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ABSTRACT

ASSESSMENT OF OPTIONS FOR THE INTEGRATION OF FOOD AND FUEL
PRODUCTION IN CELLULOSIC ETHANOL REFINING

By

Bryan Bals

Reducing petroleum consumption is one of the primary challenges of the United
States and the world in the 21st century. Biofuels are seen as a primary
alternative, yet concerns of decreasing food production due to increased demand
for land remain. This research proposes two technologies to integrate biofuel
production with animal feeds and lessen this demand: using AFEX treated
biomass as a fiber source for ruminants and extracting leaf protein as a protein
source. The purpose of this study is to investigate the viability of these two

technologies for both economic value and increasing the productivity of land.

Experimental results indicate that an early harvest of switchgrass, which would
be required for protein production, requires milder pretreatment condition and
has higher yields than late harvest biomass. Ammonia-based extraction was
successful in removing approximately 40% of the protein from switchgrass.
However, AFEX did not increase extraction yields, and resulting sugar yields
decreased after extraction. After hydrolysis, nearly all of the protein was soluble,
but ultrafiltration could only concentrate 30-45% of the protein. AFEX increased
the digestibility of fiber in multiple feedstocks and increased the crude protein

content to levels comparable to common forages. The digestibility of pretreated



late harvest switchgrass is comparable to high quality forages, while the energy

in corn stover is approximately 85% of the value of corn grain.

From these experimental results, two models were created to determine the
potential of these technologies. The first, an economic and material model,
suggests that animal feed integration with ethanol production can displace the
equivalent of 2900-4800 L gasoline per ha of land removed from feed use
compared to 1600 L/ha if no feed integration is performed. Likewise, the
profitability of the land increases to $150-$380/ha for integrated animal feed
scenarios compared to $35/ha for ethanol production. The second model
considers the total land use in the United States and estimates the potential
market for biofuels, AFEX-treated feeds, and protein extracts. These two
technologies increase the amount of biofuel that can be produced by 42 GL of
ethanol on cropland currently used for animal feed or ethanol production without
decreasing animal feed production. Approximately 85 Tg of AFEX-treated feeds

and 52 Tg of biomass for protein extraction are consumed in this scenario.

Thus, this study suggests further research into integrating animal feed production
with biofuel production should be pursued. Emphasis should be applied to
readying AFEX-treated feeds for commercialization, primarily through animal
feeding trials. For protein extraction, future research should be focused primarily

on using the remaining fiber for ethanol production.
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CHAPTER 1 : INTRODUCTION

One of the primary challenges facing the United States and the world in the 21st
century is the transformation from fossil fuel to renewable energy. Of primary
interest is reducing petroleum consumption. Approximately 40% of the United
States’ total energy consumption is petroleum, the single largest source of
energy consumed (see Figure 1.1). Of this energy, 70% is used for
transportation, primarily gasoline (45%) and diesel (20%) fuel. Furthermore,
transportation is the least diversified end use of energy in the United States, with
over 95% of transportation energy supplied by petroleum [1]. Thus, for
petroleum displacement with renewable energy, careful attention should be

focused on displacing these transportation fuels.

Numerous reasons — including political, economic, and environmental — have
been cited by the media, scientists, private industry, and politicians to move away
from petroleum based transportation fuels. The four primary arguments against

petroleum fuels are summarized below:

¢ As afossil fuel, petroleum is a major pollutant. Besides producing
greenhouse gases, gasoline and diesel engines produce pollutants such
as particulate matter, NOx, and ozone, thereby concentrating pollutants
within cities [2]. In addition, the risk remains of severe ecological disasters

due to oil spills such as the Exxon-Valdez spill of 1989.
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Figure 1.1 : United States primary energy consumption by source (left) and
petroleum use by sector (right) in 2007. All numbers are in quadrillion BTUs. [1]
e The price of oil is highly volatile, increasing from $61/bbl in April 2007 to
$137/bbl in July 2008, before rapidly falling to $40/bbl by December 2008
[1]. These price shocks can have a dramatic effect on the economy, and

thus should be avoided.

« The difficulty of avoiding these price shocks is increased due to the
political instability of several oil-producing nations. The Middle East
produces 30% of the world’s oil, and has been a source of political unrest

for decades. In addition, the United States’ need to import oil has often



been cited as a confounding factor in its intemational relations, hampering

the US’ foreign policy goals [3].

¢ As a nonrenewable resource, it is uncertain how much recoverable
petroleum remains in the world. In 1956, M. King Hubbert correctly
predicted the decline of United States oil production beginning around
1970 based on dwindling supplies. Similar assessments of world supply
are difficult, but some analysts claim we are nearing the peak of world oil
production [4]. Even if large quantities of petroleum still exist, it is in areas
that are harder to extract from (such as shale oil), thereby leading to

increased costs and likely increased environmental impact.

Despite the clear need to move away from petroleum based transportation fuels,
two factors are limiting. The cost of altematives tends to be higher than gasoline
or diesel fuel, thus limiting their growth. Also of importance is the “chicken and
egg” conundrum. It is difficult to provide the infrastructure for alternative fuels
before there are consumers, and it is difficult to find consumers before there is an
infrastructure. One solution to this problem is to use an alternative fuel that is
compatible with existing infrastructure. Biofuels such as ethanol are a prime
example of this approach. Ethanol can be blended in small quantities with
gasoline and used in all cars. In addition, “flex fuel’ cars have been designed to
run on both gasoline and ethanol at little extra cost, allowing the potential

demand for ethanol to grow before the infrastructure is in place. Because of this



innate advantage, ethanol is the leading renewable source of transportation fuel

in the United States, with 9.2 billion gallons produced in 2008 [5].
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Figure 1.2 : United States ethanol production, 1980-2008. [5]

The vast majority of ethanol produced in the United States is from comn starch.
However, there is a limit to the amount of ethanol that can be produced from com
due to limited farmland and the high demand of that same farmland for feed
purposes. While this limit is a source of debate, one valuable estimate is
approximately 15 billion gallons per year (approximately 10% of US gasoline
demand). This value is the maximum starch based ethanol mandated in the
2007 Energy Independence and Security Act, as shown in Figure 1.3 [6].
Cellulosic ethanol is seen as a long-term solution. By obtaining ethanol from

fibrous material rather than starch, several additional feedstocks become



available for bioenergy, including agricultural wastes, municipal solid waste,
forests and wood based residues, and grasslands. Making cellulosic ethanol
commercially viable has been a major focus of research, both academic and

industrial, over the past 5 years.
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Figure 1.3 : Renewable fuel standard requirements in the United States as
implemented in the Energy Independence and Security Act of 2007. Current
technology is dominated by corn-based ethanol, yet the mandate limits its
production to 15 billion gallons per year (bgpy). By 2022, the single largest
source of renewable fuel required is cellulosic ethanol (16 bgpy).
While cellulosic ethanol can enhance the amount of biofuels available for use
compared to corn grain, there is no consensus on how much total biofuel energy
is available. Agricultural residues, such as corn stover, rice straw, and wheat

straw, are particularly useful, as they require no additional land for use.

However, low yields per acre, competing uses such as animal bedding, and the



need to leave some material on the farm to prevent erosion and improve soil
quality means these sources are limited. Graham et al. [7] claim that nearly 200
million Mg of com stover is produced in the United States, but only 58 million Mg
is harvestable for biomass use. Gallagher et al. [8] give a higher number for
collectable stover at 98 million Mg. Accepting this higher number as valid and
assuming 80 gallons per Mg, corn stover alone can only increase the total
ethanol produced in the US by approximately 50%. Other residues can increase
this number, but it is clear that residues alone cannot account for all liquid fuel

demand.

Thus, dedicated energy crops will likely be required. These crops are defined as
those produced solely for bioenergy, thereby eliminating this land from all other
uses. Most dedicated energy crops such as switchgrass, miscanthus, and poplar
are perennial, achieve rapid growth with little water or fertilizer input, achieve
high yields per acre, and require little pesticide or herbicide application. These
crops can often be grown on marginal land unsuitable for traditional crops,
although yields are generally lower than in prime soil. In addition, switchgrass
and other grasses can be grown in land enrolled in the Conservation Reserve
Program, which in 2008 was over 13 million hectares [9]. Again, yields would

likely be lower than in prime farmland.

While there are benefits to large-scale cellulosic ethanol production, concern

regarding a large-scale bioenergy economy remains due to the effect it would



have on current agricultural practices. Walsh et al. [10] studied the effect of
biofuel production on overall agricultural economics. They concluded that if 171
million tons of perennial crops could be produced, traditional crop prices would
rise by 9-14%. These price increases occur naturally due to the increased
demand for land in a bioenergy future. Other researchers believe further impacts
could be caused by indirect land use change. Searchinger et al. [11], for
example, reported a 50% increase in greenhouse gas emissions for cellulosic
biofuel compared to gasoline. This is due to land use change; diverting fallow
land to cropland results in the loss of the benefits of these fallow lands. If other
croplands are diverted to biofuels, then it is expected that other fallow lands or
forests would be cleared for food/feed use. If these analyses are correct, then
this further limits the amount of land available to biofuels, particularly if the
benefits of fallow land are perceived as outweighing the benefits of reduced

petroleum consumption.

1.1 Justification

While cellulosic ethanol offers greater variety in terms of potential sources for
biofuels, the question of its viability still remains. Can cellulosic ethanol replace a
significant portion of petroleum use without impacting food production? Due to
the encroachment of cellulosic feedstocks on farmland, would large-scale
production of ethanol be a positive impact on the world? As stated previously,
several analyses claim that large-scale bioenergy production is unsustainable

due to this reason, but such studies are based on the current agricultural



landscape. Rather than accepting this premise, this study envisions a future

where cellulosic feedstocks and food production are compatible with each other.

Such a future would require integrating food production with biofuel production.
This is already performed in the corn ethanol industry, as distiller's grains, the
byproduct of com processing, are sold as animal feed, partially offsetting the loss
of farmland for feed purposes. Similar integration may be required for cellulosic
facilities as well. In fact, integrating animal feed operations with cellulosic
ethanol may help to reduce or eliminate several of the potential hurdles for

cellulosic biofuel commercialization.

At 714 g starch per kilogram corn grain [12] and 151 bushels of corn per acre
[13], approximately 6.77 metric tons (Mg) of digestible carbohydrates per hectare
can be produced from comn. While dedicated energy crops are a new concept
and their potential is currently unknown, it is expected that they would be able to
produce 10-20 Mg of dry biomass per ha [10; 14]. This relates to the equivalent
of 5.5-11 Mg of carbohydrates per hectare if all cell wall carbohydrates are
available for energy consumption [15]. By the same token, switchgrass
harvested in early summer may have up to 10-15% protein content, although the
biomass yields during spring or summer are approximately 33-50% of the total
harvest [16; 17]. Thus, it is possible to produce 0.5-1.5 Mg of protein per hectare
with switchgrass, which compares favorably with soybean at approximately 1.1

Mg of protein per hectare [13; 15].



Thus, it is conceivable that a hectare of switchgrass could produce as much
animal feed as a hectare of com or soy while simultaneously providing biofuel.
Thus, land for biofuels can partially displace land for feed with little or no impact
on food production. This increases the amount of land available for cellulosic
ethanol, increasing the potential amount of petroleum that can be displaced. In
addition, these animal feeds would be a large source of revenue for a refinery,
and potentially quite profitable as well. This can help to reduce the economic risk
of early refineries, as there is a second revenue stream, and reduce the impact of
volatile market prices of both inputs (feedstock) and output (ethanol, which would
compete with volatile gasoline prices). Carolan et al. [18] estimate that animal
feed coproducts can reduce the cost of ethanol by approximately 9-20 cents per
gallon ethanol for a fibrous energy feed, while Greene [19] estimates 11 cents

per gallon for a protein feed.

1.2 Project Description

This project seeks to build a foundation upon which animal feed and biofuel
integration can be pursued. As there is currently little interest in such research,
this foundation needs to be built in order to determine which approaches have
the greatest potential. Of primary interest is using dedicated feedstocks such as

switchgrass in mature refineries. Other feedstocks are also tested as needed.



Different options are available to integrate food and fuel production. Two primary
approaches are considered — treating the fibrous matter with ammonia fiber
expansion (AFEX) pretreatment as a feed for ruminants, and separating the
protein from the fiber to displace soybean meal. Different methods and
feedstocks are available for these options, and both must be integrated with.

biofuel production.

As stated previously, these options are meant to build a foundation for future
study. Multiple integration options are compared using two different models in
order to assess their value in reducing competition between food and fuel. Thus,
the most promising options can be more fully studied and implemented. The

main objectives and limitations of this research are summarized below.

1.3 Objectives

¢ |dentify key opportunities for integration of animal feed with cellulosic
ethanol

¢ Analyze integration options to determine optimal conditions and approach

¢ Obtain mass balances around all components for each option on a
consistent basis

e Compare all options using current models to predict economic and
material impact

¢ Identify key knowledge gaps for future research

10



1.4 Limitations

¢ Limited to feedstocks available at the time of study. Due to the high
degree of variation among feedstocks, results may change with different
compositions. Sensitivity analyses within the models mitigate this
limitation.

e Limited in scale of experiment. No animal feeding trials were possible. /n
vitro rumen digestion experiments were used instead for AFEX-treated
feeds.

o Limited in depth of experimentation. The goal is to identify key areas for
further study, and so not all avenues of research were explored due to
time and material constraints.

¢ Limited to current models and assumptions. Due to lack of information,
cost estimates can vary greatly for biofuel or animal feed production.
Sensitivity analyses will mitigate this to some extent.

¢ Limited to economic and material outputs rather than environmental

impacts. This is related directly to the justification of the project.
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CHAPTER 2 : LITERATURE REVIEW

2.1 Ethanol Production

Bioethanol can be produced from various carbohydrates, including simple
sugars, starch, and cellulose. While both simple sugars and starch based
ethanol are currently commercially viable, cellulosic ethanol is still an unproven
technology. There are currently two different approaches being considered for
commercialization: the biochemical and the thermochemical platform [20]. In the
thermochemical platform, the plant material is burned with limited oxygen,
producing syngas (carbon monoxide and hydrogen), which is then converted into
ethanol using either catalysts or microbial fermentation. Alternatively, the
biomass can be bumed in the absence of oxygen, called pyrolysis, which
produces a liquid product that can be upgraded to various biofuels. Since the
thermochemical platform uses all materials within the biomass — including
cellulose, lignin, lipids, acids, and protein — there is little opportunity for
coproducing animal feeds. Thus, this research focuses solely on the biochemical
platform. In thi§ approach, the complex carbohydrates are broken down into
component sugars using enzymes, and then these sugars are fermented into

ethanol.

The primary drawback of the biochemical platform is the recalcitrance of cell wall
materials. Cell walls are composed of a dense lignocellulosic structure

containing cellulose nanofibers and hemicellulose linkages, and surrounded by

12



hydrophobic lignin. Because of this dense structure, cellulases and
hemicellulases are unable to effectively break down the carbohydrates, resulting
in poor sugar yields [21]. Thus, a pretreatment step is necessary prior to
enzymatic hydrolysis. This process, generally performed at elevated
temperatures and with either an acid or base catalyst, reduces or eliminates the

barriers to enzymatic hydrolysis and dramatically improves the sugar yields.

A summary of leading pretreatments is shown in Table 2.1. Dilute acid
hydrolyzes hemicellulose, leaving a highly digestible solid residue composed
primarily of cellulose and lignin. However, this process also produces harmful
sugar degradation compounds such as furfural, which can inhibit hydrolysis and
fermentation. Thus, a potentially costly detoxification step is necessary. Hot
water pretreatment reduces the inhibitory compounds formed by controlling the
pH, but does not solubilize as much hemicellulose as dilute acid pretreatment.
Steam explosion reduces the water use and may optionally be performed with
acid catalysts. Due to the low water use, there is no liquid separation after
pretreatment, and so both cellulose and hemicellulose must be hydrolyzed in the
same reactor. Alkaline pretreatments using strong hydroxides or ammonia have
also been used. These pretreatments tend to reduce the inhibitors formed and

sugars degraded, but do not solubilize as much hemicellulose.

Of these, ammonia fiber expansion (AFEX) is the focus of this study. Highly

concentrated ammonia is added to biomass at a moderate temperature and
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pressure, and allowed to reside for 5-30 minutes. The pressure is then released,
rapidly evaporating ~90% of the ammonia. This process results in partial
solubilization of hemicellulose, removal of lignin to the surface of the biomass,
and partial decrystallization of cellulose [22]. AFEX, like steam explosion, is a
dry-to-dry process, and so all compounds remain in the solid form with no
separate liquid phase. Little sugar degradation occurs relative to acidic
treatments, leading to the potential for high sugar recovery. Various byproducts
are also formed primarily from the reactions between ammonia and various
linkages between the hemicellulose and lignin, primarily acetamide. These
products may inhibit enzymatic hydrolysis and fermentation, or altematively may
benefit downstream processes by providing a valuable nitrogen source.

Table 2.1 : Five leading pretreatment technologies and their operating conditions

for treating corn stover. All information was obtained from Wyman et al. [23]
except for steam explosion, which was obtained from Bura et al. [24].

Pretreatment Catalyst Temp (C) L:Sratio Time (min)
Dilute Acid H,SO, 160 4:1 20

Steam Explosion SO, 190 Not given 5
Controlled pH None 190 6:1 15

AFEX NH3 90 0.6:1 5

Lime Ca(OH), 55 5:1 4 weeks

AFEX is a strong pretreatment candidate for feed co-products for several
reasons. The moderate temperatures during the AFEX reaction are less likely to
degrade valuable protein. The lack of inhibitory compounds, which may also be
toxic for animal feed purposes, is also an asset. As AFEX is a dry-to-dry
process, only one process stream is present after pretreatment, allowing for a

separate fractionation process dedicated to co-product recovery. Finally, AFEX
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