when of a routine. How of a routine can be thought of as the “course ofaction or

procedure”, whereas when of a routine refers to the instances “in which the discursants

would deem this performance as appropriate” (Sfard, 2008, p. 208, italics in original).

The when of a routine can be filrther split into two conditions: applicability and closure.

Applicability conditions characterize the “circumstances in which the routine course of
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action is likely to take place” (Sfard, 2008, p. 209). Applicability conditions also help

determine the routine prompts, which refer to particular aspects of situations that are

likely to trigger the application of a routine. Closure conditions characterize the

“circumstances that the performer is likely to interpret as signaling a completion of

performance” (Sfard, 2008, p. 209).

In what follows, the routines identified in Jason’s discourse that are relevant to his

word use and visual mediators will be presented with a focus on the prompt(s) as well as

the how and the when of the routines. It should be noted that reporting a thorough list of

the instances in which a particular routine is likely to appear (when of a routine) is

complex, “if not altogether unworkable” (Sfard, 2008, p. 209). Given this, when of the

routines described in the study should, by no means, be considered as a complete list of

the circumstances in which the routine takes place. Instead, they represent the most

clearly identified instances when Jason performed a specific course of action. There were

four types of routines prominent in Jason’s discourse on limits: algebra-based routines,

geometry-based routines, using the metaphor of continuous motion, and using the

metaphor of discreteness.

5. 3. I Algebra-based routines

Algebra-based routines refer to the algebraic techniques Jason utilized when

computing the limit of a function. They constituted the main procedures with which he

substantiated the narrative that limit is a specific number, if it exits. Table 5.21 shows the

list of the algebra-based routines.
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Table 5.21: Algebra-based routines in Jason's discourse
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Prompt Routine How When (Applicability) When (Closure)

The denominator is non- . , .

The function’s zero at the limit point. l‘hhe 111:!“ :18 equal to L.

[l] Plugging in value at the limit The fimction is continuous. exiZt/is utn(12:12?

PO“1t 15 evaluated. The limit is computed at a '

point.

[2] Cancelling Elbe numerator and The numerator and the The limit is equal to L.

e denominator are . . . .

out the . . . denominator of a rational The lirmt does not
Simplified and their . . .

common function are both zero at exrst/is undefined.

factor common factors are the limit oint

cancelled. p '

The function is composed

. . of basic expressions whose

Laws for the hm“ limits are computed in the The limit is equal to L.

[3] Using limit 0.” sum, class The limit does not

1 difference, product ' . . .

aws . . Can be applied only when exist/is undefined.
or quotient is . . .

. the limit of each basrc

applied. .

expressron that make up

the function exists.

ihednumerator and Egrggiggogfcggiggan Expression is of the

[4] Multiplying e .enomlnator are form aZ-bflx)

b the multiplied by the (a i (lbf(x)) and the . . . '

Y _ conjugate of the The limit is equal to L.

coniugate - - numerator and the The limit does not
expression In the denominator are both zero . t/' (1 fi (1

Compute denominator. at the limit point. exrs ls un e ne '

the limit The expression .

ofa [5] Getting rid Iu(x)| is convened to The fimction whose limit is “some value 5'9“
. . are removed.

function of the u(x) or —u(x) taken contains an . . .
. . . The limit is equal to L.

absolute depending on the expressron in absolute . .

value sign sign of u(x) near the value. Th? limit does not
limit point exrst/is undefined.

The numerator and

_ _ the denominator Of The limit is computed at , , ,

[6] DiViding by a rational function infinity and the rational The limit is equal to L.

the largest are lelded by the . _ 00 The limit does not

power largest power of the function 13 0f the form —- exist/is undefined.

polynomial term in °°

the function.

A limit at negative infinity

[7] Substitution A different variable ISO::?::?:gntfiya 1mm at The limit is equal to L.

c an is assrgne or some . . e imit oes not
h ging - . df IWhenworkin with Th1. .d

variables) part of the function. . . g . exist/is undefined.
trigonometric functions

such as the sine function.

Long division is The limit is computed at

performed on a infinity. . . .

rational function The degree of the $th limit ls equal to I"
. . e lrmrt does not

[8] Long where the degree of numerator 1S higher than . .
. . . . exrst/is undefined.

lelSlOIl the numerator ‘5 the degree 0f the The function ets close
higher than the denominator. to a line g

degree of the When finding the oblique '

denominator. asymptote of a function.
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There were eight distinct routines that were classified as algebra-based routines.

However, this does not mean Jason only relied on one while determining the limit of a

fimction. For example, routines such as multiplying by the conjugate, getting rid ofthe

absolute value sign, dividing by the largest power, and substitution were often followed

by cancelling out the commonfactor and/orplugging in for the same limit computation

problem. Therefore, Jason sometimes used a combination of routines depending on the

problem. Since all those routines took place in the context of computing a limit, however,

they all had the same prompt and similar closures such as ‘the limit is a number’ or ‘the

limit does not exist/ is undefined’ (Table 5.21).

The algebra-based routines [2-8] (Table 5.21) often occurred when plugging in

did not work. When computing limits in the class, Jason’s first attempt was to plug in the

limit point to the functions formulated algebraically. He also mentioned that in the case

ofparticular functions, such as continuous functions and for the functions whose

denominators are non-zero at the limit point, one could compute the limit directly by

2

he said “the denominator is not
 plugging in. For example, when computing lim

x—)1 x—

zero. So we can just find the limit by plugging in” (Jason, 16 January, 2009, Lesson 3). In

a similar fashion, for (Slim Eli , he said “so here, we cannot find the limit by plugging in

—->0

simply because both the numerator and the denominator are zero. So the denominator is

zero; that means we cannot find limits by plugging in” (Jason, 23 January, 2009, Lesson

5). Although Jason considered infinity not as a number (see Section 5.1.5.3.3), he also

2x2 -3x3 +5
2 3 at infinity: “What this mentioned plugging in when he was finding lim

x—>°°4x +3x—x
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means is we want to formally plug in infinity here. We cannot really do this. So that is

why we come up with some way to write the limit as x approaches infinity” (Jason, 23

January, 2009, Lesson 5). In the context of computing a limit, many ofthe algebraic

routines (Table 5.21, [2-8]), therefore, were introduced as alternative procedures to find a

limit when the initial routine plugging in did not work.

5.3.2 Geometry-based routine (Graphing)

It was mentioned in Section 5.2 (visual mediators) that Jason used drawn pictures

of geometric shapes and graphs as visual mediators, which both convey a limit-related

idea geometrically. For the purposes of this section, however, drawing pictures of

geometric shapes was not considered a routine since it occurred only three times (see

Section 5.2.2) throughout the eight lessons and their use did not seem to follow a

repetitive pattern. Thus, only graphing will be considered as a geometry-based routine in

Jason’s discourse, whose characteristics in terms of when and how are summarized in

Table 5.22.

The somewhat apparent purpose of graphs is to provide visual aids for the

communication ofmathematical ideas. Graphing, as a routine however, helps us gain

more information about the instances where Jason needed such aid in his discourse on

limits. In that respect, the when and how of graphing also inform us about the diverse

reasons Jason used graphs.

Unlike the algebra-based routines, graphing was a routine that was initiated by

various promptszo. Besides its utilization in the context of computing the limit of a given

function, it was also used to determine the behavior of a function, introduce or explain
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theorems and definitions about limits and to address students’ confusions in the

classroom (Table 5.22). There were also instances in which the problem Jason worked on

particularly asked that graphs of a function be drawn. Although the closures of all these

situations usually ended with the graph that was intended to be drawn (Table 5.22),

graphing was used to substantiate a variety of narratives rather than a single one due to

the different prompts that triggered the application of this routine.

Table 5.22: Graphing as a geometry-based routine in Jason’s discourse
 

 

 

Prompt How When (Applicability) When (Closure)

Graphs of arbitrary The limits are to be

. determined only from the . . .

Compute the functions are drawn. graph drawn The limit is equal to L. .

. . . ' The limit does not exrst/is

1mm ofa Graphs ofparticular The limit is com uted at undefined

function functions formulated p '

algebraically are

drawn.

infinity or the function is a

trigonometric fiinction.

 

Determining the

Graphs ofparticular

functions formulated The function is a

 

2:23:33 ofa algebraically are trigonometric fiinction. The graphs are drawn.

drawn as visual aids.

Graphs of functions The graphs are drawn with a

. are drawn after When the question particular focus on the

5:12};h(1:21.122? determining their explicitly asks a fiinction functions’ behavior at

horizontal, vertical formulated algebraically to positive/negative infinity and
EMS

 

 

 

 

and oblique be graphed. the points where the function is

asymptotes. undefined.

Informal definition of limit,

. sandwich theorem,

Egocfiugffaiifin intermediate value theorem. The graphs are drawn and the

theorems/p g Graphs of arbitrary The graphs are either drawn theorems/definitions are

definitions about functions are drawn. before or in conjunction completely stated or written on

limits with the symbolic notation the board.

used for the

theorem/definition.

Graphsof arbi . 3 Proving an explanation that
. or specrfic functions . . . The graphs are drawn.

Addressmg are drawn to a limit 18 equal to a number.

students’ . .

confusions exemplify the . When the students are Sllent Students confirm they follow
instructor 5 prevrous or ask questions afier an . ,

. the instructor 3 arguments.
arguments. explanation.
 

 

20

See Section 5.2.3 for further details about the contexts in which Jason utilized graphs.
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For example, when graphing was used to compute the limit of a function, as was the case

for 11m — = 0 (see Figure 5.7), it was used to substantiate the narrative ‘the limit of the

x—>oo x

fiinction one over x as x approaches infinity is equal to zero’ or possibly ‘the limit (if it

exits) is a nurnber’ in general. On the other hand, when graphing was used to introduce

and explain a theorem about limits, say the intermediate value theorem, the narrative that

Jason endorsed was follows:

Iff is continuous on [a, b] thenf assumes every value betweenflu) and

f(b). In other words, ifyo is betweenf(a) andf(b), then there is a c in [a, b]

so thatf(c) =y. (See Figure 5.9)

 

Figure 5.9: Jason’s introduction ofthe intermediate value theorem (hand-written)

5.3.3 Using the metaphor ofcontinuous motion

This routine refers to Jason’s use of the metaphor of continuous motionZI in his

discourse. His utilization of this metarule remained implicit in the class since he did not

explicitly mention he was using a particular metaphor when talking about limits. Instead,

this routine emerged from his use ofwords signifying motion (See Figure 5.1) in the
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context of informal definition of limit, computing limits, and continuity as well as his

routine of graphing. Note that using words signifying motion when talking about limit

related concepts support their realization as a process and, therefore, is closely related to

Jason’s operational word use. Another reason this routine remained implicit for students

results from the fact that Jason’s operational utterances occurred when he used words

only verbally whereas his objectified utterances took place when he wrote the words on

the board (See Section 5.2.1). In other words, he did not make his words signifying

motion visible to students. Table 5.23 shows the characteristics of the routine of using

dynamic motion as a metaphor in Jason’s discourse.

Table 5.23: Jason’s routine of using the metaphor of continuous motion
 

 

 

 

 

 

Prompt How When(Applicabiljy) When(Closure)

Words signifying motion Determining the behavior

(See Figure 5.1) when of a function at the limit

referring to x values, point before writing its . . .

infinity and function limit as equal to L on the (Referring to hunt) The

. fiinction values approach/get

values are uttered (not board.

Compute the written) closer and closer to/tend to L.

“mm” ' Rfrrin to'f' and
function e e. . g “1.th . . (Referring to infinity) The

. . . . the lirnlt value in the limit .
Words Signifying motion . function values get/become

. notation
are uttered (not written) larger and larger/ smaller and

as/aiegtdaagvglg {gen When the students are smaller.

grap c o ' silent or ask questions after

an explanation.

Words signifying motion “The function value, if I get

when referring to x and . . . . closer and closer to x zero, it

. Informal definition ofham
Intr d . the function values are should approach some number

mom” uttered (not written). L” (Table 5.6, [41).

as ect of Words signifying motion Informal definition of “A continuous function is a

l“:1ts are uttered (not written) continuity function, and I am just going to

as/afier drawing the When the students are say it in words, that I can graph

graph of arbitrary

functions.

silent or ask questions after

an explanation.

without taking the chalk off the

boar ”(Table 5.16, [2]).
 

 

2]

Using a metaphor consistently in a given discourse is a type of metarule (See Section 2.2.2).
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5.3.4 Using the metaphor ofdiscreteness

This routine took place only when Jason talked about the formal definition of limit22 and

a proofproblem and refers to the elimination of words signifying motion in his discourse.

In the metaphor of discreteness, he used words signifying proximity (See Figure 5.1)

through distance. Recall that Jason’s word use was consistently objectified in the context

of the formal definition of limit (See Section 5.1.5.2). His utilization of this metarule also

remained implicit in the class since he did not explicitly mention he was using a

metaphor when talking about the formal definition. Table 5.24 shows the characteristics

of the routine of using discreteness as a metaphor in Jason’s discourse.

Table 5.24: Jason’s routine of using the metaphor of discreteness
 

 

 

Prompt How When (Applicability) When (Closure)

Words signifying “. ..whenever x is sufficiently

proximity (See Figure Formal definition of close to x zero so that means that

5.1) when referring to the limit the difference is no more than

Introducin x and fiinction values are delta then the function values

g uttered (and written) (See Proving that the limit of should be close to L” (Table 5.8,
formal aspect . . .

. . Figure 5.5). a function is equal to a [14]).
of limits ...... .

number usrng the formal

Symbols instead of definition of limit “. . .if x is sufficiently close, delta

graphs that signify motion close to x zero,. . .the function

are used. values should be close to the

limit” (Table 5.8, [18]).
 

In general, the metaphor underlying the informal definition of limit and the behavior of

the function values near the limit point is based on continuous motion, which considers

limit as a process. The metaphor behind the formal definition, however, is based on

discreteness and the elimination ofmotion, and therefore time, fi'om the informal

definition of limit (See Chapter III). Using distinct metaphors was present in Jason’s

 

22 . . .

Although Jason relied on this metarule in only one context, he repeatedly used the metaphor of

discreteness in that context. Therefore, his (implicit) use of the metaphor was considered as a routine.
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discourse as metarules when he talked about different aspects of limits. However, these

metarules remained implicit and he did not draw students’ attention to his shifts in word

use and also on the distinct metaphors related to realizations of limit.

Summary ofroutines

In Jason’s discourse, algebra-based routines often resulted in objectified word use

whereas graphing and the verbal statements about limit as a process resulted in

operational word use. Jason’s routines were used to substantiate the narratives that limit

is a number; limit is a process as well as other narratives of the form of definitions,

theorems and rules.

Jason relied more on a1gebra-based routines than graphing in the context of

computing a limit (see Table 5.19). Being based on algebraic manipulations and symbolic

notation, a1gebra-based routines (Table 5.21) also helped determine the instances in

which Jason’s objectified word use took place when he computed limits. The geometric-

based routine, which is identified in the study as graphing, was more often used for

explaining a definition, theorem or fact about limits. Although Jason clearly mentioned

that the limit of a function at a point may be distinct from the fiinction’s value at that

point, his frequent use of plugging in as the initial attempt to compute the limit of a

function links the function value with the limit value in a way that could easily contribute

to confusion of the two.

Jason implicitly used distinct metaphors as metarules in his discourse on limits.

One was based on dynamic motion whereas the other was based on the static aspect of

limit. These different metaphors also supported the realization of limit as a process or a

number. Jason’s shifts in word use and his utilization of different metarules remained
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implicit for his students since he did not explicitly attend to these aspects of his discourse

in the class.

The analysis of Jason’s routines also revealed that his word use was closely

related to his means of communication. His operational word use took place only when

he communicated his ideas verbally whereas his objectified word use took place when he

wrote his ideas on the board. It was discussed in Section 5.2.1 that such a difference in

the means of communication might also have resulted from Jason’s dual positions in the

classroom (being a mathematician and being a teacher).

5. 4. Endorsed narratives

Endorsed narratives are the last discursive feature under consideration in this

study. Narrative is “any sequence of utterances framed as a description of objects, of

relations between objects, or of processes with or by objects, that is subject to

endorsement or rejection with the help of discourse-specific substantiation procedures”

(Sfard, 2008, p. 134, italics in original). Once endorsed, narratives are considered as true

and ultimately are known as mathematical facts. Some examples of endorsed narratives

ofmathematics are axioms, definitions and theorems. The construction and substantiation

of narratives, however, are not uniquely defined. There is a variety of ways in which

narratives can be substantiated depending on the context and also on a person’s

familiarity with the mathematical discourse. For example, in the mathematics

community, narratives are often endorsed by means ofproofs, which are mainly based on

deductive reasoning. In contrast, empirical evidence and routines such as trial and error

can be used to endorse narratives by students, especially at their initial stages of learning.

Therefore, with respect to an individual’s discourse, endorsed narratives refer to what
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that person utters as true/not true or is/is not after applying particular routines when

substantiating her narrative.

In his discourse, Jason endorsed many narratives both related to limit and also to

algebraic properties such as exponent rules and performing long division. Given this,

there were many definitions, theorems and rules he addressed in the classroom. There

were also many instances in which he explicitly designated a particular sentence as true

or untrue about limits, infinity and continuity. The goal of this section is not to give a

comprehensive list of every endorsed narrative but to focus on the ones that were most

significant based on the information gathered on Jason’s word use, visual mediators and

the routines with which he substantiated those narratives.

Limit is a number

The narrative Jason most fiequently endorsed in his discourse was the description

of limit as a number. This narrative was often endorsed in the context of computing limits

as well as the formal definition of limit and was mainly substantiated by algebra-based

and geometry-based routines discussed in Section 5.3.2. The limit of a given function

existed when it was equal to a number. In fact, Jason explicitly mentioned that the limit

“exists” if it is equal to a number (Table 5.3, [7], [17]); it “does not exist” if the right

hand limit is not equal to the left hand limit (Table 5.3, [16]) or the limit is equal to

infinity (Table 5.3, [18]).

Limit is a process

Limit is a process was another narrative endorsed by Jason, though not as

frequently as limit is a number. It was mentioned in the analyses of his operational word

use (Section 5.1.2) and routines (Section 5.3) that Jason relied on dynamic motion,

151



 
nan

def]

suci

has

to t

ex;

end

des

bit

rex

Set

Illll

hit

the

DU

511

1h



graphs and verbal statements while substantiating this narrative. Jason endorsed this

narrative in the context of instantaneous rate of change; computing a limit; informal

definition of limit and also continuity. While substantiating this narrative, he used words

such as “getting closer and closer to”, “goes to” and “becoming” (See Table 5.2) that are

based on continuous motion and sometimes used graphs of functions as visual mediators

to talk about the limit as a process. There were only two instances, however, where he

explicitly mentioned the word “process” (See Table 5.2, [l], [16]). Therefore, this

endorsed narrative was mainly inferred through the elements ofhis discourse in which he

described a process when finding the limit of a function.

Infinity is not a number

Jason’s analysis of word use in the context of limits at infinity and infinite limits

revealed that he talked about infinity as a potentiality and as actual interchangeably (See

Sections 5153.2 and 5.1533). It was also mentioned that he referred to infinity as a

number in the context of infinite limits as he considered it as the end product of an

indefinite process (See Table 5.14). Moreover, he talked about “plugging in” infinity as

the initial attempt to work on limits and infinity, treating it as a distinct entity that, like a

number, can be put in the function (See Section 5.3.1). It was noted, however, that he

then mentioned one could not do that since infinity is not a number (Table 5.14, [31]).

This narrative was further endorsed when he considered infinite limits as non-existing.

Therefore, although be explicitly endorsed the narrative that infinity is not a number and

substantiated it in the context of limits at infinity, some ofhis word use and routines in

the context of infinite limits seemed to suggest otherwise.
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Thefimction ’s value at the limit point is irrelevant to the limit value

Plugging in was a common routine in Jason’s discourse in the context of

computing limits and continuity (See Sections 5.1.5.3 and 5.1.5.4) He often emphasized

that the limits of continuous functions could be found by plugging in, which would be

equal to the function’s value by the definition of continuity. On the other hand, he

explicitly stated that, in general, the function value is “something completely different”

than the limit value, and “has nothing to do with the limit” (See Section 5.1.5.4). In his

discourse, he substantiated this narrative through graphs and examples of functions with

removable and jump discontinuities for which the limit value, if it existed, was different

than the function value.

Summary ofendorsed narratives

In all the contexts he worked on, the primary narrative Jason endorsed was that

limit is a number. His word use when talking about the behavior of the x andf(x) values,

on the other hand, considered limit as a process. Jason explicitly endorsed limit as a

process only twice in his discourse on limits. However, many ofthe limit computation

problems in which he described the behavior of the function values implicitly endorsed

limit as process. Therefore, although in different frequency, Jason endorsed limit both as

a number and as a process.

Similarly, Jason explicitly endorsed the narrative that infinity is not a number. On

the other hand, his word use in the context of infinite limits also showed that he referred

to infinity as a number (5.1.5.3.3). He also treated infinity as a number when he said we

2x2 —3x3 +5

2 3

 would “want to formally plug in infinity” to find lirn (See Section 5.3.1).

x->°°4x +3x—x
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Although he then said we cannot do that, he implicitly endorsed the narrative that infinity

is a number in the context of infinite limits.

To sum up, Jason endorsed different narratives in his discourse on infinity and

limit depending on the context, which can lead to confusion whether to consider infinity

and limit as a process or as an end state.

Summary ofJason 's discourse on limits

In this chapter, I investigated one instructor’s discourse on limit related concepts

by focusing on his word use, visual mediators, routines, and endorsed narratives.

Research on learning about limits brings forward many of the conceptual obstacles

students have about limits and discusses the possible links between those obstacles and

the teaching of calculus (See Section 2.1.4). This research adds to the body of literature

by particularly focusing on the teaching of limits. In what follows, I summarize in

general terms what we have learned about one instructor’s discourse23 on limits while

teaching the notion to beginning-level calculus students.

Jason’s word use on limit and infinity revealed that he referred to them as both a

process and an end state depending on the context. Although he flexibly uses limit and

infinity as a process or product and distinguishes the characteristics of each realization

depending on the context, students might be unlikely to notice the characteristics

underlying these differences”. This might result from two factors: (a) Jason did not make

the instances where he shifted his word use from operational to objectified (and vice

 

2 . . . . . .

3 For more detailed results in regard to word use, Visual mediators, routines and endorsed narratives, see

the summaries at the end of the sections 5.1, 5.2, 5.3, and 5.4, respectively.

24 . . . . . . . .

The results of the diagnostic survey and the interViews given to students at the end of their instruction

will be discussed in the next chapter.
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versa) explicit in the classroom, and (b) given that this was the first time the majority of

students were introduced to the limit notion, they were relatively new to the discourse on

limits and did not have the experience to notice the important subtleties underlying each

realization of limit and infinity.

The contexts in which Jason shifted his word use seem to support the existence of

possible links between the instructor’s discourse and the historical development of limit

related concepts”. Note that Jason consistently used words signifying motion with a

consideration of limit as a process in the context of informal definition of limit and

computing limits (See Sections 5.1.5.1 and 5.1.5.3). On the other hand, he did not use any

motion related word and did not mention limit as a process when he talked about the

formal definition of limit (See Section 5.1.5.2). Moreover, he used the metaphor of

dynamic motion in the context of the informal definition of limit whereas he used the

metaphor of discreteness in the context of the formal definition of limit. These are

consistent with the realizations ofthe informal and formal definitions of limits as

developed over history26 (See Chapter 111). Similar to his shifts in word use, however, the

utilization ofthese metaphors remained implicit for the students as he did not address it

in the class.

The analysis of the visual mediators Jason used in the class showed that he did not

rely too much on graphs in the context of determining the limit of a fimction. However,

he used graphs fi'equently when explaining a limit related definition, theorem or fact.

 

25 Instructor’s discourse in relation to the historical development of limit related concepts will be examined

in Chapter VII.

26 A detailed analysis of the instructor’s discourse with respect to the historical development of limit

related concepts will be given in Chapter VII.
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Therefore, rather than considering graphs as a basic tool with which to make sense of the

behavior of a given function, Jason mainly used them as teaching aids during the

introduction of limit related ideas. The analysis of written words as a visual mediator

revealed that Jason’s word use was always objectified when he wrote on the board. His

operational word use only took place when he communicated his ideas verbally. This

suggests a degree of precision depending on the context. Jason was more precise and

careful when he wrote ideas on the board. He was less precise and less formal when he

addressed limit related ideas about which the students were likely to be confused. Such a

shift seems to signal Jason’s mode of endorsement of limit related narratives depending

on his position in the classroom. Being a mathematician, he wanted to make sure he

conveyed the mathematical ideas correctly. Being a teacher, on the other hand, he

lowered the degree of precision and talked about limits in an intuitive manner to enhance

student learning.

Another important visual mediator Jason used in the classroom was the symbolic

limit notation. In fact, this aspect of his discourse, together with his word use, provided

significant information how Jason talked about limit and infinity. When talking about the

arrow in the limit notation lim f(x) = L , Jason used a family of words such as

x—>a

99 66 99 6‘

“approaches , goes to , gets closer and closer to”, which refer to the process of the x

values moving toward the limit point a without reaching it. This is ambivalent in some

cases, since the word “approaches” is the canonical, endorsed way of reading the symbol

even in the formal definition. On the other hand, he also used the word “at” when

referring to the arrow, which considered the x values as reaching the limit point.

Similarly, when talking about the function values, Jason used “approach”, “become”,
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“get closer and closer to”, which are about the process ofmoving towards the limit L

without reaching it. When he completed writing the limit notation using the equal sign,

however, he referred to the limit as reachable (the limit is equal to L). Therefore, Jason’s

word use in regard to the limit notation might inevitably lead to confusion with respect to

the consideration of limit as a process or as a product (number). The same issue was

apparent also for the symbol 00 signifying infinity. In the context of limits at infinity,

Jason talked about infinity as a process, or potential infinity, when he mentioned the x

values “getting/becoming larger and larger”, “goes to”, and “approaches”. In the context

of infinite limits he associated the same symbol with an end result, or actual infinity,

when he talked about the limit of a function being “equal to” infinity. Such elements of

Jason’s discourse are likely to trigger the dynamic view of limit that is based on

continuous motion as well as the incorrect realization of limit such as “limit as

unreachable” (See Section 2.1.2).

The analysis of routines in Jason’s discourse showed that he often utilized

algebra-based routines while computing the limit of a function (See Table 5.21). He used

many algebra-based routines but most of those routines took place in cases when the

routine plugging in, that is plugging the limit point a into the functionf(x), did not work.

Said differently, plugging in, if applicable, was the initial routine Jason encouraged

students to use when computing a limit. There were many instances in which this routine

did not work. Jason used a variety of functions whose limits could not be found by

plugging in. Moreover, Jason explicitly addressed the relationship between the function

Value at the limit point and the limit value when he talked about continuity. He mentioned

that the value a function attains at the limit point is irrelevant to its limit value (See
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Section 5.1.5.4). On the other hand, he often emphasized that the limit of a continuous

function could be found just by plugging in. As a result, although Jason provided

opportunities for students to distinguish between the function value at the limit point and

the limit value, some of his word use and his routine ofplugging in might support the

student difficulty “limit as the fiinction’s value” (See Section 2.1.2).

In all of the contexts he worked on, “limit is a number” was the main narrative

Jason endorsed most explicitly and frequently. The shifts in the word use and some of his

routines, such as talking about limit as a process only verbally, however, also led to the

endorsement of the narrative “limit is a process”. Jason referred to limit as a process

when describing the behavior of a function near the limit point. Although he referred to

limit as a number at the end of every such description, it might not be clear for students

when the process gives way to the end result of the process in the context of limits.

Similarly, although Jason explicitly endorsed that “infinity is not a number”, his

treatment of the notion as a number in the context of infinite limits might lead to a similar

confusion in students’ realizations of infinity in terms of its realization as a process or an

end state.

Given the possible implications of Jason’s discourse on student learning, it is

important to investigate how students talk about limits at the end of their instruction. The

classroom observations did not provide much information about students’ discourse on

limits since there were very few occasions in which students talked in the classroom. The

format of instruction was lecture and students talked in the class only to ask clarifying

questions and to correct some computational mistakes Jason made. Therefore, the

diaglostic survey and individual interview sessions were the means by which I had some
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access to the students’ discourse on limits. In the following chapter, I will discuss

students’ discourse on limits in relation to the instructor’s discourse.
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CHAPTER VI

STUDENT DISCOURSE ON LIMITS IN RELATION TO THE INSTRUCTOR’S

DISCOURSE

In this chapter, I explore students’ discourse on limits at the end of their instruction. I first

present the results of the diagnostic survey I gave to 23 students. I then focus on four

students who participated in an individual interview session in which they worked on

questions targeting the conceptual obstacles in learning of limits. While reporting on the

survey and the interview sessions, I mainly focus on how and whether the students’

discourse on limits is similar to or different from the instructor’s discourse. For the

interview sessions, I only elaborate on the instances which highlight students’ discourse

on limits in relation to the instructor’s discourse. The purpose of this chapter is to explore

the links between students’ and the instructor’s discourse on limits.

It was not possible to gain much information on students’ discourse on limits

based on the video-taped classroom observations since the instructor’s mode of teaching

was lectures. During the period of eight lessons, there was no student-student interaction

and few instances of student-teacher interaction. Although the instructor encouraged

students to ask questions in the classroom, he did not facilitate any student discussion.

Students interacted with the instructor (Jason) when they asked clarifying questions,

when they did not follow Jason’s explanations and when they corrected a few

computational mistakes the instructor made in the class. Therefore, the diagnostic survey

and the individual interview sessions were the means by which I had access to how

students made sense of the limit concept.
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6.1. Responses to the diagnostic survey

I gave the diagnostic survey to Jason’s class at the end of the unit on limits. In

seven of the eight observed lessons, Jason covered ideas related to limits and continuity.

The eighth lesson was a review session before the exam. I administered the survey to

students during the last ten minutes of the eighth lesson. It was mentioned before that,

although 31 students enrolled in the class, the number of students attending the class

ranged between 17 and 23 in the period of the classroom observations. There were 23

students present in the class on the day I gave the diagnostic survey and all of the

students agreed to take the survey. The purpose of the survey was two-fold. First, I

wanted information on students’ discourse on limits at the end of their instruction.

Second, I used the survey to select the students for the individual interview sessions.

The questions in the diagnostic survey (See Appendix A) were taken fi'om

Williams (2001) since his classification of views related to limit is widely endorsed in

research on student learning. The first question of the survey included six statements (See

Table 6.1) about limits and asked students to decide whether the statements were true or

false. The second question then asked them which of the six statements best described

their understanding of limits. The third question asked students to describe what they

understood a limit to be. The final question asked students to give a rigorous (formal)

definition of limit, if possible.

Note that the views of limit such as boundary, unreachable and approximation

(See Table 6.1) are among the conceptual obstacles students have when thinking about

limits (See Section 2.1.2, Table 2.1). Hence, the diagnostic survey was useful for

assessing whether participants in the study were likely to have those difficulties.
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Table 6.1: Statements in the first question of the diagnostic survey and the corresponding

views of limit (Williams, 1991; 2001)
 

 

Statements Description View of limit

Statement 1 A limit describes how a function moves as x moves toward a certain Dynamic-theoretical

point.

Statement 2 A limit is a number or point past which the function cannot go. Boundary

Statement 3 A limit is a number that the y-values of a firnction can be made Formal

arbitrarily close to by restricting x-values.

Statement 4 A limit is a number or point the function gets close to but never Unreachable

reaches.

Statement 5 A limit is an approximation that can be made as accurate as you Approximation

wish.

Statement 6 A limit is determined by plugging in numbers closer and closer to a Dynamic-practical

given number until the limit is reached.
 

The difficulties not addressed by the diagnostic survey but mentioned by research on

learning about limits were intended to be examined during the individual interview

sessions. Those difficulties were “limit implies continuity”, “limit as the function’s

value”, and “limit as monotonic” (See Section 2.1.2, Table 2.1). The diagnostic survey

was also useful for identifying if students’ realizations of limits were mainly dynamic,

that is based on motion, or static, that is based on the. assumptions of the formal definition

of limit. The identification of students’ realizations of limits was based not only on the

responses they gave to Questions I and II but also on how they described limit in their

own words (Question 111, See Appendix A). In what follows, I elaborate on student

responses for each question in the survey

6.1.1. Questions I and II

There were six statements in the first question of the survey describing a different view of

limit (See Table 6.1). The students were asked to decide whether the statements were true

or false. Although each statement focused on a distinct view of limit, the views were not

necessarily non-overlapping. For example, views of limit as unreachable and as an

approximation are identified as difficulties resulting from the dynamic view of limit by
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the research on student learning (See Section 2.1.2). Table 6.2 shows the responses

students gave to the first question of the survey. Table 6.3 and Figure 6.1 show the cross-

comparison of student responses given to the six statements in Question 1 with respect to

the statements they chose as true.

Table 6.2: Students’ responses to the first question of the diagnostic survey
 

 

 

Number of student

Statements View of limit responses (N=23)

True False

l. A limit describes how a function moves as x moves Dynamic- 20 3

toward a certain point. theoretical

2. A limit is a number or point past which the function Boundary 6 17

cannot go.

3. A limit is a number that the y-values of a firnction can Formal l6 7

be made arbitrarily close to by restricting x-values.

4. A limit is a number or point the function gets close to Unreachable 13 10

but never reaches.

5. A limit is an approximation that can be made as Approximation 12 l l

accurate as you wish.

6. A limit is determined by plugging in numbers closer Dynamic- 9 l4

 
and closer to a given number until the limit is reached. practical

Table 6.3: Cross-comparison of student responses with respect to the statements they

chose as true
 

Number of students choosing the statements as true

 

 

Statement] Statement2 Statement3 Statement4 StatementS Statement6

 

($1) (32) (S3) (S4) (85) (S6)

N=20 N=6 N=16 N=13 N=12 N=9

Statement] 20 4 13 10 10 8

N=20

Statement2 4 6 4 6 3 3

Number N:6

:idems Sag—mega 13 4 l6 8 7 6

3:08“ Statement4 10 6 8 13 7 4

statements N=13
as true StatementS lO 3 7 7 12 5

N=12

Statement6 8 3 6 4 5 9

N=9
 

163



 

Fig]

(

Stai

Stat

mo

513:

lim

of

let

me
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Figure 6.1: Cross-comparison of student responses with respect to the statements they

chose as true

Statement 1 was considered as true by 20 of the students and was the most popular

statement students considered as best describing their realizations of limit (See Table

6.2). The statement clearly entailed a dynamic view of limit since it involved the

movement ofthe function values as the x values moved toward the limit point. That this

Statement addresses limit as a process can further be supported by the fact that it views

limit as a means for describing the behavior of a function rather than talking about limit

as a specific number. Such a view is consistent with Jason’s explanations ofthe behavior

0f filnctions in the context ofcomputing limits (See Section 5.1.5.3) and his routine of

using the metaphor of continuous motion in that context (See Section 5.3.4). It was

mentioned in Chapter V that Jason’s description of a function’s behavior while

computing limits was mainly based on operational word use than objectified]. Therefore,

\

1

Operational word use refers to talking about limit as a process whereas objectified word use refers to

talking about limit as a number obtained at the end of that process (See Sections 5.1.2 and 5.1.3).
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given the context of the classroom, I did not consider responding to this statement as true

as incorrect since this was how Jason investigated the behavior of a function near the

limit point before reaching a conclusion about the limit of the function at that point. Said

differently, the statement had theoretical validity when exploring the behavior of a

fimction near the limit point.

Statement 3, which corresponds to the formal view of limits, was considered as

true by 16 of the 23 students and was the second most popular statement students chose

as true in the survey (See Table 6.2). In fact, given that Statement 3 is based on the static

aspect of limit in contrast to Statement 1, which is based on the dynamic aspect of limit,

it is interesting that 13 of the 20 students who marked Statement 1 as true also marked

Statement 3 as true (See Table 6.3 and Figure 6.1). Note also that, unlike the first

statement, third statement talks about limit as a number but not as a process. Jason

explicitly referred to limit as a number while introducing the informal and the formal

definition of limit. He also frequently referred to limits as numbers (if they existed) when

talking about the final answers of the problems in the context of computing a limit (See

Section 5.3.1, Table 5.21, closure conditions). Jason’s persistent referral to limits as

numbers (except when he talked about the function values near the limit point) and

students’ familiarity with the formal definition of limit (See Figure 5.4 and 5.5) support

students’ consideration of Statement 3 as true. Table 6.4 and Figure 6.2 show the cross-

comparison of student responses to the second question in the survey with respect to the

statements students chose as best describing their realizations of limit.
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Table 6.4: Cross-comparison of students’ responses with respect to the statements they

chose as best describing their realizations of limit
 

Number of students choosing the statements as best describing

their realizations of limit
 

 

 

 

 

 

 

 

 

 
  

       

SI 82 S3 S4 SS S6 None

N=1 1 N=0 N=l N=6 N=1 N=3 N=1

Statementl l l O 1 4 1 3 0

N=20

Number State:16ent2 l 0 0 4 O l O

of

students StalthEntB 9 O l 2 O 3 l

$00311“; Statement4 5 o 0 6 o 1 1
e

statements N=13

as true Statement5 3 O 1 4 l 2 1

N=12

Statement6 2 O O 3 l 3 0

=9

Cross-comparison of student responses with respect to the

statements they chose as best describing their realizations of limit

12

10 4 I Statement1

_ I Statement2

Number of students D Statement3

choosnng the 6 4

statements as true 4 I Statement4

’ _ : E3 Statement5

2 ~ 2- .” 7 3;. Statement6

0 , , . . .

S1 82 83 S4 85 S6 None

Statements students chose as best   
Figure 6.2: Cross-comparison of student responses with respect to the statements they

chose as best describing their realizations of limit

9 out of 13 students who marked Statement 3 as true selected Statement 1 as best

describing their views of limit (See Table 6.4). Only one student who marked Statement 1

as true considered Statement 3 as the best statement. 11 of the 20 students who chose

Statement 1 as true considered it as the best statement with which they make sense of

limits (See Table 6.4 and Figure 6.2). Therefore, student responses given for these
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statements revealed that, although the instructor can clearly distinguish between limit as a

process and limit as a number depending on the context, students considered both

realizations as true about limits with a clear preference for the dynamic (process) View.

Statement 6 is the other statement in the survey2 that describes limit as a process.

Similar to Statement 1, Statement 6 describes how a limit is obtained rather than what the

limit is and so does not refer to limit as a number. The dynamic aspect in the statement

comes fiom plugging successive numbers to the function as the numbers get closer and

closer to the limit point. At first glance, one would expect majority of students to

consider this statement as true since this statement has similar characteristics with

Statement l-the most popular choice as best describing students’ views of limit (See

Table 6.4). However, nine of the 23 students marked Statement 6 as true (See Table 6.2).

This is consistent with the fact that plugging in values to the function as they get

successively closer to the limit point was a strategy Jason did not utilize in the classroom.

There was only one instance during the classroom observations in which Jason mentioned

plugging points closer and closer to the limit value (See Table 5.2, [2]) when finding the

limit of a function. While doing so, however, all his discussion was verbal; he did not

actually plug in points and compute the function values on the board. Except for this

instance, he did not employ the dynamic procedure as described in Statement 6 while

working on limits. In addition to this, Jason did not use any tabular representation of

functions throughout the eight lessons. Such representation of functions is likely to

trigger the idea that one can find the limit of a function by just looking at the values that

 

2 Statement 6: A limit is determined by plugging in numbers closer and closer to a given number until the

limit is reached (Williams, 1991; 2001).
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are close to the limit point. There was no evidence in Jason’s discourse to support such an

approach for finding a limit. The three students who chose Statement 6 as best describing

their views of limit (See Table 6.4 and Figure 6.2) were likely to focus on the dynamic

language of the statement and the process of “getting closer and closer to” the limit point

since 8 out of 9 students who chose Statement 6 as true also marked Statement 1 as true

(See Table 6.3 and Figure 6.1).

Research on learning about limits highlights the close relationship between the

dynamic view of limit as realized through a description similar to Statement 6 and the

student difficulty “limit as approximation”3 (Bezuidenhout, 2001). In other words,

students who consider plugging in values successively closer to the limit point can view

limit as an approximation. Statement 5 of the diagnostic survey4 considers limit as an

approximation and the statement was marked as true by 12 students (See Table 6.2).

Although five of these students also marked Statement 6 as true, ten marked Statement 1

as true (See Table 6.3). Therefore, some form dynamic view of limits was related to the

View “limit as approximation”. That the majority of students thinking about “limit as

approximation” chose Statement 1 but not Statement 6 as true might again result from the

fact that Jason did not utilize the procedure implied by Statement 6 in the class. Only one

student chose Statement 5 as best describing his realization of limits (See Table 6.4 and

Figure 6.2).

 

3 See Section 2.1.2 for the details of the student difficulty “limit as approximation”.

4 . . . . .

Statement 5: A 11m1t is an approxrmatron that can be made as accurate as you wish (Williams, 1991;

2001).
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“Limit as unreachable” is another student difficulty resulting from the dynamic

view of limits5 indicated by the literature (Tall & Vinner, 1981; Williams, 1991).

According to Tall and Schwarzenberger (1978), the colloquial use ofthe words such as

close to implies getting near to but not being coincident with. Given this, they argue that

the informal notion of limit may carry for students the assumption that one can get close

to the limit value but cannot reach it. Statement 4 of the diagnostic survey6 described

limit as a number that cannot be reached and was considered as true by 13 students (See

 

Table 6.2). 10 of these students also marked Statement 1 as true, suggesting that “limit as

unreachable” is a difficulty based on dynamic view (See Table 6.3). This can further be

supported by the fact that the 13 students who chose Statement 4 as true chose Statement

4 (six students) and Statement 1 (five students) as best describing their realizations of

limits (See Table 6.4 and Figure 6.2).

Statement 1 is based on the idea that limit is a process and talks about limit as a

descriptor ofhow a function moves as the x values move toward the limit point (See

Table 6.1). Such consideration of limit is consistent with the informal aspect of limit

Jason employed in the classroom when be investigated the behavior of a function near the

limit point. Jason never endorsed the narrative “limit is unreachable” but some

characteristics of his discourse on limits supported this view of limit. It was in the context

of computing limits that he switched between operational and objectified word use

treating limits (and also infinity) as processes and as end products (numbers) depending

on the problems that he worked on (See Sections 5.1.5.3.] and 515.32 ). When

 

5 See Section 2.1.2 for the details of the student difficulty “limit as unreachable”.
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discussing the behavior of a function near the limit point, Jason mainly explored what

valuef(x) approached as the x values approached the limit point. While doing so, he also

used other words besides “approaches” such as “getting closer and closer to”, “tending

to”, and “becoming” (See Section 5.1.2). Talking about limit as a process in which the

function values “approach”, “get closer and closer to” or “become” a number L carries an

implication that one can get close to the limit but cannot reach it.

The different ways Jason addressed the limit notation is another aspect of his

I
’
m

{
-discourse that supports a view of “limit as unreachable”. Throughout the eight lessons,

Jason referred to the arrow sign in the limit notation lim f(x) = L as the x values

x—>a

“approaching”, “going to”, and “getting closer and closer to” the limit point, which

signifies the process ofmoving towards the limit point without reaching it (See Section

5.2.4). This is consistent with some students’ views that the x values do not reach the

limit point with the idea that the filnction values can never reach the limit value. In the

context of continuity (See Section 5. 1 .5 .4), Jason also mentioned that the function value

at the limit point is irrelevant to the limit value; “what only matters is what happens

nearby [the limit point]” (Jason, 28 January, 2009). This might be another reason for

students’ conclusion that the function values cannot be reached while determining the

limit.

To sum up, student responses to the fourth statement in the survey reveal the

Connection between the view “limit as unreachable” and the dynamic-theoretical aspect

of limit. The instances in which Jason shifted his word use in the context of computing

Statement 4: A limit is a number or point the fimction gets close to but never reaches (Williams, 1991;

2001).
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limits support such a realization of limit. In those instances, Jason investigated the

behavior ofthe function near the limit point and, hence, considered limit as a process.

Although at the end of all such processes he referred to limit as a number, he did not

explicitly address process and product aspects of limits in his discourse leaving an

explanation for the shifts in word use in the classroom.

The final statement that will be elaborated on in Question I of the survey is

Statement 2, which describes limit as a bound7. Students with this view think that a

function is bounded by a specific limit value or that the absolute maximum/minimum

values of the function are the limits for the function (See Section 2.1.2). This statement

was marked as true by six students in the classroom (See Table 6.2). Compared to the

other statements in the survey, Statement 2 was selected by the least number of students

as true and was not selected by any of the students as best describing how they make

sense of limits (See Table 6.4 and Figure 6.2). It is difficult to contemplate whether

Jason’s discourse on limits played any role in students’ consideration of limit as a bound.

This view of limit is often based on the colloquial use ofthe word limit than the

mathematical aspects ofthe concept. Everyday uses of the word in phrases such as “the

speed limit is 25mph”, “we reached the city limit”, and “we have to limit our expenses”

could result in students’ realization of limit as a constraint or a boundary. There was no

evidence in Jason’s discourse of support for this view of limit. Note, however, that all of

the students who marked Statement 2 as true also marked Statement 4 (“limit as

unreachable”) as true (See Table 6.3 and Figure 6.1) and four of the six students who

marked Statement 2 as true selected Statement 4 as the best statement to describe their
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views of limit (See Table 6.4 and Figure 6.2). Therefore, these students were likely

thinking of “limit as bound” as connected to the view “limit as unreachable”, making this

a difficulty related to a dynamic viewg.

6.1.2. Questions 111 and IV

The third question in the survey asked students to describe what they understood a limit

to be using their own words. Table 6.5 shows the student responses for Question 111.

One student did not give a response for Question III (Table 6.5, [5]) and one mentioned

(

that limit was not a clear idea for him (Table 6.5, [8]). One student did not mention limit

or the limit value L and used an arrow to represent the x values approaching the number

one requires (Table 6.5, [7]). However, this student did not use the word “approaches”

but just relied on the arrow to communicate her ideas about limit. Therefore, although it

seemed that she was describing x values approaching the limit point, her description did

not provide clear evidence about her view of limit. These responses (Table 6.5, [5], [7],

[8]) were not descriptive enough to gain information with respect to the students’

realizations of limit.

Three students used elements of the formal view of limit as indicated by the

survey (See Table 6.1, Statement 3) using words such as “arbitrarily close” (Table 6.5,

[6], [10], [15]). The first student also mentioned x values “sufficiently approaching” s

(Table 6.5, [6]). In the formal view of limit, motion is eliminated and the x values are

sufficiently close to 3 rather than approaching s.

 

7 Statement 2: A limit is a number or point past which the function cannot go (Williams, 1991; 2001).

8 The converse of the argument was not necessarily true. Only 6 of the 13 students who marked Statement

4 as true marked Statement 2 as true (See Table 6.3 and Figure 6.1) and none of those 13 students selected

Statement 2 as best describing their realizations of limit (See Table 6.4 and Figure 6.2).
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Table 6.5: Students’ responses to the third question of the diagnostic survey9
 

 

Response Describe what it means to say that the limit of a functionfas Best statement describing

No. x—vs is some number L. students’ view of limit

(N=23) (See Table 6.1)

[1] As x gets closer and closer to the value 3 then y values off(x) get Statement 3

closer and closer to L

[2] When x approaches to s, the relative value on y-axis will be close Statement 1

to L

[3] That the function won’t reach L as x approaches 3. Statement 4

[4] Limit is while x approaches to an initial interval of the fiinction, “None”

it may be closer to the value at the function at that point. it’s

approximately close; however, never reaches.

[5] No response is given. Statement 6

[6] Ifx sufficiently approaches 3,farbitrarily close to L. Statement 6

[7] A number x—’ the number you require Statement 5

[8] A limit is maybe not so clear of an idea to me. Statement 4

[9] Functions have limits. Limits are the point or number thef(x) can Statement 4

never reach but can get as closer as it can.

[10] Limit is when x approaches arbitrarily close to a given number. Statement 4

There is a y—values counterpart with it.

[ l 1] What value in the y coordinate is approached when x approaches Statement 6

s.

[ 12] L would be the point of the y value of the functionfas it Statement I

approached the points.

[13] A limit describes a function as it gets closer and closer to a point. Statement 1

As x approaches a number y approaches the limit.

[14] This means that as x approaches some number s the limit is some Statement 1

number L.

[15] As x approaches 5 it will be arbitrarily close to L but never Statement 4

reaches L.

[16] A limit is some number L that a fiinction can get really close to Statement 4

but never actually reaches. If you say lim f(x) = L you are

X“)S

saying as you approach 5 onf(x) you get L.

[17] A limit is a description of what a filnction comes as it approaches Statement 1

certain values, i.e. lim 2x _ 4 = 00

x—-)O

[18] I understand limit to be the y-value a function gets close to as the Statement 1

x value approaches a number.

[19] A limit is a value that the fimction approaches as x approaches a Statement 1

certain value.

[20] To me a limit is just a point that a fimction approaches at a given Statement 1

x-value.

[21] As x gets closer to s the # [number] gets closer to L. Statement 1

[22] As x approaches s the y values get close to L. Statement 1

[23] f(x) = L means that as the function’s x values become closer Statement 1

x—bs

and closer to s, the y value of the function becomes closer and

closer to L.

 

Any grammatical, symbolic or mathematical errors in the sentences are preserved in order to keep the
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This student used a combination of words from both the formal and the dynamic aspects

of limit and chose Statement 5 (“limit as approximation”) as the best statement describing

her view of the concept (Table 6.5, [6]).

The second student using elements of the formal aspect considered the x values

(but not the function values) “arbitrarily” approaching a given number and mainly

described limit as a process (Table 6.5, [10]). Similar to the first student, she used both

the formal and dynamic views related to limit since she did not talk about being

arbitrarily close but “arbitrarily approaching”. She did not consider limit as a number but

as something that happens “when x approaches” a number (Table 6.5, [10], emphasis

added). As a result, despite her attempt to use the formal aspect of limit, this student’s

description of limit was based on the realization of limit as a process.

The third student who used elements of the formal aspect of limit mentioned the

value L, without referring to it as a number (Table 6.5, [15]). He also used the word

“approaches” when describing the behavior of the x values. Therefore, there were

elements ofboth the formal and the dynamic aspects of limit in his description. The

existence of the dynamic view of limit in his response can filrther be supported by the

fact that he considered the value L as unreachable. In fact, this student and the second

student chose Statement 4 (“limit as unreachable”) (See Table 6.5, [10], [15]) as best

describing their view of limit and they both marked Statement 3 (formal view of limit) as

false in the survey. On the other hand, all three students marked Statement 1, the

dynamic-theoretical view (See Table 6.1), as true. Hence, student responses [6], [10],

[15] (Table 6.5) were considered as dynamic but not formal.

 

originality of student responses.
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The six students mentioned above were the cases in which it was hard to infer

realizations of limit directly fiom definitions either due to a lack ofresponse or a mixture

ofword use. All of the remaining 17 students clearly used some version of the dynamic

view when describing their realizations of limit. The only student who marked Statement

3 (formal view of limit) as best describing his View of limit was among those 17 students

(See Table 6.4 and Table 6.5, [1]). Only four of the 17 students referred to limit as a

“number” or “the y value of the fimction” (Table 6.5, [9], [12], [14], [16]). The remaining

13 students described limit as a process. Overall, there were four students referring to

limit as objectified (number), 16 students'0 referring to limit as operational (process), and

three students whose descriptions of limit could not be classified.

Some ofthe 16 students referring to limit as operational described the process of

the fimction values approaching the limit value as x values got closer and closer to the

limit point. Some others considered limit as a descriptor ofhow a function behaves (e.g.,

Table 6.5, [13], [17]). Therefore, although Jason’s word use in the classroom was mainly

objectified rather than operational, students adopted his operational word use. Jason

referred to limit as a process only verbally, not writing any ofhis operational word use on

the board (See Section 5.3.3). On the other hand, student responses for the third question

of the survey show that the instructor’s verbal comments played a dominant role in

students’ descriptions of limit. Jason’s word use shifted from operational to objectified

(and vice versa) in the contexts of informal definition of limit, computing a limit, and the

limit notation. It was argued in Chapter V that students were unlikely to distinguish the

 

10 The total number of students viewing limit as a process was 16, including the three students who used a

combination of formal and dynamic view in their description.
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process aspect of limit from the product aspect in these contexts since such shifts

remained implicit in Jason’s discourse

Another aspect of Jason’s discourse that supported the realization of limit as a

process and remained implicit for students was his routine ofusing the metaphor of

continuous motion in the context of computing limits and the informal aspect of limits

(See Section 5.3.4). Although he also used the metaphor of discreteness when talking

about the formal aspect of limits (See Section 5.3.5), students in the study only relied on

the metaphor of continuous motion in their discourse.

Jason’s shifts in word use and his utilization of the metaphor of continuous

motion are consistent with the fact that, no matter how frequently and explicitly he

endorsed the narrative limit is a number (See Section 5.4), students mainly endorsed the

narrative limit is a process in their responses to the survey. Throughout the eight lessons,

Jason explicitly endorsed the narrative limit is a process only twice (See Section 5.4).

However, he endorsed it implicitly every time be computed the limit of a fitnction by

investigating the function’s behavior near the limit point. Despite his referral to limit as a

number (if it existed) at the end of every computation, the notion mainly remained as a

process for students.

Responses to Question 111 also revealed five students’ consideration of “limit as

unreachable” (Table 6.5, [3-4], [9], [15-16]). These students explicitly mentioned that the

function values cannot reach limit value L and all ofthem described limit using elements

of the dynamic view. Moreover, all five students marked Statement 4 (See Table 6.1),

which described “limit as unreachable”, as true and four of them selected it as the best
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statement with which they made sense of limits (Table 6.5). One student chose none of

the statements as best describing her view of limits1 I.

The fourth question in the survey asked students to give a rigorous definition of

limits, if possible. While administering the survey, I told students that a rigorous

definition of limit is what Jason referred to as the precise (or formal) definition of limit in

the class. In spite of this, majority of the students left this question unanswered. Only five

of the 23 students provided a response for Question IV of the survey. Table 6.6 shows

student responses for the question.

Table 6.6: Students’ responses to the fourth question of the diagnostic survey12
 

 

Response Ifpossible, write down a rigorous definition of limit.

No. (N=23)

[1] f(x) = L

x—)s

[2] “limit” is what is used to describe the number that we would try our best to get on y-axis when

x approaches to another number.

[3] Limit is approaching a value that usually cannot be defined or = in a normal equation.

[4] As x approaches a number, y approaches a number

[5] A limit is a value that a function can never reach, however, it only comes arbitrarily close to it.

 

One of the students considered limit as a “value a function can never reach” (Table 6.6,

[5]) when providing a rigorous definition of limit. Three students talked about limit as a

process (Table 6.6, [2-4]) and one gave the symbolic notation as a rigorous definition of

limit (Table 6.6, [1]). This question did not provide additional information in terms of

students’ realizations of limit both because there were very few student responses and

also the descriptions students provided had similar characteristics to those they provided

 

H This student marked “none” for Question I] of the survey (See Table 6.4).

2 . . . . .

Any grammatlcal, symbolic or mathematical errors 1n the sentences are preserved in order to keep the

originality of student responses.
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for Question III. The dynamic view (Table 6.6, [2-5]) and the consideration of “limit as

unreachable” (Table 6.6, [5]) were again common themes in students’ definitions.

Students’ lack of responses for this question could result from their unfamiliarity

with the word “rigorous”. Jason used the term “precise” when talking about the formal

definition of limit in the class. Although I mentioned that those two terms mean the same

thing while administering the survey, it is possible students did not realize these terms as

the same. Another reason this question was left unanswered by the majority of students is

that Jason presented the formal definition of limit as optional, a personal challenge rather

than a required topic for the exam (See Section 5.1.5.2). Therefore, it is possible that

students did not attend to the formal aspect of limit carefully or forgot the complicated

statements including a and 6 as well as the existential quantifiers such as “for all” and

“there exists” in the formal definition.

Summary

The responses given to the diagnostic survey revealed that the students in the study had a

dynamic view of limits at the end of their instruction. 16 of20 students who had the

dynamic view of limit described limit as a process”. Four students mentioned limit as a

number but still used the dynamic view in their descriptions. This result was consistent

with the fact that the statement describing limit by dynamic-theoretical means (Statement

1 in Question I, see Table 6.2) was marked as true by 20 of the 23 students taking the

survey. Dynamic view of limit refers to the consideration of the concept by means of

continuous motion and results in the realization of limit as a process. The instructor’s

 

l3 . . . . . .

Three students’ explanations of llmlt were not explanatory enough to conclude about their descriptlons

of limit (See Section 6.1.2).
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routines, and shifts in word use when computing limits, referring to the limit notation and

talking about the informal aspects are consistent with students’ realization of limit as a

process.

The statement which described the formal view of limit was the next popular

statement students chose as true (Statement 3 in Question I, see Table 6.2). The three

students who incorporated elements of the formal definition to their description of limit

did so inaccurately since they mainly relied on the dynamic aspect of limit rather than the

discrete or static aspect in their explanations. Said differently, the formal view of limit

was considered as true by the majority of students but was not employed in their

descriptions of limit. They had seen the formal (precise) definition which Jason

introduced in the classroom, but perhaps did not grasp it implications, instead relying on

motion in their descriptions of limit. In the end, only four ofthe students mentioned limit

as a number, the objectified view that dominated Jason’s discourse.

Statement 4 and Statement 5 in the first question of the diagnostic survey were

also chosen as true by the majority of students (See Table 6.2). Statement 4 assessed

students’ view of “limit as unreachable” whereas Statement 5 assessed the view of “limit

as approximation”. These views are addressed by research on learning limits as student

difficulties resulting from the dynamic aspect of limit (Tall & Schwarzenberger, 1978;

Williams, 1991). Students’ responses to these statements, together with their definitions

of limit are in accord with their consideration of limit as a process.

Some of Jason’s discourse on limits possibly had a direct impact on student

learning. Consistent with Jason’s discourse, the majority of the students marked the

dynamic-practical aspect of limit as false (Statement 6 in Question I, see Table, 6.2).
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Recall that Jason did not find limits of functions by plugging in points successively close

to the limit value. Similarly, his introduction of the precise or the formal definition of

limit led to some familiarity with the words associated with the formal aspect of limit.

Such familiarity supports students’ consideration of the statement describing the formal

view as true. The view “limit as boundary” did not seem to be related to Jason’s

discourse on limits in the classroom. Instead, this realization of limit was more closely

related to the colloquial use of the word limit (See Section 6.1.1).

Some other elements of Jason’s discourse on limit, however, support students’

consideration of limit as a process. His routine of using the metaphor of continuous

motion and switching between the operational and objectified word use in the contexts of

informal definition of limit, computing limits, and referring to the limit notation are

consistent with students’ realizations of limit as a process based on dynamic motion.

Jason talked about limit as a process when he investigated the behavior of functions near

the limit point. Although he referred to limit as a number after determining the behavior

of the functions, students mentioned the process but not the end result of the process in

their own descriptions of limit.

6. 2. Responses to the individual interview sessions

In this section, I explore four students’ discourse on limits by focusing on (a) elements of

the instructor’s discourse on limits, and (b) the difficulties indicated by research on

student learning about limits. I use pseudonyms — Amy, Jessica, Harry, and Keith — for

the students’ names. Among these students, Amy, Harry and Keith were from the list of

students I initially identified to interview. Jessica volunteered and I interviewed her as

well (See Section 4.2). All four students responded correctly to five of the six statements
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in Question I of the diagnostic survey (See Table 6.1). However, many of the difficulties

identified by research on learning about limits were found in students’ discourse during

the interview sessions.

The questions in the interview session were designed to probe students’

realizations of limits. The diagnostic survey did not address student difficulties such as

“limit implies continuity”, “limit as the function’s value”, and “limit as monotonic” (See

Section 2.1.2, Table 2.1) nor did it provide information regarding students’ views of

continuity and infinity. The questions in the interview sessions were useful to focus on

ideas not addressed by the survey. The questions also provided contexts in which student

difiiculties “limit as unreachable”, “limit as boundary”, and “limit as approximation”

(See Section 2.1.2, Table 2.1) were investigated in further detail. Figure 6.3 shows the

problems in the interview sessions]4

I started the interview sessions asking some general questions to students in terms

of their background as well as how and whether they utilized the textbook in their

learning. Table 6.7 provides some general information about the students obtained both

through the diagnostic survey and the interview sessions. Note that none of the students

used their textbook for reviewing material or preparing for the exam1 5

 

14 The interview session problems as shown in Figure 6.3 are also included in Appendix B.

15 This was the primary reason the analysis of the textbook with respect to its discourse on limits was

considered beyond the scope of this study.
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Table 6.7: General information about the students participating in the interview sessions

 

 

Amy Jessica Harry Keith

Statement best describing Statement 1 Statement 1 Statement 6 Statement 3

their view of limit in the

survey (See Table 6.1)

Sociology- Finance Computer Computer

Major Residential engineering science

College

Year in the university First year First year Second year Second year

Did you take calculus in No Yes No No

high school?

Did you take calculus before No No No Yes (Once)

during your undergraduate

study?

Do you use your textbook Not at all Never Never No

besides the homework

problems?

Do you use the lecture notes No Yes No No

for reviewing material or

preparing for the exam?

What sources do you use for Reviews the Uses lecture Watches Math TV Reviews the

. . . homework notes from YouTube and homework

rev1ew1ng materlal or .

preparing for the exam? problems and asks frlends problems

asks fi'lends

 

They only used the textbook to work on the assigned homework problems. Only one of

the students used the lecture notes whereas the other students relied on other sources,

such as friends and intemet-based lessons, while studying for the course.

6. 2. I . Students’ discourse with respect to the instructor ’s discourse on limits

In this section, I investigate the students’ discourse in relation to the instructor’s

discourse on limits. The contexts in which the students’ discourse will be discussed in

this section emerged from the analysis of Jason’s discourse with respect to his word use

(See Chapter V). Those contexts are (a) informal aspect of limits, (b) formal aspect of

limits, (c) limit notation, (d) infinity, and (e) continuity.

6.2.1.1. Informal aspect oflimits

All ofthe students participating in the interviews made frequent use ofthe dynamic view

of limit as they worked on the limit computation problems and talked about limits. Two
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ofthe students, Amy and Jessica, considered the statement in the diagnostic survey that

described limit as a process as the best statement describing their view of limits]6 (See

Table 6.7). Harry picked the statement that described limit as an approximation as the

best statement, also a dynamic View of limit. Keith was the only student who considered

the formal view of limit as the best statement with which he made sense of limits. During

the interview, however, he talked about limit as a process and relied on the informal

aspects of limit.

During the interviews, students computed limits and wrote those limits as equal to

particular numbers. On the other hand, none of the students explicitly referred to limit as

a number. Instead, they described the behavior ofthe function values approaching the

limit value as the x values approached the limit point. This was consistent with Jason’s

operational word use and his routine of using continuous motion in the class. Jason’s

discussions of limit as a process (operational word use) only took place when he

communicated his ideas verbally (See Section 5.2.1). He did not write any ofhis

operational utterances on the board. The students, however, talked about the instructor’s

investigation ofthe behavior ofthe function as x approached the limit point as a

definition of limit. In fact, Amy thought that finding limits in this manner “fit the

definition he [the instructor] presented to us in class” (Amy, 3 March, 2009). Note that

the instructor’s informal definition of limit (See Table 5.6 and Figure 5.4) referred to

limit as a number (objectified word use). His treatment of limit as a process mainly took

 

1 .

6 During the interview, Jessica mentioned that it was a combination of the dynamic View and the formal

view that she made sense of limits. She said she chose Statement 1 (See table 6.1) because it was simpler.
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place when he computed limits. Therefore, he did not technically present the process

aspect of limit as a definition to students in the class.

When investigating the behavior of a function near the limit point, students’

terminology was similar to the instructor’s, frequently using words signifying motion:

Amy: Coming from the right, it [the function value] is approaching zero

and coming in from the left, it is approaching zero.

Jessica: As x moves towards zero, the y values change.

Han'y: It [the function value] is approaching; it gets closer and closer to

one.

Keith: ...the limit is a value as it is approaching a certain number.

Note that although Keith uttered the word “number”, he did not refer to limit as being

equal to the number. Instead, he mentioned limit as it was approaching that number,

which was the function’s y value. Jessica explicitly mentioned that limit was not just a

number and used the word “proceed” to describe limit as a process.

Jessica: The limit is not only a particular number.

Researcher: The limit is not a particular number. What is it then?

Jessica: It is a moving proceed [sic] I think.

Researcher: When you say proceed, what do you mean?

Jessica: x approaches c; it is not equal to c.

Students talked about limit as a process also when they attended to the right hand and the

left hand side of functions. All ofthe students computed right hand and left hand limits at

some point during the interview but did not utter the word “limit”. Instead, they

mentioned “approaching from the left/right”. The frequency with which they utilized this
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approach depended on the context. Keith and Jessica consistently used left and right

limits throughout the questions whereas Amy and Harry did not attend to both sides when

the function was represented algebraically.

Graphing was the primary routine three students utilized when investigating the

behavior of a given function. The only problem involving a graph in the interview session

was Question 3 (See Figure 6.3). Keith and Jessica drew graphs while working on every

problem in the interview. Harry drew graphs for Questions 1, 2 and 4 (part c) of the

interview (See Figure 6.3). These students used graphs not only to compute the limit of a

function at a particular point but also to communicate their thinking about limits and to

provide examples or counter-examples to some of the arguments in the questions. On the

other hand, they expressed a dynamic view of limit (using the metaphor of continuous

motion) and treated limit as a process every time they talked about their graphs. Amy did

not draw any graphs during the interview due to a particular view of limit (“limit implies

continuity”), which will be discussed later in the chapter. She mainly attended to the

function’s value while computing limits and did not use graphing as a routine to

communicate her ideas.

In summary, all of the students’ word use about limit was mainly operational

rather than objectified since they talked about limit as a process but not as a number. This

was in contrast with Jason’s discourse since his word use was mainly objectified. The

students considered the x values approaching the limit point and the function values

approaching the limit as elements of the dynamic view, which was based on continuous

motion. The way they explored the behavior of a function near the limit point was

consistent with the instructor’s routine of computing limits (See Section 5.3.3). On the
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other hand, unlike the instructor, students could not refer to limit as a number at the end

of the limiting process during the interview. It was mentioned in Section 5.4 that Jason

explicitly endorsed the narrative limit is a process only twice whereas he endorsed the

narrative limit is a number consistently in the classroom. The students in the interview

sessions, however, endorsed the former narrative about limits.

6.2.1.2. Formal aspect oflimits

The formal definition of limit Jason introduced in the classroom provided a

context in which to highlight the static aspect of limit. During his discussions on the

formal definition, his word use about limits was consistently objectified. Moreover, he

did not utter words signifying motion but used words signifying proximity instead (See

Section 5.1.5.2). While doing so, he used the metaphor of discreteness as a routine (See

Section 5.3.4). Question 5 (part c) and Question 6 of the interview session problems (See

Figure 6.3) were used to gain information on students’ view of the formal definition of

limit and how they talked about this definition as being similar to or different fi'om the

informal definition of limit Jason introduced in the classroom. In Question 6, I used the

textbook’s definition of formal definition of limit, which was similar to Jason’s formal

definition of limit (See Figure 5.5), since the textbook’s definition refers explicitly to a

and 5 as numbers.

All of the four students marked the statement in the diagnostic survey that

described limit by formal means as true (See Statement 3 in Table 6.1). However, they all

relied on operational word use while talking about the formal definition of limit in the

context of Question 6 of the interview session. After reading the formal definition in

Question 6 (See Figure 6.3), Amy split it into three parts as follows:
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Part 1. Let a function f(x) be defined on an open interval about [the point] x0 , except

possibly for x0 itself.

Part 2. We say that the limit of f(x) as x approaches to x0 is the numberL , and write

lim f(x) = L

x—)x0

Part 3. if for every numbera > O , there exists a corresponding number 6 > 0 such that

for allx,0 < |x—x0| < 5 :> If(x) —L| < a . (Thomas et al., 2008, p. 91)

Amy: [Referring to Part 1] So it says like it has to be defined which makes

me think that it has to be continuous which kind ofgoes along with what I

already know about limits. . . [Referring to Part 2] So this part. . .it goes

along with my informal definition like really well. . . [Referring to Part 3]

For every number. . .there exists a corresponding delta such that. . .for me

goes along with that proofwhich it is kind of like ‘whatever’.

Amy considered the first part of the formal definition as describing the continuity of the

function at the limit point. The second part, which basically described how to read and

symbolically represent the limit notation, matched her dynamic or informal view of limit.

The third part, on the other hand, represented the part of the definition that she ignored.

When she was asked to explain why Part 3 did not make sense to her, she said

When we did the proofs of the limits, he [the instructor] was not going to

test us on it and he said that we would never really have to do them. So I

didn’t pay attention... I completely disregarded it after that homework

assignment. The way he presented the material to us by saying that we
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would never have to know it for a test just makes me not pay any close

attention to it. (Amy, 3 March, 2009)

Jason’s mentioning of the formal definition as a personal challenge and his explicit

statement that the homework problems would not be graded resulted in Amy’s ignorance

of the formal definition as a relevant part of the course. When she was asked to explain

how she thought of the informal and formal definitions as similar or different, she

mentioned that Part 2 “is the informal definition” (Amy, 3 March, 2009) and did not say

more. In Amy’s discourse, the static aspect of limit was missing. Dynamic view of limit

through the assumption of continuity was how she talked about the formal definition.

Harry realized Question 5 (part c) in the interview session (See Figure 6.3) as

related to the formal definition but did not want to work on it saying he “hated those

symbols” (Harry, 27 February, 2009). He showed some effort to work on the definition in

Question 6.

So what I recall from the epsilon and delta is that difference between

epsilon is proportional to the delta. So if there is a difference of let’s say

two and an x value, it will be proportional to the y value. If there was like

two x, the y value would be four. If it was four x, the y value would be

eight. It is like proportional. (Harry, 27 February, 2009)

Note that he used the term “difference”, a word signifying proximity instead of motion,

and also referred to some sort of dependence. The dependence he described by means of

proportionality seemed, however, to express y values as dependent on the x values rather
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than 8 being dependent on s1 7. When describing how he thought about this definition as

similar to or different from the informal definition, Harry only commented on the

sentence where the limit notation and how to read the notation was introduced. He said

“they are actually very similar. When Jason [the instructor] did it, he said the limit as x

approaches a offofx equal to L. . .He explained that L was the y value as x is

approaching a” (Harry, 27 February, 2009). Harry did not comment on the part of the

definition including 8 and 5. Harry realized the formal definition of limit as indicating a

type of dependence but, similar to Amy, he relied on the dynamic view of limit while

talking about the formal definition. Amy and Hany both talked about the part of the

definition that introduced how to read and write the limit notation as related to the

informal definition of limit. As a result, they concluded that the two definitions were

similar.

Unlike Amy and Harry, Jessica and Keith used graphs as visual mediators when

explaining how they made sense of the formal definition. They both drew correct graphs

representing the relationships between a and 8. They both referred to s as related to the

difference between the function values and the limit value, and 6 as related to the

difference between the x values and the limit point. They also mentioned that the graph

the instructor drew when he worked on a proofproblem (See Table 5.20, the last graph)

was very useful for them while thinking about limits. Jessica split the definition into four

parts as follows.

 

‘7 In the formal definition, 5 (which is related to the difference between x values and the limit point)

depends on a (which is related to the difference between the function values and the limit value).
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Part 1. Let a function f(x) be defined on an open interval about [the point] x0 , except

possibly for x0 itself.

Part 2. We say that the limit of f(x) as x approaches to x0 is the numberL , and write

lim f(x) = L

x—->x0

Part 3. if for every numbera > O , there exists a corresponding number 5 > 0

Part 4. such that for allx,0 <|x—x0| < 5 :> If(x)—Ll < 8 . (Thomas et al., 2008, p. 91)

She said Part 1 of the definition “is like the requirement. . .like it should be an open

interval and except for x zero” (Jessica, 5 March, 2009). She wrote “moving” near the

second part of the definition. She described Part 3 of the definition as relation and said “it

shows that there is a relationship between. . .what happened on the x axis and what will

happen on the y axis. This is the relation part” (Jessica, 5 March, 2009). She referred to

Part 4 of the definition “this part just wrote words into another form. But when you see

here [shows Ix — xol ]...it tells you. . .it should. . .move both sides” (Jessica, 5 March,

2009). When asked how the informal definition was similar to or different from the

formal definition, Jessica said that they both mention approaching particular points but

that the formal definition was more confusing since “there are three things to figure out:

L, epsilon and delta” (Jessica, 5 March, 2009). Note that she connected these two

definitions by means of motion. Still, Jessica considered the formal view, together with

the informal view of limit as best describing how she made sense of the concept.
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Keith was the only student who considered the statement that described limit by

means of a formal view (See Statement 3 in Table 6.1) as best describing his realization

of limits in the diagnostic survey. During the interview, he said “the informal approach

helped in give me the right answers and working through it and like you know the quick

methods. . .But I thought that the formal definition provided a much better understanding

of what the actual definition was” (Keith, 3 March, 2009). However, Keith was primarily

referring to the graph the instructor drew for the proof problem as the most useful tool to

make sense of the formal definition. He said he followed the arguments about the formal

definition visually but was initially confused about the symbolism included in the

definition when he worked on Question 5 (part c) (See Figure 6.3).

When we went over the formal definition, we didn’t really discuss what

these symbols were [shows a and 8] . . .When we went over the definition,

like I got it visually. I got it visually what we are doing and it helped

immensely. But when we were using. . .like I don’t really remember what

these symbols are. . .(Keith, 3 March, 2009)

On the other hand, in the context of Question 6 of the interview session, Keith showed a

lot of effort to make more sense of the symbolism. Without any guidance and using only

the graph he initially drew for the formal definition, he was able to realize a in relation to

the difference between the function values and the limit value, and 8 in relation to the

difference between the x values and the limit point. However, he defined |x - x0] as equal

to 8 and |f(x) — L] as equal to a: “it almost seems like x minus x zero should be equal to

sigma [he means delta] andfofx minus the limit should be equal to epsilon” (Keith, 3
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March, 2009). When asked how he thought the formal and the informal definitions as

similar to or different from each other, Keith said

[Referring to the formal definition] It is similar because it is kind of saying

the same thing. It is different in the fact that it has all these symbols and

it’s much more. . .Using the visualization, that the informal definition and

formal definition I believe should be taught simultaneously kind of

together. Because the formal definition allows me, for me anyways, to

visualize it and see. (Keith, 3 March, 2009)

Jessica and Keith were more elaborate in their responses in relation to the formal

definition of limit. However, the presence of the dynamic view of limit was apparent both

in their word use and also in their routine of graphing throughout the interview. It was

mentioned in Section 5.2.3 that the instructor drew a graph representing the formal

definition of limit only after noticing that students did not follow his discussion on the

proofproblem that he worked on. That graph seemed to have enhanced Jessica’s and

Keith’s realization of the formal aspect of limit.

Overall, all of the four students’ discourse on the formal definition of limit was

consistent with the instructor’s in that they talked about the formal definition as similar to

the informal definition. Recall that both the textbook’s and Jason’s definitions of limit

included an explanation ofhow to read and represent the limit notation. It was because of

the existence of the word approaches that all students related the formal view of limit to

the informal one. The students’ discourse on the formal definition differed from the

instructor’s in that students’ word use about limit was not objectified and they used the

metaphor of continuous motion instead of the metaphor of discreteness. Unlike their
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instructor, students did not use the phrases arbitrarily close and sufliciently close. Jason’s

word use (See Section 5.1.5.2) was most consistent in the context of the formal definition

of limit in which he did not utter any motion related word and used words in an

objectified way. Jessica and Keith were able to talk about the diflerence between values

in the context of the formal definition. However, they connected difference with motion

but not with discreteness. Therefore, although the context of formal definition gave

students an opportunity to attend to the static aspect of limit, their realizations remained

dynamic.

6.2.1.3. Limit notation

All of the students used words signifying motion when attending to the limit notation,

which was similar to how the instructor talked about the notation (See Section 5.2.4). At

_ some point during the interview, Jessica wrote x —> a on the paper and said “this arrow

means getting closer and closer to that particular point” (Jessica, 5 March, 2009). On the

other hand, unlike the instructor, the ways students talked about the notation were often

incomplete or inaccurate. Table 6.8 shows some examples of students’ word use when

addressing particular limit notations during the interviews.

Students used words such as “approaches” (Table 6.8, [1], [4], [6], [8], [IO-11]),

“goes to” (Table 6.8, [2]) and “at” (Table 6.7, [3], [7]) when referring to the arrow in the

limit notations of the form lim f(x) = L. There were few occasions in which they talked

x—+a

about the function values or limit after describing the x values approaching a (Table 6.8,

[5], [7], [11]). In the remaining cases, students mentioned the behavior ofthe x values

and directly wrote the limit values on the paper without explicitly talking about them as

numbers.
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Table 6.8: Some examples of students’ word use when referring to the limit notation
 

 

(Seeclicighertt 6.3) Notation Word use

Amy Question 1 lim f(x) [1] “Limit as x approaches zero...”

x—)O

Question 3 lim f(x) [2] “x goes to negative five...”

x—>—5

Question 3 lim f(x) [3] “The limit at x equals two”

x—>2

Jessica Question 1 lim f(x) [4] “When x approach [sic] zero...”

x—)O

Question 4 lim F(x) = 1 [5] “x negative to zero, it [the limit] will be

x—>O— one”.

Harry Question 2 lim f(x) [6] “The limit as x approaches negative

x—>-l one...”

Question 3 lim f(x) = —2 [7] “At negative five, it [the function value]

x9'5 is negative two”.

Question 3 lim f(x) [8] “x approaches infinity...”

x—>°° [9] “Whenx is infinity...”

Keith Question 2 lim f(x) [10] “As the limit approaches negative one

x—->-1_ from the negative side...”

Question 3 lim f(x) [l 1] “As x approaches negative infinity, it [the

x—)—oo function value] would equal two”.

 

It was mentioned in Section 5.1 about word use that the instructor introduced the notation

lim f(x) = L which he addressed as “the limit as x approaches a offofx equals some

x—>a

number L” (see Table 5.6, [2]). The students did not refer to the notation in a similar

manner since (a) they rarely uttered the word “limit” when talking about the notation and

(b) they rarely referred to limit as a number. There were also some instances where the

students confirsed which quantities were approaching what or they thought the x values

could reach the limit point. For example, Keith once stated that the “limit approaches

negative one [the limit point] from the negative side” (Table 6.8, [11]) instead of talking

about the x values approaching the limit point. Amy and Harry mentioned the x values

being equal to the limit point when they said “limit at x equals two” (Table 6.8, [3]) and

“when x is infinity” (Table 6.8, [9]), respectively.
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Overall, students talked about the notation for x approaching the limit point in

ways similar to the instructor’s talk. However, many of the students’ utterances regarding

the notation were incomplete or inaccurate. Compared to the frequency with which they

determined limits during the interview, they rarely verbalized the limit notation. They

also did not talk about limit as a number both in the context of the limit notation and the

limit computation problems although many ofthem consistently wrote the answer as a

number.

6.2.1.4. Infinity

None of the students attempted to plug in infinity, treating infinity as a number, when

they worked on Question 1 and Question 2 of the interview sessions (See Figure 6.3). On

the other hand, some of their explanations and routines suggested otherwise. When I

asked Amy why she did not plug infinity into the function value for the first question, she

said “because infinity is not a number. It is not a defined value. So you can’t just plug

infinity... It cannot give me any answer to anything” (Amy, 3 March, 2009). When

determining the limit at infinity18 for the second question, however, she mentioned

approaching infinity from the right and the left side as if it were a number.

Jessica explicitly talked about infinity as a number. She used the word

“unlimited” for infinity. When working on Question 4 (part c) of the interview problems

(See Figure 6.3), she incorrectly19 attempted to use the limit law for the

 

sum lim x + lim . She said the first limit would be zero and the second limit

x—-)O x——)01() x

 

18 . . . . . . . . . . . .
lert at infinity IS a hunt computed at posrtlve or negatlve mfinrty.

19 In order to apply the limit law for a sum, both limits have to exist and equal a number.
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would be “unlimited”. She wrote 0 for the former limit and +00 for the second limit and

concluded that the answer would be +00.

Jessica: Because zero is a number and you add another number, it will be

the number itself.

Researcher: Okay. Is positive infinity 3 number?

Jessica: Yeah. You can see it as a number. . .Zero add any number like

five, it will be five itself. So when it [zero] is added to positive unlimited,

it will be unlimited itself.

Researcher: So what does this symbol represent? [1 show 00] How do you

think about infinity?

Jessica: Infinity? Unlimited.

Researcher: Is unlimited a number?

Jessica: Yes. You always can find another number larger than this number

[she shows +00] and in this one [she shows -oo], you can always find a

number smaller than this number.

Researcher: Okay but you still think about it as a number in itself?

Jessica: Yes.

Since Jessica thought of infinity as a number, she also considered infinite limits20 as

existing limits. Although the instructor wrote +00 or -00 as the answer to the limit

computation problems, he considered infinite limits as “undefined” or “does not exist”

(See Table 5.14). Jessica’s view of limit as a number suggested that she considered

infinity as an end result rather than a process. However, she extended the graphs she drew
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and also the graph in Question 3 (See Figure 6.3) when determining the limits of

functions at infinity. The instructor talked about infinity as potential, an ongoing process

that never ended, and used the metaphor of continuous motion in the context of

computing limits at infinity (See Sections 5.1532 and 5.3.3). He talked about infinity as

an end state in the context of infinite limits (See Section 5.1.5.3.3). For the latter type of

limits, Jason indeed uttered the word “number” when referring to infinity (See Table

5.14). Jessica’s extension of the graphs with the assumption of continuous motion when

determining limits at infinity suggested that she realized infinity as potential in those

instances. Her reference to infinity as a number in the context of infinite limits, however,

showed that she considered it as an end state. Therefore, Jessica’s word use about infinity

resembled the instructor’s discourse on the notion.

Harry also extended the graphs of functions, including Question 3, when he

worked on limits at infinity. Unlike Jessica, he mentioned that infinity is not a number:

“infinity is not a number because infinity is like... you can’t define infinity; it’s an

endless... it can’t begin somewhere and it can’t finish somewhere” (Harry, 27 February,

2009). Although it seemed that Harry was about to call infinity an “endless proCess”, he

did not complete that sentence. His extension of the graphs for limits at infinity signaled

the consideration of infinity as a potential but he seemed to relate infinity to being

undefined or a state ofno beginning and no ending.

Keith extended graphs saying that “it [the firnction] goes of’ (Keith, 3 March,

2009). While doing so, he thought of infinity as potential. On the other hand, he

 

2
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expressed confusion whether to consider an infinite limit as undefined or as being equal

to infinity.

Keith: I would think that they are different. I am still not entirely sure... I

see them as different because undefined and infinity 1 view as two

different things. Infinity would be continuously going and going and

going; undefined would be closer to like something divided by zero or you

know something that mathematically just doesn’t make sense and so. . .I

guess I am leaned more towards infinity.

Researcher: So when you get infinity as an answer for the limit, do you

think the limit exists overall or not?

Keith: I view them as completely different. In undefined, I would say that

the limit does not exist but in infinity 1 would say the limit exists as

infinity.

Keith’s consideration of infinity as potential and use of dynamic motion was apparent

when he described it as “continuously going and going and going”. Yet, he also’described

an infinite limit as existing. This was similar to Jessica’s view of infinity and was

different than the instructor’s discourse on infinite limits.

During the interviews, students’ word use and routine of extending graphs in the

context of limit at infinity were in accord with the instructor’s word use (talking about

infinity as potential) and routine of using the metaphor of continuous motion. Their word

use was different from the instructor’s in that none of the students referred to an infinite

limit as undefined or nonexistent. Only Jessica mentioned infinity as a number, which

suggested that she viewed it as an end state rather than a process in the context of infinite
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limits. The instructor’s reference to infinity as a number (See Table 5.14) is consistent

with Jessica’s view of infinite limits. Amy and Harry were explicit not to consider

infinity as a number. However, Amy explored the right and side and left hand side of

infinity, and thus treated it as a number, in the context of limit at infinity. In the

interview, students worked on some limit computation problems which they answered as

“does not exist” but none of the students wrote “does not exist” or “undefined” for

infinite limits. When working on infinite limits in the classroom, Jason consistently

wrote lim f(x) = ioo on the board. At the same time, he verbally mentioned that the

x—ra

limit did not exist or was undefined. In fact, he explicitly endorsed the narrative that

infinity is not a number in the class (See Section 5.4). However, his use of the symbol 00

as being equal to the limit seemed to lead some confusion for students whether to

consider an infinite limit as an existing or an undefined limit.

6.2.1.5. Continuity

When talking about continuity of functions at particular points, none of the students

uttered the word “limit” during the interviews. Amy talked about points of removable

discontinuity as “jumps” and attended to the “open circles”, or holes in graphs when

exploring continuity of functions: “it [the function] is discontinuous because it has an

open circle [referring to the y value where the function does not attain its limit value],

which means that the function jumps essentially” (Amy, 3 March, 2009).

Jessica’s arguments about continuity were in close relationship to connectedness.

When talking about why she thought the function in Question 2 (See Figure 6.3) was

discontinuous at x = —1 , she said “you just need to focus on the point [she showsf(-1)]

that connects both continuous functions”. Similarly, when she explained why the function
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in Question 3 (See Figure 6.3) was not continuous atx = —5 , she said “it [the function] is

discontinuous because we cannot find a connection or link between these two graphs [she

shows the graph on the right hand and the left hand side of x = —5 ]” (Jessica, 5 March,

2009). Besides her arguments about connectedness, she also attended to the instances

where the function jumped.

Harry also used the word “jump” when talking about continuity of a function at a

given point: “it is not continuous because the value [y value] jumps”. He later mentioned

taking his hand off the paper: “so the way I see if a function is continuous. . .Am 1 taking

my hand off the paper? I had to take it offnow so it is discontinuous” (Harry, 27

February, 2009). He also looked whether the function was defined at the limit point.

Keith’s main routine when determining the continuity of a function was to find

the instances where he took his hand off the graphs of the functions: “It [the function] is

continuous because you would not have to pick up your pencil. I know there is a more

mathematical reason but I can’t remember it now”. (Keith, 3 March, 2009). Keith was

aware that this explanation lacked mathematical precision but could not think of a

different way than the intuitive approach of tracing graphs and reporting the points where

he picked up his pencil as points of discontinuity. Besides this, he also talked about

jumps: “It [the function] is not continuous because there is a jump” (Keith, 3 March,

2009)

Students’ views of continuity were in accord with the instructor’s intuitive

approach. Amy attended to the holes in a graph of a function whereas Harry and Keith

mentioned taking their hands off the graph. Jessica’s arguments about continuity showed

that she was relating the notion to connectedness. All these students relied on motion and
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operational word use as they traced the graphs with their hands or pencils. It was

mentioned in Section 5.1.5.4 that Jason determined functions’ continuity based on

whether he could graph them “without taking the chalk off the board” (Table 5.16, [2],

[4]). Therefore, similar to the students, he used the metaphor of continuous motion (See

Section 5.3.3). Although he also introduced the precise definition of continuity based on

limits and introduced properties of continuous functions via their properties of limit, none

of the students talked about continuity in relation to limits during the interview.

6. 2. 2. Students’ discourse with respect to student difi’iculties indicated by research on

learning about limits

In this section, I talk about the responses students gave to the interview problems

with respect to the difficulties identified by research on student learning about limits.

Those difficulties were discussed in detail in Section 2.1.2 and were summarized in Table

2.1. In what follows, I focus on each of the six difficulties addressed by the literature and

whether the students in the study showed signs of those difficulties during the interview

sessions. While doing so, I again pay attention to the instances in which the students’

discourse on limits is similar to or different from the instructor’s discourse.

6.2.2.1. Limit implies continuity

This difficulty refers to the idea that if a filnction has a limit at a point, then it

must be continuous at that point (Bezuidenhout, 2001). The possible instances of this

view of limit are found in Questions 2, 3 and 5 in the interview (See Figure 6.3). Among

the four students, only Amy had this difficulty during the interview. Her main routine

when finding the limit of a function at a given point was to plug in the limit point to the
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function. In case the function value was not defined or there was a hole in the graph, she

said the limit did not exist at that point.

[When working on lim f(x) in Question 3] The fact that it is an open

x—)—1

hole [shows the graph of the function at -l] is throwing me offbecause it

means the function is not continuous. Limits are only defined for

continuous functions Ibelieve.

[When working on lim f(x) in Question 3] 1 am going to say it [the limit]

x—>3

does not exit because the point is open so it is not continuous. (Amy, 3

March, 2009)

Amy also marked part (a) of Question 5 (See Figure 6.3) as true mentioning that “so what

I know about limits is that they can only exist if the function is continuous at that

particular point [the limit point]” (Amy, 3 March, 2009). Therefore, Amy clearly thought

that limit implies continuity. The other students did not show any sign of the difficulty

throughout the interview. It was mentioned in Section 5.3.1 that the instructor used

algebra-based routines fiequently when computing limits. His first approach was to plug

the limit point into the function. In case this approach did not provide information about

the limit, he then utilized other algebraic routines (See Table 5.21). However, Amy

applied plugging in as the sole routine when computing limits throughout the interview.

6.2.2.2. Limit as thefunction ’s value

This view of limit refers to the idea that when finding the limit of a function at a given

point, it is enough to look at the function’s value at that point (Bezuidenhout, 2001). This

view of limit is in close relation to the difficulty “limit implies continuity” and the routine

ofplugging in the limit point to the function to find the limit of the function at that point.
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Possible instances of this view of limit were in Questions 1, 2, 3 and 5 (See Figure 6.3).

Amy also had this difficulty. Her initial and only routine when computing limits was to

compute the function value at a limit point. If she obtained a number, she reported it as

the limit value; if she did not obtain a value or if the function did not attain its limit value,

she mentioned that the limit did not exist. She said “every time I see a number, all I want

to do is plug it in. That is all I can remember doing with numbers. . .like doing the

substitution value” (Amy, 3 March, 2009).

During the interview, Harry also attended frequently to the functions’ y values

when finding limits of continuous filnctions. Yet, he seemed to differentiate between the

limit value and the function’s value at the limit point. “[When working on lim f(x) in

x—)3

Question 3] fof three would be equal to two but if you did a limit as x approaches three,

it [the limit] would be one” (Harry, 27 February, 2009). Therefore, he did not talk about

limit as the function’s value.

Jessica and Keith consistently attended to the right hand and the left hand limits

and whether they were equal to each other when finding limits. Even if they utilized

plugging in, they did not generalize this routine as applicable to all functions and showed

no sign of considering limit as the function’s value.

One of the endorsed narratives in the instructor’s discourse was that thefunction ’5

value at a limit point is irrelevant to the limit value (See Section 5.4). Jason said the

function values would have nothing to do with the limit value in the context of continuity

(See Section 5.1.5.4) but he also frequently mentioned that one could find the limit of

continuous functions by plugging in. Although Jason used different filnction types for
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which the routine plugging in could not be used when determining limits, the routine

supported Amy’s and Harry’s focus on the function values when computing limits.

6.2.2.3. Limit as a bound

Considering limit as a bound refers to the idea that “limit is a number or point past

which the function cannot go” (Williams, 1991, p. 221). It was mentioned in Section

6.1.2 that this view of limit is somewhat independent than the other views of limit in that

it seems to be based on the colloquial use of the word limit than the mathematical aspects

of the concept. Everyday use of the term limit might result in realizations of limit as a

constraint or a bound. As a result, students can report the absolute maximum or minimum

value of a function near the limit point as the limit value. None of the students showed

signs of this difficulty during the interview since they did not refer to limit as a boundary

or a constraint, and did not report the maximum or minimum value of functions as the

limit values.

6.2.2.4. Limit as monotonic

This view of limit is based on formal teaching (Cornu, 1991) and is based on the

expectation of ‘nice behavior’ fiom a function. In other words, students might assume

that a fimction has to be strictly increasing or strictly decreasing in order to have a limit.

Students having this conceptual obstacle could have difficulty finding limits of constant

functions, piecewise fimctions and also sequences21 in which the subsequences converge

to different values (Tall and Vinner, 1981). Questions 2 and 3 (See Figure 6.3) were sites

for revealing this view. None of the four students showed any sign of this difficulty

during the interview. The instructor used different types of functions when computing
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limits giving students an opportunity to consider limits of constant and piecewise

functions. Student responses to Question 1 and 2 were consistent with the instructor’s

discourse.

6.2.2.5. Limit as unreachable

This view considers limit as a value that is approached but not reached and is

based on the dynamic view of limit (Tall & Schwarzenberger, 1978; Williams, 1991).

Students who have this view of limit have difficulty finding the limits of continuous

functions where the functions attain their limit value at the limit point. Possible instances

in which this view of limit could be observed included Questions 1, 3 and 4 of the

interview sessions.

It was mentioned that Amy had the difficulties “limit implies continuity” and

“limit as the function’s value” during the interview. Since she said only continuous

functions would have limits and applied the routine ofplugging in the limit points to

functions when computing limits, it was unlikely that she would consider a limit as

unreachable. However, she talked about asymptotes as exceptions to “normal graphs or

regular limit problems” (Amy, 3 March, 2009). According to her, in the case of the

asymptotes, a function’s y value and the limit would not be reached.

Jessica and Harry clearly stated that a function could attain its limit value and did

not show any sign of the difficulty during the interview. Keith initially had this difficulty

when he talked about limit as approaching a number (but not being equal to that number)

and when he determined the limit of the function in Question 3 at the limit point x = -5.

The function was continuous at that limit point and so attained its limit value. Keith was

 

1 . . .

2 erlts of sequences are beyond the scope of this study.
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uncomfortable when reporting the limit value for this problem since “it looks so much

like plugging in the number. It looks like you are evaluatingfofx at negative five but I

know that is not true” (Keith, 3 March, 2009).

Keith did not consider the routine ofplugging in as suitable when finding a limit

of a function since he was aware that functions did not have to attain their limit values,

which was a narrative the instructor endorsed in the classroom (See Section 5.4). Indeed,

Keith immediately determined the limit of the function in Question 3 at the limit point x

= -1, where the function had a limit but did not attain its limit value.

Researcher: So what bothers you about this limit [I show lim f(x) = ? in

x—)—5

Question 3]?

Keith: When it [the function] gets the value, it feels like you are just

plugging that in and I know that is not correct. It [ lim f(x)] was

x—-)—5

throwing me off because the point was actually defined.

Researcher: You were quick when finding this limit though [I

show lim f(x) = ? in Question 3].

x—)—l

Keith: In that case you are not really plugging negative one, you are

plugging in a number very very close to negative one so it is going to

approach this value [the limit value]. When it [the fimction value] is not

there, then I don’t feel like plugging in anymore”.

Keith confused the idea that x values approach the limit point without reaching it with the

idea that the function values approach the limit value without reaching it. Therefore, he

talked about limit as unreachable at the initial stage ofworking on Question 3. When
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finding the limit of the function in the same question at the limit point x = 2 (See Figure

6.3), on the other hand, he gave the function’s value as the limit value (the function was

constant near x = 2). When I asked him why he was not uncomfortable that the function

attained its limit value at that point, he mentioned that he remembered the instructor

giving examples of constant functions, where the limit value was equal to the function’s

value at the limit point. This provided an opportunity for Keith to think more about his

initial response for limits of continuous functions. In the end, Keith realized focusing

only on the right hand and the left hand limits and whether they are equal at the limit

point when computing limits. He did not have any difficulty working with continuous

functions after this instance.

Note that, when referring to the limit notation lim f(x) = L , the instructor used

x—>a

phrases such as “gets closer and closer to”, “approaches”, “goes to” and “becomes” when

talking about x -> a (See Section 5.2.4), which suggested that the x values approach the

limit point a but never reach a. Similarly, when talking about the behavior of a function

near the limit point, the instructor mentioned function values “approaching”, “getting

closer and closer to”, and “going to” the limit value (See Section 5.1.2). Such operational

word use for the function values is in accord with Keith’s view that the function values

approach the limit value without reaching it. The instructor’s operational word use in the

context of computing limits and the limit notation might, in fact, have a larger impact

given that 13 of the 23 students in the study marked the statement about “limit as

unreachable” as true in the diagnostic survey (See Table 6.2).
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6. 2. 2. 6. Limit as approximation

The assumption underlying this view of limit is that in order to find the limit of a

function at a point, it is sufficient to look at the behavior of the fimction at points

successively closer to the limit point (Bezuidenhout, 2001; Tall & Schwarzenberger,

1978). Pararneswaran (2007) argues that considering limit as an approximation might

also result from the common classroom practice of rounding numbers to convenient

significant digits. Similar to “limit as unreachable”, this realization of limit is based on

the dynamic view of limit. Question 4 of the interview session (See Figure 6.3) provided

the most useful context to gain more information about the view “limit as

approximation”.

When working on part (a) of Question 4, all of the students initially stated that the

function values approached the value 1. Part (a) of the question included one student’s

method ofplugging in successive values into the function to find its limit at the limit

point. The student represented the related x and y values in tabular form.

Amy: It [the function] gets closer and closer to one.

Jessica: It [the function] approaches one from both sides.

Harry: It [the function] is approaching. . .it gets closer and closer to one. It

is a continuous function.

Keith: I would say that it [the limit] would approach one. When he takes

the numbers below zero, they get closer and closer to one; as he takes the

numbers above zero, they get closer and closer to one. Yeah, in both cases

they get closer and closer to one. So that is why I would say one.
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All students used dynamic views based on the metaphor of continuous motion and used

words operationally when talking about the limit in part (a). Note that Harry directly

assumed continuity of the function from its tabular representation and that the students

talked about limit as a process rather than a number.

When working on part (b) of the question, which asked whether the student’s

method could be used to find the limit, Amy and Keith were skeptical ofthe student’s

method “since we never did it in the class” (Amy, 3 March, 2009), “because I was never

taught it” (Keith, 3 March, 2009). Jessica referred to the student’s method as follows:

We can’t use this method to prove the result of that limit but we can find

the limit and check the answers. I mean you have plan one, plan two. And

you can solve the problem by plan one and if you want to check the

answer ofplan one, it is right. You can use this way [plugging in

successive points into the function] to check it. (Jessica, 5 March, 2009)

Harry chose the statement which considered limit as an approximation as best describing

his view of limit in the diagnostic survey (See Statement 5 in Table 6.1 and Table 6.6).

He said that the student’s method was correct but was ineffective since there were too

many numbers plugged into the function and the numbers looked complicated. He

explicitly mentioned that “the student tried to approximate” (Harry, 27 February, 2009)

and if the student worked with “easier” numbers”, the method would be more effective.

In fact, Harry used a simpler version of the method when finding lim3f(x) in Question 3

x—>

 

22 Easier numbers referred to plugging in numbers such as -l, -0.5, 0.5, 1 rather than -0.00001 or

0.0000000] into the function when computing its limit at x =1 (See Question 4 in Figure 6.3). Harry’s

comments about such easy numbers might be connected to Parameswaran’s (2007) idea of rounding

numbers to their convenient significant digits.
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(See Figure 6.3). In that particular case, he looked at the function’s behavior from the

right and the left side of the limit point by plugging in only one value from each side.

Besides that instance, however, he did not utilize this method during the interview.

When working on part (c) of Question 4, which included a fimction represented

algebraically and which had exactly the same y values for the x values plugged into the

function in part (a), all of the students plugged the limit point into the function and

mentioned that the function’s limit was infinity. Therefore, they obtained two different

limit values for a function: its tabular representation suggested that its limit was 1 but its

algebraic representation suggested that the limit was infinity. All ofthe students realized

this conflict during the interview. Keith was skeptical of the student’s method in part (a)

but did not choose one answer over the other although he said “I can see how the

student’s method can be wrong” (Keith, 3 March, 2009). Amy and Harry thought their

computations of the limit in part (c) might have been wrong and concluded that the limit

was one. Jessica was initially undecided about which answer to choose but then

remembered that she considered the student’s method as a checking mechanism and

concluded that the limit was not defined for the function in part (c). At that point, she

referred to the student’s method in part (a) as “just showing the tendency. It does not

show what really happens [at the limit point]” (Jessica, 5 March, 2009).

’ Except for Harry, students did not refer to limit as an approximation. Amy and

Keith explicitly mentioned that finding limits by plugging in successive values into a

function was a method the instructor did not use in the classroom. As a result, these

students were skeptical of this method. Despite such skepticism, however, students’

consideration of limit as a process by means ofdynamic motion was so strong that when
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dealing with the conflict presented to them in part (c) of Question 4, they were more

suspicious of their own algebraic computations than how the limit was determined in part

(a) of the question. It was mentioned in Sections 5.2 that the instructor did not use tabular

representations of functions during the classroom observations. Except for one instance

(See Table 5.2, [2]), he also did not mention plugging in successive values into the

function to compute its limit at the limit point”. Students’ confusion whether to consider

limit as an approximation or not did not seem to result from the approximation aspect of

the difficulty (except for Harry) but from the dynamic view of limit and the consideration

of limit as a process.

Summary

The results of the interview sessions, in conjunction with the findings of the

diagnostic survey, suggest that students primarily used the dynamic view of limit and

considered limit as a process. Their discourse on the informal aspect of limit was similar

to the instructor’s since students used words operationally when investigating functions’

behavior near the limit points. In addition to this, students used the metaphor of

continuous motion as a metarule for realizing limits, which was consistent with the

instructor’s routine in the context of informal aspect of limit (See Section 5.3.3). On the

other hand, students’ discourse was different from the instructor’s with respect to the

endorsed narratives. Although Jason endorsed the narrative limit is a number at the end of

each limit computation problem, students endorsed the narrative limit is a process since

 

23 . . . . . . .

In that one case, his comments about mvestlgatlng the behavror of the functlon were only verbal; he did

not actually plug in those points into the function.
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they rarely talked about limit as a number during the diagnostic survey and the interview

sessions.

The formal definition Jason introduced in the classroom provided an opportunity

for students to learn about the static aspect of limit, which supported the consideration of

limit as an end state. Although students accepted statements about a formal view of limit

as true in the diagnostic survey and the interview sessions, their word use about the

formal definition remained operational than objectified. The four students who

participated in the interview session talked about the similarity of the formal definition

with the informal view of limit, paying attention to the part of the definition that

introduced how to read and write the limit notation. For them, the notation entailed

movement, and connected well with their informal realization of limit. Jason’s word use

was consistently objectified in the context of the formal definition. Moreover, he used

words signifying proximity instead ofmotion (See Section 5.1.5.2) and used the

metaphor of discreteness (See Section 5.3.4) instead of the metaphor of continuous

motion. Students, however, used words operationally and relied on motion when talking

about the formal definition during the interview.

Students used graphs as visual mediators throughout the interview to make sense

of functions when computing limits whereas Jason often used them to introduce a

definition, theorem or fact about limits (See Section 5.2.3). His primary mode of

representing functions was symbolic, not graphical. The limit notation was another

context in which students’ discourse was analyzed. Similar to Jason, students used a

family of words such as “approaches” “goes to”, and “at” when talking about the arrow in

the limit notation. Unlike the instructor, students’ utterances regarding the notation were
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often incomplete or inaccurate and they did not refer to limit as a number despite their

use of the equal sign to write lim f(x) = L.

x-)a

Computing limits, referring to the limit notation and the informal definition of

limit were the contexts in which Jason shifted his word use between operational and

objectified. Although he did not write the operational words he uttered on the board (See

Section 5.2.1), students in the study relied on the spoken rather than written aspects of his

word use when forming their realizations of limit. Jason’s investigation of the behavior of

functions near the limit and his operational word use in that context were consistent with

students’ realizations of limit as a process.

Students’ confusions about process and the end result of a process were also

apparent when they talked about infinity. During the interview sessions, the students who

endorsed the narrative infinity is not a number treated it as a number depending on the

context. When working on limits at infinity, students considered infinity as potential, that

is, a process that goes on and on, which was similar to how Jason talked about infinity in

the same context (See Section 5.1.5.3.2). Students’ routine of extending graphs of

functions at positive and negative infinity supported their realization of infinity as

potential. Extending graphs of functions was a routine Jason did not utilize in the

classroom but his word use was consistent with students’ use ofthe metaphor of

continuous motion in the context of limits at infinity. When working with infinite limits,

students talked about infinity as an end state, similar to Jason’s discourse. Jason talked

about infinity as a “number” or an end state in the context of infinite limits (See Section

5.1.5.3.3). His word use differed from students’ in that he considered an infinite limit as

undefined whereas students considered it as being equal to infinity. The way Jason used
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the limit notation as a visual mediator might have played some role in students’

realization of an infinite limit as an existing limit. In the context of infinite limits, he first

wrote the limit as being equal to i 00 and then said that “the limit does not exist” or “it is

undefined” (See Table 5.14).

Students’ responses in the interview sessions showed that they focused on the

intuitive but not the precise definition of continuity the instructor introduced in the class.

Unlike Jason, none of the students talked about continuity in relation to limits. However,

they seemed to adopt the phrases such as “jump” and “taking the hand off the graph” that

Jason used in the classroom when talking about continuity (See Section 5.1.5.4). Jason

mentioned that one could find limits of continuous fimctions by plugging in although he

explicitly endorsed the narrative thefunction ’s value at the limit point is irrelevant to the

limit value (See Section 5.4). Amy, however, considered Jason’s routine ofplugging in as

the main method to compute a limit and considered it as the fimction’s value. She also

thought that in order to have a limit, a function had to be continuous. As a result, she had

the difficulties “limit implies continuity” and “limit as the function’s value” during the

interview. Plugging in was a routine Jason utilized in the classroom as the first method of

finding the limit of a function presented algebraically (See Section 5.3.1). On the other

hand, he also used different algebra-based routines in case plugging in did not work.

Given the dominance of the dynamic view of limit in students’ realizations, however, it is

likely that some students would considerplugging in as the only means ofcomputing a

limit.

The majority of the students agreed with the view “limit as unreachable” in the

diagnostic survey (See Statement 4, Table 6.2). The instructor’s shifts in word use when

215



referring to the limit notation as well as his routine ofusing continuous motion in the

context of computing limits were consistent with students’ realization of limit as

unreachable. The phrases “approaches”, “gets closer and closer to”, “becomes”, and

“goes to” suggest moving towards the limit value without reaching it. As a result,

students could confilse the idea that x values approach the limit point without reaching it

with the idea that function values approach the limit value without reaching it. During the

interview sessions, Amy and Keith showed signs of the difficulty “limit as unreachable”.

Amy stated that, for the case of asymptotes, a function cannot reach its limit value

whereas Keith talked about limit as approaching a value and was initially uncomfortable

when finding the limits of continuous functions.

Jason did not use tabular representations of functions formed by plugging in

successive values to the function when computing limits. That contributed to students’

skepticism about such a method as being suitable for determining limits. Despite the

skepticism, Harry had the difficulty “limit as approximation” at some point of the

interview. The instructor’s use of different types of functions, such as piecewise,

discontinuous, and trigonometric functions, helped students work comfortably with

functions other than polynomials during the interview. Consistent with Jason’s discourse,

the participants in the interviews did not have the view “limit as bound” and “limit as

monotonic”.

Overall, the contexts in which students struggled with limits coincided with the

contexts in which the instructor shifted his word use. Recall that Jason’s utterances about

limits were mainly objectified (See Table 5.5) and his operational word use took place

when he communicated his ideas just verbally, without writing on the board (See Section
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5.2.1). Although Jason’s operational utterances constituted only about 16% of his total

utterances (See Table 5.5), the dominance of operational word use in students’ discourse

suggest that they adopted the spoken aspects of Jason’s discourse in which he was less

formal and less precise. This can further be supported by the fact that students talked

about both limit and continuity through the intuitive definitions Jason provided in spoken

discourse rather than the precise definitions he wrote on the board.

Intuitive aspects of limits result from the dynamic view based on the metaphor of

continuous motion. Students’ frequent use of this metaphor as a metarule for realizing

limits supports their consideration of limit as a process. In fact, limit was not objectified

till 17th century by mathematicians and the metaphor of continuous motion was also

present in their discourse till 19th century (See Section 3.3). Therefore, it is possible that

learners intuitively realize the concept as a process at the early stages of their learning. In

the following chapter, I explore the classroom discourse on limits in relation to the

historical development of limits to examine how the instructor’s and the students’

discourse compare and contrast with those of the mathematicians’ over history.
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CHAPTER VII

CLASSROOM DISCOURSE ON LIMITS IN RELATION TO THE HISTORICAL

DEVELOPMENT OF LIMIT RELATED CONCEPTS THROUGH THE

COMMOGNITIVE LENS

In this chapter, I explore the classroom discourse on limits with respect to the

historical development of infinity, infinitesimals and limits. In Chapter III, the historical

development of these concepts was described with a focus on particular elements of the

commognitive framework: word use (objectification), metarules and metaphors. I then

identified the historical junctures in the development of discourse on limits that resulted

in changes in the metarules], also called metadiscursive rules, of the existing discourse in

order to extend it further (See Sections 2.2.2 and 3.4).

The commognitive framework considers developmental transformations as

resulting from the interplay of individualization and communalization since

...mathematical discourse is a historically established activity practiced

and extended by one generation after another and taught in schools for the

sake of further continuation. Mathematics students are this supposed to

join this activity rather than invent their own, idiosyncratic version. (Sfard,

2008,p.203)

Therefore, we can think of learning mathematics as the individualization ofthe

communal activity of doing mathematics. Teachers are among the sources that enable the

communication of historically established mathematical discourse to students and play

important roles in the process of individualization ofthe communal.

 

l I also argued that the exploration of metaphors is an important part of the exploration of metarules since

using metaphors for the realizations of mathematical concepts is a type ofmetarule (See Chapter IH).
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It should be noted that “the order of things in the processes of discourse

individualization is different from that in historical processes of object-creation” (Sfard,

2008, p. 177). For example, in this study, students were immediately introduced to limit

in an objectified manner (as a number) although the objectification2 of the concept took

centuries for mathematicians. On the other hand, the findings of the study suggested that,

just because they were exposed to an already objectified mathematical concept did not

necessarily mean that students could objectify the concept in their discourse. The

participants in the study had difficulties considering limit as a number, a distinct

mathematical object, at the end of their instruction (See Chapter VI). Thus, although the

order of individualization processes could differ from historical processes of object

creation, the realization of limit as an object ofmathematics seems to be challenging for

both students and, historically, for mathematicians.

For the case of limit and infinity, objectification historically resulted in changing

the discourse about processes to discourse about end-states. It was not till 17th century

that Cauchy objectified limit as a number and it was not till 19th century that Cantor

objectified infinity as an end state (See Sections 3.1 and 3.3). The realization of

infinitesimals as objects ofmathematics is still under question (See Section 3.2). One of

the benefits ofusing commognitive framework as a lens to focus on the conditions and

assumptions of object creation over history is that it enables us to acknowledge

objectification as quite a complex phenomenon in the development ofmathematical

discourse. I considered objectification of infinity, infinitesimals and limit as among

important junctures in the development of discourse on limits over history because

 

2 Objectification of a concept changes the talk about a process to the talk about a product or an end state
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objectification of these concepts also resulted in changes in the metaphors and metarules

of the previously existing discourse (See Section 3.4). A question that will be pursued

later in the chapter is whether these junctures can also be important in the development of

students’ discourse on limits.

In what follows, I examine the instructor’s and students’ discourse on limits with

respect to the historical development of limit related concepts. While doing so, I compare

and contrast the metarules and metaphors leading to the objectification of the concepts

over history with those reflected in the instructor’s and students’ discourse. I also look for

similarities and differences between the order and characteristics of object creation over

history and in this beginning-level calculus course.

7.]. The instructor 's discourse with respect to the historical development

oflimit related concepts

If we look at the order in which the instructor (Jason) introduced the concepts

during the eight observed lessons, we see some elements of the historical development of

limit related notions playing out in the classroom. Jason started his discussions of limits

by first introducing average rate of change and then defining instantaneous rate of change

as the limit of average rate of changes of a function as the time intervals got smaller and

smaller (See Table 5.1 and Section 5.1.5.1). While doing so, he also used graphs to

represent the average rate of changes with secant lines and the instantaneous rate of

change with a tangent line, which was the limit of the secant lines. This resembles closely

Newton (1643-1727) and Leibniz’s (1646-1716) approaches to the limit concept since

they both considered limit as a process when they obtained a tangent line at a point

 

through reification (See Section 2.2.1).
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through the use of secant lines (See Sections 3.2 and 3.3). Besides this, the sequencing of

the calculus concepts in both the curriculum3 and the classroom teaching (See Table 5.1)

followed Cauchy’s outline of calculus concepts. In Cauchy’s design, the notion of limit

precedes derivatives and integrals as well as series and sequences (See Table 3.2).

Although Cauchy objectified “limit”, referring to it as a number obtained at the end of the

limit process, his definition of the concept relied on dynamic motion and infinitesimal use

(See Section 3.3). Jason’s introduction of limits, together with his operational word use

when he described the behavior of functions near the limit points suggest that his focus

was more on the intuitive aspects of the limit notion than the formal aspects. On the other

hand, Jason also chose to introduce the formal definition of limit and solved a proof

problem, which might be uncommon for a beginning-level calculus course. He

considered the formal definition as optional but noted that if students took further

mathematics courses, like analysis, this definition would come up again (See Section

5.1.5.2).

In what follows, I examine how and whether the metarules (in particular, using

specific metaphors) related to infinity and limit4 in the historical junctures I identified in

Chapter III (See Table 3.3) were reflected in the instructor’s discourse.

Historically, potential infinity is consistent with Aristotle’s (3 84-322 B.C.) view

of infinity as an indefinite process. Actual infinity, however, is consistent with Cantor’s

 

3 The order Jason presented the topics was also the order they were presented in the textbook (See Thomas

et al., 2008 for their content outline for calculus).

4 Jason could not possibly address, and was not expected to address, the metaphors and metarules related to

infinitesimals in his discourse since mathematically sophisticated version ofthe theory is much beyond the

scope of a beginning calculus course. However, since he used infinitesimals in his discourse on limits, this

signaled that be relied on the intuitive and dynamic aspect of limit in those cases than the formal aspect of
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(1845-1918) view of the concept as an end state (See Section 3.1).

In Chapter III, I considered Cantor’s objectification of infinity as the main historical

juncture in the historical development of the concept (See Table 3.3). This juncture led to

changes in the previous discourse on infinity and changed the metarules of counting,

measuring, and some properties of arithmetic such as addition and division. Moreover,

using the metaphor of indefinitely continuous processes, a metarule for realizing infinity,

was changed to using the metaphor of infinitely iterative steps, each with an end result

(See Section 3.1 and Table 3.3).

Jason talked about infinity as potential and actual depending on the context. In the

context of limits at infinity, he talked about infinity as a continuous process that went on

and on (See Section 5.1.5.3.2, Table 5.11); in the context of infinite limits, he talked

about it as an end state (See Section 5.1.5.3.3, Table 5.14). That he referred to infinity as

an end state was also visible when he wrote limits as equal to plus or minus infinity (See

Section 5.1.5.3.3). Recall, however that he explicitly endorsed the narrative infinity is not

a number in the class (See Section 5.4). Jason talked about infinity consistent with both

Aristotle’s and Cantor’s realizations of the concept but he did not call students’ attention

to the shifts in his word use and did not address using distinct metaphors as different

metarules when making sense of infinity. In other words, although objectification of

infinity was present in his discourse, it remained implicit for students.

I have identified two historical junctures in the development of discourse on limit

over history. The first juncture was the objectification of limit by Cauchy (See Table 3.3).

In his definition, Cauchy described limit as a number obtained at the end of the limiting

 

the concept. His use of infinitesimals took place only when he talked about limits in an informal manner,

consistent with their use in the historical development of the limit concept (See Section 3.2).
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process. On the other hand, his description of the concept was dynamic and based on the

assumption of continuous motion (See Section 3.3). The second juncture was

Weierstrass’ introduction of the formal definition of limit which eliminated spatial

motion and continuity from the previously existing discourse on limits (See Table 3.3).

By arithmetization of geometry, Weierstrass replaced using the metaphor of continuous

motion, a metarule for realizing limit, with using the metaphor of discreteness (distance

between discrete numbers) (See Section 3.3). The second juncture transformed some

other metarules ofmathematics. For example, elimination ofmotion also resulted in

realizations of functions as algebraic rules but not as graphs of curves.

Jason was carefirl and accurate when he described the informal and the formal

definitions of limit. His definition of the informal aspect of limit corresponded to the

formal aspect of the concept in that he did not use words signifying motion but used

words signifying proximity such as “arbitrarily close” and “sufficiently close” (See

Figure 5.4). When he utilized the informal definition to compute limits, however, his

word use was operational. His descriptions of the behavior of a given function near the

limit point made fi'equent use of continuous motion and treated limit as a process. At the

end of every limit computation problem, however, Jason talked about limit as a number.

The instructor’s realization of limit as a number together with his routine of using

continuous motion as a metaphor for the process aspect ofthe concept are consistent with

Cauchy’s realization of limit. Similar to infinity, objectification of limit was present in

Jason’s discourse but it remained implicit for the students since Jason did not address

when the process aspect of limit ends and the product aspect begins.
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When talking about the formal definition of limit, Jason’s word use was

consistently objectified and his words signifying motion gave way to words signifying

proximity in terms of distance (See Section 5.1.5.2), which is consistent with

Weierstrass’ realization of limit. As a mathematician, Jason was aware of the metarule of

using the metaphor of discreteness since motion was eliminated in his discourse when he

talked about the formal definition. On the other hand, he did not draw students’ attention

to the changing metarules and his shift to objectified word use in this context. Therefore,

similar to infinity and informal aspect of limit, the metarules remained tacit for students

in the classroom. Moreover, rather than drawing students’ attention to the dzflerences

between these two aspects of limits, he tried to find ways to talk about how they were

similar (See Section 5.1.5.2 for how Jason connected the formal definition to the informal

definition of limit).

In terms of metarules related to the uses of the definitions, Jason was more

explicit. He mentioned that the informal definition “convinced us what these limits are

that we have been computing in the class...” (See Table 5.7, [4]) and he made explicit

that “to really make sure these [limit computation methods] work in mathematics, we

have to prove those things. In order to prove something, we need a precise definition”

(Table 5.7, [5-5a]). Therefore, Jason clearly mentioned that the informal definition was

different than the precise or formal definition of limit in that, one could not prove the

existence of a limit with the formers.

 

5 However, he did not address that in order to prove the limit of a given function as a number L, one needs

to first hypothesize that number. Said differently, the formal definition of limit does not enable a

constructive proof; one can only prove or disprove an already guessed number L to be the limit of a

function with the precise definition.
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In summary, the historical junctures changing the metarules of infinity and limit

coincided with the contexts in which Jason shifted his word use between operational and

objectified in his discourse. He talked about infinity and limit as processes or end states

depending on the context. In each of the contexts, his reasons for utilization or exclusion

of the metaphor of continuous motion remained implicit for students, supporting the tacit

nature of metarules in his discourse. It was mentioned in Chapters V and VI that the

formal definition of limit provided a context in which Jason could attend to the static

aspect of limit, which supported its realization as an end state (a number). Although

Cauchy’s realization of limit also provides a context in which it is possible to talk about

limit as a number, as Jason did, the findings ofthe diagnostic survey and interview

9

sessions indicated that the dynamic element in the informal definition supported students

consideration of limit as a process6. Jason’s consistent referral to limits as objectified and

his elimination of motion related words in his discourse on the formal definition showed

some evidence that he was aware of the metarules related to the formal realization of

limit. In fact, he used the metaphor of continuous motion in the context of informal

definition and the metaphor of discreteness in the context ofthe formal definition (See

Sections 5.3.3. and 5.3.4). However, there was no evidence in his discourse that he

considered attending to these distinct metarules as pedagogically relevant in the

classroom. Instead, he talked about how the definitions were similar to each other.

Whether calling students’ attention to the changing metarules related to infinity and limit

 

6 Recall that students associated informal aspect of limit with motion and rarely referred to limit as a

number in the diagnostic survey and during the interview sessions (See Chapter VI).
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could be useful for student learning will be discussed in the next section where I examine

students’ discourse in relation to the historical development of the concepts over history.

7. 2. Students’ discourse with respect to the historical development of

limit related concepts

Students may develop many idiosyncratic ways to justify their narratives of

mathematics, which are not necessarily compatible with the narratives endorsed by the

mathematical community. For the case of limit and infinity, however, there are

similarities between some of the difficulties addressed by research on learning about

limits and the historical development of limit. Note that “limit as bound”, and “limit as

unreachable” are among the conceptual obstacles students have about limits (See Section

2.1.2, Table 2.1). It was mentioned in Chapter III that Lagrange (1736-1813) opposed

some mathematicians’ use of the limit method:

MacLaurin and d’Lambert used the idea of limits; but one can observe the

subtangent is not strictly the limit of subsecants, because there is nothing

to prevent the subsecants from further increasing when it has become a

subtangent. True limits... are quantities which one cannot go beyond,

although they can be approached as close as one wishes. (Lagrange, 1799,

as cited in Schubring, 2005, p. 293)

Schubring (2005) notes that Lagrange’s arguments were based on

the lacking of the concept of absolute value. . .so that it seems as if the

variable goes beyond the limit; the criticism is also at the problem, which

has always remained controversial, whether a variable can definitely reach

the limit or is only allowed to come close to it at any rate (p. 293).
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In these arguments, we see Lagrange problematizing whether limit is a bound when he

says “true limits. . .are quantities which cannot go beyond...” and also the elements of the

debate whether a limit is reachable. Therefore, the conceptual obstacles “limit as bound”

and “limit as unreachable” were also present in the development of discourse on limits

over history. In this study, students’ responses to the diagnostic survey and the interview

problems did not reveal any difficulties in terms of the realization of limit as a bound

(See Section 6.2.2.3). The responses, on the other hand, provided evidence in terms ofthe

realization of limit as unreachable, which is based on the dynamic view oflimit (See

 

Sections 6.1.1, 6.1.2, and 6.2.2.5).

It was discussed in Chapter VI that the students in the study frequently used the

dynamic view of limit based on the metaphor of continuous motion. Such realization of

limits is consistent with the historical development of limit in that (a) the initial

underpinnings of the concept emerged from physical problems that were based on

motion, and (b) it was not till 19th century that spatial motion was eliminated fi'om the

existing discourse on limits. Said differently, similar to the students in the study, the

dynamic view of limit was also the intuitive and initial view with which mathematicians

made sense of the concept historically. Using continuous motion was also a metarule that

shaped mathematicians’ realization of infinity as an indefinite process for centuries.

Students in this study showed similar views of infinity when they talked about it as

potential in the context of limit at infinity (See Section 6.2.1.4). Therefore, objectification

of limit and infinity was challenging both for students in the study and mathematicians

over history. Once objectified, mathematicians were able to separate process from

product, which was not necessarily the case for the students in the study.
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It was argued in Section 5.5 that, although the instructor can flexibly use limit and

infinity as a process or product and distinguish the characteristics of each realization

depending on the context, students might be unlikely to notice those characteristics or

realize the differences and similarities underlying these concepts. The findings of the

diagnostic survey and student interviews support this claim for the participants in this

study. Both in the diagnostic survey and interviews, students talked about limit as a

process or a descriptor of how a function behaves and rarely talked about it as a number

(See Sections 6.1.2 and 6.2.1). In other words, they did not objectify limit in their

discourse. At the end of their instruction, these students did not make the transition from

the realization of limit as a process to its realization as a number as introduced by

Cauchy, which is one of the historical junctures I identified in the historical development

of limit (See Table 3.3). The students also did not move fiom a discourse on limits based

on the metarule ofusing dynamic motion to one based on the metarule ofusing a static

and discrete realization of the concept, which was the contribution of Weierstrass. I

identified his introduction of the formal definition of limit as a second juncture in the

historical development (See Table 3.3).

The interview sessions provided some information in regard to students’

realizations of infinity. Students talked about infinity as a process and an end result

depending on the context. When finding limits at infinity, they talked about the concept

as an ongoing process7 (See Section 6.2.1.4), which is consistent with Aristotle’s view of

infinity as potential. When working on infinite limits, they talked about infinity as an end

state but none of the students considered an infinite limit as undefined. This signaled that
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they treated infinity as an existing entity, although two of the participants explicitly said

infinity is not a number. One participant talked about infinity as a number in the context

of infinite limits and one mentioned the limit existed as infinity (See Section 6.2.1.4). I

identified Cantor’s objectification of infinity as an accumulation point as a historical

juncture in the development of discourse on infinity. Students in the study seemed to

have some aspects of this transition present in their discourse. Although they talked about

infinity as a process when the x values approached infinity, they treated the concept

differently when they obtained infinity as the limit of a given fimction. Recall that the

instructor considered an infinite limit as undefined or not existing (See Section 5.1.5.3.3)

but the students in the study were not comfortable considering an infinite limit as

undefined. Besides this difference, their discourse on infinity was similar to the

instructor’s in that they talked about it as potential in the context of limits at infinity

(consistent with Aristotle’s realization) and as an end state in the context of infinite limits

(consistent with Cantor’s realization).

The contexts in which students struggled most during the interview sessions about

infinity and limit coincided with the contexts in which the instructor’s word shifts took

place (See Section 5.1). Those contexts also coincided with the historical junctures that

changed the existing metarules about infinity and limit to extend the discourse on limits.

Changes in the metarules historically led to the objectification of limit related concepts

and eventually to the changes in the endorsed narratives of calculus.

Both the informal and the formal definition of limit are contexts in which it is

possible to talk about limit as objectified (a number). The first definition is compatible

 

7 Limit at infinity was a context in which students extended graphs of functions at infinity and implicitly
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with Cauchy’s realization whereas the second one is compatible with Weierstrass’

realization of limit8. It was mentioned in Chapter VI that the metarule of using

continuous motion dominated students’ discourse on limits and supported their

realization of limit as a process. In other words, students focused on the process element

in the informal aspect of limit more than the end result of the process. Therefore, it

seemed necessary that, in order for them to realize limit as a distinct object of

mathematics (a number), their assumption ofdynamic motion needed to be challenged.

The formal definition of limit was a context in which it was possible for Jason to

highlight the elimination ofmotion fi'om the discourse on limits. On the other hand, his

word use and the metarules, which were consistent with the historical junctures in the

development of limit, remained implicit for the students in the class.

Similar to limit, the historical juncture leading to the objectification of infinity

with the distinct metarules related to different realizations of the concept were reflected

in Jason’s discourse. However, the word use, metarules and metaphors remained implicit

for the students since he did not address when the process aspect ofinfinity ends and the

product aspect begins.

Summary

More often than not, the junctures resulting in discursive transformations require

changes in the metadiscursive rules of defining, substantiating and recording narratives of

mathematics. Note that since learners ofmathematics are expected to join in the

 

used the metaphor ofcontinuous motion (See Section 6.2.1.4).

Most importantly, since they describe the same mathematical concept, both definitions are also

compatible with each other. They are similar in that they characterize limit as a number. They differ,

however, in their description of the “process” aspect of limits. Cauchy acknowledges the process through

motion whereas Weierstrass eliminates it and uses absolute values of differences between particular

numbers instead.
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historically established activity of mathematics, “gradual modification of metarules that

govern the students’ mathematical discourse is one of the goals of school learning”

(Sfard, 2008, p. 2008). What makes such modification difficult for students is that

“metarules are mostly tacit” (Sfard, 2008, p. 221). In Chapter III, I focused on some

elements of the commognitive framework such as word use, metarules and metaphors

while investigating the historical development of limit related concepts to identify the

tacit metarules explicitly as the realizations of infinitesimals, infinity and limit evolved

through history. I identified the historical junctures in the development of discourse when

they led to changes in the metarules of the existing mathematical discourseg. Such

junctures often resulted in the objectification of limit related concepts.

The exploration of the instructor’s discourse in terms of the historical junctures I

identified in Chapter 111 (See Table 3.3) revealed that the contexts in which Jason shifted

his word use coincided with the junctures that changed the metarules ofpreviously

existing discourse on infinity and limit over history. The instructor talked about the

informal and formal definition of limit in different ways, which were compatible with the

historical development of limit, but did not draw attention to his change ofword use and

did not address the metarules these definitions are based on in the classroom. Similarly,

he talked about infinity as potential and actual depending on the context but did not

highlight how those contexts and the distinct realizations of infinity differed from each

other.

The examination ofthe students’ discourse in terms of the historical junctures

revealed that some aspects of limits and infinity students struggled with were consistent

 

In this study, I only identified the junctures changing the metarules of exrstrng discourse on lrmrts over
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with the transitions mathematicians went through over history. Students could not

distinguish process from product and they also were not aware of the elimination of

dynamic motion in the formal definition of limit. As a result, they struggled with some of

the interview session problems. Therefore, the junctures in the development of discourse

on limits over history also seemed to be critical in the development of students’

discourse.

It is important to note that I do not consider the historical transitions as identical

to those of students’ since students may have many other realizations of lirrrits that are

not present in the development of discourse over history. Students are introduced to the

elements of the discourse on limits in a very compact manner and in a short period of

time so they do not have as much chance to reflect and realize different aspects of the

concepts. On the other hand, some of the difficulties about limits seem to be common for

both mathematicians over history and students. The objectification of infinity and limit,

the dominance of the dynamic view as well as the realization of “lirrrit as bound” and

“limit as unreachable” are present in both the experts’ and the students’ discourse on

limits as conceptual obstacles.

Limit related concepts inherently present learners ofmathematics with difficulties

both over history and in today’s classrooms. It is due to this fact that the analysis of

historical development of limits through the commognitive framework has some useful

implications for classroom discourse on limits. Word use, metaphors and metarules are

some of the elements ofmathematical discourse highlighted by the commognitive

framework that might remain tacit both in the historical development and also in the

instructor’s discourse on limits. Students could benefit from those elements of discourse

 

history but one can also talk about such junctures in the development ofan individual’s discourse.
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being explicitly addressed in the classroom since the historical contexts in which experts

struggled about limits were compatible with the contexts in which students in the study

struggled when working with limit related concepts. Therefore, it is likely that the

historical junctures during which mathematicians changed and revised their previously

existing realizations of limits might be useful for student learning. Said differently,

historical junctures changing the metarules of previously existing discourse on limits can

form some of the junctures students have to go through as they participate in the

discourse on limits.
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CHAPTER VIII

SUMMARY, DISCUSSION AND CONCLUSIONS

In this chapter, I return to the questions that motivated this study and guided my

analyses. Some educational researchers interested in the concept of limit have

investigated the historical development of limit related concepts. Others have focused on

student learning and investigated the conceptual obstacles students face as they learn

about limits. A missing link in this chain in literature is the teaching of limits at the

undergraduate level. Therefore, one of the contributions of this study is to provide

information about teaching of limits by focusing on one instructor’s discourse.

The literature on historical development of limits and student learning is primarily

based on the assumptions of a cognitive framework that highlight the nature of

difficulties about limits in terms of misconceptions. According to Sfard (2001), the

cognitivist framework is based on the metaphor learning as acquisition, which considers

learning “as the storage of information in the form of mental representations” (p.20).

From the point of cognitivist framework, understanding is defined as relating new

knowledge to prior knowledge by refining the existing mental representations. By doing

so, this view highlights the individual nature of learning and views it as the acquisition of

the necessary mental schemes one either possesses or not. In this study, I used the

commognitive fi'amework developed by Sfard (2008) to explore teaching and learning of

limits. There were two reasons I used this different lens to work on the issues related to

learning of limits: (a) By viewing thinking as an individualized form of communication,

this fiamework highlights the importance of social constructions in individuals’ thinking.

Mathematics learning is considered as participation in mathematical discourse, whose
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rules are determined communally throughout history. As a result, obstacles learners face

may be attributed to communicational rather than cognitive difficulties. (b) From this

perspective, the three elements considered in the study —— historical development,

teaching, and learning of mathematics — are viewed as interrelated and connected

elements of discourse development. Given these presuppositions, I explored students’

discourse on limits and the historical development of limit related concepts through the

commognitive framework. Therefore, another contribution of this study to educational

research is that it pilots an analytical tool with which to explore students’ discourse on

and the historical development of limits.

. I pursued three specific research questions in this study: 1) How is the discourse

on limits generated by the instructor in a beginning college-level calculus classroom? 2)

Given the instructor’s discourse on limits, how do students talk about limits in a

beginning college-level calculus course? and 3) How do the elements of discourse on

limits as generated over history compare and contrast with the discourse on limits

generated in a beginning-level calculus course? I addressed these questions in Chapters

V, VI, and VII, respectively. Here, I provide a brief summary for each question to set up

my later comments for discussion.

8.1. Summary offindings

For my first research question, I analyzed one instructor’s discourse on limits by

using the four elements of the commognitive framework: word use, visual mediators,

routines, and endorsed narratives. The findings for this question indicated that the

instructor shifted his word use depending on particular mathematical contexts about

limits. Those contexts were identified as the informal and formal definition of limit,
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computing limits and symbolic notation. The instructor’s alternating word use signified

infinity and limits as processes or as end states in his discourse. The instructor did not

address such shifts in his word use in the classroom, and did not make specific the

differences between the realizations of limit as a process and as a number.

The visual mediators the instructor utilized in the classroom mainly consisted of

graphs of functions and symbolic notation. The relationship between the limit notation

lim f(x) = L and the instructor’s word use provided interesting results in regard to

x—)a

realizations of infinity and limits as processes or as products. Although he talked about L

as a number, his referral to the arrow in the notation using words such as “approaches”,

9’ ‘6 99 66

“gets closer and closer to , goes to , becomes” supported the realization of limit as a

process. Similarly, when referring to the symbol oo in the limit notation, he talked about

infinity as potential (3 process) in the context of limits at infinity whereas he talked about

it as actual (an end state) in the context of infinite limits.

The instructor referred to limit as a process when he investigated the behavior of a

given function near the limit point. On the other hand, each time he talked about infinity

and limits as processes, his utterances were spoken rather than written. The primary

narrative the instructor endorsed in the classroom was limit is a number. He explicitly

endorsed the narrative limit is a process only twice during the eight observed classroom

periods and he did so only verbally. His language, however, along with the conventional

reading of the symbol lim f(x) = L that includes the word “approaches”, suggested an

x—)a

implicit endorsement of the narrative limit is a process.

The only context in which the instructor’s word use, visual mediators, routines

and endorsed narratives about limits were most consistent with each other was the formal
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definition of limit. In this context, he did not utter any words signifying motion but

uttered words signifying proximity. By doing so, he changed his use of the metaphor of

continuous motion to the metaphor of discreteness. However, similar to his shifts in word

use, the instructor’s utilization of distinct metaphors remained implicit for students since

he did not mention the metaphors he used in the classroom.

For my second research question, I explored how students in the instructor’s

section talked about limits at the end of the unit on limits. I analyzed students’ discourse

with respect to (a) the instructor’s discourse on limits, and (b) research on student

leaming about limits. The findings of this part of the study indicated that the contexts in

which the instructor shifted his word use coincided with the contexts in which students

had difficulty talking about limits. When making sense of the limit concept, students

mainly adopted the instructor’s spoken words than written ones. They frequently

endorsed the narrative limit is a process, consistent with the instructor’s discourse when

investigating the behavior ofthe firnction near the limit point. On the other hand, students

rarely, if ever, talked about limit as a number. The findings also indicated that students

used graphs as visual mediators more frequently than the instructor when computing

limits. In terms of symbolic notation, students’ utterances were either inaccurate or

incomplete. Similar to the instructor, they used the metaphor of continuous motion when

referring to the limit notation and investigating the behavior of functions near the limit

points. Unlike the instructor, they did not use the metaphor of discreteness in their

discourse on limits. As a result, they could not talk about the differences between the

informal and the formal aspects of limits.
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When analyzing students’ discourse in relation to research on student learning

about limits, I first investigated whether students showed signs of the difficulties

indicated by the literature. I then explored whether elements of the instructor’s discourse

were reflected in students’ realizations of limits. The findings for this part of the study

indicated that some elements of the instructor’s discourse (e.g., using a variety of

functions, introducing the formal definition, not computing limits by plugging in

successive values near the limit point) supported students’ accurate responses for

different realizations of limit. This was also reflected in the fact that students did not hold

some of the difficulties reported in the literature (e.g., “limit as bound” and “limit as

monotonic”) and these were the very ideas absent from the instructor’s discourse. Yet,

some other elements of his discourse (shifts in word use and routines) supported students’

realization of limit as a process rather than a number.

For the third question, I examined the instructor’s and the students’ discourse on

limits in relation to the historical development of limit related concepts through the

commognitive lens. In particular, I explored whether the historical junctures I identified

in the development of discourse over history were reflected in classroom discourse on

limits. The findings here indicated that the contexts in which the instructor shifted his

word use coincided with the historical junctures that resulted in changes in the metarules

of the discourse on limits. Those contexts were the informal and the formal definition of

lirrrit as well as infinity. The changing metarules related to the concepts over history were

reflected in the instructor’s use of words and different metaphors. However, he did not

explicitly address the metaphors and did not attend to the metarules underlying different
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realizations of limit and infinity. Therefore, the study provided evidence with respect to

the tacit nature of metarules in the classroom.

The exploration of students’ discourse with respect to the historical development

of limits indicated that some of the difficulties addressed by research on student learning

were also present in experts’ discourse over history. Those difficulties were “limit as

bound”, and “limit as unreachable”. In addition, similar to students’ discourse, the

discourse on limits over history was based on the metaphor of continuous motion for

centuries before limits were considered as distinct objects ofmathematics. Objectification

of limits were challenging both for the mathematicians over history and for the students

in the study.

Most of the junctures I identified in the historical development of limit related

concepts signaled objectification as the milestones leading to the expansion of the

previously existing discourse on limits. I identified the elimination of spatial motion and

continuity fiom the discourse on limits as another type ofhistorical juncture in the

historical development of discourse. The students in the study did not show signs of

objectification and elimination ofmotion in their discourse on limits. They talked about

limit as a process but not as a distinct mathematical object (a number). Moreover, their

View of limit was based on the metaphor of continuous motion and not discreteness. On

the other hand, the students who participated in the interview sessions showed signs of

objectification of infinity as an end-state in their discourse.

In sum, the contexts in which students struggled most in the diagnostic survey and

the interviews coincided with the historical junctures that changed the metarules about

limits. Those contexts also coincided with those in which the instructor’s shifts in word
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use took place. Therefore, the junctures in the development of discourse on limits over

history also seemed to be critical for the development of students’ discourse in the study.

8. 2. Discussion

The study illustrates the usefulness of the commognitive framework to analyze

features of mathematical discourse. The exploration of discursive patterns, which could

not be revealed through a cognitive approach, enables the analysis of the connection and

conflicts among the elements of an individual’s discourse (e.g., connection between

words and symbolic notation; words and routines; routines and endorsed narratives;

written and spoken words, etc). For example, although the instructor in the study

endorsed the narrative limit is a number, some of his routines when investigating the

behavior of functions near the limit points supported the narrative limit is a process.

The commognitive framework also enables the identification ofthe

communicational failures through the analysis and comparison ofword use, visual

mediators, routines and endorsed narratives of multiple discursants. For example,

although the instructor’s word use on limits was predominantly objectified, students’

word use was predominantly operational. Similarly, although the instructor often used

graphs as visual mediators to explain definitions and theorems about limits, students

often used graphs to identify the behavior of functions.

The use of commognitive framework highlighted an important and complex

relation between the limit notation and word use. Students in the study used dynamic

motion when making sense of the limit notation lirn f(x) = L and connected it to the

x—>a

informal definition of limit. They did not focus on the equal sign and the limit L, a

distinct number, as much as they focused on the x values approaching a and the y values
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approaching L. Note that although the notation supports talking about the limit as a

number, it does not necessarily support the elimination ofmotion. The conventional way

to read the notation includes the word “approaches”, a word signifying motion.

Therefore, even in a formal definition of limit, the symbolic notation and the words

associated with it might result in conflicts with respect to the consideration of limit as a

number or process. In this study, the instructor and students used a family ofwords

besides “approaches” that signified motion (e.g., “goes to”, “gets closer and closer to”,

etc) when talking about the limit notation. Given that the students’ utterances about the

limit notation were often inaccurate or incomplete, it seems crucial that the relationship

between the symbols and the words associated with those symbols are made clear in the

classroom.

The relation between the written and spoken words in the classroom discourse

was another finding of the study revealed through the commognitive fi'amework.

Although the instructor’s operational word use corresponded to a small portion ofhis

overall utterances about limits, the students in the study primarily focused on operational

word use in the instructor’s spoken discourse and disregarded his written discourse when

forming their realizations of limit. Students’ lack of attention to the written aspects of the

classroom discourse was also consistent with their approach to the textbook. The students

participating in the interview sessions mentioned that they never used the textbook for

reviewing material. Three ofthose four students did not even use the lecture notes while

reviewing material or preparing for the exam. This suggests that students relied on what

they heard, saw and recalled from the classroom while forming their realizations of limit.
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It is possible that students did not utilize the written aspects of the instructor’s and

the textbook’s discourse due to their inexperience with the material. Only four of the

students attending to the instructor’s section took calculus in high school; this was the

first time the remaining students learned about the topic. In addition, students learned the

ideas related to limits in only a two and a half week period over eight lessons. As a result,

it might be hard for them to follow the precise and objectified word use about limits in

the textbook and the instructor’s written discourse. Instead, they focused on the informal

and intuitive aspects of limits in the instructor’s spoken discourse. This signals that they

only attended to the elements of the instructor’s discourse that helped them cope with the

requirements of the course.

Students’ coping strategies were clearer when they talked about how they

prepared for the exam. Although they did not use the textbook and the lecture notes, all of

the students in the interview session stated they revisited the homework problems the

instructor assigned from the textbook when preparing for the exam. One participant

(Amy) explicitly stated that she ignored the instructor’s explanations unless that

particular material would be tested on the exam. Therefore, students seemed to focus on

learning how to solve particular problems for the exam than learning about the

conceptual meanings of limits.

The parallels between the development of discourse on limits over history and

students’ discourse support the idea that it might be inevitable for students to realize limit

as a process at the early stages of their learning. Williams (1991) notes that

Just as students’ informal limit models tend to parallel those of the

mathematical community prior to Cauchy, it is possible that only by
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appreciating the sorts of problems that motivated Cauchy’s work will

students be motivated to understand its implications. Perhaps this is to say

that the very historical and cultural contexts that lent vitality to the original

work are the best medium through which to approach the understanding of

that work. (p. 23 5)

An important issue that remains to be addressed is whether or at what point

students need to make the historical transitions in their discourse on limits. The study

does not suggest that the dynamic View of limit should be discarded from the classroom

discourse on limits since it can be the most useful tool with which to initially make sense

of the concept. In fact, both the informal and the formal definition of limit1 are contexts

in which it is possible to talk about limit as objectified (a number). However, in this

study, students’ reliance on dynamic motion did not support their realization of limit as a

number. Instead, they talked about limit as a process. Therefore, it seemed necessary that

their metarule ofusing continuous motion while making sense of limit needed to be

challenged at some point in order to support the objectification of limit (as a number) in

their discourse.

The formal definition of limit was a context in which it was possible for the ’

instructor to highlight the elimination ofmotion from the discourse on limits and

challenge students’ assumptions of continuous motion. On the other hand, his shifts in

word use (signifying proximity instead ofmotion) and use of the metaphor of

discreteness remained implicit for the students in the class. It seems important that the

metarules behind the historical junctures, which were reflected in the instructor’s
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discourse when talking about the informal and the formal definition, are explicitly

mentioned in the classroom in order for students to distinguish the process aspect of limit

from the product aspect. Although students might not need to know about the existential

quantifiers, the symbolism, and proofs associated with the formal definition, familiarity

with the metarules and metaphors of the formal theory might enhance their realization of

limit as a number but not as a process or “happening”.

Note that the course was designed to address informal aspects of the concepts and

their applications more than their formal aspects and justifications. One possible reason

for this structure might be due to the diversity of students required to take the course with

respect to their majors. In this study, the 31 students enrolled in the classroom were from

18 different majors. 18 ofthose students were first-year; nine ofthem second-year; three

of them third-year and one ofthem was a fourth-year student. Although such diversity

and inexperienced body of students make it difficult for the instructor to attend to all

aspects of calculus concepts in detailz, these characteristics of the classroom also make it

vital that the main ideas about limits are communicated effectively.

Among the most striking results of this study is how the instructor’s accurate use

of words, his endorsed narrative that limit is a number, and his utilization of different

metaphors as metarules for realizing limits remained invisible for the students. Being a

mathematician, the instructor communicated the limit related ideas, which were

compatible with the development ofthe discourse on limits over history, precisely.

 

The former definition rs consrstent wrth Cauchy’s approach whereas the latter rs consrstent wrth

Weierstrass’ approach (See Section 3.3).

In fact, it rs possrble that the instructor’s introduction ofthe formal definition was atypical for this

particular course.
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On a pedagogical dimension, however, his communication with his students did not result

in shared meanings about limit related concepts. The existence of such gaps in the

mathematical communication between the instructor and the students might have resulted

from the participation structure in the class. In the period of observations, the “talk” in

the classroom was unidirectional: from instructor to students. There were few instances

of student-teacher interaction and no student-student interaction. This hindered students’

active involvement in meaning making in the classroom.

A second possible reason contributing to the communicational difficulties can be

tied to the instructor’s level of explicitness in his discourse. It was mentioned that

students learned most of the ideas about limit in a compact manner and in a short period

of time. In order for students to “decipher” the objectified discourse on limits in the

required time, it might be necessary for the instructor to be explicit about his word use,

visual mediators, endorsed narratives, routines (including use ofmetaphors), and, most

importantly, the connections among these elements ofhis discourse. That the contexts in

which the instructor shifted his word use coincided with the contexts in which students

struggled most in the study (which also coincided with the historical junctures changing

the metarules and metaphors of limits) highlights the importance of explicitness

regarding the elements of the mathematical discourse in the classroom.

8.3. Conclusions

In this section, I discuss the implications and limitations of the study. I then

provide a list of further questions and ideas this study encourages us to think more about.
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8.3.1. Implications ofthe study

This study contributes to educational research in several ways. It pilots an

analytical lens, the commognitive framework (Sfard, 2008), for analyzing classroom

discourse in a beginning-level calculus course by focusing on the limit concept. The

study also takes a step to fill an important gap in the literature by exploring the teaching

of calculus at the undergraduate level. In addition, commognitive framework offers tools,

namely word use (through objectification), metarules and metaphors, to interpret

classroom discourse in relation to the historical development ofmathematical concepts.

The utilization of the commognitive framework provided revealing information

with respect to the patterns in word use, visual mediators, routines, and endorsed

narratives of mathematical discourse on limits. The fiarnework also pointed to the

dynamic relationship among these four elements of discourse and how the relationships

are formed and reformed depending on the mathematical context. In particular, the

commognitive framework highlighted the significance of word use in mathematical

communication. A cognitivist framework would not help us recognize the discursive

patterns and the importance ofmathematical contexts in the development of

mathematical discourse since its approach to learning is mostly context-independent.

Therefore, one of the implications of the study is that the commognitive framework is a

promising lens to investigate the teaching and learning ofother mathematical concepts.

Besides these theoretical implications, the study also has some practical

implications for the teaching and learning of limits. First, although it took mathematicians

centuries to develop and objectify mathematical ideas, students can be immediately

presented with the objectified version of the notions. Since objectification hides the
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layers ofmathematical discourse, it may be important for teachers to unpack the

objectified discourse so that students can have access to the main ideas. The unpacking of

the objectified mathematical discourse can be made possible by an explicit focus on the

word use, visual mediators, routines, endorsed narratives of the discourse and their

relation to one another. Word use and routines, the metarules characterizing the repetitive

actions of participants, seem to be the main elements of discourse that can remain tacit in

the classroom. Therefore, it might be important for teachers to talk about when a routine

is implemented (e.g., mentioning that we use the metaphor of continuous motion when

realizing limits informally) as much as how a routine is implemented (e.g., uttering words

signifying motion when talking about limits informally).

Second, since mathematics learning is participating in the mathematical discourse,

active interaction can promote the discussion and exploration of different uses of

mathematical words and routines in the classroom. Such an approach can give teachers

and students chances to compare and contrast their individual realizations with the

communally agreed upon realizations of the mathematical concepts. By doing so, it can

also contribute to the unpacking of words and metarules related to the concepts.

Third, the junctures in the historical development changing the metarules of

mathematical concepts might be useful for teaching. In this study, such junctures seemed

to be critical for students since the contexts in which mathematicians tackled with limits

over history coincided with the contexts students struggled. In case there are such

parallels between student learning and historical development of other mathematical
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concepts3, awareness of the historical junctures can be quite important for teachers to

recognize and address some of the student difficulties in their classrooms.

8.3.2. Limitations ofthe study

The study is conducted as a case study. It is an attempt to investigate the teaching

and learning of limits at the undergraduate level by focusing on one classroom.

Therefore, the findings of the study may not be applicable beyond this context. In other

words, I do not claim that it is possible to generalize these findings to a population of

undergraduate calculus classrooms. Note also that the application of a particular lens, in

this case the commognitive framework, brings with it many presuppositions leading to

that decision (e. g., consideration ofmathematical knowledge as socially constructed,

consideration of thinking as individualized form of communication, acknowledging the

communicational nature of student difficulties, etc.) Since educational research is

interpretive, I also acknowledge that another researcher using a different lens (e.g., who

operates from a cognitivist framework) could see the classroom in different ways than I

did.

8. 3. 3. Further questions

The study raises additional questions and ideas for further research. First, the

analysis of cunicular materials in terms of their discourse on limits and infinity is needed

to complement how the mathematical ideas developed throughout history are reflected in

today’s classrooms. In the context of undergraduate mathematics classrooms, textbooks

are among the main curricular sources with which instructors organize their lessons. For

the utilization of the textbook by students, the study raises important questions: How can

 

3 . . . . . . ,
In fact, there rs also evrdence there are Similarities between some of students conceptual obstacles about
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we encourage students to interact with the textbook except for end-of-section problems?

How can the instructors find ways of incorporating textbooks so that students think of the

textbook as a significant resource for learning? The textbook authors have more chances

to think about and revise their word use, visual mediators, routines and narratives of

mathematics. As a result, the textbook’s discourse can be more consistent than

instructors’ given that the instructors of undergraduate mathematics are not necessarily

trained in pedagogy ofmathematics.

The study is an initial attempt to explore the teaching of calculus at the

undergraduate level. More research on the teaching ofmathematics in undergraduate

setting is crucial since calculus is a requirement for many majors (e.g., economics,

engineering, physics, and mathematics), and students might not be introduced to any of

the calculus concepts prior to their university courses.

Finally, since the implementation ofthe commognitive framework for limits

proved to be a useful lens to gain more information about student learning, repetition of

the study in other undergraduate classrooms and for other mathematical concepts seems

to be a promising way to enhance our knowledge of classroom discourse.

Additional questions raised by the study include: Would the investigation of

historical junctures resulting in changes in the metarules of other concepts of

mathematics besides limits be useful to gain information about the conceptual obstacles

students face as they learn about those concepts? Would a teaching approach that

explicitly focuses on word use, metarules and metaphors related to the mathematical

concepts make a difference in students’ realizations of the concepts? What are the

 

firnctions and the historical development of functions (S fard, 1992).
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conditions under which students seem to be “ready” for making discursive changes as

reflected in the historical development ofmathematical concepts?
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APPENDIX A

DIAGNOSTIC SURVEY

(Williams, 2001, p. 348)

1. Please mark the following six statements about limits as being true or false:

1. T F A limit describes how a function moves as x moves toward a

certain point.

2. T F A limit is a number or point past which a function cannot go.

3. T F A limit is a number that the y-values of a firnction can be made

arbitrarily close to by restricting x-values.

4 T F A limit is a number or point the function gets close to but never

reaches.

5. T F A limit is an approximation that can be made as accurate as you

wish.

6. T F A limit is determined by plugging in numbers closer and closer

to a given number until the limit is reached.

II. Which of the above statements best describes a limit as you understand it? (Circle one)

1 2 3 4 5 6 None

III. Please describe in a few sentences what you understand a limit to be. That is, describe

what it means to say that the limit of a functionfas x—+s is some number L.

IV. If possible, write down a rigorous definition of limit.
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APPENDIX B

INTERVIEW SESSION PROBLEMS

x when x 2 0 , ,

1) If f(x) = 3 , what can you say about 11m f(x) , 11m f(x) ,

x when x < O x—)O x—)—oo

lim f(x) ?

x—mo

Is the function continuous at 0? How about negative and positive infinity?

7- , _

2) If f(x) = x +1 when x S 1, what can you say about lim f(x) lim f(x) ,

x—l when x > —1 x—>—l x-9—oo

lim f(x) ?

x—mo

Is the firnction continuous at — 1 ? How about negative and positive infinity?
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4) A student was given a function F and asked to find the limit of F as x approached 0.

He plugged in numbers on each side of 0 and made the following table:

x

-.l

-.01

—.001

-.0001

-.00001

-.000001

-.0000001

-.00000001

. l

.01

.001

.0001

.00001

.000001

.0000001

.00000001

a) What can you say about lim F(x) ?

x—)0

F(x)

0.9

0.99

0.999

0.9999

0.99999

0.999999

0.9999999

0.99999999

1.1

1.01

1.001

1.0001

1.00001

1.000001

1.0000001

1.0000000]

b) What do you think about the student’s method of finding this limit? Is he correct?

Can we find the limit of functions using this method? Why/Why not?

c) Given F(x) = x +1 + , what can you say about lim F(x) ?

102°x x~+0

(Williams, 1991, p. 224)
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5) Which statements below must be true if f is a function for which lim f(x) = 3 ?

x—-)2

a) f is continuous at the point x = 2

b) f is defined at x = 2

C) f(2) = 3

d) lim{f(2+h)—3}= 0

h—>0

e) For every real numbers > 0 , there exists a real number 6 > 0 such that if

O<|x—2| <6,then|f(x)—3| <3

f) None of the above mentioned statements

6) Let a functionf(x) be defined on an open interval about [the point] x0 , except

possibly for x0 itself. We say that the limit of f(x) as x approaches to x0 is the

numberL , and write lim f(x) = L if for every numbera > 0 , there exists a

x—>x0

corresponding number 6 > 0 such that for all x , 0 < Ix - x0] < 6 :> If(x) — Ll < 8‘ .

(Thomas et al., 2008, p. 91)

a) Please explain in your words what this definition means for you.

b) How is this definition similar/different than the informal definition of limit you

used in your class?

c) In your opinion, what is the purpose of this definition?
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