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ABSTRACT

A UNIFIED MODEL FOR

THE ANALYSIS OF INDIVIDUAL LATENT TRAJECTORIES

By

Chueh-An Hsieh

The application of item response theory models to repeated observations has

demonstrated great promise in developmental research. It allows researchers to take into

consideration the characteristics of both item response and measurement error in

longitudinal trajectory analysis, which improves the reliability and validity of the latent

growth curve (LGC) model. This thesis demonstrates the potential of Bayesian methods

and proposes a comprehensive modeling framework, combining a measurement model

with a structural model. That is, through the incorporation of a commonly used link

function and Bayesian estimation, an item response theory model (IRT) can be naturally

introduced into a latent variable model (LVM).

All proposed analyses are implemented in WinBUGS 1.4.3 (Spiegelhalter,

Thomas, Best, and Lunn, 2003), which allows researchers to use Markov chain Monte

Carlo (MCMC) simulation methods to fit complex statistical models and circumvent

intractable analytic or numerical integrations. The utility of this IRT-LVM modeling

framework was investigated with both simulated and empirical data, and promising

results were obtained. As the results indicate, the IRT-LVM utilized information from

individual items of the scales at each point in time, allowing the employment of item

response characteristics from distinct psychometric models, permitting the separation of



time-specific error and measurement error, and giving researchers 3 way to evaluate the

factorial invariance of latent constructs across different assessment occasions.
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INTRODUCTION

Longitudinal Data Analysis

The use of growth models in social, behavioral, and educational research has

increased rapidly, because it answers important research questions such as concern the

nature of psychological and social development and the process of learning. Already it is

well known that grth models can be approached from several perspectives via the

formulation of equivalent models and can provide identical estimates for a given data set

(e. g., Bauer, 2003; Chou, Bentler, and Pentz, 1998; Curran, 2003; Engel, Gattig, and

Simonson, 2007; Hox and Stoel, 2005; Hsieh and Maier, 2009; Willett and Sayer, 1994).

For instance, a model can be constructed as a standard two—level hierarchical linear model

(HLM), where the repeated measures are positioned at the lowest level and treated as

nested within the individuals (e. g., Singer, 1998; Steele and Goldstein, 2007). Equally, a

model can be constructed as a structural equation model (SEM), in which latent variables

are used to account for the relations among the observed variables, providing estimates of

the individual growth parameters and inter-individual differences in change across all

members of the population; hence its name, latent grth curve (LGC) analysis.

It is this mean and covariance structure (MCS) that makes it possible to specify

exactly the same model as an HLM or LGC, because the fixed and random effects in the

HLM correspond to the mean and covariance structure of the latent variables in the LGC

analysis. Within the HLM framework, time is an independent variable at the lowest level

and the individual is defined at the second level, in which time-varying and

time-invariant explanatory variables can be incorporated into existing level-1 and level-2

models. Additionally, the intercept and slope describe the mean change status and the



change rate, and inter-individual differences in the change profile can be modeled as

random effects for either the intercept or the slope of the time variable, or both

(Raudenbush and Bryk, 2002). Likewise, within the LGC, the time variable is

incorporated as a series of constrained values for the factor loadings of the latent variable

representing the shape of the growth curve, along with all the factor loadings of the latent

variable constrained to the value of one and representing the initial level. Thus, the latent

variable means for the initial level and shape factors depict the mean grth status and

the growth rate, and inter-individual differences in the change can be modeled as the

covariance of the level and shape factors (Meredith and Tisak, 1990).

While several key differences remain between these two models, at the time of

writing this dissertation, the discrepancies have rapidly been disappearing (Curran,

Obeidat, Losardo, in press; Preacher, Wichman, MacCallum and Briggs, 2008; Raykov,

2007). One primary difference is that in the HLM, time is treated as a fixed explanatory

variable, whereas time is introduced in the LGC model via the factor loadings, which

makes HLM the best approach if there are a great many varying occasions across

individuals (Snijders 1996; Willett and Sayer, 1994), and the LGC is considered best

suited for time—structured data or a fixed occasion design (e. g., Byme and Crombie, 2003;

Skrondal & Rabe-Hesketh, 2008). The consequence is that the HLM is essentially a

univariate approach with time points treated as observations of the same variable,

whereas the LGC model essentially takes a multivariate approach with each time point

treated as a separate variable (e. g., Bauer, 2003; Curran, 2003; Hox and Stoel, 2005;

Preacher et al., 2008; Raudenbush and Bryk, 2002; Willett and Sayer, 1994).



Research Motivation

When the outcome measurements are on a discrete scale, however, the application

of conventional growth curve models will introduce a potentially significant bias in the

analysis and subsequent inferences (Curran, Edwards, Wirth, Hussong, and Chassin,

2007). Currently, there are two major modeling strategies which allow for the explicit

incorporation of categorical repeated data in growth curve models. One strategy is to use

the nonlinear multilevel model (e.g., Diggle, Heagerty, Liang, and Zeger, 2002; Gibbons

and Hedeker, 1997; Johnson and Raudenbush, 2006), and the other is to use the nonlinear

structural equation model (e. g., Joreskog, 2002; Muthén, 1983, 1984, 1996, 2002). As

Curran et al. (2007) and Vermunt (2007) indicate, when fitting measurement models to

empirical data of the type commonly encountered in developmental research, such as

small sample sizes, multiple discretely scaled items, many repeated assessments, and

attrition over time, both models become quite complex and have difficulty achieving

convergence.

Moreover, with categorical response variables, when there are more than two or

three latent variables with random effects, relying on the untestable assumption that these

random coefficients come from a multivariate normal distribution, the integrals appearing

in the likelihood function are hard to analytically determine and need to be solved using

approximation methods (Moustaki and Knott, 2000; Vermunt, 2007). In addition, the

calculation of standard errors is challenging when the expectation-maximization (EM)

algorithm is used to compute the maximum likelihood estimates (Jarnshidian and

Jennrich, 2000). Thus, in order to accommodate these, we bridge the gap by resorting to

an integrative modeling framework: using the derivative of the generalized linear latent



and mixed modell (GLLAMM; Skrondal and Rabe-Hesketh, 2004), strengthened by the

attributes of the item response theory model (IRT) (e. g., Lord and Novick, 1968), the

latent variable model (LVM) (e.g., Muthén, 2002), and the Bayesian estimation approach.

An overall “true score” can be generated from a second-order latent growth curve

analysis, in which each item provides some sources of information, reduces our

uncertainty about the examinees, and reflects respondents’ positions on the underlying

dimension (e.g., Bollen, 1989; Curran et al., 2007; Fox, 2007; Preacher et al., 2008; Sayer

and Cumsille, 2001; Wiggins, Ashworth, O’Muircheartaigh, and Galbraith, 1990).

 

l Analogous to the different treatment of the time variable in the HLM and LGC, time is treated as a fixed

explanatory variable in the growth model embedded in the GLLAMM, but is introduced via the factor

loadings in the present study.



Objectives of the Present Work

The application of item response theory models to repeated observations has

demonstrated great promise in developmental research. It allows one to take into

consideration the characteristics ofboth item response and measurement error in

longitudinal trajectory analysis, which improves the reliability and validity of the latent

growth curve model (e. g., Bollen, 1989; Curran et al., 2007; Fox, 2007; Hsieh and von

Eye, in press; Preacher et al., 2008; Sayer and Cumsille, 2001; Wiggins et al., 1990).

Within this modeling framework, different types of item response model and latent

growth curve analysis can be combined to address various research questions. In addition,

different data structures can be accommodated, such as unidimensional vs.

multidimensional item response theory models, dichotomous vs. polytomous items, linear

vs. nonlinear change trajectories, single vs. multiple domain(s) latent growth curve

analyses, etc. In longitudinal studies, although the development of a single behavior is

often of interest, it is worthwhile to extend this to multiple domains and simultaneously

model their interrelationship across the entire study period (e.g., Cheong, MacKinnon,

and Khoo, 2003; Preacher et al., 2008; Raykov, 2007).

In the present study, the hierarchical nature of latent variable problems suggests a

Bayesian approach to estimation. In estimating complex statistical models, the capacity

of Bayesian methods is undeniable. Bayesian data analysis is seen as having a range of

advantages, such as an intuitive probabilistic interpretation of the parameters of interest,

the efficient incorporation of prior information to empirical data analysis, the ability to

take account ofmodel uncertainty among different models and to draw combined

inferences when there is no single pre-eminent model, and so on (Best, Spiegelhalter,



Thomas, and Brayne, 1996; Maier, 2001; Rupp, Dey, and Zumbo, 2004; Western, 1999).

Additionally, unlike the maximum likelihood estimation (MLE), which requires large

samples to approximate the sampling distribution for sample statistics, Bayesian

inference can be seen a plausible way to deal with small sample size studies (Congdon,

2005; Lee and Wagenmakers, 2005 ; Zhang, Hamagami, Wang, Grimm, and Nesselroade,

2007). Beyond its value for this purpose, the Bayesian method also has a unique strength,

the systematic incorporation of prior information from previous studies (Scheines,

Hoijtink and Boomsma, 1999; Rupp et al., 2004; Zhang et al., 2007). Bayesian methods

and Bayes’ theorem permit the incorporation of previous findings as supplementary and

influential information, whereas traditional likelihood methods cannot do this (Western

and Jackrnan, 1994). By not undertaking statistical analysis in isolation, Bayesian

learning draws on existing knowledge in the prior framing ofthe model and allows the

combination of existing evidence with the actual study data at hand during the estimation

process (Congdon, 2005). Besides, the interval estimation is a direct product via a

Bayesian estimation routine: inference on functions of parameters can easily be obtained,

since the full posterior distribution of the parameters is available.

Thus, in order to differentially weigh individual items and examine

developmental stability and change over time, this thesis seeks to demonstrate the

potential of Bayesian methods and propose a comprehensive modeling framework

combining both a measurement model and a structural model. That is, through the

incorporation of a commonly used link function and Bayesian estimation, the item

response theory (IRT) model can be naturally introduced into the latent variable model

(LVM). Despite a large number of components requiring attention, this thesis restricts its



focus to the following issues: (1) model formulation: how Bayesians explicitly

incorporate (multivariate) multiple repeated measures of discrete scale into a latent

growth curve model, in which the unidimensional Rasch (1960) and linear latent growth

curve model (RASCH-LLGC), the unidimensional two-parameter normal ogive (e. g.,

Bimbaum, 1968) and nonlinear latent growth curve model (e. g., Meredith and Tisak,

1990) (2PNO-LGC), and the multidimensional graded response (e. g., De Ayala, 1994)

and associative latent grth curve model (e. g., McArdle, 1988) (MGRM-ALGC) are

presented; (2) the evaluation of the model parameter estimate performance: as the sample

size needed for a particular longitudinal study depends on many factors, an “adequate”

sample size is hard to determine unambiguously. As a simplified illustration, we

demonstrate how to evaluate the performance of parameter estimates through conducting

a Monte Carlo study. For instance, to evaluate the numerical behavior of the average

growth trajectory in Bayesian analysis, we launch a small-scale simulation study using a

2><3><2 design with 12 conditions. Given the constant number of repeated assessments and

the growth curve reliability (GCR), we assume that the performance of a particular

parameter estimate, the stability and variability of the average growth trajectory in the

RASCH-LLGC model, is a firnction of the sample size, the number of items being

administrated at each point in time, and the standardized effect size of the average growth

trajectory; (3) model application: the capacity of this IRT-LVM comprehensive

framework was investigated with two empirical data sets, in which one data set, drawn

from part of the British Social Attitudes Panel Survey (1983-1986), revealed the attitude

toward abortion of a representative sample of adults aged 18 or older living in Great

Britain (McGrath and Waterton, 1986), and the other data set, subsampled from the



National Youth Survey (NYS; Elliott, 1976-1987), depicted the dynamic relations

between two interrelated dimensions (namely, social isolation and exposure extent to

delinquent peers of adolescents who were aged from 11 to 17 in the year 1976) across

five consecutive years (1976-1980).

Since missing data are unavoidable in almost all serious statistical analyses, as an

alternative estimation method, the Bayesian inference explicitly models missing

outcomes and handles them as extra parameters to estimate (Gelman and Hill, 2007;

Jackman, 2000; Patz and Junker, 1999b; Spiegelhalter et al., 2003). Therefore, it becomes

straightforward to use this method to effectively estimate any missing values at each

iteration. Although the way in which the Bayesian estimation compensates for missing

data is similar to the multiple imputation (MI) technique described by Rubin (1987), it

extends the MI method by jointly simulating the distributions of variables with missing

data, as well as unknown parameters (Carrigan, Barnett, Dobson and Mishra, 2007). It is

expected that through this firlly Bayesian (FB) method, the missing values can not only

be treated as additional parameters to estimate but these parameter estimates can be

marginally integrated from an exact joint posterior distribution for all parameters and

latent variables. Thus, in the first empirical data example, we illustrate how to incorporate

individual-level auxiliary predictors and effectively estimate missing values in a

conditional model via the Bayesian estimation approach.

In the second empirical data example, we make use of the multidimensional

graded response model (MGRM; De Ayala, 1994; Reckase, 2009) and associative latent

growth curve analysis (ALGC; McArdle, 1988) to model the dynamic relations between

two interrelated dimensions across five consecutive years (1976-1980). In order to



evaluate the performance of this comprehensive modeling approach, we compare and

contrast the corresponding parameter estimates using two distinct analytical approaches

with a simulated data set, namely, a two-stage IRT-based score analysis and a

single-stage [RT-based score analysis. As opposed to the traditionally adopted method

(e. g., an average composite), this approach enables the researcher to make use of

individual items of the scales at each point in time, allowing the employment of item

response characteristics from distinct psychometric models, permitting the separation of

time-specific error and measurement error, and providing a common ground for testing

measurement invariance across occasions. As for the substantive merit, the following

hypothesized associations can be tested: that is, as adolescents perceive themselves to be

more socially isolated, the chance that they are engaged with delinquent peers becomes

profoundly larger.



Chapter 1

A UNIFIED MODELING APPROACH

As suggested by McArdle (1988), to provide a more rigorous basis for meaningful

scaling, the researcher could consider the incorporation of contemporary IRT models

and/or the generalized linear models (GLIMs) into the latent grth curve analysis. This

is because using the IRT approach provides several distinct benefits over traditional

methods. These benefits include facilitating the identification of items which discriminate

among respondents across the range ofunderlying latent abilities, having the report of

item statistics and person abilities on the same scale, being flexible in incorporating

various auxiliary information, scale construction and measurement invariance

examination, and more (see de la Torre and Patz, 2005; Embretson and Reise, 2000;

Hambleton and Jones, 1993). When we incorporate random effects in the underlying

continuous latent constructs (i.e., when we augment GLIMs via the inclusion ofrandom

effects in the latent variables — hence the name ‘generalized linear mixed models’,

GLMMs), and regress latent variables upon other latent variables or covariates, this

unified model becomes the generalized linear latent and mixed model, GLLAMM. As a

class of multilevel latent variable models, this GLLAMM encompasses the response

model and the structural model (Skrondal and Rabe-Hesketh, 2003; 2004), where the IRT

model is the response model, and the LGC analysis is the structural model.

10



A Unidimensional IRT-LVM: 2PL-LGC/2PNO-LGC

In the scenario of unidimensional item response models, the GLIM formulation is

typically used. Through a commonly used link function, either a logit or a probit, the

conditional probability of a particular response given the latent trait can easily be

specified. The classical application of these models is in the literature on educational

testing and psychometrics, where the subscript i represents an item or question in a test

and the responses are scored as correct (1) or incorrect (0) for dichotomous items. In this

setting, 6n represents the latent ability of person n, and the model is pararneterized as

either

[Oglt[P(Yin =l|6n):|=ai(6n—fli) or

probit[P(Y,—n =1 l 6,0] 2 al- ((9,, - A)

(i = 1,...,I;n = l,..., N ), corresponding to a unidimensional two-parameter logistic

(2PL) item response theory model or a unidimensional two-parameter normal ogive

(2PNO) model. Here, the abilities can be interpreted either as logits or probits of the

probability of a correct response to a particular item. Item difficulty parameters ( 161') are

defined as the location of inflection points in the item characteristic curves (lCCs) along

the same scale as the latent ability (9" ), whereas the (21- are the slopes of ICCs at their

inflection points, which can be considered the degree to which item response varies with

the underlying latent construct, and help determine how well the item discriminates

between subjects with different abilities (e.g., Bimbaum, 1968; Lord and Novick, 1968).

As regards the link function, given the similarities between logit and probit of

these two models, either model in most applications will give identical substantive

11



conclusions (Liao, 1994; Stefanescu, Berger, and Hershberger, 2005). Normally, by

. . 7T . 2
multrplying by a factor of :7: , we can go from one set of estimates to the other .

However, when we have heavy tails in the distribution of observations, estimates from

logit and probit models can differ substantially (Amemiya, 1981). Thus, researchers

could opt to use one or the other link function via model comparison. As one of the

Markov chain Monte Carlo (MCMC) sampling algorithms, direct Gibbs sampling

(Albert, 1992; Chib and Greenberg, 1995; Gelfand, Hills, Racine-Poon and Smith, 1990;

Patz and Junker, 1999a) has been implemented for normal ogive item response models,

requiring the use of a process called data augmentation (Albert and Chib, 1997; Fox,

2007; Jackman, 2000; Kim and Bolt, 2007; Stefanescu et al., 2005). That is, the Gibbs

sampler can be used for extracting marginal distributions from the full conditional

distributions when the complete conditional distributions are of a known distribution

form (Geman and Geman, 1984). Therefore, the probit3 link is considered the more

appropriate function for estimating the two-parameter normal ogive (2PNO) IRT-LGC

model.

As the chronological ordering of responses and the clustering ofresponses within

individuals are two important features of longitudinal data, in order to accommodate this

mean and covariance structure, a longitudinal model must allow for dependence among

responses on the same subject (e. g., Everitt, 2005; Skrondal and Rabe-Hesketh, 2004).

Being a useful version of the random coefficient model, a single-domain latent grth

 

2 Or, multiplying by a factor lying somewhere between 1.6 and 1.8 (Amemiya, 1981).

In addition, a useful feature of the probit model is that it can be used to yield tetrachoric correlations for

the clustered binary outcomes, and polychoric correlations for ordinal responses (Hedeker, 2005).
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curve analysis was presented, in which individuals were assumed to differ not only in

their intercepts, but also in other aspects of their trajectory over time in terms of a

unidimensional latent variable (e.g., Byme and Crombie, 2003; Skrondal and

Rabe-Hesketh, 2008). Specifically, like a bifactor model, the univariate latent growth

curve model can be formulated as

6(t)n = 7t + 405012 + Altéln + 5(t)n

(t = l, ..., T,‘H = l,..., N ), where the 6(t)n , depicting the propensity of holding the

. . . . th . . . .
property of a certain dimensron at the t occasron for partrcrpant n, are the focr of the

study; 2't is the intercept of the structural model; (On and €111 are the true initial

level and shape factors; and 8(t)n represents the level-1 residuals. The data are

time-structured and balanced in occasions: all subjects were measured on an identical set

of occasions and possessed complete data points, I = l,.. .,T . In addition, the loadings

for the initial level factor 4’0n are fixed at 21.01 = 1 (VI ), and the loadings for the

shape factor 41n are set equal to 3.1 t . As the nonlinear latent trajectory is essential for

analyzing more complicated situations, it has been found useful in establishing a better

model-data goodness of fit. In addition, it is feasible to model a nonlinear change

trajectory using a bifactor model with free factor loadings for gln (Meredith and Tisak,

1990). According to Raykov and Marcoulides (2006), this level and shape (LS) model is

equally useful regardless of whether the developmental trajectory is linear or nonlinear.

Finally, to make the model simplified and identifiable, we remove the intercept (2't )

l3



from the structural model, set 3.1 1 = O and 3.1T = 1, and estimate the coefficients

for intermediate time points.

With the longitudinal design, mathematically, the response model can now be

written as

’Ogi’lpl’w = 1 l 9011)] = al.-(0W. ‘40)) °r

prObitl:P(Yi(t)n =1 |9(t)n)] = “110(60)" _ 4(0)

(i = l,...,],‘t = l,...,T;n = l,...,N ), where subscript trepresents the different

occasions. In the present study, when the assumption of strong measurement invariance

was adopted (Meredith and Teresi, 2006; Sayer and Cumsille, 2001), we impose equality

for each of the item parameters over time4 (i.e., assuming that neither item difficulties

nor item discriminations vary across different points in time), which further reduces

ai(t) to (1,- and flio) to ’31- from the above mathematical formula. If the

invariance of the factor structure fails to hold over time, the difference in means may be

partially attributable to differences in the scale of the latent variables (Blozis, 2007). Thus,

through the estimated item characteristic curves (ICCs) for a unidimensional

two-parameter item response model, this unified model can be specified as

exp(Vi(t)n )

1 + exp(vi(t)n ))

 

PM(t)n=1|9(t)n)= (

 

For most applications in which the aim is to ensure fairness and equity, a stronger assumption of strict

factorial invariance is necessary: that is, equal factor loadings, intercepts, and equivalent residual

variances (specific factor plus error variable) across different occasions (Meredith and Teresi, 2006).
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(i =1,...,I,'l‘ =1,...,T;n = l,...,N), where vi(t)n is the linear predictor (i.e.,

al- (60)" — ,61- )), and again, 60)” can be replaced by (On + Alté’ln + £t(n)'

As the model becomes complex, for identification purposes we exclude the intercept

from the structural model, fix the first discrimination parameter at one, and set the first

item difficulty parameter to equal zero. By doing so, we enforce other individual-level

covariates to affect the response via the latent variable only (Skrondal and Rabe-Hesketh,

2004)

In summary, with the imposition of a sampling distribution assumption, this

GLLAMM can be categorized into three subcomponents: (1) the level-1 sampling model;

(2) the link function; and (3) the structural model (Raudenbush and Bryk, 2002).

Alternatively, this unified model can be regarded as encompassing the following two

parts: either a two-parameter normal ogive model or a two-parameter logistic item

response model for the unidimensional binary data, P (Ill-(11)" = l I 60)", 61,-, :61' ) , is

the measurement model, where 00.)" represents the latent ability for the subject n at

th . .
the t occasron, and 181' and al- are the item parameters. The structural model,

P(90)" l A, 4’ ) , serves to link the latent abilities with time-varying and time-invariant

covariates. Specifically, for instance, the first component,

P(Yi(t)n = 1 I 90)" , a,- , fli ) , the probability that the subject n has the ability

15



6(0),, to endorse an item at the tth occasion, is given by the normal ogive item

response theory model.

P(Yi(t)n :1l6(t)n’ai'16i)

: @(al. (90)”
_ ’61)): f;(9(t)n‘fli

) 37; 63—12de

(i=l,...,1,'t =1,...,T,'n =1,...,N), where ¢() represents the standard normal

 

cumulative distribution function (CDF); and 161' and al- are the item difficulty and

item discrimination parameters for a dichotomously-scaled item 1'. Here, for a given item 1',

we denote its corresponding parameter as 51- , that is, 4:1- — ( fli’ a,- ).

As the second component of the unified model, the underlying latent ability

serves as the outcome variable in the structural model, P(60)" I l, 4’ ) , which

establishes the relation between latent abilities and time-varying and invariant covariates.

The time—varying and invariant variables are conceptualized as explanatory covariates for

the latent variables. Thus, the corresponding level-1 and level-2 structural model can be

specified as

6(t)n : (On + Altgln + g(t)n and

(on = V00 + 701,471 + + YOqu + U0”

(In :v10+711VVl+-"+7quq +Uln
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(t=l,...,T,'n=l,...,N,'q=1,...,Q),wherethe lot, 1”, 4071’ 41" are

level-1 factor loadings and latent growth parameters for the initial level and shape factors,

and 80)” are independent and identically distributed as N (0, 0'2 ). With regard to

70g , 71g , and Wq , they are level-2 partial regression coefficients and predictors

(individual characteristics) of each latent growth parameter, that is, the latent initial status

and the change rate, and 0011 and U1n are followed a bivariate normal distribution

with a mean vector of zero and a variance-covariance matrix T, N (0, T). In this

structural model, the growth factors are latent variables with random effects: the level-1

and level-2 models define a population with N level-2 units (each individual as the

primary sampling unit) and there are t ( t = l, .. ., T ) level-l units within each level-2

unit (n = l, . . ., N ). This model assumes that each person was randomly sampled from a

larger population and each of them has his/her own latent trajectory.

2

”On 000 0001
T : var 2

”1" 0010 001

As with any item response theory model, this IRT-LGC model is

over-parameterized and needs to be identified. The indeterminacy is caused by the fact

that the item parameters associated with ordered categorical variables and the distribution

of underlying continuous variables, N ( [.1 , 0'2 ), are not identified. Usually, the

identification problem is tackled by fixing ( ,u, 0'2) at some pre-assigned values.
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Depending upon the specific research question, however, it is better not to impose

restrictions on person parameters when these parameters are of primary interest (Lee,

2007). Thus, we consider imposing the identification conditions on the observed

categorical variables, the less interesting nuisance parameters. Generally, there are no

necessary and sufficient conditions for identifiability: the problem needs to be addressed

on a case-by-case basis. In the existing literature, different ways are found for model

identification: (1) fixing the first item discrimination parameter at the value of one

(0’1 = l), and the first item difficulty parameter at the value of zero ( fll = 0) (for

binary items) or fixing the first item discrimination parameter at the value of one

((11 = l), and the first item’s first threshold parameter at the value of zero ( fll 1 = 0)

(for polytomous items); (2) fixing the first item discrimination parameter ( a1 = 0) at

the value of one, and the mean of the latent grth intercept at the value of zero

(40" = O ); and (3) fixing the product of discrimination parameters at the value of one

(Hi (11- = l) and the sum of difficulty parameters at the value of zero (21- ,81' = O)

(for binary items) or fixing the product of discrimination parameters at the value of one

(1]i ai = l) and the first item’s first threshold parameter at the value of zero

( ,8] 1 = O) (for polytomous items) (Fox, 2007; Muthén and Muthén, 1998-2007). In this

study, either the first or the second scaling option was adopted.

As regards the general assumptions for the IRT-LGC model, taking the

two-parameter normal ogive model as an example: given the subject latent ability

(6(t)n ) and item parameters (51- = ( 161° , a,- )), the probability of the subject n

18



endorsing a particular item i at the 1th occasion is defined as

pro)” = PIE-(0n =1 I 0(t)n,fl,-,ai)=P(Y.-mn =1 | 6(,)n,5,-).nis

assumed that each observed outcome variable Yip)” follows a Bernoulli distribution

with the expectation value of 191-0.)” ,

1’10)” lpi(t)n ~ Bernoulli(pi(t)n)

(i = l,...,],‘t = l,...,T;n = l,...,N). The latent continuous measurement underlying

the dichotomous outcomes on the item level is assumed to follow a standard normal

distribution. In the structural model, the level-l residual variance (0'2) and level-2

variance-covariance matrix (T ) are identically and independently distributed as an

inverse gamma and inverse Wishart distributions, respectively. Additionally, the level-1

residual variance can be assumed as either homogeneous or heterogeneous across

different assessment occasions within individuals, and the level-2 variance component

follows a bivariate normal distribution with a mean vector of zero and covariance matrix

of T . This variance-covariance matrix T is assumed to be constant for all level-2

clusters. As for the statistical interpretation ofrandom effects, for instance, the second

level random intercept, UOn , accounts for the variation of the initial status (Con)

around the fixed population intercept (V00) not explained by the covariates, Wq. The

same interpretation applies to the random shape factor. Finally, the assumptions

associated with each level residual can be summarized as follows:
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E(8(t)n):0' E(U0n):E(Uln):O’

var(§’0n)=var(uon)=0'30, var(é’1n)=var(uln)=0'31,

COV(Con,é'1n)= COV(UoMn)= 0:201,

COV(UOn,8(t)n) = cov(t)1n,8(t)n) = 0.
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A Multidimensional IRT-LVM: MGRM-ALGC

Analogously, strengthened by the attributes of the MIRT model and the LVM, a

multivariate multilevel polytomous item response theory model embedded in an

associative grth curve analysis is proposed. Through the cumulative logit

transformation, the logit ofresponding in categoryj and a higher versus a lower category

:1:

P(Kn21)
*

-P(nn<j)

particular response alternative, given the latent trait, can easily be specified (e.g.,

 
thanj (i.e., 10g ), the conditional probability of endorsing a

Tuerlinckx and Wang, 2004). Based on a multidimensional item response theory model

with simple structure, in which each item measures only one particular latent construct

and there is no item in common across different constructs (e. g., Adams, Wilson, and

Wang, 1997; McDonald, 1999), we proposed a unified modeling approach using a

parallel generalized linear latent and mixed model (pGLLAMM) to simultaneously

estimate the latent growth trajectories for a dual-domain propensity level. As expected,

this approach can be further developed in a straightforward manner, accommodating a

more complex structure (e.g., tests with within-item multidimensionality) and a richer set

of auxiliary information (e. g., having additional levels above persons). Applications of

these models can be found in the literature on educational testing and psychometrics.

Corresponding to a logistic multidimensional graded response model, subscript i

represents an item in a test and the response is scored usingj for a polytomous item. In

this setting, an represents a trait vector for respondent n on dimension d, and the

model is parameterized as

21



*

B'j (@dn)

*

1'8] (gain)

 

. *

logztIB-j (8d,, )I = log = aim” — .31]

(i =l,...,1,'j = l,...,ml-;d =1,...,D,'n = l,...,N). Here, the abilities can be

interpreted as logits of the cumulative probability that respondent n will endorse a

particular item response categoryj and higher, at a given 0d level. The elements in

the aid -vector stand for the multidimensional discrimination parameters for item i on

dimension d, giving the weight of each dimension d on item 1'; the multidimensional item

difficulty parameters, flz'j , are scalar parameters and can be defined as the location in

the latent trait space where the category response surface achieves its maximum slope

and, thus, where the item is most informative (Reckase, 1985).

As the multivariate version of the random coefficient model, the multiple-domain

latent growth curve analysis allows one to model the situation that individuals differ not

only in their intercepts but in other aspects of their trajectory over time with respect to

multidimensional latent variables (McArdle, 1988). Again, since the chronological

ordering ofresponses and the clustering ofresponses within individuals are two

important features of longitudinal data, in order to accommodate random effect

regressions among the growth factors for two dimensionss, a longitudinal model with a

parallel process of change was proposed to allow for dependence among responses on the

same subject (e. g., Cheong et al., 2003; Preacher et al., 2008; Raykov, 2007).

 

This analysrs rs one kind of structural equation model With regressrons among latent variables WhICh

represent aspects of distinct individual growth curves, with each of these being modeled along a

particular dimension.
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Specifically, for each dimension, like a bifactor model, the latent growth curve model can

be formulated as

Qd(t)n =Tdt + ’ldOt€510): + 4611:4111): +8d(t)n

(d =1,...,D,‘t =1,...,T;n = l,...,N), where the Eda)” are the foci ofthe

study, which depict the propensity of holding the property of certain dimension (d = l

or d = 2) at the tth occasion for participant n. The intercept term (1'dt) is typically

constrained to zero, yielding a simplified model structure; CdOn and Cdln are the

true initial status and shape factors associated with each dimension d; and the 8‘1“)”

represent the level-1 residuals for dimension d in the structural model. The data under

study are time-structured and balanced in occasions: all subjects are measured on an

identical set of occasions and provide complete data points, I = l, .. ., T . In addition, the

loadings for the intercept factor CdOn are fixed at ZdOt = 1 (VI ), and the

loadings for the shape factor 4’d111 are set equal to 1d]t . To make the model

identifiable, we set id] 1 = 0 and AdlT = l for each dimension, and estimate the

coefficients for intermediate time points. In terms of substantial interpretation, fixing

1d] 1 = 0 indicates that time was centered on the first wave of data collection, which

allows the researcher to interpret participant n’s initial status from the very beginning of

the study (Singer and Willett, 2005). Alternatively, the research could consider adopting

the orthogonal design matrix, such as imposing the value of zero for the factor loading

associated with the mid assessment occasion, which alleviates the problem of
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multicollinearity in the latent growth curve model with higher-order polynomial

coefficients (e. g., quadratic, or cubic).

With the longitudinal design, mathematically, the response model can be written

as

3;(8mm )

I'3] (admit )

 

. *

logit [8-]- (0d(t)n )] =log :atid @d(t)n -fltlj

(i =1,...,I,‘j = l,...,ml-;d =1,...,D,’t =1,...,T;n = l,...,N),wherethe

additional subscript t represents the different occasions. In the present work, assuming

that the assumption of strict measurement invariance holds (Meredith and Teresi, 2006;

Sayer and Cumsille, 2001), the residual variances can be constrained to a constant value,

and each of the item parameters is identical over time, which further reduces afld to

aid and fin] to 161]" Thus, through the estimated item characteristic curves (ICCs)

for a particular unidimensional graded response model, this unified model can be

specified as
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PIX-(0,, =jIngM uBij raid ) Z Pij (0610)" )

= in—l) (9610M ) " Pilj) (Eden)

z P* (Yin 2 (j-1)I0d(,)n,flyuaid ) - P3“ (Yin Z J' I9d(t)nfizyvaidl

: epraz-d (Eden — firm—1) ll _ “plaid (@de ' '3’?” I)

1+ epra,d (06W, — firm—1) )) 1+ epraz-d (0mm — 51m l)

  

_ exPIVi(J'-1)d(t)n) _ exPIViUMW")

1+ exP(Vi(j—l)d(t)n) 1+ exp(V211)d(t)n )

  

(i =1,...,1,’j = l,...,mi;d =1,...,D;t=1,...,T;n =1,...,N), where

at a:

Pi,mi (061(in = 0, Pro (961(0)?) = 1, and Vi(j—1)d(t)n and

Vi(j)d(t)n are linear predictors, (aid(8d(t)n'fli0'-I) )) and

(aid (0610),, 'fliO') )) , respectively. Again, 00'(t)n can be replaced by

CdOn + Ad]té’dln +8d(t)n , for each dimension d. As with other estimation

approaches, various identification constraints are needed when complex models are

encountered. In order to address rotational indeterminacy, in this MGRM-ALGC model

we assume a multidimensional model with simple structure, fix the first discrimination

parameter associated with each construct to the value of one, with zero loadings

otherwise, and constrain the first threshold associated with the first item in each

dimension to the value of zero. Moreover, in order to resolve the metric indeterminacy,

we try two different scaling options: (1) instead of imposing the constraints on the item
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threshold parameters, we fix the initial level growth factor associated with each

dimension to the value of zero; (2) fixing the level-1 residual variances for each construct

to a constant value, either the value of one or not.
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Chapter 2

MODEL FORMULATION

In order to differentially weigh individual items and examine developmental

stability and change over time, for illustrative purposes, the formulation for a specific

model, an MGRM-ALGC, is presented in what follows, since a simpler model

formulation can easily be derived. As a class ofmultilevel latent variable models, this

derivative GLLAMM (i.e., pGLLAMM) encompasses the response model and the

structural model (Skrondal and Rabe-Hesketh, 2003; 2004), where the multidimensional

graded response model is the response model, and the associative latent growth curve

analysis is the structural model. Thus, with longitudinal designs, the data are multivariate

multilevel in nature with a set of ordinal categorical responses nested within each person

on each dimension and measurement occasion, with the response model, the structural

model, and five-levelindices(i =1,...,I,’j = l,...,mi;d =1,...,D,’t =1,...,T,’

n = l, ...,N ) as the required elements.
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The Measurement Model

Standard use of a latent grth curve analysis typically considers a single

manifest indicator at each measurement occasion, in which each response is a function of

time and constitutes the first level of the measurement model. However, taking such an

approach fails to capitalize on one of the capacities inherent in the structural equation

models, not only ignoring the relations between multiple indicators and the underlying

latent construct, but also dismissing information about the psychometric properties of

manifest variables (Sayer and Cumsille, 2001). On the contrary, when we incorporate

multiple indicators with discrete scales ofmeasurement into the model, a second-order

factor structure is used to investigate the developmental trajectory over time, which

allows the researcher to evaluate the factorial invariance of the latent constructs across

measurement waves, and permits the separation of time-specific error and measurement

error (Blozis, 2007; Sayer and Cumsille, 2001).

Unidimensional graded response models: GRMs. In the graded response model

(GRM; Samejima, 1969, 1997), the probability associated with the observed score equal

to and above the threshold categoryj is defined as

*
* ex (9,, ,6,

P (m—Jlfin,a,-.fly)= 81(6), ):1+:ci9((i(n9n#13:)»

 

(i = l,...,],‘j = l,...,ml-;n = l,...,N), where Yin denotes the response matrix

given by respondent n to item 1', and 051- and fly represent item discrimination and

threshold parameters. Within each item, there are mi observed response categories and
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(m,- -1) thresholds. For each alternative ( j = l, 2,.. .,ml- ), there exists an ordering

relation such that fli 1 < ’61- 2 < < ’61- mi _1 , in which the corresponding threshold

parameters indicate the propensity for a respondent to change from one response category

to another. With respect to the discrimination parameter, the model characterizes how

well an item discriminates among people with different abilities. Usually, a good item

comes with a large discrimination parameter, and with threshold parameters which span a

wide range on the trait scale. Unlike the partial credit model, which treats distinct

thresholds within each item independently (Masters, 1982), the GRM considers the

endorsement of a particular response alternative as requiring the successful

accomplishment of all previous steps (e.g., Reckase, 2009). Thus, calculating the

probability of endorsing a specific response category can be achieved by

P(Yin = f I gnrflz'j’ai) = Pawn) = EZj—l)(6n)_fiazj)(6n)’mm

*

Piml.(6,,)=0and 13f0(r9,,)=1.

Multidimensional graded response models: MGRMs. In practical applications,

however, items do not necessarily measure a single unified component; therefore, a more

general, multidimensional model should be considered. That is, when an instrument

consists of several subscales, the researcher needs to adopt an IRT model of

multidimensionality for calculating a respondent’s conditional probability of correctly

responding to an item. Although psychological processes have constantly been found to

be more complex and several subscales on an instrument may tap distinct latent abilities,

the abilities are not necessarily independent. With respect to this, the MIRT has shown
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promise when dealing with situations commonly encountered in educational and

psychological testing, such as multiple traits being required for endorsing an item, tests

containing mutually exclusive subsets of items, the underlying dimensions being

correlated, etc. (e. g., Adams et al., 1997; Reckase, 1997). As an extension of the

unidimensional graded response model, a multivariate version for polytomously scored

items (De Ayala, 1994; Reckase, 2009) can be expressed as follows:

exp(2daid@dn " 59')

1+ expanded. - a...)
 

P*(Yin 2J'IQaln’a‘id’flij)z Pl; (6‘1") :

(i=1,...,1,‘j =1,...,mi;d =1,...,D;n = l,...,N),where vector @6112

represents the trait level for subject n on dimension d (i.e., a person’s position in the

d—dimensional latent space was represented by the vector 0 = (61 , 92 , . .., 0(1));

vector (1id stands for the multidimensional discrimination parameters for item i on

dimension d, giving the weight of each dimension d on item 1', and fill. , a scalar

parameter, is the multidimensional item difficulty parameter. Like its unidimensional

counterpart, in the MGRM, subject responses to item i are categorized into ml- ordered

categories with (ml- -1) category thresholds, and higher category options indicate

greater 3 level, in which the 0 level could be any one or any combination of the

*

abilities required for solving an item. Thus, Pij (0n) can be interpreted as the

conditional probability of a randomly selected respondent n with latent traits Q

*

responding in categoryj or higher for item 1'. Because Pij (an) is the cumulative
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probability of responding in categoryj or higher on item i, the probability of responding

in a particular category, Pij (9n ), equals the difference between the cumulative

probabilities for adjacent categories (i.e.,

Pij (8n) : PiEj—l) (910— BE!) (8,, )). Moreover, an item’s multidimensional

discrimination parameters can be interpreted in a similar manner as factor loadings in

factor analysis6. Thus, based on the scale structure, the relationships among latent traits

can be customized accordingly: for instance, traits could have a complex or simple

structure, where the complex structure implies that there are one or more items measuring

all d dimensions, and the former indicates that each item measures exactly what it is

supposed to measure (e. g., Bolt and Lall, 2003; Skrondal and Rabe-Hesketh, 2004). As

regards the IBij -parameter, it determines the location in the latent trait space at which

the category response surface achieves its maximum slope and, thus, where the item is

most informative (Reckase, 1985).

 

6 Even though the statistical formulation and procedure of factor analysis (FA) and MIRT are virtually

identical, the research focus and major application for each approach are quite different. Interested

readers may refer to Reckase (1997) for more details.
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The Structural Model

Compared to traditional longitudinal models, the growth curve model is

considered a highly flexible approach, because of its capacity to handle a variety of

complexities, such as missing data, unequally spaced time points, non-normally

distributed or discretely-scaled repeated measures, non-linear trajectories, and a

multivariate growth process (Curran et al., in press). Perhaps the most intuitively

appealing way of specifying a latent growth curve model is to link it to two distinct

questions about change: one entails the starting position (level) and the other involves the

overall true change (shape) across the entire study period, each arising from a specific

level in a natural hierarchy, called a two-stage model formulation (Rabe-Hesketh and

Skrondal, 2008; Singer and Willett, 2005).

Univariate latent growth curve analysis: LGC. Taking the perspective of latent

response formulation, change can be modeled in repeated latent constructs, making it

possible for the error in the measurement model to be decomposed into individual

time-specific deviation (i.e., 8610)”) and measurement error. As Blozis (2007) puts it,

being the subject of analysis, the latent variable encompasses time-specific error without

the confounding influence of measurement error. This is because at each point in time, a

common factor is assumed to account for the dependencies among a set of categorically

scored items and allow for the separation of the error variances not attributable to growth.

The level-1 structural model. Using LISREL notation, the univariate level-l

structural model can be expressed as follows:
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6'a’(2)n w 1:102 1d12 C 8d2n

[ (17012]+

        

9d(3)n = Td3 + 1:103 16113 C 8d3n

d1” ......

9dmn _TdT_ Jldor MIL fdmn

I1 0 P 8d1n 1

1 ld12 Cd 8d2n

= 1 16113 I 0n:|+ 8d3n

Cdln oooooo

-1 I J _8d(7)n    
(d =l,...,D,'t =1,...,T;n =1,...,N,’Tdt = 0,7111“ = 0,].le = 1). Since the

repeated measures (6d(t)n) have been extracted from the unidimensional graded

response model through the cumulative logit link function, relating the expected response

to the linear predictor, a linear combination of person-specific random effect (6d(t)n)

and item-by-logit indicators, equation above is the structural model. As mentioned

earlier, the term 6d(t)n refers to the propensity of an individual n at time t on the

particular dimension d, and is a function of latent variables (representing the underlying

initial status (gd0n) and the relative growth or decline trajectory (6:611n D, and

time-specific disturbance residuals (8d(t)n ). Additionally, if there is a significant

amount of variation to be explained, analysis can proceed in a stepwise manner by adding
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time varying covariates (TVCs), as time-specific predictors of the repeated measures7. To

model a nonlinear growth/decline trajectory, we adopt the suggestion of Meredith and

Tisak (1990): fixing all ldOt equal to one and setting Adl 1 and lle to be zero

and one for model identification purposes. By doing so, we let the model freely estimate

the intermediate time coefficients. Adopting the assumption typically made in structural

equation models (that Eda)” are identically and independently normally distributed

with mean (zero) and variance (l/l )), we fix disturbance residuals at the level-1 structural

model to be time-homoskedastic, which can be equal to a constant value and makes these

time-specific error variances identically distributed over time within each person.

Because the random-effect (9d(11)") can be further represented by the variances of

CdOn and 4’d1n at the second level of structural model, the ULGC represents one

kind of random-effect model.
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As illustrated by Bauer (2009), when fitting models for categorical data, model comparisons are

impeded because of the implicit rescaling of the model estimates which take place with the inclusion of

new covariates. Thus, in order to have the estimates on a common scale and facilitate the model

comparisons, a scaling factor is needed to apply to each component of the random effect model, with

the exception that the successive models differ only in the inclusion/exclusion of cluster-level covariates.

Since we included no time-varying covariate throughout the present work, a rescaling method would not

be applicable here.
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The level-2 structural model. The level-2 structural model allows us to

distinguish the change trajectories between individuals using their specific growth

parameters, such as the true initial status and the change rate, implying that we can

examine unobserved heterogeneity in growth curves by studying inter-individual

variation in grth parameters. As explained by Singer and Willett (2005), an

appropriate level-2 model has the following four characteristics: (1) the level-2 outcomes

are the level-1 individual grth parameters; (2) the level-2 model can be written in

separate formulae, one for each level-l growth parameter; (3) each level-2 formula

specifies a relationship between the individual growth parameter and the time-invariant

characteristics of individuals, and (4) each level-2‘ formula must contain the stochastic

component, because those individuals who share a common predictor could vary in their

specific change trajectories, hence the name random coefficient models. Thus, an

unconditional level-2 LGC model can be expressed as

Caon __ Vd00 _, den

Cdrn VdIO vd1n

(d = l, ..., D,’ n = 1,. .., N ), where equation above represent regression equations

among the latent variables, one for each level-1 growth parameter. In an unconditional

model, the 4110” and 4611" factors have VdOO and leo as corresponding

intercepts and the residuals are 061012 and UdIn . As one of the advantages of casting

IRT models in a multilevel structure, the researcher is thereby enabled to incorporate

different contextual variables as auxiliary information while estimating the models,

which not only improves the estimation ofperson abilities, but the calibration of item

parameters (Mislevy, 1987). Besides, unlike the conventional two—stage procedure, the
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simultaneous estimation of a multivariate multilevel IRT model avoids the problems of

attenuation bias when the study focus is to regress the latent trait variables on other

explanatory covariates (Bolt and Kim, 2005). Thus, when time-invariant covariate(s)

(TIVs) are introduced into the model, other things being equal, at the individual-level the

between-person variability associated with each growth factor can be augmented as

(don : Vd00 + 7d01 D

[TIVIn]+ d0"

Cdrn VdIO 7:111 vdIn

Usually, 061011 and Udln are assumed to have a bivariate normal distribution

with zero mean and unstructured covariance matrix in both unconditional and conditional

situations. Therefore, the distribution associated with residual variances and covariance

of the true initial level and shape factors can be expressed as following equation, which

permits the level-1 grth parameters to differ across individuals.

— —

2
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Multivariate latent growth curve analysis: the associative LGC. Despite the

fact that developing behaviors are typically intercorrelated, many studies examining the

covariance matrix among these behaviors have been static, primarily based on

cross-sectional measures taken at one point in time (Duncan, Duncan, and Strycker,

2001 ). However, with increased interest in the development of interrelated behaviors, the

focus of the research has switched from static models to the development of dynamic

models, in which the latter incorporate both the time dimension and the intra- and

inter-individual variability of behavior trajectories. As originally conceptualized by
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Tucker (1966), the multivariate latent growth curve model has been considered a more

general and dynamic view of the correlates of change, making it possible for the

researcher to obtain both the common and the specific effects of predictors, and examine

the associative relationship among several key developmental variables at the same time

(Duncan, Duncan, Strycker, Li, and Alpert, 1999; Duncan, Duncan, and Strycker, 2000).

Being extracted from the multidimensional graded response model, each

developmental variable of interest is an unobservable propensity level. In order to

validate the rationale in conducting an associative LGC, analytically the researcher needs

to ensure that there is sufficient interindividual variation in the initial status and the

growth rate for each univariate dimension. Once each univariate construct can be

successfully modeled, the researcher can model all the developmental latent variables

simultaneously. The associative latent growth curve model depicted in Figure 2.1

describes the form of growth and the pattern of associations among growth factors for

each dimension of interest. In addition, in order to capture the nonlinear trajectory

embedded in each developmental variable, the shape factor loadings are constrained to

zero at the first assessment occasion and one at the last assessment occasion, and the

coefficients for intermediate time points are freely estimated.

This bivariate latent growth curve model can be expressed as

9d(t)n = (don + ’ldltgdln + 5d(t)n

(d = l,...,D,‘t = 1,...,T;n = l,...,N), where we include a level and shape factor

(e.g., 4’10 and €11,and 420 and 421 fordimensions 91 and 92,

respectively) and the corresponding deviations. This model allows the identification of

grth in each dimension as well as the covariation among them. However, as Ferrer and
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McArdle indicate (2003), the relation expressed by the covariance ofboth slopes is not

time dependent, for it overlooks possible interrelations between the dimensions over

times.

As its univariate counterpart, being capable of allowing the straightforward

examination of intraindividual change as well as interindividual variability, the

associative LGC makes available a variety of analyses of growth and developmental

processes to a wide audience ofresearchers. For instance, apart from the capabilities

leading to greater understanding ofmultiple developmental trajectories, this associative

LGC is also appealing as a way of examining the antecedents, processes, and

consequences of change (e.g., Willett and Sayer, 1994). Although many other techniques

have been developed to capitalize on the special features of longitudinal research, the

class of statistical methods contained in the latent growth curve is highly flexible in

model articulation, providing enhanced statistical power for testing hypotheses, and

demonstrating greater correspondence between the statistical model and traditional theory

used to explain developmental trajectories (Curran et al., in press; Preacher et al., 2008).

 

8 Unlike the bivariate latent difference scores model (BLDS), this bivariate latent growth model cannot

capture the feature of time-lagged sequences between dimensions (Ferrer and McArdle, 2003).

38



Chapter 3

BAYESIAN INFERENCE

As two major components of the unified model, the existence of a small number of

latent factors under multivariate discrete data and the combination of the measurement

and structural model for hierarchically nested data structures, a general two-level latent

variable model with ordered categorical variables is adopted to account for the individual

latent trajectories. Motivated by its various advantages, Bayesian estimation was used for

analyzing the current proposed model. Recent MCMC methods in statistical computing

for posterior simulation greatly enhance the applicability of the Bayesian inference.

Through the application ofMCMC to simulate observations from the posterior

distribution, one basic strategy is to augment the observed data with the hypothetical

latent data which come fi'om latent measurements and latent variables. Thus, in this

study, using the Gibbs sampler algorithm coupled with the Metropolis-Hastings

algorithm, the MCMC is constructed to circumvent the intractable numerical integration.
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Estimating Statistical Complex Models Using the Markov Chain Monte Carlo

(MCMC)

Being the centerpiece of Bayesian inference, Bayes’ theorem can be expressed as

f(.Q I Y) 0C f(Y I .0)f(.0), indicating that the joint posterior density is

proportional to the product of the likelihood function and the prior density for the model

parameters, where [2 represents the unknown parameters and latent variables,

Y denotes the observed response data, and f(.0 I Y ) is the posterior probability

density function. The “f ( )” can be replaced by “ p( )” and “Z ” can take the

place of“ I ” when we have data and parameters of a discrete nature. This posterior

density can be used to determine model parameter estimates; the quantity f (Y I Q)

denotes the likelihood function of the model parameters, given the response data (Y ),

and f([2) is the prior density for the model parameters, representing the relative

likelihoods of particular parameter values before accessing the data.

When the model becomes complex, this joint posterior distribution tends to

become numerically or analytically intractable. This is because calculating this posterior

density typically requires a large summation and/or multidimensional integrals. In order

to solve this intractability problem, the use of the Monte Carlo integration was revisited

by Bayesian statisticians in the late 1980s. A random sequence or chain is generated, such

that in the long run each parameter value occurs with a frequency proportional to

f([2 I Y ). In addition, the chain is generated so that each value in the sequence

depends only on its immediate predecessor, which under certain conditions makes it a
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finite order Markov process (Kim and Bolt, 2007; Rupp et al., 2004; Thompson, Palmer,

and Moreno, 2006; Western, 1999). Possessing these two properties, this sampling

procedure is named the Markov chain Monte Carlo (MCMC), the goal of which is to

reproduce the joint posterior distribution through simulation (e. g., Jackman, 2000; Kim

and Bolt, 2007; Lynch and Western, 2004; Patz and Junker, 1999b). By sampling enough

observations, researchers can obtain a general description of the posterior distribution,

such as the expected a posteriori (EAP; the mean of the posterior density), maximum a

posteriori (MAP; the mode ofthe posterior density), posterior standard deviation (PSD;

standard deviation of the posterior density), the 95% credible interval, etc.

41



Sampling Procedures

The mechanism by which sampling is conducted varies depending on the known

features of the posterior distribution, f([2 I Y ). In general, various types of sampling

algorithms are considered within MCMC, two of which are the Metropolis-Hastings

algorithm (Hastings, 1970; Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller, 1953)

and the Gibbs sampling (Gelfand et al., 1990; Geman and Geman, 1984). Also known as

rejection sampling, the key to the former is trying to find a suitable candidate-generating

density for suggesting a new value, given the current value in the chain. The choice of a

proposal distribution affects the efficiency of the algorithm: a good choice ofproposal

distribution will make the chain converge quickly to the long-run probabilities; however,

a poor choice of proposal distribution will leave the chain stuck while generating

parameter values and slow down the convergence of the sequence (Thompson et al.,

2006). Usually, the Metropolis-Hastings algorithm is needed when estimating logistic

item response models, for the complete conditional distributions are not of a known

distribution form (Kim and Bolt, 2007). To make the Markov chain reach convergence

reasonably fast, Patz and Junker (1999b) suggest the use of Metropolis-Hastings within

Gibbs (MHwG) for the two- and three-parameter logistic model (e. g., Bimbaum, 1968;

Lord and Novick, 1968) as well as the generalized partial credit model (Muraki, 1992).

As a special case of the Metropolis-Hastings, the Gibbs sampling involves cycling

through smaller subsets of parameters and using the current estimate of the fill]

conditional posterior distribution as the proposal density (Casella and George, 1992; Chib

and Greenberg, 1995; Fox, 2007; Gelfand et al., 1990; Patz and Junker, 1999a, 1999b;

Thompson et al., 2006). The subset parameter may be univariate or multivariate, such as
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sampling from the full conditional posterior distributions of each unknown or blocks of

unknowns. As stated by Dunson et al. (2005) and Fox (2007), such techniques as

parameter expansion, updating parameters in blocks instead of one by one, have a

dramatic impact on computational efficiency and help improve the mixing rate of Markov

chains. Being a “divide and conquer” strategy, sometimes the Gibbs sampler may be

inefficient, moving slowly over the parameter space (Western, 1999); however, due to its

use ofknown conditional distributions for simulation, this setup helps reduce

multidimensional problems to a series of univariate calculations and make it easier to

simulate draws (Casella and George, 1992; Jackman, 2000; Patz and Junker, 1999a,

1 999b).
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Specification of Priors

As mentioned earlier, the posterior distributions from the Bayesian inferences

depend not only on the data through the likelihood function but also on the prior density

(e.g., Western, 1999): thus, the specification ofprior distributions for each of the model

parameters and latent variables plays an important part in the Bayesian approach. Unlike

those of the frequentists, Bayesian methods’provide a clear channel to incorporate prior

information, which helps increase the statistical power of the analysis and contributes to

the accumulation of scientific findings (Hsieh and Maier, 2009). Based on Bayes’ law,

whenever our prior is uniformly distributed in the region where the likelihood function is

located, the posterior distribution for the Bayesian function is nearly proportional to the

likelihood function (Gill, 2002; Maier, 2001; Rice, 1995). Moreover, as sample sizes

increase, priors are generally asymptotically irrelevant, and the estimates obtained from

the Bayesian and frequentist methods should approach identical values (Dunson, Palomo,

and Bollen, 2005; Lynch and Western, 2004; Western, 1999). In this sense, the Bayesian

method can be treated as a direct alternative to the maximum likelihood estimates (MLEs)

for parameter estimation when using non-informative priors.

A long-running debate in Bayesian inference revolves around the choice between

subjective priors and objective priors, in which the subjective priors indicate the inclusion

of existing subject-matter knowledge, and objective priors remove any subjectivity from

the analysis. Although the role of the prior diminishes as sample size increases,

inferences may be sensitive to the choice of the prior (Gill, 2002; Kim and Bolt, 2007). In

practice, there is a preference for objective reference priors, for they resolve the dispute

between Bayesian and likelihood approaches, which results in proper but diffuse priors as
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a popular choice (Lynch and Western, 2004). However, informative subjective priors

allow researchers to build on previous research, and can be justified on the basis of

opinion elicited from scientific specialists, archival materials, and the weight of

established evidence (e. g., Lee and Wagenmakers, 2005). Seeing that the prior densities

are needed to define the posterior distribution, it is desirable to select conjugate priors

whenever possible. Adopting conjugate priors implies that the distribution of the

posterior is already known and of the same form as the prior density, which makes the

sampling in MCMC computationally efficient (Johnson et al., 2007; Kim and Bolt, 2007;

Rupp et al., 2004). In other words, by assigning noninforrnative priors to the model

parameters of interest, the researcher allows the data to provide as much information as

possible by themselves. However, in order to facilitate model identification, the

researcher may consider using a prior density with high precision. For instance,

throughout the present study a normal prior with high precision was utilized for item

difficulty parameters, and a truncated normal prior was adopted for item discrimination

parameters. The complete specification of different priors can be found in the appropriate

sections of the practical illustration chapter.
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Monitoring the Markov Chain(s) and Evaluating the Model Goodness of Fit

For the model estimated via the Bayesian Markov chain Monte Carlo (MCMC),

as implemented in WinBUGS 1.4.3 (Spiegelhalter et al., 2003), the ‘bum—in’ period for

the MCMC chains was determined using the method proposed by Gelman and Rubin

(1992). Although Geyer (1992) suggests that generating one single long chain is more

efficient in using the simulation output, it leads to more complex Monte Carlo standard

error expressionsg. As opposed to running a single long sequence, Gelman and Rubin

(1992) argue that, to monitor the model convergence, it is important to run multiple

chains using a range of different starting values (Seltzer, Wong, and Bryk, 1996). Thus,

in the present work we perform Bayesian analysis using multiple independent chains with

over-dispersed starting values.

In order to begin the sampling process, we need an initial set of values, treated as

the starting values for the model parameters. They can be generated either by random

variables or obtained whenever possible from existing maximum likelihood-based

estimation programs. However, as noted by Kim and Bolt (2007) and Thompson et al.

(2006), the choice of starting values may influence the sequence of values produced, and

successive values may be highly correlated in the early stage of the chain. In this case,

simulated values cannot be treated as a random sample from the posterior distribution.

Thus, it is common to disregard a number of the initial iterates, treat them as the bum-in

period, and estimate the posterior distribution using the remaining iterates. In order to

ensure that each chain has converged to its stationary distribution and stable parameter

 

Because the posterior distributions are constructed from simulated samples, errors in the estimates can

be attributed to the standard deviation of the posterior as well as the sampling error. Here, the sampling

error is referred to as the Monte Carlo standard error (MCSE) (Patz and Junker, 1999b; Spiegelhalter et

aL,2003)
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estimates have been obtained, one normally allows for a bum-in period of some length,

and makes use of the subsequent simulated states to construct the posterior distribution

(e. g., Kim and Bolt, 2007; Patz and Junker, 1999b).

Several methods have been proposed for model comparison, based on Bayesian

principles; for instance, Spiegelhalter and his colleagues (2002) propose the deviance

information criterion (DIC), which includes many features of classical model assessment,

such as requiring accurate predictions and penalizing complexity. Being composed oftwo

major elements, mathematically, the DIC is defined as D]C = D(Q) + pD , where

13(0) is a measure of lack of fit, representing an estimated average discrepancy

between model and data, and pD accounts for the expected decrease in deviance

attributable to the added parameters of the more complex model (Fox, 2007; Li, Bolt, and

Fu, 2006). As the model diagnosis and evaluation criterion, estimate of the DIC index can

be requested from the WinBUGS program, in which a smaller DIC represents a better fit

of the model and a difference of less than five or ten units between models does not

provide sufficient evidence for favoring one model over another (Spiegelhalter et al.,

2003)

In addition to the DIC, the posterior predictive check (PPC) is another criterion

used for assessing the model goodness of fit (Gelman, Carlin, Stern, and Rubin, 2003).

Mathematically, the posterior predictive distribution can be written as:

P(Yrep IY) = IP(Yrep IQ)P(.QIY)d.Q, where Yrep denotes replicated

values of Y , and .0 represents all model parameters and latent variables (Sinharay

and Stern, 2003). The integral defining the posterior predictive distribution consists of
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two parts: the sampling distribution (P(Yrep IY )) and the posterior distribution for

model parameters and latent variables (P ( .Q IY ) ). That is, the posterior predictive

distribution takes the following two uncertainties into account: sampling uncertainty and

model uncertainty (Lynch and Western, 2004; Rupp et al., 2004; Western, 1999). The

rationale behind posterior predictive checks involves simulating data under the model

stated in the null hypothesis and comparing the features of these replicated data with the

observed ones. This approach grants the researcher a wide range of fit statistics; an

overall discrepancy statistics utilized in one of the present study is the Bayesian

chi-square: the sum of squares of the outfit measureslo

Specifically, being a quantitative measure of lack of fit, with simulated iterates

generated from the posterior distribution, the Bayesian p value (also known as the

PPP-value) can be assessed by comparing the observed T (Y) to the replicated

T(Yrep ), and defined as p = P(T(Yrep ) _>_ T(Y)), where this tail-area

probability (or p-value) is estimated from the simulation as the proportion of the N

. . . rep . . .

replications for whrch T Y _>_ T ( Y ) , and can be interpreted as the probability of

observing extreme data conditional on the model (Lynch and Western, 2004; Sinharay

and Stern, 2003; Sinharay, Johnson, and Stern, 2006). Thus, any systematic discrepancy

between the replications and observed data reflects the implausibility of the data under

 

Even though it has advantages over standard applications of fit statistics, thrs chr-square-type measure

48



the model, and suggests that the presumed model does not fit the data well (Li et al.,

2006; Lynch and Western, 2004; Sinharay and Stern, 2003; Sinharay et al., 2006).

Usually, the PPP-value under the correct model tends to be closer to .5; however, if the

posterior predictive p values are extreme, being close to zero, one, or both (depending on

the nature of the discrepancy measure), it is clear that the observed response would be

unlikely to occur provided that the null hypothesis is true (Sinharay and Stern, 2003;

Sinharay et al., 2006).

 

should be interpreted with great caution. According to Sinharay et al. (2006), in IRT model checking it

is not a suitable discrepancy measure and fails to detect the problems with inadequate psychometrics

models.
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Chapter 4

PRACTICAL ILLUSTRATION

The ease of implementing Markov chain Monte Carlo (MCMC) simulation

methods demonstrates much potential for statistically complex models in which they can

find future application. In this section, the utility of this lRT-LVM comprehensive

framework was investigated with examples using both simulated and empirical data, in

which three models were presented in turn, namely, the unidimensional Rasch (1960) and

linear latent growth curve model (RASCH-LLGC); the unidimensional two-parameter

normal ogive (e. g., Bimbaum, 1968) and nonlinear latent growth curve model (e. g.,

Meredith and Tisak, 1990) (2PNO-LGC), and the multidimensional graded response (e. g.,

De Ayala, 1994) and associative latent growth curve model (e. g., McArdle, 1988)

(MGRM-ALGC).
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Using the RASCH-LLGC to Evaluate the Model Parameter Estimate Performance

Unlike the two-parameter IRT model, the Rasch model assumes an identical

discrimination parameter for each item, implying that the relative severity of the items is

indistinguishable for all subjects (Rasch, 1960). Other key assumptions include (1) local

independence and (2) additivity, in which the former represents a set of items measuring

a single underlying latent variable; the latter implies that there is a readily interpretable

ordering of items and persons, since item differences and person differences contribute

additivity to the same scale, the log-odds of an affirmative response (Johnson and

Raudenbush, 2006; Raudenbush, Johnson, and Sampson, 2003). As for the structural

component, expanding on traditional repeated-measures analysis, the linear latent growth

curve model allows one to simultaneously model within-person change patterns, and

between-person differences in the characteristics of latent trajectories (Curran, et al., in

press).

Monte Carlo simulation study. Under the framework of the IRT-LGC, we

demonstrate how to evaluate the performance of parameter estimates through conducting

a Monte Carlo study. As the sample size needed for a particular longitudinal study

depends on many factors, such as the complexity of the model, the number of assessment

occasions, the standardized effect size associated with the polynomial coefficient of

interest (ex., linear, quadratic, or cubic), the variation between and within participants,

the amount of missing data, etc (Curran et al., in press; Hertzog, von Oertzen, Ghisletta,

and Lindenberger, 2008; Muthén and Muthén, 2002; Raudenbush and Liu, 2001), an

“adequate” sample size is hard to unambiguously determine. As a simplified illustration,

a specific IRT-LGC model is investigated, in which the Rasch model for dichotomous
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items is the measurement model and a linear latent growth curve model (LLGC) with

four equidistant time points is the structural model. Given the constant number of

repeated assessments and the growth curve reliability (GCR), we assume that the

performance of a particular parameter estimate, the stability and variability of the average

growth trajectory, is a function of sample size, the number of items being administrated at

each point in time, and the standardized effect size of the average growth trajectory.

Based on a Monte Carlo sample size study, Muthén and Muthén (2002) suggest

that for a linear growth curve model without a covariate (i.e., a unconditional model), the

following specification of the covariance matrix reflects a commonly seen scenario,

showing that the variation of the intercepts is generally larger than that of the linear

growth rate in longitudinal studies, and the covariance between them is set to zero.

.5 O

T:

0 .1

In addition, according to Hertzog et al. (2008), they indicate that the GCR would

have an impact on the power of detecting individual differences associated with the

change profile, that is, the variance of the slope factor. Having two components, the GCR

can be defined as the variance determined by the latent growth curve at each point in

time, divided by the total variance of repeated measures. In this study, to partial out the

influence of this confounding factor, we assume that residual variances are homogeneous

across different points in time and fixed at the value of one, which is the general practice

for conducting power analyses in the multilevel model framework (Snijders and Bosker,

1993). In order to have acceptable GCR values across the entire study period, we follow

Muthén and Muthén’s (2002) observation and rescale the elements in the covariance
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matrix by a factor of 2, which results in a modified covariance matrix and the respective

GCR values of.50, .55, .64, and .741 1.

10

0.2

Adopting Cohen’s definition of the magnitude of effect sizes (Cohen, 1988), we

specify two different standardized effect sizes for the mean of the linear grth

trajectory: that is, the small effect size (.14) and the medium effect size (.28). These

values are calculated as follows:

 

V
5_ 10

_ I 2
0'01

. . . . . - 2
, where 5 rs the magmtude of the standardized effect srze, and V10 and 0'01

represent the overall linear time effect and the corresponding variance associated with

this linear slope factor. Using the values of .316 and .632, we obtain the corresponding

small and medium effect sizes for the linear growth trajectory (V10 ); that is, .14

(.316><\/.2) for the small effect size and .28 (.632><\/.2) for the medium effect size.

 

I 1 The formula for calculating the GCR can be expressed as,

(0'30 + #031 + 2t0'001)

 

2 _
R (at)— 2

2 2 2
2 2 2 ,where 0'00, 001 and 0001

(000+t 001+2t0001+08t)

are the variances and covariance associated with the intercept and slope factors; 0'g is the residual

t

variance for the underlying latent variables at time t, and t is the time coefficient (i.e., 0, l, 2, and 3) in a

linear growth trajectory model (Muthén and Muthén, 2002).
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As regards the number of items being administered at each time in the same point,

we chose 5, 10, and 15 items to represent three different lengths of the scale. Using the

unidimensional Rasch model, item difficulty parameters were selected from the range of

[-2, 2] with equal intervals. For instance, for a scale of 5 items, the item difficulty

parameters are pre-specified as ,6=[-2,-1, 0, 1, 2]. For a 10-item test, the item difficulty

parameters are B=[-2, -1.556, -1.111, -.667, -.222, .222, .667, 1.111, 1.556, 2].

Analogously, for a test of 15 items, the item difficulty parameters are ,6’=[-2, -1.714,

-1.429, -l.143, -.857, -.571, -.286, 0, .286, .571, .857, 1.143, 1.429, 1.714, 2]. The

observed dichotomous outcome variables from this RASCH-LLGC model were

generated by comparing the probability of the correct response with a random number

generated from a standard uniform distribution, U[O, 1].

As Curran et a1. note (in press), in order to have reliable estimates from the

growth curve models, sample sizes approaching at least 100 are often preferred.

However, achieving accurate estimates in LGC models with discretely scaled variables

requires relatively large sample sizes. Generally speaking, Lee (2007) suggests that, when

analyzing dichotomous data, researchers need at least “30a” sample sizes in order to

achieve reasonably accurate results, where “a” is the number ofunknown parameters.

Therefore, as the unknown parameters in this RASCH-LLGC model with three different

lengths of scale are 8, 13 and 18, we select sample sizes of 125 and 250 as the two

investigating levels 1 2.

 

12 . . . . . .

Even though the sample srzes for these two investigating-level seem small in the typical IRT model

estimation, Muthén and Curran (1997) argues that in growth models it is the total number of

person-by-time observations that plays an important role in model estimation and statistical power.
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In summary, to evaluate the nrunerical behavior of the average growth trajectory

(i.e., the stability and variability of latent mean associated with the slope factor in an

RASCH-LLGC model), the simulation used a 2X3><2 design with 12 conditions, in each

of which a total of 100 replications were generated using the free software R (R

Development Core Team, 2009) and the models were implemented and estimated using

WinBUGS 1.4.3 (Spiegelhalter et al., 2003). Specifically, we generate data sets which

represent the alternative hypothesis (i.e., the mean of the slope factor is statistically

significant different from the specified values, .14 and .28). However, in Bayesian

analysis, using the percentage of replications where the null hypothesis was rejected as a

proxy estimate for power determination should proceed with caution. As indicated by Lee

(2007), the standard error estimates are usually overestimated in Bayesian SEM analysis.

Thus, he suggests that the hypothesis testing should be approached by means ofmodel

comparisons through the Bayes factor (BF) or DIC, in particular for models with

dichotomous variables. Also, as the information carried by the dichotomous data is

relatively rough, it is important to monitor the model convergence with great care, for it

requires more iterations for the MCMC algorithm to converge. Therefore, for each

replication, we execute the algorithm by means of running three independent chains with

over-dispersed initial values and take the first 25,000 iterations as the burn-in period for

each chain. That is, a total of an additional 15,003 (5,001 *3) iterations for three chains

was carried out to define the sampling distribution of each parameter in the model. In

addition, a common method used for assessing convergence is to compute the

Gelman-Rubin statistic, the potential scale reduction factor (PSRF), which compares

within-chain variability to the variability among chains (Gelman and Rubin, 1992). When
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for each parameter of interest the PSRF approaches one, it suggests that the model

reaches convergence. Finally, the summary of population values used in this

RASCH—LLGC model can be found in Table 4.1.2.

The following criteria are used for evaluating the model parameter performance,

such as the bias (BIAS), the root mean squares (RMS) between the true values and the

corresponding estimates, and the ratio of the standard errors estimates to the sample

standard deviations, SE (13,0)/ SD03”, ) , in which the bias of the estimates and the root

mean squares between the true values and the corresponding estimates are computed as

follows:

,. _ Ar 0
BIASof V10 — E[v10 -v10:|

1/2

A 1 100 »r 0 2

RMSof V10: fiZIVIO—VIO]

r=l

,where firo and V100 are the rth estimate of V10 and its true value, respectively.

In order to study the behavior of the numerical standard error estimates, let SD (131 O )

be the sample standard deviation obtained from {131"0 .' r = l, ..., 100} , and

SE (1310 ) be the mean of the numerical standard errors estimates of 1310 obtained

a:

—1 T . T

via, E (T* -l) 2(V10(t) —1310)(V10(t) —1310) ,where T* is the

t=l

total number of simulates obtained from the posterior distribution, and
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V10 : T 1 E v10( ) . When the standard errors estimates are close to the sample

t=l

standard deviations, SE (131 0) should be close to SD (131 0 ), and the ratio of

SE(1310)/ SD(\310) should be close to one, in which the ratio can be used for

assessing the behavior of the numerical standard error estimates. Thus, based on the

definitions of $130310) and 5130310), it is found that the sample standard

deviation of {131"0 .‘ r = l,...,lOO} is smaller than the mean of the numerical standard

error estimates, indicating that the variability of the Bayesian estimates, the average

change rate, is relatively small, which may be regarded as an advantage of the Bayesian

estimates. However, it also indicates that the numerical standard error estimates of the

Bayesian approach (SE/(1710 )) are overestimated, which is in line with our

expectations, as a converged MCMC chain will have explored all of the parameter space

and provided a full picture of the posterior distribution. Finally, it is found that in most

cases the design factors investigated in the present study, such as the sample size, the

standardized effect size, and the number of items, all execute positive influences with

respect to the stability and variability of the parameter estimate of interest (see Table

4.1.3). That is, by increasing the sample size, the magnitude of the standardized effect

size, and the number of administered items, the promise of reducing bias and increasing

precision for the average growth trajectory in the RASCH-LLGC model can be validated.

Prior knowledge incorporation. In this section, we demonstrate how the use of

prior information affects the parameter estimates and standard deviations from a small
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data set. In the previous simulation study, baseline priors and conjugate priors are used in

all Bayesian analyses. Specifically, the mean of the shape factor is estimated using a

normal distribution prior. As regards the covariance matrix of the random effect

parameters, the conjugate prior, the inverse Wishart distribution, is used. As for the item

difficulty parameters, in order to facilitate model identification, we adopt a normal prior

density with tight precision and treat them as the baseline priors. The complete

specifications of the least-informative, half-informative and full-informative priors are

displayed in Table 4.1.4.

Using the least-informative, half-informative and full-informative priors, the

results of parameter estimates and associated standard deviations fi'om the simulated data

set, one with a small standardized effect size of the average grth trajectory (.14), a

sample size of 125, and ten dichotomous items (SE125110), are given in Table 4.1.5. The

results appear to show that the standard deviations when adopting vague priors were

relatively large. When analyzing the data again with half- and full-informative priors, the

corresponding standard deviations were reduced: obviously, with more information on

priors, the standard deviations became smaller through comparing their counterparts

which had been obtained using half- and full-informative priors. This illustrates the way

in which the use of informative priors can increase the statistical power and reduce

parameter uncertainty, implying that informative priors can be viewed as additional or

extra data points (Gelman and Hill, 2007; Zhang et al., 2007). Thus, through Bayes’ law,

we demonstrate how posterior probabilities are revised in the light ofnew information

and bridge individual expressions of uncertainty to contact with real-world data

generating mechanism.
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Fit of the 2PNO-LGC to the Abortion Data

Despite the large number of components requiring attention when selecting an

appropriate statistical model, this section restricts its focus to the following issues: (1)

model formulation: how Bayesians explicitly incorporate multiple dichotomous repeated

measures into a latent grth curve analysis. In order to differentially weigh individual

items, and examine developmental stability and change over time, one specific model, an

2PNO-LGC, is presented, in which the model combines the two-parameter normal ogive

item response theory model (e. g., Lord and Novick, 1968) and latent growth curve

analysis (e. g., Meredith and Tisak, 1990); (2) model equivalence: it is well known that

grth models can be approached from several perspectives via the formulation of

equivalent models and can provide identical estimates for a given data set, such as the

HLM and LGC models. To assess the advantages and disadvantages of these two distinct

modeling frameworks, we illustrate their different characteristics and use in applications

with simulated data; (3) missing data compensation: as an alternative estimation method,

the Bayesian inference explicitly models missing outcomes and handles them as extra

parameters to estimate (Gelman and Hill, 2007; May, 2006; Patz and Junker, 1999b;

Spiegelhalter et al., 2003). Thus, when the missing data generation mechanism, missing

at random (MAR; Rubin, 1987), is sustainable, the incorporation of individual-level

auxiliary predictors makes it trivial to use the Bayesian approach to effectively estimate

missing values in a conditional model (Carrigan et al., 2007; Gelman and Hill, 2007).

Measures and data sources. As part of the investigation of British Social

Attitudes, the data represent the responses to seven items concerning attitudes toward

abortion by a selected panel of410 from the years 1983 to 1986. For each item,
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respondents were asked if they agreed that the law should allow abortion: where 1 stands

for “agree” and 0 otherwise. These seven items are listed in Table 4.2.113. However,

when we perform a confirmatory factor analysis (CFA) to examine the underlying

construct using the software of Mplus (Muthén and Muthén, 1998-2007), we find these

seven items seem not to measure the same thing: that is, these items do not form a

unidimensional construct. As a simplified demonstration, we decide to focus on

participants’ general attitudes toward abortion (measured by the bottom four items in

Table 4.2.1) and remove the extreme circumstance factor from subsequent analyses. By

doing so, the gamma change‘4 can be ruled out through conducting a CPA on the scale at

four time periods. That is, a single underlying latent variable helps explain the whole

association between the responses to different items by an individual, and all items load

onto this single latent factor across the entire study span.

The breakdown of analyses and response patterns for complete cases and

available cases can be found from Table 4.2.2 to Table 4.2.5. In our analyses, only

approval or disapproval responses were counted as valid and other responses were treated

as item non-response, which results in 284 respondents giving complete responses for all

four years. However, if the responses of “don’t know” and “no answer” are included, we

have a usable sample of 323 cases. As observed in the response pattern for each data set,

it is found that in the contingency table we have a few response patterns with large

 

l . . . . . .

3 Data were supplied by the UK Data Archive. Neither the ongrnal data collectors nor the archive bear

any responsibility for the analyses.

In Golembiewski et al.’s triumvirate conceptualization of longitudinal change (1976), they claim that

the true change (aka. the alpha change) can be inferred only fi'om observed scores in a situation when

there are no beta and gamma changes, where beta change is defined as the change resulting from the

respondent’s recalibration of the measurement scale over time, and gamma change refers to as a

fundamental change concerning the respondent’s understanding and perception of the latent constructs

ofprimary interest.
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frequencies and many response patterns with small frequencies, which implies that the

data form a rather sparse contingency table and the asymptotic normality of the

maximum likelihood estimator cannot be obtained, since in both data sets some of the

24 possible response patterns are not observed. Thus, when frequentist methods are

adopted, all kinds of problems associated with this sparseness such as statistical inference

and hypothesis testing should be kept in mind constantly (Knott, Albanese, and Galbraith,

1990; Fienberg and Rinaldo, 2007).

The sampling method is a multi-stage design with multiple separate stages of

selection, where selecting respondents were nested within addresses, addresses within

polling districts, polling districts within constituencies, and constituencies within the

electorate (The British Social Attitudes Panel Survey, 1983-1986). Given that a key task

of an annual series survey is to look at trends and changes in attitudes over time, a

longitudinal rather than a repeated cross-sectional design is adopted here (McGrath and

Waterton, 1986; Wiggins et al., 1990). In this study, we aim to extend our concentration

on the methodological issues: that is, the proposal and evaluation of an IRM-LGC hybrid

model. Because a growth curve analysis is used to model the process of change, the

estimation of growth profiles is represented by the parameters of initial level and shape,

along with other explanatory variables. Thus, a conceptual modeling framework is

depicted in Figure 4.2.1.

Unconditional models. In subsequent analyses, baseline priors and conjugate

priors are used for the measurement model parameters and structural model parameters.

Specifically, the means of initial level and shape are estimated using normal distribution

priors, and two kinds of non-informative prior are used for the variance of measurement
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error: the inverse gamma prior and the uniform distribution prior (Gelman and Hill, 2007).

In regard to the covariance matrix of the random effect parameters, the conjugate prior,

the inverse Wishart distribution, is adopted. The complete specification of different priors

can be found in Table 4.2.6. In order to examine the robustness of the obtained Bayesian

results, the monitoring of three independent chains with overdispersed initial values and

the convergence assessment of one single long chain are performed. It is found that the

results from these two approaches are close to each other within at least one decimal

place: in the situation of running three independent chains, the first 20,000 iterations are

discarded as bum-in for each chain, which results in a total of an additional 30,003

iterations for the three chains and they were used to define the posterior distribution of

each parameter. Similarly, for a single long chain, we use a burn-in period of 19,998,

with parameter estimates based on the 50,000 subsequent iterations (see Figures

4.2.2-4.2.3). The output is summarized on the basis of the remaining 30,003 iterations.

Generally, the simulation should be run until the Monte Carlo standard error

associated with each parameter is within an acceptable range, say, less than 5% of the

sample standard deviation (Dunson et al., 2005; Kim and Bolt, 2007; Spiegelhalter et al.,

2003). However, compared to the results obtained from the multiple-chain approach, it is

found that the Monte Carlo errors are not all less than 5% of the sample standard

deviation when we adopt one single long chain to generate the simulated sample. When

using multiple independent chains, however, most of the Gelman-Rubin statistics, with

the potential scale reduction factor (PSRF), approximately approach one for each quantity

of interest (Gelman and Rubin, 1992), which indicates the reaching of convergence (see

Figure 4.2.4). Thus, in subsequent analyses we adopt Gelman and Rubin’s suggestion and
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monitor the model convergence using three independent chains with over-dispersed

starting values.

Based on the results from Table 4.2.7, in considering a few candidate models, it is

found that all of them provide convergent substantive interpretation; thus, according to

the model goodness of fit index (i.e., DIC), we take the model in the column on the

extreme right, the one with the probit link and uniform prior for level-1 residual variances,

as an example of the adequate representation of the data. Again, the results of parameter

estimates and associated standard deviations from the complete data set (n=284) are

given in Table 4.2.8 (the right panel), where we see that the estimated discrimination

parameters for item 2 and item 3 are both greater than one and larger than for the other

two items, indicating that item 2 and item 3 better discriminate the underlying propensity

level than do item 1 and item 4. This is because greater discrimination indicates a

stronger relationship between an item and the underlying latent trait; hence, we would say

that the “marriage” and “couple” items are more closely related to holding a positive

attitude to abortion than are the “financial” and “woman” items. As for the item

difficulty parameter estimates, the estimated difficulty parameter associated with item 4

is the largest among the four, indicating that “woman makes the abortion decision

herself” is the hardest item to endorse. In other words, the endorsement of this item

reflects a higher level of propensity to hold a generally positive attitude toward abortion

than do other items, such as “financial”, “marriage”, and “couple” items.

As for the substantive interpretation of the latent growth or decline trajectory, the

empirical result shows that, without controlling any explanatory variables, a mean growth

curve emerges with a true initial level of .392 (p<.01) and a change rate of .336 (p<.01).
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The Significant variation between the respondents around these mean values (0'L =2.953

and 61% =.144) implies that, overall, these subjects start their growth process at different

phases and go on to change at different rates, which not only reveals systematic

difference in the change trajectory among participants but also suggests true variation

remaining in both the initial status and rate of change, indicative of the need for

additional time-invariant predictors (e.g., Singer and Willett, 2005). The correlation

between the initial level and the grth rate is -.021 (6'LS / (6’L - 0"S ) , ns), implying

that the initial level has no predictive power for the growth rate. The level-l varying

residual variances, describing the measurement fallibility in general attitudes to abortion

over time (their estimated values are 1.077, .581, 1.095, and .391, respectively, being

statistically significant at the first, and third points of time), suggest that the existence of

additional outcome variation at level-l of the structural model may be further explained

by other time-varying predictors. Finally, it is found that a piecewise linear growth

trajectory exists (i.e., the estimated slopes for four repeated assessments are Sl = 0

(fixed), S2 = —2.072 (p<.01), S3 = .061 (ns) and S4 = 1 (fixed)) in terms of

participants’ general attitudes to abortion.

Model equivalence. It is well known that growth models can be approached from

several perspectives via the formulation of equivalent models and can provide identical

estimates for a given data set, such as the HLM and LGC models. To assess the

advantages and disadvantages of these two distinct modeling frameworks, we illustrate

their respective characteristics and application use with a simulated data set, in which the

population values were adopted from a previously modified analysis result, the one with



the probit link and constant level-1 residual variance. The simulated data are generated

using the free software of R (R Development Core Team, 2009), and the models are

implemented and estimated using WinBUGS 1.4.3 (Spiegelhalter et al., 2003). As

indicated before, in the structural model, ‘time’ in the HLM and LGC model has specific

consequences for the analysis results:

6(t)n = AOté’On + Alté’ln + 8t(n) and

QVOn : vOn + UOn

Cln : vln +0112

(t=1,...,T,‘n=l,...,N).IntheHLM, (On and €121 arerandomparametersand

If“ is an observed variable representing time or a time-varying covariate, which makes

HLM the best approach if there are a great many variations of occasion between

individuals (Snijders, 1996; Willett and Sayer, 1994). However, in the LGC, €012 and

41” are the latent variables and 201‘ and ’l'lt are factor loadings. Because Alt

cannot vary across subjects, LGC is considered best suited for time-structured data or a

fixed occasion design (e. g., Byrne and Crombie, 2003). Although LGC modeling can be

used for designs with varying occasions by modeling all existing occasions and viewing

the varying occasions as problems of missing data, this approach is difficult to manage

when the number of varying occasions is excessive (Bauer, 2003; Curran, 2003; Hox and

Stoel, 2005).

As can be seen in Table 4.2.9, the parameter estimates are rather similar and both

approaches lead to identical substantive conclusions. However, there is a caution: to
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facilitate the comparison between these two approaches, in the HLM we manually fix the

estimates of the time variable to be the same as the true values, since time coefficients in

the HLM are fixed explanatory variables (i.e., we fix the population parameters S2

equal to -1.741, and S3 equal to .064), which makes the number of estimated

parameters in the HLM two fewer than their counterparts in the LGC model. In addition,

according to the overall goodness of fit provided via the deviance information criterion

(DIC) (Spiegelhalter et al., 2002), we conclude that these two models fit the data equally

well.

Generally, latent growth curve analysis is preferred in many situations because of

its greater flexibility. For instance, standard SEM software supplies more options, such as

providing omnibus goodness-of-fit indices for a model (i.e., allowing for a saturated

model with which any fitted model can be compared) and being more flexible in

modeling and hypothesis testing (i.e., testing complex mediational mechanisms through

the decomposition of effects and investigating moderational mechanisms through

multiple group analysis, to name only a few) (Bauer, 2003; Chou, Benter and Pentz,

1998; Curran, 2003; Hox and Stoel, 2005; MacCallum et al., 1997; Willett and Sayer,

1994). Still, the HLM is preferable whenever the growth model must be embedded in a

larger number of hierarchical data levels (Snijders, 1996). Adding additional layers to the

model is relatively difficult if the SEM framework is used. While several key differences

remain between these two models, at the time of writing, the discrepancies are rapidly

disappearing (Preacher et al., 2008; Raykov, 2007).

Missing longitudinal data compensation. Missing data are unavoidable in

almost all serious statistical analyses. Although the way in which the Bayesian estimation
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compensates for missing data is similar to the multiple imputation (MI) described by

Rubin (1987), it extends the MI method by jointly simulating the distributions of

variables with missing data as well as with unknown parameters (Carrigan et al., 2007;

Patz and Junker, 1999b). Thus, through a fully Bayesian (FB) approach, not only can the

missing values be treated as additional parameters to estimate, but these parameter

estimates can themselves be marginally integrated from an exact joint posterior

distribution for all the parameters of interest (Dunson et al., 2005). For instance, in the

context of incomplete longitudinal data, the imputation and analysis models are fully and

simultaneously specified in an FB analysis. However, the maximum likelihood method

relies on a fully specified model, and its parameter estimates are constructed using

likelihood-based approximations (Carrigan et al., 2007; Schafer and Graham, 2002).

In order to explore the influence of the item non-response on estimated

parameters, two separate analyses were conducted: one with a complete data set (for

those individuals who have an opinion on every item in all four years), and the other with

a full dataset of 323 respondents (Wiggins et al., 1990). As the results from the full

dataset (the one containing missing outcomes) do not differ systematically from the

complete cases in unconditional models, the unprovable missing data generation

mechanism, missing completely at random (MCAR; Rubin, 1987), seems sustainable.

Moreover, a hypothesis regarding the missing data mechanism is tested: the

corresponding significance value associated with Little’s MCAR test (Little, 1988) is

.222, indicating that the data are missing completely at random. As mentioned earlier,

because Bayesian treats missing values as additional parameters which need to be

estimated, for those respondents with incomplete survey responses, handling missing data
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this way helps improve the reliability of inference for individual latent growth or decline

trajectories (May, 2006; Patz and Junker, 1999b). Thus, in the present study, the paper by

Wiggins and his colleagues (1990) serves as guidance in selecting explanatory variables,

where age, gender, and religious status (treated as fixed at the respondent’s 1983

response) were chosen to investigate their influences on the level and shape factors of a

latent growth curve analysis.

According to Rubin (1987), there are three potential patterns of missingness: (1)

missing completely at random (MCAR), (2) missing at random (MAR), and (3) missing

not at random. Although the assumption ofMCAR seems statistically retainable in the

current study, we instead rely on the MAR assumption (see Table 4.2.10), indicating that

a systematic difference can be explained by other observed variables (Rubin, 1987). The

reason for this is that in longitudinal studies missing values are accumulated over time; in

this sense they are easily susceptible to biased results. Therefore, an imputation

component was built into the model using the three auxiliary predictors of gender, age,

and religious status, to deal with the multivariate missing categorical data at each

occasion. Based on the result shown in Table 4.2.11, both data sets provide estimates

with identical" substantial interpretation and there is evidence for an age and religious

status interaction in terms of the true initial status. Young people without religious belief

tend to have a higher tendency to hold positive attitudes toward abortion; however, the

same is not the case for senior people with religious belief. As none of the Bayesian

p-values is of extreme value, we find no failure of the model: suggesting that the model

generates replicate data similar to the observed one.

Taken together, the application of IRTs to responses gathered from repeated
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assessments allows us to take into consideration the characteristics of both item responses

and measurement error in the analysis of individual developmental trajectories. As a

simplified demonstration, in the present study we consider the modeling of a

unidimensional latent construct only. However, in developmental research one is often

interested in the way in which two or more repeatedly followed and interrelated

dimensions evolve over time. In order to effectively accommodate a variety of data

structures, it is clearly worthwhile to extend to multiple domains through the analysis of

random effect regressions, and simultaneously make use of their interrelationship when

we have multiple interrelated dimensions across the entire study period.
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Using the MGRM-ALGC to Study the Parallel Process of Change

As a simplified demonstration, the goal of the following analyses is to illustrate

how this comprehensive hybrid model, the MGRM-ALGC, allows one to depict relations

among respective grth factors using data from the National Youth Survey (NYS;

Elliott, 1976-1987).

Participants. Based on a multistage cluster-sampling design, the NYS employed

a probability sample of households in the continental United States. The sample covers

urban, suburban, and rural geographic areas. To be assessed for five consecutive years,

the panel sample comprised 1,725 adolescents ranging from 11 to 17 years of age

(M=13.87, SD=1.945) at Year 1, 1976. Of these 1,725 randomly selected participants,

838 completed all 13 outcome measures across five occasions (i.e., after listwise deletion

of all missing values, the number of complete cases is 83 8, implying that attrition and

other form ofmissingness approximated half the size of the sample). The participants

described themselves as Caucasian (n=690), Afiican American (n=99), Mexican

American (n=3 5), Native American (n=4), Asian (n=8), and others (n=2). Among them,

82.6% percent were from two-parent families. The questionnaire covered a wide array of

measures to assess participants’ social isolation status and their exposure extent to

delinquent peers. Adolescents with complete demographic data15 (n=802) reported a

slightly higher level than their counterparts with incomplete responses (n=3 6), except for

the second and third assessment occasions; similarly, adolescents with complete

demographic data (n=802) reported a somewhat greater extent of exposure to delinquent

peers than their counterparts with incomplete cases (n=36), except for the third and fifth
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assessment occasions. However, no statistically significant difference was detected in the

two situations. Descriptive statistics for each dimension’s IRT scale scores are presented

in Tables 4.3.la and 4.3.1b.

Measures. Few studies consider the dynamic relations between adolescents’

mental health and other problem behaviors, although there has been substantial evidence

of their relations in both cross-sectional and longitudinal samples (e. g., Cohen, Reinherz,

and Frost, 1994; Swahn and Dovonan, 2003). Thus, in the present study we decide to

examine the associations between adolescents’ social isolation and engagement with

delinquent peers through the observation of dynamic trajectories between these two

dimensions. The selection of these two constructs was based on the extant literature,

suggesting a link between the way in which adolescents perceived their emotional status

and the likelihood that they were associated with delinquent peers. Based on this

conceptual framework, we are interested in examining the corresponding dynamics

underlying this bivariate system as it evolved over time. A total of 13 polytomous items

were selected as outcome measures on each occasion, each ofwhich is a five-point

Likert-type scale with higher scores reflecting severe status. Among them, the first six

variables measure the construct of social isolation and the remaining seven describe the

extent of adolescents’ exposure to delinquent peers (see Table 4.3.2).

Dimensionality assessment. As part of the investigation of the NYS, the data

represent the responses to 13 items regarding adolescents’ social isolation status and the

extent of their exposure to delinquent peers by a selected panel of 838 from the years

1976 to 1980. A confirmatory factor analysis (CFA) with categorical indicators was

 

Demographic variables include the marital status of their parents, family income, gender, ethnrcrty, and
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performed to examine the dimensionality using Mplus (Muthén and Muthén, 1998-2007).

The response frequencies for these 13 items are listed in Table 4.3.2. As observed in the

frequency table, it was found that response alternatives equal to or greater than three tend

to have small frequencies, implying that the data were rather sparse and asymptotic

normality of the maximum likelihood estimator may not apply. The CFA results

suggested that these 13 items measured two latent constructs for each of the five years.

The fit of the five models was respectable, with Comparative Fit Indices (CFI)

between .965 and .982, Tucker-Lewis Fit Indices (TLI) between .973 and .985, and Root

Mean Square Error of Approximation (RMSEA) between .043 and .071.

Scores from perceived social isolation and exposure extent to delinquent peers are

plotted in Figures 4.3.1a and 4.3.1b. Each of the plots contains data from a random

subsample of 44 adolescents, in which each line represents an individual’s IRT scale

scores followed through five occasions. These plots illustrate some important features of

the data. Generally, intra-individual variability over time is evident. This observation

applies for both dimensions. Also, there is great inter-individual variability within groups,

indicating great change heterogeneity.

Identification constraints and prior distribution specification. As with other

estimation approaches, various identification constraints are needed when complex

models are encountered. In the present study, for the MGRM-ALGC model, in order to

address rotational indeterminacy, we assume a multidimensional model with simple

structure (i.e., each item measures one dimension of ability and there is no cross-loading

of items), fix the first discrimination parameter associated with each construct to one and

zero loadings otherwise (i.e., alpha[l,l]<-1, alpha[1,7:13]<-0; alpha[2,1:6]<-0,

 

age.
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alpha[2,7]<-1), and constrain the first threshold associated with the first item’s

multidimensional item difficulty parameter in each dimension to zero (i.e., d[1,1]<-0;

d[2,7]<-0). Moreover, in order to resolve the metric indeterminacy, we compare and

contrast two different scaling options: either constraining the initial latent growth factor

from each dimension to the value of zero or fixing level-1 residual variances for each

construct to a constant value (i.e., set variances for both 01 and 02 equal to particular

constants). As regards model convergence checking and subsequent statistical inference,

we adopt Gelman and Rubin’s (1992) suggestion of running three independent chains

with over-dispersed starting values. Because WinBUGS treats an initial 4,000 iterations

as the default adaptive phase under the general normal- proposal Metropolis algorithm,

we take these 4,000 iterations as the bum-in period and sample an additional 4,000

iterations from each independent chain (Spiegelhalter et al., 2003). Thus, the point

estimate of the model parameter and corresponding standard error were computed from

the mean and standard deviation of the remaining 12,000 observations (i.e.,

12,000=4,000*3) sampled from each pararneter’s marginal posterior distribution. For

instance, the mean estimate of an overall time effect associated with a particular

:1:

A A =1: ‘1 T (t) >Ic

dimension (vdlo) can be calculated as leo = (T ) Z leo , where T is

t=l

the total number of simulates obtained from the posterior distribution. Since we have

large sample of leO from its posterior distribution, an estimate of SEQ/56110 ) can

be directly obtained from the sample covariance matrix,
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becomes infinity, these Bayesian estimates tend to approach to their corresponding

posterior means in probability.

As regards the prior density specification, in subsequent analyses baseline priors

and conjugate priors are used for the measurement model parameters and structural

model parameters. That is, order to facilitate model identification, a normal prior with

tight precision, N(O, .5), was utilized for item difficulty parameters, and a truncated

normal prior, N(0, 1.0E-02)I(0,) was adopted for item discrimination parameters. In

addition, the level-1 residual variance (0'2 ) is identically and independently distributed

as an inverse gamma distribution with shape and scale parameters being set to the value

of one. Specifically, in the unidimensional GRM-LGC model, the means of initial level

and shape factors are estimated using multivariate normal distribution priors. In regard to

the covariance matrix of the random effect parameters, the conjugate prior, the inverse

Wishart distribution is adopted. As for the MGRM-ALGC model, the 0 -vector is next

decomposed into two sets of latent growth factors and assumed to be distributed as a

multivariate normal distribution. For both dimensions, the means of initial level and

shape factors are estimated using multivariate normal distribution priors, and the inverse

Wishart distribution is adopted for the covariance matrix of the random effect parameters

from each dimension. The complete specification of different priors can be found in

Table 4.3.3.

Empirical results. Extracted from the multidimensional graded response model,

74



each developmental variable of interest is an unobservable propensity level. In order to

validate the rationale in conducting an associative LGC, analytically the researcher needs

to ensure that there is sufficient interindividual variation in the initial status and growth

rate for each univariate dimension. Once each univariate construct can be successfully

modeled, the researcher can model all the developmental latent variables simultaneously.

The associative latent growth curve model used in the present study describes the form of

grth and the pattern of associations among growth factors for each of the following

dimensions, namely, the degree of adolescents’ social isolation and the extent of exposure

to delinquent peers. In addition, in order to capture the nonlinear trajectory embedded in

each developmental variable, the shape factor loadings are constrained to zero and one at

the first and last assessment occasions, and the coefficients for intermediate time points

are freely estimated.

Unidimensional model: the GRM-LGC.

Social isolation. The results of parameter estimates and associated standard

deviations from the complete data set (n=83 8) are given in Table 4.3.4 (left panel), where

we see the estimated discrimination parameters for items 4 and 5 all significantly greater

than the value of one, indicating that these items better discriminate the underlying

person ability than the other items do. Because greater discrimination indicates a stronger

relationship between an item and the underlying latent trait, we may say that the items

“nobody at school cares” and “don’t belong at school” are more closely related to the

construct of feeling socially isolated than other items, such as “teachers don’t call on me”,

“outsiders with family”, and “no project work from teachers”. As for the item difficulty

parameter estimates, the estimated item threshold parameter associated with the very last
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response category in item 6, ,3 [6,4], is the largest, indicating that endorsing in the

response category of 4 in the following item, “no project work from teachers”, is the

hardest alternative for respondents to reach. That is, the endorsement of this item reflects

a higher level propensity to feel isolated than do the other items.

As for the substantive interpretation regarding the structural model, the empirical

result shows that without controlling any explanatory variable, a mean growth curve

emerges with a true initial level of 1.542 (p<.01) and a change rate of -.342 (p<.01). The

significant variation between the respondents around the mean value associated with the

initial level (6% =1.538) implies that, overall, these subjects initiate their growth process

at different phases, which not only reveals systematic differences in the change trajectory

among participants but also suggests true variation remaining in one of the growth

parameters, indicating the need for additional time—invariant covariates (e.g., Singer and

Willett, 2005). The correlation between the initial level and change rate is -.109

(0115/ (0“L ° 6’S ), ns), indicating that the initial level has no predictive power for the

change rate. Finally, it was found that there exists a piecewise linear trajectory (i.e., the

estimated slopes for five repeated assessments are S1 = 0 (fixed), 52 = .857

( p<.01), s3 = 1.295 (p<.01), s4 = 1.230 (fixed), and 55 =1 (fixed)) in terms

ofthe participants’ perceived levels of social isolation.

Exposure to delinquentpeers. Similarly, in Table 4.3.4 (right panel), we can see

that the estimated discrimination parameter for item 6 is the largest out of seven,

indicating that “stole something worth more than $50 dollars” is more closely related to

hanging out with delinquent peers than other items. As regards the item difficulty
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parameter estimates, overall, the estimated threshold parameters associated with item 5

are rather large, implying that selling hard drugs is a hard item to endorse: those

adolescents who endorsed higher category alternatives for this item were more likely to

be associated with delinquent friends. In addition, without controlling any explanatory

variable, we obtain a mean growth curve with a true initial level of -.874 (p<.01) and a

change rate of -.519 (p<.01). The significant variation around the latent means for these

two growth factors (6% =2.788 and 6%: =2.504) indicates that there remains room for

individual-level covariates and contextual variables. In addition, because the initial level

has no predictive power for the change rate ( ,5LS =.002, ns), the change rate

demonstrates a gradual decline pattern, no matter what the respondent starting level.

Likewise, a segmented latent trajectory was found (i.e., the estimated slopes for five

repeated assessments are S1 = 0 (fixed), 52 = .203 (p<.01), S3 = .503 (p<.01),

S4 = .977 (p<.01), and S5 = 1 (fixed)) in the dimension of deviant peer affiliation.

Multidimensional model: the MGRM-ALGC.

Unconditional model: A two-level model. The associative latent growth model

allows for the assessment of relationships among individual parameters for adolescents’

social isolation level and exposure extent to delinquent peers, and for the estimation of

means, variances, and covariances associated with the growth factors for each

developmental dimension. Gelman and Rubin’s (1992) suggestion of running multiple

independent chains with over-dispersed starting values for checking model convergence

is ad0pted. The model reaches convergence: in all the Gelman-Rubin statistics, the

potential scale reduction factor (PSRF) approaches one for each quantity of interest (see

Figure 4.3.2). Parameter estimates indicate a significant rate of change in the
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development of both adolescents’ social isolation and extent of exposure to delinquent

peers. Being consistent with other developmental studies, generally, the results suggest a

relative downward trend in these two dimensions during adolescence, except for the

fourth occasion in the social isolation dimension (S14 = l. 070 , p<.01). In addition,

both variances of level and shape factors associated with each dimension are significant

(i.e., 2.470,] .554;3.047,2.664), an indication that significant individual variations remain

in these two developmental variables, which firrther justifies the implementation of a

univariate LGC for each dimension, and the application of an associate LGC between two

of them.

Table 4.3.5a presents the correlations between the levels and shapes for

adolescents’ social isolation and extent of exposure to delinquent peers. The levels and

shapes associated with each dimension are all significantly correlated, except for the

correlation between the change rate of social isolation and initial level of the extent of

exposure to delinquent peers (.109, ns), and that between initial level and rate of change

in the affiliation with delinquent peers (-.006, ns). Thus, the hypothesized associations

between these two constructs are validated. That is, in terms of substantive interpretation,

as adolescents perceived themselves more socially isolated, the chance that they are

engaged with delinquent peers becomes profoundly larger (.292 and .523). As shown in

Table 4.3.5b, the estimates for the multidimensional item discrimination and difficulty

parameters estimated as fixed effects range from .571 to 1.453, and from -1.443 to 8.388,

respectively.

As with any item response theory model, this MGRM-ALGC model is

over-parameterized and needs to be identified. In the above analysis, the identification
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problem is tackled by (1) fixing the first discrimination parameter associated with each

construct to the value of one, with zero loadings otherwise; (2) constraining the first

threshold associated with the first item in each dimension to the value of zero; (3)

imposing the level-1 residual variances for each construct to the value of one. As

mentioned earlier, there are no necessary and sufficient conditions for identifiability; the

problem needs to be addressed on a case-by-case basis. Thus, in what follows the other

two scaling options were explored, in which compared to the identification constraints

adopted in the previous analysis, in which one removes constraints from the level-1

residual variances and the first item’s first threshold associated with each construct but

imposes constraints on the initial latent variables (i.e., scaling option 1), while the other

removes constraints from the level-1 residual variances without any concomitant changes

(i.e., scaling option 2). The results were compared and contrasted with those of the

previous analysis (i.e., the original scaling). As the results indicate (see Table 4.3.6), each

scaling option provides convergent substantive interpretation and is equally effective in

resolving the indeterminacy.

Comparison of two analytical approaches.

Additionally, in terms of the fixed and random effects, and the intermediate time

coefficients from the structural model (i.e., the associative latent growth curve model,

ALGC), we compare and contrast the corresponding parameter estimates using two

distinct analytical approaches with a simulated data set, namely, a two-stage IRT based

score analysis and a single-stage IRT based score analysis. The population values of the

simulated data are adopted from the results of previous empirical data analysis, the

unconditional model with the level-l residual variances from each dimension being fixed

79



at the value of one. The simulated data were generated using the free software ofR (R

Development Core Team, 2009), and the models were implemented and estimated using

WinBUGS 1.4.3 (Spiegelhalter et al., 2003).

As expected, the pattern of significance from two IRT-based approaches is quite

similar, except that the two-stage estimation approach fails to take into account enough

uncertainty. Furthermore, the results confirm that the proposed unified model is relevant

to applications such as multilevel analysis and meta-analysis, for they favor random

effects models in which ‘pooling strength’ acts to provide more reliable inferences about

individual cases (Congdon, 2005, 2006; Gelman and Hill, 2007; Luke, 2004; Raudenbush

and Bryk, 2002). Unlike the conventional two-stage procedure, the simultaneous

estimation of a multivariate multilevel IRT model avoids problems of attenuation bias

when the study focus is to regress the latent trait variables on other explanatory covariates

(e. g., Bolt and Kim, 2005).

The MIRT model used for the simultaneous estimation ofmultiple-domain latent

grth trajectories can be viewed as a general framework for obtaining the dynamic

interrelationship among multiple behavioral dimensions across the entire study span. As

Adams et al. (1997) and de la Torre and Patz (2005) suggest, when dimensions are

related but supposedly distinct, taking the correlation into account can lead to noticeable

improvements in parameter estimates and individual measurements, in particular when

there are several short subscales and the underlying dimensions are correlated. As the

empirical results above indicate, employing a simultaneous estimation of

multiple-domain subscales not only provides direct estimates of the relations between the

latent dimensions but helps reduce the standard error of the parameter estimates of
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interest, in particular for parameters which present difficulties in reaching convergence in

the unidimensional scenario (cf. Table 4.3.4 vs. Table 4.3.5b).

Conditional model: A Two-level model.

One of the advantages of casting IRT models in a hierarchical structure is that it

enables the researcher to incorporate different contextual variables as auxiliary

information while estimating the models, which not only improves the estimation of

person abilities but the calibration of item parameters (Mislevy, 1987). As mentioned

above, unlike the conventional two-stage procedure, the simultaneous estimation of a

multivariate multilevel IRT model avoids problems of attenuation bias when the study

focus is to regress the latent trait variables on other explanatory covariates (e.g., Bolt and

Kim, 2005). In order to illustrate the capacity of this comprehensive modeling

framework, we expand the model by adding person-level covariates. That is, building

upon the previous unconditional model, we include participants’ gender (0=FEMALE

and 1= MALE) as the person-level predictor.

Generally, we interpret the parameters within each level in a similar way to the

coefficients in regular regression. Thus, in this example, the two respective level-2 slope

parameters capturing the effect of gender address the following research question: in

terms of social isolation status and delinquent peer affiliation: what is the difference in

the average trajectory of true change associated with participants’ biological gender?

Here, the final result from a parsimonious model was presented: as shown in Table 4.3.8b

(right panel), the fixed effect estimates associated with the initial level of delinquent peer

affiliation in the level-2 model are statistically significant (.267, p<.05), implying that, on

average, boys have a higher initial exposure extent than their counterparts (FEMALE=0).
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However, there is no gender difference associated with other latent growth parameters. In

addition, the level-2 residuals, UdOnk and Udlnk , represent the portions of the

individual growth parameters unexplained by the covariate of change, GENDER, for

each dimension, indicating that there still remains significant between-person variability

among adolescents after accounting for the effect of gender. These results again suggest

the need for additional time-invariant predictors for each dimension. According to the

overall goodness of fit provided via DIC, in this particular example we could not reach

the conclusion that the effect of biological gender improves interpretation

(76,453.4<76,462.9). That is, even though a smaller DIC represents a better fit of the

model, a difference of less than ten units between models does not provide sufficient

evidence for favoring one model over another (Spiegelhalter et al., 2003). Hence, these

two models are considered to fit the data equally well. Recall that the multidimensional

item parameters are estimated as fixed effects in the model. As shown in Table 4.3.8b,

the multidimensional item difficulty estimates ranged from -1.444 to 8.435, and

multidimensional item discrimination estimates ranged from .570 to 1.476.

In order to model the parallel process of change, our intention is to propose an

advanced analytic method which allows for the simultaneous estimation of a

measurement model containing a set of categorical items and a latent grth curve

analysis. Thus, we illustrate how this unified approach allows the depiction of relations

among respective grth factors, represented in both the initial level and the change rate

for each oftwo interrelated dimensions. However, there are several ways of further

extending the analyses reported here. First, the autocorrelation between identical

measures across different occasions can be studied. Second, we might consider
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incorporating other social contextual risk and protective factors on adolescents’

problern-related behaviors. From a substantive point of view, it would be beneficial to

understand what factors influence specific problem behaviors and problem behaviors in

general. As mentioned earlier, such information may better represent the traditional

theory underpinning developmental trajectories and be useful in guiding effective

intervention and prevention programs for young people. Finally, because both empirical

and substantive differences may be critical for the correct interpretation of the dynamics

and influences of change, as McArdle (1988) and Duncan et al. (2001) suggest, studies

with a broad selection of different multivariate approaches, such as the range ofmodels

and the corresponding statistical power for detecting meaningful differences, all deserve

continuous effort and exploration.
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Chapter 5

DISCUSSION AND CONCLUSION

Obviously, a single-stage analytic strategy is an optimal alternative. In order to

model the process of change, our intention is to propose an advanced analytic method

which allows for the simultaneous estimation of a measurement model containing a set of

categorical items and a latent growth curve analysis. As Bereiter (1963) puts it, one ofthe

problems encountered in measuring change is scalability, in which the comparability of

changes from different initial levels is questionable. However, it is expected that this

comprehensive framework yields three benefits when the model fits the data well, and

Bereiter’s concern about scaling can accordingly be accommodated: (1) the

interpretations of item parameters will be invariant to the latent trait distribution ofthe

respondents in question; (2) the interpretations of latent trait parameters will be invariant

to the distribution of the test items under consideration; and (3) precision can be

approximately obtained in the estimate of each model parameter and latent variable (e.g.,

Curran et al., 2007; Dunson et al., 2005; Embretson, 1994; Rasch, 1960; Roberts and Ma,

2006)

In addition, as longitudinal data analysis has played a significant role in empirical

research within developmental science, the researcher should bear in mind that the

decision regarding the longitudinal research design can be made in an a priori manner

based on a Monte Carlo study. Alternatively, the research could also consider performing

a post hoc power analysis before reaching the conclusion that there is no statistical

significance in a given context. Finally, when change is studied, it is common to ask

whether change occurs as a result oftreatment interventions or different group
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memberships, that is, whether the change component, such as the differences in average

intercept, slope, and/or other polynomial coefficients, can be discerned and predicted by

other contextual variables. Thus, researchers are encouraged to design and conduct a

Monte Carlo study tailored to their specific research questions while determining the

sample size at a reasonable level ofpower and validating their statistical inference

conclusions.

In estimating complex statistical models, the capacity of Bayesian methods is

undeniable, for they allow an intuitive probabilistic interpretation of the parameters of

interest and the efficient incorporation of prior information to empirical data analysis

(Rupp et al., 2004). Advantaged as they are by modern simulation and sampling methods,

such as the Markov chain Monte Carlo (MCMC) algorithm, Bayesians allow for the

representation of parameter densities which may be far from normal, whereas traditional

maximum likelihood estimation relies on asymptotic normality approximations (Best et

al., 1996; Maier, 2001). Unlike classical inference, the Bayesian methods treat unknown

parameters as random variables and interpret traditional statistics in a more intuitive way.

The consequences of taking a Bayesian point of view reflect the probability values in

hypotheses and confidence intervals on parameters, both of which are more concordant

with commonsense interpretations (Keller, 2005; Rice, 1995). That is, in the Bayesian

paradigm, the interpretation of a Bayesian 100(1 — a)% credible set is more

straightforward than that made by the frequentists. In classical inference, the confidence

interval is a probability statement about the interval, while in the Bayesian approach, the

credible interval is a statement about the unknown parameter (Phillips, 2005; Rice, 1995;

Wasserman, 2003).

85



As mentioned, MCMC sample-based estimation methods overcome numerical

integration problems and allow the handling of high—dimensional problems and the

exploration of the distribution of parameters, regardless of the forms of distributions of

likelihood and parameters (Jackman, 2000; Keller, 2005). In addition to this advantage

and that of straightforward interpretation, Bayesian methods also provide a clear

approach for incorporating prior information, which increases the statistical power of the

analysis and contributes to the accumulation of scientific findings. As Congdon (2005)

suggests, informative subjective priors allow researchers to build on previous research

and can be justified on the basis of archival materials and the weight of established

evidence and opinion elicited fiom scientific specialists. As illustrated in one of practical

illustrations, we demonstrate how informative priors affect the parameter estimates and

standard deviations from a small data set and how they can be treated as extra data

information while conducting an analogy analysis.
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Significance of the Present Work

The ease of implementing MCMC demonstrates much potential for statistically

complex models in which they can find future application. Specifically, one of the

IRT-LGC derivatives, the MGRM-ALGC model presented here, provides an integrated

approach to modeling development in a consecutive and simultaneous manner which

includes multivariate multiple ordered categorical measures as outcomes. The MIRT

model used for the simultaneous estimation of multiple-domain latent growth trajectories

can be viewed as a general framework for obtaining the dynamic interrelationship among

multiple behavioral dimensions across the entire study span. As Adams et al. (1997) and

de la Torre and Patz (2005) suggest, when dimensions are related but supposedly distinct,

taking the correlation into account can lead to noticeable improvements in parameter

estimates and individual measurements, in particular when there are several short

subscales and the underlying dimensions are correlated. As the empirical results above

indicate, employing a simultaneous estimation of multiple-domain subscales not only

provides direct estimates of the relations between the latent dimensions but helps reduce

the standard error of the parameter estimates of interest, in particular for parameters

which present difficulties in reaching convergence in the unidimensional scenario.

Being a flexible multivariate multilevel model, this MGRM-ALGC model

produces parameter estimates which are readily estimable and interpretable. For instance,

in addition to the parameter estimates for the latent trajectory of each individual, it also

generates the interpretation of the items as descriptive measures for portraying the

interaction between persons and items (e. g., Reckase, 1997). Substantively, this

associative model helps establish the interrelationship among subjects’ multiple
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behaviors over time and estimates the corresponding covariation in the developmental

dimensions. In practice, this extension allows the researcher to evaluate the dynamic

structure of both intra- and inter-individual change, rendering a rational sequence in

testing the adequacy of latent growth curve representations ofbehavioral dynamics

(Duncan et al., 1999, 2004). Methodologically, as the fusion of a number of approaches,

embedding the multidimensional item response theory model into multivariate latent

growth curve analysis allows one to extend the model to a multivariate second-order

analysis, gives one a way to evaluate the factorial invariance of latent constructs across

different assessment occasions, and permits one to separate time-specific error and

measurement error (Blozis, 2007; Sayer and Cumsille, 2001).
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Future Research

In the present work, the utility of this IRT-LVM comprehensive framework was

investigated with two real data examples and a simulated study. Promising results were

obtained, in which one data drawn from part of the British Social Attitudes Panel Survey

1983-1986 revealed the attitude to abortion of a representative sample of adults aged 18

or older living in Great Britain (see McGrath and Waterton, 1986). As a simplified

illustration, we first investigated the dimensionality of the scale using confirmatory factor

analysis, and assumed that there was no differential item functioning (DIF) to remove the

corresponding gamma and beta changes. However, as Lord (1980) points out, because the

latent ability obtained from IRT models are invariant across measures of the same

construct but with different psychometric properties, the generalizability of this unified

model to designs with different item samples administered on different occasions opens a

promising avenue for future research. For instance, the inclusion of a set of shared anchor

items over time and subsets of items altered on the basis of developmental relevance

across the entire study span, namely, incomplete designs or planned missingness (e.g.,

Schafer and Graham, 2002), is a direction worth pursuing, for it not only expands the

possibilities for linking and vertical scaling across studies and over time, but results in

powerful and efficient experimental designs for the analysis of individual developmental

trajectories (Curran et al., 2007; Fischer and Seliger, 1997; Patz and Yao, 2007a, 2007b;

Roberts and Ma, 2006; Te Marvelde, Glas, Van Landeghem, and Van Darnrne, 2006).

Although assessments which measure grth over large grade spans on a

common scale predate modern advances in latent trait models, as a fundamental task, it is

important to conduct an up-to-date literature review and study on the classification of the
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different latent variable models used for examining general issues in growth modeling

and vertical scaling. The taxonomy could be based on selection criteria such as model

parameters and the latent variable of interest, the types of information provided via these

scales, separate versus concurrent calibration, appropriate conditions for model

application, etc. It is hoped that, through a systematically sound categorization, a

conceptual framework can be sketched, which enables educational researchers and

psychometricians to delineate the relations between different models and help them find

their own models tailored to the substantive domain knowledge and available data at

hands. These models include: Anderson’s longitudinal model with a latent correlation

(1985), Embretson’s multidimensional Rasch model for learning and change (MRMLC)

(1991), Adams, Wilson, and Wang’s multidimensional random coefficients multinomial

logit model (MRCMLM) (1997), Fischer and Seliger’s multidimensional linear logistic

model (1997), and Patz and Yao’s multidimensional multigroup item response model for

vertical scaling (2007a, 2007b), to name a few.

Moreover, it is expected that this modeling framework can be applied to

large-scale assessments and facilitate the investigation of a promising practice area:

analyzing students’ annual growth and change across a range of grades, for example. In

practice, many applications in educational and psychological testing involve long tests,

large samples, response patterns, and high dimensional latent factor structures. As

directions for future research, researchers could consider comparing and contrasting other

estimation approaches to implementing the analysis, such as the adaptive Gauss-Hermite

quadrature procedure with different options controlling the number of quadrature points
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used for each dimension of the integrationl6, and releasing such strict assumptions as the

stability of the item parameters over time and among different subpopulations, together

with the assumption of local independence. For instance, in addition to the indirect

effects via the latent variable, researchers could investigate whether the individual-level

covariates on the responses have direct effects. That is, presuming that the scales are

psychometrically sound, the phenomena of differential item functioning (DIF) can be

examined, in which the DIF represents the fact that the probability of endorsing an item

differs among people with the same ability but distinct characteristics, such as people

having the same propensity but being of different gender, and/or ethnicity (e.g., Holland

and Wainer, 1993). In the education testing field, such investigation is important, for DIF

suggests that participants might not be fairly assessed by the instrument.

Likewise, the random effect IRT models, defining an additional random effect for

each testlet and/or item bundle, can be adopted to account for dependencies between like

items across different points in time (e.g., De Boeck, 2008; Li et al., 2006; Rijmen,

Tuerlinckx, De Boeck and Kuppens, 2003). Additionally, in both empirical data analyses,

we employed the usual single-group analysis, including subjects’ demographic

characteristics, such as the gender of the participants, as the time-invariant covariate

(TIC). However, it is important to know that when all other parameters remain the same

across different subpopulations, having TICs only introduces differences in conditional

means for the growth factors. As a further point noted by Fischer and Seliger (1997), it is

unrealistic to guarantee that a sufficiently unidimensional scale is applicable to all

respondents: because the factor structure in different groups, such as males and females,

 

16 Te Marvelde et al. (2006) argued that for more scales and time points, the adaptive Gauss-Hermite
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black and white, etc. will generally differ. Putting this recommendation into practice

implies that research should be based on multiple-group invariance analysis (Meredith

and Horn, 2001). Researchers could consider the application ofmultiple-group grth

models, such as the latent class growth models and growth mixture models, to identify

homogeneous subgroups within the larger heterogeneous population (Curran et al., in

press). Finally, as latent variables play an important part in this generalized linear latent

and mixed modeling framework, it is desirable to develop the semipararnetric Bayesian

method (Lee, 2007) and other approaches (e.g., van den Oord, 2005) to relax its regular

multivariate normality assumption.

 

quadrature method may become unfeasible, but this requires further investigation.
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Table 4.1.1

The Simulation Design Layout

APPENDIX A

 

Design factor No. of participants No. of items

Standardized effect size of the

average growth trajectory
 

Investigating levels

 
125, 250 5,10,15

  
Small (.14), Medium (.28)
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Table 4.1.2

The Population Values used in the RASCH-LLGC Model
 

Measurement model

 

Item difficulty parameters:

A. 5 items (-2,-1, 0, 1, 2)

B. 10 items (-2, -l.556, -1.111, -.667, -.222, .222, .667, 1.111, 1.556, 2)

C. 15 items (-2, —l.714, -1.429, -1.143,-.857, -.571, -.286, 0, .286, .571, .857, 1.143, 1.429, 1.714, 2)

 

Structural model

 

Intercept mean: 0.00

Slope mean: .14 vs. .28

Intercept variance: 1.00

Slope variance: .20

Correlation between intercept and slope: 0.00

residual variance(s): 1.00

Occasions of measurement: 0, l, 2, 3

GCR/R—square values: .50, .55, .64, .74.
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Table 4.1.3

Performance of the Estimated Average Latent Trajectory in the RASCH-LLCG Model
 

 

 

 

 

         

321:: 132532;? Range BIAS RMS SE SD SE/SD power

313125105 .140 .155 [.062, .285] .015 .054 .068 .052 1.308 .64

515125110 .140 .148 [.042, .260] .008 .046 .061 .046 1.326 .72

s13125115 .140 .141 [.092, .239] .001 .034 .060 .032 1.875 .81

1113125105 .280 .293 [.148, .398] .013 .058 .069 .056 1.232 1.00

ME125110 .280 .288 [.190, .383] .008 .041 .062 .040 1.550 1.00

ME125115 .280 .280 [.207, .346] .000 .034 .060 .034 1.765 1.00

SE250105 .140 .158 [.111, .217] .018 .032 .047 .027 1.741 1.00

SE250110 .140 .147 [.100, .180] .007 .020 .043 .019 2.263 1.00

SE250115 .140 .142 [.107, .182] .002 .016 .042 .016 2.625 1.00

1113250105 .280 .293 [.230, .342] .012 .030 .048 .027 1.778 1.00

MEZSOIIO .280 .276 [.247, .316] -.004 .020 .044 .019 2.316 1.00

ME250115 .280 .279 [.228, .320] -.001 .016 .043 .016 2.688 1.00
 

Note. For instance, SE250105 stands for the condition with small standardized effect size of the average

growth trajectory (.14), the sample size of 250, and five dichotomous items.
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Table 4.1.4

Different Types of Prior Used for the Simulated Data Set (SE125110)
 

 

 

 

 

Least Half Full

Parameter True value . . . . . . . . .

rnfonnatrve prrors rnfonnatrve prrors mformatrveirrors

[31 —2.000 N(0,.25)a N(-2, 22.735) N(-2, 45.469)

,62 -1.556 N(0,.25) N(-l .556, 24.902) N(-1.556, 49.804)

,63 -1.111 N(0,.25) N(-1.111, 27.887) N(-1.111, 55.775)

,64 -.667 N(0,.25) N(-.667, 29.495) N(-.667, 58.990)

,65 -.222 N(0,.25) N(-.222, 29.450) N(-.222, 58.899)

,66 .222 N(0,.25) N(.222, 29.815) N(.222, 59.629)

,67 .667 N(0,.25) N(.667, 29.136) N(.667, 58.272)

,68 1.111 N(0,.25) N(1.111,28.097) N(1.111,56.194)

fig 1.556 N(0,.25) N(1.556, 23.716) N(1.556, 47.431)

,61 0 2.000 N(0,.25) N(2, 21.471) N(2, 42.943)

#L 0 "- "-

,uS .14 N(O, .25) N(.14, 127.836) N(.14, 255.673)

2 ‘1 _1 Wishart Wishart Wishart
‘7L “LS 1 0

1 0 3.5 0 7 0 b

02 01’3 07’5 014’10

0L5 01, ' ' '

.3 1    
 

Note. a. Inside the parenthesis, the second quantity stands for the precision of the parameter.

1 0

b. First of all, let [0 2] equal the prior guess for the mean of the 2 x 2 variance/covariance

matrix 2 . Second, choose the degrees-of-freedom parameter, v=10, that roughly represents an

1 0

equivalent prior sample size. Third, define a matrix S=(v-2-1) x I ]=[

97

0.2

70

01.4'



Table 4.1.5

Parameter Estimates with Different Priors for the Simulated Data
 

 

 

 

 

 
 

Simulated data set: SE125110

True Least informativepriors Half informative priors Full informative priors

value Big]??? SD E5323? SD Egg??? SD

,6} -2000 -1.87* .155 4952* .106 -1.963* .093

02 —1.556 -1.547* .148 -1 608* .097 -1.604* .085

,63 -1.11 1 -1000* .140 -1.077* .090 -1.084* .076

[34 -.667 -.535* .140 -.610* .086 -.623* .074

,65 -222 -.161 .136 -.229* .087 -.230* .073

,66 .222 .397* .137 .315* .085 .301* .072

,67 .667 806* .138 .728* .086 .721 * .074

,68 1.111 1.131* .138 1073* .089 1076* .076

,69 1.556 1564* .146 1509* .095 1.512* .083

,6] 0 2.000 2060* .152 2000* .105 1997* .092

pL .000 .000 .000 .000

#S .140 .164* .060 .151* .047 .148* .041

of 1.000 .993* .251 1046* .237 1068* .225

0%. .200 .191 * .051 .159* .047 .164* .044

0'LS .000 450* .171 471* .163 390* .150

0% 1.000 1.000 1.000 1.000

DIC 3,464.580 3,462.600 3,459.440   
 

Note. a. *p<.05 (1.96); b. The convergence is assessed via three independent chains with 30,000 iterations

each, where the first 25,000 was discarded as burn-in.
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Table 4. 2. 1

The Seven Items Concerning Attitudes to Abortion on the British Social Attitudes Panel

Survey, 1983-1986
 

Here are a number of circumstances in which a woman might consider an abortion. Please say whether

or not you think the law should allow an abortion in each case. Should abortion be allowed by law?

 

Extreme circumstance factor:

1. [Risk] the woman’s health is seriously endangered by the pregnancy.

2. [Rape] the woman became pregnant as a result of rape.

3. [Defect] there is a strong chance of a defect in the baby.

General attitude factor:

[Financial] the couple cannot afford any more children.

[Marriage] the woman is not married and does not wish to marry the man.

[Couple] the couple agree that they do not wish to have the child.

[Woman] the woman decides on her own she does not wish to have the child.>
1
9
1
”
?
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Table 4. 2.2

Breakdown Table for the Restricted Data/Complete Cases
 

 

 

 

 

 

 

 
 

latent variable outcomes Attitude 1983 Attitude 1984 Attitude 1985 Attitude 1986

n 160 160 160 160

Female(0) Mean .261 -.208 .262 .439

Gender SD 1.709 1.649 1.710 1.592

n 124 124 124 124

Male (1) Mean .349 -.069 .494 .860

SD 1.856 1.630 1.806 1.573

n 141 141 141 141

Senior (0) Mean .126 -.319 .161 .527

Age SD 1.702 1.593 1.792 1.661

n 143 143 143 143

Junior (1) Mean .470 .022 .563 .717

SD 1.827 1.67 1.697 1.526

n 182 I82 182 182

Yes (0) Mean .095 -.417 .124 .375

Religion SD 1 .840 1.538 1.742 1.567

n 102 102 102 102

No (1) Mean .664 .333 .791 1.064

SD 1.586 1.711 1.698 1.556

N 284 284 284 284

Total Mean .299 -.147 .364 .623

SD 1.771 1.640 1.753 1.595     
 

Note. a. Each of these three explanatory variables were dichotomized as follows: gender (0: female vs. 1:

male), age (0: elder (>40) vs. 1: young respondents (<=40)), and religious status (0: have religion

vs. 1: no religion).
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Table 4. 2.3

Breakdown Table for the Full Data/Available Cases
 

 

 

 

 

 

 

 
 

Latent variable outcomes Attitude 1983 Attitude 1984 Attitude 1985 Attitude 1986

n 180 180 180 180

Female(0) Mean .256 -.312 .169 .386

Gender SD 1.577 1.808 1.588 1.629

n 143 143 143 143

Male (1) Mean .419 -.283 .343 .798

SD 1.721 1.758 1.708 1.607

n 157 157 157 157

Senior (0) Mean .153 -.410 .026 .411

Age SD 1.664 1.878 1.667 1.680

n 166 166 166 166

Junior (1) Mean .493 -.195 .454 .718

SD 1.608 1.689 1.595 1.572

n 204 204 204 204

Yes (0) Mean .032 -.475 .012 .349

Religion SD 1.554 1.741 1.618 1.602

n 119 119 119 119

No (1) Mean .836 .001 .648 .946

SD 1.670 1.824 1.610 1.615

N 323 323 323 323

Total Mean .328 -.299 .246 .569

SD 1.642 1.783 1.642 1.630     
 

Note. a. Each of these three explanatory variables were dichotomized as follows: gender (0: female vs. 1:

male), age (0: elder (>40) vs. 1: young respondents (<=40)), and religious status (0: have religion

vs. 1: no religion).
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Table 4. 2.4

Frequencies of the Response Patterns Observed for the 1983-1986 Panels (Complete

 

 

 

 

 

 

   
 

 

 

  
 

 

 

Cases)

1983

Response pattern Observed frequencies Response pattern Observed frequencies

1111 95 1001 8

0000 70 0010 8

1000 20 1100 7

1110 19 0111 4

0011 12 0110 4

1010 10 1101 3

1011 10 0101 3

0100 9 0001 2

1984

Response pattern Observed frequencies Response pattern Observed frequencies

0000 121 1010 6

1111 70 1101 5

1000 20 0011 4

1110 14 0001 4

0100 10 0111 3

0010 8 1001 2

1100 8 0110 l

0101 7 1011 l

1985

Response pattern Observed frequencies Response pattern Observed frequencies

1111 96 1011 6

0000 86 0101 5

1000 21 0010 5

1110 19 1010 4

0111 9 0110 4

1100 9 1101 3

0011 8 0001 2

0100 7

1986

Response pattern Observed frequencies Response pattern Observed frequencies

1111 107 1010 6

0000 72 1101 5

1110 32 0110 3

1100 17 0011 3

0111 12 1011 2

1000 9 0001 l

0100 8

0010 7   
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Table 4. 2.5

Frequencies of the Response Patterns Observed for the 1983-1986 Panels (Available

 

 

 

 

 

 

 

 

 

 

 

 

Cases)

1983

Response pattern Observed frequencies Response pattern Observed frequencies

1111 102 1001 8

0000 85 1100 8

1110 21 9999 5

1000 21 0111 4

0011 14 0110 4

1010 13 1101 3

1011 10 0101 3

0100 10 0001 2

0010 10

1984

Response pattern Observed frequencies Response pattern Observed frequencies

0000 134 1010 7

1111 73 1101 5

1000 24 0001 5

1110 17 0011 4

9999 13 0111 3

0100 11 1001 2

1100 8 1011 l

0010 8 0110 1

0101 7

1985

Response pattern Observed frequencies Response pattern Observed frequencies

1111 99 1011 6

0000 93 0101 5

9999 23 0010 5

1110 21 1010 4

1000 21 0110 4

1100 10 1101 3

0111 9 0001 2

0011 9

0100 9

1986

Response pattern Observed frequencies Resmnse pattern Observed frequencies

1111 117 1010 6

0000 85 0110 4

1110 36 1011 3

1100 18 9999 3

0111 12 0011 3

1000 12 0001 1

0100 9

0010 8

1101 6   
 

Note. Response pattern 9 stands for the missing value.
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Table 4. 2. 6

Different Types of Prior Used in the Present Study

 

Measurement model

 

 

 

 

 

 

 

 

 

Parameter Baseline priors

'62

,33 N10, 11"

,84

a2

a3 N(O, l.0E-02)I(0, )

a4

Structure model

Parameter Non informative priors

SZ

N(O, 1.0E—4)

S3

,1:

L N(O, 1.0E-4)

#S

2 —1

UL 0L5 Wishart 1 O ,2

2 O l

2
2 (1) l/agt~oanuna.001, .001)

(2) agt~Unia0,1.01~:04)
 

Note. a. Inside the parenthesis, the second quantity stands for the precision of the parameter.
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Table 4. 2. 7

Parameter Estimates of the 2PNO-LGC Model (Restricted Data)

 

 

 
 

 
 

 

 

 

 

Priors input d Priors input
~ _ a ~ norm (0, LOB-02)I(0,) and ,B~

a dnorm (0, LOB 02)I(0,) and ,8~ dnorm(0,l) dnorm(0,1)

Probit link Log]. 1m]? Probit link

gamma priors for . .

gamma priors for varying residuals varying residuals uniform prrors for

varying residuals
(~dgamma(.001, .001)) (~ (~ dum'f(0 1 0E04))

dgamma(.001, .001)) ’ '

Bayesian-one single long chain Bayesian-three independent chains

(30,000 iterations, 20,000 bum-in) (30,000 iterations, 20,000 bum-in)

Estimate Estimate Estimate Estimate

(EAP) SD (EAP) SD (EAP) SD (EAP) SD

,8] .000 --- .000 --- .000 --- .000 --

62 .201 * .071 .167* .071 .186* .066 .185* .069

[33 .223* .070 .195* .072 .210* .068 .210* .069

,84 .636* .071 .662* .094 .677* .088 .699* .090

al 1 .000 --- 1 .000 --- 1 .000 --- 1.000 ---

a2 1600* .182 1.449* .186 1.441* .185 1.384* .197

a3 1514* .165 1.319* .155 1.304* .161 1.256* .161

a4 1.200* 119 1.054* .123 1.038* .124 .995* .121

S] .000 ~-- .000 ——- .000 -—- .000 --

52 -2.174* .586 -2.522* .804 -2.517* .686 -2.072* .744

S3 .084 .253 .079 .302 -.002 .292 .061 .289

S4 1.000 --- 1.000 --- 1.000 --- 1.000 ---

,uL .375* .109 .383* .140 .405* .132 .392* .135

,US .271 * .054 .286* .072 .276* .064 .336* .089

0‘2 2.159* .284 2908* .483 2.742* .487 2953* .623

0%. .136* .049 .144* .040 .143* .058 .144* .061

pLS -.O76 .180 -.l37 .165 -.017 .191 -.021 .214

031 856* .210 1005* .243 1007* .258 1.077* .307

032 .157 .206 .086 .197 .183 .287 .581 .387

033 .873* .192 1.061 * .281 1.057* .270 1.095* .304

0'34 .071 .099 .181 .190 .170 .189 .391 .224

Ind DIC=3,329.41; D1C=3,370.06; D1C=3,347.52 ; DIC=3,338.53 ;

ex Bayesianp=.552 Bayesianp=.488 Bayesianp=.5 1 3 Bayesianp=.494   
Note. a. Multiplying by a factor of 1.701; b.*p <.05 (1.96).
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Table 4. 2.8 Sensitivity Analysis: Parameter Estimates of the 2PNO-LGC Model
 

Priors distribution for item parameters: a ~ dnorm (0, LOB-02)I(0,) and 6~ dnorm(0,1)

 

Probit link

 

uniform priors for varying residuals («dunif (0, l.0E04))

 

 

 

 

   
 

One single long chain Three independent chains

(50,000 iterations, 19,998 burn-in) (30,000 iterations, 20,000 burn-in)

Estimate b Estimate

(EAP) SD mcse (EAP) SD mcse

61 0.000 .000 -.-

62 .182* .067 0.003 .185* .069 0.002

63 .205* .068 0.003 .210* .069 0.002

64 .679* .084 0.004 .699"I .090 0.004

a] 1.000 1.000

(12 1.427* .183 0.008 1384* . 197 0.008

(13 L307" .167 0.008 1256* .161 0.006

(14 1035* .120 0.006 .995" .121 0.005

SI .000 --- --- .000 --- . —-

$2 -l.940* .617 0.037 -2.072* .744 0.038

S3 .104 .274 0.008 .061 .289 0.008

S4 1.000 1.000 --

[IL 370* .128 0.004 392* .135 0.004

[US 333* .078 0.004 336* .089 0.004

0% 273* .506 0.029 2953* .623 0.030

of. .144* .057 0.003 .144* .061 0.003

PLS -.019 .204 0.010 -.021 .214 0.010

031 .996* .265 0.012 1077* .307 0.013

032 .546 .348 0.020 .581 .387 0.019

033 1016* .275 0.013 1095* .304 0.012

034 .364 .203 0.011 .391 .224 0.010

Index DIC=3,340.25; Bayesian p-value=.504 DIC=3,338.53 ; Bayesianp-value=.494

(Restricted Data)

Note. a. *p <.05 (1.96); b. MCSE, a type of sampling error, stands for Monte Carlo standard error, which

can always be reduced by lengthening the chain (Kim and Bolt, 2007).
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Table 4. 2. 9

Bayesian Estimates ofthe Model Parameters under (1) the HLM and (2) the LGC Model

 

 

 

 
 

for a Simulated Data Set

Parameter True value HLM LGC

191 .000 --

62 .183 .151* (.050) .152* (.052)

I33 .210 252* (.055) 254* (.055)

64 .728 663* (.063) .663* (.064)

a] 1.000 ..-

a2 1.298 1316* (.121) 1319* (.120)

a3 1.181 1042* (.085) 1046* (.086)

a4 .934 1043* (.086) 1045*(086)

S] .000 .—

sz -1741 -1.409* (.371)

S3 .064 -050 (.173)

S4 1.000 --

#L .394 328* (.094) 334* (.105)

,uS .399 399* (.042) .470* (.084)

0% 3.192 3.111*(.419) 3088* (.418)

03, .132 .143* (.038) .178* (.065)

pLS .049 .102 (.106) .208 (.156)

0% 1.000 .701* (.106) .710* (.106)

DIC 5,841.250 5,847.230  
 

Note. a. *p<.05 (1.96); b. Standard deviations are given in parentheses.
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Table 4. 2. 1 0

Unconditional Models: Parameter Estimates of the 2PNO—LGC Model (Both Data Sets)

 

Three independent chains (30,000 iterations, 20,000 bum—in)

 

 

 

 

 

Complete cases (n=284) Available cases (n=323)

Estimate (EAP) SD mcsefi Estimate (EAP) SD mcse

61 .000 --- --- .000 --- ---

62 .185* .069 0.002 .189* .066 0.002

'33 .210* .069 0.002 .205* .067 0.002

64 .699* .090 0.004 .724* .082 0.003

a] l .000 --- --- 1 .000 --- «-

a2 1384* .197 0.008 1.382* .171 0.007

a3 1256* .161 0.006 1.291* .156 0.006

a4 .995* .121 0.005 1.005* .111 0.005

S1 .000 --- _-- .000 --- ---

52 -2.072* .744 0.038 -1 .89* .560 0.027

S3 .061 .289 0.008 .110 .261 0.007

S4 1 .000 --- --- 1 .000 --- ---

JUL .392* .135 0.004 .302* .122 0.003

#5 336* .089 0.004 .353* .076 0.003

2 2953* .623 0.030 2957* .505 0.023

“I.

2 .144* .061 0.003 .148* .059 0.003

“s

pLS -.021 .214 0.010 .029 .202 0.009

2 1.077* .307 0.013 1.019* .269 0.011

081

02 .581 .387 0.019 .536 .330 0.016

82

2 1.095* .304 0.012 1023* .271 0.010

083

02 .391 .224 0.010 .324 .178 0.008

84

Indices DIC=3,338.53 ; Bayesian p-value=.494 D1C=3,641.82; Bayesian p-value=.500   
Note. a. *p<.05 (1.96); b. MCSE, a type of sampling error, stands for Monte Carlo standard error, which

can always be reduced by lengthening the chain (Kim and Bolt, 2007).
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Table 4. 2. I I

Conditional Models: Parameter Estimates of the 2PNO-LGC Model

 

 

  
 

 

  
 

 

  

Parameter Restricted data (n=284) Full data (n=323)

Model 1 1 Model 2 | Model 3 Model 1 | Model 2 l Model 3

Measurement model

I31 .000 .000 .000 .000 .000 .000

82 .182* .180* .173* .196* .191* .193*

(.071) (.068) (.068) (.069) (.067) (.066)

[33 .209* 205* .197* 214* 207* 209*

(.074) (.068) (.070) (.070) (.068) (.068)

[34 .734* .688* .675* .779* .730* .737*

(.092) (.086) (.089) (.092) (.089) (.089)

a] 1.000 1.000 1.000 1.000 1.000 1.000

a2 1309* 1403* 1417* 1282* 1363* 1354*

(.174) (.181) (.188) (.154) (.168) (.159)

a3 1173* 1271* 1285* 12* 1298* 1278*

(.146) (.149) (.157) (.144) (.158) (.158)

M 918* 1005* 1017* 916* 10* 985*

(. 109) (.113) (.120) (.098) (.119 (.107)

Structural model

SI .000 .000 .000 .000 .000 .000

52 -1.008* -1.555* -l.915* -1.077* -1.495* -1.827*

(.406) (.594) (.618) (.387) (.491) (.573)

S3 .173 .102 .086 .182 .155 .114

(.202) (.256) (.278) (.197) (.233) (.256)

S4 1.000 1.000 1.000 1.000 1.000 1.000

m in! -.366 -.197 -.180 -.378 -.252 -.231

' (.243) (.188) (.180) (.232) (.181) (.182)

.219 .147
1.

5 gender (.384) (.382)

m age .606 550* 555* .520 .475 .481

' (.370) (.273) (.264) (.355) (.259) (.263)

M mg 2468* 162* 1.613* 1882* 1.469* 1507*

' (.872) (.382) (.374) (.606) (.367) (.367)

-. 1 -.036

fil‘genage (.609) (.583)

-112 -.488
,BLgenrel (.827) (.773)

-2.122* 1252* 1253* -1.38 -.990* -1.026*
1. e. 1

’3 “g re (.797) (.481) (.473) (.727) (.453) (.463)

B1 .gen.age.rel 1.169 .485

(1.063) (.981)
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Table 4. 2. 11 (cont’d)
 

 

 

 

 

Parameter Restricted data (n=284) Full data (n=323)

Model 1 1 Model 2 1 Model 3 Model 1 L Model 2 [ Model 3

’32.!“ .388* .314* .344* .387* .336* .369*

(.143) (.091) (.083) (.133) (.081) (.083)

.514 .181 .394 .159

flz'gende’ (.267) (. 126) (.233) (.1 13)

)62.age .073 .0818

(.219) (.194)

. -.047 .222

flz'ml’g (.446) (.391)

,62.gen.age -.346 -.230

(.377) (.315)

-.171 -.322
,BdenJel (.544) (.469)

-.174 -.443
,82.age.rel (.508) (.470)

[32.gen. age.rel .194 .383

(.686) (.585)

2 3.012* 2599* 2579* 3.16* 2.766* 2.821*

0L (.603) (.474) (.496) (.577) (.552) (.500)

2 .245* .169* .144* .231* .176* .147*

US (.122) (.079) (.060) (.109) (.080) (.059)

0.173 0.107 .037 .209 . 126 .067

pLS (.270) (.232) (.213) (.236) (.228) (.210)

2 1.167* 0996* 977* 1.159* 999* 1014*

0'81 (.327) (.276) (.266) (.306) (.274) (.258)

2 1.198* .749 .614 1.002* .645 .607

052 (.442) (.404) (.370) (.419) (.356) (.337)

2 1.158* 1.047* 1.024* 1.155* 1.035* 1.056*

033 (.318) (.293) (.290) (.304) (.287) (.276)

2 .419 .407 .4101 .409 .359 .388

034 (.258) (.225) (.227) (.261) (.203) (.233)

Goodness of DIC=3,337; DIC=3,340; DIC=3,342; D1C=3,638; D1C=3,639; D1C=3,639;

fit indices Bayesxan Bayesmn Baye31an Bayes1an Bayesmn Bayesmn

p=.478 p=.489 p=.488 p=.48 p=.495 p=.494  
 

Note. a. Each number inside the parenthesis stands for the standard deviation of the estimate.

b. *p<.05 (1.96).
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Table 4. 3. 1a

Summary Statistics for Longitudinal NYS Data: Social Isolation

A. Summary statistics for NYS IRT scale scores over five assessment occasions

 

 

NYS-1976 NYS-1977 NYS-1978 NYS-1979 NYS-1980

Mean 1.555 1.238 1.063 1.154 1.212

SD 1.506 1.550 1.611 1.568 1.504

Skewness -.O9l -.264 —.456 -.418 -.623

Kurtosis .356 .048 .209 .162 .377

 

B. Correlation matrix for NYS IRT scale scores for five assessment occasions

 

 

NYS-1976 NYS-1977 NYS-1978 NYS-1979 NYS-1980

NYS-1976 1

NYS-1977 .660* l

NYS-1978 .608* .740* 1

NYS-1979 .527* .682* .782* 1

NYS-1980 .533* .692* .730* .780* 1

 

Note. a. Based on the sample of 838 participants; b. * p<.05 (1.96).

Table 4.3.1b

Summary Statistics for Longitudinal NYS data: Deviant Peers Affiliation

A. Summary statistics for NYS IRT scale scores over five assessment occasions

 

 

NYS-1976 NYS-1977 NYS-1978 NYS-1979 NYS-1980

Mean -.862 -1.007 -l.079 -l.412 -1.377

SD 1.811 1.853 1.986 2.390 2.386

Skewness .178 .125 .068 .104 .083

Kurtosis —.084 -.289 -.195 -.417 -.500

 

B. Correlation matrix for NYS IRT scale scores for five assessment occasions

 

 

NYS-1976 NYS-1977 NYS-1978 NYS-1979 NYS-1980

NYS-1976 1

NYS-1977 .793* 1

NYS-1978 .763* .818* 1

NYS-1979 .633* .721* .838* 1

NYS-1980 .641* .724* .834* 906* 1

 

Note. a. Based on the sample of 838 participants; b. *p<.05 (1.96).
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Table 4.3.2

Response Frequencies to 13 Outcome Measures

 

NYS-1976: Social Isolation

(Please tell me how much you agree or disagree with these statements about you...)

 

 

Strongly Disagree Neither Agree Strongly

disagree agree

1. Don’t fit in with friends 175 528 56 58 21

2. Teachers don’t call on me 145 501 92 81 19

3. Outsiders with family 315 447 33 33 10

4. Nobody at school cares 210 493 64 62 9

5. Don’t belong at school 205 526 53 39 15

6. No project work from teachers 126 520 90 86 16
 

NYS-1976: Exposure to Delinquent Peers

(Think of the people you listed as your close friends. During the last year how many of them have...)

 

 

 

 

 

None Very Some Most All

few ofthem ofthem ofthem

7. Destroyed property 522 229 68 15 4

8. Stole something worth $5 dollars or less 460 237 89 40 12

9. Hit someone 367 288 126 34 23

10. Broke into vehicle 763 56 17 1 l

11. Sold hard drugs 804 22 12 O 0

12. Stole something worth $50 dollars or more 777 43 13 l 4

l3. Suggested you break the law 615 133 62 1 1 17

NYS-1977: Social Isolation

(Please tell me how much you agree or disagree with these statements about you...)

Strongly Disagree Neither Agree Strongly

disagree agree

1. Don’t fit in with friends 214 529 46 42 7

2. Teachers don’t call on me 181 500 99 52 6

3. Outsiders with family 351 420 34 26 7

4. Nobody at school cares 245 484 67 34 8

5. Don’t belong at school 249 500 49 32 8

6. Noproject work from teachers 115 541 110 66 6
 

NYS-1977: Exposure to Delinquent Peers

(Think of the people you listed as your close fiiends. During the last year how many of them have...)

 

 

None Very Some Most All

few of them of them of them

7. Destroyed property 526 232 65 11 4

8. Stole something worth $5 dollars or less 462 235 88 4O 13

9. Hit someone 434 267 100 25 12

10. Broke into vehicle 764 60 9 3 2

11. Sold hard drugs 797 30 9 0 2

12. Stole something worth $50 dollars or more 791 39 8 0 0

l3. Suggested you break the law 610 141 58 20 9
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Table 4. 3.2 (cont’d)

NYS-1978: Social Isolation

(Please tell me how much you agree or disagree with these statements about you...)

 

 

(51:22:12: Disagree Neither Agree 82:23:13,

1. Don’t fit in with friends 275 502 33 25 3

2. Teachers don’t call on me 197 537 74 28 2

3. Outsiders with family 358 412 41 18 9

4. Nobody at school cares 263 471 66 36 2

5. Don’t belong at school 247 499 54 33 5

6. No project work from teachers 116 513 133 73 3
 

NYS-1978: Exposure to Delinquent Peers

(Think of the people you listed as your close friends. During the last year how many of them have...)

 

 

None Very Some Most All

few of them ofthem of them

7. Destroyed property 528 230 61 14 5

8. Stole something worth $5 dollars or less 455 238 109 26 10

9. Hit someone 484 233 99 17 5

10. Broke into vehicle 752 70 11 4 1

11. Sold hard drugs 779 39 13 5 2

12. Stole something worth $50 dollars or more 779 43 12 2 2

13. Suggested you break the law 605 135 63 20 15
 

NYS-1979: Social Isolation

(Please tell me how much you agree or disagree with these statements about you...)

 

 

(81:21:61: Disagree Neither Agree Sggfcgely

1. Don’t fit in with friends 259 526 30 21 2

2. Teachers don’t call on me 166 590 55 25 2

3. Outsiders with family 353 422 31 22 10

4. Nobody at school cares 201 520 78 35 4

5. Don’t belong at school 236 522 46 30 4

6. No project work from teachers 100 471 176 86 5
 

NYS-1979: Exposure to Delinquent Peers

(Think of the people you listed as your close fi’iends. During the last year how many of them have...)

 

 

None Very Some Most All

few of them of them of them

7. Destroyed property 559 209 62 4 4

8. Stole something worth $5 dollars or less 477 228 104 18 ll

9. Hit someone 527 221 67 16 7

10. Broke into vehicle 744 68 19 3 4

11. Sold hard drugs 761 50 24 3 0

12. Stole something worth $50 dollars or more 764 50 19 2 3

13. Suggested you break the law 599 139 72 13 15
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Table 4. 3.2 (cont’d)
 

NYS-1980: Social Isolation

(Please tell me how much you agree or disagree with these statements about you...)

 

 

Strongly Disagree Neither Agree Strongly

disagree agree

1. Don’t fit in with friends 243 549 32 13 l

2. Teachers don’t call on me 147 605 67 17 2

3. Outsiders with family 323 442 51 16 6

4. Nobody at school cares 199 541 77 18 3

5. Don’t belong at school 198 545 57 34 4

6. No project work from teachers 100 477 194 63 4
 

NYS-1980: Exposure to Delinquent Peers

(Think of the people you listed as your close friends. During the last year how many of them have...)

 

 

None Very Some Most All

few of them of them of them

7. Destroyed property 584 185 55 7 7

8. Stole something worth $5 dollars or less 490 212 103 24 9

9. Hit someone 546 213 67 12 0

10. Broke into vehicle 742 76 18 1 1

11. Sold hard drugs 735 73 24 2 4

12. Stole something worth $50 dollars or more 747 66 21 4 0

13. Suggested you break the law 591 143 68 23 13
 

Note. Frequency response calculation was based on the sample of 838 participants.
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Table 4. 3. 3

Different Types of Prior Used in the Present Study

 

Measurement model

 

 

 

 

 

 

 

 

 

Parameter Baseline priors

flew N(O, .5)3

alpha N(O, LOB-02)I(0,)

Structure model

Parameter Least-informative priors

S2

S3 N(O, l.0E-2)

S4

.UL ,

N(O, 1.0E-02)

#S

Level-1 residual variances for each dimension

—1

07— Gamma(1,1)

5d

 

Random effect component: Unidimensional GRM-LGC

 

2 —1

0' 0'

L LS WishartH; (1)],3]

2
”LS 0L

Random effect component: Multidimensional MGRM-ALGC:

 

   

( 2 )-1

01L OILS 011.021, 011,025 '1 0 0 O '

2
a a a a o o O 1 0 0
[LS 15 IS 2L IS ZS Wishart ’10

”ILUZL 015021. ‘72 “ZLS O 0 1 0

2L 2 0 0 0 1

(011.025 “ISUZS 0'2LS ”25 / 
 

Note. a. Inside the parenthesis, the second quantity stands for the precision of the parameter.
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Table 4.3.4

Unconditional Models: Parameter Estimates of the GRM-LGC Model for Each

Dimension

 

Three independent chains (8,000 iterations, 4,000 burn-in)

 

 

 

 

Social Isolation (n=838) Deviant Peer Affiliation (n=83 8)

Estimate (EAP) F so [ mcse Estimate (EAP) 1 SD 1 mcse

,B[l, 1] .000 --- --- .000 --- ---

,B[l,2] 4358* .083 .004 2602* .074 .003

,B[l,3] 5233* .102 .005 4.753* .138 .004

,8[l,4] 7.114* .188 .006 6009* .219 .005

fl[2, 1] -915* .087 .004 -.694* .057 .003

,B[2,2] 3943* .1 15 .006 1.485* .083 .004

,b’[2,3] 5378* .167 .009 3.297* .138 .007

,8[2,4] 7.865* .304 .013 4.785* .209 .010

[173.1] .7608* .057 .003 -.583* .076 .003

,6[3,2] 4.503* .137 .008 2624* .139 .006

,B[3, 3] 5.485* .176 .009 5488* .253 .011

,8[3,4] 6930* .255 .012 7.555* .369 .015

,B[4, l] -.1 13 .064 .003 1944* .090 .005

,8[4,2] 3.737* .103 .006 3.650* .151 .008

fl[4, 3] 4952* .146 .008 4987* .228 .011

,B[4,4] 7.113* .261 .011 5.667* .298 .012

,B[5,l] .018 .060 .003 2885* .144 .008

,B[5,2] 3.813* .107 .006 4.407* .218 .011

,6[5,3] 4.711* .139 .008 6331* .348 .016

,B[5, 4] 6333* .223 .011 7.220* .448 .018

,B[6, I] -2.051* .136 .007 2.177* .097 .006

,B[6,2] 3.126* .099 .005 3.549* .148 .008

,B[6,3] 5.085* .169 .009 4932* .230 .011

,B[6,4] 8855* .364 .016 5.580* .301 .012

,B[7, I] .721* .078 .004

,B[7,2] 2656* .132 .007

,8[7,3] 4485* .207 .010

§[7,4L 5.756* - .277 .013

a] l .000 --- —-- 1.000 --- ---

G2 .841* .034 .002 1.125* .048 .002

a3 995* .043 .002 .598* .025 .001

a4 1074* .044 .002 1.629* .096 .004

(15 1.270* .055 .003 980* .058 .003

a6 .681* .029 .001 1899* .129 .006

a7 .793* .035 .002   
116

(continued on next page)



Table 4. 3.4 (cont’d)

 

Three independent chains (8,000 iterations, 4,000 burn-in)

 

 

 

Social Isolation (n=838) Deviant Peer Affiliation (n=838)

Estimate (EAP) L SD 1 mcse Estimate (BAP) I SD mcse

Sl .000 --- --- .000 --- «-

S2 .857* .238 .016 .203* .060 .003

S3 1295* .319 .022 .503* .063 .003

S4 1230* .179 .011 977* .077 .004

S5 1.000 --- --- 1 .000 --- ---

[UL 1.542* .074 .003 -.874* .083 .003

,US -.342* .069 .003 -.519* .095 .004

02 1.538* .320 .021 2.788* .281 .014

0;: .619 .370 .026 2504* .397 .021

pLS «.109 .252 .017 .002 .078 .003   
Note. a. *p<.05 (1.96); b. Being one kind sampling error, the Monte Carlo standard error (MCSE) can

always be reduced by lengthening the chain (Kim and Bolt, 2007).
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Table 4.3.5a

Correlations among Adolescents’ Social Isolation and Extent of Exposure to Delinquent

Peers
 

Social isolation

Exposure extent to delinquent

 

 

 

peers

Level Shape Level Shtgie

Social isolation

Level 1

Shape 2387* 1

Exposure extent to delinquent peers

Level .292 * . 109 1

Shape -.203* .523* -.006 1

 

Note. a. *p<.05 (1.96).
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Table 4. 3. 5b

Unconditional Models: Parameter Estimates of the MGRM-ALGC Model for Both

Dimensions

 

Three independent chains (8,000 iterations, 4,000 burn-in)

 

 

 

 

Social Isolation (n=83 8) Deviant Peer Affiliation (n=838)

Estimate (EAP) 1 SD I mcseb Estimate (EAP) l SD L mcse

)B[l,1] .000 -—- --- .000 --- --

,8[[,2] 4.603* .085 .004 2.624* .078 .003

fl[l,3] 5511* .103 .005 4.787* .139 .005

,8[I,4] 7.467* .192 .006 6.013* .212 .006

,B[2, I] -.835* .057 .002 -.809* .070 .003

,B[2,2] 3.162* .088 .003 1.609* .074 .003

,B[2,3] 4362* .108 .004 3636* .110 .004

,B[2,4] 6.479* .197 .004 5.291* .170 .004

M3, 1] .640* .064 .003 -.366* .047 .002

,B[3, 2] 4289* .113 .005 1550* .054 .002

,B[3, 3] 5.256* .134 .005 3.266* .091 .002

,B[3, 4] 6.682* .189 .006 4509* .147 .003

,8[4,1] -.212* .061 .003 2813* .120 .006

,B[4,2] 3.828* .102 .004 5298* .194 .007

,B[4, 3] 5.113* .126 .005 7.109* .279 .009

,8[4, 4] 7.402* .224 .006 7979* .356 .010

,B[5, l] -.092 .071 .003 2.651* .090 .003

,6[5,2] 4560* .132 .006 4.068* .131 .004

,B[5, 3] 5.667* .153 .006 5.788* .226 .005

fl[5, 4] 7.660* .226 .007 6563* .320 .007

,8[6, I] -1.443* .057 .002 3436* .145 .007

,8[6,2] 2.017* .065 .002 5.610* .219 .009

,B[6, 3] 3345* .082 .003 7586* .316 .011

,B[6,4] 5977* .177 .003 8388* .394 .012

,8[7,1] --- --- --- 539* .053 .003

,6[7, 2] --- --~ --- 2069* .068 .003

,B[7, 3] --- --- --- 3516* .099 .003

fi[7, 4] --- --- --- 4518* .140 .003

a1 1 .000 --- --- l .000 -- -—-

a2 .709* .032 001 1.063* .045 .002

a3 .845* .037 002 571* .025 .001

a4 917* .037 002 1355* .072 .003

a5 1070* .047 002 .840* .050 .002

a6 571* 027 001 1.453* .079 .004

a7 --- --- --- .752* .033 .001   
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Table 4.3.5b (cont’d)

 

Three independent chains (8,000 iterations, 4,000 burn-in)

 

 

 

 
 

Social Isolation (n=838) Deviant Peer Affiliation (n=838)

Estimate (EAP) J SD [ mcse Estimate (EAP) f SD mcse

51 .000 .000

2 580* 074 .003 217* .056 .003

s3 925* 088 .004 504* .060 .003

S4 1070* .077 .003 990* .076 .004

55 1.000 1.000

,uL 1629* .087 .004 -.932* .086 .003

,uS -.416* .074 .002 -.548* .099 .004

0% 2470* .289 .015 3047* .297 .015

0% 1554* .328 .019 2664* .405 .021

pLS -.387* .070 .003 -.006 .077 .003

Goodness

of fit D1C=76,453.4

index   
Note. a. *p<.05 (1.96); b. Being one kind sampling error, the Monte Carlo standard error (MCSE) can

always be reduced by lengthening the chain (Kim and Bolt, 2007).
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Table 4. 3. 6

Unconditional Models: Parameter Estimates of the MGRM-ALGC Model with Different

Scaling Options (Both Dimensions)

 

Three independent chains (8,000 iterations, 4,000 burn-in)

 

 

 

 

Social Isolation (n=838) Deviant Peer Affiliation (n=838)

EAP estimate (SD) EAP estimate(SD)

Original Scaling Scaling Original Scaling Scaling

scaling option 1 option 2 scaling option 1 option 2

,B[l 1] .000 -l.764* .000 .000 .451* .000

’ (fixed) (.083) (fixed) (fixed) (.078) (fixed)

fill 2] 4.603* 2688* 4398* 2.624* 3.137* 2563*

’ (.085) (.086) (.100) (.078) (.103) (.082)

.3[1 3] 5511* 3575* 5280* 4.787* 5310* 4.692*

’ (.103) (.104) (.119) (. 139) (.159) (.147)

,B[l 4] 7.467* 5.499* 7.187* 6013* 6532* 5909*

’ (.192) (.191) (.201) (.212) (.227) (.219)

fl[2 I] -.835* -2.128* -.780* -.809* -.221* -.832*

’ (.057) (.071) (.058) (.070) (.082) (.071)

,B[2 2] 3.162* 1.892* 3223* 1.609* 2185* 1585*

’ (.088) (.066) (.089) (.074) (.095) (.072)

fl[2 3] 4362* 3.101* 4.425* 3.636* 4210* 3.610*

’ (.108) (.086) (.109) (.110) (.129) (.110)

[RR 4] 6.479* 5237* 6540* 5291* 5.862* 5260*

' (.197) (.183) (.195) (.170) (.182) (.171)

,B[3 I] .640* -.895* .701* -.366* -048 -.372*

’ (.064) (.066) (.070) (.047) (.054) (.047)

,B[3 2] 4289* 2.790* 4353* 1550* 1.871* 1539*

’ (.1 13) (.086) (.116) (.054) (.064) (.054)

,3[3 3] 5256* 3.770* 5322* 3266* 3590* 3254*

’ (.134) (.108) (.137) (.091) (.099) (.090)

fl[3 4] 6682* 5216* 6.752* 4509* 4.834* 4499*

’ (.189) (.167) (.191) (.147) (.154) (.148)

3M 1] -.212* -l.868* -.155* 2.813* 3.457* 2780*

’ (.061) (.082) (.065) (.120) (.149) (.121)

,3[4 2] 3.828* 2.178* 3.860* 5298* 5.884* 5266*

' (.102) (.080) (.107) (. 194) (.213) (.196)

,6[4 3] 5.113* 3.471* 5.141* 7.109* 7.652* 7078*

’ (.126) (.101) (.130) (.279) (.292) (.283)

15744] 7.402* 5.789* 7.425* 7979* 8.494* 7940*

’ (.224) (.209) (.226) (.356) (.362) (.353)

[315]] -092 2051* -.018 2.651* 3075* 2.641*

' (.071) (.090) (.071) (.090) (.112) (.091)

5 2 4560* 2662* 4.631* 4068* 4.481* 4061*

'8[’ J (.132) (.098) (.128) (.131) (.149) (.132)

fl[5 3] 5667* 3.786* 5.739* 5.788* 6.183* 5.792*

’ (. 153) (.118) (. 149) (.226) (.239) (.233)

54 7660* 5.819* 7.734* 6563* 6929* 6552*

'6[’ ] (.226) (.200) (.221) (.320) (.325) (.321)

-1.443* -2.479* -1.400* 3.436* 4.100* 3422*

fl[6’1] (.057) (.070) (.057) (.145) (.191) (.150)

2 2017* 988* 2063* 5.610* 6217* 5.610*

’8[6’ ] (.065) (.051) (.066) (.219) (.255) (.224)      
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Table 4. 3.6 (cont’d)

 

 

 

 

 

 

 

  

Social Isolation (n=838) Deviant Peer Affiliation (n=83 8)

EAP estimate (SD) EAP estimate (SD)

Original Scaling Scaling Original Scaling Scaling

scaling option 1 option 2 scaling option 1 option 2

,3[6 3] 3345* 2320* 3392* 7586* 8.131* 7593*

' (.082) (.066) (.082) (.316) (.336) (.324)

.3[6 4] 5977* 4971* 6028* 8388* 8901* 8394*

' (.177) (.170) (.182) (.394) (.405) (.402)

539* 952* 522*

”7' I] (.053) (.067) (.052)

2069* 2477* 2051*

“7'21 (.068) (.083) (.066)

3516* 3921* 3.498*

(”7'31 (.099) (.112) (.098)

4518* 4921* 4501*

”7'41 (. 140) (.150) (.139)

a1 1.000 1.000 1.000 1.000 1.000 1.000

(fixed) (fixed) (fixed) (fixed) (fixed) (fixed)

a2 .709* .803* .787* 1063* 1061* 1.106*

(.032) (.044) (.043) (.045) (.047) (.053)

03 .845* 961* 933* 571* 577* 590*

(.037) (.052) (.050) (.025) (.026) (.029)

a4 917* 1024* 999* 1355* 1306* 1408*

(.037) (.051) (.049) (.072) (.071) (.076)

a5 1070* 1219* 1.179* .840* .820* .881*

(.047) (.065) (.059) (.050) (.050) (.056)

a6 571* .643* .634* 1453* 1394* 1524*

(.027) (.038) (.036) (.079) (.081) (.096)

a7 ___ ___ ___ .752* .750* .785*

(.033) (.037) (.039)

S1 .000 .000 .000 .000 .000 .000

(fixed) (fixed) (fixed) (fixed) (fixed) (fixed)

52 580* 592* 556* 217* 266* 218*

(.074) (.067) (.069) (.056) (.052) (.056)

S3 925* 915* .881 * 504* 524* 511*

(.088) (.081) (.078) (.060) (.058) (.061)

S4 1070* 1057* 1044* 990* 1002* 1007*

(.077) (.072) (.071) (.076) (.071) (.073)

S5 1.000 1.000 1.000 1.000 1.000 1.000

(fixed) (fixed) (fixed) (fixed) (fixed) (fixed)

1.629* .000 1523* -932* .000 -916*

'UL (.087) (fixed) (.085) (.086) (fixed) (.084)

-.416* -.424* -.363* -548* -.732* -522*

[1S (.074) (.069) (.071) (.099) (.097) (.092)

2 2470* 2.152* 2198* 3047* 3015* 2869*

0L (.289) (.251) (.247) (.297) (.300) (.294)

2 1554* 1454* 1565* 2664* 2.875* 2526*

0S (328) (.275) (.271) (.405) (.435) (.400)

-.387* -.429* -.433* -006 -017 -.027

pLS (.070) (. 192) (.189) (.077) (.223) (.218)

a 2 1.000 .715* .711* 1.000 932* .867*

05‘ (fixed) (.076) (.073) (fixed) (.084) (.089)     
Note. a. *p<.05 (1.96).
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Table 4.3. 7

Results from the ALGC model Using Two Analytical Approaches with a Simulated Data

 

 

 

 

 

 

 

 
 

 

Set

Three independent chains (8,000 iterations, 4,000 burn-in)

Social Isolation (n=838) Deviant Peer Affiliation (n=838)

True 2 stage IRT 1 stage IRT True 2 stage IRT 1 stage IRT

value Parameter Parameter value Parameter Parameter

estimate estimate estimate estimate

(SD) (50} (50} (SD)

51 .000 .000 .000 .000 .000 .000

.707* 668* .176* 214*

52 580 (.050) (.078) '2” (.040) (.059)

956* 972* 518* 490*

S3 '925 (.055) (.086) “504 (.038) (.064)

1.114* 1.133* 1040* 1037*

S4 ””0 (.060) (.091) '990 (.045) (.097)

S5 1.000 1.000 1.000 1.000 1.000 1.000

1486* 1479* -1.072* -1.052*

”L 1629 (.064) (.087) "932 (.054) (.078)

-.366* -384* -.458* -.476*

”S "416 (.053) (.070) "548 (.056) (.093)

2 2564* 2757* 1.859* 2286*

0L 2'470 (.172) (.278) 1047 (.121) (.230)

2 987* 1429* 1331* 2510*

0S 1554 (.135) (.273) 2'6“ (.148) (.448)

-376* -.420* 420* .134

”S "387 (.050) (.060) "006 (.062) (.089)     
Note. a. *p<.05 (1.96).
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Table 4. 3.8a

Correlations among Adolescents’ Social Isolation and Extent of Exposure to Delinquent

Peers
 

 

 

Social isolation Exposure extent to delinquent peers

Level Shape Level Shape

Social isolation 1

Level

Shape -.392* 1

Exposure extent to delinquent peers 289* .105 1

Level

Shape -.205* 522* -.009 l  
Note. a. *p<.05 (1.96).

124

 



Table 4. 3.8b

Estimates of Fixed and Random Effect Parameters in the MGRM-ALGC Model

 

Three independent chains (8,000 iterations, 4,000 burn-in)

 

 

 

 

Social Isolation (n=838) Deviant Peer Afliliation (n=838)

Estimate (EAP) I so I mcseb Estimate (EAP) I SD I mcse

,6[1, 1] .000 -.- —— .000 --.

,8[1,2} 4603* .087 .004 2612* .074 .003

mm] 5511* .106 .005 4.769* .136 .004

MM] 7472* .194 .006 5994* .210 .005

pp, 1] -.836* .056 .002 -.819* .068 .003

,6[2,2] 3.162* .087 .003 1599* .072 .003

,6[2,3] 4362* .107 .004 3625* .110 .004

pp, 4] 6481* .195 .004 5276* .169 .005

H3. 1] 639* .067 .003 -.371* .048 .002

fl[3.2] 4289* .114 .005 1545* .053 .002

M13} 5256* .136 .005 3263* .091 .002

M3, 4] 6684* .191 .005 4510* .151 .003

M41] -.211* .065 .003 2806* .116 .005

fl[4,2] 3829* .108 .004 5300* .190 .007

fl[4.3] 5114* .130 .005 7.116* .273 .008

H44] 7402* .224 .006 7983* .352 .009

fi[5. 1] -095 .071 .004 2642* .090 .004

M52} 4560* .130 .006 4.061 * .129 .004

M53] 5667* .150 .006 5.784* .113 .009

fl[5.4] 7662* .222 .007 6558* .318 .007

M6, 1] -1.444* .057 .002 3453* .151 .007

M62] 2013* .066 .003 5642* .230 .009

,6[6, 3] 3339* .082 .003 7627* .331 .012

fl[6,4] 5970* .179 .004 8435* .411 .013

M21] 532* .053 .002

13!7. 2] 2062* .066 .002

1977.31 3510* .098 .003

fl[7. 4] 4512* .138 .003

a1 1.000 1.000

a2 .710* .031 .001 1066* .043 .002

03 845* .036 .002 572* .026 .001

a4 917* .038 .002 1365* .071 .003

a5 1070* .044 .002 845* .050 .002

a6 570* .027 .001 1476* .084 .004

a7 .756* .033 .001   
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Table 4.3.8b (cont’d)

 

Three independent chains (8,000 iterations, 4,000 burn-in)

 

 

 

 
 

Social Isolation (n=83 8) Deviant Peer Affiliation (n=838)

Estimate (EAP) I so I mcse Estimate (EAP) I SD I mcse

S1 .000 --— --- .000 --- ---

S2 579* .078 .004 214* .059 .003

S3 911* .087 .005 507* .062 .003

S4 1056* .079 .004 1000* .075 .004

S5 1 .000 --- --- 1.000 —-- ---

deO 1626* .091 .004 -1.077* .112 .004

fldOl 267* .134 .004

12le -.417* .076 .003 -536* .098 .004

fidi 1

0% 2477* .283 .015 3026* .306 .016

0'3. 1605* .351 .021 2622* .445 .025

pLS -.392* .070 .003 -.009 .082 .004

Goodness

of fit DIC=76,4629

index  
 

Note. a. *p<.05 (1.96); b. Being one kind sampling error, the Monte Carlo standard error (MCSE) can

always be reduced by lengthening the chain (Kim and Bolt, 2007).
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APPENDIX B
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Figure 2.]

Path diagram of a bivariate latent growth model.
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Figure 4.2.1

Path diagram of a four-wave 2PNO-LGC model.

Level

Shape
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Figure 4. 2.2
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Kernel density for the restricted data: One single long chain (excerpted).
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Para[Q] chains 1:3 sample: 30003

   

 

Para[16] chains 1:3 sample: 30003

   

Figure 4.2.3
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Kernel density for the restricted data: Three independent chains (excerpted).
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Gelman-Rubin statistic for the restricted dataset: Three independent chains (excerpted).
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Figure 4.3.1a

Perceived social isolation across five occasions (n=44).
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Figure 4.3.1b

Perceived extent of exposure to delinquent peers across five occasions (n=44).
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