


THESIS
<

2019

LIBRARY
Michigan State
University

This is to certify that the
dissertation entitled

Techniques for Efficient k-Nearest Neighbor Searching in Non-
Ordered Discrete and Hybrid Data Spaces

presented by

Dashiell Matthews Kolbe

has been accepted towards fulfillment
of the requirements for the

Doctoral degree in Computer Science

Major Professor’s Signature

S5/12/2010
/7

Date

MSU is an Affirmative Action/Equal Opportunity Employer



PLACE IN RETURN BOX to remove this checkout from your record.
TO AVOID FINES return on or before date due.
MAY BE RECALLED with earlier due date if requested.

DATE DUE DATE DUE DATE DUE

5/08 K:/ProjyAcc&Pres/CIRC/DateDue.indd




TECHNIQUES FOR EFFICIENT K-NEAREST
NEIGHBOR SEARCHING IN NON-ORDERED
DISCRETE AND HYBRID DATA SPACES

By

Dashiell Matthews Kolbe

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY
Computer Science

2010



ABSTRACT

TECHNIQUES FOR EFFICIENT K-NEAREST
NEIGHBOR SEARCHING IN NON-ORDERED
DISCRETE AND HYBRID DATA SPACES

By

Dashiell Matthews Kolbe

Similarity scarches/queries in Non-Ordered Discrete Data Spaces (NDDS) and
Hybrid Data Spaces (HDS) are becoming increasingly useful in areas such as bioin-
formatics, multimedia, text retrieval, audio and video compression, data-mining,
and E-commerce. The objective of this dissertation is to develop and analyze novel
methods to support similarity searches in such spaces.

In this dissertation, we first discuss performing k-Nearest Neighbor (k-NN)
searches in NDDSs. Performing such searches in NDDSs raises new challenges. Due
to the coarse granularity of the commonly used Hamming distance measure, a nearest
neighbor query in an NDDS may lead to a large set of candidate solutions, creating
a high degree of non-determinism. We propose a new distance measure that reduces
the number of candidate solutions for a query while preserving the essential prop-
erties of Hamming distance. We have also implemented nearest neighbor queries

using multidimensional database indexing in NDDSs. We use the properties of our



multidimensional NDDS index to derive the probability of encountering new neigh-
bors within specific regions of the index. This probability is used to develop a new
search ordering heuristic. Our experiments demonstrate that our nearest neighbor
algorithim is efficient in finding nearest neighbors in NDDSs and that our heuristics
are effective in improving the performance of such queries.

We then discuss our work on providing a generalization of our GEH distance.
This generalized form allows our distance measure to be applied to a broad range of
applications. Of these, we discuss a new rank based implementation well suited to
applications with heavily skewed data distributions. Our experiments demonstrate
the benefits of an adaptable distance metric by presenting scenarios that demonstrate
performance changes depending upon the distance measure used.

Finally, we discuss extending k-NN searching to HDS. We consider the challenges of
exploiting both the CDS and NDDS properties of HDS for optimizing potential search
algorithms. In particular we consider how key search information is maintained in
HDS data structures and what rules must be observed to guarantee the correctness
of search results in such spaces. Further, the concept of search execution stages is
introduced to develop efficient A-NN search algorithms for HDS. Lastly, a theoretical
performance model is developed for HDS searching to validate our experimental

results.



To my parents, who always believed in me.

iv



ACKNOWLEDGMENTS

I would like to first acknowledge my thesis advisor, Dr. Sakti Pramanik, who has
provided a strong guiding hand throughout my graduate career at Michigan State
University. My growth as a researcher would not have been possible without Dr.
Pramanik.

I would also like to provide special acknowledgement for Dr. Qiang Zhu of the
University of Michigan. Many of the ideas presented in this thesis are the result of
discussions with Dr. Zhu and Dr. Pramanik. The level of collaboration that was
achieved in these discussions is something that I continue to strive for in my daily
life.

I also extend my sincere gratitude to my thesis committee, Dr. Mark Dykman,
Dr. James Cole, and Dr. Rong Jin. They provided both their time and expertise to
improve both the depth and breadth of this thesis.

Lastly, I would like to thank my family and friends for being my village. My
parents, Nancy, Chris, and Ted, recieve my deepest gratitude for their undending

love and support.

Vv



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . ittt et e e e e e
LIST OF FIGURES . . . . . . . et et e e e et e e e
1 Introduction . ... ... ... ... ... ... ...
1.1 Motivating Applications . . . . . . . .. ... ... .. ... .. ..
1.1.1  Multimedia Objects . . . . . . .. ... ... ... .......
1.1.2 Computational Biology . . . . . . ... ... ... ... ....
1.1.3 Text Retrieval . . . . . . . ... ... ... ... ........
1.1.4 Document Retrieval . . . . . . .. ... ... ... ..... ..
1.2 Space Partitioning Concepts . . . . . .. .. .. ... ... . .....
1.2.1 Metric Space . . . . . . .. ...
1.2.2 Non-Ordered Discrete Space . . . . . . ... ... .......
1.23 Hybrid Space . . . .. ... .. .. ... ... ... ...
1.2.4 Vector Space Distance Measurements . . . . . . .. ... ...
1.3 Overview of the dissertation . . . . . .. ... ... .. ........
2 Previous Work . ... ... . . . . ..
2.1 Nearest Neighbor Algorithms . . . . .. ... ... ... .......
2.1.1 Exact Searching Methods . . .. ... .. ... ........
2.1.2 Approximate Searching Methods . . . . ... ... ... ...
2.1.3 Unique Searching Methods . . . . . ... ... ... ......
2.2 General Metric Space and CDS Index Structures . . . . . .. ... ..
221 KD-Tree . . . . . . . .. .. ..
222 LSD-Tree . . ... .. . . . . . . . ...
223 R-Treeand R*-tree . . . . . .. ... ... ... ........
2.2.4 Burkhard-Keller Tree . . . . . . . . .. ... ... .......
225 FixedQuery Tree . . . . . . . ... ... ... ... ... ..
2.2.6 Fixed Queries Array . . . . . ... ... ... ...
227 M-Tree. . . . . . . . . e
2.3 NDDS Models in Vector Space . . . . . . ... ... ... . ......
231 TheND-tree. . . . . . . . . ... ... ... ... .. ... .
232 NSP-Tree . .. ... ... . . . ... ...
2.4 HDS Models in Vector Space . . . . . .. .. .. ...
241 NDMtree . ... ... . ...
242 CND-tree . . ... .. .. .. . ...
2.5 Determining Distance . . . . . . . . .. ... L oL

vi

ix

25

36



3 k-Nearest Neighbor Searching in NDDS . ... ..........
3.1 Motivations and Challenges . . . . . ... ... ... ... ... ...
3.2 k-Nearest Neighborsin NDDS . . . . ... ... ... .........

3.2.1 Definition of &-NNinNDDS . . . . ... ... ... .. ....
3.2.2 Extended Hamming Distance . . . . .. ... .........
3.2.3 Probability of Valid Neighbors . . . . . . ... ... ... ...

3.3 A k-NN Algorithm for NDDS . . . . ... ... ... ... ......
3.3.1 Heuristics . . . . . . ...
3.3.2 Algorithm Description . . . ... .. .. ... ... .. ...,
3.3.3 Performance Model . . . . . . . . .. ... ... L.

3.4 Experimental Results . . . . . .. .. ... ... ... .........
3.4.1 Effectiveness of GEH Distance . . . . . . . .. ... .. ....
3.4.2 Efficiency of k-NN Algorithm on Uniform Data . . . ... ..

3.4.3 Efficiency of k-NN Algorithm on Skewed Data . . . . . . . ..

3.4.4 Efficiency of k-NN Algorithm on Non-Homogeneous Data . . .

3.4.5 Verification of Performance Model . . . . . . . . ... ... ..
4 Understanding Distancein NDDS . . ... ... ..........

4.1 Motivations and Challenges . . . . . . ... ... ... .. .....
4.2 Generalized GEH Distance . . . . . . . . .. ... ... ...

4.3 Ranking Based GEH Instantiation. . . . . . .. ... ... .. ....
5 k-Nearest Neighbor in Hybrid Data Spaces . ... ... ... ..
5.1 Motivation and Challenges . . . . . . .. .. .. ... ... ...

5.2 Nearest Neighbor Search Stages . . . . . ... ... ... ... ....
5.3 Search Algorithm . . . . ... ... ... .. ... ...
5.3.1 Match Likelihood . . . . . . . ... ... ... ... ......
5.3.2 Algorithm Description . . . . .. .. ... ... ... .....
5.3.3 Performance Model . . . . . . . ... .. .. ... .......
5.4 Experimental Results . . . . . . .. .. ... ... ... ...
5.4.1 Effects of Heuristics and Datasets . . . . . . .. . ... ....
5.4.2 Performance Model Verification . . . . ... ... ... ....

6 Conclusion . . . . . . & i i i i i i it e e e e e e e e e e e e e

APPENDICES . . . . . . . . it i e

A Intrinsic Dimensionality in Non-Ordered Discrete Data Spaces
Al Overview. . . . . . . . . e e e e
A.2 Distribution of NDDS Datasets . . . . ... ... ... ........
A.3 Distribution Effects on Search Performance . . . . . . . .. .. .. ..
A.4 Experimental Results . . . . . .. .. ... ... ... ... ...

vii

93

125
128

136



B Triangular Property of GEH - Extended Proof .. .. ... ... 145

C MinMaxDistance Discussion . . . . . . . . . . v v v v v v v, 150
C.1 Overview . . . . . . . o 150
C.2 Proof . . . . 152

BIBLIOGRAPHY . . . . e e e e e e e e e e e e e e 155

viil



LIST OF TABLES

4.1 Varying Dimensionality . . . . . . . .. ... .. ... ... ...,
4.2 Varyving Zipf Distribution . . . . . . . . . . ... oL
5.1 Performance Model Variables . . . . . ... ... ... ... .....

1X



3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

LIST OF FIGURES

Example of NDDS data points distributed by distance . . . . .. ..
Comparison of Ak values for the Hamming distance . . . . . . . . ..
Comparison of Ak values for the GEH and Hamming distances . . . .
Effects of heuristics in the A-NN algorithm using ND-tree with k = 10

Performance of the k-NN algorithm using ND-tree vs. the linear scan
on synthetic datasets with various sizes . . . . . . . . ... ... ...

Number of Disk Accesses comparison of the A-NN algorithm using
ND-tree vs. the k-NN searching based on M-tree . . . . . .. .. ...

Performance of the k-NN algorithm using ND-tree vs. the linear scan
on genomic datasets with various sizes for k=10 . . . . . .. ... ..

Performance of the k-NN algorithm using ND-tree vs. the linear scan
on genomic datasets with various dimensions for k=10 . . . .. . ..

Performance of the k-NN algorithm using ND-tree vs. the linear scan
on synthetic datasets with various dimensions for k=10 and d = 10

Performance comparison for the A-NN searching using ND-tree based
on GEH and Hamming distances . . . . . . . ... ... ... ....

Performance of the A-NN algorithm using ND-tree vs. the linear scan
on synthetic datasets with various sizes and zipf distributions . . . . .

Performance of the k-NN algorithm using ND-tree on datasets with
various misleading dimensions (k=1). . . . .. .. .. ... ... ..

47

54

81

82

84

85

85

86

87

38

89



3.13

3.14

3.15

3.16

3.17

5.1

5.2

9.3

9.4

9.9

5.6

9.7

0.8

9.9

Al

A2

Performance of the k-NN algorithm using ND-tree on datasets with
various misleading dimensions (k=5). . . . . .. ... ... ... 91

Performance of the A-NN algorithm using ND-tree on datasets with

various misleading dimensions (k=10) . . . . ... ... ... .... 91
Estimated and Actual performance of the k-NN algorithm vs. the

linear scan on synthetic datasets with various sizes (k=1) . ... .. 94
Estimated and Actual performance of the k-NN algorithm vs. the

linear scan on synthetic datasets with various sizes (k =5) . . . . .. 94
Estimated and Actual performance of the k-NN algorithm vs. the

linear scan on synthetic datasets with various sizes (k =10) . . . .. 95
Search stage 1/O with variable number of continuous dimensions . . . 111
Search stage I/O with variable number of discrete dimensions . . . . 111
Search stage I/O with variable database size . . . . . ... ... ... 112
Performance I/O with variable number of non-native dimensions . . . 126
Performance I/O with variable database size . . . . . . ... ... .. 127

Performance I/O with variable database size (CND-tree and ND-tree

only) . . .o 127
Performance I/O comparing ordering methods . . . . . . .. ... .. 128
Performance model comparison with variable database size . . . . . . 129

Performance model comparison with variable number of non-native

dimensions . . . . . . ... L 129
Histogram of Hamming Distance Values . . . . . ... ... ... .. 138
Histogram of GEH Distance Values . . . . . .. .. ... .. ..... 141

xi



A.3 GEHpunk

A4 GEHp,q

zipf =[0.0 — 1.5]

zipf =10.0 = 1.9]

xil



CHAPTER 1

Introduction

Nearest neighbor searches/queries in Non-Ordered Discrete Data Spaces (NDDS)
and Hybrid Data Spaces (HDS) are becoming increasingly useful in areas such as
bioinformatics, multimedia, text retrieval. audio and video compression. information
security, data-mining. and E-commerce. This form of searching may be stated as
the following problem: given a set S of n data points in an a dataset X (with

| X

> k) and a query point g € X, return a set of & > 0 objects A C X where
VucAres—A - D(g,u) < D(q.v) and |A| = k. Examples of such queries are “finding
the A closest restaurants to the intersection of Fifth and Main,” and “finding the &

fixed length words that differ the least from the word ‘near’.”

Numerous techniques have been proposed in the literature to support efficient
nearest neighbor queries in continuous (ordered) data spaces (CDS) and general

metric spaces. Excellent surveys of both the theoretical and practical aspects of



nearest neighbor searching in such spaces have been presented by Chavez et al.
[14] and Hjaltason and Samet [27] respectively. Little work has been reported on
supporting efficient similarity searches in either NDDSs or HDSs. A d-dimensional
NDDS is a Cartesian product of d domains/alphabets consisting of finite non-ordered
elements/letters. For example. when searching genome DNA sequences, consisting
of letters ‘a’, *g’, "t’. ‘¢’, each scquence is often divided into intervals/strings of a
fixed length d (¢-gram). These intervals can be considered as vectors from a d-
dimensional NDDS with alphabet {a, g.t, ¢} for each dimension. Other examples of
non-ordered discrete dimensions are color, gender and profession. A d-dimensional
HDS is a Cartesian product of m(m < d) dimensions/alphabets consisting of finite
non-ordered elements/letters and n = d — m continuous dimensions. For example,
consider sports related data containing match win statistics and match locations.
Match win statistics could be considered continuous data while match locations could

be considered non-ordered discrete data.

The remainder of this section is comprised as follows: Section 1.1 discusses mo-
tivating applications; Section 1.2 introduces space partitioning concepts considered
throughout this dissertation: Section 1.3 provides an overview of the research pre-

sented in this dissertation.



1.1 Motivating Applications

This section presents a sample of applications that rely upon performing efficient k-
NN similarity searches in CDSs. NDDSs, and HDSs. Both fixed length and variable

length data applications are presented for completeness.

1.1.1 Multimedia Objects

Facial recognition algorithis are used by a wide variety of applications such as law
enforcement and security to identify an object by a live or still image. This is achieved
by comparing a selected set of features from the image against similar feature sets
stored in a database. This is equivalent to creating a feature vector composed of

HDS objects.

Finger print matching and voice recognition are both handled in a similar fashion.
For each, a feature vector is established, containing values representing key structures
within the object, such as whorls in a fingerprint. which is then compared with an
indexed set of feature vectors to determine the closest matches. Here, it is common
practice to try to determine the single closest match, ideally considered an exact
match. However, due to approximation involved in creating the feature vectors,

nearest matching is a much more practical and efficient approach.



1.1.2 Computational Biology

Biological data, particularly genome sequences, may be represented as a d dimen-
sional vector a, with each dimension ¢ (1 < i < d) containing a value from
the set of possible elements A; for the i dimension. In genome sequencing,
the alphabet over all dimensions is the same: A = {a.g.t,c}, such that a 25-
dimensional segment of a genome strand could be represented in an NDDS (95

as a = "agtcaagtcaaatccagtceaateea”.

Initially, searching in genome sequence databases employed editor distance metrics
or substitution matrices, such as BLOSUM. to determine the similarity between
genomie sequences. Lately. however, the Hamming distance (discussed in Section
1.2) has become more popular for searching in large genome sequence databases
[29], [54]. Unfortunately, the Hamming distance has a poor level of granularity in
measurement which can lead to unclear results. We consider this issue in depth in

Chapter 3.

1.1.3 Text Retrieval

Text objects are tvpically represented as strings of varying length. Several index
methods have been proposed to support efficient searches over such data. Examples

of this method are Tries [30], [18], the Prefix B-tree [5]. and the String B-tree [19].



Most indexing methods in this category, such as Prefix B-tree and String B-tree, are
designed specifically for exact searches rather than similarity searches. The Tries
model does support similarity searches, but is difficult to apply to large databases

due to its memory-based feature.

Text retrieval operations are however fundamentally different from those in other
applications listed in this section. Datasets of previously listed applications, such
as genome scquences, are composed of objects each represented by a string/vector
of fixed length/size. Due to this. geometric properties such as area and range can
be applied to the dataset. Text retrieval operations however, cannot take advantage
of these geometric properties due to text objects being composed of varying length
strings. This paper focuses upon searching in datasets of fixed dimensionality and
thus does not consider applications towards efficient text retrieval. The issue of text

retrieval is covered in detail in [45].

1.1.4 Document Retrieval

Document retrieval is used extensively in World Wide Web and database applica-
tions. Traditionally. a test document d; is classified by creating a feature vector
containing the percent composition of certain key words through-out the document.
For example, if a document is being classified by only three key words ‘river’, ‘bank’,

and ‘sediment’, a feature vector V = {0.5.0.3.0.2} might be generated to identify

(S3]



that out of the key words found in the document, 50% are ‘river’, 30% are ‘bank’, and
20% are ‘sediment’. This vector would then be compared to a dataset Up composed

of similar feature vectors generated from a training/representative set of documents.

Most work in this field has focused upon improving construction of feature vectors
[36] and choosing an optimal number of neighbors to search for [4]. However, [4]
showed how the current standard method of cosine similarity measurements some-
times provides an intuitively incorrect similarity match between feature vectors. This
phenomenon results from the feature vectors themselves being only an approximation
of key word occurrences within a document and pays little attention to how those
words are related to each other. A possible solution to this problem is to calculate
the similarity between two documents based upon a discrete representation of their

key words.

1.2 Space Partitioning Concepts

This section discusses common data space environments that A-NN searches are
performed in. Continuous Data Space, in the form of General Metric Space, is
discussed first. This is followed by a discussion of Non-Ordered Discrete Data Space.
Next, the combination of NDDS and CDS is presented as Hybrid Data Space. Finally,

the concept of vector space distance measurement is introduced.



1.2.1 Metric Space

Let U denote the universe of valid objects being searched. The function D : U xU —
R denotes a measure of distance between objects. To be used in search and indexing

applications. such distance functions generally must satisfy the following properties.

Positiveness: Ve.y€e U.D(z.y) >0
Symmetry: Vr,y € U,D(z,y) = d(y. 1)
Reflexivity: Vre U . D(x,r)=0

Strict Positiveness: Ve,yeUx #y= D(zx,y) >0
Triangular Inequality: Vr.y,z € U, D(z,y) < d(z.z) + D(z,y)

If a distance measurement D satisfies the Triangular property , then the pair (U, D)
is called a metric space. If D does not satisfy the Strict Positiveness property, the
space is called a pseudo-metric space. If the Symmetry property is not fulfilled, the
space is generally described as a quasi-metric space; the case of a city map containing

one way streets is a common example of such a space.

From the above definitions, it can be inferred that most spaces are in fact spe-
cialized implementations of the general metric space. Specifically, if the elements
in the metric space are tuples of real numbers, then the space may be described as
a finite-dimensional vector space[40]. Such spaces generally make use of geometric

distance measures; such as Euclidean or Manhattan. When such tuples represent



numbers from a continuous (ordered) dataset, the pair (U, D) is considered a CDS.

1.2.2 Non-Ordered Discrete Space

Discrete space is based upon the concept of all objects in the universe of discourse U
being discrete and non-ordered along each dimension. Ordered discrete objects typ-
ically demonstrate the same properties as CDS objects and thus, are not considered
in this section. Examples of such non-ordered discrete data are multimedia objects,
profession, gender, bioinformatics. and user-defined types. Each of these examples
may be represented as a feature vector in a d-dimensional space. Consider, in genome
sequence databases such as GenBank, sequences with alphabet A = {a.g.t,c¢} are
broken into substrings of fixed-length d for similarity searches [29], [54]. Each sub-
string can be considered as a vector in d-dimensional space. For example, substring
aggctttgcaaggetttgeageact is a vector in the 25-dimensional data space, where the "
character is a letter chosen from alphabet A in the ith dimension. In this example, a
is no closer to ¢ than it is to t and so forth. Thus, mapping discrete space into con-
tinuous space by applying a form of ordering changes the semantics of the dataset.

A formal definition of a NDDS is as follows.

Let A;, (1 <1 < d) be an alphabet consisting of a finite number of non-ordered

elements. A d-dimensional NDDS €, is defined as the Cartesian product of d

alphabets: Qy = {A; x Ay x ... x Ay}. A; represents the i dimension alphabet of



4. The arca of space €1 is defined as:

d
area(Qy) = H |4;]-
=1

This formula also indicates the number of possible unique vectors in 4. A vector
« is defined by the tuple a = (a[l].a[2],...,a[d;]). where a[j] € A;. A discrete
rectangle R in Qg is defined as the Cartesian product: R = {S1 x Sy...x S;}, where
S; is a set of elements/letters from the alphabet of the j-th dimension of the given

d-dimensional NDDS. The length of the i dimension edge of R is defined as:

length(R. 1) = |S;].

The arca of R follows the formula for the area of the data space as:

d
area(R) = H |S;l.
i=1
1.2.3 Hybrid Space

Hybrid space is composed of a combination of NDDS elements and CDS elements.

Consider domain D;(1 < i < d). If D; is comprised of non-ordered discrete elements,



it corresponds to an alphabet A;. If D; is comprised of continuous elements, it
corresponds to some continuous span. For the purposes of our discussion, we will
consider this span to be normalized within [0, 1]. A d-dimensional hybrid data space

(HDS) Q is defined as the Cartesian product of d such domains:

Q4=D1 x Dy x...x Dy.

As described by Qian [41], a vector in Qg is comprised of the tuple o =

as S; C D;(1 <i <d), where S C A; = D; if D; is a non-ordered discrete domain,
or S; is a range [min;, max;| if D; is a continuous domain. A hybrid rectangle is then

defined as the Cartesian product of domains S; thus that:

R=51XS~2X...XS(1.

The length of the " dimension edge of R is defined as:

1540 if dimension 7 is non-ordered discrete

length(R;) = { 14l
max; —min; otherwise

The area of R is defined as:

10



d
area(R) = H length(R;).
i=1
1.2.4 Vector Space Distance Measurements

Determining an efficient distance measurement is still an open problem. As discussed
by Qian [41]. the vector model is widely used to support similarity queries. Addi-
tional models. such as the Boolean model and probabilistic model [2]. have also been
proposed to support similarity queries. However, as discussed by Bacza et. al. [2],

the vector model is considered to be more effective for similarity searches.

To perform searches. each object in the database. as well as the query object
are represented as fixed length vectors. For example, consider security applications
tracking intrusion attempts. Each attempt in the database can be transformed into a
vector based upon time. frequency, intruder ID. intrusion method, and other intrusion
characteristics. Each intrusion can now be considered a point in a multidimensional
vector space (either CDS. NDDS. or HDS dependent upon the feature generation
methods). The distance values between each pair of vector objects mayv now be
calculated utilizing a distance metric most suitable for such a space. Typically. a
pair of objects with a minimal distance value between them are considered more

similar than a pair of objects with a maximal distance value between them.

11



The focus of our research is on supporting efficient similarity queries using the
vector space model. It should be noted that not all applications have objects that
may be efficiently represented as natural vectors. Qian [41] notes that some forms
of multimedia data. such as video clips, are often stored in their native format due
to a loss of precision when generating a feature vector to represent them. Although
not considered in detail here, the issue of designing an effective feature generation
algorithm is still an open problem. Excellent surveys concerning feature generation

for multimedia objects are presented in [1] and [49].

1.3 Overview of the dissertation

The remainder of this dissertation is organized as follows: Chapter 2 discusses pre-
vious work performed in this and related fields. including multidimensional index-
ing and similarity search algorithim development; Chapter 3 presents our research
in developing novel similarity search methods for NDDSs. Chapter 4 presents our
work in developing a non-application specific distance measure for NDDSs. Chapter
5 presents our research in extending our work in similarity searches in NDDSs to
HDSs. Chapter 6 summarizes the contributions of this dissertation and provides

directions for future work.

12



CHAPTER 2

Previous Work

This chapter presents previous research work related to this dissertation. We first
discuss the evolution of common similarity scarching algorithis. We then present an
overview of popular index structures used to support efficient similarity searches in
vector spaces. These index structures are used to maintain data in CDSs, NDDSs. as
well as recently proposed work to support HDSs. Lastly, we present work concerning

distance measure ('Olll[)ﬂ[‘iSOllS.

2.1 Nearest Neighbor Algorithms

Most similarity searching algorithims may be distilled to a simple formula applicable
to CDS, NDDS. or HDS index structures. Further, range queries may be viewed as
a special case of nearest neighbor queries where the final search radius is known at

the start of the search. As such, this section focuses upon nearest neighbor search

13



algorithms. The following algorithms perform similarity searches for the nearest
neighbor to a query based on an index structure of fixed dimensionality. Generally,
the search for a single nearest neighbor may be expanded to find k nearest neigh-
bors by maintaining a list of neighbors found and using the distance between the
neighbor that occupies the k" distance related slot and the query point as a search
range/radius value to scarch within. Each of the index structures described in the
following sections may generally be used in conjuncture with one of the following
search methods. However. developers will typically modify the algorithm to better

suit the applicable structure.

2.1.1 Exact Searching Methods

The most basic method to perform a A-NN similarity search involves using a range
search algorithm. Begin with radius r = a : (a > 0) centered at query point gq.
Increase o until at least k elements lie within the radius. The cost, in terms of page
accesses, of this algorithm is similar to that of performing a range search. This cost
however is greatly affected by the amount the value a is adjusted by every time the
desired number of elements is not vet found. Too small, the performance cost will
quickly grow; too large, the number of points returned will far exceed the desired

number thus decreasing the usefulness of the solution.

A more elegant approach was proposed for both general metric spaces and CDSs

14



[12, 3. 47] by beginning the search on any data structure using r = oo. The search
begins at the anchor/root of the data structure. Each time the query point g is com-
pared to some element p. the search radius is updated such that r = min(r, D(q. p)).
The search then backtracks to the nearest split in the index where a new path has
not yet been traversed and continues down the new path using the newly calculated

radius.

As the search continues, the possibility increases that an entire path of the index
structure may not need to be searched due to the decreasing size of the radius r.
Pruning heuristics are emploved to determine if a certain route is no longer necessary
to search. Roussopoulos et al. [47] provided two heuristics for CDS based index
structures, namely R-trees. named MINDIST and MINMAXDIST that invoke this
pruning. MINMAXDIST is used in the breadth search of the covering rectangle
of the current search path by determining the minimum maximum distance of all
covering rectangles contained in the current one. This distance is used to update the
current search radius such that r = min(r, MINMAXDIST). MINDIST is then used
in the depth traversal to determine if any point of a covering rectangle associated
with a new search path is within the search radius. If no point is within the search
radius, that search path is pruned from the remainder of the search and thus the

effective size of the database to search is decreased.

15



This range reduction method may be improved further by attaining a smaller ra-
dius value earlier in the search. Several techniques have been used in both CDSs and
general metric spaces [51. 28, 16]. The underlying idea of each technique is that cer-
tain paths may be identified by their high level statistics that will yield a closer point
to the query point g earlier in the scarch. The most common application of this idea
is to order potential search paths by either their NIINDIST or MINMAXDIST values
to ¢. The MINDIST ordering gives the optimistic approach that a lower MINDIST
value is caused by a relatively closer object in the index structure. This may not
always prove true in spatial index structures. Commonly, some point of a search path
only exists at the top most lavers. At higher levels within an index structure, points
may actually be the result of the intersection of lines drawn from several points lower
in the index structure. When this technique appears to suffer from this problem, the
pessimistic approach using NMINMAXDIST may be used instead. Here, search paths
are ordered by the increasing value of their furthest point. Thus a search may cor-
rectly assume that it will at least not encounter any points further away than the

MINMAXDIST.

2.1.2 Approximate Searching Methods

Relaxing the precision of the query results may lead to even further reductions in

time complexity. This is a reasonable procedure for many applications due to some

16



approximation in the modalization of feature vectors for both general metric and
CDS indexes. In addition to the query itself, a user specifies some query parameter
€ to control how far away from the query point the search may progress. In this
manner. the algorithin avoids the costly initial stages of a similarity search. On
subsequent searches of similar databases. € may decrease to approach zero. As e
decreases, the time complexity. along with the precision of the result decreases as

well.

A probabilistic algorithm was given for vector spaces by Yianilos et al. [55]. using a
method described as aggressive pruning to improve the performance. Here, the idea
is to increase the number of branches that are pruned at the expense of possible points
in the set of nearest neighbors. This process is controlled such that the probability
of success is always known. Unfortunately, the data structure used is only useful in
a very limited radius: in databases or with searches that could result in neighbors
with distances beyond the possible radius. the algorithm is not able to guarantee a
result of the true nearest neighbors. This form of similarity searching is described as
Approximate Similarity Searching. This topic is not covered in detail in this paper,

but is mentioned here for completeness. An in depth coverage may be found in [53].

17



2.1.3 Unique Searching Methods

The techniques described thus far cover universal proposals for performing A-NN
similarity searches. There are however examples of A-NN search algorithms developed
for specific indexes that are inapplicable in a generic sense. Such algorithms depend
upon the structure developed to support them and are unable to be incorporated
with common indexing techniques. Clarkson [17] proposes a method that alleviates
the need to perform extensive backtracking by creating a GNAT-like data structure
where points are inserted into multiple subtrees. The tree is constructed by first
selecting representatives for the root(s) and then inserting each element u into not
only the subtree of its closest representative p, but also into the subtree of any
other representative p’ such that D(u.p’) < 3 % D(u.p). During a query on object
ag. the search enters all subtrees such that D(aq.p’) < 3% D(ag.p). As shown by
Clarkson, this is enough to guarantee the retrieval of the nearest neighbor and could

be extended to determine the set of A-NN.

2.2 General Metric Space and CDS Index Struc-
tures

Numerous data indexing structures have been proposed in the literature that support

efficient similarity searches in CDSs and general metric spaces. Most CDS data

18



index structures may be classified into two categories: data-partitioning and space-
partitioning. Examples of the former split an overflow node by partitioning the set
of its indexed data objects. The later, split an overflow node by partitioning its
representative data space (tvpically via a splitting point in a dimension). Most of
these methods are not applicable in either NDDS or HDS due to some essential
geometric concepts such as a bounding box no longer being valid in such spaces.
An in depth discussion of continuous multidimensional indexing structures may be

found in [21].

Metric trees represent a wholly different approach to indexing data. Here, data
points are not represented in any tvpe of dimensional space, rather metric trees
implement structures using only the distance information between data points and
some center origin/root. Such non-geometric trees are generally not optimized toward
NDDSs or HDSs, such as CDS implementations are toward CDSs. However, they do
provide a prevalent counter solution to implementing a vector space model for either
an NDDS or HDS. An in depth discussion of searching in metric space may be found

in [40].

This section presents an overview of commonly employed index structures for both
CDS and general metric space. Chapter 5 discusses some of the issues that arise when

applying CDS based index structures to an HDS dataset.

19



2.2.1 KD-Tree

The KD-tree [8, 7], was one of the first proposed d-dimensional data index structures.
Structured as a binary tree. the KD-tree recursively subdivides a dataset along (d—1)-
dimensional hyperplanes whose direction alternates among the d possibilities. A
simple example is for d = 3. the splitting hvperplanes would be perpendicular to the
x, y, and z axes. Each hyperplane must contain at least one point where interior
nodes have one or two descendants. Searching and insertion of new points are simple
procedures that use the interior nodes as guide posts. Deletion however, is much more

complicated and invariably results in a costly reorganization of the tree structure.

The KD-tree structure is highly sensitive to the order in which the points are
inserted. A poor insertion order generally results in data points being scattered
all over the tree. A solution to this problem was presented by Bentley et al. as
the adaptive KD-tree [9]. By relaxing the requirements that hyperplanes have to
contain a data point as well as being strictly alternating. the adaptive KD-tree was
able to choose splits that resulted in a much more even data distribution on both
sides of a particular branch. Conceptually, this resulted in pushing all data points
out to the leaf nodes leaving interior nodes to only contain dimensional information.
The adaptive KD-tree is unfortunately very static in nature; frequent insertions and

deletions require costly reorganizations to keep the tree balanced. However, the



adaptive KD-tree does perform well when the dataset is known prior to construction

of the tree.

2.2.2 LSD-Tree

The Local Split Decision (LSD) Tree [24] is organized as an adaptive KD-tree, parti-
tioning a dataset into disjoint cells of various sizes. Better adapted to the distribution
of a dataset than fixed binary partitioning. the LSD-tree uses a special paging al-
gorithm to preserve the external balancing property: i.e., the heights of its external
subtrees differ by at most one. This is accomplished by paging out subtrees when
the structure becomes too large to fit in main memory. While this strategy in-
creases the efficiency of the tree structure it prevents the LSD-tree from being used

in general-purpose database systems; where such extensive paging is not available.

The split strategy of the LSD-tree tries to accommodate skewed data by combin-
ing data-dependent as well as distribution-dependent split strategies; SP; and SPo
respectively. The former attempts to achieve the most balanced structure by trying
to keep an equal number of data objects on both sides of the split. The later is per-
formed at a fixed dimension and position where the underlying data is in a known
distribution pattern. Determining the split position SP, is the linear combination
of applying one of the strategies: SP = aSP; + (1 — a)SP, where a = (0.1). The
factor @ may vary as objects are inserted or deleted from the tree. This property

21



increases the efficiency of the LSD tree, but makes integration with generic database

systems of unknown data distributions difficult.

2.2.3 R-Tree and R*-tree

The R-Tree [22] is a height-balanced tree with index records/pointers in its leaf
nodes, similar to the adaptive KD-tree. Each node v represents a disk page along a
d-dimensional interval I9(v). If the node is an interior node. all descendants v; of v
are contained in the interval I(v). If the node is a leaf node, then I%(v) represents
the d-dimensional bounding box of all the objects stored in the node. Nodes at the
same level may overlap area. Each node contains between m and Al entries unless
it is the root. The lower bound m, is used to prevent the degeneration of trees and
ensure efficient storage utilization. If the number of entries in a node drops below
m, the node is deleted and the descendants of the node are reinserted into the tree,
(tree condensation). The upper bound M is used to maintain each node’s size to
that of one disk page. Being a height-balanced tree, all of the leaves are a.t.the same

level and the height is at most [log;,,(N)] for N : (N > 1) index records.

Objects in an R-Tree are represented by their Minimum Bounding Interval I d(o).
To insert an object, the tree begins at the root and traverses a single depth first
path to a leaf node. At each depth layver, heuristics are used to determine which
descendant path to follow. The first is a calculation of which path would require

22



the least enlargement of area to the interval Id(z',-) representing it. If there are
multiple paths that satisfv this criterion, Guttmman et al. [22] proposed selecting
the descendant associated with the smallest interval. This process continues until
a leaf node is reached and the object pointer is placed within. If this results in an
expansion of the leaf’s interval, the interval change propagates upwards toward the
root. If insertion results in the number of objects in the leaf node exceeding Al, the
leaf node is split. distributing the entries between the old and new disk pages. This

change also propagates upwards toward the root.

Deletion is handled in a similar manner to insertion. First an exact match search
is performed to determine if the selected element for deletion is contained in the
database. If so. the element is deleted. and the containing leaf node is checked
to see if the area interval may be reduced. If the area is reduced. the change is
propagated upwards toward the root node. If this deletion causes the number of
elements to drop below the lower bound m, the remaining clements in the leaf node
are copied to temporary storage and then deleted from the database. the changes
caused by this deletion are again propagated upwards which generally results in the
adjustment of several intermediate nodes. Once this is completed, the elements in
temporary storage are inserted back into the index structure following the insert

method described above.

23



Searching an R-Tree may be performed in a similar manner to the first stages
of insertion. At each index node v. all index entries are checked to see if they
intersect with the scarch interval. If v is an interior node, the search continues to
all the descendant nodes v; who were found to intersect the search interval. If v is a
leaf node, the search adds all the entries that intersected the search interval to the
solution set. Due to interior nodes overlapping area. it is common for a search to
include multiple descendants from interior nodes. In the worst case scenario, this

will lead to every single node in the tree having to be accessed.

Several weaknesses in the original tree construction algorithms were identified
through careful analysis of R-tree behavior under different data distributions. It was
identified that the insertion phase was a critical step in building an R-tree towards
good search performance [48]. The result of this study was the R*-tree. The R*-tree
provides a more controlled insertion performance by introduced a policy called forced
reinsert: if a node overflows. it is not split immediately, rather p entries are removed
from the node and reinserted into the tree. Through testing, it was proposed in [6]

that p should be about 30% of the maximum number of entries per node, M.

Additionally, the R*-tree further addresses the issue of node-splitting by adding
more heuristics to avoid making random choices. In Guttman et al.’s original R-

tree algorithm, node-splitting policy was based solely on trying to minimize the

24



area covered by the two new nodes. This lead to many possible splits, whereby a
random split was sclected. The R*-tree breaks these ties by taking three more factors
into account: overlap, perimeter values, and storage utilization of the two new nodes.
The reduction of the overlap between two nodes reduces the probability that a search
will have to follow multiple paths. Reduction in the perimeter of a bounding box
increases the deunsity of descendants. which in turn increases the storage utilization
of the selected node. Increased storage utilization allows for a greater area to be
created before a split is necessary, thereby decreasing the probability of a search
needing to follow multiple paths. These additions lead to a marked improvement in

performance of the R*-tree over the R-tree [48].

2.2.4 Burkhard-Keller Tree

The Burkhard-Keller Tree (BKT) [12] is considered one of the first metric trees and
may be seen as the basis for many of the metric trees proposed after. The BKT
is defined as follows. Let U represent the universe of discourse for all valid objects
within the database. An arbitrary element p € U is selected as the root of the tree.
For each distance i > 0, define U; = {u € U,d(u.p) = i} as the set of all elements
at distance ¢ from the root p. For all nonempty U;, build child p;, hereafter labeled
a pivot, where the BKT is recursively built for U;. This process is repeated until

no more elements are left for processing or there are only b elements left which may

25



then be placed within a bucket of size b.

The BKT supports range queries in discrete space effectively. Given a query g
and a distance r. the search begins at the root and enters all children 7z such that
d(p.q) —r < i < d(p.q) + r. and proceeds recursively. Whenever a leaf/bucket
is encountered. the items are compared sequentially. This guarantees an accurate

solution due to the BKT satisfving the Triangular Inequality Property.

2.2.5 Fixed Query Tree

The Fixed Query Tree (FQT) [3]. is an extension of the BKT. Unlike the BKT, the
FQT stores all elements at the leaves. leaving all internal nodes as pivot points. This
counstruction allows for fast backtracking by allowing the effective storage of a search
path in temporary memory. If a search visits many nodes of the same level, only one
comparison is needed because all of the pivots at that level are the same. Baeza-Yates
et al. demonstrated that FQTs performed fewer distance evaluations at query time
than the original BKT. This improvement is at the expense of a taller tree. where
unlike the BKT, it is not true that a different element is placed in each node of the
tree. The Fixed Height FQT (FHQT), originally proposed in [3]. was discussed as
a variant of the FQT in [2]. Here. all leaves are at the same height A, regardless
of the bucket size (similar to many CDS implementations). This has the affect of
making some leaves deeper than necessary. However. because the search path is

26



maintained in temporary memory, this does not represent a significant detriment to

the performance of the FHQT.

2.2.6 Fixed Queries Array

The Fixed Queries Array (FQA) [14]. is described as a compact representation of the
FHQT. No longer described as a tree structure, the FQA is an array representation
of the elements stored in the leaves of an FHQT seen left to right. For each element
in the array, h numbers representing the branches to traverse in the tree to reach
the element from the root are computed. These numbers are coded in b bits and
concatenated in a single number where the higher levels of the tree are the most
significant digits. The FQA is then sorted by these numbers. As such. each subtree
in the FHQT corresponds to an interval in the FQA. Updates are accomplished using
two binary searches through the FQA. The FQA improves the efficiency of the FHQT

by being able to include more pivot points within the same amount of memory.

2.2.7 M-Tree

The M-tree [16] is a metric tree designed to provide efficient dvnamic organization
and strong I/O performance in searching. Similar in structure to that of a GNAT [11].
the M-tree chooses a set of representatives at each node and the elements closest to

each of these representatives are grouped into subtrees rooted by the representative.

27



Insertions are handled in similar methods to that of an R-tree. Upon an insertion, an
element is inserted in the “best™ node. defined as that causing the subtree covering
radius to expand the least. In the result of a tie. the closest representative is chosen.
Upon reaching a leaf. the insertion of the element may cause overflow. (i.e.. the
number of elements equals M + 1). In such a case. the node is split in two and the
elements are partitioned between the resulting nodes. One node element is promoted
upwards to become a representative: this change propagates to the root of the tree.
Searches are performed by comparing the search radius rg with each representative’s
covering radius r¢ in a node. For all representative in the node where rg < re, the
search continues recursively through the subtrees of the effective representative. As
shown by Ciaccia et al. [16]. the M-tree shows impressive performance results against

CDS geometric indexes.

2.3 NDDS Models in Vector Space

Currently, NDDS indexing techniques utilizing vector space representations of data
points are fairly limited. An exhaustive search of the literature vields only two meth-
ods specifically applicable towards indexing such a space representation; the ND-tree
and the NSP-tree. This work appears to provide the most significant results toward
performing k-nearest neighbor queries within an NDDS. As such, both methods are

discussed in detail in the following subsections.



2.3.1 The ND-tree

The ND-tree [43] is inspired by popular CDS multidimensional indexing techniques
such as R-tree and its variants (the R*-tree in particular). Like many of the tech-
niques that inspired it, the ND-tree is a balanced tree satisfving three conditions:
(1) the root has at least two children. unless it is a leaf. and at most M children:
(2) every non leaf and leaf node has between m and M children or entries respec-
tively, unless it is the root; (3) all leaves appear at the same level. Here, Al and m
represent the upper and lower bounds set on the number of children/entries. where

2<m<[M/2].

Unlike previous examples of balanced trees, the ND-tree is designed specifically
for NDDSs and as such is based upon the NDDS concepts such as discrete rectangles
and their areas of overlap defined in Section 1.2.2. Due to this design consideration,
the ND-tree is able to take special characteristics of NDDSs into consideration that

metric trees are unable to utilize.

The ND-tree is a structure of indexed vectors from an NDDS Q, over an alphabet

th dimension. Leaf nodes consist of

A, where A; represents the alphabet of the i
tuples of the form (op. key). where key is a vector from Q; representing an object,

pointed to by op. in the database. A non leaf node N also consists of tuples, of

the form (cp, DMBR), where cp is a pointer to a child node N’ of N and DMBR

29



represents the discrete minimum bounding rectangle. described in section 1.2.2, of
N'. The DM BR of a leaf node N”. consists of all the vectors indexed in N”. The

DAIBR of a non leaf node N’ is the set of all DA BRs of the child nodes of N'.

To build an ND-tree, the algorithim ChooseLeaf is implemented to determine
the most suitable leaf node for inserting a new vector « into the tree. Starting at
the root and progressing to the appropriate leaf, the algorithm ChooseLeaf must
determine which descendant path to follow at each non leaf node it encounters.
Decisions are based upon three heuristics used in ascending order for tie breaks,
such that if I Hy results in two or more possible paths, I Ho is used to narrow the
field further, and so on until a child must be chosen at random. These heuristics are

presented as follows:

ITHy: Choose a child node corresponding to the entry with the least enlargement of

overlap(Ey.DM BR) after the insertion. [43]

IHj chooses a child node Ej from entries E1.9,....Ey, m < p < M and

1 < k < p, such that the insertion of vector a results in the least enlargement

of overlap(Ey.DM BR), defined as:

30



p
overlap(Ey..DAMBR) = Z area(E.. DMBRN E;.DMBR) (2.1)
i=1,i#k

I Hy results from the observation of the ND-tree experiencing similar retrieval
performance degradation due to the increasing amount of overlap between bounding
regions as seen for C'DSs [10]. [38]. This increase in overlap is a major concern
for high dimensional indexing methods and as such has been described as the high
dimensionality curse. Unlike multidimensional index trees in CDS, the number of
possible values for the overlap of an entry in an NDDS are limited, implying ties may
arise frequently. As such TH2 and IH3. two area based heuristics, are given to break

possible ties:

IHjy: Choose a child node corresponding to the entry E}. with the least enlargement

of area( Ey.DMBR) after the insertion.[43]

IHs: Choose a child node corresponding to the entry E) with the minimum

area(Ep. DM BR).[43]

Once any node contains more entries than the maximum allowable value, the
overflowing node is split into two new nodes N7 and Ng whose entry sets are from
a partition defined as follows: let NV be an overflow node containing Af + 1 entries

ES ={E1,E;....,Exry1}. Partition P of N is a pair of entry sets P = {ES), ESy}

31



such that: (1) ESJUESy = ES; (2) ES|NESy = 0; and (3) m < |ES;|,m < |ESs|.
Partition P is determined through the algorithm SplitNode. which takes an overflow
node N as the input and splits it into two new nodes N7 and N9 whose entry sets
come from a partition as defined above. This is a critical step in the creation of
an ND-tree as many split possibilities exist and a good partition may lead to an
efficient tree. Qian et al. [43] proposes handling this in two phases: (1)determine
the set of all possible partitions: (2) select the partition most likely to lead to an
efficient tree structure. The exhaustive approach to implementing this process is very
costly. As shown by Qian et al., even for relatively small values of A, for example
50, an exhaustive approach would have to consider a result so large as to make the
operation impractical: here, 51! = 1.6 x 109 permutations. Thus, a more efficient

method of generating a (smaller) set of candidate partitions is required.

A more efficient method of generating candidate partition sets stems from the
property that the size of an alphabet A for an NDDS is usually small; i.e., in genome
sequence examples |A| = 4. Let l}.lo,... ,I|A’ be the elements of A, in this case
{a,g.t.c}. The number of permutations on the elements of an alphabet is thus also
relatively small, here 4! = 24. For example, < a.c.g.t > and < g¢,c,a.t > are
both permutations of the set A. Using these observations Qian et al. proposes an
algorithm to choose a set of candidate partitions consisting of d x (M — 2m + 2) *

(|A]") candidates. For example, if d = 25, M = 50, m = 10, and |A| = 4. the

32



alphabet permutation based algorithm only considers 1.92 x 10%. Further, because
a permutation and its reverse yield the same set of candidate partitions [43], only
half of the aforementioned candidates need be considered; a significant improvement

over the exhaustive method.

It is possible that alphabet A for some NDDS is large. In this case, the aforemen-
tioned method no longer provides as significant an improvement over the exhaustive
method. If such a case arises. Qian et al. propose determining one ordering of entries

in the overflow node for cach dimension rather than consider

A|! orderings on each
dimension. This is accomplished by creating an auxiliary tree for each dimension Tj

and sorting the component sets generated from T;.

Once a candidate set of partitions has been generated. SplitNode selects an ap-

propriate partition based upon four heuristics, as follows:

SHji: Choose a partition that generates a minimum overlap of the DNBRs of the

two new nodes after splitting.[43]

SHy: Choose a partition that splits on the dimension where the edge length of the

DMBR of the overflow node is the largest.[43]

SHj: Choose a partition that has the closest edge lengths of the DMBRSs of the two

new nodes on the splitting dimension after splitting.[43]

33



SHy: Choose a partition that minimizes the total area of the DNIBRs of the two

new nodes after splitting.[413]

Heuristics SHy through SHy are applied in ascending order until there are no ties
present. If a tie still exists after the application of SHy. a partition is chosen at

random.

Searching an ND-tree is performed similarly to scarching an R-tree. Starting at
the root, each child nodes DMBR is compared to the search radius to determine if

there is an intersection. If the node intersects the search continues recursively.

2.3.2 NSP-Tree

A common problem among data partitioning based index structures, such as R*-tree
in CDS and ND-tree in NDDS, is that of regional overlap. For such index structures
an overflow node is split by grouping its indexed vectors into two sets DS; and DS9
for two new tree nodes such that the new nodes meet a minimum space utilization
requirement. Commonly. as the dimensionality of such a space grows, the probability
of large overlapping regions increases dramatically. This overlap causes a drastic
reduction in the efficiency of searching within such a structure. A solution to this
problem was proposed for CDSs in the form of space-partitioning data indexes. The

LSD tree discussed earlier is an example of such methods, where an overflow node is

34



split by partitioning its corresponding data space into two non overlapping subspaces
for two new tree nodes. The indexed vectors are then distributed among the new
nodes based upon which subspace they belong. While this method does lead to high
search performances in such structures, the nodes in the tree generally no longer

guarantee a minimumn space utilization.

Unfortunately. as was the case for the ND-tree. the methods used in creating
CDS implementations of a space-partitioning index structure do not directly apply
to an NDDS. Thus. a new structure. labeled the NSP-tree [44], was proposed. The
NSP-tree utilizes many of the concepts described for the ND-tree. For example,
the methods used to represent the universe of discourse and minimum bounding

rectangles remain the same between the two tree structures.

The key difference between an ND-tree and an NSP-tree lies in the method of
partitioning the data points into smaller subspaces. The NSP-tree splits an overflow
node based upon the frequency distribution of the vectors indexed within the node,
such that an even distribution is seen between the two new tree nodes. This distri-
bution method differs from CDS models, where a split is performed upon a chosen
dimension and the data points are distributed in relation to the split point. This
method no longer applies in a space where no ordering exists among the data points.

In an NDDS it is impossible to describe some point r4 being less than or greater



than some point y; without violating the semantics of the dataset.

To increase search efficiency. the NSP-tree utilizes multiple bounding boxes within
each subspace to help eliminate the amount of dead space that is included within
the subspace; dead space is any area covered that does not contain any indexed
vectors. This is similar to techniques used in CDS. however an interesting property
of an NDDS is able to exploited by the NSP-tree. Consider two 2-dimensional points
Pi(r1.y1) and Pa(ra. y2). The MBR necessary to cover such points in a CDS would
be a rectangle with points P; and Ps representing corners along one of the diagonals.
Such a representation includes a rather large portion of dead space. (roughly all the
area is dead space). In an NDDS however, the NI BR may be represented as the
Cartesian product of the two points {rj.r9} x {y1.92} which contains a very small
dead space {(r1,y2). (x2.y1)}. Asshown by Qian et al.. the NSP-tree shows favorable

performance comparisons with the ND-tree, particularly for skewed data [44].

2.4 HDS Models in Vector Space

This section describes currently available methods for vector space indexing of HDS
objects. Similar to the previous section describing NDDS indexing methods, there
exists a limited amount of HDS indexing methods. Although it should be noted

that metric space models such as M-tree could also be used to index such objects,

36



research by Qian et. al [43] and Chen et. al [15] suggest that this is not as efficient as
indexing methods prioritized toward HDSs. In this section we focus upon two more

recently proposed HDS indexing methods. the ND”-trec and the CND-tree.

2.4.1 ND"-tree

The ND"-tree, as proposed by Qian [11]. is an extension of the ND-tree. The key
difference is that instead of discrete minimum bounding rectangles, the ND"-tree
utilizes hybrid minimum bounding rectangles. Initial results reported by Qian [41]
demonstrate the effectiveness of utilizing an index structure for HDS objects specif-
ically designed for such a space. The ND"-tree serves as an inspiration for the
CND-tree introduced by Chen et al. [15]. In this dissertation we focus upon the

more recent contribution and will describe key differences as necessary.

2.4.2 CND-tree

The CND-tree [15] is similar in structure and function to the R*-tree and the ND-
tree. As such, the CND-tree is a balanced tree with leaf nodes containing the indexed
vectors. The vectors are reached by traversing a set of branches starting at the root
and becoming more refined as one traverses toward the leaves. Each vector is inserted
into the tree after an appropriate position is found. The relevant minimum bounding

rectangle may be either enlarged or split to accommodate the insertion.

37



The key difference between the CND-tree and related non-hybrid trees (R*-tree
for continuous space and ND-tree for discrete space) is the way in which a min-
imum bounding rectangle is defined and utilized. In the CND-tree, a minimum
bounding rectangle contains both continuous and non-ordered discrete dimensions.
A hybrid minimum bounding rectangle (HNBR). with dp discrete dimensions and
dc continuous dimensions. for a set of hybrid rectangles G = Ry x Ry x ... x Ry,

with discrete sub-rectangles RI-D =Si1%X...xS5; and continuous sub-rectangles

dD

RiC = Si.,dDH X ... x5 (ie. R; = RID X RIC) is defined as follows:

.([D-HiC

HMBR(G)= {U'_ Si1}x...x {u;"zlsi.dD} X
(min Si_dDH.nmx S,'J1D+1) X ... X (2.2)
(min S,-’(ID_H[C.max Si"D“’C) .
where S; j (1 < j < dp) is a set of elements/letters from the alphabet of the j-th

dimension and S; 1(dp +1 < k < dp + d¢) is an interval from the k" dimension.

2.5 Determining Distance

An integral part of any similarity search algorithin is the distance measure employed.
Because we are interested in how “close”™ one object is to another, the selection of
a distance measure provides the semantic definition of what “close”™ means for the

current applications.

38






For NDDSs, the inability to be ordered along an axis renders standard forms of
distance measurement, such as Euclidean or Manhattan, inapplicable. In turn, a
common method of calculating the distance between two discrete objects is to apply
the Hamming measurement. Essentially. this measurement represents the number of
dimensions between two d-dimensional vectors that contain different elements. This

is described formally as follows:

o 0 if Vi[i] = Va[i] .
DH(nnm(“l-"‘Z) = Z . (2-3)

i—1 | 1 otherwise

This distance is useful in discrete spaces due to its non-reliance upon dataset se-
mantics, particularly for equality measurcments. However, its usefulness declines
rapidly when applied to other operations, such as grouping, due to its limited car-
dinality. The cardinality of a NDDS, C'ar(lDH()(U). for a d-dimensional dataset U
with an alphabet size |A;| for each dimension 7 in d. is calculated as the product of

the alphabet sizes from ecach dimension, as follows:

d

=1

Using the aforementioned genome sequence example, a 25-dimensional dataset

with an alphabet size of 4 for each dimension would have a cardinality of

39



1,125.889,906.842.624: that is. there are over 1019 possible distinct elements in the
dataset. However. if the Hamming distance formula is used to calculate the distance
between the objects, there are only d + 1 (26) different possible distances between

any two objects.

For HDSs, Chen et al. [15] utilized a non-Euclidean measurement for calculating
the distance between a vector a = (a[l].af2]..... a[dp +d¢]) and an HNMBR R =

{S1 x Sp x...x S5,

ID+‘IC} to perform range queries:

dist(R.a) =" f(si.ali)) (2.4)
=1

1=

where

0 if 7 is a discrete dimension and d; € S; ]

or i is a continuous dimension and

f(Sicali]) = 4 . ) i
min(S;) — ot < d; < max(S;) + ot

1 otherwise

Equation 2.4 essentially discretizes the data of the continuous dimensions utilizing a
tolerance value of 0t determined by an application expert. This method is similar to

that used in several machine learning techniques[13, 20, 39].

40



CHAPTER 3

k-Nearest Neighbor Searching in
NDDS

In this chapter, we consider k-Nearest Neighbor (A-NN) searching in NDDSs. Search-
ing in NDDSs presents several new challenges that we discuss.  Additionally, we
present a formal defiuition of a A-NN query/search and introduce a new distance
measure suitable for searches in NDDSs. A generalized form of this distance mea-

sure (and the benefits inherited from this generalized form) is presented in Chapter

3.1 Motivations and Challenges

Numerous techniques have been proposed in the literature to support efficient sim-
ilarity searches in (ordered) continuous data spaces. A majority of them utilize a

multidimensional index structure such as the R-tree [22]. the R*-tree [6]. the X-tree

41



[10], the K-D-B tree [46], and the LSD"-trce [25]. These techniques rely on some
essential geometric properties/concepts such as bounding rectangles in CDSs. Much
work has centered around a filter and refinement process. Roussopoulos et al. pre-
sented a branch-and-bound algorithm for finding A-NNs to a query point. Korn et al.
furthered this work by presenting a multi-step k-NN searching algorithm [35], which
was then optimized by Seidl and Kriegel [50]. In [31]. a Voronoi based approach

was presented to address k-NN searching in spatial network databases.

Little work has been reported on supporting efficient similarity searches in non-
ordered discrete data spaces. Limited existing work on index-based similarity
searches in NDDSs has utilized either metric trees such as the M-tree [16] or the
ND-tree and the NSP-tree recently proposed by Qian et al. [42. 43. 44]. Unlike the
M-tree, the ND-tree and the NSP-tree indexing techniques were designed specifically
for NDDSs. It has been shown that these two techniques outperform the linear scan
and typical metric trees such as the M-tree for range queries in NDDSs. Metric trees
generally do not perform well in NDDSs because they are too generic and do not take
the special characteristics of an NDDS into consideration. On the other hand. Qian
et al.’s work in [42, 43, 44] primarily focused on handling range queries. Although a
procedure for finding the nearest neighbor (i.e., 1-NN) to a query point was outlined

in [43], no empirical evaluation was given.



The issue of A-NN scarching in NDDSs is in fact not a trivial extension of earlier
work. NDDSs raise new challenges for this problem. First. we observe that, unlike
a k-NN query in a CDS. a A~-NN query in an NDDS based on the conventional
Hamming distance [23]. often has a large number of alternative solution sets. making
the results of the A~-NN query non-deterministic. This non-determinism is mainly
due to the coarse granularity of the Hamming distance and can sharply reduce the
clarity /usefulness of the query results. Second. existing index-based A-NN searching
algorithms for CDSs cannot be directly applied to an NDDS due to lack of relevant
geometric concepts/measures. On the other hand. the algorithms using metric trees
for a CDS are suboptimal because of their generic nature and ignorance of special
characteristics of an NDDS. Third, the information maintained by an NDDS index
structure may become very misleading for traditional CDS search ordering strategies,
such as those presented by Roussopoulos et al. [47]. This scenario can occur as the

distribution of data within the index structure shifts over time.

To tackle the first challenge. we introduce a new extended Hamming distance,
called the Granularity-Enhanced Hamming (GEH) distance. The GEH distance
improves the semantics of k-NN searching in NDDS by greatly increasing the deter-
minism of the results. To address the second challenge, we propose a k-NN searching
algorithm utilizing the ND-tree. Our algorithm extends the notion of incremen-

tal range based search [Roussopoulos et al. 1995] (generalized for metric space by

43



Hjaltason and Samet [Hjaltason and Samet 2000]) to NDDSs by introducing suit-
able pruning metrics and relevant searching heuristics based on our new distance
measure and the characteristics of NDDSs. Some preliminary results for uniformly
distributed datasets were presented in [32]. Our study shows that the new GEH
distance provides a greatly improved semantic discriminating power that is needed
for A-NN searching in NDDSs. and that our searching algorithm is very efficient
in supporting A-NN searches in NDDSs. In this dissertation. we demonstrate that
our k-NN searching algorithm is efficient in both uniformly distributed datasets and
non-uniformly distributed datasets using zipf distributions as an example. Further,
we present a theoretical performance model and demonstrate that the performance
of our algorithim matches very closely to what is predicted by this model. To address
the third issue, we introduce a method for determining the probability of a vector’s
existence within any sub-tree of an ND-tree. We demonstrate this probability in-
formation can be used to provide a new search ordering strategy that significantly
increases the performance of our search algorithm when the information maintained

by the index structure is misleading.

The rest of this chapter is organized as follows. Section 3.2 formally defines the
problem of k-NN searching. derives the probability of a vector existing within an
ND-tree, introduces the new GEH distance in NDDSs, and discusses its properties.

Section 3.3 presents our index-based A-NN searching algorithm for NDDSs. including

44






it s pruning metrics and heuristics and theoretical performance model. Section 3.4

1 iscusses experimental results.

3.2 k-Nearest Neighbors in NDDS

In this section, we formally define a £-NN search/query and identify a major prob-
len associated with A-NN searches in NDDSs. To overcome the problem. we propose
a new extended Hamming distance and discuss its properties. Additionally. we in-
troduce a method for determining the probability of a vector/record’s existence in
any particular subtree of an ND-tree (sece Chapter 2). based upon the properties of

NDDSs and the index tree.

3.2.1 Definition of k-NN in NDDS

When considering a query in an NDDS. the dataset may be depicted as a set of
C:oncentric spheres with the query point located at the center (as shown in Figure
L ). Each sphere contains all data points that have r or less mismatching dimen-
Sions with the query point, where r represents the laver/radius of the particular
Sphere. In general, the solution set of k-nearest neighbors for a given query point
Imay not be unique due to multiple objects having the same distance to the query
Point. Thus, there may be multiple candidate solution sets for a given query point

and k value. One way to resolve the non-uniqueness/non-determinism of a A-NN



search is to find the minimum radius r such that a sphere of r will contain at least
A data points/neighbors. while a sphere of radius r — 1 contains less than k neigh-
b ors. Although such an approach indeed resolves the non-determinism problem, the
solution to such a A-NN scarch may not be what the users are expecting. since they
usually not only want to know the minimum distance/radius for a A-NN search but
also want to know the actual A-NN neighbors. Note that the non-determinism also
theoretically exists for a A-NN search in a continuous data space although it is not
as prominent as it is in an NDDS since the chance for two data points having the
same distance to a query point in a continuous data space is usually very small. In
this dissertation, we adopt the traditional approach to finding the actual neighbors
for a k-NN search in an NDDS and resolve the non-determinism problem in another

way. Note that, once the A-nearest neighbors are found. the above minimum radius

T is also found.

We define a candidate solution set of k-nearest neighbors for a query point as

Eolows:

Definition 1. Candidate k-Nearest-Neighbors: Let the universe of discourse
for variables A; and B; (1 < i < k) be the set of all objects in the database. Let KNNS

denote a candidate solution set of k-ncarest neighbors in the database for a query

46



Figure 3.1. Example of NDDS data points distributed by distance

47



point g and D(x.y) denote the distance between the objects © and y. Then kNNS is

d e fined as follows:

ANNS = {A;. A9, ... .. 1.} =
mne{l2....k} [(m #n) = (Am # Ap)]
(3.1)
Equation 3.1 essentially says that & objects/neighbors Ay, Ao, ..., Af in ANNS have

t he minimum total distance to ¢ out of all possible sets of & objects in the database.
This definition is in fact valid for both continuous and discrete data spaces. Consider
Figure 1. if & = 3. there are three possible sets of neighbors that satisfy Equation
3.1: {a1.a9.a3}. {aj.a2.a4}. and {a1.a3.ay}. Each candidate solution set is found
within a range of r when a range of r — 1 would yield less than & neighbors (here,
T = 3). Thus. each candidate solution set is a size k subset of the set of neighbors

t hat would be found using above minimum distance r.

Since ANNS is a set of neighbors. there is no ordering implied among the neighbors.
Iy the following recursive definition we provide a procedural semantic of a candidate
Ao th_pearest neighbor. which is based on an ordered ranking of the neighbors in the

d atabase for a query point gq.

48



Definition 2. Candidate k'"-Nearest-Neighbor: Let the universe of discourse
for variables A and B be the set of all objects in the database. Let Aj. denote a

candidate K" -nearest neighbor in the database for a query point q. We recursively

define Ay as follows:

A= A=Vp ' (D(q.A) < D(q.B)) for k> 2.

(3.2)

Definition 2 can be used to produce the candidate ANNSs given by Definition 1. as

stated in the following proposition.

Lemma 3.2.1. Fach candidate kKNNS produced by Dcfinition 2.2.2 is contained in the

set of candidate kNNSs given by Dcfinition 2.2.1.

Proof. Proposition 2.2.3 states that the set of candidate ANNSs given by Definition 1
can be produced by Definition 2. This leads to the hypothesis that if a solution set

NN = {A;. Ag...... Ar_1} satisfies Equation 3.1 for & — 1 objects, then Equation

49



3.2 will sclect a A'h neighbor Ag such that NV U A will satisfy Equation 3.1 for &

objects and thus be consistent with Definition 1.

We first consider a base case where & = 1. Equation 3.2 yields the following

neighbor Aj:

Ay e {A:Vp(D(q.A) < D(q.B))}.

The solution set {4;} satisfies Equation 3.1 for & = 1 and thus is consistent with

Definition 1. Equation 3.2 mayv then be used again to vield neighbor Aj.:
{ A g A & k

Ave {A:vg AR (D(q.A) < D(q.B)) $ for k > 2. .

The above function returns the object in the dataset that has a minimum distance
from the query object out of all objects in the dataset not currently included in the
solution set. Thus the addition of a &' neighbor for A& > 2 will result in a minimal
distance to the query point for & objects if the set of neighbors A; - A;_; has a
minimal distance for k — 1 objects. Our base case shows that this is true for 1 object,

thus the hypothesis is true for all values of k. O

From the above definitions (and Figure 1). we can see that there may be

90



multiple possible ANNSs for a given query. Therefore, ANNS is generally not unique.
The non-uniqueness/non-determinism of ANNS has an impact on the semantics of
the k-nearest neighbors. We define the degree of non-determinism of k-nearest
neighbors by the number of possible ANNSs that exist for the query. This degree of

non-determinism is computed by the following proposition.

Lemma 3.2.2. The number Ak of candidate kNNSs is given by

Ab=—2" (3.3)

where t is defined by D(q. Ay_4) # D(q. Aj_t41) = D(q. Aj_410) = ... = D(q, Ap):
Aj(1 < j < k) denotes the j”' -nearest neighbor; N is the number of nearest neighbors

in the database that have the same distance as D(q. Ay).

Proof. This section provides the derivation of the number AR of candidate ANNSs.
This may be interpreted as the number of possible solution sets from a dataset that
satisfy Equation 3.1 for & objects. The value of Ak is largely influenced by the
number of objects within a given solution set that have the same distance to the

kfh.

query object as the neighbor. This value, represented by t. is formally defined

as follows:

ol



D(q. Ap—t) # D(q. Ag—t41) = D(q. Aj_t42) = ... = D(q. Ay).

Each neighbor A _; - Aj. may be replaced by any other potential neighbor from the
dataset a, where D(q.a) = D(q. A). and the solution set will still satisfy Equation
3.1. We denote the set of all potential neighbors as ;\"I. Thus, Ak is the number of
t-element subsets that can be composed from the set of N'. This can be represented

. . g . , . . .
as the binomial coefficient of t and N which decomposes into Equation 3.3:

Note that t denotes the number of objects with distance D(q. A;) that have to be

included in a ANNS. If ¢t = K, all the neighbors in a ANNS are of the same distance
/

as D(gq, Ag). In this case Ag_; is inapplicable. The values of N and t depend on

parameters such as the dimensionality. the database size, and the query point.

For a k-NN query on a database in a continuous data space based on the Euclidean
distance, ANNS is typically unique (i.e. Ak = 1) since the chance for two objects
having the same distance to the query point is usually very small. As a result, the

non-determinism is usually not an issue for k-NN searches in continuous data spaces.

]
o



However, non-determinisi is a common occurrence in an NDDS. As pointed out in
[42, 43], the Hamming distance is tvpicallv used for NDDSs. Due to the insufficient
semantic discrimination between objects provided by the Hamming distance and the
limited number of elements available for each dimension in an NDDS. Ak for a A-NN
query in an NDDS is usually large. For example. for a dataset of 2AI vectors in
a 10-dimensional NDDS with uniform distribution. the average Ak values for 100
random A-NN queries with & = 1.5.10 are about 8.0,19.0K", 45.5M respectively, as
shown in Figure 2. This demonstrates a high degree of non-determinism for k-NN
searches based on the Hamming distance in an NDDS. especially for large k& values.
To mitigate the problem. we extend the Hamming distance to provide more semantic

discrimination between the neighbors of a £-NN query point in an NDDS.

3.2.2 Extended Hamming Distance

Intuitively, the Hamming distance indicates the number of dimensions on which the
corresponding components of a and 3 differ. As discussed by Qian et al. [42, 43],
the Hamming distance is well suited for search applications in NDDS. In particular,
we note that applications with different alphabet sets for different dimensions or with
no known similarity matrix (needed for many edit distances) present strong cases for
using the Hamming distance when searching. Additionally. recent work has applied

the Hamming distance when secarching in large genome sequence databases [37, 29).



1.0E+08 - -
1.0E+07

1.0E+06

= 1.0E+05

-— -—
o o
m m
+ +
o o
® &

1.0E+02

Number of Solution Sets

1.0E+01 - _ . — = )

1.0E+00 - e
4 8 12 16 20
Number of Vectors in Database x 10*5

Figure 3.2. Comparison of Ak values for the Hamming distance

A lthough the Hamming distance is very useful for exact matches and range queries

in. INDDSs, it does not provide an effective semantic for A-NN queries in NDDSs due
to  the high degree of non-determinism. as mentioned previously. We notice that
the Hamming distance does not distinguish equalities for different elements. For
example, it treats element a = a as the same as element b = b by assigning 0 to
the distance measure in both cases. In many applications such as genome sequence
Searches, some matches (equalities) may be considered to be more important than
others. Based on this observation. we extend the Hamming distance to capture the

Semantics of different equalities in the distance measure.

Several constraints have to be considered for such an extension. First. the extended



distance should enhance the granularity level of the Hamming distance so that its
sem antic discriminating power is increased. Second. the semantic of the traditional
Harmming distance needs to be preserved. For example. from a given distance value,
one should be able to tell how many dimensions are distinet (and how many dimen-
sioras are equal) between two vectors. Third. the extended distance should possess

the triangular property so that pruning during an index-based search is possible.

WWe observe that matching two vectors on a dimension with a frequently-occurred
\=1mnent is usually more important than matching the two vectors on the dimension
with an uncommon (infrequent) element. Based on this observation., we utilize the

frecyuencies of the elements to extend the Hamming distance as follows:

d 1 if a[i] # 3[i]
D «.3) = : 3.4
GEH(- ) ; zllf(a[z]) otherwise 4

where

f(ali]) = 1 = frequency(ald]).

This extension starts with the traditional Hamming distance: adding one to the
total distance for each dimension that does not match between the two vectors.

The difference is that. when the two vectors match on a particular dimension, the



frequency of the common element (i.e. al[i]] = 3[i]) occurring in the underlying
database on the dimension is obtained from a lookup table generated by performing
an initial scan of the dataset. This frequency value is then subtracted from one and
then added to the distance measure. Thus. the more frequently an element occurs.
the more it will subtract from one and thus the less it will add to the distance measure,
thereby indicating that the two vectors are closer than if they had matched on a very
uncommon element. This frequency based adjustment results in the possibility of
fractional distance values rather than just integer distance values (as seen when using

the traditional Hamming distance).

The factor of ;11 is used to ensure that the frequency-based adjustments to the dis-
tance measure do not end up becoming more significant than the original Hamming
distance. This guarantees that the solution set (ANNS) returned using this distance
will be among the candidate solution sets returned if the Hamming distance were
used instead. We also note that function f(afi]) is not restricted to the definition
given in Equation 3.4. So long as the values of f(«a[i]) are within the range of [0,1).
the factor of zll guarantees the semantic of the Hamming distance is maintained. In
Chapter 4, we explore this concept more thoroughly and present a generalized form

of Equation 3.4.

From the distance definition. we can see that. if m < Dgpg(a.3) < m+1






(m=0,1.....d), then vectors @ and 3 mis-match on m dimensions (i.e., match on

d — m dimensions). Additionally. the function f(a[i]) plays a factor in preserving

the triangular property of Equation 3.4. as shown in Appendix B.

Clearly, unlike the traditional Hamming distance. which has at most d + 1 (in-
teger) values — resulting in a quite coarse granularity. this new extended distance
allows many more possible values - leading to a refined granularity. We call this
extended Hamming distance the Granularity-Enhanced Hamming (GEH) distance.
Due to its enhanced granularity. the GEH distance can dramatically reduce Ak in
Proposition 3.2.2. leading to more deterministic £-NN searches in NDDSs. As an
example. consider again Figure 1. If we assume that vectors ag. a3z, and a4 each
match query vector g in only one dimension such that as[1] = ¢[1]. a3[2] = ¢[2]. and
a4[3] = ¢[3], and we also assume f(¢[3]) < f(q[1]) < f(q[2]). The use of the GEH
distance resolves the non-determinisim seen earlier when A = 3. Here, the solution set
would be {a1.a3.a4} (one of the candidate ANNS when the Hamming distance was
used) since Dgpg(q.a1) < Dagn(q.a3) < Dgeg(q.ay) < Dgepg(g.a2). On a
larger scale. for the aforementioned dataset of 21/ vectors in a 10-dimensional NDDS
under the uniform distribution, the average Ak values for 100 random A-NN queries
with k& = 1.5,10 are about 1.09. 1.11. 1.006, respectively (see Figure 3.3 in Section

3.4.1).



In fact, the Euclidean distance measurement can be considered to have the finest
(continuous) granularity at one end, while the Hamming distance measurement has
a very coarse (discrete integers) granularity at the other end. The GEH distance
measurement provides an advantage in bringing discrete and continuous distance

measurements closer to each other.

3.2.3 Probability of Valid Neighbors

In many scenarios. it is useful to know the probability/likelihood of encountering
vectors within an index tree that are within the current search radius to a given
query vector. For the purposes of our discussion. we label each such encountered
vector as a valid neighbor a; where V,D(¢g.a) < r, q is the query vector and r is
the current search radius. To derive this probability, we first consider the Hamming
distance and then extend our solutions to benefit from the enhancements provided

by the GEH distance.

For an initial case, we can assume that our index tree has maintained a relatively
uniform distribution of elements within its subtrees. In a well balanced tree (ND-tree,
M-tee, etc...), this may prove to be a very reasonable assumption. as most indexing
methods will attempt to evenly distribute clements within their subtrees. When we
consider an ND-tree as our indexing method. the probability that accessing a subtree

with associated DNMBR R = 5] x Sp x...x Sy will vield a particular element a in any



dimension may be estimated as the reciprocal of the magnitude of the alphabet set
on that dimension represented by RR. Therefore. the probability of a specific element

a occurring in dimension 7 is estimated as:

This calculation proves to be fairly accurate so long as the assumption of uniform
distribution holds. The accuracy. and therefore effectiveness. of this calculation
begins to degrade as the distribution of elements per dimension within a subtree

becomes non-uniform.

The true probability p(a) g ;. may be estimated far more accurately by determining
the local frequency ratio of element a within a subtree. with associated DMBR R,

on dimension 7 as follows:

pla)p;= fila)p;. (3.5)

where

# of vectors a in R's subtree where a[i] = a

fila)pi =

total # of vectors in R’s subtree



This method is not reliant upon the indexing method to provide an even distribution:

Equation 3.5 remains accurate even for indexes with heavily skewed distributions.

The probability of encountering valid neighbors when examining any particular
subtree of an ND-tree is analogous to the probability of such neighbors existing in
that subtree. Each dimension in an NDDS is assumed to be independent. therefore,
the probability value of encountering specific elements over all dimensions may be
determined by the product of the probability values of encountering a specific element
in each dimension. Thus the probability of sclecting any particular vector a =
(a[1].a[2].....a[d]) at random from the subtree with associated DNIBR R is the

following:

d
PE(a.R) =[] p(aliDp;- (3.6)

1=1

As defined in Section 3.2.2, the Hamming distance represents the number of
non-matching dimensions between any two vectors. The probability of a subtree
containing a vector a where Dy, nm(g.@) = 0 may be determined using Equa-
tion 3.6. However. because at most one vector within an ND-tree will satisfv
Dyamm(g.a) = 0, we also have to consider the probability of a subtree contain-

ing vectors 3 = (3[1]. 3[2]..... 3[d]). where Dyomm(q.3) = = (z € {1.2.....d}).

Lemma 3.2.3. Let Y represent the sct of dimensions where 3[Y;] # q[Y;] and let X

60



represent the set of dimensions where 3[.X;] = ¢[X;]. The probability of selecting a
particular vector 3 from the subtree with associated DMBR R, where Dgggmm(q. 3) =
2,(0 < z < d). at random is given as the following (note that z = |Y

):

X Y

PNE(3.R) = Hp Dr.x, «JT - nt: (3D Ry;)- (3.7)
j=1

Proof. As described in Equation 3.6. the probability of a specific vector existing in a
subtree, represented by R, is the product of the probabilities of each element of the
vector in the corresponding dimension of the subtree: the probability of the element
is estimated by 1’(‘3[Xj])1?,.\’j (Equation 3.5). The probability of anvthing except the
specified element is 1 —p(,f[YJ‘])Ryj. Thus. the probability of a specific vector. which
does not match the query vector in = dimensions. existing in a subtree with R is the
product of two terms: the product of 1)(3[-‘&}])1?“\’1. in the matching dimensions and

the product of 1 — p(;,f[YJ-])R‘yJ. in the non-matching dimensions. O

Lemma 3.2.3 describes the method for determining the probability of encoun-
tering a vector that matches the query vector on a particular set of dimensions
X. An example would be determining the probability of encountering a vector 3
in a 10-dimensional dataset that matched a query vector ¢ in dimensions 1, 3. 8,

and 9. In this example. X = {1.3.8.9} and Y = {2.4.5.6.7,10}. resulting in

61



2= Dgamm(q.3) = 6. However, to determine the probability of encountering a vec-
tor at a distance z. we are not only interested in this one particular partial-matching
vector, but also all possible partial-matching vectors that may be found at a distance

z from the query vector.

Proposition 1. Let B represent the set of all vectors from the given dataset in
an NDDS where 3 € B : [Dgamm(q.3) = z]. The probability that a subtree with
associated DMBR R = Sy xSaox... xSy will contain a vector 3 where Dy gmm(q-3) =

2 s given as the following:

PS.(q.R)=Y_ PNE(3.R). (3.8)
JeB

Proof. The probability of a subset of independent objects existing in a set is the
summation of the probabilities of each of the individual objects within the subset
existing in the set. Thus. the probability of a subset of vectors existing within a
subtree, each of which has a specified number of dimensions matching a query vector,
is the summation of the probabilities of all vectors within that subset existing in the

subtree. 0

For example. the probability of selecting a vector 3 at random from a subtree with

associated DMBR R. where Dy m(q..3) = 1. is given as follows:



PS1(q¢.R) = p(q[1])p(g[2])...p(gld = 1]) (1 = p(q[d]))
+p(q[1)p(g[2]) . (1 = p(g[d = 1])) p(q[d])

+ (1= p (1)) p(q[2]) - .- pla[d = 1])p(g[d]).

N\Ae note that as the dimensionality of the dataset increases. this calculation can
> e come costly. i.e. O(d * (df:) ). One possible solution is to create a hash structure
j11 & pre-processing step, that stores binary arrays representing the different combi-
nna t ions of matches and non-matches for each particular distance value. Here, the set
of keysis the set of integers (0.1,.. ., d). and the values are the sets of binary arrays
with a corresponding number of 0's. For example. the kev "3" would retrieve the set
of binary arrays that contains all possible permutations with exactly three 0's. The
set F3 for a particular distance may be determined by retrieving the corresponding set
of binary arrays, where for each array. a value of 1 would correspond to a dimension
in X and a 0 a dimension in Y (see Proposition 2.4.1). This method can drastically

reduce CPU tiume.

The summation of the probability values given by Equation 3.8 for each integer
distance : ¢ {0.1..... r} vields the probability of the subtree containing a vector 3
thatis within range r to the query vector (i.e. Dypomm(q.3) < r). This is expressed

fOrnlaHy as follows:

63



PNNy(¢.R) = ZPS (¢.R). (3.9)
:=0

Equation 3.9 may therefore be used to give an accurate measure as to the likeli-
1o od that scarching within any subtree will update a solution set when using the
F =2 xnming distance. Enhancing the granularity of the Hamming distance leads to an
e11 I ancement of the neighbor probability calculated in Equation 3.9. When using
the GEH distance. r is no longer strictly an integer. Thus. it is possible for a valid
neighbor to exist at a distance [r] < Dgppg(q.3) < r. where 7 is a real number.
An adjustment to Equation 3.8 is needed to properly account for possible neighbors

witliinn this range.

Proposition 2. Let B’ represent the set of all vectors from the given dataset in
' ,

an NDDS wvhere 3 € B : [Dygmm(q.3) = |[r]]. The probability that a subtree with

IOAMBR R = S]xSyx...xS4 will contain a record 3 where (|r] < Dapg(q.3) <7r)

Z.s given as the following:

PR(q.R.7) ZP\EH?)( 1r].3.q). (3.10)

whrere

64



1 af Rud_j(!‘j-(I) <r-— I.’J

0 otherwise

d(r—|r|.3.q) =

Falil) i 31 = qlj]

0 otherwise

1

| 1o
Rogi (3.9) ==
j=1

Proof. The proof for Proposition 1 shows that Equation 3.8 yields the probability of
a vector, which has z mismatching dimensions with the querv vector. existing in a
particular subtree. If = = | r|. this equation will determine the probability of a vector
with | 7] mismatching dimensions with the query vector existing in the subtree. The
. / . N
set of these vectors is represented by B . Function 4 creates a subset of these vectors
. I . .
by rernoving all vectors v, from the set B . where Dgpg(v.q) > r. Equation 3.10 is
. . / /
the summation of each of the remaining vectors v . where VI'IEB/ :Dgeg(v.q) <.

Thus Ecjuation 3.10 yields the probability of a vector. whose distance to the query

vector is between || and r to the query vector. existing in a particular subtree. O

The additional granularity provided by Equation 3.10 allows us to refine Equation

3.9 to make use of our GEH distance as follows:

PNNggy (¢.R.v) = PR(q. R.7) + PS-(q.R). (3.11)

-



Equation 3.11 may be used to give an accurate estimate of the likelihood that search-
ing within any subtree will update a solution set when our enhanced distance measure
is used. We use this measure in section 3.3.2 to develop an ordering heuristic that
provides a conservative assessmient of whether or not to visit a particular subtree

that is beneficial to search performance in non-uniformly distributed databases.

3.3 A k-NN Algorithm for NDDS

To efficiently process k-NN queries in NDDSs. we introduce an index-based k-NN
searching algorithm. This algorithm utilizes properties of the ND-tree recently pro-
posed by Qian, et al. [12. 43] for NDDSs. The basic idea of this algorithm is as
follows. It descends the ND-tree from the root following a depth-first search strategy.
When A possible neighbors are retrieved. the scarching algorithm uses the distance
information about the neighbors already collected to start pruning search paths that
can be proven to not include any vectors that are closer to the query vector than any
of the current neighbors. Our algorithm is inspired by earlier incremental ranged
based imiplementations presented for CDS by Roussopoulos et al. [47] and Hjal-
tason and Samet [26] (generalized for metric space). Our algorithim extends these
implement ations to NDDSs by introducing metrics and heuristics suitable for such

a space. The details of this algorithn are discussed in the following subsections.

66



3.3.1 Heuristics

In the worst case scenario, this search would encompass the entire tree structure.
However, our extensive experiments have shown that the use of the following

heuristics is able to eliminate most scarch paths before they need to be traversed.

)

MIN DIST Pruning: Similar to [47], we utilize the minimum distance (MINDIST)

’F

between a query vector ¢ and a DMBR R = S; x S2 x ... x S4. denoted by
mdist(q, R). to prune useless paths. Based on the GEH distance, MINDIST is

formally defined as follows:

if ¢[i] ¢ S

1
-1 %f((][l]) otherwise

mdist(q. R) = (3.12)

where

F(gli)) = 1 = frequency(qli)).

This calculation is then used with the Ran ge of the current A-nearest neighbors

(with respect to the query vector) to prune subtrees. Specifically, the heuristic for

67



pruning subtrees is:
Hi : If mdist(q. R) > Range. then prune the subtree associated with R.

By taking the closest distance between a DNIBR and ¢, we are guaranteeing that no
vectors that are included in the DMDBR's subtree are closer than the current Range

and thus need not be included in the continuing search.

MIINN MAXDIST Pruning: We also utilize the minimum value (MINNAXDIST)
of all the maximum distances between a query vector ¢ and a DNIBR R along each
dimension, denoted by mmdist(q. R). for pruning useless paths. In simple terms,
mmdist(q. R) represents the shortest distance from the vector ¢ that can guarantee
another vector in R/subtree can be found. For a vector g and DMBR R = S x S9 x

- X Sy, MINMAXDIST is formally defined as follows:

d
mmdist(q. R) = min < f, (¢[k]. Si) + far (ql7)- Si) (3.13)
t<k<d i=1izk

where

68




Lr(y[k]) if g[k] € Sy
fm((l[l\'].sk) = ‘If(l[ ]) 1 1[ ]G k

1 otherwise
L fli]) if {q[i]} = S;
Faral). S =4 ¢ '
1 otherwise

where f() on the right hand side of the last two Equations is defined in Equation

3.12.

In general terms. the summation of fy; determines the number of dimensions where
every vector in the associated subtree is guaranteed to have a matching element with
the quiery vector (since the component set S; on the corresponding dimension contains
only the corresponding element ¢[i] in the query vector). In these cases. a value of
5f((1[1'.]) is added to the distance (i.e. the GEH adjustment for a matching dimension).
The value of f;, determines if there is another dimension (not in those checked for
far) in which at least one vector in the associated subtree will match the query vector.
In this case, a value of %If(q[k]) is added to the distance. A value of 1 is added for
all other cases in far and fp,. The summation of these values yvields the minimum
distance (adjusted for GEH) that can be guaranteed a vector will be located from the
query vector in the associated subtree, based upon the information in the DMBR. For
example, given a query vector ¢ = (a.b.c¢) and a DMBR = {a.d} x {b} x {c.a}, we
have f), (a, {a.d}) + far(b.Ab}) + fas(c{c.a}) = %f(a) + %f(b) + 1. which indicates

that a vector (i.e. (a.b.?)) matching ¢ on the first two dimensions is guaranteed

69

F‘w‘. e T b3 4



to exist in the corresponding subtree. The minimum mmdist() of such distances is
sought in Equation 3.13. If Range > mmdist(). it is guaranteed that at least one

valid neighbor can be found in the corresponding subtree.

To process k-NN scarches in our algorithm. mmdist() is calculated for each non-leaf
node of the ND-tree using query vector g and all the DNBRs (for subtrees) contained
in the current node. Once each of these MINMAXDIST values (for subtrees) have
been calculated. they are sorted in ascending order and the kM value is selected as

MIN MAXDIST, for the current node.

The k' value is selected to ouarantee that at least k vectors will be found in
searching the current node. This selected AMIINMAXDIST} is then used in the

following heuristic:

Ho: If AIINMAXDIST) (node)< Range, then let Range = MINMAXDIST). (node)

Optimistic Search Ordering: For those subtrees that are not pruned by heuristic
Hj or H5, we need to decide an order to access them. Two secarch orders were
suggested in [47]: one is based on the ordering of MINDIST values. and the other is

based on the ordering of MINMAXDIST values. The MINMAXDIST ordering is too

70




pessimistic to be practically useful. Accessing the subtrees based on such an ordering
is almost the same as a random access in NDDSs.  From an extensive empirical
study. we found that accessing subtrees in the optimistic order of NIINDIST values
during a k-NN search in an NDDS provided the more promising results. This study
was performed with the assumption that the ND-tree is well structured. This access

order is shown formally as follows:

Hs: Access subtrecs ordered in ascending value of mdist(q. R). In the event of a tie,

choose a subtree at random.

Conservative Search Ordering: A problem associated with search ordering
heuristic Hg is that it optimistically assumes that a vector with a distance of the
MINDIST walue exists in the subtree associated with the relevant DNIBR. Typically
this is not the case in an NDDS: the set of elements on each dimension from different
vectors often yields a combination that is not an indexed vector in the corresponding
subtree. In some instances, the actual distribution of elements per dimension within
a subtree may be significantly different from what is expressed in the representing

DMBR. As discussed in Section 3.2.3. this can be estimated by calculating the dif-

1

[S;1

ference between the assumed uniforin distribution.

. and the actual distribution,

T e W
!




estimated by frequency in Equation 3.5.

When the difference between the assumed distribution and the actual distribution
becomes large for multiple elements or multiple dimensions for a query, the likelihood
of a vector with a distance of MINDIST existing in the relevant DNBR greatly
decreases. When this occurs, it is more appropriate to order the access of subtrees
by the calculat'ed probability of the subtree containing a vector whose distance to
the query vector is less than or equal to the current range, as shown in Equation

3.11. This access order is given formally as follows:

Hy: Access subtrees in the descending order of the probability of containing a vector

a, where Dgep(q.a) < Range. This probability is calculated by PNNGERH -

Heuristic Hy may be considered as a conservative approach to ordering while heuristic

Hsg may be seen as an optimistic approach to ordering.

3.3.2 Algorithm Description

Our k-NN algorithin adopts a depth first traversal of the ND-tree and applies the
aforementioned heuristics to prune non-productive subtrees and determine the access
order of the subtrees. The description of the algorithm is given as follows.

72



k-NN Query Algorithm: Given an ND-tree with root node T, Algorithm A-NN
Query finds a set of k-nearest neighbors. maintained in queue ANNS. to query vector ¢
that satisfies Equation 3.1 in Definition 1. It invokes two functions: ChooseSubtree
and RetrieveNeighbors. The former chooses a subtree of a non-leaf node to descend.

while the latter updates a list of A-nearest neighbors using vectors in a leaf node.

Algorithm 1 A-NN Query
Input: (1) query vector g; (2) the desired number i of nearest neighbors;
(3) an ND-tree with root node T for a given database.
Output: a set NNNS of A-nearest neighbors to query vector g.
1: let ANNS =0. N =T, Runge = >x. Parent = NULL
2: while N # NULL do
3: if N is a non-leaf node then
[NN, Range] = ChooseSubtrec(N.q. k. Range)
if NN # NULL then
Parent = N
N=NN
else
N = Parent
10: end if
11: else
12: [ANNS. Range] = Retricve Neighbors(N.q. k. Range. kNNS)
13: N = Parent
14:  end if
15: end while
16: return A\NS

In the algorithm. step 1 initializes relevant variables. Steps 2 - 15 traverse the
ND-tree. Steps 3 - 10 deal with non-leaf nodes by either invoking ChooseSubtree to
decide a descending path or backtracking to the ancestors when there are no more
subtrees to explore. Steps 11 - 14 deal with leaf nodes by invoking Retrieve Neighbors
to update the list of current A-nearest neighbors. Step 16 returns the result (ANS).

73



Note that ChooseSubtree not only returns a chosen subtree but also may update
Range using heuristic Ho. If there are no more subtrees to choose, it returns NULL
for NNV at step 4. Similarly. Retricee Neighbors not only updates ANNS but also may

update Range if a closer neighbor(s) is found.

Function ChooseSubtree: The effective use of pruning is the most efficient way
to reduce the 1/O cost for finding a set of k-nearest neighbors. To this end, the

heuristics discussed in Section 3.3.1 are emploved in function ChooseSubtree.

Function 2 ChooseSubtrec(.N.q. k. Rangc)
1: if list L for not vet visited subtrees of .V not exist then

2:  use heuristic Ho to update Range
3:  use heuristic Hy to prune subtrees of NV
4:  use heuristic H3 or Hy based upon user criteria to sort the remaining subtrees
not pruned by Hy and create a list L to hold them
else
use heuristic Hj to prune subtrees from list L
end if
if L # 0 then
remove the Ist subtree NN from L
10: return [NN. Rangc]
11: else
122 return [NULL, Ranyc]
13: end if

nt

® %o 3D

In this function. steps 1 - 4 handle the case in which the non-leaf is visited for the
first time. In this case, the function applies heuristics Hy - Hy to update Range.
prune useless subtrees. and order the remaining subtrees (their root nodes) in a list
L. The subtrees that are not in this list are those that have already been processed
or pruned. Step 6 applies heuristic Hy and current Range to prune useless subtrees

4



for a non-leaf node that was visited before. Steps 8 - 12 return a chosen subtree
(if any) and the updated Range. Note that heuristics Hy and Hy are suitable for
different datasets. Their effects on performance and practical selection guidance will

be discussed in Section 3.4.4.

Function RetrieveNeighbors: The main task of Retrieve Neighbor is to examine
the vectors in a given leaf node and update the current A-nearest neighbors and

Range.

Function 3 RetrieveNeighbors(N.q. k. Range. kNNS)
1: for each vector v in N do

2:  if Dgpy(q.v) < Range then

3: KNNS = kKNNS U {v}

4: if |KNNS| > k then

5: remove vector v’ from ANNS such that ¢/ has the largest Dggppg(q.v) in
INNS

6: Range = Dgpp(q.v”) such that ¢” has the largest Dgpp(g.v”) in ANNS

7: end if

8 end if

9: end for

10: return [ANS, Range]

A vector is collected in ANNS only if its distance to the query vector is smaller than
current Range (steps 2 - 3). A vector has to be removed from ANNS if it has more
than k neighbors after a new oune is added (steps 4 - 7). The vector to be removed
has the largest distance to the query vector. If there is a tie, a random furthest

vector is chosen.

75



3.3.3 Performance Model

To analyze the performance of our A-NN search algorithm. presented in Section 3.3.2,
we conducted both empirical and theoretical studies. The results of our empirical
studies are presented in Section 3.4. In this section. we present a theoretical model for
estimating the performance of our search algorithim. For our presentation. we assume
that our algorithm employs both heuristics Hy and Hy. We also assume an optimistic
ND-tree structure. where a subtree’s associated DNBR is reasonably representative
1

d} f[((')R.i ~ m With this

assumption, our search algorithm employs Hs as its search ordering heuristic.

Because of the unique properties of an NDDS. there is no defined center for the
data space. This may also be interpreted as any point may be considered to be at
the center. Thus. we can define a bounding hyper-sphere around any point within

the data space and determine the likely number of objects contained within.

Definition 3. The area within a distance z from point p in a d-dimensional NDDS
with alphabet set A for each dimension is the total number of possible unique points
contained within the hyper sphere of radius z centered at point p.  This value is
formally calculated as the summation of the number of points existing in spherical

layers as follows:

'The assumption of a reasonably optimistic tree structure covers the majority of ND-trees gen-
erated in our empirical studies. Non-optimistic tree structures, where our fourth heuristic would
Provide a more beneficial ordering method. are considered empirically in Section 3.4.4.

76




Arca(z) =Y <(j)(|,—1| — 1)L (3.14)

1=0

Note that Area(z) is independent of point p under the uniform distribution as-
sumption. Equation 3.14 may be used to calculate the total area of the data space

by setting = = d. However. this value may be calculated directly as follows:

Area(d) = |.4|d. (3.15)

The probability of an object existing within a distance of = from any point p is the

quotient of Equations 3.14 and 3.15, as follows:

o Area(z) o
P('.rlsfs(~) = AI'("(I((])' (3.1())

Proposition 3. The number of likely points contained within a distance = from any
point p is the product of the number of points within the datasct N and the probability

of a point existing within a distance of = from p. This is shown formally as follows:

L(z) = Perists(z) * V. (3.17)

The lower/optimal search bound for our performance model is determined as a

77



reasonable distance to assure a specific number of objects. It is reasonable to assume
that a minimum distance that needs to be searched is one that is likely to vield at
least A neighbors. Thus a lower bound d; = 2, is found by solving Equation 3.17 such
that L(d;) > k and L(d; — 1) < k. The lower bound for performance I/O may then
be estimated as the number of pages that are touched by a range query of radius ;.
The range query performance is derived similarly to the model provided by Qian et

el. [43].

H-1
[0, =1+ ) (nj* D). (3.18)
1=0)

where n; represents the estimated nmunber of nodes within the ND-tree at a height of
i, P; . represents the probability a node at height 7 will be accessed in the ND-tree

with a search range of z. and H denotes the height of the index tree.

However. because a k-NN query generally begins with a search range equal to the
theoretical upper search bound. an adjustment must be made to account for the 1/0
incurred while searching with a non-optimal search range. We have estimated this
value as the number of nodes within each level of the ND-tree raised to a power

inversely proportional to the height of that level:

78



H-1 1
Adj=Y" ni(_"?>. (3.19)
=1

Adding this adjustment to the range query performance model vields the following:

H-1 1
IOxy =14 (ng* Py2) + (nj* Pi.) +n (FT ) . (3.20)
1—1
=1

The performance of our search algorithm can be estimated by using Equation 3.20

setting z to d;.

3.4 Experimental Results

To evaluate the effectiveness of our GEH distance and the efficiency of our A-NN
searching algorithm. we conducted extensive experiments. The experimental results
are presented in this section. Our A-NN searching algorithm was implemented using
an ND-tree in the C++ programming language. For comparison purposes, we also
implemented the A-NN searching using an M-tree in the C++ programming language
for a set of experiments. All experiments were ran on a PC under OS Windows XP.
The I/0 block size was set at 4K bytes for both trees. Both synthetic and genomic
datasets were used in our experiments. The synthetic datasets consist of uniformly

distributed 10-dimensional vectors with values in each dimension of a vector drawn

79



from an alphabet of size 6; other special case synthetic datasets are listed in the
following subsections. The genomic datasets were created from Ecoli DNA data
(with alphabet: {a.g.t.c}) extracted from the GenBank. Each experimental data

reported here is the average over 100 random queries.

3.4.1 Effectiveness of GEH Distance

The first set of experiments was conducted to show the effectiveness of the GEH
distance over the Hamming distance. by comparing their values of Ak as defined in

Proposition 3.2.2 in Section 3.2.1.

Figure 3.3 gives the relationship between A& and database sizes for both the GEH
and Hamming distances, when A=1. 5 and 10. The figure shows a significant decrease
in the values of Ak using the GEH distance over those using the Hamming distance.
This significant improvement in performance for the GEH distance is observed for
all the database sizes and & values considered. Figure 3.3 shows that when the GEH
distance is used, Ak values are very close to 1. indicating a promising behavior close

to that in CDSs.

80



1.0E+08 : S -
1.0E+07 -

8

m .

3 1.0E+06

c

2 1.0E+05

2 )

B10E+04 - . e

kS - . _.—"" —=—Hamm(k=1)

@ b —© - Hamm(k=5)

3 1.0E+03 - Hanmis)

£ —— GEH(k=1)

S 1.0E+02 - Ty SEHden)

< —o—GEH(k=10)
1.0E401 - 4 . o -
1.0E+00 W — - — —_—

4 8 12 16 20
Number of Vectors in Database x 1025

Figure 3.3. Comparison of Ak values for the GEH and Hamming distances

3.4.2 Efficiency of k-NN Algorithm on Uniform Data

One set of experiments was conducted to examine the effects of heuristics Hy - Hs,
presented in Section 3.3.1. on the performance of our A-NN searching algorithm pre-
sented in Section 3.3.2 on uniform data. We considered the following three versions

of our pruning strategics in the experiments.

Version V1: only heuristic Hy is used.

Version V2: heuristics Hy and Ha are used.

Version V3: three heuristics Hy. Ho. and H3 are used.

81



340 - - - - - - -
320 -
’ //’ \\\\f\-—‘
, 300 /D
g 280 - | Va %
< | x
x 260 "4; y S
.(2 ’// /,
a o /
240 Vs -5 V1
/ -
X -3-V2
200 — - o
4 8 12 16 20
Number of Vectors in Database x 105

Figure 3.4. Effects of heuristics in the A-NN algorithm using ND-tree with & = 10
Figure 4 shows that V2 provides a little improvement in the number of disk accesses
over V1. However. V2 does make good performance improvements over V1 for some
of the queries. Thus, we have included Hs in version V3. As seen from the figure, V3
provides the best performance improvement among the three versions for all database
sizes tested. Hence V'3 is adopted in our A-NN scarching algorithm and used in all

the remaining experiments. except where noted.

Another set of experiments was conducted to compare the disk I/O performances
of our A-NN searching algorithm using an ND-tree, the A-NN searching based on
an M-tree, and the linear scan for databases of various sizes. Figure 3.5 shows the

performance comparison for our A-NN searching algorithim using an ND-tree and the

32



linear scan. Figure 3.6 shows the performance comparison in number of disk accesses
of our k-NN searching algorithm using an ND-tree and the A-NN searching based
on an M-tree. From the figures. we can see a significant reduction in the number of
disk accesses for our A-NN searching algorithm using an ND-tree over both the M-
tree searching algorithm and the linear scan. Additionally, the results in Figure 3.5
show that the performance gains of our A-NN algorithm increase as the database size
increases. As the database grows larger. the density of points within the available
data space increases as well. This causes the scarch range to decrecase at a faster
rate, due to finding more points at closer distances to the query point, resulting in a
greater percentage of subtrees being pruned by H1.2 Figure 3.5 also shows that, for
all database sizes tested. our algorithm, implemented using an ND-tree, always used
less than 25% (10% for database sizes of 1AM or more vectors) of the disk accesses

than the linear scan.

Figure 3.7 shows the performance comparison of our algorithim implemented us-
ing an ND-tree and the linear scan method on genomic datasets. Since a genome
sequence is typically divided into intervals of length (i.e., the number of dimensions)
11 or 15, both scenarios are included in the figure (for A=10). This figure demon-

strates that the performance behavior of our A-NN searching algorithm on real-world

21t should be noted that this behavior is not unique to the ND-tree. An in-depth discussion
of this behavior was presented by Chavez et al. [14]. Although Chavez ct al. focus primarily on
searching in general metric spaces, the same principles apply here.

83



25.0% - : - -
[72]
w ["\
[7)] d
L 20.0% ) -
< N -2- k=5
5 150% 2 k=10
@) , ‘
ks =
o 10.0%
(@)]
8
[
g 5.0%
[})
a
00% - —- — — - —— — — ——-
4 8 12 16 20
Number of Vectors in Database x 105

Figure 3.5. Performance of the A-NN algorithm using ND-tree vs. the linear scan on

synthetic datasets with various sizes

genomic datasets is comparable with that we observed for the synthetic datasets.

To observe the performance improvement of our k-NN searching algorithm over
various dimensions, we ran random A-NN queries (with A = 10) on two series of
genomic datasets: one contains 250K vectors for each set and the other contains 1
million vectors for each set. As seen from Figure 3.8. the performance gain of our
algorithm over the linear scan is quite significant for lower dimensions. However, the
amount of this improvement decreases with an increasing number of dimensions. This
phenomenon of deteriorating performance with an increasing number of dimensions
is also true in continuous data spaces due to the well-known dimensionality curse
problem. Additionally. we have observed the performance improvement of our A-

34



- M-Tree (k=1)
| - M-Tree (k=5)
2500 ' & M-Tree (k=10)
- =>=ND-Tree (k=1)
2000 I —=-ND-Tree (k=5)
. #—ND-Tree (k=10)

|
1500 - /

Number of Disk Accesses

1000 -
|
500 -
| : —— ~ 5
0 e _ — — L
4 8 12 16 20

Number of Vectors in Database x 1075

Figure 3.6. Number of Disk Accesses comparison of the &-NN algorithm using ND-
tree vs. the A-NN scarching based on M-tree

35.0% ———— - - - |
4 % -#- 15 Dimensions |
@ 30.0% —= 11 Dimensions
@ \
&S’ 25.0% |
R4 N
B 20.0% | "
D N ~
S o - |
© 15.0% S
8) A Sw
"E 10.00/0 A “--‘_*\\‘
8 . ¥ Koo
5 50% e X

0.0% —— -

2.5 5 7.5 10 12.5 15 17.5 20
Database Size x 1075

Figure 3.7. Performance of the k-NN algorithm using ND-tree vs. the linear scan on
genomic datasets with various sizes for k=10

x©
(W]



120.0% -
n
g
$ 100.0% |
3 ) = 250K Vectors
Q
f‘ 80.0% ' ——1.0M Vectors
7] |
o |
« 60.0% '
(@] |
q, ]
) |
S 40.0% !
C
0 |
o |
o 20.0%
0' 1 —
; L=
0.0% !
9 10 11 12 13 14 1516 17 18 19 20 21 22 23 24 25
Number of Dimensions

Figure 3.8. Performance of the £-NN algorithm using ND-tree vs. the linear scan on
genomic datasets with various dimensions for A=10

NN searching algorithm over various alphabet sizes. We performed random k-NN
queries (with & = 10 and d = 10) on databases of 20 vectors. Figure 3.9 shows that
the effects of increasing alphabet size are similar to the effects of the dimensionality

curse.

Further. we have compared the disk I/O performance of the A-NN searching al-
gorithm using the GEH distance with that for the A-NN searching algorithm using
the Hamming distance. Figure 3.10 shows the percentage I/0s for the GEH distance
versus the Hamming distance for various database sizes and k values. From the fig-
ure, we can see that the number of disk accesses decreases for all test cases when the
GEH distance is used as opposed to the Hamming distance. In fact. the algorithm

86



35.0%

30.0%

25.0%

20.0%

15.0%

10.0%

5.0%

Percentage of Disk Accessess

0.0%
10 12

8
Alphabet Size

Figure 3.9. Performance of the k-NN algorithm using ND-tree vs. the linear scan on
synthetic datasets with various dimensions for A=10 and d = 10

using the GEH distance needs only 50% ~ 70% of I/Os that the algorithm using the
Hamming distance needs for all test cases. We feel this is due to an increase in the
pruning power of heuristic Hy for the GEH distance. These results indicate that the
use of the GEH distance will cost less in disk accesses while providing a far more

deterministic result than that using the Hamming distance for a k-NN query.

3.4.3 Efficiency of k-NN Algorithm on Skewed Data

Experiments were also conducted to examine the I/O performance of our algorithm
upon datasets of varying levels of skewness as compared to that of a lincar scan.

We applied our algorithm, with heuristic version V3 from Section 3.4.2, to ND-trees

87



F:

i

it
Rsil



70.0% - = — =

[72]

o f

B 66.0%

Q |

O

(&)

<

i) 62.0%

a

[ve—"

o

© 58.0%

()]

8

C

@

© 54.0%

o))

o

50.0% - - ——

4 8 12 16 20
Number of Vectors in Database x 1075

Figure 3.10. Performance comparison for the k-NN searching using ND-tree based
on GEH and Hamming distances

constructed from datasets with zipf distributions of 0.0. 0.5, 1.0. and 1.5.

Figure 3.11 shows significant reduction in the number of disk accesses for our k-NN
searching algorithm over the linear scan for all database sizes tested. Similar to the
performance gains for uniform data (see section 3.4.2). our k-NN searching algorithm
provides an increased reduction of disk accesses as the database size increases. Figure
3.11 also shows that our k-NN searching algorithm provides increased performance
gains as the level of skewness increases (i.e. the zipf distribution level increases).
These results indicate that our searching heuristics (see Section 3.3.1) are able to

identify and prune more useless search paths as the data becomes more skewed.

88



200%  — - —— - —- - B B

16.0%

12.0% -

®
S
B3

4.0%

Percentage of Disk Accesses

0.0%

4 8 12 16 20
Number of Vectors in Database x 1075

Figure 3.11. Performance of the k-NN algorithm using ND-tree vs. the linear scan
on synthetic datasets with various sizes and zipf distributions

3.4.4 Efficiency of k-NN Algorithm on Non-Homogeneous
Data

Experiments were conducted to show the effectiveness of our heuristic using the prob-
ability formulas presented in Section 3.2.3. We compared the 1/O performance be-
tween the k-NN algorithm using our probability-based subtree ordering heuristic Hy
against the k-NN algorithm using our traditional NMINDIST subtree ordering heuris-
tic Hg, both of which utilize ND-tree. We observed that. although the two heuristics
often yield a comparable performance. there are cases in which our probability-based
heuristic significantly outperformed the MINDIST one. These cases can occur when

the distribution of the dataset shifts over time. For instance. dimensions that are

89






1200,  — - : - SRR
(]
3
£ 900
[«
O
(8]
<
5
a 600
IS
B |
€
= 300
=

O .

2 4 .6 8 10
Number of Misleading Dimensions

Figure 3.12. Performance of the A-NN algorithm using ND-tree on datasets with
various misleading dimensions (k = 1)

highly relevant to the partitioning of vectors into subtrees early in the construction
of an ND-tree may no longer be relevant at later stages of the construction. These
dimensions may become misleading when searching for the records inserted into the
tree during these later stages. Figures 12, 13, and 14 show our results when searching
for 1, 5, and 10 neighbors, respectively. Each search was performed on an ND-tree

containing 5M vectors using each of the following heuristic combinations:

Version S1: heuristics Hy, Ho, and H3 are used:

Version S2: heuristics Hy. Ho. and Hy are used.

The ND-trees constructed from these datasets are known to contain misleading DM-

90



2000 - - -

1600 -

400

Number of Disk Accesses

2 10

4 6 8
Number of Misleading Dimensions

Figure 3.13. Performance of the A-NN algorithm using ND-tree on datasets with

various misleading dimensions (k = 5)

4800 |

w
(o2}
o
o

2400

1200

Number of Disk Accesses

4
Number of Misleading Dimensions

Figure 3.14. Performance of the A-NN algorithm using ND-trec on datasets with
various misleading dimensions (A = 10)

91



BRs in regards to what vectors are present in the relevant subtrees. For our selection

1

of heuristic Hy. we compared the values of 5
!

and fj(a)p; for each node at one
level below the root node and labeled a misleading dimension as one in which there
was a discrepancy greater than 3 : 1 between the two values compared. The num-
ber of misleading dimensions indicates the known number of dimensions in each of

the DMBRs at one level below the root node that meet this criterion; that is, for a

particular dimension 7. ﬁ > 3% filla)pi V |—§7 < 71; * fi(a)p.i.

The results in Figure 12 show that the use of heuristic version S2 provides benefits
for most cases tested when searching for only a single neighbor. The cases where
the number of misleading dimensions was either very large or very small still show
better I/O performance when using heuristic version S1. The results in Figure 13
show that the reduction of I/O when heuristic version S2 is used is much larger
for all cases tested when searching for five neighbors rather than a single neighbor.
The results in Figure 14 show that the reduction of I/O continues to grow when
searching for ten neighbors when using heuristic version S2. These results show that
in general, as the number of neighbors being scarched for increases, the performance
benefits when using heuristic version S2 increase as well. Additionally, we notice
that in Figures 13 and 14, the performance when using heuristic version S2 becomes
similar to the performance when using S1 as the number of misleading dimensions

approaches the total number of dimensions. This is likely due to the reduction of



non-misleading paths available. As the number of non-misleading paths approaches

0. heuristic version S2 will be forced to choose similar paths to heuristic version S1.

3.4.5 Verification of Performance Model

Our theoretical performance estimation model was also verified using uniform syn-
thetic experimental data. We conducted experiments using 10 dimensional data with
an alphabet size of 6. The minimum leaf node utilization of our ND-trce was set
at 0.4 and the minimum non-leaf node utilization was set at 0.3. We compared our
theoretical values to the observed ND-tree performances for databases varying in size
from 400K vectors to 2.0 vectors in 400A™ increments. We also varied the value of

k to observe its effects upon the results.

Figures 3.15 through 3.17 show the estimated number of 1/Os predicted by our
performance model, with the actual I/O. The results indicate that our model is quite
accurate, estimating the performance within 2% of the actual performance for most
test cases. The greatest disparity between estimated and actual performance values
occurs in the test cases with small datasets. particularly when searching for only a
single neighbor. However, as the size of the dataset increases or as the number of
neighbors searched for increases. the performance estimation becomes increasingly

accurate.

93



250% - -
—=— Estimated
e - =- Actual
Z’, 20.0%
Q
Q
o '
< |
é 15.0% -
&) \
N
o
o 10.0% -
o
8
[
[0}
O 50%
[}
a .
. ce- tdeeaal. 0
0.0% - . - o I [
4 8 12 16 20
Number of Vectors in Database x 105

Figure 3.15. Estimated and Actual performance of the k-NN algorithm vs. the linear
scan on synthetic datasets with various sizes (k = 1)

25.0% : - -

R\ —o— Estimated
- =J- Actual

20.0%

15.0% -
10.0% ‘

5.0% !

Percentage of Disk Accesses

0.0%

4 8 12 16 20
Number of Vectors in Database x 1075

Figure 3.16. Estimated and Actual performance of the k-NN algorithm vs. the linear
scan on synthetic datasets with various sizes (k = 5)

94



25.0% - e
| 3 —>— Estimated
g - - Actual
B 20.0%
0]
(6]
O
<
2‘) 15.0%
(@]
[ve—
S)
o 10.0%
(@]
8
C i
) :
8 50% ! i
[}
a
0.0%
4 8 12 16 20
Number of Vectors in Database x 1075

Figure 3.17. Estimmated and Actual performance of the k-NN algorithm vs. the linear
scan on synthetic datasets with various sizes (A = 10)

The above results show that. for both synthetic and genomic uniform data, our &-
NN searching algorithm based on the GEH distance far outperforms the linear scan.
Additionally, our algorithm outperforms the linear scan for synthetic skewed data.
Only when the dimensionality of the underlying NDDS begins to grow excessively,
does the benefits of our algorithm start to become less significant. This is a result
of the well-known dimensionality curse problem. Further, our performance model
provides an accurate estimation of the number of 1/Os incurred while performing a

k-NN search of a large database.

95



CHAPTER 4

Understanding Distance in NDDS

In this chapter we consider in more detail the issue of distance measurement in
Non-Ordered Discrete Data Spaces. To efficiently handle a much broader array of
applications than those presented in the previous chapter we present a generalized
form of our Granularity Enhanced Hamming (GEH) distance. We then provide a

new implementation of this distance.

4.1 Motivations and Challenges

A major problem with k-NN searching in NDDSs. as discussed in Chapter 3 is the
non-determinism of the solution. That is, there is usually a large number of can-
didate solutions available which may obscure the result. This is mainly caused by
the coarse granularity of the commonly used distance metric, the Hamming distance.

An extension to the Hamming distance, termed the Granularity Enhanced Distance

96



(GEH) distance, was introduced in [32] as a solution to this problem. We demon-
strated that the GEH distance greatly reduced the non-determinism of the solution
set, as well as provided performance benefits. while maintaining the semantics of the
original Hamming distance [32. 33]. However. the GEH distance introduced in [32]
was tied directly to data point frequency values in a manner that may not be ideal in
all scenarios. Applications/scenarios with other more relevant dataset characteristics
(distribution, clustering. etc...) may not expericnce the same performance benefits

seen in [32].

To address this issue, we introduced a generalized form of the GEH distance in
(34]. This form may be optimized to a much broader set of applications than the
original GEH distance presented in [32]. Conditions/constraints are presented that
maintain the necessary distance metric properties to be used as a pruning metric. We
show that the original GEH distance is. in fact, an instantiation of this generalized
form. Further, we present a new instantiation of the generalized GEH form that

demonstrates the benefits of adapting the generalized form for specific scenarios.

The rest of this chapter is organized as follows. Section 4.2 presents the general-
ized form of the GEH distance. Section 4.3 introduces a new ranking based GEH

instantiation derived from the generalized form.

97



4.2 Generalized GEH Distance

The GEH distance, originally presented in [32], expanded upon the Hamming dis-
tance to provide more granularity while maintaining all of the semantics of the Ham-
ming distance. This was accomplished by adding an adjustment value to the Ham-
ming distance between two vectors based upon their matching elements. This is

presented formally as follows:

Dgep(a.B) = (4.1)

d [ 1 if a[i] # Bli]
>

— ;lif(a [i]) otherwise

where

flali]) = 1 = fy(ali]).

The value of fy(a[i]) is the number of occurrences of fi] in the " dimension of
the dataset, divided by the number of vectors in the dataset; essentially, a global
frequency value. While this does provide a dramatic increase in the determinism of
result sets when used in a similarity search, this distance metric may not provide
an ideal distance semantic for all applications. Equation 4.1 is limited to applica-

tions where the global frequency of elements has some significance in the dataset.

98



Applications where other dataset characteristics provide a better semantic may not
be able to benefit from using Equation 4.1 to the same degree as the results shown
in [32]. To address this issue. we propose a generalization of the GEH distance that

may be optimized to a much broader set of applications.

We observe that the Hamming distance assummes that a worst case match (i.e. a
non-match) between two elements is represented by a distance of 1, while all other
matches are represented by a distance of 0. We expand upon this by adding more
granularity to the values assigned to different types of matches. We propose the

following generalized form of the GEH distance to accomplish this goal:

Dgen(a.3) = Dyamm(a.3) + C ng(h ali], 8[1)). (4.2)
where
Constraint 1: Vo3:C2>d— Dyemm(a.B)
Constraint 2: Yalilgli) 0 < feen(ali], B[i]) < 1

Constraint 3: a[] 3] : fgen( ali]. Bli]) = = fgenl B2 afi])
Constraint 4: va[i].ﬁ[i] s ali] # Bli] — fge’h( alt]. 3[d]) = 0.

Here, fyep represents some function, chosen by an application expert, that will pro-

vide an adjustment to the Hamming distance for each dimension. The variable C

99



is a pseudo-constant! used to guarantee the adjustment values of fgen do not be-
come more dominant than the original Hamming distance. Constraint 1 indicates
that the value of ' must be greater than or equal to the number of matching di-
mensions between two vectors. Constraint 2 indicates that the result of function
fgen for the it" element of the two vectors being considered must be in the range of
(0, 1) non-inclusive. Constraint 3 indicates that function fg(,h must be symmetric.
Constraint 4 indicates that the result of fyep, for the it" elements of the two vectors

being considered must equal 0 if the these two elements do not match.?

From Equation 4.2, we can see that. if m < Dgpg(a,3) <m+1(m=0,1,...,d),
then vectors a and 3 mis-match on m dimensions (i.e., match on d — m dimensions),
therefore preserving the original semantics of the Hamming distance.3 Further, the
four provided constraints allow the generalized GEH distance to maintain the metric
properties necessary for use as a pruning metric in similarity searches as described

in the following lemmas:

Lemma 4.2.1. The generalized GEH distance maintains the Positiveness property

IThe term pseudo-constant is used to indicate that C is not strictly a constant, and may vary
as long as Constraint 1 of Equation 4.2 is maintained.

2Note that both variables a and 3 are passed to to the adjustment function. This enables the
adjustment function to be fully expressed whereby Constraint 4 may be verified.

3Many application specific solutions such as BLOSUM, employed in bioinformatics, reduce the
non-determinism of solution sets by utilizing a cost matrix as a direct form of distance measure-
ment. This is similar in theory to utilizing the adjustment function as a distance measure directly.
Unfortunately, these methods do not preserve the semantics of the original Hamming distance and
thus lose a level of portability between application environments. However, solutions such as BLO-
SUM may be incorporated into Equation 4.2 by utilizing the diagonal of the cost matrix for the
adjustment function.

100



(i.e. Yoy : DgEg(r.y) >0).

Proof. By maintaining the Hamming distance within the GEH distance, we are guar-
anteed a positive value if any elements between the two vectors do not match. Con-
dition 2 indicates that all values resulting from matching elements will have non-

negative values. O

Lemma 4.2.2. The generalized GEH distance maintains the Strict Positiveness

property (i.e. Vpy:aw #y — Dopp(ar.y) > 0).

Proof. This property is inherited by maintaining the Hamming distance within the
generalized GEH distance. whereby any two vectors that are not equal will have a
distance greater than ‘0" based upon a *1" being added to the distance for each non-
matching dimension. Constraint 2 guarantees that the values added from function

fgen will all be non-negative. g

Lemma 4.2.3. The generalized GEH distance maintains the Symmetry property (i.e.

Vey: Dgen(r.y) = Dgegly.x)).

Proof. The Hamming distance is known to maintain symmetry between vectors. In
addition. Constraint 3 guarantees that the values provided by the function fg, will

maintain syvmmetry as well. a

101



Lemma 4.2.4. The generalized GEH distance maintains the Pseudo-Reflexivity

property (i.e. Yry: Dgpgl(e.0) < 1Ax #y— Dgpgle.y) > 1)4

Proof. This property is maintained due to Constraints 1 and 2, which stipulate that
the additional value added to the Hamming distance will always be in the range of
(0.1), non-inclusive. Thus the distance between two vectors that exactly match will
have a distance value less than *1°. Any vectors that are different in one or more

dimensions will have a distance greater than or equal to ‘1. O

Lemma 4.2.5. The generalized GEH distance possesses the Triangular Inequality

Property (.e. Vry.:: Dgen(v.y) + Dgen(y. =) 2 Dgen(r.2)).

Proof. We first consider the Hamming portion of the generalized GEH distance. For
any dimension i € [1,d], if x; # z; then either x; # y; © z; # y; or x; # y; N z; # v;.
Thus for each dimension i where the right side of the inequality (i.e. Dgppg(x,z))
would be incremented by an integer value of ‘1°, the left side of the inequality (i.e.
Degey(r.y) + Dol (y. =) would be incremented by an integer value of either ‘1
or ‘2°, thus maintaining the inequality. Next, we consider the adjustment portion
of the GEH distance (i.e. Zl,‘fg('h())' For any dimension i € [1,d]. if ; = z; then

either r; = y; A z; = y; or a; # y; A z; # y;. Thus, due to constraints 2 and 3,

4Note that the traditional property of Reflexivity (i.e. Vr : D(x,z) = 0) is replaced by the
property of Pseudo-Reflexivity. This is a reasonable substitution in an NDDS due to two vectors
exactly matching each other still being identifiable from all other pairs of vectors based only upon
the distance between them.



for all dimensions where this is the case. the left side will either be incremented by
twice as much as the right side or be incremented by an integer value of ‘2’ while the
right side is incremented by some value less than *1°. Constraint 4 indicates that no
additions will be made if the values in the dimension match, leaving the Hamming

component to be dominant. Thus the adjustment values maintain the inequality. [

4.3 Ranking Based GEH Instantiation

As described in [14], many search algorithms demonstrate better performance when
the distances between data points are distributed evenly throughout the distance
range. We note that the original GEH distance. Equation 4.1, is likely to result in
a heavily skewed distribution of possible distances. As the alphabet size grows, the
likely values of fg(a[i]) trend closer to "0’ leading to a clumping of distance values
close to the floor value. Additionally. setting C' = d results in C having a dominant
role in the distance value as the dimensionality of the dataset grows larger. To

address these issues. we propose a new GEH distance instantiation:

a8l = rank; (al7])
Fgen(al]- BU) = =z | . (4.3)
C =d-— DHamm(a'* ‘H) +1

Here, the term rank;(a[i]) indicates the global rank of element a[i] among the
alphabet set in dimension ¢. The ranking mechanism employed should be set by an

103



Table 4.1. Varving Dimensionality

Hamm. | Freq. ] Rank
d=5 36 7 §
d=10 968 472 480
d=15| 5914 | 4591 | 4675
d=20| 8294 | 8228 | 8232

application expert on the condition that it results in the different elements of the

alphabet receiving ranking values of [1.|A[] inclusive. The value of C tracks to the
number of matching dimensions between vectors a and 3. As an example ranking
mechanism, we consider the frequency of elements within a dimension, applying a
higher rank (lower integer value) to elements that occur more frequently, and a lower
rank (higher integer value) to elements that occur less frequently. For example, if
the alphabet set in dimension ¢ consists of {a.b,c}, where a appears in 20% of the
vectors, b appears in 50% of the vectors, and ¢ appears in 30% of the vectors in
dimension ¢, the rank of each of the elements in dimension ¢ would be as follows:
a— 3,b— 1, and ¢ — 2. Although an element’s frequency within a dimension
still plays a role in the determination of the GEH distance (in this example), the
ranking mechanism maintains a uniform distribution of distance values over varying
alphabet sizes. Additionally, having the value of C track to the number of matching

dimensions rather than the dimensionality of the dataset reduces the dominance of

C as the dimensionality of the dataset grows larger.

To evaluate the benefits of an adaptable distance metric, we performed a series

of k-NN queries utilizing the GEH distance implementations in Equations 4.1 and

104



Table 4.2. Varving Zipf Distribution

| Hamm. | Freq. | Rank
zipf 0.0 968 472 430
CZipf 05 ] 693 | 399 | 301
zipf 1.0 | 381 233 126
zipf 1.5 105 73 30

4.3 as well as the Hamming distance. Table 1 shows a comparison of 1/0 results
while searching uniformly distributed datasets of varving dimensionality. These re-
sults demonstrate a scenario where the frequency based GEH implementation pro-
vides slightly better search performance than the rank based GEH implementation.
Further. our results agree with those in [52] linking a decreasing performance with
increasing dimensionality.> Table 2 shows a comparison of the I/0O results while
searching 10-dimensional datasets of varying zipf distribution. For this scenario,
use of the new ranking based GEH implementation provides a strong performance
improvement over the frequency based GEH distance implementation. This is in
agreement with the results shown in [14] concerning search performance and dis-
tance value distribution. These results highlight scenarios where Equations 4.1 and
4.3 provide search performance improvements specific to each case, thus demonstrat-

ing the benefits of an adaptable distance metric.

®Note that for the largest dimensionality tested, d = 20, the I/O results when using both ranking
based and frequency based GEH implementations begin to approach each other. We attribute this
to the dimensionality of the dataset playing a less dominant role in Equation 4.3 than in Equation
4.1

105



CHAPTER 5

k-Nearest Neighbor in Hybrid
Data Spaces

In this chapter, we consider k-Nearest Neighbor (A-NN) searching in Hybrid Data
Spaces. Searching in HDSs presents several new challenges not presented in either
CDS or NDDS searching applications. We examine these issues and discuss methods
to resolve them. Further, we extend the theoretical performance model presented in

Chapter 3 to HDSs.

5.1 Motivation and Challenges

Nearest neighbor scarches/queries in Hybrid Data Spaces (HDS) are becoming in-
creasingly useful in many contemporary applications such as machine learning, infor-
mation retrieval and security, bioinformatics, multimedia, and data-mining. Consider

the following information retrieval task. Given a set of network sites and a range of

106



times, determine the set of A network intrusions that match a set of query criteria
most closely. When examining records of intrusions. the sites in which they occurred
could be considered discrete data, in that an intrusion either did or did not occur at
that site. The times active in a particular site could be considered continuous data,

in that an intrusion may have been active over only a period of time.

Several techniques have been proposed in the literature to support such searches in
both continuous (ordered) data spaces and non-ordered discrete data spaces. A ma-
jority of these techniques utilize a multidimensional index structure such as R*-tree|[0)
or the ND-tree[43]. Little work has been reported in the literature on supporting

efficient nearest neighbor searches in hybrid data spaces.

Efficient index based nearest neighbor searching is dependent upon the usefulness
of information maintained in the search index structure. When searching an index
containing hybrid data. a difficult scenario occurs when one set of dimensional data
is unknown. This scenario is analogous to using a non-hybrid index. such as R*-tree
or ND-tree, to maintain hybrid data, based on their continuous or discrete subspace.
If this structure remains unmodified, performing nearest neighbor searches becomes
impractical due to the values of the non-native dimensions (discrete for R*-tree,

continuous for ND-tree).

To guarantee all valid neighbors are found in these scenarios, additional consid-

107



erations must be taken into account. First, when examining the current set of ob-
jects/records found to determine a search range, it must be assumed that all non-
native dimensions that are not maintained in the index structure differ in value from

the query vector, i.c.:

D(q. NNy) = Dy(q. NNy) + dyy. (5.1)

where Dy is the distance in native dimensions between the query vector ¢ and the
k'h neighbor NV, and dyf is the maximum distance possible between the non-native

dimensions in the dataset and ¢. Second. when comparing a bounding box or possible

new neighbor, the opposite assumption must be made, i.e.:

D(q.X)= Dx(q. X) +0, (5.2)

where X is either a bounding box or object. This is due to the possibility of some
vector within X (or X itself) exactly matching the query vector on all non-native
dimensions that are not maintained in the index structure. Examining these facts, it
is clear that as the number of non-native dimensions grows, it becomes increasingly

difficult to exclude any portion of the index from the search.

To address these issues. we consider performing A-Nearest Neighbor (A-NN)

108



searches utilizing the CND-tree, a recently proposed multidimensional index for HDS
[15]). When considering k-NN scarches utilizing an HDS index, we present a best-first
searching algorithm that utilizes characteristics of HDS in its heuristics to reduce the
I/0 cost of determining a valid set of & neighbors. Further. we present a theoretical
performance model for this algorithm based on the characteristics of an HDS and

the hybrid index

The rest of this chapter is organized as follows. Section 5.2 presents a brief analysis
of the different stages of a k-NN search. Section 5.3 presents our best first algorithm,
its heuristics, and our theoretical performance model. Section 5.4 discusses experi-

mental results.

5.2 Nearest Neighbor Search Stages

In this section. we present a discussion of the different stages of a A-NN search.
By properly categorizing these stages, we are able to develop heuristics that im-
prove search performance with more accuracy. The reader is recommended to review

Chapter 2 for an overview of the CND-tree.

When performing k-NN queries using a multi-dimensional index structure, the act
of traversing the tree (assuming a minimum distance based ordering) can be broken

into three distinct stages: range reduction. overlap, and exhaustive. In this section

109



we consider the first two stages in more detail, while the exhaustive stage will be

revisited in Section 5.4.2.

The range reduction stage occurs while the current search range, re, is greater
than the final search range value. During this stage, new neighbors/objects that are
found are likely to result in reducing the current search range. The order in which

nodes are visited has a direct impact upon the I/O cost of this stage.

The overlap stage occurs when the search range has been reduced to its final
value, but there still exists nodes R in the search path whose bounding box is such
that D(q, R;) < re. The amount of overlap between nodes within data organization
structures directly affects the I/O cost of this stage. Data organization structures
with a minimal amount of overlap within their internal nodes are likely to incur less
I/O costs when searching during this stage than data organizational structures with

a greater amount of area overlap.

Figures 5.1, 5.2 and 5.3 break down the I/O cost due to the range reduction and
overlap stages when searching a CND-tree. Figures 5.1 and 5.2 show the effects when
either the number of continuous or discrete dimensions is held constant (at 6) and the
number of the other dimensions varies. Figure 5.3 shows the effects when the number
of both continuous and discrete dimensions is held constant (6 continuous, 3 discrete)

and the number of records in the database varies. As seen from these figures, the I/O

110



DOverlap
mRange Reduct
S ange Reduction /

1500

Number of Disk Accesses
8
3
8
/N

Number of Non-Native Dimensions

Figure 5.1. Search stage I/O with variable number of continuous dimensions

4000 -
3500 DOverlap

mRange Reduction
3000 |

b
g
8

Number of Disk Accesses
a 8
g 38
38 8

a 32
3 8
8 8

3
Number of Non-Native Dimensions

Figure 5.2. Search stage I/O with variable number of discrete dimensions

111



A

O Overlap
mRange Reduction

N
@
3

N
S
3

2
38

’ \\

Number of Disk Accesses
&
3

N
2
4

400K 800K 12M 1.6M
Number of Vectors in Database

Figure 5.3. Search stage I/O with variable database size
costs of the overlap stage rise dramatically as the number of dimensions increases.
This stage has a much less dramatic increase in 1/O cost as the size of the database
increases. Additionally, the I/O cost of the range reduction stage actually reduces

as the database size grows, while increasing as the number of dimensions increases.!

5.3 Search Algorithm

To efficiently process k-NN queries in HDSs. we present a priority backtracking
index-based searching algorithm that utilizes properties of the CND-tree for HDS.

This algorithm initiates a search in the root node and then visits each subsequent

IThis is a similar phenomenon to what was reported by Chavez et al. [14]. Although Chavez et
al. focus primarily on searching in general metric spaces, the same principles apply here.

112



node based upon a “best-first™ criterion that is defined in the heuristics. When &
possible neighbors are retrieved, the searching algorithm uses the distance informa-
tion of the neighbors collected to start pruning the search paths that can be proven
to not include any vectors that are closer to the query vector than any of the current
neighbors. Our algorithin is inspired by earlier priority backtracking based implemen-
tations presented for CDS. NDDS. and generic metric space [33, 27]. Our algorithin
extends these implementations to HDSs by utilizing metrics and heuristics suitable
for such a space. In particular, we introduce the notion of using an estimated match
likelihood value to help prioritize ordering. Additionally. we present a performance

model to accurately estimate the I/O cost of executing our algorithm.

5.3.1 Match Likelihood

Consider a query vector ¢ and a bounding box R. If the total number of dimensions
in the dataset is dy = dp + d¢ and the distance between g and R is D(q. R) = «r,
then it is possible that there exists an object in the subtree associated with R that
matches g on dy — x dimensions (assuming a distance metric similar to Equation 2.4
is utilized). In a multidimensional index structure such as the ND-tree, R*-tree, or
CND-tree this is not the most likely scenario. More likely, there exist several objects
in the subtree associated with I that match g on a subset of dimensions that are

represented in R. The projections of these objects at higher levels in the index tree

113



can create a misleading picture of the vectors in its associated subtree, similar to the

concept discussed in Chapter 3 for NDDS searching.

We may infer from the bounding box of R how likely the information that R
contains is likely to represent the vectors in its subtree. For the purposes of this
discussion. we will assume that our index tree has maintained a relatively uniform
distribution of elements within its subtrees. When we consider the CND-tree as our
indexing method. the probability of accessing a subtree with associated bounding box
R=Sp1 x...xSpyaxScy--.-%xScq will vield a particular element a in dimension

¢ may be estimated as follows (assuming a € R;):

if 7 1s discrete

cn|~

1S,
L if 7 1s continuous
max Si—mmbi i

pla)p; =

d
-

(5.3)

where the match likelihood of encountering a vector a = aj.a9....,a¢ in the subtree

associated with R may be approximated as follows:

p(ali . ifalil € R
P(a)p = Z plal ])R.z 1] €

(5.4)
dy 0 otherwise

Equation 5.3 calculates the reciprocal of the magnitude of the alphabet set on
dimension 7 of R for discrete dimensions and the quotient of the threshold value and

the range of the set on dimension 7 of R for continuous dimensions. Equation 5.4

114



then determines the summation of these values for all elements in vector « that are
represented in R. It should be noted that more in depth methods were presented for
estimating this likelihood value for NDDS in [33]. However, we are only interested
in using this value to break ties in cases where the minimum distance between a
subset of the nodes and the query vector is the same. Thus, the generalizations of

Equations 5.3 and 5.4 are suflicient.

5.3.2 Algorithm Description

In a worst case scenario. a search would encompass the entire index structure. How-
ever, our extensive experiments have shown that utilizing the following heuristics

eliminates most scarch paths before they need to be traversed.

H1: If the minimum distance between the query vector and HMBR R is greater than

the current range, then prune the subtree associated with R.

H2: Access subtrees in the ascending order of the minimum distance between the

query vector and the associated HMBR R.

H3: In the event of a tie between subtrees due to heuristic H2, order those subtrees

115



that tied in the descending order of the match lLikelihood (Equation 5.4) between the

query vector and the associated HMBR R.

Our k-NN algorithm applies these heuristics to prune non-productive subtrees and
determines the access order of the remaining subtrees during a best-first traversal of

the CND-tree.

Given a CND-tree for vectors from HDS Xy with root node T', Algorithm Priority
k-NN Query finds a set of k-nearest neighbors, NV, to query vector g, where NN C

"YQ

NN| = ko and Vyenvaiex-nvD(g. u) < D(q.v). It utilizes a priority queue,
labeled Q. of CND-tree nodes that is sorted based upon heuristics H2 and H3. It
invokes two functions: FindSubtrees and Retrieve Neighbors. The former finds all
subtrees of the current node N that are within Range of the query vector and adds
their nodes to Q. The latter updates the list of A-nearest neighbors. NN, using

vectors in the current leaf node.

In the algorithm. step 1 initializes the range variable. Step 2 starts the search
at the root node by inserting it into Q. Steps 3 - 14 traverse the CND-tree. where
steps 4 and 5 select the next node to be visited and remove it from Q. Steps 6 -
8 deal with non-leaf nodes. Step 7 invokes FindSubtrees to collect all subtrees of

the current node that are within Range. Step 8 sorts (Q according to heuristic H2

116



Algorithm 4 Priority A-NN Query
: Range = d;
: Q.Insert( T )
while !Q.Empty() do
N = Q.Top()
Q.Pop()
if V.Height > 1 then
FindSubtrees( N. Range. q. Q)
Q.Sort()
else
Retricve Neighbors( N, Range. q. NN )
Range = NN[k].Dist()
Q.Prune( Range )
13:  end if
14: end while
15: Return NN

S I A o oy

— e
o2

and H3. Steps 9 - 12 deal with leaf nodes. Step 10 invokes Retrieve Neighbors to
update the list of current A-nearest neighbors. Step 11 updates Range to equal the
distance of the current k% neighbor from the query vector. Step 12 prunes nodes
from @ according to heuristic H1. Finally. step 15 returns the result. Note that
FindSubtrees only updates Q with subtrees that are currently within Range. If no
subtrees of the current node are within range. no new nodes will be added to Q.
The WHILE loop in steps 3 - 14 is terminated when all subtrees that are within the

current range have been visited.

5.3.3 Performance Model

To analyze the performance of our A-NN search algorithm, we conducted both em-

pirical and theoretical studies. The results of our empirical studies are presented

117



in Section 5.4. In this section, we present a theoretical model for estimating the
performance of our search algorithim. To accomplish this. we first derive an estimate
of the likely search range that will yvield & objects/neighbors. We then derive an
estiimate of how many tree nodes/pages will be accessed by a search of a variable
range. For our presentation. we assume that our algorithm employs heuristics H1,
H2, and H3 and that our dataset is reasonably uniform. For reference, many of the

variables used throughout this section are maintained in Table 1.

The likely distance of the A" neighbor from the query point represents the final
search range that can be used to prune nodes from the search path. To determine
this distance, we estimate the ratio of area within a specific distance and the total

possible area of the dataset. similar to the method employed for NDDSs in [33].

The area within a distance = from a point p in a dp + d¢ dimensional HDS with
alphabet A for each discrete dimension. span S for each continuous dimension, and
threshold value 8t for Equation 2.4 is analogous to the number of unique points

within a hyper sphere of radius z centered at point p:

z i .d” I
Area(z) = 5o [y ltrr—ay Va0l (55)

where

118



Table 5.1. Performance Model Variables

dan

dyro

dm1

dm‘2

Baro

Bml

Bm?

nuin of nodes at laver ¢
num of vectors in a node at layer ?
height of tree
(2357
2x0t

max(dp,dc)
min(dp.dc)

Al ifdyy=dp }
otherwise
|A| if d"l =. dD
R otherwise

I
——
oy

{
max(d/D.i. d,éj) if dyy =dp
{ ma‘x(dg’i‘ d,(/“.i) otherwise }
min(d/D_i.dlll).i) ifdyy =dp
- { lll.lll(d/(w.i,(]g.i) otherwise }
max(d/DJ-, dl[,).i) ifd, =dp
{ max(d,ci, dZ‘.z') otherwise }
n1i11((1lal., d’é.i) if dn =dp
{ min(dlc_,i‘ (1’(2.1-) otherwise }
By, ifdy=dpAdyy=dp; )
) By, ifdy=dpndyy=dp,
= Bp, ifdy =deAday = dg,

o

L Be; otherwise , J
By, ifdy=dpAdys=dp,
if dy; = dp Adaga = dp;
Bp, ifdy =de Adyo=dg,

7
L BC', ; otherwise

Béi Hmn=dDAdml=dé¢\
_ Bp_iifd,n=d0/\dm1=dlg,i>
Be ifdn=dcNdm =dc;
BC‘z‘ otherwise
( B;/).-i ifdy, =dp Ndy2 = d:91, T
| Bp, if dm =dp Ndna=dp, |
B/C;'i if dip =de Ndy2 =dp;
BC.i otherwise )

119



faley) = (") am = )Y (CM ) (ay = 1)

The probability of an object existing within a distance z from any point p, may be

calculated as follows:

Area(z)

Perists(2) = Area(dp + d¢)’

(5.6)

The product of the number of points N within the dataset and the probability of
a point existing within a distance z from any point p yields the number of points

likely to exist in that subspace:

L(z) = Pepists(z) x N. (5.7)

It is reasonable to assume that a minimum distance that needs to be searched is
one less than the distance that is likely to vield at least A neighbors. Thus a search
range r = z, is found be solving Equation 5.7 such that L(r + 1) > k and L(r) < k.
The reason for this is that a search range that yields more than k neighbors is likely

to extend beyond the overlap stage (Section 5.2).

Next, we determine how many pages are likely to be accessed by a search with

120




a range of r. We derive this value in a similar fashion to the method derived by
Qian et al. [43] for NDDS. As new records are inserted into the CND-tree, some
dimensions may be split and others may not be. Assuming a reasonably uniformn
distribution and independence among dimensions. the probability for the length of

an unsplit edge of an HMBR to be "1 is as follows

Tpiq = —2
D..l m{;ffﬂ (58)

1
TCII = Ru“—l ‘

4

Using Equation 5.8. the probability for anthebibliography edge length of an HNMBR

to be j is as follows:

A 1 gy A"
(‘ l) Zi—l ('}};)|(I,'_1|I*T1k
TD.I.[ = |‘4|'ll'l' ’
1,9 u
Dl i,
TC.i.j = RUG

Hence, the expected edge length of an HMBR of a node at laver ¢ is:

SD.i —ZJ 17*Tpi ;.
SC.i =Zj:1]*TC,i.j-

We can assume that a sequence of n node splits will split reasonably evenly

2For clarity. equations with a D or C subscript are relevant to discrete or continuous dimensions
only, respectively.

121



t hroughout the dp + d- dimensions. Each split will divide the component set of
t hhe HMBR on the relevant dimension into two equal sized component subsets. To
obtain n; nodes at layer ¢ of the CND-tree, the expected number of splits needed
is logon;. As such. at any given time, it is likely that some nodes will be split one

1110re time than others. This can be determined as follows:

d;, = |(logan;) mod (dp + d¢)].

/ 1
d; =(dp+dc)—d;.

3

(5.10)

" _ . : .
where d; represents those dimensions that have been split an extra time.

If we assume these splits have been distributed evenly among continuous and

discrete dimensions. we have the following:

"
i =1 73;3—+(’—,;1
c: Ldﬁiﬂ’ (5.11)
dp. [%L
Aoy = LS

So, the HMBR of a node at laver ¢ has the following expected edge length on d'

V4
and @ iimensions respectively:

122



" SD.H

Sy = —)—""
°D. logon; ¢
-ZIV(E'D‘*(iC"1
" bC.H
SC.) - ( lt)g\z n; ] ’
2 aD+(75
( .o logon; )
: °D T apae <1 (5.12)
sp; =4 _ SDH therwi ’ '
. —@ﬁ otierwise
\ Q[JD‘HEC J
( .o logon; )
, SC.i i aprdc <!
Sci = SC.H otherwise (-
[ iogg n; 1 ’
\ 2 HD+ EC ),

"T"hwus, for any node, the probability for a component of a query vector to be
covered by the corresponding component of the HNIBR of that node for discrete and

continuous dimensions, respectively. is given as follows:

O Sk

~
~
w

Sy
q ~

|
o3 =

(5.13)

~
~

&y
N

|
37

Using Equation 5.13. the probability for a node to be accessed by a query of

range: /istance h can be evaluated recursively as follows:

h sf my Py
Pa=yo |20 | X | el 19
k=0 | s=sqg | m=mg P=P0

123



w here

sg = max(0.k —dyy),
sf=min(k.dpy).

mo max(0,s — d,,1).
my = min(s. dp2).
o =max(0.k —s—dy).

Py =min(k - s.dyya),

I dypo—m d d,,1 —s+m 5—
J = (( ;;;Q)Bm,‘g (1- B”'?)m * (s-’l]nlz)anlll (1- B"'l)g ",
) d dyro—p d dyr1—k+s+p k—s—:
g = (Y)By® T(1 = Bap)?x ()BT (1= Byn)* 5P

T lus. the expected number of node/page accesses for performing a query with

search range r can be estimated as:

H-1
10=1+ Y (nj*P). (5.15)
1=0)

5.4  Experimental Results

Our A~ NN searching algorithm was implemented using a CND-tree, an ND-tree, an
R*tree. and a linear scan. For our experiments, the linear scan is considered twice:
ONC® Wit h native non-ordered discrete dimensions and once with native continuous
dimensions. Both the ND-tree and the R*-tree were modified to store hybrid data in
their leaves. This modification affects the shape of each of these trees but does not

124



incur a change in either of their insertion/split algorithms.3 All experiments were
ran on a PC under OS Linux Ubuntu. The I/O block size was set at 4K for all trees.
Two series of datasets were used. The first consists of 1M vectors with six native
dimensions and a variable number of non-native dimensions (1 - 6). The second set
has six native dimensions and three non-native dimensions and a variable number
of vectors.? Each experimental data reported here is the average over 100 random

queries with A = 10.

5.4.1 Effects of Heuristics and Datasets

The first set of experiments was conducted to show the effects of the dimensionality
and database (DB) size on the query performance. Figures 5.4 and 5.5 show this
data. As both Figure 5.4 and 5.5 show. the CND-tree provides by far the most
promising results in all tests.” Due to this. the remainder of the experimental data

considers only the CND-tree. It should be noted in Figure 5.5 that the ND-tree

3Each leaf node is structured to hold data with native and non-native dimensions. The non-
native dimensions play no part in determining the composition of the covering hyper rectangle.
However, the extra dimensional information requires more space for each object than what would
be needed for native dimensional data only. While this extra space requirement does decreases the
amount of objects that a leaf node can contain before overflowing, the extra information maintained
negates the need to maintain the search constant dy (Equation 5.1). However, because no changes
have been made to the internal nodes of these trees, Equation 5.2 must still be observed.

4This configuration is chosen, as it is likely the amount of non-native dimensional information
will be significantly smaller than the amount of native dimensional information in most real world
scenarios.

5Note that for the linear scan results. “Nat=D" indicates a scan of hybrid data with native non-
ordered discrete dimensions and “Nat=C" indicates a scan of hybrid data with native continuous
dimensions. The datasets used for each of these experiments are identical to those used for the
ND-tree and R*-tree based searching. respectively.

AT TN

e



14000 - : — - — - - —
12000 . - * -ND-tree
—o— CND-tree
» ; —=—-LS (Nat=D)
§ 10000 - —»%— R*-tree
8 ‘ —&-LS (Nat=C)
Q \
< 8000 :
K3 |
) |
a |
'S 6000
13
Q
E
3 4000 -
z :
!
2000
e -
1 2 3 4 5 6
Number of Non-Native Dimensions

Figure 5.4. Performance I/O with variable number of non-native dimensions

appears to provide somewhat similar results to the CND-tree as the size of the
database increases. Figure 5.6 shows that when viewed independantly from other
search results. the CND-tree still provides significant performance benefits over the

ND-tree as the number of vectors in the database increases.

The second set of experiments was conducted to show the effectiveness of our
search heuristics compared to similar heuristics utilized in a non-hybrid space (i.e.
a continuous or discrete space). Figure 5.7 shows the I/O comparison of the first
search stage when searching the CND-tree with and without the use of heuristic H3.
It can clearly be scen that using H3 decreases the number of 1/0 incurred in the

first stage of searching over all dimensional combinations tested.



Figure 5.6. Performance 1/O with variable database size (CND-tree and ND-tree

only)

Number of Disk Accesses

14000 | - - -

- % -ND-tree
|
12000 | —6— CND-tree
1 —&—LS (Nat=D)
‘I ——R*-tree
10000 [ —&—LS (Nat=C)
!
8000
6000
4000
\
2000
0 L Werrsecesaeapecscs A ——— — S
400K 800K 1.2M 1.6M 2.0M

Number of Vectors in Database

Figure 5.5. Performance /O with variable database size

—

Number of Disk Accesses

450

400 - % -ND-Tree
—e—CND-Tree A

350 e

300 s
250
200

150

100

50

400K 800K 1.2M 1.6M 2.0M
Number of Vectors in Database




600 - - - ~ o

P
500 —&— CND-C with H3 N
4
! —&— CND-D with H3
400 | - < -CND-C without H3

- & -CND-D without H3

Num of I/O
w
o
o

200

NN=1 NN=2 NN=3 NN=4 NN=5 NN=6
Num of Non-Native DIM

Figure 5.7. Performance 1/O comparing ordering methods

5.4.2 Performance Model Verification

Our theoretical performance estimation model was verified against our synthetic
experimental data. We conducted experiments using data with dp = 6, dg = 3,
|A| = 6, and R = 100. The maximum number of leaf node objects was set at 227
and the maximum number of non-leaf node objects was set to 127.6 We compared our
theoretical estimates to the observed CND-tree performances for databases varying

in size from 400K vectors to 2.0 vectors in 400K increments.

Figure 5.8 shows the estimated number of I/O predicted by our performance model

6As described in Qian et. al [43], the values of 127 and 227 were chosen for similar search
structures to maximize search performance.




30% - - - —
1 —=— CND-tree 1
25% ! —a— CND-tree 2

‘ - % -Performance Model

20% |

15%

10% |

Percentage of Disk Accesses

| x
5% !
|
0% L, I
400K 800K 1.2M 1.6M 2.0M

Number of Vectors in Database

Figure 5.8. Performance model comparison with variable database size

160% - T o
140 l —8— CND-tree 1
® | —a—CND-tree 2 X
- % -Performance Model

120%
100%
80% -

60% |

40%

Percentage of Disk Accesses

20% -

0% *

1 2 3 4 5 6
Number of Non-Native Dimensions

Figure 5.9. Performance model comparison with variable number of non-native di-
mensions

129



as well as the actual observed 1/O as a percentage of the I/O incurred by a linear
scan. Two lines are drawn for the observed 1/O when searching the CND-tree.
CND-tree 1 represents the percentage of 1/O observed when the search is stopped as
soon as stage 2 (overlap) has ended. CND-tree 2 represents the percentage of 1/0
observed when the search is stopped as soon as stage 3 (exhaustive) has ended.” The
Performance model line represents the predicted I/O percentage when z = r — 1. As
shown in Figure 5.8, our theoretical performance model does a quite accurate job
in predicting the number of 1/0 that would be incurred by using our algorithm on

databases of varving sizes.

We also performed a comparison of our theoretical performance model and the
observed I/0O when varving the number of continuous dimensions present in the
CND-tree. For this set of experiments. dp = 6. |A| = 6. R = 100, and d¢ varies
from 1 to 6. The number of vectors in the database is 1M and the maximum numbers

for the leaf node and non-leaf node objects is again set at 227 and 127 respectively.

Figure 5.9 shows the estimated number of I/O predicted by our performance model
as well as the actual observed 1/0 of these experiments, again as a percentage of

the I/O incurred by a linear scan. Again. two lines are drawn for the CND-tree

"The exhaustive stage occurs when searching nodes R whose bounding box is the same distance
from the query point as the final search range. This stage introduces no closer neighbors than what
have already been found. but may be required if multiple sets of k objects form valid solution sets,
tvpical of k-NN searches in discrete databases as discussed in [32, 33].

130



to represent the number of I/0 at the end of the second and third search stages.
As shown in Figure 5.9 our performance model does a very good job of predicting
the number of 1/O for performing a A-NN search when the number of continuous
dimensions is less than or equal to the number of discrete dimensions. However. as
the number of continuous dimensions grows, the observed CND-tree results begin to
outperform the theoretical results predicted by our performance model. We believe
this phenomenon may be related to the discretizing of the continuous dimensions by

Equation 2.4.

131




CHAPTER 6

Conclusion

Similarity searches in NDDSs and HDSs are becoming increasingly important in
application areas such as bioinformatics, biometrics, E-commerce and data mining.
Unfortunately. the prevalent searching techniques based on multidimensional indexes
such as the R-tree and the K-D-B tree in CDSs cannot be directly applied to either
NDDSs or HDSs. On the other hand. recent work [42. 43, 44. 41. 15] on similarity
scarching in NDDSs and HDSs focused on range queries. Nearest neighbor searches
were not developed to the same extent. In particular. the A-nearest neighbor search-
ing is still an open issue. We observe that the issue of A-NN searching in NDDSs

and HDSs is not a simple extension of its counterpart in CDSs.

A major problem with a A-NN search in NDDSs using the conventional Hamming
distance is the non-determinism of its solution. That is. there usually is a large

number of candidate solutions available. This is mainly caused by the coarse gran-

TS D ELN L - S




ularity of measurement offered by the Hamming distance. To tackle this problem,
we introduce a new extended Haming distance, i.e.. the GEH distance. This new
distance takes the semantics of matching scenarios into account, resulting in an en-
hanced granularity for its measurement. Further. it is proven that the GEH distance
possesses the triangular property and therefore may be used in index based pruning

heuristics.

To support etficient A-NN searches in NDDSs. we propose a searching algorithm
utilizing the ND-tree [42, 43]. Based on the characteristics of NDDSs. three effec-
tive searching heuristics are incorporated into the algorithm. A fourth heuristic is
provided that implements a new strategy for probability based search ordering in
conservative search scenarios. Further. we provide a performance model to predict
the number of I/O incurred during a A-NN search using our algorithm that is based
upon the number of neighbors desired and the dimensionality and alphabet size of

the dataset.

Our extensive experiments demonstrate that our GEH distance measure provides
an effective semantic discriminating power among the vectors to mitigate the non-
determinism for A-NN searches in NDDSs. Experiments also show that the A-NN
searching algorithm is efficient in finding £-NNs in NDDSs, compared to the linear

scan method. The algorithm is scalable with respect to the database size and also

133

.



performs well over non-uniform data distributions. However, when the number of
dimensions is high. our algorithm scems to suffer the same dimensionality curse

problem as the similar techniques in continuous data spaces.

We have demonstrated that A-NN searches in HDSs greatly benetit from the use of
a multidimensional index developed for such a space. As discussed in Chapter 5, the
use of HDS based index eliminates the need for maintaining costly search constants to
guarantee correct results, Further. our experimental results confirm that the use of a
HDS index vastly outperfors searches utilizing non-hybrid space indexes, sometimes
by a factor of 10 to 1. as shown in Section 5.4. We have also shown that the use of our
newly introduced searching heuristic provides excellent benefits in reducing the I/0
costs associated with the first stage of A-NN searching. Our experimental results in
Section 5.4 demonstrate a performance benefit of almost 33%. Additionally, we have
presented a theoretical performance model that accurately predicts the 1/0 cost of

performing a A-NN search using our algorithm presented in Section 5.3

Our future work involves the study of the underlying characteristics of NDDSs
and HDSs that may be applied to optimizing data index structures for such spaces.
Similar to [52]. such a study could provide an optimization in index structure con-
struction by determining the relationship between the dimensionality of a dataset and

the estimated performance for data retrieval. Additionally. search performance in

134

S e

e



NDDSs and HDSs are also affected by the cardinality of the alphabet of the dataset.
While much work been reported on understanding these relationships and optimiz-
ing an index structure through that knowledge for CDSs, it remains an open issue
for NDDSs and HDSs. Additionally, we will continue to investigate the underlying
characteristics of NDDSs and HDSs that can be used in future search heuristics. Fi-
nally, our theoretical performance model assumes a uniform node splitting policy of
the underlving index structure. We would like to expand upon this to accommodate

more potential node split policies.



APPENDIX A

Intrinsic Dimensionality in
Non-Ordered Discrete Data Spaces

In this appendix. we present a discussion of the effects of intrinsic dimensionality
in NDDSs. We first provide an overview of the concepts of this topic followed by
a discussion of the differences in NDDS and CDS dataset distribution. We then
discuss the effect of intrinsic dimensionality on search performance when using the
GEH distance. This appendix provides additional rationale for the development of

the rank based GEH implementation from Chapter 4.

A.1 Overview

In both NDDSs and CDSs. designers of search techniques are hampered by the curse
of dimensionality [32. 52]. As discussed by Chavez et al. [14]. traditional indexing

techniques for vector spaces (c.g. kd-tree. R*-tree) have an exponential dependency

136



on the representational dimension of the data space. Many recent indexing techniques
attempt to avoid the problems associated with this relationship by removing the
representational dimension of the space. A common technique is to translate the

vector space data to a generic metric space.

Unfortunately, these techuniques are unable to completely resolve the curse of
dimensionality due to the existence of the intrinsic dimensionality of the dataset.
Chavez et al. [14]. defined the intrinsic dimensionality p of a dataset by the quotient
of the mean p and variance o2 of a histogram of distance values between objects in

the dataset, as shown below:

p=-—= (A.1)

Equation A.1 indicates that a dataset’s intrinsic dimensionality grows in line with
the mean and inversely with the variance of distance values. The result of this
equation may be used to indicate the performance potential of searching within
a dataset. As shown in [14]. the potential performance for searching a dataset is

inversely proportional to the intrinsic dimensionality of the dataset.

137



5.E+07 -
O Alph=6

4E+07 | WAIPh=10
W AIph=12

3.E+07
3.E+07
2.E+07

2.E+07

Number of Occurances

1.E+07

5.E+06 ‘H
0E+00 —— — — = . i

|
0 1 2 3 4 5 6 7 8 9 10
Hamming Distance

Figure A.1. Histogram of Hamming Distance Values

A.2 Distribution of NDDS Datasets

The histogram of distances between points in either a CDS or a generic metric space
will usually result in a semi-continuous curve. As shown in [14], the mean for such
histograms in either space is likely to trend equally toward either end of the available
range. For an NDDS, this no longer holds. Consider Figure A.1 which shows the
histogram of Hamming distance values for a 10-dimensional NDDS of 10K vectors

with variable alphabet sizes.

We notice three points. First, the mean for each dataset in Figure A.1 appears

to be highly dependent upon the cardinality of the alphabet set, such that as the

138



alphabet size grows larger. so does the mean of distance values. Second. the distance
values between points appear to clump disproportionately toward the high end of
the distance range. Third. the possible distance values between points is restricted

due to the use of the Hamming distance.

Each of these poiuts agrees with our understanding of NDDSs discussed in Chap-
ters 3 and 4. In particular. we note that in an NDDS, there is no defined center of
the data space. Thus. available distance metrics. such as Hamming or GEH, have
difficulty considering point distance relationships. As shown in [33], the number of
points likely to exist at an integer distance z from another point grows exponentially
with the value of the alphabet size (this value was described as a hyper-spherical

area in [33]), such that:

Al -1). (A.2)

=5 ()

Additionally in [33]. we showed that the probability of a point existing in an NDDS

increases dramatically as the distance z increases:

_1)1'

_ i (DA

Perists(2) | 4ld

(A.3)

Equation A.2 explains the dependence between the mean of distance values and

139



the alphabet size of the dataset. Equation A.3 explains the disproportionate amount
of distance values between points in an NDDS close to d (as seen in Figure A.1). The
third point is easily explained by the discussion of non-granularity of the Hamming

distance in Section 4.2.

When we again consider the distances between points in an NDDS, but instead of
the Hamming distance metric, we use the GEH distance metric presented in Section
4.2, we are given the histogram shown in Figure A.2 (we have used a scatter plot
instead of a column plot to help illustrate the differences with Figure A.1 more
clearly). We notice that the restriction on distance values has been greatly reduced.
However, we still do not have a continuous curve as would be expected in a CDS or
generic metric space. Instead. we see local peaks between each integer distance value

with their own local mean and variance.

A.3 Distribution Effects on Search Performance

We define local variance for an integer i as the variance of distance values between
[i,7+ 1). A local mean may be defined in the same manner. To account for these

local values, we modify the performance formula given earlier as follows:

P = pPo+t P (A4)

140

T



where

The value of p; in Equation A.4 captures the expected performance between each
integer value. This value may be interpreted as the average performance indicator
based on the normalized local means and variances of a dataset. When using an
extension to the Hamming distance, such as GEH, this value gives an indication of
the likely number of pathways that may be pruned during the refinement stages of a k-
NN search. However, because one of the goals when extending the Hamming distance

is to retain its original semantics, the value of p; is less dominant in determining the

Number of Occurances

8.E+06 - B

7 E+06 | < Alph=6 o
a Alph=8
« Alph=10
00
5.E+06
o o
4.E+06 °. o
Zo
3.E+06 - Al
o Y
2E+06 > e
E+ . X
o0 ;:% g%;%
1.E+06 - 0o B XX
| A
N o ﬁx 2
0.E+00 ‘mm - ap
0 2 4 6 8
Distance

Figure A.2. Histogram of GEH Distance Values

Po =

_ 1 d-1 (p—1\*°
Pl—ﬁ&ﬂ(&)-

141



overall performance measure than the value of p,. This is due to the effects of a
Hamming extension typically only becoming a factor when comparing distances in

the same integer range.

To help illustrate this point, consider a random query ¢ for a 10 dimensional dataset
U. In this case, Figure A.2 can represent the distribution of distances between g and
a possible pivot point p € U (in our case. p is a DNIBR). for various alphabet sizes.
Assuming our distance metric D() maintains the triangular inequality property. we
can eliminate from our search any point u such that D(p.u) € [D(p.q)—r. D(p.q)+r],
where 7 is the current search radius [14]. As the variance of distances between integer
values increases, more points (search paths) may be discarded when searching within
that range. However, this increase in variance has no affect on the amount of points

that may be pruned outside the current integer range.

A.4 Experimental Results

We have compared the distance distribution histograms of the ranking based GEH
distance implementation from Section 4.2 with that of the frequency based GEH dis-
tance implementation from [32] over datasets of various zipf distributions. In these
instances, all data is from 10-dimensional datasets of 10K vectors with |A| = 10.

Comparing Figures A.4 and A.3. we sce that the ranking based implementation shows



1.E+07  — : - —

9.E+06
o zipf = 0.0
8.E+06 - o zipf = 0.5 . -
‘ = zipf=1.0
@ 7E+06 - » zipf = 1.5
Q a
& .
5 6.E+06
Q
Q
O 5.E+06 v x
°
-
2 4E+06 -
E o
5 o
Z 3 E+06 - « a
x & &
2.E+06 ) x 5.

>
o

1.E+06 oo Q?& :qﬂ%

A O

% X b4 e
0.E+00 == SIS . LLLL;% ikt —
0 2 4 6 8 10

Distance

Figure A.3. GEHpg,k zipf = [0.0 — 1.5]
large improvements, in terms of distribution characteristics. over the frequency based
distances as the zipf level increases. This indicates that as the underlving dataset
becomes more skewed. the performance benefits of using the ranking based imple-
mentation of GEH distance over the frequency based implementation will become

greater as well. This agrees with the search performance results from Chapter 4.

143



1.E+07

' 3
| a]
9.E+06 |
B.E+06 |
| o zipf = 0.0
$7.E+06 - zipf=0.5
e 2 zipf=1.0 S
£6.6+06 - ~zipf=1.5
] o
8 5.E+06 - °
o | < x
| ‘
S4.E+06
E . a
=
2 3.E+06 g
2.E+06 x s 5
g g &
1.E+06 p £ 5
g 8§ - ¥
0.E+00 vam— com eum —wilf o - 'y £
0 1 2 3 4 5 6 7 8 g 10

Figure A.4. GEHFpy.cq. zipf = [0.0 — 1.5]

Distance

144



APPENDIX B

Triangular Property of GEH -
Extended Proof

To maintain the inherent mathematical correctness associated with building and
searching index trees in NDDS. our newly introduced GEH distance must maintain
the Triangular Property. In Chapter 4. we presented a short proof of this property.

In this appendix, we provide a second proof in extended form.

Definition 4. Triangular Property for Vectors: For any three vectors V4, Vg,
and Vo, the addition of the distances between any two pairs is greater than or equal

to the distance between the third pair, namely:

D(V4.Vp) + D(Vp.Ve) 2 D(Va. Vo). (B.1)

The long form proof of the GEH distance maintaining this inequality is handled

145




in two steps: first, a base case is established where the property holds. Second, the

base case is evolved into the generic case.

Step 1: Counsider three d-dimensional vectors Vy, Vg, and V. Assume that
D(V4.Ve) is a maximal value. thus every element in V4 and Vo must be differ-

ent, or:

D(V4. V) =d.

Next assume D(V4.Vg) is a minimal value, where every element in Vg equals the

corresponding element in Vy, i.e. V4 = Vp. Using the GEH distance yields:

D(V4.Vg) = 1.

where 0 < r < 1. The term r represents the adjustment values obtained using
some method defined by an application expert (see Chapter 4). Because V4 = Vp,

the distance between Vg and Vo is the following:

D(Vp.Ve) =d.

Thus we have the following inequality;

146

=



D(V4.VB) + D(Vp.V¢) > D(Vy. Vo)

= JIL+n>n

Step 2: The second step is divided into three sub-steps: one for each vector Vg, Vp,

and V.

Step 2.1: First, we evolve Vg into a generic vector. From Step 1, we have the

following distance values:

D(Va.VB) =
D(Vg.Veo) =n
D(V4. V) =n,

where 0 < o < 1.

To make Vg generic. we apply & changes. where each change represents switching
an element in Vg away from its original value. After this has been done, we are left

with the following distances:

D(V4.Vg) =r+k—-0
D(Vg.Ve) =n—k +c2
D(Vyq. Vo) =n.

Here. ¢ represents the culmination of adjustment values from each of the & elements

switched. A7 represents the number of elements switched that now equal their corre-

147

-



sponding element in Voo and e9 represents the culmination of the adjustment values
to be added due to these newly matching values. Because k > A, ¢ > ¢, and
cg > 0. the GEH distance between V4. V. and Ve still maintains the inequality

from Definition 4.

Step 2.2: Next. we evolve Vo into a generic vector. We start with the final vectors

from Step 2.1 and apply j changes to V. We now have the following distance values:

D(VaVp) =w+hk—a
D(Vp. V) =n—ki+tca+(j] —3)—(J3 —c4)
D(Va4 V) =n-— f; + 5.

Here. j] and j3 represent the integer values that D(Vp. Vo) increases and decreases
by respectively as elements are switched; c3 and ¢4 represent the adjustment values
due to those changes: j3 and ¢b represent the integer and adjustment changes to
D(V4.Ve) due to element changes. It is important to note that every time j3
is incremented there are two possibilities: either the value being switched in Vg
becomes a value in Vp that still matches V. in which case j3 is incremented by one
and both ¢y and ¢5 are incremented by the same amount, or it becomes a value in
Vp that does not match V4, which means that & > k7 — 1. This leaves us to note
that j5 + A7 < j3 4+ Kk and that ¢gy > ¢5. Finally, with j7 > c3. it can be shown

that these distance measures still maintain the Triangular Inequality property from

148




Definition 4.

Step 2.3: Finally. we evolve V)4 into a generic vector. Because of our initial con-
ditions, this is actually a trivial step. Due to V4 ounly being defined in relation to
the original vectors Ve and Vg, and Vo and Vg being able to be manipulated into
any general vectors from their starting point, we can start V4 as any vector we wish.
Thus V4 is a generic vector and the triangular inequality holds true for any three

vectors Vy. Vp, and Ve

149




APPENDIX C

MinMaxDistance Discussion

Much of the work presented in this dissertation has focused upon improving search
performance in terms of reducing the number of 1/0 required to perform a search.
In this appendix. we prove that many search algorithms may be improved in com-
putational performance by removing the NIINN[AXDIST heuristic while suffering no

loss of 1/O performance.

C.1 Overview

For the purposes of this discussion we define the NIINDIST for a tree node N and a

query point g as follows:

MINDISTxN(g) = min VNSD((I- Ng). (C.1)




Where Ng represents a subtree/object of N and D is a valid distance metric for the

data space being used. We define the NIINMAXDIST in a similar manner:

MINMAXDISTxN(g) = min Vg (max D(q, Ng)) . (C.2)

Using Equations C.1 and C.2. the MINDIST pruning. MINNAXDIST range reduc-
tion. and MINDIST ordering equations, hereafter referred to as Hy. Ho, and Hj

respectively, are as follows:

Hy: For all subtrees Ng of N, remove/prune any subtree whose MINDIST value to

q s greater than the current scarch range.

Ho: If the MINMAXDIST of a subtree Ng of node N is less than the current search
range, rcduce the current scarch range such that it equals the value of the MIN-

MAXDIST of that subtice.

Hy: Order those subtrees Ng not pruned by heuristic Hy in increasing order of their

MINDIST value to q.

For the remainder of this discussion we will hold the following assumptions to be

true:

Assumption 1. MINDIST node ordering is being used.




Assumption 2. MINDIST node pruning is being used.

Assumption 3. A dcpth first scarch strategy is being employed.

C.2 Proof

Consider a d-dimensional non-leaf node N. that represents the local root for a branch
in an index tree. The scarch range of the & Nearest Neighbor search is represented
by r. If heuristic Hs is emploved. the search range is updated by the NMINNMAXDIST

value for the sub-nodes of Np as follows:

r=min(rg. MINMAXDISTxN(q)), (C.3)

where r( acts as a place holder for the search range before it is updated. For future

use we will label the minimal MINMAXDIST value of the subtrees of node N as

Dy

The subtrees of N can be categorized into three groups: Ngj, Ngo. and Ngjs,

where the following holds true:

0 < MINDIST(Ng;)< 7
r < MINDIST(Ngo) < 7 (C.4)
ro < MINDIST(Ng3) < Dajax.



where Djrqy represents the maximum distance value possible between a sub-

tree/object and a query point for the data space being used.

Lemma C.2.1. Of the three categories of subtrees, a k Nearest Neighbor search will

access these groups in the following order: Ngyp first, Ngo second, and Ng3 thurd.

Proof. This is a result of Assumption 1. O

Lemma C.2.2. The subtree of N with the minimum MINMAXDIST value is con-

taincd in the sub-tree group Ngj.

Proof. Equation C.3 indicates that this particular subtree will be used to set the
value of 7 when Heuristic Hg is employed. This subtree will be in Ng; due to its

MINDIST value being less than or equal to its MINNAXDIST value. O

Lemma C.2.3. If Heuristic Hy is employed, Heuristic Hy will prune subtree groups

]\"5«_) and f\lvs;;, due tor = TALAL-

Proof. Heuristic Ho and Equation C.3 indicate that the updated search range will
be equal to r. Equation C.4 classifies that subtree groups Ngo and Ng3 will have a

MINDIST value greater than r and will thus be pruned by Heuristic H. O

Lemma C.2.4. If Heuristic Ho 1s not employed, Heuristic Hy will prune subtree

group Ngj.




Proof. Similar to the preceding proof. we are only guaranteed that the current search
range will be equal to ry. Equation C.4 only classifies subtree group Ng3 as having a
MINDIST value greater than rg and is thus the only group guaranteed to be pruned

by Heuristic Hj. g

Lemma C.2.5. If Heuristic Hy is not employcd. the value of r will be less than or

equal to Dxyryy before visiting any sub-nodes in group Ngo.

Proof. Due to Assumptions 1 and 3. the search algorithm will visit the subtrees of
group Ngj before returning to the current node N and considering subtrees in the
groups Ngo and Ng3. According to Lemma C.2.2. the subtree with a MINNAXDIST
value Dyyrar is contained in subtree group Ngj. Thus the search is guaranteed to
visit an object with a distance value less than or equal to Dy before returning to

N. g

Lemma C.2.6. Heuristic Hy provides no 1/0 benefits when assumptions 1 through

3 are true.

Proof. Lemma C.2.5 indicates that the value of r will be less than or equal to Dyrar
before the search algorithm considers visiting any subtrees from group Ngo. Thus
Heuristic Hy will prune these subtrees before they are visited regardless of Heuristic

Hs being emploved. t




1]

[3]

[4]

8]

[9]

BIBLIOGRAPHY

Y. A. Aslandogan and C. T. Yu. Techniques and systems for image and video
retrieval. [EEE TKDE, 11:56-63, 1999.

Ricardo A. Bacza-Yates. Searching: An algorithmic tour. In Encyclopedia of
Computer Science and Technology Vol. 37, pages 331-359, New York, New York,
1997. CRC Press.

Ricardo A. Baeza-Yates, Walter Cunto, Udi Manber, and Sun Wu. Proximity
matching using fixed-queries trees. In CPM '94: Proceedings of the 5th Annual
Sympostum on Combinatorial Pattern Matching, pages 198-212, London, UK,
1994. Springer-Verlag.

L. Baoli, L. Qin, and Y. Shiwen. An adaptive k-nearest neighbor text categoriza-
tion strategy. ACM Transactions on Asian Language Information Processing,
3:215 226, 2004.

R. Bayer and K. Unterauer. Prefix b-trees. ACM Transactions on Databases
Systems, 2:11-26, 1977.

Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger.
The R*-tree: An efficient and robust access method for points and rectangles. In
Hector Garcia-Molina and H. V. Jagadish, editors, Proceedings of the 1990 ACM
SIGMOD International Conference on Management of Data, Atlantic City, NJ,
May 23-25, 1990, pages 322-331, Atlantic City, NJ, U.S.A, 1990. ACM Press.

J. L. Bentley. Multidimensional binary search trees in database applications.
IEEFE Trans. Softw. Eng., 5(4):333-340, 1979.

Jon Louis Bentley. Multidimensional binary search trees used for associative
searching. Commun. ACM, 18(9):509-517, 1975.

Jon Louis Bentley and Jerome H. Friedman. Data structures for range searching.
ACM Comput. Surv., 11(4):397-409, 1979.




[10]

[11]

12)

[13]

[14]

[15)

[16]

(17]

18]

[19]

[20]

[21]

Stefan Berchtold, Daniel A. Keim. and Hans-Peter Kriegel. The X-tree: An
index structure for high-dimensional data. In T. M. Vijayaraman, Alejandro P.
Buchmann, C. Mohan. and Nandlal L. Sarda, editors, Proceedings of the 22nd
International Conference on Very Large Databases, pages 28-39. San Francisco,
U.S.A., 1996. Morgan Kaufinann Publishers.

Sergey Brin. Near neighbor search in large metric spaces. In VLDB 95: Pro-
ceedings of the 21th International Conference on Very Large Data Bases, pages
574584, San Francisco. CA, USA, 1995. Morgan Kaufmann Publishers Inc.

W. A. Burkhard and R. M. Keller. Some approaches to best-match file searching.
Commun. ACM, 16(4):230-236, 1973.

J Catlett. On changing continuous attributes into ordered discrete attributes.
In Proceedings of the Furopean Working Session on Maching Learning, pages
164 178, 1991.

Edgar Chavez. Bonzalo Navarro. Ricardo Bacza-Yates. and José Luis Mar-
roquin. Searching in metric spaces. ACM Computing Surveys, 33(3):273-321,
2001.

Changqing Chen, Sakti Pramanik, Qiang Zhu, Watve Alok, and Gang Qian.
The c-nd tree: A multidimensional index for hybrid continuous and non-ordered
discrete data spaces. In Proceedings of EDBT, 2009.

Paolo Ciaccia, Marco Patella, and Pavel Zezula. M-tree: An efficient access
method for similarity search in metric spaces. In VLDB '97: Proceedings of the
23rd International Conference on Very Large Data Bases, pages 426-435, San
Francisco, CA, USA, 1997. Morgan Kaufinann Publishers Inc.

Kenneth L. Clarkson. Nearest neighbor queries in metric spaces. In STOC 97:
Proceedings of the twenty-ninth annual ACM symposium on Theory of comput-
ing, pages 609-617, New York, NY, USA, 1997. ACML.

J. Clement, P. Flajolet, and B. Vallee. Dynamic sources in information theory:
A general analysis of trie structures. Algorithm, 29, 2001.

P. Ferragina and R. Grossi. The string b-tree: A new data structure for string
scarch in external memory and its applications. Journal ACM, 46:236-280, 1999.

A Freitas. A Survey of Evolutionary Algorithms for Data Mining and Knowledge
Discovery. ACM, 2003.

Volker Gaede and Oliver Gunther. Multidimmensional access methods. ACM
Computing Surveys, 30:170- 231, 1998.

156



[22]

23]

24]

[29]

[30]

[31]

[32]

[33]

Antonin Guttman. R-trees: a dynamic index structure for spatial searching.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988.

R. Hamming. Error-detecting and error-correcting codes. Bell System Technical
Journal, 29(2):147-160, 1950.

A. Henrich, H. W. Six, and P. Widmayer. The lsd tree: spatial access to mul-
tidimensional and non-point objects. In VLDB °89: Proceedings of the 15th
international conference on Very large data bases, pages 45-53, San Francisco,
CA, USA, 1989. Morgan Kaufimann Publishers Inc.

Andreas Henrich. The LSDh-tree: An access structure for feature vectors. In
ICDE "98: Proceedings of the Fourteenth International Conference on Data En-
gineering, pages 362-369, Washington, DC, USA. 1998. IEEE Computer Society.

G. Hjaltason and H. Samet. Incremental similarity search in multimedia
databases, 2000.

G Hjaltason and H Samet. Index-driven similarity search in metric spaces. ACM
Transactions on Database Systems, 28:517-580, 2003.

Gisli R. Hjaltason and Hanan Samet. Ranking in spatial databases. In SSD
'95: Proceedings of the 4th International Symposium on Advances in Spatial
Databases, pages 83-95, London, UK, 1995. Springer-Verlag.

W. J. Kent. Blat-the blast-like alignment tool. Genome Res, 12(4):656-664,
April 2002.

D. E. Knuth. The Art of Computer Programming, Vol. 3. Addison-Wesley,
Reading, MA, USA, 1973.

AMohammad Kolahdouzan and Cyrus Shahabi. Voronoi-based k nearest neighbor
search for spatial network databases. In VLDB '04: Proceedings of the Thirti-
eth international conference on Very large data bases, pages 840-851, Toronto,
Canada, 2004. VLDB Endowment.

Dashiell Kolbe, Qiang Zhu, and Sakti Pramanik. On k-nearest neighbor search-
ing in non-ordered discrete data spaces. In ICDE, pages 426-435, Istanbul,
Turkey, 2007. IEEE.

Dashiell Kolbe, Qiang Zhu, and Sakti Pramanik. Efficient k-nearest neighbor
searching in non-ordered discrete data spaces. ACM Transactions on Informa-
tion Systems, 28, 2010.




[34]

35)

[36]

[37]

[38]

39]

[40]

[41]

143)

[44]

Dashiell Kolbe, Qiang Zhu, and Sakti Pramanik. Reducing non-determinism
of k-nn searching in non-ordered discrete data spaces. Information Processing
Letters, 2010.

Flip Korn, Nikolaos Sidiropoulos. Christos Faloutsos, Eliot Siegel, and Zenon
Protopapas. Fast nearest neighbor search in medical image databases. In VLDB
"96: Proceedings of the 22th International Conference on Very Large Data Bases,
pages 215 226, San Francisco. CA. USA. 1996. Morgan Kaufmann Publishers
Inc.

O.W. Kwon and J.H. Lee. Web page classification based on k-nearest neigh-
bor approach. In Proceedings of the 5th International Workshop Information
Retrieval with Asian Languages, 2000.

F Lewis. Gareth J Hughes. Andrew Rambaut, Anton Pozniak, and Andrew
J Leigh Brown. Episodic sexual transmission of HIV revealed by molecular
phylodynamics. PLoS Medicine, 5(3). 2008.

Jinhua Li. Efficient Similarity Scarch Based on Data Distribution Properties in
High Dimension. PhD thesis. Michigan State University, East Lansing, Michi-
gan, United States, 2001.

A Macskassy, H Hirsh, A Banerjee. and A Dayanik. Converting numerical
classification into text classification. Artificial Intelligence, 143(1):51-77, 2003.

Gonzalo Navarro and Ricardo Baeza-vates. Searching in metric spaces. ACM
Computing Surveys, 33:273 321, 2001.

Gang Qian. Principles and applications for supporting similarity queries in
non-ordered-discrete and continuous data spaces. PhD thesis. Michigan State
University, East Lansing, Michigan, United States, 2004.

Gang Qian, Qiang Zhu, Qiang Xue, and Sakti Pramanik. The ND-tree: a dy-
namic indexing technique for multidimensional non-ordered discrete data spaces.
In vldb2003: Proceedings of the 29th international conference on Very large data
bases, pages 620 631, Berlin, Germany, 2003. VLDB Endowment.

Gang Qian, Qiang Zhu, Qiang Xue, and Sakti Pramanik. Dynamic indexing
for multidimensional non-ordered discrete data spaces using a data-partitioning
approach. ACM Trans. Database Syst., 31(2):439--484, 2006.

Gang Qian, Qiang Zhu. Qiang Xue, and Sakti Pramanik. A space-partitioning-
based indexing method for multidimensional non-ordered discrete data spaces.
ACM Trans. Inf. Syst., 24(1):79 -110, 2006.




[15)

[46]

[47]

[51]

52)

[53]

[54]

55)

E. Riloff and L. Hollaar. Text databases and information retrieval. ACM Com-
puting Surveys. 28, 1996.

John T. Robinson. The k-d-b-tree: a scarch structure for large multidimensional
dynamic indexes. In SIGMOD °81: Proceedings of the 1981 ACM SIGMOD
international conference on Management of data, pages 10-18, New York, NY,
USA, 1981. ACM.

Nick Roussopoulos. Stephen Kelley, and Frédéic Vincent. Nearest neighbor
queries. In Michael J. Carey and Donovan A. Schneider, editors, Proceedings of
the 1995 ACM SIGMOD International Conference on Management of Data, San
Jose, California, May 22-25, 1995, pages 71-79, San Jose, California, U.S.A.,
1995. ACM Press.

Nick Roussopoulos and Daniel Leifker. Direct spatial search on pictorial
databases using packed r-trees. SIGMOD Rec., 14(4):17-31, 1985.

Y. Rui, T. S. Huang. and S. Change. Image retrival: Current techniques, promis-
ing directions, and open issues. J. Visual Communication and Image Represen-
tation, 10:39-62, 1999.

Thomas Seidl and Hans-Peter Kriegel. Optimal multi-step k-nearest neighbor
search. SIGMOD Rec., 27(2):154-165, 1998.

J. Uhlmann. Implementing metric trees to satisfy general proximity/similarity
queries, 1991.

Roger Weber, Hans-Jorg Schek, and Stephen Blott. A quantitative analysis and
performance study for similarity-search methods in high-dimensional spaces. In
VLDB ’98: Proceedings of the 24rd International Conference on Very Large
Data Bases, pages 194-205, San Francisco, CA, USA, 1998. Morgan Kaufmann
Publishers Inc.

D. White and R. Jain. Algorithms and strategies for similarity retrieval, 1996.

Q. Xue. G. Qian, J.R. Cole, and S. Pramanik. Investigation on approximate
g-gram matching in genome sequence databases, 2004.

Peter N. Yianilos. Locally lifting the curse of dimensionality for nearest neighbor
search (extended abstract). In SODA '00: Proceedings of the eleventh annual
ACM-SIAM symposium on Discrete algorithms, pages 361-370, Philadelphia,
PA, USA, 2000. Society for Industrial and Applied Mathematics.



