
Z
fi
r
.
3
.
l

.
a

x
.
I

-
g.

3
L
.
.
.

.
5
?
?
?

.
.5
..
.

:
.

.
f

.
y

z
..
..

.

3
&
3
?
?
?

a
.

a.
..

aw
.

5
v

..
.

P
.
.
.

n
.

J
.

a
n

~
fi
g
fi
fi
fi

an.
..

_
.

.
.

.
4
.
6
.

.
3
.
.
.
.
[

$
3
2
3
.
.
.

“5
..
..
..

2
%
.
.
.
.
1
.

W
W
8
“
.
.
.
.
r
h
i
.

.

..
..
..
..
..
:.
u.
..
:

5.
..

1
.

m
.
s
a
:

2
.

v
e
l
l
u
m
.

.
£

.
.

.
.
.
.

.

h
.

.
.
a
.
m
.
m
.
a
n
.
;
.
v

i
v
.
5
1

..

\
.
3
.

I
!
‘
I
.
1
§

-

‘
u
‘
i
l
u
fl

g
a
g
.
.
.

3
.
5
5
.
.
.

.
s
.
a
.

I
;

1
1
.
.
.

x
.

.

.
.
1
1
,
“

.
fl
u
m
w
n
u

..
I
.

J
.

.
.

.
.
.
m
.
?
x
z
¢
m
r
§
:

.
.

THESIS

4’

2oz 0

LIBRARY

Michigan State

University

This is to certify that the

dissertation entitled

Techniques for Efficient k-Nearest Neighbor Searching in Non-

Ordered Discrete and Hybrid Data Spaces

presented by

Dashiell Matthews Kolbe

has been accepted towards furfillment

of the requirements for the

Doctoral degree in Computer Science

% , g.-..i
Major Professor’s SignatuYe

‘5;/I.27/Zoro

Date

MSU is an Affirmative Action/Equal Opportunity Employer

PLACE IN RETURN Box to remove this checkout from your record.

TO AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE DATE DUE DATE DUE

5/08 K:IProj/Acc&Pres/ClRCIDateDue.indd

TECHNIQUES FOR EFFICIENT K-NEAREST

NEIGHBOR SEARCHING IN NON-ORDERED

DISCRETE AND HYBRID DATA SPACES

By

Dashiell l\-"’Iatthews Kolbe

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Computer Science

2010

ABSTRACT

TECHNIQUES FOR EFFICIENT K-NEAREST

NEIGHBOR SEARCHING IN NON-ORDERED

DISCRETE AND HYBRID DATA SPACES

By

Dashiell l\/Iatthews Kolbe

Similarity searches/queries in Non-Ordered Discrete Data Spaces (NDDS) and

Hybrid Data Spaces (HDS) are becoming increasingly useful in areas such as bioin-

fr.)rn'1at.ics, multimedia, text. retrieval, audio and video compression, data-mining,

and E-con’unerce. The objective of this dissertation is to develop and analyze novel

methods to support similarity searches in such spaces.

In this dissertation, we first discuss performing k-Nearest Neighbor (k-NN)

searches in NDDSs. Performing such searches in NDDSs raises new challenges. Due

to the coarse granularity of the commonly used Hamming distance measure, a nearest

neighbor query in an NDDS may lead to a large set. of candidate solutions, creating

a high degree of non-determinism. \Ve propose a. new distance measure that. reduces

the number of candidate solutions for a query while preserving the essential prop—

erties of Hamming distance. we have also implemented nearest. neighbor queries

using multidimensional database indexing in NDDSS. we use the properties of our

multidimensional NDDS index to derive the probability of encountering new neigh—

bors within specific regions of the index. This probability is used to develop a new

search ordering heuristic. Our experiments demonstrate that our nearest neighbor

algorithm is efficient in finding nearest neighbors in NDDSS and that our heuristics

are effective in improving the performance of such queries.

We then discuss our work on providing a generalization of our GEH distance.

This generalized form allows our distance measure to be applied to a. broad range of

applications. Of these, we discuss a new rank based implementation well suited to

applications with heavily skewed data distributions. Our experiments demonstrate

the benefits of an adaptable distance metric by presenting scenarios that demonstrate

performance changes depending upon the distance measure used.

Finally, we discuss extending k-NN searching to HDS. We consider the challenges of

exploiting both the CDS and NDDS properties of HDS for optimizing potential search

algorithms. In particular we consider how key search information is maintained in

HDS data structures and what rules must be observed to guarantee the correctness

of search results in such spaces. Further, the concept of search execution stages is

introduced to develop efficient. k-NN search algorithms for HDS. Lastly, a theoretical

performance model is developed for HDS searching to validate our experimental

results.

To my parents, who always believed in me.

iv

ACKNOWLEDGMENTS

I would like to first acknowledge my thesis adviser, Dr. Sakti Pramanik, who has

provided a strong guiding hand throughout my graduate career at Michigan State

University. My growth as a researcher would not. have been possible without Dr.

Pramanik.

I would also like to provide special acknowledgement for Dr. Qiang Zhu of the

University of i\“Iichigan. l*lany of the ideas presented in this thesis are the result of

discussions with Dr. Zhu and Dr. Pramanik. The level of collaboration that. was

achieved in these discussions is something that I continue to strive for in my daily

life.

I also extend my sincere gratitude to my thesis committee, Dr. Mark Dykman,

Dr. James Cole, and Dr. Rong Jin. They provided both their time and expertise to

improve both the depth and breadth of this thesis.

Lastly, I would like to thank my family and friends for being my village. My

parents, Nancy, Chris, and Ted, recieve my deepest gratitude for their undending

love and support.

V7

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

1 Introduction

1.1 l\~»’Iotivating Applications

1.1.1 l\~’1ultimedia Objects

1.1.2 Computational Biology

1.1.3 Text Retrieval

1.1.4 Document Retrieval

1.2 Space Partitioning Concepts

1.2.1 Metric Space

1.2.2 Non-Ordered Discrete Space

1.2.3 Hybrid Space

1.2.4 Vector Space Distance l\»’Ieasurements

1.3 Overview of the dissertation

2 Previous Work

2.1 Nearest Neighbor Algorithms

2.1.1 Exact Searching Methods

2.1.2 Approximate Searching Methods

2.1.3 Unique Searching Methods

2.2 General Metric Space and CDS Index Structures

2.2.1 KD-Tree

2.2.2 LSD—Tree

2.2.3 R-Tree and R*-tree

2.2.4 Burkhard-Keller Tree

2.2.5 Fixed Query Tree

2.2.6 Fixed Queries Array

2.2.7 M-Tree

2.3 NDDS Models in Vector Space

2.3.1 The ND-tree

2.3.2 NSP-Tree

2.4 HDS Models in Vector Space

2.4.1 NDh-tree

2.4.2 CND-tree

2.5 Determining Distance

vi

ix

>
4

r
h
u
b
O
O
O
O
I
-
J

t
—
‘
Q
O
O
O
\
I
®
O
1

18

19

21

22

25

26

27

27

28

29

34

36

37

3 k-Nearest Neighbor Searching in NDDS 41

3.1 Motivations and Challenges 41

3.2 k—Nearest Neighbors in NDDS 45

3.2.1 Definition of k—NN in NDDS 45

3.2.2 Extended Hamming Distance 53

3.2.3 Probability of Valid Neighbors 58

3.3 A k-NN Algorithm for NDDS 66

3.3.1 Heuristics 67

3.3.2 Algorithm Description 72

3.3.3 Performance Model 76

3.4 Experimental Results 79

3.4.1 Effectiveness of GEH Distance 80

3.4.2 Efficiency of k-NN Algorithm on Uniform Data 81

3.4.3 Efficiency of k-NN Algorithm on Skewed Data.......... 87

3.4.4 Efficiency of k-NN Algorithm on Non-Homogeneous Data . . . 89

3.4.5 Verification of Performance Model 93

4 Understanding Distance in NDDS 96

4.1 l\»‘Iotivations and Challenges 96

4.2 Generalized CEH Distance 98

4.3 Ranking Based GEH Instantiation 103

5 k-Nearest Neighbor in Hybrid Data Spaces 106

5.1 l\-’Iotivation and Challenges 106

5.2 Nearest Neighbor Search Stages 109

5.3 Search Algorithm 112

5.3.1 l\x’Iatch Likelihood 113

5.3.2 Algorithm Description 115

5.3.3 Performance Model 117

5.4 Experimental Results 124

5.4.1 Effects of Heuristics and Datasets 125

5.4.2 Performance Model Verification 128

6 Conclusion 132

APPENDICES 136

A Intrinsic Dimensionality in Non-Ordered Discrete Data Spaces 136

A.1 Overview 136

A2 Distribution of NDDS Datasets 138

A3 Distribution Effects on Search Performance 140

A4 Experimental Results 142

vii

B Triangular Property of GEH - Extended Proof 145

C MinMaxDistance Discussion 150

C.1 Overview 150

C2 Proof 152

BIBLIOGRAPHY 155

viii

LIST OF TABLES

4.1 Varying Dimensionality 104

4.2 Varying Zipf Distribution 105

5.1 Performance Model Variables 119

ix

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

LIST OF FIGURES

Example of NDDS data points distributed by distance

Comparison of AA? values for the Hamming distance

Comparison of A}; values for the GEH and Hamming distances

Effects of heuristics in the k—NN algorithm using ND-tree with k = 10

Performance of the k-NN algorithm using ND-tree vs. the linear scan

on synthetic datasets with various sizes

Number of Disk Accesses comparison of the k-NN algorithm using

ND-tree vs. the k—NN searching based on M-tree

Performance of the k—NN algorithm using ND—tree vs. the linear scan

on genomic datasets with various sizes for k=10

Performance of the k-NN algorithm using ND—tree vs. the linear scan

on genomic datasets with various dimensions for k=10

Performance of the k—NN algorithm using ND-tree vs. the linear scan

on synthetic datasets with various dimensions for 16210 and d = 10

Performance comparison for the k-NN searching using ND-tree based

on GEH and Hamming distances

Performance of the k-NN algorithm using ND-tree vs. the linear scan

on synthetic datasets with various sizes and zipf distributions

Performance of the k—NN algorithm using ND-tree on datasets with

various misleading dimensions (k. = 1)

47

54

81

82

84

85

85

86

87

88

89

90

3.13

3.14

3.15

3.16

3.17

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

A.1

A.2

Performance of the k-NN algorithm using ND-tree on datasets with

various misleading dimensions (1: = 5) 91

Performance of the k—NN algorithm using ND-tree on datasets with

various misleading dimensions (k = 10) 91

Estimated and Actual performance of the k-NN algorithm vs. the

linear scan on synthetic datasets with various sizes (k. = 1) 94

Estimated and Actual performance of the k-NN algorithm vs. the

linear scan on synthetic datasets with various sizes (A: = 5) 94

Estimated and Actual performance of the k-NN algorithm vs. the

linear scan on synthetic datasets with various sizes (A: = 10) 95

Search stage I/O with variable number of continuous dimensions . . . 111

Search stage I/O with variable number of discrete dimensions 111

Search stage I/O with variable database size 112

Performance I/O with variable number of non—native dimensions . . . 126

Performance I/O with variable database size 127

Performance I/O with variable database size (CND—tree and ND—tree

only) 127

Performance I/O c01111‘)aring ordering methods 128

Performance model comparison with variable database size 129

Performance model comparison with variable number of non-native

dimensions 129

Histogram of Hamming Distance Values 138

Histogram of GEH Distance Values 141

A.3 GEHRa/nk zipf = [0.0 — 1.5] 143

A.4 GEHFrw, zipf = [0.0 — 1.5] 144

xii

CHAPTER 1

Introduction

Nearest. neighbor searclres/queries in Non-Ordered Discrete Data Spaces (NDDS)

and Hybrid Data Spaces (HDS) are becoming increasingly useful in areas such as

bi(.)informatics. multimedia, text retrieval. audio and video compression. information

security. data-mining. and E-cmnmerce. This form of searching may be stated as

the following problem: given a set S of 72. data points in an a. dataset X (with

IX
Z k) and a query point q E X. return a set of k > 0 objects A <_: X where

VuEAmES—A : D(q. u.) S D(q. 'v) and IA| = 1:. Examples of such queries are “finding

the k closest restaurants to the intersection of Fifth and Main.” and “finding the I:

fixed length words that differ the least from the word ‘near’.”

Numerous techniques have been proposed in the literature to support. efficient

nearest neighbor queries in continuous (ordered) data. spaces (CDS) and general

metric spaces. Excellent surveys of both the theoretical and practical aspects of

nearest neighbor searching in such spaces have been presented by Chavez et a1.

[14] and Hjaltason and Samet [27] respectively. Little work has been reported on

supporting efficient similarity searches in either NDDSs or HDSs. A d—dimensional

NDDS is a Cartesian product of (1 domains/alphabets consisting of finite non-ordered

elements/letters. For example. when searching genome DNA sequences. consisting

6

of letters ‘a’. g’. ‘t’. ‘0’. each sequence is often divided into intervals/strings of a,

fixed length (I. (q-gram). These intervals can be considered as vectors from a. d—

dimensional NDDS with alphabet {(1. g. t. c} for each dimension. Other examples of

non-ordered discrete dimensions are color. gender and profession. A d-dimensional

HDS is a Cartesian product of 712(7)? 3 (1) dimensions/alphabets consisting of finite

non-ordered elements/letters and n = d — m continuous dimensions. For example.

consider sports related data containing match win statistics and match locations.

Match win statistics could be considered continuous data while match locations could

be considered non-ordered discrete data.

The remainder of this section is comprised as follows: Section 1.1 discusses mo-

tivating applications; Section 1.2 introduces space partitioning concepts considered

thronghout this dissertation; Section 1.3 provides an overview of the research pre-

sented in this dissertation.

1.1 Motivating Applications

This section presents a sample of applications that rely upon performing efficient k-

NN similarity searches in CD88. NDDSs. and HDSs. Both fixed length and variable

length data applications are presented for completeness.

1.1.1 Multimedia Objects

Facial recognition algorithms are used by a wide variety of applications such as law

enforcement and security to identify an object by a live or still image. This is achieved

by comparing a selected set. of features from the image against similar feature sets

stored in a database. This is equivalent to creating a feature vector composed of

HDS objects.

Finger print matching and voice recognition are both handled in a similar fashion.

For each. a feature vector is established. containing values representing key structures

within the object. such as whorls in a fingerprint. which is then compared with an

indexed set of feature vectors to determine the closest matches. Here. it is common

practice to try to determine the single closest match. ideally considered an exact

match. However. due to approximation involved in creating the feature vectors.

nearest matching is a much more practical and efficient approach.

1 . 1 . 2 Computational Biology

Biological data, particularly genome sequences. may be represented as a d dimen-

sional vector (1. with each dimension 2 (1 S i g (1') containing a value from

the set of possible elements Ai for the I'm dimension. In genome sequencing.

the alphabet. over all dimensions is the same: A = {(z.g.t.c}. such that a. 25-

dimensional segment of a genome strand could be represented in an NDDS 925

as (1' = ”agtcaagtcaaatcc(1gtca.(1.tcca”.

Initially. searching in genome sequence databases employed editor distance metrics

or substitution matrices. such as BLOSUM. to determine the similarity between

genome sequences. Lately. however. the Hamming distance (discussed in Section

1.2) has become more popular for searching in large genome sequence databases

[29]. [54]. Unfortunately. the Hamming distance has a poor level of granularity in

measurement which can lead to unclear results. We consider this issue in depth in

Chapter 3.

1 . 1 .3 Text Retrieval

Text objects are typically represented as strings of varying length. Several index

methods have been proposed to support efficient searches over such data. Examples

of this method are Tries [30]. [18]. the Prefix B-tree [5]. and the String B-tree [19].

Most indexing methods in this category. such as Prefix B-tree and String B-tree. are

designed specifically for exact. searches rather than similarity searches. The Tries

model does support similarity searches. but is difficult to apply to large databases

due to its memory-basal feature.

Text retrieval operations are however fundamentally different from those in other

applications listed in this section. Datasets of previously listed applications. such

as genome sequences. are composed of objects each represented by a. string/vector

of fixed length/size. Due to this. geometric properties such as area and range can

be applied to the dataset. Text retrieval operations however. cannot take advantage

of these geometric properties due to text objects being composed of varying length

strings. This paper focuses upon searching in datasets of fixed dimensionality and

thus does not consider applications towards efficient text retrieval. The issue of text

retrieval is covered in detail in [45].

1 . 1 .4 Document Retrieval

Document retrieval is used extensively in W'orld Wide Web and database applica-

tions. Traditionally. a test document (ii is classified by creating a feature vector

containing the percent composition of certain key words through-out the document.

For example. if a document is beng classified by only three key words Weer’. ’bank’.

and ’sedimcnt’. a feature vector V = {0.5.0.302} might be generated to identify

C
1
1

that out of the key words found in the document. 50% are ’n'uer’. 30% are ’bank’. and

20% are sediment '. This vector would then be compared to a dataset. UT composed

of similar feature vectors generated from a training/representative set of documents.

Most work in this field has focused upon improving construction of feature vectors

[36] and choosing an optimal number of neighbors to search for [4]. However. [4]

showed how the current standard method of cosine similarity measurements some-

times provides an intuitively incorrect similarity match between feature vectors. This

phenomenon results from the feature vectors themselves being only an approximation

of key word occurrences within a document and pays little attention to how those

words are related to each other. A possible solution to this problem is to calculate

the similarity between two documents based upon a discrete reI’n‘esentation of their

key words.

1.2 Space Partitioning Concepts

This section discusses common data space environments that k-NN searches are

performed in. Continuous Data Space. in the form of General l\r"Ietric Space. is

discussed first. This is followed by a discussion of Non—Ordered Discrete Data Space.

Next. the combination of NDDS and CDS is presented as Hybrid Data Space. Finally.

the concept of vector space distance measurement is introduced.

1.2.1 Metric Space

Let U denote the universe of valid objects being searched. The function D : U x U —>

R denotes a measure of distance between objects. To be used in search and indexing

applications. such distance functions generally must satisfy the following properties.

Positiveness: VJ). y E U. D(.r. y) 2 0

Symmetry: VI. y E U. D(:r. y) = d(y. r)

Reflexivity: V1? E U. D(.r.1') = 0

Strict Positiveness: VI. 3; E U. .r 75 y é D(:r. y) > 0

Triangular Inequality: Var. y. r: E U. D(:1:.y) S d(:r.. z) + D(z. y)

If a distance measurement D satisfies the Triangular property . then the pair (U. D)

is called a metric space. If D does not satisfy the Strict Positiveness property. the

space is called a pseudo-metric space. If the Symmetry property is not fulfilled. the

space is generally described as a quasi-metric space; the case of a city map containing

one way streets is a. common example of such a space.

From the above definitions. it can be inferred that most spaces are in fact spe—

cialized implementations of the general metric space. Specifically. if the elements

in the metric space are tuples of real numbers. then the space may be described as

a finite-dimensional vector space [40]. Such spaces generally make use of geometric

7

distance measures; such as Euclidean or l\lanhattan. W hen such tuples represent

numbers from a continuous (ordered) dataset. the pair (U. D) is considered a CDS.

1.2.2 Non-Ordered Discrete Space

Discrete space is based upon the concept of all objects in the universe of discourse U

being discrete and non—ordered along each dimension. Ordered discrete objects typ-

ically demonstrate the same properties as CDS objects and thus. are not considered

in this section. Examples of such non-ordered discrete data are multimedia objects.

profession. gender. bioinforn'iatics. and user-defined types. Each of these examples

may be represented as a feature vector in a d-dimensional space. Consider. in genome

sequence databases such as GenBank. sequences with alphabet A = {a. g. t.c} are

broken into substrings of fixed—length d for similarity searches [29]. [54]. Each sub-

string can be considered as a. vector in d-dimensional space. For example. substring

aggctttgcaaggctttgcagcact is a vector in the 25—dimensional data. space. where the 'ith‘

character is a letter chosen from alphabet A in the 'ith’ dimension. In this example. a

is no closer to c than it is to t and so forth. Thus. mapping discrete space into c011-

tinuous space by applying a form of ordering changes the semantics of the dataset..

A formal definition of a NDDS is as follows.

Let A17. (1 g 73 g d) be an alphabet consisting of a. finite number of non-ordered

elements. A d—dimensional NDDS Qd. is defined as the Cartesian product of d.

alphabets: Qd = {A1 X A2 >< . . . >< Ad}. A. represents the it," dimension alphabet of

Q1. The area of space Qd is defined as:

d

area(Qd) = III/1,].

i=1

This formula also indicates the number of possible unique vectors in (Q. A vector

(1 is defined by the tuple (r = (a[1].o—[2].a[d.-]). where a[]] E Alf. A discrete

rectangle R in Qd is defined as the Cartesian product: R = {51 x S? . . . x 3d}. where

S.- is a set of elements/letters from the alphabet of the j-th dimension of the given

d-dimensional NDDS. The length of the I'm dimension edge of R is defined as:
O _

length(1?.i) = [3.].

The area. of R follows the formula for the area of the data space as:

d

area(R) = H [5,].

i=1

1.2.3 Hybrid Space

Hybrid space is composed of a combination of NDDS elements and CDS elements.

Consider domain Di(1 g i S (1'). If D.- is comprised of non-ordered discrete elements.

it corresponds to an alphabet. A... If D. is comprised of continuous elements. it

corresponds to some continuous span. For the purposes of our discussion. we will

consider this span to be normalized within [0. 1]. A d—din‘iensional hybrid data space

(HDS) Qd is defined as the Cartesian product of d such domains:

9(1ZD1XD2X...XDd.

As described by Qian [41]. a vector in Qd is comprised of the tuple a =

((1'1.o2.....od). where 0-,: E D.(1 g i S d). Subdomains within D.- are defined

as S. Q D.,-(1 S '1? g (I). where S C_: A7: = D.- if D.- is a non-or(.lere(.l discrete domain.

or S.- is a range [111i11.-.max.,-] if D1: is a continuous domain. A hybrid rectangle is then

defined as the Cartesian product of domains S.- thus that:

RZSIXSQX...XS(1.

The length of the ith dimension edge of R is defined as:

l—Z—l 1f dlmenslon 2 1s non-ordered dlscrete

length(R,j) = [Ail

maxi — min..- otherwise

The area of R is defined as:

10

d

area(R) = H le'ngth(R,-).

i=1

1.2.4 Vector Space Distance Measurements

Determining an efficient distance measurement is still an open problem. As discussed

by Qian [41]. the vector model is widely used to support similarity queries. Addi-

tional models. such as the Boolean model and probabilistic model [2]. have also been

proposed to support. similarity queries. However. as discussed by Baeza et. a1. [2],

the vector model is considered to be more effective for similarity searches.

To perform searches. each object in the database. as well as the query object.

are represented as fixed length vectors. For example. consider security applications

tracking intrusion attempts. Each attempt in the database can be transformed into a

vector based upon time. frequency. intruder ID. intrusion method. and other intrusion

characteristics. Each intrusion can now be considered a point in a multidin'iensional

vector space (either CDS. NDDS. or HDS dependent upon the feature generation

methods). The distance values between each pair of vector objects may now be

calculated utilizing a distance metric most suitable for such a space. Typically. a

pair of objects with a minimal distance value between them are considered more

similar than a. pair of objects with a. maximal distance value between them.

11

The focus of our research is on supporting efficient similarity queries using the

vector space model. It should be noted that not all applications have objects that.

may be efficiently represented as natural vectors. Qian [41] notes that some forms

of multimedia data. such as video clips. are often stored in their native format due

to a loss of precision when generating a feature vector to represent them. Although

not considered in detail here. the issue of designing an effective feature generation

algoritl‘nn is still an open problem. Excellent surveys concerning feature generation

for multimedia objects are. presented in [1] and [49].

1.3 Overview of the dissertation

The remainder of this dissertation is organized as follows: Chapter 2 discusses pre—

vious work performed in this and related fields. including multidimensional index-

ing and similarity search algorithm development; Chapter 3 presents our research

in developing novel similarity search methods for NDDSs. Chapter 4 presents our

work in developing a. non-application specific distance measure for NDDSs. Chapter

5 presents our research in extending our work in similarity searches in NDDSS to

HDSs. Chapter 6 summarizes the contributions of this dissertation and provides

directions for future work.

12

CHAPTER 2

Previous Work

This chapter presents previous research work related to this dissertation. We first

discuss the evolution of common similarity searching algorithms. We then present an

overview of popular index structures used to support efficient similarity searches in

vector spaces. These index structures are used to maintain data in CDSs. NDDSs. as

well as recently prmiosed work to support HDSs. Lastly. we present work concerning

distance measure comparisons.

2.1 Nearest Neighbor Algorithms

Most similarity searching algorithms may be distilled to a simple formula applicable

to CDS. NDDS. or HDS index structures. Further. range queries may be viewed as

a special case of nearest neighbor queries where the final search radius is known at

the start of the search. As such. this section focuses upon nearest neighbor search

13

algorithms. The following algorithms perform similzn‘ity searches for the nearest

neighbor to a query based on an index structure of fixed dimensionality. Generally.

the search for a single nearest neighbor may be expanded to find k nearest. neigh-

bors by maintaining a list of neighbors found and using the distance between the

neighbor that occupies the kth distance related slot and the query point as a search

range/radius value to search within. Each of the index. structures described in the

following sections may generally be used in conjuncture with one of the following

search methods. However. developers will typically modify the algorithm to better

suit the applicable structure.

2.1.1 Exact Searching Methods

The most basic method to perform a k-NN similarity search involves using a range

search algorithm. Begin with radius r = a : (a > 0) centered at query point q.

Increase at until at least k: elements lie within the radius. The cost. in terms of page

accesses. of this algorithm is similar to that of performing a range search. This cost

however is greatly affected by the amount the value a is adjusted by every time the

desired number of elements is not. yet found. Too small. the performance cost will

quickly grow; too large. the number of points returned will far exceed the desired

number thus decreasing the usefulness of the solution.

A more elegant approach was proposed for both general metric spaces and CD88

14

[12. 3. 47] by beginning the search on any data structure using 7“ = 00. The search

begins at the anchor/root of the data structure. Each time the query point q is corn-

pared to some element 1). the search radius is updated such that r = min(r. D(q. p)).

The search then backtracks to the nearest split in the index where a new path has

not yet been traversed and continues down the new path using the newly calculated

radius.

As the search continues. the possilgnlity increases that an entire path of the index

structure may not need to be searched due to the decreasing size of the radius r.

Pruning heuristics are e111ployed to determine if a certain route is no longer necessary

to search. Roussopoulos et al. [47] provided two heuristics for CDS based index

structures. namely R-trees. named MINDIST and MINMAXDIST that invoke this

pruning. h'llNh-‘IAXDIST is used in the breadth search of the covering rectangle

of the current search path by determining the minimum maximum distance of all

covering rectangles contained in the current one. This distance is used to update the

current search radius such that r = '7'17.:17'n(:1‘.l\llNMAXDIST). MINDIST is then used

in the depth traversal to determine if any point of a. covering rectangle associated

with a new search path is within the search radius. If no point is within the search

radius. that search path is pruned from the remainder of the search and thus the

effective size of the database to search is decreased.

15

This range reduction method may be improved further by attaining a smaller ra-

dius value earlier in the search. Several techniques have been used in both CDSs and

general metric spaces [51. 28. 16]. The underlying idea of each technique is that cer-

tain paths may be identified by their high level statistics that will yield a. closer point

to the query point q earlier in the search. The most common application of this idea

is to order potential search paths by either their MINDIST or MINMAXDIST values

to q. The MINDIST ordering gives the 01.)timistic approach that a lower MINDIST

value is caused by a relatively closer object in the index structure. This may not

always prove true in spatial index structures. Commonly. some point of a search path

only exists at the top most layers. At higher levels within an index structure. points

may actually be the result of the intersection of lines drawn from several points lower

in the index structure. \Vhen this technique appears to suffer from this problem. the

pessimistic approach using MINMAXDIST may be used instead. Here. search paths

are ordered by the increasing value of their furthest point. Thus a. search may cor-

rectly assume that it will at least not encounter any points further away than the

MINMAXDIST.

2.1.2 Approximate Searching Methods

Relaxing the precision of the query results may lead to even further reductions in

time complexity. This is a. reasonable procedure for many applications due to some

16

approximation in the modalization of feature vectors for both general metric and

CDS indexes. In addition to the query itself. a user specifies some query parameter

E to control how far away from the query point the search may progress. In this

manner. the algorithm avoids the costly initial stages of a similarity search. On

subsequent. searches of similar databases. 6 may decrease to approach zero. As 6

decreases. the time complexity. along with the precision of the result decreases as

well.

A probabilistic algorithm was given for vector spaces by Yianilos et al. [55]. using a

method described as aggressive pruning to improve the performance. Here. the idea

is to increase the number of branches that are pruned at the expense of possible points

in the set of nearest neighbors. This process is controlled such that the probability

of success is always known. Unfortunately. the data structure used is only useful in

a very limited radius; in databases or with searches that could result in neighbors

with distances beyond the possible radius. the algorithm is not able to guarantee a

result of the true nearest neighbors. This form of similarity searching is described as

Approximate Similarity Searching. This topic is not covered in detail in this paper.

but is mentioned here for completeness. An in depth coverage may be found in [53].

17

2.1.3 Unique Searching Methods

The techniques described thus far cover universal proposals for performing k-NN

similarity searches. There are however examples of k-NN search algorithms developed

for specific indexes that are inapplicable in a generic sense. Such algorithms depend

upon the structure developed to support them and are unable to be incorporated

with common indexing teclmiques. Clarkson [17] proposes a method that alleviates

the need to 1_)erform extensive backtracking by creating a GNAT—like data structure

where points are inserted into multiple subtrees. The tree is constructed by first

selecting representatives for the root(s) and then inserting each element 11. into not

only the subtree of its closest representative p. but also into the subtree of any

other representative p’ such that D(u. p') g 3 * D(u. p). During a query on object

aq. the search enters all subtrees such that D(aq. p’) S 3 * D(oq. p). As shown by

Clarkson. this is enough to guarantee the retrieval of the nearest neighbor and could

be extended to determine the set of k-NN.

2.2 General Metric Space and CDS Index Struc-

tures

Numerous data indexing structures have been proposed in the literature that support

efficient similarity searches in CDSs and general n'ietric spaces. Most. CDS data

18

index structures may be classified into two categories: data-partitioning and space-

partitioning. Examples of the former split an overflow node by partitioning the set

of its indexed data objects. The later. split an overflow node by partitioning its

representative data space (t}.'1_')ically via a splitting point in a dimension). Most of

these methods are not aI.)plicable in either NDDS or HDS due to some essential

geometric concepts such as a bounding box no longer being valid in such spaces.

An in depth discussion of continuous multidimensional indexing structures may be

found in [21].

Metric trees represent a wholly different. approach to indexing data. Here. data

points are not reli)resented in any type of dimensional space. rather metric trees

implement structures using only the distance information between data points and

some center origin/root. Such non-geometric trees are generally not optimized toward

NDDSs or HDSs. such as CDS implementations are toward CDSs. However. they do

provide a prevalent counter solution to implementing a vector space model for either

an NDDS or HDS. An in depth discussion of searching in metric space may be found

in [40].

This section presents an overview of commonly employed index structures for both

CDS and general metric space. Chapter 5 discusses some of the issues that. arise when

applying CDS based index structures to an HDS dataset.

19

2.2.1 KD-Tree

The KD-tree [8. 7]. was one of the first proposed d—dimensional data index structures.

Structured as a binary tree. the KD-tree recursively subdivides a dataset along ((1—1)—

dimensional hyperplanes whose direction alternates among the (1 possibilities. A

simple example is for d = 3. the splitting hyperplanes would be perpendicular to the

:r. y. and z axes. Each hyperplane must contain at least one point where interior

nodes have one or two descendants. Searching and insertion of new points are simple

procedures that. use the interior nodes as guide posts. Deletion however. is much more

complicated and invariably results in a. costly reorganization of the tree structure.

The KD-tree structure is highly sensitive to the order in which the points are

inserted. A poor insertion order generally results in data points being scattered

all over the tree. A solution to this problem was presented by Bentley et al. as

the adaptive KD-tree [9]. By relaxing the requirements that hyperplanes have to

contain a data point as well as being strictly alternating. the adaptive KD—tree was

able to choose splits that resulted in a much more even data distribution on both

sides of a particular branch. Conceptually. this resulted in pushing all data points

out to the leaf nodes leaving interior nodes to only contain dimensional information.

The adaptive KD—tree is unfortunately very st atic in nature; frequent insertions and

deletions require costly reorganizations to keep the tree balanced. However. the

adaptive KD—tree does perform well when the dat aset is known prior to construction

of the tree.

2.2.2 LSD-Tree

The Local Split Decision (LSD) Tree [24] is organized as an. adaptive KD-tree. parti-

tioning a dataset into disjoint cells of various sizes. Better adapted to the distribution

of a dataset than fixed binary partitioning. the LSD—tree uses a special paging al—

gorithm to preserve the external balancing property; i.e.. the heights of its external

subtrees differ by at most one. This is accomplished by paging out subtrees when

the structure becomes too large to fit in main memory. \Vhile this strategy in-

creases the efficiency of the tree structure it prevents the LSD—tree from being used

in general-purpose database systems; where such extensive paging is not available.

The split strategy of the LSD-tree tries to accommodate skewed data. by combin-

ing data-dependent as well as distributior‘i-dependent split strategies; SP1 and SP2

respectively. The former attempts to achieve the most balanced structure by trying

to keep an equal. number of data objects on both sides of the split. The later is per-

formed at a fixed dimension and position where the underlying data is in a known

distribution pattern. Determining the split position SP. is the linear combination

of applying one of the strategies: SP = (1SP1 + (1 -— (1)5132. where a = (0.1). The

factor oz may vary as objects are inserted or deleted from the tree. This property

21

increases the efficiency of the LSD tree. but makes integration with generic database

systems of unknown data distributions difficult.

2.2.3 R-Tree and R*-tree

The R-Tree [22] is a height-l'mlanced tree with index records/pointers in its leaf

nodes. similar to the adaptive KD-tree. Each node t) represents a disk page along a

d-dimensional interval Id(z) If the node is an interior node. all descendants p7; of v

are contained in the interval Id (v). If the node. is a leaf node. then I(1(a) represents

the d—dimensional bounding box of all the objects stored in the node. Nodes at the

same level may overlap area. Each node contains between m and AI entries unless

it is the root. The lower bound m. is used to prevent the degeneration of trees and

ensure efficient storage utilization. If the number of entries in a node drops below

m. the node is deleted and the descendants of the node are reinserted into the tree.

(tree condensation). The upper bound Al is used to maintain each node’s size to

that of one disk page. Being a height—balanced tree. all of the leaves are at the same

level and the height is at most [logm(N)] for N : (N > 1) index records.

Objects in an R-Tree are represented by their l\=linimum Bounding Interval Id(o).

To insert an object. the tree begins at the root and traverses a single depth first

path to a leaf node. At each depth layer. heuristics are used to determine which

descendant path to follow. The first is a calculation of which path would require

22

the least enlargement of area. to the interval I‘1 ('1’2‘) representing it. If there are

multiple paths that satisfy this criterion. Guttman et al. [22] proposed selecting

the descendant associated with the smallest interval. This process continues until

a leaf node is reached and the object pointer is placed within. If this results in an

expansion of the leafs interval. the interval change propagates upwards toward the.

root. If insertion results in the number of objects in the leaf node exceeding Al. the

leaf node is split. distributing the entries between the old and new disk pages. This

change also propagates upwards toward the root.

Deletion is handled in a similar manner to insertion. First an exact match search

is performed to determine if the selected element for deletion is contained in the

database. If so. the element is deleted. and the containing leaf node is checked

to see if the area interval may be reduced. If the area. is reduced. the change is

propagated upwards toward the root node. If this deletion causes the number of

elements to drop below the lower bound m. the remaining elements in the leaf node

are copied to temporary storage and then deleted from the database. the changes

caused by this deletion are again propagated upwards which generally results in the

adjustment. of several intermediate nodes. Once this is completed. the elements in

temporary storage are inserted back into the index structure following the insert

method described above.

23

Searching an R—Tree may be performed in a similar manner to the first stages

of insertion. At. each index node c. all index entries are checked to see if they

intersect with the search interval. If v is an interior node. the search continues to

all the descendant nodes 13.: who were found to intersect the search interval. If p is a

leaf node. the search adds all the entries that intersected the search interval to the

solution set. Due to interior nodes overlapping area. it is common for a search to

include multiple descendants from interior nodes. In the worst case scer‘lario. this

will lead to every single node in the tree having to be accessed.

Several weaknesses in the original tree construction algorithms were identified

through careful analysis of R-tree behavior under different data distributions. It was

identified that the insertion phase was a critical step in building an R-tree towards

good search performance [48]. The result of this study was the R*-tree. The R*-tree

provides a more controlled insertion performance by introduced a policy called forced

reinsert: if a node overflows. it is not split immediately. rather p entries are removed

from the node and reinserted into the tree. Through testing. it was proposed in [6]

that p should be about 30% of the maximum number of entries per node. AI.

Additionally. the R*-tree further addresses the issue of node—splitting by adding

more heuristics to avoid making random choices. In Guttman et al.’s original R—

tree algorithm. node—splitting policy was based solely on trying to minimize the

24

area covered by the two new nodes. This lead to many possible splits. whereby a

random split was selected. The R*-tree breaks these ties by taking three more factors

into account: overlap. perimeter values. and storage utilization of the two new nodes.

The reduction of the overlap between two nodes reduces the probability that a search

will have to follow multiple paths. Reduction in the perimeter of a bounding box

increases the density of descendants. which in turn increases the storage utilization

of the selected node. Increased storage utilization allows for a. greater area to be

created before a split is necessary. thereby decreasing the probability of a search

needing to follow multiple paths. These additions lead to a marked improvement in

performance of the R*-tree over the R—tree [48].

2.2.4 Burkhard-Keller Tree

The Burkhard-Keller Tree (BKT) [12] is considered one of the first metric trees and

may be seen as the basis for many of the metric trees proposed after. The BKT

is defined as follows. Let U represent. the universe of discourse for all valid objects

within the database. An arbitrary element 1) E U is selected as the root of the tree.

For each distance i > 0. define U. = {u E U. (1(u. p) = i} as the set. of all elements

at distance i from the root p. For all nonempty U... build child pi. hereafter labeled

a pivot. where the BKT is recursively built for U... This process is repeated until

no more elements are left for processing or there are only 6 elements left which may

25

then be placed within a bucket of size I).

The BKT supports range queries in discrete space effectively. Given a query (1

and a distance r. the search begins at the root and enters all children i such that

(1(1). q) — r S i S (1(1).q) + r. and proceeds recursively. \Vhenever a leaf/ bucket

is encountered. the items are compared sequentially. This g1.1arantees an accurate

solution due to the. BKT satisfying the Triangular Inequality Property.

2.2.5 Fixed Query Tree

The Fixed Query Tree (FQT) [3]. is an extension of the BKT. Unlike the BKT. the

FQT stores all elements at the leaves. leaving all internal nodes as pivot points. This

construction allows for fast backtracking by allowing the effective storage of a search

path in temporary memory. If a search visits many nodes of the same level. only one

comparison is needed because all of the pivots at that level are the same. Baeza-Yates

et al. demonstrated that FQTs performed fewer distance evaluations at. query time

than the original BKT. This improvement is at the expense of a taller tree. where

unlike the BKT. it is not true that, a different element is placed in each node of the

tree. The Fixed Height FQT (FHQT). originally proposed in [3]. was discussed as

a. variant of the FQT in [2]. Here. all leaves are at the same height h. regardless

of the bucket size (similar to many CDS implementations). This has the affect of

making some leaves deeper than necessary. However. because the search path is

26

maintained in temporary memory. this does not represent a significant detriment to

the performance of the FHQT.

2.2.6 Fixed Queries Array

The Fixed Queries Array (FQA) [14]. is described as a compact representation of the

FHQT. No longer described as a tree structure. the FQA is an array representation

of the elements stored in the leaves of an FHQT seen left to right. For each element

in the array. 12. numbers representing the branches to traverse in the tree to reach

the element from the root are computed. These numbers are coded in 6 bits and

concatenated in a single number where the higher levels of the tree are the most

significant digits. The FQA is then sorted by these numbers. As such. each subtree

in the FHQT corresponds to an interval in the FQA. Updates are accomplished using

two binary searches through the FQA. The FQA improves the efficiency of the FHQT

by being able to include more pivot points within the same amount of memory.

2.2.7 M-Tree

The M-tree [16] is a metric tree designed to provide efficient dynamic organization

and strong I/O performance in searching. Similar in structure to that of a GNAT [11].

the M—tree Chooses a set of representatives at each node and the elements closest to

each of these representatives are grouped into subtrees rooted by the representative.

27

Insertions are handled in similar methods to that of an R—tree. Upon an insertion. an

element is inserted in the “best" node. defined as that causing the subtree covering

radius to expand the least. In the result of a tie. the closest representative is chosen.

Upon reaching a leaf. the insertion of the element may cause overflow. (i.e.. the

number of elements equals M + 1). In such a case. the node is split in two and the

elements are partitioned between the resulting nodes. One node element is promoted

upwards to become a representative: this change propagates to the root of the tree.

Searches are performed by comparing the search radius r..- with each re1.)resentative‘s

covering radius rc in a node. For all representative in the node where r3 < re. the

search continues recursively through the subtrees of the effective representative. As

shown by Ciaccia et al. [16]. the M—tree shows impressive performance results against

CDS geometric indexes.

2.3 NDDS Models in Vector Space

Currently. NDDS i1’1(‘lexing techniques utilizing vector space representations of data

points are fairly limited. A11 exhaustive search of the literature yields only two meth-

ods specifically applicable towards indexing such a space representation; the ND—tree

and the NSP—tree. This work appears to provide the most significant results toward

performing lit-nearest neighbor queries within an NDDS. As such. both methods are

discussed in detail in the following subsections.

28

2.3.1 The ND-tree

The ND-tree [43] is inspired by popular CDS nmltidimensional indexing teclmiques

such as R-tree and its variants (the. R*—tree in particular). Like many of the tech-

niques that inspired it. the ND—tree is a balanced tree satisfying three conditions:

(1) the root has at least two children. unless it is a. leaf. and at most AI children;

(2) every non leaf and leaf node has between m and AI children or entries respec-

tively. unless it is the root; (3) all leaves a.1‘)pear at the same level. Here. AI and m

represent the upper and lower bounds set on the number of children/entries. where

2 g m g [AI/2].

Unlike previous examples of balanced trees. the ND-tree is designed specifically

for NDDSs and as such is based upon the NDDS concepts such as discrete rectangles

and their areas of overlap defined in Section 1.2.2. Due to this design consideration.

the ND-tree is able to take special characteristics of NDDSs into consideration that

metric trees are unable to utilize.

The ND-tree is a structure of indexed vectors from an NDDS Qd over an alphabet

A. where A.- represents the alphali)et of the ifh dimension. Leaf nodes consist of

tuples of the form (op. key). where key is a vector from (2.1 representing an object.

pointed to by op. in the database. A non leaf node N also consists of tuples. of

the form (cp. DMBR). where cp is a pointer to a child node N’ of N and Dil-IBR

29

represents the discrete minimum bounding rectangle. described in section 1.2.2. of

N’. The DAIBR of a leaf node N". consists of all the vectors indexed in N”. The

DA!BR of a non leaf node N’ is the set of all DAIBRS of the child nodes of N’.

To build an ND-tree. the algoritlnn ChooseLeaf is implemented to determine

the most suitable leaf node for inserting a new vector a- into the tree. Starting at

the root and progressing to the appropriate leaf. the algorithm ChooseLeaf must.

determine which descendant path to follow at each non leaf node it encounters.

Decisions are based upon three heuristics used in ascending order for tie breaks.

such that if 1H1 results in two or more possible paths. [Hg is used to narrow the

field further. and so on until a child nmst be chosen at random. These heuristics are

presented as follows:

1H1: Choose a child node corresponding to the entry with the least enlargement. of

overlap(Ek.DAIBR) after the insertion. [43]

1H1 chooses a child node Ek from entries E1.2.....Ep. m S p 3 AI and

1 g k S p. such that the insertion of vector (1 results in the least enlargement

of overlap(Ek.DAIBR). defined as:

30

p

ocerlap(Ek.DAIBR) = Z area(Ek.DAIBR fl EluDAIBR) (2.1)

raise}.-

1H1 results from the observation of the ND-tree experiencing similar retrieval

performance degradation due to the increasing amount of overlap between bounding

regions as seen for CDSs [10]. [‘38]. This increase in overlap is a major concern

for high dimensional indexing methods and as such has been described as the high

dimensionality curse. Unlike multidimensional index trees in CDS. the number of

possible values for the overlap of an entry in an NDDS are limited. implying ties may

arise frequently. As such 1H2 and 1H3. two area based heuristics. are given to break

possible ties:

1H2: Choose a child node corresponding to the entry E. with the least enlargement

of area(Ek.DAIBR) after the insertion.[43]

IH3: Choose a child node corresponding to the entry Ek with the minimum

area(Ek.DAIBR) . [43]

Once any node contains more entries than the maximum allowable value. the

overflowing node is split into two new nodes N1 and N2 whose entry sets are from

a partition defined as follows: let N be an overflow node containing AI + 1 entries

ES 2 {E1. E2. EM+1}- Partition P of N is a. pair of entry sets P = {ES1. ESQ}

31

such that: (1) ES1UES2 =2 ES; (2)ES1flES2 = (A; and (3) m S |ES1|.m S [ESQ].

Partition P is determined through the algorithm SplitNode. which takes an overflow

node N as the input and splits it into two new nodes Nl and N; whose entry sets

come from a partition as defined above. This is a critical step in the creation of

an ND-tree as many split possibilities exist and a good partition may lead to an

efficient tree. Qian et al. [43] proposes handling this in two phases: (1)determine

the set of all possible partitions; (2) select the partition most likely to lead to an

efficient tree structure. The exhaustive approach to implementing this process is very

costly. As shown by Qian et. al.. even for relatively small. values of Al. for example

50. an exhaustive approach would have to consider a result so large as to make the

operation impractical: here. 51! z 1.6 x 1066 pernmtations. Thus. a more efficient

method of generating a (smaller) set of candidate partitions is required.

A more efficient method of generating candidate partition sets stems from the

property that the size of an alphabet A for an NDDS is usually small; i.e.. in genome

se uence exam)les A = 4. Let. I .19.l be the elements of A. in this caseQ I 1 - A]

{(1. g. t. c}. The number of 1:)ermutations on the elements of an alphabet is thus also

relatively small. here 4! = 24. For example. < a.c.g.t > and < g.c.a.t > are

both permutations of the set A. Using these oli)servations Qian et. al. proposes an

algorithm to choose a set of candidate partitions consisting of d * (AI — 2m + 2) *

(IAl!) candidates. For example. if d = 25. AI = 50. m = 10. and |A| = 4. the

32

alphabet pernmtation based algorithm only considers 1.92 x 104. Further. because

a permutation and its reverse yield the same set of candidate partitions [43]. only

half of the aforen'ientioned candidates need be considered; a significant improvement

over the exhaustive method.

It is possible that alphabet A for some NDDS is large. In this case. the aforemen-

tioned method no longer 1')ro\«'ides as significant an improxr'ement over the exhaustive

method. If such a case arises. Qian et al. propose determining one ordering of entries

Ain the mte1floxy node for each dimension rather than consider 1 orderings on each

dimension. This is accomplished by creating an auxiliary tree for each dimension Ti

and sorting the component sets generated from T..

Once a candidate set of partitions has been generated. SplitNode selects an ap-

propriate partition based upon four heuristics. as follows:

SH1: Choose a partition that generates a minimum overlap of the DMBRs of the

two new nodes after splitting.[43]

SH2: Choose a partition that splits on the dimension where the edge length of the

DMBR of the overflow node is the largest.[43]

SH3: Choose a partition that has the closest edge lengths of the DMBRS of the two

new nodes on the splitting dimension after splitting.[43]

33

5H4: Choose a partition that minimizes the total area of the DMBRs of the two

new nodes after splitting.[43]

Heuristics SH1 through SH4 are applied in ascending order until there are no ties

present. If a tie still exists after the application of SH4. a partition is chosen at

random.

Searching an ND—tree is performed similarly to searching an R—tree. Starting at

the root. each child nodes DMBR is compared to the search radius to determine if

there is an intersection. If the node intersects the search continues recursively.

2.3.2 NSP-Tree

A common problem among data partitioning based index Sil‘llC'tLII‘CS. such as R*-tree

in CDS and ND-tree in NDDS. is that of regional overlap. For such index structures

an overflow node is split by grouping its indexed vectors into two sets DS1 and DSQ

for two new tree nodes such that the new nodes meet a minimum space utilization

requirement. Commonly. as the dimensionality of such a space grows. the probability

of large overlapping regions increases thematically. This overlap causes a drastic

reduction in the efficiency of searching within such a structure. A solution to this

problem was proposed for CDSs in the form of s15)ace—partitioning data indexes. The

LSD tree discussed earlier is an example of such methods. where an overflow node is

34

split by partitioning its corresponding data space into two non overlapping s1.il.)s1‘)aces

for two new tree nodes. The indexed vectors are then distributed among the new

nodes based upon which subspace they belong. \Vhile this method does lead to high

search performances in such structures. the nodes in the tree generally no longer

guarantee a minimum space utilization.

Unfortunately. as was the case for the ND-tree. the methods used in creating

CDS implementations of a space—pentitioning index structure do not directly apply

to an NDDS. Thus. a new structure. labeled the NSP-tree [44]. was proposed. The

NSP—tree utilizes many of the concepts described for the ND—tree. For example.

the methods used to represent the universe of discourse and mininnnn bounding

rectangles remain the same between the two tree structures.

The key difference between an ND-tree and an NSP-tree lies in the method of

partitioning the data points into smaller subspaces. The NSP-tree splits an overflow

node based upon the frequency distribution of the vectors indexed within the node.

such that an even distribution is seen between the two new tree nodes. This distri-

bution method differs from CDS models. where a split is performed upon a chosen

dimension and the data points are distributed in relation to the split point. This

method no longer applies in a space where no ordering exists among the data points.

In an NDDS it is impossible to describe some point 1rd being less than or greater

than some point yd without violating the semantics of the dataset.

To increase search efficiency. the NSP—tree utilizes multiple bounding boxes within

each subspace to help eliminate the amount of dead space that is included within

the subspace; dead space is any area covered that does not contain any indexed

vectors. This is similar to techniques used in CDS. however an interesting property

of an NDDS is able to exploited by the NSP-tree. Consider two 2—din’1ensional points

P1(:r1.y1) and P2(.r2. 112). The MBR necessary to cover such points in a CDS would

be a rectangle with points P1 and P2 representing corners along one of the diagonals.

Such a representation includes a rather large portion of dead space. (roughly all the

area is dead space). In an NDDS however. the MBR may be represented as the

Cartesian product of the two points {.11. 1‘2} X {.1/1. yg} which contains a very small

dead space {(rl. yg). (1'2. 111)}. As shown by Qian et al.. the NSP-tree shows favorable

performance comparisons with the ND-tree. particularly for skewed data [44].

2.4 HDS Models in Vector Space

This section describes currently available methods for vector space indexing of HDS

objects. Similar to the previous section describing NDDS indexing methods. there

exists a limited amount of HDS indexing methods. Although it should be noted

that. metric space models such as M-tree could also be used to index such objects.

36

research by Qian et. al [43] and Chen et. al [15] suggest that this is not as efficient as

indexing methods prioritized toward HDSs. In this section we focus upon two more

recently proposed HDS indexing methods. the NDh-tree and the CND-tree.

2.4.1 NDh-tree

The NDh-tree. as proposed by Qian [41]. is an extension of the ND-tree. The key

difference is that instead of discrete minimum bounding rectangles. the NDh—tree

utilizes hybrid minimum bounding rectangles. Initial results reported by Qian [41]

demonstrate the effectiveness of utilizing an index structure for HDS objects specif-

ically designed for such a. space. The ND}"-tree serves as an inspiration for the

CND—tree introduced by Chen et al. [15]. In this dissertation we focus upon the

more recent contribution and will describe key differences as necessary.

2.4.2 CND-tree

The CND-tree [15] is similar in structure and function to the R*-tree and the ND-

tree. As such. the CND-tree is a balanced tree with leaf nodes containing the indexed

vectors. The vectors are reached by traversing a set of branches starting at the root

and becoming more refined as one traverses toward the leaves. Each vector is inserted

into the tree after an appropriate position is found. The relevant minimum bounding

rectangle may be either enlarged or split to accommodate the insertion.

37

The key difference between the CND-tree and related non-hybrid trees (R*-tree

for continuous space and ND-tree for discrete space) is the way in which a min-

imum bounding rectangle is defined and utilized. 111 the CND-tree. a minimum

bounding rectangle contains both continuous and non-ordered discrete dimensions.

A hybrid minimum bounding rectangle (HMBR). with (1D discrete dimensions and

dc continuous dimensions. for a set of hybrid rectangles G = R1 X Hg X X Rn

with discrete sub-rectangles BID 2 SM X X StdD and continuous sub-rectangles

R? = S-i.c1D+1 X X Si-‘ID’L‘IC‘ (i.e. R.- = RID X RF) is defined as follows:

HAIBI?(G) : {rig-21s.} x x {eggs-AD} x

(min SLdDH‘ max SLdDH) X ... X (2.2)

(111111 Si.(lD+dC ~111'dx Si.(lD+dC) a

where S‘iJ (1 S j S (ID) is a set of elements/letters from the alphabet of the j-th

dimension and S.‘kidD + 1 S k S dD + (1C) is an interval from the Art," dimension.

2.5 Determining Distance

An integral part of any similarity search. algorithm is the distance measure employed.

Because we are interested in how “close" one object. is to another. the selection of

a distance measure provides the semantic definition of what “close” means for the

current applications.

'
I

.
.
_
_

For NDDSs. the inability to be ordered along an axis renders standard .forms of

distance measurement. such as Euclidean or Manhattan. inapplicable. In turn. a

common method of calculating the distance l_)etween two discrete objects is to apply

the Hamming measurement. Essentially. this measurement, represents the number of

dimensions between two (l-dimensional vectors that contain different elements. This

is described formally as follows:

a
n

, , 0 if v. [2'] = 172p] .

DHammil’l- 1"2) = Z . (2.3)

:1 1 otherwise

N
.

This distance is useful in discrete spaces due to its non-reliance upon dataset se-

mantics. particularly for equality measurements. However. its usefulness declines

rapidly when applied to other operations. such as grouping. due to its limited car-

dinality. The cardinality of a NDDS. CardDH ()(U) for a d-dimensicmal dataset U

with an alphabet size A] for each dimension 2' in d. is calculated as the product of

the alphabet sizes from each dimension. as follows:

(1

i=1

Using the aforementioned genome sequence example. a. 25-dimensional dataset

with an alphabet size of 4 for each dimension would have a cardinality of

39

1.125889906842624: that is. there are over 1015 possible distinct. elements in the

dataset. However. if the Hamming distance formula is used to calculate the distance

between the objects. there are only (1 + 1 (26) different possible distances between

any two objects.

For HDSs. Chen et al. [15] utilized a. non-Euclidean measurement for calculating

the distance between a vector (1 :2 (a[1]. o[2].ct[dD + (10]) and an HMBR R =

} to perform range queries:{S} X SQ >< X S‘]D+dC

n

dist(R.o) = Z f(s, ()[l]) (2 4)

i=1

where

0 if i is a discrete dimension and (1.: E S;

_ or i is a continuous dimension and

ffSiaal’l) =

min(S.') — (St S d.- S max(S,,;) + 6t

1 otherwise

Equation 2.4 essentially discretizes the data of the continuous dimensions utilizing a

tolerance value of 6t determined by an application expert. This method is similar to

that used in several machine learning t€('lll‘llql_1€b‘[l3. 20. 39].

40

CHAPTER 3

k-Nearest Neighbor Searching in

NDDS

In this chapter. we consider k-Nearest Neighbor (k-NN) searching in NDDSs. Search-

ing in NDDSs presents several new challenges that we discuss. Additionally. we

present a formal definition of a k-NN query/search and introduce a new distance

measure suitable for searches in NDDSs. A generalized form of this distance mea—

sure (and the benefits inherited from this generalized form) is presented in Chapter

3.1 Motivations and Challenges

Numerous techniques have been proposed in the literature to support efficient sim-

ilarity searches in (ordered) continuous data spaces. A majority of them utilize a

multidimensional index structure such as the R-tree [22]. the R*-tree [6]. the X—tree

41

[10]. the K—D-B tree [46]. and the LSDh-tree [25]. These tecl’miques rely on some

essential geometric propertics/concepts such as bounding rectangles in CDSs. Much

work has centered around a filter and refinement. process. Roussopoulos et al. pre—

sented a branch-and-bound algorithm for finding k-NNs to a query point. Korn et al.

furthered this work by I‘n'esenting a multi-step k-NN searching algorithm [35]. which

was then optimized by Seidl and Kriegel [50]. In [31]. a Voronoi based approach

was presented to address k-NN searching in spatial network databases.

Little work has been reported on supporting efficient similarity searches in non—

ordered discrete data. spaces. Limited existing work on index-based similarity

searches in NDDSs has utilized either metric trees such as the M-tree [16] or the

ND—tree and the NSP—tree recently proposed by Qian et al. [42. 43. 44]. Unlike the

M-tree. the ND-tree and the NSP-tree indexing techniques were designed specifically

for NDDSs. It has been shown that these two techniques outperform the linear scan

and typical metric trees such as the M-tree for range queries in NDDSs. Metric trees

generally do not perform well in NDDSs because they are too generic and do not take

the special characteristics of an NDDS into consideration. On the other hand. Qian

et al.’s work in [42. 43. 44] primarily focused on handling range queries. Although a.

procedure for finding the nearest neighbor (i.e.. 1-NN) to a query point was outlined

in [43]. no empirical evaluation was given.

The issue of k—NN searching in NDDSs is in fact not a trivial extension of earlier

work. NDDSs raise new challenges for this problem. First. we observe that. unlike

a k-NN query in a CDS. a k-NN query in an NDDS based on the conventional

Hamming distance [23]. often has a large number of alternative solution sets. making

the results of the k-NN query non-(leterministic. This non-determinism is mainly

due to the coarse granularity of the Hamming distance and can sharply reduce the

clarity/usefulness of the query results. Second. existing index-based k-NN searching

algorithms for CDSs cannot be directly applied to an NDDS due to lack of relevant

geometric concepts/measures. On the other hand. the algorithms using metric trees

for a CDS are suboptimal l_)ecause of their generic nature and ignorance of special

characteristics of an NDDS. Third. the inforn'iation maintained by an NDDS index

structure may become very 111isleading for traditional CDS search ordering strategies.

such as those presented by Roussopoulos et al. [47]. This scenario can occur as the

distribution of data within the index structure shifts over time.

To tackle the first challenge. we introduce a new extended Hamming distance.

called the Granularity-Enhanced Hamming (GEH) distance. The GEH distance

improves the semantics of k-NN searching in NDDS by greatly increasing the deter-

minism of the results. To address the second challenge. we propose a k-NN searching

algorithm utilizing the ND-tree. Our algorithm extends the notion of incremen-

tal range based search [Roussopoulos et al. 1995] (generalized for metric space by

43

Hjaltason and Samet [Hjaltason and Samet 2000]) to NDDSs by introducing suit-

able pruning metrics and relevant searching heuristics based on our new distance

measure and the characteristics of NDDSs. Some preliminary results for uniformly

distributed datasets were presented in [32]. Our study shows that the new GEH

distance provides a greatly improved semantic discrin‘iinating power that is needed

for Ar-NN searcl‘iing in NDDSs. and that our searching algorithm is very efficient.

in supporting k-NN searches in NDDSs. In this dissertation. we demonstrate that

our k-NN searchng algorithm is efficient in both uniformly distributed datasets and

non-uniformly distributed datasets using zipf distributions as an example. Further,

we present a theoretical performance model and demonstrate that the performance

of our algorithm matches very closely to what is predicted by this model. To address

the third issue, we introduce a method for determining the probability of a vector’s

existence within any sub—tree of an ND-tree. We demonstrate this probability in-

formation can be used to provide a new search ordering strategy that significantly

increases the performance of our search algorithm when the information maintained

by the index structure is misleading.

The rest of this chapter is organized as follows. Section 3.2 formally defines the

problem of k—VN searching. derives the probability of a vector existing within an

ND-tree, introduces the new GEH distance in NDDSs. and discusses its properties.

Section 3.3 presents our index-based lit-N N searching algorithm for NDDSs. including

44

it s pruning metrics and heuristics and theoretical 1’)erformance model. Section 3.4

(liscusses experimental results.

3.2 k-Nearest Neighbors in NDDS

In this section. we formally define a k-NN search/query and identify a major prob-

lem associated with k—NN searches in NDDSs. To overcome the problem. we propose

a. new extended Hamming distance and discuss its properties. Additionally. we in-

troduce a method for determining the prol_)ability of a vector/record"s existence in

any particular subtree of an ND-tree (see Chapter ‘2). based upon the properties of

NDDSS and the index tree.

3.2.1 Definition of k-NN in NDDS

\Vhen considering a query in an NDDS. the dataset may be depicted as a set of

Concentric spheres with the query point located at the center (as shown in Figure

1). Each sphere contains all data points that have 1‘ or less mismatching dimen-

Sions with the query point. where 7‘ represents the layer/radius of the particular

Sphere. In general. the solution set of k-nearest neighbors for a given query point

1(Ilay not be unique due to multiple objects having the same distance to the query

point. Thus, there may be multiple candidate solution sets for a given query point

and I: value. One way to resolve the non-uniqueiwss/non-determinism of a k-NN

45

Search is to find the minimum radius r such that a sphere of 7‘ will contain at least

I; data points/neighbors. while a sphere of radius r — 1 contains less than k neigh-

1.) 01‘s. Although such an ap1_)roach indeed resolves the non-determinism 1:)1'oblem. the

solution to such a h-NN search may not be what the users are expecting. since they

usually not only want to know the minimum distance/radius for a k-NN search but

also want to know the actual k-NX neighbors. Note. that the non—determinism also

theoretically exists for a k-NN search in a continuous data space although it is not

as prominent as it is in an NDDS since. the chance for two data points having the

same distance to a query point in a continuous data space is usually very small. In

this dissertation. we adopt the traditional approach to finding the actual neighbors

for a k-NN search in an NDDS and resolve the non-(leterininism problem in another

“ray. Note that. once the. k—nearest neighbors are found. the above minimum radius

'7‘ is also found.

We define a candidate solution set of k-nearest neighbors for a. query point as

f(.)llows:

Definition 1. Candidate k-Nea'rest—Ne'ighbors: Let the imi'verse of (l‘l8(?()’ll.1'8€

for variables Al- and 3,: (1 g '2' 3 Ir) be the set of all objects in the database. Let IaNNS

denote a candidate solution set of k-ncarest neighbors in. the database for a query

46

Figure 3.1. Example of NDDS data. points distributed by distance

47

quaint q and D(.r. y) denote the distance between the objects I and y. Then til/NM is

d (:3fined as follows:

VBI.B.2....,Bk [El-L100. A.) s zleDa. 8.)] A

Vm.ne{1.2 k} ll’” # 7’) —* (Am 74 A'I'zll

Az’V’YNS = {‘41.Ag.....flA-} :>

(3.1)

Equation 3.1 essentially says that A: objects/neighbors .41. x42. . . . , AA. in ANBS have

the minimum total distance to q out of all possible sets of 1: objects in the database.

This definition is in fact valid for both continuous and discrete data spaces. Consider

Figure 1. if k = 3. there are three possible sets of neighbors that satisfy Equation

3.1: {01.02. (13}. {(11. ()2. a4}. and {01.03. (14}. Each candidate solution set is found

within a range of r wl‘ien a range of 7' — 1 would yield less than k neighbors (here.

7‘ = 3). Thus. each candidate solution set is a size A: subset of the set. of neighbors

t hat. would be found using above minimum distance 7'.

Since AENNS is a set of neighlmrs. there is no ordering implied among the neighbors.

I11 the following recursive definition we provide a procechiral semantic of a candidate

Aim-nearest. neighbor. which is based on an ordered ranking of the neighbors in the

database for a query point. q.

48

Definition 2. Candidate kill-Nearest-Neighbor: Let the universe of discourse

for variables A and B be the set of all objects in the database. Let Ak denote a

candidate l1” h’-near(—3st 'nmghbor in the database for a query point q. We recursively

define Ak as follows:

.41: A 2:» VB (D(q. 4) g D(q. 8)).

B é {141.1424A_1}/\

A é {.41..4«24k—ll

Ak = A :> VB (D(q..4) g D(q. 8)) for l: 2 2.

(3.2)

Definition 2 can be used to produce the candidate 16"th given by Definition 1. as

stated in the following proposition.

Lemma 3.2.1. Each. candidate ANNE produced by Definition 2.2.2 is contained in the

set of candidate AMNSS given by D(finition 2.2.].

Proof. Proposition 2.2.3 states that the set of candidate LMVSS given by Definition 1

can be produced by Definition 2. This leads to the hypothesis that if a solution set

NN = {141.142.Ak_1} satisfies Equation 3.1 for I; — 1 objects, then Equation

49

3.2 will select a Arm neighbor AA. such that NN U AA. will satisfy Equation 3.1 for k

objects and thus be consistent with Definition 1.

We first consider a base case Where h‘ = 1. Equation 3.2 yields the following

neighbor A1 :

.41€{A:VB(D((1.A)§ D(q.B))}.

The solution set {.41} satisfies Equation 3.1 for h = 1 and thus is consistent with

Definition 1. Equation 3.2 may then be used again to yield neighbor Ak:

B A.A‘4._ /\ ,
Ake A:VB “1 2 " 1} (D(q..4)go(q.B)) fork22..

14 ¢ {.41. ‘42. . . . , fik_1}

The above function returns the object in the dataset that has a minimum distance

from the query object out of all objects in the dataset not currently i1‘1cluded in the

solution set. Thus the addition of a kl” neighbor for I; Z ‘2 will result. in a minimal

distance to the query point for Lt objects if the set of neighbors .41 - Ak_1 has a

minimal distance for Is — 1 objects. Our base case shows that this is true for 1 object.

thus the hypothesis is true for all values of k. El

From the above definitions (and Figure 1), we can see that there may be

50

multiple possible ANSSS for a given query. Therefore. A:\l\S is generally not. unique.

The non-uniqueness/non-determinism of AANS has an impact. on the semantics of

the k-nearest neighbors. \V'e define the degree of non—determinism of k-nearest

neighbors by the number of possible hXXSs that exist for the query. This degree of

non—determinism is computed by the following proposition.

Lemma 3.2.2. The number AA? of candidate lN‘VSs is given by

Ak = —,—'— (3.3)

where t is defined by D((1.Ak._t) # D(q. .4A._,+1) = D(q,.4k_t+2) = = D(q./1k);

/

Aj(1 S j _<_ h?) denotes the jm—nearest neighbor; N is the number of nearest neighbors

in the database that have the same distance as D(q. Ak).

Proof. This section provides the derivation of the number A}; of candidate AMVSS.

This may be interpreted as the number of possible solution sets from a dataset that

satisfy Equation 3.1 for k objects. The value of AA? is largely influenced by the

number of objects within a given solution set that have. the same. distance to the

kth
query object. as the neighbor. This value, represented by t, is formally defined

as follows:

51

D((1~ Alt—t) 75 D((IsAk—Hrl) = D(a- Alt—HQ) = = 19(qu):)

Each neighbor Ak_, - Ak may be replaced by any other potential neighbor from the

dataset a, where. D(q. a) = D(q. AA) and the solution set will still satisfy Equation

3.1. \Ve denote the set of all potential neighbors as N]. Thus, A}; is the. number of

t-element subsets that. can be composed from the set of N]. This can be represented

l o ’I I ’ a o O

as the binomial coefficient of t and N Wthll decomposes into Equatlon 3.3:

Note that t denotes the number of objects with distance D(q. Ak) that have to be

included in a. k;\l\S. If t = Is, all the neighbors in a ANbS are of the same distance

I

as D(q, Ak). In this case Ale—t is inapplicalfle. The values of N and t depend on

parameters such as the dimensionality. the database size. and the query point.

For a h—NN query on a database in a continuous data space based on the Euclidean

distance, kNNS is typically unique (i.e. A}; = 1) since the chance for two objects

having the same distance to the query point is usually very small. As a. result, the

non—determinism is usually not. an issue for h-NN searches in continuous data spaces.

C
I
!

t
o

However, non—(leterminism is a common occurrence in an NDDS. As pointed out in

[42, 43] the Hamming distance is tyj.)ically used for NDDSS. Due to the insufficient

semantic discrimination between objects provided by the Hamming distance and the

limited number of elements available for each dimension in an NDDS. Al: for a k-XN

query in an NDDS is usually large. For example. for a. dataset of 2A! vectors in

a 10—dimensional NDDS with uniform distril‘nltion. the average A}; values for 100

random k-NN queries with A? 2 1.5.10 are. about 8.0. 19.01\'.45.51\[respectively, as

shown in Figure ‘2. This (glen‘ionstrates a high degree of non-(leterminism for k-NN

searches based on the Hamming distance in an NDDS. especially for large k values.

To mitigate the problem. we extend the Hamming distance to provide more semantic

discrimination between the neighbors of a k-NN query point in an NDDS.

3.2.2 Extended Hamming Distance

Intuitively. the Hamming distance indicates the number of dimensions 011 which the

corresponding conmonents of o and ,3 differ. As discussed by Qian et al. [42. 43].

the Hamming distance is well suited for search applications in NDDS. 111 particular,

we note that applications with different alphabet sets for different dimensions or with

no known similarity matrix (needed for many edit distances) present strong cases for

using the Hamming distance when searching. Additionally. recent work has applied

the Hamming distance when searching in large genome sequence databases [37, 29].

1.0E+08 , , e e‘

1.0E+07

1.0E+06

1.0E+03 3

1.0E+02

N
u
m
b
e
r

o
f
S
o
l
u
t
i
o
n
S
e
t
s

0
O

m
m

8
3

s
A

0
1

Y \ ‘t

l L

1.0E+01 - __ M LL :7
—s fi—fi

/_7

F7,

1.0E+OO w ~ - ~~ 74* - *~e --e——

4 8 12 16 20

Number of Vectors in Database x 10"5

Figure 3.2. Comparison of A}; values for the Hamming distance

Although the Hamming distance is very useful for exact matches and range queries

in NDDSS. it does not provide an effective semantic for k-NN queries in NDDSs due

to the high degree of non-determinism. as mentioned previously. \Ve notice that

the Hamming distance does not distinguish equalities for different elements. For

example, it treats element a. = a. as the same as element b = b by assigning 0 to

the distance measure in both cases. 111 many applications such as genome sequence

Searches, some matches (equalities) may be considered to be more important than

Others. Based on this observation. we extend the Hamming distance to capture the

Semantics of different. equalities in the distance measure.

Several constraints have to be considered for such an extension. First. the extended

distance should enhance the granularity level of the Hannning distance so that its

sem antic discriminating power is increased. Second. the semantic of the traditional

HaIIIIDiIlg distance needs to be preserved. For example. from a given distance value.

one should be able to tell how many dimensions are distinct (and how many dimen-

sions are equal) between two vectors. Third. the extended distance should possess

the triangular 1,)1‘operty so that pruning during an index-based search is possible.

\V’e observe that matching two vectors on a dimension with a frequent.ly—occurred

e\®,111ent is usually more important than matching the two vectors on the dimension

with an unconnnon (infrerpient) element. Based on this observation, we utilize the

frequencies of the elements to extend the Hamming distance as follows:

d . . g .

1 1f ' .13

DGEHUI- ti) = E “[1] #1 [I] . (3.4)

i=1 §f(o[z]) otherwise

VVllere

f((i[i]) = 1 — frequency((1[1]).

This extension starts with the traditional Hamming distance; adding one to the

tOtaI distance for each dimension that does not match between the two vectors.

The difference is that, when the two vectors match on a particular dimension. the

frequency of the common element (i.e. (1(1'] 2 dill) occurring in the underlying

database on the dimension is obtained from a lookup table generated by performing

an initial scan of the dataset. This frequency value is then subtracted from one and

then added to the distance measure. Thus. the more frequently an element occurs.

the more it will subtract from one and thus the less it will add to the distance measure,

thereby indicating that the two vectors are closer than if they had matched on a very

uncommon element. This frequency based adjustment results in the possibility of

fractional distance values rather than just integer distance values (as seen when using

the traditional Hamming distance).

The factor of 5 is used to ensure that the frequency-based adjustments to the dis-

tance measure do not end up becoming more significant than the original Hamming

distance. This guarantees that the solution set (1:338) returned using this distance

will be among the candidate solution sets returned if the Hamming distance were

used instead. We also note that function f(o[i]) is not restricted to the definition

given in Equation 3.4. So long as the values of f(o~[i]) are within the range of [0, 1).

the factor of 511 guarantees the semantic of the Hamming distance is maintained. In

Chapter 4, we explore this concept more thortmghly and present a generalized form

of Equation 3.4.

1’

From the distance definition. we can see that. if m S DGEHm/d'll < m. + 1

(m = 0. 1.. . . .d). then vectors a and i3 mis—match on m. dimensions (i.e.. match on

d — m. dimensions). Additionally. the function f (o'[1']) plays a factor in preserving

the triangular property of Equation 3.4. as shown in Appendix B.

Clearly. unlike the trzulitional Hamming distance. which has at most d + 1 (in-

teger) values — resulting in a quite coarse granularity. this new extended distance

allows many more possible values leading to a. refined granularity. \Ve call this

extended Hamming distance the Gmnularrity-Enhuxnccd Hamming (GEH) distance.

Due to its enhanced granularity. the GEH distance can dramatically reduce Ak in

Proposition 3.2.2. leading to more deterministic k-NN searches in NDDSs. As an

example. consider again Figure 1. If we assume that vectors ()2. (13. and (14 each

match query vector q in only one dimension such that og[1] = q[1]. (.13[2] = q[2]. and

04B] 2 q[3]. and we also assume f(q[3]) < f(q[4]) < f(q[‘2]). The use of the GEH

distance resolves the non—(leterminism seen earlier when k = 3. Here. the solution set

would be {(11. 0-3. (14} (one of the candidate A:\.\S when the Hamming distance was

used) since DGEH((1-”1) < DGEH(q.o;;) < DGEH((1.Q4) < DGEH(q.o-2). On a

larger scale. for the aforementioned dataset of 2.11 vectors in a 10-dimensional NDDS

under the uniform distrilmtion, the average AA? values for 100 random k-NN queries

with A”. = 1.5.10 are about 1.09. 1.11. 1.06. respectively (see Figure 3.3 in Section

3.4.1).

57

In fact... the Euclidean distance measurement can be considered to have the finest.

(continuous) granularity at one end. while the Hamming distance measurement has

a very coarse (discrete integers) granularity at the other end. The GEH distance

measurement, provides an advantage in bringing discrete and continuous distance

measurements closer to each. other.

3.2.3 Probability of Valid Neighbors

In many scenarios. it is useful to know the probability/likelihood of encountering

vectors within an index tree that are within the current search radius to a given

query vector. For the purposes of our discussion. we label each such encountered

vector as a valid neighbor (1‘; where V(,,D(q. o) g r. q is the query vector and r is

the current search radius. To derive this 1:)robabi1ity. we first consider the Hamming

distance and then extend our solutions to benefit from the enhancements provided

by the GEH distance.

For an initial case. we can assume that our index tree has maintained a relatively

uniform distril’mtion of elements within its subtrees. In a well balanced tree (ND-tree.

M—tee. etc...). this may prove to be a very reasonable assumption. as most indexing

methods will attempt to evenly distribute elements within their subtrees. When we

consider an ND-tree as our indexing method. the 1:)rol.)ability that accessing a subtree

with associated DMBR R = 5‘1 X SQ x . . . >< Sd will yield a particular element a in any

dimension may be estimated as the reciprocal of the magnitude of the alphabet set

on that dimension represented by 1?. Therefore. the probability of a specific element,

(L occurring in dimension ii is estimated as:

This calculation proves to be fairly accurate so long as the assumption of uniform

distribution holds. The accuracy. and therefore effectiveness. of this calculation

begins to degrade as the distribution of elements per dimension within a subtree

bGCOIIlCS IlOll- 1111 l f()I'II'I .

The true probability 1)((1)RJ-. may be estimated far more accurately by determining

the local frequency ratio of element (1. within a subtree. with associated DMBR R.

on dimension '1'. as follows:

1’((’)R.i = fl ((1)1128 (3-5)

where

of vectors o in Rs subtree where (1M 2 a

Mala-i =
total # of vectors in R's subtree

This method is not reliant upon the indexing method to provide an even distribution:

Equation 3.5 remains accurate even for indexes with heavily skewed distributions.

The probability of em-ountering valid neighbors when examining any particular

subtree of an ND-tree is analogous to the probability of such neighbors existing in

that subtree. Each (_limensicm in an NDDS is assumed to be independent. therefore.

the prol_)ability value of encrmntering specific elements over all dimensions may be

determined by the product of the probability values of encountering a specific element

in each dimension. Thus the probability of selecting any 1.)articular vector 0- =

((1‘[l].€1[2]... . .0di at random from the subtree. with associated DMBR R is the

following:

d

PE((1.I?) = H p ((i[i])RJ-. (3.6)

i=1

As defined in Section 3.2.2. the Hamming distance represents the number of

non-matching dimensions between any two vectors. The probalnlity of a subtree

containing a vector (1' where DHU,,.,,.,,(q.o) = () may be determined using Equa-

tion 3.6. However. because at most one vector within an ND-tree will satisfy

DHammW-a) = 0. we also have to consider the probability of a. subtree contain-

ing vectors [3 = (_,x‘3[1]. .3[‘2]. 13M). where DH(.I.,,....(q,13) = 3 (z e {1. 2.d}).

Lemma 3.2.3. Let Y represent the set of dimensions where .13 [1)] # q[l'J-] and. let X

60

represent the set of dune11.91.0118 ‘U’hf’l'fi’ .3[\J-] = q[-XJ-]. The probability of selcctmg a

particular vector .3 from the subtree with associated DMBR R . 111/161‘s DHU,T,.,,,,((1. ,3) =

3(0 33< d). at mndmn '18 green. as the following (note that 2: = ll’I):

 1Y1

PvE(1.)1? Hp 1)..ij *H(l—113Y[j).rj]1?}) (3.7)

j=1

Proof. As described in Equation 3.6. the probability of a specific vector existing in a

subtree. represented by R. is the product of the probabilities of each element of the

vector in the corresponding dimension of the subtree: the probability of the element

is estimated by I)(.0)inl)1?.Xj (Equation 3.5). The probability of anything except the

specified element is 1 _1’(!3inl)R.YJ~- Thus. the probability of a specific vector. which

does not match the query vector indimensions. existing in a subtree with Ris the

product of two terms: the product of 11(153 [XJ]) RXJ- in the matching dimensions and

the product of 1 — 11(3 [11]) R‘yj in the non-matching dimensions. El

Lemma. 3.2.3 describes the method for determining the prol'1ability of encoun—

tering a vector that matches the query vector on a particular set of dimensions

X. An example would be determining the probability of encountering a vector 3

in a lO—dimensional dataset that matched a query vector q in dimensions 1.. 3. 8.

and 9. In this example. X 2 {1.3.8.9} and Y = {2.4.5.6.7.10}. resulting in

61

z = DH(1.,,I,,,((1. 3) = 6. However. to determine the probability of encountering a vec—

tor at a. distance 3. we are not only interested in this one particular partial-matching

vector. but also all possible partial-matching vectors that may be found at a distance

2 from the query vector.

Proposition 1. Let B '1'cprcsent the set of all rectors from the given dataset in

an NDDS where 1’3 E B : [DH(,,m,,(q.3) = z]. The probability that a subtree with

associated DMBR R = 51 x 52 X. . .>< Sd '11-’11! contain (1. 1.113ct0'1'3 where DH(1.1?1.11‘1((1- 3) =

z is given as the following:

PS;(q. 1?) = Z PNE(13.1?). (3.8)

o’eB

Proof. The 1.)robability of a subset. of independent objects existing in a. set is the

summation of the probabilities of each of the individual objects within the subset

existing in the set. Thus. the probability of a subset of vectors existing within a.

subtree. each of which has a specified number of dimensions matching a query vector.

is the summation of the 1‘11‘obabilities of all vectors within that subset existing in the

subt ree.
D

For example. the probability of selecting a vector .3 at random from a subtree with

associated DMBR R. where DH(1,,,,_,,,(11. 3) = 1. is given as follows:

(52

P3MaRh= pMMWWMlnpmw—HNI—pMMD

+MdHWWBD~WI-pmw-HDPWM)

+U—pMUWPMMl~pMW—HWWWU

\Ve note that as the dimensionality of the dataset increases. this calculation can

17 .

L-)). One possible solution 1s to create a hash structurebecome costly. i.e. ()(d >1: (d

in. a pre-processing step. that stores binary arrays representing the different. combi-

nat ions of matches and non-111atcl1es for each particular distance value. Here. the set

of keys is the set of integers (0. 1.d). and the values are the sets of binary arrays

“fit 11 a corresponding 111,111’1ber of ()'s. For example. the key 3 would retrieve the set

of binary arrays that. contains all possible 1‘1er111utations with exactly three ()‘s. The

set. B for a particular distance 111ay be determined by retrieving the corresponding set

of binary arrays. where for each array. a value of 1 would correspond to a dimension

in X and a 0 a dimension in 1' (see Proposition 2.4.1). This method can (‘lrastically

reduce CPU time.

The summation of the probability values given by Equation 3.8 for each integer

(_ilstance z E {0. 1. 7‘} yields the probability of the subtree containing a vector ,3

t 1lat 18 Within range 1‘ to the query vector (i.e. DH(1111.111((1- 3) S 1). This is expressed

f - .ornially
aS follows:

63

P\\H(.)=1,1? :PS (.).qR (3.9)

:20

Equation 3.9 111ay therefore be used to give an accurate measure as to the likeli-

}1()(:)d that. searching within any subtree will update a solution set when using the

H31 Imming distance. Enhancing the granularity of the Hamming distance leads to an

ellllancement of the neighbor probability calculated in Equation 3.9. \Vhen using

the GEH distance. r is no longer strictly an integer. Thus. it is possible for a valid

neig,hl)or to exist at a distance [1] < DGEH(11.113) g r. where r is a real number.

An adjustment to Equation 3.8 is needed to properly account for possible neighbors

Wit hin this range.

Proposition 2. Let B’ 'I‘eprescnt the set of all rectors from the given. dataset in

. I . . .

an NDDS 'urhere ,3 E B : [DHU,,,,H(11.3) = [1)]. The probability that a subtree with

DAIBR R = SI X 52 x.. .XSI 111/l contain a r11:‘o1d3 uhc1e(() < DGEHfQ- 3) < 1)

is given as the following:

PR(q 1?.1) :11; PvE(1.151?) (1~—)1-),11.q), (3.10)

”III. ere

64

1 7f RadjidJIl _<— 7‘ — lri

0 otherwise

15 (1 — (1]. £113.11) 2

ftqul) if1'3l1'l = all]

0 1.) th eru “is e

1

,
1 ‘

1:1

Proof. The proof for Proposition 1 shows that Equation 3.8 yields the probability of

a vector. which has : 1‘11isn1atching dimensions with the query vector. existing in a

particular subtree. If .. = (1]. this equation will determine the prol‘1ability of a vector

with [_r_| mismatching dirne11sions with the query vector existing in the subtree. The

. / , -

set of these vectors 1s represented by B . Functlon 1) creates a. subset of these vectors

I

by removing all vectors '11. from the set B . where DGEH(11.11) > 1‘. Equation 3.10 is

. . . ’ ’

the summation of each of the remannng vectors 11 . where Vr’eB, : DGEHU’ .q) S r.

Thus Equation 3.10 yields the probability of a vector. whose distance to the query

vector is between [r] and r to the query vector. existing in a 1:)articular subtree. [:1

The additional granularity provided by Equation 3.10 allows 11s to refine Equation

3.9 to Iiiake use of our GEH distance as follows:

PNNGEH (q. R. r) = PR(q. R. r) + PS~ (q. R). (3.11)

Equation 3.11 111ay be used to give an accurate estimate of the likelihood that search-

i 11g within any subtree will update a solution set when our enhanced distance measure

is used. \Ve use this measure in section 3.3.2 to develop an ordering heuristic that

provides a conservative assessment of whether or not to visit a particular subtree

that is beneficial to search performance in non—uniformly distributed databases.

3.3 A k-NN Algorithm for NDDS

To efficiently process k-NN queries in NDDSs. we introduce an i1‘1dex-based k—NN

searching algorithm. This algorithm utilizes properties of the ND-tree recently pro—

posed by Qian. et al. [42. 43] for NDDSs. The basic idea of this algorithm is as

follows. It descends the ND-tree from the root following a depth-first search strategy.

When 1; possible neighbors are retrieved. the searching algorithm uses the distance

infornlation about the neighbors already collected to start pruning search paths that

can be proven to not include any vectors that. are closer to the query vector than any

of the current. neighljiors. Our algorithm is inspired by earlier incremental ranged

based implementations presented for CDS by Roussopcmlos et al. [47] and Hjal-

tason and Samet [‘26] (generalized for 111etric space). Our algorithm extends these

implementations to NDDSs by introducing metrics and heuristics suitable for such

a space. The details of this algorithm are discussed in the following subsections.

66

3.3. 1 Heuristics

In the worst. case scenario. this search would enconmass the entire tree structure.

However. our extensive experiments have shown that the use of the following

heuristics is able to eliminate most search paths before they need to be traversed.

ll

lVIINDIST Pruning: Similar to [47]. we utilize. the minimum distance (MINDIST)

'
I
F
.
_

«-

between a query vector q and a DMBR R = 31 x 82 x x S... denoted by

n‘2.di3t(q. R). to prune useless paths. Based 011 the GEH distance. MINDIST is

formally defined as follows:

if qll‘l ¢ 51.

folll) Otherwise

1111‘list(q. R) =

i=1

(3.12)

Q
I
H
H

where

f(q[1’]) : 1 — frequency(q[i]).

Thls Calculation is then used with the Range of the current k-nearest neighbors

(Wlth respect. to the query vector) to prune subtrees. Specifically. the heuristic for

67

pruning subtrees is:

H1 : If 1ndist(q. R) 2 Range. then. prune the subtree associated with R.

By taking the closest distance between a DMBR and q. we are guaranteeing that no

vectors that are included in the DMBR‘s subtree are closer than the current Range

and thus need not. be included in the continuing search.

MINMAXDIST Pruning: We also utilize the minimum value (.\IIN1\11AXDIST)

of all the maximum distances between a query vector q and a DMBR R along each

dimension. denoted by 1n1ndist(q. R). for pruning useless paths. In simple terms.

1nmdist(q. R) represents thes‘hortest distance from the vector q that can guarantee

another vector in R/subtree can be found. For a vector q and DMBR R = 81 x SQ X

. X S(. h‘IINMAXDIST is formally defined as follows:

Tnandist(q.R)=121kigd f,” ((1131:) + Z f1\I(‘-1ll- Si) (3-13)

- * 121.1%}:

where

68

.
s
‘
n
-
J
—
' .

.

f, ((1[A'].SA.) —_- 7f((1lf1l) if(Ilkl E Sk

1 otherwise

1 .

f((1ll 1f{(1l’l}— 5:

f.’\[((1ll~SA) = U I

1 otherwise

where f() on the right hand side of the last two Equations is defined in Equation

3.12.

In general terms. the summation of f1] determines the number of dimensions where

every vector in the associated subtree is guaranteed to have a 111atching element with

the query vector (since the component set Si on the corresponding dimension contains

only the corresponding element q[i] in the query vector). In these cases. a value of

f(q[2']) is added to the distance (i.e. the GEH adjustment for a matching dimension).

Q
J
r
—
i

The value. of fm determines if there is another dimension (not in those checked for

f111) in which at least one vector in the associated subtree will match the query vector.

111 this case. a value of g1] f (q[k]) is added to the distance. A value of 1 is added for

all other cases in f;I and f,,,. The summation of these values yields the minimum

distance (adjusted for GEH) that can be guaranteed a vector will be located from the

query VeC-tor in the associated subtree. based upon the information in the DMBR. For

example, given a query vector q = (a. b. c) and a DAIBR = {(1.11} x {b} x {(7. a}. we

have fm((1. {a (1}) + fM((b {b}) +f\1(c{(. (1}): tiff-((1) + :1;f(b) + 1. which indicates

that a Vector (i.e. (a.b. ?)) matching (1 on the first two dimensions is guaranteed

(59

F
a
u
-
.
w
.
u
a
!
-
_
.
.
-
_
_

to exist in the corresponding subtree. The minimum TII'IIHILS'“) of such distances is

sought in Equation 3.13. If Range 2 1111111113“). it is guaranteed that at least one

valid neighbor can be found in the corresponding subtree.

To process k-NX searches in our algoritlnn. 112mdist() is calculated for each non-leaf

node of the ND-tree using query vector (1 and all the DMBRs (for subtrees) contained

in the current node. ()nce each of these MINMAXDIST values (for subtrees) have

been calculated. they are sorted in ascending order and the 11’” value is selected as

MIJVAIAXDISTA. for the current node.

The km value is selected to guarantee that at least k vectors will be found in

searching the current node. This selected AlINil]AXDISTk is then used in the

follovvi 11 g heuristic:

H25 If AJINMAXDISTA. (node)< Range. then. let Range = ilIINMAXDISTA. (node)

Optimistic Search Ordering: For those subtrees that are not pruned by heuristic

H1 01‘ H2, we need to decide an order to access them. Two search orders were

suggested in [47]: one is based on the ordering of MINDIST values. and the other is

based on the ordering of MINMAXDIST values. The MINMAXDIST ordering is too

“
u
L
i
l
i
fi \

pessimistic to be practically useful. Accessing the subtrees based on such an ordering

is ahnost the same as a random access in NDDSs. From an extensive empirical

Study. we found that accessing subtrees in the optimistic order of MINDIST values

during a k-NN search in an NDDS provided the more promising results. This study

was performed with the assun‘iption that the ND—tree is well structured. This access

order is shown formally as f(i>llows:

H3: Access subtrees ordered 1111 ascemltng value of 1ndist(q. R). In the meat of a tie,

choose a, subtree at Tandem.

Conservative Search Ordering: A problem associated with search ordering

heuristic H3 is that it optimistically assumes that a vector with a. distance of the

MINDIST value exists in the subtree associated with the. relevant DMBR. Typically

this is not. the case in an NDDS: the set of elements on each dimension from different

vectors often yields a combination that is not an indexed vector in the corresponding

subtree. In some instances. the actual distribution of elements per dimension within

a. subtree Inay be significantly (filifferent from what is expressed in the representing

DMBR. As discussed in Section 3.2.3. this can be estimated by calculating the dif-

 ference between the assumed uniform distrilmtion. ’ 1511’ and the actual distrilmtion.

N

estimated by frequency in Equation 3.5.

When the difference between the assumed distribution and the actual distribution

becomes large for multiple elements or multiple dimensions for a query, the likelihood

of a vector with a distance of MINDIST existing in the relevant DMBR greatly

decreases. “ihen this occurs. it. is more appropriate to order the access of subtrees

by the calculated probability of the subtree containing a vector whose distance to

the query vector is less than or equal to the current range. as shown in Equation

3.11. This access order is given formally as follows:

H4: Access subtrees in the descending order of the probability of contatnrng a vector

(1, where DGEHf‘I- (1) g Range. This probability is calculated by PNNGEH-

Heuristic H4 may be considm‘ed as a conservative approach to ordering while heuristic

H3 may be seen as an optimistic approach to ordering.

3.3.2 Algorithm Description

Our k—NN algorithm adopts a depth first traversal of the ND—tree and applies the

aforementioned heuristics to prune non-productive subtrees and determine the access

order of the subtrees. The description of the algorithm is given as follows.

k-NN Query Algorithm: Given an ND—tree with root node T, Algorithm k-NN

Query finds a set of k—nearest neighbm's. 1111-1intained in queue ASKS. to query vector (1

that satisfies Equation 3.1 in Definition 1. It invokes two functions: ChooseSubtree

and Ré‘lI‘l("l."€;\l(1’l.(]llbors. The former chooses a subtree of a non—leaf node to descend.

while the latter updates a list of h-nearest neighbors using vectors in a leaf node.

Algorithm 1 k-NN Query

Input: (1) query vector q; (2) the desired number k of nearest neighbors;

(3) an ND-tree with root node T for a given database.

Output: a set LNDS of 117-nearest neighbors to query vector q.

1: let A'NNS = Q). N = T, Range 2 30. Parent 2 NULL

2: while N # NULL do

3: if N is a non-leaf node then

4: [NN, Range] 2 ChooseSubtrt ((N. (1. k. Range)

5: if NN # .-’\’L»"LL then

6: Parent 2 N

7: N = NN

8: else

9: N :2 Parent

10: end if

11: else

12: [ANNE Range] 2 Rctrieeechghbors(N. q. k. Range. l1;\"."\1"S)

13: N = Parent

14: end if

15: end while

16: return ld\\S

In the algorithm. step 1 initializes relevant variables. Steps 2 - l5 traverse the

ND-tree. Steps 3 - 10 deal with non—leaf nodes by either invoking ChooseSubtree to

decide a descending path or backtracking to the ancestors when there are no more

subtrees to explore. Steps 11 - l4 deal with leaf nodes by invoking Retricer-1Neighbors

to Update the list of current Ar-i'iearest neighbors. Step 16 returns the. result (1.533).

73

Note that ChooseSabtree not only returns a chosen subtree but also mav update

Range using heuristic H2. If there are no more subtrees to choose. it returns NULL

for NN at step 4. Similarly. Retriez'e.\-'eiglzbors not only updates ASKS but also may

update Range if a closer neiglibor(s) is found.

Function ChooseSabt'z'ee: The effective use of pruning is the most. efficient. way

to reduce. the I/() cost for finding a set of k-nearest neighbors. To this end. the

heuristics discussed in Section 3.3.1 are employed in function Clic’mseSabtree.

Function 2 ChooseSabz‘ree(N. q. k. Range)

1: if list L for not yet visited subtrees of *\ not exist then

2: use heuristic H2 to update Range

3: use heuristic H1 to prune subtrees of N

4: use heuristic H3 or H4 based upon user criteria to sort the remaining subtrees

not pruned by H1 and create a list L to hold them

elseC
I
!

6 use heuristic H1 to prune subtrees from list L

7: end if

8: if L 7$ (2) then

9 remove the 1st subtree .\'N from L

10: return LVN. Range]

11: else

12: return [NULL Range]

13: end if

In this function. steps 1 - 4 handle the case in which the 11<')11-leafis visited for the

first time. In this case. the function applies heuristics H1 - H4 to update Range.

Prune useless sul.)trees. and order the remaining subtrees (their root nodes) in a list

L- The subtrees that are not in this list are those that have already been processed

or DI‘Uned. Step 6 applies heuristic H1 and current Range to prune useless subtrees

T4

for a non—leaf node that was visited before. Steps 8 — 12 return a chosen subtree

(if any) and the updated Range. Note. that heuristics H3 and H4 are suitable for

different datasets. Their effects on performance and practical selection guidance will

be discussed in Section 3.4.4.

Function RetriezterN’eighbors: The main task of Ret‘rieeeNe'z'ghbo-r is to examine

the vectors in a given leaf node and update the current k—nearest neighbors and

Range.

Function 3 Ret'r'ie'z'exN'eighb0'r.s'(N. (1. 1:. Range. kNWS)

1: for each vector v in N do

2: if DGEH(q.-v) < Range then

3: kzNNS = laNNS U {a}

4: if |kNNS| > k then

5: remove vector 11’ from [ANS such that 'v' has the largest DGEH01: 'v’) in

l;\ll\S

6: Range 2 DGEH((1- U”) such that v” has the largest DGEH((1~. 1:”) in ANNE

7: end if

8: end if

9: end for

10: return [1.51%. Range]

A vector is collected in A:\l\S only if its distance to the query vector is smaller than

current. Range (steps 2 - 3). A vector has to be removed from ANNS if it has more

than k. neighbors after a new one is added (steps 4 - 7). The vector to be removed

has the largest distance to the query vector. If there is a tie. a random furthest

vector is chosen.

75

3.3.3 Performance Model

To analyze the performance of our k-NN search algorithm. presented in Section 3.3.2,

we conducted both empirical and theoretical studies. The results of our empirical

studies are presented in Section 3.4. In this section. we present a theoretical model for

estimating the performance of our search algorithm. For our presentation. we assume

that our algorithm employs both heuristics H1 and H2. We also assume an optimistic

ND-tree structure. where a subtree's associated DMBR is reasonalgily representative

 of the vectors within the subtree; that is Va.i€{l.2 _____d} : f[(a.)R,,j ~ 51‘ . With this

' ‘ l 7.

assumption. our search algorithm employs H3 as its search ordering heuristic.1

Because of the unique properties of an \DDS. there is no defined center for the

data. space. This may also be interpreted as any point may be considered to be at.

the center. Thus. we can define a bounding hyper-sphere around any point within

the data space and determine the likely number of objects contained within.

Definition 3. The area unthin a distance .3 from point p in a d-dimensional NDDS

with alphabet set A for each dimension is the total number of possible unique points

contained within the hyper sphere of radius 3 centered at. point p. This value is

fOTmally calculated as the summation. of the number of points earisting in Spherical

layers as follows:

\

1The assumption of a reasonably optimistic tree structure covers the majority of ND-trees gen—

erated in our empirical studies. Non-optimistic tree. structures, where our fourth heuristic would

PFOVide a more beneficial ordering method. are considered empirically in Section 3.4.4.

76

~

4v

1

Are-(1(2):: (i (

i:(_)

Al —1)'i. (3.14)

Note that Area(:) is independent of point p under the uniform distribution as-

sumption. Equation 3.14 may be used to calculate the total area of the data space

by setting :: = (1. However. this value 111ay be calculated directly as follows:

Area(d) = IAId. (3.15)

The probability of an object existing within a distance of z from any point p is the

quotient of Equations 3.14 and 3.15. as follows:

Area(:)

P--'s s 3 Z _.(“M) Area“)

(3.16)

Proposition 3. The number of likely points contained within. a distance .3 from any

point p is the product of the number of points within the dataset N and the probability

of a point existing within. a distance of z from p. This is shown, formally as follows:

11(3) : Pe.rists(3) * N: (3-17)

The lower/optimal search bound for our 1')erformance model is determined as a

77

reasonable distance to assure a specific number of objects. It is reasonable to assume

that a minimum distance that needs to be searched is one that is likely to yield at.

least. I; neighbors. Thus a lower bound all 2 z. is found by solving Equation 3.17 such

that L(d[) 2 k and Ltd! — 1) < I". The lower bound for performance I/O i'nay then

be estimated as the number of pages that are touched by a range query of radius (11.

The range query performance is derived similarly to the model provided by Qian et

el, [43].

H—1

10,» = 1+ Z (n,- * Pi.;)~ (3.18)

2'20

where 712- represents the estimated number of nodes within the ND-tree at a height of

i. Pi": represents the probability a node at height i will be accessed in the ND—tree

with a search range of :3. and H denotes the height. of the index tree.

However. because a k-NN query generally begins with a search range equal to the

theoretical upper search bound. an adjustment must be made to account for the I/O

incurred while searching with a Item-optimal search range. We have estimated this

value as the number of nodes within each level of the ND-tree raised to a power

inversely proportional to the height of that level:

78

H—1 1

Adj 2 Z ”(37). (3.19)
1

i=1

Adding this adjustment to the range query performance model yields the following:

I —1 1

IONN 2 1+ (no >+< Fez) + Z (72,- * FAQ-+7219?) . (3.20)

i=1

The performance of our search algorithm can be estimated by using Equation 3.20

setting 3 to d].

3.4 Experimental Results

To evaluate the effectiveness of our GEH distance and the efficiency of our h-NN

searching algorithm. we conducted extensive experiments. The experimental results

v

1are presented in this section. Our k-N.’ searching algoritl‘nn was implemented using

an ND-tree in the C++ programming language. For comparison purposes, we also

implemented the h—NN searcl‘iing using an M—tree in the C++ progrannning language

for a set of experiments. All experiments were ran on a PC under OS \Vindows XP.

The I/0 block size was set at 4K bytes for both trees. Both synthetic and genomic

datasets were used in our experiments. The synthetic datasets consist of uniformly

distributed lO-dimensional vectors with values in each dimension of a vector drawn

from an alphabet of size 6; other special case synthetic datasets are listed in the

following subsections. The genomic datasets were created from Ecoli DNA data

(with alphabet: (a. g. t. c}) extracted from the GenBank. Each experimental data

reported here is the average over 1()() random queries.

3.4.1 Effectiveness of GEH Distance

The first set of experin‘ients was conducted to show the effectiveness of the GEH

distance over the Hamming distance. by comparing their values of AA: as defined in

Proposition 3.2.2 in Section 3.2.1.

Figure 3.3 gives the relationship between A1: and database sizes for both the GEH

and Hamming distances. when k=1. 5 and 10. The. figure shows a significant decrease

in the values of AA? using the GEH distance over those using the Hamming distance.

This significant improvement in performance for the GEH distance is observed for

all the database sizes and k values considered. Figure 3.3 shows that when the GEH

distance is used. Ah values are very close to 1. indicating a. promising behavior close

to that in CD85.

80

1.0E+08 - - h i - - -. ".4" _W

1.0E+O7 1

.9 i
1

CD .(01.0306

C

£10905

2 .

81.0E+04 - Gs . A“ .— _ .. C1- ' "‘ ' ’1'“

“5 ‘ \ ~ \ _ , I ' "C" -B-Hamm(k=1)

L ‘- ’ -e- Hamm(k=5)

8 10803 -=’.-Hamm(k=10)

E
—+—GEH(k=1)

31.0E+02 «i +GEH(k=5)

Z +GEH(k=10)

1.0E+00 a fi__*___$,_é_

4 8 12 16 20

Number of Vectors in Database x 10"5

Figure 3.3. Comparison of Al‘ values for the GEH and Hamming distances

3.4.2 Efficiency of k-NN Algorithm on Uniform Data

One set of experiments was conducted to examine. the effects of heuristics H1 — H3,

presented in Section 3.3.1. on the performance of our k—NN searching algorithm pre—

sented in Section 3.3.2 on uniform data. we considered the following three versions

of our pruning strategies in the experiments.

Version V1: only heuristic H1 is used.

Version V2: heuristics H1 and H2 are used.

Version V3: three heuristics H1. H2. and H3 are used.

81

34o . -— e ~ ~ ~ e e ~ a

l

320 '
.277” Effie.

//’ \v‘}. i

l , m .

m 300L fl , d g

3 ,/ /Nm 1

g 280 ' I, //

8 / ///

< ‘ 123 ,fi/

.3: 260 ' ,1” X“
'(2 ’1’] //(

D a/ ./

240 ‘ / aw

/ A.
”X —+\:+- V2

220 . j r ~75:- V3

200 ~~ ~ ~ ~ mi - ———- —

4 8 12 16 20

Number of Vectors in Database x 10"5

Figure 3.4. Effects of heuristics in the k—NN algorithm using ND-tree with k = 10

Figure 4 shows that V2 provides a little llllpI‘OVCIIlGIll in the number of disk accesses

over V1. However. V2 does make good 1.)erfor1nance improvements over V1 for some

of the queries. Thus. we have included H2 in version V3. As seen from the figure, V3

provides the best performance improvement among the three versions for all database

sizes tested. Hence V3 is adopted in our k-NN searching algorithm and used in all

the remaining experiments. except where noted.

Another set of experiments was conducted to compare the disk I/O performances

of our k-NN searching algorithm using an ND-tree. the At-NN searching based on

an M-tree. and the linear scan for databases of various sizes. Figure 3.5 shows the

performance comparison for our k-NN searching algoritlnn using an ND-tree and the

82

.

linear scan. Figure 3.6 shows the performance comparison in number of disk accesses

of our k-NN searching algoritlnn using an ND-trec and the k-NN searching based

on an l\I-tree. From the figures. we can see a significant reduction in the number of

disk accesses for our lr—NN’ searching algoritlnn using an ND-tree over both the M—

tree searching algorithm and the linear scan. Additionally. the results in Figure 3.5

show that the performance gains of our lf-NN algoritlnn increase as the database size

increases. As the database grows larger. the density of points within the available

data space increases as well. This causes the search range to decrease at a faster

rate. due to finding more points at closer distances to the query point. resulting in a.

greater percentage of subtrees being pruned by H1.2 Figure 3.5 also shows that, for

all database sizes tested. our algorithm. implemented using an ND-tree. always used

less than 25% (10% for database sizes of 1.1] or more vectors) of the disk accesses

than the linear scan.

Figure 3.7 shows the performance comparison of our algoritlnn inijj)lemented us-

ing an ND-tree and the linear scan method on genomic datasets. Since a genome

sequence is typically divided into intervals of length (i.e., the number of dimensions)

11 or 15, both scenarios are inchided in the figure (for li=10). This figure demon—

strates that the performance behavior of our k-NN searching algoritlnn on real-world

2It should be noted that this behavior is not. unique to the ND-tree. An in-depth discussion

of this behavior was presented by Chavez et al. [14]. Although Chavez et al. focus primarily on

searching in general metric spaces. the same principles apply here.

83

25.0% - 7 . a , c

(D

3 r1

8 20.0% 1 ; k=1

8 a":

<1: ‘x -9- k=5

i 15.0% . __ F10

o ‘

"" ..A\ \\ T}-

O 10 00/ ‘ ‘CD - O i \‘\\ \\ \F‘ruagn

8)
\\\ \\ El\\\x»

E \\ lift, ——————— ‘3“ ~~~~~~~ 3::\i\\~l~_1

a 5.0% . ..---.__\R~
L

_ _m .

(D
m;

n.

0.0% ~ ~#—— 7 —~ ~ ”WWW -..__-.____.___. a

4 8 12 16 20

Number of Vectors in Database x 10"5
Figure 3.5. Performance of the k—NN algoritlnn using ND-tree vs. the linear scan on

synthetic datasets with various sizes

genomic datasets is comparable with that we. observed for the synthetic datasets.

To observe. the performance improveinent of our k—NN searching algoritlnn over

various dimensions. we ran random k-NN queries (with k = 10) 011 two series of

genomic datasets: one contains 250K vectors for each set and the other contains 1

million vectors for each set. As seen from Figure 3.8. the performance gain of our

algorithm over the linear scan is quite significant for lower dimensions. However. the

amount of this improvement decreases with an increasing number of dimensions. This

phenomenon of deteriorating performance with an increasing number of dimensions

is also true in continuous data spaces due to the well-known dimensionality curse

problem. Additionally. we have observed the 1‘)erforn'iance i1nprovernent of our k-

84

i_+_M-Tree (k=1)

-I— M-Tree (k=5)

8 2500 (+M-Tree(k=10)

8 [«e-ND-Tree (k=1)

g 2000 i-Ec‘i-ND-Tree(k=5)

< i tND-Tree (k=10)

a
5 1500 -

“6 1

b 1000 -

.o i

E ':

:3 i

z 500 .

i a + :1: :3 F;
0 F. __f ,_____*'.-_ ___. - ._ /_ ___ _ \' . j)

4 8 12 16 20

Number of Vectors in Database x 10"5

Figure 3.6. Number of Disk Accesses comparison of the k-NN algorithm using ND-

tree vs. the k-NN searching based on l\I—tree

35.0% V

8 x -a1<-- 15 Dimensions

g; 300% —:2— 11 Dimensions

0) \

:3 25.0%

x \

8 20.0% I \x

g 15.0% x.

m \T\‘\.

g 10.0% .3. “xxx“

8 _ \Sl“ ““““x~-- .

CT.) 5. 00/0 bt\\é\\ S . F 3‘

0.0% g ‘“

2.5 5 7.5 10 12.5 15 17.5 20

Database Size x 10"5

Figure 3.7. Performance of the k-NN algoritlnn using ND-tree vs. the linear scan on

genomic datasets with various sizes for A'le

Q
C

C
H

120.0% .r

(D

.. l3 100.0% .

8 ‘ ~5— 250K Vectors

o

< 80.0% . +1.0M Vectors

E i

D iu.- 60.0%

0

°’ 10)

£9 4OIY%

C ,

a)

e ig; 20.0%

“L i

0.0% l

91011121314151617181920 2122 23 24 25

Number of Dimensions
Figure 3.8. Performance of the lt-NN algoritlnn using ND-tree vs. the linear scan on

genomic datasets with various dimensions for #210

NY searching algoritlnn over various alphabet sizes. We performed random k-NN

queries (with k = 10 and d. = 10) on databases of 2.11 vectors. Figure 3.9 shows that,

the effects of increasing alphabet. size are similar to the effects of the dimensionality

CHI‘SG.

Further, we have compared the disk I/O performance of the h-NN searching all—

goritlnn using the GEH distance with that for the At-NN searching algoritlnn using

the Hamming distance. Figure 3.10 shows the percentage I/ Os for the GEH distance

versus the Hamming distance for various database sizes and k values. From the fig-

ure. we can see that the number of disk accesses decreases for all test cases when the

GEH distance is used as opposed to the Hamming distance. In fact. the algoritlnn

86

35.0%

a, o -—k=1

8 30.0/0 'B'k=5

a"; -:';-.-k=10

8 25.0%

0

<

E 20.0%

cu .

“5 15.0% 4
CD

CD ’. 2

g 10.0% 5

CD

8
(D 0 .0. 5.0/o ;

0.0%

4 6 8 10 12

Alphabet Size
Figure 3.9. Performance of the k-NN algorithm using ND-tree vs. the linear scan on

synthetic datasets with various dimensions for [“210 and (1'. = 10

using the GEH distance needs only 50% ~ 70% of I/Os that the algorithm using the

Hamming distance needs for all test. cases. we feel this is due to an increase in the

pruning power of heuristic H1 for the GEH distance. These results indicate that the

use of the GEH distance will cost less in disk accesses while providing a far more

deterministic result than that using the Hamming distance for a k-NN query.

3.4.3 Efficiency of k-NN Algorithm on Skewed Data

Experiments were also conducted to examine the I/0 performance of our algorithm

upon datasets of varying levels of skewness as compared to that of a. linear scan.

We applied our algoritlnn. with heuristic version V3 from Section 3.4.2, to ND—trees

87

”Ill

70.0% . 7 ., “,2 _

g; ? —Ei— k = 1

8’, 66.0% i

a) i

0 .
o ,

<

i) 62.0%

D

.

B
l

a) 58.0%
.

C)

53

C

(D

8 54.0%

(D

o.

50.0%'- _ -_w— 7 - .-. __%

4 8 12 16 20

Number of Vectors in Database x 1045

Figure 3.10. Performance comparison for the. k—NN searching using ND—tree based

on GEH and Hamming distances

constructed from datasets with zipf distrilmtions of 0.0. 0.5, 1.0. and 1.5.

Figure 3.11 shows significant reduction in the number of disk accesses for our k-NN

searching algorithm over the linear scan for all database sizes tested. Similar to the

performance gains for uniform data (see section 3.4.2), our k-NN searching algoritlnn

provides an increased reduction of disk accesses as the database size increases. Figure

3.11 also shows that our k-NN searching algoritlnn provides increased performance

gains as the level of skewness increases (i.e. the zipf distribution level increases).

These results indicate that our searching heuristics (see Section 3.3.1) are able to

identify and prune more. useless search paths as the data. becomes more skewed.

88

20.00/0 i - *7 7 ,,..__ — —— — 7 7 ,7 .-- a. , ___

16.00/0 l

12.0% '
9
°

‘
2

o
\

P
e
r
c
e
n
t
a
g
e
o
f
D
i
s
k
A
c
c
e
s
s
e
s

P O o\
°

 0.0% . - J

4 8 12 16 20

Number of Vectors in Database x 10"5
Figure 3.11. Performance of the k-NN algorithm using ND-tree vs. the linear scan

on synthetic datasets with various sizes and zipf distributions

3.4.4 Efficiency of k-NN Algorithm on Non-Homogeneous

Data

Experiments were conducted to show the effectiveness of our heuristic using the prob—

ability formulas presented in Section 3.2.3. We compared the I/O performance be-

tween the k-NN algoritlnn using our probability-based subtree ordering heuristic H4

against the k-NN algorithm using our traditional MINDIST subtree ordering heuris-

tic H3, both of which utilize ND-tree. We observed that. although the two heuristics

often yield a comparable performance. there are cases in which our probability-based

heuristic significantly outperformed the MINDIST one. These cases can occur when

the distribution of the dataset shifts over time. For instance. dimensions that are

89

1200[— .. f. -f r

900

N
u
m
b
e
r

o
f
D
i
s
k
A
c
c
e
s
s
e
s

O
)

O O

2 4 _ 6_ _ 8 _ 10

Number of Misleading Dimen3ions
Figure 3.12. Performance of the k-NN algoritlnn using ND-tree on datasets with

various misleading dimensions (A: = 1)

highly relevant to the partitioning of vectors into subtrees early in the construction

of an ND-tree may no longer be relevant at later stages of the construction. These

dimensions may become misleading when searching for the records inserted into the

tree during these later stages. Figures 12. 13, and 14 show our results when searching

for 1, 5, and 10 neighbors, respectively. Each search was performed on an ND—tree

containing 5M vectors using each of the following heuristic combinations:

Version 81: heuristics H1, H2. and H3 are used;

Version SQ: heuristics H1. H2. and H4 are used.

The ND-trees constructed from these datasets are known to contain misleading DM-

90

2000 . .. _ _. _

1600 -

1200 l

800

400

N
u
m
b
e
r

o
f
D
i
s
k
A
c
c
e
s
s
e
s

2 104 6 8

Number of Misleading Dimensions

Figure 3.13. Performance of the k-NN algoritlnn using ND-tree on datasets with

various misleading dimensions (A? = 5)

4800 , _2

(I)

(D

8 3600

CD

0

0

<(

j l

5 2400 .

75

5

g i
3 1200

2

l

0 , a _

2 4 . . _ 8 . 10

Number of Misleading DimenSIons

Figure 3.14. Performance of the k-NN algoritlnn using ND—tree on datasets with

various misleading dimensions (1" = 10)

01

BRs in regards to what vectors are present in the relevant subtrees. For our selection

of heuristic H4. we compared the values of . 1.

lbil

 and f[(a.)R,- for each node at one

level below the root node and labeled a misleading dimension as one in which there

was a discrepancy greater than 3 : 1 between the two values compared. The num-

ber of misleading dimensions indicates the known number of dimensions in each of

the DMBRs at one level below the root node that meet this criterion; that is, for a.

particular dimension '1'. > 3 * f[((I)R‘,' V l—bLl < 31; * flfaleo
'1

The results in Figure 12 show that the use of heuristic version 82 provides benefits

for most cases tested when searching for only a single neighbor. The cases where

the number of misleading dimensions was either very large or very small still show

better I/() performance when using heuristic version 81. The results in Figure 13

show that the reduction of I/() when heuristic version 82 is used is much larger

for all cases tested when searching for five neighbors rather than a single neighbor.

The results in Figure 14 show that the reduction of 1/0 continues to grow when

searching for ten neighbors when using heuristic version SQ. These results show that

in general, as the number of neighbors being searched for increases. the performance

benefits when using heuristic version S2 increase as well. Additicmally, we notice

that in Figures 13 and 14. the performance when using heuristic version 82 becomes

similar to the performance when using S1 as the number of misleading dimensions

approaches the total number of dimensions. This is likely due to the reduction of

non-misleading paths available. As the number of non—misleading paths approaches

0. heuristic version 82 will be forced to choose similar paths to heuristic version S1.

3.4.5 Verification of Performance Model

Our theoretical performance estimation model was also verified using uniform syn—

thetic experimental data. \V'e conducted experiments using 10 dimensional data with

an alphabet size of 6. The minimum leaf node utilization of our ND-tree was set

at 0.4 and the minimum non-leaf node utilization was set at 0.3. \\"e compared our

theoretical values to the observed ND-tree performances for databases varying in size

from 400K vectors to 2.0.11 vectors in 400K increments. We also varied the value of

k to observe its effects upon the results.

Figures 3.15 through 3.17 show the estimated number of I/Os predicted by our

performance model. with the actual I /O. The results indicate that our model is quite

accurate, estimating the performance within 2% of the actual performance for most

test cases. The greatest disparity between estimated and actual perforn‘iance values

occurs in the test cases with small datasets. 1,)articularly when searching for only a

single neighbor. However. as the size of the dataset. increases or as the number of

neighbors searched for increases. the performance estimation becomes increasingly

accurate.

93

25.0% 1 fl - - . an

+Estimated ‘

8 'E'Aslual
g 20.0%

CD

0
0 i

< l
E 15.0% "

0 l
u—

o

(D 10.0% -

CD

52

C

CD

8 5.00/0 i

(D

0-
' -

' . ' ' £3 -----El

0.00/0 ‘ —~--~ - —- —— ___—___ _'_._._____i.,___

4 8 12 16 20

Number of Vectors in Database x 10"5
Figure 3.15. Estimated and Actual performance of the k-NN algorithm vs. the linear

scan on synthetic datasets with various sizes (A? = 1)

25.0%' *7 7* 2 -, ,, i 2 -.-.-A M a a,

A 43‘— Estimated

-El-Actual

20.0%

15.0% .

10.0%

5.0% '

P
e
r
c
e
n
t
a
g
e

o
f
D
i
s
k
A
c
c
e
s
s
e
s

0.0% '1

4 8 12 16 20

Number of Vectors in Database x 10"5

Figure 3.16. Estimated and Actual performance of the k—NN algorithm vs. the linear

scan on synthetic. datasets with various sizes (k = 5)

94

25.0% . ~ ~ - ~—— —

’ -- —+— Estimated

8 y - El - Actual

3’, 20.0% .

a) l

o

0

<1

TE 15.00/0

CD

“5

m 1OIR6 ' .
m i

e

C i
(D

E 5096:

0)

CL

0t¥%

4 8 12 16 20

Number of Vectors in Database x 10"5
Figure 3.17. Estimated and Actual performance of the k-NN algoritlnn vs. the linear

scan on synthetic datasets with various sizes (A? = 10)

The above results show that. for both synthetic and genomic uniform data, our .1:-

NN searching algoritlnn based on the GEH distance far outperforms the linear scan.

Additionally, our algorithm outperforms the linear scan for syi‘ithetic skewed data.

Only when the dimensionality of the underlying NDDS begins to grow excessively,

does the benefits of our algoritlnn start to become less significant. This is a result

of the well-known dimensionality curse problem. Further, our performance model

provides an accurate estimation of the number of I/Os incurred while performing a.

k-NN search of a large database.

95

CHAPTER 4

Understanding Distance in NDDS

In this chapter we consider in more detail the issue of distance measurement in

Non-Ordered Discrete Data Spaces. To efficiently handle a much broader array of

applications than those presented in the previous chapter we present a generalized

form of our Granularity Enhanced Hamming (GEH) distance. We then provide a

new in'iplementation of this distance.

4.1 Motivations and Challenges

A major problem with k-NN searching in NDDSs. as discussed in Chapter 3 is the

non-determinism of the solution. That is, there is usually a large number of can-

didate solutions available which may obscure the result. This is mainly caused by

the coarse granularity of the commonly used distance metric, the Hamming distance.

An extension to the Hamming distance, termed the Granularity Enhanced Distance

96

(GEH) distance, was introduced in [32] as a solution to this problem. \Ve demon-

strated that the GEH distance greatly reduced the non-determinism of the solution

set, as well as provided performance benefits. while maintaining the semantics of the

original Hamming distance [32, 33]. However. the GEH distance introduced in [32]

was tied directly to data point frequency values in a manner that may not be ideal in

all scenarios. Applications/scenarios with other more relevant dataset characteristics

(distribution, clustering. etc...) may not experience the same performance benefits

seen in [32].

To address this issue, we introduced a generalized form of the GEH distance in

[34]. This form may be optimized to a much broader set of applications than the

original GEH distance presented in [32] Conditions/constraints are presented that

maintain the necessary distance metric properties to be used as a pruning metric. we

show that the original GEH distance is. in fact, an instantiation of this generalized

form. Further, we present. a new instantiation of the generalized GEH form that

demonstrates the benefits of adapting the generalized form for specific scenarios.

The rest” of this chapter is organized as follows. Section 4.2 presents the general-

ized form of the GEH distance. Section 4.3 introduces a new ranking based GEH

instantiation derived from the generalized form.

97

4.2 Generalized GEH Distance

The GEH distance. originally presented in [32], expanded upon the Hamming dis-

tance to provide more granularity while maintaining all of the semantics of the Ham-

ming distance. This was accomplished by adding an adj ustment value to the Ham-

ming distance between two vectors based upon their matching elements. This is

presented formally as follows:

(1 . . , .

1 if oh] 79 1.3[1]

DGEH(0~l3) = E : ~ (41)
1:1 ;11f(a[2]) otherwise

where

Neill) = 1— fg(alil)-

The value of fq((i[i]) is the number of occurrences of 0M in the ith dimension of

the dataset, divided by the number of vectors in the dataset.; essentially, a global

frequency value. VVl‘iile this does provide a dramatic increase in the determinism of

result sets when used in a similarity search. this distance metric may not provide

an ideal distance semantic for all applications. Equation 4.1 is limited to applica-

tions where the global frequency of elements has some significance in the dataset.

98

Applications where other dataset characteristics provide a better semantic may not.

be able to benefit. from using Equation 4.1 to the same degree as the results shown

in [32]. To address this issue. we propose a generalization of the GEH distance that.

may be optimized to a much broader set of applications.

\Ve observe that the Hamming distance assumes that. a worst case match (i.e. a

non-match) between two elements is represented by a. distance of 1. while all other

matches are represented by a distance of 0. \‘V’e expand upon this by adding more

granularity to the values assigned to different types of matches. We propose the

following generalized form of the GEH distance to accomplish this goal:

(1

, ,. 1 . , .

DCEH((1'-l3) = DHa-mmlaa [3) + "C— : fge/i.(alllildl1l)1 (42)

221

where

Constraint. 1: V0.8 : C 2 d — DHamm(a. ,8)

Constraint 2: Va[ii],d[i] : 0 < fgeh(a[2],[3[2]) < 1

COHSt‘raint 3: Va[2],;’3[2] : [ye/liai'ils 23M) : fgehfi‘glil? Gill)

Constraint 4: Va[i].,3[i] : a[2'] 54 i3[2] —> fg€,,,(ol['2].)3[27]) = 0.

Here, fgeh represents some function. chosen by an application expert, that will pro—

vide an adjustment to the Hamming distance for each dimension. The variable C

99

is a pseudo-constant.1 used to guarantee the adjustment values of fgph do not be—

come more dominant than the original Hamming distance. Constraint 1 indicates

that the value of C must. be greater than or equal to the number of matching di-

mensions between two vectors. Constraint 2 indicates that the result of function

”1 element of the two vectors being considered must be in the range offgeh. for the 2

(0:1) 11011-ill('1118ive. Constraint 3 indicates that function f9”, must be Symmetric.

Constraint 4 indicates that the result of fgeh for the 21m elements of the two vectors

being considered must equal 0 if the these two elements do not match.2

From Equation 4.2. we can see that. if m. g DGEHiaa 3) < m+1 (2n. = 0. 1, . . . ,d),

then vectors a and 3 mis—match on m. dimensions (i.e., match on d — m dimensions).

therefore preserving the original semantics of the Hamming distance.3 Further. the

four provided constraints allow the generalized GEH distance to maintain the metric

properties necessary for use as a pruning metric in similarity searches as described

in the following lemmas:

Lemma 4.2.1. The generalized GEH d'zlstaxnce 'nzaintaz'ns the Positiveness property

1The term pseudo-constant is used to indicate that C is not strictly a constant. and may vary

as long as Constraint 1 of Equation 4.2 is maintained.

2Note that. both variables a: and 3 are passed to to the adjustment. function. This enables the

adjustment function to be fully expressed whereby Constraint 4 may be verified.

3Many application specific solutions such as BLOSUM, employed in bioinformatics, reduce the

non—determinism of solution sets by utilizing a cost matrix as a direct form of distance measure-

ment. This is similar in theory to utilizing the adjustment function as a distance measure directly.

Unfortunately, these methods do not preserve the semantics of the original Hamming distance and

thus lose a level of portability between application environments. However, solutions such as BLO-

SUM may be incorporated into Equation 4.2 by utilizing the diagonal of the cost. matrix for the

adjustment function.

100

(i.e. V1.-y : DGEH(-1‘~.’1) Z 0).

Proof. By maintaining the Hamming distance within the GEH distance, we are guar-

anteed a positive value if any elements between the two vectors do not match. Con-

dition 2 indicates that all values resulting from matching elements will have non-

negative values. 1:]

Lemma 4.2.2. The gta'nrv‘ahzcd GEH distance mrzirttaxi'ns the Strict Positriie'ness

property (2.6. V”, : .1: # y —> DGEH(41'~ y) > 0).

Proof. This property is inherited by maintaining the Hamming distance within the

generalized GEH ('listance. whereby any two vectors that are not equal will have a

distance greater than ‘0' based upon a ‘1‘ being added to the distance for each non—

matching dimension. Constraint 2 guarai‘itees that the values added from function

fgm will all be non-negative. 1:]

Lemma 4.2.3. The gmzerohzcd GEH distance 'm.(1,2'n.ta272.s the Symmetry property (i.e.

Vm : DGEH(41'~LU) = DGEH(.I/.:I‘)/-

Proof. The Hamming distance is known to maintain syn‘nnetry between vectors. In

addition. Constraint 3 guarantees that the values provided by the function fad, will

maintain symmetry as well. [3

101

Lemma 4.2.4. The generalized GEH distance maintains the Pseudo-Reflertctty

property (i.e. VLy : DGEHfl‘sI) < 1/\ :r 79 y ——> DGEHlil-‘syl 2 1).4

Proof. This property is maintained due to Constraints 1 and 2, which stipulate that

the additional value added to the Hamming distance will always be in the range of

(0. 1), non-inclusive. Thus the distance between two vectors that exactly match will

have a. distance value less than ‘1‘. Any vectors that are different in one or more

dimensions will have a distai‘ice greater than or equal to ‘1’. [3

Lemma 4.2.5. The generalized GEH distance possesses the Triangular Inequality

P7‘0P67‘t3/ (16 V.r.y.z : DGEHl4I3~yl + DGEH(:U~ 2) 2 DGEHl-T-e 3)).

Proof. We first consider the Hamming portion of the generalized GEH distance. For

any dimension 2' E [1, d]. if r,- 75 3,- then either 1‘2: 76 yl- <13 :1,- # 217: or 12‘, 76 3].: /\ 3.1: 76 pi.

Thus for each dimension 2' where the right. side of the inequality (i.e. DGEH(:1:,::))

would be incremented by an integer value of ‘1’, the left side of the inequality (i.e.

DGEH(.’[, y) + DGEH(y. 2)) would be incremented by an integer value of either ‘1’

or ‘2’, thus maintaining the inequality. Next. we consider the adjustment portion

of the GEH distance (i.e. Zlftfgchol' For any dimension 2 E [1,d], if r,- = :3,- then

either a.‘,- = 312' A 2.2: = y,- or 1r.- # yi A 3i # yi. Thus. due to constraints 2 and 3.

4Note that the traditional property of Reflexivity (i.e. Va: : D(rr.a:) = 0) is replaced by the

property of Pseudo-Reflexivity. This is a reasonable substitution in an NDDS due to two vectors

exactly matching each other still being identifiable from all other pairs of vectors based only upon

the distance between them.

for all dimensions where this is the case. the left side will either be incremented by

twice as much as the right side or be incremented by an integer value of ‘2’ while the

right side is incremented by some value less than ‘1’. Constraint 4 indicates that no

additions will be made if the values in the dimension match, leaving the Hamming

component to be dominant. Thus the adjustment values maintain the inequality. D

4.3 Ranking Based GEH Instantiation

As described in [14], many search algorithms demonstrate better performance when

the distances between data points are distributed evenly throughout the distance

range. We note that. the original GEH distance. Equation 4.1, is likely to result in

a heavily skewed distribution of possible distances. As the alphabet size grows. the

likely values of fg((r[2]) trend closer to ‘0’ leading to a. clumping of distance values

close to the floor value. Additionally. setting C = (1'. results in C having a dominant

role in the distance value as the dimensionality of the dataset. grows larger. To

address these issues, we propose a. new GEH distance instantiation:

J g I. ‘ l3 ,: : rai'ik,,-((1'[2'])

fgchialzlt l’l) [Az'l‘tl I . (4.3)

C = d - DHa2nm(av .3) + 1

Here, the term ranki(d’[2]) indicates the global rank of element o'[2'] among the

alphabet set. in dimension 2.. The ranking mechanism employed should be set by an

103

Table 4.1. Varying Dimensionality

Hamm. Freq. Rank

(1 = 5 36 7 6

d = 10 968 472 480

d : 15 5914 4591 4675

d = 20 8294 8228 8232

application expert on the condition that. it results in the different elements of the

alphabet receiving ranking values of [1. 4]] inclusive. The value of C tracks to the

number of matching dimensions between vectors a and ,3. As an example ranking

mechanism, we consider the frequency of elements within a. dimension, applying a

higher rank (lower integer value) to elements that occur more frequently, and a. lower

rank (higher integer value) to elements that occur less frequently. For example. if

the alphabet set in dimension 2' consists of {a b. c}, where a appears in 20% of the

vectors. b appears in 50% of the vectors. and 0 appears in 30% of the vectors in

dimension 2', the rank of each of the elements in dimension 2. would be as follows:

a —> 3, b —> 1, and c —> 2. Although an element’s frequency within a dimension

still plays a role in the determination of the GEH distance (in this example), the

ranking mechanism maintains a uniform distribution of distance values over varying

alphabet sizes. Additionally, having the value of C track to the number of matching

dimensions rather than the dimensionality of the dataset reduces the dominance of

C as the dimensionality of the dataset grows larger.

To evaluate the benefits of an adaptable distance metric. we performed a series

of kr-NN queries utilizing the GEH distance implementations in Equations 4.1 and

104

Table 4.2. Varying Zipf Distribution

Hannn. Freq. Rank

zipf 0.0 968 472 480

zipf 0.5 693 399 301

zipf 1.0 381 233 126

zipf 1.5 105 73 30

4.3 as well as the Hamming distance. Table 1 shows a comparison of I/O results

while searching uniformly distributed datasets of varying dimensionality. These re-

sults (ilemonstrate a scenario where the frequency based GEH implementation pro-

vides slightly better search performance than the rank based GEH implementation.

Further. our results agree with those in [52] linking a decreasing performance with

5
increasing dimensionality. Table 2 shows a comparison of the I/O results while

searching 10—dimensional datasets of varying zipf distribution. For this scenario,

use of the new ranking based GEH implementation provides a strong perfm‘mance

improvement over the. frequency based GEH distance implementation. This is in

agreement with the results shown in [14] concerning search performance and dis—

tance value distribution. These results highlight scenarios where Equations 4.1 and

4.3 provide search performance improvements specific to each case, thus demonstrat-

ing the benefits of an adaptable distance metric.

5Note that for the largest. dimensionality tested, (1 = 20, the I /0 results when using both ranking

based and frequency based GEH implementations begin to approach each other. We attribute this

to the dimensionality of the dataset playing a less dominant role in Equation 4.3 than in Equation

4.1

CHAPTER 5

lc-Nearest Neighbor in Hybrid

Data Spaces

In this chapter. we consider [if-Nearest Neighbor (At-NN) searching in Hybrid Data

Spaces. Searching in HDSs presents several new challenges not presented in either

CDS or NDDS searching applications. We examine these issues and discuss methods

to resolve them. Further, we extend the theoretical performance model presented in

Chapter 3 to HDSs.

5.1 Motivation and Challenges

Nearest neighbor searches/queries in Hybrid Data Spaces (HDS) are becoming i11-

creasingly useful in many contemporary applications such as machine learning, infor—

mation retrieval and security. bioinforn'iatics, multimedia. and data—mining. Consider

the following information retrieval task. Given a set of network sites and a range of

106

times. determine the set of 11‘ network intrusions that match a set. of query criteria

most closely. \Vhen examining records of intrusions. the sites in which they occurred

could be considered discrete. data. in that an intrusion either did or did not occur at

that site. The times active in a particular site could be considered continuous data.

in that an intrusion 111ay have been active over only a period of time.

Several techniques have been proposed in the literature to support such searches in

both continuous (ordered) data spaces and non-ordered discrete data spaces. A ma.—

jority of these techniques utilize a multidimensional index structure such as R*-tree[6]

or the ND-tree[43]. Little work has been reported in the literature on supporting

efficient nearest neighbor searches in hybrid data spa(j"es.

Efficient index based nearest neighbor searching is dependent upon the usefulness

of information maintained in the search index structure. Vt’hen searching an index

containing hybrid data. a difficult scenario occurs when one set of dimensional data

is unknown. This scenario is analogous to using a non-hylin‘id index. such as R*-tree

or ND—tree. to maintain hybrid data. based on their continuous or discrete subspace.

If this structure remains unmodified, performing nearest neighbor searches becomes

impractical due to the values of the non-native dimensions (discrete for R*-tree,

continuous for ND-tree).

To guarantee all valid neighlmrs are found in these scenarios. additional consid-

107

erations must be taken into account. First. when examining the current. set of ob-

jects/records found to determine a search range. it must be assumed that all non-

native dimensions that are not maintained in the index structure differ in value from

the query vector. i.e.:

D(q. NNk) = DN((]. NEVA.) + (1A1, (5.1)

where UN is the distance in native dimensions between the query vector q and the

km neighbor AW): and (131 is the maximum distance possible between the non-native

dimensions in the dataset and q. Second. when comparing a. bounding box or possible

new neighbor. the opposite assumption must be made, i.e.:

D(qu) = DN(Q1X) + 0, (52)

where X is either a bounding box or object. This is due to the possibility of some

vector within X (or X itself) exactly matchng the query vector on all non—native

dimensions that are not maintained in the index structure. Examining these facts, it.

is clear that as the number of non—native dimensions grows, it becomes increasingly

difficult. to exclude any portion of the index from the search.

To address these issues. we consider performing k-N‘earest Neighbor (Ar-NN)

108

searches utilizing the CND-tree. a recently proposed multidimensional index for HDS

[15]. W”hen considering k-NN searches utilizing an HDS index. we present a best—first

searching algoritlnn that utilizes characteristics of HDS in its heuristics to reduce the

I/O cost of determining a valid set of Is neighljxirs. Further. we present a theoretical

performance model for this algoritlnn based on the characteristics of an HDS and

the hybrid index.

The rest of this chapter is organized as follows. Section 5.2 presents a. brief analysis

of the different. stages of a Af-NN search. Section 5.3 presents our best first algorithm.

its heuristics. and our theoretical performance model. Section 5.4 discusses experi-

mental results.

5.2 Nearest Neighbor Search Stages

In this section. we present. a discussion of the different stages of a kt-NN search.

By properly categorizing these stages. we are able to develop heuristics that im—

prove search performance with more accuracy. The reader is recommended to review

Chapter 2 for an overview of the CND-tree.

When performing kf-NN queries using a, multi-dimensional index structure, the act

of traversing the tree (assuming a minimum distance based ordering) can be broken

into three distinct stages: range reduction. overlap, and exhaustive. In this section

109

we consider the first. two stages in more detail. while the exhaustive stage will be

revisited in Section 5.4.2.

The range reduction stage. occurs while the current search range, rC. is greater

than the final search range value. During this stage. new neighbors/objects that are

found are likely to result in reducing the current search range. The order in which

nodes are visited has a direct impact upon the I/0 cost. of this stage.

The overlap stage occurs when the search range has been reduced to its final

value. but there still exists nodes R in the search path whose bounding box is such

that D(q. R.) < re. The amount of overlap between nodes within data organization

structures directly affects the 1/0 cost of this stage. Data organization structures

with a. minimal amount of overlap within their internal nodes are likely to incur less

I/O costs when searching during this stage than data organizational structures with

a greater amount of area overlap.

Figures 5.1. 5.2 and 5.3 break down the I/O cost due to the range reduction and

overlap stages when searching a CND—tree. Figures 5.1 and 5.2 show the effects when

either the number of continuous or discrete dimensions is held const ant. (at 6) and the

number of the other dimensions varies. Figure 5.3 shows the effects when the number

of both continuous and discrete dimensions is held constant (6 continuous, 3 discrete)

and the number of records in the database varies. As seen from these figures. the I/O

110

4oooree 7 w W . 77* ——77~A7«—e

3500

[D Ovei1ap

[I Range Reduction

u 0 O O

2500

2000

N
u
m
b
e
r
o
f
D
i
s
k
A
c
c
e
s
s
e
s

a O O

_
L

o O o

0
'
1

O O

1 2 3 4 5 6

Number of Non-Native Dlmensions

Figure 5.1. Search stage I/O with variable number of continuous dimensions

4000 » i — 7 . — e W

3500 DOvefiap

I Range Reduction

33000

2500

N
u
m
b
e
r
o
f
D
i
s
k
A
c
c
e
s
s

a
t

8
O

O

O
O

_
L

O O O

0
1

O O

3

Number of Non-Native Dimensions

Figure 5.2. Search stage I/O with variable number of discrete dimensions

111

Cl Overlap

I Range Reduction

N
u
m
b
e
r

o
f
D
i
s
k
A
c
c
e
s
s
e
s

400K 800K 1.2M 1.6M 2.0M

Number of Vectors in Database
Figure 5.3. Search st age I/O with variable database size

costs of the overlap stage rise dramatically as the number of dimensions increases.

This stage has a much less dramatic increase in I/0 cost as the size of the database

increases. Additionally. the I/O cost. of the range reduction stage actually reduces

as the database size grows. while increasing as the number of dimensions increases.1

5.3 Search Algorithm

To efficiently process k-NN queries in HDSs, we present a. priority backtracking

index-based searching algorithm that utilizes properties of the CND—tree for HDS.

This algorithm initiates a search in the root node and then visits each subsequent

1This is a similar phenomenon to what was reported by Chavez et al. [14]. Although Chavez et

al. focus primarily on searching in general metric spaces, the same principles apply here.

112

node based upon a “best-first" criterion that is defined in the heuristics. “7hen A?

possible neighlgmrs are retrieved. the searching algoritlnn uses the distance informa-

tion of the neighbors collected to start pruning the search paths that can be proven

to not include any vectors that are closer to the query vector than any of the current

neighlgmrs. Our algorithm is inspired by earlier priority l_)a.cktracking based implemen-

tations presented for CDS. NDDS. and generic metric space [33, 27]. Our algoritlnn

extends these implementations to HDSs by utilizing metrics and heuristics suitable

for such a space. 111 particular. we introduce the notion of using an estimated match

likelihood value to help prioritize ordering. Additionally. we present. a performance

model to accurately estimate the I/O cost of executing our algoritlnn.

5.3.1 Match Likelihood

Consider a. query vector q and a bounding box R. If the total number of dimensions

in the dataset is (It = (ID + (10 and the distance between q and R is D(q. H) = 1:,

then it is possible that there exists an object in the subtree associated with R that

matches q on (It — :1' dimensions (assuming a distance metric similar to Equation 2.4

is utilized). 111 a multidimensional index structure such as the ND-tree, R*—tree, or

CND-tree this is not the most likely scenario. More likely: there exist several objects

in the subtree associated with I? that match q on a subset of dimensions that are

represented in 1?. The projections of these objects at higher levels in the index tree

113

can create a. misleading picture of the vectors in its associated subtree. similar to the

concept discussed in Chapter 3 for NDDS searching.

\V’e may infer from the bounding box of R how likely the information that R

contains is likely to represent the vectors in its subtree. For the purposes of this

discussion. we will assume that our index tree has maintained a relatively uniform

distribution of elements within its subtrees. “hell we consider the CND-tree as our

indexing method. the probability of accessing a subtree with associated bounding box

R = SD1 x . . . x SD”: >< 8C1 . . . >< Syd will yield a particular element. a. in dimension

i may be estimated as follows (assuming a E R1):

51.. if ’1', is discrete

I’)(a)1?.z' = ” » (5-3)
(St . r .‘ ~. . _ N

max Si—minsi if z is (ontmuous

where the match likelihood of encountering a vector (.1 = (.11, (.12. . . . , at in the subtree

associated with R may be approximated as f(_)llows:

13(0)]? 2 Z p(o[i])RJ- if (1M 6 R . (5.44)

dt 0 ot hermse

Equation 5.3 calculates the reciprocal of the magnitude of the alphabet, set on

dimension ‘2'. of R for discrete dimensions and the quotient of the threshold value and

the range of the set on din‘iension 2'. of R for continucms dimensions. Equation 5.4

114

then determines the smnmation of these. values for all elements in vector 0 that are

represented in R. It should be noted that more in depth methods were presented for

estimating this likelihood value for NDDS in [33]. However, we are only interested

in using this value to break ties in cases where the minimum distance between a

subset of the nodes and the query vect(,)r is the same. Thus. the generalizations of

Equations 5.3 and 5.4 are sufficient.

5.3.2 Algorithm Description

In a worst case scenau‘io. a search would encompass the entire index structure. How-

ever. our extensive experiments have shown that utilizing the following heuristics

eliminates most search paths before they need to be traversed.

H 1: If the minxz'xmxmn. distance between the query vector and HMBR H, is greater than

the current range, thcn prune the squce assoc'mtcs‘d 'un'th R.

H2: Access subtrees in the ascmzd/T’ng order of the mrni'mmn distance between the

query vector and the associated HMBR 1?.

H3: In the event of a tie. between subtrees due. to hezn'tstic H2, order those subtrees

115

that tied in the descending order of the match likelihood (Equation 5.4) between the

query vector and the associated HMBR R.

Our k-NN algorithm applies these heuristics to prune near—productive subtrees and

determines the access order of the remaining subtrees during a. best-first traversal of

the CND-tree.

Given a CND-tree for vectors from HDS Xd with root node T. Algorithm Priority

h—NN Query finds a set of k—nearest neighbors. NN, to query vector q. where NN Q

xY , ¥7\T“7\f

= h. and VuE‘\v‘\r.,,.€X_‘\3\rD(q. u) g D((1.r). It utilizes a priority queue,

labeled Q. of CND-tree nodes that is sorted based upon heuristics H2 and H3. It

invokes two functions: Fi mlS'ubtn-es and RetrieceNe-ighbors. The former finds all

subtrees of the current node N that are within Range of the query vector and adds

their nodes to Q. The latter updates the list of k-nearest neighbors. NN, using

vectors in the current leaf node.

In the algorithm. step 1 initializes the range variable. Step 2 starts the search

at the root. node by inserting it into Q. Steps 3 - 14 traverse the CND-tree. where

steps 4 and 5 select the next node to be visited and remove it from Q. Steps 6 —

8 deal with non-leaf nodes. Step 7 invokes F'i-ndSubtrees to collect all subtrees of

the current node that are within Range. Step 8 sorts Q according to heuristic H2

116

Algorithm 4 Priority h-NN Query

1: Range = dt

2: Q.Insert(T)

3: while lQ.Empty() do

4: N = Q.Top()

5: Q.Pop()

6: if N.Height > 1 then

7: Fi'r‘zdSubtrees(N, Range. g. Q)

8: Q.SOI‘t()

9: else

10: RetrieveNeighbor“ N. Range. q, NW)

11: Range = NN[A‘].Dist()

12: Q.Prune(Range)

13: end if

14: end while

15: Return NN

and H3. Steps 9 - 12 deal with leaf nodes. Step 10 invokes Retr‘ie'vei’Vetghbors to

update the list of current [if-nearest neighlmrs. Step 11 updates Range to equal the

distance of the current hf," neighbor from the query vector. Step 12 prunes nodes

from Q according to heuristic H 1. Finally. step 15 returns the result. Note that

FindSubtrees only updates Q with subtrees that are currently within Range. If no

subtrees of the current. node are within range, no new nodes will be added to Q.

The W'HILE loop in steps 3 - 14 is terminated when all subtrees that are within the

current. range have been visited.

5.3.3 Performance Model

To analyze the performance of our k-VN search algoritlnn, we conducted both em-

pirical and theoretical studies. The results of our empirical studies are presented

117

in Section 5.4. In this section, we present a theoretical model for estimating the

performance of our search algoritlnn. To accomplish this, we first derive an estimate

of the likely search range that will yield k objects/neighbors. We then derive an

estimate of how many tree nodes/pages will be accessed by a search of a. variable

range. For our presentation. we assume that our algoritlnn employs heuristics H1,

H2. and H3 and that our dataset is reasonably uniform. For reference, many of the

variables used throughout this section are maintained in Table 1.

The likely distance of the hm neighbor from the query point represents the final

search range that can be used to prune nodes from the search path. To determine

this distance. we estimate the ratio of area within a specific distance and the total

possible area of the dataset, similar to the method e1111')loyed for NDDSs in [33].

The area within a distance r: from a point p in a dD + (IC dimensional HDS with

alphabet A for each discrete dimension. span S for each continuous dimension, and

threshold value (it for Equation 2.4 is analogous to the number of unique points

within a. hyper sphere of radius 3 centered at point p:

A7‘6’(l.(.‘:) = 2;:0 [Zillill(r.dm)) [fafl- LIN] a (55)

g:max(0.;r—dA[

where

118

Table

n,-

u .12-

(1.11

~m

(11‘!

am.

dnll

d112

(1771. 1

din?

3M2

31711

B7712

mum of nodes at. layer '2'.

num of vectors 111 a node at layer 1

5.1. Performance Model Variables

height of tree

= [£171

2 max(dD, (1C)

2 n1in(dD. dc)

_{RIAI ifd1711:1110

"' otherwise

IRAI 1f (17n—— dD

otIhe1wise

ll

i’dIDi)
max(d:D

max(dCI (15,-)

I

min(dCI. (1C1?)

max(dDII (1D ,j)

I II

max((l'ICII-, d/C'Ij)

min(d:DII-.(1D,)

l

}
if (111 = (ID

otherwise }

if (1111 = dD

otherwise }

if (1”, = dD }

otherwise

:{{R

:{ min(dDI dIIIIDi)

if (1772 = dD

min1dcI(12,. I.) otherwise

if (111—— (11) Adv—111_ dDi

if (111 = (1D A (1.111: dIDgi

if (1.1.11 = (10 /\ (1.111 = (10.2"

otherwise

.
I

1f (11; = (ID /\ (1.112 = (113.1
.

I

1de11 2 d0 /\ (1.112 = (10.1
I’

if (1.11 = dc /\ (1.112 = d(7,7:

otherwise

if (1m = (10 /\ dml = (1,0,1

_ if dm 2 dD /\ dml = (131

_ if dm = dc A and = (10.1

otherwise

if (1," = do A dm2 = (113,.-
.

II

If (1711,. = (ID A (1711.2 : dDa'
.

I

If (1m 2 (1C A (11112 : dC’j otherwise

119

I . 1, . _

fafffill) : ((111)111111— 1)U(i‘l[y) ((1.1! —1)I y .

The probability of an object existing within a distance 2 from any point 1), may be

calculated as follows:

.4rea(z)

P 's S‘ 3 Z

.

(Int. () ArgafllD + (1C)

 (5.6)

The product of the number of points N within the dataset and the probability of

a point existing within a distance 3 from any point. p yields the number of points

likely to exist in that subspace:

[4(3) : Peristsfz) * *N- (5'7)

It is reasonable to assume that a. minimum distance that needs to be searched is

one less than the distance that is likely to yield at least A? neighbors. Thus a search

range r = z, is found be solving Equation 5.7 such that L(r + 1) _>_ k and L(r) < k.

The reason for this is that a search range that yields more than k neighbors is likely

to extend beyond the. overlap stage (Section 5.2).

Next, we determine how many pages are likely to be accessed by a. search with

120

a range of r. We (’lerive this value in a similar fashion to the method derived by

Qian et a1. [43] for N DDS. As new records are inserted into the CND-tree. some

dimensions 111ay be split and others may not be. Assuming a reasonalfly uniform

distribution and independence among dimensions. the probability for the length of

an unsplit edge of an HMBR to be ‘1’ is as followsgz

T- = 1

D [Tr—f as
T _. z 1
(12.1 Wr-

Using Equation 5.8. the probability for ant hebibliography edge length of an HMBR

to be j is as foll(.)ws:

A . j—l ; IAIU'I

(lj Il “"ZA-:1(L)‘(W)“*Ti.k

TD‘i‘j : [‘4 U'Z' k 7

I? I—1 j RMI

(J) u’-ZA_1(k)T*T2A

T .. __ (kt)

CJJ — Ruli

Hence, the expected edge length of an HMBR of a node at layer i is:

|A| I.

SDJ = ijl J * TD,l-,j3

R . .

502' = 23:1] * Tam-

VVe can assume that a sequence of 7?. node splits will split reasonably evenly

2For clarity. equations with a D or C subscript are relevant. to discrete or continuous dimensions

only. respectively.

121

t. hroughout the dD + (1C dimensions. Each split. will divide the con’iponent set of

t he HMBR on the relevant dimension into two equal sized component subsets. To

Obtain 172- nodes at layer i of the CND-tree, the expected number of splits needed

is logg m. As such. at any given time. it is likely that some nodes will be split one

Inore time than others. This can be determined as follows:

(It, 2 [(log-Zni) mod ((ID + dC-‘ll:
I

, ,, (5.10)

(1,- = ((11) + (1C) — di,
1

N

Where (1?. represents those dimensions that have been spllt an extra tune.

If we assume these splits have been distributed evenly among continuous and

discrete dimensions. we have the following:

II

II dD-d.

I

ll dC'di

C' [mi (511)
[I (ID-d. '

(DJ: — [dB-ta l

SO, the HMBR of a node at layer i has the following expected edge length on d”

I

dlld d (’limensions respectively:

122

ll SDH

s- . : ___—-

L DJ log) n ’

J35???
II 5CH

SCJ _ log2n, '

i(Tr—F)+(C

513,- 7%?—

2

’ 5
”DJ _ ——1————{DH otherwise ’

og)n]

2(l)—i’-(C"I

(5.12)

lotJrg9 7) <1

sCI ifmév<

5cH

l()(T——)—-71"

l)+(](i“v‘l

s - —
(“.2 otherwise

Thus. for any node, the probability for a component of a query vector to be

covered by the corresponding component of the HMBR of that node for discrete and

continuous dimensions. resI’)ecti\v'ely. is given as follows:

I

I 30.7”

BDJ — my
I/

N SD-z'
B . z “

D.2 A ’I l, I (5.13)

/ 8027

Bar : I? 7

II

II 5'02“

BCJ Z R '

Usitlg Equation 5.13. the probability for a node to be accessed by a query of

range/distance h can be evaluated recursively as follows:

h 5f mf Pf

PM, = Z Z 2 f * Z 9 ’ (514)[C20 3:30 17127710 1)po

123

vvhere

so = max((). k — dM>~

sf = min(k. dm).

7720 1nax(0, s — (1,,11).

'mf = min(s. (1mg).

p0 = max(0. k. — s — (1.111)

pf = min(k —— 9'. (131-2).

1" (1'. ~ ~11: . . _1, d —.S+m .— .

f : (('iii2)Bni212 (1 _ B1712)?” * (Lflili1)Bni121 (1 — 87711)9 171,

- __ (1 d‘r\[.2—]) - (1‘1 dAIl—k-i—S-l-p k_ _,

9 — (‘lpmlBM‘z (1 '— 3M2)” * (k;3_1plBM1 (1— 3.111) S p-

Thus. the expected number of node/page accesses for performing a query with

search range 7‘ can be estimated as:

H—1

10 = 1+ 201,- * P“). (5.15)

i=0

5.4 Experimental Results

OUT [C—NN searching algorithm was implemented using a CND-tree. an ND-tree, an

R*‘tFG-e, and a linear scan. For our experiments. the linear scan is considered twice:

once VVith native non-ordered (.liscrete dimensions and once with native continuous

dh’nensions. Both the ND—tree and the R*-tree were modified to store hybrid data in

their 1Eaves. This modification affects the shape of each of these trees but does not

124

incur a change in either of their insertion/split. algorithms.3 All experiments were

ran on a PC under OS Linux Ubuntu. The 1/0 block size was set at. 4K for all trees.

Two series of datasets were used. The first consists of 1M vectors with six native

dimensions and a variable number of non-native dimensions (1 - 6). The second set.

has six native dimensions and three non-native dimensions and a. variable number

of vectors.4 Each experimental data. reported here is the average over 100 random

queries with I»: = 10.

5.4.1 Effects of Heuristics and Datasets

The first set of experiments was conducted to show the effects of the dimensionality

and database (DB) size on the query performance. Figures 5.4 and 5.5 show this

data. As both Figure 5.4 and 5.5 show. the CND-tree provides by far the most

promising results in all tests.5 Due to this. the remainder of the experimental data

considers only the CND-tree. It should be noted in Figure 5.5 that the ND-tree

3Each leaf node is structured to hold data with native and non-native dimensions. The non-

native dimensions play no part in determining the composition of the covering hyper rectangle.

However. the extra dimensional information requires more space for each object than what would

be needed for native dimensional data only. While this extra space requirement does decreases the

amount of objects that a leaf node can contain before overflowing, the extra information maintained

negates the need to maintain the search constant d“ (Equation 5.1). However, because no changes

have been made to the internal nodes of these trees, Equation 5.2 must. still be observed.

4This configuration is chosen. as it is likely the amount of non-native dimensional information

will be significantly smaller than the amount of native dimensional information in most real world

scenarios.

5Note that for the linear scan results. “NatzD” indicates a scan of hybrid data with native non-

ordered discrete dimensions and “NatzC” indicates a scan of hybrid data with native continuous

dimensions. The datasets used for each of these experiments are identical to those used for the

ND-t ree and R*-tree based searching. respectively.

1
”
.
.
.
—
n
.
_

l
l
'
l
u
-

14000 i ,, * ,,, ’ i ’ fl ”' “‘

12000 . - -x- -ND-tree

+CND-tree

m l —a—Ls (Nat=D)

§1000O l +R‘-tree

g l +1.3 (Nat=C)

< 8000 i
X

.52

o l
'5 6000 ‘

b

a:

‘E l
:5 4000 3

z s

l

2000 g

L l

0 a; 4 '

Number of Non-Native Dimensions

Figure 5.4. Performance 1/0 with variable number of non—native dimensions

appears to provide somewhat similar results to the CND-tree as the size of the

database increases. Figure 5.6 shows that. when viewed independantly from other

search results. the CND—tree still provides significant performance benefits over the

ND-tree as the number of vectors in the database increases.

The second set of experiments was conducted to Show the effectiveness of our

search heuristics compared to similar heuristics utilized in a non-hybrid space (i.e.

a continuous or discrete space). Figure 5.7 shows the 1/0 comparison of the first

search stage when searching the CND-tree with and without the use of heuristic H3.

It can clearly be seen that using H3 decreases the number of I/O incurred in the

first stage of searchng over all dimensional combinations tested.

Figure 5.6. Performance I/O with variable database size (CND-tree and ND-tree

only)

14000

12000 :

10000

8000

6000

4000

N
u
m
b
e
r
o
f
D
i
s
k
A
c
c
e
s
s
e
s

2000

- -><- -ND-tree

—0- CND-tree

—B~— LS (Nat=D)

+R'-tree

+LS (Nat=C)

400K 800K 1.2M 1.6M 2.0M

Number of Vectors in Database

Figure 5.5. Performance 1/0 with variable database size

450

400 ‘

350

250

200

150

N
u
m
b
e
r
o
f
D
i
s
k
A
c
c
e
s
s
e
s

100 -

50

300 «

- -><- -ND-Tree _ ----------X

+CND-Tree

,

400K 800K 1.2M 1.6M 2.0M

Number of Vectors in Database

 T
‘
i
fi
r

-

600' 77 -- ,, ~ ., v” v

500 f + CND-C with H3 f

l + CND-D with H3 55". l

400 l ' <2 ~CND-C without H3 .‘

‘ - a ~CND-D without H3 ,5 l

N
u
m

o
f
I
I
O

c
o
0 o

200 i

NN=1 NN=2 NN=3 NN=4 NN=5 NN=6

Num of Non-Native DIM

Figure 5.7. Performance I/O comparing ordering methods

5.4.2 Performance Model Verification

Our theoretical performance estimation model was verified against our synthetic

experimental data. \A-"e comlucted experiments using data with (ID = 6. dc = 3.

.4| 2 6. and R = 100. The maximum number of leaf node objects was set at 227

and the maximum number of non-leaf node objects was set to 127.6 We compared our

theoretical estimates to the observed CND-tree perft')rmances for databases varying

in size from 400K vectors to 2.0111 vectors in 400K i1‘1crements.

Figure 5.8 shows the estimated number of I/O predicted by our performance model

6As described in Qian et. al [43]. the values of 127 and 227 were chosen for similar search

structures to maximize search performance.

...—___..—

30% - - —

l
-l- CND-tree 1

25% i
+CND-tree 2

l
- 5?" Performance Model

20% l

15% .

P
e
r
c
e
n
t
a
g
e
o
f
D
i
s
k
A
c
c
e
s
s
e
s

10% l “xx.

5%

0% L - —

400K 800K 1.2M 1.6M 2.0M

Number of Vectors in Database

Figure 5.8. Performance model comparison with variable database size

160% * 7 W i

1400/ i—i—VVCND-tree 1

° ’ +CND-tree 2 :X

- cx- -Performance Model

120%
x

100% l

P
e
r
c
e
n
t
a
g
e
o
f
D
i
s
k
A
c
c
e
s
s
e
s

1 2 3 4 5 6

Number of Non-Native Dimensions

Figure 5.9. Performance model comparison with variable number of non-native di-

mensions

129

as well as the actual observed 1/0 as a percentage of the I/O incurred by a linear

scan. Two lines are drawn for the observed I/() when searching the CND-tree.

CND—tree 1 represents the percentage of I /0 observed when the search is stopped as

soon as stage. 2 (overlap) has ended. CND-tree 2 represents the percentage of I/O

observed when the search is stopped as soon as stage 3 (exhaustive) has ended.7 The

Performance model line represents the predicted I /0 percentage when 3 = r — 1. As

shown in. Figure 5.8. our theoretical performance model does a quite accurate job

in predicting the number of I / () that would be incurred by using our algorithm on

databases of varying sizes.

We also performed a comparison of our theoretical performance model and the

observed I/() when varying the number of continuous dimensions present in the

CXD-tree. For this set of experiments. (ID = 6. [AI = 6. R = 100. and d0 varies

from 1 to (5. The number of vectors in the database is 1.11 and the maximum numbers

for the leaf node and non-leaf node objects is again set at 227 and 127 respectively.

Figure 5.9 shows the estimated number of I/O predicted by our performance model

as well as the actual observed I/O of these (‘XI)(.‘.I‘1111(‘1118. again as a percentage of

the I/O incurred by a linear scan. Again. two lines are drawn for the CND-tree

7The exhaustive stage occurs when searching nodes 1? whose bounding box is the same distance

from the query point as the final search range. This stage introduces no closer neighbors than what

have already been found. but may be required if multiple sets of k objects form valid solution sets.

typical of k-NN searches in discrete databases as discussed in [32. 33].

130

to represent the number of 1/0 at. the end of the second and third search stages.

As shown in Figure 5.9 our performance model does a very good job of predicting

the number of 1/0 for performing a k—NN search when the number of continuous

dimensions is less than or equal to the number of discrete dimensions. However. as

the number of continuous dimensions grows. the observed CND-tree results begin to

outperform the tl‘teoretical results predicted by our perforn'tance model. we believe

this phenomenon may be related to the discretizing of the continuous dimensions by

Equation 2.4.

131

.
a
t
.
“

.
I
"

J
u
t
‘
.
’

CHAPTER 6

Conclusion

Similarity searches in NDDSs and HDSs are becoming increasingly important in

application areas such as bioinformatics. biometrics. E-connnerce and data mining.

Unfortunately. the prevalent searching teclntiques l.)'dS("(l. on multidimensional indexes

such as the R-tree and the K-D-B tree in CDSs cannot be directly applied to either

NDDSs or HDSs. On the other hand. recent work [42. 43. 44. 41. 15] on similarity

searching in NDDSs and HDSs focused on range queries. Nearest neighbor searches

were not developed to the same. extent. In particular. the k-nearest neighbor search-

ing is still an open issue. \V'e observe that the issue of Ic-NN searching in NDDSS

and HDSs is not a simple extension of its counterpart, in CDSs.

A major problem with a A'—NN search in NDDSs using the conventional Hamming

distance is the non-(leterminism of its solution. That is. there usually is a large

number of candidate solutions available. This is mainly caused by the coarse gran—

‘
-
|
.
F

'
b
b
r
h
y

“
I
.
"

.
9
.

a
f

‘

ularity of measurement offered by the Hamming distance. To tackle this problem.

we introduce a new extended Hamming distance. i.e.. the GEH distance. This new

distance takes the semantics of I‘natching scenarios into account. resulting in an en-

hanced granularity for its measuren'tent. Further. it is proven that the GEH distance

possesses the triangular propertv and therefore may be used in index based pruning

heuristics.

To support efficient Af-NN searches in NDDSs. we propose a searching algoritlnn

utilizing the ND—tree [42. 43]. Based on the characteristics of NDDSS. three effec-

tive searching heuristics are incorporated into the algorithm. A fourth heuristic is

provided that implements a new strategy for probal’nlity based search ordering in

ctmservative search scenarios. Further. we provide a. performance model to predict.

the number of I/O incurred during a k-NN search using our algoritlnn that is based

upon the number of neighbors desired and the din'tensionality and alphabet size of

the dat aset.

Our extensive ex1,)eriments demonstrate that our GEH distance measure provides

an effective semantic discriminating power among the vectors to mitigate the non—

determinism for k-NN searches in NDDSs. Exptitriments also show that the k-NN

searchng algorithm is efficient in finding k—NNs in NDDSs. compared to the linear

scan method. The algoritlnn is scalable with respect to the database size and also

133

 WT

performs well over non-uniform data tilistributions. However. when the number of

dimensions is high. our algoritlnn seems to suffer the same dimensionality curse

problem as the similar techniques in continuous data spaces.

\V'e have demonstrated that k-NN searcl'ies in HDSs greatly benefit from the use of

a multidimensional index t'lt‘weloped for such a space. As discussed in Chapter 5. the

use of HDS based index eliminates the need for maintaining costly search constants to

guarantee correct results. Further. our experitnental results confirm that the use of a

HDS index vastly outperforms searches utilizing non-hybrid space indexes. sometimes

by a facttin' of 10 to 1. as shown in Section 5.4. \\'e have also shown that the use of our

newly introduced searching heuristic provides excellent benefits in reducing the I/O

costs associated with the first stage of If-NN searcl‘ting. Our experimental results in

Section 5.4 demonstrate a performance benefit of almost 33%. Additionally. we have

presented a theoretical 1')erformance model that accurately predicts the I/O cost of

performing a k—NN search using our algoritlnn presented in Section 5.3

Our future work ii'tvolves the study of the underlying characteristics of NDDSs

and HDSs that may be applied to optimizing data index structures for such spaces.

Similar to [52]. such a study could provide an optimization in index structure con-

struction by determining the relationship between the din'iensiont'tlity of a dataset and

the estimated performance for data retrieval. Additionally. search performance in

134

 ...“.
l
'

1
'
.
.
.

'
,
P

NDDSS and HDSs are also affected by the cardinality of the alphabet 0f the dataset..

\Vhile much work been reported on understanding these relationships and optimiz-

ing an index structure through that knowledge for CDSs, it remains an open issue

for NDDSs and HDSs. Additionally. we will continue to investigate the underlying

characteristics of NDDSs and HDSs that can be used in future search heuristics. Fi-

nally. our theoretical performance model assumes a uniform node splitting policy of

the underlying index structure. We would like to expand upon this to accommodate

more potential node split policies.

APPENDIX A

Intrinsic Dimensionality in

Non-Ordered Discrete Data Spaces

In this appendix. we present a discussion of the effects of intrinsic dimensionality

in NDDSs. We first provide an overview of the concepts of this topic followed by

a. discussion of the differences in NDDS and CDS dataset distribution. We then

discuss the effect of intrinsic dimensionality on search performance when using the

GEH distance. This appendix provides additional rationale for the development of

the rank based GEH inmlementation from Chapter 4.

A. 1 Overview

In both NDDSs and CDSs. designers of search techniques are hampered by the curse

of dimensionality [32. 52]. As discussed by Chavez et al. [14]. traditional indexing

techniques for vector spaces (e.g. kd-tree. R*—tree) have an exponential dependency

136

on the represent ational dimension of the data space. Many recent indexing techniques

attempt to avoid the problems associated with this relationship by removing the

representational dimension of the space. A connnon technique is to translate the

vector space data to a. generic metric space.

Unfortunately. these techniques are unable to completely resolve the curse of

dimensionality due to the existence of the intrinsic dimensionality of the dataset.

Chavez et al. [14]. defined the intrinsic dimensionality p of a. dataset by the quotient

of the mean ,u and variance 02 of a histogram of distance values between objects in

the dataset. as shown below:

,0: ——2. (A.1)

Equation A.1 indicates that a dataset’s intrinsic dimensionality grows in line with

the mean and inversely with the variance of distance values. The result of this

equation may be used to indicate the performance potential of searching within

a dataset. As sl'iown in [14]. the potential performance for searching a dataset is

inversely proportional to the intrinsic dimensionality of the dataset.

137

5.E+07~ 4 - 4 ,- -- --cfns DH

DAlph=6]

4.E+07 oAIph=8

4.5.07 IIAlph=10

lAIph=12

3.5+074

3.E+07

2.E+07

N
u
m
b
e
r
o
f
O
c
c
u
r
a
n
c
e
s

2.E+07 [_

1.E+O7 é

5.E+06]

‘ l0.E+00 .——- ___-v .=— [L n...

0 1 2 3 4 5 6 7 8 9 10

Hamming Distance

Figure A.1. Histogram of Hamming Distance Values

A.2 Distribution of NDDS Datasets

The histogram of distances between points in either a CDS or a generic metric space

will usually result in a semi-continuous curve. As shown in [14], the mean for such

histograms in either space is likely to trend equally toward either end of the available

range. For an NDDS. this no longer holds. Consider Figure A.1 which shows the

histogram of Hamming distance values for a 10—dimensional NDDS of 10K vectors

with variable alphabet sizes.

We notice three points. First. the mean for each dataset in Figure A.1 appears

to be highly dependent upon the cardinality of the alphabet set, such that as the

138

alphabet size grows larger. so does the mean of distance values. Second. the distance

values between points appear to clump disproportionately toward the high end of

the distance range. Third. the possible distance values lwtween points is restricted

due to the use of the Hamming distance.

Each of these points agrees with our understanding of NDDSs discussed in Chap-

ters 3 and 4. In particular. we note that in an NDDS. there is 110 defined center of

the data space. Thus. axll'ailable distance metrics. such as Hamming or GEH, have

difficulty considering point distance relationships. As shown in [33], the number of

points likely to exist at an integer distance 3 from another point grows exponentially

with the value of the. alphabet size (this value was described as a. hyper-spherical

area in [33]). such that:

~

A}

d

A'I‘("(L(Z) = Z i (

i =0

A| —1)i. (A2)

Additionally in [33]. we showed that the probability of a point, existing in an NDDS

increases dramatically as the distance 3 increases:

2:20 (2'1“ 4] _ 1y

L41"

Pc.risfs(:) Z (A3)

Equation A.2 explains the dependence between the mean of distance values and

139

the alphabet size of the dataset. Equation A.3 explains the disproportionate amount

of distance values between points in an NDDS close to d (as seen in Figure A.1). The

third point is easily explained by the discussion of non—gramllarity of the Hamming

distance in Section 4.2.

\Vhen we again consider the distances between points in an NDDS. but instead of

the Hamming distance metric. we use the GEH distance metric presented in Section

4.2, we are given the histogram shown in Figure A.2 (we have used a scatter plot

instead of a column plot to help illustrate the ("lifferences with Figure A.1 more

clearly). \Ve notice that the restriction on distance values has been greatly reduced.

However. we still do not have a contimious curve as would be expected in a CDS or

generic. metric space. Instead. we see local peaks between each integer distance value

with their own local mean and variance.

A.3 Distribution Effects on Search Performance

We define local variance for an integer 2'. as the variance of distance values between

[Li + 1). A local mean may be defined in the same manner. To account for these

local values. we modify the performance formula given earlier as follows:

140

[
.
5
5
m
u
m
-
u
"

8.E+06 hi _ ___.

7.E+06 l OA'phz6 o

D Alph=8

a Alph=10

C

0 Law

2 5.E+06 DO a at:

3 ’6 a.

o C. e .
O 4 E+06 0. D a. a.

‘5 ° 0 a.
I_ a o X x

0
a 3 E+06 an .

E O 0 an

3 2 E+06 Q) Q ‘9.
00 [$2 632:;

00 fig . .

1.E+06 .

x

[X

5 at

3i E a? .
0.E+00 ~——m X ...—___;

O 2 4 6 8 10

Distance

X
fi
x
w

Figure A.2. Histogram of GEH Distance Values

where

P0 =

_ 1 d—1 m—i 2
Pl — fizizo (T) '

The value of p, in Equation A.4 captures the expected performance between each

integer value. This value may be interpreted as the average performance indicator

based on the normalized local means and variances of a dataset. \N’hen using an

extension to the Hamming distance. such as GEH. this value gives an indication of

the likely number of pathways that may be pruned during the refinement stages of a k.—

NN search. However. because one of the goals when extending the Hamming distance

is to retain its original semantics. the value of pl is less dominant in determining the

141

overall performance measure than the value of po. This is due to the effects of a

Hamming extension typically only becoming a factor when comparing distances in

the same integer range.

To help illustrate this point. consider a random query q for a 10 dimensional dataset

U. 111 this case. Figure A.2 can represent the distribution of distances between q and

a possible pivot point p E U (in our case. p is a DMBR). for various alphabet sizes.

Assuming our distance metric D() maintains the triangular inequality property. we

can eliminate from our search any point 21. such that D(p. u) Q“ [D(p. q) —r. D(p. (1)-H].

where 7" is the current search radius [14]. As the variance of distances between integer

values increases. more points (search paths) may be discarded when searching within

that range. However. this increase in variance has no affect 011 the amount of points

that may be pruned outside the current integer range.

A.4 Experimental Results

We have compared the distance distribution histograms of the ranking based GEH

distance implementation from Section 4.2 with that of the frequency based GEH dis—

tance implementation from [32] over datasets of various zipf distributions. In these

instances. all data is from 10-din'1ensional datasets of 10K vectors with |A| = 10.

Con'iparing Figures A4 and A.3. we see that the ranking based implementation shows

1.E+07 —— -— —-- ~ —

9.E+06

o zipf = 0.0

8.E+06 . D zipf = 0.5
..

a zipf = 1.0

m 7.E+06 - * Zipf = 1.5

3 s

E
.2.

15 (5.E+06 -

u
o

0 5.E+06 ., x

'8

g 4.E+06 «

E

Cl
3

z 3.E+06 '
x a

x A A

. i x 038‘
2.E+06 A a :03?)

1.E+06 * I; 3% 343%

35 Z: a $41 3‘} “f.

0.E+OO - m “ELL 5‘3“)?“ _-

0 2 4 6 8 10

Distance

Figure A.3. GEHROM. zipf = [0.0 — 1.5]

large improvenrents. in terms of distribution characteristics. over the frequency based

distances as the zipf level increases. This indicates that as the underlying dataset

becomes more skewed. the performance benefits of using the ranking based imple-

mentation of GEH distance over the frequency based implementation will become

greater as well. This agrees with the search 1,)erformance results from Chapter 4.

143

1.E+07

i 2;
g n

9.E+06 [

8.E+06]

I o zipf = 0.0

g 7.E+06 : zipf = 0.5

g .. zipf = 1.0 .-. C.

§6£+06 - . zipf = 1.5

8 s

05.E+06 -_ °
M-

O 0 x

b

3 4.E+06

s .
z 3.E+06

g

2.E+06 a 5‘ .~.

8 a:

3?‘ q A E,

0.E+00 «___—Fi— L

0 1 2 3 5 7 8 9 10

Distance

Figure A.4. GEHFreq~ zipf = [0.0 — 1.5]

144

APPENDIX B

Triangular Property of GEH -

Extended Proof

To maintain the inherent mathematical correctness associated with building and

searching index trees in NDDS. our newly introduced GEH distance must maintain

the Triangular Property. In Chapter 4. we presented a short proof of this property.

In this appendix. we provide a second proof in extended form.

Definition 4. Triangular Property for Vectors: For any three vectors VA. VB,

and VC. the addition of the distances between any two pairs is greater than or equal

to the distance between. the third pair. namely:

D(34-1/8) + D(Va V0) 2 D(VA» Va). (31)

The long form proof of the GEH distance maintaining this inequality is handled

145

in two steps: first. a base case is established where the property holds. Second. the

base case is evolved into the generic case.

Step 1: Consider three d-dimensional vectors VA. VB and V0- Assume that

D(I"A. I’C) is a maximal value. thus every element in VA and I’C must be differ-

ent. or:

Uni... VC) = (1.

Next assume D(I’A. IB) is a minimal value. where every element in VB equals the

corresponding element in VA. i.e. VA = IB. Using the GEH distance yields:

D(VA. VB) :1.

where 0 < :1? < 1. The term :17 represents the adjustment values obtained using

some method defined by an application expert (see Chapter 4). Because VA = VB:

the distance between VB and IC is the following:

D(I’B. V0) = (1.

Thus we have the following inequality;

146

 'r_l
.
’

‘
_
‘
l
-
l
“
—
a
n
-

D(VA- VB) + D(I'a V0) > 130% Vc)

:> r + n > n

0

Step 2: The second step is divided into three sub-steps; one for each vector VA. VB.

and IC.

Step 2.1: First. we evolve IB into a generic vector. From Step 1. we have the

folltm'ing distance values:

D(I’A. IB) = .r

D(VB. IC) = 72.

Des. VC) ———

where 0 < :1.‘ < 1.

To make IB generic. we apply A‘ changes. where each change represents switching

an element in VB away from its original value. After this has been done. we are left

with the following distances:

D(I‘:4. VB) = .l‘ + 1(- ('1

D(IB. IC) = n — If + (:2

D(I”A. IC) = 71.

Here. ('1 represents the culmination of adjustment values from each of the 1: elements

switched. It] represents the number of elements switched that now equal their corre—

147

 Tr

sponding element in IC. and c2 represents the culmination of the adjustment values

to be added due to these newly 111atching values. Because k 2 hf. C 2 c1. and

("-2 Z 0. the GEH distance between I34. IB. and IC still maintains the inequality

from Definition 4.

Step 2.2: Next. we evolve IC into a generic vector. We start with the final vectors

from Step 2.1 and apply j changes to IC. We now have the following distance values:

D(I’i4. IB) = .11' + If — (‘1

D(VB- I‘CI = N — II + (‘2 + (ff - ('3) — (.133 - ('4)

D(I4. IC) = n — j; + (:5.

Here. .1: and J72" represent the integer values that D(IB. IC) increases and decreases

by respectively as elements are switched; c3 and (:4 represent. the adjustment values

due to those changes; j3‘ and (:5 represent the integer and adjustment changes to

D(VA.VC) due to element changes. It is i1np(_)rtant to note that every time j;

is incremented there are two possibilities: either the value being switched in IC

becomes a value in IB that. still matches I’Z4. in which case)3 is incremented by one

and both (‘4 and ('33 are incremented by the same amount. or it becomes a value in

I’B that does not match VA. which means that. k 2 lei" — 1. This leaves us to note

that. j; + If S 73‘ + A: and that ('4 2 ('5. Finally. with jf 2 ('3. it can be shown

that these distance measures still maintain the Triangular Inequality property from

148

Definition 4.

Step 2.3: Finally. we evolve I’:4 into a generic vector. Because of our initial con-

ditions. this is actually a trivial step. Due to VA only being defined in. relation to

the original vectors IC and IB. and IC and IB being able to be manipulated into

any general vectors from their starting point. we can start V:4 as any vector we wish.

Thus VA is a generic vector and the triangular inequality holds true for any three

vectors I:4. IB. and IC.

149

APPENDIX C

MinMaxDistance Discussion

Much of the work presented in this (_lissertation has focused upon improving search

performance in terms of reducing the number of I/O required to perform a search.

In this appendix. we prove that many search algorithms may be improved in corn-

putational performance by removing the MINNIAXDIST heuristic while suffering no

loss of I /O 1,)erformance.

C. 1 Overview

For the purposes of this discussion we define the MINDIST for a. tree node N and a

query point q as follows:

.IIINDISTN (q) 2 min VNS D(q. NS). (C.l)

\I‘here NS represents a subtree/object of N and D is a valid distance metric for the

data space being used. We. define the .\IIN.\I.AXDIST in a similar manner:

AllA’rIIAA‘DISYBr(q) = min VNS (max D(q. NS)) . (C2)

Using Equations Cl and C2. the MINDIST pruning. MINMAXDIST range reduc-

tion. and MINDIST ordering equations. hereafter referred to as H1. H2. and H3

respectively. are as follows:

H1: For all subtrees N5 of N . T‘F’ITlOt-‘(3/prune any subtree whose MINDIS'T value to

q is grti’ater than the currti'nt search range.

H2: If the .«IIINJIIAXDIST of a subtree NS of node N is less than the cuircnt search

range. reduce the current search range such that it equals the value of the MIN—

MAXDIST of that subtree.

H3: Order those subtrees NS not pruned by heuristic H1 in increasing order of their

A'IINDIST value to q.

For the remainder of this discussion we will hold the following assumptions to be

true:

Assumption 1. MINDIST node ordering is being used.

Assumption 2. llIINDIST node pruning is being used.

Assumption 3. A (ltpth first scorch strategy is being employed.

C.2 Proof

Consider a d-dimensiom’il non-leaf node N. that represents the local root for a branch

in an index tree. The search range of the A? Nearest Neighbor search is represented

by r. If heuristic H2 is employed. the search range is updated by the MINNIAXDIST

value for the sub-nodes of NR as follows:

r : min(r0, AIINAIAXDISTN(ml (C3)

where r0 acts as a, place holder for the search range before it is updated. For future

use we will label the minimal RIINMAXDIST value of the subtrees of node N as

IDAIAI-

The subtrees of N can be categorized into three groups: N51, N52, and A753,

where the following holds true:

0 g MINDISTh ’51) g r

r < MINDISTL—N’Sg) 3 r0 (04)

7‘0 < illIIi/VDIST(A753) S DAIAX?

where DMAX represents the maximum distance value possible between a sub-

tree/object and a query point for the data space being used.

Lemma C.2.1. 0 the three (1'(I,l(’(ories 0 subtrees. a k Nearest Neidzbor search will
.I .I

access these groups in the following order: NSI first, NSQ second, and N53 third.

Proof. This is a result of Assumption 1. [:1

Lemma C.2.2. The subtree of N with the minimum MINMAXDIST value is con-

tained in the sub-tree group N51.

Proof. Equation C.3 indicates that this particular subtree will be used to set the

value of 7' when Heuristic H2 is employed. This subtree will be in N51 due to its

MINDIST value being less than or equal to its NIINRIAXDIST value. El

Lemma C.2.3. If Heuristic H2 is employed, Heuristic H1 will prune subtree groups

A752 and lV53, (111.6? t0 7" = TALKI-

Proof. Heuristic H2 and Equation (3.3 indicate that the updated search range will

be equal to r. Equation C4 classifies that. subtree groups N52 and NSB will have a.

MINDIST value greater than r and will thus be pruned by Heuristic H1. D

Lemma C.2.4. If Heuristic H2 is not employed, Heuristic H1 will prune subtree

group N53 .

Proof. Similar to the preceding proof. we are only guaranteed that the current. search

range will be equal to 1‘0. Equation C4 only classifies subtree group NS3 as having a.

MINDIST value U‘reater than 1' and is thus the onlv Otrou uaranteed to be runed
b 0 V o

by Heuristic H1. [3

Lemma C.2.5. If Heuristic Hg is not employed. the value of 7' will be less than or

equal to DA [A I before visiting any sub-nodes in group NSQ.

Proof. Due to Assumptions 1 and 3. the search algorithm will visit the subtrees of

group N51 before returning to the current node N and considering subtrees in the

groups NS? and N83- According to Lemma (12.2. the subtree with a MINMAXDIST

value DA[AI is contained in subtree group N51. Thus the search is guaranteed to

visit an object with a distance value less than or equal to DNA! before returning to

N. [3

Lemma C.2.6. Heuristic H2 provides no I/O benefits when assumptions 1 through

3 are true.

Proof. Lemma C.2.5 indicates that. the value of r will be less than or equal to DMM

before the search algorithm considers visiting any subtrees from group Ngg. Thus

Heuristic H1 will prune these subtrees before they are visited regardless of Heuristic

H2 being employed. Cl

,
.
.
J
fl
l
?
‘

[1]

M

[4]

l5]

l8]

l9]

BIBLIOGRAPHY

Y. A. Aslandogan and C. T. Yu. Techniques and systems for image and video

retrieval. IEEE TKDE, 11:50—63, 1999.

Ricardo A. Baeza-Yates. Searching: An algorithn‘iic tour. In Encyclopedia of

Computer Science and Technology Vol. 37, pages 331—359, New York, New York,

1997. CRC Press.

Ricardo A. Baeza-Yates, \Valter Cunto, Udi Manber, and Sun Wu. Proximity

matching using fixed-queries trees. In CPM ’94: Proceedings of the 5th Annual

Symposium on Combinatorial Pattern Matching, pages 198-~212, London, UK,

1994. Springer—Verlag.

L. Baoli, L. Qin, and Y. Shiwen. An adaptive ls-nearest neighbor text categoriza—

tion strategy. ACM Transactions on Asian Language Information Processing,

13:215-226. 2004.

R. Bayer and K. Unterauer. Prefix b-trees. ACM Transactions on Databases

Systems, 2211—26, 1977.

Norbert. Beckmann, Hans-Peter Kriegel. Ralf Schneider, and Bernhard Seeger.

The R*-tree: An efficient and robust access method for points and rectangles. In

Hector Garcia-Molina and H. V. Jagadish, editors, Proceedings of the 1990 ACM

SIGMOD International Conference on Management of Data, Atlantic City, NJ,

May 23-25, 1990, pages 322—331, Atlantic City, NJ, U.S.A, 1990. ACM Press.

J. L. Bentley. Multidimensional binary search trees in database applications.

IEEE Trans. Softw. Eng, 5(4):333—340, 1979.

Jon Louis Bentley. h‘lultidimensional binary search trees used for associative

searching. Commun. ACM, 18(9):509~517, 1975.

Jon Louis Bentley and Jerome H. Friedman. Data structures for range searching.

ACM Comput. Suru, 11(4):397~409, 1979.

[10]

[11]

[12]

[13]

[14]

[17]

[181

[19]

[‘30]

[21]

Stefan Berchtold, Daniel A. Keim. and Hans-Peter Kriegel. The X-tree: An

index structure for high—dimensional data. In T. M. Vijayaraman, Alejandro P.

Buchmann, C. .\Iohan, and Nandlal L. Sarda, editors, Proceedings of the 22nd

International Conference on Very Large Databases, pages 28—39, San Francisco,

USA, 1996. Morgan Kaufmann Publishers.

Sergey Brin. Near neighbor search in large metric spaces. In VLDB ’95: Pro-

ceedings of the 21th International Conference on Very Large Data Bases, pages

571-584, San Francisco. CA, USA, 1995. Morgan Kaufmann Publishers Inc.

\V'. A. Burkhard and R. M. Keller. Some approaches to best-match file searching.

Commun. ACM, 10(4):230~230, 1973.

J Catlett. On changing continuous attributes into ordered discrete attributes.

In Proceedings of the European Working Session on Maching Learning, pages

164- 178, 1991.

Edgar Chavez. Bonzalo Navarro, Ricardo Baeza-Yates. and José Luis Mar-

roquin. Searching in metric spaces. A CM Computing Surveys, 33(3):273—321,

2001.

Changqing Chen, Sakti Pramanik, Qiang Zhu, VVatve Alok, and Gang Qian.

The c-nd tree: A multidimensional index for hybrid continuous and non-ordered

discrete data. spaces. In Proceedings of EDBT, 2009.

Paolo Ciaccia, Marco Patella. and Pavel Zezula. M-tree: An efficient access

method for similarity search in metric spaces. In VLDB ’97: Proceedings of the

23rd International Conference on Very Large Data Bases, pages 426-435, San

Francisco, CA, USA, 1997. Morgan Kaufmann Publishers Inc.

Kenneth L. Clarkson. Nearest. neighbor queries in metric spaces. In STOC '97:

Proceedings of the twenty—ninth annual ACM symposium. on Theory of comput—

ing, pages 609—617, New York, NY, USA, 1997. ACM.

J. Clement, P. Flajolet, and B. Vallee. Dynamic sources in information theory:

A general analysis of trie structures. Algorithm, 29, 2001.

P. Ferragina and R. Crossi. The string b-tree: A new data structure for string

search in external memory and its applications. Journal ACM, 46:236—280, 1999.

A Freitas. A Surney of Evolutionary Algorithms for Data Mining and Knowledge

Discovery. ACM, 2003.

Volker Gaede and Oliver Gunther. .\‘Iultit‘limensional access methods. ACM

Computing Surveys, 30:170- 231, 1998.

156

[22]

[‘23]

[30]

[31]

[32]

[33]

Antonin Guttman. R-trees: a dynamic index structure for spatial searching.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988.

R. Hamming. Error—detecting and error—correcting codes. Bell System Technical

Journal, 29(2):147-160, 1950.

A. Henrich, H. “7. Six, and P. \Vidmayer. The lsd tree: spatial access to mul-

tidimensional and non—point objects. 111 VLDB ’89: Proceedings of the 15th

international conference on Very large data bases, pages 45—53, San Francisco,

CA, USA, 1989. .\Iorgan Kaufmann Publishers Inc.

Andreas Henrich. The LSDh—tree: An access structure for feature vectors. In

ICDE ’98: Proceedings of the Fourteenth International Conference on Data En-

gineering, pages 362—309, \Vashington, DC, USA, 1998. IEEE Computer Society.

C. Hjaltason and H. Samet. Incremental similarity search in multimedia

databases, 2000.

G Hjaltason and H Samet. Index-driven similarity search in metric spaces. ACM

Transactions on Database Systems, 28:517-580, 2003.

Gisli R. Hjaltason and Hanan Samet. Ranking in spatial databases. In SSD

'95: Proceedings of the 4th International Symposium on Advances in Spatial

Databases, pages 83—95, London, UK, 1995. Springer-Verlag.

W'. J. Kent. Blat~the blast-like alignment tool. Genome Res, 12(4):656—664,

April 2002.

D. E. Knuth. The Art of Computer Programming, Vol. 3. Addison-Wesley,

Reading, MA, USA, 1973.

Mohammad Kolahdouzan and Cyrus Shahabi. Voronoi-based k nearest. neighbor

search for spatial network databases. In VLDB ’04: Proceedings of the Thirti-

eth international conference on Very large data bases, pages 840—851, Toronto,

Canada, 2004. VLDB Endowment.

Dashiell Kolbe, Qiang Zhu, and Sakti Pramanik. On k-nearest neighbor search-

ing in non-ordered discrete data. spaces. In ICDE, pages 426—435, Istanbul,

Turkey, 2007. IEEE.

Dashiell Kolbe, Qiang Zhu, and Sakti Pramanik. Efficient. k—nearest. neighbor

searching in non-ordered discrete data spaces. ACM Transactions on Informa-

tion Systems, 28, 2010.

n
"

‘
-

A
-
V
-
_
'
_
P
-
h

‘
-

“
.
5
‘

[34]

[36]

[38]

[39]

[40]

[43]

[44]

Dashiell Kolbe, Qiang Zhu, and Sakti Pramanik. Reducing non-(leterminism

of k-nn searching in non-ordered discrete data spaces. Information Processing

Lt'tters, 2010.

Flip Korn, Nikolaos Sidiropoulos. Christos Faloutsos, Eliot. Siegel, and Zenon

Protopapas. Fast nearest neighbor search in medical image databases. In VLDB

'96: Proceedings of the 22th. International Conference on Very Large Data Bases,

pages 215* 226, San Francisco. CA, USA. 1996. Morgan Kaufmann Publishers

Inc.

O.\V. Kwon and J .H. Lee. \Veb page classification based on k—nearest neigh-

bor approach. In Proceedings of the 5th International Workshop Information

Retrieval with Asian. Languages, 2000.

F Lewis. Gareth J Hughes. Andrew Rambaut, Anton Pozniak, and Andrew

J Leigh Brown. Episodic sexual transmission of HIV revealed by molecular

phylodynamics. PLoS Medicine. 5(3), 2008.

Jinhua Li. Efiicicnt Similarity Search Based on Data Distribution Properties in

High Dimension. PhD thesis, Michigan State University, East Lansing, Michi—

gan, United States, 2001.

A Macskassy, H Hirsh, A Banerjee. and A Dayanik. Converting numerical

classification into text classification. Artificial Intelligence, 143(1):51—77, 2003.

Gonzalo Navarro and Ricardo Baeza-yates. Searching in metric spaces. ACM

Computing Surveys, 332273 321, 2001.

Gang Qian. Principles and applications for supporting similarity queries in

non-ordered-discrete and continuous data spaces. PhD thesis. Michigan State

Ui‘iiversity, East Lansing, Michigan, United States, 2004.

Gang Qian, Qiang Zhu, Qiang Xue, and Sakti Pramanik. The ND-tree: a dy-

namic indexing technique for multidimensional non-ordered discrete data spaces.

In vldb '2003: Proceedings of the 29th international conference on Very large data

bases, pages 620-631, Berlin, Germany, 2003. VLDB Endowment.

Gang Qian, Qiang Zhu, Qiang Xue, and Sakti Pramanik. Dynamic indexing

for multidimensional non-ordered discrete data. spaces using a data—partitioning

approach. ACM Trans. Database Syst, 31(2):439--484, 2006.

Gang Qian, Qiang Zhu. Qiang Xue, and Sakti Pramanik. A space—partitioning—

based indexing method for multidimensional non-ordered discrete data spaces.

ACM Trans. Inf. Syst, 24(1):79 -110, 2006.

158

[45]

[40']

[48]

[491

[51]

[52]

[53]

[54]

E. Riloff and L. Hollaar. Text databases and information retrieval. ACM Com-

puting Surveys, 28, 1996.

John T. Robinson. The k—d—b-tree: a search structure for large multidimensional

dynamic indexes. In SIGMOD ’81: Proceedings of the 1981 ACM SIGMOD

international conference on. Management of data, pages 10—18, New York, NY,

USA, 1981. ACM.

Nick Roussopoulos, Stephen Kelley, and Frédéic Vincent. Nearest neighbor

queries. In Michael J. Carey and Donovan A. Schneider, editors, Proceedings of

the 1995 ACM SICMOD International Conference on Management of Data, San

Jose, California, May 22-25, 1995, pages 71—79, San Jose, California, USA,

1995. ACM Press.

Nick Roussopoulos and Daniel Leifker. Direct. spatial search on pictorial

databases using packed r-trees. SIGMOD Rea, 14(4):17—31, 1985.

Y. Rui, T. S. Huang, and S. Change. Image retrival: Current techniques, promis-

ing directions, and open issues. J. Visual Commmzication and Image Represen-

tation, 10:39*62, 1999.

Thomas Seidl and Hans—Peter Kriegel. Optimal multi-step k-nearest neighbor

search. SICMOD Ree, 27(2):154~165, 1998.

J. Uhlmann. Implementing metric trees to satisfy general proximity/similarity

queries, 1991.

Roger Weber, Hans-Jorg Schek, and Stephen Blott. A quantitative analysis and

performance study for similarity-search methods in high-dimensional spaces. In

VLDB ’98: Proceedings of the 24rd International Conference on Very Large

Data Bases, pages 194—205, San Francisco, CA, USA, 1998. Morgan Kaufmann

Publishers Inc.

D. W’hite and R. Jain. Algorithms and strategies for similarity retrieval, 1996.

Q. Xue, G. Qian, J.R. Cole, and S. Pramanik. Investigation on approximate

q—gram matching in genome sequence databases, 2004.

Peter N. Yianilos. Locally lifting the curse of dimensionality for nearest neighbor

search (extended abstract). In SODA ’00: Proceedings of the eleventh annual

ACM-SIAM symposium on Discrete algorithms, pages 361—370, Philadelphia,

PA, USA, 2000. Society for Industrial and Applied Mathematics.

159

