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ABSTRACT

CORTEx-INSPIRED

GOAL-DIRECTED RECURRENT NETWORKS FOR

DEVELOPMENTAL VISUAL ATTENTION AND

RECOGNITION WITH COMPLEX BACKGROUNDS

By

Matthew Luciw

It is unknown how the brain self-organizes its internal wiring without a holistically-

aware central controller. How does the brain develop internal object representations

for a massive number of objects? How do such representations enable tightly in-

tertwined attention and recognition in the presence of complex backgrounds? Most

vision systems have not included top-down connectivity or treated bottom-up and

top-down separately. Yet almost all excitatory pathways in the visual cortex are

bidirectional; evidence suggests the top-down connections are not fundamentally

different from bottom-up connections. This dissertation presents and analyzes a

hierarchical self-organizing type of network with adaptive excitatory bottom-up and

top-down connections. This two-way network takes advantage of grounding — both

the sensory end (visual patches) and motor end (action control) are input ports.

Internally, local neural learning uses only the co—firing between the pre—synaptic and

post-synaptic activities. Such a representation automatically boosts action-relevant

components in the sensory inputs (e.g., foreground vs. background) by increasing the

chance of only action-related feature detectors to win in competition. After learn-

ing, the bidirectional networks showed topographic semantic grouping and modular

connectivity. It is shown how and why such modular networks can take advantage of

recurrent excitation for recognition. In Where-What Network-3, top-down connec-

tions enabled type-based and location—based top-down attention and synchronization

of neurons over multiple levels to bind features into holistic representations.
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2.1 As the first figure in this dissertation, I must note the following: Images in

this dissertation are presented in color. This figure shows a partial model of

a visual hierarchy, starting from sensor cells in the retina and progressing to

inferotemporal cortex (IT), an area implicated in visual object recognition.

Information progresses through these pathways and beyond and eventually

to later motor areas (not shown). All connections shown are bidirectional.

Each area is organized into six-layers of highly interconnected neurons. The

different areas in cortex, all have this same general six-layer connectivity

pattern [50]. A core idea is the hierarchical arrangement of neural areas

on many levels, from sensors to motors, with each area’s suborganization

being six-layered. Figure adapted and modified from [71]. ........ 21

2.2 Some pathways through different cortical areas for different sensory modali-

ties. The numbers indicate the numerical classification of each cortical area

originally by Brodmann in 1909 [50]. There are two different pathways by

which visual information travels — it has been found that one pathway is

for identity and categorization (“what”) and the other has more to do with

location (e.g., how to reach for the object — “where”). The somatosensory,

auditory and visual information progresses through different pathways,

converging at premotor and prefrontal areas. The premotor area goes to

the motor cortex, which handles movement and action representation. All

paths are bidirectional. Figure courtesy of Juyang Weng. ......... 22

3.1 Example of a natural image used in the experiment............. 36

3.2 Lobe components from natural images (with whitening). ......... 37

3.3 Lobe components from natural images (without whitening) ........ 38

3.4 Comparison of incremental neuronal updating methods. We compare in

25 and 100 dimensions. This figure shows 100-d results. Methods used

were (i) “dot-product” SOM, (ii) Oja’s rule with fixed learning rate 10'3,

(iii) Standard Hebbian updating with three functions for tuning the time-

varying learning rates (TVLR): linear, power, and inverse, and (iv) CCI

LCA. LCA, with its temporal optimality, outperforms all other methods.

Consider this as a “race” from start (same initialization) to finish (0%

error). Note how quickly it achieves short distance to the goal compared

with other methods. CCI LCA beats the compared methods. E.g., after

28, 500 samples, when LCA has covered 56% distance, the next closest

method has only covered 24% distance. .................. 41
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3.6
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4.2

Comparison of incremental neuronal updating methods. This shows the

25-d results. At this lower dimension, after 5000 samples, LCA has covered

66% of the distance, while the next closest method has only covered 17%

distance. ..................................

Comparison of LCA with two other Hebbian learning variants for a time-

varying distribution. This Shows average error for all available components.

There are 70 available until time 200,000, 80 until 400,000, 90 until 600,000

and 100 until 1,000,000. We expect a slight degradation in overall perfor-

mance when new data is introduced due to the limited resource always

available (100 neurons). The first jump of LCA at t = 200, 000 is a loss of

3.7% of the distance it had traveled to that point..............

Comparison of LCA with two other Hebbian learning variants for a time-

varying distribution. This shows how well the neurons adapt to the 10 com-

ponents added at time 200,000 (called newdatal), and then how well they

remember them (they are observed in only the second and fifth phases).

Initially, this new data is learned well. At time 400,000, newdata2 begins to

be observed, and newdatal will not be observed until time 800,000. Note

the “forgetting” of the non-LCA methods in comparison to the more grace

ful degradation of LCA. The plots focusing on newdata2 and newdata3 are

similar....................................

In this model, neurons are placed on different layers in a hierarchy — ter-

minating at sensors at the bottom and terminating at motors at the top.

Each individual neuron has three types of input projections: bottom-up,

lateral, and top-down. ...........................

The three-layer network structure. The internal layer 1 takes three types

of input: bottom-up input from layer 0, top-down input from layer 2 and

lateral input from the neurons in the same layer. The top-down input

is considered delayed as it is the layer 2 firing from the last time step.

The “D” module represents this delay. A circle in a layer represents a

neuron. For Simplicity, this is a fully connected network: All the neurons

in a layer takes input from every neuron in the later layer and the earlier

layer. For every neuron (white) in layer 1, its faraway neurons (red) in

the same layer are inhibitory (which feed inhibitory signals to the white

neuron) and its nearby neurons (green) in the same layer are excitatory

(which feed excitatory signals to the white neuron). Neurons connected

with inhibitory lateral connections compete so that fewer neurons in layer 1

will win for firing (sparse coding [80]) which leads to sparse neuronal update

44

45

(only top-k neurons will fire and update). Figure courtesy of Juyang Weng. 52



4.3 How bottom-up and top-down connections coincide in a fully connected

4.4
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network. Looking at one neuron, the fan-in weight vector deals with

bottom-up sensitivity while the fan-out weight deals with top-down sen-

sitivity. In the model presented here, the weights are shared among each

two-way weight pairs. So, a neuron on layer 3' + 1 will have a bottom-up

weight the same as the top-down weight of a neuron on layer j.......

Self-organization with motor-boosted distances leads to partitions that sep-

arate the classes better. (a) There are two bottom-up dimensions 1:1 and

:52. Samples falling in the blue area are from one class and those falling

in the red area are another class (assume uniform densities). The “rele-

vant” and “irrelevant” dimension are shown by the upper right axes, which

are here linear. (b) The effect of self-organization using nine neurons in

the bottom-up space only. Observe from the resulting partitions that the

firing class entropy of the neurons will be high, meaning they are more

class-mixed. (c) Boosting the data with motor information, which here is

Shown as a single extra dimension instead of two (for visualization) (d)

The effect of self-organization in the boosted space, and embedding back

into two dimensions. Note how the partition boundaries new line up with

the class boundaries and how the data that falls into a given partition is

mostly from the same class (low entrOpy). ................

A layer-one weight vector, around other neighbor weight vectors, viewed as

54

images, of a neuron exhibiting “harmful” interpolation through 3x3 updating. 59

Topographic class grouping with a 1D neuron array in 2D input space.

The red area contains samples from class one, and the blue area contains

samples from class two. The 10 neurons’ bottom-up vector are circles

or squares. Their top-down membership is shown by the color or shape:

Gray neurons are unassociated, black neurons are linked to class two and

white neurons linked to class one. Square neurons are border neurons. To

better understand how TCG emerges, we provide the following four cases.

(a) After initialization, all neurons are unassociated. Only three neurons

are drawn to show they are neighbors. Other neighbor connections are

not shown yet, for clarity. (b) Neuron N1 has won for a nearby sample,

becomes linked to class two. Its neighbors are pulled towards it and also

link to class two. Note how N3 is actually pulled into the between-class

“chasm”, and not onto the class distribution. ...............
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Topographic class grouping with a 1D neuron array in 2D input space.
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MNIST data represented in a network with 40x40 neurons, trained without

top-down connections. ...........................

The handwritten digits “4” and “9” from the MNIST digit database [58]

are very similar from the bottom-up. (a) Result after self-organizing us-
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will be within the same class. .......................

(a) Weights after development of a 40 x 40 grid when top-down connections
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B=0. ...................................
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Chapter 1

Introduction

This dissertation is concerned with recurrent networks for attention and recognition

in developmental agents. It focuses on vision, but it is applicable to other modalities.

The work here is on general-purpose attention and recognition. In this sense, the

methods are not meant to directly apply to a single particular engineering problem,

but are instead motivated by the issue of how to build a machine that could under-

stand the visual world. Such machines could be taught to solve specific problems,

but it is not with a particular problem in mind that they are designed.

It seems logical to take a reductionist view of the mind. In this light, the mind,

mental states, attitudes etc. are all encapsulated in the brain. They are all explain-

able by brain Operation. Arguments about the existence of intuitive phenomena like

mental states or qualia are attributable to confusion about what these terms are

actually referring to. Such\terms like “mental state”, “thinking”, or “feel” funda-

mentally seem to reflect misunderstanding Of what is actually happening in the brain.

The introspective style of reasoning about the mind has been very useful. It may

be possible to formulate some higher-level theory of mind that explains intelligent

behavior and can be used in building intelligent machines. But results from those

working admirably at this scale over many years have illuminated some difficulties

of this approach.



As discussed elsewhere by Weng, symbolically programmed Al’s have been brit-

tle [117]. Attempts to model intelligent behavior suffered from such brittleness

problems since it seems impossible for the programmer to predict all the rules of

all the cases the machine should be able to handle. To deal with this, researchers

turned their attention to methods of learning, inspired by the thought that if the ma-

chine learns, then providing it with enough experience should be all that is needed.

Learning methods have led to very promising results and the thriving field of machine

learning. But learning methods have mostly focused on solving single problems, thus

generating artificial intelligences that can perform single tasks. Progressing towards

AIS that can learn multiple tasks, without the programmers or modelers knowing

the tasks in advance, is difficult with many learning methods that work very well

for a single task. For example, many learning methods suffer from the well-known

long-term memory problem: since they are designed to utilize all their resources to

greedily learn any task, they will forget already learned tasks. There is also the

related scaffolding problem: most learning methods that have learned one task have

not made it any easier for the machine to learn a different but related task. Yet

we can use our past experience to make it easy for us to learn some new skills in

only a few tries, or even in one shot. The developmental approach, also known as

autonomous mental development (AMD) [123], has emerged and aims to take these

issues into account. The goal of AMD is to build a developmental program so the

machine can learn skills from experience in a way that does not suffer from the long-

term memory problem or the scaffolding problem. The focus has Shifted towards

the study of general purpose learning mechanisms.

Over the history of AI, many relatively successful approaches were formulated as

inspired by another field or combination of fields, such as psychology, biology, chem-

istry, or neuroscience. It is an open question as to which scale is most appropriate for

modeling a developmental learning program. Recently, technology has advanced to



a point that the amount of data coming out of the neuroscience field has exploded,

and much is now known about the visual pathway, and about some mechanisms

of computation in cortex. Much is still unknown, however. Theories and results

from psychology have been incredibly'influential and illuminating in understanding

visual attention and recognition. Connectionist approaches have been inspired by

both psychology and neuroscience. Background over multiple related fields will be

discussed further in Chapter 2.

Putting together some key knowledge about the brain may be leading towards

solving the puzzle of how a successful developmental program could be built. Cortical

- neurons can be considered as “internal representation” as demonstrated by stimulus-

response selectivity. Neurons represent sensory stimuli and also movements (shown

via firing-movement correlations). Studies in mapping the brain’s function has shown

that different areas in each animal are reliably correlated with certain function, yet in

no way are all the functions of the different areas known. But there is recent evidence

that what the neurons represent is not dependent on its physical location, but instead

on the area’s input [96]. This points to, not a genetically-encoded representative

scheme based on brain location, but a shared mechanism of learning that occurs in

each of the areas, no matter what location. In this case, different functions emerge

since there are different inputs to each area. What is known about neuronal learning

is based on synaptic strength modification and so far follows Hebb’S principle and, at

a lower temporal scale, the principles of spike-timing dependent plasticity (STDP).

Some principles may also be emerging based in the neuromodulation of learning.

In Chapter 3, I’ll discuss a mechanism of general purpose learning, for a layer

1
of neurons inspired by these results. This was called lobe component analysis

[122,124] (LCA). LCA satisfies many of the constraints of a developmental program

 

1I do not claim that these artificial neurons are functionally isomorphic to actual

neurons. They represent units of information integration and computation, inspired

by actual neurons or neuron groups.



appropriate for AMD.

The circuitry of the mature cortex is very complicated. Again the notion of

input-driven self-organization is encouraging. Over multiple layers, the neuronal

learning method discussed in Chapter 3 leads to selective wiring — automatic or-

ganization of the network connectivity. Input-driven selective wiring over multiple

layers is the focus of Chapter 4, which focuses on the purpose and effects of the top-

down connections. These connections cause recurrence in the networks; the chapter

presents a method and its analysis for utilizing top—down connections for a biased

compression of information, leading to internal representations that are more useful

for successful behavior given a limited resource. The top-down connections do not

represent supervised learning in the sense of gradient descent methods — they oper-

ate the same as bottom-up connections. Top-down and lateral excitation together in

the learning phase produces modular networks that Show topographic class group-

ing — layers with representation spatially organized so that neurons that represent

the same action but different sensations are grouped together. It is so far unknown

how cortical areas could emerge that represent very different (in a physical sense)

stimuli, like the parahippocampal place area. Methods, analysis and results about

running the mature multilayer networks as recurrent dynamical systems is presented

in Chapter 5. The modularity of a network with topographic class grouping leads

to helpful recurrent effects that networks without modularity do not have.

Mechanisms and understanding of top-down connections, from chapters 4 and 5,

are integrated into the work in Chapter 6. It focuses on recurrent networks for gen-

eral purpose visual attention and recognition called Where-What networks (WWN)

[47, 48,63]. WWNS treat attention and recognition in a unified way, as it seems the

brain does not deal with these two problems independently. This chapter discusses

the architecture, training, and operation of WWNS for bottom-up and top-down

attention of any foreground over complex backgrounds. When there are multiple



Objects in the visual scene, the binding problem becomes an issue. In WWN, syn-

chronization via recurrence and information flow control lets the networks deal with

the binding problem without using combination neurons.

In, Chapter 7, I summarize the contributions and results in the dissertation, and

a few possible future directions are briefly explored.



Chapter 2

Background

The topic material of this dissertation is at an intersection of computer vision, pat-

tern recognition (models of learning), computational neuroscience, artificial intelli-

gence, and psychology (studies of visual representation and attention). This chapter

discusses relevant background information from these fields. The purpose of this

chapter is to introduce the problems that motivated this work and to provide con-

text for the later chapters.

2.1 Visual Representation

One can view visual perception as a problem that our visual systems must solve.

Study and analysis of this problem has uncovered the amazing capabilities of bio—

logical vision. A few will be discussed here. First, our ability to recognize an object

that we know seems extremely robust over different viewing distances and angles.

Second, we seem to have this capability for a huge number of objects. Underlying

these two capabilities are questions of visual representation. Visual representation

is internal storage and mechanisms for interpreting and explaining visual stimuli.

What representations are appropriate for human-level capabilities in object vision?



2 . 1 . 1 Viewpoint Invariance

Our ability to recognize Objects is very robust. We can reliability recognize single

objects that we know over many possible variations. Consider the following sim-

plified setting for a single object: a viewer is some fixed distance from the object,

which is within the viewer’s field of view. The object exists in 3D world space but is

represented as a pattern of intensities or colors on the viewer’s retinal image, which

we can consider as 2D. Let’s assume the object completely fits within the retinal

image, is central on it, and there is no background. The Object has its own internal

3D coordinate frame, which we’ll assume has its origin at the center of the object.

“Complete” viewpoint invariance implies that if the viewer is able to identify (ID)

the object for any one rotation, the viewer can ID it over all possible rotations. A

softer definition allows the viewer to see several different views first or constraints

the testing set. Note the viewer doesn’t see the Object temporally rotate. Whether

we have such a capability has been the subject of debate as summarized by Edelman

( [30], p. 178), due to seemingly conflicting data.

If the possible rotations are restricted occurs so the object’s appearance rotates

in an afline way on the retinal image, then all the information needed for recognition

is contained in a Single view. Could every point on the rotated image be mapped to

another point on an internal 2D stored view — a canonical template? Recognition

could be accomplished by “mentally” rotating the template until it matches the

object in the image. But consider the more realistic case where the rotations may

be over all three dimensions. There is no longer a mapping of from a 2D template

of one view to the visual perception, showing another view. If we extend the 2D

template matching concept of storage, then each object we’ve learned would have

a massive number of views associated with it, some of which can be very different.

Think of looking straight down into a cup compared to viewing it from the side.

It does not seem feasible nor Optimal to store 2D template representations Of every



view of every object that we can recognize.

Use of “3D templates” was the subject of much investigation. An internal model

of the world-based 3D shape would seem to work well for any particular object. An

experiment by Shepherd and Metzlar, 1971 [90] supports the idea that objects are

stored via an internal 3D representation. They tested subjects’ reaction time in a

same/different mental rotation task using 3D objects, similar to tetris blocks. Two

views of an object were presented, which showed either the same object rotated

along the vertical axis, or two mirror images of the object rotated along the vertical

axis. The reaction time results showed a linear dependency on rotation angle, which

suggests we can mentally rotate 3D internal representations. Intuitively, when given

a view from a novel, but somehow familiar 3D object, we do not have much trouble

imagining how it would look from another angle. The idea of using 3D templates is

object-based, and faces the problem Of reconstruction from views. David Marr [70]

provided an fundamental theory Of vision leading to 3D reconstruction, and the

more recent technique of SLAM [28] can reconstruct surfaces from views. SLAM

has shown to work well for navigation.

There was quite a bit of debate about whether internal representation is (or

should be) Object-based or view-based. There is support for view-based representa—

tion from experiments showing poor performance Of humans on viewpoint invariance

for certain objects, such as complex bent ‘paperclip’ Objects [87]. Some objects (e.g.,

faces) are more Similar over multiple views than others (e.g., paperclips). A core idea

is that some of an object’s parts change less over a set of views, in which the entire

view of the object changes significantly. A view-based system with viewpoint invari-

ance over about 180 degrees were built for faces and cars [88], via decomposition of

the image into parts.



2.1.2 Object Representation

Should Objects be represented holistically or broken up into parts?

David Marr ( [70], 1982) explained how holistic 3D—like templates could be

learned from a viewer’s perspective. Inspired by neuroscience (he was one of the

first to advocate. both a functional and computational study of the brain), Marr

proposed that the visual recognition has three stages. First was the primal sketch,

a map of feature activation over the scene (e.g., edge locations were provided by

edge detection). The 2.5D sketch incorporates grouping, texture, and some depth

information (depth information is available Since two eyes give two diflerent perspec-

tive views, which can be used to infer disparity and surface — local 3D shape —

information). The third stage is the manipulation of the 2.5D sketches towards a 3D

reconstruction. Marr’s theory has been significant in the history of vision research.

But many results about the top—down nature of visual processing have not supported

a geometric reconstruction. When one considers a “visual task”, such a data-rich

and precise representation is probably not necessary. In particular it ignores what

the agent’s purpose, or goal, is. The theory advocates that all shape information is

important. How much of the surface and shape information that is useful depends

on the potential use the viewer can make of it. The challenge is how to represent all

the available information so that the behavior becomes successful.

As discussed above, parts of an Object over views can change little while the

entire Object changes a lot over the same views. Viewpoint invariance could be

accomplished through such local invariants. This was the inspiration behind Bie-

derman’s “Recognition by Components” (RBC) [9]. RBC object representations are

composed of volumetric building blocks called geons — a basic primitive 3D shape,

such as a cylinder — along with inter-geon relationships. The geons themselves are

stored internally and must be recognized with the same effort over any rotation (un-

less they are occluded). He gave three conditions [10] to enable viewpoint invariant



recognition via RBC. If the geon structural description (GSD) is unique for an ob—

ject, and possible views are not nondistinctive, then viewpoint invariance can occur

after seeing one view. Object recognition in this model boils down to comparing the

GSD of the current view and comparing it with GSDs for known objects. When he

added a single geon to a complex paperclip-like object, the response time of subjects

to different views decreased dramatically. Tarr [99] claimed that this result can be

explained as the viewer is simply looking for the single added easy-to-detect feature.

He replicated this experiment, but added more geons (three and five). He showed

that as the number of geons added increased, the viewpoint invariance ability of

the subjects decreased. Edelman, Tarr and others helped move the field towards

viewer-based methods of representation and recognition.

The view-based models led to appearance-based methods in Computer Vision —

representation and recognition from sets of digital images. An initial problem for this

idea was that it seemed like a model would have to be automatically built from data

to explain each pixel Of an image, and this dimension is very large. One way to avoid

the dimensionality issue is to map a set of images onto a lower-dimensional manifold.

Turk and Pentland Showed that, via principal component analysis (PCA) [113], a

set of image views could be linearly mapped to a lower-dimensional space, and the

new dimension depended on the complexity of the variations in the data. Due to

theory of PCA, the lower dimensional eigenspace is optimally representative in a

linear sense. Murase and Nayar [76] showed how to generate and parameterize com-

plete eigenspaces for an Object. By complete, it means the eigenspace contains all

possible views, even those not seen. However, the method was rather computation-

ally expensive to update as new training views were added. Additionally it could

not tolerate occlusions.

10



2.1.3 Local Appearance Hierarchies

The occlusion problem with global appearance methods led to local appearance

methods where smaller image windows were used as the inputs of the algorithms [24].

Interestingly, higher-order principal components from smaller windows over multiple

objects resembled the features detected by some known early-pathway visual neu-

rons, while lower order principal components did not seem to Show useful structure.

These local features seemed similar no matter which objects were used in the data.

Also, no matter what the Objects used, the resulting features were nearly the same.

Since PCA is Optimal, this suggests that the local statistics over all views is not

class dependent. We can assume evolution led to brains that can take advantage of

these local statistics. As a Simulated model of V1 orientation selectivity, a basis of

Gabor filters [79] fits some V1 neurons fairly well. Could internal representation for

local appearance be handled through such a basis?

Even though such modeled filters (e.g., parameterized Gabor filters) can fit V1

orientation selectivity well, one basis (or layer) of local filters alone cannot explain

object representation and recognition. An efficient coding of many-objects repre-

sentation from parts requires a hierarchy of features. Feature hierarchies seem to

be important for how the brain solves the problem of many-objects representa

tion [86]. It is not known whether such a structure is a necessary condition for

many-objects representation, however. In hierarchical systems, the receptive field

(area of sensor detected by the filter) and complexity of features increases towards

higher layers. Plukishima (Neocognitron [36], 1983), Weng (Cresceptron [118,119],

1992), and LeCun (LeNet [58], 1998) implemented notable vision systems using a

local-to-global hierarchical approach. A hierarchical representation allows composi-

tionality — shared parts between Objects — and thus an efficient coding of many

possible objects. Another advantage of hierarchies is a robust tolerance to many

variations in object deviation due to slight tolerance to deviations of local features.

11



Thus, invariance should emerge in a local-tO-global way, but the exact mechanisms

for this to happen remain controversial. “Max pooling” , in which identical filters in

different nearby locations become represented by the single filter with the maximum

firing in the group [86] seems to aid networks in achieving invariance. In almost all

implementations, feature hierarchies utilize only feedforward activation. In mature

cortex, speed of processing of object detection indicates that feedforward activity

is probably sufficient for recognition [103]. However, another result indicates that

feedback causes better performance [104]. There may be other roles for feedback,

such as in learning the features in the first place.

Local feature hierarchies have not yet found the best method to set the features

on each layer. The evidence of input-driven functional emergence in the brain [56]

suggests a tantalizing prospect: perhaps the same learning mechanism is active in

groups of neurons in all the different areas of the visual pathway. Appropriate

diversity of function could emerge given this learning rule and appropriate input.

If this learning rule can locally compress information efficiently and effectively, the

global problem of setting features at all hierarchical levels could be solved by applying

this same method to each of the levels concurrently.

To test a learning algorithm’s suitability for such a method, we can see if it

can extract features Similar to those in V1 from the same type of data V1 may

be interacting with. Thus, any learning rule that develops orientation filters from

natural images can be considered a candidate in general. But only an in-place

[124] — also called local learning — mechanism is also biologically plausible. Weng

proposed Lobe Component Analysis (LCA) as a candidate for this learning rule,

which is nearly in—place. Since LCA develops orientation selective neurons from

natural input, it passes as a possible candidate. We Showed the advantages of LCA

over other Hebbian-learning rules in [122], as summarized in Chapter 3. Chapter 4

describes how LCA can be included in a general framework with bottom-up, lateral,

12



and top-down connections. It’s shown how, when using top-down connections, an

eflicient compression (which prioritizes relevant information) emerges.

2.2 Visual Attention

Recognition operates together with attention to transform an image into a mean-

ingful image. A fundamental problem of recognition is the segmentation problem.

Which part of the scene is the foreground, to be recognized? The rest of the scene

is considered the background. Realistic backgrounds can have very complex visual

structure and may or may not Show any other objects. This problem reflects the

chicken-egg nature of segmentation (attention) and recognition: it seemingly can’t

be determined if the edges, colors, etc. belong to the Object (figure) or the back-

ground until the object is recognized, yet some grouping must occur before attention

knows what to select. We also have some explicit internal control over what the fore-

ground is. Consider the famous image in which we can see either two faces or a vase

as the foreground (but not both), depending on what one tries to see.

2.2.1 Selection

Selective attention refers to some mechanisms by which an agent recodes its sen—

sory information into a simpler, more useful form. Simplified relevant information

is necessary for cognitive processes, such as decision making. Attention is essential

for artificial agents that learn intelligent behavior in complex unconstrained envi-

ronments, especially those that utilize vision. Attention is called selective, in that

a subset of the sensed information is suppressed. What it means for information to

be suppressed is not explicitly known. It may not be simply removed from being

processed. Even in Situations when a person cannot remember something sensed,

that information can still influence that person’s actions [67].

13



Selective attention is separated into bottom-up selection and top-down selec-

tion [27]. Bottom-up selection is not explicitly controlled: salient foregrounds will

automatically “pop out” at the viewer. Sometimes, there is not a single salient

object in the image, but several objects, and the most salient is what is attended

first. Top-down attention, a fundamental part of visual attention [27], is selective

for important locations or features biased by goal or task of the agent. Given the

same scene with the same eye fixation, but two different top-down biases, the repre-

sentation of the information that reaches the later stage can be very different. For

example, imagine the differences between what a vehicle’s driver tends to attend to

compared to a passenger, even if they look in the same direction.

'I‘reisman’s Feature Integration Theory (FIT) [109] has been an extremely in-

fluential model of representation and attention, which described selection based on

saliency. In FIT, Objects are decomposed into features, which themselves can be

recognized without attention, but a conjunction of features requires an attentional

spotlight to “shine” on that location, which selects that location. FIT introduced

the idea of separate feature maps concerned with different dimensions of stimuli (i.e.,

color, orientation, direction of movement, and disparity) feeding into a Single master

map of salient locations. Koch and Ullman [53] proposed a computational saliency

model, implemented later by Itti and Koch [46], in which winner-takeall operation

of neurons on the master map led to both binding and attention location.

Saliency methods have been coupled with recognition. An example is NAVIS

(Neural Active Vision) by Backer et al. [2]. An issue with feature hierarchies is the

corruption of the original information [111]. Olshausen, Anderson and Van Essen

proposed a neural computing model of dynamic information routing to go along with

a saliency map structure [78] so that the original information in the attended area

could be sent to a recognition network. Each object is stored inside the network

as an Object-based reference frame, which is used for recognition via an associative

14



memory similar to those demonstrated by Hopfield [41]. Control neurons set “shifter

circuits” over multiple levels, which will normalize a part of the image in scale and

location for comparison with the object-based reference frame.

Non-biologically-inspired methods for top-down attention include the Viola and

Jones approach [115], which is designed to find a particular class, such as faces.

The histogram of gradients approach, used for pedestrian detection [22], uses local

histograms of image gradient orientations as features to predict a certain classes

presence well. In both of these, the goal of attention selection is determined before-

hand.

Other approaches have combined bottom-up and top-down attention. Desimone

and Duncan [27] claimed that top-down selection occurs primarily by gating the

different channels of object information; in terms of feature-based attention it may be

based on comparison with a feature template stored in short term memory. CODAM

[100] models attention as a control system, and uses a goal module to process bottom-

up signals and hold internally generated goals, generating goal-signals that bias

lower-level competitive processing. The method in [75] modifies gains and selects

scale of processing to produces different saliency maps, specific for certain classes.

A few researchers have proposed connectionist models for selecting and matching

an object in the image to a canonical internal reference frame. Examples include

Olshausen, Anderson and Van Essen [78] and Tsostos [111]. Deco and Rolls, 2004

[25], created a biologically inspired network for attention and recognition where top-

down connections controlled part of attention, but were not enabled in the training

phase due to instabilities they caused. Where-What networks are a biologically

plausible developmental model that integrates both bottom-up and top-down modes

of attention and recognition, without being limited to a specific task [47, 48, 63].

WWN does not use a master map or internally stored canonical objects [48,63].
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2.2.2 Binding Problem

The binding problem is a fundamental problem of attention, and one that must

be solved for local feature hierarchies. Once the scene has become represented by

separate feature activations, how can a subset of those activations be recognized

as an object? How could a network select the features that actually belong to the

Object and not select features that don’t?

Much evidence does not support the idea that we represent Objects in a holis-

tic representation. Experimental results Showed the existence Of illusory conjunc-

tions [51, 108], which suggests there are separable features in Object representation.

Illusory conjunctions occur when there are fast visual changes, and feature dimen-

sions of the actual observed items are mixed up upon being reported by the viewer.

For example, if one is presented with a red B and a green S very quickly in sequence,

upon reporting it back one may say there was a red S. The local-to-global feature

hierarchies discussed above also represent the scene in a disintegrated way. Separa-

ble features provide representation efficiency, but must eventually be reintegrated

for understanding of any meaningful thing in an image. The binding problem con-

cerns the mechanisms of information integration into understandable wholes [107].

For example, if we analyze an image based on location of objects and the types of

objects separately, how do we ensure any single solution for location and type is in

agreement? If a single image contains two different types in two different locations,

and the network (correctly) outputs both positions and both types, it is not clear

which type corresponds to which position.

FIT Offered an theory of binding and an explanation for illusory conjunctions.

The most famous supporting evidence for FIT is in feature-based search. Subjects

were instructed to find an item among distractors, and this item differed from all

the rest by a single simple feature, such as color. In this case, they were able to find

it at the same speed (it “pops out”) no matter how many distractors there were.
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This result suggests simple features are processed throughout the scene in parallel.

However, when the object Shared each of its features with some distractor, search

time increased linearly as a function of the number of distractors, suggesting this

conjunction-type search occurs serially. Treisman proposed that objects are inter-

nally represented as an object file containing feature information and information

about feature relationships. Then, recognition cannot occur unless the file is applied

to an actual location on the image. Attention can be placed at only a single loca-

tion at any time. The spotlight binds features in the same location into an object

file, which is compared with stored Object files for recognition. Illusory conjunctions

would be a result of the spotlight not in a location long enough for binding to occur,

leaving a feature “free-floating”.

One proposed high-level solution to the binding problem is by combination neu-

rons (or neuron assemblies) that represent the entirety of the combination of features

for an Object, and exist somewhere in the brain. Then each feature’s detection is a

necessary condition for the combination neuron to fire. In Olshausen et al.’s work

mentioned above, the associative memory network is in the spirit of the combination

neuron approach — somewhere in the network is stored a model of each “whole”

that can be recognized.

There are problems with the combination neuron approach, as underlined in

[116]. Returning to the position/type example, we could implement another winner-

take-all layer of position/type combination neurons, having afferent input from the

separated feature layers. But note this scheme runs into the combinatorial explosion

problem that we have been trying to avoid by using a hierarchical architecture of

separable features in the first place! It is uncertain how all possible combination

neurons could be learned without experiencing all combinations. And combination

neurons do not support generalization. For example, if a network can recognize both

red car and blue hat, it should be able to also recognize blue car even if it has never
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seen one before. How is a network that sees a set of parts in some combinations

able to generalize across other combinations that have not been seen? Thus, for a

general-purpose vision system, any network using the combination neuron approach

will eventually run into unexpected ambiguities. However, synchrony of firing over

multiple levels can alleviate the binding problem without explicit combination cells

[116].

Much of the work has investigated temporal synchrony (feature activations cor-

relate in time at some scale). In this work, synchrony results from bidirectional

connectivity: bottom-up and top-down connections. In the position/type network,

given an image with two objects a and b, let the position detector layer, through

feedforward activity and winner-takeall, select position a, but the type detector

layer selects type b. The network now has two different pieces of information, both

of which are correct, but possibly not synchronized. It’s not necessary try all possible

combinations; instead it can set one piece and use it to find the other 1. Following,

Treisman’s idea of Spotlight, neurons in the position map project back to bias neu-

rons at the appropriate positions in the earlier layer. Type-sensitive neurons related

to both type a and b are biased in that position, however, only object a is actually

in that position. Then, the biased feedforward activation to the type layer leads

to type a being selected. This was implemented in our Where-What networks [63]

discussed in Chapter 6. Binding through location selection is Often effective, since

often location information is enough. But it can’t handle transparency or occlusion.

For these cases, binding within the selected location is also needed, which can be

realized by top-down connections within a feature-hierarchy, so that, for example,

higher-layer form can bias the related lower-layer edges.

 

1For intuition, consider a quadratic equation in two variables :1: and y, which has

two possible solutions: {(a, b), (c, d)}. If we know e.g., :1: = a and y = d, we don’t

have to plug in all four combinations to find a single solution. Instead, we can set

a: = a and solve for y.
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The crucial importance of top-down in unguided attention was realized by Tsot-

sos. He proved that selecting features that represent an Object well based on

the activation of the separate feature maps has exponential complexity (is NP-

complete [112]). However, guided by knowledge of the object, the search becomes

linear in the size of the image. One interpretation of that result is that if we know

how the features activate when the object is in each of all possible positions, we

can search through all possible positions (linear-time scan). In other words, without

some guidance, attention is intractable. Tsotsos’ selective tuning model [111] is a

multilayer pyramid-like network that uses a complete feedforward pass to find the

best candidate location and type and a complete feedback pass to focus attention, by

inhibiting non-selected features and locations. Gating units perform selection from

the top-down. Some differences between the selective tuning (ST) model and the

Where-What networks are that ST uses top-down selection (gating) and top-down

inhibition through vvinner-take-all, while WWN uses top-down excitation through

weighted connections; additionally WWN uses multiple motor areas, for controlling

and sensing an agent’s actions, while ST uses a single area of interpretive output

nodes. With respect to the binding problem, by enforcing WTA on the output

layer and only using top-down originating from the output layer, ST effectively uses

combination neurons, which run into the combinatorial problem.

2.3 Functional Architecture Of the Visual Cortex

It has so far been very difficult to map the mind onto the brain. Yet, some evidence

and principles are emerging that are very promising. Studies of cortex can lead to

intuition in how to design and implement networks.
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2.3.1 Distributed Hierarchical Processing

One can think of the cerebral cortex as a vertical hierarchy. In such a hierarchy,

sensations from outside stimuli enter at the bottom (such as light interacting with

the photoreceptors of the retina) and influences the system, traveling upwards to-

wards motor areas, which control movement and behavior. A study and model of

hierarchical organization of the areas Of the primate visual system can be found

in [71], and later [32] (see [14] for an overview). Each area in cortex exhibits the

same type of six-layered organization. Figure 2.1 illustrates this idea by displaying

a partial hierarchy of visual areas.

The visual pathway is composed of two separate pathways. Experiments by

Mishkin [74] showed that the lower pathway, called the ventral pathway and leading

to IT, specializes in “what” information (recognition). The other path is called the

dorsal, or “where” pathway. It is implicated in visuomotor reaching, thus encoding

Object location. Why Should there be two different pathways for what and where?

For a particular Object, the location in the visual field has very little to do with

the identity — where the Object is seen does not raise or lower the likelihood of

its category too much. So, object class is, at least somewhat, invariant to visual

field location. And the Opposite seems true as well: object location is invariant

to its identity. The two diverging pathways come together later at the prefrontal

areas, where information is integrated from multiple modalities. The prefrontal

areas project to motor areas, which control movement and behaviors like speech.

Figure 2.2 Shows some of the sensorimotor pathways through human cortex. For

each pathway, information flows in both directions.

Neurons fire all along the visual pathway in object recognition. Objects seem

to be represented in a hierarchical and distributed way along this pathway. At

lower levels (V1 and V2), neurons’ firing is selective for features such as oriented

edges [42], disparity [6,21], color, and motion [92]. V4 seems to be selective for local
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Figure 2.1: As the first figure in this dissertation, I must note the following: Images

in this dissertation are presented in color. This figure shows a partial model of a visual

hierarchy, starting from sensor cells in the retina and progressing to inferotemporal cortex

(IT), an area implicated in visual object recognition. Information progresses through these

pathways and beyond and eventually to later motor areas (not shown). All connections

shown are bidirectional. Each area is organized into six-layers of highly interconnected

neurons. The different areas in cortex, all have this same general six-layer connectivity

pattern [50]. A core idea is the hierarchical arrangement of neural areas on many levels,

from sensors to motors, with each area’s suborganization being six-layered. Figure adapted

and modified from [71].
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Auditory Motor

Figure 2.2: Some pathways through different cortical areas for different sensory modali-

ties. The numbers indicate the numerical classification of each cortical area originally by

Brodmann in 1909 [50]. There are two different pathways by which visual information

travels — it has been found that one pathway is for identity and categorization (“what”)

and the other has more to do with location (e.g., how to reach for the object - “where”).

The somatosensory, auditory and visual information progresses through different path-

ways, converging at premotor and prefrontal areas. The premotor area goes to the motor

cortex, which handles movement and action representation. All paths are bidirectional.

Figure courtesy of Juyang Weng.
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shape features [83]. In the later IT area, neurons are found to fire in response to

abstract things like faces or places (interestingly such neurons are grouped together

in these areas). Hubel and Wiesel’s discovery of orientation selectivity of V1 neurons

inspired the study of “functional architecture” of the visual cortex, which has led to

an immense research effort.

Yet mapping the functional architecture is diflicult. In 1991, Felleman and Van

Essen [33] provided a hierarchical diagram of different cortical areas in vision; ad-

ditionally they mapped out the connectivity between the visual cortical areas (in

the macaque monkey). They organized 32 different visual areas into 14 levels of

cortical processing, and many areas were connected (there is a higher probability

closer areas are connected), almost always in a bidirectional way. The complexity of

the architecture is not encouraging. The ftmctional —— e.g., the type of information

that is selected for —- purpose of only a subset of the neurons in only a few of these

32 areas is known. It’s not likely this mapping could be used an explicit blueprint

for modeling due to the lack of information about function and its high complexity.

But directly modeling mature structure is probably not necessary, due to evidence

supporting a developmental approach. There are general principles of organization

behind the complex architecture and multi-area selective wiring.

2.3.2 Input Driven Organization

The concept Of a developmental program in an artificial agent is analogous to the

genome in a biological agent. In biological agents, development starts within a

single cell, called the zygote, containing the genome of the organism. All physical

and mental development thereafter is dependent on the genome’s coding, meaning

that the emergence of behaviors and skills is a process driven by the genes. The

human genome contains less than 30,000 genes [95]. Compare that to the estimated

1011 neurons and 1014 synapses in the central nervous system Of a mature adult.

23



The discrepancy in number between the two estimates implies that all the different

cortical functions, such as edge detection, shape detection, face detection, object

recognition, motor control, etc. cannot be described in the genome.

Many neurons in the first layer of the visual cortex (known as V1) develop sen-

sitivity to edges at preferred orientations [43]. Are these low-level feature detectors

in human vision pre-defined —— hardcoded within the genome? Evidence suggests

the answer is no. Blakemore and Cooper’s 1970 experiment [11] and Sur’s work on

“rewiring” a ferret’s auditory cortex using visual information showed that feature

detectors are developed. In [56], an experiment was done on a newborn ferret where

input from the visual sensors was redirected to the auditory cortex, and input from

the auditory sensors was disconnected. It was found, after some experience, that

what would have been the auditory cortex in a normal ferret had altered its rep-

resentations to function as the visual cortex for the “rewired” ferret. Thus, it is

thought that the function of the different cortical areas develops as a result of the

same mechanism throughout. The evidence suggests that cortical ftmction and orga-

nization is input-driven. Therefore the only reason developed neurons will respond

to different stimuli is because they adapt to different types of input. That is, the

Operations done by each neuron are the same, but the input is different, so they will

adapt to detect different features. This suggests the same learning mechanisms are

active at different areas of the cortex. This notion inspired local learning rules for

self-organization —- feature extraction and automatic selective wiring — described

in Chapters 3 and 4.

2.3.3 Cortical Circuitry

Cortical neurons in any layer derive their representations via input connections from

other neurons from three locations: from earlier layers and areas (ascending or

bottom-up), from the same layer (lateral), and from later layers and areas (descend-
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ing or top-down). There are both excitatory and inhibitory connections. About 85%

of the connections are excitatory [29].

Excitatory top-down — feedback — connections are more numerous and gener-

ally more difluse than the bottom-up connections. They have been assumed to play

a modulatory role, while the bottom-up connections were considered as the directed

information carriers [14]. Driving connections move information while modulatory

connections modify the activity of the driving connections. But knowledge of the

specific computational roles — especially in development — played by the top-down

excitatory connections is not yet known. There is evidence that these connections’

are quite important for visual classification ability [104]. It is known they play a

crucial role in perception over time, which seems to require some recurrence in the

circuits. There is much evidence of the top-down connections’ impact on visual

awareness for functions such as enabling segmentation between an Object and its

background [102], perceptual filling in [57], and awareness of visual motion [82].

The role of the top-down connections in brain area organization and functional

development is very much unknown. In mammalian cortex, later visual cortical

areas include functionally Specific regions in which neurons that respond to many

class variations are spatially localized. Neurons in the inferotemporal (IT) area,

along the ventral pathway, have been implicated in object and class recognition [98].

Further, there are areas that seem to have been developed to represent a Specific

category of stimuli. These stimuli in IT include faces [26], localized within the

fusiform face area (FFA) and places, within the parahippocampal place area (PPA).

Stimuli such as places do not typically have much physical similarity. Could top-

down and lateral excitatory connections lead to these abstractly grouped areas of

cortex? The theory and results in Chapter 4 describes a method where top-down

connections can cause biased compression of information so that important (relevant)

information has a higher priority than irrelevant information; additionally top-down
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and lateral excitation is shown to lead to such grouped areas. Chapter 5 describes

a method in which top-down connections can cause temporal processing.

2.3.4 Smoothness and Modularity

Many cortices, such as the somatosensory, motor, and visual, have been observed

to be organized topographically. The smooth topographic organization of orienta-

tion selectivity in neurons in primary visual cortex (V1) is classically well known.

At higher levels, this smooth organization gives way to a modular organization [15].

How does the cortex develop local topography, which seemingly requires smoothness,

yet develop two adjacent areas as modular, which requires a partition that seemingly

violates principles of smooth topography? Tootell [105] measured the responses of

each of the neighboring FFA and PPA areas (in humans using MRI) for stimuli of

different morphs between faces and houses. They found that the two areas could be

considered functionally different modules, since the peaks of the averaged morphed

stimuli responses were in one area or the other — there were no areas that responded

optimally to the morphed features. However, they also found some response for the

morphs could be found in either area. But there was not a smooth interpolation

between the two areas. Looking deeper, smooth V1 organization is not completely

smooth at a lower scale: “the projection of the world into V1 is smooth and con-

tinuous on the macroscopic level, but jittery and occasionally discontinuous on the

_ microscopic scale” (Koch, 2004 [52] — pg. 78). Maldonado et al. [68] measured the

features detected in the pinwheel centers of V1 and found a larger variance of fea-

ture types selected for, but not significantly larger bandwidths. This implies that

selection of features with low correlated firing can coexist nearby, so averaging of

these unrelated nearby features did not necessarily occur.

It is generally assumed that lateral excitation is the impetus for topography to

emerge. Supporting results have been found using the computational self-organizing
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maps [55] (SOM). In cerebral cortex, many lateral connections are clustered close by

the neuron from which they originate, to other nearby (i.e., neighboring) neurons.

There are also strong long-range connections to neurons that detect similar features

(e.g., Similar or identical orientations). In the self-organizing maps, an approxima-

tion of lateral excitation is isotropic biasing. That is, a firing neuron will excite all

the neurons around it equally, as a function of radial distance. But in actual cortex,

the close connections are not isotropic, but instead “patchy”. Thus an isotropic

function of updating emanating from the winner neuron(s) is not biologically accu-

rate. In [73], it was shown that an orientation map with such patchy connectivity

can develop by incorporating adaptive, limited-range, lateral connections into an

SOM, and using oriented gaussians or natural image patches as stimuli. Lateral

excitatory connectivity was also shown to be the cause of “smoothness” of the map,

meaning the features represented in a small area (containing a few neurons) tend to

be similar. Yet in their mature Simulation cortex, excitatory connections between

neurons that represent dissimilar stimuli (not very statistically correlated) were not

typically present, especially for long-range connections but even for nearby neurons.

Results in Chapter 4 suggest adaptive lateral connections play a crucial role in de-

veloping modularity, and coupled with top-down connections can cause modular and

abstract representation areas. Since top-down originate from the more abstract as-

sociation cortices, and the motor areas, the top—down connections carry information

that can be used to bias what features are currently important (internal attention)

to the task at hand. This idea inspired the approach described in Chapter 5.
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Chapter 3

Developing Neuronal Layers

This chapter presents the Lobe Component Analysis (LCA) technique for general-

purpose neuronal computation. LCA is a candidate technique for developing local

features at any hierarchical layer. The algorithm allows nearly in—place development

of each neuronal layer, anywhere in a network.

3.1 Overview

The biologically inspired Lobe Component Analysis incrementally develops a set of

optimal pattern detectors from a high-dimensional sensory stream. Each feature

detector, which is a vector, is called a “lobe component”. The lobe components

are optimal in the sense that each is the best representation of the observations

that influenced its development. In other words, each feature is selected so that it

maximizes the likelihood of its input history. The optimality is implemented via a

biologically-inspired Hebbian learning rule. A major advantage of the optimality is

that there is no need to manually select (tune) the learning rate for the neurons —

each neuron tunes its own learning rate in the best way.

Over learning, each neuron seeks to latch onto a component (also called source,

cause, feature, etc.) that “caused” the data (such as a vertical edge), and can be used
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to “explain” the data. It does this incrementally over a series of observations. TO

keep other neurons from following the same path, it can laterally inhibit the others;

so neurons must find different components. This nonlinear search is accomplished

in a nearly-optimal way (allowing for some inappropriate observations to fall into a

neuron’s history in the initial organization phase between all the components).

The neurons are ensured to learn different features through competition (lateral

inhibition). LCA uses k-winners-take—all to approximate the neural competition

mechanisms of lateral inhibition. Via the winner-takeall approach, only the most

similar lobe component direction to the input will shift to become nearer to the input

vector direction. The other neurons do not change, unlike e.g., gradient methods

which change all neurons for each sample, therefore LCA has long-term memory.

The technique is purely incremental, and additionally requires no extra storage

besides the lobe components themselves. The learning is mostly local, except the

approximation of lateral inhibition via k-winners take all. The development is almost

in-place.

A neuron’s history and the data that fall into its current Voronoi partition may

not coincide. We used a mechanism called CCI plasticity, which allows each neu-

ron to “forget” its earlier observations, which may not be in its Voronoi partition

anymore. This also provides the network with the ability to deal with nonstation—

ary distributions - the lobe components can eventually adapt to any changes in the

environment (such as lighting changes).

3.2 Concepts and Theory

Consider a simple computational model of a neuron (indexed i) having 17. synaptic

inputs. Its firing rate is modeled by

9i = g(v,-,1a:1 + 222-2202 + + vi’nxn) = g(v,— -x), (3.1)
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where x = ($1,532, ...,xn) is the vector of firing rates Of each of the n input lines,

and the synaptic strength — weight — associated with each input line so, is '02-’33 j =

1, 2, ..., n. Traditionally, g has been a sigmoid function. For the analysis and for the

experiments provided here, 9 is not necessary.

A vector of activity on the input lines x is in the sample space: x E X. From

the above, note that a neuron’s weight vector is also in this space v,- 6 X. A weight

vector is called a lobe component.

3.2.1 Belongingness

Belongingness defines the assignment of samples to lobe components. Given a limited

resource of c neurons, divide the sample space X into c mutually nonoverlapping

regions, called lobe regions:

X = R1 U R2 U U Rc, (3.2)

Each lobe region is represented by a single lobe component. Given any input

vector x, it exclusively belongs to a region R,- based on some criteria, e.g. similar-

ity based on some distance metric — x belongs to R,- if it is most similar to the

representative lobe component v,- than the other vectors. Belongingness defines a

partition or tesselation of the input space.

3.2.2 Spatial Optimality

Given an assignment of samples tO a lobe component i, what is the best way to set

Vi?

This, Spatial Optimality is defined in the following sense. For random input vector

x and matrix of all lobe components V, use notation aw) to indicate the lobe

component for the region an input belongs to. Then, we wish to find the set of lobe
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components to minimize the expected square approximation error E||x(V) — x||2.

v* = (v’f,v§, ...,v3) = arg m‘inEllflV) — X“? (3.3)

This spatial optimality requires that the spatial resource distribution in the layer

is Optimal in minimizing the representational error. This distortion is minimized by

finding V* that minimizes the above expression. For a given partition, LCA provides

an optimal solution [122]. But if the partition must also be determined, the problem

becomes NP-hard [12,81, 128]. LCA is an approximate solution by assuming the set

of samples falling in a lobe region, based on e.g., minimum inner product difference,

is similar to the recent observation history of the representative lobe component.

CCI plasticity, defined below, allows old observations to be forgotten.

3.2.3 Temporal Optimality

Incremental (Hebbian) learning algorithms using a single learning rate may find the

correct direction Of vector change, but will not always take the best “step” towards

the goal at each update.

Let u(t) be the neuronal internal observation (NIO), which for LCA is defined

as response-weighted input: u(t)

as x(t)-v(t-1)

“(t’ “ IIV(t-1)ll “‘3
 (3.4)

The synaptic weight vector v(t) is estimated from a series Of observations U(t) =

{u(l), u(2), ..., u(t)} drawn from a probability density p(u) for this source. Suppose

the learning rate 77t is for N10 u(t) at time t. How can all the learning rates

n1, n2, ..., Wt: be set so that the estimated lobe component v(t) at every time t has

the minimum error while the search proceeds along its nonlinear trajectory toward

its intended target weight vector v*?
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Let S(t) be the set of all possible estimators for v from the set of observations

U(t) A temporally optimal estimator means that every update at t, v is spatially

optimal over U(t):

nave» -v*u2. (3.5)minimum-error(t) = min

v(U(t))ES(t)

for all t = 1,2,3,4,

3.2.4 Solution

According to the theory of Principal Component Analysis (PCA) (e.g., see [49]),

the principal component of the conditional covariance matrix Ex,i (conditioned on

x belonging to R2 for lobe component i) is spatially optimal for lobe component i.

Now, we need to compute this solution from the data.

First, note v,- satisfies )‘i,1Vi = 21:,ivi-

Replacing 233,,- by the estimated sample covariance matrix of column vector 2:,

we have

Aim s itzl x(t)x<t)Tv.- = % Elsa) -v.>x<t). (3.6)
:: t:

We can see that the best lobe component vector Vi: scaled by “energy estimate”

eigenvalue )‘i,1’ can be estimated by the average of the input vector x(t) weighted

by the linearized response x(t) - v,- whenever x(t) belongs to Ri-

3.2.5 Incremental Solution

For in-place development, each neuron does not have extra space to store all the

training samples x(t). Instead, it has to update synapses incrementally. The incre-

mental solution to the first principal component follows CCI PCA [125]:

If the i-th neuron v,- (t— 1) at time t—1 has already been computed using previous
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t - 1 inputs x(l),x(2), ...,x(t — 1), the neuron can be updated into vz-(t) using the

current sample defined from x(t) as

 

_ x(t) - vi(t — 1)

"t “ ivttt — 1)“ x‘” ‘3'”

Then Eq. (3.6) states that the lobe component vector is estimated by the average:

)‘i, lviz

“
.
3
l
e

2a (3.8)

Statistical estimation theory reveals that for many distributions (e.g., Gaussian

and exponential distributions), the sample mean is the most efficient estimator of

the population mean (see, e.g., Theorem 4.1, p. 429-430 of Lehmann [61]). The

sample mean is the maximum likelihood estimator for the population mean. In

other words, no other estimator in Eq. (3.8) could reach as low of an error given

the observations.

Intuitively, each lobe component i develops v,- tO be the expectation of its

response-weighted input.

3.2.6 CCI Plasticity

The sensory environment Of a set of lobe components is not stationary, especially

early on. Therefore, the sensory input process is a nonstationary process too. The

CCI plasticity technique below which gradually “forgets” old “observations” (which

use bad xt when t is small) while keeping the estimator quasi-optimally efficient.

The amnesic mean is defined as:

j,(t) = t- 1 - Amie—1),, 1 + u(t)
t t :rt (3.9)

where u(t) is the amnesic function depending on t. If u E 0, the above gives the
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straight incremental mean. We adopt a three—sectioned profile of u(t):

 

0 . ift _<_ t1,

u(t)=< c(t-t1)/(t2—t1) iftl <tgt2, (3.10)

[c+(t—t2)/r m2 < t,

in which, e.g., c = 2,r = 2000. As can be seen above, u(t) has three intervals.

When t is small, straight incremental average is computed. By the second interval,

we hope the lobe component has latched onto a cause, so we increase forgetting

rapidly so it can lose the earliest Observations before it found its path. Until the

third interval, forgetting decreases to a very small (but nonzero) rate, to allow for

long-term plasticity.

3.3 Algorithm

The Candid Covariance-free Incremental LCA algorithm incrementally updates c

neurons represented by the column vectors v1 (t), v2 (t), ..., vc(t) from samples

x(l), x(2), The length of v,- will be the variance of projections Of the vectors x(t)

in the i-th region onto vi.

Initialization —— Sequentially initialize c cells using first 0 inputs: vz-(O) = x(t) and

set cell-update age n,- = 1, for i = 1, 2, ..., c.

“Live.” For t = c + 1, c + 2, ..., do

1. Pre-competitive response potential. Compute potential for all neurons: For all i

with 1 S i S c, compute the responselz

._ X0) "’10 - 1)

“— “vat—1)” ’

1Here we present linear response, but the entire system is nonlinear system due

to the top-k mechanism used.

 (3.11)

 

34

 



2. Lateral inhibition. Rank k + 1 top winners so that after ranking, 311 2 y2... 2 ye,

as ranked responses2

Use a linear function to scale the response:

31% = (92' — yk+1)/(yl — Elk—+1), (3-12)

for i = 1,2, ...,k. All other neurons do not fire: y,- = 0 for i = k + 1,k + 2, ...,c.

3. Optimal Hebbian learning. Update only the top It winner neurons v -, for all j in

the set of top It: winning neurons, using its temporally scheduled plasticity:

vj (t) = wlvj(t — 1) + wgij(t), (3.13)

where the cell’s scheduled plasticity is determined automatically by its two update-

age dependent weights, called retention rate and learning rate, respectively:

 

”(3') - 1 — #(nj) 1 + #05)

“’1 = n. 1:02 = ——
.7

”j , (3.14)

with wl + w2 E 1.

4. Long-term memory. Update the real-valued neuron “age” n(j) only for the

winners: nj +— nj +313, j = 1, 2, ..., k (g,7 = 1 for the top winner). All other neurons

i that do not update, keep their age and weights unchanged: v,- (t) = v,- (t -— 1).

 

2For computational efliciency, this non-iterative ranking mechanism replaces re-

peated iterations that take place among a large number of two-way connected neu-

rons in the same layer.
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Figure 3.1: Example of a natural image used in the experiment.

3.4 Experiments

3.4.1 Natural Images

The thirteen images available at http : //www . cis .hut . f i/proj ects/ica/imageica/

were used as examples of real—world “natural” images, i.e., images whose statistics

are representative of the signals we interpret through vision. For the input of each

experiment, we incrementally and select a 16 x 16 pixel patch from a random loca-

tion in a random image, and concatenate it into a column vector. ‘One of the images

used in the experiment is shown in Figure 3.1.

Earlier works [?,65] have already shown that LCA extracts orientation selective

features from natural image input.

Figure 3.2 shows the result when using LCA on 256 neurons and 1,500,000

whitened input samples. The lobe components in the image are ordered by the

number of times each was the winner during the procedure. The component with

the most wins is at the top left of the image grid, and it progresses through each

row until the one with the least wins, at the bottom right.

Whitening. Whitening is a preprocessing procedure that decorrelates the inputs.

It projects each sample along the principle components, but also adjusting by the
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scale of each. The whitened sample vector x is computed from the original sample x

as a = Wx, where W = VD is the whitening matrix. V is the matrix where each

principal component v1, v2, ..., V7; is a column vector, and D is a diagonal matrix

where the matrix element at row and column i is i, where )‘i is the eigenvalue of

”i- For a lobe component, it must first be dewhitened in order to display properly.

For example, to restore the original input vector, x = VD’li, is the dewhitening

procedure.

Figure 3.2: Lobe components from natural images (with whitening).

Figure 3.3 shows the result when whitening is not used. The filters are ordered

in the same way as the first experiment. In this case, although they do show a pref-

erence for certain orientations, most filters are not localized, meaning the receptive

fields of each are the entire 16 x 16 window.

Due to the speed of both the algorithm and the programmed implementation,

these experiments over 1,500,000 samples took less than 30 minutes on a Pentium

M 2.0GHz PC with 1.0GB memory. The overall process is summarized in Figure

??.
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Figure 3.3: Lobe components from natural images (without whitening)

3.4.2 Hebbian Updating

The purpose of this section is to show the effect of LCA’s Optimality, especially com-

pared to typical Hebbian updating rules, which set a single learning rate manually.

These experiments originally done for the LCA article by Weng & Luciw, 2009 [122].

The basic Hebbian form [23, 38] for updating the weight vector v of a neuron is:

Av = ny(v,x)x (3.15)

where v is the amount of update for the weight vector v by executing v 4— v + Av,

77 the learning rate, x the vector input (pre-synaptic activity).

Oja’s classic neuron updating algorithm [77] is an algorithm that follows Eq. (3.15)

for incrementally computing the first principle component, which is spatially optimal

as discussed in earlier sections. Like LCA, its N10 is response-weighted input.

AV = W(t)(X(t) - Y(t)V(t)) (3-16)

38



where y(t) = xT(t)v(t) is the neuronal response. This version must be used with

small 17 (e.g., n = 10‘3) for stability. If stable, the lengths of the vectors will tend

to unit.

A stable two-step version of Eq. (3.16) uses normalization. It aligns directly with

Eq. (3.15) and uses time-varying n is:

Av = n<t><xT<t)v<t»x<t). v «— mm: (3.17)

We called it “Hebbian with TVLR (time-varying learning rate)”.

The “dot-product” version of the SOM updating rule [55] (page 115) is also

considered as incremental neuronal learning:

Vi“) + ”(03(0)

llvz- (t) + n(t)x(t) M
(3-18)

where v,- is the winning component vector at time t. The N10 used by SOM’s rule

Vi(t + I.) =
 

is u = x (not weighted by response). Without response-weighting, this updating

rule did not perform successfully in these tests.

All of the above use a single learning rate parameter to adapt the neuron weights

to each new updating input, and a method to bound the strengths of synaptic

efficacies (e.g., vector normalization). CCI LCA weights using the time-varying

retention rate wl (t) and learning rate w2(t), where wl (t) E w2(t), in order to

maintain the energy estimate. With the energy gone in the schemes above, there

is no way to adjust the learning rate v(t) to be equivalent to the CCI scheduling.

Therefore, the result of Eqs. (3.16), (3.17) and (4.16) cannot be optimal.

For tuning the time-varying learning rate n(t), we used three example suggested

[114] learning rates for u(t), which were ‘ linear’: 77(t) = n(0)(1 — t/T), ’power’:

n(t) = 17(0) (O.005/77(0))”/T and ’inv’: u(t) = n(0)/(1 +100t/T). The initial

learning rate 77(0) was 0.1 or 0.5. Plasticity parameters for LCA’S u were t1 =
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10, t2 = 100, c = 5,r = 5000.

Experiment: Stationary Distributions

The statistics of natural images are known to be highly non-Gaussian [91], and the

responses of V1 neurons to natural input have a response profile characterized by

high kurtosis. The Laplacian distribution is non-Gaussian and has high kurtosis, so

we test estimation Of the principle component of Laplacian distributions.

Data was randomly drawn from a d—dimensional Laplacian, with pdf: f(ml71’ , b) =

215 exp (—J$—_bfifl). It is a combination of d one-dimensional Laplacians, each of

which is best explained with a single vector in the axis direction, with length equal

to the variance. All dimensions had zero mean (71’ = 0) and unit variance (b = 1).

The true sources to be extracted from this distribution are the d directions, with

length b.

The number of neurons is set to d, and initialized to random samples drawn

from the distribution. For a fair comparison, all methods started from the same

initialization. The training length (maximum number of data points) was T =

10000 d, so that each neuron would on average have 10000 updates. Dimension d

was 25 or 100, and results were averaged over 50 trials. The results measure how

well the neurons’ directions match the direction of the true components.

Results are shown in Figs. 3.4 and 3.5. The “SOM” curve shows the best-

performing variant among the Six different learning rate functions and initial learning

rates, as suggested [114]. None of them led to extraction of the true components (the

best one uses 17(0) = 0.1 and the linear tuning function — in both cases). For Oja’s

rule with time-varying learning rate, we show only 17(0) = 0.1 since the alternate

curves (77(0) = 0.5) were uniformly worse. These results Show the effect of LCA’s

dual optimality. In 25-dimensions, when LCA has achieved 20% error, the best other

Hebbian method has only achieved 60% error. Similarly, in 100-dimensions, when
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Figure 3.4: Comparison Of incremental neuronal updating methods. \Ve compare. in 25

and 100 dimensions. This figure shows 100-d results. Methods used were (i) “dot—product"

SOM. (ii) Oja’s rule with fixed learning rate 10’3. (iii) Standard Hebbian updating with

three functions for tuning the time-varying learning rates (TVLR): linear. power. and

inverse, and (iv) CCI LCA. LCA. with its temporal optimality. outperforms all other

methods. Consider this as a "race" from start (same initialization) to finish (0% error).

Note how quickly it achieves short distance to the goal compared with other methods. CCI

LCA beats the compared methods. E.g.. after 28,500 samples. when LCA has covered

56% distance, the next closest method has only covered 24% distance.
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while the next closest method has only covered 17% distance.
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LCA has achieved 30% error, the best compared method is still at 70% error. The

results for LCA will not be perfect due to the nonstationarity that occurs due to

self-organization.

Time-varying distributions: plasticity

It is important for an agent to have the capability to adapt to new environments

without catastrophic forgetting Of what was already learned.

We performed a comparison Of how well the best-performing of the algorithms

we tested before adapt to a time-varying distribution. We set up a changing envi-

ronment as follows.

This is motivated by how a teacher will emphasize new material to the class, and

only more briefly’review old material. There are five phases. In the first phase, until

time 200,000, the data is drawn from 70 orthogonal Laplacian components that span

a 70-dimensional space. In the second phase, from time 200,000 to 400,000, the data

is drawn from one of 10 new components in the 70 — d space (rotated to not lie on

axes directions) with a 50% chance or from one of the original 70 (using the original

rotations) with 50% chance. In the third phase, from time 400,000 to 600,000,

the data is drawn from either 10 previously unseen components or the original 70

(50% chance of either). The forth phase, until time 800,000, is similar — 10 more

previously unseen components are introduced. In the fifth phase, until T =1,000,000,

we draw from all 100 possible components (and each has a 1% probability). We use

100 neurons over all phases (never increases or decreases). There are finally 100

neurons for 100 components, but in early phases we have extra resource (e.g., in

phase one, we have 100 neurons for 70 components).

Results, averaged over 50 runs with different rotation matrices for each run, are

shown in Fig. 3.6 and Fig. 3.7. LCA outperforms the other two variants — it

is better at adaptation, and suffers a more graceful forgetting of data that is not
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Figure 3.6: Comparison of LCA with two other Hebbian learning variants for a time-

varying distribution. This shows average error for all available components

available until time 200,000, 80 until 400,000. 90 until 600.000 and 100 until

. There are 70

1,000,000. We

expect a slight degradation in overall performance when new data. is introduced due to the

limited resource always available (100 neurons). The first jump of LCA at

a loss of 3.7% of the distance it had traveled to that point.
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Figure 3.7: Comparison of LCA with two other Hebbian learning variants for a time-

varying distribution. This shows how well the neurons adapt to the 10 components added

at time 200,000 (called newdata1), and then how well they remember them (they are

observed in only the second and fifth phases). Initially, this new data is learned well. At

time 400,000, newdata2 begins to be observed, and newdata1 will not be observed until

time 800,000. Note the “forgetting” of the non-LCA methods in comparison to the more

graceful degradation of LCA. The plots focusing on newdata2 and newdata3 are similar.



currently observed. We note that the “re—learning” in the last phase does not match

the previously observed performance. This is due to two reasons: the lessening of

plasticity for larger neuron ages, and the increasing of the manifold of the data while

retaining only a fixed representation resource.

3.5 Bibliographical Notes

The in-place learning concept and the LCA algorithm were introduced in Weng

& Zhang, 2006 [124], and used as each layer in our Multi-layer In-place Learning

Networks [64, 120]. The MILN-based model of six-layer cerebral cortex [121], which

was informed by the work of Felleman & Van Essen [32], Callaway and coworkers [18]

and Grossberg [85], used LCA on both its supervised (L2/3) and unsupervised (L4)

functional layers. The journal version of LCA [122] was more comprehensive and

presented the comparisons with Hebbian learning rules included here. The multilayer

models use LCA on each layer.

LCA was inspired by principal components analysis (PCA) and independent

component analysis (ICA). Principal components are linearly the most expressive

features of a dataset, in terms of least mean square error of the projections [7]. Due to

orthogonality constraints, most principal components do not match the causes of the

image patch. In ICA, the constraints are not that of orthogonality but independence.

With respect to image patches, each patch can be thought of as a combination of

independent sources (such as edges at particular orientations).

An ICA approach was applied to natural images instead of task-specific views

(e.g., from a single object) and developed orientation selective features similar to

those found in V1 cortex and Gabor filters [8]. A similar result was found for the

non-negative matrix factorization [60] method, which models each image patch as a

linear combination of sources, where no component’s contribution could be negative.

But as discussed in [66], a problem with the ICA and NNMF methods is that they
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treat each patch as a linear superposition (weighted sum) of the independent sources,

which is not true. So they do not always extract the independent components [66].

It is more appropriate to use mas: instead of sum, since real data suggests only one

source (i.e., cause) explains each pixel. A formal treatment of the idea is found in

Lucke, 2008 [66], who derived an approximate Hebbian learning rule for non-linear

component extraction. Earlier, Weng [124] had shown how non-linear extraction

could be done with LCA.

Such models are fundamentally trying to set their parameters so that they ex-

plain the observed data in the best way. Given a preselected model, the theory

of maximum likelihood estimation gives an optimality framework about how to set

the model’s parameters in the best way to explain the data. However, actual max-

imum likelihood learning is diflicult for visual feature extraction, due to the model

selection problem, large number of parameters, and local minima, making gradi-

ent based methods dificult and initialization-dependent. From maximum likelihood

theory, Hinton derived [an approximate rule for following the gradient called con-

trastive divergence, which shows good performance [39]. Contrastive divergence de

rives Vl-like filters when an additional sparse firing criterion is introduced [69], yet

the sparseness used has the same problem as ICA since it interprets image patches

as linear combinations of independent causes. LCA and Lucke’s maximal cause

technique [66] both have maximum likelihood interpretations. In LCA, each neuron

is meant to “latch on” to a single independent cause early on in learning and via

winners-takeall build a history of observations containing that cause. The resulting

weight explains that history of observations in the best possible way, which likely

reflects the core cause itself (the target). The other network instantiations do not

consider this spatiotemporal optimality and thus require learning rates to be small

so that neurons do not overshoot their targets. But this dramatically slows down

the convergence, as shown by the comparison experiments between LCA and other
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Hebbian learning networks here.
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Chapter 4

Top-Down Connections for

Semantic Self-Organization

The representation learning problem boils down to two criteria: 1. finding the fea-

tures (neurons) that explain (i.e., represent) experience (data) in the best way, and

2. represent what is more important to the agent more than what is less important,

given a limited resource. The first objective was the subject of Chapter 3. This

chapter presents a method for dealing with the second criteria.

Networks here utilize three layers, and perform a task of recognition from vision.

The third layer is the motor layer, where firing of neurons controls action. The

visual sample is labeled by an action module that takes the motor layer’s firing,

selects the top-firing neuron, and produces the label associated with it. The motor

layer itself is not necessarily WTA. These results apply generally to any feature layer

with bottom-up and top-down excitatory inputs.

This chapter presents a method for utilizing the top-down connections to de-

velop a biased compression (criteria #2 above). Coupled with lateral excitation,

the method develops networks with modular connectivity. Modules contain a motor

neuron and multiple feature neurons. The motor neuron and feature neurons project

in an excitatory way almost exclusively within the module, while a few “hub” feature
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neurons have connections to multiple motor neuronsl. Using hardcoded isotropic

lateral excitation, modules additionally become grouped, in that all feature neurons

are in a single connected location on the feature map. This was called topographic

class grouping [64]. Using adaptive lateral excitation [62], modules again emerged,

but the grouping was less prevalent and there were no “hub” feature neurons.

4.1 Motivation

It is a core challenge of an autonomous developmental system to automatically

generate efficient and effective internal representation from a raw data stream, given

a limited resource. This means learning to compress the input so that the important

input variation is given higher priority than the unimportant variation. Examples of

variation in object recognition include translation, rotation, scale, lighting, etc. For a

classification problem, within-class variations (perhaps lighting) are not as important

as between-class variations (perhaps shape). What is important to the agent is

determined by its behavior, as encapsulated in motor areas of the network. Agents

with no experience are to be taught what to do in each case, through supervision

and imposed behavior from a teacher.

The cortex does not compress in an unbiased way (e.g., purely reduce redun-

dancy [5]) nor does it derive a compact coding, where, for example, each object

is represented by its own neuron. This type of specialization is too expensive (Ito

and Gilbert, 1999 [45], p 21). Instead, the coding and compression of information

seems to be selective. Some information may be lost, but the important informa-

tion for completing the task is likely to be retained. As stated by Barlow, “The

best way to code information depends on the use that is to be made of it” (Barlow,

2001 [5]). Behavior and actions must bias organization and coding of earlier sensory

 

1Motor neurons can be considered as within-module hubs [15].
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cortical areas. Feedback connections from later levels to earlier levels seem likely

causes of such bias. There are just as many, if not more, feedback connections than

feedforward connections (Ito and Gilbert, 1999 [45], p 18).

4.2 Concepts and Theory

4.2.1 Three Layer Network
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Figure 4.1: In this model, neurons are placed on different layers in a hierarchy — termi-

nating at sensors at the bottom and terminating at motors at the top. Each individual

neuron has three types of input projections: bottom-up, lateral, and top-down.

The three-layer network architecture used for theory and experiments in this

chapter is shown in Fig. 5.2. There are d pixels (“sensory neurons”), n feature

neurons and m motor neurons. Let the number of classes in the input be equal to

the number of motor neurons.
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Figure 4.2: The three-layer network structure. The internal layer 1 takes three types

of input: bottom-up input from layer 0, top—down input from layer 2 and lateral input

from the neurons in the same layer. The top-down input is considered delayed as it is

the layer 2 firing from the last time step. The “D” module represents this delay. A circle

in a layer represents a neuron. For simplicity. this is a fully connected network: All the

neurons in a layer takes input from every neuron in the later layer and the earlier layer. For

every neuron (white) in layer 1, its faraway neurons (red) in the same layer are inhibitory

(which feed inhibitory signals to the white neuron) and its nearby neurons (green) in the

same layer are excitatory (which feed excitatory signals to the white neuron). Neurons

connected with inhibitory lateral connections compete so that fewer neurons in layer 1

will win for firing (sparse coding [80]) which leads to sparse neuronal update (only top-k

neurons will fire and update). Figure courtesy of Juyang Weng.



Input. Although the networks operate incrementally and in an open-ended fashion,

for simplicity consider a set of data. Let S be the supervised (training) set of

stimuli, which contains input/output data, where the correct output is provided by

a teacher. Any input vector x,- is for example the raw pixel values of a digital image

and its corresponding output 22- is the motor vector selecting the correct label. For

classification, any x,- is a member of one of m classes. The corresponding output

vector from the stimuli set zz- a vector of zeros except for a single one that denotes its

class membership: (22-(cj) = 1) —» (z,- 6 class cj). Each dimension of z is considered

a distinct action.

Learning. A network uses data in S to learn so that it is able to provide the correct

action for a given test sample: x ¢ S, which is similar to the training data. In other

words, given a case that was not taught by the teacher, the network should act in

the correct way, where correctness is understood by the teacher.

Action. We utilize a hardcoded action production module, which simply uses the

index of the motor neuron with the largest firing rate: arg maxlSiSm{zz-}. It maps

the label to a word, that was used in training to teach the class.

Connection types. There are four connections types for a general network layer:

bottom-up excitation, top-down excitation, lateral excitation, and lateral inhibition,

as shown in Fig. 4.1. In general, neurons on any layer l are connected from the lower

and higher layers through excitatory input connections (dendrites and synapses)

and excitatory output connections (axons). These grow and are adjusted through

learning. Neurons are connected to neurons on the same layer through inhibitory

connections. In the model here, the inhibitory connections are not weighted nor

learned. They are handled through approximate methods, such as winner-take—all,

which are computationally more efficient and easier to deal with. In this section,

the lateral excitation is hardcoded and isotropic.

Output and Input Spaces. The firing rate vector is in the output space of
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Figure 4.3: How bottom-up and t0p-down connections coincide in a fully connected net-

work. Looking at one neuron, the fan—in weight vector deals with bottom-up sensitivity

while the fan-out weight deals with top-down sensitivity. In the model presented here, the

weights are shared among each two-way weight pairs. So, a neuron on layer j + 1 will have

a bottom-up weight the same as the top-down weight of a neuron on layer 3'.

our layer l, denoted )2. Let the layer l — 1 closer to the sensors has an output

space X and the layer l + 1 closer to the motors has an output space Z. Given

the diagram Fig. 5.2, we can see that in our case the output spaces of the lowest

and highest layers are the same as the sensory input and motor output spaces,

respectively. If there’s no top-down connections, the input space of layer l is X.

On the other hand, if there are top-down connections to layer l, the input space

contains all paired vectors from X x Z, containing both bottom-up and top—down

input: X x Z = {(x,z)|x e X,z E Z}.

Weights. The bottom—up weights of the feature neurons are column vectors in

weight matrix V, which has 17. columns. A key aspect of this model is the bottom-up

weights to layer l + 1 and the top-down weights to layer l are shared (see Fig. 5.3).

Let the bottom-up weight matrix to layer 1 + 1 be W, and the top-down weight

matrix to layer l is M = WT.

4.2.2 Relevant Input is Correlated with Abstract Context

An extraordinary amount of the information we experience can be considered irrel-

evant. Knowledge of what is relevant and what is irrelevant is especially important

during learning. This model proposes that relevance in the input is findable by
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observing what is correlated with imposed action. For example, if a child sees the

shape of the letter “A” on a flashcard, on television, on a sign, etc. and a teacher

gets the child to speak “A” in each case, then the relevant information (the shape of

the letter) does not change too much over the different inputs, but other information

(the surrounding visual scene) changes a lot.

For the network described here, let the image input space X be made up of

relevant subspace R and irrelevant subspace I, where relevance is in terms of the

data class labels: X = I x R (See Fig. 4.4). Projecting samples into the irrelevant

subspace will not aid in class discrimination, but it will help to do so with the

relevant subspace.

Including the higher-layer (more abstract) context space, the relevant subspace

is defined as ’R. x Z:

XxZ=(Ix’R)xZ=Ix(’/ZXZ)

Let an abstract-boosted input vector p to layer 1 be a combination of a output

of layers l— 1 and l+ 1: p = (x, z). We wish to use the higher-layer part to uncover

the relevant subspace R. Self-organization of neurons in the space R x Z will lead

to discriminant features (neurons), through the use of this abstract-boosted input.

4.2.3 Null Space

Linear Discriminant Analysis (LDA) defines relevant information as the set of pro—

jected data onto a linear subspace that can be used to most accurately classify the

data, for any linear subspace of the same dimension.

For the random input vector p, the within-class scatter defines the average co-

variance of a classes samples:
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Figure 4.4: Self-(n'ganization with motor-boosted distances leads to partitions that sep-

arate the classes better. (a) There are two bottom-up dimensions 2:1 and 3:2. Samples

falling in the blue area are from one class and those falling in the red area are another

class (assume uniform densities). The “relevant” and “irrelevant" dimension are shown

by the upper right axes, which are here linear. (b) The effect of self-organization using

nine neurons in the bottom-up space only. Observe from the resulting partitions that the

firing class entropy of the neurons will be high, meaning they are more class-mixed. (c)

Boosting the data with motor information, which here is shown as a single extra dimension

instead of two (for visualization) (d) The effect of self-organization in the boosted space.

and embedding back into two dimensions. Note how the partition boundaries now line up

with the class boundaries and how the data that falls into a given partition is mostly from

the same class (low entropy).

 

    



Sw = Z E (p — u.)T(p - u.) (4.1)
i=1 P667;

where p,- = E[p 6 Ci] indicates the within-class mean for class i. The between-class

scatter defines the covariance of the class means:

SB = 210% - u)T(/a' - u) (4.2)

where p = E[p] is the mean of p.

LDA theory states that the best subspace for linear classification is spanned by

S

the eigenvectors associated with the largest eigenvalues of i. The most discrimi-

SW

vTSBv

nant feature is the first eigenvector, which will maximize T . However, there

v

are many practical difficulties involved in computing this givenvhigh-dimensional

data [97].

Instead of dealing with the above expression directly, some researchers advocated

to attempt to project the between-class scatter information into the null space of

SW and deriving features in this space [19]. The null space of the within-class

scatter is very powerful. Intuitively, if a direction v exists where SWv = 0 and

SBv 75 0, perfect classification can be attained using this v. The null space may

not exist non-trivially with the original data.

As formulated above, the top-down part of the abstract-boosted data is in the

null space of the within-class scatter matrix. If we let matrix Z be an orthogonal

basis of layer 1 + 1’s output space Z, it can be seen that SWZ = 0. Additionally, if

layer l+1 is a classification motor layer, where each dimension represents a different

class and each sample only has one class, then S32 ¢ 0. The space Z is orthogonal

to the subspace defined by the within-class scatter, and can trivially be used for

perfect classification of the training data.

There are two powerful properties associated with X x Z for a classification
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motor, which should be apparent:

Property 4.2.1. Class Separateness: Since each motor dimension is associated with

a diflerent class, distributions for any two classes are guaranteed to be separated in

XxZ.

Property 4.2.2. Similarity Bias: Any two samples from different classes have a

greater distance between one another in X x Z, but any two samples from the same

class have the same distance in X x Z as in X.

We will exploit these properties for a biased self-organization? After learning,

a non-imposed sample is not in X x Z, but is in X. We wish to achieve a good

self-organization using X x Z so performance holds up when Z is no longer available.

4.2.4 Weighted Semantic Similarity

It is useful to be able to control the relative influence of bottom-up and top—down.

When a layer uses paired input p = (X,z), the influence of the motors may not

be sufficient, since the dimension of the input is typically large (e.g., a 40 row and

40 column digital image gives 1600 dimensions) and the dimension of the output is

typically not (e.g., 10 classes). Instead, normalize each input source and control the

relative influence by

X Z

where it is expected that a + ,6 = 1. Setting a = fl = 0.5 gives the bottom-up

and top-down spaces equal influence. Raising ,6 will increase the between class

scatter by increasing the distance between classes in X x Z, as seen in Fig. 4.4. The

normalization places each class distribution on its own unit sphere (when dimension

 

2Here, I focus on classification. Solgi has derived results for the general regression

case [94].
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of layer l—1 is more than two), separate from other classes in X x Z. Normalization

constrains the maximum distance between classes in X x Z. It also reduces the

effect of high-varying dimensions within each class.

Bottom-up and lateral information-based similarity is purely physical and is non-

semantic. Top-down-based similarity is based on more abstract information. If a

network is shown images of a bench and a desk chair, and in each time the teacher

says “chair, chair”, then by the above, a and 6 can be set so that the inner product

angle difference between the two images is very low; even zero (if a = 0 and [3 = 1).

4.2.5 Smoothness

 

Figure 4.5: A layer-one weight vector, around other neighbor weight vectors, viewed as

images, of a neuron exhibiting “harmful” interpolation through 3x3 updating.

Some sort of regularization is necessary. Without it, the placement of neuron

feature vectors may not correspond well to the stimuli density. One method is by

using the idea of neighborhood and neighborhood updating, from the Self-Organizing

Maps [55]. This smoothness approximates lateral excitatory connections which are

more dense closer to the neuron of origin. We use 3 x 3 updating, meaning the

winner neuron will update its weights and so will the neurons adjacent to it.

It is beneficial for most of the neighborhood pulling to be within classes. Smooth-

ness is useful for generalization, but this isotropic type could be harmful. Consider
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a neuron with two neighbors that fire often. This neuron is pulled in X x Z, by

both of its neighbors, without regard to what it actually represents. Pulling places

it in between what the neighbor neurons represent. This could be useful if they

represent a single class, as it would average into a variation that might generalize

well for that class. But if they represent different classes, the averaging effect may

lead to a representation of something that wouldn’t actually ever be experienced

(see Fig. 4.5).

Topographic Class Grouping, discussed later, will emerge via 3 x 3 updating

along with abstract-boosted distance. That leads to helpful interpolation within the

class groups, while neurons in different class groups are protected from one another

by border neurons. This will be discussed in more detail in Section 4.4.

4.3 Algorithm

Here is presented the algorithm for incremental motor-boosted self-organization for

a three layer network. This version handles each sample separately. It is linear time '

complexity in the number of neurons.

LCA is used on each layer for self-organization, as follows:

(y.v,o.a(1>> +— fLCAix.z!v,M.a(1)) (4.4)

(z,W,M,a(2)) .— fLCA(y,O|W,O,a(2)) (4.5)

The feature layer’s input is from two sources: bottom-up and top-down stimuli

(x and 2). It uses the bottom-up weights V = (v1, ...,vn), and top-down weights

M = (m1, ..., Inn). It updates V and the neurons’ ages a(1), and outputs the firing

rate vector y.

The motor layer takes the firing rate y as input and uses the bottom-up weights
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to the motor W = (w1,...,wc). It outputs 2, which is fed back as the top-down

input to Layer 1. In training, 2 is imposed.

In this version, the bottom-up weights to the motor layer and the top—down

weights to the feature layer are shared: W = MT.

For the per-neuron normalization discussed earlier, let V, W, and M be filled

and maintained throughout the below algorithm with normalized columns of V, W

and M (or zero vectors when appropriate). For example: V = (—vl—-, ..., i) =

||V1||2 Ianll

(v1, ...,on).

Initialization3 — Sequentially initialize n synaptic weight vectors (columns of V)

using first n stimuli: Vt = x(t) for t = 1, 2, ..., n. Place these feature neurons evenly

spaced on the d-dimensional feature plane so the distance between non-diagonal

neighbors is one. Fill the weights between layer-one and two (matrices W and M)

with zeros. Set the initial cell ages to one.

1. Sense. Draw a stimulus x from S randomly. Impose the correct action l: the

motor vector is set to 21 = 1 and 22- = 0,‘v’i 7é l.

2. Pre-response. Compute pre-competitive potential vector y for layer-one, using

both bottom-up and top-down:

x A z A

y (— a—V + B—M. (4.6)

”X“ “Z“

3. Lateral-Inhibition. To compute the firing vector y for the feature layer using

lateral inhibition: Set all neurons’ firing to zero except the highest k1 pre—responses

(k1 = 1 for winner-take all). If there are ties, break them randomly. Relatively

scale the firing neurons’ responses as follows: Rank the elements of 9. Let 31 be the

highest value, 3k be the k—th highest and Sk+1 be the k + l-th highest. Then set

each neuron response as:

 

3This initialization method is a key for fast development; it is better if the first

n samples contain some from all different classes.
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.. _ s

0, otherwise

4. Optimal Hebbian Learning for Feature Neurons. Each layer-one firing

neuron, corresponding to a nonzero element of y, updates its bottom-up weights to

be more similar to the bottom-up stimulus x. For each updating neuron i =

1 + p(a(1))
1, ..., k1, first set its updating weight based on this neuron’s age: '7,- <—%,

a.

i

where p is the CCI plasticity function to control fast adaptation and long-term

plasticity [122]. Then, update the bottom-up weights:

Vi *- (1 - vim: + 72- a; x (4.8)

and this neuron’s age a?) <— 0(1) + 1.

5. Lateral Excitation. Each winning neuron’s neighbors in a 3 x 3 neighborhood

update via an approximation of lateral excitation. For each “neighbor” neuron j

that hasn’t already updated, measure the distance between it and the nearest firing

neuron i as ri,j° Set its updating weight based on each neuron’s age and distance:

1 + Mag-1) )
71- «— —— (1 - Ti,3' /2), and update the bottom-up weights for the neighbors

.0)
J

not in the winning set:

Vj 4— (l — fljlvj + 7]: yj x, (4.9)

. I (1) (1) . .

as well as their ages. aj <— aj + rm.

6. Optimal Hebbian Learning for Motor Neurons. On the motor layer, the

winning motor neuron is already known as 1, since the action was imposed. The

2

1 + M] ))
————, then 11 date this

.5» "
updating follows LCA. Set its updating weight: 7 «—

motor neuron’s bottom-up weights:
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w; «— <1 — w; + 7 y. (4.10)

(2) (2)
and update its age: at +— al + 1.

7. Updating Top-Down Weights. Update the top-down weight matrix: M «—

WT.

4.4 Topographic Class Grouping

The above algorithm leads to Topographic Class Grouping in many instances. TCG

means neurons that represent a particular class are grouped together on the neuronal

plane. The importance of TCG is that it allows us to use 3 x 3 updating to regular-

ize the self-organizing network, but we reduce motor interference. With grouping,

interference typically occurs within the same class, where it possible becomes useful

for generalization along the class’ manifold.

To clarify how TCG can emerge, we present a set of conditions sufficient for TCG

to emerge in some cases. Whether or not TCG emerges depends very much on the

class distributions. It may not work if there’s a multi-modal distribution for a single

class, or highly overlapping distributions for two classes. This version is based on

small groups that grow into larger groups.

First define three types of top-down connectivity: linked, border, and unassoci-

ated.

o If IIIileoo > 1 -— e, and mid- > 1 — 6 (for some small 6), neuron i is linked to

class j. A neuron can only be linked to one class. Linked neurons became so

since they mostly won for only a single class.

0 A neuron with its updating age zero (has never won) is unassociated.

0 Otherwise, neuron i is a class-mixed border neuron — border neurons have

updated for samples from multiple classes, but not enough to‘ link to any class.
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Now define the TCG property:

Property 4.4.1. Topographic Class Grouping. A network has this property if there

is a path from every neuron linked to a class to any other neuron linked to the same

class, and there is at least one neuron linked to every class. A path is a sequence of

neurons in which consecutive neurons are adjacent.

Lemma 4.4.2. If there is at least one linked neuron for the current sample’s class,

6 can be set so that no unassociated neuron can win.

The pre-competitive response computation for any neuron i is

X Z

A- — A: — A :. 4.11

y: ‘— allxllv’ +5 uznmz ( l

The top-down part gm- = SWZ—“rfii will be close to [3 for a neuron linked to the

current training class. For unassociated neurons and neurons linked to other classes,

yt,i = 0. If [3 > a + c, then a neuron that is linked to the current imposed class will

always have higher pre-competitive potentials than neurons that are linked to other

classes.

We can establish TCG initially (in a somewhat restrictive manner), by the fol-

lowing:

Base Case: Given the first n samples from n different classes, if the first n winners

are unassociated, the network has TCG. After a neuron wins for the first time, it

and its neighbors are linked to the current class (see algorithm); they also update

bottom-up weights. A simple way to ensure the first n winners are different is to

train from the initialization set, using a single sample from each class. Then, all the

winners will be different if the first it samples are different in X.

Here is more detail about what happens for the first sample from any class Ci:

1. The first sample from a class C,- is imposed and the appropriate motor neuron

i is imposed for the first time.
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2. The motor neuron c,- updates the appropriate column of W with a learning

rate of one, thus becoming sensitive to the feature layer’s firing pattern y

exactly. This firing pattern has k1 neurons and their neighbor neurons firing

(nonzero). Let k1 = 1, so there will only be one neuron 3 x 3 group.

3. The top-down matrix M is updated based on W. Then the neurons that fired

in the feature layer become the only ones with a nonzero top-down weight from

motor neuron i. This establishes the initial group for Ci:

Hypothesis: Assume we have a network with TCG. Step: Now, a new sample

is input from an arbitrary class. TCG will not be violated after the update if the

winner is a linked neuron to the current class, as long as any growing group does

not bisect an existing group (see Fig. 4.8). This is so since the linked winner cannot

convert any neighbor into a neuron linked to a different class. How can we ensure the

winner is always a linked neuron? By Lemma 4.4.2, we can set 6 so no unassociated

neurons will win. As for the border neurons, it’s not possible to guarantee this over

all data distributions. From LCA theory, we know the border neuron is an average

of its response weighted input conditioned on its firing. For sensible data, a border

neuron represents a mixture of different classes, and should lie in a very low density

area, thus not getting much bottom—up support.

Groups will spread and grow since neighbor updating does not pull the neurons

all the way to the winner. The pulled neighbors end up somewhere else in the

density. Figure 4.6 and Figure 4.7 illustrates the incremental grouping and growing

process with simple class areas in 2D and a 1D neuronal array.

TCG is not guaranteed to emerge, even for the conditions above. A bisection is

seen in Fig. 4.8. It should be apparent that the extra degree of freedom allows a

growing class group to break an already existing one in two. But, this might only

happen if one class is trained at a time.
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X1

(1))

Figure 4.6: Topographic class grouping with a 1D neuron array in 2D input space. The

red area contains samples from class one. and the blue area contains samples from class

two. The 10 neurons’ bottom-up vector are circles or squares. Their top-down membership

is shown by the color or shape: Gray neurons are unassociated, black neurons are linked

to class two and white neurons linked to class one. Square neurons are border neurons.

To better understand how TCG emerges. we provide the following four cases. (a) After

initialization, all neurons are unassociated. Only three neurons are drawn to show they are

neighbors. Other neighbor connections are not shown yet. for clarity. (b) Neuron N1 has

won for a nearby sample. becomes linked to class two. Its neighbors are pulled towards it

and also link to class two. Note how N3 is actually pulled into the between-class "chasm”,

and not onto the class distribution.
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X2

  
(<1)

Figure 4.7: Topographic class grouping with a 1D neuron array in 2D input space. This

is a Continuation of the last figure. (c) Over wins by N1, N2 and N5, self—organization

occurred through neighbor pulling. N4 has become a border neuron. and N6 is starting to

be Pulled. (d) A final organization. uncovering the relevant dimension. For this data. the

TGICVant dimension is not linear: it is through the center area of each class distribution,

lengthwise, The final neuron organization mirrors this, and the neurons have organized

along the relevant dimension.
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(b)

Figure 4.8: This shows why TCG cannot be guaranteed in 2D in general. (a) After much

samPIing of class one, and none of class two, the class one area has grown. (b) Further,

after much sampling of class two and none more of class one, the class two area grows,

and happens to cut through the class one area (leaving two buffer zones). Here, TCG did

not emerge.
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4.5 Experiments

It is proposed that top-down connections from a motor layer to a feature layer cause

grouped class areas and more class-specific features on the feature layer, leading

to higher recognition rates overall compared with a network not using top-down

connections. To test this, we developed two types of networks. In the first type, the

feature layer developed and utilized both bottom-up and top-down connections. The

second network type only utilized bottom-up connections. For a fair comparison,

top-down connections were disabled in the testing phase for both network types

tested. Additionally, the weights were frozen in testing.

4.5.1 MNIST Handwritten Digits

The network is meant to take natural images and other real-world modalities as

input. But to study and show the effects of the discussed properties more clearly,

the MNIST database of handwritten digits was used4. This well-known dataset of

70,000 total images (60,000 training, 10,000 testing) contains 10 classes of handwrit-

ten digits - from 0 to 9. Each image is composed of 28 x 28 = 784 pixel intensity

values. The pixels of the image that corresponds to the digit are nonzero inten-

sities. The background pixels equal zero (black). All images have already been

translation-normalized, so that each digit resides in the center of the image. No

other preprocessing was done.

The greedy, “permutation invarian ” [39], method used here is not expected

to top the best performance on this data. In the current form, the network will

evaluate each digit globally - similarity is based on the positions of the non-black

pixels. This makes the network very susceptible to translation, rotation, and scale

invariance. A localized, windowed, method and/or a method that trains via error

 

4It is available at http://yann.lecun.com/exdb/mnist/ .
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gradient following is probably necessary. Other methods (e.g. [58], with local analysis

and deformations) are better suited for the digit recognition problem.

Results
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initial connectivity after development

Figure 4.9: MNIST data represented in a network with 40 X 40 neurons, trained without

top-down connections.

Fig. 4.9 shows the layer-1 neurons in a 40 x 40 grid trained with all training

samples, but not using top-down input. There are areas which can be seen to

correspond to a particular class, but there is no guarantee that the area of a single

class is connected in the topographic map.
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The lower part of Fig. 4.9 shows the development of the bottom-up weights of

the motor neuron corresponding to the digit-1 class. The darker the intensity, the

larger the weight. Due to the sparseness parameter k = 1, the inter-level pathways

have become sparse and refined (most connections have been pruned). As shown, in-

variance is achieved by the positive weights from the corresponding digit “1” neurons

to the corresponding output neuron. Therefore, the within-class invariance shown

at the output layer can be learned from multiple regions in the previous layer.

The TCG algorithm is quite powerful in its class separation ability. Single groups

per class result even for very similar bottom-up inputs, such as the handwritten

digits “4” and “9”, as seen in Fig. 4.10. As summarized in Table 4.2, when top-

down projections are used the error rate is significantly lower (21.3% down to 7.7%)

for this limited set of 10 x 10 neurons. In the large scale tests, all ten classes are

used and error rate constantly decreased when top-down projections were used, at

grid sizes of 10 x 10, 20 x 20 and 40 x 40. Figure 4.11 (a) shows the result for

all 10 classes. Each class takes enough grid space within which to explore its own

within-class variations with less interference from other classes. Neurons are more

“pure”, when top-down supervision is used. Purity is measured by entropy (see

Appendix). Figure 4.11 part (b) shows the corresponding probability maps of the

ten neurons of part (a), and part (c) shows the probability maps for a result when

,6 = 0. Table 4.2 summarizes results for all tests. Top-down connections led to a

better performance for the same size map compared with when no top-down was

used. The best overall performance on the data was for a 100 x 100 map with fl = 0.3,

which reached 2.97%. This is on the same level as Hinton’s 2.49%, for the contrastive

divergence technique [39]. It is a fair comparison since both techniques are greedy

and permutation invariant. Using the gradient to fine tune the representation later

is possible (as Hinton did).
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Figure 4.10: The handwritten digits “4” and “9” from the MNIST digit database [58] are

very similar from the bottom-up. (a) Result after self-organizing using no motor-boosting.

The 100 weight vectors are viewed as images below and the two weight vectors for each

motor shown above. White means a stronger weight. The organization is class-mixed.

(b) After self-organization using motor-boosted distance (weight of 0.3). Each class is

individually grouped in the feature layer, and the averaging of each feature will be within

the same class.
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(a)

Figure 4.11: (a) Weights after development of a 40 x 40 grid when top-down connections

were used. The map has organized so that each class is located within a specific area.

Table 4.1: Summary of results of training networks on MNIST data. Each result is

averaged over 5 trials.
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(C)

Figure 4.12: This corresponds to the last figure. (b) Probability of each neuron to signify

a certain class, from previous updates, when 6 = 0.3 is strong (corresponding to (a)). (c)

Probability maps for a different test when 6 = 0.
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4.5.2 MSU-25 Objects

For the dataset, 25 toy objects were selected (see Fig. 4.17). To collect the images,

each object was placed on a rotatable surface a few feet in front of a camera. The

surface was rotated at a slow rate, and the camera captured images sequentially

and automatically, while the operator ensured that the object appeared roughly in

the center of the image columns. 200 images of 56 rows and 56 pixels were taken

in sequence for each object. At the operator’s rate of rotation, the 200 images

covered about two complete rotations of 360 degrees for each object. The capture

process was intentionally not too controlled, so an object varies slightly in position

and size throughout its sequence. The images were taken indoors, under florescent

lighting, and an umbrella was used to reduce specularity on the objects’ surfaces.

The background was controlled5 by placement of a uniform color by a sheet of gray

fabric.

 

Figure 4.13: Sample(s) from each of the 25 objects classes, also showing some rotation.

In the experiments, the training images were 56 X 56 and grayscale.

Including an additional “empty” (no object) class, there were 200 X 25+1 = 5001

 

5Due to automatic adjustment of the overall image intensity by the camera’s

capture software, later background color normalization had to be done. A program

was written to do this.
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images total. Every fifth image in each sequence was set aside for testing, so the other

80% were used to train the networks. Grayscale was used due to color’s usefulness

in class discrimination. Five top-down-enabled and five top-down—disabled networks

were trained for each of the sizes: 20 x 20, 30 x 30, and 40 x 406. Training involved

random sample selection over 50,000 training samples. Two types of the networks

were trained: the first type used excitatory top-down connections (6 = 0.3), while

the second type did not (6 = 0).

Results

Table 4.2: Error results for MSU objects, averaged over 5 trials.

 

 

 

 

Neural Avg. error Avg. error Error

plane size (no top-down) (used top—down) reduction

20 x 20 8.13% 3.03% 62.7%

30 x 30 2.62% 0.83% 68.3%

40 x 40 0.63% 0.33% 47.6%     
 

A neuronal population’s TCG can be observed via visualization. However, for

reporting purposes, TCG should be measured in some other way. The within-class

scatter of neuron responses on the 2D neuronal plane can provide such a measure-

ment.

Once a network was developed, a set of testing stimuli was used as input. The

top-one neurons position was recorded. The within class scatter of firing for each

stimulus class, averaged over all stimulus classes, measures how condensed the neu-

ron responses were upon the neuronal plane. See Fig. 4.16. The class-response

scatter w is the trace of the within class scatter matrix, normalized for map size:

w = W/fi. Using Tr(A) = Tr(BAB-1), we can see this measure is invari-

ant to rotation of the 2D map.

 

6For the larger (40 x 40 and greater) supervised networks, we scaled up in reso-

lution to avoid neurons on the corners that didn’t get updated otherwise.
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Figure 4.14: 25 Objects. Developed using top-down connections.
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Figure 4.15: Result for 25 objects viewed from a full range of horizontal 360 degrees.

Developed without using top-down connections: the maximum class firing probabilities of

the 40 X 40 neurons of layer 1.

Table 4.3: Feature quality and grouping results for the experiments with 25 objects.

 

 

 

 

 

Top-down Neural Developmental Class-response

grid size entropy [0-1] scatter [0—1]

2:23;: a: 3:3:

2:25:23 3:3: 3:1:

23:51:? 40 x 40 3:32 3ft?)    
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(a)

(b) (e)

(d) (c)

Figure 4.16: (a). Images presented to a trained network to measure the class-response

scatter. (b) Bottom-up weight to the neuron representing this class (“turtle”). This

network was top—down—disabled. (0) Top responding neuron positions for each of these

samples for the unsupervised network (d) Layer-two weight for a top-down—enabled network

(d) Top responding neuron positions for the supervised network.
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Error results are presented in Table 4.2 and grouping results in Table 4.3. We

tried different values of I: from 1 to 10 for testing and reported the best results. The

class and view angle could ideally be represented by the maps so that each neuron is

responsible for a single class over a set of angles from about 5°to 25°, from largest

(n = 1600) to smallest (n = 400) sizes. The results show the supervised networks

develop to utilize the same amount of available resource better, shown by better

error rate. Especially notable differences are seen when the number of neurons is

smaller.

The per—neuron entropy is also lower, meaning the neurons are more “pure” - rep-

resenting samples within a single class. The class-response scatter was significantly

lower in the networks that used top-down connections. All examined top-down en-

abled networks showed TCG. Figures 4.14 and 4.15 show that topographic class

grouping occurred in the network developed with top-down connections, but not the

network without.

As a major within-class variation in this experiment, viewing angle is disregarded

by the discriminant features. That is, the cortical region of each object is invariant

to its viewing angle variation. It is important to note that disregarding viewing angle

is not a mechanism built into the network through programming. Such an internal

invariance is an emergent property of the network. Thus, other variations, such as

lighting, vertical viewing angle, deformation should be applicable but further more

extensive experiments are needed to quantitatively study the effects.

4.5.3 NORB Objects

The normalized-centered NORB dataset [59] is one of several 3D object recognition

datasets, which is publicly available7. It contains binocular image pairs of five

classes of objects (four legged animal, human figure, airplane, truck, car), with 10

 

7http://cs.nyu.edu/ ylclab/data/norb—v1.0/
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Figure 4.17: NORB objects. Each row is a different category. Examples of training

samples are shown on the left, and testing (not seen in training) is shown on the right.

Figure from [59].

different actual objects belonging to each class. The 5 training objects per class and

5 testing objects per class are disjoint. The small set (used here) has 24,000 training

images, and 24,000 testing images, over uniform background. The dimension of

each training sample is 96 x96 x 2 = 18, 432. The images vary in terms of rotation

(0 to 340°in 18°increments), elevation (30 to 70°in 5°increments), and lighting (6

different conditions). Recognition must be done based on shape, since all objects

have roughly the same texture and color. And as the objects rotate, many of the

appearances change significantly. The NORB classes are more general than those

used in the 25 objects’ case, so they are tougher to distinguish, but there are fewer

classes. We tried top-down—disabled and top-down-enabled networks of size 40 x 40

and 60 x 60. We also tried using wraparound grids on supervised networks.

Results

Table 4.4: Error results using the normalized-centered NORB data

Method Resource Disjoint Test Error

K-NN+L2 [59] 24000 18.4%

No TCG TCG Diff.

1600 26.5% 17.68% 8.82%

3600 26.2% 15.7% 10.5%

 

 

 

 

Proposed Net.
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Table 4.5: Grouping results using the NORB 5-class dataset.

 

 

 

Top Edge Neural Entropy Scatter

down wrap plane size

N N 0.5 0.41

Y N 40 x 40 0.13 0.25

Y Y 0.07 0.33

N N 0.49 0.42

Y N 60 x 60 0.11 0.22

Y Y 0.09 0.33      
 

Results are presented in Tables 4.4. which presents best results at the different

sizes, and 4.5 that summarizes the grouping metrics. Figures 4.18 and 4.19 show

some visualization results. A very significant difference of error of up to 10.5% is

observed when comparing networks that used top-down connections to those that

did not. The top—down—enabled networks exhibit purer neuron representations, lower

within class scatter measures, and show TCG.

  
(b)

Figure 4.18: 2D class maps for a 40 X 40 neural grid after training with the NORB data.

At each neuron position, a color indicates the largest outgoing weight in terms of class

output. There are five classes, so there are five neurons, and five colors. (a) 8 = 0 (b)

B = 0.3. These experiments used wraparound neighborhoods.

Using the NORB dataset allows comparison. Our method compares favorably

with other methods that deal with input monolithically. See [59] for more details.

With top-down connections our method outperforms K—nearest neighbor. This shows

the power of within-class regularization. Nearest neighbor requires all 24,000 train-
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   (b)

Figure 4.19: 2D entropy maps for the Fig. 4.18 experiments. High-entropy means

prototypes are between class manifolds, which can lead to error. Whiter color means a

higher entropy. (a) B = 0 (b) B = 0.3. Note the high entropy neurons shown here coincide

with class group borders shown in Fig. 4.18.

ing samples to be stored, while the top—down-enabled networks only used 1, 600 and

3, 600 neurons. However, the network trained with disabled top-down connections

showed significantly worse performance. SVM had to use significantly subsampled

data (it was too slow to train with the original high dimensionality), with which is

performs slightly better. The convolutional networks (6.5%) observe a significantly

better error rate, but recall that convolutional networks utilize local analysis, and a

fair comparison here is only with other monolithic networks. Our method is poten-

tially more scalable than any of the other methods, due to its linear complexity, and

new classes can be potentially added on the fly. Each could be learned quickly due to

resource having been used for function approximation instead of for discrimination

only.

4.6 Summary

The work reported here described a method in which top-down connections lead

to Topographic Class Grouping (TCG). Further, the work explains why TCG leads

to significantly lower error rates. Samples from different classes are far apart in

the top-down—connection boosted input space, allowing class groups to grow out of
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smaller initial groups. The lateral excitatory pulling occurs upon class manifolds,

instead of between them, reducing errors.

In the MSU 25-object data set, these networks self-organized to represent the

objects over many different views using a small resource. It was shown that top-

down connections led to networks that classified with lower errors and the responses

for each stimulus class were grouped. With the NORB data set, it achieved a better

result than K-NN using only 7% of the resource. The computational cost is linear in

both the number of neurons and the input and output dimensionality in both training

and testing. This method using top-down connections succeeds in object recognition

and is potentially scalable for more complex real-world problems. It may contribute

to a better understanding of how developmental systems can autonomously develop

internal representation that is useful for desired behavior.

4.7 Adaptive Lateral Excitation

Earlier, the SOM-inspired idea of isotropic updating simulated the lateral excitatory

connectivity. The updating was done in a 3 x 3 region around each winner neuron.

The section investigates the performance effects of adaptive excitatory connections,

and describes how they can lead to both smoothness and precision, in conjunction

with top-down connections. The performance effects of adaptive lateral connections

coupled with top-down connections have not been studied, especially in comparison

to the other types of lateral excitation.

It is pr0posed that a major use in terms of performance of adaptive excitatory

lateral connectivity and top-down connectivity is to develop abstract representative

modules — statistically correlated firing groups. Modularity emerges due to the

adaptivity of the local connections — as the correlations between groups decrease,

the connection strengths also decrease. This serves to decrease the interference

between different firing groups.
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4.7.1 Motivation

Due to the pressure of evolution, the brains of organisms need to self-organize at

different scales during different developmental stages. In early stages, the brain

must organize globally (e.g., large cortical areas) to form “smooth” representation

that is critical for superior generalization with its limited connections. At later

stages, the brain must fine tune its organization for precision and modularity. Yet,

lateral connectivity cannot just reduce over time (to be eventually cut off). Certain

spatial structure is correlated and this correlation information should be retained.

It is assumed that illusory contour detection occurs due to lateral connections, for

example. But “smoothness” and “precision” are two conflicting criteria, and it seems

two different organizing mechanisms are needed.

Lateral connectivity is also direction that has yet to be fully explored in terms

of performance and in conjunction with these top-down connections. It alone has

been handled in several different ways in various models. The self-organizing maps

[55] utilize an isotropic updating function with a scheduled scope. Based on SOM,

the important work of LISSOM [73] used explicitly modeled lateral connections (as

weight vectors) of both excitatory and inhibitory types. The scope of the excitatory

weights was smaller than the inhibitory, and the excitatory scope and learning rates

adapted throughout learning. The excitatory lateral connections helped lead to

organization (nearby neurons represent similar or identical features), while major

effects of lateral inhibition was to encourage development of different features and

to decorrelate the output - leading to a sparse response8. But LISSOM did not

utilize a “motor” layer, and thus was not tested for performance with real-world

 

8The “winner-takeall” method used in SOM can also be considered as a form

of lateral inhibition and it has the same effect - different features are developed

and the output becomes sparse (an extreme case — taking the winner neuron alone

to completely represent the input). Taking the “top-k” winners (neurons with the

k-largest responses to the stimulus) has a similar, but more relaxed, effect.
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engineering problems. We investigated [62] the use of adaptive lateral connections

of excitatory type, such as those used in LISSOM.

4.7.2 Smoothness vs. Precision

Using the idea of neighborhood updating from SOM leads to a topographic LCA,

where a winning neuron’s neighbors are updated, with their response weighted by dis-

tance. This achieves some amount of topographic organization and cortical smooth-

ness, depending on how the learning rate and scope of the neighborhood function

are tuned.

For high-dimensional real-world data, this method has possibly introduced a new

problem. In this method, the updating equation for neighbor neurons is changed to

vj(t) = wlvj (t - 1) + w2h(nz-,j,t)x(t — 1), (4.12)

where neuron z' is a winner, and nm- is the distance from neuron i’s 2D position

to the position of neuron j. The kernel function h definas the neighbor updating

strength.

The possible issue with Eq. 4.12 is that a non-winner neuron’s response yj does

not depend on its bottom-up and top-down combined weight vector vj. Instead, it

is simply a function of distance from the winners. This means neurons can fire and

update for stimuli that they do not represent well themselves.

This purely neighbor-based updating leads to problems for efficiently representing

real data. Real world, high-dimensional data (e.g., raw pixels from a digital camera)

is typically sparsely distributed — there will be large areas in the input space where

a stimulus is extremely unlikelyQ. And, at least with vision, the input space tends

to have multiple disconnected areas where stimuli are probable. Using the SOM-

 

9Consider averaging two images of two different objects. This type of “ghosting”

effect (see Fig. 4.5 is not typically seen in reality.

86



style method of updating with any type of tuned learning rate leads to neurons

representing areas of low probability between multiple high probability areas, since

they are “pulled” by their neighbors closer to each of the separate high-probability

areas. This phenomenon is well-documented in [20].

This phenomenon is problematic for several reasons. First, the approximation

of the probability density by response is poorer since less rasource is used to rep-

resent regions where the data actually lies. Second, the neurons in low probability

areas do not send meaningful messages to the next layer when they fire. Since they

are “between” several different high probability areas, each presumably with dif-

ferent meaning, their firing does not send the next level an unambiguous message.

Their firing is interference between different tasks, classes, etc. This interference can

lead to performance errors (depending on the data). It is also interacting to note

that in biological cortex - at least in V1 — these types of between-feature averaged

reprasentations have not been observed [68].

4.8 Setup

With explicit connections, neuron i’s synaptic weight vector v,- have the standard

bottom-up (b) and top-down (e) components, but also a lateral (1) component

v,- = Vb,z’ U Ve,z’ U Vl,z' (4.13)

where the U symbol is for vertical vector concatenation.

In the proposed LCA with lateral excitatory connections, these connections affect

the pre-competitive potential response. They take their effect before the winners are

chosen instead of after, in the SOM-inspired method. The pre-response for a neuron

is a function of its three sources from the bottom-up x(t — 1), top-down e(t — 1) and

lateral y(t — 1) as follows:
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”-(t) . (a . X(t — 1) ~ Vb,i(t - 1)
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+ ' "e(t — 1>unv.,.-(t - 1)”

y(t — 1) -vl,,-(t -— 1)

+ 7' ”y(t — 1>unvl,.-(¢ - mu) ‘4'”)

and (1, fl, and 7 must sum to one. They control the relative contributions of the

three sources to this neuronal layer.

We update the neurons with the k largest :9, considered winners, using Eq. 3.13.

Due to this competitive process, the developing weight vectors will only update for

stimuli that they themselves represent well (unless e.g., a is too small). It will be

less likely to have damaging interpolation as is seen in the 3 x 3 updating ease when

using this method. The interpolation provided by lateral connectivity should now

be useful (within high-probability areas).

4.8. 1 Initialization

— How are the lateral excitatory weights to be initialized? Similar to in LISSOM, and

based on observations that most lateral excitatory connections are short-range [17],

the scope of connectivity is rastricted. For example, a neuron can only excite another

neuron up to 5 neural positions away. And the actual values of the weights within

the scope of connectivity are determined by an isotropic function such as a Gaussian.

These initial weights will organize cortical representation to help pull similar features

together in the physical neuron map. However, we also want to adapt the weights

so that features with low correlation can exist nearby without interfering with one

another — the lateral weight between them will diminish and be cut.
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4.8.2 Adaptation

- Biological lateral connections are strong between functionally similar neurons [72,

110]. While the purpose of lateral excitatory weights early in development is to

drive topographic organization, the purpose of later adaptation in lateral excitatory

weights is to develop weights between nearby neurons that reflect the correlation

of firing of those neurons. We can use LCA’s updating equation exactly for lateral

weights and we will develop a weight between neuron i (which is a winner and has

nonzero firing rate) and j (which is within the scope defined by m but may or may

not be a winner) equal to

E(yz'(t)yj (t - 1)|y7;(t) > 0)- (4-15)

which is the expectation of firing rate of neuron j when neuron i has fired, weighted

by neuron i’s own firing rates. This is simply Hebb’s principle applied to the lateral

weight.

4.8.3 Developmental Scheduling

— As is necessary for in-place learning, each neuron has a self-stored age, and an

age-dependent updating schedule that defines “’1 and 102. However, adaptation

of the lateral weights must be scheduled differently from the bottom-up and top—

down weights. This is due to a simultaneous dependency in development — the

bottom-up and top-down weights depend on the lateral connections early on for

their development and topographic organization, and the lateral connections cannot

reliably begin to reflect Eq. 4.15 until this organization has settled — meaning

the adaptation of bottom-up and top-down weights has settled down. Therefore,

the lateral connections must have more plasticity, later, than the bottom-up and

top-down connections.
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How can a single neuron have two separate updating schedules when it does

not know the origin of its synapses? We can consider the lateral connections to be

representative of a different cell type which we do not directly model — interneurons

dealing with one-to-one connectivity in the same layer. This cell type could perhaps

then have a different schedule of plasticity.

The performance effect of Eq. 3.13 is to cut off connections between areas of

the stimulus space that do not correlate, thereby avoiding the problems that come

from neuronal neighbor pulling. This lateral (and top-down) updating leads to

more modular collections of neurons — functionally related neuron groups with lower

between-group interference than compared to the 3 x 3 method. And, due to the

lower interference, each feature will tend to represent the higher-probability areas

(where the data is actually observed).

4.9 Experiments

We compared the laterally connected LCA algorithm with an LCA method without

lateral connections (fl = O), that instead used 3x 3 updating. The data was the MSU-

25 Objects dataset. All tests utilized a neuronal plane size of 20 x 20 neurons.They

connect to a motor layer of 26 neurons, which had top—down projections back to

the feature layer. In testing, the highest responding motor neuron was taken as the

guessed class.

We used the schedule of inhibition strength, or connection scope (changing k),

shown in Table 4.6 and did not allow the lateral connections (if they were enabled)

to adapt until t = 500. Each sample input was repeated for five iterations, and we

did not update synapses until after the last iteration per sample. This allowed the

lateral activity to settle. In training, the correct motor output was imposed. The

response was reset for each new training or testing sample, since such temporally

discontinuous experience (jumping directly to a new image with a new object class
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Table 4.6: Scheduling of inhibitory scope.

 

 

 

 

 

 

Sample Number of

number winners (k)

0 20

1000 15

2000 5

3000 3

4000 1     

having no transition) is not experienced in reality.

Results are shown in figures 4.20 and 4.21. The version with adaptive lateral

connections and adaptive top-down connections (a = fl = '7 = 0.33) is the best. It

is interesting that the laterally connected version without using top-down (a = 'y =

0.5) matches the 3 x 3 version with top-down. Why is this the case? Fig. 4.21 shows

the mean per-neuron class-entropy (see Appendix). If this is high, the neurons are

firing for more than one class. We claimed this type of interference leads to errors.

Indeed the two versions using 3 x 3 updating have significantly greater entropy on

average than the ones using the lateral connections. The effects of the two methods

can be visualized by looking at the bottom-up weights as images, as in Fig. 4.22.

4.9.1 Comparison

We also compared with an LCA algorithm with lateral connections but instead using

the “dot-product” SOM updating equation [55]

vz-(t — 1) + n(t)x(t — 1)

vi“) 2 Ilvzlt — 1) + n<t>x<t - 1)||2 (“6)

Where v,- is the winning component vector at time t.

 

We also compared by instead using the LISSOM updating equation [73]10

—‘

10Note that we are not comparing with SOM and LISSOM — we simply replace

LCA’S updating equation
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Figure 4.20: Performance comparison of LCA using 3x 3 updating to LCA with excitatory

lateral connections with and without top-down connections.
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Per-Neuron Class Entropy
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Figure 4.21: Per-neuron Class entropy for the four variants of LCA in the tests with the

25—Ol)je('ts data.



 
Figure 4.22: Above is the bottom-up weights after development for a. neural map (each

weight can be viewed as an image) that utilized 3 x 3 updating without top-down. Below

are the weights for a neural map that developed using explicit adaptive lateral connections

(also without top-down). Note the smearing of the features above and the relatively higher

precision of representation below, while still being somewhat topographically organized.
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v. = v2'0?-1)+7I(t)X(l-1)y,~(t)

“I” Ilvz-(It—1)+n(t)x(l-—1min)“1
(4-17)

The tuning of u(t) for both of these is in general not simple 11. Since the two

above updating methods use only a single learning rate parameter to adapt the

neuron weights to each new updating input, and a method to bound the strengths

of synaptic efficacies (e.g., vector normalization), while CCI LCA uses the time-

varying retention rate wl (t) and learning rate w2(t), where wl (t) + w2(t) = 1, in

order to optimally maintain the energy estimate (as formalized in Section ??, and

in order to achieve optimal representation. With the energy gone in the SOM and

LISSOM updating schemes above, there is no way to adjust the learning rate n(t)

to be equivalent to the optimal LCA scheduling.

The result in Fig. 4.23 supports this, as the non-LCA updating methods led to

much worse performance. Interestingly, the entropy and organization of the feature

layers was not significantly different between the three methods. The problem arose

for the motor neuron’s bottom-up weights, which were not optimal and unstable for

the SOM and LISSOM updating methods.

4.10 Summary

Efficient (not wasting the available resource) and effective (leading to good perfor-

mance) emergent internal representation is crucial for development. In published

computational cortical maps, self-organization — topographic “smoothness” —- is of-

ten achieved at the cost of high precision. The work reported here showed adaptive

lateral excitatory connections used developmental scheduling to both self-organize a

cortical map and to develop feature subgroups without cross-group interference that

 

11We used the “power” equation with initial learning rate of 0.1 for the SOM

method [114], and based our tuning of the LISSOM equation from the appendix

in [73]

95

 



R
e
c
o
g
n
i
t
i
o
n
R
a
t
e

9
.
0

0
1

a
:

_
0
4
s

.
0

o
n

0.2

0.1

0

Comparison of Updating Methods

 

 

 

 

 

+ Adaptive Lateral LCA + LCA Update

+ Adaptive Lateral LCA + LISSOM Update

—>- Adaptive Lateral LCA + SOM Update ' 
 

 l l l
 

0.5 2 2.51 .5

Samples Trained x 104

Figure 4.23: Performance comparison for different updating methods, using lateral con—

nections without top-down.
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Figure 4.23: Performance comparison for different updating methods, using lateral con-

nections without top-down.
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traditional (e.g., 3 x 3 updating) methods exhibit. The performance improvements

are effects of several cortex inspired mechanisms including top-down connections,

dually optimal LCA updating, and local sorting that simulated lateral inhibition

without requiring many iterations. Under these mechanisms, it was shown that

global—to-local scope scheduling and adaptive lateral connections leads to effective

and efficient self-organization.

4.11 Bibliographical Notes

Neural networks have traditionally operated using bottom-up (feed-forward) connec-

tions as primary connections, with the top-down (feedback) connections not used

at all or approximately used in a constrained weight-tuning mode. For example,

backpropagation—based networks [58,126] use the top—down error signal to train

the bottom-up weights, but it does not use explicit top-down connections. A few

networks used top-down information as part the input. The use of an expanded

input including both input and output vectors for the Self-Organizing Maps (SOM)

was briefly mentioned as a possibility by Kohonen 1997 [54], and was also used

as an input to a Hierarchical Discriminant Regressor (HDR) [129]. In the later-

ally connected self-organizing LISSOM [93] and the Multi-layer In-place Learning

Network (MILN) [120], neurons take input from bottom-up, lateral and top—down

connections. For LISSOM, Sit & Miikkulainen 2006 [93] explained how a neuron

responding to an edge, for example, can develop to receive top—down feedback from

neurons that detect corners including that edge in the next layer. LISSOM did not

utilize an output layer, however.
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4.12 Appendix: Neuronal Entropy

Each neurons “purity” with respect to class can be measured by using entropy.

Developmental entropy takes into account the updating history. It is generally cor-

related with firing entropy of a mature neuron. Neuron i developed in a pure way if

its entropy of stimulus history is small. From Eq. (4.8), it can be seen that bottom-

up weight wb,i of neuron i is a weighted sum of input samples which have been used

in updating:

A neuron with low developmental entropy was updated with most samples from

the same class. A neuron with high entropy was updated by samples from many

different classes. First, measure per-neuron probability with respect to each class.

mi

wb,i = Z 0‘2,i(t)bi(t) (4-18)

t=1

where bi(t) are stimuli (samples) used to update the neuron WM and a2,i(t) are

the corresponding update weights. To measure the purity of each neuron, we define

the empirical “probability” that samples arose from class j as:

 

E 01 ‘ j

pj = 77% 2’“ ) d E classj (4.19)

Et=1 02,10)

Let the matrix P = {p1, ...,pn} be the matrix of probabilities for n neurons

where there is a distribution p2- = {Pi,12 1),-,2, ..., 1),-,6} for each neuron. To quantify

the “purity” of the probability distribution for the i-th neuron, we have

C

52' = — dz pi,d10gc(p,-,d) (4.20)

:1

If e,- = 1, then neuron i was updated using inputs arising from a single class.
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Chapter 5

Recurrent Dynamics and

Modularity

About 85% of cortical neurons are excitatory, and about 85% of their synapses are

to other excitatory neurons [29]. This suggests that excitatory feedback circuits are

very prevalent throughout cortex, yet computational models and neural networks

have not typically utilized excitatory feedback.

Many actions are not reflexive response to stimuli, but are instead a result of de-

liberation over some time. Such deliberation may be purely internal, but also could

utilize a constant stimuli stream from the environment. This chapter considers the

second case. This chapter presents theory, experiments and results pertaining to

computational multilayer Hebbian neural networks that use both bottom-up and

top-down connections as dynamic systems in time. The top-down connections pro-

vide temporal context —— a “bias” or “expectation” of the next sensation based on

previous sensation. Using this temporal context, the performance in a challenging

object recognition task is shown to becomes nearly perfect on each view when the

data is sequential (video). If we assume the agent is not required to answer regarding

the identity of the object within the first few frames after a transition from looking

at one object to another, the performance becomes 100%.
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In previous work, top-down connections were shown to cause a motor-initiated

biasing effect during development. This led to a biased compression of internal

representation so that the relevant information about the input was prioritized over

the irrelevant information, leading to better performance as compared to networks

that did not use top-down connections [64].

Here, I’ll examine the effect of the meaning-carrying top—down connections on

the lower layer of neurons over time. We assume the network has already undergone

a significant amount of learning. The class-conditional entropy of the feature neu-

rons, as reflected in the top-down connection strengths, has a major impact. Three

network types are analyzed, in a linear approximation of the actual network, which

is nonlinear due to the lateral inhibitory mechanism used. A minimum entropy

network can also be interpreted as modular as every feature neuron is associated

with only one motor neuron. In such a case, the recurrent activity effect spreads

activation appropriately to all the associated features of each active motor neuron.

A high entropy network has widespread connectivity. There is a single steady-state

distribution of activity, which contains nonzero activation for all neurons. Given

any initial input, this type of network will always converge to the same pattern of

activation. A low entropy network is nearly modular, but has a few shared between-

module connections. It has the same properties as the high-entropy network, but

lateral inhibition is proposed as a mechanism to functionally convert a low-entropy

network into a minimum entropy network, and thus control the effect of top-down

excitation.

5.1 Motivation

Intuitively, stability of perception is a core difference for an artificial network op-

erating in the real world as compared to one operating on stored data. In realistic

environment, an object tends not to blink in and out of locations, or change how it
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looks all of a sudden. The changes in location and appearance tend to be gradual.

However, there can be sudden changes. This spatial and temporal locality is taken

advantage of in biological networks, and it should also be taken advantage of in

artificial networks.

Humans use temporal context to guide visual recognition. Normal human adults

do not experience the world as a disjointed set of moments. Instead, each moment

contributes to the context by which the next is evaluated. Is our ability to utilize

temporal context in decision making innate or developed? There is evidence that

the ability may be developed from a child’s genetic programming so that it emerges

several months after birth. From much experimental evidence, Piaget [84] stated that

before they are around 10 months old, children do not visually experience objects

in sequences, but instead as disassociated images. Many of Piaget’s tests measured

overt behavior and could not measure internal decisions, however. Baillargeon [3]

later found evidence of object permanence, an awareness of object existence even

when the objects are hidden from view, in children as young as 3.5 months. It

illustrated an aspect of the covert (internal) process behind recognition. Evidence

of this awareness in significantly younger infants is not supported. How does this

ability to predict emerge? Does it emerge from interactions with the environment

(i.e., would a child in an environment obeying different laws of physics learn to

predict differently?) or is it genetically programmed to emerge at a specific time?

It seems that after sufficient developmental experience, children will generate

an internal expectation from recent experience that is used for biasing recognition.

The network basis for generating this expectation is not clear. Object permanence,

specifically the drawbridge experiment, may be a special case that can be solved

through a set of “occlusion detectors”, such as those found in the superior central

sulcus in the ventral visual pathway [4]. How the brain creates prediction signals

in general relates to the fundamental question of how the brain represents time.
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Buonomano [16] discussed the two prevalent views of how this may be — “labeled

lines” , in which each neuron’s firing is explicitly representative of a certain amount of

time, or “population clocks”, where the temporal information is represented by the

overall population dynamics of local neural circuits. In the latter, each individual

neuron carries no timing information. Such local circuits would be highly recurrent,

and have connections from other areas, where external events arise and perturb the

Circuit’s state.

There are many bottom-up connections from inferior temporal cortex (ITC) to

prefrontal cortex (PFC) and many top-down connections from PFC to ITC. It is

hypothesized that neurons in PFC perform behaviorally-relevant category binding,

while neurons in ITC are responsive to high-level visual features [35]. Therefore it

is thought the bottom-up connections provide information about detected high-level

features to PFC, which binds them together for categorization. But all the compu-

tational roles of the top-down connections are currently not known, specifically in

development and learning.

We seek to verify two general ideas about top-down connections via simulation:

that they could act as the impetus of category-specific self-organization, e.g., seen

in the fusiform face area (FFA) and parahippocampal place area (PPA), and that

they can act as a “bias” (memory store) for biasing the ITC features [104]. We built

networks with three interconnected neuronal layers: a sensory area (layer one), a fea-

ture representation area (layer-two: ITC), and a category-behavior area (layer-three:

PFC). In the network presented here, each layer-two neuron receives excitatory in-

puts from the bottom-up, laterally, and top-down and each layer-three neuron has

bottom-up inputs. Neurons compete with others on the same layer through lateral

inhibition. Neurons that are not firing-inhibited learn through a Hebbian learning

algorithm, in which the strength of synaptic learning is based on presynaptic and

postsynaptic potentials. In contrast to slow feature analysis methods [34], our net-
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work’s development does not depend on slowly changing inputs, but instead the

correlations between the category information from PFC and the true class of the

stimulus.

5.2 Concepts and Theory

The same mechanism of motor-boosted distance we discussed in the last chapter

can be used to make use of this temporal context. Here, the network generates

the top-down context on its own, over a set of input frames. If we use a nonzero

top-down parameter in the testing phase, we create a temporally sensitive network

for use over realistic video streams.

Once a network has developed through supervision, it can run without super-

vision to classify stimuli. Top-down connections can play a significant role after

development. When the input is temporally continuous (e.g., video sequences), the

top—down connections can provide temporal context. The classification at any time

step will feed back to bias feature neurons and will affect the sensation at the next

time step.

5.2.1 Internal Expectation

For realistic video data, a spatiotemporal decision is expected to be more accurate

than a merely spatial decision. We are given a sample x(t) that has not been seen

before from one class in C = (cl, 02, ..., cd). Assume we have accurate a posteriori

estimates of class p(c.,-]x(t)), then taking the maximum over 0’ as the result will give

the optimal Bayesian choice. But depending on the spatial distribution, the error

rate of this spatially optimal choice could still be unsuitably high (see Fig. 5.1).

If there’s temporal locality in the data (e.g., there’s a 90% chance the class of

a sample at t + 1 is the same as the class of the sample at t), using a posteriori
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Figure 5.1: \Veakly separable data can become more strongly separable using temporal

information. (a) Two classes of data drawn from overlapping Gaussian distributions in

space. (b) Adding another dimension: perfect separation trivially occurs if one includes

another dimension which depends on the label of each point, but of course the label is not

available. (c) When the data has much temporal continuity, the previous guess of class

can be used as the third dimension. z becomes an expectation by using the guessed label

of the current point and the previous z. Temporal trajectories are shown here. The points

in the middle are “transition points", where expectation is not as strong since recent data

was from the other class.
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probabilities over a spatiotemporal window of k frames: p(cz-|x(t), x(t — 1), ..., x(t —

k)) lead to a much lower error rate. First, it is unknown what I: to select. If an

event important to the current decision is made more than 1:: frames in the past,

it will be forgotten. Practically, due to the high-dimensionality by using the raw

input vectors (i.e., high-dimensional images), this is very tough to estimate for even

a moderately large k.

If instead we keep a single vector parameter (z), which is updated incrementally

by some function f: z(t) = f(x(t — 1), z(t — 1)), then the problem becomes estima-

tion of p(c,-|x(t), z(t)). A first advantage over the last form is that z potentially can

store information from as far back in time as possible. A second major advantage

is the potential of z to be compressed in a more abstract form than x. For exam-

ple, if the recent image contained a cat, it can be compressed as small as a single

neuron activation (representing the abstract “cat”). This removes all the irrelevant

information from the past and stores only the relevant information.

By f, old data gets integrated into the current state, thereby “hashing” temporal

information into spatial. In the network presented here, motor output z acts as an

abstract memory, which is updated after each sample. It feeds back to the feature

layer as a “prior” that biases the next decision.

5.2.2 Network Overview

The three-layer network to consider is shown in Fig. 5.2. The sensory (input) layer’s

activation is represented by x, the hidden (feature) layer’s activation is represented

by y and the motor (output) layer’s activation is represented by z. Sensitivities

(weights) of the feature neurons to the input are column vectors of matrix V. Top-

down weights of feature neurons from motor neurons are column vectors of matrix

M. Bottom-up weights of motor neurons from feature neurons are column vectors

of matrix W. There are n feature neurons and c motor neurons. The motor neurons
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Figure 5.2: A three—layer network structure. The internal layer 1 takes three types of

input: bottom-up input from layer 0, top-down input from layer 2 and lateral input from

the neurons in the same layer. The top-down input is considered delayed as it is the layer

2 firing from the last time step. The “D” module represents this delay. The connectivity

of the three connection types is global, meaning each neuron gets input from every other

neuron on the lower and higher layers. Lateral inhibition is handled in an approximate

sense via k-winners take all. Figure courtesy of Juyang Weng.

are called such since they control action. We utilize a hardcoded action production

module. which simply uses the index of the motor neuron with the largest firing

rate: arg maxlSiSC{zZ-}. It maps the label to a word, that was used in training to

teach the class.

Compose W and M so that bottom—up and top-down weights are linked, but

not exactly shared (see Fig. 5.3). We also want columns of W and M to have

unit ll-norm. So, let W = MT, where W are the non-normalized bottom-up motor

weights. Then columns ofW and M are ll-normed from W or M. By using ll—norm,

the feature-motor weights have a probabilistic interpretation. For a motor neuron i,

its bottom-up weight from feature neuron j represents p(y'lm(t) > OlyjfU — 1) > 0)

— the probability the motor fires if the motor neuron fired last. For a feature neuron

1', its top-down weight from motor neuron j represents [)(yz-f (t) > 0|y5-"(t — 1) > 0).

The feature layer’s firing rate vector y is a function of bottom-up activity x and

top-down firing rates 2:
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Layer: j-I j j+1

Figure 5.3: How bottom-up and top-down connections coincide in a shared way. Looking

at one neuron, the fan-in weight vector deals with bottom-up sensitivity while the fan-

out weight deals with top-down sensitivity. In the model presented here, the weights are

shared among each two-way weight pairs. So, a neuron on layer 3' + 1 will have a bottom-up

weight that is linked to the top-down weight of a neuron on layer j.

y(t) = ch(X(t),Z(t)|V,M)- (5-1)

where fLC denotes the per-layer computation algorithm. The motor layer uses the

firing of the feature layer as its input:

z(t + 1) = ch(y(t), 01w, 0). (5.2)

The recurrence occurs since the firing of the motor layer is fed back to the feature

layer. For purposes of analysis, let all network weights be frozen (no learning).

5.2.3 Network Dynamics

For purpose of analysis, we’ll first examine a simpler linear system. Then, we’ll

discuss the effect of adding in the nonlinear lateral inhibition and other effects.

For the linear system, let the layer computation function c = fLC(a,b|A, B)

combine the bottom-up and top-down activity as follows:

c = fLC(a,b, |A,B) = (1 — a)a A + ab B . (5.3)

Then,
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y(t) = (1 — a) x(t) V + az(t) M (5.4)

z(t + 1) v(t) W (5.5)

and by using z(t) = y(t — 1) W, and substituting for z, we get

y(t) = (1 - a)x(t) V + ay(t — 1) W M (5.6)

The matrix A = W M contains all the recurrence in the system. Since both W

and M are column stochastic matrices, A is column stochastic. Any element Ai,j

represents the indirect flow of excitation from neuron i to j 1: iii,j = flow(i, j),

where

C

k=1

For the formulation of this system, flow(i, j) = flow(j, i), and therefore matrix

A is also symmetric and row stochastic. A system with this conservation of flow

property is inherently stable. The purpose of this work is to examine the distribution

of excitation over time without concern for issues of stability.

A stochastic matrix defines a Markov chain. A models transition probabilities

between feature neurons if only one feature neuron is active at any time; it also can

describe the percent of excitation routed from any active feature neuron fi to the

neurons it connect to. These transitions are not direct, but instead go through the

motor neurons. Similarly, the matrix WT MT is an excitation routing matrix for

motor neurons.

To put the above into the standard form for a linear time-invariant system, let

 

1There is no direct flow here, as all feature-feature connectivity is through the

motor neurons.
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A = aMTWT, B = (1 — a)I, and u(t) = VTxT(t):

yT(t + 1) = AyT(t) + Bu(t). (5.8)

(For further analysis, assume y means yT.)

The closed form solution to the above equation [1] is:

k—l .

y(k) = Aky(0) + Z Ak-J—l B u(j). (5.9)

j=0

We’ll use eq. 5.9 to analyze the network’s behavior over time for different types

of connectivity described by the excitation routing matrix.

Due to positive feedback, this system is generally characterized by spread of

activity. We wish to show the usefulness of top-down connections if the connec-

tivity described in the recurrence matrix is modular. Otherwise, problems from

the unchecked positive feedback occur when the features are not highly selective

(non minimal entropy) and the connectivity is widespread and nonmodular. En-

couragingly, the spread of positive feedback in low entropy systems is potentially

manageable, while it is not in high entropy systems.

5.2.4 Minimum-Entropy Networks

Let a network with every neuron having zero entropy be called strictly modular. In a

strictly modular network, each feature neuron is only associated with a single motor

neuron, as its connections to the other motors will equal zero (see Fig. ??)(a). Each

motor and its associated features is called a module. Viewed as a graph, it would

consist of m disconnected components.
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(a)

Figure 5.4: Examples of the three types of connectivity. (a) Minimum entropy network.

Top-down feedback has a sensible and reliable effect of biasing the features associated with

the firing motors at a level appropriate to the motors’ firing. (b) High entropy network.

Top-down feedback is not useful in this type of network since it spreads quickly. (c)

Modular network. Here, the neurons are minimum entrOpy except for one “border” neuron.

Unchecked, positive feedback spreads throughout, but this situation is manageable through

lateral inhibition, in which the low activity connection is inhibited, and the network acts

as a minimum entropy network.

 

Internal Activity Only

If the external (sensory) input is removed, what is this network’s behavior when there

is some internal firing? We will show here that each firing motor potentiates only

its associated features evenly, and all activity eventually dies out. Let u(t) = 0,

but y(O) aé 0, meaning there is some existing activity stored as current context,

but the sensory input has turned off (i.e., the eyes are closed). Eq. 5.9 becomes

y(k) = Aky(0) = akAk, where A = MTWT.

For A, each of the matrices W and M are column stochastic. Therefore A

is also column stochastic. It describes a markov chain over the feature neurons,

linked to each other indirectly through motor neurons. A strictly modular network

With multiple motors is actually a reducible markov chain, with m sets of closed

states (modules) and no transition states. Each module corresponds to a mode of

Operation. Without external input, depending on the existing internal context y(O),
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it can “enter” any of the modules, but activity cannot spread between modules.

The feature excitation routing matrix of this type of markov chain has the form

  

C1 0 0

A: 0 02 o

o o Cm]

. Each internal submatrix is square, column stochastic and strictly positive. They

describe the routing activity within the different firing modules.

Lemma 5.2.1. For a strictly modular network, Ak = A.

Proof. Any module’s internal routing matrix C,- can be decomposed into pairs of r

eigenvalues and associated matrices [37] as Cf = All“ 302(1) +A§ 201(2) +...+A¢ iCET).

Each submatrix in A is rank one, and thus has only one eigenvalue, which will be

equal to one. Therefore, for any module i, Gik = Ci- It follows that Ak = A. C]

Case 1: a = 1: Since Ak = A, the distribution of excitation at any future

frame is the same as the distribution at just the next frame. Thus, each firing motor

neuron will distribute its firing equally (since its nonzero top down weights each

equal one due to L1 norm) among its associated features. Those features’ firing

feed back into the same motor neuron. There will be no spread of excitation among

different modules.

Case 2: 0 _<_ a < 1: The network operates as described above but all internal

activity will decrease exponentially over time due to 01".

The number of steady state distributions of A is the number of modules, since the

Eigenvalues of a disconnected graph are the eigenvalues of its connected components.

U the features initially firing are all linked to the same motor (single mode case), the

network will stay within that motor’s mode of operation. Activity cannot spread

to another module. When operating in one mode, the features associated with that

111



motor are biased and the features not associated with that motor are not biased.

When multiple motors fire, the excitation is distributed based on A, but there is

no sharing between modules. Let any motor i have firing rate zi. Since each motor

distributes firing potential evenly among its features, the potentiation of each of its

n,- features is Zi/ni-

Internal Activity and External Stimulation

Even with such controlled feedback, the usefulness of the top-down connections in

the above case in general seems to require

E[zz-(t)]x(t — 1) e 0,] > E[zj(t)|x(t — 1) e Ci], Vi 7e j (5.10)

where Ci is the class label represented by motor i. The truth of the above conjecture

depends on 1. the spatial probability distributions of each class, 2. the amount

of spatial overlap of these distributions, 3. the features used in V to represent

input space X, and 4. the amount of temporal locality of class label in the data.

If conditions are such that this expectation difference exists for data that is not

perfectly classifiable without time and the samples are drawn spatially i.i.d., then

the added 2 dimensions should make the optimal spatiotemporal decision boundary

better than the optimal spatial boundary (refer to Fig. 5.1).

Class Transitions: Avoiding Hallucination

A key issue is that of transitions from experiencing stimuli from input class to

another. The internal context will be inaccurate at these points. As shown here, a

strictly modular network will recover. Recall Eq. 5.9. We set time 0 to the transition

DOth. Assume that the internal context y(0) strongly biases one class, but all the

next input frames are of another class. For simplicity let them be the same image

so that: u(j) = u(O), Vj.
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In a strictly modular network with an arbitrary internal context y(0) given the

same input x over time, motor activity z(k) approaches WTVTx.

Proof. Using Eq. 5.9 and Lemma 5.2.1:

A

y(k) = akA

+ Auk—1(1-a)u(0)

+ AakT2(1 — a)u(0)

+ Aa(1 — a)u(0)

+ (1 — a)u(0)

= akA — akAu(0) + a(Au(0) — u(0)) + u(0). (5.11)

As It increases with 0 S a < 1, this approaches a(Au(0) — u(0)) + u(0).

To get motor output z(k), we project onto W. For a strictly modular network,

the motor transition matrix WTMT = I. Thus, WT(aAu(0) — au(0) + u(0)) =

«WTum — aWTu(0) + wTu(0) = WTu(0). [:1

Therefore, after a transition, the motor activity will converge to motor activity

equal to that when the bottom-up is presented without any top-down. In other

Words, the influence of top-down will die out over time, and transitions to other

Classes are possible with an incorrect initial internal context. But there may be a

“transition period” where the output action may be wrong before the recovery.

5-2 - 5 Irreducible Networks

In the general case, networks are irreducible, meaning there is a path over nonzero

weights between any two neurons. Strictly, this means the feature-transition markov
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chain is irreducible. As a markov chain, A is aperiodic since every state links to

itself with nonzero probability; it is positive recurrent, for the same reason. Thus

there exists a single stationary distribution described by the stationary probability

vector it, that satisfies

WAT = W (5.12)

Since A is doubly stochastic, it is easy to see that 7r,- = 1 /n, Vi. Given this result,

for any irreducible A, the limit of Alf as k ——> oo approaches a uniform equilibrium

distribution.

This means that, for any initial activity distribution, even if the features initially

firing are all mostly associated with the same motor, the steady state excitation

distribution will include all feature neurons. Additionally, excitation eventually

becomes distributed evenly, no matter what the initial excitation. It seems top-

down connections eventually spread activity evenly throughout the entire network.

Unfortunately, an irreducible markov chain could arise with even just one high-

entropy feature — a feature neuron with nonzero connections to all motor neurons.

B111: we cannot require strictly modular networks. It is problematic for efficiency if all

features are zero entropy. It is incredibly inefficient to develop feature hierarchies for

each class separately. It is probable that our visual systems can recognize so many

diHerent things through effective use of shared features, which would be associated

with multiple classes.

5- 2 - 6 Modular Networks

A network like the one in Fig. 5.4(c) can be considered modular, but not strictly

in the sense we discussed earlier. True modularity is characterized as described

by Bullmore and Sporns [15], where nodes within each module (or “community”)
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have high intra-module connectivity, but have very low connectivity to neurons

in other modules. Some nodes are called “hubs”, having high centrality, meaning

they have short paths to many other nodes. “Provincial hubs” connect to many

nodes within the same module, which “connector hubs” connect to many nodes

in different modules. There are very few hubs compared to the number of non-

hub nodes. A modular structure is therefore characterized by communities and a

few hubs, of an intra-community or inter-community nature. Bullmore and Sporns

reviewed connectivity real brain data over the brains of many species and concluded

that the archetypical brain network seems to have such a modular structure.

In the work presented here, the motor neurons are provincial hubs. Shared

features might be connecter hubs. In the network in Fig. 5.4(c), the middle feature

neuron is a connector hub. In our three-layer structure, a modular network is called

low-entropy network, since most feature neurons are associated with a single motor.

A non-modular network then has widespread connectivity, and is called high-entropy.

For this network type, A” approaches the uniform stationary distribution quickly

(at small It), meaning excitation spreads nondiscriminantly rapidly. There does not

seem like any good way to use top-down connections in a high-entropy network.

In the next subsection, several mechanisms are proposed for control of top-down

connections in a modular network.

5 -2-7 Nonlinear Mechanisms for Modular Networks

IVIOdular networks are irreducible and have a single uniform stationary distribution.

31113 their Ak approaches the stationary distribution very slowly. So, Ak z A at

Small 1:.

We wish to prevent excitation spread that might lead to decision errors in modu-

lai- networks; however we do not wish to prevent excitation spread that might fill in

miSsing information appropriately. If each module is a group of variations of same
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Motor Neurons

9(t) y(t) /z\(t+1) z(t+1) ||z(t+1)” 9(t+1)

 

 

 

  
   

 
. . . Normalization

Lateral Inhibition

Feature Neurons

Feature Neurons

Figure 5.5: A section of an “unrolled in time” layer-two and layer-three in a network with

four feature neurons and three motor neurons. Keys differences from the linear system are

lateral inhibition and output normalization. Lateral inhibition, at both the feature layer

and motor layer, stops the flow of low energy signals into the future and can control the

spread of positive feedback. This figure shows two feature neurons inhibited at time t and

one motor neuron inhibited at time t + 1. The output normalization keeps the top-down

vector on the same scale as the bottom-up. It also allows long-term memory.

type features, then the connector hub neurons can “prime” related feature types. If

we see two eyes and a mouth in the right configuration, it is east to “imagine” a

nose. But we do not need to imagine unrelated things.

Feature support in modular networks comes from three sources: from the sensed

environment, from other neurons in its module (strong). and from connector hubs in

other modules (typically weak). The influence of neurons with low support should

not go to far into the future. as it could lead to errors. But we don’t want to cut

off neurons with moderate support, since their firing could lead to interesting and

useful perception.

Several mechanisms might provide the desired effects. 1. Sigmoid activation

functions. Sigmoidals are biologically supported and can suppress firing unless exci-

tation is high enough. 2. Neuronal discharge [29]. Similar to [3 < 0 above, if neuron

firing loses some excitation at every time step, neurons with sparse and/or temporal

support will eventually stop firing. 3. Lateral inhibition. Lateral inhibition is a

competitive method for cutting off weaker responses.
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We have implemented a k-winners take all approximate version of lateral inhi-

bition for experiments here. It depends on the two parameters k1 and k2, which

are the the number of neurons that will fire on the feature layer and motor layer,

respectively. Both should be greater than one, to avoid hallucination; in general It

can be set to the expected amount of feature neurons that represent a class (e.g.,

k1 ‘= 15 with n = 400 and c = 26).

Let fL11 be the layer-one lateral inhibition function depending on k1, and fLI2

be the layer-two lateral inhibition function depending on leg. Now, we set fLC =

fLC'A, e.g., the layer computation function uses LCA:

b

The corresponding discrete time system is:

 

fL12(fL11(Y(t)‘fV)) M+a x(t) ..

llfL12(fL11 (y(t)w)) u ”x(t)“

The difference between this and the linear system is twofold: 1. lateral inhibition

y(t + 1) = a (5.14)

and 2. normalization of x and 2. Lateral inhibition is used for reasons discussed

above. Without the normalization of z, the response y(t) is not controlled in its scale.

Consider the use of Ll-norm (so that 2 will have a probabilistic interpretation):

as internally updated prior probabilities of the potential classes in the upcoming

stimulus. Scale control lets the top—down influence match the bottom-up influence,

which may otherwise be a problem if we have many more pixels than motors. An

interesting aspect of normalization is that it allows long-term memory, by preventing

decay. A byproduct of this is that there has to be explicit “null” states, as the

network will not settle into zero activity. This interesting direction has not yet been

explored fully.

It may be also useful to cut off weak feature responses immediately, without let-
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ting them receive any top-down boost from the motors. This strategy has somewhat

of an interpretation in the laminar organization of cortical areas [94]. This is called

using “paired layers”, but was not done in the experiments here. Paired layers can

eliminate the transition period of errors, since features with no bottom-up support

will be cut off immediately.

5.3 Algorithm

This is the algorithm for running the network, without learning (frozen weights). In

general development, such a thing does not occur. But we use this for experiments

in this paper. We start with a mature network. Reset t to one. For t = 1, 2,

1. Sense. Set x(t) as before. Let z(l) = 0.

2. Pre—response. Compute pre—rasponse y for all neurons on layer-one:

. _ x(t) z(t)

y“) ‘ “IIx(t)IIV+“IIz<t)IIM' (5'15)

3. Lateral-Inhibition of Layer-One. Compute post-competition firing vector

y(t) for the feature layer using approximate lateral inhibition. Again, set all neurons’

firing to zero except the highest [:1 > 1 pre—responses. Let 3k be the kl-th highest

value of y(t). Then set a neuron’s response as:

Wt), if 92'“) Z 3k
3’7: (t) = (5.16)

0, otherwise

4. Pre—response of Layer-Two. Let z(t + 1) = WTy(t).

5. Lateral-Inhibition of Layer-Two. Here, the motor inhibition parameter k2

will be used, which must be larger than one. Let 3k be the k2-th highest value of

z(t + 1). For motor neuron 2', where 1 S 2' S m, set its response as:
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2-t+1, if 2-t+1 ZS

zz-(t+1)= 2( ) ‘( ) k (5.17)

0, otherwise

6. System Output. Take the highest firing motor to indicate the class label of the

current input x(t).

5.4 Experiments

The networks developed in [64] and the last chapter 4, which showed topographic

class grouping, have modular connectivity. Most layer-one neurons are connected to

only a single motor neuron, but the border neurons between groups have significant

connections to two or three motor neurons.

For these modular, top-down connections should provide a recognition rate ben-

efit when the data is temporally continuous. We compared low-entropy networks

sized 20 x 20 in two cases: top-down enabled in testing and top-down disabled in

testing (i.e., a = 0). These networks have global connectivity, i.e., each feature

neuron is sensitive to all pixels.

5.4.1 Object Recognition

The MSU 25—Object dataset was used, which has views of 25 objects rotating in

depth. We trained networks with 20 x 20 neurons over ten epochs using a = 0.3

in the training phase. The images were trained in sequences, with a few empty

(no object) frames in between each sequence to mimic an object being placed and

taken away. The disjoint images were tested after each epoch, also presented in

sequences of 40 per class with a few background frames in between each sequence.

Parameters lea) = k(2) = 1 in training, but were increased in testing. They were

held constant at 16(1) = 15, 19(2) = 8 for the tests. Figure 5.6(a) shows the effect of

different B in testing after 5 epochs. It can be seen that expectation leads to perfect
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Effect of top-down expectation parameter on

disjoint recognition (5 epochs of training)
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Figure 5.6: The effect of different expectation parameter values on performance. The

“X” in “FX” indicates the frame to start measuring performance after a sequence shift, to

a rotating object sequence. Three frame smoothing means the latest three outputs “vote”

to get a single output.

performance after the transition periods. Figure 5.6(b) measures how training the

same sequences over and over again can help performance. It helps a lot to see the

same sequence at least twice. Figure 5.8 shows how the transition period is affected

by a. Increasing expectation eventually leads to no errors except in the transition

periods. But higher a will have longer transitions. It would be allowable for there

to be a brief period of confusion on transitions for autonomous agents (perhaps such

an effect exists in some biological agents). Such a requirement of decision after each

frame seems too strict, as is we are asked “what object is that?”, we will not answer

without at least some delay, until we are “certain”.

Since expectation takes into account the recent class history the most, the per-

formance will be best when the probability that the next image contains the same
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Training sequences over epochs’ affect on disjoint recognition
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Figure 5.7: How performance improves over training epochs through all object sequences.
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Effect of Context-Based Sequential Decision Making

 

 

 

 

    
 

 

1 ........ I ............... l ....... : ..... 1 “a?

.M '

i as"

0.98 .................................................. -. .....[3: .............. a

.J/

0.96 .......................................................................... ..

3094-.....wa/............................... ..

g 2 ./

c 0.92 _ ...................................s ..................................... _

:2 _./‘ 3
r: g '

g) 0.9 ................................' ............................................... a

o : : .l“ : : :

[I : : : : :

0.88 ........ 3' .............. .ik/........... 1. ............. . .3. ............... i ...... 1

i 5 5 -I— a=0 7
3 r" E E E

086 ........ ........ 59"” . . . ............... ............... .... +0t=0.8; _.

3 3 i i +a=os
0.84 ........ 3"?" ........... ............... ............... .... . “=0 _

0 82 i i i i I

2 4 6 8 10

First Frame Counted After Transition to Next Object

Figure 5.8: Increased expectation parameter shifts errors from bottom-up misclassifica-

tions to errors within a transition period (immediately after the class of viewed object

changed).

122



Effect of Context-Based Sequential Decision Making
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Figure 5.8: Increased expectation parameter shifts errors from bottom-up misclassifica—

tions to errors within a transition period (immediately after the class of viewed object

changed).
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class is high. This is called temporal continuity. Under high temporal continuity,

higher expectation can be effective by reducing the effect of outlying points across

the wrong decision boundary by pulling them back towards the class center, leading

to more correct classifications. But it will lead to longer transition periods.

5.4.2 Vehicle Detection

Here, the above method is shown to work with local features. Additionally, global

features are compared to local features on a vehicle / non-vehicle discrimination

problem. Vehicles are generally decomposable into visible parts (e.g., headlight and

license plate on a car). Local features should become tuned to parts, which improves

the generalization power of the network, meaning the performance is better with less

data. The data was collected at the GM facility using a camera mounted on the side

of a test vehicle. Some examples of vehicle data used are shown in Fig. 5.9.

 

Figure 5.9: Examples of data within the vehicle class.

There were 225 vehicle images and 225 not-vehicles images, each sized 32 x 32.

To improve generalization, the network was extended to develop local (parts-

based) features directly from the vehicle and false return data. Using the de-

veloped local features, unfamiliar objects can be recognized and classified if there
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are any familiar object parts (e.g., a car is recognized by a tail light) and there no

need to recognize the entire object. This is critical for recognizing objects that the

system has not seen before, which share some common properties with the general

class they are within. It should also lead to a network that can handle occlusion.

A global network (10 x 10 neurons) is compared to a local network (window

size of 11 x 11, and the local competitive area is 5 x 5 for each neuron), and a

local network using expectation after it matures. In a global feature network, each

neuron on layer-one is sensitive to every element within the sensor matrix, which

has (1 elements (pixels). In the local network used here, the approach given in [48]

is followed, where each neuron on layer-one has a r x r receptive field, where r2

is less than d. The number of neurons is equal to the number of pixels, and each

neuron’s receptive field is centered on a particular pixelz. The competition step is

also local. A neuron competes with its local region of l x l neurons. The local top-

ka) responding neurons are called winners, in the local version. The local network

used here did not utilize smoothing, and [3 was gradually increased in training from

0 to 0.3 (in training) after 40 training samples.

The networks are initialized and trained with only 5 samples from each class.

Then all samples are tested, in alternating cars and background sequences. Next,

the next 5 samples are trained, and so on, until all samples are trained. This was

done 10 times for each network type, using a different training order each time. In

the expectation-enabled network, 5 = 0.3 during the testing phase, but in the other

networks ,6 = 0 in testing.

Results are summarized in Fig. 5.10. The local network does indeed do better

with less data, however it eventually only does just as well as the global network.

If expectation is enabled however, the performance becomes nearly perfect. Fig.

5.11 show some distinct features developed by the local network. It also shows the

 

2The image boundaries are extended with black pixels
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respective spatial locations of these features.

Effect of limited training on networks’ performance
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Figure 5.10: Performance of globally versus locally connected networks when data is

limited. The locally connected network performs better with less data for this dataset.

This may be because vehicle images can be made up of several interchangeable parts. Once

training is mature, the expectation mechanism can be enabled in testing, and performance

shoots up to a nearly perfect level.

5.5 Summary

This chapter describes enabling a network to keep and update an internal state z

that biases the next activity of the feature layer. It is considered as temporal context:

an internal “prior” that is used to bias the next decision. Ideally, this prior will bias

3. small subset of features highly correlated with the current state and will not bias

others.

The algorithms presented are quite efficient since it does not have to learn to

make decisions from several raw frames in a row. The dimensionality of such a
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Figure 5.11: (a). Some features for the “vehicle” class, developed by the locally-connected

network. This shows the response-weighted input, as a weighted sum of the data and the

neuron responses. (b). Showing the respective locations of the features from (a). This

figure shows response-weighted input, so there is nonzero sensory stimulus outside the

receptive fields (the white box area), but the neurons will not respond to any stimuli

outside this area.

space makes it difficult to learn such a policy. Instead it learns to make decisions

from a single temporally updated parameter 2.

Since this is a positive feedback system, it is crucial to keep the spread of activity

under control. For strictly modular networks, it was formally shown how positive

feedback can be controlled and useful. For high-entropy networks, positive feedback

potentially spreads to all neurons evenly within a short time. For modular networks

— characterized by highly connected communities where different communities are

connected by hubs — several nonlinear methods are discussed as ways to control

positive feedback without disabling it. The network examples here control positive

feedback in two key ways: 1. by developing in such a way that they are modular, 2.

lateral inhibition to keep low responding neurons from spreading activity. The first

point is often overlooked: a network’s connectivity seems to be extremely important.

Although temporal context has been used in many task-specific models and in ar-
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tificial neural networks, this is the first time where context is used as motor initiated

expectation through top-down connections in a biologically-inspired general-purpose

developmental network. If the motor action represents abstract meaning (e.g., rec-

ognized class) these mechanisms enable meaningful abstract expectation by such

networks. We showed the effect in improving recognition rate to nearly perfect per-

formance after a transition period when the class has first changed. Expectation’s

effectiveness in improving performance is crucially linked to the capacity to develop

discriminating features —— top-down connections may not be useful when features

are not as good.

From the perspective of developmental robotics and autonomous mental devel-

opment, the mechanism described in this paper can lead to more realistic learning

ability for mentally developing machines. Supervised learning methods that can be

applied to visual recognition of objects are formulated at a per-frame level where

each training sample (frame) must be accompanied by a label. This does not take

advantage of the temporal context, or the temporal continuity present in real-world

(subject to real laws, e.g., realistic physics) video streams. When a child is taught,

say to recognize numerals and letters in the classroom, there is not a continual

stream of repetitive speech from the teacher speaking the names of the characters

over and over. The teacher will 1. direct the child’s visual attention and 2. speak the

name of the character. The direction of attention hopefully ensures that the child is

looking at the character continuously. For AMD, a semi-supervised learning mode

can be utilized based on this chapter’s method, which should significantly reduce

the training load of the teacher. In that mode, expectation will be enabled and the

weights not frozen. It should be useful since the common distinctions of “training

phase” from “testing phase” cannot be made so easily in a real time, developmental

system. Then, the teacher can sparsely provide labels.
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5.6 Bibliographical Notes

Artificial neural networks can also be roughly considered as spatial and/or temporal

(recurrent). A recurrent network is explicitly designed to deal with time by using

feedback. A spatial network typically treats the world frame-by—frame with each

frame considered independent. Spatial networks can be made to act temporally by

e.g., blurring the output over time, but they are not recurrent. Recurrent networks

can handle time-series prediction, where the past influences the present decision.

Recurrent networks can be considered as dynamic systems.

Most networks are spatial, such as those that perform PCA [125] or ICA [8,

44]. The Self-Organizing Maps [55] are spatial, but their LISSOM extension that

uses explicit lateral excitatory and inhibitory connections [73] is recurrent due to

lateral excitatory and inhibitory feedback. Traditional backpropagation nets are also

spatial, but backpropagation—through—time [127] converts back-prop networks into

recurrent networks. Classic recurrent neural nets include Jordan nets and Elman nets

[31], which utilize context units that can “remember” the last network activations.

They are trained by propagating an approximation of the error gradient back through

time and modifying the weights based on that. These networks suffer from long-term

memory problems as the an input’s influence over time either takes over network

activity or decays rapidly. The long-short term memory networks [40] address this

problem by ensuring an error signal propagated back through time does not blow up

or vanish by using “memory cells” and “gate units” . The work we present here is in

the tradition of SOM and vector quantization, traditionally spatial approaches, but

our approach is also a recurrent network, similarly to LISSOM. But unlike LISSOM

we focus on recurrence between one layer and the next instead of on the same layer.

Douglas et al. described a model of neurons as electronic circuits, which dis-

tributed current proportionally using excitatory feedback. They showed that in-

hibitory neurons (or “neuronal discharge”) was necessary for stability [29], which is
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similar to the conclusions here. Sejnowski [89] described how excitatory feedback

could be used for prediction of temporal sequences, by using a temporally asymmet-

ric learning rule.
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Chapter 6

WWN-3: A Recurrent Network

for Visual Attention and

Recognition

The work presented in this article concerns a type of multilayer, multipath, re-

current, developmental network called the Where-What networks (WWN). WWNs

are designed for concurrent attention and recognition, via complementary pathways

leading to complementary outputs (type motor and location motor). WWNs are

biologically-inspired grounded networks that learn attention and recognition from

supervision. By grounded, we mean such a network is internal to an autonomous

agent, which senses and acts on an external environment. WWN network models

consist of two pathways for identity (what) and action-related location (where and/or

how), so there are separate “motor” areas for identityand location. The motor areas

connect to another later module that controls the actions of this agent. In our super-

vised paradigm, the agent is taught to attend by being coerced to act appropriately

” a

over many cases. For example, a teacher leads it to “say car” while the agent is

looking at a scene containing a car, and the teacher points out the location of the

car. Before learning, the agent does not understand the meaning of car, but it was
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coerced to act appropriately. Such action causes activation at the Type-Motor and

Location-Motor in WWN-3. Top-down excitatory activity from these motor areas,

which are concerned with semantic information, synchronize with bottom-up exci-

tatory activity from the earlier areas, concerned with “physical” image information.

Bidirectional co—firing is the cause of learning meaning within the network. Neurons

on a particular layer learn their representations via input connections from other

neurons from three locations: from earlier areas (ascending or bottom-up), from the

same area (lateral), and from later areas (descending or top-down). Learning occurs

in a biologically-inspired cell-centered (local) way, using an optimal local learning

algorithm called Lobe Component Analysis [122].

WWN-3 utilized the following four different attention mechanisms: (1) Bottom-

up free-viewing, (2) Attention shift, (3) Top-down object-based search, and

(4) Top-down location-based binding. Top-down excitation is the impetus of

the latter three mechanisms. In WWN-3, top-down excitation serves a modulatory

role, while the bottom-up connections are directed information carriers, as are the

suspected roles of these connections in the brain [14]. We’ll show how an architec-

ture feature called paired layers is important so that the top-down excitation, which

we think of internal expectation, can have appropriate influence without leading

to hallucination or corrupting bottom-up (physical) information with top-down se-

mantic bias. In addition to modulation, in WWN-3, top-down connections (along

with the bottom-up and lateral connections) allow a network’s internal activity to

synchronize. When there are multiple objects in the scene, there will be multiple

internally valid solutions for type and location, but some of these solutions will ac-

tually be incorrect (mixed up). This is part of the well-known binding problem.

But in WWN-3, after a bottom-up pass to select for candidate locations and candi-

date types, top—down location bias effectively selects a particular location to analyze

and it then synchronizes with the appropriate type, similar to Treisman’s idea of
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spotlight [109]. Top-down bias can also be introduced at the Type-Motor, causing

“object search” — it picks the best candidate location given the particular type

bias. After the network has settled on a particular type and location, it can dis-

engage from the current location to try another location, or it can disengage from

both location and type.

The architecture of the WWNs is divergent into two distinctive pathways for

foreground identity (what) and location (where). Through development, firing of

neurons further along the “What” pathway become more invariant to object posi-

tion, while becoming specific to object type. The opposite is true for the “Where”

pathway. Neurons earlier in each pathway represent both location and type in a

mixed way.

WWN is a recurrent network; it utilizes both bottom-up and top-down connec-

tions at all areas and layers (intermediate layers included) in both the learning phase

and in operation. During learning, the top—down connections are essential for the

network to distinguish foreground from background in the earlier areas, and therefore

are needed to learn appropriately. For the network to attend on its own, activity

at one (goal-setting) or no (bias-free) motor area is imposed. In these cases, the

interaction between bottom-up and top-down is essential for attention. The early

area selects candidate locations and features from the input image in a bottom-up

way. When one of the motor areas is imposed, information flows via top-down con-

nections down this pathway and up the other pathway to set the other motor area.

The top-down connections serve a modulatory role to pick out the biased candidates

from the early area and ignore the rest. Yet the top-down connections can lead to

hallucination, if there is no associated bottom-up support. To avoid this, a paired

layer architecture is used, which is analyzed here in terms of signal processing theory.
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6.1 Background

6.1.1 WWN Architecture
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Figure 6.1: A high-level block diagram of WWN-3. The area are named after those

found in our visual pathway but it is not claimed that the functions or representations are

identical.

It is known that our visual system has two major pathways: ventral (“wha ”) for

object identification and dorsal (“where”) that deals more with visuomotor aspects

(i.e., where to reach for an object), which presumably codes an object’s location.

These pathways separate from early visual areas and converge at prefrontal cortex,

which is known to be active in top—down attention. Prefrontal cortex connects

to motor areas. WWN was built inspired by the idea of these two separating and

converging pathways. Meaningful foregrounds in the scene will compete for selection

in the ventral stream, and locations in the scene will compete for processing in the

dorsal stream.

There are five areas of computation in WWN—3. The input image is considered

as retinal activation. Instead of a multi-area feature hierarchy (ventral pathway),

we use a shape—sensitive area we called V4, but we don’t claim the representation is

identical to V4. From this area, one path goes through the IT (inferotemporal) and

TM (Type-Motor) —— possibly analogous to the inferior frontal gyrus [101]. TM is
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concerned with object type. The other path goes through the PP (posterior parietal)

area and LM (Location Motor) — possibly analogous to the frontal eye fields (FEF).

LM is concerned with object location. Each of these five areas contains a 3D grid

of neurons, where the first two dimensions are relative to image height and width

and the third is “depth”, for having multiple features centered at the same location.

These neurons compute their firing rates at each time t. WWN is a discrete-time,

rate-coding model, and each firing rate is constrained from zero to one. The pattern

of firing rates for a single depth at any time t can be thought of as an image.

Computing inputs to a neuron in an area is equivalent to sampling the image of

firing rates from the input area images. There are two types of input sampling

methods for an area — local or global:

0 Local input field: V4 neurons have local input fields from the bottom-up.

This means they sample the retinal image locally, depending on their position

in the 2D major neural axes (ignoring depth). A neuron at location (i, j)

with receptive field size w, will take input vector from a square of sides w long,

centered at location (2' + [w/2], j + [w/2])

0 Global input field: Neurons with global input fields sample the entire input

area as a single vector.

An architecture figure for WWN-3 is shown in Fig. 6.5. We initialized WWN-3

to use retinal images of total size 38 x 38, having foregrounds sized roughly 19 x 19

placed on them, with foreground contours based on the object’s contours. V4 had

20 x 20 x 3 neurons, with bottom-up local input fields (of 19 x 19) at different

locations on the retina (based on the neurons’ 2D locations), and top-down global

receptive fields. PP and IT also had 20 x 20 neurons and had bottom-up and top-

down input fields that were global. LM had 20 x 20 neurons with global bottom-up

input fields, and TM had 5 x 1 neurons (since there were 5 classes) with global
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bottom-up receptive fields.

6.1.2 Attention Selection Mechanisms at a High-Level
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Figure 6.2: WWN accomplishes different modes of attention by changing the directions of

information flow. (a) For bottom-up stimulus driven attention, information flows forward

from pixels to motors. (b) In order to disengage from the currently attended object, an

internal suppression is applied at the motor end, and a diffuse top—down excitation will

cause a new foreground to be attended to in the next bottom-up pass.

     

Selective attention is not a single process; instead, it has several components.

These mechanisms can be broken down into orienting, filtering and searching. These

are not completely independent, but the distinctions are convenient for the following

discussion. The Where-What network makes predictions about how each of the

mechanisms could work, and, in the following, we will discuss how these mechanisms

work in WWN-3.
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Figure 6.3: WWN accomplishes different modes of attention by changing the directions

of information flow. This continues the last figure. (c) Top-down location-based attention

(orientation) occurs due to imposed location motor and information flows back to V4 and

forward to the type motor. ((1) Top-down type-based attention (object search) occurs

due to imposed type motor and information flows back to V4 and forward to the location

motor.
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Orienting

Orienting is the placement of attention’s location. In covert orienting, one places

one’s focus at a particular location in the visual field without moving the eyes;

this is different from overt orienting, which would require the eyes to move. Covert

orientation is realized in WWN based on sparse firing (e.g., winner—takeall or WTA)

in the LM area. LM neurons’ firing is correlated with different attention locations

on the retina, which emerged through supervised learning. Changes in attended

location can occur in two ways: (1) an attended area emerges through feedforward

activity, (2) an attended location is imposed (“location-based” top—down attention,

which could be done by a teacher or internally by the network, or (3) a currently

attended location is suppressed, by boosting LM neurons in other areas. The effect

of this is to de-engage attention, and shift to some other foreground.

Filtering

Attention was classically discussed in terms of filtering [13,67,106]. In order to

focus on a certain item in the environment, the “strength” of the other information

seems to be diminished. In WWN-3, there are multiple passes of filtering. 1. Early .

filtering. This is done without any top-down control. As WWN-3 is developmental,

the result of early filtering depends totally on the filters that were developed in the

supervised learning phase. Then, responses of these developed V4 neurons in WWN

are an indicator of what interesting foregrounds there are in the scene. If there is no

top-down control, internal dynamics will cause to converge to a steady state with

a single neuron active in each of TM and LM, representing the type (class) and

location of the foreground. A single feedforward pass is thought to be enough in

many recognition tasks. But if there are multiple objects, attention seems to focus

on each individually [109].

Another filtering process, based on top-down excitation, occurs on the result of

137

  



the first-pass filtering. 2. Biased filtering. This “second-pass” filtering is in the

service of some goal, such as searching for a particular type of foreground. The first-

pass filtering has coded the visual scene into firing patterns representing potentially

meaningful foregrounds. Binding after the first pass would be done in a purely

feedforward fashion, and an incorrect result could then emerge at the motor layers.

The second-pass filtering is due to top-down expectation. It re-codes the result

of first pass filtering into biased firing patterns, which then influence the motor

areas. The second-pass allows the network to synchronize its state among multiple

areas. For example, feedback activity from the Location-Motor causes attention at

a particular location, which causes the appropriate type, at that location, to emerge

at the Type-Motor.

Searching

Searching for a foreground type is realized in WWN-3 based on competitive firing

(e.g., WTA) of the Type-Motor (TM) neurons. Similar to the link between retinal lo-

cations and LM neurons, correlations between foreground type and TM neurons are

established in the training phase. Along the ventral pathway, the location informa-

tion is gradually discarded. Top-down type-based attention will cause type-specific

activation to feed back from TM to V4, biasing first-stage filtered foregrounds that

match the type being searched for. Afterwards, the new V4 activation feeds forward

along the Where pathway, and will cause a single location to become attended based

on firing in the location motor area.

6.1.3 Binding Problem

When multiple objects are present in the scene, the binding problem is an issue

for WWN. Since location and type are dealt with separately, there are multiple

internally valid solutions that are incorrect. Through top-down connections, we can
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Figure 6.4: Toy example illustrating the “coarse” binding problem.
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handle the “coarse” binding problem through synchronization. See Fig 6.4. In (a),

separable features avoid a combinatorial explosion of representation but introduce

the problem of how to reintegrate the information. The two types of information

here are location and type. When there are two types in two different locations

in the input, a feedforward network using winner-takeall at the two output layers

can give four possible internally valid solutions. But two of these are wrong. (b)

Possible solution: combination neurons. Another winner-takeall layer of units that

represent each combination of features can solve this problem, but this leads to the

very combinatorial explosion we were trying to avoid by using separable feature

layers. Additionally, every single combination will have to be individually learned.

(0) A solution avoiding the combinatorial explosion: synchronization using top-down

connections. The initial feedforward activity is an initial guess of location and type,

and this allowed to be inconsistent. Top-down connections from the location area

bias a particular area on the image so that a incorrect type is suppressed and the

correct type chosen. This is a basic way to implement a “spotligh ” of attention.

There still may be binding required within the spotlight, if there are occlusions or

transparency. Top—down connections within a visual hierarchy might solve the full

binding problem (e.g., form biases lower-layer edges).

In WWN’s bias-free mode, the binding problem has to be dealt with. However,

using combination neurons are problematic since they introduce the combinatorial

explosion problem [107]; additionally they do not allow generalization properly [116].

In WWN, the coarse binding problem (not consideration occlusions or transparency)

is handled by having a feedforward pass, then letting information flow from the

location motor back towards the early feature layer and up the other pathway to the

type motor. In this way, internal consistency is verified.
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6.2 Concepts and Theory

Here, we discuss how bottom-up and top-down information are integrated in the

Hebbian network (see Fig. 6.5).

Paired Input

For some neuron on some layer, denote its bottom-up excitatory vector by x, and

its top—down excitatory vector as 2. We used paired input:

" (T;||( ”)iizii) ‘6‘”

where 0 g p g 1. The parameter p allows the network to control the influence of

bottom-up vs. top-down activation, since the vector normalization flmdamentally

places bottom-up and top—down on equal ground. Setting ,0 = 0.5 gives the bottom-

up and top-down equal influence.

Paired Layers

In Fig. 6.5, we show three internal components within each major area of V4, IT,

and PP. This internal organization is called paired layers. Paired layers handle

and store bottom-up information separately from the top-down boosted bottom—

up information. The paired layer organization is inspired by the six-layer laminar

organization which is found in all cortical areas [18], but it has been simplified to

its current form. Further discussion of this architecture feature is found in [94].

Paired layers allow a network to retain a copy of its unbiased responses internally.

Without paired layers, top-down modulatory effects can corrupt the bottom-up in-

formation. Such “corruption” might be useful, when the internal expectation (we

consider top-down excitation as an internal expectation) relates to something in the

visual scene. However, there are times when such expectations are violated. In such

141

  



     

  

RETINA

Local Input Field (33 x 38 x 1)

V4

(20 x 20 x_3_x_3)

  

      

 

 

  IT

00x39533}1_f"‘"'"“"“'“'i;:::_@q§sz1xm

'0000 0000'

0000 0000

0000 0000

0000 0000

 

  
  

  

          

    

        

 

I___ _______________

    

 
| control of actions (e.g., speak a word, point, reach”
 

Figure 6.5: W'WN—B system architecture. The V4 area has three layers (depths) of feature

detectors at all image locations. Paired layers: each area has a bottom-up component, a

top—down component. and a paired (integration) component. Within each component,

lateral inhibitory competition occurs. Note that in this figure top—down connections point

up and bottom-up connections point down.
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instances, the internal expectation is in opposition to reality. Then, the incorrect

feedback can potentially lead to false alarms, or hallucinations.

To explain further, we present the following formalism to explain how paired

layers are implemented. Given a neuronal layer 1, let V be the matrix containing

bottom-up column weight vectors to neurons in this layer, and M be the matrix

containing top-down column weight vectors to the layer, where each of the column

vectors in these matrices are normalized. X is a bottom-up input matrix: column

2' contains the input activations for neuron i’s bottom-up input lines. Z is the top-

down input matrix. For the following, X and Z are also column normalized. We use

diag(A) to mean the vector consisting of the diagonal elements of matrix A.

Non-paired layers:. First compute layer l’s pre competitive response y:

y = p diag(VTX) + (1 — p) diag(MTZ) (6.2)

where p and 1 — p are positive weights that control relative bottom-up and top-

down influence. The post-competitive firing rate vector y of layer l is computed

after lateral inhibition function f, controlled by the layer’s sparsity parameter k.

The top It firing neurons will fire and others have firing rate set to zero, giving a

sparse response:

3’ = 9 (f (3’, k)) (6-3)

The lateral inhibition and sparse coding method f is achieved by sorting the

components of the pre-response vector 9. Let 31 be the highest value, .9k be the

k-th highest. Then set a neuron’s response as:

372'. if 392' 2 8k

ya; ‘— (6-4)

0, otherwise
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Figure 6.6: Interaction between bottom-up and top-down in a toy attention problem.

There are two foregrounds A or B. The foreground set is F. This system has A-detectors

and B—detectors. Consider the figures on the left. The expectation of pre-response of

an A-filters is shown to the left and expectation for B-filters on the right. Assume the

corresponding pre-response distributions are Gaussian, which are shown on the right side.

A key assumption is that the pre-response alone does not lead to the best detection, shown

as overlap in the distributions. When both foregrounds are visible, the system is not biased

to detect one or the other, unless a top-down goal is utilized (c).

144



Correct Top-Down Boost

Without Paired Layers:

Pr(i)plF = {$01323 = {A})
 

  

With Paired Layers:

Praia: {A} r; Ex = {A})
 

 

 

 

H's»  

incorrect Top-Down Boost

Pr(z?plF = {Alp Ex = {3})
 

  

 

Pr(g)p|F = (A10 Ex = {3})
 

B

 

A

 

fiat

Figure 6.7: Benefit of paired layers in attention selection. The pre-response distributions

of A-filters vs. B-filters are shown, when the A foreground is the only one visible, but when

top-down expectation Ea: either biases A (correct) or B (incorrect). Top-down boosting

in c00peration with the true state (on the left) leads to higher discriminability by moving

the two means farther away, which is very useful. But if the expectation is wrong (on the

right), it can be drastically more difficult to detect the true state. If paired layers are used,

lateral inhibition is applied first, so that many of the B—detectors will have zero response

before the top-down boost. Then, an incorrect boost can be managed.

145



where g is a threshold function that prevents low responses after competition.

Paired layers: With paired layers, the firing rate vector y of layer 1 neurons are

computed after lateral inhibition of both the bottom-up part yb and top-down part

3ft separately, and additional lateral inhibition for the integrated response:

yb = y(f (diag(vTX), 1%)) (6.5)

Yt = g(f(diag(MTZ). a))

y = 9(f(Pyb+(1-P)th 1910))

A key idea is that the lateral inhibition causes sparse firing within the bottom-up

layer and sparser firing in the paired layer (e.g., kb = 20 and kp = 10 where there are

1200 neurons). The top-down layer is generally not as sparse (e.g,. [ct = 200) so that

it might reach as many potentially biased neurons as possible. In a non-paired layer,

such diffuse top-down biasing can match up with many relatively weak responding

filters (if there was no top-down influence) and boost them above the stronger filters

that have more bottom-up support. But the intermediate competition step in the

paired layer method ensures the diffuse top-down biasing will not significantly boost

the relatively weak filters since they were already eliminated in bottom-up competi-

tion. Filters with support from both bottom-up and top-down thus receive the most

benefit.

Both bottom-up and top—down are highly local in both space and time — they

are highly spatiotemporally sensitive. The input image (bottom-up) could change

quickly, or the “intent” of the network (top-down) could change quickly. In either

case, a paired layer adapts quickly.

Take the following simplified case for understanding. Denote the foreground set

146

 



 

of a visual scene by F. There are two types of interesting foregrounds — call these

foregrounds A and B. For detection and attention, our network has a set of filters

— two at each possible location; one 'to detect foreground A, and one to detect

foreground B.

We must assume the expected pre-competitive response of an A—filter is higher

than a B-filter when A is actually present, and B is not (and vice versa). Assume

E[33”] = a when filter 2' is an A-filter, and E[331%,] = ,8 if filter 1' is a B-filter. Thus,

a > B ifF = {A}, a < [3 ifF = {B}. In this example, let a = B when F = {A,B}.

This is graphically shown in Fig. 6.6.

Assume Pr(37b) is Gaussian. The mean will be a for A-detectors and B for

B-detectors. See Fig 6.7. If they have equal standard deviations 0‘, then the dis-

criminability is defined as

d’ = Iii-”J (6.6)
0

For success of detection, it is desirable to maximize d’.

The effect of top-down feedback is one of two possibilities. If the system expects

foreground A, A—filters are selectively boosted and a is increased. One can see how

this will increase (1’ when F = {A} or F = {A, B} but decrease (1’ when F = {B}.

Otherwise, if the system expects foreground B, thus B-filters are selectively boosted

and fl is increased.

Looking at the figures in Fig. 6.7, observe that when top-down expectation is

applied in accordance with the true state, la — 3| increases, and thus so does (1’. If

F = {A, B}, top-down feedback again increases (1', presumably beneficially. How-

ever, when top—down feedback is applied in opposition to the true state, (1' will

decrease. This is natural, but we wish to minimize this decrease. In other words, to

make the probability of false alarm Pr(FA) as low as possible. Fig. 6.7(b) contrasts

using paired layers to without, and shows why we expect Pr(FA) will be less when
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paired layers are used. A boosted weak response leads to a higher false alarm rate,

but if we cut off weak responses before they are boosted, many incorrect filters will

have zero response, leading to a lower mean Gaussian with lower standard deviation

(since many elements are zero). Then, the incorrect boosting is not as harmful, as

false alarms will be lessened.
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Figure 6.8: Measured entropy along the “What” WWN pathways. In the what pathway,

there is a clear entropy reduction from V2 to IT. The top—down connections enabled this

emergence of discriminating representation to occur.
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Figure 6.9: Measured entropy along both the “Where” WWN pathway. However, there

is not much of an entropy reduction along the where pathway, hovering around 2.7 bits,

which is about 6.5 different pixels of inaccuracy —— a little smaller than a 3 x 3 pixel

neighborhood. We guess that there is an accuracy ceiling for our current method that we

ran into using 400 where classes (compared to 5 what classes) with the 400 neurons in PP

and 1200 neurons in V2.
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6.2. 1 Learning Attention

Each bottom-up weight for a V4 neuron was initialized to a randomly selected 19 x 19

training foreground, as seen in Fig 6.15(b). This greatly quickens training by placing

the weights close to the locations in weight space we expect them to converge to.

Initial bottom-up weights for IT, PP, TM, LM were randomly set. Top—down weights

to V4, IT and PP were set to ones (to avoid initial top-down bias)1.

WWN learns through supervised learning externally and local learning internally.

The Type-Motor and Location-Motor areas were firing-imposed per-sample in order

to train the network. There are c neurons in TM, one for each class, and we used

20 x 20 neurons in LM, one for each attention location. Each areas’ neurons self-

organize in a way similar to self-organizing maps (SOM) [55], but with combined

bottom—up and top-down input p, and using the LCA algorithm for optimal weight

updating. WWN’s top-down connections have useful roles in network development

(training). They lead to discriminant features and a motor-biased organization of

lower layers. Explaining these developmental effects are out of the scope of this

paper, but have been written about elsewhere [64]. Further focus on learning and

development in WWN is presented in [47].

For a single area to learn, it requires bottom-up input X, top-down input Z,

bottom-up and top-down weights V and M, and the parameters p (controlling in-

fluence of bottom-up versus top-down), kb (the number of neurons to fire and update

after competition in the bottom-up layer), kt (the same for the top-down layer), and

kp (for the paired layer). This area will output neuronal firing rates y. It updates

neuronal weights V and M.

The non-inhibited neurons update their weights using the Hebbian-learning LCA

updating [122]:

 

1Setting to initial positive values (nonzero) mimics the initial overgrowth of con-

nections in early brain areas, later pruned by development.

iii.
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Vz‘ *— Wiz') Vi + (1 - whiz-D xi yz- (6.7)

where the plasticity parameters (u(ni) and (1 — w(17,-)) are determined automatically

and optimally based on the neuron’s updating age 7),]. A neuron increments its

age when it wins in competition. Learning rate of each neuron is a function of its

firing age2. This learning is Hebbian as the strength of updating depends on both

presynaptic potentials (e.g., x,) and postsynaptic potentials (e.g., yi).

Denote the per-area learning algorithm we have discussed as LCA. To train

the whole WWN, the following algorithm ran over three iterations per sample. Let

0 = (kb, kt,kp,p).

1. (yV4,VV4,MV4) ,_ LCA(XV4,ZV4,VV4,MV4,0V4)

2. (yIT,VIT,MIT) (_ LCA(XIT,ZIT,VIT,MIT,01T)

3. (yP,VP,MP)«—LCA(XP,ZP,VP,MP,0P)

4. (yTM,VTM,0) «— LCA(xTM,o,vTM,o, aTM)

5. (yLM,VLM,0) «— LCA(XLM,0,VLM,0, 9“”)

A few more items to note on training: (1) Each area’s output firing rates y is

sampled to become the next area’s bottom-up input X, and the previous area’s top-

down input Z. (2) For V4, each top—down source from the What or Where path

is weighted equally in setting 2V4. (3) We used a supervised training mechanism

(“pulvinar”-based training [47]) to bias V4 to learn foreground patterns: we set

its Z based on the firing of the LM area -— only neurons with receptive fields on

the foreground would receive a top-down boost. This is not quite a “skull-closed”

training method, but it is used since we have a limited size network. (4) For PP

(denoted as “P” above) and IT areas, we used 3 x 3 neighborhood updating in

the vein of self-organizing maps in order to spread representation throughout the

 

2The above equation is for bottom-up weights. For top-down weights, substitute

in 22- for x,- and m,- for Vi-
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layer. This was done for the first two epochs. (5) The above algorithm is a forward-

biased algorithm, in the sense that it takes less time for information to travel from

sensors to motors (one iteration) than from motors to V4 (two iterations). Therefore,

weight—updating in V4 only occurred on iterations two and three for each image. (6)

Parameters: pV4

IT=pP

was set to 0.75 (bottom—up activity contributed 75% of the input),

and p = 0.25. In training, all values of It were set to one. This ensured a

sparse representation to develop.

-Cat

-Dog

l:lDTruck

-Duck

DCar   

 

Figure 6.10: Class representation that developed in the IT area. Observe there are five

different areas; one per class. Neurons along the border will represent two (or more)

classes. This is illustrated in the entropy histograms above by the small group of neurons

with about 1 bit of entropy (two choices).

6.2.2 Entropy Reduction

Neurons further along the What pathway become more invariant to object position,

while becoming specific to object type. The opposite is true for the Where path-

way. Neurons earlier in each pathway represent both location and type in a mixed

way. For more information on learning, see [47]. Tests in feedforward mode with a

single foreground in the scene showed the recognition and orientation performance
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Figure 6.11: Internal representation in the IT and PP areas in the deveIOped network.

(a) Response-weighted input (weighted sum of samples) for four neurons from IT. This

shows the weighted average of the samples that these neurons fired for. These represent

the “duck” class, and some fire for multiple locations. (b) Response-weighted input for

some PP neurons. These represent multiple classes, but a single location.

improved after epochs of learning (an epoch is an entire round of training all possible

samples).

The specificity of a layer can be measured by its firing entropy relative to a set of

classes which are either types or locations. As an example, consider that we measure

the response of a single neuron in a ”wha ” layer over a set of stimuli from different

classes. If this neuron only fired when one of the classes was present in the stimulus

and not for the others, it is considered type-specific. If this neuron only fired for

one of the classes, and additionally that class could be placed in multiple locations,

that neuron is also considered location-invariant. We measure entropy for a neuron

by the following: — 22¢ Pr(z')log2(Pr(z')), where Pr(z') is the probability neuron fired

for class 2' (there are c classes). We can then characterize the entropy of the entire

layer or area by measuring it for each neuron and taking the average.

The base 0 logarithm ensures that a neuron’s maximum entropy is one (firing

equally for each class). Probability is measured approximately. We tested the net-
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work over a set of stimuli, each containing one of the c classes, and this neuron has

fired for n. of them. The probability it fires for class i (p(z')) is measured as the

number of stimuli containing class 2' this neuron fired for divided by n.

After learning, we measured the entropy along both pathways respective to their

particular information types. Entropy reduction for type was very apparent in the

what pathway (see Fig. 6.8), but entropy reduction for location was not seen in the

where pathway. This is probably due to the sheer number of where classes (400)

compared to the what classes (5) and due to the high location specificity of the V4

neurons (due to the “pulvinar” supervision method used). Fig. 6.10 shows how IT

organized a class—grouped representation (due to top-down connections and 3 x 3

updating), allowing near-zero entropy to occur in IT. Here, only the border neurons

fire for more than one class, reflected in Fig. 6.8. Fig. 6.11 shows some internal

representation for a few IT and PP neurons.

6.2.3 Attention Selection Mechanisms

Through training, WWN-3 becomes sparsely and selectively wired for attention.

Afterwards, manipulation of parameters allows information to flow in different ways.

The changing of information flow direction is a key to its ability to perform different

attention tasks. Specifically, it involves manipulating the p parameters (bottom-up

vs. top—down within an area) and 7 (percentage of top-down to V4 from IT vs. PP).

In WWN-3, we examined four different attention modes. Free—viewing mode is

completely feedforward. It quickly generates a set of candidate hypotheses about the

image based on its learned filters. But there can be no internal verification that the

type and location that emerge at the motors match (binding problem). Free-viewing

mode is necessary to reduce complexity of an under-constrained search problem, but

it cannot solve the problem itself. Another mode, top-down location-based binding

acts as a spotlight. It constrains firing at LM to a winner location neuron and selects
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for TM appropriately through top-down bias from LM to V4 and bottom-up from

V4 to TM. The top-down object-based attention mode allows the network to act in

search mode. It constrains firing at TM to a winner neuron and selections for LM

appropriately through top-down bias from TM to V4 and bottom-up from V4 to

LM. The forth mode involves a disengage from the currently attended location or

both currently attended location and type.

Multiple objects introduce the binding problem for WWN-3. Another problem

is the hallucination problem, which could occur when the image changes (containing

_ different foregrounds). The following rules for attention allow WWN-3 to deal with

multiple objects and image changes. Whenever a motor area’s top neuron changes

suddenly, switch to the corresponding top-down mode if it is a strong response, or

switch to free-viewing mode if it is a weak response. Whenever both motor areas’ top

neurons change suddenly to strong responses, go into the top—down location-based

mode. If the network focuses on a single location and type for too long, disengage

from the current location. The following parameter settings specify how this was

done in WWN-3. In all modes we set leg/4 = 8 and leg/4 = 4.

1). Bottom-up free-viewing: In forward mode, there is no top-down since the

, network does not yet have any useful internal information to constrain its search.

WWN-3 sets (pV4 = pp = pIT = 1).

2). Top-down searching (object-based): In this mode, information must travel

from the TM down to V4 and back up to the LM. If '7 = 1, all top-down influence

to V4 is from the what path. Set '7 = 1, pIT = 1, pp 2 O, and pV4 = 0.5. [til/4

is large (50% of neurons) to allow wide-spread top-down bias. For IT and PP, kb is

set small (up to 10% of neurons), for sparse coding, while kt and kp must be large

enough to contain all neurons that may carry a bias. For example ktIT = n/c where

c = 5 (classes) and n = 400 neurons if we assume an equal number of neurons per

class.
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3). Tap-down location-based: In this mode, information must travel from LM

to V4 and back up to TM. Thus, the network-sets '7 = O, pIT = 0, pp = 1, and

pV4 = 0.5. The k parameters are set the same as for object-based attention.

4). Location and type attention shift: In this mode, the network must disengage

from its current attended foreground to try to attend to another foreground. To do

so, the current motor neurons that are firing are inhibited (for the location motor, an

inhibition mask of 15 x 15 width“ was used) while all other neurons are slightly excited

until the information can reach V4 (two iterations). The information flows top-down

from motors to V4 (p1T = pPP = 1). The top-down activation parameters kt must

be set much larger since all neurons except the current class should be boosted.

After two iterations, it re-enters free-viewing mode.

Is it plausible to have multiple different attention modes? Computationally, at—

tention and recognition is a “chicken-egg” problem, since, for attention, it seems

recognition must be done, and for recognition, it seems attention (segmentation)

must be done. The brain might deal with this problem by using complementary

pathways and use of different internal modes to enforce internal validity and syn-

chronization. For example, Treisman famously showed [109] that there is a initial

parallel search followed by a serial search (spotlight), which binds features into ob-

ject representations at each location. It seems that after feedforward activity, a

top-down location bias emerges to focus on a certain spot.

6.3 Experiments

Each input sample to WWN—3 contains one or more foregrounds superimposed over

a natural background. The background patches were 38 x 38 in size, and selected

from 13 natural imagesB. The foregrounds were selected from the MSU 25-Objects

 

3Available from http://www.cis.hut.fi/projects/ica/imageica/
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dataset [64] of objects rotating in depth. The foregrounds were normalized to 19 x 19

size square images, but were placed in the background so that the gray square contour

was eliminated (masked). Three training views and two testing views were selected

per each of the five classes. The classes and within-class variations of the foregrounds

can be seen in Fig. 6.15(b). Five input samples, with a single foreground placed over

different backgrounds, can be seen in Fig. 6.15(a).

6.3.1 WWN-3 Learns

 

Figure 6.12: The foregrounds used in the experiment. There are three training (left)

and two testing (right) foregrounds from each of the five classes of toys: “cat”, “pig”,

“dump-truck”, “duck”, and “car”.

 

Figure 6.13: Sample image inputs.
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"Where" and "What" motor performance through epochs
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Figure 6.14: Performance results on disjoint testing data over epochs.

The training set consisted of composite foreground and background images, with

one foreground per image. We trained every possible training foreground at every

possible location (pixel-specific), for each epoch, and we trained over many epochs.

So, there are 5 classes x 3 training instances X 20 x 20 locations = 6000 different

training foreground configurations. After every epoch, we tested every possible

testing foreground at every possible location. There are 5 x 2 X 20 x 20 = 4000

different testing foreground configurations.

To simulate a shortage of neuronal resource relative to the input variability. we

used a small network, five classes of objects, with images of a single size, and many

different natural backgrounds. Both the training and testing sets used the same 5

object classes, but different background images. As there are only 3 V4 neurons

at each location but 15 training object views, the WWN is 4/5 = 80% short of

resource to memorize all the foreground objects. Each V4 neuron must deal with

various misalignment between an object and its receptive field, simulating a more

realistic resource situation. Location was tested in all 20 x 20 = 400 locations.
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To see how a network does as it learns, we tested a single foreground in free-

viewing mode throughout the learning time. As reported in Fig. 6.15(b), a network

gave respectable performance after only the first round (epoch) of practice. After 5

epochs of practice, this network reached an average location error around 1.2 pixels

and a correct disjoint classification rate over 95%.

6.3.2 Two Object Scenes

After training had progressed enough so the bottom-up performance with a single

foreground was sufficient, we wished to investigate WWN-3’s ability with two ob-

jects, and in top-down attention. We tested the above trained WWN-3 with two

competing objects in each image, placed at four possible quadrants to avoid over-

lapping. We placed two diflerent foregrounds in two of the four corners. There

were 5 classes x 4 corners x 3 other corners (for the second foreground) = 60

combinations. WWN-3 first operated starting in free-viewing mode (no imposed

motors), until it converged. If the type and location (within 5 pixels) matched one

of the foregrounds, it was considered a success. Next, the type of the foreground

that wasn’t located was imposed at TM as an external goal, and WWN-3 operated

in top-down searching mode to locate the other foreground. Next, WWN-3 would

shift its attention back to the first object. Finally, the location of the foreground

that wasn’t identified in the first phase was imposed at LM as an external goal, and

WWN—3 operated in top-down location—based mode to find the other foreground.

As shown in Fig. 6.15, the success rates for this network were 95% for the free-

viewing test. The success rates were 96% when given type context to predict location

and 90% when given location context to predict type. It successfully attended to

the other object via an attention shift 83% of the time.
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Figure 6.15: WWNs for the joint attention-recognition problem in bias-free and goal-based

modes for two object scenes. (a) Performance when input contains two learned objects:

bias—free, two types of imposed goals (top-down type-context for search and location-

context for orient and detect). and shifting attention from one object to the other. (b) A

few examples of operation over different modes by a trained “7WN-3. “Context” means

top-down goal is imposed. An octagon indicates the location and type action outputs.

The octagon is the default receptive field.
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6.3.3 Cross-Layer Connections

Callaway [18] discussed how the cortex might use alternate pathways through the

pulvinar and thalamus so that earlier area can send information in a more direct

way to later areas. These alternate pathways would allow the higher level areas

to have higher resolution versions of the input signals that may have been signifi-

cantly transformed in the cortico-cortical pathways going through many areas. This

experiment tests an alternate pathway in WWN, but in the opposite direction.

The purpose of this section is to investigate the performance effects of direct

top-down connections from the type-motor to V2. The direct-connection network

maintains nearly “pure” type specificity in the earliest layer, leading to higher recog-

nition accuracy for the limited set of foregrounds tested.

The following experiment is designed to test the prediction that (i) entropy of

V2 will be greatly decreased through top-down connections from that motor and

(ii) such low entropy can lead to higher recognition rates, given we have sufficiently

large resource.

There were two network architecture types trained, as seen in Fig. 6.16. The

first used top-down connections directly from TM to V2. The second architecture

did not use the TM to V2 connections. V2 contained 20 x 20 x 3 = 1200 neurons,

PP and IT contained 20 x 20 neurons, there were 5 types and 20 x 20 = 400 location

classes. Training occurred in the same way as before.

Every neuron had its type and location winning probabilities recorded through

training. A simple way to measure how well the architecture would do with direct

connections to TM and LM and a large amount of training experience is to take the

winning V2 neuron’s highest type probability as the output type, as indicated in

Fig. 6.16 as the “V2 entropy classifier” block.

Comparisons between V2 entropy-based classification and the classification through

IT and PP are shown in Tables 6.1 and 6.2 (for the disjoint test data), with the first
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Figure 6.16: WWN-3 trains V2 through pulvinar location supervision and bottom-up

based LCA. We added a new direct connection from TM so that V2 develops heightened

type-specificity (even though it was already fairly type-specific). To test the coupled

specificity of V2 representations, an alternate classifier, based on the winning neuron’s

entropy, was developed.
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table showing the result for the architecture with direct top-down connections from

TM to V2 used in training. The recognition rates and location error (measured in

pixels) show that the architecture that used direct top-down connections is better

overall. As expected, using the classification paths through IT and PP slightly de-

creased the performance. Average entropy is shown in Table 6.3. Architecture 1 led

to a greatly reduced type-entropy (which was close to zero) in V2, as compared to

architecture 2.

Table 6.1: Architecture 1: trained with top-down from TM to V2

 

 

 

 

V2 entropy-based WWN network

classification classification

Recognition rate 95% 92.4%

Distance error (pixel) 1.1 1.9    

Table 6.2: Architecture 2: trained without top-down from TM to V2

 

 

 

 

V2 entropy-based WWN network

classification classification

Recognition rate 91.4% 89.4%

Distance error (pixel) 1.5 2.1     

Table 6.3: Average entropy for both architectures, in bits

 

 

 

 

 

Architecture Architecture

1 2

V2 (what) 0.05 0.28

IT 0.16 0.18

V2 (where) 2.7 2.6

PP 2.4 2.2     

This experiment shines light on a question of architecture selection for develop-

mental recurrent networks. Should earlier areas have direct (cross-layer) connectivity

to and from much later areas? Enabling entropy reduction from sensors to motors
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is probably a principle of development. But if the data is too complex, then it takes

too much resource to reduce entropy enough within a single layer. It will take a large

amount of representative resource to recognize a large number of objects without any

shared features. Using top-down direct connections can increase the class-selectivity

of the neurons, as shown above, but probably at the expense of efficient resource

utilization.

6.4 Summary

The work here demonstrated that the WWN-3 is capable of bottom-up and top-down

attention when two objects are in the scene. It uses internal synchronization through

top-down connections to avoid the binding problem for this data. Either “where”

or “what”, to provide top-down context bias, as a goal or preference. Experiments

using the disjoint foreground object subimagas with general object contours reached

an encouraging performance level by a limited size WWN-3.

6.5 Bibliographical Notes

The first version WWN-1 [48] operated on single foregrounds over random natural

image backgrounds: type recognition given a location (top-down location based) and

location finding given a type (top-down object based), where 5 locations were tested.

The second version WWN-2 [47] additionally realized attention and recognition for

single objects in natural backgrounds without supplying either position or type (free-

viewing), and also used a more complex architecture. Further, all pixel locations

were tested. The work reported here corresponds to the third version of WN

—- WWN-3 [63]. It extends the prior versions WWN-1 and WWN-2 to deal with

multiple objects in natural backgrounds, multiple views per class, non-square object

contours, and disjoint testing foregrounds.
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Chapter 7

Concluding Remarks

The main contribution of this work are the methods and theory about utilizing

excitatory top-down connections in multilayer developmental networks. Top-down

connections distribute positive bias, which can be exploited and controlled using

this work’s methods. There are two types of effects: spatial and temporal. Spatial:

The topographic class grouping framework addresses the dual problems of feature

extraction and automatic network wiring, by illustrating how and why top—down

connections can cause biased (reduced-entropy) features and modular networks to

emerge from incremental experience. Temporal: The firing of higher-layer units

represents an abstract bias distribution. Top-down connections propagate this bias

to lower layer units, and lower layer units feed back into the higher-layer units. It was

shown that a clear interpretation of top-down connections in modular networks is

as appropriate boosting of sub—features. Lateral inhibition, paired layers, and firing

thresholds are effective to avoid incremental corruption of that temporal context

over time. But in networks without modularity, this interpretation does not apply.

The theme of this work is cortex-inspired developmental vision. The design of

our visual cortex was evolved to deal with the problems of many-objects represen-

tation, attention, and binding that need to be solved for a developmental vision

system. Therefore, study of the cortex should lead to important insights about how
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to determine parameters and evaluate the artificial networks. Many of the cortical

inspirations for these mechanisms and architectures are explained elsewhere in this

work. To point out a few: 1. top-down connections are as numerous as bottom-up

connections and nearly all layers that are connected are connected in a bidirectional

way, and 2. Modularity is an important organizing principle. The role of recurrence

at all layers of deep feature hierarchies and attention systems has not sufficiently

been explored. This work is a step towards this goal.

Where—what networks are recurrent networks for attention and recognition. They

use separate feature maps to represent location and type separately. It was shown

how recurrent connectivity can enforce multilayer synchronization. This handles the

binding problem without occlusions and transparency, without using combination

neurons. When there are multiple objects in the scene, an unconstrained search for

a single object’s location and type has multiple solutions that can be correct with

respect to the network but incorrect with respect to the world. From an unattended

image, the network generates a plausible hypothesis along each path. By letting one

of the unknowns become a constraint, the other is synchronized via top-down bias

to the earlier layer followed by updated forward activity along the other path.

Experimental results are also key contributions. Some results are summarized

here. In the LCA framework, it was shown how dual optimality greatly assists LCA’s

speed and precision of feature extraction, as compared to other Hebbian learning

rules that use a manually tuned learning rate. And LCA’s “CCI plasticity” showed

long-term plasticity was possible even with such a fast convergence. Topographic

class grouping emerged for handwritten digit recognition and recognition of objects

from different 3D viewpoints; and the networks that learned with enabled top-down

connections developed more effective compression than those not using them. They

also developed modularity. Combining top-down connections with adaptive lateral-

excitation led to a better compression compared to isotropic updating, but at the
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expense of smoothness and connector hubs. The modular networks developed were

shown to use recurrence for significant performance boosts in object recognition and

vehicle recognition (using local features) when the data was temporally ordered.

Where-what networks successfully performed bottom-up and top-down attention

when there were multiple objects in the scene.

The future of this work involves extending WWNs via a larger ventral pathway

— a feature hierarchy. It would also be interesting to look into a motion pathway for

sequence or trajectory learning in vision using WWNs. The associative information

filling in effects of recurrent excitation will be examined. Finally, networks should

be embedded into active agents, which will interact with and learn about the world.
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