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ABSTRACT
DEVELOPMENT OF DISCOURSE ON LIMITS: CONNECTING HISTORY AND
CLASSROOM PRACTICE THROUGH A COMMUNICATIONAL APPROACH
TO LEARNING
by
Beste Giigler
The notion of limit is considered to be the building block of many calculus
concepts such as continuity, derivative and integral. On the other hand, the concept
presents students with many challenges. This study views mathematics learning as
initiation to the historically established mathematical discourse and uses a
communicational approach developed by Sfard (2008) to explore the conceptual
obstacles in learning limits. One of the goals of this study is to investigate how the
discourse on limit and its underlying concepts is generated over history. This exploration
goes in conjunction with the discursive analysis of the historical junctures that led to
particular changes in the discourse on limits as mathematicians encountered conceptual
obstacles. The study then focuses on one college-level calculus classroom to explore how
the discourse on limits is generated by the instructor. This is followed by an investigation
of students’ discourse on limits at the end of their instruction. Finally, possible
connections between the discourse on limits as generated over history and as generated in
the classroom are explored to examine whether the communicational approach is useful
to gain further insights about learning of limits.
The study revealed that the consideration of limit as a distinct object of
mathematics (a number) obtained at the end of a process was challenging for

mathematicians over history. The students in the study had difficulties distinguishing the



process aspect of limits from the realization of the concept as an end-state (a number),
which is consistent with the historical development of the concept. Opportunities for
addressing the differences between the consideration of limit as a process and limit as a
number were present in the instructor’s discourse. However, the distinct assumptions

underlying each realization of limit remained implicit for students.
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CHAPTER1
INTRODUCTION

Starting with the calculus reform movement initiated in mid-eighties, research on
undergraduate mathematics education has focused on improving curricular and
pedagogical approaches to beginning calculus. Today, students in majors such as
economics, engineering and physics are expected to be competent in various
mathematical domains and calculus is one of the main courses required of students in all
these majors. As a result, there also exists a relatively rich research base at the
undergraduate level on student thinking about the content of elementary calculus
concepts such as function, slope and derivative (Carlson, 1998; Monk, 1987, 1994; Monk
& Nemirovsky, 1994; White & Mitchelmore, 1996; Zandieh, 2000).

The concept of limit has also been of particular interest for researchers since it is
considered to be the building block of many fundamental calculus concepts such as
continuity, derivative and integral. The notion of limit, however, presents major
difficulties for students (Bezuidenhout, 2001; Cottrill et al., 1996; Tall & Vinner, 1981;
White & Mitchelmore, 1996; Williams, 1991). These studies highlight that the formal
understanding of the concept is unlikely to occur unless students first have an intuitive
understanding of the concept. However, they also argue that the intuitive understanding
of the concept relies heavily on the idea of continuous motion, which might hinder
understanding of the other aspects of limit. In that respect, some of the representational
tools (verbal, visual and symbolic) used by students while thinking about limit lead to
additional difficulties (Bagni, 2004, Bezuidenhout, 2001; Cottrill et al., 1996; Williams,

1991). Therefore, the concept of limit presents the student with two challenges: the need
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to make the transition from intuitive to formal understanding and the need to cope with
the issue of compatibility of the conceptual and representational tools within the
intuitively understood aspects of limit.

Considering mathematics learning as initiation to the historically established,
patterned activity of doing mathematics, one of the goals of this study is to explore how
the discourse on limit and its underlying concepts as generated over history. This
exploration will go in conjunction with the discursive analysis of the historical junctures
that led to particular changes in the discourse on limits as mathematicians encountered
conceptual obstacles. In this study, such changes will be will be defined through elements
of a communicational framework developed by Sfard (2008). Sfard’s framework will
then be used to explore how the discourse on limits is generated by the instructor in a
college-level calculus classroom. This will be followed by an investigation of students’
discourse on limits at the end of their instruction and what conceptual obstacles they
encounter. Finally, possible connections between the discourse on limits as generated
over history and as generated in classrooms will be explored to examine whether the
communicational approach, in general, and a discursive analysis of historical junctures, in
particular, help us gain further insights about learning of limits. More specifically, the
study addresses the following questions: 1) How is the discourse on limits generated by
the instructor in a beginning college-level calculus classroom? 2) Given the instructor’s
discourse on limits, how do students talk about limits in a beginning college-level
calculus course? and 3) How do the elements of discourse on limits as generated over
history compare and contrast with the discourse on limits generated in a beginning-level

calculus course?






The contribution of the study to educational research is two-fold: First, although
research has identified many of the conceptual obstacles students have about limits,
explanation of the nature of those obstacles remain incomplete. Some similarities
between mathematicians’ and students’ struggles is implied by research but there is no
elaboration on the principles underlying the transitions learners need to go through as
they attend to different aspects of the limit notion. This study approaches the same
problem by means of a different lens that emphasizes communication to examine whether
it can provide further insights about the conceptual obstacles in learning of limits. I will
use elements of Sfard’s (2008) framework to investigate the historical development of
discourse on limits with respect to possible roots of the conceptual obstacles faced by
mathematicians. The study will then explore whether Sfard’s (2008) framework can be a
useful lens to gain more information on students’ discourse on limits.

Second, although research about limits suggests that the intuitive aspects of the
notion are perpetuated in calculus classrooms, there is no analysis of instruction in order
to justify this claim. In this work, I will analyze one instructor’s discourse on limits in a
college-level calculus classroom and investigate the possible impacts of the instructor’s
discourse on students’ thinking about limits. In this respect, the study is an attempt to fill

out an important gap in the literature about teaching of limits at the undergraduate level.
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CHAPTER 11
THE CONTEXT OF THE STUDY

This chapter starts with a brief description of the limit concept followed by a
literature review on learning about limits. Next, the theoretical framework for the study is
introduced and explained in terms of its main characteristics. Finally, particular elements
of the theoretical framework that I use for the analysis of the historical development of
limits are described.

Axioms, definitions, theorems and proofs presented in their formal
representations are among the final products of mathematics. The processes with which
mathematicians and learners of mathematics initially think about mathematical concepts,
on the other hand, are informal and intuitive. Although such processes may be invisible in
the mathematics curricula, the transition from the informal aspects of mathematical
concepts to their rigorous formulations is by no means trivial. The historical development
of a concept is a valuable tool in providing clues about where to look for the obstacles
learners may face and the transitions they may go through as they tackle different aspects
of the concept. The nature of those transitions and conceptual difficulties, however, may
not be found in history itself but can be identified by means of a focused analysis of the
historical development. This study uses elements of the commognitive framework (Sfard,
2008) for the analysis of the historical development of limit and its underlying concepts.
In what follows, the notion of limit is briefly discussed and a summary of the research on
its learning is given. Then the commognitive framework is introduced as a potentially
useful lens that can help us gain more insights about the nature of the conceptual

obstacles in the learning of limits.
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2.1 Limit: What is it and what do we know about its learning?

2.1.1. The notion of limit

The concept of limit is the foundation on which fundamental concepts of calculus
are based. Limits are used to define the tangent to a curve, which leads to the notions of
the derivative of a function and instantaneous rate of change. In that sense, limits are used
to determine how functions vary. When used to define the behavior of Riemann sums at
infinity, the notion leads to the concept of the integral of a function. In particular, limits
are also used in determining whether sequences and series converge. Given these, it is
impossible to talk about the essential concepts of calculus without limits. The informal
definition of limit is often given in some form similar to the following:

Let [a function] f(x) be defined on an open interval about [the point] xg,
except possibly for xyitself. If f(x) gets arbitrarily close to L (as close as
we like) for all x sufficiently close to x, we say that f approaches the

limit L as x approaches x(, and write lim f(x)= L, which is read ‘the
x—)xg

limit of f(x)as x approaches xgis L’. (Thomas, Weir, Hass &

Giordano, 2008, p. 77)
A typical calculus-level formal definition, on the other hand, would be similar to the
following:

Let [a function] f(x) be defined on an open interval about [the point] x(,
except possibly for xitself. We say that the limit of f(x)as x

approaches xis the number L, and write lim f(x)=L if for every
x—>x0



number ¢ > 0, there exists a corresponding number 6 > 0 such that for
allx,0 <|x—xp| < 6 = |f(x) - L| < £ . (Thomas et al., 2008, p. 92)
At the undergraduate level, students are introduced to the notion of limit in their

preliminary calculus courses'. The textbooks designed for these courses often outline the
content of calculus starting from reviews of basic notions such as real numbers, number
line, functions and types of functions. Then the notions of limit and continuity are
introduced. This is followed by discussions on derivative and then the integral. Finally,
the notions of sequences and series are introduced with a particular focus on their
behavior at infinity, which form the basis of the discussions about convergence and
divergencez.

2.1.2. Research on learning about limits

In what follows, the difficulties associated with the limit concept as pointed out by
research on student learning will be explained.

Limit implies continuity. Bezuidenhout (2001) argues that this refers to the incorrect
assumption that the existence of limit of a function at a given point is a sufficient
condition for the continuity of the function at that point. The students who have this
difficulty believe that if a function has a limit at a given point, then it must also be
continuous at that point. For example, such students would think the limit does not exist

at the point x=3 for the function in Figure 2.1 since it is not continuous at 3.

! Students can also have familiarity with the limit concept from their high school courses such as AP
Calculus and precalculus.

See Thomas et al. (2008) and Hughes-Hallett et al. (2008) for their content outline for calculus.
6
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Figure 2.1: An example where the difficulty /imit implies continuity can occur

Limit as the function’s value. Bezuidenhout (2001) notes that the incorrect assumption
limit implies continuity “may also originate from another misconception, namely,

lim f(x)=3 implies f(2) =3, so that f is then continuous at x=2" (p. 494). In this
x—2
respect, students could view lim f(x)and f(2) as the same thing. This view of limits is
x—>2

called “limit as the function’s value” and it corresponds to the belief that “the limit of a
function at a point means the value of the function at that point” (Cottrill et al, 1996, p.
178) Students having this difficulty would give ‘limit does not exist’ as the answer
whenever the function is not defined at the point where the limit is taken. Their strategy
while finding the limit of a function at a point is to evaluate the function’s value at that
point and give the result as the limit value. For example, for the function in Figure 2, such

students would give 3 as the answer for the limit of the function at x=2.
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Figure 2.2: An example where the difficulty limit as the function’s value can occur

Bezuidenhout (2001) argues that the procedures used in the calculation of limits such as
the method of substitution “may sell the idea to some students that the value of the
function at the point concerned is of primary importance, rather than the behavior of
values of the function about the point” (p. 496).

Limit as a bound. Cornu (1991) mentions that limits can sometimes be interpreted as “an
impassable limit which is reachable”; “a higher (or lower) limit”; “a maximum or
minimum”; “a constraint, a ban, a rule”; “the end, the finish”. (pp. 154-155). These
utterances emphasize limit as a boundary. So limit as a bound refers to the idea that “limit
is a number or point past which the function cannot go” (Williams, 1991, p. 221).
Students who have this difficulty think that a function is bounded by a specific limit
value or think of the absolute maximum/minimum values of the function, if they exist, as
the limit for the function. They would also have difficulty working with horizontal
asymptotes where the limit of a function at positive or negative infinity can be a number
past which the function, in its whole domain, can go. For example, for the function in
Figure 2.3, the limit at positive and negative infinity is equal to zero but the function also

attains values greater than zero.
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Figure 2.3: An example where the difficulty /imit as bound can occur

Limit as monotonic. There are other interpretations of limits such as “monotonic and
dynamic ﬁonotoMc” which are based on formal teaching (Cornu, 1991, p. 155).
Utterances such as “a convergent sequence is an increasing sequence bounded above (or
decreasing bounded below)” and “a convergent sequence is an increasing (or decreasing)
sequence which approaches a limit” (Cornu, 1991, p. 155) might lead to the expectation
of monotonic behavior from the function in order to find its limit. This difficulty is
related to the expectation of ‘nice behavior’ from the function. Research indicates that if
a function is strictly increasing or strictly decreasing, students can more easily find the
limit at a given point. This difficulty becomes evident when working with constant and
piecewise functions (See Figures 2.4 and 2.5). The function in Figure 2.4 remains
constant in its entire domain and so students could have difficulty considering it as
increasing or decreasing. As a result, they might not be comfortable with the idea that the
limit of that function at every point in its domain is equal to the same number 2. For the

graph illustrated in Figure 2.5, the function is increasing but not strictly. For every a, b



Fig,



€ N, the interval (a,b) is constant. Moreover, for every a € N, the function jumps rather
than increasing smoothly. Students who expect strictly increasing or strictly decreasing
behavior from a function might have difficulties finding the limit of the function in
Figure 2.5 at the points which lie between (a,b), where the function remains a constant
value. They also might think the limit at a given point a€ N equals to both a and a+/ due
to the discontinuous nature of the function at those points. In fact, Tall and Vinner (1981)
report a similar finding for the case of sequences. They argue that given a sequence
{1,0,1,0,1,0,... }students might think there are two separate sequences there instead of
one. Therefore, students who perceive “limit as monotonic” might also have difficulty
determining the convergence of a sequence where the subsequences can have different

patterns from each other.

4
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v

Figure 2.4: An example where the difficulty /imit as monotonic can occur
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Figure 2.5: An example where the difficulty /imit as monotonic can occur

Difficulties resulting from the dynamic approach to limit. The dynamic approach refers to
using the intuitive idea of motion when working on limit related problems. Although it
implies motion, the dynamic approach to limit is not necessarily a graphical approach.
The common phrases such as approaches, tends to, getting close to all indicate motion-
related processes and are considered among the verbal representations of the dynamic
approach (Bagni, 2004). In his study on models of limit held by students in a second-
semester calculus class, Williams (1991) found that

In general, the words approaching or getting close were interpreted in one

or both of two ways: as describing the physical process of evaluating a

function at different numbers, which are chosen over time to be closer and

closer to the value s [for lim f(x)], or as describing the mental process of
X—>S

11
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imagining the points on the graph moving closer and closer to the limit
point. (p. 228)

Tall and Vinner (1981) also note that limits of functions of the form lim f(x)=care
x—>a

“often considered as a dynamic process, where x approaches a , causing f(x) to get close
to ¢” (p. 160, italics in original). They argue that this intuitive approach to limits “is often
so strong that the feeling of the student is a dynamic one: as x approachesa, so f(x)
approaches c, with a definite feeling of motion” (Tall & Vinner, 1981, p. 161, italics in
original).

Research has identified two difficulties resulting from the dynamic view of limits:
limit as an approximation and limit as unreachable. In what follows, these terms will be
explained and also exemplified.

Limit as approximation. One of the possible ways of using the dynamic approach to

limits for lim f(x)is investigating the behavior of a function around the limit point
x—>a

(as x — a) by substituting successive x-values that are closer to the pointa . In this case,
responses such as ‘when x approaches a, the values of f(x) approach the limit L’ often
points to

a confusion of the limiting process and the product resulting from that

process. Such a confusion may go hand in hand with the erroneous view of

limit as an approximation. One can also sense a dynamic character of the

limit in the student’s motivation. (Bezuidenhout, 2001, p. 492)
This approach is dynamic since it involves the movement of the points closer to the limit
point and looking at the function’s values near that point. It resembles the tabular

representation of the function near the limit point. Some students see this approach as

12
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sufficient to determine the limit of a function at a given point without realizing that
although the function can seem to be approaching or getting close to or tending to a limit
value for those points, there are still infinitely many points near the limit point that

remained unchecked (see Figure 2.6).

x ftx)
-0.1 0.9
-0.01 0.99
-0.001 0.999
-0.0001 0.9999
0 1
0.0001 1.0001
0.001 1.001
0.01 1.01
0.1 1.1

Figure 2.6: An example where the difficulty limit as approximation can occur

Students having the dynamic view and who think of limit as an approximation argue that

limo f(x) is equal to 1 since the function values approach 1 as the x values approach 0.
x>

On the other hand, it is not possible to conclude that the limit of this function is 1 since
we do not have enough information about the behavior of the function between the points
x =-0.0001 and x = 0 as well as between x = 0.0001 and x = 0.

Some students who consider limit as an approximation also round off the
function’s values at the successive points close to the limit point and claim it is reaching a
value, which they would think is the limit value (Tall & Schwarzenberger, 1978). For
example, for the function in Figure 2.6, students can just check the function values at the
x values close to the limit value and round them to 1 to claim the limit value at x = 0 is

equal to 1. “We surmise that at the root of such a misconception is the practice, both

13
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inside and out of the classroom, of approximating numbers to convenient significant
digits” (Parameswaran, 2007, p. 210).

Limit as unreachable. The second idea related to the dynamic approach is mostly used
when determining the limit of the function from a graph. Here the movement feature
comes from the visualization of the graph. The basic logic behind this approach is to ask

where the function approaches as x approaches the limit point. (Does f(x) > L

asx — a ?7) Here, some students confuse the idea ‘x never reaches a’ with ‘f(x) never
reaches L’. So, they think the limit is unreachable. These students have difficulty working
with constant functions where the limit value is taken by the function at the limit point.
They also have difficulty working with the continuous functions. Williams (1991) notes
that although this view might suggest students’ awareness of the irrelevance of the
function value at the limit point, it might also suggest the consideration of taking the limit
of continuous function as inappropriate. As a result, some students cannot accept
continuous functions as having limits. He argues that “in general, reachability is not a
characteristic of limits, but rather is a matter of continuity” (Williams, 1991, p. 228).
According to Tall and Schwarzenberger (1978), the colloquial use of the words such as
‘close’ implies getting near to but not being coincident with. Given this, they argue that
the informal notion of limit may carry for students the assumption that one can get close

to the limit value but cannot reach it.

14
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Figure 2.7: An example where the difficulty limit as unreachable can occur

For the graph in Figure 2.7, students who have the difficulty “limit as unreachable”
would distinguish the function value at 0, which is f(0), from the function’s value as it

approaches x=0 . Therefore, they would be uncomfortable saying lim f(x)is equal to -1
x—0

since the function attains the value -1 at x = 0.

It is important to note that the consideration of “limit as unreachable” is not
restricted to situations that involve graphing. The realization of limit as unreachable
signals the separation of the process of approaching and the number that is approached
(which can, in fact, be the limit). This distinction might also lead to confusion between

plugging in and approaching the number. As a result, students might be comfortable

by cancelling the common factor (x-5) since the function is not

. . x%2-25
computing lim
x5 xX-—

defined at x =5 and so the values of x cannot reach that point. On the other hand, they

might have difficulty understanding why they can plug 5 into the function when finding
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lim (x + 5) since the function will then attain its value at the pointx = 5 3 Table 2.1

x—>5

summarizes the student difficulties and the related assumptions about limit mentioned in

the literature.

Table 2.1: Difficulties mentioned by the research on student thinking about limits

Student difficulties about limit

Assumption underlying the views

Limit implies continuity
(Bezuidenhout, 2001)

Limit as the function’s value
(Bezuidenhout, 2001)

Limit as a bound
(Cornu, 1991; Williams, 1991)

Limit as monotonic
(Cornu, 1991; Tall & Vinner, 1981)

Limit as approximation
(Bezuidenhout, 2001; Parameswaran,
2007; Tall & Schwarzenberger, 1978)

Limit as unreachable
(Tall & Schwarzenberger, 1978,
Williams, 1991)

If a function has a limit at a point, then it must be continuous at
that point.

When finding the limit of a function at a given point, it is
enough to look at the function’s value at that point.

A limit is a value past which the function cannot go. A limit is
the absolute maximum (or minimum) value of a function.

A function (or sequence) has to be strictly increasing or strictly
decreasing in order to have a limit.

In order to find the limit of a function at a point, it is sufficient
to look at the behavior of the function at points successively
closer to the limit point.

A limit is a value that is approached but never reached.

These student difficulties about limits are mostly identified by empirical studies,

which generally include surveys followed by individual student interviews. For example,

Bezuidenhout’s (2001) study focuses on first year students’ understanding of limit of a

function and continuity of a function at a point. He selected 100 students as the sample

from a much larger population in three South African universities. The students were in
engineering, physical sciences and in other majors that required service calculus courses.

Among the 100 students who responded to an initial survey, 15 students were selected to

3 See Szydlik (2000, p. 276) for the details of such student assumptions.
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participate in interviews. The difficulties “limit implies continuity” and “limit as the
function’s value” were mentioned frequently by the students who were interviewed.

In Williams’ (1991) study, 341 students from two second-semester calculus
classes were given a questionnaire about limits. Based on the student responses to the
survey, students were selected for in-depth questioning. The first question of the survey
included six statements to categorize students’ views of limits as dynamic-theoretical;
boundary; formal; unreachable; approximation; and dynamic-practical, respectively (See
Appendix A for the survey). Among the 341 students, 36% stated that the statement that
considered “limit as unreacheable” described best how they thought of limits. 30% chose
the statement about the dynamic-theoretical characterization of limit as the best way they
made sense of the concept. The statement about the formal definition was chosen as best
by 19% of the students. The statements about “limit as boundary”, “limit as
approximation” and the dynamic-practical aspect were selected by 3%, 4%, and 5% of
the students, respectively.

From 341 students, Williams (1991) then classified 50 volunteers in terms of the
models of limit they held. He classified 24 students as having the view limit as dynamic;
20 students as having the view limit as unreachable; three students as having the view
limit as a bound and one student as having the view limit as an approxixnation4. From
those 50 students, he selected 10 students for treatment that consisted of five sessions

over a period of seven weeks. He mentions that:

4 Williams (1991) couldn’t classify two of the student responses since they were ambiguous.
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All 10 students in the study expressed at some point a view of limit as dynamic,
that is, involving motion along the graph, and plugging in points that over time get closer

and closer to the value s as x approaches in the limit [for lim f(x)]. (Williams, 1991, p.
X—>S

229)
He further notes that the problems students worked on in the treatment sessions targeted
student difficulties through situations that could lead to cognitive conflicts. However, no
real change occurred in students’ views of limit as dynamic after treatment. “The stage
was set for cognitive conflict, and in fact, some conflict did occur. What did not occur
was real cognitive change” (Williams, 1991, p. 229). By the end of the final session, “no
student was willing to give up the view that plugging in a finite number of values was
essentially correct or that moving along the graph was a good way to view a limit
problem” (Williams, 1991, p. 230).

Limits tend to be seen as processes performed on functions, an idealized

form of evaluating the function at a series of points successively closer to

a given value. The dynamic element here is clear, and because the actual

value of the function at the point of interest is irrelevant, the limit is never

reached. The paradigm picture seems to be the classical geometric

progression involved in walking halfway to a wall, then half the remaining

distance, and so forth; students seem to be willing to accept the fact that

we never reach the wall even though we may know exactly where the wall

is. To most of the students, this was a compelling metaphor for limit...

Still, it has been suggested that, although perhaps necessary, such a view

18



of limit does present a cognitive obstacle to further understanding.

(Williams, 1991, p. 230)

Szydlik’s (2000) study focused on calculus students’ beliefs about mathematics
and the role of those beliefs in their understanding of the limit concept. She initially gave
577 second-semester calculus students a questionnaire about their convictions and beliefs
about calculus and limits. Based on this questionnaire, she identified four groups of
students, 27 of whom participated in a structured interview about limits. “All 27 students
used a definition of limit as motion to explain their work on the limit problems; a few
students used either a static or an infinitesimal definition as well” (Szydlik, 2000, p. 271).
Nine of the 27 students agreed with statements that implied limit as a bound. “The
majority of the students who held this conception believed that the limit is a value the
function cannot exceed. They appeared to hold this view globally, often drawing or
describing a horizontal asymptote.” (Szydlik, 2000, p. 271). On the other hand, three
students in the study thought of limit as a local bound. Students having this idea
“believed that within a certain tolerance of the limiting value, the limit acts as a
boundary; however, they did not think of the limit as a global boundary”. (Szydlik, 2000,
p- 271).

In Szydlik’s (2000) study, students who view calculus as a collection of facts to be
memorized and who do not follow the theory behind those facts

often cannot give a coherent definition of limit of a function or explain

why the formulas and procedures that they use to solve limit problems are

valid. Many hold misconceptions of limit as a bound that cannot be

crossed or as unreachable. (p. 273)
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The students who see calculus as consistent and logical, on the other hand, can have
“access to formal definitions, power to solve limit problems, and concept images free of
major inconsistencies” (Szydlik, 2000, p. 273). It is important to note, however, that
Szydlik mentions that not all students holding these beliefs towards calculus have
complete understanding of the limit notion. These findings are in conjunction with
Sierpinska’s (1987) findings which imply that “the students’ attitudes towards
knowledge, and mathematical knowledge, in particular, have a strong impact on their
intuitions of infinity and limits” (p. 382).
2.1.3. Difficulties about the underlying concepts of limits

Some of these difficulties about limit come from the difficulties students have of
the underlying concepts related to limit. According to Sierpiniska (1987), the obstacles
related to the notions of scientific knowledge, infinity, function and real number form the
basis of the epistemological obstacles about limits. Carlson (1998) and Vinner & Dreyfus
(1989) argue that some students perceive functions merely consisting of algebraic rules.
Similarly, Bezuidenhout (2001) and Tall & Vinner (1981) found that students mostly rely
on rules and graphs of functions while trying to find the limit of the function at a given
point. Williams (1991) and Szydlik (2000) also mention students’ faith in graphing as a
means of understanding the behavior of functions when finding limits

Students’ notions of infinitely small and infinitely large can also play roles in
their understanding of the limit concept. According to Parameswaran (2007), “it is
common practice in real life as well as in classroom that one often ‘ignores’ negligible
quantities and rounds off numbers to convenient significant digits” (p. 194). He

investigated how such practices affect students’ understanding of the limit concept. He
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used questions involving infinitely large and infinitely small quantities (infinitesimals) to
explore the student difficulties such as “limit as approximation” and the dynamic view of
limit. In order to do this, he investigated students’ experiences in arithmetic where they
represent decimals and do finite approximations such as rounding off real numbers to .
relevant decimal numbers. Parameswaran (2007) found that students use approximations
before taking the limit of the function if the function includes infinitesimal quantities.
Another strategy students used when working on such limit problems was to round the
very small quantities to zero.

...the students identify what they perceive as ‘large numbers’ with infinity

and ‘small numbers’ with zero. Also, in our experiments, they unwittingly

rounded off very small parameter values occurring in the definition of the

function in question to a convenient number close to it... Most of the

students in our samples view limiting as a process of approximation when

very minute quantities are involved in the definition of the function...They

tend to approximate the given function by changing or ignoring quantities

appearing in its definition which they perceive as ‘small’ constants to zero.

(Parameswaran, 2007, p. 209, italics in original)
In her study of 31 pre-calculus students Sierpinska (1987) found that some students
think of infinity as a large finite number. Tall and Schwarzenberger’s (1978) note that
the students in their study had idiosyncratic views of infinity. Some thought about
infinity as a symbol that represents what is unreachable; some defined it as the biggest

number that exists; and others thought about it as the endpoint of the real numbers.
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Continuity is also one of the problematic terms that cause difficulties in students’
understanding of the limit concept. Daily uses of the term in phrases such as “the rail is
continuously welded” or “it rained continuously all day” often result in associating
continuity with having no gaps or breaks (Tall & Vinner, 1981, p.164). Such uses,
together with the initial uses of the term continuous functions result in a “reinforcement
of the intuitive idea that the graph has ‘no gaps’ and may be drawn freely without lifting
the pencil from the paper” (Tall & Vinner, 1981, p. 165).

This viewpoint is often reinforced by teacher’s attempts to give a simple

insight into the notion of continuity by speaking of the graph “being in one

piece” or “drawn without taking the pencil off the paper”, thereby

confusing the mathematical notions of continuity and connectedness.

(Comnu, 1991, pp. 156-157)

Tall and Vinner (1981) gave 41 students a questionnaire that involved different functions.
The students were asked to decide which of the given functions were continuous and to
explain their reasoning. They found that most of the students who gave the correct
answers gave those for the incorrect reasons. For example, students might say a given
function is continuous because “it was given by a single formula” or “it is all in one
piece” (Tall & Vinner, 1981, p. 167). Similarly, students might say a given function is
discontinuous because “the graph is not in one piece” or “it is not given by a single
formula” (Tall & Vinner, 1981, p. 167).

There is further evidence that students’ early notions of continuity, geometric
motion and very small quantities (infinitesimals) can lead to problems with respect to

their notions of function, infinity and limit (Carlson, 1998; Cottrill et al., 1996; Tall,
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1980; Vinner & Dreyfus, 1989). It is possibly due to the interplay of all these notions that
there are many different colloquial and idiosyncratic interpretations of the word limit
(Cornu, 1991). As a result, everyday uses of the terms /imit, approaching, or tending to
can be problematic for students since they are used differently in the theory of limits

(Bagni, 2004). In addition to this, mathematical notations like “ f(x) > casx > a”,
which is verbalized as “ f(x) approaches c as x approaches a” entails a feeling of motion

and hinders students’ understanding of the formal definition (Tall & Vinner, 1981,
p-155). The main difficulty for students when dealing with the £ — & definition results
from the static character of the formal theory and the dynamic character of the intuitive
approach (Bagni, 2004). Bezuidenhout (2001) argues that the formal approach is
extremely difficult to understand for students who have the difficulties mentioned above.
Similarly, Williams (1991) argues that the dynamic approach to limit is likely to hinder
student understanding of the formal approach where the idea is to make f{x) as close to
the limit value as we want by making x close enough to the limit point.

These researchers consider the formal definition of limits as an important element
of understanding limits conceptually. Although they acknowledge that the dynamic view
seems to be useful, and perhaps inevitable, in making sense of the limit concept
intuitively at the initial stages of learning, they also highlight that the lack of familiarity

with the assumptions of the formal theory results with difficulties with respect to

particular applications of the concept5 (Bezuidenhout, 2001; Tall, 1980; Tall &

5 On the other hand, Parameswaran (2007) mentions that the introductory calculus courses should be
informal and intuitive and notes that “the precise, formal definition of the concept of limit is so complex
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Schwarzenberger, 1978; Williams, 1991). “Limiting processes are not always intuitive,
and so a formal framework provides a powerful tool for thinking about and evaluating
some limits” (Szydlik, 2000, p. 259).

2.1.4. Textbooks, teaching and attitudes towards mathematics

Some researchers would argue that the intuitive aspects of limit are perpetuated in
teaching and textbooks with their emphases on the visual representations of functions as
graphs or numerical approximations, which are based on the natural perception of
continuity. Cornu (1991) mentions that “in teaching mathematics, certain aspects of the
limit concept are given greater emphasis which are revealed by a review of the
curriculum, the textbooks and examinations” (p. 153). According to him, instead of
focusing on limit conceptually, textbooks may overemphasize “equalities, the notion of
absolute value, the idea of sufficient condition and, above all, on operations: the limit of
a sum, a product, and so on” (Cornu, 1991, p. 153, italics in original). He argues that the
textbooks’ focus on algebra and calculation reflects a bias favoring operations and
procedures over the analytical aspects of the limit concept.

Similarly, Bezuidenhout’ (2001) argues that students’ understanding of limits and
its underlying concepts seems to be based on isolated procedures and the conceptual link
among those are missing.

Such a situation may be mainly due to a learning and teaching approach

that emphasizes to a large extent the procedural aspects of the calculus,

and neglects a solid grounding in the understanding of the conceptual

and counterintuitive that it fails to bring out readily the simple and intuitively obvious ideas which led to it
in the first place” (p. 194).
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underpinnings of the calculus. Moreover, the stereotyped exercises that are

a feature of several calculus texts often encourage an instrumental

approach, rather than a relational understanding of the calculus concepts.

Taking into account the procedure-oriented nature of some calculus texts,

it should not be considered as strange if a student confuses manipulative

skills with a real understanding of calculus content. (p. 498)
Williams (1991) considers students’ attitudes toward practicality and mathematical truth,
which hinder their appreciation of formal thinking, as another element that can affect
learning about limits. He mentions that attitudes toward practicality can result from
students’ classroom experiences and the current curriculum provides little motivation
with respect to formal thinking and notes that the students in his study

...often considered the ease and practicality of a model of limit more

important than mathematical formality. This is particularly true in the

sense that models of limit that allow them to deal with the realities of

limits in the classroom, the kind they see on tests, tend to be seen as

sufficient for the purposes of most students. It was noted by several

students that neither formal or dynamic models of limit figure heavily in

the procedures students use to work problems from their calculus class;

their procedural knowledge (e.g., substituting values into continuous

functions, factoring and cancelling, using conjugates, employing

L’Hopital’s rule) is largely separate from their conceptual knowledge.

(Williams, 1991, p. 233)
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Parameswaran (2007) states that “it is typical for calculus books to motivate the notion of
limits graphically” (p. 212). He then talks about an example in a typical calculus textbook

sin x

in which lim is first motivated by the tabulating some values of the function around

x>0 X

x=0 and then drawing the graph of the function. He points out that although the textbook
author mentions explicitly that the table only allows one to guess the limit value but not
to prove it, “the students seem to develop the idea that limit is no different from a process
of approximation” (p. 213).
2.1.5. Possible links between historical development and student learning of limits

Cornu (1991) distinguishes between didactical and cognitive obstacles in learning
mathematics. Didactical obstacles “occur because of the nature of the teaching and the
teacher”, whereas epistemological obstacles “occur because of the nature of mathematical
concepts themselves” (Cornu, 1991, p. 158). He identifies four epistemological obstacles
in the historical development of the limit concept: the failure to link geometry with
numbers, the notion of infinitely large and infinitely small, the metaphysical aspect of the
notion of limit, and the question of whether the limit is attained or not. By considering
some of the conceptual obstacles about limits as epistemological, he acknowledges that
the difficulties faced by students might also result from the nature of the limit concept
besides the teaching approaches. In fact, some of the conceptual obstacles students face
as they learn the concept may be identical to those mathematicians faced over the
historical development of limits. For example, Williams (1991) mentions “limit as
boundary” and “limit as unreachable” as common student difficulties about limit (See
Section 2.1.2). These views of limit are mathematically incorrect and were also

problematized by Lagrange and other mathematicians when they debated “whether a
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variable can go beyond the limit and whether a variable can definitely reach the limit”
(Schubring, 2005, p. 293). Given this, some researchers consider bringing some elements
of the historical development of limits to classrooms as potentially useful in student
learning. For example, given the findings of his study, Williams (1991) comments that

Just as students’ informal limit models tend to parallel those of the

mathematical community prior to Cauchyj, it is possible that only by

appreciating the sorts of problems that motivated Cauchy’s work will

students be motivated to understand its implications. Perhaps this is to say

that the very historical and cultural contexts that lent vitality to the original

work are the best medium through which to approach the understanding of

that work. (p. 235)

Similarly, Bagni (2004) highlights that the historical development of visual, verbal and
symbolic representations of limits might parallel those of students’. He then notes that
this could help design teaching to overcome some of the conceptual obstacles and to help
students develop the different registers required by the static and the dynamic views of
limit®.

At this point, it is also important to note that research on learning about limits and
infinity is, so far, directed mainly by a cognitivist framework and primarily focuses on
the notion of misconceptions. According to Sfard (2001), the cognitivist framework is
based on the metaphor learning as acquisition, which considers learning “as the storage

of information in the form of mental representations” (p.20). It considers understanding
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as relating new knowledge to prior knowledge by refining the existing mental
representations. By doing so, it highlights the individual nature of learning, viewing it as
the acquisition of the necessary mental schemes. Although this framework significantly
enhanced our understanding of the conceptual obstacles associated with the learning of
limit, another outlook on the issue might be needed since we cannot have direct access to
abstract constructs such as mental schemes, intuition and (mis)conceptions. Therefore, a
cognitive framework may not offer sufficient tools of analysis with which we can explore
how learners make sense of the limit concept. This study uses the commognitive
framework (Sfard, 2008), which is based on the metaphor learning as participation and
views learning as becoming a participant in a discourse. Basing learning processes on
social foundations, this framework considers discourse as its central unit of analysis in
which “the language of mental schemes, misconceptions, and cognitive conflict seems to
be giving way to a discourse on activities, patterns of interaction and communicational
failures” (Sfard, Forman & Kieran, 2001, p. 1, italics in original).
2.2 Commognitive framework

2.2.1. The general tenets

One of the highlights of the commognitive framework is the interrelationship
between communication and thinking. By defining thinking as the individualized form of
communication, Sfard (2008) argues that the “cognitive processes and interpersonal
communication processes are thus but different manifestations of basically the same

phenomenon” (p. 83). Given this, the term commognitive entails the combination of the

6 On the other hand, Bagni (2004) warns that the introduction of the problems faced by mathematicians in
history would not necessarily help students with their difficulties. In this respect, he seems to also consider
the epistemological nature of some of the conceptual obstacles associated with the limit concept.
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terms cognitive and communicational. From this perspective, developmental
transformations are “the result of two complementary processes, that of individualization
of the collective and that of communalization of the individual” (Sfard, 2008, p. 80, italics
in original). That the communal and individual aspects of discourse development are
intertwined processes can be explained as follows: Individual learning, which is defined
as participation in a discourse (e.g., mathematical discourse) whose rules are communally
agreed upon, is an example of individualization of the collective. On the other hand, as
individually formed ideas get accepted by the larger discourse community, it is also
possible for the individual to affect the development of a discourse on a broader range.
This is an example of communalization of the individual. By being processes rather than
static entities, discourses construct and reconstruct themselves in the interplay of
individualization and communalization, and are thus the “medium and the carrier of both
continuity and developmental change” (Sfard, 2008, p. 118). Therefore, the study of
human development can be considered equivalent to the study of the development of
discourses, where discourses are defined as “the different types of communication set
apart by their objects, the kinds of mediators used, and the rules followed by participants
and thus defining different communities of communicating actors” (Sfard, 2008, p. 93).
The commognitive framework views mathematics as a particular type of
discourse which is distinguishable by its word use, visual mediators, routines, and
narratives. Sfard (2008) differentiates between two types of discourse: colloquial
discourses are non-specialized, everyday discourses, and literate discourses are the
“discourses mediated mainly by symbolic artifacts created specifically for the sake of

communication” (p. 299). Number or quantity related words can frequently be found in
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colloquial discourses but “mathematical discourses as practiced in schools or in academia
dictate their own, more disciplined uses of these words™ (Sfard, 2008, p. 133). Unlike
colloquial discourses, the objects of the mathematical discourse “are featured as
something that can perhaps be ‘represented’ with visual means, but never really shown”
(Sfard, 2008, p.135). Given the abstract nature of mathematical concepts and that
students are expected to participate in the literate mathematical discourse, word use is a
critical element of the discourse because possible differences in participants’ use of those
words can hinder mathematical communication.

Visual mediators refer to the visible objects created and operated upon for the
sake of communication. Colloquial discourses are “often mediated by the images of
concrete objects” whereas scientific and mathematical discourses are primarily mediated
by symbolic artifacts (Sfard, 2008, p. 147). In mathematics, such artifacts consist of
algebraic symbols as well as the conventionally or idiosyncratically created diagrams,
graphs, tables and icons.

Routines refer to the set of metarules’ that define repetitive patterns in a
discourse. Routines can be idiosyncratic. For example, a student’s repetitive patterns
while doing mathematics might differ from that of another student or mathematicians.
The routines that are accepted as valid and enacted extensively by the experts of the
community are called norms. Although both routines and norms consist of metarules that
characterize repetitive patterns in a discourse, not every metarule that is enacted or

endorsed can be considered a norm. A metarule must satisfy the following in order to be

7 Metarules refer to the rules that characterize the patterns in the activity of the participants of a discourse.
See Section 2.2.2 for a more detailed discussion of the notion.
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a norm: It must be enacted widely within the community of discourse, and it must be
endorsed by the majority of the community, “especiall)-' by those within the community
who count as experts” (Sfard, 2008, p. 204).

Narrative is “any sequence of utterances framed as a description of objects, of
relations between objects, or of processes with or by objects, that is subject to
endorsement or rejection with the help of discourse-specific substantiation procedures”
(Sfard, 2008, p. 134, italics in original). Axioms, definitions and theorems are among the
endorsed narratives of mathematics. Narratives of a given discourse that are endorsed by
the majority of the discourse community, in particular by “experts”, are considered as
“true”. The endorsed narratives of an individual, however, can be different than those
endorsed by the mathematics community. For the analysis of an individual’s discourse,
an endorsed narrative refers to what one considers to be true in relation to the routines
one uses to substantiate those narratives. The idiosyncratic nature of endorsed narratives
results from the idiosyncratic nature of the routines. Mathematical learning takes place as
the endorsed narratives and routines of an individual become compatible with those of
the experts.

Sfard (2008) notes that “mathematics begins where the tangible real-life objects
end and where reflection on our own discourse about these objects begins” (p.129, italics
in original) and so it is “a multilayered recursive structure of discourses-about-discourse,
and its objects therefore are, in themselves, discursive constructs” (p. 161). The
generative power of mathematical discourses, like any other discourse, is obtained
through recursion with which “we can turn one discursive act into the object of another”

(Sfard, 2008, p. 103) and create metastatements, that is, statements about statements.
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Sfard (2008) argues that discourses develop in terms of expansions and compressions.
Discursive expansions are considered as endogenous “when there is an increase in the
amount of complexity of discursive routines” and as exogenous “when there is a
proliferation of new discourses” (Sfard, 2008, p. 119, italics in original). Discursive
compressions, on the other hand, result from reaching to a metalevel by means of
objectification. Objectification occurs through reification and alienation. Reification “is
the act of replacing sentences about processes and actions with propositions about states
and objects” (Sfard, 2008, p. 44), whereas alienation refers to “using discursive forms
that present phenomena in an impersonal way, as if they were occurring of themselves,
without the participation of human beings” (Sfard, 2008, p. 295). Through
objectification, we identify the commonalities between different processes within a
discourse and we unify many lower-level phenomena under one name. This new
metalevel discourse subsumes the lower-level, independently existing discourses and
“enables us to express in the new language everything that can be said in any of the
original discourses with their own signifiers” (Sfard, 2008, p. 122). Therefore, the
objectified discourse is more abstract than any single one of the discourses it subsumes.
Objectification increases the effectiveness of our communication and is also a means of
formalization of the mathematical discourse, especially through the use of symbolic
artifacts. However, since objectification replaces the talk about processes with the talk
about objects in an impersonal way8, it hides the discursive layers that constitute the

objects and also the metaphorical nature of the objects we speak about. By doing so, it

8 Note that changing the talk about processes to the talk about objects necessitates changes in the word use
of a discourse. Therefore, Sfard (2008) considers degree of objectification as crucial factor in the analysis
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also blurs the differences between the lower-level discourses that are subsumed, which
can be of significant importance, especially at the beginning stages of learning. This is
probably the reason why the insiders of the mathematical discourse (e.g., mathematicians,
mathematics teachers) “lose the ability to see as different what children cannot see as the
same” (Sfard, 2008, p. 59).

When human development is considered equivalent to the development of
discourses, the study of the historical development of mathematical concepts become
equivalent to the study of the evolution of the mathematical discourse about the concepts.
Since mathematics is a patterned, historically established metadiscursive activity, such
evolution consists of the development of thinking about the objects. Therefore, although
the historical processes of object creation follows a different sequence than students’
individualization of those objects, the communal aspect of mathematizing contains the
narratives and the routines students need to adapt to as they become participants in the
mathematical discourse. Moreover, the historical development of mathematical concepts
includes the junctures that enable the growth of the discourse through the interplay of
expansion and compression, which can be useful in the exploration of the conceptual
obstacles associated with the concepts. In this study, I will discuss the conceptual
obstacles associated with limit and its underlying concepts (infinitesimals and infinity)
through the analysis of the historical junctures that necessitated particular changes in the
previous mathematical discourse about the concepts. Next, I describe the elements of the

commognitive framework I will use to analyze those historical junctures in Chapter III.

of word use. The details of how to analyze of word use, visual mediators, routines and endorsed narratives
will be discussed in Chapter I'V (design of the study).
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2.2.2. Metarules and metaphors in discourse development

It was mentioned in Section 2.2.1 that discourses develop through the interplay of
expansions and compressions. More often than not, such junctures in the development of
a discourse result in changes in the metarules, also called metadiscursive rules, of the
existing discourse in order to extend it further. Unlike object-level rules, which “take the
form of narratives on the objects of the discourse”, metarules “define patterns in the
activity of the discursants trying to produce and substantiate object-level narratives”
(Sfard, 2008, p. 201). “A metarule in one mathematical discourse will give rise to an
object-level rule as soon as the present metadiscourse turns into a full-fledged part of the
mathematics itself” (Sfard, 2008, p. 202). For example, one of the metarules of

arithmetic ‘If we add an even number with another even number, the sum is an even
number’, becomes an object-level rule ‘ 2n+2m = 2(n+ m)for alln,m e R *? in the

algebraic discourse when expressed as the relation between the algebraic objectsnand m .
The tacit nature of the metarules of mathematics is amplified by objectification and
symbol use. Through reification and alienation, mathematical statements reach their
timeless forms, making it seem like mathematics exists independently of the creators of
those statements. Therefore, among the reasons metarules are mostly tacit are the
metadiscursive and metaphorical nature of mathematical objects. By being discourses
about discourses, metadiscursive statements hide the discursive layers they consist of and

the metaphors they are based on. Metaphors help us create new discourses through usage

? Note that the metarule and the object-level rule mentioned here are justified by the experts of
mathematics as true. As a result, they are among the endorsed narratives of mathematics. The former is a
meta-level narrative whereas the latter is an object-level narrative. Said differently, one can talk about rules
as well as narratives of a discourse as being meta-level and object-level.
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of words from familiar contexts when making sense of an unfamiliar context. Thus, the
mechanism of metaphor can be thought of as “the action of ‘transplanting’ words from
one discourse to another” (Sfard, 2008, p. 39). Although metaphors are crucial
mechanisms with which we build and expand discourses, “words that have been
transferred from one discourse to another cannot be incorporated to the new discourse
without some bending of the old rules” (Sfard, 2008, p. 75). Given this, the exploration of
the metaphors that govern different layers of a mathematical discourse becomes a central
part of the exploration of metarules'® in the development of the discourse. The analysis of
junctures in the development of a discourse with respect to the changes in the metarules
can give us information regarding the transitions learners need to go through as they
participate in the extended discourse. In what follows, an example of such a juncture will
be given in the domain of arithmetic.

When we work with positive integers, the metaphor underlying multiplication is
repeated addition. We make sense of multiplication by means of addition and consider
the product 2x3as 2+ 2 + 2 (two added to itself three times) or 3 + 3 (three added to
itself two times). Therefore, in this case, ‘we multiply by adding repeatedly’ is the
metarule of multiplication. This metarule also leads to another metarule, that
‘multiplication always makes bigger’. This means that whenever we multiply two
positive integers different than 1, the product is bigger than either of those integers. When

we multiply two positive rational numbers, on the other hand, the discourse on

multiplication has to go through some change. Considering %x % as adding %to itself

10 Note that using metaphors consistently in a given discourse is a type of metarule.
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— times does not make sense. Given this, the metarule, that multiplication is repeated

addition, has to change. We can think of multiplication of positive rational numbers by

considering each number as the side length of a rectangle and think about multiplication
in terms of the area of that rectangle. Moreover, since %x % is equal to% , whichisa

smaller number than both of the numbers we multiply, the metarule ‘multiplication
always makes bigger’ also needs to be abandoned. The visualization of multiplication as

hopping on the number line, which works for the case of positive integers, needs to be

replaced by the visualizations of multiplication as area of rectanglesl ! Itis these types of
junctures that will be elaborated on in this study since they require changes iﬁ the
metarules of the previously existing discourse to extend the discourse further. It should be
noted that the discourse on multiplication of positive rational numbers subéumes the
discourse on the multiplication of positive integers. Given this, the metarules, visual
mediators, and endorsed narratives, as well as the object-level rules that are valid for the
former are also valid for the latter. In contrast, not all the metarules, visual mediators and
endorsed narratives of the discourse on multiplication of positive integers are necessarily
valid for the more general, subsuming discourse on the multiplication of positive rational
numbers.

By being based on the tacit metarules and metaphors governing the discourse,

developmental junctures eventually require changes in the endorsed narratives of the

i Of course, the discourse about multiplication goes through yet other transitions when negative numbers
get into the picture.
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discourse. In that sense, they lead to the changes that are essential in order for the learner

to participate in the new aspects of the extended mathematical discourse.

Summary

In this chapter, I described the limit concept and summarized the literature about its
learning. Existing research on the learning of limits mostly characterizes the difficulties
students have about limits through misconceptions based on the assumptions of a
cognitivist framework. From this perspective, students need to change and refine their
mental schemes in order to overcome the conceptual obstacles they have about limits. I
argued that we do not have direct access to constructs such as (mis)conceptions and
mental schema. In other words, a cognitive framework may not offer sufficient tools of
analysis with which we can explore how learners make sense of the limit concept. I then
introduced Sfard’s (2008) commognitive framework as an alternative lens to investigate
development of discourse on limits and student difficulties associated with the concept.
From this perspective, students need to change elements of their discourse on limits in
order to overcome their conceptual obstacles. Sfard (2008) highlights word use, visual
mediators, routines, and narratives as the main tools of analyses to learn more about one’s
mathematical discourse. In this study, I will investigate whether such an analysis
enhances our knowledge of student learning about limits.

Existing research on limits also points to some possible links between the
historical development of limits and student learning. However, it does not elaborate on
the principles underlying the transitions learners need to go through as they attend to

different aspects of the limit notion. By viewing developmental processes as resulting
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from individualization of the communal and communalization of the individual, 1 will
concentrate on historical, and therefore communal, development of discourse on infinity,
infinitesimals, and limit in the following chapter. More specifically, I will explore the
historical development of limit related concepts through the commognitive framework,
with a particular focus on the junctures that resulted in changes in the metarules and
metaphors of the previously existing discourse on limits. The purpose of this
investigation is to gain more information about the nature of the conceptual obstacles
related to limits over history. Later in the study (Chapter VII), I will examine whether
such a consideration of historical development can be useful to learn more about

 individual student learning.
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CHAPTER 111

HISTORICAL DEVELOPMENT OF THE DISCOURSE ON INFINITY,
INFINITESIMALS AND LIMITS

In this chapter, I explore the historical development of infinity, infinitesimals and
limits. While doing so, I rely on historical documents as well as research on the historical
development of those concepts. When investigating the historical development of
discourse about those concepts, I pay attention to particular elements of the
commognitive framework, namely word use (objectification), metarules and metaphors',
that characterized particular realizations of infinity, infinitesimals and limits. I also use
these elements to identify the historical junctures that led to changes in the
metadiscursive rules as the discourse on these notions extended.

Although the historical developments of the concepts of infinity, intinitesimals
and limits are intertwined, I will first focus on them separately. I will then argue that
there were two types of historical junctures that led to changes in the metadiscursive rules
of the discourse on these concepts. The first type led to the objectification of the ideas
about infinity, infinitesimals and limits. The second type, which occurred in the
development of discourse on limits, led to an alternative realization of limit and
ultimately resulted in the elimination of motion as an idea underlying this notion. I will
argue that these two types of junctures form the bases of the changes in the

metadiscursive rules in the historical development of discourse on these three concepts.

! Recall that using metaphors when making sense of a mathematical concept is a type of metarule (See
Section 2.2.2)
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In order for the reader to follow the historical development of these concepts
clearly, I present the timeline for the mathematicians who will be addressed in this

chapter in Table 3.1.

Table 3.1: Timeline of the mathematicians discussed in this chapter over history

Ancient times Renaissance period 17th and 18th centuries 19th and 20th centuries
Eudoxus (405-355B.C.) __ Viete (1540-1603) Newton (1643-1727) _ Weierstrass (1815-1897)
Aristotle (384-322 B.C)) Descartes (1596-1650) Leibniz (1646-1716) Dedekind (1831-1916)
Euclid (325-265 B.C.) Cavalieri (1598-1647)  Euler (1707-1783) Cantor (1845-1918)
Archimedes (287-212 Fermat (1601-1665) Lagrange (1736-1813) Robinson (1918-1974)
B.C. Wallis (1616-1703) Cauchy (1789-1857)

3.1. The notion of infinity

Historically, the notions of potential infinity and actual infinity have been of
interest for philosophers, mathematicians and scientists since ancient times. Lakoff and
Nunez (2000) note that “outside mathematics, a process is seen as infinite if it continues
(iterates) indefinitely without stopping” (p. 156). On the other hand, there can be no
direct experience with the notion of infinity in real-life since our environment is restricted
by finiteness. Therefore, Aristotle (384-322 B.C) considered infinity only as potential:
“the non-limited possibility to increase an interval or to divide it” (Fischbein, Tirosh &
Hess, 1979, p. 3) and rejected the notion of actual infinity to avoid Zeno’s paradoxes2
and the inconsistencies in the existing discourse about potential infinity. Fischbein
(2001) notes that, in the case of potential infinity,

we deal with a dynamic form of infinity when we consider processes,

which are, at every moment, finite, but continue endlessly. We cannot

conceive the entire set of natural numbers, but we can conceive the idea
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that after every natural number, no matter how big, there is another natural

number. (p. 310)
The dynamic nature of visualizing infinite continuation without an endpoint is also
mentioned by Lakoff and Nunez (2000). They note that we make sense of such
continuation by motion that goes on and on forever. With this metaphor, we talk about
continuous processes without end by thinking of them as “infinite iterative processes,
processes that iterate without end but in which each iteration has an endpoint and a
result” (Lakoff & Nunez, 2000, p. 157). Thus, this metaphor enables us make sense of
infinite processes by means of infinitely many step-by step processes that are discrete.
This is the metaphor with which we realize potential infinity. In mathematics, we use the

notion of potential infinity whenever we write down the elements of a given sequence,

1 . . .
for example—, as 1 ,...or when we write the decimals of \/?; in terms of ones, tenths,
n

11
2’3
hundredths, and so on. Similarly, Tall (1992) argues that using words such as ¢ x tending
to infinity’ for the notations like ¢ x — o ’also represent infinity as a potentiality.
Therefore, mathematics makes frequent use of the notion of potential infinity through
word use and symbolization. At this point, it is important to note that, despite its common
use in the mathematical discourse, potential infinity is not objectified. When we think
about infinity as potential, we talk about it as a process but not as a distinct mathematical
object. Its use in the mathematical discourse is equivalent to its use in the colloquial

discourses, “which are also known as everyday or spontaneous because they often

develop as if by themselves, as a by-product of repetitive day-to-day actions” (Sfard,

2 For the description of Zeno’s paradox and its variations, see (Fischbein, 2001).
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2008, p. 132). Aristotle’s notion of potential infinity continued for centuries and it was
not until the 19" century that the mathematical distinction between potential and actual

infinity was made explicit: “In XVIII century...the difference among a very big number
and on ‘infinity’ was neglected and it seemed self-evident that a theorem true for every n

was true for n infinite, too” (Kline, 1991, I, p. 506 as cited in Bagni, 1997, p. 210).
Cantor’s (1845-1918) work in the 19" century replaced the notion of potential

infinity — the idea that infinity resides beyond any given number (positive or negative) —
with the notion of actual infinity, realized as an accumulation point. Using Cantor’s
words:
Mathematical infinity...is crescent beyond every limit or

indefinitely decrescent, and it is a quantity that remains finite. I call it

improper infinity [potential infinity]. Moreover, recently, another kind of

infinity...took place...By that...the infinity is considered as concentrated

in a certain point. When infinity occurs in this form, I call it proper infinity

[actual infinity]. (Bottazzini, Freguglia & Toti Rigatelli, 1992, p. 428 as

cited in Bagni, 1997, p. 210).
Here Cantor talks about improper, or potential, infinity similar to Fischbein’s (2001)
arguments that although the process continues endlessly, it is considered as finite at every
given moment. Cantor uses the word proper, or actual, infinity, on the other hand, to refer
to an end-state. Given this, Cantor realized actual infinity as a distinct entity but not as a
process and therefore objectified the notion of infinity through reification. This, on the
other hand, required changes in both the existing discourse about potential infinity and

also in the metarules of mathematical activities such as counting and measuring. “The
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shift of attention, from the natural numbers as a potentially infinite collection going on
and on, to a single entity the set N, given axiomatically, leads to considering the
relationships with other infinite sets” (Tall, 2001, p. 212, italics in original). By
introducing the notion of one-to-one correspondence in determining the equivalence of
the cardinality of sets, Cantor eventually transformed the metarules of counting: “If we
have to compare two infinite sets, we should not count their elements as we count finite
groups of objects. We have to determine the equivalence-or non-equivalence-of these sets
by formal means” (Fischbein, 2001, p. 310). The acceptance of infinity as actually
existing required the acceptance of “the strange proposition that the whole may be
equivalent to some of its parts” (Fischbein, Tirosh & Hess, 1979, p.4). For example, we
can come up with a one-to-one correspondence between the set of positive even numbers
and natural numbers, which in Cantorian terms, means that the cardinality of these two
sets are equal to each other. This, on the other hand, also means that the set of positive
even numbers, which is contained in the set of natural numbers, has equal cardinality
with the set of which it is a subset. Therefore, a previoué metarule of counting that “if we
find the cardinality of a proper subset of a given set, the result is a number less than the
cardinality of the larger set” had to change in the case of infinite sets. Moreover, Cantor
also showed that the cardinality of the set of natural numbers and the cardinality of the set
of points on a number line are not equivalent to each other since there could be no one-to-
one correspondence between these two sets. Therefore, although both sets contained
infinitely many numbers, they had distinct cardinalities. This meant that more than one
type of infinity existed. In that sense, although infinity was objectified as an ultimate

state and an existing ‘number’ o, the symbolic equation S =5, which made perfect sense
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for the number 5 as an object of mathematics, was meaningless for the case of infinity:

infinity was not equal to infinity! Instead, we used a family of notations ¥, to denote

different infinities. Lakoff and Nunez (2000) also mention that the famous mathematician
Hardy warns us not to consider «as a number in the usual sense “because
mathematicians have devised notions and ways of thinking, talking, writing, in which

oo is a number with respect to enumeration, though not calculation” (p. 165).

Besides counting, the notion of actual infinity also required changing some of the
metarules of arithmetic. Tall (2001), highlights that neither the subtraction nor the
division of the infinite cardinals can be uniquely defined. On the other hand, the
introduction of the notion of actual infinity results in a proliferation of other

mathematical discourses. Tall (1992) considers cardinal infinity, ordinal infinity and non-

standard (measuring) infinity among the three notions of inﬁnity3 used in mathematics
today. The fact that “natural numbers are not only used for counting, but also for putting
a set into an order” (Tall, 2001, p. 216) eventually led to the definition of order
relationships and the creation of ordinal numbers for which addition was not
commutative. As a result, the metarule of adding quantities regardless of their order,
which is valid for real numbers and the cardinal numbers does not hold for ordinal
numbers. “So strange were these ideas to the mathematics community when first
announced that Kronecker prevented the initial publication of Cantor’s theory of infinite

cardinals...” (Tall, 2001, p. 218).

3 Cardinal infinity extends counting by means of comparison of sets. Ordinal infinity is conceptualized in

terms of comparison of ordered sets. Measuring infinity extends measuring from real numbers to larger
ordered field (Tall, 1992).
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Fischbein, Tirosh and Hess (1979) argue that “the contradictory nature of infinity

can be pushed to higher levels but cannot be completely eliminated...even with the most

sophisticated mathematical tools” (p.4). Lakoff and Nunez (2000) seem to agree with this

since they claim that the metaphor with which we realize actual infinity is a special “case
of a single general conceptual metaphor in which processes that go on indefinitely are
conceptualized as having an end and an ultimate result” (p. 158). They call this metaphor
the Basic Metaphor of Infinity and argue that it turns potential infinity into actual infinity
in terms of a largest ‘number’ «. By means of this metaphor, proof by induction “needs

no longer be considered as potentially infinite process” but becomes a three-step

PTroOcedure following Peano’s axiom” (Tall, 2001, p. 210). As a result, actual infinity also
chan ges the metarules of proving.

It is probably true that even the symbolization of the notion of infinity in
mAathematics cannot keep us away from the conceptual obstacles associated with it.

The common mathematical notion for infinity-*...’— as in the sequence

‘1+ > + p +...”—does not even distinguish between potential and actual

infinity. If it is potential infinity, the sum only gives an endless sequence
of partial sums always less than 2; if it is actual infinity, the sum is exactly
2. (Lakoff & Nunez, 2000, p. 180)

On the other hand, actual infinity is now a meaningful, “non-contradictory concept,

consistent with the totality of the other mathematical concepts” (Fischbein, Tirosh &

c—

4 Tall (2001, p. 211) mentions that to prove a statement P(n) by induction, it is enough to (a) show P(l) is
true, (b) show the truth of P(k) implies the truth of P(k+1), and (c) quote the induction axiom, which states
that if (a) and (b) are true, then P(n) is true for all 7 in the set of natural numbers.

45



Hess, 1979, p. 3). Therefore, we accept the notion’s mathematical reality. In that respect,
the mathematical answer for 1+ % + % +... is exactly 2. The difficulty Lakoff and Nunez

addresses above, therefore, results from the conceptual but not the mathematical aspect of
infinity.
Summary

The objectification of infinity as a distinct mathematical entity did not occur till
the 19™ century. This required changing the talk (and word use) about potential infinity,

which is a process, to the talk about actual infinity, which is an accumulation point. Such
a transition necessitated changes in the metarules of counting, measuring, arithmetic and
proving. The notion of actual infinity also gave rise to new types of ‘numbers’, namely,
cardinal, ordinal and measuring (non-standard) infinities. Therefore, the development of
actual infinity led to an exogenous expansion in the mathematical discourse since it
ignited the proliferation of different mathematical discourses. Fischbein’s (2001) and
Tall’s (2001) arguments support the idea that the discursive expansion about the notion of
cardinals and ordinals took place only after, not before, the objectification and
formalization of actual infinity by means of an axiomatic system.

Although the notions of potential and actual infinity are distinct from each other

mathematically, they are both used frequently in the mathematical discourse’. Lakoff and

Nunez (2000) argue that the metaphors we use for potential and actual infinity are

5 It should be noted, however, that the notion of actual infinity created quite a chaos in the mathematics
community before its mathematical existence was accepted (Bagni, 1997; Fischbein, Tirosh & Hess, 1979;
Tall, 2001).
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variations of each other and are primarily based on our realization of the infinite
processes through iterative processes that have an end and an ultimate state.
3.2. The notion of infinitesimals

The concept of infinity, which is mostly associated with the notion of infinitely
large, also brings with it the notion of infinitely small. The term infinitesimal entails
infinitely small quantities, generally negligible, that are not real constants. Infinitesimals
are also called indivisibles, differentials, evanescent quantities and infinitely small
magnitudes (Kleiner, 2001). As mentioned in the preceding section, the discussions
about infinity go back to Aristotle and the first integral-like approach given to area
related problems was given by Eudoxus (405-355 B.C). Eudoxus suggested an approach
that seemed to have characteristics similar to an infinite process. This approach was
called the method of exhaustion, which led to the implicit notion of infinitesimals. The
method assumed infinite divisibility of magnitudes and was primarily based on the
proposition

If from any magnitude there be subtracted a part not less than its half,

from the remainder another part not less than its half and so on, there will

at length remain a magnitude less than any preassigned magnitude of the

same kind. (Eves, 1983, p. 289)
A magnitude being “less than any preassigned magnitude of the same kind” formed the
initial underpinnings of an infinitesimal quantity. Although this method was handled by
Euclid (about 325-265 B.C.) and Archimedes (287-212 B.C.) later, it was Archimedes
who tied the problems of finding area to the explicit use of the concept of infinity. He

initiated the idea that an area could be composed of infinitely many geometrical lines but
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he could not form a solid explanation of the vaguely defined concept of infinitesimals.
The mathematics of this period is considered as static since it lacked the consideration of
motion and change and was based on the axiomatic structure of geometry. Although the
initial underpinnings of infinitesimals were present in this era (around 300 B.C.), they
could not be justified with the geometric foundation. Since the idea of infinitesimals
relied too much on intuition and was not based on the solid foundation of mathematics,
which was geometry with its axiomatic/deductive structure in this period, it was
considered unsound. Therefore, it was discarded by the ancient Greek mathematicians
and was not emphasized assertively by Archimedes.

In 1635, Cavalieri (1598-1647) applied indivisibles or fixed infinitesimals
successfully to problems in the mensuration of areas and volumes which brought
infinitesimals back into discussion (Boyer, 1970). He used the geometrical approach,
which still dominated the renaissance mathematics, and found the integrals of n™-degree
polynomials accurately. Yet, a revolution was about to come as mathematicians like
Viete, Descartes, Wallis and Fermat recognized the use of algebra as an aid to geometry.
This led to the tendency towards the symbolic-algebraic over geometric by the end of the
renaissance period. Descartes’ (1596-1650) work, published shortly after Cavalieri’s,

changed the course of infinitesimal analysis once again and initiated the period called the

arithmetization of geometry6.

6 This, together with the discovery of non-Euclidean geometry, marked the stagnation of geometry for
about a century and a half.
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The mathematics of the late renaissance and 17" century relied on the dynamic7

approach and overshadowed the static approach given to mathematics since the ancient
Greeks. These changes enabled the reevaluation and reanalysis of the infinitesimal
calculus into what we now know as calculus. The use of infinite-series expansions for the
generalization of analysis not only to polynomial functions but also to rational, irrational,
algebraic and transcendental functions required a new infinite analysis. This was
recognized first by Newton in 1665-66 and then independently by Leibniz in 1673-76
(Boyer, 1970).

Newton’s main contribution was to justify that the infinite processes were as
respectable as the algebraic ones. His approacﬁ to infinite processes was mainly dynamic
and relied on the notion of incremental change because of the physical nature of his
problems at hand. However, since mathematicians have been deeply skeptical of the
concept of infinitesimals due to their intuitive and non-rigorous characteristics, Newton
avoided using ‘infinitely little’ but used the term ‘evanescent’ while discussing fluxions®.
Historically, the strongest criticism of Newton’s calculus came from Berkeley in 1734.
Berkeley’s reaction was primarily based on Newton’s implicit use of infinitesimals in
calculus: “And what are these same evanescent Increments? They are neither finite
Quantities, nor Quantities infinitely small, nor yet nothing. May we not call them the
Ghosts of departed Quantities?” (Berkeley, 1734, as cited in Jesseph, 1993, p. 199).

Leibniz, on the other hand, gave importance to appropriating notations and was

able to give the correct rule for differentiation for the product of two quantities. Yet, he

7 The consideration of motion and change in mathematics through physical problems.
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did not consider these quantities as variables one of which depended on the other, so he
missed the idea of differentiation of a variable with respect to another variable. Leibniz’
proof of the product rule was as follows:

d(xy) = (x+dx)(y +dy) — xy where dxand dy are the differentials or
infinitely small differences of xand y. So Leibniz states that “the

quantity dxdy ...is infinitely small in comparison with the rest, and hence

can be disregarded” (Edwards, 1979, p.255).
Boyer (1970) argues that Leibniz and his disciples could not make clear what they meant
by infinitely small change and could not justify the elimination of quantities that were
infinitely small compared to others. According to him, Leibniz’ calculus was a failure
compared to Newton’s from this logical viewpoint. It should be noted that both Newton
and Leibniz worked on the calculus of instantaneous change. Therefore, they were
implicitly using limit as a process, but not as an explicitly defined concept, as they
obtained the tangent line at a point through a sequence of the secant lines passing from
that point (Lakoff & Nunez, 2000). On the other hand, Newton used a geometric

approach in the process whereas Leibniz relied more on arithmetic.
Euler (1707-1783) shone in 18" century with his work on the possibilities

inherent in the infinite power series. By means of symbol manipulation, Euler showed
that “what is true for convergent series is true for divergent series, what is true for finite
quantities is true for infinitely large and infinitely small quantities” (Kleiner, 1991, p.

295). To Euler, the transition from finite differences to the limit method (limit as a

8
Newton referred to a varying (flowing) quantity as a fluent. He used the term fluxion to refer to the
instantaneous rate of change of a fluid.
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process) was straightforward and was based on his consideration of continuity of real
numbers:

Both infinitely small and infinitely large quantities often occur in series of

numbers. Since there are finite numbers mixed in these series, it is clearer

than daylight how, according to the laws of continuity, one passes from

finite quantities to infinitely small and to infinitely large quantities (Euler,

2000, p. 90).
On the other hand, infinitely small quantities were intentionally banned from Lagrange’s
lectures since he considered them as concepts that lacked adequate foundational basis
(Schubring, 2005, p. 290).

Infinitesimals went on being under attack till the beginning of the 20™ centuryg.

On the other hand, “they still continued to flourish in the practical world of engineering
and science ..., representing not a fixed infinitesimal quantity, but as a variable that could
become ‘arbitrarily small’” (Tall & Tirosh, 2001, p. 130). In mid 20™ century, Abraham
Robinson (1918-1974) introduced his theory of non-standard analysis, in which
“infinitesimals were formulated on a logical basis” (Tall & Tirosh, 2001, p. 130). This
still did not solve the debate as to whether infinitesimals can be considered as logically
sound mathematical objects since the new formulation of infinitesimals brought its
relevant incompatibilities with the existing mathematical discourses. This debate

. . st
continues into the 21" century.

9 . .. .
See the next section about limit for further details.
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It was mentioned before that the introduction of different types of infinities
changes the metarules of counting and measuring. Cardinal numbers, for example,
require a different way of counting for infinite sets than finite sets through the notion of
one-to-one correspondence. Recognition of non-standard infinity, which Tall (1992)
refers to as the measuring infinity, marks a change in the notion of infinity and the
metarules of measuring and is based on the non-standard analysis of Robinson. “To
explain such a theory requires the formal interpretation of the notion of an infinitesimal”
(Tall, 1980a, p. 274). Measuring infinity considers a point as a ball of infinitesimal size,
by which “we discover a theory that allows both the indivisibility of ‘points’ and also
infinite divisibility of a line” (Tall, 1980a, p. 274). In that sense, a point which is
considered dimensionless is now a ball with an infinitesimal radius. Tall (1980b) also
mentions that non-standard analysis, through the reformulation of infinitesimals, leads to
new types of numbers, namely hyperreal or superreal numbers.

Summary

Although the objectification of infinitesimals is absent before the 20" century, the

period that precedes Robinson’s non-standard analysis highlights the conceptual
obstacles regarding the acceptance of infinitesimals as mathematically justifiable objects.
Sfard (2008) notes that “not every metarule, whether enacted or endorsed, is a norm. In
order for a rule to be a norm, it must be widely enacted within a community” and it must
also “be endorsed by everybody [as true], and especially by those within the community
who count as experts” (p. 204). Given this, although the uses of infinitesimals had been
present, the narratives about them were not endorsed by the majority of the mathematics

community for a long time.
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Initially, the reason that hindered the acceptance of infinitesimals as valid
mathematical objects resulted from the almost mystical nature of the utterances about
infinitesimals (e.g., evanescent quantities or vanishing increments). Moreover, the use of
geometry by its dynamic representations, such as curves and graphs, but not by means of
its formal-deductive structure (Euclidean geometry) entailed continuous motion in space,
which was considered intuitive and sensuous. A more important reason, however, was
the way infinitesimals contradicted the endorsed narratives about real numbers. Lakoff
and Nunez (2000) mention that infinitesimals do not obey the arithmetic rules of real
numbers since they violate the Archimedean Principle'o and commensurabilityl ! Did
Robinson’s objectification of infinitesimals as particular types of numbers solve these
problems?

To this day the debate continues. Although the infinite cardinals are

generally accepted by the mathematical community, there are

mathematicians who fully embrace the theory of infinitesimals in non-

standard analysis, those who deny their existence and assert the pre-

eminence of standard analysis, and even a greater number who do not

agonise over the foundational problems and simply get on using

mathematics for practical purposes. (Tall & Tirosh, 2001, p. 130)

10 “Archimedean Principle: Given numbers 4 and B (where A4 is less than B) corresponding to the
magnitudes of two line segments, there is some natural number n such that 4 times n is greater than B”
(Lakoff & Nunez, 200, p. 298).

n “Those magnitudes are said to be commensurable which are measured by the same measure, and those
incommensurable which cannot have any common measure” (Heath, 1956, p. 10). In modern sense, two
non-zero quantities 4 and B are commensurable if there exists a quantity C such that 4=mC and B=nC for
non-zero whole numbers m and n.
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Interestingly, the reformulation of infinitesimals by means of logic “invoked the axiom of
choice to assert that such entities existed without being able to give a specific finite
construction” (Tall & Tirosh, 2001, p. 130). That is to say, the formal theory of
infinitesimals assumes the existence of the concept but cannot prove or construct their
existence. In that respect, it seems impossible to justify the notion based on the solid
foundations of mathematics. However, the discourse on infinitesimals continues to lead
to the proliferation of new mathematical discourses such as measuring infinities,
hyperreal and superreal numbers.
3.3. The notion of limit

Being the founders of calculus, Newton and Leibniz both used infinitesimals in
their theories as they worked on incremental change. By obtaining the tangent line at a
point through the use of a sequence of secant lines, they were using the notion of limit as
a process. The dynamic mathematics influencing the renaissance period relied heavily on
the metaphor of continuous motion. On the other hand, the symbolism of arithmetic and
its use for expanding the discourse on functions made arithmetic a better candidate for
‘the’ foundation of mathematics than geometry. Given these, it is not surprising that
Newton was criticized more than Leibniz or Euler. Although they all referred to
infinitesimals in their work, Newton also used geometry in the dynamic, and hence the
most intuitive, manner. Leibniz, by relying on arithmetic, probably avoided some
criticism.

Using the notion of limit as a process is referred to as the limit method in the

historical documents. After Newton and Leibniz, mathematicians such as MacLaurin and

54



d’Alembert kept on using this method on their problems. Lagrange opposed them on their
use of the limit method:
MacLaurin and d’Lambert used the idea of limits; but one can
observe the subtangent is not strictly the limit of subsecants, because there
is nothing to prevent the subsecants from further increasing when it has
become a subtangent. True limits... are quantities which one cannot go
beyond, although they can be approached as close as one wishes.
(Lagrange, 1799, as cited in Schubring, 2005, p. 293)
Lagrange’s arguments were primarily based on
the lacking of the concept of absolute value...so that it seems as if the
variable goes beyond the limit; the criticism is also at the problem, which
has always remained controversial, whether a variable can definitely reach
the limit or is only allowed to come close to it at any rate (Schubring,
2005, p. 293).
Although Lagrange uses words like “true limits...are quantities”, it was not until Cauchy
(1°789-1857) that the notion of limit was objectified. Lagrange seems to talk about limit
asS a ““subtangent”, which is “the limit of subsecants”. In that sense, he considers limits as
the quantities obtained through the limit process and does not explicitly define them. It
Showld also be noted that Lagrange’s word use “[true limits]...can be approached as close
XS One wishes” entail very small or infinitely small increments as well as motion.

hlerefore, the limit method makes use of the notion of infinitesimals and is based on the

“Xtaphor of continuous motion.
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The discourse of calculus went through a fundamental change with Cauchy. He
realized the necessity of establishing a theory of limits, which required the explicit
definition of the concept. He selected the fundamental concepts of calculus like limit,
convergence, derivative and integral and created the grand design of calculus where limit
became the concept on which the others were based and the concept of derivative came
before the concept of integral (Kleiner, 1991, 2001). The college level calculus that we
teach today mostly follows the outline of Cauchy. Table 3.2 shows the comparison of the

historical development of the calculus concepts with Cauchy’s design.

Table 3.2: Comparison of the historical development of calculus with Cauchy’s

framework

Historical development Design of Cauchy
Area and integral Infinity
Infinity and Infinitesimals Limit
Series (finite, infinite) and sequences Derivative
Derivative Integral
Limit Series and sequences

One of the reasons underlying Cauchy’s revolutionary departure from the established
Practice was his opposition to Lagrange, whose foundation of calculus was based on
algebra. Cauchy wanted to eliminate algebra as a basis of calculus and wanted his

IMethods to have the rigor demanded in geometry (Kleiner, 1991, 2001). Cauchy defined
Lt as follows:
When the values successively attributed to the same variable approach
indefinitely a fixed value, eventually differing form it by as little as one
could wish, that fixed value is called the limit of all the others (Kitcher,
1983, p.247).

IiS definition of infinitesimals was:
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When the successive absolute values of a variable decrease indefinitely in
such a way as to become less then any given quantity, that variable
becomes what is called an infinitesimal. Such a variable has zero for its
limit (Kitcher, 1983, p.247).
An analysis of Cauchy’s word use reveals that he objectified the notion of limit through
reification by referring to limit as a “fixed value”, that is a distinct mathematical object.
Note also that he uses the word “approaching”, which is based on the metaphor of
continuous motion. Finally, the phrases “absolute values of a variable decrease
indefinitely” and “differing from [a value] as little as one could wish” entail the use of
infinitely small quantities, namely, infinitesimals. Therefore, Cauchy’s definition of limit
was based on infinitesimals and the continuous motion metaphor, which were both
problematic for mathematicians of his time. The dynamic interpretation of limit was
considered intuitive by the community since terms like tending to have a “connotation of
desire, of aspiration. Numbers do not tend” (Fischbein, 1994, p. 239).
Since Cauchy based all of his calculus on the concept of limit, a precise definition
Of limit became of crucial importance. Weierstrass (1815-1897) and Dedekind '*(1831-
191 6) attempted to ‘remedy’ Cauchy’s definitions by finding “a purely arithmetic and
B <rfectly rigorous foundation for the principles of infinitesimal analysis” (Dedekind,
1 963, p.1 as cited in Kleiner, 1991). These mathematicians wanted to replace Cauchy’s
1(il'lernatic approach with the algebraic-arithmetic approach. The goal was to

ec(>nceptualize calculus as arithmetic by eliminating spatial intuition. In order to do this,

1>
Bolzano and Hilbert were also among the mathematicians of 19" century who favored arithmetization of

RAlyss.
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Natural continuity had to be eliminated from the concepts of space, planes,
lines, curves, and geometric figures. Geometry had to be reconceptualized
in terms of sets of discrete points, which were in turn to be conceptualized
purely in terms of numbers: points on a line as individual numbers...The
idea of a function as a curve in terms of the motion of a point had to be
completely replaced. There could be no motion, no direction, no
approaching a point. All these ideas had to be reconceptualized in purely
static terms using only real numbers. The geometric idea of approaching a
limit had to be replaced by static constraints on numbers alone, with no
geometry and no motion. This is necessary for characterizing calculus
purely in terms of arithmetic. (Lakoff & Nunez, 2000, p. 308)
Weierstrass accomplished this full agenda by considering space as sets of points. This led
to the consideration of the points on a line as numbers, which then led to the realization
of ““<continuity for a function as the preservation of closeness” (Lakoff & Nunez, 2000, p.
322) - In that sense, the distance between points in motion was replaced by the distance
between numbers. The result was Weierstrass’ ultimate definition of limit:
Let a function f be defined on an open interval containing a, except

possibly for a itself, and let L be a number. Then lim f(x) =L if and only

x—>a
if for any number & > 0 there exists a § > 0 such that if
0<|x—a|<Sthen|f(x)-L|<&.
Ii"’l\fing elinﬁﬁated the metaphor of continuous motion associated with infinitesimals and

ESometry, and being a logical-deductive system that had arithmetic as its foundation, this
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definition seemed to provide the precision mathematicians were looking for'>. Secondly,
the definition was strong enough to explain anomalous cases that violated the geometric
and dynamic conceptions of functions as curves. By doing so, it was believed that this
new paradigm was generalizable to a broader number of situations'®. On the other hand,
some mathematicians argued that this definition wiped out all the intuitive tools with
which we make sense of the concept. Note that the formal definition of limit is not
constructive since it does not enable us to find what the limit of a function is but to prove
that the limit we initially hypothesize is indeed the limit of the function at a particular
pPoint. That may be why the dynamic approach is still widely used both by
mathematicians and the students as they make sense of the notion.
Swurrzrng ry
The objectification of the notion of limit initiated by Cauchy requires the consideration of
limit aa thing: a particular value obtained from the limiting process. Hence, Cauchy
8ives a definition of limit by reification'". His definition of limit is based on the metaphor
OF o ntinuous motion and infinitesimals. Weierstrass and Dedekind’s attempts to
T SInedy’ Cauchy’s definition result from the incompatibility of these two notions with
the Qjscourse on previously existing concepts of mathematics that can be described
1.11€=I‘ely by means of algebra. The formal definition of limit Weierstrass introduces

Qhanges the metaphor of natural continuity to the metaphor of discreteness. By

13
1a At least till the collapse of the search for foundations (See Hersh, 1997; Lakatos, 1976).
However, Lakoff and Nunez (2000) argue that, since natural continuity uses a different conceptual
™Metaphor than the continuity of Weierstrass, the latter is neither a formalization nor a generalization of the
\Qsl“mer.
Note that reification is part of objectification and changes the talk about processes to the talk about

Products (See Section 2.2.1).
59



comnsidering numbers as sets of discrete points on the number line, he eliminates natural
continuity and therefore geometric motion and time from the discourse on limits. It is
important to point out that such a shift also requires a change in the definition of
functions as curves as well as the phrases like ‘tending to’ or ‘approaching’ since these
utterances entail continuous motion. It is by means of arithmetization, and thus the
discretization, of calculus that function becomes a type of correspondence between two
sets amnd that the distance between two points in space becomes the absolute value of the

difference between two numbers.

3. 4. Historical junctures in the development of discourse on infinity, infinitesimals and
limits

In the previous sections about infinity, infinitesimals and limit, the historical
deVelopment of these concepts were discussed with a focus on some elements of the
COrMImognitive framework such as word use (objectification), metarules and metaphors. In
this S ection, I identify the historical junctures in the development of discourse on these
corl‘:-‘—epts that resulted in changes in the metarules of the discourse in order to extend it

ﬁ‘lrther. It was mentioned that the exploration of metaphors that govern different layers
Ot a Qiscourse is a central part of the exploration of the metarules in discourse
cleVﬁtlopment (See Section 2.2.2). Table 3.3 shows the junctures that transformed the
™Metaryles in the development of infinity, infinitesimals and limits over history.
I highlight two types of junctures in the historical development of discourse on
these three concepts: one led to the objectification of each concept; and one led to an
Alternative realization of the limit concept by the elimination of motion in space. Note
that for infinity and limits, the objectification initially took place by means of reification,

thy is, by changing the talk about a process to the talk about a product.
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T able 3.3: Historical junctures in the development of discourse on infinity, infinitesimals
and limits over history

Concept Infinity Infinitesimals Limits
Juncture(s) Cantor’s objectification of Robinson’s formulation of [1]Cauchy’s objectification of
potential infinity as actual infinitesimals on a logical limit
infinity basis [2] Weierstrass® introduction of

the formal definition of limit

Changing Realization of infinity as an  Realization of [1]Realization of limit as a
metaphor(s) indefinite process through infinitesimals as process is changed to
continuous motion is evanescent or diminishing realization of limit as a fixed
changed to realization of quantities is changed to value obtained as a result of
infinity as an end-state, realization of the process.
ultimate result or an infinitesimals as variables  [2]Continuous/spatial motion
accumulation point. that can be made and infinitesimals in
arbitrarily small. Cauchy’s definition are
eliminated. Motion is
replaced by the distance
between discrete numbers.
Changing Counting, measuring, Measuring (a point is a Representing functions (as
metarules proving (proof by induction)  ball with an infinitesimal  algebraic rules but not as graphs
and properties of arithmetic  radius) of curves), points in space (as
such as addition and discrete points on the number
division. line) and geometrical objects

(arithmetization of geometry).

Potential infinity and the limit method were originally realized as processes in their
hist()rical development. Actual infinity and limit, however, were realized as end-states or
N bers obtained at the end of the processes of going on forever and limit method,
resl)ectively. The objectification of infinitesimals was slightly different than infinity and
lirnits in that the mathematical justification of the concept is still under scrutiny.
1\’IQI‘eover, their initial realization was not in terms of a process but in terms of very small
QAU antities that could be eliminated. I consider Robinson’s approach to the concept
tl'll‘ough logic a historical juncture since it enabled a formal theory of infinitesimals as
©&jects of mathematics. However, the existence of infinitesimals cannot still be justified
through constructive methods of mathematics but rather is assumed.
I argue that the second type of historical juncture took place in the historical
development of discourse on limits. By revising Cauchy’s definition of limit, Weierstrass

61



also changed centuries-held metaphors about motion and continuity. Weierstrass’ formal
definition of limit eliminated infinitesimals from the previously existing discourse on
limits and replaced the metaphor of natural continuity with the metaphor of discreteness.
He discarded motion and time from his discourse on limits and geometry and offered
realizations of points as numbers on the number line and distances between points in
space as the distances between numbers.

As discourses develop and expand, the metarules and metaphors underlying the
mathematical concepts can change. Although an expanded discourse on a mathematical
concept subsumes the preceding discourse and enables generalization, some aspects of
the former version of the concept are lost during such transitions. The metaphor that

changes might be the most natural attribute of the concept with which learners initially
Mmalk e sense of the concept. Therefore, the junctures in discourse development leading to
trax sformations in the metarules can be of significant importance for learners and also
mi gyt explain some of their difficulties. Changes in metaphors and metarules eventually
Tesualtin changes in the word use and the endorsed narratives of the discourse as the
™Metadiscursive rules take the form of object-level rules (See Section 2.2.2). As a result,
they enable the proliferation of discourses. For example, the objectification of infinity
Tesultedina proliferation of discourses leading to concepts such as cardinal, ordinal and
rlleasuring infinities. Therefore, historical junctures may highlight some of the transitions
learners need to go through as they participate in the expanded mathematical discourse.
Surnmary
In this chapter, the development of discourse on infinity, infinitesimals and limits

Ower history was explored by means of some elements of the commognitive framework.
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T he exploration revealed the objectification of the notions as important milestones in
discourse development. Historically, objectification of mathematical concepts changed
the talk about processes to the talk about products or end states. Such changes also
resulted in transformations in particular metaphors and metarules of mathematics.

It was mentioned in Chapter II that, according to Sfard (2008), developmental
chaamn ges take place in the interplay of two processes: individualization of the communal
and communalization of the individual. The historical development of limit reveals how a
mathematical idea generated by an individual mathematician gains acceptance
collectively (e.g., Cantor’s objectification of infinity as actual infinity). From the

Comnummognitive lens, this is an example of communalization of the individual. One
instance where the second process, individualization of the communal, takes place is
Stud ent learning. Note that Sfard (2008) considers learning as participation in the
COXMIMunally agreed upon discourse on mathematics. Therefore, a question that will be
PUrsyed later in the study is how and whether the investigation of historical development
OF i xmits through the commognitive lens is useful to gain more information about
tea':-‘—lling and learning of limits. In particular, can the historical junctures that led to
han &Zes in the metarules of the discourse on limits be useful to explain some of the

tramsitions students go through as they learn about limits? These issues will be addressed

in Chapter VII of the study.
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CHAPTER 1V
DESIGN OF THE STUDY

In this chapter, I first present the specific research questions for the study. I then

describe the overall design of the study including the participants, data collection and
data analysis methods.
4.1. Specific research questions
The study addresses the following questions: 1) How is the discourse on limits
generated by the instructor in a beginning college-level calculus classroom? 2) Given the
instructor’s discourse on limits how do students talk about limits in a beginning college-
lev e calculus course? and 3) How do the elements of discourse on limits as generated
over history compare and contrast with the discourse on limits generated in a beginning-
leve1 calculus course?
4.2. The participants
Participants for this study consisted of one calculus instructor and his section of
und e rgraduate students who were taking a beginning-level calculus course in a large
Mi A ~vesten University. The course addresses the fundamental concepts of calculus such
Aas 1ixmits, differentiation and integrals. The course is fast-paced and loaded in terms of the

i ber of topics covered. It is structured to focus more on the concepts and their

AP Dlications than proofs.
While selecting the classroom to observe, I initially formed a complete list of

LTS tructors who were teaching the course in Spring 09. I then selected the instructors

Vhose teaching schedules enabled me to observe their classrooms. I sent five instructors,

Vo were randomly selected, an e-mail that briefly described my research interests and



asked whether they would like to participate in my study. One instructor responded to the
e-mail and expressed his willingness to let me observe his classroom. He wanted to learn
how I planned to conduct my study so we met before the beginning of the semester.
During that meeting, he gave me some information about the syllabus, the textbook and
the students enrolled in his classroom. I told him I was interested in both the teaching and
learning of limits. Initially, I suggested only audio-taping the class not to disturb the flow
of the lessons. However, the instructor suggested video-taping. I informed him about the
diagnostic survey I wanted to give students at the end of the unit on limits. He provided a
schedule for finishing the discussion on limits and suggested giving the surveys at the end
of the last lesson, a review session for the first exam. During the meeting, the instructor
also mmentioned he planned to go over the formal definition of limit' as well as proofs of

sorm e basic theorems and facts about limit in the classroom to motivate the students who

migkat take higher-level calculus classes in the future.
There were 31 students registered to the instructor’s section. During the period of

clas s xoom observations, the number of students attending the class ranged between 17
and 22 3, The class was very diverse in terms of the majors of students. Table 4.1 shows
the Qi stribution of students across their majors. There were 18 first-year; nine second-
Y<ar; three third-year students and one fourth-year student enrolled in the class. The

“Iole section was asked to take a diagnostic survey at the end of the unit on limits.

1
- X did not give the instructor any directives about what to teach and did not in any way intervene in his
Aching method or topics covered.
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Table 4.1: Distribution of students across their majors

Department Number of students Department Number of students
Computer engineering 2 Statistics 1
Electrical engineering 1 Accounting 1
Civil engineering 2 Finance 4
Engineering 2 Biochemistry and 2
(no preference) molecular biology
Computer Science 2 GBA-Prelaw 1
Premedical 3 Marketing 2
Residential College 1 Economics 2

Mathematics ) Ecc?logical sciences and 1
agriculture
Physics 1 Asian language 1

Based on the responses given to the survey, I interviewed four students to further explore

their discourse on limits’. Three of the students who participated in the individual
interview session had not taken calculus before; this was the first time they were
introduced to the limit concept. One student took a calculus class during high-school.
Ha~r1 ng prior knowledge about limits was not necessarily problematic for the study since
stud ents’ familiarity with colloquial or some of the literate aspects of limits was
anti cipated, though not required. The focus of the empirical part of the study was, given
theixr previous knowledge and also how the notion was introduced in the classroom, how
Stud ents worked on and talked about particular limit problems.
4.3. Data collection
The primary sources of data for this study consisted of field notes as well as video
tapes that were taken during the classroom observations; responses to a diagnostic survey
Elvent students; and task-based interviews including students’ written work. The

tethook students used in their class (Thomas’ Calculus, 1 ™ edition) and informal

i Scussions with the instructor with respect to his mediation of students’ use of the

=2

I‘Iow the students were recruited will be discussed in Section 4.3.
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textbook (e.g., assigned readings or homework problems) were considered as

supplementary data.
The data for the classroom observations were collected in eight days over a period

of two and a half weeks". I video-taped the classes in which the instructor talked about
limits and continuity starting from the first week of Spring 09 semester. Overall, the
observation data consisted of eight 50-minute lessons. While video-taping, I only focused
on the instructor and did not video-tape the students. I took field notes during classroom
observations and used them to keep track of the number of students attending the class as
wrell as the questions they asked to the instructor. I also used the field notes to keep a
record of definitions and problems the instructor presented in the class. My role in the
clas sroom was a participant observer. I did not interfere with the flow of the class during
instxuction. However, I helped some students before and after class if they asked me
SOTX € questions about limits. Since I wanted to interview some of the students at the end
Of tixe unit on limits, providing such help was useful to establish a relationship with them
and get ideas about their difficulties about limits. I transcribed the video-taped lessons
both with respect to what the instructor said and what he did in the classroom. Therefore,
for the analysis of the instructor’s discourse, my data consisted of video-tapes of eight

lessons and their transcripts as well as the field notes taken during classroom

Ob servations.
On the last day of the classroom observations, I gave all students a diagnostic

S‘-ll\/ey. That lesson was the review session for the exam and by that time, the instructor

3
“The class met three times a week.
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had completed his discussions on limits and continuity. He gave me 10 minutes at the end
of the class to administer the survey to the students. There were 23 students in the class
that day and all of them agreed to take the survey. I used the diagnostic survey (a) to
select the students for an individual interview session, and (b) to analyze student
responses with respect to the instructor’s discourse®. The questions in the diagnostic
survey (See Appendix A) were taken from Williams (2001) since his classification of
views related to limit is widely endorsed by research on student learning about limit. The
first question of the survey included six statements about limits and asked students to
decide whether the statements were true or false. Each of the six statements in the survey
was related to a different view of limit, some of which were difficulties addressed by
research on student learning. The second question then asked them which of the six
Statements best described their understanding of limits. The third question asked students
to d escribe what they understood a limit to be. The final question asked students to give a
rig o xous (formal) definition of limit, if possible.

While selecting the students for interview sessions, I focused on their responses to
the first and the second questions of the survey. I initially grouped all students with
TFespect to the six statements they chose as best for the second question. I planned to
Inyterview one student for each of the six different views of limit they chose as best

describing how they thought about limits. Since I wanted variety in terms of students’
“iews of limit, I then recorded the number of correct responses students in each group

E=ave for Question 1. Table 4.2 is a cross tabulation of questions 1 and 2, and shows the

Q
Xn this section, I only talk about how the students for the interview session were selected. The details of
€ analysis of the diagnostic survey in regard to the instructor’s discourse will be discussed in Section 4.4.
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classification of responses for the selection of students for the interview session. Its use is
explained below.

Table 4.2: Classification of student responses for Question 1 and Question 2 of the survey
Number of students selecting the statements as best in Question 2
Total number of students = 23

Number
III. IV. \"% VI VIIL.

of correct L II. .
Statement] Statement2 Statement3 Statement4 StatementS Statement6 "None”

responses
given to (N=11) (N=0) (N=1) (N=6) (N=1) (N=3) (N=1)
Questionl
Al correct 2
Scomect S
4 correct 4
3 correct 0
0
0
0

¥

2 correct
1 correct
O correct

cocococococo
cocoooc oMo

L Initial emailing Final selection

As an example, Table 4.2 shows that of the 11 students who selected statement 1
(““A\ limit describes how a function moves as x moves toward a certain point”) as the best
de£1 mition of limit, two categorized correctly all 6 statements in question 1, while 4
Cate gorized four correctly and two incorrectly. I initially e-mailed six students from
Colwamns [, 1L, IV, V, VI and VII, respectively’ (See Table 4.2). The students I e-mailed
are fyom the shaded cell in each column. The final selection of students is shown with

hash -marks in the relevant cells. The selection process proceeded as follows.

In the e-mails I briefly described my study, provided some information about the
il'1‘:erview sessions and offered a $25 gift card from a bookstore for their participation.

()tlly one student, from Column III, agreed to be interviewed. The other students did not

antto participate (participation was voluntary). I then sent another set of e-mails to six

S
Wote that none of the students chose Statement 2 as best.

69



students: two students with four correct answers from Column I, two students with three
correct answers from Column IV, and the two remaining students from Column VI (See
Table 4.2). Only the student from Column VI with five correct responses agreed to be
interviewed. At that point, I had one student selected from Column III and one from
Column VI. The students who were in Columns V and VII did not want to participate and
there was no student in Column II.
I repeated the procedure again, this time e-mailing all of the remaining students
from Columns I and IV. One of the students from Column I with five correct responses
agreed to participate in the interview session. At that stage, I had three students who
considered three different statements related to limits as best describing their realization
of” 1imit. On the other hand, the students’ responses to the six statements were mostly
accurate®. In order to find candidates who would likely have many of the difficulties
indi cated by the literature, I went to the classroom and looked for volunteers. Together
with the instructor, we encouraged students to participate since the experience could
COxtribute to their learning. As a further motivation (besides the gift card), I also
SUu g g ested tutoring the students at their convenience (such as before the exam). Only one
Stud ent agreed to participate. She was from Column I and had five correct responses to
Quaestion 1 (See Table 4.2). I wrote my e-mail on the board and asked students to contact

IN2€ in case they wanted to be interviewed but did not receive any response.

Getting students’ acceptance to volunteer for the study lasted for about two and a

halr weeks. In the end, I decided to go with the four who volunteered. Unfortunately, I
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could not recruit the students with many incorrect responses to the survey to participate in
the study. However, the interview sessions revealed that some of the four students who
seemed to have grasped the idea behind limits had many of the difficulties indicated by
research when they worked on tasks that targeted those obstacles’.
The questions in the interview session were designed to probe students’
realizations of limits and also investigate in further detail the conceptual obstacles
addressed by research on learning about limits. For the interview sessions, I initially
formed a pool of problems, which consisted of ten questions. Some of those questions
were taken directly from research on student learning on limits and limit related concepts;
the others I developed considering the instructor’s discourse on limits. For example, the
instructor told me he planned to go over the formal definition so I added problems to the
Po o1 that were about the formal view of limit. By the time I interviewed the students, I
redwa ced the number of questions to six (See Appendix B). There were two reasons for the
©lixx ination of those tasks: (a) It was unlikely for students to work on all of the problems
in aboutan hour, and (b) given the instructor’s discourse in the class, some of the
Pro b lems turned out to be redundant or completely unfamiliar to students. For example,
One of the questions I eliminated was about computing limits of a variety of functions
TSP resented algebraically. The instructor did not only go through similar examples in the
<lass but he also assigned these types of problems as homework. Therefore, it seemed

That this problem was redundant since it was going to assess students’ computational

S

Xt should be noted the term “accuracy” is considered here only in terms of students’ responses to the six

‘tements in the diagnostic survey and does not necessarily imply students’ realizations of limits were
— SCurate in general.

“The details of the student discourse on limits will be discussed in Chapter VI.
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skills more than their mathematical reasoning. Another problem I eliminated was taken
from research on student learning about infinity and required familiarity with some early
underpinnings of sequences. Since the instructor did not talk about infinity as a separate
concept in the class and since he did not give any elementary examples of sequences, I
concluded students would be too unfamiliar with the question. The other two questions I
eliminated were different versions of similar problems that were already in the remaining
six questions.
I conducted the interviews with the participants individually over a one week
period. The interviews lasted between 53 and 76 minutes. I audio-taped the interviews
and transcribed them with respect to what the students said and did. In order to keep track
of” ~wwhat the students did, I took notes during the interviews as students worked on the
Pro blems. Besides the transcriptions, interview data also consisted of students’ written
work. To sum up, for the analysis of students’ discourse on limits, my data consisted of

resp»onses to a diagnostic survey as well as four audio-taped interview sessions,

tram sscripts of the sessions and written student work.
4.4. Data analysis

F- <. Z. Analysis of the instructor’s discourse
I used the transcribed classroom observations to analyze the discourse of the

il'131:l‘uctor with respect to the four elements of discourse from the commognitive
ﬁ"C"litnework: word use, visual mediators, routines, and narratives. During the process of
tra-nscription, I created a list of common words the instructor used and categorized them
as Signifying functions, infinity, infinitesimals, limits, motion and proximity. When the

‘}anscription of the eight lessons was completed in terms of what the instructor said and
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what he did, I color-coded the words I initially identified depending on their
categorization. Every category was coded with a different color in the transcribed text.
T he words were color-coded based only on their mathematical use in the class. For

ex ample, I coded the word at as signifying proximity in the instructor’s discourse (e.g.,
““f~ 1is continuous if you can find the limit at a by plugging in”) but I did not code it when
he wused it in a colloquial manner (e.g., “now, let us look af this example™).

The next step was to identify the utterances in which the instructor talked about
lirnits. In order to do that, I first pulled out all the sentences including the word “limit”,
Whi ch was already color-coded, from the transcripts of the video tapes. However, there
‘Were also utterances about limit in which the instructor did not explicitly utter the word
““1imit”. In some of the cases where the instructor did not utter the word “limit”, he
described the behavior of function values as the x values approached the limit point. In
SO me others, he referred to a previously mentioned limit (e.g., “It [the limit] does not
€xist”; “L [the limit] is equal to three”; “The answer [the limit] is one.”). I considered
Such utterances as related to limits as well. An utterance about limit was formed by a
Sentence, part of a sentence or multiple sentences that conveyed a particular idea about
limit that could be interpreted just by reading. About 85% of the 775 utterances I
1dentified as related to limits consisted of a single sentence. The remaining utterances
Sither consisted of less than (about 2%) or more than (about 13%) a whole sentence

deDending on the purposes of the study. The only context in which an utterance consisted
OF some part of a sentence was when the instructor attended to multiple limit notations in
A single sentence. During the transcription process, I noted that the instructor used a

Varjety of words when he attended to the limit notation although he and the textbook
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suggested using a single word, namely “approaches” when reading the notation. The
existence of a family of words associated with the same notation in the instructor’s
discourse led me consider each instance in which he referred to the limit notation as a
d i stinct utterance in order to look for the patterns in his word use. In these cases, an
utterance could be less than one sentence if the instructor addressed more than one limit
notation. For example, the following explanation was considered as consisting of three
utterances since the instructor referred to three different limit notations.

“If the limit as x approaches c from the right is L [first utterance

about lim f(x)= L] and the limit as x approaches c from the left is K
+
X—>C

[second utterance about lim f(x) = K], and if K is not equal to L, then
xoc

the limit as x approaches c of f of x does not exist [third utterance

about lim f(x) =does not exist]”.
X—>C

The only contexts in which an utterance was considered as consisting of more
thian one sentence were (a) when the instructor described the behavior of the function
Values in relation to the x values, (b) when he asked what a given limit was equal to and
iI'fll'nediately gave the answer following his question, and (c) when the idea the instructor
COmmunicated about limits could be understood only together with the sentences

Preceding his conclusive statement about limits. While identifying an utterance in these
COntexts, I looked whether the utterance conveyed a complete idea about limits. Each of

the following examples was considered as a single utterance about limits although they

CoOnsisted of two sentences:
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Example 1: “So really what this [the function] is trying to do, it is

approaching a number very very small. A small negative or a small

positive”.

Example 2: “What is the limit of fof x as x approaches six? You get an

undefined”.

Example 3: “As x approaches, say c, of the function one. What is that

limit?”

Example 4: “When x approaches one, what do the function values do?

They get closer to two”.

Example 5: “What I want to do is to talk about another tool that is useful

for computing limits. This is called the sandwich theorem”.

Example 6: “What is our conclusion that we want here? Here is our

conclusion: fof x minus L [the limit] is less than epsilon”.

Once the utterances about limit were identified, they were coded into four
Categories with respect to the degree of objectification: colloquial, operational,
Obj ectified, and both operational and objectiﬁeds. The identification of these categories in
WoOrd use was based on the commognitive framework (degree of objectification) (See
Chapter II). Colloquial word use referred to talking about limits in everyday sense.
O perational word use referred to talking about limits as a process, whereas objectified
‘W ord use referred to talking about limit as an end result of the limit process or as a

ammber. There were also utterances in which the instructor talked about limits both in an

B
R The details of these categories will be further discussed in the word use section of the chapter on

Mistructor’s discourse.
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operational and objectified manner. These four categories (colloquial, operational,
objectified and both operational and objectified) and color-coding were used to explore
the patterns of word use in the instructor’s discourse. The exploration of patterns in the
instructor’s word use was then used to identify the contexts in which he altered his word
use from one categorization to the other or where his word use remained consistent, (e.g.,
strictly objectified) without any shifts. As a result, there were four contexts in which the
instructor’s word use was analyzed in detail: (a) informal definition of limit, (b) formal
d e finition of limit, (c) computing limits, and (d) continuity.

For the analysis of visual mediators, an inventory of all the visual mediators the
instructor used was created from the transcripts, which also included the snapshots of
€V erything he wrote and drew on the board. Those mediators were then classified in four
Categories: written words; drawn pictures of geometric shapes; graphs; and symbolic
representation.

Routines correspond to the set of metarules that describe repetitive actions of the
discursants (Sfard, 2008). Note that the repetitive nature of routines requires them to be
applied consistently in similar situations. Therefore, not all actions count as routines

unless they are consistently used in analogous contexts. For the investigation of routines,
I INainly focused on what the instructor did’ throughout the eight lessons. There were
Many possible routines that could be elaborated on over the entire observation period
(e. £., assigning homework at the end of the class). For the purposes of the study,

1"O\Wever, only the routines emerging from the transcripts that were most relevant to the

S
Note that the transcripts of the instructor’s discourse included both his words and actions in the

Qlaswoom.
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amnalyses of the word use and visual mediators were reported. Some of the routines in the
instructor’s discourse consisted of repeated mathematical procedures (algebra-based
routines) he utilized in the classroom in regard to limits. Some other routines, such as
graphing, were repeated actions emerging also from the analysis of word use and visual
mmediators. The main focus during the analysis of routines was to identify the when and
thhe how of a routine. How of a routine can be thought of as the “course of action or
P rocedure”’, whereas when of a routine refers to the instances “in which the discursants
Would deem this performance as appropriate” (Sfard, 2008, p. 208, italics in original).
"T"he when of a routine embodies the applicability and closure conditions (Sfard, 2008).
A\ pplicability conditions enable the exploration of the situations that trigger the
application of a particular routine. Closure conditions characterize the circumstances
und er which a performer considers her routine as successfully completed. Since routines
are wsed to substantiate mathematical narratives, closure conditions mark the end of a
routine and are followed by the closing statements after the implementation the routine.
Narrative is “any sequence of utterances framed as a description of objects, of
relations between objects, or of processes with or by objects, that is subject to
€rn2dorsement or rejection with the help of discourse-specific substantiation procedures”
(Sfard, 2008, p. 134, italics in original). It was mentioned in Section 2.2.2 that “a
M etarule in one mathematical discourse will give rise to an object-level rule as soon as
the Ppresent metadiscourse turns into a full-fledged part of the mathematics itself” (Sfard,
2()08, p. 202). Object-level rules, once endorsed by the community, form the object-level
Narrtives of mathematical discourse and are known as mathematical facts. The meta-

leve narratives, on the other hand, characterize the metarules related to the object-level
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narratives. For the instructor’s discourse, most of the endorsed narratives were object-
1ewvel in the form of a definition, theorem or rule about limits. For example, he endorsed
the following object-level narrative about the limit of the sum of two functions:

If lim f(x)=L and lim g(x)=M, whereL and M are real
X—>a X—>a

numbers, then lim (f(x)+g(x))=L+M.
x—a

In this study, the instructor’s object-level narratives were not reported because this would
result in restating all the facts about limits that are widely endorsed by the mathematical
CoO1nmunity that can also be found in a beginning calculus textbook. Instead, the focus
W as on the meta-level narratives that were most relevant to the instructor’s word use,
Visual mediators and routines in the classroom (e.g., “limit is a number”, and “limit is a
Process”, etc.).
<. <. 2. Analysis of the diagnostic survey and student interviews with respect to the
Zr2s5t7-uctor’s discourse
The diagnostic survey taken from Williams (2001) was used to select students for
the interview sessions and to gain information on students’ discourse on limits at the end
Of their lessons (See Appendix A). How the survey was used to select students for the
Interviews was discussed in Section 4.3. Here, I talk about the analysis of the survey with
Tespect to the instructor’s discourse.
Recall that the first question of the survey consisted of six statements about limits
Stadents chose as true or false. In the second question, students picked one of those
Statements as best describing their view of limit. For the third question, they provided

their own definitions of what a limit is. For the fourth and final question, they provided a

Tigorous (formal) definition of limit.
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According to Williams (1991), the six statements in the first question of the
survey correspond to six views about limit. He categorizes these views as dynamic-
theoretical; boundary; formal; unreachable; approximation; and dynamic-practical,
respectively. The statements describing limit as dynamic-theoretical, formal, and
dynamic-practical (Statements 1, 3, and 6, respectively) give general information whether
the students’ realizations of limit is based on motion or not. The statements describing
limit as boundary, unreachable, and approximation (Statements 2, 4, 5, respectively), on
the other hand, are used whether students have some of the difficulties identified by
research on student learning about limits (See Section 2.1.2, Table 2.1).

For the analysis of the first two questions of the survey, I initially recorded the
responses students gave for each of these statements as true or false. I then made a cross-
comparison of the responses with respect to the statements students chose as true. For
example, I looked at how many of the students marking Statement 1 as true also marked
Statements 2, 3, 4, 5, 6 as true. The purpose here was to look at the range of responses as
well as how and whether students considered different views of limit as related to each
other. I then made a cross-comparison of the statements students chose as true in regard
to the statements students chose as best describing their views of limit. For example, I
looked at how many of the students marking Statement 1 as true considered it as the best
statement; how many of those students considered Statement 2 as the best statement, etc.
The purpose of this part was to gain information about the views that dominated students’
realizations of limit and what other views of limit were connected to those realizations.

I then analyzed students’ responses for each of the six statements (some of which were

difficulties addressed by research) in relation to the instructor’s discourse. The purpose of
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this was to examine how instructor’s word use, visual mediators, routines, and endorsed

narratives compared and contrasted with the view of limit indicated by the statements.
For the third and fourth questions, I assigned numbers corresponding to each

student’s response. I also included which of the six statements students chose as best

were closest to their descriptions. I then explored student responses in relation to their

word use, visual mediators and endorsed narratives'°. While doing so, I investigated
whether students referred to limit as a process (operational word use) or as an end-state
(objectified word use). I also looked whether students® word use was dynamic (based on
motion) or static (based on proximity by means of distance). If students’ word use was
operational, they endorsed the narrative “limit is a process”; if their word use was
objectified, they endorsed the narrative “limit is a number”. In case students used any
visual mediators in their descriptions, such as the limit notation, I focused on their word
use when talking about the notation and whether it was based on dynamic or static word
use. I then compared and contrasted students’ word use, visual mediators and endorsed
narratives with the instructor’s. In cases instructor’s word use when talking about a visual
mediator was reflected in students’ discourse, I also examined how the instructor used
that visual mediator (such as graphs or symbolic notation).

Missing in the diagnostic survey were student difficulties such as “limit implies
continuity”, “limit as the function’s value”, and “limit as monotonic” (See Section 2.1.2,
Table 2.1). The interview questions were designed to address all of the difficulties

mentioned by research and also provide more information about students’ discourse on

10 . . . . , . .
The diagnostic survey was not a context in which students’ routines could be analyzed since such
analysis requires the exploration of repetitive patterns in a discourse. In order for such patterns to emerge,
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limits. I analyzed students’ discourse in the interviews, again, in terms of (a) elements of
the instructor’s discourse on limits (word use, visual mediators, routines, and endorsed
narratives), and (b) the difficulties indicated by research on student learning about limits.

While analyzing student responses in relation to the elements of the instructor’s
discourse, I focused on five mathematical contexts that emerged from the analysis of the
instructor’s discourse in relation to his word use. Those contexts were: (a) dynamic
aspect of limits, (b) formal aspect of limits, (c) limit notation, (d) infinity, and (d)
continuity. I used the transcripts of what the students said and did to explore each
instance of talk about these five contexts. I then compiled all the utterances for each
student in regard to these contexts in a separate document. The document also included
each student’s routines (e.g., graphing, plugging in the limit point to the function, etc)
and visual mediators (e.g., graphs and symbolic notation) that emerged from the
transcripts. I then looked at the general characteristics of each student’s word use (degree
of objectification as well as use of dynamic and static vocabulary), visual mediators,
routines, and endorsed narratives. I then compared and contrasted these four elements of
students’ discourse with those of the instructor’s.

While analyzing students’ discourse with respect to research on learning about
limits, I looked for the instances in the interview transcripts where students showed signs
of having the difficulties mentioned in the literature (See Section 2.1.2, Table 2.1). I
compiled each student’s utterances in such instances in another document, categorizing

them with respect to the six difficulties identified by the literature (See Table 2.1).

students’ discourse over a period of time needs to be observed in multiple contexts. This element of
students’ discourse was investigated during the interview sessions.
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After this, I focused on the similarities and differences between the elements of students’
and instructor’s discourse and explored how and whether the instructor’s discourse was
reflected in students’ discourse.

4.4.3. Analysis of the classroom discourse with respect to the historical development of

limits
In Chapter 111, the historical development of infinity, infinitesimals and limit was

described with a focus on particular elements of the commognitive framework: word use
(objectification), metarules and metaphors. In the same chapter, I also identified the
historical junctures in the development of discourse on these concepts that resulted in
changes in the metarules in order to extend it further (See Section 3.4). One of the goals
of this study was to explore whether the historical development of limits through the
commognitive lens could help us gain more information about student learning in today’s
calculus classrooms. In order to address this question, I examined the instructor’s and
students’ discourse on limits in relation to the historical development of limit related
concepts.
While analyzing the instructor’s discourse with respect to the development of
discourse on limits over history, I compared the ordering and introduction of topics
related to limits with the historical development of the related concepts. Besides this, the
focus of the analysis of instructor’s discourse in terms of the historical development was
to <O mpare and contrast the word use (objectification), metarules and metaphors in the
irlstrI.lctor’s discourse with those in the discourse on limits as generated over history.
While examining students’ discourse in regard to the historical development of
1 irflit 1 . . ,
related concepts, I first explored the contexts in which the experts’ conceptual

bstacles were similar to or different from those of the students’ in the study. I then
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focused on students’ realizations of the informal and the formal definition of limit as well
as infinity and compared and contrasted the word use (objectification), metarules, and
metaphors in students’ discourse with those in the discourse on limits as generated over
history. Finally, I looked at whether the historical junctures I identified through the
commognitive framework were reflected in the instructor’s and the students’ discourse on
limits.
In what follows, I will first present the findings of the analysis of the instructor’s

discourse on limits (Chapter V). Next, I will talk about students’ discourse on limits at
the end of their instruction (Chapter VI). Last, I will examine the classroom discourse in

relation to the historical development of limit related concepts (Chapter VII).
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CHAPTER YV
THE INSTRUCTOR’S DISCOURSE ON LIMITS
In this section, I first describe the general characteristics of the lessons taught by
the instructor. I then analyze the instructor’s discourse on limits with respect to word use,
visual mediators, routines, and endorsed narratives using the commognitive framework. I

use a pseudonym for the instructor and refer to him as Jason throughout the study.

A big portion of this chapter will be devoted to the analysis of word use. While
exploring Jason’s word use, I focus on the degree of objectification in his utterances on
limits. The degrees of objectification in his word use are classified as colloquial,
operational, objectified, and both operational and objectified. I then concentrate on

particular mathematical contexts to elaborate further on Jason’s word use. Those contexts

are the informal and the formal definition of limit, computing limits (limits at a point,

limnits at infinity and infinite limits), and continuity.
The second element of Jason’s discourse I attend to is the visual mediators he

used in the class. I talk about four types of visual mediators: written words, drawn
Pictures of geometric shapes, graphs and symbolic notation. The discussion about the

Visual mediators is followed by the discussion of the routines (metarules that underlie the

TSPetitive patterns) in Jason’s discourse. I talk only about the routines that are most

T . . . .
lated to his word use and visual mediators: algebra-based routines, geometry-based
IOy ' 3 . . . . .
Suti nes, using continuous motion as a metaphor, and using discreteness as a metaphor.

11““ally, I describe the narratives that Jason endorsed in the classroom based on the

a) Wses of the previous elements of his discourse.
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Jason covered limits during eight 50-minute lessons, one of which was a review
session for the exam. There were 31 students registered for the course. Jason’s mode of
teaching was lecture and there was little, if any, discussion among students. He started
the limit chapter on the first day of the semester and did not review or cover functions
and basic algebra. In the first lesson, he gave students information about homework,
textbook, syllabus and also exams. He told students they did not have to know calculus
for the course but they needed to have solid algebra knowledge. He mentioned this
consistently throughout the following lessons. He put a lot of emphasis on homework,
which he expected students to submit every week. He considered homework as the most

important part of the class in order for students to keep the pace of the class and also get
feedback on their work. He further noted that the exam problems would be directly from
or slight variations of the homework problems.

Jason assigned the homework problems directly from the textbook (Thomas’

Calculus, 2008, 11" edition). He considered the textbook as the most important resource
for the class. He mentioned that students could use either the 5 or the 11™ edition of the

book. He said that the media upgrade, which is the 11" edition, contained CDs that had

lectu.l‘es and mentioned this as possibly useful for some of the students. He also noted that
he "W ould sometimes follow the textbook very closely and sometimes he would deviate
&011'1 it to give students extra examples. It should be noted, however, that Jason did not
al lo\’v calculators for the exam; did not use any technology in the classroom and did not
assign any problems that would require students to use technology as homework

: "“Oblems. Table 5.1 shows the topics of each of the eight lessons and the corresponding

t
SXtbook section.
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Table 5.1: Topic outline for Jason’s lessons

Lesson
number
and date

Topics covered Textbook
section

Lessonl
01/12/09

Introduction: Homework, exam, attendance, calculator policy; syllabus
and textbook information

Rates of change and limits

Average rates of change (average speed)

Instantaneous rate of change (instantaneous speed)

Limit (as the instantaneous rate of change)

Section 2.1

Lesson2
01/14/09

Formal definition of rate of change

Geometrical interpretation (slope, secant lines, tangent line)

Instantaneous rate of change

What is a limit? Informal/intuitive definition Section 2.1
Computing limits (polynomials, rational functions, constant functions)

Factor theorem for polynomials

Finding the limits from a given graph

Lesson3
01/16/09

Limit laws

Computing limits by using the limit laws

Rule (Theorem 2 in the book): You can find the limits of polynomials

by plugging in. Section 2.2
(Theorem 3 in the book) We can find the limit of rational functions by

plugging in as long as the denominator is not zero.

Some applications of the theorems: computing limits

Lesson4
01/21/09

Long division (initiated from a homework problem)

Sandwich theorem

An application of the sandwich theorem: computing the limit of a
function sandwiched in between two functions

The precise/formal definition of a limit

One proof problem f{x)=2x-1; a=2; L=3 (algebraic)

Geometric explanation of the proof problem

Section 2.2 and
Section 2.3

L'eSSOns
O1/23/g9

Refining the concept of limit and more about the sandwich theorem

smO=1

Proof using sandwich theorem: lim
-0

né@

Computing other limits derived from combinations of

Finding limits from graphs of functions (as an introduction to two-sided  gection 2.4
limits)

Theorem (Theorem 6 in the book) If the right hand limit and the left

hand limit exist at a point, then the limit exists at that point.

Limits at infinity

Computing limits at infinity (rational functions)

Horizontal asymptotes (definition and some applications in the form of

computing limits of functions at infinity)
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Table 5.1 cont’d: Topic outline for Jason’s lessons

Lesson
number
and date

Topics covered

Textbook
section

Lesson6
01/26/09

Homework problem about one-sided limits that include absolute value
Horizontal asymptote applications: finding horizontal asymptotes of
given functions

Oblique/slanted asymptotes (Long division of polynomials)

Graphing functions focusing on their behavior at positive and negative
infinity; right-hand-side and left-hand-side of a vertical asymptote
(Book’s terminology: dominant terms)

Vertical asymptote (definition and applications)

Section 2.4 and
Section 2.5

Lesson7
01/28/09

Continuous functions

Intuitive definition of continuous functions

Mathematical definition of continuous functions

Examples of continuous functions

Showing that a function is continuous (two examples)

Properties of continuous functions

Theorem (Example 6 in the book): Polynomials are continuous.
Rational functions are continuous when the denominator isn’t equal to
zero. —without proof

Theorem( Theorem 10 in the book): Continuity of a composite function-

without proof
Fact(not in the book): Sin and Cos are continuous-without proof
Continuous extension/maximal continuous extension examples

Section 2.6

Lesson$
01/30/09

Intermediate value theorem (won’t be on the exam)-theoretical
definition and an example

Computing limits of various functions (rational, trigonometric,
involving absolute value, limits at infinity)

Graphing a rational function using dominant terms (oblique asymptote,
vertical asymptote —computing these limits)

Continuous extension/maximal continuous extension of a rational
function and a trigonometric function

Discussion: Can a function have an oblique asymptote and a horizontal
asymptote at the same time?

Review session

5.1. Word use

The ‘words Jason used when talking about limit of a function mainly consisted of the

WO related to motion, proximity, infinitesimals, infinity, and continuity. Figure 5.1
S . . . . .
hons the list of common words Jason used in his discourse on limits and the related

n s .. . .
Ot ons those words signify. The list includes the words that Jason used most frequently

when referring to limit related concepts and was generated during the process of

trahscribing the video-taped classroom sessions.
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The analysis of Jason’s discourse revealed that the degree of objectification in his
discourse varied depending on the context of word use. His utterances were classified as
colloquial, (mathematical) operational and (mathematical) objectified. Jason’s utterances
were considered colloquial if he used limits in everyday sense; operational if he referred
to limit as a process and based his arguments mainly on dynamic motion; and objectified

(or structural) if he referred to limit as a number, that is, as a distinct mathematical object

obtained at the end of the limiting process.

The classification of a particular utterance as operational or objectified turned out

to be complex in the context of reading the notation lim f(x)=L g Mathematically, we
x—>a

read lim f(x)=L as “the function f{x) approaches the limit L as x approaches a”
x—ra

(Hughes-Hallett et al., 2008; Thomas et al., 2008). In this respect, verbalizing x — a
using the word approaches is a part of the objectified literate discourse on limits and
although the word approaches signifies motion, its use in this context is not necessarily
based on motion; it is how we read the notation. Therefore, Jason’s utterances when
reading the notation in cases where he used the word approaches were classified as
Objectified if he referred to L as a number at the end of the notation. His use of the word
LD proaches was classified as operational when he used it outside the context of reading

the |imit notation. His utterances when reading the notation were classified as operational

1£: €2) he used different words that signify motion for verbalizing x — a, for example, “as

> mets closer and closer toa”; “as x becomes larger and larger” or “as x becomes a”,

1
“This will be discussed more in detail in the section about visual mediators.
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and (b) he used the word “approaches™ while reading x — a but did not refer L as a
number that is obtained at the end of the limiting process. Jason sometimes read

lim f(x)=L as “the limit of fof x at ais [the number] L”. Such utterances were

x—ra
classified as objectified since they were not based on dynamic motion and the end

product, which is the limit L, was used as a distinct number.
Overall, there were 775 utterances about limit throughout the eight lessons. Given

this large number of utterances, it is not feasible to discuss every utterance. However,

Jason’s colloquial, operational and objectified uses of limit related words will be

exemplified during the discussions that follow.

5. 1.1 Colloquial word use
Jason used limits in the colloquial sense only twice and he did so in the first

lesson where he talked about average and instantaneous rate of change. When addressing
average rate of change in terms of speed, he asked “What is the speed limit on Grand

River [Ave]? Probably twenty five miles per hour” (Jason, 12 January, 2009, Lesson 1).

Later inthe lesson, when he wanted to connect the notion of limit to instantaneous rate of
change, he mentioned the title of the lesson and said “I am trying to get to the second
WoOrd that we had in the title today. Rates of change...and the second word was limits”.

This was considered a colloquial use of the word limit since Jason referred to limit as a
WO he wrote on the board but not as a concept. Besides these, he did not use limits in
e .

velj'day sense but used the term mathematically.

S
- Operational word use
Operational use of limits results from the consideration of limit as a process,

“hich is consistent with the dynamic view of limit based on continuous motion. In most
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o T these cases, Jason did not use the word limit but described the behavior of function
~alues (f{x) approaching L) as x approaches a . In this respect, he referred to the limiting
process instead of referring to limit as a fixed value obtained from that process. While
doing so, he frequently used words that signify dynamic motion (see Figure 5.1, words
related to motion). 127 of Jason’s 775 utterances about limit were classified as
operational.
Operational word use contains two elements: use of words that signify motion and
d escription of the process of obtaining the limit rather than referring to the limit as a
number. Table 5.2 shows some examples of Jason’s operational word use. Jason

explicitly mentioned once that the mathematical way to deal with the “process of getting

closer and closer” (See Table 5.2, [l])2 is limits. In the context of continuity, while
determining the continuity of a function at a particular point from a given graph, he
looked at the function values on the left hand side and the right hand side of the limit
Point and compared them with the function’s actual value at the limit point. He referred
to this as a “limiting process” (Table 5.2, [16]). In these utterances, Jason used the word
lirn jt but referred to it as a process rather than the end result of the process.

When Jason used words operationally, he referred to x — a using words that
Sigmify motion such as “x get(s) closer and closer to” (Table 5.2, [3], [4]); “x goes to”
(Taple 5.2, [7], [13]); “x gets/becomes smaller and smaller/larger and larger” (Table 5.2,

1 1, [14]); and “x becomes very very large” (Table 5.2, [15]). He also mentioned
“Wa]king on” (Table 5.2, [12]) and “moving along” (Table 5.2, [17]) the x-axis while

determining the related function values in his discussions about particular limits.
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T able 5.2: Examples of Jason's operational word use

Utterance

Context of use

[ 11  Firstofall, this process of getting closer and closer, mathematically the way you  Instantaneous
want to deal with this is limits. rate of change
2 en X is zero point nine nine nine, then f of x is one point nine nine nine; an 2
[ Wh - int nine nine nine. then Fof x i ——— i )
when x is one point zero zero zero zero zero zero zero zero one, then we get two lim
point zero zero zero, very close to two. x> xX-
[3]1 We have some kind of function and what we are looking for is what happens to i 3x2 -1
this expression here when x gets closer and closer to three. xI—TB x
[41 IfI get closer and closer, as x gets closer and closer to five, this quantity gets lim x +1
closer and closer to six. x5
[5] If we are less than six, the function tries to get smaller and smaller [referring to lim f(x)
negative infinity]. x—6
[©6] If we are a little bigger than six, it tries to get larger and larger [referring to lim f(x)
positive infinity]. x—>6
L . 2x%-3
[7]1 So asx goes to infinity, the numerator goes to two. 1
x—oo Tx+4
. 1
[8] Andifx is smaller than one, it will look like it will tend to negative infinity. hm1 o
x>l X —
. 1
[2] So as x approaches one, it becomes really large if x is larger than one. hml =1
x>l X -
[10] So what are we doing here? Denominator is going to zero; how about the i 2_s
numerator? It is going twenty five minus five and it approaches twenty. xl_Ts =5
[11] SoasI graph this, as x becomes smaller and smaller [referring to 0], one over x lim sin(2")
becomes larger and larger. =0 X
[12] sol just keep walking on this axis [referring to the x-axis] the function values, in lim _1_
this case, they get closer and closer to zero. X0 X
(13 . . 2x*-3
1 Ifx goes to infinity, then seven over x approaches zero. 1
xox Ix+4
[1a . . . . sinx
1 Well, if we consider this, what happens as x becomes larger and larger? lim
x>0 X
(1 S1 WhatI want to do is I want, just like here, try to describe what the function does as lim (2+ sin x
x becomes very very large. X—00
01 6] IfI start drawing like this and I approach say here [referring to the left hand side
of the limit point] I have to make sure actually I can get to that point [the limit Continuity
point]. So this here, drawing like this, you can think of it as a limiting process.
ml I move along the x axis along my function values. Continuity
8} 8] Sol want to end up, I want to get closer and closer to the function value at this Continuity

point.

2
(Table 5.2, [1]) refers to utterance number 1 in Table 5.2.
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"X here were cases in which Jason’s word use was operational but did not necessarily
1 niclude words signifying motion. For example, in [2] (See Table 5.2), although he didn’t
wase a word signifying motion, he assigned successive values for x and investigated the
b ehavior of the function at those points to obtain the limit, which is described as the
d ynamic view of limit in literature.

Another element that characterizes operational word use is whether an utterance
d escribes the process of obtaining a limit or the end result of the process, in which case

1immit is a distinct value. If it is the former, the word use is operational, if it is the latter,

2

th e word use is objectified. For example, in the context of computing lim , Jason

x>l x-1

noted that the function values got “very close to two” (Table 5.2, [2]) but did not mention
th e limit as being equal to the number two in that utterance. Similarly, in the context

O £ lim x +1, he said “this quantity gets closer and closer to six” (Table 5.2, [4]) but this
x5

QU tterance does not consider the limit of the quantity as equal to six. In the context of

Hnding lim6 f(x) from a given graph (see Figure 5.2), Jason talked about the function
X—> .

Vv alues as getting “smaller and smaller” [5] when x is less than six and as getting “larger
amnd larger” [6] when x is greater than six. However, he did not objectify the process of
getting “smaller and smaller” and “larger and larger” with negative infinity and positive

infinity, respectively. Therefore, these two utterances describe the process of obtaining

the limit rather than the end result of that process.
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¥ igure 5.2: Jason's hand-written example for finding limits from a given graph

S ymbolically, the operational word use seems to describe the processes of x values
approaching a (x — a ) and the function values approaching the limit ( f(x) — L ). In this
respect, the limit L is approached but is not referred to as a distinct value that is obtained.
Jason’s utterances in which the function “get(s) closer and closer to” [4], [12], [18];
““becomes really large” [9]; “tends to” [8]; “is going to” [10]; “goes to” [7] and
““appproaches” [10], [13] highlight that his focus is on the process of the function values
<> proaching L rather than the limit being equal to L.

5. Z.3 Objectified word use
An utterance about limits is considered objectified if (a) the word /imit is uttered

SXplicitly to signify a mathematical object or a number that is obtained at the end of the
Yimiting process or (b) the word limit is not explicitly uttered but the behavior of the
function around the limit point is described through words that signify proximity or
distance, which is consistent with the formal definition of limits. Throughout the eight
lessons, 634 of Jason’s 775 utterances about limit were classified as objectified. Table 5.3
Shows some examples of Jason’s objectified word use on limits.
In Jason’s objectified discourse, limits were particular mathematical objects that

could be found (See Table 5.3, [6], [19]) and computed (Table 5.3, [4], [6], [13], [23])
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Thaving some “properties” (Table 5.3, [3]) and “rules” (Table 5.3, [7]). Moreover, they

<ould also help define other mathematical concepts such as continuity (Table 5.3, [20]).

"X able 5.3: Examples of Jason's objectified word use

Utterance Context of use
[ 1 ] Whatdoes it mean that the limit of the function as x approaches x zerois  lim f(x)=L
L? x—a
[21 This limit is one. ) 1
lim —
x—2x-1
[3 7] So whatl want to do is to look at some properties of limits. Limit laws
[<4] I wantto compute limits from limits that I know already. Limit laws
[S1 xapproaches say c of the function one... What is that limit? One. lim 1
X—>C
[6] Ifpofxisapolynomial, then you can find the limits by plugging in. lim P(x)
x—>c
L71 ...wecan use our limit rules and compute a number and we know the When does a limit not
limit exists. exist?
[8] ...and suppose I know that the limit as x approaches c of h of x is L. lim A(x)=L
X—>C
[91 Well if the function values of f get arbitrarily close to L as long as x is Informal definition of
sufficiently close to x zero. limit
[ 1 O] This means x is sufficiently close to x zero and this means f of x is Formal definition of limit
arbitrarily close to L.
[ 1 1 ] We want to say Ehat the function values should be no further than epsilon Formal definition of limit
away from the limit.
[ 1 27 The limit...the function values should be close to the limit. | f(x)- Ll <¢
L 1 3 ] You want to compute the limit as x approaches two of f of x and that lim f(x)=3
should be equal to three. x—2
[ 1 43 IsayI want to be within one over two hundred close to three [the limit], lim f(x)=3
how close do we have to be to two in order to insure that? x—2
L 1 5] What s the limit as x approaches one of the function? That is one. lim f(x)
x—1
(1 6] Soif the left hand and the right hand limit exists but are not equal, then =~ Right hand and left hand
01 the limit does not exist. limits
= - — " .
1 So. the horizontal asymptote just simply means that the limit at infinity Horizontal asymptote
exists and equals a number b...
1 8] Infinity is not really a number. So technically, this limit doesn’t exist. lim 1
' x0T ¥

U1 9] Let's look at this. f is continuous if you can find the limit at a by
plugging in.

,}i_l,na f(x)=f(a)

@l Well the definition of a continuous function is given in terms of the limit.

Continuous functions

2 1] What is this limit? It’s one; we have computed this. 1 sin x
x>0 x
[22] So the limit x approaches two from the left... What is the answer? lim 2x -4
Negative two.
e 2 X2
{237 If I need to compute limits, all I need to know is what the function does 2+ x)z _4
near when x is equal to zero. lin}) —
x>
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J ason’s consideration of limit as an object was also apparent when he referred to limits as
the “answer” of a limiting process (Table 5.3, [22]) and when he uttered phrases like
<<what is this limit?” (Table 5.3, [5], [21]) Once objectified, the limit also leads to other
xmathematical objects such as “the left hand and the right hand limit” (Table 5.3, [16])
that could again be computed.

Jason frequently talked about limits being equal to a number in his objectified
discourse (Table 5.3, [2], [5], [13], [15], [17]). He noted that the limit “exists” if it is
equal to a number (Table 5.3, [7], [17]); it “does not exist” if the right hand limit is not
equal to the left hand limit (Table 5.3, [16]) or the limit is equal to infinity (Table 5.3,

[ 1 8]). The instances where Jason read the limit notation (Table 5.3, [1], [5], [8], [15])
W ere also considered a part of his objectified discourse as long as he referred to limit as
amn end product (a number or infinity) of the limiting process.
When talking about limits in an objectified manner, Jason’s words that signify
IM otion gave way to words signifying proximity in terms of distance (see Figure 5.1,
W Ords related to proximity). When describing the behavior of the function around the
1ixmit point, he started talking about the function values being “arbitrarily close to L (the
Limit)” as the x values are “sufficiently close to” (Table 5.3, [9], [10]) or “near” xo (Table
S .3, [23]). Jason also mentioned the function values being “no further than epsilon away
Trom the limit” (Table 5.3, [11]); “close to the limit” (Table 5.3, [12]) or “within one over
TWwo hundred (epsilon) close to three (the limit value)” (Table 5.3, [14]) instead of using

‘Words signifying motion such as “closer and closer to” (See Table 5.2, [2], [3]) or

“become” (Table 5.2, [14]).
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The only case when Jason used a word signifying motion in his objectified
discourse on limits was when he referred to the limit notation. In these cases, he used the
~word “approaches” (Table 5.3 [1], [S], [8], [15]) while reading notations of the

form lim f(x) = L. It was mentioned before that his use of the word approaches was
x—>a

<onsidered as objectified since this was how Jason and the textbook for the course
described how to read the limit notation. Moreover, he talked about the limit as a number

wwhen he read the notation whereas he did not explicitly utter the word “limit” when he

wsed approaches in an operational manner.

5. 1.4 Operational and objectified word use

There were twelve instances where Jason’s utterances about limits were classified
a s both operational and objectified. In such cases, Jason used a combination of words that
s 1 gnify motion, which is consistent with the operational use of limit, together with words
th at signify limit as objectified (See Table 5.4).
For example, he mentioned that if the function values get “closer and closer to
SO me number L, then we call that the limit” (Table 5.4, [1]). Here, he used “closer and
<l oser to”, which he explicitly identified as a process before (see Table 5.2, [1]), together
“With the end result of that process - “the limit”. On the other hand, in this utterance, the
Limit value is not obtained; the function values get “closer and closer” to it. Except this,
all his utterances that were categorized as both operational and objectified include the
Word “goes to” (Table 5.4, [2-12]) in which he used the word limit as a distinct
Tathematical object or a number but considered x — a as a process. For instance, in [7]

(See Table 5.4), Jason explicitly uttered the word limit and stated two as the answer of
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the limit problem. However, he used the word “goes to” instead of “approaches” while

xreading the limit notation.

X able 5.4: Examples of Jason's operational and objectified word use

Utterance

Context of use

[1]

There was a little if in our definition if you read it carefully, and it says if it
gets closer and closer to some number L, then we call that the limit. If it
doesn’t, we say it is not defined.

Informal definition of
limit

[2] Well, if we have some sort of expression or function, we can try to take a What is a limit?
limit, say when x goes to zero
sind
[3] Now]I want to compute the limit as theta goes to zero. lim —
6—-0
[4] Let’s compute the limits as theta goes to zero of those two outside functions 1 sing
here. 60
5x% —3x+1
[S5] So whatis the limit as x goes to infinity of the numerator? lim ——————
x>0 2x2 -5
[61 Well, how do we do it? What is a horizontal asymptote? We say that this Horizontal asymptote
function has a horizontal asymptote y equals b if the limit as x goes to plus fx)=2+ sin x
infinity or as x goes to negative infinity of this quantity is b. B x
L73 Whatis the limit of two as x goes to infinity? Two. . sin x
lim (2+ )
X—>®© X
[8 ] The limit of sine x over x as x goes to infinity? One. lim (2 + s x)
X—>0 X
. sin(—t
L[S 1converted a limit from negative infinity to a limit where t goes to infinity. 2+ lim L(t—z
t—o -
[ 1 O] So the limit, to make it precise here, as x goes to infinity is zero of the I 2x% -3
denominator. xl_l’)!;o Ix+4
L 1 1 ] How about the limit as x goes to negative infinity of two x squared minus x . 2x?—x+1
lim ——

plus one divided by three x plus x squared minus five.

x>0 3x+ x> =5

(1 227 Because in order to have an oblique asymptote, the limit as goes to infinity is

what? It is plus or minus infinity

Oblique asymptote

At first, it seems that “goes to” and “approaches” are similar phrases that can be

ased while reading the limit notation. However, the textbook and Jason mentioned the

Notation lim f(x) =L is read as the limit as x approaches a is L and eight of the eleven

x—>a

Utterances in which Jason used “goes to” took place in the context of reading the limit

notation when x approached infinity. These observations suggest that Jason did not use

these two phrases as synonyms. Jason used “goes to” only three times in his utterances

98



about limit at a point (Table 5.4, [2-4]). In contrast, he used the phrase eight times when

The talked about limits at infinity. Such operational word use was also consistent with his

©overall utterances in the context of limit at infinity and is likely to result from Jason’s

<onsideration of infinity as potential infinity instead of actual inﬁnity3.

Table 5.5 and Figure 5.3 summarize the categorization of Jason’s utterances

throughout the eight lessons. Table 5.5 shows the count and percentage for each of the

four categories across all the lessons. Figure 5.3 excludes the utterances in Lesson 1, and

thus all the colloquial utterances, because of the sparseness of limit-related discourse in

I _esson 1.

"I able 5.5: Categorization of Jason’s limit related utterances in four categories

Lesson number L1 12 13 14 L5 L6 L7 L8] Total
Colloquial 2 0 0 0 0 0 0 0]2
I iamit relateq _2PTtONa1 3 21 15 2 20 47 3 16 | 127
it relate N N
W tterances Object{ﬁed] y 3 44 117 87 125 107 87 64 | 634
tional an
oobpjee‘caﬁﬁc p 0 1 1 0 3 5 0 2|12
Total 8 66 133 89 148 159 90 82| 775
Colloguial 2500 000 000 000 000 000 000 0.00|0.26
Operational 3750 31.82 1128 225 13.51 2956 3.33 19.51 | 16.39
P erxcentages  Objectified 3750 66.67 8797 97.75 84.46 6730 96.67 78.05 | 81.81
Operationaland 0 155 075 000 203 314 000 244|155
objectified

3
This will be discussed more in detail in Section 1.5.3.2 (limit at infinity) and Section 1.5.3.3 (infinite

limits).
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Categorization of Jason's limit related utterances

Bercentage
3888833888

]|

T
}um

0 Operational
 Objectified
m O { and
INGIIN o o NN
F & £ &£ &£ &
& & & & L &

Lesson Number

Fi gwre 5.3: Categorization of Jason’s limit related utterances as operational, objectified or
both in lessons 2-8.

5. Z _ 5 Mathematical context of use
It is important to note that Jason often used a combination of operational and objectified
utterances in the same mathematical context. In this section, some of his word use in
di fferent mathematical contexts will be described in further detail. For the sake of
simplicity, I use “context” rather than the longer “mathematical context” in the remainder
Of this section. The contexts that are fundamental to the realizations of limit were
identified as: the informal definition of limit; the formal definition of limit; computing a
limit (at a point and at infinity); infinite limits; and continuity. The purposes of this
S€ction can be summarized as follows:

e To exemplify the existence of shifts in word use (objectified, operational and/or

both) in Jason’s discourse in the same context.
e To describe Jason’s informal and formal definition of limit and to explore the

differences in his word use in these contexts.



e To describe Jason’s word use when he talked about limits at infinity and infinite

limits and to draw attention to his going back and forth between potential and
actual infinity in these contexts.

e To explore Jason’s use of infinitesimal related words in these contexts.

e To describe Jason’s informal and precise definition of continuity and to explore

the differences in his word use in these contexts.

5.1.5.1 Informal definition of limit
Ja s on introduced the informal definition of limit in the second lesson, right after his
di s cussions of average and instantaneous rate of change. He initially defined
ins tantaneous rate of change as the limit of average rate of changes “over smaller and
s aller intervals”. He then defined what a limit is and gave the informal definition of the
concept (See Table 5.6 and Figure 5.4). Although his discussions of instantaneous rate of
chamnge contained words that signify infinitesimals, such as “smaller and smaller” or
“Vvery small” intervals, he did not use infinitesimals in the informal definition of limit.

During his definition of the informal aspect of limit, Jason referred to the behavior

of the function both in an operational and an objectified manner. He said that the function

Values “should get closer and closer to L” as the x values get “closer and closer to” xy

(Table 5.6, [4]), which describes the limiting process by means of continuous motion.
Note that although Jason verbally mentioned this process, what he wrote on the board

Was the objectified version of the function’s behavior: “we say that the limit is L” (Table

S.6, [8]) if the function values get “arbitrarily close to L for all x sufficiently close to x;”

(Table 5.6, [6]).
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“X able 5.6: Jason's utterances about the informal definition of limit

What is said ‘What is done Type of utterance
He writes “f is defined on an interval
[ 1 1 Whatisalimit? about X" on the board and starts Objectified
drawing a graph.
a) x zero is here. I have some function
and I want to make sure it is
defined at least near x zero.
) Soifl take a small interval here, He draws an open interval around X .
this function is defined.
: . He shows the point on the left of
<) Idon’t care what it does xq where the function has an
somewhere away from x zero.
ic behavior.
«<d) Sowedon’taskitto be defined at x He writes “except possibly at xp” on
zero but at least nearby. the board.
[2]  Then we say as x approaches x zero of 3 B
the function fof x equals some He writes xl_‘:? f(x) and then st
number L if...(does not finish his 0 )
sentence) paacs:
[31  Whatdoes it mean that the limit of the ~ He shows the notation and turns back Objectified
function as x approaches x zero is L? to the graph he drew. 4
[41 It means that the function value, if I e
get closer and closer to x zero, it ;{;5 "(';:; ‘;.': the, ys-zi;ls in the graph he Operational
should approach some number L. Gl
| | 1t should get closer and closer to L. Operational
1 want to say it gets arbitrarily close to  He writes these on the board (See Objectified
L for all x sufficiently close to x zero. _ Figure 5.4). )
[71 So this is what I would want to call the Objectified
intuitive definition of a limit. cadesy
[8] Sowe say the limit is L if I can make
‘the function values to be arbitrarily Objectified

close to L if I choose my values of x

— sufficiently close to x zero.

Figure 5.4: Jason’s informal definition of limit (hand-written)
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I such utterances, he did not base his arguments on continuous motion but on proximity
tIxarough words that signify distance, which is consistent with the formal definition of
11 xmit. Therefore, it seems that Jason used elements from both definitions to introduce the
1ixmit notion.
Only two of his eight utterances about the informal definition of limit were
o p><rational. However, his utterances following this definition about evaluating the limits
o £ particular functions and finding limits from a given graph (see Table 5.1 for the topic
owa tline for this lesson) were often operational. In fact, Lesson 2 is the lesson that contains

thh < highest proportion of operational utterances throughout the eight lessons (See Table
S .S and Figure 5.3).

5.1.5.2 Formal definition of limit
Jas on introduced the formal definition of limit in the fourth lesson and also worked on an

€Xx ample where he proved lim 2x —1 = 3. Before talking about the formal definition, he
x—>2

Provided the rationale for the need for a precise definition of a limit (see Table 5.7). Jason
mMemntioned that the ways they computed limits “at least convinced us what these limits
are’” (Table 5.7, [4]) but noted that they would need a “precise definition” in order to
nake sure those techniques work (Table 5.7, [5-5a]). After this, he said that students
‘Were going to have some homework problems about the formal definition but the topic
‘Was not going to be in the exam. He wanted students to consider this as a challenge and
€ncouraged them to try to do the related homework problems. He also told students at the
€nd of the class that the homework problems about the precise definition would not be

8raded. In fact, he mentioned this definition being very abstract while working on the

Proof example.
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“I able 5.7: The rationale for the precise definition of limit

What is said What is done Type of utterance
[ 1 ] 1 wantto spend the rest of the time in
this class today by looking at the Objectified

formal definition of the limit...

[21 So what I want to do here is [ want to
write down the precise definition of a
limit.

He writes “precise definition of limit”

on the board. Objectified

[3 1 Why would we need such a thing as

recise definition of a limit? Objectified

[+ Well, we kind of said what a limit is in
words and it helped us to at least
convince us what these limits are that Objectified
we have been computing in class, say
of pol ials or things like this.

[S5 7 Itkind of made sense those laws of
limits that I wrote down but to really
make sure these work in mathematics,
we have to prove those things.

Objectified

aa) In order to prove something, we
need a precise definiti

[61 So that is why we need the precise All his comments up to here are

of a limit. verbal. Objectified

Table 5.8 shows Jason’s utterances about the formal definition of limit (See also Figure

5.5).

Figure 5.5: Jason's precise definition of limit (hand-written)






T able 5.8: Jason's precise definition of limit

What is said

What is done

Type of utterance

[ 71 Sohowdo we do a precise definition of
a limit?

Objectified

[ 81 Weneed a function fand we need it to
be defined in...my words that I said
before when we used for the loose
definition of the limit I said near x zero.

He emphasizes the word “near”.
p

Objectified

a) Let’s make this maybe more
precise. On an interval about x zero
except possibly for x zero.

He writes these on the board.

[ So we have seen before limits are very
interesting if our function is not defined
at the point.

Objectified

[ 1 € ] Then we say that the limit of f of x as x
approaches x zero is L.

He writes these on the board.

Objectified

[1 1 JAnd let’s see in math language how do 1
write this? I say the limit as x
approaches x zero of f of x equals L.

He writes these symbolically on the
board (See Figure 5.5).

Objectified

[ 1 == ] We say that is the case if...in my words
before I said well if the function values
of f are arbitrarily close to L as long as
x is sufficiently close to x zero.

He emphasizes the word
“sufficiently”.

Objectified

[1 3 ] So a little more formally, in math
language, I say if for all epsilon greater
than zero, this is going to play the role
of measuring how close we are to L in
our function values, there exists a delta
greater than zero, the delta is going to
play the role to measure saying that we
are sufficiently close to x zero.

He writes |x — x,| < & and then

If(x) —L| < & on the board.

Objectified

(147 So let’s put that in words... whenever x
is sufficiently close to x zero so that
means that the difference is no more
than delta then the function values
should be close to L.

He writes “sufficiently close to xo”
under |x — x,| < & on the board.

Objectified

[157 So how do we write this? The difference
of the function values from L should be
less than epsilon.

He writes “f{(x) arbitrarily close to L”
under | f(x)- LI < & on the board.
(See Figure 5.5)

Objectified

L1 6] Now this looks somewhat complicated.
So let me maybe decipher this. This
means x is sufficiently close to x zero
and this means f of x is arbitrarily close
toL.

He first shows |x—x0| <0 and then
|f(x)-L|<e

Objectified

[1 7] For any epsilon, I should be able to do
this and for any one of them then there
exists this delta.

He shows & >0

Objectified

U1 8]That means if x is sufficiently close,
delta close to x zero, then the limit...the
function values should be close to the
limit.

He first shows |x — x| < & and then
lf(x)-Lj<e

Objectified

{19150 let’s maybe do one example and
prove that a limit exists in this way.

Objectified

105



Overall, |
calegonz
definitior
WO a3
proximit
B0cIate
&peCts v

Jasor
Tose”
on contyy
ad close
deﬁniliol
dfﬁnitiol
abSO]Ute
Tty L 1
SuﬁiCien

Velugg

than(;[



«Overall, there were 19 utterances about the formal definition of limit and all of them were
categorized as objectified. The words Jason used when talking about the precise
d e finition of limit differed from those he used when talking about the informal definition
ira two aspects. First, his words signifying motion were replaced with words that signify
pPr-<oximity. Second, the presence of symbolism in the formal definition required Jason to
as ssociate symbolic representations with particular words. In what follows, these two
as poects will be described in more detail.

Jason’s words about the informal, or in his words “intuitive” (Table 5.6, [7]) and
“loose” (Table 5.8, [8]), definition of limit addressed the limiting process and were based
oxn continuous motion. Utterances in which the function values “approach” or “get closer
and closer to L” (Table 5.6, [4], [5]) as the x values “get closer and closer to x(” (Table
5.6, [4]) are examples of Jason’s operational word use when he talked about the informal
de finition of limit. In contrast, his words about the formal or “precise” (Table 5.8, [7])
definition addressed proximity and were based on distance measured by means of
absolute values. He mentioned that £ would “play the role of measuring how close we
are to L in our function values” and & would “play the role to measure saying that we are
SufTiciently close to x zero” (Table 5.8, [13]). He also talked about the closeness of the x

Values to xj; and the f{x) values to L in terms of the “difference” Ix - x0| being no bigger

than § [14] and the “difference”

f(x)— L|being less than & [15], respectively. In
Summary, the operational terminology such as getting closer and closer to (Table 5.2,

R 1), approaching (Table 5.2, [10]), becoming (Table 5.2, [9]) and going (Table 5.2, [7])
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~aere replaced by being “sufficiently close” (Table 5.8, [13], [14], [16], [18]), “arbitrarily
c 1 ose” (Table 5.8, [12], [16]) and “close” (Table 5.8, [18]) in the formal definition*.
Indeed, Lesson 4 stands out as the lesson which had the highest proportion of
o b»jectified utterances about limits (see Figure 5.3). This is in contrast with Lesson 2,
w Ihere Jason introduced the informal definition of limit and worked on some examples,
w Thich had the highest proportion of operational utterances about limits. This signals a
d 1 £Terence in word use in these two contexts. However, this shift in vocabulary was not

ad dressed by Jason in the classroom. Instead, he tried to connect these definitions when

he mentioned Ix - xol < J can be read as “x is sufficiently close to x¢” and

|f(.x)— L| < £ can be read as “f(x) is arbitrarily close to L” (Table 5.8, [16] and Table 5.6,

[81). This brings us to the second aspect of the word use in the formal definition.

The difference in word use between the informal and the formal language also
resulted from the translation of symbolic representations to words. Jason went back and
forth between the “math language” (Table 5.8, [11], [13]) and “words” (Table 5.8, [12],
[ 1 4]) more frequently while discussing the formal definition than the informal definition.

The informal definition contains lim f(x) = L, which is expressed as “the limit of the
xX—rx(

function as x approaches x zero is L” (Table 5.6, [3]) in words. The formal definition, on

the other hand, also requires the explanation of what £ and & refer to and what

\x - xol <¢é and | f(x)- LI < & mean. Jason considered this translation as complicated and

Jason used sufficiently close and arbitrari<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>