
I
.
w
.

r
..

..
A

k
.

.
.
z

.
g

..
,.

..
.

.
.
.
:
E
:

e
.

.
‘

5
s
.

a
w

.
.
u

‘
7

k
3
.

\
f
l
‘

t
.
0
0
.
:

.
.

k
z

u
t

.
a

p
.

:
z
e
l
fi
z
.
.
.

F
r
.

1
.

u
.

E
.

..
..
..
4.

.
a

_.
.

1
5
,
{
f
a
m
e
}
:

g
a
.

a
“
i

n
a
E

.
.

5
3
$

.
.
.
x
q
u
m
fi
w
m
fi
m
?

3
3
%

§
L
§
5
w
~

3
.
.

.
.
I

1
.
J
L
:
.
.

.
.

.

.
.
.
.
I

..
0
.
3
5
5
5
7
.

.
.
.

.
5
2
.
)
!

..
.

.
1
1
1
.
2

5
,

.
P
I
‘
}
:
5
.
1
.
:
.
£
:
.

.
.
.
!

.
.
i

5
3
.
5
.
.
.
.

3
1
:
1
1
.
.
.

I
.

.
.

.
.
1
:
1
2
.
.
.

.
1
3
.

1
.
.
.
.
.
.

;
«
x
i
i
?

.
,

..
..
..

..
..
..

..
5
.
1
;

a
n
.
E
1
?

.
r
m
u
a
t
r
.

.
H
‘
.

1
5
.
.
.
“
?

I
‘

.
.
.
-
.
0
.
“

4
.
.

7

.
.
l
5

.
.
.
.
n

4
:
.
.
.

1
.
3
1
1
.
7
3
5

.
u
o

‘
I
L
I

r
A

A
!

This is to certify that the

dissertation entitled

EVOLVING COOPERATIVE, ENERGY-CONSERVING.

AGENT-BASED SYSTEMS

presented by

Benjamin Edward Beckmann

has been accepted towards fulfillment

of the requirements for the

PhD. degree in Computer Science

@MW\
MajorWDrofessor’s Signature

Sllillo

Date

MSU Is an Aflimrative Aerial/Equal Opportunity Employer

'
7
3
.
!
"

 '
x

u
’
? v
1

3 1

L
)

.
.
U

I
)

,.
.
<3
2

,
<

i
n

-<
..

r
4
:
-

C
D

P
l

\
m

e
”

.
.

-
.
_
M

-
—
'
-
v
—

_
_
_
_
‘
-
_
*

PLACE IN RETURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE DATE DUE DATE DUE

5/08 K:IProj/Acc&Pres/ClRC/DateDue.indd

EVOLVING COOPERATIVE, ENERGY-CONSERVING,

AGENT-BASED SYSTEMS

By

Benjamin Edward Beckmann

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Computer Science

2010

ABSTRACT

EVOLVING COOPERATIVE, ENERGY-CONSERVING,

AGENT-BASED SYSTEMS

By

Benjamin Edward Beckmann

Natural organisms are remarkably well—adapted to survive under a myriad of envi-

ronmental conditions. The robustness and adaptability of natural systems has encour-

aged research focused on exploiting observed natural phenomena to produce robust,

biologically-inspired computational systems. For example, biomimetic routing protocols,

self-organizing robotic swarms, and artificial immune systems have been successfully de-

veloped and deployed. However, these applications are constrained to observations of

natural systems, and do not take into account the process by which those systems evolved.

This dissertation focuses on the evolutionary process, and the effect that energy costs have

on evolving agent-based systems.

In this dissertation, we introduce an energy model to a digital evolution system, Avida,

and illustrate its effects on evolving populations compared to populations that do not pay

energy costs. We demonstrate that the inclusion of the energy model produces more pre-

dictable outcomes that are consistent with biological theory. We then apply the energy

model and evolve individual and group behaviors, culminating in the evolution of energy

conserving, density dependent behaviors.

This dissertation serves as an introduction to the evolution of artificial, cooperative,

energy-conserving, agent-based systems. As demonstrated throughout this dissertation,

populations of digital organisms can evolve many complex collective behaviors, which

can then be studied, potentially enhancing our understanding of the biological world and

providing robust, emergent behavioral examples that can be applied to multi-agent compu-

tational systems.

TABLE OF CONTENTS

List of Tables v

List of Figures vi

1 Introduction 1

1.1 Well Adapted Systems 1

1.2 Biologically Inspired Systems Design 3

1.2.1 Biornimetics 3

1.2.2 Autonomic Computing 5

1.2.3 Multi-agent Systems 6

1.2.4 Swarm Intelligence 8

1.2.5 Evolutionary Computation 9

1.2.6 Digital Evolution and Artificial Life 11

1.3 Toward Evolving Cooperative, Energy-Conserving, Agent-Based Systems . 12

1.4 Thesis 14

2 The Avida Energy Model 17

2.1 Background 18

2.2 Avida Background 21

2.3 Avida Overview 22

2.3.1 Avida Operation 22

2.3.2 Self-replication 24

2.3.3 Avida Environment and Scheduling 24

2.3.4 The Avida Energy Model 26

2.3.5 Real-world and Avida environments 28

2.4 Experiments and Results 29

2.4.1 Population Size Variation 32

2.4.2 Gestation Variation 34

2.4.3 Behavior 42

2.5 Discussion and Conclusions 49

3 Individual Energy Management 52

3.1 Evolving Organisms that Sleep 52

3. 1.1 Experimental Setup 53

3.1.2 Experimental Results and Discussion 55

3. 1 .3 Conclusion 62

3.2 Cultivating Phototaxis 64

3.2.1 Methods 65

3.2.2 Experimental Results 68

3.2.3 Related Work 73

3.2.4 Conclusions and Future Directions 75

iii

4 Population Energy Management

4.1 Related Work OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

4.2 Demes and Multilevel Selection

4.3 Self-regulating population

4.3.1 Experimental Extensions and Setup

4.3.2 Experimental Results and Analysis

4.4 Population Adapting to Environmental Factors

4.4.1 Experimental Extensions and Setup

4.4.2 Experimental Results and Analysis

4.5 Conclusion .

5 Quorum Sensing and Quenching

5.1 Background

5.2 Quorum Sensing in Digital Organisms

5.2.1 Avida Extensions

5.2.2 Experimental Setup and Results

5.3 Quorum Quenching in Digital Organisms

5.3.1 Experimental Setup

5.3.2 Results

5.4 Conclusion and Future Work

6 Conclusion

BIBLIOGRAPHY

iv

77

78

79

81

82

85

92

92

96

103

105

105

109

109

112

121

123

124

132

134

138

2.1

3.1

3.2

3.3

3.4

3.5

5.1

LIST OF TABLES

Tasks required by reactions and treatment dependent bonuses. 30

Rewarded tasks................................. 54

Instruction sequence that when executed completes the AND task. 54

Evolved code that loops until the resource becomes available. 58

Sample portion of evolved genome using COLLECT-CELL-DATA 69

Portion of evolved genome exposed to the SENSE3-AND—ROTATE instruction 72

Deme size comparision 119

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

LIST OF FIGURES

Population (bottom) and composition of a digital organism: genome (top

left), virtual CPU (top right) with heads pointing to two locations within

the genome 23

Flow chart of the process to bestow a reward on an organism......... 26

Distribution of evolved population size when using metabolic rate-based

scheduling. * 33

Distribution of evolved gestation time when an organism can complete a

reaction only once. 35

Average organisms gestation time in each run with no reaction restrictions.

Dashed horizontal line at 2000 represents the maximum possible gestation. 37

Average gestation time over evolutionary time of all 50 runs in the expo-

nential treatment with an inflow rate of O and no reaction on restriction

completion (left). Black lines represent runs whose average gestation time

was low at the end of the run. Lighter colored lines are runs whose gesta-

tion was high at the end of the run. Final average gestation of each run with

count of runs in each cluster is shown in the scatter plot on the right. 39

Total reactions performed when each reaction can be performed only once

per organism. 44

Variation of resources that are required for reactions when each reaction

can be completed only once per organism. 45

Total reactions performed when reaction completion restrictions are removed. 46

Variation of resources that are required for specific reactions when reaction

limitation is not present. 47

Resource equalization cycle with lines that point to resources whose uti-

lization is selected for. 48

Ecotype diversity of all runs when an organism can perform a reaction only

once....................................... 50

Ecotype diversity of all runs without reaction restrictions........... 51

vi

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

Comparison of sleep responses in two environments, one where the re-

source is available 100% of the time (constant), and one where the resource

availability decreases over time (declining). Results are the average of 50

runs.......................................

Number of SLEEP instructions present in and executed by organisms in the

constant and declining environments. Average over 50 runs.

Representations of a population’s response to the resource availability over

a single 256 time-step day. Black squares represent sleeping organisms and

white squares represent awake organisms. The resource is available for the

first 112 time steps. a) t = 1, 231 sleeping, resource becomes available; b)

t = 64, 108 sleeping; c) t = 128, 469 sleeping; d) t = 152, 1355 sleeping,

resource is no longer available; e) t = 180, 2111 sleeping; f) t = 204, 1502

sleeping, organisms are beginning to wake up; g) t = 228, 667 sleeping; h)

t = 256, 189 sleeping, day ends and resource becomes available again. . . .

(a) Attempted resource usage by organisms (resource activity) and resource

availability vs. time for a typical 3-day interval. (b) A comparison of SLEEP

instructions (squares) to inert NOP-X instructions (circles); solid lines indi-

cate the frequency with which each instruction is found in the genome and

dashed lines indicate the frequency at which they are executed.

Model of organism migration starting at the equator where the resource

is abundantly available and moving north to regions with less and less re-

source available for consumption.

Mock daily resource availability over time as an organism’s descendants

migrate away from the equator.........................

Depiction of SENSE-CELL-DATA

Average fraction of total allowed time required for a deme to be replicated

in both the COLLECT-CELL-DATA and SENSE-CELL-DATA treatments. . . .

Average fraction of organisms in a population that have moved toward,

away, and neutrally with respect to the light source in the SENSE-CELL-

DATA treatment.................................

Average fraction of total allowed time required for a deme to be replicated

in the SENSE3-AND-ROTATE treatment.

Average fraction of organisms in a population that moved toward, away,

and neutrally with respect to the light source in the SENSE3-AND-ROTATE

treatment.

vii

57

60

65

66

69

70

3.12

3.13

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

Example paths of dominant evolved genomes from the SENSE3-AND-

ROTATE treatment, superimposed on the gradient used in the cultivation

stage. 73

Clips from a movie that shows translated code produce by the SENSE3-

AND-ROTATE treatment executing on an iRobot Create system........ 74

Population (bottom), sub-population (middle) and composition of a digital

organism: genome (top right), virtual CPU (top left) with heads pointing to

locations within the genome 80

Example showing deme initialization and replication of gerrnlines 81

Example grid containing an organism S, and the cells reached by broad-

casting with varying radii. 83

Deme setup with a nest (0), target (> 0), and empty (— 1) cells........ 84

Example path resulting from organism moving back and forth on deme

diagonal..................................... 85

Average fraction of total possible time to complete a deme-level task using

multiple energy transfer percentages. Results are mean of 30 runs. 87

Average fraction of total possible organisms per deme using multiple en-

ergy transfer percentages. Results are average of 30 runs. 88

Average number of organisms in current demes who have performed either

of the two individual tasks. Results are average of 30 runs. 89

Mean of organism gestation times. Results are the average of 30 runs. . . . 90

Fraction of total possible organisms per deme and fraction of maximum

deme gestation time when energy is abundant and 0% or 1% of the parent

deme’s energy is transfered to the offspring. Results are representative of

30 runs. 91

Average organism gestation time when energy is abundant and 1% of the

parent deme’s energy is transferred to the offspring. Results are represen-

tative of 30 runs. 91

Example of the change in execution flow of organism B when it receives a

high-state alarm from organism A. 94

viii

4.13

4.14

4.15

4.16

4.17

4.18

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

Example showing organism A (represented by a boolean OR gate) before

(left) and after (right) executing the ROTATE-TO-ATTACK-CELL instruc-

tion. The attack is represented by the lighting bolt. 95

Mean fraction of total possible organisms within a deme when attacks are

present and when they are not. 97

Average fraction of attacks quelled per attack period in a deme for a single

run. 98

An evolved genome that executes differently depending on if a neighbor

has sent a local high-state alarm message. 100

Sample population experiencing a period of attack. An organism is repre-

sented by a boolean OR gate where the point (or output) of the gate denotes

the organism’s facing. In addition, attacks, quelled attacks, and alarm mes-

sages are represented by lighting bolts, crosses, radially blended gray cir-

cle, respectively. Underlying each figure is a description of the individual

executions represented. 101

Mean number of births per deme in a single run................ 103

Context switch from sequential execution to an interrupt handler and back. . 111

Sample genome containing a single interrupt handler. During sequential

execution the first four instruction of this genome are executed. If a mes-

sage is received the organism’s IP is jumped into the interrupt handler. This

example also contains “junk” code that will not be executed unless the

genome is mutated. 112

Mean fraction of energy remaining per deme over deme generations for

each treatment. 115

Average number of births per deme for all three treatments.......... 115

Average organism density per deme. 116

Organism density and total births per deme for dominate organisms. 117

Average number of organisms interrupted per deme.............. 118

Evolved dominate genome that produces the lowest average organism density. 120

Average organism density under multiple deme sizes. 121

ix

5.10 Images of a 100 x 100 deme initially seeded with the genome shown in

Figure 5.8. Figure 5.10(a) shows the initial state of the deme with a sin-

gle uninterrupted organism in the lowest, left-most cell. Figures 5.10(b)

and 5.10(c) show a steady exponential increase in population size where

the majority of organisms are executing sequentially. Figures 5.10(d) and

5.10(c) depict the rapid behavioral change from self-replication to suppres—

sion of self-replication. Lastly, Figure 5.10(f) shows the state of the deme

population 40% of the way through a competition period........... 122

5.11 Fraction of runs that evolved a quorum mechanism under constant mutant

introduction rates. Results are the mean of 20 runs sampled at each of the

25 configurations, marked by a circle. 125

5.12 Fraction of living demes exposed to mutants after a competition period.

Results are the mean of 16 runs, one for each dominant exhibiting QS,

sampled at each of the 25 configurations, marked by a circle. 127

5.13 Fraction of runs subjected to impaired mutants that perform QS at the end

of each stage. Results are a composite of 160 runs for each.......... 128

5.14 Fraction of organism interrupted per deme during evolution in the staged

environment. Error bars denote one standard deviation from mean. Data

are a composite of 160 runs. 130

5.15 Mean organism density of dominant genomes extracted from runs exposed

to a staged increase in send-impaired mutants. Error bars are omitted for

clarity. Data are a composite of 160 samples per line. 131

5.16 Mean organism density of dominant genomes extracted from runs exposed

to a staged increase in receive-impaired mutants. Error bars are omitted for

clarity...................................... 132

Chapter 1

Introduction

1.1 Well Adapted Systems

Natural organisms are remarkably well adapted to their environment. A single natural or-

ganism contains a myriad of individual interacting parts. Each part plays a role in the

organism’s health and well being. Throughout the evolutionary process these parts have

adapted, both morphologically and behaviorally, so that they are well-suited to their envi-

ronment. Those organisms that exhibit beneficial traits, such as robustness to perturbation,

efficient resource usage, and various levels of intelligence, have prospered due to natu-

ral selection. Understanding the process by which bio-complexity arose will improve our

ability to design and build complex computational systems.

As software developers we strive to create systems that exhibit many traits observed in

natural organisms and are as well adapted to a virtual environment, as natural organisms

are to their physical environment. Achieving these goals in distributed computing systems

typically requires interaction and cooperation among multiple software agents, executing

on and migrating among nodes in a computer network, including collections of sensors and

robotic systems. Effective cooperative behavior in such settings must overcome adverse

conditions, including nodes that are malfunctioning or physically compromised.

To assist in manifesting these properties/characteristics within a distributed system, we

augment software development with evolutionary methods, specifically digital evolution

(DE). Through DE, a developer can explore alternative solutions by mapping a real-world

system’s capabilities and intended environment into an evolutionary setting, enabling an

evolutionary process to stochastically search for fit solutions. The solutions produced

through this process can be studied for novel behaviors that optimize resource usage.

There are many examples of naturally occurring collective behaviors that optimize re-

source usage. Social insects commonly act as a group to perform a task. For example,

leafcutter ants form “highways” to transport portions of leaves, harvested from plants and

trees, to their nest [87]. Other social insects, such as the wasp Polybia occidentalis, di-

vide nest-building duties among three groups of workers (pulp foragers, water foragers,

and builders), and regulate the size of each group by exchanging information [95]. Ob-

servations of these and other group-level behaviors have been widely studied in biological

circles [87, 132,192] and interest in them can be traced back as far as the 9th Century [80].

In 1975, Wilson introduced the field of Sociobiology [192], which links these naturally

occurring social behaviors to the evolutionary process, fundamentally underpinning the

research described in this thesis.

Collective computing systems, such as wireless sensor networks and robotic swarms,

must collectively optimize resource usage. They are susceptible to performance degra-

dations caused by uncontrollable environmental features, such as unpredictable network

disruptions. As these systems increasingly interact with the physical world they are of-

ten required to operate in extreme situations. To remain effective, these systems must

adapt to dynamic network conditions, conserve energy, compensate for hardware and soft-

ware failures, fend off attacks, and optimize performance, all with minimal human in-

tervention [102, 127]. Moreover, achieving these goals typically requires interaction and

cooperation among multiple nodes, some of which may be malfunctioning or physically

compromised. The complexity of designing robust computational systems has led many

researchers to investigate biologically-inspired approaches. Let us briefly review these

methods.

1.2 Biologically Inspired Systems Design

Recently, biologically-inspired methods for designing software systems [1,4, 9, 32,40, 77,

96, 105, 121, 122, 153,154, 174] have gained popularity in research communities. Examples

include biomimetics [98], autonomic computing [102, 187], multi-agent systems [172],

swarm intelligence [24], and evolutionary computation [39, 45, 71, 84, 107]. This push

toward biologically-inspired approaches for computational system design stems from ob-

servations of robustness in natural organisms when they are confronted with dynamic con-

ditions.

1.2.1 Biomimetics

The morphologies and behaviors of individual organisms are exceptionally well suited for

their environments. For example, a hummingbird’s ability to hover enables it to feed on

the nectar of plants, and a cheetah’s agility and speed allow it to catch other less capable

animals. In addition, collaborative behaviors are also present in nature in many forms

and at many levels of complexity. For example, many bacteria perform quorum sensing

[132], enabling the completion of collaborative tasks such as the formation of biofilms [78,

165], swarming motility [165], exopolysaccharide production [165], and cell aggregation

[165]. Social insects also collaborate to construct intricate nests, survive attacks, travel long

distances, collect food, and perform many other tasks [30]. And of course, cooperation is

pervasive in many other species, including human beings. Similarly, complex cooperative

behaviors are also required in computational systems. Robotic swarms [56, 99, 100, 180],

intrusion detectors [139], and collective energy management in sensor networks [109] all

require complex cooperative behaviors.

The ability of natural organisms to perform collaborative tasks while adapting to un-

foreseen circumstances has led researchers to study biomimetics [98]. An approach is con-

sidered to be biomimetic if it mimics natural occurrences within a man-made entity. Many

biomimetic approaches have been proposed [4, 9, 32, 40, 122, 174], including biologically-

inspired software design patterns [9]. One of the patterns suggested in [9] is stigmergic

communication (SC). SC is a form of indirect communication where an individual places

information into its local environment. The placement of this information can affect a de-

cision made by another individual in that location sometime in the future. This method

of communication, inspired by species of ants that use pheromones to communicate the

location of food, a nest, and so on [87], has been used in routing algorithms to efficiently

direct packets to a destination [32,51]. An example of the SC pattern can be found in [122],

which presents the “tuples on the air” (TOTA) middleware. In TOTA, an agent can com-

municate indirectly through its environment by propagating and sensing locally available

tuples, thereby enabling SC among agents.

In addition to the design of software systems, biomimetic approaches have also been

used to design physical objects, such as robots [7, 89, 118]. As stated in [7], “Biomimetic

robots differ from traditional robots in that they are agile, relatively cheap, and able to

deal with real-world environments.” Biomimetic robots have been developed for aquatic

[8,175], terrestrial [88,108,164], and aerial [195] domains with various levels of complex-

ity and ability. Extending these ideas, the field of evolutionary robotics [144], described

in Section 1.2.5, combines both biorrrimetic software and hardware with an evolutionary

process, potentially sidestepping incorrect engineering constraints or preconceptions and

allowing for “uncontrolled engineering” [117].

Biornimetic software and hardware have been applied to address many cyber-related

problem domains, as described above. However, as the complexity of these and other com-

puting systems continues to increase, both in scale and functionality, traditional methods

of control requiring a “human-in-the-loop” will be inadequate. Moreover, as computer

systems increasingly interact with the physical world, they will require a higher degree of

autonomy. To aid in the management of increasingly complex systems, additional control

mechanisms that limit or remove the human control component, will be required. Re-

searchers have proposed a subfield of biomimetics, called autonomic computing [94], to

fulfill this management need by enabling a system to govern itself.

1.2.2 Autonomic Computing

Many species of plants and animals have evolved self-governing systems that are criti-

cally important to their survival. An example in humans is the autonomic nervous system,

which regulates our respiration rate, digestion, heart rate, perspiration, pupil dilation, sali-

vation, micturition, and sexual arousal. Leveraging this knowledge and anticipating the

management needs of future computing systems, IBM published a manifesto detailing the

need for self-governing, or autonomic, computing systems [94]. In addition, Kephart and

Chess promoted IBM’s vision of autonomic computing in [102], supported by a compu-

tational architecture in [187]. They suggested to focus on the creation of computational

systems capable of self-management, according to the goals of the system’s administrator,

in order to reduce the burden of system management. In doing so, they sparked numerous

research efforts relating to autonomic computing in government [180], industry [120, 173],

and academia [52, 56,128, 129, 194].

According to Kephart and Chess [102], a system can be called autonomic if it is capable

of self-configuration, self-optimization, self-healing, or self-protection. The goal of an

autonomic system developer is to create a system that, after it is started, requires little or no

human interaction. To create such a system, many concepts (such as control theory [103],

adaptation [127], and domain knowledge) must be combined into a single coherent system.

Furthermore, the developer of an autonomic system must ensure the system’s quality of

service (QoS) will degrade gracefully in the presence of adverse conditions, and that its

responses will not negatively affect other interfacing systems. Indeed, interaction among

multiple entities in meeting high level system objectives is a major aspect of autonomic

systems.

1.2.3 Multi-agent Systems

As computing becomes more pervasive and decentralized, many design techniques, includ-

ing autonomic agent-based systems [102], have been proposed to accommodate the increas-

ing complexity. An agent is typically defined as an independent decision maker residing

within an environment. Each agent is capable of local sensing and local communication,

and is solely responsible for its computational load and resource usage. Autonomous agents

have been applied to many different application areas in computer science [11, 23, 102],

and the agent paradigm has been shown to be an effective approach to addressing dynamic

reconfiguration [67, 172, 188], scalability [66, 172], and self-protection [172]. These ad-

vantages are derived from an agent’s ability to act either individually or collaboratively, to

clone itself, and to migrate across networks while maintaining state and performing tasks.

An agent’s ability to be either active or passive depending on the state of the system is

another major advantage of agent-based systems. For example, when a system is not ex-

periencing events of interest, an agent can remain in a quiescent state, periodically waking

and sensing the local environment. Once an interesting event is detected, the detecting

agent can become active and send messages to other active agents, as well as spawn clones

at neighboring nodes in order to monitor an event [67]. Systems capable of such function-

ality are typically referred to as multi-agent systems (MAS) [172]. Similar to the delegation

of roles within a nest of honey bees [30], a MAS comprises many, possibly heterogenous,

agents collaborating to perform a task. Many biomimetic systems (e.g. an artificial immune

system [68, 83]) require multiple individuals interacting in a coordinated fashion.

A MAS may be preferred to a single monolithic agent for many situations [99, 172].

The inherent parallelism in a MAS provides a suitable method of distributing the system’s

workload. Also MASS, as described in this thesis, do not have a single point of failure,

so they are robust to agent-level faults. Scalability is also a feature of a MAS because

of the inherent modularity of an agent: if more agents are required to perform a task,

they can be easily created. In addition, the modularity of an agent increases the system’s

adaptability, in that new agents can be added as new capabilities are required. A MAS

also allows a programmer to subdivide a problem into simpler tasks instead of tackling the

entire problem at once; an individual agent can be designed/assigned to a specific subtask.

Physical distribution of agents in a MAS is also an advantage since it enables shorter system

response times than a single agent.

Many computational systems have been designed using the MAS paradigm; examples

include wireless sensor networks [66, 67], robotic swarms [55, 56], and artificial immune

systems [68, 83]. In these systems each node or robot contains an agent that is responsible

for its operation. In addition, the agent collaborates with other agents in its vicinity to help

perform a task. Combined, the system of agents is capable of performing tasks that a single

agent cannot [52, 56, 58, 66, 168].

In addition to benefitting the design of distributed systems, MASS are also useful for

studying fundamental problems in life sciences [61,150, 158] and cognitive sciences [31].

For example, Epstein and Axtell have show macro-behaviors arise in resource constrained

environments [61], and Ray has demonstrated parasitic behavior in an evolving MAS. In

this thesis, we focus on developing cooperative MASS through the use of evolution, and

study emerging group-level behaviors that arise from interactions among individuals. As

described in [60] and [186], “intelligence” does not reside within an agent, but between

agents and is viewable through interaction. Therefore, as proposed in [41], the best way to

develop intelligent machines may be to start with “social” machines. Following this sug-

gestion, we explore interactions between agents, and between agents and their environment

(collectively, their observable behavior) to determine the success or failure of a task. This

concept is closely related to swarm intelligence.

1.2.4 Swarm Intelligence

The field of swarm intelligence (SI) [24, 100] focuses mainly on the end-product of socio-

biology, specifically leveraging the social insect metaphor to build efficient, flexible, and

robust computational systems. Swarm intelligence as defined by Bonabeau et al. in [24]

is “any attempt to design algorithms or distributed problem-solving devices inspired by the

collective behavior of social insect colonies and other animal societies.” This broad defini-

tion lends itself well to many SI subfields, such as ant colony optimization (ACO) [53, 54],

and in addition does not exclude the processes by which these collective behaviors came

about, namely, natural selection. Fundamentally, SI can be thought of as applying the be-

haviors encompassed by sociobiology to problem solving.

SI focuses mainly on producing group behavior through self-organization [24, 100].

A system is considered to be self-organizing if interaction between individuals lead to an

emergent, complex global behavior. For example, individual wasps perform foraging and

building tasks to collectively construct a nest. Inherently, a self-organizing behavior is a

bottom-up phenomenon, and achieved through multiple methods in both natural [30, 87,98,

192] and artificial [4, 57,64, 98, 123, 167, 174] systems.

In computational settings, SI researchers have demonstrated a variety of collective be-

haviors among homogeneous groups of robots, including aggregation [13, 177], coordi-

nated motion [12, 55], collective and cooperative transport [74—76], adaptive task allo-

cation [110—112], navigation on rough terrain [178], and functional self-assembly [179].

Collective behaviors for a heterogenous group of robots have also be successfully ex-

plored [181]. We extend this research and focus on evolving energy efficient cooperative

behaviors, while enhancing the understanding of the evolutionary process. To do so we

will need to employ methods from the field of evolutionary computation.

1.2.5 Evolutionary Computation

As noted earlier, biomimetic approaches to designing robust computer systems [98] are

approaches in which successful natural behaviors are mimicked in silico. However, while

purely biomimetic methods are effective in certain domains, they are constrained to obser-

vations of nature, and do not take into account the evolutionary process that created our

amazingly complex global ecosystem. Furthermore, natural organisms are well-adapted to

their environment because they have been exposed to both structural and behavioral opti-

mizations through the evolutionary process. Being well suited to its environment is also

a concern for a computational system. Therefore, applying methods similar to those that

produced efficient resource usage, instincts, cooperation, intelligence, and creativity in the

natural world is a logical choice to investigate and apply to the design of agents in a virtual

world.

Evolutionary computation (EC) [45] is a broad field focused on applying the basic prin-

ciples of natural selection to solving optimization problems. EC includes any computa-

tional system that satisfies the three conditions necessary for evolution to occur [49]: repli-

cation, variation (mutation), and differential fitness (competition). The most well-known

EC method is the genetic algorithm (GA) [84], an iterative search technique in which in-

dividuals in a population are encodings of candidate solutions. In each generation, the

fitness of every individual is calculated, and a subset is selected, recombined and/or mu-

tated, and moved to the next generation. Genetic programming (GP) [71, 107] is a related

method where the individuals are often actual computer programs. Both approaches have

been successfully used to solve complex problems in distributed computing, such as mul-

ticast mapping [77], network intrusion detection [1], process scheduling [121], topology

optimization and routing [105, 153], and peer-to-peer protocols [40]. In some cases, EC

methods have produced solutions that are competitive with state-of—the-art human design

and patentable innovations [107].

One common use of a GA is to train the “brain” of an agent through neuro-evolution

[65, 131, 144]. In this approach, the GA “evolves” the neural network by modifying the

connections between the network’s nodes. Over evolutionary time the GA evaluates so-

lutions using a fitness metric that provides selective pressures to guide the evolutionary

process toward solutions that exhibit a desired behavior. Other neuro-evolution methods

enable the structure of the neural network to be modified as well [170, 171].

In addition to evolving a single agent’s behavior, EC methods have also been used to

evolve collective behaviors within a group of homogeneous [39] and heterogeneous agents

[27, 197]. For example, Yong and Miikkulainen [197] extended prior work on evolving

individual neurons within a neural network [73, 137, 138] to a multi-agent setting. In [197],

the controller for each agent within a group is evolved separately, allowing each agent to

specialize its controller to a specific task, producing heterogenous agent controllers and

behavior. However, the group of agents is evaluated as a whole to determine the fitness of

the evolved controllers, and credit for this fitness is evenly assigned to each participating

controller.

Another method described in [39] focuses on the use of a deve10pmental model, where

the controller of each agent'in a group is produced by the same controller generator. The

generated controller’s behavior is dependent on the agent’s context, therefore the evolved

controller generator produce a set of controllers with varying behaviors. In short, the

method described in [39] produces a single solution that, depending on context, can “un-

roll” into different agent behavior. Other recent work focusing on evolving homogenous

control structures for robots with heterogenous sensing capabilities has also shown promis-

ing results [181].

The study of embodied robotic agents in the EC field is called evolutionary robotics

(ER) [93,144]. ER focuses on both the application of EC methods to the design of robotic

controllers [93, 144], and in some studies the co-evolution of a robot’s controller and mor-

phology [119, 169]. For eample, work on the Swarmanoid [52] project addresses the “de-

sign, implementation and control of a novel distributed [heterogeneous] robotic system,”

10

extending its predecessor, the Swarm-bots project [56], which used homogeneous robots.

In addition to the application of EC to solve optimization problems, other works fo-

cus on enhancing knowledge of the evolutionary process [90, 130]. For example, Holland

created the ECHO system [86] to study emergent behavior of a population of agents. The

ECHO system, much like the Avida system described in the next section, provides re-

searchers with the ability to perform virtual experiments to study the dynamics of the evo-

lutionary process. Over the course of evolution, agents develop strategies that help ensure

their survival in a resource-limited environment.

1.2.6 Digital Evolution and Artificial Life

In this work we apply evolutionary computation to the development and analysis of individ-

ual and group behavior. Instead of using a genetic algorithm (GA), however, we explore the

potential benefits of another form of evolutionary computation known as digital evolution

(DE) [2], which is closely related to several artificial life platforms [2, 85, 114, 157, 160].

In digital evolution, a population of self-replicating computer programs exists in a com-

putational environment and is subject to mutations and natural selection. These “digital

organisms” are provided with limited resources whose use must be carefully balanced if

they are to survive. Since digital organisms interact with one another and are responsible

for their own replication, the process is closer to natural evolution than traditional forms

of evolutionary computation such as GAS. Designed primarily as a tool for evolutionary

biologists, this “digital Petri dish” enables researchers to explore questions that are difficult

or impossible to study with organic life forms [3, 35, 116, 189, 190]. For example, Lenski

et al. used Avida [149] to study the evolutionary origin of functional artifacts that may

appear too complex to have been produced through evolution by natural selection [116].

This article and others have demonstrated that fundamental principles of evolution can be

observed using digital evolution [2, 35, 113, 114, 151, 157, 158, 190].

In addition to uses in biology, digital evolution provides a means to harness the power of

11

natural selection and apply it to a variety of problems in designing computational systems.

Digital evolution enables the designer to explore an enormous solution space, potentially

discovering unintuitive algorithms that are robust under highly dynamic and adverse con-

ditions. The investigations described herein explore the application of digital evolution to

problems in distributed computing [126].

However, Alife systems, such as Avida, represent an abstraction of natural phenomena.

They include only features that are built in, and exclude others that may be important to

furthering our understanding of the evolutionary process. At a minimum, any evolving

system must include replication with variation and differential fitness (competition) among

individuals, as these are essential ingredients of the evolutionary process [49]. Building

on this recipe, evolving systems can be constructed to test hypotheses and potentially con-

tribute to the formulation of evolutionary principles. However, as with cooking, the quality

of the ingredients will affect the result. Alife system designers must pay close attention to

the realization of these required ingredients in their evolving systems, as they can affect the

outcome.

1.3 Toward Evolving Cooperative, Energy-Conserving,

Agent-Based Systems

As we have seen, cooperative agent-based systems are common in both natural and human-

designed systems. In addition, they have many intrinsic benefits that can be leveraged to

build a distributed, autonomous applications. Furthermore, virtual agent-based systems can

also be used to test hypotheses about natural phenomena and learn about self-organizing

emergent behavior. However, very little work has focused on the effects of energy on

the evolution of an agent-based systems. In this dissertation, we explore the evolution of

cooperative, energy-conserving, agent-based systems.

Energy efficiency can be used both directly and indirectly to influence the evolutionary

12

process. If selection is based solely on how well an individual completes a task, and energy

efficiency is ignored, then solutions can evolve to be successful, but their translation into

real devices can produce suboptimal results. For example, as shown in [125] when a robot

was evolved to search for an object without any energy constraints, it evolved to spiral

out from its starting position and ignored possibly useful sensor readings. In contrast,

when energy was included in the fitness evaluation the robot actively polled its sensors

and chose a more direct path to the target, increasing its energy efficiency. Floreano et

al. [65] also used energy efficiency indirectly to evolve a movement strategy for a mobile

robot. The robot was evolved to move for an extended period of time using a rechargeable

battery. As long as the robot returned to the recharging sector of the arena before its battery

was depleted, its battery would be recharged and it could continue to move, increasing its

fitness. Through the evolutionary process the robot evolved to recharge itself and survive

until it was stopped due to a hard time limit.

These direct and indirect uses of energy exemplify the theory of diminishing returns,

which refers to the point at which additional resources translate into a negligible return on

investment. Ideally, a computer system should automatically operate close to this point,

optimizing its performance. Commonly, the configuration required to achieve such perfor-

mance, such as the number of agents within a systems, is determined a priori as in artificial

immune systems [83] and particle swarm optimization [156]. Our focus here is on the

effects energy efficiency can have on the evolution of group—level tasks, Specifically the

number of agents involved.

Our studies show that energy is integral to the evolutionary process. Specifically, when

energy is considered as a consumable resource, selective pressures drive evolution toward

energy conserving strategies. Leveraging this insight, we study evolved group behav-

iors, looking for collections of individual behaviors that when combined produce emergent

group behaviors. Providing better understanding of these individual and group behaviors

will aid in the design of robust MASS by mechanisms that have been successfully used to

13

produce effective group behaviors in silico.

1.4 Thesis

This dissertation focuses on implications of incorporating energy into Avida. Traditionally,

in many Alife systems [149, 151, 157, 158], including Avida, an individual is allowed to

execute whenever it is allocated time by a scheduler. However, this model does not ac-

count for the fact that performing a behavior requires an organism to pay both time and

energy costs. The inclusion of an energy model, described in Section 2.3.4, requires that

an individual pay an energy cost in addition to a time cost. This dissertation will Show that

the addition of energy costs can significantly change the evolutionary trajectory taken by

a population, compared to those that are not subjected to these “extra” costs. Specifically,

this dissertation will demonstrate that:

Thesis Statement: An individual ’5fimction requires both time and energy, and the opti-

mization ofthese resources produces phenomena that are desirable in multi-agent systems.

This dissertation provides direct evidence that incorporation of an energy producing

metabolism alters the results of an evolutionary experiment, contributes an implementation

of the energy model described later, illustrates the how the energy model can be used to

evolve individual and group behavior, and proposes an implementation of active messages

that trigger threaded message handlers. Specifically, the dissertation will contribute the

following.

1. We explore the differences produced within and between evolutionary trials where

individuals pay extra energy costs and where they do not. Organism-level energy will

be introduced as a commodity that must be well managed for an organism to survive.

The introduction of energy produces results consistent with evolutionary theory and

avoids divergent evolution that is present in other non-energy trials.

14

2. We explore the issue of energy efficiency within an individual. We describe a set

of experiments that demonstrate the ability of the evolutionary process to produce

resource-aware adaptive behavior (i.e., sleep). In addition, we study the effect of

a diminishing resource on the evolution of energy-efficient organisms. Lastly, we

demonstrate the evolution of energy-conserving phototaxis. These experiments are

initial steps toward evolving energy-efficient agents for deployment on resource-

constrained devices.

3. We investigate the role group-level energy efficiency can play in natural selection,

in particular, its effects on the self-regulation of a group’s population. For example,

when a group is selected for replication, what happens if its previous energy gains are

inherited completely, partially, or not at all? What effects does group-level efficiency

have on the number of individuals required to complete the task and their behavior?

Does energy abundance increase or decrease the time required to evolve a group-level

task? In addition to providing evidence that helps to answer these questions, we also

apply the results to the design of agent-based distributed systems.

4. We demonstrate a “proof of concept” that DE can produce a population of mobile

agents exhibiting self-organization, specifically, cooperative actions among neigh-

boring organisms to mitigate attacks, and self-adaptation, by changing their collec-

tive behavior in response to dynamic threat levels. This study also helps to identify

evolutionary conditions that enable this global behavior to emerge in a population.

Moreover, analyzing the genome of a particularly successful population provides in-

sight into the complexity and effectiveness of solutions discovered through the evo-

lutionary process.

5. We demonstrate that density-dependent behavior can be evolved using basic energy

conservation pressures. We introduce to Avida active messaging capabilities that en-

able one agent to affect the execution of another. Additionally, we show that evolved

15

density-dependent group behaviors are resistant to specific impairments and evolve

in the presence of impairments.

This dissertation is organized into five remaining chapters. Chapter 2 describes the

Avida platform [149] used in this study, motivates the need for this research, introduces the

energy model, and demonstrates that the inclusion of an energy-producing metabolism can

alter the outcome of the evolutionary process. Chapter 3 describes initial experiments in

which organisms evolved to conserve energy. Chapter 4 extends the evolution of energy

conservation from a single organism to a group of organisms. Specifically, groups of or-

ganisms are evolved to cooperate to perform a group-level task while conserving energy.

Chapter 5 extends these results to an example group behavior where organisms are evolved

to sense a quorum, and assess the effects of attempts to disrupt this behavior. Finally,

Chapter 6 discusses areas of possible future investigations beyond this dissertation.

16

Chapter 2

The Avida Energy Model

In this chapter we focus on implications of incorporating energy into an Alife system. For

this we extended the Avida digital evolution platform [149], described in Section 2.3. Tra-

ditionally in Avida, and many other Alife systems [151,157, 158], an individual is allowed

to execute whenever it is scheduled. The inclusion of the energy model, described in Sec-

tion 2.3.4, requires that an individual pay an additional energy cost that can significantly ’

change the evolutionary trajectory taken by a population.

In this work we demonstrate, across a wide-range of environments, the benefits and lim-

itations of incorporating energy costs into an Alife system. In Section 2.4 we demonstrate

that the inclusion of energy allows for the control of a population’s size through the inflow

of resources, which contrasts with many systems where the population’s size is constrained

' only by available space [151,157,158]. Moreover, when the size of a population is limited

by its energy, as its constituents evolve to collect more energy, and more efficiently, the

size of the population can also evolve. We also show that the inclusion of energy enables

configurations where a population’s limiting resource can be physical space or inflowing

I'CSOUI‘CCS .

17

2.1 Background

Many “traditional” evolutionary algorithms, where an individual represents a complete

solution to an optimization problem (such as a genetic algorithm [84] or genetic pro-

gram [106]) evaluate individuals atornically and synchronously [45]. Lock-step evaluation

of individuals is acceptable Since individuals do not interact. However, lock-step execution

and/or evaluation of individuals does not accurately model the asynchrony inherent in a nat-

ural system. Rather, in a natural system, where genetic material is passed vertically, future

generations depend on whether an individual survives long enough to reproduce. Further-

more, the survival of an individual iS not a solitary endeavor. An individual’s survival can

be affected by the behavior of others and by the environment. We argue that to preserve

the asynchrony among individuals, which affects survivability and thus evolution, an Alife

system designer must be conscious of three key features: the scheduling of individuals,

the environmentally implied fitness function, and time and energy costs paid by individu-

als. These three features are critical to competition, which is an essential ingredient of the

evolutionary process.

Scheduling of Individuals. The modeling of asynchronous features in an Alife system

can be reduced to a scheduling problem. When does an individual’s state change? Depend-

ing on the model, the answer to this question varies. For example, in Conway’s Game of

Life, popularized in [69], the state of every cell iS evaluated each generation. Therefore the

state of all “individuals” can change simultaneously and their interactions occur in lock-

step. Likewise, updating of state in Coreworld [157] also happens in lock-step. However,

there is no built-in concept of an individual. Instead, the state of core memory and instruc-

tion pointers are updated in parallel. A third example, where the genetic code of multiple

individuals may overlap, is Tierra [158]. In Tierra an individual consists of a virtual CPU

whose state is changed when its instruction pointer reaches the top of the “slicer queue”

and is then executed. In this way, individuals are scheduled sequentially. A final example

18

is Avida, the experimental system used in this study. In Avida an individual consists of its

own genetic material and a virtual CPU that executes its genetic material. Avida proba-

bilistically schedules an individual, based on the performance of its ancestors, to determine

when its state changes. Individuals with highly competitive ancestors are probabilistically

scheduled more often than those whose ancestors were less competitive. This scheduler

allows individuals to execute asynchronously. Specifics of the scheduling methods used in

the following experiments will be presented in Section 2.3.

Implied fitness. The success of a natural organism depends on organismal and environ-

mental interactions. An organism’s behavior and physiology along with resource availabil-

ity andother discernible features play a role in its success as a replicator [43]. In natural

systems there is no omniscient fitness function evaluator that decides whose genes are to

be passed along to the next generation and whose are not. Instead, an organism’s ability to

pass along its genes is implied thought its extended phenotype [44]. The organism must be

able to reproduce, collect and metabolize food, and perform other aspects that are essential

for life. Therefore an organism’s success is implied by what is does, who it meets, where

it lives, when and why it performs specific tasks, and how efficient it is at completing these

tasks. Entangled in these interactions are costs and benefits that provide the organisms with

a “merit” and shape how the organism’s lineage evolves.

Interactions among individuals are dynamic in an evolving system, whether the system

is natural or artificial. For example, an individual’s consumption of resources may depend

on the rate of consumption by others. Moreover, an individual’s successful replication may

be inhibited by others who replicate more quickly. Even if the environmental conditions

are constant, as evolution progresses the interactions among individuals change as the pop-

ulation adapts and more successful individuals evolve. In a simple environment where

individuals only compete for space (e. g. other resources play no role in competition), those

that replicate more quickly will be successful, which will drive additional innovations lead-

19

ing to shorter gestation cycles. Therefore, even in a “static” environment, the interactions

among individuals is dynamic, and the success of any individual will depend on its ability

to handle such conditions.

Time and Energy Costs. Many artificial systems reward an individual for performing

user-defined tasks [61, 86, 149]. These rewards partially or fully determine whether an in-

dividual’s genes are passed on to the next generation or not. However, this type of system

does not account for how efficiently an individual completes a task if all of the individuals

are evaluated simultaneously. Many Alife systems overcome this hurdle by modeling an

individual’s execution over time [61, 85, 86,149,157,158]. In these models, an individual’s

lifetime is extended from a single time step, as in the Game of Life, to many time steps, the

sum of which is the individual’s gestation time. Gestation time enables the selection of ge—

netic structures that produce faster replicators. Moreover, in systems with self-replication,

the lifetime of an individual can vary [149, 151, 157, 158], which promotes competition.

The inclusion of time costs for completing tasks allows for selective pressures that reward

efficiency, at least with respect to time. Individuals that perform tasks more quickly have

an advantage over slower competitors. For example, in Tierra [158] individuals are respon-

sible for their own self-replication and compete for space in memory. Total memory Size

in Tierra is fixed, therefore an evolutionary pressure arises that drives a decrease in average

gestation time. Interestingly, using this model, complex parasitic interactions have been

evolved where individuals trick others into replicating their genetic code. This trickery

reduces the amount of time required to replicate the trickster. [159].

To summarize, every Alife system has one basic feature in common, scheduling. How

individuals get scheduled for execution greatly affects the results produced by a system. In-

dividuals can be scheduled in parallel or sequentially. Individuals may be prioritized based

on some metric, allowing those who have achieved a higher level of reward more time to

prosper. However, one scheduling-related feature that is pervasive in natural organisms but

20

underrepresented in Alife systems is energy. Natural organisms must metabolize resources

to gain energy and sustain life. ‘Modeling of this processes, specifically the extraction of

energy from the environment and its use to perform tasks, provides another dimension by

which selection can act. In combination, time and energy costs may alter the evolutionary

trajectories that are taken by an evolving system. The experiments in Section 2.4 demon-

strate the evolutionary effect of including energy costs, and illuminate areas that require

more investigation.

2.2 Avida Background

While evolutionary computation has been studied since the 1960’s, the specific field of dig-

ital evolution is much younger. The first experiments with populations of self-replicating

computer programs were performed by Rasmussen in a system that he dubbed Core-

world [157]. However, this system was relatively brittle and soon thereafter Ray designed

Tierra [158], which used a streamlined and fault-tolerant genetic language. In 1993, Ofria

and colleagues began development of Avida [149, 150], currently the most widely used

digital evolution platform and the one used in our research.

Avida was developed primarily to provide a better understanding of evolution in na-

ture. Observing evolution in digital organisms enables scientists to address questions that

are impossible to study with organic life forms. The Avida platform has been used to

conduct pioneering research in the evolution of biocomplexity, with an emphasis on under-

standing the evolutionary design process. Specific studies address the evolutionary origin

of complex traits [116], the evolutionary design of modularity [134, 135, 145] and robust-

ness [48, 115, 190], the evolution of multiple, interacting programs [35, 36, 70, 148], the

design of evolvable programming languages [146], and analysis techniques to break down

the information contained within evolved code [3, 91, 147].

In addition to providing a better understanding of biological processes, digital evolution

21

can also help solve problems in science and engineering [35,146] and to design computing

systems that interact with the physical world [126]. Recently, Avida has been used to culti-

vate digital organisms that exhibit self-organizing [18,104], self-healing [104], and adaptive

resource-aware behavior [19], as well as automated state-diagram construction [72] used in

software requirements engineering. Our investigations focus on how the harnessing of DE

can contribute to the design or synthesis of robust, cooperative, energy-efficient multi-agent

systems [126].

In Avida, individuals, or “digital organisms,” self-replicate and evolve to perform tasks

in a user-defined computational environment. Instead of a traditional fitness-based selec-

tion process, in DE an organism’s ability to self-replicate drives natural selection. This

method of selection more closely matches that of the natural world and can provide in-

sight into the evolutionary process [116], as described above. When applied to engineering

problems, digital evolution provides a powerful search tool, as do GA and GP. However,

self-replication and the absence of a predefined fitness function also produce evolution that

is less constrained by a predefined fitness function. While evolved solutions may share

the inherent imperfections of natural organisms, they might also be resilient to some unex-

pected conditions to which human-designed algorithms are limited and/or brittle.

2.3 Avida Overview

2.3.1 Avida Operation

In Avida, digital organisms compete for space within a fixed-size two-dimensional collec-

tion of cells. Each cell can contain at most one organism, which comprises a circular list

of instructions (its genome) and a virtual CPU that executes those instructions, as shown

at the top of Figure 2.1. Instructions perform simple arithmetic operations (addition, bit-

shift, increment, etc.), control execution flow, aid in self-replication, enable the organism to

move from one cell to another, and provide a means for the organism to interact with other

22

organisms and the environment. Additional instructions can easily be added as needed. An

organism executes instructions on its virtual CPU, which contains three general-purpose

registers (AX, BX, CX), two general-purpose stacks, and special-purpose heads that point

to locations within the organism’s genome. Similar to a traditional program counter and

stack pointer, heads are used to control the flow of execution and to facilitate replication.

adtdfl Virtual CPU stacks

se - ow

-------. ,_ Cl CI
if:1e_ss_ . >‘Vl—IP-l J_|_1__|fl

19E??? -.' \ Flow _1++
move AX BX cx

jmp-headr registers

\ ’ I I

C811 \ \ \ Population I I I

containing
organism

Figure 2.1: Population (bottom) and composition of a digital organism: genome (top left),

virtual CPU (top right) with heads pointing to two locations within the genome

The execution of an organism’s genome controls its behavior, including replication of

its offspring. Instruction execution costs the organism both virtual CPU cycles and energy.

The number of virtual cycles and energy expended depends on the instruction being exe-

cuted. For example, executing an instruction that activates a virtual motor consumes more

energy than executing an arithmetic instruction that manipulates registers. This simple von

Neumann architecture does limit how efficiently an organism can perform a behavior, but

it is suitable for many of our studies. In Section 5.2.1, we propose future work on investi-

gating the integration of an interrupt architecture into Avida.

23

2.3.2 Self-replication

Self-replication is a critical aspect of digital evolution, and distinguishes it from other forms

of evolutionary computation. To avoid extinction, an organism must be able to produce off-

spring. This means that the instructions comprising the organism’s genome must contain

a sequence that will create a copy of the genome and split it off into an offspring organ-

ism. Initially, an ancestral organism containing a genome capable only of self-replication

is injected into the population. In Avida, self-replication requires the organism to copy its

own instructions one-by-one to a newly allocated space and then divide the newly allocated

genome from its ancestral genome. Each copy operation is subject to random mutations that

can change the instruction. In addition, mutations can cause instructions to be inserted or

deleted upon division. All behavior other than replication must enter the genome through

a series of individual mutations over generations. A key property of Avida’s instruction

set that differs from traditional computer languages, is that it is not possible to construct a

syntactically incorrect genome [146]. Hence, while random mutations will produce many

genomes that do not perform any meaningful computation, their instruction sequences will

still be valid, that is to say, executable on the virtual CPU. After replication, the offspring,

possibly containing mutations, is placed in a cell in the population, terminating any organ-

ism already residing there. Each Avida run begins with a single self-replicating organism,

which is an ancestor to every organism produced during the run.

2.3.3 Avida Environment and Scheduling

The environment in which an organism lives shapes its evolution. For example, as will be

Shown in Section 2.4.2, when space is the limiting resource the organisms evolve shorter

gestation times, enabling them to better compete for the limited space resource. However,

organisms can also evolve to perform reactions defined by the users. When an organism

completes a reaction it receives a bonus that has an effect on the scheduling of its de-

scendants. The size of the bonus depends on the availability of an associated resource.

24

Completing a reaction that has an abundant associated resource will confer a larger bonus

than completing the same reaction when its required resource is depleted.

In Avida a reaction comprises a task, a resource, and the type and size of a bonus

received by the organism when it completes the reaction. Tasks in Avida are binary logic

functions that an organism must complete to become eligible for a reward. They are defined

in terms of an organism’s observable behavior, or phenotype, which manifests itself in three

ways: I/O between an Avidian and the environment, messages sent between two Avidians,

and an Avidian’s movement. Figure 2.2 shows a flow chart of the process of conferring a

reward to an organism. Initially, when an organism outputs a bit-string by executing the IO

instruction, its “behavior” is tested to determine if it has completed a user-defined task. If

a task was completed, then its associated reaction is tested, otherwise the process exits. In

order for a reaction to be triggered by the completion of a task, other prerequisites must be

satisfied as well. Specifically, the resource associated with the reaction must be available

above a minimum level. Additionally, a limit on the number of times a reaction can be

performed may also be configured. If a reaction is completed then the organism receives a

reward, which influences the scheduling of an organism.

Avida has two mutually exclusive configuration methods for establishing the scheduling

priority of an organism. Traditionally, merit-based scheduling has been used. However, we

have extended Avida with an energy-based scheduling method described in Section 2.3.4.

When using merit-based scheduling, an organism with a higher merit is scheduled more

often than one with lower merit. An organism’s merit is established at birth and remains

constant throughout its lifetime. If a parent gains merit during its lifetime, its children’s

merit will be higher than the parent’s. Likewise, if a parent achieves a net loss of merit

during its lifetime, the result is a lower merit for the children. The completion of reactions

by the parent organism directly affects its offspring’s merit.

25

Test

behavior

Task no

completed?

yes Done, no

reward

Reaction 11°

completed?

yes

yes Energy no

Enabled?

Reward Reward Merit

Energy Bonus Bonus

Figure 2.2: Flow chart of the process to bestow a reward on an organism.

2.3.4 The Avida Energy Model

We have extended Avida with an alternative scheduling methodology that requires an or-

ganism to pay both time costs and energy costs to execute an instruction. We call this

methodology the energy model and have used it in various studies [16, 17, 19, 20]. When

the energy model is enabled, every digital organism is provided with an energy store. An

organism pays to execute instructions with energy from its energy store. When an organ-

ism depletes itS energy, it dies. An organism receives an energy bonus when it completes

a reaction. To remain consistent with the standard Avida configuration, all energy bonuses

in the experiments described in Section 2.4 are applied when an organism replicates. They

do not affect the organism’s scheduling during its lifetime. Upon replication the parent’s

existing energy store decays, at a user defined rate, and is divided equally among offspring.

Disproportional distribution of energy among offspring is configurable. In the experiments

26

described later the decay is 5%. The decay is intended to model energy lost during self-

replication.

Metabolic Rate. In addition to ensuring an organism has sufficient energy to execute

instructions, the energy model also affects the scheduling of organisms. The amount of

energy in an organism’s energy store determines its metabolic rate, using Equation 2.1. (In

Avida, merit and metabolic rate are analogous within the scheduler, however we will use

the terms to differentiate between a standard configuration and an energy model configu-

ration.) An organism’s metabolic rate is set so that if the organism executes a user-defined

maximum number of instructions, that organism’s energy will be depleted and the organism

will die. In all energy model experimental runs described in Section 2.4, this number is set

to 2000. Therefore, an organism can execute at most 2000 instructions within its lifetime.

, stored ener

metabolic rate = , , , 8y (2.1)

maximum instructions executed

Instruction Costs. An organism’s metabolic rate is used to determine the energy cost

associated with executing an instruction. As shown in Equation 2.2, the actual energy cost

of executing an instruction is proportional to an organism’s metabolic rate. Specifically,

the actual energy cost paid by an organism for executing an instruction is calculated by

multiplying the organism’s metabolic rate by a user defined energy cost for the instruction

being executed. Instructions can be assigned different energy costs if desired. An organism

with a higher metabolic rate will pay more to execute an instruction than one whose rate is

lower.

actual instruction energy cost = metabolic rate x instruction energy cost (2.2)

27

Equation 2.2 produces an evolutionary pressure to lower an organism’s metabolic rate

so to conserve energy. In contrast, Equation 2.1 causes the evolutionary process to favor

organisms with larger quantities of stored energy, because those organisms are scheduled

more often. The combination of Equation 2.1 and 2.2 produce a tradeoff where selection

attempts to both maximize metabolic rate while minimizing energy cost per executed in-

struction.

In the following experiment three different configurations are compared to illustrate

how the inclusion of energy can affect the evolution of a population. In all configurations

the merit or metabolic rate of every organisms is used by the scheduler to probabilistically

select the order in which organisms execute.

2.3.5 Real-world and Avida environments

There are many similarities between real-world sensor networks, robotic swarm environ-

ments, and the Avida environment. For example, multi-agent systems are common in all

three environments. Furthermore, an agent’s capabilities are also Similar. Agents have

the ability to perform local computation and communicate with other agents. In addition,

agents can also be mobile. These capabilities can be leveraged and coupled within a group

to produce collaborative behaviors enabling the completion of a complex task through the

self-organization among individuals.

Energy considerations can play a role in an Avida environment much like they do in a

real-world application. In a physical environment, some operations such as movement and

communication, are more expensive than others, such as local computation.

With the development of the energy model in Avida and the use of differential instruc-

tion costs, different energy expenditures per operation can also be modeled within a digital

organism. Doing so allows the evolutionary process to optimize not only behavior, but also

total energy usage. For example, a typical wireless sensor network application attempts to

extend a node’s battery life by limiting its resource usage. The energy model enables the

28

same goal to be present in Avida. Furthermore, energy can be strictly limited, such that

each organism has an energy store that cannot be recharged, similar to the use of a battery

in a real-world wireless device.

2.4 Experiments and Results

Resource competition is important to the evolution of a population. In Avida, traditionally,

competition for space has driven evolution. The only way an organism is removed from the

population is if it dies from excessive age or it is replaced by a newly replicated organism.

To ensure the preservation of its genetic material, an organism must replicate before it is

replaced. This dynamic is always true even when resources required to complete reactions

and gain rewards are limited. However, with the inclusion of energy, an organism can die

from starvation or energy depletion. Additionally, a population’s size can be constrained

by restricting the inflow of resources that are required for reactions. The experiments de-

scribed in this section demonstrate the different resulting evolutionary outcomes that arise

when energy is included in a model. We illustrate differences by evolving populations

under various resource availability regimes.

Reaction Types. Avida allows a user to determine the size and type of a bonus received

by an organism when it completes a reaction. Traditionally, these bonuses have exponen-

tially increasing values that correspond to the complexity of the task associated with a

reaction. The complexity of a task is measured by the minimum number of NANDS required

to perform the logic operation that defines the task. In addition, the reward received by

the organism is dependent on the availability of a required resource. The completion of

a reaction with an underutilized resource will confer a larger reward than the completion

of the same reaction when its resource is depleted. In these experiments we compare the

effects of changing the type of reward received by an organism.

29

We compare three different reward regimes: two that use merit-based scheduling where

executing an instruction costs only virtual CPU cycles (time), and one that uses metabolic

rate-based scheduling where executing an instruction costs both virtual CPU cycles (time)

and energy. Using merit-based scheduling, we configure two treatments, which we will

refer to as exponential and additive. In the exponential treatments, the reward given to

an organism for completing a reaction grows exponentially as the requisite tasks become

more complex. In the additive treatments the rewards for the completion of all reactions

are equal, disregarding task complexity, and they accumulate additively. Using metabolic

rate-based scheduling, we also configure energy treatments, where the rewards for the com-

pletion of all reactions are equal, and they accumulate additively as energy. Each treatment

consists of an environment containing ten reactions, all of which require a unique task and

resource. Table 2.1 shows a list of the tasks and the values of the reward received by the

organism for completing the reaction associated with that task. To enable comparisons to

previous work, we ran two separate batches using all three scheduling configurations. In

one batch we restricted the number of times an organism can complete a reaction to one.

In the other, this limitation is removed.

Table 2.1: Tasks required by reactions and treatment dependent bonuses.

| Tasks [Exponentizfl Additive] Energfl

ECHO 2715 10 10

NOT 2‘-0 10 10

NAND 21-0 10 10

AND 22-0 10 10

ORN 22-0 10 10

OR 23-(r 10 10

ANDN 23-0 10 10

NOR 24-0 10 10

XOR 24-0 10 10

EQU 250 10 10

30

Experimental Configuration. The environmental configurations, excluding resource in-

flow and scheduling method, were held constant in every run. The environmental setup is

modeled after a chemostat where both organisms and resources are well mixed. A popu-

lation exists in a 60 x 60 torus of cells. Each cell has 8 neighbors. Resources are evenly

distributed and every organism is capable of consuming 0.25%, or 9/3600, of any avail—

able resource. This configuration is consistent with previous work [35]. In addition, the

resource consumption of an organism is constrained to be between 0.1 and 1 unit to simu-

late minimum and maximum resource consumption thresholds. Lastly, six resource inflow

rates were used in separate treatments. In each of these treatments every resource, exclud-

ing the resource required of the ECHO reaction, flowed into the environment at a rate of

0, 1,10,100, 1000 (1K), and 10,000 (10K) units per update, respectively.

To sustain a population using metabolic rate-based scheduling, organisms in the popu-

lation must be able to consume a resource at the beginning of a run, otherwise they would

die of energy depletion. Therefore, the ancestral organism used to seed a population must

be capable of performing a task that can sustain the population. This trait is not required for

merit-based scheduling. To control for this difference, in all runs, the ancestral organism is

capable of perform the ECHO task. Furthermore, the resource associated with the ECHO

task flows into the environment at a constant rate of 100 units per update in all treatments.

When using metabolic rate-based scheduling, the combination of the inflowing resource

and the organism’s endowed ability to perform ECHO sustains a population whose size is

limited by the inflow of this resource until organisms evolve to complete other reactions.

The experimental data presented in the remainder of this section are comprised of 18

separate treatments — 6 resource inflow rates for each of the three scheduling methodolo-

gies. Each treatment comprises 50 runs, each initiated with a unique random number seed.

Each run lasts for 250,000 updates. An update is the measure of time in Avida, during

which an average organism will probabilistically execute 30 instructions. Each resource

decays at a rate of 1% per update. Additionally, all instructions have been configured with

31

equal time and energy costs.

2.4.1 Population Size Variation

The most obvious difference between treatments that require organisms to pay for instruc-

tion execution with time and those that require both time and energy is population size.

Configurations that do not require energy all sustain populations at or near the maximum

population size, limited only by the available space in the torus. This occurs because, as

will be Shown in Section 2.4.2, a population’s growth rate exceeds its death rate, excluding

death caused by one organism replacing another.

By including energy costs, non-space resource limitations can constrain the size of a

population. Specifically, the inclusion of an energy cost enables other factors, such as star-

vation and energy depletion, to increase the population’s death rate. Under these conditions

an evolving population’s size is controlled by the inflow of resources, not the availability

of space. Moreover, the size of a population can change as‘its constituents evolve to collect

more energy, more efficiently, by performing more reactions and replicating with fewer

instructions.

Focusing on metabolic rate-based scheduling, Figure 2.3 plots the variation in the size

of evolved populations at the end of the runs under all inflow rates. Figure 2.3(a) shows the

final evolved population size when organisms are constrained to performing each reaction

at most once. Figure 2.3(b) shows the same information with the reaction limitations re-

moved. When the resource inflow is zero, the population is living off the resource required

to complete the ECHO reaction, as it flows into the environment at a rate of 100 units per

update. These populations are the most resource constrained and exhibit the smallest popu-

lations. However, the population size is not statistically different from populations evolved

with resource inflow rates of 1. A resource inflow of ten also restricts the size of a popula-

tion in both cases. Higher resource inflows produce populations whose limiting resource is

space rather than inflowing resources.

32

3500 — if '

3000- -v r

2500 -
O
r
g
a
n
i
s
m
s

N O o O

.
5

2
}
C

2
3

E
B

 50mg ' i

0 1 10 100 1K 10K

Resource Inflow

(a) An organism can complete a reaction only once.

3500» + ' T '

3000 r 1

g) 2500r

5 +

e T

O 2000. T

1500” E :

O 1 10 100 1K 10K

Resource Inflow

(b) No restriction on completion of reactions.

Figure 2.3: Distribution of evolved population size when using metabolic rate-based

scheduling.

33

Including an energy cost enables the evolution of populations that can be constrained by

resource inflow. This feature may produce dynamics that alter the evolutionary trajectory

that a population may take when compared with merit-based scheduling. AS demonstrated

in Figure 2.3, the size of the population is limited by inflowing resource for inflow rates less

than or equal to 10 units per update. Under these conditions none of the runs reached the

maximum population size. For the remainder of this chapter, we will focus on three specific

aspects of the evolved organisms: their gestation, behavior, and ecological diversity of the

population. These aspects allow us to assess competition in each treatment and determine

if the organisms evolve to compete for space, inflowing resource, or a combination of both.

2.4.2 Gestation Variation

A population’s rate of growth may change as its evolves. Limitations on the behavior

of organisms can affect this rate. In this section we illustrate the differences in evolved

gestation time among the various treatments. We show that an organism’s evolved gestation

time is dependent on the type of reward it receives when it completes a reaction. We also

illustrate that the availability of resources in the energy treatment affects gestation.

Evolutionary pressures can both increase and decrease the gestation of organisms as

they evolve. Limitations on rewarding behaviors can have evolutionary consequences. Fig-

ure 2.4 shows the evolved average time, measures in virtual CPU cycles, required for an

organism to self-replicate, its gestation time, in each treatment when an organism can be

rewarded only once for completing a specific reaction. In this figure, the average evolved

gestation time in the exponential and additive treatments are relatively constant across all

inflow rates. Therefore, varied inflow rates do not affect the evolution of gestation time

differently in these treatments. However, this statement does not hold for the energy treat-

ments.

In the energy treatments there is a variation in gestation time that correlates with inflow

rate, which correlates with population size. When the evolved population size is below its

34

35

tion only once.

Figure 2.4: Distribution of evolved gestation time when an organism can complete a reac-

(c) Additive

Resource Inflow

O 10 100 1K 10K

I
n
s
t
r
u
c
t
i
o
n
s
p
e
r
G
e
s
t
a
t
i
o
n

o
'
é
’
é
é
’
é
é
 +

f
i
l
l
"

I—
-[
]]
—-
—I

(b) Exponential

Resource Inflow

O 10 100 1K 10K

I
n
s
t
r
u
c
t
i
o
n
s
p
e
r
G
e
s
t
a
t
i
o
n

a
m
a
s
s

H
u
m
-
I

i
r
e
-
[
fl
u
e

(a) Energy

Resource Inflow

1 10 100 1K 10K

I
n
s
t
r
u
c
t
i
o
n
s
p
e
r
G
e
s
t
a
t
i
o
n

g
a
s

0
C
O

—
L

c
o
o

3
3

1 200

maximum, the evolved gestation time is statistically higher than when space is limiting.

For all pair-wise comparisons of resource inflows 0, 1, and 10 to inflows 100, 1000, and

10,000 the maximum p-value, using the Wilcoxon rank sum test for equal medians, was

less than 10"“). Therefore, in the three environments with the lowest inflow rates, se-

lection favors longer gestations, which provide organisms with more time to compete for

inflowing resources. However, when the restriction on the number of reactions that can be

performed is removed, more variation in evolved gestation time is observed. Figure 2.5

shows the evolved average gestation time in each treatment when an organism is allowed to

perform a reaction an unlimited number of times. The dashed horizontal line at the top of

Figure 2.5 represents the configured maximum allowable age of 2000, which is approached

in many runs.

Again, as in Figure 2.4(c), in the additive treatments across all inflow rates we see ges-

tation times that are similar. However, testing all pairwise additive treatments for statistical

differences we observe that the gestation times for inflow rates 0 and l are significantly

different than the other four inflow rates, with a maximum p-value less than 10‘4. This

statistical difference, albeit small, suggests that the difference in an inflow of 1 and an

inflow of 10 is enough to cause an evolutionary pressure that selects for a slight, yet signif-

icant, decrease in gestation time.

Figure 2.5(a) demonstrates a correlation between gestation and population size in the

energy treatments when reactions are not limited. As in Figure 2.4(a), we see gestation

times decrease in the energy treatments when space is the limiting resource, i. e. resource

inflow is 100 or greater. However, when there is ample room for new organisms the average

gestation of an organism approaches the maximum allowed. These organisms have evolved

to live as long as possible, which provides them with more time to perform tasks that, when

resources are available, confer a reward. In addition, the organisms in these populations are

not subjected to death by replacement, since there is ample room in the environment, so an

extended gestation is a viable evolutionary solution.

36

2000 8

E 8
c 1500 '

s 8
.9
(I)

Q)

Q 1000 ~ Q

52’
8
o

500 - 0 Avg. Gestation

Best Flt

—— Max Gestation

0 r r r n r_ r

0 1 10 100 1k 10k

Resource Inflow

(a) Energy

2000

c 1500 "
O

.9

E
8 o
<5 1000» a

9’
< o

8 8

500 0 Avg. Gestation o 0

Best Fit

—Max Gestation

6 8 .

0 1 10 100 1k 10k

Resource Inflow

(b) Exponential

C

.9

E
U)

8 1000 ~
d) O o
>

<

500 r 0 Avg. Gestation

Best Fit

Max Gestation

0 l 1 r A r L

0 1 10 100 1 k 10k

Resource Inflow

(c) Additive

Figure 2.5: Average organisms gestation time in each run with no reaction restrictions.

Dashed horizontal line at 2000 represents the maximum possible gestation.

37

The data in each plot in Figure 2.5 are fitted to a third-order polynomial. In all three

plots the trends of these lines differ. In the additive treatment, shown in Figure 2.5(c), the

line-of-beSt-fit illustrates that resource inflow has little effect on evolved gestation times.

However, in the energy treatment, shown in Figure 2.5(a), as resource inflow increases,

the average gestation of an organism declines from approximately 2000 instructions to 300

instructions, almost an order of magnitude decline. Moreover, a large decrease occurs

between inflow rates of 10 and 100, which coincides with the tipping point where a popu-

lation is restricted by inflowing resources and those that are limited by space. Lastly, the

evolved gestation times on the exponential treatments are bifurcated under 0 and 1 resource

inflow rates, clustered at an inflow rate of 10, and skewed at higher inflow rates. Because

of the variation in evolved gestation times under the various inflow rates in the exponen-

tial treatments, we are unable to precisely state how resource inflow affects the evolution

of gestation times. However, in the following subsections we do discuss the bifurcation

observed under low resource inflows.

Gestation Bifurcation

Figure 2.5(b) depicts a wide variation in gestation times within and across the exponential

treatments. Focusing on the inflow rate of 0, we observe populations that have evolved

to exhibit average gestation times as high as 1902.0 and as low as 65.7. Furthermore, no

populations evolved average gestation times in between 764.6 and 1742.6. This bifurcation

of evolved gestation times suggests that selection does not strongly favor longer or shorter

gestations. To augment our view of gestation in this treatment we plot the average gestation

time of each run over the course of evolution in Figure 2.6. Figure 2.6 clearly Shows a

bifurcation of average gestation time, which occurs early for the majority of runs. The

scatter plot on the right side of Figure 2.6 depicts the final average gestation time for each

run, duplicating data shown in Figure 2.5(b), as well as a count of the points in each of the

two clusters. Out of 50 runs, 64% end with a gestation time in the lower cluster, between

38

65.7 and 764.6 instructions. The remainder have a higher gestation time, between 1742.6

and 1902.0 instructions. Additionally, Figure 2.6 shows that a switch from a higher average

gestation to one that is lower is possible and most likely to occur early in the evolutionary

process. After 150, 000 updates have passed there are no transitions from a high gestation

to a low gestation. These data Show, generally, runs that evolve a higher average gestation

remain high, however there is a potential for a fortuitous mutation(s) to cause the population

to switch to a lower average gestation. A similar bifurcation is also present in the data for

an inflow of 1, shown in Figure 2.5. The data for the other four inflow rates do not exhibit

a bifurcation. They are clustered around a high gestation time, and the three highest inflow

rates have a long skew in the lower gestation direction.

G
e
s
t
a
t
i
o
n
T
i
m
e

8 O

. I O

600 La. .

. E 32

8 (
X
)

0 0.5 1 1.5 2 2.5 Final Gestation

Updates x 105

Figure 2.6: Average gestation time over evolutionary time of all 50 runs in the exponential

treatment with an inflow rate of 0 and no reaction on restriction completion (left). Black

lines represent runs whose average gestation time was low at the end of the run. Lighter

colored lines are runs whose gestation was high at the end of the run. Final average ges-

tation of each run with count of runs in each cluster is shown in the scatter plot on the

right.

39

Behavior Bifurcation

The existence of the gestation bifurcation, Show in Figure 2.6, results from conflicting

selective pressures for low and high gestations. The gestational history of the populations

can be categorized into three groups: remains low, remains high, or transitions from high

to low. Out of the 50 runs, none transitioned from low to high, however one run does come

close.

Before discussing the evolutionary pressures that produce the three categories of ges-

tational history, we must first emphasize the environmental conditions under which these

populations evolved. These populations are from the exponential treatment when only the

resource required for the ECHO reaction flows into the environment. Therefore, no other

reaction is rewarded. Under these experimental conditions a population is at or near full

and the resource required to complete the ECHO reaction is depleted, so some completions

of the ECHO task are not rewarded.

The conditions in this environment produce conflicting evolutionary pressures. First,

the competition for space, which is present because an organism can replicate without

completing any reaction and the torus has a fixed size, produces a pressure to replicate

quickly. This pressure can manifest in organisms with shorter gestation times or organ—

isms that perform more reactions, which results in preferential scheduling. Second, the

competition for resources produces a pressure to perform more reactions, consuming more

resources and gaining merit. Combined, these two pressures could result in organisms

that evolve to attempt many reactions within a short gestation time, thereby predicting the

existence of the lower gestation time cluster. To explore this hypothesis we compare the

average evolved gestation times and fitness of organisms in the two clusters. The average

gestation time of runs within the lower cluster is 426.9 instructions, which is 4.3 times

lower than the upper cluster’s average gestation time of 1847.6. A lower gestation time is

a distinct advantage in a space-constrained environment because an organism can replicate

more quickly, spreading its genetic material through the population before it is replaced.

40

In fact, the runs in the lower cluster have a significantly higher fitness when compared to

the runs in the higher cluster (p-value less than 10‘8). Moreover, the average fitness of

organisms with lower gestation times is approximately 42% higher than those with higher

evolved gestation times.

However, if true, the speculation above explains only half of Figure 2.6. It does not

explain why 36% (18 out of 50) of the runs evolved longer gestation times. One potential

explanation is that the scheduling methodology influenced the results. Specifically, selec-

tion may favor organisms that evolve a longer gestation time because they have more time

to consume the resource required to perform the ECHO reaction, increasing their merit

more per generation. Using merit-based scheduling, this would result in organisms that are

scheduled more often. Is this a strong enough selective pressure to cause the bifurcation

observed in Figure 2.6? We argue that it is. Calculating the median number of reactions

performed by an organism at the end of a run, and dividing by the number of instructions

executed, we observe that an average organism with a gestation time in the higher cluster

perform 0.0102 reactions per instruction, while those with lower gestation times perform

0.0100 reactions per instruction. This difference, though small, is Significant, with a p-

value of 4.8948 x 10“4 using the Wilcoxon rank sum test for equal medians. In addition,

the number of reactions performed by an average organism in the upper cluster is 4.4 times

larger than that of an average organisms in the lower cluster.

The dichotomy present in the evolved gestation time in the exponential treatment is

not present in either the additive or energy treatments. In the energy treatment there is

no competition for space Since the population is not full for inflow rates of 10 or below.

Therefore, newly born organisms can alway be placed into an empty cell and no existing

organisms is ever replaced. This lack of space competition forces selection to act on the

collection and use of resources, which leads to long gestation times, as shown in Figure

2.5(a). The additive treatment also evolves organisms with long gestation times. In these

runs there is competition for space, however selections favors organisms that live longer and

41

have the opportunity to complete more reactions than organisms with shorter gestations.

2.4.3 Behavior

As the populations in our treatments evolve, two different aspects of an organism are eas-

ily observable and directly relate to the comparison of different scheduling methodologies.

The first is the gestation time of an organism, discussed above. The second is the set of

reactions that organisms perform. This section examines the effects that the three schedul-

ing methodologies and varied resource inflow rates have on the evolution of the number

of reactions performed. It also illustrates the effects the treatments have on ecotype diver-

sity. We Show that all treatments exhibit increases in reaction completion across resource

inflows.

Resource inflow does have an effect on the number of reactions performed by organ-

isms within a population. This effect is due in large part to the prerequisite resource re-

quirements that have been placed on reactions, which simulate physical restrictions on the

reactions. For a reaction to be triggered, a minimum amount of the required resource must

be available. In addition, the amount of resource consumed by completing a reaction is

also limited, so that a single organisms can only consume a maximum amount per reaction.

The restriction on the number of times an organism may complete a reaction also limits the

number of reactions performed.

Figure 2.7 plots the number of reactions performed at the end of all runs in all three

treatments where an organism can complete a reaction only once. These data are fitted to a

3rd-order polynomial. In Figure 2.7, inflow rates of 100 or below display increases in reac-

tion completion as resource inflow increases. This increase is expected because as resource

inflows increase the minimum resource restriction becomes less of a factor in reaction com-

pletion. However, this trend does not persist across all inflow rates. Specifically, there is

a statistically significant decline in total number of reactions completed between resource

inflows of 100 and 1K in all treatments, with p-values (calculated using the Wilcoxon

42

rank sum test for equal medians) of 5.3181 x 10— 17, 0.0253, and 8.9526 x 10"11 for the

energy, exponential, and additive treatments, respectively. This decrease in reaction com-

pletion is a result of the restriction on the number of times a reaction can be completed, and

is not present when this restriction is removed.

Focusing on the energy treatments, Figure 2.8 shows the distribution of the sum of all

available resources for all inflow rates. For inflow rates of 100 or less, most of the pop-

ulations have available resource levels within the maximum and minimum consumption

range, depicted in Figure 2.8. These lines depict the region of resource space where a pop-

ulation could consume all of the resources in its environment if every organism completed

a reaction that consumed the maximum or minimum amount of resource. These resource

limited treatments correspond to the treatments where reaction completion increased as re-

source inflow increased, as shown in Figure 2.7(a). Therefore, the amount of resource in

the environment is limiting the number of reaction performed in these treatments. However,

when the inflow rate is 1K or greater, resources are not limiting the number of reactions

performed by the organisms. Instead, the organisms are limited only by the reaction re-

striction, which was also present in the treatments with lower resource level. So, we might

ask why the number of reactions declines at higher inflow rates. At inflow rates of 1K or

greater the average gestation of an organism is significantly less than for all lower inflow

rates, with a maximum p-value less than 10‘ 11 when comparing inflow rates of 100 and

1K using the Wilcoxon rank sum test. Therefore, at these high inflow rates the competition

for space is stronger and selection favors replicating more quickly over completing more

tasks.

When the limitation on performing a reaction only once is removed, an evolved pop-

ulation performs increasingly more reactions with diminishing gains as resource inflows

increase, as shown in Figure 2.9. This trend mirrors that observed on the left side of Figure

2.7. However, there are no declines in reaction completion, which are present when the

reaction restriction is present. These data suggest that even at a high resource inflow, when

43

T
o
t
a
l
R
e
a
c
t
i
o
n
s

1 10

100 1k 10k

Resource Inflow

(a) Energy

x104

6 [O

0 Run Avg. 0

5 ' Best Fit g

(D 5 g g

C _ o

o

(I

E

.2

0 1 10 100 1 k 10k

Resource Inflow

(b) Exponential

x 104

6 r

0 Run Avg.

5 ’ Best Fit

(D

C

2%
as

0

tr:

3

,2
1

1 10

Resource Inflow

(c) Additive

100 1k 10k

Figure 2.7: Total reactions performed when each reaction can be performed only once per

organism.

44

—— Best Fit

"-"V- Max. Consumption

------£+ Min. Consumption O
)

0
1

T
o
t
a
l
R
e
s
o
u
r
c
e
A
v
a
i
l
a
b
l
e
l
o
g
1
o

O
D

h
N .1.

0 1 10 100 1K 10K

Resource Inflow Rates

Figure 2.8: Variation of resources that are required for reactions when each reaction can be

completed only once per organism.

reaction completion is not restricted (see Figure 2.10), there remains a selective pressure to

complete a large number of reactions.

Ecotype Diversity

This section illustrates how feedback affects ecological diversity within populations in our

treatments. We measure ecological diversity by grouping genomes based on the reactions

an organism with that genome will perform when executed and then count these groups.

Each organisms in a group performs the same set of reactions, its phenotype. For example,

one group may contain genomes that perform only ECHO, while another group may per-

form ECHO and NAND. We refer to each of these groups as an ecotype. To be counted as

an ecotype, a rrrinimum of ten genomes must perform the same set of reactions, regardless

of quantity, and produce viable offspring. We ignore quantity of reactions performed so

that a comparison between treatments with reaction restrictions and those without can be

made. A viable organism is an organism that produces an organism that can reproduce. In

45

x106

2.5

0 Run Avg.

2 - Best Fit

(D

5 I
"' 1.

g 5 o O

33

Ta 1 8
‘5
j—

0 1 10 100 1 k 10k

Resource Inflow

(a) Energy

x 106

2.5 ~

0 Run Avg. 0

2 _ Best Fit 0 o

2
Q

g 1.5 ~ 5"! g
as .2.
a; .~.

g; -~ a

a 1 “ :3 EE E .2.

0.5 » 'g

0 Ox. 0 . . .

0 1 10 100 1 k 10k

Resource Inflow

(b) Exponential

x 106

2.5 r

0 Run Avg 0

2 Best Fit 0 O

U)

8
' 1.5 ~

35 .

a 1 ‘ *2:

’5 '2‘

'- .3

0.5 - 3:?

0 O_ O . .

0 1 10 100 1k 10k

Resource Inflow

(c) Additive

Figure 2.9: Total reactions performed when reaction completion restrictions are removed.

46

—- Best Fit

......9 Max. Consumption

"-3-" Min. Consumption
1 O

)

0
1

C
O

T
o
t
a
l
R
e
s
o
u
r
c
e
A
v
a
i
l
a
b
l
e
l
o
g
1
0

A
N

0 1 10 100 1K 10K

Resource Inflow Rates

Figure 2.10: Variation of resources that are required for specific reactions when reaction

limitation is not present.

total, there are 210 possible ecotypes that could evolve in every treatment.

The performance of a reaction is dependent on the availability of a resource. The avail-

ability of a resource depends on past consumption and inflow rate. If no reactions are

performed and all resources flow in and decay at the same rate, producing equivalent re-

source levels, then selection would not favor the consumption of one resource over any

others. The top of Figure 2.11 illustrates this concept by showing the transition from us-

ing one resource to another is equally likely. However, once the completion of a task is

associated with the consumption of a resource, as it is in these experiments, then selection

can act on organisms that consume resources. For example, as demonstrated in the bottom

of Figure 2.11, selection favors organisms that perform reactions that consume underuti-

lized resources, such as Resource 0, over those that consume depleted resources, such as

Resource 1, because the reward for completing the reaction that consumes Resource 1 de-

clines along with the quantity of the resource. Therefore, the overutilization of a resource

will negatively affect the consumers of that resource and promote the utilization of other

47

underutilized resources.

Resource

0

Figure 2.1 1: Resource equalization cycle with lines that point to resources whose utilization

is selected for.

The negative feedback loop in Figure 2.11 is generated by the overutilization of some

resources and the underutilization of others. Uneven resource consumption promotes the

selection of individuals that use other resources and stabilizes resource levels as long as

consuming a resource is equally as difficult as consuming any other resource. However,

in these experiments the complexity of tasks required to consume a resource varies. Some

resources will be consumed more often than others because it is easier for the evolutionary

process to evolve organisms that do so. As the evolutionary process produces organisms

that consume these “easily” consumable resources, those resources will be depleted and

selection will drive the population toward the utilization of other resources associated with

more complex tasks. Over evolutionary time more resources will become utilized by or-

ganisms that perform a range of reactions.

Figure 2.12 and 2.13 display scatter plots of the ecotype diversity at the end of every

run fitted to a 3rd order polynomial for treatments without reaction restrictions and with

reaction restrictions, respectively. In Figures 2.12(b) and 2.12(c) the number of ecotypes

observed is highest at an intermediate resource inflow. This result is supported by previous

48

work [35]. However, this trend is not present in the energy data displayed in Figure 2.12(a).

These data illustrate a consistent, yet diminishing, increase in ecotype diversity as inflow

rate increases. This increase is a result of the restriction on the performance of reactions,

and is not present when the restriction is lifted, as in Figure 2.13(a). The trend of increased

ecotype diversity at an intermediate inflow rate is apparent in all three subfigures. However,

the average ecotype diversity is lower when the reaction limitation is not enforced. This is

a result of the selective pressure to perform more reactions produced when the number of

reactions an organisms performs is limited.

2.5 Discussion and Conclusions

This section illustrates similarities and difference that result as a byproduct of the type of

reaction rewards that are employed by the experimenter. We have Shown that the incorpo-

ration of the energy model produces results that are consistent with existing evolutionary

theory and empirical data. We have shown that the energy model can be used to control a

population’s Size, and we have demonstrated that energy costs do not adversely affect eco-

type diversity. Additionally, we demonstrated, in low resource inflow environments, that

an exponential reward structure can produce divergent results. Building on these baseline

experiments, we will now demonstrate the application of the energy model to the evolution

of individual and group behaviors.

49

80 r

E 60 8 8

8
”J. 40 0 2 E

9’ 8 9. E E

< , E E E

20 E E " E

0‘ z: 1 1 a

0 1 10 100 1 k 10k

Resource Inflow

(a) Energy

80 g

o
O

2
. U .

g 60 o E O O

“93 2 2

- 40 . E E E

9’ E? 2 E
< e a is

20 - O E E

o o
1 0 100 1 k 1 0k

Resource Inflow

(b) Exponential

80’ O O

E E

E6“ , 9

.40* E

U: E

E
20- ‘3'

os/ . . .

10 100 1k 10k

Resource Inflow

(c) Additive

O —
l

Figure 2.12: Ecotype diversity of all runs when an organism can perform a reaction only

once.

50

51

Figure 2.13: Ecotype diversity of all runs without reaction restrictions.

Resource Inflow

(c) Additive

10 1k 10k100

A
v
g
.
E
c
o
t
y
p
e

(
«
3
:
1
r
:
:
r
m
m
l
t
t
n
'
r
z
t
l
‘
r
t
t
m
.
@

C
(
(
r
t
r
z
l
z
t
n
m
r
t
t
z
m
n
z
m
r
o
r
u
0
C
E
)
0

(b) Exponential

Resource Inflow

A
v
g
.
E
c
o
t
y
p
e

A
v
g
.
E
c
o
t
y
p
e

60

40

20 -

0

80

80*

—
L

8
6
3
6
)
O

(
0
1
3
1
1
1
1
1
:
e
r
m
i
n
i
m
u
m
)
W
)

O

;
(
I
s
l
l
l
i
l
l
i
Z
O
l
l
l
'
I
l
I
l
I
l
)
.
O

10

.
t
t
t
r
r
r
r
r
:
u
u
r
r
m
z
r
i
m
»
G
D
)

1 00

Resource Inflow

(a) Energy

0
«
'
l
l
,
l
r
l
l
i
l
l
l
(
l
l
i
l
l
i
l
)
)
(
m

1k

10k

Chapter 3

Individual Energy Management

In this chapter we investigate the evolution of individual energy management. Having

shown the affects of the inclusion of energy costs, we now focus on the evolution of re-

source aware behavior. Specifically, we will show that digital organisms are capable of

evolving adaptive sleep/awake behavior and phototaxis.

3.1 Evolving Organisms that Sleep

A population of organisms in an environment where a resource is always available can be

non-adaptive and function exceptionally well. There is little or no selective pressure on the

organisms to adjust their behavior within this environment since resources are plentiful and

can be consumed at any time [101]. If resources can become diminished or unavailable,

however, an adaptive response might allow for more conservative resource usage [184]

or increased energy storage [92]. Natural organisms often display adaptive behavior that

coincides with environmental changes where resources fluctuate [50, 97]. An example of

this type of adaptive response occurs in nocturnal rodents and insects, which sleep during

the day and forage for food under the cover of darkness. Animals that hibernate also display

an adaptability that allows them to survive extended periods of low resource availability by

increasing the size of their fat stores prior to hibernation [198].

52

This form of adaptive behavior in natural organisms serves multiple purposes. During

Sleep periods an animal rests [199], reprograms its brain [38] and performs internal main-

tenance tasks [136]. However, while an animal is in a state of Slumber it is less aware of

its environment. How could resource—aware adaptive behaviors, such as sleep and hiberna-

tion, have evolved in competitive environments where torpid organisms are vulnerable to

active organisms? Is there a selective pressure to sleep caused by resource limitations in

environments with periodic resource availability? The remainder of this chapter attempts

to answer these questions through experiments with digital organisms.

Previous work has been done in this area using neural networks [133]. In [133], the

organisms were subjected to two different environments with periodic light availability,

where the organism’s ability to find a resource was impaired relative to the current light

intensity. It was Shown that in an environment where light readings may not correctly dis-

ambiguate day from night the combination of a biological clock and light sensor produced

individuals that could disambiguate night from day. Our study differs from [133] in that it

does not impose a predefined structure on the organisms, provide a common starting point

to the organisms, or give any information, ambiguous or not, to the organisms directly.

All of these mechanisms must be evolved while preserving an organism’s ability to self-

replicate and while avoiding other detrimental behavioral changes. We begin with a brief

overview of extensions to Avida and the experimental setup, followed by presentation of

the experimental results.

3.1.1 Experimental Setup

In these experiments, the population of digital organisms is arranged in a 60 x 60 grid.

When an instruction is copied there is a 0.75% chance that it will be mutated. During

replication there is a 5% chance an instruction will be deleted from the genome, and a

5% chance that a random instruction will be inserted. On average each organism in the

population will execute one instruction per update, the standard unit of time in Avida.

53

As in [116], organisms are rewarded for performing tasks that are Boolean logic oper-

ations. Specifically, we used the five tasks listed in Table 3.1. Each task has an associated

reward, indicating the number of energy units an organism gains when completed, and a

limit on how many times an individual organism can be rewarded for performing it. Com-

pleting even these relatively simple tasks can require several instructions. Table 3.2 shows a

“hand-built” solution for the AND task (a N0? instruction modifies the behavior of the pre-

ceding instruction, for example, placing the result in a different register than the default).

Of course, evolution may produce many different solutions for the same task.

Table 3.1: Rewarded tasks.

[Task Name I Input I Bitwise Output Reward Max Times Rewarded]

ECHO A A 1000 35

NAND A,B -u(A AB) 1500 20

NOT A -1A 1500 20

ORNOT A,B A v (—:B) 2000 13

AND A, B A /\ B 2000 13

Table 3.2: Instruction sequence that when executed completes the AND task.

[Instruction I AX [BX] CX] Stacks 1,2 [Output I Description

IO ? X ? ?,? ? read X into BX

IO ? X Y ?,? ? read Y into CX

nop-C

nand ? X nand Y Y ?,? — Bx <— -(Ax A BX)

push ? X nand Y Y X nand Y, ? — push Bx on stack 1

pop ? X nand Y X nand Y ?,? — pop stack, place

nop-C result in CX

nand ? X and Y X nand Y ?,? — Bx <— -w(BX A CX)

IO ? Z X nand Y ?,? X and Y output BX
The environment contains a single resource that is available periodically. When the

resource is available, it is non-depletable, and all five tasks described in Table 3.1 are

maximally rewarded. If an organism completes a task when the resource is unavailable,

no reward is given. The duration of the resource availability changes throughout every

experiment except the control experiment, where it remains constant. Resource availability

54

is defined in “years” and “days.” Each year consists of 500 days, each of which lasts for

256 updates. During each year, the availability of the resource remains constant. That is,

each day of a year has the same duration of resource availability. At the beginning of each

day the resource becomes available for a period of time depending on the current year. For

the first year the resource is available during 100% of the day. After each passing year, the

availability of the resource during a day is reduced by 6.25% of a full day’s length until it

becomes zero, which deprives the population of energy and eventually brings on its demise.

Through evolutionary change brought upon by depriving the population in this manner, we

are able to observe under which conditions the population of digital organisms will find

sleep useful.

We have added six instructions to the base Avida instruction set, enabling an organism

to sense and respond to its environment. These instructions are: TIME, SENSE, and four

variations of SLEEP. Executing the TIME instruction stores the current time step in a register

within the organism’s virtual CPU. The SENSE instruction allows an organism to detect the

presence or absence of the resource; it loads one of the calling organism’s registers with the

current quantity of the resource times 100. (The value of the resource is multiplied by 100

to allow for a wider range of the sensed value.) The SLEEP instructions allow organisms to

enter a low energy state that lasts for multiple CPU cycles. Compared to other instructions,

the SLEEP1-4 instructions cost 100 times less energy to execute and last for 10, 20, 40, and

80 times more CPU cycles, respectively.

3.1.2 Experimental Results and Discussion

We define an environment where a resource is available for all or part of each day. If

the resource is always available, the organisms in the population do not benefit from an

adaptive response based on the availability of the resource because the resource can be used

at any time. We hypothesize that a decline in resource availability within a single-resource

environment can produce an adaptive, resource-aware response.

55

To test this hypothesis we conducted two experiments; results presented are the average

of 50 runs. In the control experiment the resource is available during the entire run (constant

environment), and in a second experiment the availability of the resource is reduced over

the course of the run (declining environment). Figure 3.1(a) displays the average metabolic

rate in both the constant and declining resource enviromnents. For clarity, error bars are

omitted; the maximum standard error is 0.018 for constant environment and 0.01 for de-

clining environment. The 16 vertical lines in Figure 3.1(a) denote years, where a 6.25%

decrease in resource availability occurs in the declining resource environment. As shown,

the metabolic rate in the constant environment tends to stabilize as the run proceeds, but

decreases over time in the environment with declining resource availability. This behavior

is expected, Since organisms can receive rewards for completing tasks continually in the

constant environment, but less often as time lapses in the declining resource environment.

In fact, after the last vertical line the organisms in the declining resource environment pop-

ulations no longer have a source of energy, and eventually the population will die off.

Figure 3.1(b) shows the average maximum and minimum number of organisms sleeping

at some time during a day in each environment. In the constant environment these numbers

remain relatively close together throughout the run. In contrast, organisms in the declining

resource environment have evolved to produce periods of relative inactivity, where at the

peak, on average, greater than 10% of the organisms in the population are sleeping. At this

point the number of organisms sleeping in the declining environment is significantly greater

than the number sleeping in the constant experiment (p-value < 0.0003, using Wilcoxon

rank sum test for equal medians). A sample of evolved code from one of the runs is given

in Table 3.3. The code produces a resource-aware behavior when executed. Specifically,

the organism enters a loop that ends when the resource becomes available.

Since the organisms sleep more in the declining resource environment, one might infer

that the organisms accumulate more SLEEP instructions in their genomes. However, this

proved not to be the case. Figure 3.2(a) shows the number of SLEEP instructions that are

56

12

10 6L0

.9 6T9
(U

c: 8
g - ...

g s
Q

2 4 El

0

E

2

< 2 —e-Constant
. .

O —B:999”?" 13:51

0 0.5 1 1.5 2

Updates x106

(a) Average metabolic rate

40° -e—Constant (Max)

350 - 0- 'Constant (Min) A

—B—Declining (Max)

c3300 E «El- -Declining (Min)
.5 j n

g, 250 ‘ l

m 200 ‘U) .

"" 150

E '3 fl’ 5‘5 fl-e
O 100

50 \

0

0 0.5 1 1.5 2

Updates x 106

(b) Average maximum/minimum sleeping organisms

Figure 3.1: Comparison of sleep responses in two environments, one where the resource

is available 100% of the time (constant), and one where the resource availability decreases

over time (declining). Results are the average of 50 runs.

57

Table 3.3: Evolved code that loops until the resource becomes available.

[Instruction j Explanation I

H-SEARCH place FLOW-HEAD at next instruction

SLEEP start sleeping

SENSE read resource availability into Bx register

IF-EQU-O if Bx aé 0 skip next instruction

MOV—HEAD move INSTRUCTION-HEAD t0 FLOW-HEAD

present in the organisms’ genomes in both environments, along with the number of sleep

instructions executed in each. For the first half of the runs, organisms in both environments

have substantially more SLEEP instructions in their genomes than they actually execute.

The gap then begins to narrow in the declining environment, and by the end of the runs

the number of executions nearly equals the number present. The increase in the execution

of SLEEP instructions in this environment suggests that sleeping is increasingly beneficial

as the resource availability diminishes. Figure 3.2(b) shows the rate of execution of SLEEP

instructions over the course of the runs in the declining resource environment. As expected,

the SLEEP instructions with lower CPU cycle costs are used more heavily than the more

expensive SLEEP instructions, especially early in the runs. As the resource becomes scarce,

the number of more expensive SLEEP instructions increases. This adaptation allows for

longer sleep cycles and fewer executed instructions.

When Avida organisms are exposed to an environment where resource availability

varies during a day, they evolve an adaptive resource-aware response. An example is shown

in Figure 3.3, which depicts snapshots of the 60 x 60 grid during a single day in a popula-

tion that evolved this adaptive sleep/wake behavior. The black squares represent organisms

that are sleeping. At this point in the run, the resource is available for the first 112 (out of

256) updates of a day. Figure 3.3(a) shows the population at the beginning of a day. Fig-

ure 3.3(d) shows the population at the day’s midway point where the resource is no longer

available and organisms are beginning to enter a sleep cycle. During this day the peak

number of organisms sleeping at one time is 2111 or 58.6%, shown in Figure 3.3(e). After

this point the organisms start to wake up and await the next period of resource availability.

58

—e—Constant (in genome)

- 0' Constant (executed)

-—B—Declining (in genome)

- £1- -Declining (executed)

16 g I

o 14 FE: d I:

8 W5 E
v- 12

x

.E’ 10
a.

3 8
(D

U)

. F!g a a:
a! 4 I

9 a E1

0
2 EIE'G E air-Ole-Oie 0+0

0 ,

0 0.5 1 1.5 2

Updates x106

(a) number of SLEEP instructions present in and executed by or-

ganisms

6 L 1 1 . 1 l ‘

g —e—Sleep1 (10)

,_ 5 +Sleep2 (20) Km

x —B—Sleep3 (40) ‘0

B +Sleep4(80)

§ 4

.15
2 3

.9

S 2

1'5
0

a. a». v
g >L>3Eg !

(I) 0 G. i

0 0.5
(b) number of four SLEEP instructions executed, declining en-

vironment.

Figure 3.2: Number of SLEEP instructions present in and executed by organisms in the

constant and declining environments. Average over 50 runs.

59

.Buu

mm

. -:=iEE..-..::-Em“ .
- agfi-rssamqg-z:

55g: Waging-ml

"-1 ' -:

‘Efiéi

ear-m.- -

' li.==='.-:'+====§§!L-- =

Figure 3.3: Representations of a population’s response to the resource availability over a

single 256 time-step day. Black squares represent sleeping organisms and white squares

represent awake organisms. The resource is available for the first 112 time steps. a) t = 1,

231 sleeping, resource becomes available; b) t = 64, 108 sleeping; c) t = 128, 469 sleeping;

d) t = 152, 1355 sleeping, resource is no longer available; 6) t = 180, 2111 sleeping; f) t =

204, 1502 sleeping, organisms are beginning to wake up; g) t = 228, 667 sleeping; h) t =

256, 189 sleeping, day ends and resource becomes available again.

60

Figure 3.4(a) plots the number of organisms sleeping and the resource availability dur-

ing three consecutive days near the midpoint of a single run, when the resource is available

during the first 50% of each day. As shown, there is a tight correlation between number

of sleeping organisms and lack of resources. This behavior is reminiscent of circadian

rhythms exhibited by many species in the natural world.

Moreover, examination of evolved genomes shows that organisms in this population

have evolved to begin their sleep cycle just before the beginning of resource deprived pe-

riods, and begin preparing data to be used in tasks, just prior to the return of the resource.

This “early to bed, early to rise” behavior allows organisms to finish tasks early during

periods of resource availability, thereby increasing the probability of receiving a reward.

It also helps to avoid situations where an organism’s execution is delayed, causing a task

to be completed just after the resource disappears, in which case the organism receives

no reward. This adaptive behavior arose in 37 out of 50 runs in the declining resource

environment.

Although the populations evolved an adaptive behavior, in the above trials the fraction

of concurrent sleeping organisms never stabilized above 60%. To help explain why more

organisms did not sleep, we conducted a final experiment, where the four SLEEP instruc-

tions were replaced by the NOP-x instruction, which has no effect on the virtual CPU when

executed, and has CPU and energy costs equal to the non-sleep instructions. The same ex-

perimental setup with a declining resource availability was used, the only difference being

the replacement of the SLEEP instructions with NOP-X. Figure 3.4(b) compares the number

of SLEEP and NOP-X instructions present and executed in the populations. In both cases the

NOP-X instruction is significantly more plentiful than the SLEEP instructions. In fact the p-

values for both are less than 0.0001 using the Wilcoxon rank-sum test. Selective pressures

produced by this treatment favored doing nothing for 1 CPU cycle and paying a higher

energy cost, over doing nothing for multiple CPU cycles and using 100 times less energy.

Yet, even in the presence of this selective pressure, an adaptive resource-aware sleep/wake

61

behavior has evolved to a point where a majority of the organisms in a single population

sleep at the same time.

3.1.3 Conclusion

Revisiting the questions posed at the beginning of this section, we have shown that pop-

ulations of digital organisms are capable of evolving resource-aware adaptive sleep/wake

behavior in an environment where resource availability is periodic and declines over time.

The organisms in these populations become highly active when the resource is available and

sleep when it is not. This behavior evolves even though sleeping organisms are vulnerable

to non-sleepers, and remained stable in a majority of the populations in our experiments.

We also have seen evidence suggesting that the adage “early to bed, early to rise” describes

an evolved behavior, as organisms maximize their probability of being rewarded for com-

pleting tasks. In addition, this behavior evolved even in the presence of a selective pressure

not to sleep.

This work lays a foundation for several possible future studies. For example, it should

be possible to evolve resource-aware behaviors using a pseudo-continous resource avail—

ability pattern rather than a binary resource. An example is a biologically inspired resource

availability pattern that is relative to a modified trigonometric sine curve, simulating sea-

sonal resource variations in addition to daily variations. To produce seasonally adaptive

behavior the migration model, shown in Figure 3.5, could be used to produce a resource

availability similar to that shown in Figure 3.6. In Figure 3.5, when an organism resides at

a location near the celestial equator of a sphere, rotating around a single axis, the tempo-

ral resource variability it experiences is minimal. However, as an organism’s descendants

migrate north the temporal resource variability they experience gradually increases with

higher latitude. This model of migration could be used to show that DE is capable of pro-

ducing an adaptive behavior corresponding to the availability of a resource with seasonal

variation. This model can also be extended by rotating the sphere on two axes instead of

62

R
e
s
o
u
r
c
e

A
v
a
l
r
a
b
l
r
l
r
t
y

o 0
1

8 o

O
r
g
a
n
i
s
m
s
S
l
e
e
p
i
n
g

[—e— Resource 3

—El-— Sleepers

0 G P O

(a)

—e—nop-X (in genome)

- 0' 'nop-X (executed)

—B—sleep (in genome)

- El- sleep (executed)

4

§ o

g .

1); 3 \L -9-

2 \ N Q 9

3

E. ’u. as.
g ' eke ere 0+ .0

.9

3 (3H? 19%

‘63 1 ,El

5 l3

5:3 .3 B'
(7, 0 913 n EIj-Gl Eli-[3|

O 0.5 1 1.5 2

Updates x 106

(b)

Figure 3.4: (a) Attempted resource usage by organisms (resource activity) and resource

availability vs. time for a typical 3-day interval. (b) A comparison of SLEEP instructions

(squares) to inert NOP-x instructions (circles); solid lines indicate the frequency with which

each instruction is found in the genome and dashed lines indicate the frequency at which

they are executed.

63

just one.

Figure 3.5: Model of organism migration starting at the equator where the resource is

abundantly available and moving north to regions with less and less resource available for

consumption.

In addition to the migration model, environments with added costs, instruction and en-

vironmental impairments, positive and negative reinforcement, and punishment could all

be tested for effectiveness. In addition, environments encouraging predator/prey relation-

ships could be examined for evidence of coexisting diurnal and nocturnal behaviors among

organisms within the same population.

3.2 Cultivating Phototaxis

The goal of this set of experiments is to evolve a phototaxis behavior within Avida, then

transition an evolved genome from Avida into a robot to observe the resulting behavior in

hardware. To model the use of a battery we limit the total energy given to an organism

Figure 3.6: Mock daily resource availability over time as an organism’s descendants mi-

grate away from the equator.

to 10,000 energy units, and reward an offspring with additional energy proportional to its

parent’s remaining energy. Once the organism’s energy is depleted, it can no longer execute

instructions and is removed from the population. In addition, there is a 0.75% probability

that the newly created genome is different from its parent. In our case study, we evolved

mobility behaviors by placing a single organism into a 100 x 100 grid. This configuration

provided the organisms with space in which to live and move without interference from

other organisms, and eventually to evolve the desired behaviors.

3.2.1 Methods

Avida Extensions. In this study, an individual organism can interact with its environment

in one of two ways: movement and sensing. An organism can move to a neighboring cell

by executing the MOVE instruction. Besides movement, an organism can also interact with

its environment through sensing. By executing a sense instruction an organism can gain

information about the current environmental conditions. An example sense instruction is

SENSE-CELL-DATA, shown in Figure 3.7. The SENSE-CELL-DATA instruction is similar to

65

a majority of Avida instructions in that its execution can be modified by a no-op instruction

that immediately follows the SENSE-CELL-DATA instruction in a genome. By default, the

SENSE-CELL-DATA instruction will place a sensed value into an organism’s Bx register.

However, if a no-op instruction immediately follows the SENSE-CELL-DATA instruction

then the sensed data will be placed in the register specified by the no-op.

. sense-cell-data :

: or :

. sense-cell-data sense-cell-data sense-cell-data I

l

l_2°3;A.-_17J--___DJ_

Organism's

Facing

Organism (North)

Figure 3.7: Depiction of SENSE-CELL-DATA

To increase similarity between the real-world and the Avida world, all of the movement

and sensing instructions used in the following experiments have a higher energy cost than

instructions that do not require external devices. This is done to discourage solutions from

indiscriminately using these instructions and to loosely simulate the higher cost of using

hardware that is external to the virtual CPU, such as sensors. A single base platform, an

iRobotTM Create, is modeled and used for comparison. However, separate treatments

with various sensing capabilities are presented to demonstrate the flexibility of evolving

behaviors for specific target robots.

Treatments. The goal of the case study is to evolve control software for robots, of varying

capabilities, that allows them to search for and move to a light source. To do this, three

different sensing capabilities are explored, illustrating the effectiveness of the methodology

66

in producing results for various embodied agents. The first of these sensing capabilities

uses the COLLECT-CELL-DATA instruction. This instruction enables an organism to sense

the intensity of a light at its current position. The second capability enables an organism to

separately sense the intensity of a light source in three directions using the SENSE-CELL-

DATA instruction described above. Specifically, the organism can sense the light intensity

directly in front, in front and to the left, and in front and to the right of its current location.

With the appropriate arithmetic instructions, these sensed measurements can be compared

to determine in which direction the light is the most intense. The final sensing capability

combines directional sensing with a rotate operation. Using the SENSE3-AND-ROTATE

instruction, an organism can sense the light intensity within its environment and rotate to

face the direction with the highest intensity. As will be shown, this level of functionality

is highly suitable to the target task, and can be used as a building block for more complex

evolved behaviors.

To encourage the evolution of object detection and location behaviors we apply selec—

tion pressures that reward organisms for efficiency in reaching the target, a simulated light

bulb. Since instructions have different energy costs, variations in execution sequences can

produce diverse energy consumption among organisms. Once an organism reaches a target,

that organism’s genome is replicated into another empty 100 x 100 grid. A bonus is given to

the new organisms based on the amount of energy remaining in the organism. By applying

selective pressures in this way, we reward individual organisms that can detect and move

to the simulated light bulb in an efficient manner. In the following section we discuss the

experimental results of these three treatments. Each treatment consists of 20 replicate runs,

each containing 500 single-organism demes and lasting for 250,000 updates. Each indi-

vidual is allowed to live for 1000 updates or until it is replaced. On average, an organism

will execute a single instruction during an update.

67

3.2.2 Experimental Results

Initially we expected the evolved solutions that were exposed to the SENSE-CELL-DATA

instruction to exhibit better performance than those exposed to the COLLECT-CELL-DATA

instruction, due to the increased functionality of the former. However, this was not the

case. Even though SENSE-CELL-DATA enables an organism to sense its environment in

more detail, we never observed an evolved organism that used the full functionality of the

instruction. We speculate that this effect arose due to the energy cost associated with exe-

cuting this instruction and the simplicity of the environment. Specifically, the evolutionary

process evolved organisms that could perform the target task with less than complete infor-

mation about the environment. This result is encouraging to the extent that the evolution-

ary process did not need complete information of an organism’s environment to complete

the task. Actually, in both the COLLECT-CELL-DATA and SENSE-CELL-DATA treatments,

evolved organisms exhibited an arc-like movement, where an organism would either move

straight ahead if conditions were improving, or turn if not. In general, dominant genomes

produced by these runs exhibited a loop, similar to the sample code _shown in Table 3.4.

The organism senses the environment and moves or rotates depending on whether or not

the light intensity is increasing. Over the course of evolution, these loops were optimized

to consume less and less energy, and we can see from Figure 3.8 that on average both treat-

ments require a similar amount of time to detect and move to the simulated light source.

In addition to the total time required for an organism to move to the target location, we

also tracked individual movments. Plotted in Figure 3.9 is the average number of organisms

in the SENSE-CELL-DATA treatment populations that moved toward, away, and neutrally

with respect to the location of the light source. A similar graph was also generated for the

COLLECT-CELL-DATA treatment, but the results were not significantly different, and are not

shown here. A notable aspect of this graph is that, in general, the same number of organisms

are moving toward, away and neutrally with respect to the light source. This result is

intuitive since often the evolved paths taken by an organism has an arc shape. This form of

68

Table 3.4: Sample portion of evolved genome using COLLECT-CELL-DATA

F
r
a
c
.
o
f
m
a
x
t
i
m
e

COLLECT-CELL-DATA

NOP-C

sense intensity in cell

store in CX

MOVE move one cell

COLLECT-CELL-DATA sense intensity in new cell

store in BX

SWAP-STK change stack; no effect

PUSH push BX on to stack

NOP-B no effect

IF-LESS is BX <CX

ROTATE-RIGHT then rotate right; else skip

ADD overwrite BX

NOP-B has no effect

MOV-HEAD repeat

1 :- ..

+sense

 0 1 r

0 0.5 l

—*"" collect

21 .5

Update

2.5

5

x10

Figure 3.8: Average fraction of total allowed time required for a deme to be replicated in

both the COLLECT-CELL-DATA and SENSE-CELL-DATA treatments.

69

mobility is dependent on an organism’s memory of sensed values from multiple locations.

In order for the organism to change its heading it must be subjected to a movement that

either is neutral or away from the target. Thereby, the organism effectively depends on

this type of “bad” movement to find the target, regardless of its adverse effect on energy

consumption.

—*— Toward +Neutral ‘9‘— Away

1 ..

"’w‘ o 8E3 .

00

.5 _
5 0.6

'6.

g 0..

E .
O 0.2

0 1 l r r

0 0.5 1 1.5 2

Update x 105

Figure 3.9: Average fraction of organisms in a population that have moved toward, away,

and neutrally with respect to the light source in the SENSE-CELL—DATA treatment.

Building on the results seen in the two previous treatments and the prospect of evolving

more complex behaviors in the future, we exposed populations of organisms to the SENSE3-

AND-ROTATE instruction. As described above, the SENSE3-AND-ROTATE instruction au-

tomatically rotates an organism to face the cell with the highest measured light intensity.

This is an example of a building block that a developer might consider adding to a sys-

tem based on the problem domain. It also illustrates the flexibility of the methodology to

handle various levels of target device capabilities. With the addition of the SENSE3-AND-

ROTATE instruction the average fraction of the maximum time allowed to complete the task

is drastically reduced (Wilcoxon rank sum test on = 0.01 p = 6.8 x 10‘8), as shown in Fig-

70

ure 3.10. Also, the average fraction of organisms in the population that move toward the

light is significantly higher than those that move away (Wilcoxon rank sum test or = 0.01

p = 6.73 x 10-8), as shown in Figure 3.11.

1000

3 Mean

800- """""" 2><stddev

9 600-

(U

'0

O.

3 400’

200-

o 4 ’4 "”" i 4 J

0 0.5 1 1.5 2 2.5

Average age of deme x 105

Figure 3.10: Average fraction of total allowed time required for a deme to be replicated in

the SENSE3-AND-ROTATE treatment.

Table 3.5 shows a portion of an evolved genome, produced by the cultivation stage using

the SENSEB-AND-ROTATE instruction. This partial genome is shorter and simpler than the

partial genome shown in Table 3.4, but accomplishes the same task more efficiently. Even

when energy costs for executing movement and sensing instructions are increased by an

order of magnitude, this treatment still produces solutions capable of performing the task.

However, the other two treatments are inhibited by such a substantial increase in energy

cost, and are therefore more sensitive to individual instruction energy costs because of the

increased number of instructions required to successfully complete the task.

Figure 3.12 shows a three-dimensional representation of the gradient used in the ex-

periments. The black lines represent paths that organisms exposed to the SENSEB-AND-

ROTATE instruction followed relative to the gradient. Depending on the organism’s initial

71

‘—*— Toward "5'" Neutral —9— Away

.
9

c
o

.
0

c
»

S
3

4
:
.

O
r
g
s
.
C
o
m
p
l
e
t
i
n
g
T
a
s
k

o is
.)

Update 5

x10

Figure 3.11: Average fraction of organisms in a population that moved toward, away, and

neutrally with respect to the light source in the SENSE3-AND-ROTATE treatment.

Table 3.5: Portion of evolved genome exposed to the SENSE3-AND-ROTATE instruction

sense3-and~rotate rotate in direction of highest intensity

sense3-and-rotate

move move straight

mov-head repeat

facing the beginning of a path may display a few movements that allow the organism to

orient itself to face the high point of the gradient, and then move in that direction. Since an

organism is rewarded for energy conservation, the more direct a path, the better.

We translated several evolved genomes in to C code, compiled them, and loaded them

onto an iRobotTM Create robot. We then placed the robot in a room with a light source

and filmed the resulting behavior. Four sample clips from one of these movies are shown

in Figure 3.13. The images show a sequence of clips from the robot’s initial position,

orientation, its progress toward the light source, and then finally touching the light.

72

‘

.‘ K‘.‘ o
.’ .r ‘.. ‘

-

“‘."“
. 6“... ..:.::.::..v

. e ‘0‘...
o . a...

e‘.

00

Figure 3.12: Example paths of dominant evolved genomes from the SENSE3-AND-ROTATE

treatment, superimposed on the gradient used in the cultivation stage.

3.2.3 Related Work

The methodology described here is capable of producing autonomic behaviors in software

systems, by using digital evolution to realize on a developer’s high-level goals. Many tradi-

tional approaches to autonomic computing, where an administrator’s goals guide the run-

time behavior of the system, have been proposed, including those based on architectural

models [173, 187], infrastructure for engineering emergent behavior [15], model-driven

development [29], and design patterns [9]. In addition, the development of emergent sys-

tems [98] has been shown to produce robust, scalable, self-* systems [5, 96, 110]. Control

over the population of agents [188], and methods to quantify their behaviors [194], show

considerable promise. Our work complements these methods by using digital evolution to

explore, as part of the software development process, possible solutions that realize auto-

nomic behavior.

The case study presented in the paper is related to work in evolutionary robotics [144],

73

 (3) initial position

(c) moving toward higher intensity (d) light source found

Figure 3.13: Clips from a movie that shows translated code produce by the SENSE3-AND-

ROTATE treatment executing on an iRobot Create system.

which addresses the automatic generation of autonomic robots, and has been used to inves-

tigate questions in cognitive and neuroscience [81]. Work in this area has provided insight

into the evolutionary conditions necessary for emergent communication [64], as well as

communication protocols [123], multi-robot cooperation [55], and the concurrent design

of a robot’s morphology and its controller [1 18]. By combining autonomic computing with

evolutionary computation, specifically evolutionary robotics, the proposed methodology

provides a means to harness the power of evolution and apply it to the development of

robust, scalable, self-* systems.

74

3.2.4 Conclusions and Future Directions

In this section, we have described a model that is capable of producing adaptive and auto-

nomic behaviors. Through the use of this methodology we have demonstrated that various

device capabilities can be successfully modeled and cultivated to produce solutions that,

once translated, can execute directly on real-world hardware. We have also demonstrated

how a developer can direct the process by providing high-level requirements for the evolved

solution, and accommodate a change in the target platform’s morphology by altering the

capabilities modeled in the evolutionary process.

Employing evolution as the “designer” of software is not without its limitations. Well-

crafted high—level goals and building blocks that allow evolution to produce desired results

are needed. Also, while the virtual CPU architecture presented in this paper is capable of

computing complex solutions, the number of instructions required may be too large for the

evolutionary process to stumble upon. More capable virtual architectures are needed (and

are under development). Despite these limitations, the proposed methodology has been

shown to produce results acceptable for deployment of real-world devices.

This work could be extended into the production of evolved behaviors for swarm robots.

However, the simulated environment used in this work does not map well to a physical

environment when an organism is embodied. For example, the movement and sensing

capabilities of an organism are discrete within Avida’s cellular environment. As stated by

Brooks in [25]:

“These [cellular] representations are good for conducting computational

experiments, and help uncover many fundamental issues. Unfortunately they

do not shed light on all the problems which will be encountered when using

physically embodied robots.”

Extending Avida with a physics engine and evolving robots in the pseudo—continuous envi-

ronment will lead to more realistic environmental simulation as well as produce solutions

75

that map well into the physical world. This extension can be used as a starting point for

future researchers.

76

Chapter 4

Population Energy Management

In the previous chapter we focused on energy conservation within a single digital organ-

ism. In this chapter we extend this concept to an entire group of individuals, focusing on

the collective ability of organisms to conserve energy while performing group-level tasks.

Specifically, we investigate the evolution of a group’s ability to conserve energy by manag-

ing its population and limiting the number of agents required to perform a given task.

Agent-based systems require population management to ensure the agents do not inhibit

system functionality. For example, if the number of detectors in an artificial immune system

is too small, then threats can go undetected, whereas if they are too numerous, the system

can suffer from resource limitations. Dynamically adapting values associated with these

management concerns (agent lifetime and number of agents) can directly affect a system’s

responsiveness, robustness, resiliency, and efficiency [23].

In this chapter we describe two experiments to promote the evolution of a self-

organising, energy efficient group-level behavior. We begin with a discussion of related

work (Section 4.1) and Avida mechanisms that facilitate the evolution of cooperative be-

havior (Section 4.2). Next, in Section 4.3, we describe experiments in the evolution of a

self-regulating population. In these experiments we evolve a group of organisms to limit

the number of individuals within a group while completing a task requiring multiple agents.

77

In Section 4.4 we present the results of experiments where we evolve a group to adaptively

respond to a change in its environment, specifically, adapting the population size of a group

to conserve energy depending on the current environmental conditions. Combined, these

two experiments demonstrate that digital organisms can be evolved to both limit the num-

ber of individuals required to complete a task, as well as adapt to changing circumstances

that require different population sizes.

4.1 Related Work

Population size regulation has been studied in the genetic algorithm literature [6, 62, 63].

Generally, however, the strategies used in these methods are static and may require global

knowledge. For example, in [63], the lifetime of an individual has a fixed maximum,

and global knowledge is used to keep the level of diversity within a population above a

threshold. In our experiments an agent can alter its life span, and no global knowledge is

used to promote diversity. While we do limit the maximum lifetime of an individual, this

limit is extremely loose, greater than 50 times the maximum lifetime ever observed in our

experiments.

Population management has also been addressed in systems-related fields [10, 33, 188].

Many approaches use a priori rules limiting population growth. For example, in [33] au-

tonomous robots are evolved to capture a target while avoiding collisions. A predefined

table specifies the replication rate, relative to the number of consecutively captured targets.

In contrast, digital evolution involves no explicit control of the replication rate. Rather, nat-

ural selection drives a population to establish the number of individuals required to solve a

problem. In addition, unlike the method described in [33], we do not allow information to

be stored in the environment for use in stigmergic conununication.

In addition, as described in Section 1.3, other studies of evolved and emergent behav-

iors have incorporated energy [65, 125] into their models. However, those works focus on

78

changes in a single individual when energy is considered. The work in the remainder of

this chapter is concerned with group-level energy conservation and an evolved response to

a changing environment.

4.2 Demes and Multilevel Selection

In some studies we treat all organisms as part of a single population [115, 116], in which

case individual organisms compete against one another. However, in other cases, espe-

cially those involving the evolution of cooperative behavior, it is useful to subdivide the

population and have groups of organisms compete. As shown at the bottom of Figure 4.1,

a population of organisms can be subdivided into many sub-populations, called demes. In

this work all demes have identical environments and initial configurations. However, an

organism within a deme can interact only with other organisms in the same deme. Subdi-

viding the population this way is akin to constructing “multicellular” organisms, enabling

the selection of demes that perform group-level behaviors.

Multilevel selection [191] can be described as the application of natural selection at

different granularities. Avida supports user defined multilevel selection, specifically, indi-

vidual and deme-level selection. To enable deme-level selection, a deme is replicated when

it satisfies a deme-levelpredicate, more generally thought of as a group-level behavior, such

as flocking or consensus [104]. Upon deme replication, prior to creating an offspring deme,

mutations are applied to the genome that was used to seed the parent deme. During this mu-

tation process each instruction in the genome is subject to a 0.75% chance of being mutated

to a random instruction. The newly created genome and its ancestral genomes make up the

germline from which all seed organisms are produced. In contrast, other non-germline, or

somatic, organisms play no role in deme replication, excluding predicate satisfaction. In

addition to deme-level predicates, a deme’s age is also used as a trigger for deme replica-

tion. This method allows for the bootstrapping of the evolutionary process by introducing

79

stacks Virtual CPU

El CI ,__....
: P P“

E-nmu Flow

add

'éétlfloiv' ‘.

sense

if-less

Figure 4.1: Population (bottom), sub-population (middle) and composition of a digital

organism: genome (top right), virtual CPU (top left) with heads pointing to locations within

the genome

80

mutations into a deme’s germline.

Figure 4.2 depicts the initial injection of the ancestral organism into every deme, fol-

lowed by both age— and predicate-based deme replication methods. While individual or-

ganisms within a deme are able to replicate, those replications do not involve mutations to

the genome. Hence, all organisms within a deme are genetically identical. Floreano et al.

have previously shown that this approach is effective in evolving cooperative behavior [64].

Population. Deme

\ ‘s ’
U
I

 Initial

injection

a!
. ———i

->

9

_
Maximum age Satisfied deme

reached predicate

Figure 4.2: Example showing deme initialization and replication of gerrnlines

4.3 Self-regulating population

Distributed agents are commonly used in event detection systems, such as wireless sensor

networks and artificial immune systems. Agents can act both independently [67, 83] and

cooperatively [168]. For example, in [67] agents independently detect the presence of a

forest fire, collaborate to determine its perimeter, and notify local authorities. However, the

QoS provided by this type of reconnaissance service, capable of surveying its environment

and ascertaining strategic environmental features, is susceptible to agent under- and over-

population. In general, the number of agents required for reconnaissance depends on the

desired outcome. For example, if time is limited, more agents may be used to cover an area

than when time is not an issue. However, if resource usage is also important, the number

of agents may need to be restricted. Furthermore, some level of cooperation among agents

81

is required to effectively survey an environment and report events. In this section, we focus

on the evolution of a cooperative deme-level reconnaissance task, specifically investigating

the effects of a heritable energy trait on the evolution of this behavior in a multi-organism

system.

4.3.1 Experimental Extensions and Setup

In addition to local computation and self-replication, a digital organism is also capable of

inter-organism messaging, movement, and environmental sensing. Messaging functionality

is provided by a BROADCAST instruction, which when executed collects the contents of two

virtual CPU registers and transmits them in a single message to every organism within a

user-defined radius. As an example, Figure 4.3 depicts three possible broadcast radii of an

organism S placed in the center of a grid. If the organism’s broadcast radius is set to 2, then

every organism residing in a cell marked with a number less than or equal to 2 will receive

a copy of a transmitted message. The results presented in Section 4.3.2 use a broadcast

radius of 3, however, a broadcast radius of 1 was also tested and produced similar results.

In addition to messaging, an organism can also move to a neighboring cell by executing the

MOVE instruction. An organism will always move to the cell that it is facing. For example,

if the organism S in Figure 4.3 is facing right and it executes a MOVE it will relocate to

the cell marked with a “+1”. An organism can change its facing by executing a ROTATE

instruction. Upon birth, an organism initially faces its parent. Besides messaging and

movement, an organism can also sense its local environment. The operation of the SENSE

instruction will be discussed in Section 4.3.1.

The combination of local computation and environmental interaction effectively en-

ables an organism to explore its environment and cooperate with others to perform a task.

To encourage cooperative behavior an organism can be rewarded for completing an individ-

ual task that is a building block for a group-level behavior. For example, an organism could

be rewarded for alerting its group of an important target when the group is surveying an

82

3333333

3222223

3211123

32IS+123

3211123

3222223

3333333
Figure 4.3: Example grid containing an organism S, and the cells reached by broadcasting

with varying radii.

area. Once a rewarded task is completed, the organism receives an influx of energy and its

metabolic rate is recalculated. By efficiently performing individual tasks an organism can

increase its metabolic rate, giving it a competitive advantage. In addition, by decomposing

a group-level behavior into individual building blocks, the Avida user can encourage the

evolution of a complex cooperative behavior [18,104].

In these experiments a population is divided into 100 independent demes, each consist-

ing of 49 cells arranged in a 7 x 7 grid, as shown in Figure 4.4. Each cell within a deme

is marked by an integer denoting the cell’s contents: empty (-——- 1), a “nest” (0), or a target

(> 0). Each deme contains exactly one nest cell, located in its center, and one randomly

located target cell; all other cells are empty. An organism can sense what type of cell it

resides in by executing the COLLECT-CELL-DATA instruction, which reads the value stored

in the cell into a register in the organism’s virtual CPU. In the experiments described here

a single deme-level predicate is used. To satisfy this predicate, a message containing the

target cell’s ID (a random positive integer stored in the target cell) must be received by an

organism currently residing in the nest. Minimally, this predicate requires two organisms to

c00perate; one to send the message and one to receive it. Upon satisfying of this predicate

the deme is replicated, as shown in Figure 4.2.

83

Figure 4.4: Deme setup with a nest (0), target (> 0), and empty (— 1) cells.

To encourage the evolution of the desired behavior, two organism-level tasks are re-

warded. The simplest task rewards an organism that enters the target cell, with an energy

bonus equal to the baseline energy given to a seed organism (1000 energy units). Incor-

porating this task into the environment encourages organisms to forage for the target cell.

However, this task does not require the organism to take any action or even have knowledge

that it is in the target cell. To encourage active sensing and reporting of the target cell’s ID,

the second organism-level task rewards an organism for sending the target cell’s ID in a

message. However, before this task can be rewarded an organism must gain access to the

target cell’s ID either by finding the target cell (encouraged by the first task) and collecting

its ID, or by receiving it in a message. After the organism has gained access to the target

cell’s ID, it must send the ID to an organism in order to receive a reward. Once this final

step is completed the organism will receive a reward of 200 energy units. By performing

these tasks an organism can increase its energy and gain a competitive advantage. How-

ever, it is conceivable that an organism could evolve to repeatedly complete either or both

tasks. To discourage this type of hyperactivity, a limit is placed on the number of times an

organism can receive a reward for each task. In addition, higher energy and virtual CPU

cycle costs are assigned to all sensing, messaging, and movement instructions, mimicking

the costs associated with performing these operations on physical hardware.

84

4.3.2 Experimental Results and Analysis

Evolved Foraging Behavior. The experiments described above produced demes capable

of satisfying the deme-level predicate. Before evaluating the effects of various parameter

settings on the evolutionary process, let us first describe a strategy that evolved frequently

in our runs. We note that an organism cannot glean information about the location of the

target cell from the environment unless it occupies that cell and hence, the only way an

organism can find the target cell is to search for it by roaming about the environment.

However, organisms evolved to take advantage of the constant location of the “nest” cell

and the topology of the environment, as depicted in Figure 4.5. Specifically, through the use

of the GET-CELL-XY instruction, which places the organism’s current (x,y) coordinates in

two of its registers, and the IF-EQU register comparison instruction, organisms repeatedly

moved back and forth along the deme diagonal, where the x and y coordinates are equal.

This oscillatory behavior enables an organism to move while remaining near and frequently

entering the “nest” cell.

| l m (6,6)l
nest cell\L\ J 14’

(0.0) 7%“

Figure 4.5: Example path resulting from organism moving back and forth on deme diago-

nal.

Varied Energy Transfer. To perform the following experiments we extended Avida to

allow a percentage of a parent deme’s energy to be passed to its offspring. The passing

of energy allows it to be a heritable feature, thereby enabling selection based indirectly on

85

group-level energy efficiency. By varying the amount of energy passed to the offspring

deme we are able to assess the effects of energy heritability on the evolution of a deme’s

ability to satisfy the deme-level predicate. We varied the amount of energy passed to the

next generation in four different treatments: 0%, 1%, 5%, or 10%. Additional, higher

levels of energy transfer were also tested, however, none was significantly different than

the results observed in the 10% treatment. To measure the effect of energy transfer on the

evolution of the development of a deme-level predicate, we compare each treatment based

on the mean gestation time of a deme (time to complete deme-level task), and the mean

number of organisms within a deme. We also use organism gestation time to evaluate the

effects of energy transfer on the evolution of the deme-level task.

Figure 4.6 plots the effect of varying the percentage of energy transferred from the

parent deme to the offspring on the mean gestation time of a deme. The plot shows a

significant difference, at 50, 000 updates and after, between the 0% treatment and all other

treatments. For example, at 50, 000 updates the Wilcoxon rank sum test for equal medians

produces a p-value of 0.0025 for or = 0.001. This plot suggests that as little as 1% energy

transfer from parent to offspring can significantly increase a deme’s ability to evolve a

deme-level task, when compared to the 0% treatment. This result can be attributedto the

fact that an organism injected into a deme in the 0% treatment is given the baseline amount

of energy, which eliminates any energy advantage that could have been achieved by the

parent deme, effectively slowing (but not stopping) the evolutionary process, as shown by

the persistent downward slope in Figure 4.6. For example, if organisms in a deme increase

their energy in the 0% treatment, then the deme will more likely be replicated. After

replication, however, the energy level of the organisms in the offspring deme is reduced

to the baseline, decreasing the deme’s probability of replicating again. On the other hand,

if energy is transferred to organisms in an offspring deme, the higher organism baseline

energy level gives the deme a competitive advantage.

In addition to increasing the evolvablity of a system, a small transfer of energy can

86

F
r
a
c
.
o
f
m
a
x
i
m
u
m
a
l
l
o
w
e
d
t
i
m
e

0 0.5 1 1.5

M
M
.

x10

Figure 4.6: Average fraction of total possible time to complete a deme-level task using

multiple energy transfer percentages. Results are mean of 30 runs.

also promote the evolution of a self-regulating population during the deme’s development.

Figure 4.7 plots the mean population size of demes in all four treatments. This plot reveals

a mean increase in deme population size in the three non-zero treatments during the be-

ginning of a run followed by a continual reduction after about the first quarter, eventually

finishing below the 0% treatment. In contrast, the 0% treatment does not exhibit much

variation in deme population size. However, the final resulting population size differences

are not statistically significant.

Organisms in the 0% treatment do not perform individual tasks at the same level as

organisms in the 1% treatment, as shown in Figure 4.8. However, the task completion

statistics converge toward the end of both treatments, a behavior that is a byproduct of the

deme replacement method and the decrease in deme gestation time. Specifically, the drop

in task completion levels in the 1% treatment is caused by demes that are replaced before

they perform a task. The lower levels of individual task completion in the 0% treatment

are due to an absence of a selective pressure to complete these tasks and collect additional

87

F
r
a
c
.
o
f
t
o
t
a
l
p
o
s
s
i
b
l
e
o
r
g
a
n
i
s
m
s

o 0.5 1 . 1.5 2

x 105

Figure 4.7: Average fraction of total possible organisms per deme using multiple energy

transfer percentages. Results are average of 30 runs.

energy. In addition, since the organisms collect little additional energy, they are not able to

increase the population in their deme above the level achievable with the baseline energy.

However, even without a fluctuating population, the evolutionary process selects demes in

the 0% treatment that satisfy the deme-level predicate, but this process requires more time

than when energy is transfered, as seen in Figure 4.6.

The reduction in deme population size observed in the non-zero treatments in Figure 4.7

suggests that organisms have evolved in one of three ways. Either the organisms have (1)

increased their level of cooperation, enabling them to satisfy the deme-level predicate more

quickly, thereby reducing time for deme replication (supported by the decline in average

deme gestation time shown in Figure 4.6), or (2) their replication rate has been slowed

such that each organism reproduces leSs often, giving the group more time to satisfy the

predicate before producing offspring, or (3) some combination of both. Figure 4.9 shows

the mean gestation time of an organism for the 0% and 1% treatments. (The other non—

zero treatments produced results similar to the 1% treatment and are omitted.) Error bars

88

—8— Sent target ID (1%)

~ ----G"" Move to tal’gf:t (1%)

+Sent target ID (0%)

------+ Move to target (0%)
—
s

U
r

y
—
n

I

9 u
.

O
r
g
a
n
i
s
m
s
p
e
r
d
e
m
e

0 0.5 l 1.5 2

5

x 10

Figure 4.8: Average number of organisms in current demes who have performed either of

the two individual tasks. Results are average of 30 runs.

are omitted from the figure because the two treatments are not statistically significantly

different. We note that in both the 0% and 1% treatments, the mean organism gestation

time increases over the duration of the run. This phenomenon occurred in all energy transfer

levels tested. In contrast, the gestation time of Avida organisms typically decreases over

time, as shown during the beginning of both treatments, because of selective pressures at

the organism-level to become a more efficient self-replicator and produce more offspring.

This result shows that this pressure can be overcome by performing selection at the deme-

level.

Abundant Energy. In the previous treatments, the amount of energy an organism could

gain during its lifetime was limited by a restriction on the number of times it could receive

a reward for completing an individual task. To investigate the effects of abundant energy

availability, we removed this limitation. Repeating the previous treatments with abundant

energy we observed no significant differences in the results. Figure 4.10 displays the mean

deme gestation time and total number of organisms per deme for the 0% and 1% treatments

89

M
e
a
n
o
r
g
a
n
i
s
m
s
g
e
s
t
a
t
i
o
n
t
i
m
e

(
i
n
s
t
r
u
c
t
i
o
n
s
)

0 0.5 l 1.5 2

Update x 105

Figure 4.9: Mean of organism gestation times. Results are the average of 30 runs.

when energy accumulation is not limited. By inspecting Figure 4.10, we determine that the

same pressures that caused the populations in the previous treatments to self-regulate are

still present, even when energy is abundant. In addition, energy abundance does not sig-

nificantly affect the gestation of individual organisms. These results suggest that energy

abundance has little or no effect on the evolution of demes that satisfy the deme-level

predicate. The minimal impact of energy abundance can be classified as a byproduct of di-

minishing returns: As an organism completes more tasks and accumulates additive energy

rewards, it pays a higher energy cost per instruction because of its increased metabolic rate.

Once the organism reaches the point where it costs more energy to perform a task than it

receives in return, additional task completion begins to have a negative effect on the organ-

ism’s metabolic rate. Therefore, the evolutionary process must balance diminishing returns

with the selective pressure to accumulate additional energy by increasing an organism’s

gestation time.

The minimal effect of energy abundance on the evolution of a cooperative reconnais-

sance task suggests that deme-level selection is robust, at least in this case, to organism-

90

—a— 1% deme gestation

.. o 1% orgs. per deme

—4t— 0% deme gestation

- -+- 0% orgs.per deme
.
9

c
o

5
:

a
s

.
0

4
:
.

 o

 F
r
a
c
t
i
o
n
o
f
m
a
x
i
m
u
m

p
o
s
s
i
b
l
e

0.2 _ 0‘ _ 0"‘70 O00

.:._‘_fil‘+~-r+‘++~-+-"-'+ ~='-+w-+ " ‘+'""+“ +M"+1:QH~'$“O"0~¢QQ

or t 1 . .
0 0.5 l 1.5 2

Update x 105

Figure 4.10: Fraction of total possible organisms per deme and fraction of maximum deme

gestation time when energy is abundant and 0% or 1% of the parent deme’s energy is

transfered to the offspring. Results are representative of 30 runs.

3000 . - . .
+

g 2500- + +

&2000 +

1500' T T j g _ T‘

E1000“ 4: E E "

E. f i T gg
500—; Q Q _ L _L .1. i id

0 J L 1 1 l t 1 1 I t

2 3 4 5 6 7 8 9 10

Updatex20K

Figure 4.11: Average organism gestation time when energy is abundant and 1% of the

parent deme’s energy is transferred to the offspring. Results are representative of 30 runs.

91

level perturbation. In both the energy abundant and energy limited case, incorporating en-

ergy heritability into deme-level selection reduces the time required to evolve cooperative

reconnaissance. In addition, the evolutionary process increases the quality of the solution

by evolving a self-regulating population.

4.4 Population Adapting to Environmental Factors

Next we consider the evolution of an agent behavior to detect and mitigate “attacks” on

cells in an energy efficient manner. We associated with each cell a certain amount of

energy. When an organism enters a cell it acquires the energy within that cell and uses it

to execute instructions. If an organism leaves the cell, its remaining energy is placed back

into the cell and is unchanged until another organism enters the cell or the cell experiences

an attack. An attack targets a single cell and acts as an energy sink. Attacks appear and

are placed randomly in cells within a deme. When an attack is placed in a cell it draws

down the energy within that cell, or an occupying organism, for the duration of the attack.

(The duration and percentage of energy loss due to an attack are both fixed throughout a

single run.) In the results discussed in Section 4.4.2, an attack’s duration is set to 5 updates,

and 1% of a cell’s remaining energy is lost during every update during which the attack

remains active. To conduct the study we added to Avida several new instructions related to

communication, movement, environmental sensing, and changing their metabolism rate, as

described below.

4.4.1 Experimental Extensions and Setup

Active Messaging. First, we defined instructions for active messaging [183], enabling

organisms to alter the execution of other organisms by sending messages to them. The

active messaging functionality is provided through two instructions, SEND-ALARM-LOCAL

and SEND-ALARM-GLOBAL, which send an alarm signal to all organisms in neighboring

92

cells or all cells within a deme, respectively. As with any other instruction, these enter an

organism’s genome through random mutations during replication. An alarm message can

be in one of two states, low or high, determined by the contents of the BX register in the

sending organism: if the value stored in the register is even, then a low-state alarm message

is sent, otherwise a high-state alarm is sent.

Both alarm sending instructions cause each non-sleeping, receiving organism to imme-

diately move its instruction pointer from its current position to the location of an alarm

label instruction, if present. An alarm label is a special purpose no—operation instruction

used solely as a target for such an alarm-induced jump. The state of an alarm message is

used to determine which alarm label is targeted for a jump. We defined two alarm label

instructions, ALARM-LABEL-LOW and ALARM-LABEL-HIGH, which can be jumped to de-

pending on the state of the received alarm. When an organism receives an alarm its genome

is searched in the forward direction, from the instruction pointer’s current position, until the

correct alarm label is found or the search fails. If a corresponding alarm label is found, the

receiving organism’s instruction pointer is set to that location. If no corresponding alarm

label is found, then no jump is performed.

Figure 4.12 depicts the execution of two neighboring organisms’ genomes, initially or-

ganism A (top) is about to execute a SEND-ALARM-MSG-LOCAL instruction, which will

send a high—state alarm to organism B (bottom). Once A executes the instruction, organism

B’s execution jumps to the location of the ALARM-LABEL-HIGH instruction in its genome,

skipping all instructions between the ROTATE-RIGHT and ALARM-LABEL-HIGH instruc-

tions. From this point on, both organisms execute their genomes sequentially until another

alarm is received.

Movement and Rotation. As in experiments described earlier, an organism can move to

a neighboring cell by executing a MOVE instruction with the new location is determined

by its facing. An organism can change its facing by executing a rotate instruction. The

93

OrganismA (sender)

ROTATE-RIGHT ROTATE-RIGHT

SEND-ALARM-MSG-LOCAI. - SEND-ALARM-MSG-LOCAL

MOVE \ LMWE

High

Alarm

\

i
Organism B (receiver) Alarm-inducedjump

ROTA'IE-RIGHT / ROTATE-RIGHT

SEND-ALARM-MSG-LOCAL\ SEND'AIARM-MSG-LOCAI.

ALARM-LABEL-HIGH

REPRO

ALARM‘LABH'HIGH

REPRO

MOVE MOVE

ALARM-LABEL-HIGH ALARM-LABEL-HIGH

REPRO REPRO

Figure 4.12: Example of the change in execution flow of organism B when it receives a

high—state alarrn from organism A.

ROTATE-RIGHT and ROTATE-LEFT instructions allow an organism to rotate one cell to the

right or left, respectively. We expanded the instruction set to include three additional types

of rotation. The ROTATE-UNOCCUPIED-CELL and ROTATE-OCCUPIED-CELL instructions,

respectively, rotate an organism clockwise until a cell is found that is unoccupied or oc-

cupied; if no such cell is found the organism’s facing remains unchanged. The third new

rotate instruction, ROTATE-TO-ATTACK—CELL, rotates an organism clockwise until a cell

containing an attack event is found; if no attack is found the organism’s facing remains

unchanged. For example, in Figure 4.13 organism A is initially facing to the left, but after

executing a ROTATE-TO-ATTACK-CELL instruction it faces in the up direction.

Metabolic Rate. We also enabled an organism to have more direct control over its en-

ergy usage. In Chapter 3 we provided “sleep” instructions, and observed the evolution of

a response to periodic resource availability. Here, we added two instructions, DOUBLE-

ENERGY-USAGE and HALVE-ENERGY-USAGE, to enable an organism to change its exe-

cution priority by either increasing or decreasing its metabolic rate. When an organism

94

Figure 4.13: Example showing organism A (represented by a boolean OR gate) before

(left) and after (right) executing the ROTATE-TO-ATTACK-CELL instruction. The attack is

represented by the lighting bolt.

executes the DOUBLE-ENERGY—USAGE instructions, its metabolic rate is doubled, increas-

ing the cycle speed of its virtual CPU. However, it will also pay double the energy cost

per executed instruction. Moreover, if an organism increases its metabolic rate to a point

where it can no longer pay an instruction’s energy cost, then the organism dies. A third

instruction, DEFAULT-ENERGY—USAGE, enables an organism to reset its energy usage to a

default rate. In addition, upon replication both offspring organisms’ energy usage return to

the default level.

Dealing with attacks. The functionality to detect and quell an attack is available to an

organism through special-purpose instructions. Specifically, we extended the Avida in-

struction set to include two conditional insu'uctions that sense whether an organism either

resides in or is facing a cell experiencing an attack. These two instructions, IF-CELL-

UNDER-ATTACK and IF-FACED-CELL-UNDER-ATTACK, cause the next instruction in an

organism’s genome to be skipped if an attack is not present in the interrogated cell. In

addition to these two conditional instructions, we also added two instructions that allow an

organism to quell an attack. The KILL-ATTACK-IN-CELL and KILL-ATTACK-IN-FACED-

CELL instructions, respectively, eliminate an attack in the organism’s current cell, or the

cell that it is facing. If an attack was present and mitigated, a 1 is written to the organism’s

BX register, otherwise a O is written. These four attack-specific instructions, along with

all movement, active messaging, and sensing instructions, are assigned higher energy and

95

virtual CPU costs than other instructions. The increased costs facilitate the evolution of

efficient and effective solutions for finding and quelling attacks.

In the experiments presented in the following sections, the rate of attacks during an

attack period is randomly chosen to be either 0 or 5 attacks entering a deme per update.

Every attack period lasts for 50 updates. Deme-level selection is used: a deme-level predi-

cate is satisfied when a deme has successfully quelled 50% of all attacks that arrived during

5 consecutive attack periods. Once a deme has satisfied the deme-level predicate, it is repli-

cated. At that point all of the deme’s remaining energy is accumulated and divided equally

among all cells in the offspring demes, minus a 5% deme replication decay. The trans-

fer of remaining energy provides offspring of an energy efficient deme with a competitive

advantage over less efficient demes. In addition, in the previous section we have shown

that transferring energy in this manner can decrease the amount of time required to evolve

cooperative behaviors [20].

4.4.2 Experimental Results and Analysis

We conducted a set of experiments to investigate whether digital evolution could solve the

problem of quelling attacks while conserving energy, and if so, what behaviors it might

produce. All the runs used Avida populations containing up to 4900 organisms, arranged

in 100 demes, each consisting of a 7 x 7 torus of cells. When a deme is initialized, each

cell is given 10,000 energy units to be consumed by occupying organisms. A single seed

organism is injected into the deme and begins to replicate, with mutations turned off(deme

populations are homogeneous). If the population eventually satisfies the deme predicate,

the deme will be replicated at the end of the current update. If a deme does not satisfy the

predicate before it has experienced 500 updates, it will be replicated automatically because

of its age. Upon deme replication, the germline may experience mutations. Specifically,

there is a 0.75% chance that an instruction is mutated, and a 5% chance that an instruction

is inserted and removed.

96

An Evolved Solution. Execution of the Avida runs described above produced popula-

tions that dynamically adjusted their size in order to quell attacks while conserving energy.

Figure 4.14 demonstrates this behavior for a particular population. The figure plots the

mean fraction of cells within a deme containing an organism during periods of attack and

during periods of “calm” (no attacks). As shown, very early in the run the population

evolves the ability to keep the population near its capacity when attacks are present, and

it maintains this behavior during the entire run. After approximately 40,000 updates, the

population has evolved the ability to adaptively reduce its population (to between 30% to

60% of its maximum size) during calm periods.

fl

1

.
o
c
o

.
9
a
s

.
O

4
:
.

.
9

t
o

+calm period

—9— attack period

0 2 4 6 8 10

Update x 104

F
r
a
c
t
i
o
n
o
f
p
o
s
s
i
b
l
e
o
r
g
a
n
i
s
m
s
p
e
r
d
e
m
e

Figure 4.14: Mean fraction of total possible organisms within a deme when attacks are

present and when they are not.

In addition to adaptively controlling the population, this particular population also

achieves a mean attack mitigation rate of about 90%, as shown in Figure 4.15. Specif-

ically, out of the 250 attacks occurring randomly during an attack period, about 225 are

quelled. We emphasize that the only selective pressure is the deme-level predicate requir-

ing a 50% mitigation rate. We do not provide any reward for low-level behaviors from

97

which the more complex cooperative behavior might emerge. Rather, the populations are

entirely responsible for evolving their strategy.

F
r
a
c
t
i
o
n
o
f
e
v
e
n
t
s
k
i
l
l
e
d
p
e
r
a
t
t
a
c
k
p
e
r
i
o
d

_9— attack period

0 2 4 6 8 10

.4Update x 10

Figure 4.15: Average fraction of attacks quelled per attack period in a deme for a single

run.

Genome Analysis. In order to understand how digital evolution went about solving this

problem, we analyzed the dominant genome present at the end of the run, shown in Fig-

ure 4.16. This genome contains two separate pieces of code, one that executes when attacks

are present and the other when they are not. The genome initially attempts to quell (“kill”)

an attack in the cell that it is facing. The remainder of the execution of this genome depends

on the success or failure of this attempt.

If no attack was killed, then the BX register will contain 0 and a low-state alarm will

be sent to neighboring nodes. However, this alarm will have no effect on neighboring

organisms in the deme because the genome does not contain any ALARM-LABEL—LOW

instructions. Therefore the remainder of the code in Box 1 of Figure 4.16 will be executed

at both the sender and its neighbors. This code moves the organism and then executes a

S HIFT—R instruction on the BX register. The right shift causes the organism’s BX register to

98

either remain zero, or to become zero if an attack was previously killed. Then the organism

enters into a low-energy (or “sleep”) cycle, which costs the organism 1 energy unit and lasts

for 30 virtual CPU cycles. Once the sleep cycle is over the organism replicates into the cell

it is facing. Considering that demes are homogeneous, this method of replication allows

the population of organisms to remain low. Specifically, because a parent organism never

changes its current facing, the parent and offspring organism will always remain in the

same row, column, or diagonal. Therefore, when either of them replicates, the population

can grow only until that row, column or diagonal is full. After that point, all replications

will replace existing organisms, causing the population size of the deme to remain constant.

On the other hand, if the attempt to kill an attack at the beginning of the genome was

successful, then a high-state alarm is sent (since the value of BX is l), and all organisms

in the sender’s neighborhood will jump to the top of Box 2 in Figure 4.16. If an organism

is sleeping, it will remain sleeping, however its instruction pointer will be moved when it

awakes in response to the most recently received alarm. The code within Box 2 can be

divided into two parts: controlled spreading of alarm message, and racing to expand the

population. The second and third lines in Box 2 control whether or not an organism that

received an alarm message sends another alarm message. This piece of code will cause

organisms that experience a high-state alarm message to propagate the message unless the

organism’s BX and CX registers contain the same value. As discussed before, the contents

of an organism’s BX register after it exits a sleep cycle will be zero. Therefore an organism

that entered a sleep cycle will not send an alarm message when it wakes up, so out-of-date

alarms will not be propagated through the network. The second portion of code in Box 2

doubles the execution rate of the organism and rotates it to face an attack if one is present in

a neighboring cell. Finally, the organism replicates. After replication, the parent organism,

which is facing the offspring, will kill any event in the offspring’s cell, a rather distinct

evolved parental behavior.

Figure 4.17 is a graphical depiction of the execution of two organisms during an at-

99

m-FACED-CnL-A'ITAUC

: NOP-C No attack infaced cell I

. MOVE .

I rr-ArrAcx-m-Uuoccupmn-mcnnon-cmi

I SHIFT-R :

; SLEEP — 30x execution speed decrease I

' REPRO '

ROTATE-TO-A'ITACK-CELI.

ROTATE-TO-UNOCCUPIED-CELL

SET-FLOW

NOP-A

m-CHL-ATI‘ACK

ADD Ifattack infaced

“H'Cm'x cell was killed
MOVE .

GET-HEAD then high-state

prov-mu alarm is sent to

sun neighbors

ROTATE-RIGHT-ONE

POP

ROTATE-TO-OCCUPIED‘CEIJ.

IF-ATTACK-IN-CURRENT-Cm

ROTATE-TO-A’I'I’ACK-CELL

MOVE

rr-CONs-24

SEND-ALARM-MSG-MULTIHOP

NAND

SWAP

SEND-AMRM-MSG-MULTIHOP *

HALVE-ENERGY-USAGE

I mm-mn-mon Received alarm I

: IP-N-EQU messagefrom

. SEND-ALARM-MSG-IDCAI. neighbor

I NOP-C

: rr-ArrAcx-m-UNoccupmn-mmon-cnr

| ROTA'I'E-TO‘A'ITACK-Cfll

' GET-CELL-X

: ROTATE-RIGHT-ONE

l DOUBLE-ENERGY-USAGE

: ROTATE-TO-A'ITACK-Cnl.

I SWAP 2x execution .

' SHIFT-I. speed increase :

LEE!!!)................... _.
IF-AITACK-IN-CURRENT-CELL Box 2

NAND

ROTATE-LEFI-ONE

KILL-FACED-CELL-A’ITACK

DEFAULT-ENERGY-USAGE

ROTATE-LEI'T-ONE

IMP-HEAD

10

Figure 4.16: An evolved genome that executes differently depending on if a neighbor has

sent a local high-state alarm message.

100

W. m

ERG]

l. A begins to execute

2. High alarm sent by A

3. B's execution jumped

to ALARM-LABEL-HIGH

(1))

[91¢

EQ

1. A's BX register set to 1. Alarm suppressed by A

zero by SHIFT-R 2. A & B rotate to attacks,

2. B sent high-state alarm double execution rate,

3. A's execution jumped and replicate

to ALARM-LABEL-HIGH 3. Both attacks are killed

(C) ((0

Figure 4.17: Sample population experiencing a period of attack. An organism is repre-

sented by a boolean OR gate where the point (or output) of the gate denotes the organism’s

facing. In addition, attacks, quelled attacks, and alarm messages are represented by light-

ing bolts, crosses, radially blended gray circle, respectively. Underlying each figure is a

description of the individual executions represented.

tack period scenario. In Figure 4.l7(a) organism A begins the execution of its genome,

and organism B is assumed not to be sleeping. After organism A executes its first two in-

structions, the attack previously located in the bottom row has been quelled, A then sends a

high-state alarm, and B’s instruction pointer has beenjumped to the location of the ALARM-

LABEL-HIGH instruction, as shown in Figure 4.17(b). After these instructions are executed,

organism A shifts its BX register to the right, causing its contents to be changed from a l

to a 0. At this point, organism B sends a high-state alarm message that jumps A’s in-

struction pointer to the location of the ALARM-LABEL-HIGH instruction. Now organism

101

A suppresses the sending of another alarm because its BX and CX registers contain the

same value. Both organisms continue execution of instructions that cause them to rotate to

face an attack, double their execution speed, and then replicate, as shown in Figure 4.17(d).

Immediately after replicating, both organisms A and B quell the attack in their respective

offspring’s cell. By doubling its execution speed, an organism will pay a higher energy cost

per instruction, however, it increases the probability of quelling an attack in its offspring’s

cell, since the time between rotating to face the attack and attempting to kill it is halved.

Energy Conservation. When accounting for each instruction’s user-defined virtual CPU

cycle cost, we calculate that the genome presented in Figure 4.16 can require as few as 9

cycles to execute during periods of attack and as many as 37 cycles to execute during calm

periods. However, the lower bound on an organism’s gestation time can be achieved only

if a high-state alarm is received immediately after an organism replicates. This represents

a 4-fold difference in individual organism gestation time depending on the current environ-

ment. Using these numbers to calculate the number of expected births during each period

we predict a minimum of 1129 births during a calm period with 60% cell occupancy, and

a maximum of 8167 births during an attack period. By examining Figure 4.18, we can see

that the mean number of births during a calm period is slightly greater than expected. How-

ever, the mean number of births during attack periods is about half the expected total. This

result suggests that organisms are replicating after executing about 18 instructions, which

is 9 instructions more than required to execute the entire piece of code in the dashed box in

Figure 4.16. We conclude that during attack periods, when high-state alarm messages are

being sent, organisms are still conserving energy by sleeping when attacks are not present

in their neighborhoods. On average, 1 in 5 organisms will sleep during a period of attack,

conserving the energy in its cell.

Finally, we note that only 5 of the 20 runs achieved the level of success described

above. Specifically, while most populations were similarly successful at quelling attacks,

102

 Tota
l
b
i
r
t
h
s
p
e
r
d
e
m
e

+calm period

—9— attack period

0 2 4 6 8 10

Update 4

Figure 4.18: Mean number of births per deme in a single run.

only 5 were able to reduce the number of organisms significantly during calm periods. Of

course, even a single successful population is sufficient for our purposes, as it can provide

insight into the design of algorithms for agent-based distributed systems. However, from an

evolutionary perspective this variation suggests that the selective pressures applied in this

study might be improved, and in our ongoing studies we are exploring different pressures

that may promote better energy efficiency and more effective self-regulation of population

size.

4.5 Conclusion

In the first set of experiments described in this chapter, we have shown that a population

can evolve to self-regulate its size when as little as 1% of the parent deme’s total energy

is transferred to the offspring demes. In addition, our experiments provide evidence that

an increase in organism gestation time occurs when demes evolve to be more proficient

at satisfying the deme-level predicate. In particular, an increase in the gestation time of

103

organisms allows a deme more time to satisfy the deme-level predicate with fewer total or-

ganisms, which translates into a more energy-efficient deme. Furthermore, we have shown

that abundant resources have little effect on the evolution of this deme-level behavior.

In these experiments the evolutionary process is balancing opposing selective pressures:

the pressure to decrease an organism’s gestation time and the pressure to decrease a deme’s

gestation time. These two pressures are opposing because decreasing the gestation time of

an organism will increase the number of births per deme, thereby increasing the amount of

energy lost due to energy decay during replication. In contrast, a decrease in deme gesta-

tion time implies that fewer instructions are executed by its constituents, which translates

into an energy savings. Since the deme-level predicate used in these experiments requires

cooperation, evolution favors extending an organism’s gestation time to allow more time to

search for the target before replication occurs. These factors promote the natural selection

of demes that satisfy the deme-level predicate while selecting against inefficient organisms,

effectively encouraging deme-level efficiency.

In the second set of experiments, we have shown that it is possible to digitally evolve au-

tonomous agents that response to attack fluctuations. Specifically, we described an evolved

genome that self-regulates a population within a deme through the use of local active mes-

saging. In addition, the genome adapts the execution speed of the host organism, depending

on the current environmental circumstances. Finally, we showed that even during attack pe-

riods the evolved genome localizes the attack response, and conserves additional energy by

putting approximately 1 in 5 organisms to sleep.

In an agent-based distributed system both individual lifetime and population size are

important concerns for developers. Mismanagement of either of these two concerns can

cause a disruption of a system’s required QoS. Through the transfer of energy and deme-

level selection, we have achieved a digital system that can effectively self-manage both of

these concerns in addition to completing a desired task in an efficient manner.

104

Chapter 5

Quorum Sensing and Quenching

Building on the techniques employed to evolve adaptive individual and group behaviors

in the previous chapters, we now focus on evolving density dependent, energy conserving

behavior. This chapter describes experiments where digital organisms were evolved to

perform a behavioral change once the population exceeded an evolved density threshold.

We then attempt to disrupt the evolved behavior, and show that resistance to some of the

disruptive methods is innate.

5.1 Background

An ability to self-organize is a key feature of an organism’s development and behavior.

For example, many biological organisms self-organize internally to form circulatory, ner-

vous, respiratory, and metabolic systems. In addition, groups of organisms self-organize to

find and build shelter, search for food, and coordinate attacks [30, 192]. Recently, analogs

of these natural self-organizing behaviors have been studied for their application in com-

putational systems [54]. For example, the evolved social behavior of ants [192] has led

researchers to propose biomimemitic ant colony optimization [54], which has been used

to design network routing protocols [9, 122]. However, due to interactions between multi-

ple agents, many self-organizing systems are difficult to engineer and study. Furthermore,

105

adaptation in these systems adds to their complexity [85].

Quorum Sensing in Bacteria. Observations of behaviors in natural organisms provide

useful insight into the complexity of self-organizing systems and the building blocks that

underpin them. For example, although it was previously assumed that bacteria and other

microorganisms rarely interact [155], in 1979 Nealson and Hastings found evidence that

bacterial communities of Vibrio fischeri and thrio harveyi were able to perform a coor-

dinated behavioral change, namely emitting light, when cell density rose above a thresh-

old [142]. This type of density-based behavioral change is called quorum sensing (QS),

and allows bacteria to coordinate gene expression under high cell density conditions [185].

Bacteria that participate in QS continuously release signaling molecules, called au—

toinducers (A15) [143], which they can also detect with AI receptors. Under low-density

conditions, AI molecules diffuse throughout the environment and go undetected by the bac-

teria. However, the level of AI increases with cell density and, if it exceeds a threshold, the

detection mechanism in the bacteria causes the up regulation of the genes that produce AI

molecules. This creates a positive feedback loop which greatly increases the level of AI in

the environment. Once a receptor has been fully activated by a high concentration of Al,

the activated receptor causes the up or down regulation of other genes in the bacteria. If the

level of AI is relatively uniform throughout the environment, all of the bacteria that respond

to the high level of AI will begin transcription of the same genes at approximately the same

time, thereby changing the population’s behavior once a quorum has been reached. The

study of this evolved molecular communication system has enabled researchers to identify

those genes whose transcription is density-dependent.

This discovery spawned a new branch of research to explore such interactions, deter-

mine whether they occur in other microorganisms [166], and assess consequences of these

behaviors [47]. Q8 has since been observed in many species of bacteria, which use it

for a variety of purposes, including secretion of digestive enzymes in the gastrointestinal

106

tract [26], bioluminescence and phototrophy in marine bacteria [21, 142], and polymer se-

cretion to create or destroy a biofilm [140]. OS is also known to be closely related to

more complex behaviors, such as aggregation into biofilms [79] and fruiting bodies [59].

For example, when confronted with starvation due to nutrient depletion, Myxococcus xan-

thus bacteria cooperate to form a stalk, enabling some cells to be carried as spores to new

locations where conditions might be better.

In the case of pathogenic bacteria, such as Salmonella and Staphylococcus, QS has

been linked to the coordinated release of toxins or other virulence factors [37, 46, 132],

which attack a host’s immune system [47]. For example, cholera-causing Vibrio cholerae

adhere to an intestine wall of a host under low cell density. After a population increases

and a quorum is reached, individual behavior changes, causing the bacteria to separate and

spread, initiating an acute disease followed by a mass dispersal, enabling spread to other

hosts [140]. The effectiveness of these attacks depends on large numbers of cooperating

bacteria in order to overwhelm the host’s immune response.

Improved understanding of OS has numerous scientific benefits [37]. Foremost, dis-

eases caused by quorum-sensing bacteria might be treated with medications that inhibit

this behavior (i.e., quorum quenching) [132], an approach that may have milder side ef-

fects than some antibiotics. For example, Davies et al. [42] showed that OS is essential to

the development of biofilms in Pseudomonas aeruginosa, the primary pathogen observed

in the lungs of people with cystic fibrosis. In addition, quorum quenching has been pro-

posed as a possible treatment for methicillin-resistant Staphylococcus aureus [152], some

strains of which are resistant to most traditional antibiotics [124]. Moreover, a deeper un-

derstanding of these interactions and their evolution may provide insight into the evolution

of multicellularity itself.

In addition to numerous wet lab studies of OS and biofilm formation [26, 37,42, 132,

142, 185], several researchers have constructed mathematical models that describe gene

expression in Q8 bacteria [22, 162, 176]. These works differ from ours in that they use

107

P systems to model known gene expression mechanisms. In addition, Nadell et al. [141]

recently simulated pairwise evolutionary competitions to investigate the production of ex-

tracellular polymeric substances (EPS) used in biofihn formation.

Artificial Quorum Sensing. Numerous computational systems also require a quorum to

operate correctly. Most notably, algorithms for consensus, where members of a group agree

on a particular course of action, represent a special-case of QS. Consensus algorithms sup-

port a variety of services in modern distributed computing systems, for example, distributed

lock management [28] and ensuring the consistency of replicated components [14]. Dis-

tributed control systems also rely on consensus (and thus, quorum) in applications such

as multi-vehicle control [161], where consensus-based algorithms are used to coordinate

the movements of multiple autonomous vehicles. Additionally, sensor networks use quo-

rum to perform clustering, where nodes are divided into groups in order to perform data

aggregation [34,193].

QS has also been proposed to coordinate behavior among multiple instances of com-

puter worms [182]. QS can be used both to limit the scope of the worm and trigger its

intended consequence. For example, Vogt et al. [182] discuss methods by which a worm

could spread to an intended number of hosts and stop once a quorum is reached, ideally

attracting less attention from system and network administrators because of the worm’s

lower profile. In addition, a QS worm could initiate a coordinated action when quorum has

been reached, releasing what would amount to a “surprise attack” occurring throughout a

network.

Knowledge of how relatively simple organisms cooperate to perform complex tasks

may also be beneficial to the development of distributed computational systems that need

to tolerate dynamic conditions and survive component failures as well as cyber—attacks.

For example, collective behaviors among agents in an artificial immune system are essen-

tial to detecting and responding to potential threats, while nodes in sensor networks need

108

to implement complex distributed operations such as multicasting, gathering sensed data,

and maintaining a network topology. Many traditional algorithms for solving these prob-

lems are brittle when deployed in dynamic environments, and several promising algorithms

proposed recently are inspired by biology [9].

In this chapter we demonstrate the evolution of QS behavior in populations of self-

replicating digital organisms. Specifically, we show that digital organisms are capable of

evolving a strategy to collectively suppress self-replication when the population density

reaches an evolved threshold. We describe the operation of an evolved genome exhibiting

this behavior and analyze the collective behavior of a population that performs QS. We also

show that the behavior scales to populations up to 400 times larger than those in which the

behavior evolved. Additionally, we assess the ability of the evolutionary process to over-

come communication impairments through an evolved resistance. We attempt to promote

further resistance and demonstrate the effectiveness of these techniques in producing more

robust organisms. This study (1) contributes to the understanding of Q8 and QQ, and (2)

provides quantitative measurements of the effectiveness of impairments on an existing quo-

rum. This study represents a first step in using artificial life, specifically digital organisms,

to investigate the evolution, operation, and disruption of QS.

5.2 Quorum Sensing in Digital Organisms

5.2.1 Avida Extensions

Group Fitness. A deme’s fitness is evaluated using Equation 5.1. After selection and

prior to creating an offspring deme, mutations are applied to the genome that was used

to seed the parent deme. During this mutation process each instruction in the genome is

subject to a 0.75% chance of being mutated to a random instruction. In addition, there is a

5% change that a random instruction is inserted and deleted from a random location in the

genome. The newly created genome seeds the offspring deme.

109

1 ifi is sterile,

fitnessiz
. .

(5.1)

RemamtngEnergyj +1
th .

InitialEnergyl-
0 erwrse.

In this work individual organisms within a deme are able to replicate, however those

self-replications do not involve mutations to the genome. Hence, all organisms within a

deme are genetically identical. Floreano et al. [64] have previously shown that this ap-

proach is effective in evolving cooperative behavior.

Avida Messaging and Interrupt Handling. Avida organisms can communicate by send-

ing messages to one another. An Avida message consists of a single packet containing the

values of two of the sending organism’s registers. The send-msg instruction delivers a

message to the organism residing in the currentlyfaced cell. If the cell is unoccupied, then

the message fails to be received. An organism can change its facing by executing one of

several rotate instructions, discussed later.

In most prior studies using Avida messages, a receiving organism must explicitly re-

trieve the message from its input buffer in order to process it. However, we recently ex-

tended Avida with an interrupt model similar to the execution model of TinyOS [82], an

operating system for sensor networks. In this model, depicted in Figure 5.1, an organism’s

main execution thread can be interrupted by a particular event, such as receiving a mes-

sage. To enable context switching of this type, we introduced two instructions that denote

the beginning (msg-handler) and end (end-handler) of an interrupt handler. We emphasize

that these instructions have simply been added to the set of instructions available for muta-

tion into an organism’s genome. Whether they are used or not is solely a result of natural

selection.

Figure 5.2 depicts the semantics of these instructions if they do enter the genome. When

an organism receives a message, its genome is searched in the forward direction for the

nearest instance of a meg-handler instruction. If none is found, the message is ignored.

110

 Sequential

Execution

Sequential

Execution

 I I

Message Handler

Received Finished

Figure 5.1: Context switch from sequential execution to an interrupt handler and back.

If a msg-handler instruction does exist, then the organism’s context is saved, the contents

of the message are placed in two of the organism’s registers, and the instruction pointer is

moved one instruction past the msg-handler instruction. The interrupt handler returns when

an end-handler instruction is executed, which causes the interrupt context to be flushed

from the organism’s virtual CPU and the original context to be restored. If no end-handler

instruction exists, then execution continues sequentially through the genome. Lastly, if

a meg-handler instruction is encountered during normal sequential execution, the handler

code is skipped and execution jumps past the next end-handler instruction. If no end-

handler instruction exists then the jump is not taken.

In this work an interrupt handler cannot be preempted; therefore, all interrupts are han-

dled atomically. Specifically, if a message is received while an organism is interrupted, the

message is queued until the handler has finished, at which time the handler is re-entered

and the next message in the queue is processed. The original context is restored only when

all received messages have been processed. Furthermore, the incoming message buffer is

limited to 20 messages. Messages received when the buffer is full are dropped. As we shall

see in Section 5.2.2, the evolutionary process exploited this property in order to produce

quorum sensing behavior.

11]

. send-msg \

Sequential rotate-right ‘

Execution send-msg (

re r0

,/ repro Message

..- .. I). “OP-A Received

junk 7') send—msg

Figure 5.2: Sample genome containing a single interrupt handler. During sequential exe—

cution the first four instruction of this genome are executed. If a message is received the

organism’s IP is jumped into the interrupt handler. This example also contains “junk” code

that will not be executed unless the genome is mutated.

5.2.2 Experimental Setup and Results

In this section we demonstrate that the digital evolution system as described above is capa—

ble of producing deme—level populations that exhibit QS. Specifically, we observed Avida

populations that evolved a group communication behavior to inhibit self-replication once

a deme has reached a density threshold. Moreover, the threshold itself was not specified a

priori, but rather was an evolved characteristic of the population. In addition, we will show

that this behavior arises under different initial conditions and is scalable to demes up to 400

times larger than the demes in which the behavior evolved.

Experimental Setup. In the experiments described below, multiple populations are di-

vided into 400 demes. Each deme’s topology is a 5 x 5 torus that is seeded with a single

organism at the beginning of each competition period. A competition period lasts for 20

updates, where the average organism in the entire population will probabilistically execute

50 instructions per update. After each competition period, each deme’s fitness is evaluated

using Equation 5.1, and individual deme germlines are selected, mutated, and used to seed

demes in the next competition period. Each seed organism is placed and rotated randomly,

112

so that its initial position and facing cannot be “learned” through the evolutionary pro-

cess. In addition, deme-level populations are well—mixed, meaning that during replication,

the offspring is placed in a random cell within a deme, with a preference for empty cells.

Therefore, a population must be full for an organism to be overwritten.

This study focuses on the evolution of a digital organism’s “gene” (instruction) regu—

lation mechanism, specifically the change in an organism’s instruction expression under

low and high density conditions. To facilitate genome analysis, given in Section 3.4, we

use an instruction set that is includes the send-msg, msg-handler, end-handler, and various

rotate instructions described below. Additionally, four different no-operation instructions

and the repro instruction are provided. This instruction set contains fewer instructions than

previous Avida studies [116]. Other instructions could be included in the set of instruc-

tions available for mutation. However, since we are not applying any additional selective

pressures, organism behaviors will evolve in accordance to the deme-level fitness function.

Treatments. Our initial experiments are divided into three treatments based on available

rotation methods. There are three types: Single step, Labeled, and Neighbor-based. Sin-

gle step rotations enable an organism to rotate one cell to its left or right by executing the

rotate-right or rotate-left instruction, respectively. The rotate-label instruction enables an

organism to rotate to a direction specified by a sequence of subsequent nop instructions, or

label. (An explanation of labels and nop-modifiable instructions can be found in [149].)

Lastly, the instructions rotate-occupied-neighbor and rotate-unoccupied-neighbor perform

neighbor-based rotations. These instructions will rotate an organism to a neighbor cell that

is occupied or unoccupied, respectively. Each treatment consists of 20 runs with each run

lasting for 2500 deme competition periods (generations). “Within a given run, the evolu-

tionary process has access to only one of the three rotations methods, simplifying intra-

treatment comparisons. In addition, we compare results from all treatment, however, all

comparisons are limited to those runs that exhibit the desired overall behavior, namely

113

population control. Out of the 20 runs in each treatment, we observed 15 runs in the Single

step treatment and 14 runs in both the Label and Neighbor treatments that exhibited this

behavior, only those runs are used in the following discussion.

Energy Conservation. We begin by considering the amount of energy conserved per

deme for the three different treatments. This value alone determines the fitness of the deme.

We note that there are only two ways for a deme to lose energy: the deme’s constituents

use energy when executing instructions, and the energy remaining in an organism is purged

when the organism is replaced. Since every instruction has the same energy cost, different

instruction execution sequences of the same length all have the same explicit energy cost.

Therefore, the only way organisms in a deme can reduce their total energy usage is to limit

self-replication.

Figure 5.3 displays the average fraction of energy remaining within a deme at the end

of a competition period. Since Figure 5.3 shows an increase in energy conserved per deme

in all treatments, it can be assumed that the number of births per deme is declining over

evolutionary time. This assumption is confirmed by Figure 5.4, which shows the average

number of births per deme. For all three treatments, the number declines to approximately

30-35 births per deme.

Group Behavior. QS behaviors found in natural organisms exhibit two key features.

First, a density based change in behavior can be observed, and secondly, after a thresh-

old has been reached a positive feedback loop is created that causes more A1 to be released.

In this paper messages are analogous to A15, and alternate gene (instruction) activation can

be realized through the evolution of an interrupt handler. We define organism density as the

number of organisms per cell; therefore, a density of 1.0 can be achieved only if every cell

in the environment contains an organism. Figure 5.5 plots the average organism density

per deme over evolutionary time. Both the Label and Neighbor rotation treatments exhibit

a slight, yet steady decline in organism density. However, the Single rotation treatment

114

—9— Single

—X'— Label

+Neighbor

.
9

o
o

F
r
a
c
.
o
f
E
n
e
r
g
y
R
e
m
a
i
n
i
n
g

O b
x

0 500 1000 1500 2000 2500

Deme Generations

Figure 5.3: Mean fraction of energy remaining per deme over deme generations for each

treatment.

300

" a ‘ 1 —9— Single

250 ’ ‘ ‘ —x— label
5

\a —'*"_ Neighbor
g 200 .

in

0
g) 150 “

3: 100 '-—-Ilt-—-i6\

ii- “ 3: v

50 ‘

t

0 l 1 l l l

0 500 1000 1500 2000 2500

Deme Generations

Figure 5.4: Average number of births per deme for all three treatments.

115

displays a larger decline in organism density, reaching a value of approximately 0.9. The

Single rotation instructions provided organisms with the ability to easily send a message

and then rotate one cell to the left or right. Performing this basic behavior in the Label

treatment requires a much longer sequence of instructions and is therefore less likely to

evolve. In addition, this basic send and rotate strategy is not possible in the Neighbor treat-

ment without additional information about the organism’s current neighborhood. In the

remainder of this paper we focus only on results produced in the Single rotation treatment.

1n

° a

a

>.

g 0.95(

'5, e

§ 7 : 3 3 :

°° 0.9r ,

5 —e—Srngle

+Label

+Neighbor

0.85 ‘ ' ' ‘ ‘

0 500 1000 1500 2000 2500

Deme Generations

Figure 5.5: Average organism density per deme.

We focus on the most abundant, or dominant, genomes produced by runs. These domi—

nant genomes are extracted from each run at its conclusion, and a replicate of each is used

to seed 400 demes which are then run for one competition period. While these demes are

executing, we record for each deme the organism density, total births, and number of organ-

isms running in an interrupted state. Figure 5.6 shows graphically the correlation between

organism density and total births per deme averaged over all dominant genomes. As seen

in Figure 5.6, after update 4, both the organism density and total births per deme plateau.

Therefore, deme-wide self-replication behavior, which is present before update 4, is sup-

116

pressed when the organism density reaches approximately 0.8, demonstrating a quorum

has been reached.

l 25

0.8 t

.31“

f 06Q .

g 12 5

S 0.4
9.?

O /
0'2 I _e'— Births

' —B— Organism Density

0 ‘ ' ‘ O

0 5 10 15 20

Figure 5.6: Organism density and total births per deme for dominate organisms.

To this point we have not discussed methods by which the organisms implement quo-

rum sensing. Figure 5.7 plots the average number of organisms per deme that are executing

in an interrupt handler. This curve closely mirrors the curves in Figure 5.6, providing an

indication that interrupts are being used to suppress organism self-replication. In addition,

if we disable messaging, therefore organisms cannot become interrupted, the average or-

ganism density within a deme quickly increases to 1.0 and all demes die out due to energy

depletion. This provides further evidence that interrupt-causing messages are an impor-

tant feature of the evolved genomes. Now let us focus on the genome of an organism that

realizes this behavior.

Genome Analysis. Here, we focus on the dominant genome that produced the lowest

average organism density of 0.67. An organism containing this dominant genome, shown

in Figure 5.8, will execute the first 16 instructions in the genome before it replicates, as

117

N U
“
!

G)

E
G)

'3 20-
a)

Q.

E 15-

C

(U

9
o 10-

U

.23

3 5

it
C

_ 06’ r r r r

0 5 10 15 20

Update

Figure 5.7: Average number of organisms interrupted per deme.

denoted by the black line to the left of the genome. During this sequence the organism

sends a single message to its initially faced cell and the two neighboring cells to its left,

finally replicating while facing the cell one rotation to the left of its initial facing. In

short, the organism will send 3 messages for every 16 executed instructions during normal

execution and then replicate. Upon replication the organism’s state is reset, causing the

genome to be processed from the beginning.

Since genomes are executed in a cyclic manner, this sequence will be repeated until the

organism either runs out of energy, is replaced by an offspring of another organism, or is

interrupted. If interrupted, the current context of this organism is saved and the interrupt-

causing message is processed in the interrupt handler, denoted by the red boxes at the

bottom (beginning of handler) and top (end of handler) of the genome in Figure 5.8. While

interrupted, the organism will send one message to the cell it currently faces and two mes-

sages to the cell left of its initial facing. Moreover, the organism will remain in the interrupt

handler, and hence will not replicate, until all received messages have been processed. Fur-

thermore, for every entrance into the interrupt handler caused by receiving a message, the

118

organism will produce three messages. Hence execution of the interrupt handler produces

a positive feedback loop where the level of messaging (AI) in the system is increased, thus

tripling the chances than an organism will become interrupted. Therefore, the expression

of this individual behavior in a dense group of digital organisms will cause an organism to

remain in a state of perpetual interruption and never self-replicate.

Experiments with Larger Demes. To determine whether this QS behavior is truly den-

sity based we seeded demes several times larger than the original 5 x 5 demes in which the

behavior evolved. Table 5.1 provides a list of deme sizes tested, their scale relative to a 5 x 5

deme, total number of demes per run, and total number of demes used to generate averages

plotted in Figure 5.9. Note that only 15 of the 20 runs evolved population control behavior,

so only those dorrrinants were used, producing the values in column 4 of Table 5.1. Each

deme is again allowed to execute for a single competition period and the average organism

density for all three scalings over time is shown in Figure 5.9. The final average densities

produced for all three scalings are insignificantly different. Therefore, the evolved domi-

nant genomes exhibit a quorum sensing behavior that suppresses organism self-replication

under multiple scalings. In addition, a quorum is reached at similar organism densities.

Table 5.1: Deme size comparision

| deme size I N x larger 1 # demes I total demes]

5 x 5 1 400 6000

25 x 25 25 20 300

50 x 50 100 10 150

Finally, we seeded a single 100 x 100 deme with an organism containing the genome

in Figure 5.8. We then allowed the deme to execute for one competition period, and we

tracked the constituent organisms’ execution behavior. Figure 5.10 shows snapshots of the

resulting behavior, where each (x, y) coordinate corresponds to a single cell in the 100 x 100

deme. A cell is colored according to the current activity within that cell. If a cell does not

119

rotate-left I

rotate-left I

nop—B I

send-msg (

rotate-right ‘

nop—C I

nop-C

nop-B \

nop-X

end-handler |

nop—B

V send-msg I

repro I

xrepro

' 2332 Message

nop-C Received

‘. nop—X

:\ end-handler

"junk"r::_’:’ nop-B

\l nop-B

/ nop-A

rotate-right

send-msg

. rotate-left

\no -B

’

u
o
r
r
n
o
e
x
g
[
e
n
u
e
n
b
e
s

Figure 5.8: Evolved dominate genome that produces the lowest average organism density.

120

: e e .1—. ...-a-e-e-e e 3“"; e a

0.8 - r, g

2‘

'5 0

g 0.6 t

E l

.2
E
g 0.4 r 0

0 ——e—— 5 x 5

0-2 ‘ —><—— 25 x 25

fl —aIe— 50 x 50
0 ”...- Q . . . J

0 5 10 15 20

Update

Figure 5.9: Average organism density under multiple deme sizes.

contain an organism, it is colored white. A cell that contains an uninterrupted organism is

colored black, and a red cell denotes the presence of an organism in an interrupted state. As

depicted in Figure 5.10, the population quickly switches behaviors when it becomes dense.

In fact, the time difference between Figures 5.10(c) and 5.10(c) is less than two updates.

The rapid change is behavior is a hallmark of Q8 and has been observed in natural and now

digital organisms.

5.3 Quorum Quenching in Digital Organisms

Methods to prevent or disrupt QS (referred to as quorum quenching) can serve multiple

purposes, from treating a disease to disabling a distributed attack. In addition, quorum

quenching can be used to test the robustness of a system, revealing weaknesses in the

design before the system is deployed. Indeed, quorum quenching techniques have been

proposed as a means to reduce the virulence of pathogenic bacteria [163, 196]. Two ma-

jor categories of treatments have emerged: those that affect AI transmission through the

121

Seed

Organism

(a) t = 0.0 updates (b) I: 3.2 updates

(e) t = 5.6 updates (1) t = 8.0 updates

Figure 5.10: Images of a 100 x 100 deme initially seeded with the genome shown in Figure

5.8. Figure 5.10(a) shows the initial state of the deme with a single uninterrupted organism

in the lowest, left-most cell. Figures 5.10(b) and 5.10(c) show a steady exponential increase

in population size where the majority of organisms are executing sequentially. Figures

5.10(d) and 5.10(e) depict the rapid behavioral change from self-replication to suppression

of self-replication. Lastly, Figure 5.10(f) shows the state of the deme population 40% of

the way through a competition period.

122

extracellular medium [196], and those that introduce mutant bacteria incapable of sending

(signal-negative) or receiving (signal-blind) A18 [163]. In this paper we investigate the

evolution of resistance to these types of mutants, in an attempt to help predict outcomes

and discover treatments in both biological and computational domains.

5.3.1 Experimental Setup

The investigation of medical treatments that quench QS bacteria by introducing disabled

mutants has shown promise [163]. In [163], mice were infected with multiple strains of

Pseudomonas aeruginosa and their survival rates were tracked. It was found that infections

containing mutants were statistically worse at killing mice than the control. Effectively, the

mutants act as cheaters, exploiting the cooperative production of virulence factors, but not

fully participating in the underlying QS behavior. Moreover, it was shown receive-impaired

mutants were more effective at reducing mortality rate than send-impaired mutants, sug-

gesting different impairments disrupt QS activity to varying degrees.

In our Avida experiments, we explore how digital organisms fare in environments where

offspring are probabilistically impaired at birth so they cannot send or receive messages.

We present three treatments designed to study the evolution of Q8 behavior and the re-

sistance to mutants. First, we evolve organisms in environments with constant rates of

impairment. We quantify the observed differences between demes that are subjected to

both types of mutants over a range of impairment introduction rates. This experiment en-

ables us to test for environmental barriers that inhibit the evolution of QS. Next, we take

evolved genomes that perform QS and subject them to environments with constant rates of

impairment. We show that these evolved genomes exhibit a robustness to mutants at higher

introduction rates than genomes that were exposed to constant introduction of mutants dur-

ing evolution. Finally, we subject the same genomes to environments where an increasing

percentage of births result in mutants, and report on the adaptation of these genomes in this

environment.

123

In all experiments, a population is divided into 400 demes. Each deme has an iden—

tical 5 x 5 toroidal topology and is seeded with an organism at the beginning of each

competition period. Competition periods last for 20 updates; an update is a unit of

time in Avida equivalent to an average execution of 50 instructions per organisms. At

the end of a competition period each deme’s fitness is evaluated using Equation 5.1.

The genomes used for the initial seed organisms vary by treatment, and will be de-

scribed below as needed. All data reported in this chapter were produced using revision

3204 of the Avida source code, publicly available in the subversion repository located at

https://avida.devosoft.org/svn/branches/interrupt.

5.3.2 Results

Evolving Resistant Organisms - Naive Method. Initially, we attempt to evolve organ-

isms that are resistant to mutants. In this treatment, mutants are introduced at the rates of 0,

l, 2, 5, or 10 percent of all births. The creation of the mutants that cannot send a message

is done by disabling the send-msg instruction. Mutants that cannot receive a message are

created by disabling message receive interrupt handlers, causing all messages to remain

buffered. Once a mutant is introduced, it remains a mutant for its lifetime, and its impaired

abilities are inherited by all its descendants. In this treatment, a default ancestral organism,

containing 49 nop instructions followed by a single repro, seeds each of 20 runs for each of

the 25 mutant rate pairs. Each of these runs is seeded with a different random number seed

and is allowed to evolve for 5, 000 deme generations (competition periods).

Figure 5.11 plots the fraction of runs for each mutant rate pair that evolved QS be-

haviors. From Figure 5.11, we observe an environmental barrier to the evolution of QS.

Specifically, as the percent of receive-disabled mutants increases, the number of runs that

evolve QS behavior goes to zero. To evolve QS, the number of organisms that cannot re-

ceive a message must remain small, less than 5%. This result suggests that an environment

with a high concentration of mutants incapable of receiving messages does not provide the

124

evolutionary process with enough stable building blocks by which QS can evolve, produc-

ing a barrier to the evolution of QS. Also, that the introduction of receive-impaired mutants

is more effective at preventing QS than send—impaired mutants, and it therefore a more de-

sirable treatment. Next, we test the resistance of organisms that have already evolved to

perform QS, to the introduction of mutants.

Fraction of runs

evolving quorum
1

0.5

o .

o o

. “s

t W)“

“"l‘v‘zza'~”12°19b’ll‘lzs 10 1O Yates/P vented

P31}
teed“6'

Figure 5.11: Fraction of runs that evolved a quorum mechanism under constant mutant

introduction rates. Results are the mean of 20 runs sampled at each of the 25 configurations,

marked by a circle.

Resistance in Quorum Sensing Organisms. In this treatment, we extended the 20 runs

from [17] from 2, 500 deme generations to 5, 000, further optimizing the evolved genomes,

and observed that 16 runs evolved QS behavior. We then tested the robustness of the 16

dominant (most abundant that the end of each run) genomes to the introduction of mutants.

Using the same mutant introduction rates as in Section 5.3.2, we subjected each of these

16 dominant genomes to all 25 mutant introduction rate pairs. To perform tests similar to

those done with mice in [163], we injected a single seed organism containing one of the

125

16 dominant genomes, into all 400 demes and measured the deme survival rate, that is, the

fraction of demes that contain “living” organisms after one competition period.

Figure 5.12 shows the mean fraction of demes surviving at the conclusion of a compe-

tition period, interpolated over the range of 0 to 10 mutants per 100 births for both mutant

types. As expected, when mutants are not introduced (the conditions in [17]), all of the

demes contain living organisms at the conclusion of the experiment, denoted by point A in

Figure 5.12. Moreover, the introduction of send-impaired mutants had minimal effect on

the number of demes that survived for a single competition period. Only 549 out of 6400

demes were unable to survive at the highest introduction rate of signal impaired mutants

(10%) and the lowest introduction rate of receive impaired mutants (0%). However, demes

that were subjected to the introduction of receive-impaired mutants exhibited an increase

in deme mortality corresponding to the frequency of mutant births. We conclude that these

evolved genomes are more susceptible to disruption by receive—impaired mutants than by

send-impaired mutants. Based on these data, a logical quorum quenching treatment is to

introduce receive-impaired mutants into the demes. At a introduction rate of 10%, such

mutants killed approximately 88.4% of all demes tested, or 28, 297 out of 32,000.

We observe that while the dependency trends in Figure 5.12 are similar to those in Fig-

ure 5.], 1, a higher resistance to receive-impaired mutants in exhibited. Specifically, a 10%

introduction rate does not kill all demes. The presence of this resistance is intriguing, since

the dominant genomes were evolved under conditions free of explicitly introduced mu-

tants, limiting selective pressures that may drive a population toward a resistant solution.

However, we note that a pressure to build up resistance to mutants is supplied by the deme-

level fitness function, which rewards demes that minimize their energy usage. Specifically,

genetic mutations regularly produce degenerate variants of this behavior during the evolu-

tionary process, providing a pressure to increase resistance to these types of mutants. This

pressure produces a more robust algorithm, regardless of whether the misbehaving nodes

are produced through genetic mutation or are artificially impaired and placed in the pop-

126

Fraction of

living demes

1

0.5

0

0 0

PEI-C of ibx S6

Seadrl’bp bilzbs 1 o 1 0 Ye‘oene 933:6

aired e01 '

Figure 5.12: Fraction of living demes exposed to mutants after a competition period. Re-

sults are the mean of 16 runs, one for each dominant exhibiting QS, sampled at each of the

25 configurations, marked by a circle.

ulation. Extending this line of exploration, we next attempt to evolve even more resistant

organisms, using an environment with a staged increase in the introduction of impaired

mutants .

Evolving Resistant Organisms - Staged Method. We next focus on evolving organisms

that are resistant to receive- and send-impaired mutants. We again use the QS performing

dominant genomes from [17] as seed organisms. However, in this treatment the organisms

are subjected to a staged increase in the level of receive— or send-impaired mutants. Specif-

ically, during a run the impaired mutant introduction rate is increased by 1% every 500

competition periods, initially starting at 1%. We use the same experimental configurations

as in the previous experiments along with the staged environment, and use each of the 16

dominants to seed 10 replicate runs.

127

The two previous experiments suggest that send-impaired mutants will have a smaller

effect on a deme’s ability to perform QS than receive-impaired mutants. This result is

confirmed by Figure 5.13, which displays the fraction of runs exhibiting QS at the end of

all 10 mutant introduction rate stages. All of the 160 runs that were subjected to send-

impaired mutants exhibit QS behavior at the end of every stage. Furthermore, from these

data it is evident that a stronger resistance to the introduction of send-impaired mutants

has evolved when compared to the seed organisms, supported by observing that point B

in Figure 5.12 shows a slight increase in deme mortality when send-impaired mutants are

introduced at a rate of 10%. In contrast, none of the dominant genomes that evolve in

the staged environment exhibit deme mortality at a send-impaired mutant introduction rate

of 10%. Apparently, as the environment became increasingly adverse, with respect to the

introduction of send-impaired mutants, the evolutionary process produced organisms that

are more robust to these mutants.

.
0

c
o

.
0

.
p

—8— Send Impaired .

—e— Receive Impaired

0 i z r 2 i i i 3 L

2 4 6 8 10

Impairment Introduction Percent

F
r
a
c
t
i
o
n
o
f
r
u
n
s
p
e
r
f
o
r
m
i
n
g
0
8

_
o

o

N
O
)

Figure 5.13: Fraction of runs subjected to impaired mutants that perform QS at the end of

each stage. Results are a composite of 160 runs for each.

128

As expected by the trends observed in both Figures 5.11 and 5.12, receive-impaired

mutants have a greater effect on the evolution of QS. This observation is reinforced in

Figure 5.13, which demonstrates a rapid decline in the fraction of populations performing

OS in the last three stages, concluding with only 6 of the 160 runs performing QS in

the last stage. However, increased robustness is present in these evolved genomes when

compared to the seed genomes. Specifically, all of the 160 dominants produced by the

runs depicted in Figure 5.13 are immune to receive-impaired mutant introduction at rates

from 1% to 6%, which is an increase over the resistance of the seed genomes. Moreover,

an immunity to receive-impaired mutants is also present in some dominant genomes at a

mutant introduction rate as high as 10%, which provides evidence that these mutants can

be overcome and Q8 can persist. However, these data alone does not reveal whether OS is

suppressed by the introduction of receive-impaired mutants or if the code for the behavior

has evolved away.

To answer this question, let us explore the behavior of individual organisms. The strat-

egy evolved in all initial QS dominant seed organisms is to repeatedly interrupt their neigh-

bors, preventing self-replication, at quorum. By causing interrupts, an organism can effec-

tively extend its neighbor’s gestation time, assuming replication is not done within an inter-

rupt handler. Figure 5.14 shows the mean number of organisms interrupted per deme during

evolution in the staged environment. The error bars represent one standard deviation from

the mean. Figure 5.14 displays a larger decline in the treatment where receive-impaired

mutants are introduced than when send-impaired mutants are introduced. These data sug-

gest that the genomes subjected to send-impaired mutants do not lose the genetic code

required to handle an interrupt. However, the decline to near zero in the receive-impaired

treatment indicates that either the mutants are disrupting OS to the extent that organisms

are rarely interrupted, or the genetic code to become interrupted has evolved away.

In the experiment whose data are depicted in Figures 5.13 and 5.14 we observed that

additional evolution in the staged environment produced organisms that are more resistant

129

.
0

c
o

.
0

c
»

 .
0

r
s

‘ I. Z

I. I

" ‘n :

' db

I!-

—8— Send Impaired .-

—e— Receive Impaired 9% i

i : r : 1 5

O
r
g
a
n
i
s
m
s

I
n
t
e
r
r
u
p
t
e
d
p
e
r
D
e
m
e

O i\
)

O

2 4 6 8 10

Impairment Introduction Percent

Figure 5.14: Fraction of organism interrupted per deme during evolution in the staged

environment. Error bars denote one standard deviation from mean. Data are a composite

of 160 runs.

to both types of mutants. To quantify the level of resistance over time we extracted dom-

inant genomes at time points 0, 25, 50, 75, and 100 percent through each of the staged

environment runs. We then tested these dominant genomes for Q8 behavior in the absence

of mutants. These tests should reveal changes in the genomes that enhance or diminish

QS. To perform these tests each dominant genome was used to create an organism which

is then injected into 400 demes. The demes were allowed to execute for one competition

period, and we tracked the mean organism density (fraction of organisms per deme) of all

demes. We then identified the genomes that were performing QS and plotted the mean

organism density of all demes for all of these dominant genomes over the course of a single

competition period.

Figure 5.15 shows the mean organism density of the dominant genomes that were sub-

jected to send-impaired mutants. These data show that as the percentage of send-imparied

mutants increased, the genomes evolved to sense a quorum at a lower organism density,

concluding in a mean quorum triggering density of approximately 0.65. In addition, all

130

pairwise comparisons of organism density at the end of a competition period, excluding

the 0% and 25% pair, are significantly different according to the Wilcoxon rank sum test

for equal medians using an CL = 0.01. The significant decline in organism density required

to perform a quorum illustrates the effect of additional evolution with the introduction of

send-impaired mutants. Specifically, a quorum is sensed, triggering behavioral change,

with fewer organisms, thereby producing a more fit deme.

1 .-

0'8 ‘-;;:.;;--
b

E 0.6- ------------
Q

E

go 0.4 ' ——)(-— 25%

5 —e— 50%

0.2 " +75%

+100%

0 1 1 I J

0 5 10 15 20

Update

Figure 5.15: Mean organism density of dominant genomes extracted from runs exposed to

a staged increase in send-impaired mutants. Error bars are omitted for clarity. Data are a

composite of 160 samples per line.

Figure 5.16 shows that receive-impaired mutants also have a similar effect, reducing

the number of organisms required to achieve a quorum. However, unlike send-impaired

mutants, as the introduction of receive-impaired mutants increases, the time required to

achieve a quorum also increases, which has a negative effect on the ability of a deme to

sense a quorum. Specifically, only 6 of the 160 dominant genomes present at the end of

the staged environment runs perform QS in the absence of mutants. In fact, these are the

same 6 runs that perform QS in the presence of receive-impaired mutants introduced at a

rate of 10%. This fact, in conjunction with the data presented in Figures 5.13 and 5.14,

131

demonstrates that receive-impaired mutants introduced at a rate of 10% of all births is

effective at disabling QS. Furthermore, their presence causes QS behavior to evolve away

in more than 96% of the runs.

1 .

08- ’.;;;;;;;;;;;;;;::_~.

>3
7 ',P-7.=-=-:I=Ltlfl;

j:
;‘gi;W3'3v.-1VJV.

.'« f" ._

E 0.6 * '43:.“ ' ‘

g
+0%

50 0"“ —x— 25%

5 ——e— 50%

0-2' . +75%

n" —B— 100%

0 I I —l n

0 5 10 15 20

Update

Figure 5.16: Mean organism density of dominant genomes extracted from runs exposed to

a staged increase in receive-impaired mutants. Error bars are omitted for clarity.

5.4 Conclusion and Future Work

Many natural and artificial systems utilize QS to perform critical tasks, from self-

preservation in bacteria to clustering in sensor networks. In addition, the disruption of

these systems can serve many purposes, from treating disease-causing bacteria to disabling

cyber-attacks. In this chapter we have demonstrated the evolution of Q8 behavior in digital

organisms and responses to QQ techniques.

We examined the evolution of behavior that suppresses individual self-replication under

high density conditions. First, we showed that this type of behavior evolves in a majority

of runs in all three of our rotation treatments. Second, we extracted the dominant genomes

132

from the single rotation treatments and showed the tight correlation between organism den-

sity, total births, and number of interrupted organisms. Third, we discussed the individual

behavior of the dominant genome that produced the lowest organism density. Fourth, we

increased the size of the demes by two orders of magnitude and showed the average or-

ganism density remained the same. Lastly, we visualized the rapid change in behavior of a

dominant organism in a deme 400 times larger than the environment it evolved in.

We also showed that digital evolution can produce solutions that are resistant to commu-

nication impairments. Furthermore, we have shown experimentally that a staged environ-

ment, where impairments are increasing introduced over time, can improve the robustness

of evolved solutions. We demonstrated that QS digital organisms that have not been ex-

posed to explicitly introduced impairments exhibit a resistance to these mutants. However,

their resistance is lower than organisms exposed to a staged introduction of mutants. Fi-

nally, we showed that the introduction of receive-impaired mutants in a staged environment

can cause QS behavior to evolve away.

133

Chapter 6

Conclusion

This dissertation provides experimental evidence to support the thesis that the incorpora—

tion of an energy producing metabolism, used for individual function, provides an addi-

tional feature by which natural selection can act to produce efficient behaviors in artificial

systems. The incorporation of the energy model into Avida allows for experimental config-

urations where digital organisms are required to pay both time and energy costs to execute.

Modeling energy costs, in addition to time costs, provides a baseline from which coopera-

tive, energy-conserving behavior can evolve.

We have demonstrated that the inclusion of energy can fundamentally alter the trajec-

tory of an evolving population. Compared to trials where organisms were not required to

pay energy costs, experimental data demonstrated that similar levels of reaction completion

and ecotype diversity are observed. However, under conditions where organisms do not pay

energy costs, experimental data demonstrated that the population’s size is not limited by

resource inflow and individual gestation can be hard to predict, which is not true when

organisms are required to pay energy costs. The inclusion of the energy model provides a

basis upon which energy conserving behaviors can be evolved.

Individual energy conserving behaviors have been evolved using the energy model. Ini-

tially, resource-aware adaptive sleep/wake behavior was evolved in an environment where

134

resource availability is periodic and declines over time. In these experiments, organisms

evolved to become highly active when the resource is available and sleep when it is not.

They evolved a circadian rhythm that allowed them to awaken before the resource became

available, complete and be rewarded for performing tasks while the resource was available,

and then return to a sleep state prior to the point in time when the resource became un-

available. In other words, the organisms evolved an “early to bed, early to rise” strategy for

consuming resources that prevented them form performing a task and receiving no reward.

In addition to evolving individual, adaptive, resource—aware behavior, we also evolved

taxis. In these experiments digital organism evolved to move toward the highest concentra-

tion within a virtual, unimodal, chemical gradient. The evolved genomes that were success—

ful at guiding an organism toward higher levels of virtual chemicals were cross compiled

and loaded onto a physical robot. Once initialized, robot autonomously performed photo-

taxis.

The successful evolution of individual energy conserving behaviors led to multiple ex-

periments on evolving energy-conserving group behaviors. These experiments targeted the

evolution of behaviors that conserve a group’s collective energy. By allowing conserved

energy to be passed from generation to generation, we evolved groups of organisms that

foraged for and collected information from their environment while limiting the size of

their group. Specifically, we showed that a population can evolve to self-regulate its size

when a small amount of the parent’s collective energy is transferred to the offspring. These

experiments illustrate that increases in organism gestation time conserves the groups col-

lective energy. However, this is in contrast to the pressure to complete the group-level goal.

Therefore, the foraging and collection behavior evolved to manage this tradeoff.

In another set of experiments, we showed that a group of digital organisms can evolve to

adaptively control the group’s size in response to environmental pressures. Specifically, to

promote adaptive behavior we evolved groups of organisms in an environment containing

fluctuating levels of attacks. Under these conditions the organisms evolved to conserve en-

135

ergy by sleeping, which helped maintain a small population, when attacks were not present

in the environment. Moreover, when the attack level rose, the organisms transmitted sig-

nals that altered the execution of the recipient. The recipient’s altered execution caused it

to propagate the signal, attempt to quell nearby attacks, and then quickly replicate. This

altered behavior managed the threat until it subsided. These experiments demonstrated that

digital organisms can evolve adaptive, group-level, energy-conserving behavior.

Building on these experiments, we designed experiments to evolve a density-dependent

adaptive behavior, or QS. Using a simple fitness function, where a group is evaluated based

on the amount of energy it conserved, we were able to evolve organisms that replicated

until a quorum was reached. Upon reaching an evolved density threshold, the organisms

suppressed replication by continually interrupting the execution of other organisms. This

was done by sending messages that the recipient must handle if it contains an (evolved)

interrupt handler. In these experiments the organisms evolved to suppress replication at a

density of 0.8 in worlds of various sizes. Additionally, the execution of their evolved inter-

rupt handlers produced positive feedback that approximately tripled the number of signals

sent within the group. Both of these behaviors mirror behaviors exhibited in bacteria.

Lastly, we performed experiments to judge the level of resistance in a QS population to

messaging impairments. We showed that an evolved resistance can arise in populations that

are subjected to impairments throughout evolutionary time. We also demonstrated that or-

ganisms which have not been explicitly exposed to these impairments exhibited resistance.

We showed that a staged increase in the presence of impairments increased the level of

resistance exhibited by the organisms. This work illustrates that a resistance to disruptive

techniques can exist even when the methods of disruption are not explicitly placed in the

system. Additionally, the ability of the organisms to evolve methods that mitigate the dis-

ruptions serves as evidence that anti-infective therapies many experience similar resistance

in the future.

Furthering our understanding about how groups of simple agents interact to self-

136

organize and perform collective behaviors has benefits that span many disciplines. For

example, as described in Chapter 5, bacteria perform quorum sensing to collectively make

a decision. This decision process arises out of indirect communication between individuals

and its disruption can alter the group’s behavior. Studying the evolutionary process that

produced self-organizing biological systems is a logical step toward a fuller understanding

of these systems. Moreover, studying evolution using computers removes or lessens many

constraints that are inherent to natural systems. Studying artificially evolved systems may

lead to the discovery of behaviors that are not currently present, or even possible, in natural

systems, possibly expanding the repertoire of self-organizing behaviors that can be realized

and leveraged in artificial environments.

Traditional software development methods are being challenged by the ever-increasing

complexity of today’s software and hardware systems. As the cost of developing these sys-

tems grows, alternative methods that produce adequate solutions using less manpower are

appealing. Evolution provides us with a method capable of designing solutions for increas-

ingly complex environments. By drawing inspiration from natural systems and harnessing

the evolutionary process which produced those systems, we hope to provide tools capable

of handling the escalating complexity of distributed computing systems. Enabling software

development methods that harness this power may provide a means to produce economical

software solutions that exhibit the robustness, flexibility, and adaptability that abound in

nature.

137

BIBLIOGRAPHY

[1] A. Abraham and C. Grosan. Evolving intrusion detection systems. In N. Nedjah,

A. Abraham, and L. de Macedo Mourelle, editors, Genetic Systems Programming:

Theory and Experiences, volume 13 of Studies in Computational Intelligence, pages

57—80. Springer, Germany, 2006.

[2] C. Adami. Introduction to Artificial Life. Springer-Verlag New York, Inc., New

York, NY, USA, 1998.

[3] C. Adami, C. A. Ofria, and T. C. Collier. Evolution of biological complexity. Pro-

ceedings ofthe National Academy ofSciences, 97(9):4463—4468, April 2000.

[4] R. J. Anthony. Emergence: a paradigm for robust and scalable distributed applica-

tions. In 1st International Conference on Autonomic Computing (ICAC 2004), 17-19

May 2004, New York, NK USA. IEEE, 2004.

[5] R. J. Anthony. Emergence: A paradigm for robust and scalable distributed applica-

tions. In Proceedings of the First International Conference on Autonomic Comput-

ing, pages 132—139, Los Alamitos, CA, USA, 2004. IEEE Computer Society.

[6] J. Arabas, Z. Michalewicz, and J. J. Mulawka. GAVaPS - a genetic algorithm with

varying population size. In Proceedings of the International Conference on Evolu-

tionary Computation, pages 73—78, 1994.

[7] J. Ayers. Neurotechnology for Biomimetic Robots. MIT Press, Cambridge, MA,

USA, 2002.

[8] J. Ayers, J. Witting, C. Wilbur, P. Zavracky, N. McGruer, and D. Massa. Biomimetic

robots for shallow water mine countermeasures. In In Proc. of the Autonomous

Vehicles in Mine Countermeasures Symposium, 2000.

[9] O. Babaoglu, G. Canright, A. Deutsch, G. A. 1D. Caro, F. Ducatelle, L. M. Gam-

bardella, N. Ganguly, M. Jelasity, R. Montemanni, A. Montresor, and T. Umes.

Design patterns from biology for distributed computing. ACM Transactions on Au-

tonomous and Adaptive Systems, l(1):26—66, 2006.

[10] M. Bakhouya and J. Gaber. Adaptive approach for the regulation of a mobile agent

population in a distributed network. In Proceedings of the Proceedings of The Fifth

International Symposium on Parallel and Distributed Computing, pages 360—366,

Washington, DC, USA, 2006. IEEE Computer Society.

[11] J. S. Balasubramaniyan, J. O. Garcia-Fernandez, D. Isacoff, E. Spafford, and

D. Zamboni. An architecture for intrusion detection using autonomous agents.

In Proceedings of the 14th Annual Computer Security Applications Conference,

page 13, Washington, DC, USA, 1998. IEEE Computer Society.

138

[12] G. Baldassarre, S. Nolfi, and P. D. Evolution of collective behaviour in a team of

physically linked robots. In R. Gunther, A. Guillot, and J.-A. Meyer, editors, Ap-

plications ofEvolutionary Computing, pages 581—592. Springer Verlag, Heidelberg,

Germany, 2003.

[13] G. Baldassarre, S. Nolfl, and D. Parisi. Evolving mobile robots able to display

collective behaviours. Artificial Life, 9:255—267, 2002.

[14] M. Barborak, A. Dahbura, and M. Malek. The consensus problem in fault-tolerant

computing. ACM Computing Surveys (CSUR), 25(2):171—220, 1993.

[15] J. Beal and J. Bachrach. Infrastructure for engineered emergence on sensor/actuator

networks. IEEE Intelligent Systems, 21(2): 10—19, 2006.

[16] B. E. Beckmann and P. K. McKinley. Evolution of adaptive population control in

multi-agent systems. In Proceedings of the Second IEEE International Conference

on Self-Adaptive and Self-Organizing Systems, pages 181—190, Oct. 2008.

[17] B. E. Beckmann and P. K. McKinley. Evolving quorum sensing in digital organ-

isms. In Proceedings of the 11th Annual Conference on Genetic and Evolutionary

Computation, pages 97—104, Montreal, QC, Canada, 2009.

[18] B. E. Beckmann, P. K. McKinley, D. B. Knoester, and C. Ofria. Evolution of coop-

erative information gathering in self-replicating digital organisms. In Proceedings of

1st International Conference on Self-Adaptive and Self-Organizing Systems, pages

65-76. IEEE Computer Society, July 2007.

[19] B. E. Beckmann, P. K. McKinley, and C. Ofria. Evolution of an adaptive sleep

response in digital organisms. In Advances in Artificial Life - Proceedings ofthe 9th

European Conference on Artificial Life, volume 4648 of Lecture Notes in Computer

Science, pages 233—242. Springer, 2007.

[20] B. E. Beckmann, P. K. McKinley, and C. Ofria. Selection for group-level efficiency

leads to self—regulation of population size. In Proceedings ofthe 10th Annual Confer-

ence on Genetic and Evolutionary Computation, pages 185-192, Atlanta, Georgia,

2008.

[21] O. Béja, E. N. Spudich, J. L. Spudich, M. Leclerc, and E. F. DeLong. Prote-

orhodopsin phototrophy in the ocean. Nature, 411:786—789, 2001.

[22] F. Bemardini, M. Gheorghe, and N. Krasnogor. Quorum sensing P systems. Theor.

Comput. Sci., 371(1-2):20—33, 2007.

[23] A. Bieszczad, T. White, and B. Pagurek. Mobile agents for network management.

IEEE Communications Surveys, 1998.

[24] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From Natural to

Artificial Systems. Oxford University Press, New York, 1999.

139

[25] R. Brooks. Artificial life and real robots. In European Conference on Artificial Life,

pages 3-10, 1992.

[26] S. P. Brown and R. A. Johnstone. Cooperation in the dark: Signalling and collec-

tive action in quorum-sensing bacteria. Proc. of the Royal Society of London B:

Biological Sciences, 268(1470):961-965, 2001.

[27] B. D. Bryant and R. Miikkulainen. Neuroevolution for adaptive teams. In Proceed-

ings of the 2003 Congress on Evolutionary Computation, volume 3, pages 2194—

2201, 2003.

[28] M. Burrows. The chubby lock service for loosely-coupled distributed systems. In

Proceedings of the USENIX Symposium on Operating Systems Design and Imple-

mentation, 2006.

[29] R. Calinescu. Model-driven autonomic architecture. In 4th International Conference

on Autonomic Computing, page 9, Los Alamitos, CA, USA, 2007. IEEE Computer

Society.

[30] S. Camazine, N. R. Franks, J. Sneyd, E. Bonabeau, J.-L. Deneubourg, and G. Ther-

aula. Self-Organization in Biological Systems. Princeton University Press, Princeton,

NJ, USA, 2001.

[31] Y. U. Cao, A. S. Fukunaga, and A. Kahng. Cooperative mobile robotics: Antecedents

and directions. Auton. Robots, 4(1):7—27, 1997.

[32] G. D. Caro, F. Ducatelle, and L. M. Gambardella. Swarm intelligence for routing

in mobile ad hoc networks. In Proceesings ofSwarm Intelligence Symposium (SIS

2005), pages 76- 83. IEEE, June 2005.

[33] R. R. Cazangi, F. J. V. Zuben, and M. F. Figueiredo. Stigmergic Autonomous Navi-

gation in Collective Robotics, volume 31 of Studies in Computational Intelligence,

chapter 2. Springer Berlin / Heidelberg, 2006.

[34] G. Chockler, S. Gilbert, and B. Patt-Shamir. Communication-efficient probabilistic

quorum systems for sensor networks. In Proceedings of the 4th Annual IEEE In-

ternational Conference on Pervasive Computing and Communications Workshops,

pages 111—117, Los Alamitos, CA, USA, March 2006. IEEE Computer Society.

[35] S. S. Chow, C. O. Wilke, C. Ofria, R. E. Lenski, and C. Adami. Adaptive radiation

from resource competition in digital organisms. Science, 305:84—86, 2004.

[36] T. Cooper and C. Ofria. Evolution of stable ecosystems in populations of digital

organisms. In Eighth International Conference on Artificial Life, pages 227-232,

Sydney NSW Australlia, 2002.

[37] B. Crespi. The evolution of social behavior in microorganisms. Trends in Ecology

and Evolution, 16(4), 2001.

140

[38] F. Crick and G. Mitchison. The function of dream sleep. Nature, 304(5922):111-

114, 1983.

[39] D. B. D’Ambrosio and K. 0. Stanley. Generative encoding for multiagent learn-

ing. In Proceedings of the 10th Annual Conference on Genetic and Evolutionary

Computation, pages 819—826, New York, NY, USA, 2008. ACM.

[40] P. Dasgupta. Intelligent agent enabled genetic ant algorithm for P2P resource discov-

ery. In Proceedings ofthe Third International Workshop on Agents and Peer-to-Peer

Computing, pages 213—220, 2004.

[41] K. Dautenhahn. Getting to know each other — artificial social intelligence for an-

tonomous robots. Robotics and Autonomous Systems, 16:333—356, 1995.

[42] D. Davies, M. Parsek, J. Pearson, B. Iglewski, J. Costerton, and E. Greenberg. The

involvement of cell-to-cell signals in the development of a bacterial biofilm. Science,

280(5361):295—8, Apr. 1998.

[43] R. Dawkins. The Selfish Gene. Oxford University Press, New York, 1976.

[44] R. Dawkins. The Extended Phenotype. Oxford University Press, 2008.

[45] K. A. De Jong. Evolutionary Computation: A Unified Approach. MIT Press, 2006.

[46] T. R. de Kievit and I. B. H. Bacterial quorum sensing in pathogenic relationships.

Infect. Immun., 68(9):4839—4849, September 2000.

[47] T. R. de Kievit and B. H. Iglewski. Bacterial quorum sensing in pathogenic relation—

ships. Infect. Immun., 68(9):4839—4849, September 2000.

[48] J. A. G. M. de Visser, J. Hermisson, G. P. Wagner, L. A. Meyers, H. Bagheri-

Chaichian, J. L. Blanchard, L. Chao, J. M. Cheverud, S. F. Elena, W. Fontana,

G. Gibson, T. F. Hansen, D. Krakauer, R. C. Lewontin, C. Ofria, S. H. Rice, G. von

Dassow, A. Wagner, , and M. C. Whitlock. Evolution and detection of genetic ro-

bustness. Evolution, 57:1959—1972, 2003.

[49] D. C. Dennett. The new replicators. In M. Page], editor, The Encyclopedia ofEvo-

lution, volume 1, pages E83—E92. Oxford University Press, 2002.

[50] R. J. Denver, N. Mirhadi, and M. Phillips. Adaptive plasticity in amphibian meta-

morphosis: Response of Scaphiopus Hammondiitadpoles to habitat desiccation. In

Ecology, volume 79, pages 1859—1872. Ecological Society of America, 1998.

[51] G. Di Caro, F. Ducatelle, and L. M. Gambardella. Anthocnet: an ant-based hy-

brid routing algorithm for mobile ad hoc networks. In In Proceedings ofPPSN VIII

- Eight International Conference on Parallel Problem Solving from Nature, num-

ber 3242 in Lecture Notes in Computer Science, pages 461—470, Birmingham, UK,

Sept. 2004. Springer-Verlag. Best paper award.

141

[52] M. Dorigo. Swarmanoid project. http://www.swarmanoid.org, January 2008.

[53] M. Dorigo, G. D. Caro, and L. M. Gambardella. Ant algorithms for discrete opti-

mization. Artif. Life, 5(2):l37—172, 1999.

[54] M. Dorigo and T. Stiitzle. Ant Colony Optimization. MIT Press, Cambridge, MA,

2004.

[55] M. Dorigo, V. Trianni, E. Sahin, R. GroB, T. H. Labella, G. Baldassarre, S. Nolfi,

J.-L. Deneubourg, F. Mondada, D. Floreano, and L. M. Gambardella. Evolving self-

organizing behaviors for a swarm-bot. Autonomous Robots, 17(2—3):223—245, 2004.

[56] M. Dorigo, E. Tuci, R. GroB, V. Trianni, T. Halva, S. Nouyan, C. Ampatzis, J. louis

Deneubourg, G. Baldassarre, S. Nolfi, F. Mondada, D. Floreano, and L. M. Gam-

bardella. The swarrn-bots project. In Kunstliche Intelligenz, pages 31—44. Springer

Verlag, 2005.

[57] F. Dressler, B. Kr”uger, G. Fuchs, and R. German. Self-organization in sensor net-

works using bio-inspired mechanisms. In 18th GI/ITG/ACM International Confer-

ence on Architecture of Computing Systems - System Aspects in Organic and Per-

vasive Computing (ARCS ’05): Workshop Self-Organization and Emergence, pages

139—144, mar 2005.

[58] W. Du, L. Fang, and N. Peng. LAD: localization anomaly detection for wireless

sensor networks. J. Parallel Distrib. Comput., 66(7):874—886, 2006.

[59] M. Dworkin and D. Kaiser. Cell interactions in myxobacterial growth and develop-

ment. Science, 230(4721):18—24, Oct. 1985.

[60] R. C. Eberhart, Y. Shi, and J. Kennedy. Swarm Intelligence (The Morgan Kaufmann

Series in Artificial Intelligence). Morgan Kaufmann, March 2001.

[61] J. M. Epstein and R. Axtell. Growing Artificial Societies: Social Science From the

Bottom Up. Brookings Institution Press and MIT Press, 1996.

[62] H. Eskandari, C. D. Geiger, and G. B. Lamont. FastPGA: A dynamic population

sizing approach for solving expensive multiobjective optimization problems. In

Proceedings of the 4th International Conference on Evolutionary Multi-Criterion

Optimization, volume 4403 of Lecture Notes in Computer Science, pages 141-155.

Springer, 2006.

[63] C. Femandes and A. C. Rosa. Self-regulated population size in evolutionary al-

gorithms. In PPSN, volume 4193 of Lecture Notes in Computer Science, pages

920—929. Springer, 2006.

[64] D. Floreano, S. Mitri, S. Magnenat, and L. Keller. Evolutionary conditions for the

emergence of communication in robots. Current Biology, 17:514-519, March 2007.

142

[65] D. Floreano and F. Mondada. Evolution of Homing Navigation in a Real Mobile

Robot. IEEE Transactions on Systems, Man and Cybernetics Part B : Cybernetics,

26(3):396—407, 1996.

[66] C.-L. Fok, G.-C. Roman, and C. Lu. Mobile agent middleware for sensor networks:

An application case study. In IPSN, pages 382—387. ACM SIGBED and IEEE Signal

Processing Society, IEEE, April 2005.

[67] C.-L. Fok, G.-C. Roman, and C. Lu. Rapid development and flexible deployment.

of adaptive wireless sensor network applications. In Proceedings of the 25th IEEE

International Conference on Distributed Computing Systems, pages 653—662, Wash-

ington, DC, USA, 2005. IEEE Computer Society.

[68] S. Forrest and S. Hofmeyr. Engineering an immune system. Graft, 4(5):5—9, 2001.

[69] M. Gardner. Mathematical games the fantastic combinations of John Conway’s new

solitaire game “Life”. Scientific American, 223: 120—123, October 1970.

[70] S. Goings, J. Clune, C. Ofria, and R. Pennock. Kin selection: The rise and fall of

kin-cheaters. In Proceedings ofthe Ninth International Conference on Artificial Life,

pages 303-308, Boston, MA, USA, September 2004.

[71] D. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.

Addison-Wesley, Boston, MA, USA, lst edition, 1989.

[72] H. J. Goldsby, D. B. Knoester, B. H. C. Cheng, P. K. McKinley, and C. A. Ofria.

Digitally evolving models for dynamically adaptive systems. In Proceedings of the

ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems

(SEAMS), Minneapolis, Minnesota, May 2007.

[73] F. Gomez and R. Mikkulainen. Incremental evolution of complex general behavior.

Adapt. Behav., 5(3—4):317—342, 1997.

[74] R. GroB and M. Dorigo. Cooperative transport of objects of different shapes and

sizes. In Proceedings ofFourth International Workshop on Ant Colony Optimization

and Swarm Intelligence, volume 3172 of Lecture Notes in Computer Science, pages

107—118. Springer Verlag, 2004.

[75] R. GroB and M. Dorigo. Evolving a cooperative transport behavior for two simple

robots. In EA 2003, Lecture Notes in Computer Science, pages 305—317, Berlin,

Germany, 2004. Springer Verlag.

[76] R. GroB and M. Dorigo. Group transport of an object to a target that only some

group members may sense. In X. Yao, E. Burke, J. A. Lozano, J. Smith, J. J.

Merelo-Guervos, J. A. Bullinaria, J. Rowe, P. T. A. Kaban, and H.-P. Schwefel, ed-

itors, Parallel Problem Solving from Nature — 8th International Conference (PPSN

VIII), volume 3242 of Lecture Notes in Computer Science, pages 852—861. Springer

Verlag, Berlin, Germany, 2004.

143

[77] M. Guimaraes and L. Rodrigues. A genetic algorithm for multicast mapping in

publish-subscribe systems. In Proceedings ofthe Second IEEE International Sympo-

sium on Network Computing and Applications, Washington, DC, USA, 2003. IEEE

Computer Society.

[78] S. Hansen, P. Rainey, J. Haagensen, and S. Molin. Evolution of species interactions

in a biofilm community. Nature, 445(7127):533—536, Feb 2007.

[79] S. K. Hansen, P. B. Rainey, J. A. J. Haagensen, and S. Molin. Evolution of species

interactions in a biofilm community. Nature, 445:533—536, February 2007.

[80] A. Haque. Psychology from islamic perspective: Contributions of early muslim

scholars and challenges to contemporary muslim psychologists. Journal ofReligion

and Health, 43(4):357—377, 2004.

[81] 1. Harvey, E. D. Paolo, R. Wood, M. Quinn, and E. Tuci. Evolutionary robotics: A

new scientific tool for studying cognition. Artificial Life, 11(1-2):79—98, 2005.

[82] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System architecture

directions for networked sensors. SIGPLAN Not., 35(11):93—104, 2000.

[83] S. A. Hofmeyr and S. A. Forrest. Architecture for an artificial immune system.

Evolutionary Computation, 8(4):443—473, 2000.

[84] J. H. Holland. Adaptation in natural and artificial systems: An introductory anal-

ysis with applications to biology, control, and artificial intelligence. University of

Michigan Press, 1975.

[85] J. H. Holland. Hidden order: How adaptation builds complexity. Helix Books, 1995.

[86] J. H. Holland. Echoing emergence: Objectives, rough definitions, and speculations

for echo—class models. Complexity: Metaphors, Models and Reality, 1996.

[87] B. Holldobler and E. O. Wilson. The Ants. Springer, Berlin, 1990.

[88] A. M. Hoover and R. S. Fearing. Fast scale prototyping for folded rrrillirobots.

Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on,

pages 1777—1778, May 2008.

[89] G. S. Homby, H. Lipson, and J. B. Pollack. Generative representations for the au-

tomated design of modular physical robots. IEEE Transactions on Robotics and

Automation, 19(4):703—719, 2003.

[90] P. Hraber, T. Jones, and S. Forrest. The ecology of echo. Artificial Life, 3(3):]65—

190, 1997.

[91] W. Huang, C. Ofria, and E. Tomg. Measuring biological complexity in digital organ-

isms. In Ninth International Conference on Artificial Life, pages 315—321, Boston

MA, 2004.

144

[92] M. M. Humphries, D. W. Thomas, and D. L. Kramer. The role of energy availability

in mammalian hibernation: A cost-benefit approach. In Physiological and Biochem-

ical Zoology, volume 76, pages 165—179. University of Chicago Press, March-April

2003.

[93] P. Husbands and J. A. Meyer. Evolutionary Robotics. Springer Verlag, 1998.

[94] IBM. Autonomic computing: IBM’s perspective on the state of information technol-

ogy. http://www.research.ibm.com/autonomic/manifesto/autonomic.computing.pdf.

[95] R. Jeanne. Regulation of nest construction behavior in polybia occidentalis. Animal

Behavior, 52:473—488, 1996.

[96] M. Jelasity and O. Babaoglu. T-Man: Gossip-based overlay topology management.

In Proceedings of the 3rd International Workshop on Engineering Self-Organising

Applications (ESOA 2005), July 2005.

[97] G. H. Johnsen and P. J. Jakobsen. The effect of food limitation on vertical migration

in Daphnia Longispina. In Limnology and Oceanography, volume 32, pages 873—

880. American Society of Limnology and Oceanography, 1987.

[98] S. Johnson. Emergence: The Connected Lives ofAnts, Brains, Cities, and Sofiware.

Scribner, 2002.

[99] D. Jung and A. Zelinsky. Grounded symbolic communication between heteroge-

neous cooperating robots. Autonomous Robots, 8:269—292, 2000.

[100] J. Kennedy, R. C. Eberhart, and with Yuhui Shi. Swarm Intelligence. The Morgan

Kaufmann series in evolutionary computation. Morgan Kaufmann Publishers, 2001.

[101] P. J. Kennedy and T. R. Osborn. Operon expression and regulation with spiders. In

D. Whitley, D. Goldberg, and E. Cantu-Pal, editors, 2000 Genetic and Evolutionary

Computation Conf Workshop Program, pages 161-166, 2000.

[102] J. O. Kephart and D. M. Chess. The vision of autonomic computing. Computer,

36(1):41—50, 2003.

[103] C. Killian. Modern Control Technology. Thomson Delmar Learning, 2005.

[104] D. B. Knoester, P. K. McKinley, and C. A. Ofria. Using group selection to evolve

leadership in populations of self-replicating digital organisms. In Proceedings ofthe

Genetic and Evolutionary Computation Conference, July 2007.

[105] A. Koyama, T. Nishie, J. Arai, and L. Barolli. A new quality of service multicast

routing protocol based on genetic algorithm. In ICPADS ’05: Proceedings of the

11th International Conference on Parallel and Distributed Systems (ICPADS’05),

pages 655—660, Washington, DC, USA, 2005. IEEE Computer Society.

[106] J. Koza. Genetic Programming: On the Programming of Computers by Means of

Natural Selection. MIT Press, Cambridge, Mass., 1992.

145

[107] J. R. Koza, M. A. Keane, M. J. Streeter, M. Mydlowec, J. Yu, and G. Lanza. Ge-

netic Programming IV: Routine Human-Competitive Machine Intelligence. Springer,

2003.

[108] E. Kubinyi, A. Miklosi, F. Kaplan, M. Gacsi, J. Topal, and V. Csanyi. Social be-

haviour of dogs encoutering aibo, an animal-like robot in a neutral and in a feeding

situation. Behavioural processes, 65:231—239, 2004.

[109] K. J. Kwak, Y. M. Baryshnikov, and E. G. Coffman. Self-organizing sleep-wake

sensor systems. Self-Adaptive and Self-Organizing Systems, 2008. SASO ’08. Second

IEEE International Conference on, pages 393-402, Oct. 2008.

[110] T. H. Labella, M. Dorigo, and J. L. Deneubourg. Division of labor in a group of

robots inspired by ants’ foraging behavior. ACM Transactions on Autonomous and

Adaptive Systems, 1(1):4—25, 2006.

[111] T. H. Labella, M. Dorigo, and J.-L. Deneubourg. Self-organised task allocation in

a swarm of robots. In Distributed Autonomous Robotic Systems 6, Proceedings of

the 6th International Symposium on DistributedAutonomous Robotic Systems, pages

389-398. Springer-Verlag, Tokyo, Japan, 2006. In press.

[112] T. H. Labella, M. Dorigo, and J. louis Deneubourg. Efficiency and task allocation in

prey retrieval. In Proceedings of the First International Workshop on Biologically

Inspired Approaches to Advanced Information Technology (Bio-AD172004), Lecture

Notes in Computer Science, pages 32—47. Springer Verlag, 2004.

[113] C. G. Langton. Studying artificial life with cellular automata. Physica D: Nonlinear

Phenomena, 22(1-3):120—149, 1986.

[114] C. G. Langton. Artificial Life: An Overview. MIT Press, Cambridge, MA, USA,

1995.

[115] R. E. Lenki, C. A. Ofria, T. C. Collier, and C. Adami. Genome complexity, robust-

ness and genetic interactions in digital organisms. Nature, 400:661—664, 1999.

[116] R. E. Lenski, C. Ofria, R. T. Pennock, and C. Adami. The evolutionary origin of

complex features. Nature, 423:139—144, 2003.

[117] H. Lipson. Uncontrolled engineering: A review of evolutionary robotics. Artificial

Life, 7(4):419—424, 2001. book review.

[118] H. Lipson and J. B. Pollack. Automatic design and manufacture of robotic lifeforms.

Nature, 406(6799):974—978, August 2000.

[1 19] H. Lipson and J. B. Pollack. Automatic design and manufacture of robotic lifeforms.

Nature, 406:974—978, 2000.

[120] F. Machida, M. Kawato, and Y. Maeno. Just—in-time server provisioning using virtual

machine standby and request prediction. icac, 0:163—171, 2008.

146

[121] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund. Dynamic

mapping of a class of independent tasks onto heterogeneous computing systems.

Journal ofParallel and Distributed Computing, 59(2): 107—131, 1999.

[122] M. Mamei and F. Zambonelli. Programming stigmergic coordination with the TOTA

rrriddleware. In 4rd International Joint Conference on Autonomous Agents and Mul-

tiagent Systems (AAMAS 2005), pages 415—422, 2005.

[123] D. Marocco and S. Nolfi. Emergence of communication in teams of embodied and

situated agents. In Proceedings ofthe 6th Evolution oflanguage Conference, 2006.

[124] R. C. Massey, M. J. Horsburgh, G. Lina, M. Hook, , and M. Recker. The evolu-

tion and maintenance of virulence in staphylococcus aureus: a role for host-to-host

transmission? Nature Reviews Microbiology, 4:953—958, December 2006.

[125] G. McHale and P. Husbands. Incorporating energy expenditure into evolutionary

robotics fitness measures. In Proceedings of the Tenth International Conference on

the Simulation and Synthesis ofLiving Systems, pages 206 — 212, Cambridge, MA,

USA, 2006. MIT Press.

[1.26] P. McKinley, B. Cheng, C. Ofria, D. Knoester, B. Beckmann, and H. Goldsby. Har-

nessing digital evolution. IEEE Computer, 41(1):54—63, January 2008.

[127] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. C. Cheng. Composing

adaptive software. IEEE Computer, 37(7):56—64, 2004.

[128] P. K. Mckinley, R. E. K. Stirewalt, B. H. C. Cheng, L. K. Dillon, and E. Kulkarni.

Rapidware: Component-based development of adaptive and dependable rrriddleware

(www.cse.msu.edu/rapidware), 2005.

[129] N. A. Melchior and W. D. Smart. Autonomic systems for mobile robots. icac,

00:280—281, 2004.

[130] F. Menczer and R. K. Belew. Latent energy environments, pages 191—208. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1996.

[131] R. Miikkulainen and K. 0. Stanley. Evolving neural networks. In GECCO ’08: Pro-

ceedings of the 2008 GECCO conference companion on Genetic and evolutionary

computation, pages 2829-2848, New York, NY, USA, 2008. ACM.

[132] M. B. Miller and B. L. Bassler. Quorum sensing in bacteria. Annu. Rev. Microbiol,

55:165—199, 2001.

[133] M. Mirolli and D. Parisi. Artificial organisms that sleep. In W. Banzhaf,

T. Christaller, P. Dittrich, J. T. Kim, and J. Ziegler, editors, Advances in Artificial

Life - Proceedings ofthe 7th European Conference on Artificial Life, volume 2801 of

Lecture Notes in Computer Science, pages 377—386, Dortmund, Germany, Septem-

ber 2003. Springer.

147

[134] D. Misevic, R. E. Lenski, and C. Ofria. Sexual reproduction and muller’s ratchet

in digital organisms. In Ninth International Conference on Artificial Life, pages

340—345, Boston MA, 2004.

[135] D. Misevic, C. Ofria, and R. E. Lenski. Sexual reproduction reshapes the genetic

architecture of digital organisms. Proceedings of the Royal Society of London B,

2005.

[136] W. H. Moorcroft. Sleep, Dreaming, and Sleep Disorders. University Press of Amer-

ica, Inc., MD, 2nd edition, 1993.

[137] D. E. Moriarty. Symbiotic evolution ofneural networks in sequential decision tasks.

PhD thesis, Austin, TX, USA, 1998.

[138] D. E. Moriarty, R. Miikkulainen, and P. Kaelbling. Efficient reinforcement learning

through symbiotic evolution. In Machine Learning, pages 11—32, 1996.

[139] B. Mukherjee, L. Heberlein, and K. Levitt. Network intrusion detection. Network,

IEEE, 8(3):26—41, May/Jun 1994.

[140] C. D. Nadell, J. B. Xavier, S. A. Levin, and K. R. Foster. The evolution of quorum

sensing in bacterial biofilms. PLoS Biology, 6(1): 171—179, January 2008.

[141] C. D. Nadell, J. B. Xavier, S. A. Levin, and K. R. Foster. The evolution of quorum

sensing in bacterial biofilms. PLoS Biology, 6(1):0171—0179, January 2008.

[142] K. Nealson and J. Hastings. Bacterial bioluminescence: Its control and ecological

significance. Microbiol. Rev., 43(4):496—518, 1979.

[143] K. H. Nealson, T. Platt, and J. W. Hastings. Cellular control of the synthesis and

activity of the bacterial luminescent system. J Bacteriol, 104(1):313—322, 1970.

[144] S. Nolfi and D. Floreano. Evolutionary Robotics. The Biology, Intelligence, and

Technology of Self-organizing Machines. MIT Press, Cambridge, MA, 2001. 2001

(2nd print), 2000 (1st print).

[145] C. Ofria and C. Adami. Evolution of genetic organization in digital organisms. In

Proc. ofDIMACS workshop Evolution as Computation, pages 167—175, Princeton,

NJ, 1999.

[146] C. Ofria, C. Adarrri, and T. C. Collier. Design of evolvable computer languages.

IEEE Transactions in Evolutionary Computation, 17:528—532, 2002.

[147] C. Ofria, C. Adami, and T. C. Collier. Selective pressures on genomes in molecular

evolution. J. Theor: Biology, 222:477—483, 2003.

[148] C. Ofria, C. Adami, T. C. Collier, and G. K. Hsu. The evolution of differentiated

expression patterns in digital organisms. Lect. Notes Artif. Intell., 1674:129—138,

1999.

148

[149] C. Ofria and C. O. Wilke. Avida: A software platform for research in computational

evolutionary biology. Artificial Life, 10: 191-229, March 2004.

[150] C. Ofria and C. O. Mlke. Avida: Evolution experiments with self-replicating com-

puter programs. In A. Adamatzky and M. Komosinski, editors, Artificial Life Models

in Saflware, pages 3—35. Springer Verlag, London, 2005.

[151] A. N. Pargellis. Digital life behavior in the amoeba world. Artificial Life, 7(1):63—75,

2000.

[152] J. Park, R. Jagasia, G. F. Kaufmann, J. C. Mathison, D. I. Ruiz, J. A. Moss, M. M.

Meijler, R. J. Ulevitch, and K. D. Janda. Infection control by antibody disruption of

bacterial quorum sensing signaling. Chemistry & Biology, 14(10):]119—1127, Oct.

2007.

[153] S. Pierre and G. Legault. A genetic algorithm for designing distributed computer

network topologies. IEEE Transactions on Systems, Man and Cybernetics, Part B,

28(2):249—258, Apr 1998.

[154] S. Pleisch, M. Balakrishnan, K. Birman, and R. van Renesse. Mistral: Efficient

flooding in mobile ad-hoc networks. In Proceedings of the Seventh ACM Intema-

tional Symposium on Mobile Ad Hoc Networking and Computing (ACM Mobil-lac

2006), Florence, Italy, May 2006.

[155] J. R. Porter. Antony van leeuwenhoek: tercentenary of his discovery of bacteria.

Microbial. Mal. Biol. Rev., 40(2):260—269, 1976.

[156] J. Pugh and A. Martinoli. Multi-robot learning with particle swarm optirrrization. In

Proceedings of the 5th International Joint Conference on Autonomous Agents and

Multiagent Systems, pages 441—448, New York, NY, USA, 2006. ACM.

[157] S. Rasmussen, C. Knudson, P. Feldberg, and M. Hindsholm. The coreworld: Emer-

gence and evolution of cooperative structures in a computational chemistry. Physica

D, 42(1-3):111-134, 1990.

[158] T. S. Ray. An approach to the synthesis of life. In C. G. Langton, C. Taylor,

J. D. Farmer, and S. Rasmussen, editors, Artificial Life II, pages 371—408. Addison-

Wesley, Reading, MA, USA, 1992.

[159] T. S. Ray. Evolution, ecology and optimization of digital organisms. Working Paper

92-08-042, Santa Fe Institute, 1992.

[160] T. S. Ray. Evolution, complexity, entropy and artificial reality. In Proceedings ofthe

Oji international seminar on Complex systems : from complex dynamical systems to

sciences of artificial reality, pages 239—263, New York, NY, USA, 1994. Elsevier

North-Holland, Inc.

[161] W. Ren and R. W. Beard. Distributed Consensus in Multi—vehicle Cooperative Con-

trol. Springer, 2007.

149

[162] F. J. Romero-Campero and M. J. Perez-Jimenez. A model of the quorum sensing

system in Vibrio fischeri using P systems. Artificial Life, l4(l):95—109, 2008.

[163] K. P. Rumbaugh, S. P. Diggle, C. M. Watters, A. Ross-Gillespie, A. S. Griffin, and

S. A. West. Quorum sensing and the social evolution of bacterial virulence. Current

Biology, 19(4):341—345, January 2009.

[164] Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, and K. Fujimura.

The intelligent asimo: system overview and integration. Intelligent Robots and Sys-

tem, 2002. IEEE/RSJ International Conference on, 3:2478—2483 vol.3, 2002.

[165] K. L. Sauer, A. Camper, G. Ehrlich, J. Costerton, and D. Davies. Pseudomonas

aeruginosa displays multiple phenotypes during development as a biofilm. Journal

ofBacteriology, 184(4): 1 140—1 154, 2002.

[166] S. Schauder, K. Shokat, M. Surette, and B. Bassler. The LuxS family of bacterial au-

toinducers: biosynthesis of a novel quorum-sensing signal molecul. Mal Microbial,

41(2):463—476, July 2001.

[167] R. Schoonderwoerd, J. L. Bruten, O. E. Holland, and L. J. M. Rothkrantz.

Pheromone robotics. Autonomous Robots, 11(3):319—324, 2004.

[168] G. Simon, M. Maroti, A. Ledeczi, G. Balogh, B. Kusy, A. Nadas, G. Pap, J. Sallai,

and K. Frarnpton. Sensor network-based countersniper system. In Proceedings of

the 2nd International Conference on Embedded Networked Sensor Systems, pages

1-12, New York, NY, USA, 2004. ACM Press.

[169] K. Sims. Evolving virtual creatures. In SIGGRAPH ’94: Proceedings of the 21st

annual conference on Computer graphics and interactive techniques, pages 15—22,

New York, NY, USA, 1994. ACM.

[170] K. O. Stanley, D. B. D’Ambrosio, and J. Gauci. A hypercube-based indirect encod-

ing for evolving large-scale neural networks. Artificial Life, 2009. In press.

[171] K. 0. Stanley and R. Miikkulainen. Evolving neural networks through augmenting

topologies. Evol. Comput., 10(2):99—127, 2002.

[172] P. Stone and M. Veloso. Multiagent systems: A survey from a machine learning

perspective. Auton. Robots, 8(3):345—383, 2000.

[173] J. Strassner. Focale - a novel autonomic networking architecture. In First Latin

American Autonomic Computing Conference (LAACS), July 2006.

[174] J. Suzuki and T. Suda. A rrriddleware platform for a biologically-inspired network

architecture supporting autonomous and adaptive applications. IEEE Journal on

Selected Areas in Communications, Special Issue on Intelligent Services and Appli-

cations in Next Generation Networks, February 2005.

150

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

X. Tan, D. Kim, N. Usher, D. Laboy, J. Jackson, A. Kapetanovic, J. Rapai,

B. Sabadus, and X. Zhou. An autonomous robotic fish for mobile sensing. In

Proceedings of International Conference on Intelligent Robots and Systems, pages

5424—5429, Oct. 2006.

G. Terrazas, N. Krasnogor, M. Gheorghe, F. Bemardini, S. Diggle, and M. Camara.

An environment aware P-System model of quorum sensing. In S. B. Cooper,

B. Lowe, and L. Torenvliet, editors, CiE, volume 3526 of Lecture Notes in Com-

puter Science, pages 479—485. Springer, 2005. '

V. Trianni, R. GroB, T. H. Labella, and M. Dorigo. Evolving aggregation behaviors

in a swarm of robots. In Proceedings of the Seventh European Conference on Arti-

ficial Life, volume 2801 of Lecture Notes in Artificial Intelligence, pages 865-874.

Springer Verlag, 2003.

V. Trianni, S. Nolfi, and M. Dorigo. Hole avoidance: Experiments in coordinated

motion on rough terrain. In Intelligent Autonomous Systems 8, pages 29—36. IOS

Press, 2004.

V. Trianni, E. Tuci, , and M. Dorigo. Evolving functional self-assembling in a swarm

of autonomous robots. In S. Schaal, A. Ijspeert, A. Billard, S. Vrjayakamur, J. Hal-

lam, and J.-A. Meyer, editors, From Animals ta Animats 8. Proceedings ofthe Eighth

International Conference on Simulation ofAdaptive Behavior (SAB 04), pages 405—

414. MIT Press, Cambridge, MA, 2004.

W. Truszkowski, M. Hinchey, J. Rash, and C. Rouff. Nasa’s swarm missions: The

challenge of building autonomous software. IT Professional, 6(5):47—52, 2004.

E. Tuci, C. Ampatzis, F. Vrcentini, and M. Dorigo. Evolved homogeneous neuro-

controllers for robots with different sensory capabilities: Coordinated motion and

cooperation. In S. Nolfi, G. Baldassarre, R. Calabretta, J. C. T. Hallam, D. Marocco,

J.-A. Meyer, 0. Miglino, and D. Parisi, editors, From Animals ta Animats 9: 9th

International Conference on Simulation of Adaptive Behavior; SAB 2006, volume

4095, pages 679—690. Springer Verlag, Berlin, Germany, 2006.

R. Vogt, J. Aycock, and M. J. Jacobson. Quorum sensing and self-stopping worms.

In Proceedings of the 2007 ACM Workshop on Recurring Malcade, pages 16—22,

New York, NY, USA, 2007. ACM.

T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active messages:

a mechanism for integrated communication and computation. In Proceedings ofthe

19th Annual International Symposium on Computer Architecture, pages 256—266,

New York, NY, USA, 1992. ACM.

T. Wang, C. C. Hung, and D. J. Randall. The comparative physiology of food de-

privation: From feast to famine. In Annual Review ofPhysiology, volume 68, pages

223—251. Annual Reviews, 2006.

151

[185] C. M. Waters and B. L. Bassler. Quorum sensing: Cell-to-cell communication in

bacteria. Annual Review of Cell and Developmental Biology, 21:319—346, 2005.

[186] G. Wei. Adaptation and learning in multi-agents systems: Some remarks and a bibli-

ography. In Adaptation and Learning in Multi-Agent Systems, pages 1—21. Springer-

Verlag, 1995.

[187] S. R. White, J. E. Hanson, I. Whalley, D. M. Chess, and J. O. Kephart. An architec-

tural approach to autonomic computing. In Proceedings of the First International

Conference on Autonomic Computing, pages 2—9, Los Alamitos, CA, USA, 2004.

IEEE Computer Society.

[188] T. White, B. Pagurek, and D. Deugo. Management of mobile agent systems using

social insect metaphors. In Proceedings of the 21st IEEE Symposium on Reliable

Distributed Systems, pages 410—415, 2002.

[189] C. O. Wilke and C. Adami. The biology of digital organisms. TRENDS in Ecology

& Evolution, pages 528—532, 2002.

[190] C. O. Wilke, J. Wang, C. A. Ofria, C. Adanri, and R. E. Lenki. Evolution of digital

organisms at high mutation rate leads to survival of the flattest. Nature, 412:331—

333, 2001.

[1.91] D. S. Wilson. Introduction: Multilevel selection theory comes of age. The American

Naturalist, 150(Sl-S4), July 1997.

[192] E. O. Wilson. Sociobiology: The New Synthesis. Harvard University Press, 1975.

[193] I. Wokoma, L. Sacks, and I. W. Marshall. Clustering in sensor networks using quo-

rum sensing. In London Communications Symposium, University College London,

September 2003.

[194] T. D. Wolf, G. Samaey, T. Holvoet, and D. Roose. Decentralised autonomic com-

puting: Analysing self-organising emergent behaviour using advanced numerical

methods. In Proceedings of the Second International Conference on Autonomic

Computing, pages 52—63, Los Alamitos, CA, USA, 2005. IEEE Computer Society.

[195] R. J. Wood, S. Avadhanula, M. Menon, and R. S. Fearing. Microrobotics using

composite materials: the micromechanical flying insect thorax. In Proceedings of

the 2003 IEEE International Conference on Robotics and Automation, pages 1842—

1849. IEEE, September 2003.

[196] K. B. Xavier and B. L. Bassler. Interference with AI-2-mediated bacterial cell-cell

communication. Nature, (437):750—753, 2005.

[197] C. H. Yong and R. Miikkulainen. Cooperative coevolution of multi-agent systems.

Technical report, Austin, TX, USA, 2001.

152

[198] R. A. Young. Fat, energy and mammalian survival. In American Zoologist, vol-

ume 16, pages 699—710. The Society for Integrative and Comparative Biology, 1976.

[199] H. Zemlin. Mammalian sleep. In M. Kryger, T. Roth, and W. Dement, editors,

Principles and Practice of Sleep Medicine, pages 82—92. Saunders, Philadelphia,

2000.

153

 "11111111111111fillfllfllfll'lllllllllll“
829

